This repository includes optimized deep learning models to speed up the deployment of deep learning inference on Xilinx™ platforms. These models cover different applications, including but not limited to ADAS/AD, medical, video surveillance, robotics, data center, etc. You can get started with these free pre-trained models to enjoy the benefits of deep learning acceleration.
1.New 22 models and total 130 models with diverse deep learning frameworks (Caffe, TensorFlow, TensorFlow 2 and PyTorch) in Vitis AI 2.0.
2.The diversity of AI Model Zoo is significantly improved compared to Vitis AI 1.4.
a.For AD/ADAS, provide Lidar based 3D detection, Instance segmentation, upgraded lane detection and Image-lidar fusion 3D detection, etc.
b.For Medical, provide Image Denoising, upgraded Image Super-resolution, Spectral remove, Polyp segmentation, etc.
c.For Smart city and Industrial Vision, provide Binocular depth estimation, Person orientation estimation, Joint detection and Tracking, etc.
d.In addition, begin to provide NLP reference models and OFA search reference models such as OFA-resnet50 and OFA-depthwise-resnet50.
3.EoU enhancement: Provide upgraded automatic script for users to find their required reference models and download them faster and more efficiently.
The following table includes comprehensive information about all models, including application, framework, training and validation dataset, input size, computation as well as float and quantized precision.
Click here to view details
No. | Application | Name | Framework | Input Size | OPS per image | Training Set | Val Set | Float Accuracy (Top1/ Top5) | Quantized Accuracy (Top1/Top5) |
---|---|---|---|---|---|---|---|---|---|
1 | Image Classification | cf_resnet50_imagenet_224_224_7.7G_2.0 | caffe | 224*224 | 7.7G | ImageNet Train | ImageNet Val | 0.7444/0.9185 | 0.7335/0.9130 |
2 | Image Classifiction | cf_resnet18_imagenet_224_224_3.65G_2.0 | caffe | 224*224 | 3.65G | ImageNet Train | ImageNet Val | 0.6844/0.8864 | 0.6699/0.8826 |
3 | Image Classification | cf_inceptionv1_imagenet_224_224_3.16G_2.0 | caffe | 224*224 | 3.16G | ImageNet Train | ImageNet Val | 0.7030/0.8971 | 0.6964/0.8942 |
4 | Image Classification | cf_inceptionv2_imagenet_224_224_4G_2.0 | caffe | 224*224 | 4G | ImageNet Train | ImageNet Val | 0.7275/0.9111 | 0.7166/0.9029 |
5 | Image Classification | cf_inceptionv3_imagenet_299_299_11.4G_2.0 | caffe | 299*299 | 11.4G | ImageNet Train | ImageNet Val | 0.7701/0.9329 | 0.7622/0.9302 |
6 | Image Classification | cf_inceptionv4_imagenet_299_299_24.5G_2.0 | caffe | 299*299 | 24.5G | ImageNet Train | ImageNet Val | 0.7958/0.9470 | 0.7899/0.9444 |
7 | Image Classification | cf_mobilenetv2_imagenet_224_224_0.59G_2.0 | caffe | 224*224 | 608M | ImageNet Train | ImageNet Val | 0.6527/0.8643 | 0.6399/0.8540 |
8 | Image Classifiction | cf_squeezenet_imagenet_227_227_0.76G_2.0 | caffe | 227*227 | 0.76G | ImageNet Train | ImageNet Val | 0.5432/0.7824 | 0.5270/0.7816 |
9 | ADAS Pedstrain Detection | cf_ssdpedestrian_coco_360_640_0.97_5.9G_2.0 | caffe | 360*640 | 5.9G | coco2014_train_person and crowndhuman | coco2014_val_person | 0.5903 | 0.5857 |
10 | Object Detection | cf_refinedet_coco_360_480_123G_2.0 | caffe | 360*480 | 123G | coco2014_train_person | coco2014_val_person | 0.6928 | 0.7042 |
11 | Object Detection | cf_refinedet_coco_360_480_0.8_25G_2.0 | caffe | 360*480 | 25G | coco2014_train_person | coco2014_val_person | 0.6794 | 0.6790 |
12 | Object Detection | cf_refinedet_coco_360_480_0.92_10.10G_2.0 | caffe | 360*480 | 10.10G | coco2014_train_person | coco2014_val_person | 0.6489 | 0.6487 |
13 | Object Detection | cf_refinedet_coco_360_480_0.96_5.08G_2.0 | caffe | 360*480 | 5.08G | coco2014_train_person | coco2014_val_person | 0.6120 | 0.6112 |
14 | ADAS Vehicle Detection | cf_ssdadas_bdd_360_480_0.95_6.3G_2.0 | caffe | 360*480 | 6.3G | bdd100k + private data | bdd100k + private data | 0.4207 | 0.4200 |
15 | Traffic Detection | cf_ssdtraffic_360_480_0.9_11.6G_2.0 | caffe | 360*480 | 11.6G | private data | private data | 0.5982 | 0.5921 |
16 | ADAS Lane Detection | cf_VPGnet_caltechlane_480_640_0.99_2.5G_2.0 | caffe | 480*640 | 2.5G | caltech lanes | caltech lanes | 0.8864 (F1-score) | 0.8882 (F1-score) |
17 | Object Detection | cf_ssdmobilenetv2_bdd_360_480_6.57G_2.0 | caffe | 360*480 | 6.57G | bdd100k train | bdd100k val | 0.3052 | 0.2752 |
18 | ADAS Segmentation | cf_fpn_cityscapes_256_512_8.9G_2.0 | caffe | 256*512 | 8.9G | Cityscapes gtFineTrain | Cityscapes Val | 0.5669 | 0.5607 |
19 | Pose Estimation | cf_SPnet_aichallenger_224_128_0.54G_2.0 | caffe | 224*128 | 548.6M | ai_challenger | ai_challenger | 0.9000 (PCKh0.5) | 0.8964 (PCKh0.5) |
20 | Pose Estimation | cf_openpose_aichallenger_368_368_0.3_189.7G_2.0 | caffe | 368*368 | 189.7G | ai_challenger | ai_challenger | 0.4507 (OKs) | 0.4429 (Oks) |
21 | Face Detection | cf_densebox_wider_320_320_0.49G_2.0 | caffe | 320*320 | 0.49G | wider_face | FDDB | 0.8833 | 0.8783 |
22 | Face Detection | cf_densebox_wider_360_640_1.11G_2.0 | caffe | 360*640 | 1.11G | wider_face | FDDB | 0.8931 | 0.8922 |
23 | Face Recognition | cf_landmark_celeba_96_72_0.14G_2.0 | caffe | 96*72 | 0.14G | celebA | processed helen | 0.1952 (L2 loss) | 0.1971 (L2 loss) |
24 | Re-identification | cf_reid_market1501_160_80_0.95G_2.0 | caffe | 160*80 | 0.95G | Market1501+CUHK03 | Market1501 | mAP:0.5660 Rank-1:0.7800 | mAP:0.5590 Rank-1:0.7760 |
25 | Detection+Segmentation | cf_multitask_bdd_288_512_14.8G_2.0 | caffe | 288*512 | 14.8G | BDD100K+Cityscapes | BDD100K+Cityscapes | mAP:0.2228 mIOU:0.4088 | mAP:0.2140 mIOU:0.4058 |
26 | Object Detection | dk_yolov3_bdd_288_512_53.7G_2.0 | darknet | 288*512 | 53.7G | bdd100k | bdd100k | 0.5058 | 0.4910 |
27 | Object Detection | dk_yolov3_cityscapes_256_512_0.9_5.46G_2.0 | darknet | 256*512 | 5.46G | Cityscapes | Cityscapes | 0.5520 | 0.5300 |
28 | Object Detection | dk_yolov3_voc_416_416_65.42G_2.0 | darknet | 416*416 | 65.42G | voc07+12_trainval | voc07_test | 0.8240 | 0.8130 |
29 | Object Detection | dk_yolov2_voc_448_448_34G_2.0 | darknet | 448*448 | 34G | voc07+12_trainval | voc07_test | 0.7845 | 0.7740 |
30 | Object Detection | dk_yolov2_voc_448_448_0.66_11.56G_2.0 | darknet | 448*448 | 11.56G | voc07+12_trainval | voc07_test | 0.7700 | 0.7610 |
31 | Object Detection | dk_yolov2_voc_448_448_0.71_9.86G_2.0 | darknet | 448*448 | 9.86G | voc07+12_trainval | voc07_test | 0.7670 | 0.7540 |
32 | Object Detection | dk_yolov2_voc_448_448_0.77_7.82G_2.0 | darknet | 448*448 | 7.82G | voc07+12_trainval | voc07_test | 0.7576 | 0.7482 |
33 | Face Recognition | cf_facerec-resnet20_112_96_3.5G_2.0 | caffe | 112*96 | 3.5G | private data | private data | 0.9610 (1e-06) | 0.9480 (1e-06) |
34 | Face Recognition | cf_facerec-resnet64_112_96_11G_2.0 | caffe | 112*96 | 11G | private data | private data | 0.9830 (1e-06) | 0.9820 (1e-06) |
35 | Medical Segmentation | cf_FPN-resnet18_EDD_320_320_45.3G_2.0 | caffe | 320*320 | 45.30G | EDD_seg | EDD_seg | mean dice=0.8203 mean jaccard=0.7925 F2-score=0.8075 |
mean dice=0.8055 mean jaccard=0.7772 F2- score=0.7925 |
36 | Plate Detection | cf_plate-detection_320_320_0.49G_2.0 | caffe | 320*320 | 0.49G | private data | private data | Recall1: 0.9660 | Recall1: 0.9650 |
37 | Plate Recognition | cf_plate-recognition_96_288_1.75G_2.0 | caffe | 96*288 | 1.75G | private data | private data | plate number:99.51% plate color:100% | plate number:99.51% plate color:100% |
38 | Face Detection | cf_retinaface_wider_360_640_1.11G_2.0 | caffe | 360*640 | 1.11G | wideface and FDDB | widerface and FDDB | 0.9140@fp=100 | 0.8940@fp=100 |
39 | Face Quality | cf_face-quality_80_60_61.68M_2.0 | caffe | 80*60 | 61.68M | private data | private data | 12.5481 (L1 loss) | 12.6863 (L1 loss) |
40 | Robot Instrument Segmentation | cf_FPN-resnet18_Endov_240_320_13.75G_2.0 | caffe | 240*320 | 13.75G | EndoVis'15 | EndoVis'15 | Dice=0.8050 Jaccard=0.7270 | Dice=0.8010 Jaccard=0.7230 |
41 | Pose Estimation | cf_hourglass_mpii_256_256_10.2G_2.0 | caffe | 256*256 | 10.20G | MPII Human Pose | MPII Human Pose | 0.8718 (PCKh0.5) | 0.8661 (PCKh0.5) |
42 | Commodity Detection | dk_tiny-yolov3_416_416_5.46G_2.0 | darknet | 416*416 | 5.46G | private data | private data | 0.9739 | 0.9650 |
43 | Object Detection | dk_yolov4_coco_416_416_60.1G_2.0 | darknet | 416*416 | 60.1G | coco | coco2014-5k | 0.3950 | 0.3730 |
44 | Object Detection | dk_yolov4_coco_416_416_0.36_38.2G_2.0 | darknet | 416*416 | 38.2G | coco | coco2014-5k | 0.3810 | 0.3590 |
45 | Classifiction | tf_inceptionresnetv2_imagenet_299_299_26.35G_2.0 | tensorflow | 299*299 | 26.35G | ImageNet Train | ImageNet Val | 0.8037 | 0.7946 |
46 | Classifiction | tf_inceptionv1_imagenet_224_224_3G_2.0 | tensorflow | 224*224 | 3G | ImageNet Train | ImageNet Val | 0.6976 | 0.6794 |
47 | Classifiction | tf_inceptionv3_imagenet_299_299_11.45G_2.0 | tensorflow | 299*299 | 11.45G | ImageNet Train | ImageNet Val | 0.7798 | 0.7607 |
48 | Classifiction | tf_inceptionv4_imagenet_299_299_24.55G_2.0 | tensorflow | 299*299 | 24.55G | ImageNet Train | ImageNet Val | 0.8018 | 0.7928 |
49 | Classifiction | tf_mobilenetv1_0.25_imagenet_128_128_27M_2.0 | tensorflow | 128*128 | 27.15M | ImageNet Train | ImageNet Val | 0.4144 | 0.3464 |
50 | Classifiction | tf_mobilenetv1_0.5_imagenet_160_160_150M_2.0 | tensorflow | 160*160 | 150.07M | ImageNet Train | ImageNet Val | 0.5903 | 0.5195 |
51 | Classifiction | tf_mobilenetv1_1.0_imagenet_224_224_1.14G_2.0 | tensorflow | 224*224 | 1.14G | ImageNet Train | ImageNet Val | 0.7102 | 0.6779 |
52 | Classifiction | tf_mobilenetv2_1.0_imagenet_224_224_602M_2.0 | tensorflow | 224*224 | 0.59G | ImageNet Train | ImageNet Val | 0.7013 | 0.6767 |
53 | Classifiction | tf_mobilenetv2_1.4_imagenet_224_224_1.16G_2.0 | tensorflow | 224*224 | 1.16G | ImageNet Train | ImageNet Val | 0.7411 | 0.7194 |
54 | Classifiction | tf_resnetv1_50_imagenet_224_224_6.97G_2.0 | tensorflow | 224*224 | 6.97G | ImageNet Train | ImageNet Val | 0.7520 | 0.7478 |
55 | Classifiction | tf_resnetv1_101_imagenet_224_224_14.4G_2.0 | tensorflow | 224*224 | 14.4G | ImageNet Train | ImageNet Val | 0.7640 | 0.7560 |
56 | Classifiction | tf_resnetv1_152_imagenet_224_224_21.83G_2.0 | tensorflow | 224*224 | 21.83G | ImageNet Train | ImageNet Val | 0.7681 | 0.7463 |
57 | Classifiction | tf_vgg16_imagenet_224_224_30.96G_2.0 | tensorflow | 224*224 | 30.96G | ImageNet Train | ImageNet Val | 0.7089 | 0.7069 |
58 | Classifiction | tf_vgg19_imagenet_224_224_39.28G_2.0 | tensorflow | 224*224 | 39.28G | ImageNet Train | ImageNet Val | 0.7100 | 0.7026 |
59 | Object Detection | tf_ssdmobilenetv1_coco_300_300_2.47G_2.0 | tensorflow | 300*300 | 2.47G | coco2017 | coco2014 minival | 0.2080 | 0.2100 |
60 | Object Detection | tf_ssdmobilenetv2_coco_300_300_3.75G_2.0 | tensorflow | 300*300 | 3.75G | coco2017 | coco2014 minival | 0.2150 | 0.2110 |
61 | Object Detection | tf_ssdresnet50v1_fpn_coco_640_640_178.4G_2.0 | tensorflow | 640*640 | 178.4G | coco2017 | coco2014 minival | 0.3010 | 0.2900 |
62 | Object Detection | tf_yolov3_voc_416_416_65.63G_2.0 | tensorflow | 416*416 | 65.63G | voc07+12_trainval | voc07_test | 0.7846 | 0.7744 |
63 | Object Detection | tf_mlperf_resnet34_coco_1200_1200_433G_2.0 | tensorflow | 1200*1200 | 433G | coco2017 | coco2017 | 0.2250 | 0.2150 |
64 | Classifiction | tf_inceptionv2_imagenet_224_224_3.88G_2.0 | tensorflow | 224*224 | 3.88G | ImageNet Train | ImageNet Val | 0.7399 | 07331 |
65 | Classifiction | tf_resnetv2_50_imagenet_299_299_13.1G_2.0 | tensorflow | 299*299 | 13.1G | ImageNet Train | ImageNet Val | 0.7559 | 0.7445 |
66 | Classifiction | tf_resnetv2_101_imagenet_299_299_26.78G_2.0 | tensorflow | 299*299 | 26.78G | ImageNet Train | ImageNet Val | 0.7695 | 0.7506 |
67 | Classifiction | tf_resnetv2_152_imagenet_299_299_40.47G_2.0 | tensorflow | 299*299 | 40.47G | ImageNet Train | ImageNet Val | 0.7779 | 0.7432 |
68 | Object Detection | tf_ssdlite_mobilenetv2_coco_300_300_1.5G_2.0 | tensorflow | 300*300 | 1.5G | coco2017 | coco2014 minival | 0.2170 | 0.2090 |
69 | Object Detection | tf_ssdinceptionv2_coco_300_300_9.62G_2.0 | tensorflow | 300*300 | 9.62G | coco2017 | coco2014 minival | 0.2390 | 0.2360 |
70 | Segmentation | tf_mobilenetv2_cityscapes_1024_2048_132.74G_2.0 | tensorflow | 1024*2048 | 132.74G | Cityscapes | Cityscapes | 0.6263 | 0.4578 |
71 | Classification | tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G_2.0 | tensorflow | 224*224 | 4.72G | ImageNet Train | ImageNet Val | 0.7702/0.9377 | 0.7660/0.9337 |
72 | Classification | tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G_2.0 | tensorflow | 240*240 | 7.34G | ImageNet Train | ImageNet Val | 0.7862/0.9440 | 0.7798/0.9406 |
73 | Classification | tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G_2.0 | tensorflow | 300*300 | 19.36G | ImageNet Train | ImageNet Val | 0.8026/0.9514 | 0.7996/0.9491 |
74 | Classifiction | tf_mlperf_resnet50_imagenet_224_224_8.19G_2.0 | tensorflow | 224*224 | 8.19G | ImageNet Train | ImageNet Val | 0.7652 | 0.7606 |
75 | General Detection | tf_refinedet_VOC_320_320_81.9G_2.0 | tensorflow | 320*320 | 81.9G | voc07+12_trainval | voc07_test | 0.8015 | 0.7999 |
76 | Classifiction | tf_mobilenetEdge1.0_imagenet_224_224_990M_2.0 | tensorflow | 224*224 | 990M | ImageNet Train | ImageNet Val | 0.7227 | 0.6775 |
77 | Classifiction | tf_mobilenetEdge0.75_imagenet_224_224_624M_2.0 | tensorflow | 224*224 | 624M | ImageNet Train | ImageNet Val | 0.7201 | 0.6489 |
78 | Medical Detection | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G_2.0 | tensorflow | 320*320 | 9.83G | EDD | EDD | 0.7839 | 0.8014 |
79 | Super Resolution | tf_rcan_DIV2K_360_640_0.98_86.95G_2.0 | tensorflow | 360*640 | 86.95G | DIV2K | DIV2K | Set5 Y_PSNR : 37.6402 SSIM : 0.9592 | Set5 Y_PSNR : 37.2495 SSIM : 0.9556 |
80 | Classifiction | tf2_resnet50_imagenet_224_224_7.76G_2.0 | tensorflow | 224*224 | 7.76G | ImageNet Train | ImageNet Val | 0.7513 | 0.7423 |
81 | Classifiction | tf2_mobilenetv1_imagenet_224_224_1.15G_2.0 | tensorflow | 224*224 | 1.15G | ImageNet Train | ImageNet Val | 0.7005 | 0.5603 |
82 | Classifiction | tf2_inceptionv3_imagenet_299_299_11.5G_2.0 | tensorflow | 299*299 | 11.5G | ImageNet Train | ImageNet Val | 0.7753 | 0.7694 |
83 | Medical Segmentation | tf2_2d-unet_nuclei_128_128_5.31G_2.0 | tensorflow | 128*128 | 5.31G | Nuclei Cell | Nuclei Cell | 0.3968 | 0.3968 |
84 | Semantic Segmentation | tf2_erfnet_cityscapes_512_1024_54G_2.0 | tensorflow | 512*1024 | 54G | Cityscapes | Cityscapes | 0.5298 | 0.5167 |
85 | Classifiction | tf2_efficientnet-b0_imagenet_224_224_0.36G_2.0 | tensorflow | 224*224 | 0.36G | ImageNet Train | ImageNet Val | 0.7690/0.9320 | 0.7515/0.9273 |
86 | Sentiment detection | tf2_sentiment-detection_IMDB_500_32_53.3M_2.0 | tensorflow | 500*32 | 53.3M | IMDB | IMDB | 0.8708 | 0.8695 |
87 | Customer satisfaction | tf2_customer-satisfaction_Cars4U_25_32_2.7M_2.0 | tensorflow | 25*32 | 2.7M | Cars 4U | Cars 4U | 0.9565 | 0.9565 |
88 | Cassification | tf2_mobilenetv3_imagenet_224_224_132M_2.0 | tensorflow | 224*224 | 132M | ImageNet Train | ImageNet Val | 0.6756/0.8728 | 0.6536/0.8544 |
89 | Segmentation | pt_ENet_cityscapes_512_1024_8.6G_2.0 | pytorch | 512*1024 | 8.6G | Cityscapes | Cityscapes | 0.6442 | 0.6315 |
90 | Segmentation | pt_SemanticFPN-resnet18_cityscapes_256_512_10G_2.0 | pytorch | 256*512 | 10G | Cityscapes | Cityscapes | 0.6290 | 0.6230 |
91 | Face Recognition | pt_facerec-resnet20_mixed_112_96_3.5G_2.0 | pytorch | 112*96 | 3.5G | mixed | mixed | 0.9955 | 0.9947 |
92 | Face Quality | pt_face-quality_80_60_61.68M_2.0 | pytorch | 80*60 | 61.68M | private data | private data | 0.1233 | 0.1258 |
93 | Multi Task | pt_MT-resnet18_mixed_320_512_13.65G_2.0 | pytorch | 320*512 | 13.65G | mixed | mixed | mAP:0.3951 mIOU:0.4403 | mAP:0.3841 mIOU:0.4271 |
94 | Face ReID | pt_facereid-large_96_96_515M_2.0 | pytorch | 96*96 | 515M | private data | private data | mAP:0.7940 Rank1:0.9550 | mAP:0.7900 Rank1:0.9530 |
95 | Face ReID | pt_facereid-small_80_80_90M_2.0 | pytorch | 80*80 | 90M | private data | private data | mAP:0.5600 Rank1:0.8650 | mAP:0.5590 Rank1:0.8650 |
96 | Re-identification | pt_personreid-res50_market1501_256_128_5.4G_2.0 | pytorch | 256*128 | 4.2G | market1501 | market1501 | mAP:0.8540 Rank1:0.9410 | mAP:0.8380 Rank1:0.9370 |
97 | Re-identification | pt_personreid-res18_market1501_176_80_1.1G_2.0 | pytorch | 176*80 | 1.1G | market1501 | market1501 | mAP:0.7530 Rank1:0.8980 | mAP:0.7460 Rank1:0.8930 |
98 | 3D Detection | pt_pointpillars_kitti_12000_100_10.8G_2.0 | pytorch | 12000*100*4 | 10.8G | kitti | kitti | Car 3D [email protected](easy, moderate, hard) 90.79, 89.66, 88.78 | Car 3D [email protected](easy, moderate, hard) 90.75, 87.04, 83.44 |
99 | 3D point cloud Segmentation | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G_2.0 | pytorch | 64*2048 | 20.4G | semantic-kitti | semantic-kitti | Acc avg 0.8860 IoU avg 0.5100 | Acc avg 0.8350 IoU avg 0.4540 |
100 | Covid-19 Segmentation | pt_FPN-resnet18_covid19-seg_352_352_22.7G_2.0 | pytorch | 352*352 | 22.7G | COVID19-seg | COVID19-seg | 2-classes Dice:0.8588 3-classes mIoU:0.5989 | 2-classes Dice:0.8547 3-classes mIoU:0.5957 |
101 | CT lung Segmentation | pt_unet_chaos-CT_512_512_23.3G_2.0 | pytorch | 512*512 | 23.3G | Chaos-CT | Chaos-CT | Dice:0.9758 | Dice:0.9747 |
102 | Surround-view 3D Detection | pt_pointpillars_nuscenes_40000_64_108G_2.0 | pytorch | 40000*64*5 | 108G | NuScenes | NuScenes | mAP: 42.2 NDS: 55.1 |
mAP: 40.5 NDS: 53.0 |
103 | 3D Segmentation | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G_2.0 | pytorch | 64*2048*5 | 32G | semantic-kitti | semantic-kitti | mIou: 54.2% | mIou: 54.2%(QAT) |
104 | 4D radar based 3D Detection | pt_centerpoint_astyx_2560_40_54G_2.0 | pytorch | 2560*40*4 | 54G | Astyx 4D radar | Astyx 4D radar | BEV [email protected]: 32.843D [email protected]: 28.27 | BEV [email protected]: 33.823D [email protected]: 18.54(QAT) |
105 | Image-lidar sensor fusion | pt_pointpainting_nuscenes_126G_2.0 | pytorch | semanticfpn:320*576 pointpillars:40000*64*16 |
semanticfpn:14G pointpillars:112G |
semanticfpn:NuImages v1.0 pointpillars:NuScenes v1.0 |
semanticfpn:NuImages v1.0 pointpillars:NuScenes v1.0 |
mIoU: 69.1% mAP: 51.8 NDS: 58.7 |
mIoU: 68.6% mAP: 50.4 NDS: 56.4(QAT) |
106 | Multi Task | pt_multitaskv3_mixed_320_512_25.44G_2.0 | pytorch | 320*512 | 25.44G | mixed | mixed | mAP:51.2 mIOU:58.14 Drivable mIOU: 82.57 Lane IOU:43.71 Silog: 8.78 |
mAP:50.9 mIOU:57.52 Drivable mIOU: 82.30 Lane IOU:44.01 Silog: 9.32 |
107 | Depth Estimation | pt_fadnet_sceneflow_576_960_441G_2.0 | pytorch | 576*960 | 359G | Scene Flow | Scene Flow | EPE: 0.926 | EPE: 1.169 |
108 | RGB-D Segmentation | pt_sa-gate_NYUv2_360_360_59.71G_2.0 | pytorch | 360*360 | 59.71G | NYUv2 | NYUv2 | miou: 47.58% | miou: 46.80% |
109 | Crowd Counting | pt_BCC_shanghaitech_800_1000_268.9G_2.0 | pytorch | 800*1000 | 268.9G | shanghaitech A | shanghaitech A | MAE: 65.83 MSE: 111.75 |
MAE: 67.60 MSE: 117.36 (QAT) |
110 | Production Recognition | pt_pmg_rp2k_224_224_2.28G_2.0 | pytorch | 224*224 | 2.28G | RP2K | RP2K | 0.9640 | 0.9618 |
111 | Segmentation | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G_2.0 | pytorch | 512*1024 | 5.4G | Cityscapes | Cityscapes | 0.6870 | 0.6820 |
112 | Lane detection | pt_ultrafast_CULane_288_800_8.4G_2.0 | pytorch | 288*800 | 8.4G | CULane | CULane | 0.6988 | 0.6922 |
113 | Image-lidar fusion 3D detection | pt_CLOCs_kitti_2.0 | pytorch | 2d detection (YOLOX): 384*1248 3d detection (PointPillars): 12000*100*4 fusionnet: 800*1000*4 |
41G | kitti | kitti | 2d detection: Mod Car bbox [email protected]: 89.40 3d detection: Mod Car [email protected] :85.50 Mod Car [email protected] :70.01 Mod Car [email protected] :89.69 Mod Car [email protected] :89.48 fusionnet: Mod Car [email protected] :87.58 Mod Car [email protected] :73.04 Mod Car [email protected] :93.98 Mod Car [email protected] :93.56 |
2d detection: Mod Car bbox [email protected]: 89.50 3d detection: Mod Car [email protected] :85.50 Mod Car [email protected] :70.01 Mod Car [email protected] :89.69 Mod Car [email protected] :89.48 fusionnet: Mod Car [email protected] :87.58 Mod Car [email protected] :73.04 Mod Car [email protected] :93.98 Mod Car [email protected] :93.56 (QAT) |
114 | Instance segmentation | pt_SOLO_coco_640_640_107G_2.0 | pytorch | 640*640 | 107G | coco | coco | 0.242 | 0.212 |
115 | Traffic sign detection | pt_yolox_TT100K_640_640_73G_2.0 | pytorch | 640*640 | 73G | TT100K | TT100K | 0.623 | 0.621 |
116 | Image Super-resolution | pt_SESR-S_DIV2K_360_640_7.48G_2.0 | pytorch | 360*640 | 7.48G | DIV2K | DIV2K | (Set5) PSNR/SSIM= 37.309/0.958 (Set14) PSNR/SSIM= 32.894/ 0.911 (B100) PSNR/SSIM= 31.663/ 0.893 (Urban100) PSNR/SSIM = 30.276/0.908 |
(Set5) PSNR/SSIM= 36.813/0.954 (Set14) PSNR/SSIM= 32.607/ 0.906 (B100) PSNR/SSIM= 31.443/ 0.889 (Urban100) PSNR/SSIM = 29.901/0.899 |
117 | Image Denoising | pt_DRUNet_Kvasir_528_608_0.4G_2.0 | pytorch | 528*608 | 0.4G | Kvasir | Kvasir | PSNR = 34.57 | PSNR = 34.06(QAT) |
118 | Spectral remove | pt_SSR_CVC_256_256_39.72G_2.0 | pytorch | 256*256 | 39.72G | CVC | CVC | - | - |
119 | Coverage prediction | pt_C2D2lite_CC20_512_512_6.86G_2.0 | pytorch | 512*512 | 6.86G | CC20 | CC20 | MAE=7.566% | MAE=10.399% |
120 | Polyp segmentation | pt_HardNet_mixed_352_352_22.78G_2.0 | pytorch | 352*352 | 22.78G | mixed | mixed | mDice=0.9142 | mDice=0.9136 |
121 | Binocular depth estimation | pt_fadnet_sceneflow_576_960_0.65_154G_2.0 | pytorch | 576*960 | 154G | sceneflow | sceneflow | EPE: 0.823 | EPE: 1.158 |
122 | Binocular depth estimation | pt_psmnet_sceneflow_576_960_0.68_696G_2.0 | pytorch | 576*960 | 696G | sceneflow | sceneflow | EPE: 0.961 | EPE: 1.022 |
123 | Person orientation estimation | pt_person-orientation_224_112_558M_2.0 | pytorch | 224*112 | 558M | private | private | 0.930 | 0.929 |
124 | Joint detection and Tracking | pt_FairMOT_mixed_640_480_0.5_36G_2.0 | pytorch | 640*480 | 36G | mixed | mixed | MOTA 59.1% IDF1 62.5% |
MOTA 58.1% IDF1 60.5% |
125 | NLP | pt_open-information-extraction_qasrl_100_200_1.5G_2.0 | pytorch | 100*200 | 1.5G | QA-SRL | QA-SRL | Acc/F1-score: 58.70%/77.12% |
Acc/F1-score: 58.70%/77.19% |
126 | OFA | pt_OFA-resnet50_imagenet_160_160_900M_2.0 | pytorch | 160*160 | 900M | ImageNet Train | ImageNet Val | 0.758/0.926 | 0.748/0.921 |
127 | OFA | pt_OFA-depthwise-res50_imagenet_176_176_1.25G_2.0 | pytorch | 176*176 | 1.25G | ImageNet Train | ImageNet Val | 0.7633/0.9292 | 0.7629/0.9306 |
128 | torchvison | pt_inceptionv3_imagenet_299_299_5.7G_2.0 | pytorch | 299*299 | 5.7G | ImageNet Train | ImageNet Val | 0.758/0.927 | 0.757/0.927 |
129 | torchvision | pt_squeezenet_imagenet_224_224_351.7M_2.0 | pytorch | 224*224 | 351.7M | ImageNet Train | ImageNet Val | 0.582/0.806 | 0.582/0.806 |
130 | torchvision | pt_resnet50_imagenet_224_224_4.1G_2.0 | pytorch | 224*224 | 4.1G | ImageNet Train | ImageNet Val | 0.761/0.929 | 0.760/0.928 |
Model name: F_M_(D)_H_W_(P)_C_V
F
specifies training framework:cf
is Caffe,tf
is Tensorflow,tf2
is Tensorflow 2,dk
is Darknet,pt
is PyTorchM
specifies the modelD
specifies the dataset. It is optional depending on whether the dataset is public or privateH
specifies the height of input dataW
specifies the width of input dataP
specifies the pruning ratio, it means how much computation is reduced. It is optional depending on whether the model is pruned or notC
specifies the computation of the model: how many Gops per imageV
specifies the version of Vitis AI
For example, cf_refinedet_coco_360_480_0.8_25G_2.0
is a RefineDet
model trained with Caffe
using COCO
dataset, input data size is 360*480
, 80%
pruned, the computation per image is 25Gops
and Vitis AI version is 2.0
.
This is a custom distribution of caffe. Please use caffe-xilinx to test and finetune the caffe models listed in this page. If you use the Vitis AI docker environment to evaluate and develop the caffe models, you will not need to perform this step, as caffe-xilinx has been pre-compiled in docker.
Please visit model-list in this page. You will get downloadlink and MD5 of all the released models, including pre-compiled models running on different platforms.
With downloader.py, you could quickly find the model you are interested in and specify a version to download it immediately. Please make sure that downloader.py and model-list folder are at the same level directory.
python3 downloader.py
Step1: You need input framework and model name keyword. Use space divide. If input all
you will get list of all models.
tf: tensorflow1.x, tf2: tensorflow2.x, pt: pytorch, cf: caffe, dk: darknet, all: list all model
Step2: Select the specified model based on standard name.
Step3: Select the specified hardware platform for your slected model.
For example, after running downloader.py and input cf densebox
then you will see the alternatives such as:
0: all
1: cf_densebox_wider_320_320_0.49G_2.0
2: cf_densebox_wider_360_640_1.11G_2.0
After you input the num: 1, you will see the alternatives such as:
0: all
1: cf_densebox_wider_320_320_0.49G_2.0 GPU
2: densebox_320_320 ZCU102 & ZCU104 & KV260
3: densebox_320_320 VCK190
4: densebox_320_320 U50
5: densebox_320_320 U50lv
6: densebox_320_320 U50-V3ME
......
Then you could choose and input the number, the specified version of model will be automatically downloaded to the current directory.
In addition, if you need download all models on all platforms at once, you just need enter number in the order indicated by the tips of Step 1/2/3 (select all -> 0 -> 0).
Download and extract the model archive to your working area on the local hard disk. For details on the various models, download link and MD5 checksum for the zip file of each model, see model-list.
For a caffe model, you should see the following directory structure:
├── code # Contains test , training and quantization scripts.
│
│
├── readme.md # Contains the environment requirements, data preprocess and model information.
│ Refer this to know that how to test and train the model with scripts.
│
├── data # Contains the dataset that used for model test and training.
│ When test or training scripts run successfully, dataset will be automatically placed in it.
│ In some cases, you may also need to manually place your own dataset here.
│
├── quantized
│ │
│ ├── deploy.caffemodel # Quantized weights, the output of vai_q_caffe without modification.
│ ├── deploy.prototxt # Quantized prototxt, the output of vai_q_caffe without modification.
│ ├── quantize_test.prototxt # Used to run evaluation with quantize_train_test.caffemodel.
│ │ Some models don't have this file if they are converted from Darknet (Yolov2, Yolov3),
│ │ Pytorch (ReID) or there is no Caffe Test (Densebox).
│ │
│ ├── quantize_train_test.caffemodel # Quantized weights can be used for quantized-point training and evaluation.
│ └── quantize_train_test.prototxt # Used for quantized-point training and testing with quantize_train_test.caffemodel
│ on GPU when datalayer modified to user's data path.
│
└── float
├── trainval.caffemodel # Trained float-point weights.
├── test.prototxt # Used to run evaluation with python test codes released in near future.
└── trainval.prototxt # Used for training and testing with caffe train/test command
when datalayer modified to user's data path.Some models don't
have this file if they are converted from Darknet (Yolov2, Yolov3),
Pytorch (ReID) or there is no Caffe Test (Densebox).
For a Tensorflow model, you should see the following directory structure:
├── code # Contains test code which can run demo and evaluate model performance.
│
│
├── readme.md # Contains the environment requirements, data preprocess and model information.
│ Refer this to know that how to test the model with scripts.
│
├── data # Contains the dataset that used for model test and training.
│ When test or training scripts run successfully, dataset will be automatically placed in it.
│
├── quantized
│ └── quantize_eval_model.pb # Quantized model for evaluation.
│
└── float
└── frozen.pb # Float-point frozen model, the input to the `vai_q_tensorflow`.
The pb name of different models may be different.
For a Pytorch model, you should see the following directory structure:
├── code # Contains test and training code.
│
│
├── readme.md # Contains the environment requirements, data preprocess and model information.
│ Refer this to know that how to test and train the model with scripts.
│
├── data # Contains the dataset that used for model test and training.
│ When test or training scripts run successfully, dataset will be automatically placed in it.
│
├── qat # Contains the QAT(Quantization Aware Training) results.
│ The accuracy of QAT result is better than direct quantization called PTQ.
│ Some models but not all provided QAT reference results, and only these models have qat folder.
│
├── quantized
│ ├── _int.pth # Quantized model.
│ ├── quant_info.json # Quantization steps of tensors got. Please keep it for evaluation of quantized model.
│ ├── _int.py # Converted vai_q_pytorch format model.
│ └── _int.xmodel # Deployed model. The name of different models may be different.
│ For some models that support QAT you could find better quantization results in 'qat' folder.
│
│
└── float
└── _int.pth # Trained float-point model. The pth name of different models may be different.
Path and model name in test scripts could be modified according to actual situation.
Note: For more information on vai_q_caffe
, vai_q_tensorflow
and vai_q_pytorch
, please see the Vitis AI User Guide.
All the models in the Model Zoo have been deployed on Xilinx hardware with Vitis AI and Vitis AI Library. The performance number including end-to-end throughput and latency for each model on various boards with different DPU configurations are listed in the following sections.
For more information about DPU, see DPU IP Product Guide.
For RNN models such as NLP models, please refer to DPU-for-RNN for dpu specification information.
Note: The model performance number listed in the following sections is generated with Vitis AI v2.0 and Vitis AI Lirary v2.0. For different platforms, the different DPU configurations are used. Vitis AI and Vitis AI Library can be downloaded for free from Vitis AI Github and Vitis AI Library Github. We will continue to improve the performance with Vitis AI. The performance number reported here is subject to change in the near future.
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the ZCU102 (0432055-05)
board with a 3 * B4096 @ 281MHz
DPU configuration:
No. | Model | Name | E2E latency (ms) Thread Num =1 |
E2E throughput (fps) Single Thread |
E2E throughput (fps) Multi Thread |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 12.44 | 80.3 | 188.2 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 5.41 | 184.9 | 477.3 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 5.50 | 181.8 | 470.2 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 7.55 | 132.4 | 300.7 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 16.92 | 59.1 | 135.9 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 34.89 | 28.6 | 68.5 |
7 | Mobilenet_v2 | cf_mobilenetv2_imagenet_224_224_0.59G | 3.93 | 254.3 | 733.3 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 3.65 | 273.9 | 1078.9 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 13.10 | 76.2 | 278.3 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 117.33 | 8.5 | 24.7 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 31.03 | 32.2 | 97.9 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 16.03 | 62.4 | 197.3 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 11.62 | 86.0 | 278.2 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 11.46 | 87.2 | 296.8 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 18.19 | 54.9 | 200.1 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 10.54 | 94.8 | 351.7 |
17 | ssd_mobilenet_v2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 25.64 | 39.0 | 117.4 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 28.95 | 34.5 | 151.6 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 1.79 | 557.0 | 1626.5 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 263.50 | 3.8 | 15.2 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 2.31 | 432.2 | 1654.7 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 4.72 | 211.7 | 818.9 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 1.12 | 890.2 | 1552.9 |
24 | reid | cf_reid_market1501_160_80_0.95G | 2.79 | 357.9 | 692.9 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 26.29 | 38.0 | 127.0 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 80.47 | 12.4 | 32.8 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 10.94 | 91.4 | 263.6 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 79.18 | 12.6 | 33.1 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 38.14 | 26.2 | 69.3 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 15.83 | 63.1 | 191.8 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 13.77 | 72.6 | 224.1 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 11.78 | 84.9 | 268.9 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 6.06 | 164.9 | 334.0 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 14.08 | 71.0 | 177.7 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 79.72 | 12.5 | 47.1 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 1.92 | 520.4 | 2080.5 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 5.22 | 191.4 | 558.4 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 7.92 | 126.2 | 541.9 |
39 | face_quality | cf_face-quality_80_60_61.68M | 0.39 | 2584.7 | 8015.8 |
40 | FPN-R18(light-weight) | cf_FPN-resnet18_Endov_240_320_13.75G | 27.43 | 36.4 | 156.5 |
41 | Hourglass | cf_hourglass_mpii_256_256_10.2G | 54.79 | 18.2 | 73.8 |
42 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 8.45 | 118.3 | 393.2 |
43 | yolov4 | dk_yolov4_coco_416_416_60.1G | 75.63 | 13.2 | 33.6 |
44 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 55.49 | 18.0 | 45.3 |
45 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 44.61 | 22.4 | 50.8 |
46 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 5.41 | 184.7 | 467.7 |
47 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 16.95 | 59.0 | 135.1 |
48 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 34.87 | 28.7 | 68.6 |
49 | Mobilenet_v1 | tf_mobilenetv1_0.25_imagenet_128_128_27.15M | 0.82 | 1216.3 | 4500.6 |
50 | Mobilenet_v1 | tf_mobilenetv1_0.5_imagenet_160_160_150.07M | 1.33 | 749.9 | 2778.7 |
51 | Mobilenet_v1 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 3.27 | 305.8 | 951.3 |
52 | Mobilenet_v2 | tf_mobilenetv2_1.0_imagenet_224_224_0.59G | 4.03 | 248.1 | 687.8 |
53 | Mobilenet_v2 | tf_mobilenetv2_1.4_imagenet_224_224_1.16G | 5.50 | 181.6 | 467.7 |
54 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 12.49 | 80.0 | 185.6 |
55 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 23.41 | 42.7 | 106.4 |
56 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 34.22 | 29.2 | 74.1 |
57 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 49.71 | 20.1 | 41.1 |
58 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 57.65 | 17.3 | 36.5 |
59 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 9.25 | 108.0 | 337.0 |
60 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 12.59 | 79.4 | 212.2 |
61 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 344.14 | 2.9 | 5.2 |
62 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 75.83 | 13.2 | 34.3 |
63 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 558.99 | 1.8 | 7.0 |
64 | Inception_v2 | tf_inceptionv2_imagenet_224_224_3.88G | 10.90 | 91.7 | 230.0 |
65 | resnet_v2_50 | tf_resnetv2_50_imagenet_299_299_13.1G | 28.15 | 35.5 | 95.7 |
66 | resnet_v2_101 | tf_resnetv2_101_imagenet_299_299_26.78G | 48.45 | 20.6 | 54.4 |
67 | resnet_v2_152 | tf_resnetv2_152_imagenet_299_299_40.47G | 68.70 | 14.5 | 37.5 |
68 | ssdlite_mobilenetv2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 10.08 | 99.1 | 307.8 |
69 | ssd_inceptionv2 | tf_ssdinceptionv2_coco_300_300_9.62G | 25.53 | 39.1 | 102.3 |
70 | Mobilenet_v2 | tf_mobilenetv2_cityscapes_1024_2048_132.74G | 583.35 | 1.7 | 5.4 |
71 | efficientnet-edgetpu-S | tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G | 8.90 | 112.3 | 308.2 |
72 | efficientnet-edgetpu-M | tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G | 12.79 | 78.2 | 205.1 |
73 | efficientnet-edgetpu-L | tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G | 31.86 | 31.4 | 87.8 |
74 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 13.97 | 71.6 | 168.5 |
75 | refinedet | tf_refinedet_VOC_320_320_81.9G | 88.77 | 11.3 | 34.4 |
76 | mobilenet_edge_1.0 | tf_mobilenetEdge1.0_imagenet_224_224_990M | 4.98 | 200.8 | 546.9 |
77 | mobilenet_edge_0.75 | tf_mobilenetEdge0.75_imagenet_224_224_624M | 4.14 | 241.2 | 706.4 |
78 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 15.08 | 66.3 | 230.4 |
79 | pruned_rcan | tf_rcan_DIV2K_360_640_0.98_86.95G | 131.79 | 7.6 | 17.1 |
80 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 12.69 | 78.8 | 186.2 |
81 | Mobilenet_v1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 3.32 | 301.2 | 940.6 |
82 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 17.07 | 58.6 | 136.7 |
83 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 6.42 | 155.8 | 394.8 |
84 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 141.07 | 7.1 | 23.9 |
85 | Mobilenet_v3 | tf2_mobilenetv3_imagenet_224_224_132M | 600.45 | 1.7 | 6.6 |
86 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 107.75 | 9.3 | 36.8 |
87 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 29.31 | 34.1 | 162.1 |
88 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 6.00 | 166.7 | 336.3 |
89 | face quality | pt_face-quality_80_60_61.68M | 0.39 | 2538.9 | 7962.3 |
90 | multi_task_v2 | pt_MT-resnet18_mixed_320_512_13.65G | 31.96 | 31.2 | 101.9 |
91 | face_reid_large | pt_facereid-large_96_96_515M | 1.12 | 889.2 | 2232.6 |
92 | face_reid_small | pt_facereid-small_80_80_90M | 0.48 | 2093.8 | 6299.2 |
93 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 10.27 | 97.3 | 228.1 |
94 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 2.80 | 356.5 | 683.8 |
95 | pointpillars | pt_pointpillars_kitti_12000_100_10.8G | 50.46 | 19.8 | 49.9 |
96 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 182.18 | 5.5 | 21.1 |
97 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 27.80 | 36.0 | 106.1 |
98 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 44.89 | 22.3 | 69.5 |
99 | surround-view pointpillars | pt_pointpillars_nuscenes_40000_64_108G | 440.31 | 2.3 | 9.9 |
100 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 247.47 | 4.0 | 11.1 |
101 | centerpoint | pt_centerpoint_astyx_2560_40_54G | 62.30 | 16.0 | 48.2 |
102 | pointpainting | pt_pointpainting_nuscenes_126G | 778.55 | 1.3 | 4.4 |
103 | multi_task_v3 | pt_multitaskv3_mixed_320_512_25.44G | 60.00 | 16.7 | 60.9 |
104 | FADnet | pt_fadnet_sceneflow_576_960_441G | 889.57 | 1.1 | 1.5 |
105 | Bayesian Crowd Counting | pt_BCC_shanghaitech_800_1000_268.9G | 316.62 | 3.2 | 10.4 |
106 | PMG | pt_pmg_rp2k_224_224_2.28G | 6.86 | 145.6 | 362.9 |
107 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 98.19 | 10.2 | 54.0 |
108 | Ultra-Fast | pt_ultrafast_CULane_288_800_8.4G | 30.02 | 33.3 | 93.9 |
109 | CLOCs | pt_CLOCs_kitti | 347.10 | 2.9 | 10.4 |
110 | Yolo-X | pt_yolox_TT100K_640_640_73G | 77.41 | 12.9 | 33.7 |
111 | SESR-S | pt_SESR-S_DIV2K_360_640_7.48G | 12.34 | 81.0 | 135.0 |
112 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 21.87 | 45.7 | 161.1 |
113 | SSR | pt_SSR_CVC_256_256_39.72G | 174.07 | 5.7 | 14.2 |
114 | C2D2lite | pt_C2D2lite_CC20_512_512_6.86G | 340.09 | 2.9 | 5.4 |
115 | HardNet_Mseg | pt_HardNet_mixed_352_352_22.78G | 42.94 | 23.3 | 60.1 |
116 | FadNet | pt_fadnet_sceneflow_576_960_0.65_154G | 601.25 | 1.7 | 2.4 |
117 | Person orientation | pt_person-orientation_224_112_558M | 1.63 | 613.3 | 1388.6 |
118 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 45.56 | 21.9 | 65.6 |
119 | OFA | pt_OFA-resnet50_imagenet_160_160_900M | 5.90 | 169.5 | 348.1 |
120 | OFA | pt_OFA-depthwise-res50_imagenet_176_176_1.25G | 9.72 | 102.8 | 376.3 |
121 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 16.92 | 59.1 | 136.2 |
122 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 3.34 | 298.9 | 1161.2 |
123 | resnet50 | pt_resnet50_imagenet_224_224_4.1G | 14.07 | 71.0 | 168.4 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the ZCU104
board with a 2 * B4096 @ 300MHz
DPU configuration:
No. | Model | Name | E2E latency (ms) Thread Num =1 |
E2E throughput (fps) Single Thread |
E2E throughput (fps) Multi Thread |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 11.68 | 85.6 | 166.2 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 5.11 | 195.7 | 415.4 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 5.19 | 192.5 | 405.9 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 7.10 | 140.7 | 276.3 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 15.95 | 62.7 | 122.0 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 32.75 | 30.5 | 59.0 |
7 | Mobilenet_v2 | cf_mobilenetv2_imagenet_224_224_0.59G | 3.74 | 267.3 | 611.5 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 3.58 | 279.4 | 986.8 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 12.52 | 79.8 | 215.7 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 110.15 | 9.1 | 18.4 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 29.27 | 34.1 | 73.1 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 15.18 | 65.9 | 152.1 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 11.05 | 90.4 | 220.2 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 10.94 | 91.4 | 238.1 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 17.33 | 57.7 | 150.4 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 10.15 | 98.5 | 300.6 |
17 | ssd_mobilenet_v2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 39.95 | 25.0 | 106.0 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 28.25 | 35.4 | 146.0 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 1.71 | 582.9 | 1355.0 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 252.22 | 4.0 | 11.0 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 2.26 | 441.4 | 1596.4 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 4.59 | 217.5 | 761.5 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 1.06 | 940.7 | 1595.2 |
24 | reid | cf_reid_market1501_160_80_0.95G | 2.62 | 380.9 | 704.0 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 25.24 | 39.6 | 108.9 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 75.55 | 13.2 | 26.6 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 10.47 | 95.5 | 233.6 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 74.37 | 13.4 | 26.9 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 35.86 | 27.9 | 57.2 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 14.98 | 66.7 | 153.6 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 13.04 | 76.6 | 180.9 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 11.18 | 89.5 | 217.3 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 5.68 | 175.9 | 310.0 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 13.21 | 75.6 | 145.2 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 75.96 | 13.2 | 34.5 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 1.89 | 529.3 | 1971.3 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 4.71 | 212.1 | 492.4 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 7.69 | 130.0 | 483.0 |
39 | face_quality | cf_face-quality_80_60_61.68M | 0.37 | 2663.6 | 7365.3 |
40 | FPN-R18(light-weight) | cf_FPN-resnet18_Endov_240_320_13.75G | 26.47 | 37.8 | 129.6 |
41 | Hourglass | cf_hourglass_mpii_256_256_10.2G | 53.81 | 18.6 | 73.7 |
42 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 8.14 | 122.8 | 329.2 |
43 | yolov4 | dk_yolov4_coco_416_416_60.1G | 71.20 | 14.0 | 28.3 |
44 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 52.17 | 19.2 | 38.8 |
45 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 41.74 | 23.9 | 45.0 |
46 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 5.12 | 195.4 | 410.3 |
47 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 15.97 | 62.6 | 121.7 |
48 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 32.73 | 30.5 | 59.1 |
49 | Mobilenet_v1 | tf_mobilenetv1_0.25_imagenet_128_128_27.15M | 0.80 | 1247.5 | 4084.2 |
50 | Mobilenet_v1 | tf_mobilenetv1_0.5_imagenet_160_160_150.07M | 1.28 | 777.8 | 2249.5 |
51 | Mobilenet_v1 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 3.11 | 321.3 | 774.8 |
52 | Mobilenet_v2 | tf_mobilenetv2_1.0_imagenet_224_224_0.59G | 3.83 | 261.2 | 588.8 |
53 | Mobilenet_v2 | tf_mobilenetv2_1.4_imagenet_224_224_1.16G | 5.20 | 192.2 | 406.3 |
54 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 11.74 | 85.2 | 165.0 |
55 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 21.98 | 45.5 | 88.8 |
56 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 32.12 | 31.1 | 60.7 |
57 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 46.62 | 21.4 | 37.1 |
58 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 54.01 | 18.5 | 32.6 |
59 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 9.08 | 110.0 | 308.0 |
60 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 12.62 | 79.2 | 194.4 |
61 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 343.64 | 2.9 | 5.2 |
62 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 71.15 | 14.0 | 28.1 |
63 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 537.93 | 1.9 | 5.2 |
64 | Inception_v2 | tf_inceptionv2_imagenet_224_224_3.88G | 10.24 | 97.6 | 195.1 |
65 | resnet_v2_50 | tf_resnetv2_50_imagenet_299_299_13.1G | 26.84 | 37.2 | 84.2 |
66 | resnet_v2_101 | tf_resnetv2_101_imagenet_299_299_26.78G | 45.79 | 21.8 | 46.0 |
67 | resnet_v2_152 | tf_resnetv2_152_imagenet_299_299_40.47G | 64.70 | 15.4 | 31.6 |
68 | ssdlite_mobilenetv2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 9.41 | 106.2 | 276.4 |
69 | ssd_inceptionv2 | tf_ssdinceptionv2_coco_300_300_9.62G | 24.53 | 40.7 | 87.9 |
70 | Mobilenet_v2 | tf_mobilenetv2_cityscapes_1024_2048_132.74G | 563.23 | 1.8 | 5.6 |
71 | efficientnet-edgetpu-S | tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G | 8.37 | 119.4 | 247.2 |
72 | efficientnet-edgetpu-M | tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G | 12.02 | 83.2 | 167.6 |
73 | efficientnet-edgetpu-L | tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G | 30.06 | 33.3 | 71.1 |
74 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 13.12 | 76.2 | 148.0 |
75 | refinedet | tf_refinedet_VOC_320_320_81.9G | 93.58 | 10.7 | 25.9 |
76 | mobilenet_edge_1.0 | tf_mobilenetEdge1.0_imagenet_224_224_990M | 4.71 | 212.2 | 461.8 |
77 | mobilenet_edge_0.75 | tf_mobilenetEdge0.75_imagenet_224_224_624M | 3.93 | 254.5 | 578.7 |
78 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 14.35 | 69.7 | 169.7 |
79 | pruned_rcan | tf_rcan_DIV2K_360_640_0.98_86.95G | 123.90 | 8.1 | 15.3 |
80 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 11.92 | 83.9 | 163.2 |
81 | Mobilenet_v1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 3.16 | 316.7 | 763.7 |
82 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 16.08 | 62.2 | 122.0 |
83 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 6.06 | 165.0 | 342.2 |
84 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 136.88 | 7.3 | 25.4 |
85 | Mobilenet_v3 | tf2_mobilenetv3_imagenet_224_224_132M | 679.64 | 1.5 | 5.8 |
86 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 105.26 | 9.5 | 39.0 |
87 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 28.58 | 35.0 | 159.1 |
88 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 5.62 | 177.8 | 313.0 |
89 | face quality | pt_face-quality_80_60_61.68M | 0.38 | 2623.5 | 7321.1 |
90 | multi_task_v2 | pt_MT-resnet18_mixed_320_512_13.65G | 30.54 | 32.7 | 92.0 |
91 | face_reid_large | pt_facereid-large_96_96_515M | 1.07 | 936.0 | 2050.3 |
92 | face_reid_small | pt_facereid-small_80_80_90M | 0.46 | 2162.8 | 5659.8 |
93 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 9.64 | 103.6 | 201.2 |
94 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 2.63 | 379.5 | 688.6 |
95 | pointpillars | pt_pointpillars_kitti_12000_100_10.8G | 49.40 | 20.2 | 49.7 |
96 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 180.34 | 5.5 | 21.3 |
97 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 26.21 | 38.1 | 79.8 |
98 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 43.44 | 23.0 | 59.3 |
99 | surround-view pointpillars | pt_pointpillars_nuscenes_40000_64_108G | 429.70 | 2.3 | 9.4 |
100 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 239.02 | 4.2 | 11.7 |
101 | centerpoint | pt_centerpoint_astyx_2560_40_54G | 59.29 | 16.9 | 20.7 |
102 | pointpainting | pt_pointpainting_nuscenes_126G | 768.16 | 1.3 | 4.7 |
103 | multi_task_v3 | pt_multitaskv3_mixed_320_512_25.44G | 57.72 | 17.3 | 54.4 |
104 | FADnet | pt_fadnet_sceneflow_576_960_441G | 656.06 | 1.5 | 3.8 |
105 | Bayesian Crowd Counting | pt_BCC_shanghaitech_800_1000_268.9G | 299.03 | 3.3 | 7.6 |
106 | PMG | pt_pmg_rp2k_224_224_2.28G | 6.46 | 154.7 | 313.6 |
107 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 96.30 | 10.4 | 53.6 |
108 | Ultra-Fast | pt_ultrafast_CULane_288_800_8.4G | 28.29 | 35.3 | 76.2 |
109 | CLOCs | pt_CLOCs_kitti | 339.55 | 2.9 | 10.5 |
110 | Yolo-X | pt_yolox_TT100K_640_640_73G | 72.64 | 13.8 | 27.7 |
111 | SESR-S | pt_SESR-S_DIV2K_360_640_7.48G | 11.71 | 85.4 | 138.5 |
112 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 20.84 | 48.0 | 117.9 |
113 | SSR | pt_SSR_CVC_256_256_39.72G | 162.99 | 6.1 | 11.9 |
114 | C2D2lite | pt_C2D2lite_CC20_512_512_6.86G | 311.13 | 3.2 | 3.6 |
115 | HardNet_Mseg | pt_HardNet_mixed_352_352_22.78G | 40.44 | 24.7 | 53.1 |
116 | FadNet | pt_fadnet_sceneflow_576_960_0.65_154G | 427.27 | 2.3 | 6.4 |
117 | Person orientation | pt_person-orientation_224_112_558M | 1.54 | 647.1 | 1310.8 |
118 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 43.22 | 23.1 | 51.9 |
119 | OFA | pt_OFA-resnet50_imagenet_160_160_900M | 5.49 | 182.0 | 339.2 |
120 | OFA | pt_OFA-depthwise-res50_imagenet_176_176_1.25G | 9.48 | 105.4 | 348.4 |
121 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 15.95 | 62.7 | 122.2 |
122 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 3.28 | 305.0 | 1068.2 |
123 | resnet50 | pt_resnet50_imagenet_224_224_4.1G | 13.21 | 75.7 | 147.3 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the Versal
board with 96 AIEs running at 1250 MHz:
No. | Model | Name | E2E throughput (fps) Single Thread |
E2E throughput (fps) Multi Thread |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 898.4 | 1419.4 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 1310.6 | 2691.0 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 1015.0 | 1721.5 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 833.3 | 1273.5 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 422.6 | 589.1 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 240.0 | 285.8 |
7 | Mobilenet_v2 | cf_mobilenetv2_imagenet_224_224_0.59G | 1348.4 | 2911.4 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 2584.8 | 4111.4 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 316.6 | 708.2 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 115.5 | 142.2 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 263.4 | 443.2 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 334.6 | 673.7 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 403.0 | 775.6 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 386.3 | 830.9 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 283.8 | 677.7 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 272.1 | 678.8 |
17 | ssd_mobilenet_v2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 77.8 | 172.6 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 94.8 | 219.9 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 2161.0 | 4399.8 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 20.9 | 39.9 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 1054.5 | 2311.2 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 515.7 | 1094.0 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 6436.9 | 12013.9 |
24 | reid | cf_reid_market1501_160_80_0.95G | 2750.4 | 4856.9 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 153.3 | 317.5 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 148.8 | 191.1 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 425.4 | 944.6 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 151.6 | 189.9 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 273.7 | 432.0 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 384.7 | 793.9 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 406.0 | 893.1 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 425.5 | 992.4 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 2067.3 | 2598.3 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 1080.7 | 1208.5 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 68.0 | 188.2 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 1243.6 | 2591.6 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 916.1 | 1557.1 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 344.1 | 790.8 |
39 | face_quality | cf_face-quality_80_60_61.68M | 10145.5 | 25104.5 |
40 | FPN-R18(light-weight) | cf_FPN-resnet18_Endov_240_320_13.75G | 105.7 | 241.3 |
41 | Hourglass | cf_hourglass_mpii_256_256_10.2G | 73.8 | 139.1 |
42 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 536.1 | 1339.3 |
43 | yolov4 | dk_yolov4_coco_416_416_60.1G | 115.1 | 158.9 |
44 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 127.8 | 182.8 |
45 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 243.2 | 290.9 |
46 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 1022.7 | 1754.0 |
47 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 422.8 | 590.4 |
48 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 241.0 | 287.4 |
49 | Mobilenet_v1 | tf_mobilenetv1_0.25_imagenet_128_128_27.15M | 4124.1 | 9165.5 |
50 | Mobilenet_v1 | tf_mobilenetv1_0.5_imagenet_160_160_150.07M | 2827.4 | 7082.6 |
51 | Mobilenet_v1 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 1463.6 | 3245.8 |
52 | Mobilenet_v2 | tf_mobilenetv2_1.0_imagenet_224_224_0.59G | 1336.2 | 2914.7 |
53 | Mobilenet_v2 | tf_mobilenetv2_1.4_imagenet_224_224_1.16G | 1104.2 | 2021.3 |
54 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 895.9 | 1421.1 |
55 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 591.4 | 781.6 |
56 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 440.6 | 538.7 |
57 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 308.5 | 353.3 |
58 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 276.1 | 311.6 |
59 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 370.9 | 528.3 |
60 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 323.3 | 526.0 |
61 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 10.8 | 12.5 |
62 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 151.9 | 189.7 |
63 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 10.8 | 23.4 |
64 | Inception_v2 | tf_inceptionv2_imagenet_224_224_3.88G | 566.9 | 739.8 |
65 | resnet_v2_50 | tf_resnetv2_50_imagenet_299_299_13.1G | 393.3 | 530.8 |
66 | resnet_v2_101 | tf_resnetv2_101_imagenet_299_299_26.78G | 267.0 | 324.1 |
67 | resnet_v2_152 | tf_resnetv2_152_imagenet_299_299_40.47G | 201.9 | 232.8 |
68 | ssdlite_mobilenetv2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 347.6 | 513.8 |
69 | ssd_inceptionv2 | tf_ssdinceptionv2_coco_300_300_9.62G | 208.2 | 379.0 |
70 | Mobilenet_v2 | tf_mobilenetv2_cityscapes_1024_2048_132.74G | 5.1 | 13.2 |
71 | efficientnet-edgetpu-S | tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G | 805.7 | 1205.1 |
72 | efficientnet-edgetpu-M | tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G | 587.0 | 801.6 |
73 | efficientnet-edgetpu-L | tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G | 257.6 | 311.2 |
74 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 827.8 | 1251.0 |
75 | refinedet | tf_refinedet_VOC_320_320_81.9G | 77.2 | 175.7 |
76 | mobilenet_edge_1.0 | tf_mobilenetEdge1.0_imagenet_224_224_990M | 1276.0 | 2597.2 |
77 | mobilenet_edge_0.75 | tf_mobilenetEdge0.75_imagenet_224_224_624M | 1361.2 | 2911.7 |
78 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 413.7 | 887.0 |
79 | pruned_rcan | tf_rcan_DIV2K_360_640_0.98_86.95G | 46.4 | 59.5 |
80 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 899.8 | 1422.3 |
81 | Mobilenet_v1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 1463.1 | 3166.2 |
82 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 439.0 | 623.6 |
83 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 1164.9 | 1958.4 |
84 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 20.1 | 52.2 |
85 | efficientnet-b0 | tf2_efficientnet-b0_imagenet_224_224_0.36G | 441.3 | 540.4 |
86 | Mobilenet_v3 | tf2_mobilenetv3_imagenet_224_224_132M | 1271.7 | 2595.7 |
87 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 24.1 | 55.3 |
88 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 102.1 | 221.5 |
89 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 2073.6 | 2600.1 |
90 | face quality | pt_face-quality_80_60_61.68M | 10135.7 | 25144.8 |
91 | multi_task_v2 | pt_MT-resnet18_mixed_320_512_13.65G | 126.4 | 276.9 |
92 | face_reid_large | pt_facereid-large_96_96_515M | 5529.3 | 11537.5 |
93 | face_reid_small | pt_facereid-small_80_80_90M | 8575.4 | 21872.0 |
94 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 1119.1 | 1712.0 |
95 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 2826.4 | 4673.2 |
96 | pointpillars | pt_pointpillars_kitti_12000_100_10.8G | 36.4 | 57.5 |
97 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 12.3 | 24.8 |
98 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 365.6 | 548.3 |
99 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 86.5 | 217.3 |
100 | surround-view pointpillars | pt_pointpillars_nuscenes_40000_64_108G | 7.5 | 17.6 |
101 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 10.3 | 23.9 |
102 | centerpoint | pt_centerpoint_astyx_2560_40_54G | 113.5 | 218.8 |
103 | pointpainting | pt_pointpainting_nuscenes_126G | 3.7 | 6.8 |
104 | multi_task_v3 | pt_multitaskv3_mixed_320_512_25.44G | 73.6 | 190.1 |
105 | FADnet | pt_fadnet_sceneflow_576_960_441G | 7.0 | 11.5 |
106 | SA-gate | pt_sa-gate_NYUv2_360_360_59.71G | 14.5 | 24.2 |
107 | Bayesian Crowd Counting | pt_BCC_shanghaitech_800_1000_268.9G | 31.2 | 53.5 |
108 | PMG | pt_pmg_rp2k_224_224_2.28G | 1176.0 | 1990.6 |
109 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 25.2 | 56.0 |
110 | Ultra-Fast | pt_ultrafast_CULane_288_800_8.4G | 278.6 | 581.0 |
111 | CLOCs | pt_CLOCs_kitti | 8.4 | 15.7 |
112 | SOLO | pt_SOLO_coco_640_640_107G | 2.0 | 3.6 |
113 | Yolo-X | pt_yolox_TT100K_640_640_73G | 106.3 | 147.4 |
114 | SESR-S | pt_SESR-S_DIV2K_360_640_7.48G | 287.6 | 471.8 |
115 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 163.9 | 268.5 |
116 | SSR | pt_SSR_CVC_256_256_39.72G | 61.6 | 64.4 |
117 | C2D2lite | pt_C2D2lite_CC20_512_512_6.86G | 14.6 | 17.7 |
118 | HardNet_Mseg | pt_HardNet_mixed_352_352_22.78G | 172.7 | 211.4 |
119 | FadNet | pt_fadnet_sceneflow_576_960_0.65_154G | 8.1 | 13.9 |
120 | PSMNet | pt_psmnet_sceneflow_576_960_0.68_696G | 0.3 | 0.7 |
121 | Person orientation | pt_person-orientation_224_112_558M | 3771.3 | 6992.2 |
122 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 158.0 | 298.2 |
123 | OFA | pt_OFA-resnet50_imagenet_160_160_900M | 1460.5 | 2329.7 |
124 | OFA | pt_OFA-depthwise-res50_imagenet_176_176_1.25G | 279.9 | 456.3 |
125 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 421.4 | 587.1 |
126 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 2605.4 | 4256.9 |
127 | resnet50 | pt_resnet50_imagenet_224_224_4.1G | 827.5 | 1252.6 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the Kria KV260
board with a 1 * B4096F @ 300MHz
DPU configuration:
No. | Model | Name | E2E latency (ms) Thread Num =1 |
E2E throughput (fps) Single Thread |
E2E throughput (fps) Multi Thread |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 12.45 | 80.3 | 84.8 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 5.27 | 189.8 | 214.2 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 5.32 | 187.9 | 211.4 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 7.44 | 134.4 | 146.8 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 16.70 | 59.9 | 63.7 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 34.16 | 29.2 | 30.1 |
7 | Mobilenet_v2 | cf_mobilenetv2_imagenet_224_224_0.59G | 3.82 | 261.9 | 310.7 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 3.50 | 285.9 | 654.9 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 12.43 | 80.4 | 107.2 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 110.77 | 9.0 | 9.2 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 29.58 | 33.8 | 36.5 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 15.48 | 64.6 | 75.6 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 11.19 | 89.3 | 109.7 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 10.95 | 91.3 | 118.8 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 17.25 | 58.0 | 74.4 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 10.16 | 98.4 | 149.6 |
17 | ssd_mobilenet_v2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 39.55 | 25.3 | 61.2 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 28.24 | 35.4 | 76.6 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 1.76 | 567.5 | 739.8 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 258.52 | 3.9 | 5.5 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 2.19 | 455.7 | 920.7 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 4.55 | 219.5 | 434.8 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 1.18 | 848.9 | 945.3 |
24 | reid | cf_reid_market1501_160_80_0.95G | 2.94 | 340.2 | 379.8 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 25.75 | 38.8 | 53.6 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 76.63 | 13.0 | 13.5 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 10.46 | 95.5 | 123.1 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 75.44 | 13.2 | 13.6 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 36.81 | 27.2 | 28.9 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 14.92 | 67.0 | 76.8 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 13.05 | 76.6 | 90.5 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 11.09 | 90.2 | 108.7 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 6.14 | 162.7 | 167.5 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 13.65 | 73.2 | 74.2 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 74.48 | 13.4 | 17.3 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 1.75 | 570.3 | 1225.5 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 4.66 | 214.4 | 279.7 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 7.45 | 134.3 | 283.6 |
39 | face_quality | cf_face-quality_80_60_61.68M | 0.36 | 2742.2 | 4046.0 |
40 | FPN-R18(light-weight) | cf_FPN-resnet18_Endov_240_320_13.75G | 25.94 | 38.5 | 64.1 |
41 | Hourglass | cf_hourglass_mpii_256_256_10.2G | 52.70 | 19.0 | 57.2 |
42 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 7.92 | 126.2 | 165.8 |
43 | yolov4 | dk_yolov4_coco_416_416_60.1G | 72.43 | 13.8 | 14.7 |
44 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 53.72 | 18.6 | 20.4 |
45 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 44.01 | 22.7 | 23.2 |
46 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 5.28 | 189.3 | 214.2 |
47 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 16.74 | 59.7 | 63.6 |
48 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 34.15 | 29.3 | 30.2 |
49 | Mobilenet_v1 | tf_mobilenetv1_0.25_imagenet_128_128_27.15M | 0.78 | 1277.2 | 2088.7 |
50 | Mobilenet_v1 | tf_mobilenetv1_0.5_imagenet_160_160_150.07M | 1.27 | 784.0 | 1135.0 |
51 | Mobilenet_v1 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 3.15 | 316.9 | 393.3 |
52 | Mobilenet_v2 | tf_mobilenetv2_1.0_imagenet_224_224_0.59G | 3.93 | 254.2 | 299.9 |
53 | Mobilenet_v2 | tf_mobilenetv2_1.4_imagenet_224_224_1.16G | 5.41 | 184.7 | 208.4 |
54 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 12.54 | 79.7 | 84.2 |
55 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 23.02 | 43.4 | 44.6 |
56 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 23.02 | 43.4 | 44.6 |
57 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 51.98 | 19.2 | 19.5 |
58 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 59.38 | 16.8 | 17.0 |
59 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 9.02 | 110.8 | 165.7 |
60 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 12.59 | 79.4 | 103.7 |
61 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 346.87 | 2.9 | 5.3 |
62 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 72.10 | 13.9 | 14.3 |
63 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 526.76 | 1.9 | 2.6 |
64 | Inception_v2 | tf_inceptionv2_imagenet_224_224_3.88G | 10.56 | 94.7 | 100.7 |
65 | resnet_v2_50 | tf_resnetv2_50_imagenet_299_299_13.1G | 27.19 | 36.8 | 44.7 |
66 | resnet_v2_101 | tf_resnetv2_101_imagenet_299_299_26.78G | 47.00 | 21.3 | 23.7 |
67 | resnet_v2_152 | tf_resnetv2_152_imagenet_299_299_40.47G | 66.86 | 14.9 | 16.1 |
68 | ssdlite_mobilenetv2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 9.39 | 106.4 | 148.6 |
69 | ssd_inceptionv2 | tf_ssdinceptionv2_coco_300_300_9.62G | 24.97 | 40.0 | 45.5 |
70 | Mobilenet_v2 | tf_mobilenetv2_cityscapes_1024_2048_132.74G | 550.57 | 1.8 | 3.1 |
71 | efficientnet-edgetpu-S | tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G | 8.64 | 115.7 | 124.4 |
72 | efficientnet-edgetpu-M | tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G | 12.47 | 80.2 | 84.8 |
73 | efficientnet-edgetpu-L | tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G | 30.57 | 32.7 | 36.4 |
74 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 13.78 | 72.6 | 75.9 |
75 | refinedet | tf_refinedet_VOC_320_320_81.9G | 92.23 | 10.8 | 13.0 |
76 | mobilenet_edge_1.0 | tf_mobilenetEdge1.0_imagenet_224_224_990M | 4.86 | 205.6 | 234.2 |
77 | mobilenet_edge_0.75 | tf_mobilenetEdge0.75_imagenet_224_224_624M | 4.02 | 248.8 | 292.4 |
78 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 14.25 | 70.1 | 84.2 |
79 | pruned_rcan | tf_rcan_DIV2K_360_640_0.98_86.95G | 131.87 | 7.6 | 7.8 |
80 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 12.65 | 79.0 | 83.2 |
81 | Mobilenet_v1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 3.19 | 313.4 | 386.3 |
82 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 16.85 | 59.3 | 63.1 |
83 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 6.82 | 146.6 | 158.4 |
84 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 138.31 | 7.2 | 12.8 |
85 | Mobilenet_v3 | tf2_mobilenetv3_imagenet_224_224_132M | 611.60 | 1.6 | 6.4 |
86 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 105.21 | 9.5 | 21.1 |
87 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 27.70 | 36.1 | 76.9 |
88 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 6.08 | 164.3 | 168.8 |
89 | face quality | pt_face-quality_80_60_61.68M | 0.39 | 2565.0 | 4057.2 |
90 | multi_task_v2 | pt_MT-resnet18_mixed_320_512_13.65G | 31.86 | 31.3 | 43.6 |
91 | face_reid_large | pt_facereid-large_96_96_515M | 1.11 | 899.4 | 1072.3 |
92 | face_reid_small | pt_facereid-small_80_80_90M | 0.46 | 2180.2 | 3110.2 |
93 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 10.34 | 96.7 | 102.4 |
94 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 2.95 | 338.7 | 369.6 |
95 | pointpillars | pt_pointpillars_kitti_12000_100_10.8G | 47.82 | 20.9 | 29.0 |
96 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 168.02 | 6.0 | 19.7 |
97 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 26.49 | 37.7 | 39.9 |
98 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 53.39 | 18.7 | 22.8 |
99 | surround-view pointpillars | pt_pointpillars_nuscenes_40000_64_108G | 466.63 | 2.1 | 5.1 |
100 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 235.52 | 4.2 | 9.9 |
101 | centerpoint | pt_centerpoint_astyx_2560_40_54G | 58.12 | 17.2 | 20.0 |
102 | pointpainting | pt_pointpainting_nuscenes_126G | 816.12 | 1.2 | 2.6 |
103 | multi_task_v3 | pt_multitaskv3_mixed_320_512_25.44G | 59.59 | 16.8 | 25.9 |
104 | FADnet | pt_fadnet_sceneflow_576_960_441G | 739.20 | 1.3 | 1.7 |
105 | Bayesian Crowd Counting | pt_BCC_shanghaitech_800_1000_268.9G | 297.72 | 3.4 | 3.8 |
106 | PMG | pt_pmg_rp2k_224_224_2.28G | 6.73 | 148.5 | 160.4 |
107 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 93.41 | 10.7 | 28.1 |
108 | Ultra-Fast | pt_ultrafast_CULane_288_800_8.4G | 28.78 | 34.7 | 38.9 |
109 | CLOCs | pt_CLOCs_kitti | 326.06 | 3.1 | 9.1 |
110 | Yolo-X | pt_yolox_TT100K_640_640_73G | 74.80 | 13.4 | 14.2 |
111 | SESR-S | pt_SESR-S_DIV2K_360_640_7.48G | 13.26 | 75.4 | 82.6 |
112 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 20.74 | 48.2 | 57.9 |
113 | SSR | pt_SSR_CVC_256_256_39.72G | 168.61 | 5.9 | 6.0 |
114 | C2D2lite | pt_C2D2lite_CC20_512_512_6.86G | 343.40 | 2.9 | 3.1 |
115 | HardNet_Mseg | pt_HardNet_mixed_352_352_22.78G | 44.02 | 22.7 | 26.2 |
116 | FadNet | pt_fadnet_sceneflow_576_960_0.65_154G | 514.94 | 1.9 | 2.6 |
117 | Person orientation | pt_person-orientation_224_112_558M | 1.60 | 623.3 | 707.7 |
118 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 43.58 | 22.9 | 26.0 |
119 | OFA | pt_OFA-resnet50_imagenet_160_160_900M | 5.96 | 167.7 | 179.8 |
120 | OFA | pt_OFA-depthwise-res50_imagenet_176_176_1.25G | 9.25 | 108.1 | 262.5 |
121 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 16.68 | 59.9 | 63.8 |
122 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 3.21 | 311.8 | 675.5 |
123 | resnet50 | pt_resnet50_imagenet_224_224_4.1G | 13.94 | 71.7 | 75.0 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput for models on the Versal ACAP VCK5000
board with DPUCVDX8H running at 8PE@350
MHz in Gen3x16:
No. | Model | Name | DPU Frequency(MHz) | E2E throughput (fps) Multi Thread |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 350 | 4941.68 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 350 | 6621.65 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 350 | 3967.01 |
4 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 350 | 8768.06 |
5 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 350 | 751.79 |
6 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 350 | 285.42 |
7 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 350 | 667.24 |
8 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 350 | 854.08 |
9 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 350 | 880.72 |
10 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 350 | 925.38 |
11 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 350 | 823.66 |
12 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 350 | 619.57 |
13 | FPN | cf_fpn_cityscapes_256_512_8.9G | 350 | 1034.06 |
14 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 350 | 8444.81 |
15 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 350 | 170.05 |
16 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 350 | 5972.10 |
17 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 350 | 3054.66 |
18 | face_landmark | cf_landmark_celeba_96_72_0.14G | 350 | 20320.80 |
19 | reid | cf_reid_market1501_160_80_0.95G | 350 | 10771.90 |
20 | multi_task | cf_multitask_bdd_288_512_14.8G | 350 | 715.77 |
21 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 350 | 399.01 |
22 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 350 | 1441.31 |
23 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 350 | 475.68 |
24 | yolov2_voc | dk_yolov2_voc_448_448_34G | 350 | 961.64 |
25 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 350 | 1531.11 |
26 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 350 | 1764.26 |
27 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 350 | 1535.86 |
28 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 350 | 554.92 |
29 | plate detection | cf_plate-detection_320_320_0.49G | 350 | 8169.45 |
30 | plate recognition | cf_plate-recognition_96_288_1.75G | 350 | 2995.55 |
31 | face_quality | cf_face-quality_80_60_61.68M | 350 | 31443.70 |
32 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 350 | 2590.73 |
33 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 350 | 4204.56 |
34 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 350 | 4939.12 |
35 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 350 | 2975.00 |
36 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 350 | 2120.41 |
37 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 350 | 114.26 |
38 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 350 | 477.08 |
39 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 350 | 75.94 (6 thread) |
40 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 350 | 4505.04 |
41 | refinedet | tf_refinedet_VOC_320_320_81.9G | 350 | 398.16 |
42 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 350 | 1272.02 |
43 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 350 | 4941.54 |
44 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 350 | 1511.86 |
45 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 350 | 118.02 (6 thread) |
46 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 350 | 147.57 |
47 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 350 | 1089.61 |
48 | face quality | pt_face-quality_80_60_61.68M | 350 | 31639.60 |
49 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 350 | 158.53 |
50 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 350 | 1176.98 |
51 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 350 | 246.54 |
52 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 350 | 87.66 |
53 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 350 | 7579.40 |
54 | resnet50 | pt_resnet50_imagenet_224_224_4.1G_2.0 | 350 | 4529.60 |
55 | UltraFast | pt_ultrafast_CULane_288_800_8.4G | 350 | 1373.24 |
56 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 350 | 204.26 |
57 | SESR_S | pt_SESR-S_DIV2K_360_640_7.48G | 350 | 232.84 |
58 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 350 | 500.23 |
The following table lists the performance number including end-to-end throughput for models on the Versal ACAP VCK5000
board with DPUCVDX8H DWC running at 6PE@350
MHz in Gen3x16:
No. | Model | Name | DPU Frequency(MHz) | E2E throughput (fps) Multi Thread |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 350 | 3738.35 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 350 | 5185.26 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 350 | 3293.69 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 350 | 2613.47 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 350 | 912.40 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 350 | 506.92 |
7 | mobilenetv2 | cf_mobilenetv2_imagenet_224_224_0.59G | 350 | 3752.71 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 350 | 7672.00 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 350 | 605.79 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 350 | 234.10 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 350 | 513.16 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 350 | 649.21 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 350 | 687.19 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 350 | 714.24 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 350 | 697.63 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 350 | 443.39 |
17 | ssd_mobilenetv2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 350 | 590.97 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 350 | 933.44 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 350 | 6753.90 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 350 | 132.81 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 350 | 4581.78 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 350 | 2339.43 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 350 | 22446.80 |
24 | reid | cf_reid_market1501_160_80_0.95G | 350 | 8422.35 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 350 | 660.98 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 350 | 320.06 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 350 | 1120.72 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 350 | 391.59 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 350 | 825.49 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 350 | 1208.89 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 350 | 1351.28 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 350 | 1327.28 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 350 | 4498.68 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 350 | 2280.95 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 350 | 426.93 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 350 | 6612.75 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 350 | 2759.17 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 350 | 1627.01 |
39 | face_quality | cf_face-quality_80_60_61.68M | 350 | 31512.70 |
40 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 350 | 1971.40 |
41 | yolov4 | dk_yolov4_coco_416_416_60.1G | 350 | 326.98 |
42 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 350 | 313.13 |
43 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 350 | 492.18 |
44 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 350 | 3532.76 |
45 | Inception_v2 | tf_inceptionv2_imagenet_224_224_3.88G | 350 | 483.27 |
46 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 350 | 913.67 |
47 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 350 | 506.77 |
48 | mobilenetv1_0.25 | tf_mobilenetv1_0.25_imagenet_128_128_27M | 350 | 22781.30 |
49 | mobilenetv1_0.5 | tf_mobilenetv1_0.5_imagenet_160_160_150M | 350 | 11945.00 |
50 | mobilenetv1_1.0 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 350 | 5224.42 |
51 | mobilenetv2_1.0 | tf_mobilenetv2_1.0_imagenet_224_224_602M | 350 | 3638.07 |
52 | mobilenetv2_1.4 | tf_mobilenetv2_1.4_imagenet_224_224_1.16G | 350 | 2842.98 |
53 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 350 | 3739.72 |
54 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 350 | 2244.88 |
55 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 350 | 1596.44 |
56 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 350 | 505.57 |
57 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 350 | 450.82 |
58 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 350 | 108.19 |
59 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 350 | 2338.31 |
60 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 350 | 1287.66 |
61 | ssdlite_mobilenet_v2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 350 | 1482.77 |
62 | ssd_inception_v2 | tf_ssdinceptionv2_coco_300_300_9.62G | 350 | 240.00 |
63 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 350 | 392.26 |
64 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 350 | 72.21 |
65 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 350 | 3406.26 |
66 | refinedet | tf_refinedet_VOC_320_320_81.9G | 350 | 307.83 |
67 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 350 | 1000.00 |
68 | efficientNet-edgetpu-S | tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G | 350 | 1858.11 |
69 | efficientNet-edgetpu-M | tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G | 350 | 1100.45 |
70 | efficientNet-edgetpu-L | tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G | 350 | 427.57 |
71 | mobilenet_edge_1.0 | tf_mobilenetEdge1.0_imagenet_224_224_990M | 350 | 4298.57 |
72 | mobilenet_edge_0.75 | tf_mobilenetEdge0.75_imagenet_224_224_624M | 350 | 4813.85 |
73 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 350 | 3737.98 |
74 | mobilenetv1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 350 | 5222.53 |
75 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 350 | 962.69 |
76 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 350 | 1358.26 |
77 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 350 | 115.01 |
78 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 350 | 141.94 |
79 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 350 | 1094.60 |
80 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 350 | 216.55 |
81 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 350 | 4496.60 |
82 | face quality | pt_face-quality_80_60_61.68M | 350 | 32034.80 |
83 | face_reid_large | pt_facereid-large_96_96_515M | 350 | 21110.00 |
84 | face_reid_small | pt_facereid-small_80_80_90M | 350 | 33214.20 |
85 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 350 | 3750.77 |
86 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 350 | 8172.30 |
87 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 350 | 154.52 |
88 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 350 | 960.40 |
89 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 350 | 201.87 |
90 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 350 | 90.88 |
91 | PMG | pt_pmg_rp2k_224_224_2.28G | 350 | 3477.35 |
92 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 350 | 910.16 |
93 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 350 | 7132.38 |
94 | resnet50 | pt_resnet50_imagenet_224_224_4.1G_2.0 | 350 | 3429.55 |
95 | UltraFast | pt_ultrafast_CULane_288_800_8.4G | 350 | 1061.32 |
96 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 350 | 153.40 |
97 | SESR_S | pt_SESR-S_DIV2K_360_640_7.48G | 350 | 185.58 |
98 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 350 | 427.84 |
99 | Person-orientation | pt_person-orientation_224_112_558M | 350 | 9541.32 |
100 | TSD_YoloX | pt_yolox_TT100K_640_640_73G | 350 | 263.49 |
101 | ofa_resnet50 | pt_OFA-resnet50_imagenet_160_160_900M | 350 | 4050.59 |
102 | ofa_resnet50_depthwise | pt_OFA-depthwise-res50_imagenet_176_176_1.246G | 350 | 3378.06 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput for each model on the Alveo U50
board with 10 DPUCAHX8H kernels running at 275Mhz in Gen3x4:
No. | Model | Name | DPU Frequency(MHz) | E2E throughput (fps) Multi Thread |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 192.5 | 691.01 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 192.5 | 1514.25 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 192.5 | 1340.78 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 192.5 | 1056.64 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 192.5 | 436.96 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 192.5 | 198.69 |
7 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 192.5 | 3932.12 |
8 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 192.5 | 678.48 |
9 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 192.5 | 59.07 |
10 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 192.5 | 235.88 |
11 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 192.5 | 480.04 |
12 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 192.5 | 703.73 |
13 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 192.5 | 731.10 |
14 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 192.5 | 461.08 |
15 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 192.5 | 646.59 |
16 | FPN | cf_fpn_cityscapes_256_512_8.9G | 192.5 | 474.75 |
17 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 192.5 | 3594.50 |
18 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 192.5 | 34.78 |
19 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 192.5 | 3040.52 |
20 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 192.5 | 1316.35 |
21 | face_landmark | cf_landmark_celeba_96_72_0.14G | 192.5 | 11396.4 |
22 | reid | cf_reid_market1501_160_80_0.95G | 192.5 | 4270.81 |
23 | multi_task | cf_multitask_bdd_288_512_14.8G | 192.5 | 361.93 |
24 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 165 | 89.10 |
25 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 165 | 742.51 |
26 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 165 | 78.56 |
27 | yolov2_voc | dk_yolov2_voc_448_448_34G | 165 | 193.58 |
28 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 192.5 | 489.60 |
29 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 192.5 | 575.05 |
30 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 192.5 | 696.65 |
31 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 192.5 | 1453.98 |
32 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 192.5 | 530.59 |
33 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 192.5 | 110.01 |
34 | plate detection | cf_plate-detection_320_320_0.49G | 192.5 | 6369.09 |
35 | plate recognition | cf_plate-recognition_96_288_1.75G | 192.5 | 1396.99 |
36 | face_quality | cf_face-quality_80_60_61.68M | 192.5 | 21514.9 |
37 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 192.5 | 1035.44 |
38 | yolov4 | dk_yolov4_coco_416_416_60.1G | 165 | 82.96 |
39 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 192.5 | 91.36 |
40 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 192.5 | 184.68 |
41 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 192.5 | 1359.83 |
42 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 192.5 | 438.49 |
43 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 192.5 | 198.88 |
44 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 192.5 | 690.78 |
45 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 192.5 | 358.87 |
46 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 192.5 | 239.28 |
47 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 192.5 | 176.15 |
48 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 192.5 | 146.51 |
49 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 192.5 | 37.78 |
50 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 165 | 78.70 |
51 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 192.5 | 16.44 |
52 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 192.5 | 596.07 |
53 | refinedet | tf_refinedet_VOC_320_320_81.9G | 192.5 | 84.72 |
54 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 192.5 | 502.22 |
55 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 192.5 | 691.62 |
56 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 192.5 | 444.04 |
57 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 192.5 | 1250.55 |
58 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 192.5 | 63.02 |
59 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 192.5 | 95.44 |
60 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 192.5 | 505.79 |
61 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 192.5 | 1453.13 |
62 | face quality | pt_face-quality_80_60_61.68M | 192.5 | 21385.4 |
63 | face_reid_large | pt_facereid-large_96_96_515M | 192.5 | 8417.59 |
64 | face_reid_small | pt_facereid-small_80_80_90M | 192.5 | 23548.7 |
65 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 192.5 | 960.45 |
66 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 192.5 | 4052.47 |
67 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 192.5 | 145.11 |
68 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 192.5 | 247.6 |
69 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 192.5 | 85.58 |
70 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 192.5 | 44.21 |
71 | PMG | pt_pmg_rp2k_224_224_2.28G | 192.5 | 1170.22 |
72 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 192.5 | 437.18 |
73 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 192.5 | 4186.64 |
74 | resnet50 | pt_resnet50_imagenet_224_224_4.1G_2.0 | 192.5 | 596.10 |
75 | UltraFast | pt_ultrafast_CULane_288_800_8.4G | 192.5 | 288.60 |
76 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 192.5 | 372.39 |
77 | SESR_S | pt_SESR-S_DIV2K_360_640_7.48G | 192.5 | 184.14 |
78 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 165 | 160.70 |
79 | Person-orientation | pt_person-orientation_224_112_558M | 192.5 | 6733.67 |
80 | TSD_YoloX | pt_yolox_TT100K_640_640_73G | 165 | 72.22 |
81 | ofa_resnet50 | pt_OFA-resnet50_imagenet_160_160_900M | 192.5 | 1767.30 |
The following table lists the performance number including end-to-end throughput for each model on the Alveo U50
board with 8 DPUCAHX8H DWC kernels running at 275Mhz in Gen3x4:
No. | Model | Name | DPU Frequency(MHz) | E2E throughput (fps) Multi Thread |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 137.5 | 396.71 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 137.5 | 871.54 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 137.5 | 776.98 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 137.5 | 608.44 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 137.5 | 250.90 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 137.5 | 114.06 |
7 | mobilenetv2 | cf_mobilenetv2_imagenet_224_224_0.59G | 137.5 | 1883.93 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 137.5 | 2299.17 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 137.5 | 389.98 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 137.5 | 33.86 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 137.5 | 135.29 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 137.5 | 275.63 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 137.5 | 403.98 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 137.5 | 430.43 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 137.5 | 264.78 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 137.5 | 424.78 |
17 | ssd_mobilenetv2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 137.5 | 255.39 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 137.5 | 275.09 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 137.5 | 2117.40 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 137.5 | 20.05 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 137.5 | 2180.70 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 137.5 | 954.51 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 137.5 | 6770.42 |
