Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature request: export function via code-generator for Keras, pytorch, TF, and mxnet #6

Open
ivanistheone opened this issue Jan 30, 2019 · 1 comment

Comments

@ivanistheone
Copy link

ivanistheone commented Jan 30, 2019

It would be nice to have an export-feature for each sort of layer that can generate sample code for the main NN libraries, e.g.,

export feature

pytorch

    model = torch.nn.Sequential()
    model.add_module("linear_1", torch.nn.Linear(input_dim, 128))
    model.add_module("relu_1", torch.nn.ReLU())
    model.add_module("linear_2", torch.nn.Linear(128, 64))
    model.add_module("relu_1", torch.nn.ReLU())
    model.add_module("linear_3", torch.nn.Linear(64, output_dim))

keras

???

tf

    # Hidden 1
    with tf.name_scope('hidden1'):
        weights = tf.Variable(
            tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                                stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
        biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
        hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
    # Hidden 2
    with tf.name_scope('hidden2'):
        weights = tf.Variable(
            tf.truncated_normal([hidden1_units, hidden2_units],
                                stddev=1.0 / math.sqrt(float(hidden1_units))), name='weights')
        biases = tf.Variable(tf.zeros([hidden2_units]),name='biases')
        hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
    # Linear
    with tf.name_scope('softmax_linear'):
        weights = tf.Variable(
            tf.truncated_normal([hidden2_units, NUM_CLASSES],
                                stddev=1.0 / math.sqrt(float(hidden2_units))), name='weights')
        biases = tf.Variable(tf.zeros([NUM_CLASSES]),name='biases')
        logits = tf.matmul(hidden2, weights) + biases
    #
    return logits

mxnet

data = mx.symbol.Variable('data')
fc1  = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
fc2  = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
fc3  = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10)
mlp  = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
@IwraStudios
Copy link

Keras (Sequential API):

model = Sequential()
model.add(Dense(128, activation='relu', input_dim=input_dim))
model.add(Dense(64, activation='relu'))
model.add(Dense(out_dim, activation='softmax'))

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants