Skip to content

Latest commit

 

History

History
1575 lines (1431 loc) · 270 KB

README.md

File metadata and controls

1575 lines (1431 loc) · 270 KB

Vitis AI Model Zoo

Introduction

This repository includes optimized deep learning models to speed up the deployment of deep learning inference on Xilinx™ platforms. These models cover different applications, including but not limited to ADAS/AD, medical, video surveillance, robotics, data center, etc. You can get started with these free pre-trained models to enjoy the benefits of deep learning acceleration.

Vitis AI 2.0 Model Zoo New Features!

1.New 22 models and total 130 models with diverse deep learning frameworks (Caffe, TensorFlow, TensorFlow 2 and PyTorch) in Vitis AI 2.0.

2.The diversity of AI Model Zoo is significantly improved compared to Vitis AI 1.4.

a.For AD/ADAS, provide Lidar based 3D detection, Instance segmentation, upgraded lane detection and Image-lidar fusion 3D detection, etc.

b.For Medical, provide Image Denoising, upgraded Image Super-resolution, Spectral remove, Polyp segmentation, etc.

c.For Smart city and Industrial Vision, provide Binocular depth estimation, Person orientation estimation, Joint detection and Tracking, etc.

d.In addition, begin to provide NLP reference models and OFA search reference models such as OFA-resnet50 and OFA-depthwise-resnet50.

3.EoU enhancement: Provide upgraded automatic script for users to find their required reference models and download them faster and more efficiently.

Model Details

The following table includes comprehensive information about all models, including application, framework, training and validation dataset, input size, computation as well as float and quantized precision.

Click here to view details
No. Application Name Framework Input Size OPS per image Training Set Val Set Float Accuracy (Top1/ Top5) Quantized Accuracy (Top1/Top5)
1 Image Classification cf_resnet50_imagenet_224_224_7.7G_2.0 caffe 224*224 7.7G ImageNet Train ImageNet Val 0.7444/0.9185 0.7335/0.9130
2 Image Classifiction cf_resnet18_imagenet_224_224_3.65G_2.0 caffe 224*224 3.65G ImageNet Train ImageNet Val 0.6844/0.8864 0.6699/0.8826
3 Image Classification cf_inceptionv1_imagenet_224_224_3.16G_2.0 caffe 224*224 3.16G ImageNet Train ImageNet Val 0.7030/0.8971 0.6964/0.8942
4 Image Classification cf_inceptionv2_imagenet_224_224_4G_2.0 caffe 224*224 4G ImageNet Train ImageNet Val 0.7275/0.9111 0.7166/0.9029
5 Image Classification cf_inceptionv3_imagenet_299_299_11.4G_2.0 caffe 299*299 11.4G ImageNet Train ImageNet Val 0.7701/0.9329 0.7622/0.9302
6 Image Classification cf_inceptionv4_imagenet_299_299_24.5G_2.0 caffe 299*299 24.5G ImageNet Train ImageNet Val 0.7958/0.9470 0.7899/0.9444
7 Image Classification cf_mobilenetv2_imagenet_224_224_0.59G_2.0 caffe 224*224 608M ImageNet Train ImageNet Val 0.6527/0.8643 0.6399/0.8540
8 Image Classifiction cf_squeezenet_imagenet_227_227_0.76G_2.0 caffe 227*227 0.76G ImageNet Train ImageNet Val 0.5432/0.7824 0.5270/0.7816
9 ADAS Pedstrain Detection cf_ssdpedestrian_coco_360_640_0.97_5.9G_2.0 caffe 360*640 5.9G coco2014_train_person and crowndhuman coco2014_val_person 0.5903 0.5857
10 Object Detection cf_refinedet_coco_360_480_123G_2.0 caffe 360*480 123G coco2014_train_person coco2014_val_person 0.6928 0.7042
11 Object Detection cf_refinedet_coco_360_480_0.8_25G_2.0 caffe 360*480 25G coco2014_train_person coco2014_val_person 0.6794 0.6790
12 Object Detection cf_refinedet_coco_360_480_0.92_10.10G_2.0 caffe 360*480 10.10G coco2014_train_person coco2014_val_person 0.6489 0.6487
13 Object Detection cf_refinedet_coco_360_480_0.96_5.08G_2.0 caffe 360*480 5.08G coco2014_train_person coco2014_val_person 0.6120 0.6112
14 ADAS Vehicle Detection cf_ssdadas_bdd_360_480_0.95_6.3G_2.0 caffe 360*480 6.3G bdd100k + private data bdd100k + private data 0.4207 0.4200
15 Traffic Detection cf_ssdtraffic_360_480_0.9_11.6G_2.0 caffe 360*480 11.6G private data private data 0.5982 0.5921
16 ADAS Lane Detection cf_VPGnet_caltechlane_480_640_0.99_2.5G_2.0 caffe 480*640 2.5G caltech lanes caltech lanes 0.8864 (F1-score) 0.8882 (F1-score)
17 Object Detection cf_ssdmobilenetv2_bdd_360_480_6.57G_2.0 caffe 360*480 6.57G bdd100k train bdd100k val 0.3052 0.2752
18 ADAS Segmentation cf_fpn_cityscapes_256_512_8.9G_2.0 caffe 256*512 8.9G Cityscapes gtFineTrain Cityscapes Val 0.5669 0.5607
19 Pose Estimation cf_SPnet_aichallenger_224_128_0.54G_2.0 caffe 224*128 548.6M ai_challenger ai_challenger 0.9000 (PCKh0.5) 0.8964 (PCKh0.5)
20 Pose Estimation cf_openpose_aichallenger_368_368_0.3_189.7G_2.0 caffe 368*368 189.7G ai_challenger ai_challenger 0.4507 (OKs) 0.4429 (Oks)
21 Face Detection cf_densebox_wider_320_320_0.49G_2.0 caffe 320*320 0.49G wider_face FDDB 0.8833 0.8783
22 Face Detection cf_densebox_wider_360_640_1.11G_2.0 caffe 360*640 1.11G wider_face FDDB 0.8931 0.8922
23 Face Recognition cf_landmark_celeba_96_72_0.14G_2.0 caffe 96*72 0.14G celebA processed helen 0.1952 (L2 loss) 0.1971 (L2 loss)
24 Re-identification cf_reid_market1501_160_80_0.95G_2.0 caffe 160*80 0.95G Market1501+CUHK03 Market1501 mAP:0.5660 Rank-1:0.7800 mAP:0.5590 Rank-1:0.7760
25 Detection+Segmentation cf_multitask_bdd_288_512_14.8G_2.0 caffe 288*512 14.8G BDD100K+Cityscapes BDD100K+Cityscapes mAP:0.2228 mIOU:0.4088 mAP:0.2140 mIOU:0.4058
26 Object Detection dk_yolov3_bdd_288_512_53.7G_2.0 darknet 288*512 53.7G bdd100k bdd100k 0.5058 0.4910
27 Object Detection dk_yolov3_cityscapes_256_512_0.9_5.46G_2.0 darknet 256*512 5.46G Cityscapes Cityscapes 0.5520 0.5300