24 | reid | cf_reid_market1501_160_80_0.95G | 137.5 | 2488.00 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 137.5 | 207.78 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 137.5 | 50.93 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 137.5 | 435.65 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 137.5 | 52.35 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 137.5 | 110.82 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 137.5 | 281.58 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 137.5 | 330.35 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 137.5 | 399.89 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 137.5 | 837.13 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 137.5 | 304.40 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 137.5 | 63.27 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 137.5 | 4798.49 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 137.5 | 884.38 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 137.5 | 1171.76 |
39 | face_quality | cf_face-quality_80_60_61.68M | 137.5 | 17806.60 |
40 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 137.5 | 594.69 |
41 | yolov4 | dk_yolov4_coco_416_416_60.1G | 137.5 | 55.46 |
42 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 137.5 | 63.78 |
43 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 137.5 | 106.01 |
44 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 137.5 | 788.10 |
45 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 137.5 | 251.22 |
46 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 137.5 | 113.95 |
47 | mobilenetv1_0.25 | tf_mobilenetv1_0.25_imagenet_128_128_27M | 137.5 | 13994.40 |
48 | mobilenetv1_0.5 | tf_mobilenetv1_0.5_imagenet_160_160_150M | 137.5 | 7508.79 |
49 | mobilenetv1_1.0 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 137.5 | 2021.15 |
50 | mobilenetv2_1.0 | tf_mobilenetv2_1.0_imagenet_224_224_602M | 137.5 | 1862.71 |
51 | mobilenetv2_1.4 | tf_mobilenetv2_1.4_imagenet_224_224_1.16G | 137.5 | 1252.61 |
52 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 137.5 | 396.44 |
53 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 137.5 | 205.59 |
54 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 137.5 | 136.93 |
55 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 137.5 | 101.28 |
56 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 137.5 | 84.05 |
57 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 137.5 | 21.61 |
58 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 137.5 | 943.25 |
59 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 137.5 | 530.97 |
60 | ssdlite_mobilenetv2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 137.5 | 873.85 |
61 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 137.5 | 52.53 |
62 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 137.5 | 9.41 |
63 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 137.5 | 342.16 |
64 | refinedet | tf_refinedet_VOC_320_320_81.9G | 137.5 | 48.37 |
65 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 137.5 | 289.07 |
66 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 137.5 | 397.0 |
67 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 137.5 | 254.60 |
68 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 137.5 | 719.06 |
69 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 137.5 | 39.18 |
70 | mobilenetv1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 137.5 | 2021.57 |
71 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 137.5 | 59.20 |
72 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 137.5 | 290.10 |
73 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 137.5 | 120.07 |
74 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 137.5 | 838.06 |
75 | face quality | pt_face-quality_80_60_61.68M | 137.5 | 17811.40 |
76 | face_reid_large | pt_facereid-large_96_96_515M | 137.5 | 4997.13 |
77 | face_reid_small | pt_facereid-small_80_80_90M | 137.5 | 15164.50 |
78 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 137.5 | 552.22 |
79 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 137.5 | 2361.76 |
80 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 137.5 | 113.08 |
81 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 137.5 | 142.42 |
82 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 137.5 | 61.21 |
83 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 137.5 | 24.91 |
84 | PMG | pt_pmg_rp2k_224_224_2.28G | 137.5 | 672.85 |
85 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 137.5 | 251.21 |
86 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 137.5 | 2447.79 |
87 | resnet50 | pt_resnet50_imagenet_224_224_4.1G_2.0 | 137.5 | 341.97 |
88 | UltraFast | pt_ultrafast_CULane_288_800_8.4G | 137.5 | 164.96 |
89 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 137.5 | 214.20 |
90 | SESR_S | pt_SESR-S_DIV2K_360_640_7.48G | 137.5 | 135.92 |
91 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 137.5 | 92.15 |
92 | Person-orientation | pt_person-orientation_224_112_558M | 137.5 | 3981.36 |
93 | TSD_YoloX | pt_yolox_TT100K_640_640_73G | 137.5 | 48.44 |
94 | ofa_resnet50 | pt_OFA-resnet50_imagenet_160_160_900M | 137.5 | 1044.55 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput for each model on the Alveo U55C
board with 11 DPUCAHX8H DWC kernels running at 300Mhz in Gen3x4:
No. | Model | Name | DPU Frequency(MHz) | E2E throughput (fps) Multi Thread |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 300 | 1178.18 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 300 | 2609.77 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 300 | 2135.29 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 300 | 1731.11 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 300 | 697.38 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 300 | 326.77 |
7 | mobilenetv2 | cf_mobilenetv2_imagenet_224_224_0.59G | 350 | 5370.48 |
8 | SqueezeNet | cf_squeezenet_imagenet_227_227_0.76G | 300 | 6173.84 |
9 | ssd_pedestrian_pruned_0_97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 300 | 904.75 |
10 | refinedet_baseline | cf_refinedet_coco_360_480_123G | 300 | 94.32 |
11 | refinedet_pruned_0_8 | cf_refinedet_coco_360_480_0.8_25G | 300 | 331.45 |
12 | refinedet_pruned_0_92 | cf_refinedet_coco_360_480_0.92_10.10G | 300 | 717.55 |
13 | refinedet_pruned_0_96 | cf_refinedet_coco_360_480_0.96_5.08G | 300 | 1011.15 |
14 | ssd_adas_pruned_0_95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 300 | 994.51 |
15 | ssd_traffic_pruned_0_9 | cf_ssdtraffic_360_480_0.9_11.6G | 300 | 672.57 |
16 | VPGnet_pruned_0_99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 300 | 946.99 |
17 | ssd_mobilenetv2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 350 | 720.55 |
18 | FPN | cf_fpn_cityscapes_256_512_8.9G | 300 | 725.33 |
19 | SP_net | cf_SPnet_aichallenger_224_128_0.54G | 300 | 5669.09 |
20 | Openpose_pruned_0_3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 300 | 57.89 |
21 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 300 | 4922.83 |
22 | densebox_640_360 | cf_densebox_wider_360_640_1.11G | 300 | 2205.46 |
23 | face_landmark | cf_landmark_celeba_96_72_0.14G | 300 | 19902.40 |
24 | reid | cf_reid_market1501_160_80_0.95G | 300 | 7476.71 |
25 | multi_task | cf_multitask_bdd_288_512_14.8G | 300 | 536.58 |
26 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 300 | 147.58 |
27 | yolov3_adas_pruned_0_9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 300 | 1229.14 |
28 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 300 | 152.95 |
29 | yolov2_voc | dk_yolov2_voc_448_448_34G | 300 | 318.21 |
30 | yolov2_voc_pruned_0_66 | dk_yolov2_voc_448_448_0.66_11.56G | 300 | 779.56 |
31 | yolov2_voc_pruned_0_71 | dk_yolov2_voc_448_448_0.71_9.86G | 300 | 906.92 |
32 | yolov2_voc_pruned_0_77 | dk_yolov2_voc_448_448_0.77_7.82G | 300 | 1091.51 |
33 | ResNet20-face | cf_facerec-resnet20_112_96_3.5G | 300 | 2500.45 |
34 | ResNet64-face | cf_facerec-resnet64_112_96_11G | 300 | 907.31 |
35 | FPN_Res18_segmentation | cf_FPN-resnet18_EDD_320_320_45.3G | 300 | 182.27 |
36 | plate detection | cf_plate-detection_320_320_0.49G | 300 | 7895.80 |
37 | plate recognition | cf_plate-recognition_96_288_1.75G | 300 | 2312.90 |
38 | retinaface | cf_retinaface_wider_360_640_1.11G | 350 | 1764.23 |
39 | face_quality | cf_face-quality_80_60_61.68M | 300 | 30667.30 |
40 | tiny-yolov3 | dk_tiny-yolov3_416_416_5.46G | 300 | 1634.88 |
41 | yolov4 | dk_yolov4_coco_416_416_60.1G | 300 | 156.64 |
42 | pruned_yolov4 | dk_yolov4_coco_416_416_0.36_38.2G | 300 | 166.85 |
43 | Inception_resnet_v2 | tf_inceptionresnetv2_imagenet_299_299_26.35G | 300 | 301.68 |
44 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 300 | 2214.22 |
45 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 300 | 698.57 |
46 | Inception_v4 | tf_inceptionv4_imagenet_299_299_24.55G | 300 | 327.53 |
47 | mobilenetv1_0.25 | tf_mobilenetv1_0.25_imagenet_128_128_27M | 350 | 18874.90 |
48 | mobilenetv1_0.5 | tf_mobilenetv1_0.5_imagenet_160_160_150M | 350 | 12898.20 |
49 | mobilenetv1_1.0 | tf_mobilenetv1_1.0_imagenet_224_224_1.14G | 350 | 5325.89 |
50 | resnet_v1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 300 | 1178.59 |
51 | resnet_v1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 300 | 611.32 |
52 | resnet_v1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 300 | 407.69 |
53 | vgg_16 | tf_vgg16_imagenet_224_224_30.96G | 300 | 295.64 |
54 | vgg_19 | tf_vgg19_imagenet_224_224_39.28G | 300 | 246.94 |
55 | ssd_resnet_50_v1_fpn | tf_ssdresnet50v1_fpn_coco_640_640_178.4G | 300 | 59.37 |
56 | ssd_mobilenet_v1 | tf_ssdmobilenetv1_coco_300_300_2.47G | 350 | 2180.88 |
57 | ssd_mobilenet_v2 | tf_ssdmobilenetv2_coco_300_300_3.75G | 350 | 1472.47 |
58 | ssdlite_mobilenet_v2 | tf_ssdlite_mobilenetv2_coco_300_300_1.5G | 350 | 2135.17 |
59 | yolov3_voc | tf_yolov3_voc_416_416_65.63G | 300 | 152.84 |
60 | mlperf_ssd_resnet34 | tf_mlperf_resnet34_coco_1200_1200_433G | 300 | 1015.18 |
61 | mlperf_resnet50 | tf_mlperf_resnet50_imagenet_224_224_8.19G | 300 | 25.83 |
62 | refinedet | tf_refinedet_VOC_320_320_81.9G | 300 | 138.97 |
63 | refinedet_medical | tf_RefineDet-Medical_EDD_320_320_0.88_9.83G | 300 | 797.82 |
64 | resnet50 | tf2_resnet50_imagenet_224_224_7.76G | 300 | 1178.36 |
65 | mobilenetv1 | tf2_mobilenetv1_imagenet_224_224_1.15G | 350 | 5340.33 |
66 | Inception_v3 | tf2_inceptionv3_imagenet_299_299_11.5G | 300 | 714.44 |
67 | 2d-unet | tf2_2d-unet_nuclei_128_128_5.31G | 300 | 2021.76 |
68 | ERFNet | tf2_erfnet_cityscapes_512_1024_54G | 300 | 90.59 |
69 | ENet | pt_ENet_cityscapes_512_1024_8.6G | 300 | 144.02 |
70 | SemanticFPN | pt_SemanticFPN_cityscapes_256_512_10G | 300 | 782.05 |
71 | SemanticFPN-mobilenetv2 | pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G | 350 | 230.77 |
72 | ResNet20-face | pt_facerec-resnet20_mixed_112_96_3.5G | 300 | 2499.11 |
73 | face quality | pt_face-quality_80_60_61.68M | 300 | 30562.20 |
74 | face_reid_large | pt_facereid-large_96_96_515M | 300 | 15187.80 |
75 | face_reid_small | pt_facereid-small_80_80_90M | 300 | 33132.60 |
76 | person_reid | pt_personreid-res50_market1501_256_128_5.4G | 300 | 1637.65 |
77 | person_reid | pt_personreid-res18_market1501_176_80_1.1G | 300 | 7096.63 |
78 | salsanext | pt_salsanext_semantic-kitti_64_2048_0.6_20.4G | 300 | 152.34 |
79 | FPN-R18 (light-weight) | pt_FPN-resnet18_covid19-seg_352_352_22.7G | 300 | 408.05 |
80 | 2d-unet | pt_unet_chaos-CT_512_512_23.3G | 300 | 138.36 |
81 | pointpillars_nuscenes | pt_pointpillars_nuscenes_40000_64_108G | 300 | 42.50 |
82 | salsanext_v2 | pt_salsanextv2_semantic-kitti_64_2048_0.75_32G | 300 | 58.46 |
83 | pointpainting | pt_pointpainting_nuscenes_126G | 300 | 21.28 |
84 | PMG | pt_pmg_rp2k_224_224_2.28G | 300 | 1995.08 |
85 | Inception_v3 | pt_inceptionv3_imagenet_299_299_5.7G | 300 | 697.54 |
86 | SqueezeNet | pt_squeezenet_imagenet_224_224_351.7M | 300 | 6560.42 |
87 | resnet50 | pt_resnet50_imagenet_224_224_4.1G_2.0 | 300 | 1015.14 |
88 | UltraFast | pt_ultrafast_CULane_288_800_8.4G | 300 | 481.47 |
89 | DRUNet | pt_DRUNet_Kvasir_528_608_0.4G | 300 | 479.90 |
90 | SESR_S | pt_SESR-S_DIV2K_360_640_7.48G | 300 | 290.95 |
91 | FairMOT | pt_FairMOT_mixed_640_480_0.5_36G | 300 | 239.92 |
92 | Person-orientation | pt_person-orientation_224_112_558M | 300 | 11906.10 |
93 | TSD_YoloX | pt_yolox_TT100K_640_640_73G | 300 | 132.59 |
94 | ofa_resnet50 | pt_OFA-resnet50_imagenet_160_160_900M | 300 | 2942.50 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U200
board with 2 DPUCADF8H kernels running at 300Mhz:
No. | Model | Name | E2E latency (ms) Thread num =20 | E2E throughput -fps(Multi Thread) |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 3.8 | 1054 |
2 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 2.2 | 1834 |
3 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 18.4 | 218 |
4 | resnetv1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 4.2 | 947 |
5 | resnetv1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 8.5 | 472 |
6 | resnetv1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 12.7 | 316 |
The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U200
board with 2 DPUCADX8G kernels running at 350Mhz with xilinx_u200_xdma_201830_2 shell:
No. | Model | Name | E2E latency (ms) Thread num =1 | E2E throughput -fps(Single Thread) | E2E throughput -fps(Multi Thread) |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 2.13 | 470.6 | 561.3 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 2.08 | 481 | 1157.8 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 2.39 | 418.5 | 1449.4 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 2.11 | 475.1 | 1129.2 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 15.67 | 63.8 | 371.6 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 10.77 | 92.8 | 221.2 |
7 | SqueezeNet | cf_squeeze_imagenet_227_227_0.76G | 10.99 | 91 | 1157.1 |
8 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 8.69 | 115.1 | 667.9 |
9 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 14.53 | 68.8 | 75.9 |
10 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 19.90 | 50.3 | 82.1 |
Measured with Vitis AI 2.0 and Vitis AI Library 2.0
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U250
board with 4 DPUCADF8H kernels running at 300Mhz:
No. | Model | Name | E2E latency (ms) Thread num =20 | E2E throughput -fps(Multi Thread) |
---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 1.94 | 2134.8 |
2 | Inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 1.10 | 3631.7 |
3 | Inception_v3 | tf_inceptionv3_imagenet_299_299_11.45G | 9.20 | 434.9 |
4 | resnetv1_50 | tf_resnetv1_50_imagenet_224_224_6.97G | 2.13 | 1881.6 |
5 | resnetv1_101 | tf_resnetv1_101_imagenet_224_224_14.4G | 4.24 | 941.9 |
6 | resnetv1_152 | tf_resnetv1_152_imagenet_224_224_21.83G | 6.35 | 630.3 |
The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U250
board with 4 DPUCADX8G kernels running at 350Mhz with xilinx_u250_xdma_201830_1 shell:
No. | Model | Name | E2E latency (ms) Thread num =1 | E2E throughput -fps(Single Thread) | E2E throughput -fps(Multi Thread) |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 1.68 | 595.5 | 1223.95 |
2 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 1.67 | 600.5 | 2422.5 |
3 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 1.93 | 517.1 | 4059.8 |
4 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 1.65 | 607.8 | 23221 |
5 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 6.18 | 161.8 | 743.8 |
6 | Inception_v4 | cf_inceptionv4_imagenet_299_299_24.5G | 5.77 | 173.4 | 452.4 |
7 | SqueezeNet | cf_squeeze_imagenet_227_227_0.76G | 5.44 | 183.7 | 2349.7 |
8 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 7.43 | 167.2 | 898.5 |
9 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 14.27 | 70.1 | 146.7 |
10 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 9.46 | 105.7 | 139.4 |
Note: For xilinx_u250_gen3x16_xdma_shell_3_1_202020_1 latest shell U250 xclbins, Alveo U250 board would be having only 3 DPUCADF8H kernels instead of 4, thereby the performance numbers for 1 Alveo U250 board with xilinx_u250_gen3x16_xdma_shell_3_1 shell xclbins would be 75% of the above reported performance numbers which is for 4 DPUCADF8H kernels.
