forked from Urinx/alphafold_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plmDCA.m
418 lines (348 loc) · 12.6 KB
/
plmDCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
% Copyright 2014 - by Magnus Ekeberg ([email protected])
% All rights reserved
%
% Permission is granted for anyone to copy, use, or modify this
% software for any uncommercial purposes, provided this copyright
% notice is retained, and note is made of any changes that have
% been made. This software is distributed without any warranty,
% express or implied. In no event shall the author or contributors be
% liable for any damage arising out of the use of this software.
%
% The publication of research using this software, modified or not, must include
% appropriate citations to:
%
% M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, E. Aurell, Improved contact
% prediction in proteins: Using pseudolikelihoods to infer Potts models, Phys. Rev. E 87, 012707 (2013)
%
% M. Ekeberg, T. Hartonen, E. Aurell, Fast pseudolikelihood
% maximization for direct-coupling analysis of protein structure
% from many homologous amino-acid sequences, J. Comput. Phys. 276, 341-356 (2014)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plmDCA()
%If should-be numericals are passed as strings, convert them.
args = argv();
fastafile = args{1};
out = fastafile(1:strfind(fastafile, '.')(end)-1);
reweighting_threshold=0;
nr_of_cores=4;
if (ischar(reweighting_threshold))
reweighting_threshold = str2num(reweighting_threshold);
end
if (ischar(nr_of_cores))
nr_of_cores = str2num(nr_of_cores);
end
%Minimization options
options.method='lbfgs'; %Minimization scheme. Default: 'lbfgs', 'cg' for conjugate gradient (use 'cg' if out of RAM).
options.Display='off';
options.progTol=1e-7; %Threshold for when to terminate the descent. Default: 1e-9.
%A note on progTol: In our experiments on PFAM-families, a progTol of 1e-3 gave identical true-positive rates to 1e-9 (default), but with moderately shorter running time. Differences in the scores between progTol 1e-3 and 1e-9 showed up in the 3rd-4th decimal or so (which tends to matter little when ranking them). We here set 1e-7 to be on the safe side, but this can be raised to gain speed. If, however, one wishes to use the scores for some different application, or extract and use the parameters {h,J} directly, we recommend the default progTol 1e-9.
addpath(genpath(pwd))
%Read inputfile (removing inserts), remove duplicate sequences, and calculate weights and B_eff.
[N,B_with_id_seq,q,Y]=return_alignment(fastafile);
Y=unique(Y,'rows');
[B,N]=size(Y);
weights = ones(B,1);
if reweighting_threshold>0.0
fprintf('Starting to calculate weights \n...');
tic
%Reweighting in MATLAB:
%weights = (1./(1+sum(squareform(pdist(Y,'hamm')<=reweighting_threshold))))';
%Reweighting in C:
Y=int32(Y);
m=calc_inverse_weights(Y-1,reweighting_threshold);
weights=1./m;
fprintf('Finished calculating weights \n');
toc
end
B_eff=sum(weights);
fprintf('### N = %d B_with_id_seq = %d B = %d B_eff = %.2f q = %d\n',N,B_with_id_seq,B,B_eff,q);
%Prepare inputs to optimizer.
%Automatic specification of regularization strength based on B_eff. B_eff>500 means the standard regularization 0.01 is used, while B_eff<=500 means a higher regularization is chosen.
if B_eff>500
lambda_J=0.01;
else
lambda_J=0.1-(0.1-0.01)*B_eff/500;
end
lambda_h=lambda_J;
scaled_lambda_h=lambda_h*B_eff;
scaled_lambda_J=lambda_J*B_eff/2; %Divide by 2 to keep the size of the coupling regularizaion equivalent to symmetric variant of plmDCA.
Y=int32(Y);q=int32(q);
w=zeros(q+q^2*(N-1),N); %Matrix in which to store parameter estimates (column r will contain estimates from g_r).
%Run optimizer.
if nr_of_cores>1
% matlabpool('open',nr_of_cores)
tic
parfor r=1:N
disp(strcat('Minimizing g_r for node r=',int2str(r)))
wr=min_g_r(Y,weights,N,q,scaled_lambda_h,scaled_lambda_J,r,options);
w(:,r)=wr;
end
toc
% matlabpool('close')
else
tic
for r=1:N
disp(strcat('Minimizing g_r for node r=',int2str(r)))
wr=min_g_r(Y,weights,N,q,scaled_lambda_h,scaled_lambda_J,r,options);
w(:,r)=wr;
end
toc
end
%Extract the coupling estimates from w.
