Skip to content

Latest commit

Β 

History

History
357 lines (252 loc) Β· 13 KB

README.md

File metadata and controls

357 lines (252 loc) Β· 13 KB

Choice - Weighted Random Selector

Created by Hiroya Aramaki (Makihiro)

Tests Build Release openupm

What is Weighted Random Selector ?

Weighted Random Selector is an algorithm for randomly selecting elements based on their weights.

For example.

  • Drop items based on rarity.
  • Events that occur with a certain probability

It can be used to determine things with probability.

Choice is a library that was created to make it easier to implement.

// This is the simplest usage.
var randomSelectedItem = items
	.ToWeightedSelector(item => item.weight)
	.SelectItemWithUnityRandom();

Great introduction article on Weighted Random Select: https://blog.bruce-hill.com/a-faster-weighted-random-choice

Download any version from releases.

Releases: https://github.com/mackysoft/Choice/releases

Install via git URL

Or, you can add this package by opening PackageManager and entering

https://github.com/mackysoft/Choice.git?path=Assets/MackySoft/MackySoft.Choice

from the Add package from git URL option.

Install via Open UPM

Or, you can install this package from the Open UPM registry.

More details here.

openupm add com.mackysoft.choice
// To use Choice, add this namespace.
using MackySoft.Choice;

public class WeightedItem {
	public string id;
	public float weight;
}

public WeightedItem SelectItem () {
	// Prepare weighted items.
	var items = new WeightedItem[] {
		new WeightedItem { id = "πŸ’", weight = 8f },
		new WeightedItem { id = "🍏", weight = 4f },
		new WeightedItem { id = "🍍", weight = 0f },
		new WeightedItem { id = "πŸ‡", weight = 6f },
		new WeightedItem { id = "🍊", weight = -1f }
	};
	
	// Create the WeightedSelector.
	var weightedSelector = items.ToWeightedSelector(item => item.weight);
	
	// The probability of each item being selected,
	// πŸ’ is 44%, 🍏 is 22%, and πŸ‡ is 33%.
	// 🍍 and 🍊 will never be selected because their weights are less or equal to 0.
	return weightedSelector.SelectItemWithUnityRandom();
	// Same as weightedSelector.SelectItem(UnityEngine.Random.value);
}

The ToWeightedSelector method has many overloads and can be used for a variety of patterns.

public struct ItemEntry {
	public Item item;
	public float weight;
}

public IWeightedSelector<Item> WeightedEntryPattern () {
	var entries = new ItemEntry[] {
		new ItemEntry { item = new Item { id = "πŸ’" }, weight = 1f },
		new ItemEntry { item = new Item { id = "🍏" }, weight = 5f },
		new ItemEntry { item = new Item { id = "🍍" }, weight = 3f }
	};

	// Create a WeightedSelector by selecting item and weight from entry respectively.
	return entries.ToWeightedSelector(
		itemSelector: entry => entry.item,
		weightSelector: entry => entry.weight
	);
}
public class WeightedItem {
	public string id;
	public float weight;
}

public IWeightedSelector<WeightedItem> WeightedItemPattern () {
	var items = new WeightedItem[] {
		new WeightedItem { id = "πŸ’", weight = 1f },
		new WeightedItem { id = "🍏", weight = 5f },
		new WeightedItem { id = "🍍", weight = 3f }
	};

	// Create a WeightedSelector using the weight of the WeightedItem.
	return fromWeightedItem = items.ToWeightedSelector(weightSelector: item => item.weight);
}
public class Item {
	public string id;
}

public IWeightedSelector<Item> DictionaryPattern () {
	// This need a Dictionary<TItem,float>. (Strictly speaking, IEnumerable<KeyValuePair<TItem,float>>)
	var dictionary = new Dictionary<Item,float>(
		{ new Item { id = "πŸ’" }, 1f },
		{ new Item { id = "🍏" }, 5f },
		{ new Item { id = "🍍" }, 3f }
	);

	// Create a WeightedSelector with the dictionary key as item and value as weight.
	return dictionary.ToWeightedSelector();
}

Since the ToWeightedSelector method is defined as an extension of IEnumerable<T>, it can be connected from the LINQ query operators.

var randomSelectedItem = items
	.Where(item => item != null) // null check
	.ToWeightedSelector(item => item.weight)
	.SelectItemWithUnityRandom();

When creating a WeightedSelector, you can specify the IWeightedSelectMethod.

var weightedSelector = items.ToWeightedSelector(
	item => item.weight,
	WeightedSelectMethod.Binary // Use the binary search algorithm.
);

All ToWeightedSelector methods can specify IWeightedSelectMethod.

If this is not specified, the linear scan algorithm will be used automatically.

The simplest algorithm that walks linearly along the weights. This method is an O(n) operation, where n is number of weights.

The binary search algorithm that is faster than linear scan by preprocessing to store the current sum of weights.

It has an additional storage cost of O(n), but is accelerated by up to O(log(n)) for each selection, where n is number of weights.

The fastest algorithm.

It takes O(n) run time to set up, but the selection is performed in O(1) run time, where n is number of weights.

Therefore, this is a very effective algorithm for selecting multiple items.