The performance number shown below was measured with the previous AI SDK v2.0.4 on Ultra96 v1. The Vitis platform of Ultra96 v2 has not been released yet. So the performance numbers are therefore not reported for this Model Zoo release.
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the Ultra96
board with a 1 * B1600 @ 287MHz V1.4.0
DPU configuration:
Note: The original power supply of Ultra96 is not designed for high performance AI workload. The board may occasionally hang to run few models, When multi-thread is used. For such situations, NA
is specified in the following table.
No. | Model | Name | E2E latency (ms) Thread num =1 | E2E throughput -fps(Single Thread) | E2E throughput -fps(Multi Thread) |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 30.8 | 32.4667 | 33.4667 |
2 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 13.98 | 71.55 | 75.0667 |
3 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 17.16 | 58.2667 | 61.2833 |
4 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 44.05 | 22.7 | 23.4333 |
5 | mobileNet_v2 | cf_mobilenetv2_imagenet_224_224_0.59G | 7.34 | 136.183 | NA |
6 | tf_resnet50 | tf_resnet50_imagenet_224_224_6.97G | 28.02 | 35.6833 | 36.6 |
7 | tf_inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 16.96 | 58.9667 | 61.2833 |
8 | tf_mobilenet_v2 | tf_mobilenetv2_imagenet_224_224_1.17G | 10.17 | 98.3 | 104.25 |
9 | ssd_adas_pruned_0.95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 24.3 | 41.15 | 46.2 |
10 | ssd_pedestrian_pruned_0.97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 23.29 | 42.9333 | 50.8 |
11 | ssd_traffic_pruned_0.9 | cf_ssdtraffic_360_480_0.9_11.6G | 35.5 | 28.1667 | 31.8 |
12 | ssd_mobilnet_v2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 60.79 | 16.45 | 27.8167 |
13 | tf_ssd_voc | tf_ssd_voc_300_300_64.81G | 186.92 | 5.35 | 5.81667 |
14 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 4.17 | 239.883 | 334.167 |
15 | densebox_360_640 | cf_densebox_wider_360_640_1.11G | 8.55 | 117 | 167.2 |
16 | yolov3_adas_prune_0.9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 22.79 | 43.8833 | 49.6833 |
17 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 185.19 | 5.4 | 5.53 |
18 | tf_yolov3_voc | tf_yolov3_voc_416_416_65.63G | 199.34 | 5.01667 | 5.1 |
19 | refinedet_pruned_0.8 | cf_refinedet_coco_360_480_0.8_25G | 66.37 | 15.0667 | NA |
20 | refinedet_pruned_0.92 | cf_refinedet_coco_360_480_0.92_10.10G | 32.17 | 31.0883 | 33.6667 |
21 | refinedet_pruned_0.96 | cf_refinedet_coco_360_480_0.96_5.08G | 20.29 | 49.2833 | 55.25 |
22 | FPN | cf_fpn_cityscapes_256_512_8.9G | 36.34 | 27.5167 | NA |
23 | VPGnet_pruned_0.99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 13.9 | 71.9333 | NA |
24 | SP-net | cf_SPnet_aichallenger_224_128_0.54G | 3.82 | 261.55 | 277.4 |
25 | Openpose_pruned_0.3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 560.75 | 1.78333 | NA |
26 | yolov2_voc | dk_yolov2_voc_448_448_34G | 118.11 | 8.46667 | 8.9 |
27 | yolov2_voc_pruned_0.66 | dk_yolov2_voc_448_448_0.66_11.56G | 37.5 | 26.6667 | 30.65 |
28 | yolov2_voc_pruned_0.71 | dk_yolov2_voc_448_448_0.71_9.86G | 30.99 | 32.2667 | 38.35 |
29 | yolov2_voc_pruned_0.77 | dk_yolov2_voc_448_448_0.77_7.82G | 26.29 | 38.03333 | 46.8333 |
30 | Inception-v4 | cf_inceptionv4_imagenet_299_299_24.5G | 88.76 | 11.2667 | 11.5333 |
31 | SqueezeNet | cf_squeeze_imagenet_227_227_0.76G | 5.96 | 167.867 | 283.583 |
32 | face_landmark | cf_landmark_celeba_96_72_0.14G | 2.95 | 339.183 | 347.633 |
33 | reid | cf_reid_market1501_160_80_0.95G | 6.28 | 159.15 | 166.633 |
34 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 193.55 | 5.16667 | 5.31667 |
35 | tf_mobilenet_v1 | tf_mobilenetv1_imagenet_224_224_1.14G | 5.97 | 167.567 | 186.55 |
36 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 13.47 | 74.2167 | 77.8167 |
37 | resnet18_wide | tf_resnet18_imagenet_224_224_28G | 97.72 | 10.2333 | 10.3833 |
This version of ZCU102 is out of stock. The performance number shown below was measured with the previous AI SDK v2.0.4. Now this form has stopped updating. So the performance numbers are therefore not reported for this Model Zoo release.
Click here to view details
The following table lists the performance number including end-to-end throughput and latency for each model on the ZCU102 (0432055-04)
board with a 3 * B4096 @ 287MHz V1.4.0
DPU configuration:
No. | Model | Name | E2E latency (ms) Thread num =1 | E2E throughput -fps(Single Thread) | E2E throughput -fps(Multi Thread) |
---|---|---|---|---|---|
1 | resnet50 | cf_resnet50_imagenet_224_224_7.7G | 12.85 | 77.8 | 179.3 |
2 | Inception_v1 | cf_inceptionv1_imagenet_224_224_3.16G | 5.47 | 182.683 | 485.533 |
3 | Inception_v2 | cf_inceptionv2_imagenet_224_224_4G | 6.76 | 147.933 | 373.267 |
4 | Inception_v3 | cf_inceptionv3_imagenet_299_299_11.4G | 17 | 58.8333 | 155.4 |
5 | mobileNet_v2 | cf_mobilenetv2_imagenet_224_224_0.59G | 4.09 | 244.617 | 638.067 |
6 | tf_resnet50 | tf_resnet50_imagenet_224_224_6.97G | 11.94 | 83.7833 | 191.417 |
7 | tf_inception_v1 | tf_inceptionv1_imagenet_224_224_3G | 6.72 | 148.867 | 358.283 |
8 | tf_mobilenet_v2 | tf_mobilenetv2_imagenet_224_224_1.17G | 5.46 | 183.117 | 458.65 |
9 | ssd_adas_pruned_0.95 | cf_ssdadas_bdd_360_480_0.95_6.3G | 11.33 | 88.2667 | 320.5 |
10 | ssd_pedestrian_pruned_0.97 | cf_ssdpedestrian_coco_360_640_0.97_5.9G | 12.96 | 77.1833 | 314.717 |
11 | ssd_traffic_pruned_0.9 | cf_ssdtraffic_360_480_0.9_11.6G | 17.49 | 57.1833 | 218.183 |
12 | ssd_mobilnet_v2 | cf_ssdmobilenetv2_bdd_360_480_6.57G | 24.21 | 41.3 | 141.233 |
13 | tf_ssd_voc | tf_ssd_voc_300_300_64.81G | 69.28 | 14.4333 | 46.7833 |
14 | densebox_320_320 | cf_densebox_wider_320_320_0.49G | 2.43 | 412.183 | 1416.63 |
15 | densebox_360_640 | cf_densebox_wider_360_640_1.11G | 5.01 | 199.717 | 719.75 |
16 | yolov3_adas_prune_0.9 | dk_yolov3_cityscapes_256_512_0.9_5.46G | 11.09 | 90.1667 | 259.65 |
17 | yolov3_voc | dk_yolov3_voc_416_416_65.42G | 70.51 | 14.1833 | 44.4 |
18 | tf_yolov3_voc | tf_yolov3_voc_416_416_65.63G | 70.75 | 14.1333 | 44.0167 |
19 | refinedet_pruned_0.8 | cf_refinedet_coco_360_480_0.8_25G | 29.91 | 33.4333 | 109.067 |
20 | refinedet_pruned_0.92 | cf_refinedet_coco_360_480_0.92_10.10G | 15.39 | 64.9667 | 216.317 |
21 | refinedet_pruned_0.96 | cf_refinedet_coco_360_480_0.96_5.08G | 11.04 | 90.5833 | 312 |
22 | FPN | cf_fpn_cityscapes_256_512_8.9G | 16.58 | 60.3 | 203.867 |
23 | VPGnet_pruned_0.99 | cf_VPGnet_caltechlane_480_640_0.99_2.5G | 9.44 | 105.9 | 424.667 |
24 | SP-net | cf_SPnet_aichallenger_224_128_0.54G | 1.73 | 579.067 | 1620.67 |
25 | Openpose_pruned_0.3 | cf_openpose_aichallenger_368_368_0.3_189.7G | 279.07 | 3.58333 | 38.5 |
26 | yolov2_voc | dk_yolov2_voc_448_448_34G | 39.76 | 25.15 | 86.35 |
27 | yolov2_voc_pruned_0.66 | dk_yolov2_voc_448_448_0.66_11.56G | 18.42 | 54.2833 | 211.217 |
28 | yolov2_voc_pruned_0.71 | dk_yolov2_voc_448_448_0.71_9.86G | 16.42 | 60.9167 | 242.433 |
29 | yolov2_voc_pruned_0.77 | dk_yolov2_voc_448_448_0.77_7.82G | 14.46 | 69.1667 | 286.733 |
30 | Inception-v4 | cf_inceptionv4_imagenet_299_299_24.5G | 34.25 | 29.2 | 84.25 |
31 | SqueezeNet | cf_squeeze_imagenet_227_227_0.76G | 3.6 | 277.65 | 1080.77 |
32 | face_landmark | cf_landmark_celeba_96_72_0.14G | 1.13 | 885.033 | 1623.3 |
33 | reid | cf_reid_marketcuhk_160_80_0.95G | 2.67 | 375 | 773.533 |
34 | yolov3_bdd | dk_yolov3_bdd_288_512_53.7G | 73.89 | 13.5333 | 42.8833 |
35 | tf_mobilenet_v1 | tf_mobilenetv1_imagenet_224_224_1.14G | 3.2 | 312.067 | 875.967 |
36 | resnet18 | cf_resnet18_imagenet_224_224_3.65G | 5.1 | 195.95 | 524.433 |
37 | resnet18_wide | tf_resnet18_imagenet_224_224_28G | 33.28 | 30.05 | 83.4167 |
We welcome community contributions. When contributing to this repository, first discuss the change you wish to make via:
You can also submit a pull request with details on how to improve the product. Prior to submitting your pull request, ensure that you can build the product and run all the demos with your patch. In case of a larger feature, provide a relevant demo.
Xilinx AI Model Zoo is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
Copyright© 2019 Xilinx