JJ=reshape(w(q+1:end,:),q,q,N-1,N);
Jtemp1=zeros(q,q,N*(N-1)/2);
Jtemp2=zeros(q,q,N*(N-1)/2);
l=1;
for i=1:(N-1)
for j=(i+1):N
Jtemp1(:,:,l)=JJ(:,:,j-1,i); %J_ij as estimated from from g_i.
Jtemp2(:,:,l)=JJ(:,:,i,j)'; %J_ij as estimated from from g_j.
l=l+1;
end
end
%A note on gauges:
%The parameter estimates coming from g_r satisfy the gauge
% lambda_J*sum_s Jtemp_ri(s,k) = 0
% lambda_J*sum_k Jtemp_ri(s,k) = lambda_h*htemp_r(s)
% sum_s htemp_r(s) = 0.
%Only the couplings are used in what follows.
%Shift the coupling estimates into the Ising gauge.
J1=zeros(q,q,N*(N-1)/2);
J2=zeros(q,q,N*(N-1)/2);
for l=1:(N*(N-1)/2)
J1(:,:,l)=Jtemp1(:,:,l)-repmat(mean(Jtemp1(:,:,l)),q,1)-repmat(mean(Jtemp1(:,:,l),2),1,q)+mean(mean(Jtemp1(:,:,l)));
J2(:,:,l)=Jtemp2(:,:,l)-repmat(mean(Jtemp2(:,:,l)),q,1)-repmat(mean(Jtemp2(:,:,l),2),1,q)+mean(mean(Jtemp2(:,:,l)));
end
%Take J_ij as the average of the estimates from g_i and g_j.
J=0.5*(J1+J2);
%Calculate frob. norms FN_ij.
NORMS=zeros(N,N);
l=1;
for i=1:(N-1)
for j=(i+1):N
NORMS(i,j)=norm(J(2:end,2:end,l),'fro');
NORMS(j,i)=NORMS(i,j);
l=l+1;
end
end
% pseudolikelihood: the weights computed in the MSA pseudolikelihood computation.
% w: [q+q^2*(N-1), N]
% pseudo_bias: the bias computed in the MSA pseudolikelihood computation.
% pseudo_frob: Frobenius norm of pseudolikelihood (gaps not included)
pseudolikelihood = zeros(N,N,q*q); % NxNx484
for i=1:N
for j=1:N
if j > i
pseudolikelihood(i,j,:) = reshape(JJ(:,:,j-1,i),1,[]);
end
if j < i
pseudolikelihood(i,j,:) = reshape(JJ(:,:,j,i),1,[]);
end
end
end
pseudo_bias = w(1:q, :)'; % Nx22
pseudo_frob = NORMS; % NxN
save('-7',strcat(out,'.mat'), 'pseudolikelihood', 'pseudo_bias', 'pseudo_frob');
%Calculate scores CN_ij=FN_ij-(FN_i-)(FN_-j)/(FN_--), where '-'
%denotes average.
% norm_means=mean(NORMS)*N/(N-1);
% norm_means_all=mean(mean(NORMS))*N/(N-1);
% CORRNORMS=NORMS-norm_means'*norm_means/norm_means_all;
% output=[];
% for i=1:(N-1)
% for j=(i+1):N
% output=[output;[i,j,CORRNORMS(i,j)]];
% end
% end
% dlmwrite,output,'precision',5)
end
function [wr]=min_g_r(Y,weights,N,q,scaled_lambda_h,scaled_lambda_J,r,options)
%Creates function object for (regularized) g_r and minimizes it using minFunc.
r=int32(r);
funObj=@(wr)g_r(wr,Y,weights,N,q,scaled_lambda_h,scaled_lambda_J,r);
wr0=zeros(q+q^2*(N-1),1);
wr=minFunc(funObj,wr0,options);
end
function [fval,grad] = g_r(wr,Y,weights,N,q,lambdah,lambdaJ,r)
%Evaluates (regularized) g_r using the mex-file.
h_r=reshape(wr(1:q),1,q);
J_r=reshape(wr(q+1:end),q,q,N-1);
r=int32(r);
[fval,grad1,grad2] = g_rC(Y-1,weights,h_r,J_r,[lambdah;lambdaJ],r);
grad = [grad1(:);grad2(:)];
end
function [N,B,q,Y] = return_alignment(inputfile)
%Reads alignment from inputfile, removes inserts and converts into numbers.
align_full = fastaread(inputfile);
B = length(align_full);
ind = align_full(1).Sequence ~= '.' & align_full(1).Sequence == upper( align_full(1).Sequence );
N = sum(ind);
Y = zeros(B,N);
for i=1:B
counter = 0;
for j=1:length(ind)
if( ind(j) )
counter = counter + 1;
Y(i,counter)=letter2number( align_full(i).Sequence(j) );
end
end
end
q=22;
end
function x=letter2number(a)
switch(a)
% full AA alphabet
case '-'
x=1;
case 'A'
x=2;
case 'C'
x=3;
case 'D'
x=4;
case 'E'
x=5;
case 'F'
x=6;
case 'G'
x=7;
case 'H'
x=8;
case 'I'
x=9;
case 'K'
x=10;
case 'L'
x=11;
case 'M'
x=12;
case 'N'
x=13;
case 'P'
x=14;
case 'Q'
x=15;
case 'R'
x=16;
case 'S'
x=17;
case 'T'
x=18;
case 'V'
x=19;
case 'W'
x=20;
case 'Y'
x=21;
case 'X'
x=22;
otherwise
x=1;
end
end
function [data, seq] = fastaread(filename)
%FASTAREAD reads FASTA format file.
%
% S = FASTAREAD(FILENAME) reads a FASTA format file FILENAME, returning
% the data in the file as a structure. FILENAME can also be a URL or
% MATLAB character array that contains the text of a FASTA format file.
% S.Header is the header information. S.Sequence is the sequence stored
% as a string of characters.
%
% [HEADER, SEQ] = FASTAREAD(FILENAME) reads the file into separate
% variables HEADER and SEQ. If the file contains more than one sequence,
% then HEADER and SEQ are cell arrays of header and sequence information.
%
% Examples:
%
% % Read the sequence for the human p53 tumor gene.
% p53nt = fastaread('p53nt.txt')
%
% % Read the sequence for the human p53 tumor protein.
% p53aa = fastaread('p53aa.txt')
%
% % Read the human mitochondrion genome in FASTA format.
% entrezSite = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?'
% textOptions = '&txt=on&view=fasta'
% genbankID = '&list_uids=NC_001807'
% mitochondrion = fastaread([entrezSite textOptions genbankID])
%
% See also EMBLREAD, FASTAWRITE, GENBANKREAD, GENPEPTREAD, MULTIALIGNREAD.
% Copyright 2003-2004 The MathWorks, Inc.
% $Revision: 1.15.4.7 $ $Date: 2004/04/01 15:57:56 $
% FASTA format specified here:
% http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
% check input is char
% in a future version we may accept also cells
if ~ischar(filename)
error('Bioinfo:InvalidInput','Input must be a character array')
end
if size(filename,1)>1 % is padded string
for i=1:size(filename,1)
ftext(i,1)=strread(filename(i,:),'%s','whitespace','','delimiter','\n');
ftext{i}(find(~isspace(ftext{i}),1,'last')+1:end)=[];
end
% try then if it is an url
elseif (strfind(filename(1:min(10,end)), '://'))
if (~usejava('jvm'))
error('Bioinfo:NoJava','Reading from a URL requires Java.')
end
try
ftext = urlread(filename);
catch
error('Bioinfo:CannotReadURL','Cannot read URL "%s".', filename);
end
ftext = strread(ftext,'%s','delimiter','\n');
% try then if it is a valid filename
elseif (exist(filename) == 2 || exist(fullfile(cd,filename)) == 2)
% ftext = textread(filename,'%s','delimiter','\n');
fid = fopen(filename);
ftext = textscan(fid,'%s','delimiter','\n'){:};
fclose(fid);
else % must be a string with '\n', convert to cell
ftext = strread(filename,'%s','delimiter','\n');
end
% it is possible that there will be multiple sequences
commentLines = strncmp(ftext,'>',1);
if ~any(commentLines)
error('Bioinfo:FastaNotValid',...
'Input does not exist or is not a valid FASTA file.')
end
numSeqs = sum(commentLines);
seqStarts = [find(commentLines); size(ftext,1)+1];
data(numSeqs).Header = '';
try
for theSeq = 1:numSeqs
% Check for > symbol ?
data(theSeq).Header = ftext{seqStarts(theSeq)}(2:end);
firstRow = seqStarts(theSeq)+1;
lastRow = seqStarts(theSeq+1)-1;
numChars = cellfun('length',ftext(firstRow:lastRow));
numSymbols = sum(numChars);
data(theSeq).Sequence = repmat(' ',1,numSymbols);
pos = 1;
for i=firstRow:lastRow,
len = cellfun('length',ftext(i));
if len == 0
break
end
data(theSeq).Sequence(pos:pos+len-1) = ftext{i};
pos = pos+len;
end
end
data(theSeq).Sequence = deblank(data(theSeq).Sequence);
% in case of two ouputs
if nargout == 2
if numSeqs == 1
seq = data.Sequence;
data = data.Header;
else
seq = {data(:).Sequence};
data = {data(:).Header};
end
end
catch
error('Bioinfo:IncorrectDataFormat','Incorrect data format in fasta file')
end
end