28 Object Detection dk_yolov3_voc_416_416_65.42G_2.0 darknet 416*416 65.42G voc07+12_trainval voc07_test 0.8240 0.8130
29 Object Detection dk_yolov2_voc_448_448_34G_2.0 darknet 448*448 34G voc07+12_trainval voc07_test 0.7845 0.7740
30 Object Detection dk_yolov2_voc_448_448_0.66_11.56G_2.0 darknet 448*448 11.56G voc07+12_trainval voc07_test 0.7700 0.7610
31 Object Detection dk_yolov2_voc_448_448_0.71_9.86G_2.0 darknet 448*448 9.86G voc07+12_trainval voc07_test 0.7670 0.7540
32 Object Detection dk_yolov2_voc_448_448_0.77_7.82G_2.0 darknet 448*448 7.82G voc07+12_trainval voc07_test 0.7576 0.7482
33 Face Recognition cf_facerec-resnet20_112_96_3.5G_2.0 caffe 112*96 3.5G private data private data 0.9610 (1e-06) 0.9480 (1e-06)
34 Face Recognition cf_facerec-resnet64_112_96_11G_2.0 caffe 112*96 11G private data private data 0.9830 (1e-06) 0.9820 (1e-06)
35 Medical Segmentation cf_FPN-resnet18_EDD_320_320_45.3G_2.0 caffe 320*320 45.30G EDD_seg EDD_seg mean dice=0.8203
mean jaccard=0.7925
F2-score=0.8075
mean dice=0.8055
mean jaccard=0.7772
F2- score=0.7925
36 Plate Detection cf_plate-detection_320_320_0.49G_2.0 caffe 320*320 0.49G private data private data Recall1: 0.9660 Recall1: 0.9650
37 Plate Recognition cf_plate-recognition_96_288_1.75G_2.0 caffe 96*288 1.75G private data private data plate number:99.51% plate color:100% plate number:99.51% plate color:100%
38 Face Detection cf_retinaface_wider_360_640_1.11G_2.0 caffe 360*640 1.11G wideface and FDDB widerface and FDDB 0.9140@fp=100 0.8940@fp=100
39 Face Quality cf_face-quality_80_60_61.68M_2.0 caffe 80*60 61.68M private data private data 12.5481 (L1 loss) 12.6863 (L1 loss)
40 Robot Instrument Segmentation cf_FPN-resnet18_Endov_240_320_13.75G_2.0 caffe 240*320 13.75G EndoVis'15 EndoVis'15 Dice=0.8050 Jaccard=0.7270 Dice=0.8010 Jaccard=0.7230
41 Pose Estimation cf_hourglass_mpii_256_256_10.2G_2.0 caffe 256*256 10.20G MPII Human Pose MPII Human Pose 0.8718 (PCKh0.5) 0.8661 (PCKh0.5)
42 Commodity Detection dk_tiny-yolov3_416_416_5.46G_2.0 darknet 416*416 5.46G private data private data 0.9739 0.9650
43 Object Detection dk_yolov4_coco_416_416_60.1G_2.0 darknet 416*416 60.1G coco coco2014-5k 0.3950 0.3730
44 Object Detection dk_yolov4_coco_416_416_0.36_38.2G_2.0 darknet 416*416 38.2G coco coco2014-5k 0.3810 0.3590
45 Classifiction tf_inceptionresnetv2_imagenet_299_299_26.35G_2.0 tensorflow 299*299 26.35G ImageNet Train ImageNet Val 0.8037 0.7946
46 Classifiction tf_inceptionv1_imagenet_224_224_3G_2.0 tensorflow 224*224 3G ImageNet Train ImageNet Val 0.6976 0.6794
47 Classifiction tf_inceptionv3_imagenet_299_299_11.45G_2.0 tensorflow 299*299 11.45G ImageNet Train ImageNet Val 0.7798 0.7607
48 Classifiction tf_inceptionv4_imagenet_299_299_24.55G_2.0 tensorflow 299*299 24.55G ImageNet Train ImageNet Val 0.8018 0.7928
49 Classifiction tf_mobilenetv1_0.25_imagenet_128_128_27M_2.0 tensorflow 128*128 27.15M ImageNet Train ImageNet Val 0.4144 0.3464
50 Classifiction tf_mobilenetv1_0.5_imagenet_160_160_150M_2.0 tensorflow 160*160 150.07M ImageNet Train ImageNet Val 0.5903 0.5195
51 Classifiction tf_mobilenetv1_1.0_imagenet_224_224_1.14G_2.0 tensorflow 224*224 1.14G ImageNet Train ImageNet Val 0.7102 0.6779
52 Classifiction tf_mobilenetv2_1.0_imagenet_224_224_602M_2.0 tensorflow 224*224 0.59G ImageNet Train ImageNet Val 0.7013 0.6767
53 Classifiction tf_mobilenetv2_1.4_imagenet_224_224_1.16G_2.0 tensorflow 224*224 1.16G ImageNet Train ImageNet Val 0.7411 0.7194
54 Classifiction tf_resnetv1_50_imagenet_224_224_6.97G_2.0 tensorflow 224*224 6.97G ImageNet Train ImageNet Val 0.7520 0.7478
55 Classifiction tf_resnetv1_101_imagenet_224_224_14.4G_2.0 tensorflow 224*224 14.4G ImageNet Train ImageNet Val 0.7640 0.7560