Speed measurement of Weighted Random Selection Algorithms  (1 items)

Iterations 1 10 100 1000 10000
Linear Scan 0.0104ms 0.0055ms 0.0081ms 0.0393ms 0.3408ms
Binary Search 0.0091ms 0.0083ms 0.0126ms 0.0659ms 0.5944ms
Alias Method 0.0069ms 0.0065ms 0.01ms 0.0459ms 0.4094ms
Iterations 1 10 100 1000 10000
Linear Scan 0.0155ms 0.0064ms 0.0077ms 0.0381ms 0.353ms
Binary Search 0.0077ms 0.008ms 0.0123ms 0.0659ms 0.5919ms
Alias Method 0.0062ms 0.0065ms 0.01ms 0.0462ms 0.41ms
Iterations 1 10 100 1000 10000
Linear Scan 0.009ms 0.0053ms 0.0081ms 0.0378ms 0.3388ms
Binary Search 0.0073ms 0.0079ms 0.0129ms 0.0653ms 0.5927ms
Alias Method 0.0054ms 0.0062ms 0.0104ms 0.0461ms 0.4194ms

Speed measurement of Weighted Random Selection Algorithms  (10 items)

Iterations 1 10 100 1000 10000
Linear Scan 0.0113ms 0.0077ms 0.0182ms 0.1219ms 1.19ms
Binary Search 0.0109ms 0.0114ms 0.0237ms 0.158ms 1.4975ms
Alias Method 0.0136 0.022ms 0.0151ms 0.0601ms 0.5041ms
Iterations 1 10 100 1000 10000
Linear Scan 0.012ms 0.0072ms 0.0174ms 0.1272ms 1.1738ms
Binary Search 0.0095ms 0.0099ms 0.023ms 0.16ms 1.5503ms
Alias Method 0.0141ms 0.0104ms 0.0148ms 0.0618ms 0.5235ms
Iterations 1 10 100 1000 10000
Linear Scan 0.0095ms 0.009ms 0.0179ms 0.1216ms 1.1503ms
Binary Search 0.0096ms 0.0103ms 0.0225ms 0.1572ms 1.4991ms
Alias Method 0.0129ms 0.0105ms 0.015ms 0.0607ms 0.5176ms

Speed measurement of Weighted Random Selection Algorithms  (100 items)

Iterations 1 10 100 1000 10000
Linear Scan 0.0201ms 0.024ms 0.0822ms 0.741ms 7.2211ms
Binary Search 0.0212ms 0.0211ms 0.0433ms 0.3118ms 2.6434ms
Alias Method 0.0717ms 0.0364ms 0.0395ms 0.086ms 0.5462ms
Iterations 1 10 100 1000 10000
Linear Scan 0.0231ms 0.0247ms 0.0855ms 0.7027ms 7.0025ms
Binary Search 0.0224ms 0.0231ms 0.0441ms 0.2776ms 2.6521ms
Alias Method *0.039ms 0.0358ms 0.0405ms 0.0861ms 0.5561ms
Iterations 1 10 100 1000 10000
Linear Scan 0.0194ms 0.0232ms 0.0892ms 0.7582ms 7.1886ms
Binary Search 0.0206ms 0.0218ms 0.0447ms 0.2804ms 2.6375ms
Alias Method 0.0376ms 0.0381ms 0.0413ms 0.0871ms 0.5728ms

Speed measurement of Weighted Random Selection Algorithms  (1000 items)

Iterations 1 10 100 1000 10000
Linear Scan 0.1147ms 0.1672ms 0.7792ms 6.7539ms 66.8329ms
Binary Search 0.1205ms 0.1183ms 0.1504ms 0.4758ms 3.7755ms
Alias Method 0.2783ms 0.2722ms 0.2925ms 0.3238ms 0.7824ms
Iterations 1 10 100 1000 10000
Linear Scan 0.1068ms 0.1717ms 0.8331ms 6.8282ms 68.455ms
Binary Search 0.1217ms 0.1173ms 0.1499ms 0.5026ms 3.7627ms
Alias Method 0.2785ms 0.2889ms 0.2876ms 0.3318ms 0.908ms
Iterations 1 10 100 1000 10000
Linear Scan 0.102ms 0.1636ms 0.7271ms 6.743ms 66.4393ms
Binary Search 0.1241ms 0.1208ms 0.1501ms 0.5216ms 4.0165ms
Alias Method 0.2782ms 0.2755ms 0.2777ms 0.3454ms 0.8068ms

Speed measurement of Weighted Random Selection Algorithms  (10000 items)

Iterations 1 10 100 1000 10000
Linear Scan 1.1885ms 1.7971ms 8.0482ms 69.1749ms 664.8696ms
Binary Search 1.3329ms 1.3181ms 1.3454ms 1.7735ms 6.1215ms
Alias Method 2.8859ms 2.8719ms 2.8832ms 2.9779ms 3.4764ms
Iterations 1 10 100 1000 10000
Linear Scan 1.1676ms 1.6953ms 8.0905ms 70.1629ms 668.3197ms
Binary Search 1.3118ms 1.3361ms 1.3407ms 1.786ms 6.1105ms
Alias Method 2.8833ms 2.934ms 2.951ms 2.9845ms 3.6259ms
Iterations 1 10 100 1000 10000
Linear Scan 1.3098ms 1.9826ms 8.063ms 68.9301ms 666.9364ms
Binary Search 1.4456ms 1.3787ms 4.6233ms 1.7861ms 6.0783ms
Alias Method 2.9751ms 2.9144ms 2.9236ms 2.9851ms 3.5149ms

Speed measurement of Weighted Random Selection Algorithms  (10000 items without setup)

Iterations 1 10 100 1000 10000
Linear Scan 0.0207ms 0.7364ms 6.5433ms 67.3963ms 671.3184ms
Binary Search 0.0015ms 0.0055ms 0.0492ms 0.496ms 4.828ms
Alias Method 0.0005ms 0.0011ms 0.0066ms 0.0579ms 0.5559ms

Hiroya Aramaki is a indie game developer in Japan.

This library is under the MIT License.