56 Classifiction tf_resnetv1_152_imagenet_224_224_21.83G_2.0 tensorflow 224*224 21.83G ImageNet Train ImageNet Val 0.7681 0.7463
57 Classifiction tf_vgg16_imagenet_224_224_30.96G_2.0 tensorflow 224*224 30.96G ImageNet Train ImageNet Val 0.7089 0.7069
58 Classifiction tf_vgg19_imagenet_224_224_39.28G_2.0 tensorflow 224*224 39.28G ImageNet Train ImageNet Val 0.7100 0.7026
59 Object Detection tf_ssdmobilenetv1_coco_300_300_2.47G_2.0 tensorflow 300*300 2.47G coco2017 coco2014 minival 0.2080 0.2100
60 Object Detection tf_ssdmobilenetv2_coco_300_300_3.75G_2.0 tensorflow 300*300 3.75G coco2017 coco2014 minival 0.2150 0.2110
61 Object Detection tf_ssdresnet50v1_fpn_coco_640_640_178.4G_2.0 tensorflow 640*640 178.4G coco2017 coco2014 minival 0.3010 0.2900
62 Object Detection tf_yolov3_voc_416_416_65.63G_2.0 tensorflow 416*416 65.63G voc07+12_trainval voc07_test 0.7846 0.7744
63 Object Detection tf_mlperf_resnet34_coco_1200_1200_433G_2.0 tensorflow 1200*1200 433G coco2017 coco2017 0.2250 0.2150
64 Classifiction tf_inceptionv2_imagenet_224_224_3.88G_2.0 tensorflow 224*224 3.88G ImageNet Train ImageNet Val 0.7399 07331
65 Classifiction tf_resnetv2_50_imagenet_299_299_13.1G_2.0 tensorflow 299*299 13.1G ImageNet Train ImageNet Val 0.7559 0.7445
66 Classifiction tf_resnetv2_101_imagenet_299_299_26.78G_2.0 tensorflow 299*299 26.78G ImageNet Train ImageNet Val 0.7695 0.7506
67 Classifiction tf_resnetv2_152_imagenet_299_299_40.47G_2.0 tensorflow 299*299 40.47G ImageNet Train ImageNet Val 0.7779 0.7432
68 Object Detection tf_ssdlite_mobilenetv2_coco_300_300_1.5G_2.0 tensorflow 300*300 1.5G coco2017 coco2014 minival 0.2170 0.2090
69 Object Detection tf_ssdinceptionv2_coco_300_300_9.62G_2.0 tensorflow 300*300 9.62G coco2017 coco2014 minival 0.2390 0.2360
70 Segmentation tf_mobilenetv2_cityscapes_1024_2048_132.74G_2.0 tensorflow 1024*2048 132.74G Cityscapes Cityscapes 0.6263 0.4578
71 Classification tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G_2.0 tensorflow 224*224 4.72G ImageNet Train ImageNet Val 0.7702/0.9377 0.7660/0.9337
72 Classification tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G_2.0 tensorflow 240*240 7.34G ImageNet Train ImageNet Val 0.7862/0.9440 0.7798/0.9406
73 Classification tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G_2.0 tensorflow 300*300 19.36G ImageNet Train ImageNet Val 0.8026/0.9514 0.7996/0.9491
74 Classifiction tf_mlperf_resnet50_imagenet_224_224_8.19G_2.0 tensorflow 224*224 8.19G ImageNet Train ImageNet Val 0.7652 0.7606
75 General Detection tf_refinedet_VOC_320_320_81.9G_2.0 tensorflow 320*320 81.9G voc07+12_trainval voc07_test 0.8015 0.7999
76 Classifiction tf_mobilenetEdge1.0_imagenet_224_224_990M_2.0 tensorflow 224*224 990M ImageNet Train ImageNet Val 0.7227 0.6775
77 Classifiction tf_mobilenetEdge0.75_imagenet_224_224_624M_2.0 tensorflow 224*224 624M ImageNet Train ImageNet Val 0.7201 0.6489
78 Medical Detection tf_RefineDet-Medical_EDD_320_320_0.88_9.83G_2.0 tensorflow 320*320 9.83G EDD EDD 0.7839 0.8014
79 Super Resolution tf_rcan_DIV2K_360_640_0.98_86.95G_2.0 tensorflow 360*640 86.95G DIV2K DIV2K Set5 Y_PSNR : 37.6402 SSIM : 0.9592 Set5 Y_PSNR : 37.2495 SSIM : 0.9556
80 Classifiction tf2_resnet50_imagenet_224_224_7.76G_2.0 tensorflow 224*224 7.76G ImageNet Train ImageNet Val 0.7513 0.7423
81 Classifiction tf2_mobilenetv1_imagenet_224_224_1.15G_2.0 tensorflow 224*224 1.15G ImageNet Train ImageNet Val 0.7005 0.5603
82 Classifiction tf2_inceptionv3_imagenet_299_299_11.5G_2.0 tensorflow 299*299 11.5G ImageNet Train ImageNet Val 0.7753 0.7694
83 Medical Segmentation tf2_2d-unet_nuclei_128_128_5.31G_2.0 tensorflow 128*128 5.31G Nuclei Cell Nuclei Cell 0.3968 0.3968
84 Semantic Segmentation tf2_erfnet_cityscapes_512_1024_54G_2.0 tensorflow 512*1024 54G Cityscapes Cityscapes 0.5298 0.5167
85 Classifiction tf2_efficientnet-b0_imagenet_224_224_0.36G_2.0 tensorflow 224*224 0.36G ImageNet Train ImageNet Val 0.7690/0.9320 0.7515/0.9273
86 Sentiment detection tf2_sentiment-detection_IMDB_500_32_53.3M_2.0 tensorflow 500*32 53.3M IMDB IMDB 0.8708 0.8695
87 Customer satisfaction tf2_customer-satisfaction_Cars4U_25_32_2.7M_2.0 tensorflow 25*32 2.7M Cars 4U Cars 4U 0.9565 0.9565
88 Cassification tf2_mobilenetv3_imagenet_224_224_132M_2.0 tensorflow 224*224 132M ImageNet Train ImageNet Val 0.6756/0.8728 0.6536/0.8544
89 Segmentation pt_ENet_cityscapes_512_1024_8.6G_2.0 pytorch 512*1024 8.6G Cityscapes Cityscapes 0.6442 0.6315
90 Segmentation pt_SemanticFPN-resnet18_cityscapes_256_512_10G_2.0 pytorch 256*512 10G Cityscapes Cityscapes 0.6290 0.6230
91 Face Recognition pt_facerec-resnet20_mixed_112_96_3.5G_2.0 pytorch 112*96 3.5G mixed mixed 0.9955 0.9947
92 Face Quality pt_face-quality_80_60_61.68M_2.0 pytorch 80*60 61.68M private data private data 0.1233 0.1258
93 Multi Task pt_MT-resnet18_mixed_320_512_13.65G_2.0 pytorch 320*512 13.65G mixed mixed mAP:0.3951 mIOU:0.4403 mAP:0.3841 mIOU:0.4271
94 Face ReID pt_facereid-large_96_96_515M_2.0 pytorch 96*96 515M private data private data mAP:0.7940 Rank1:0.9550 mAP:0.7900 Rank1:0.9530
95 Face ReID pt_facereid-small_80_80_90M_2.0 pytorch 80*80 90M private data private data mAP:0.5600 Rank1:0.8650 mAP:0.5590 Rank1:0.8650
96 Re-identification pt_personreid-res50_market1501_256_128_5.4G_2.0 pytorch 256*128 4.2G market1501 market1501 mAP:0.8540 Rank1:0.9410 mAP:0.8380 Rank1:0.9370
97 Re-identification pt_personreid-res18_market1501_176_80_1.1G_2.0 pytorch 176*80 1.1G market1501 market1501 mAP:0.7530 Rank1:0.8980 mAP:0.7460 Rank1:0.8930
98 3D Detection pt_pointpillars_kitti_12000_100_10.8G_2.0 pytorch 12000*100*4 10.8G kitti kitti Car 3D [email protected](easy, moderate, hard) 90.79, 89.66, 88.78 Car 3D [email protected](easy, moderate, hard) 90.75, 87.04, 83.44
99 3D point cloud Segmentation pt_salsanext_semantic-kitti_64_2048_0.6_20.4G_2.0 pytorch 64*2048 20.4G semantic-kitti semantic-kitti Acc avg 0.8860 IoU avg 0.5100 Acc avg 0.8350 IoU avg 0.4540
100 Covid-19 Segmentation pt_FPN-resnet18_covid19-seg_352_352_22.7G_2.0 pytorch 352*352 22.7G COVID19-seg COVID19-seg 2-classes Dice:0.8588 3-classes mIoU:0.5989 2-classes Dice:0.8547 3-classes mIoU:0.5957
101 CT lung Segmentation pt_unet_chaos-CT_512_512_23.3G_2.0 pytorch 512*512 23.3G Chaos-CT Chaos-CT Dice:0.9758 Dice:0.9747
102 Surround-view 3D Detection pt_pointpillars_nuscenes_40000_64_108G_2.0 pytorch 40000*64*5 108G NuScenes NuScenes mAP: 42.2
NDS: 55.1
mAP: 40.5
NDS: 53.0
103 3D Segmentation pt_salsanextv2_semantic-kitti_64_2048_0.75_32G_2.0 pytorch 64*2048*5 32G semantic-kitti semantic-kitti mIou: 54.2% mIou: 54.2%(QAT)
104 4D radar based 3D Detection pt_centerpoint_astyx_2560_40_54G_2.0 pytorch 2560*40*4 54G Astyx 4D radar Astyx 4D radar BEV [email protected]: 32.843D [email protected]: 28.27 BEV [email protected]: 33.823D [email protected]: 18.54(QAT)
105 Image-lidar sensor fusion pt_pointpainting_nuscenes_126G_2.0 pytorch semanticfpn:320*576
pointpillars:40000*64*16
semanticfpn:14G
pointpillars:112G
semanticfpn:NuImages v1.0
pointpillars:NuScenes v1.0
semanticfpn:NuImages v1.0
pointpillars:NuScenes v1.0
mIoU: 69.1%
mAP: 51.8
NDS: 58.7
mIoU: 68.6%
mAP: 50.4
NDS: 56.4(QAT)
106 Multi Task pt_multitaskv3_mixed_320_512_25.44G_2.0 pytorch 320*512 25.44G mixed mixed mAP:51.2
mIOU:58.14
Drivable mIOU: 82.57
Lane IOU:43.71
Silog: 8.78
mAP:50.9
mIOU:57.52
Drivable mIOU: 82.30
Lane IOU:44.01
Silog: 9.32
107 Depth Estimation pt_fadnet_sceneflow_576_960_441G_2.0 pytorch 576*960 359G Scene Flow Scene Flow EPE: 0.926 EPE: 1.169
108 RGB-D Segmentation pt_sa-gate_NYUv2_360_360_59.71G_2.0 pytorch 360*360 59.71G NYUv2 NYUv2 miou: 47.58% miou: 46.80%
109 Crowd Counting pt_BCC_shanghaitech_800_1000_268.9G_2.0 pytorch 800*1000 268.9G shanghaitech A shanghaitech A MAE: 65.83
MSE: 111.75
MAE: 67.60
MSE: 117.36
(QAT)
110 Production Recognition pt_pmg_rp2k_224_224_2.28G_2.0 pytorch 224*224 2.28G RP2K RP2K 0.9640 0.9618
111 Segmentation pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G_2.0 pytorch 512*1024 5.4G Cityscapes Cityscapes 0.6870 0.6820
112 Lane detection pt_ultrafast_CULane_288_800_8.4G_2.0 pytorch 288*800 8.4G CULane CULane 0.6988 0.6922
113 Image-lidar fusion 3D detection pt_CLOCs_kitti_2.0 pytorch 2d detection (YOLOX): 384*1248
3d detection (PointPillars): 12000*100*4
fusionnet: 800*1000*4
41G kitti kitti 2d detection: Mod Car bbox [email protected]: 89.40
3d detection: Mod Car [email protected] :85.50
Mod Car [email protected] :70.01
Mod Car [email protected] :89.69
Mod Car [email protected] :89.48
fusionnet: Mod Car [email protected] :87.58
Mod Car [email protected] :73.04
Mod Car [email protected] :93.98
Mod Car [email protected] :93.56
2d detection: Mod Car bbox [email protected]: 89.50
3d detection: Mod Car [email protected] :85.50
Mod Car [email protected] :70.01
Mod Car [email protected] :89.69
Mod Car [email protected] :89.48
fusionnet: Mod Car [email protected] :87.58
Mod Car [email protected] :73.04
Mod Car [email protected] :93.98
Mod Car [email protected] :93.56
(QAT)
114 Instance segmentation pt_SOLO_coco_640_640_107G_2.0 pytorch 640*640 107G coco coco 0.242 0.212
115 Traffic sign detection pt_yolox_TT100K_640_640_73G_2.0 pytorch 640*640 73G TT100K TT100K 0.623 0.621
116 Image Super-resolution pt_SESR-S_DIV2K_360_640_7.48G_2.0 pytorch 360*640 7.48G DIV2K DIV2K (Set5) PSNR/SSIM= 37.309/0.958
(Set14) PSNR/SSIM= 32.894/ 0.911
(B100) PSNR/SSIM= 31.663/ 0.893
(Urban100) PSNR/SSIM = 30.276/0.908
(Set5) PSNR/SSIM= 36.813/0.954
(Set14) PSNR/SSIM= 32.607/ 0.906
(B100) PSNR/SSIM= 31.443/ 0.889
(Urban100) PSNR/SSIM = 29.901/0.899
117 Image Denoising pt_DRUNet_Kvasir_528_608_0.4G_2.0 pytorch 528*608 0.4G Kvasir Kvasir PSNR = 34.57 PSNR = 34.06(QAT)
118 Spectral remove pt_SSR_CVC_256_256_39.72G_2.0 pytorch 256*256 39.72G CVC CVC - -
119 Coverage prediction pt_C2D2lite_CC20_512_512_6.86G_2.0 pytorch 512*512 6.86G CC20 CC20 MAE=7.566% MAE=10.399%
120 Polyp segmentation pt_HardNet_mixed_352_352_22.78G_2.0 pytorch 352*352 22.78G mixed mixed mDice=0.9142 mDice=0.9136
121 Binocular depth estimation pt_fadnet_sceneflow_576_960_0.65_154G_2.0 pytorch 576*960 154G sceneflow sceneflow EPE: 0.823 EPE: 1.158
122 Binocular depth estimation pt_psmnet_sceneflow_576_960_0.68_696G_2.0 pytorch 576*960 696G sceneflow sceneflow EPE: 0.961 EPE: 1.022
123 Person orientation estimation pt_person-orientation_224_112_558M_2.0 pytorch 224*112 558M private private 0.930 0.929
124 Joint detection and Tracking pt_FairMOT_mixed_640_480_0.5_36G_2.0 pytorch 640*480 36G mixed mixed MOTA 59.1%
IDF1 62.5%
MOTA 58.1%
IDF1 60.5%
125 NLP pt_open-information-extraction_qasrl_100_200_1.5G_2.0 pytorch 100*200 1.5G QA-SRL QA-SRL Acc/F1-score:
58.70%/77.12%
Acc/F1-score:
58.70%/77.19%
126 OFA pt_OFA-resnet50_imagenet_160_160_900M_2.0 pytorch 160*160 900M ImageNet Train ImageNet Val 0.758/0.926 0.748/0.921
127 OFA pt_OFA-depthwise-res50_imagenet_176_176_1.25G_2.0 pytorch 176*176 1.25G ImageNet Train ImageNet Val 0.7633/0.9292 0.7629/0.9306
128 torchvison pt_inceptionv3_imagenet_299_299_5.7G_2.0 pytorch 299*299 5.7G ImageNet Train ImageNet Val 0.758/0.927 0.757/0.927
129 torchvision pt_squeezenet_imagenet_224_224_351.7M_2.0 pytorch 224*224 351.7M ImageNet Train ImageNet Val 0.582/0.806 0.582/0.806
130 torchvision pt_resnet50_imagenet_224_224_4.1G_2.0 pytorch 224*224 4.1G ImageNet Train ImageNet Val 0.761/0.929 0.760/0.928

Naming Rules

Model name: F_M_(D)_H_W_(P)_C_V

  • F specifies training framework: cf is Caffe, tf is Tensorflow, tf2 is Tensorflow 2, dk is Darknet, pt is PyTorch
  • M specifies the model
  • D specifies the dataset. It is optional depending on whether the dataset is public or private
  • H specifies the height of input data
  • W specifies the width of input data
  • P specifies the pruning ratio, it means how much computation is reduced. It is optional depending on whether the model is pruned or not
  • C specifies the computation of the model: how many Gops per image
  • V specifies the version of Vitis AI

For example, cf_refinedet_coco_360_480_0.8_25G_2.0 is a RefineDet model trained with Caffe using COCO dataset, input data size is 360*480, 80% pruned, the computation per image is 25Gops and Vitis AI version is 2.0.

caffe-xilinx

This is a custom distribution of caffe. Please use caffe-xilinx to test and finetune the caffe models listed in this page. If you use the Vitis AI docker environment to evaluate and develop the caffe models, you will not need to perform this step, as caffe-xilinx has been pre-compiled in docker.

Model Download

Please visit model-list in this page. You will get downloadlink and MD5 of all the released models, including pre-compiled models running on different platforms.

Automated Download Script

With downloader.py, you could quickly find the model you are interested in and specify a version to download it immediately. Please make sure that downloader.py and model-list folder are at the same level directory.

python3  downloader.py  

Step1: You need input framework and model name keyword. Use space divide. If input all you will get list of all models.

tf: tensorflow1.x, tf2: tensorflow2.x, pt: pytorch, cf: caffe, dk: darknet, all: list all model

Step2: Select the specified model based on standard name.

Step3: Select the specified hardware platform for your slected model.

For example, after running downloader.py and input cf densebox then you will see the alternatives such as:

0:  all
1:  cf_densebox_wider_320_320_0.49G_2.0
2:  cf_densebox_wider_360_640_1.11G_2.0 

After you input the num: 1, you will see the alternatives such as:

0:  all
1:  cf_densebox_wider_320_320_0.49G_2.0    GPU
2:  densebox_320_320    ZCU102 & ZCU104 & KV260
3:  densebox_320_320    VCK190
4:  densebox_320_320    U50
5:  densebox_320_320    U50lv
6:  densebox_320_320    U50-V3ME
......

Then you could choose and input the number, the specified version of model will be automatically downloaded to the current directory.

In addition, if you need download all models on all platforms at once, you just need enter number in the order indicated by the tips of Step 1/2/3 (select all -> 0 -> 0).

Model Directory Structure

Download and extract the model archive to your working area on the local hard disk. For details on the various models, download link and MD5 checksum for the zip file of each model, see model-list.

Caffe Model Directory Structure

For a caffe model, you should see the following directory structure:

├── code                            # Contains test , training and quantization scripts.
│                                     
│                                   
├── readme.md                       # Contains the environment requirements, data preprocess and model information.
│                                     Refer this to know that how to test and train the model with scripts.
│                                        
├── data                            # Contains the dataset that used for model test and training.
│                                     When test or training scripts run successfully, dataset will be automatically placed in it.
│                                     In some cases, you may also need to manually place your own dataset here.
│                                                      
├── quantized  
│    │    
│    ├── deploy.caffemodel                # Quantized weights, the output of vai_q_caffe without modification.
│    ├── deploy.prototxt                  # Quantized prototxt, the output of vai_q_caffe without modification.
│    ├── quantize_test.prototxt           # Used to run evaluation with quantize_train_test.caffemodel. 
│    │                                      Some models don't have this file if they are converted from Darknet (Yolov2, Yolov3),   
│    │                                      Pytorch (ReID) or there is no Caffe Test (Densebox). 
│    │
│    ├── quantize_train_test.caffemodel   # Quantized weights can be used for quantized-point training and evaluation.       
│    └── quantize_train_test.prototxt     # Used for quantized-point training and testing with quantize_train_test.caffemodel 
│                                           on GPU when datalayer modified to user's data path.         
│                                                 
└── float                           
     ├── trainval.caffemodel              # Trained float-point weights.
     ├── test.prototxt                    # Used to run evaluation with python test codes released in near future.    
     └── trainval.prototxt                # Used for training and testing with caffe train/test command 
                                            when datalayer modified to user's data path.Some models don't
                                            have this file if they are converted from Darknet (Yolov2, Yolov3),
                                            Pytorch (ReID) or there is no Caffe Test (Densebox).              

Tensorflow Model Directory Structure

For a Tensorflow model, you should see the following directory structure:

├── code                            # Contains test code which can run demo and evaluate model performance. 
│                          
│
├── readme.md                       # Contains the environment requirements, data preprocess and model information.
│                                     Refer this to know that how to test the model with scripts.
│
├── data                            # Contains the dataset that used for model test and training.
│                                     When test or training scripts run successfully, dataset will be automatically placed in it.
│
├── quantized                          
│   └── quantize_eval_model.pb      # Quantized model for evaluation.
│
└── float                             
    └── frozen.pb                   # Float-point frozen model, the input to the `vai_q_tensorflow`.
                                      The pb name of different models may be different.

Pytorch Model Directory Structure

For a Pytorch model, you should see the following directory structure:

├── code                            # Contains test and training code.  
│                                                        
│                                   
├── readme.md                       # Contains the environment requirements, data preprocess and model information.
│                                     Refer this to know that how to test and train the model with scripts.
│                                        
├── data                            # Contains the dataset that used for model test and training.
│                                     When test or training scripts run successfully, dataset will be automatically placed in it.
│
├── qat                             # Contains the QAT(Quantization Aware Training) results. 
│                                     The accuracy of QAT result is better than direct quantization called PTQ. 
│                                     Some models but not all provided QAT reference results, and only these models have qat folder. 
│                                         
├── quantized                          
│   ├── _int.pth                    # Quantized model.
│   ├── quant_info.json             # Quantization steps of tensors got. Please keep it for evaluation of quantized model.
│   ├── _int.py                     # Converted vai_q_pytorch format model.
│   └── _int.xmodel                 # Deployed model. The name of different models may be different.
│                                     For some models that support QAT you could find better quantization results in 'qat' folder. 
│
│
└── float                           
    └── _int.pth                    # Trained float-point model. The pth name of different models may be different.
                                      Path and model name in test scripts could be modified according to actual situation.

Note: For more information on vai_q_caffe, vai_q_tensorflow and vai_q_pytorch, please see the Vitis AI User Guide.

Model Performance

All the models in the Model Zoo have been deployed on Xilinx hardware with Vitis AI and Vitis AI Library. The performance number including end-to-end throughput and latency for each model on various boards with different DPU configurations are listed in the following sections.

For more information about DPU, see DPU IP Product Guide.

For RNN models such as NLP models, please refer to DPU-for-RNN for dpu specification information.

Note: The model performance number listed in the following sections is generated with Vitis AI v2.0 and Vitis AI Lirary v2.0. For different platforms, the different DPU configurations are used. Vitis AI and Vitis AI Library can be downloaded for free from Vitis AI Github and Vitis AI Library Github. We will continue to improve the performance with Vitis AI. The performance number reported here is subject to change in the near future.

Performance on ZCU102 (0432055-05)

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the ZCU102 (0432055-05) board with a 3 * B4096 @ 281MHz DPU configuration:

No. Model Name E2E latency (ms)
Thread Num =1
E2E throughput (fps)
Single Thread
E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 12.44 80.3 188.2
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 5.41 184.9 477.3
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 5.50 181.8 470.2
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 7.55 132.4 300.7
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 16.92 59.1 135.9
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 34.89 28.6 68.5
7 Mobilenet_v2 cf_mobilenetv2_imagenet_224_224_0.59G 3.93 254.3 733.3
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 3.65 273.9 1078.9
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 13.10 76.2 278.3
10 refinedet_baseline cf_refinedet_coco_360_480_123G 117.33 8.5 24.7
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 31.03 32.2 97.9
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 16.03 62.4 197.3
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 11.62 86.0 278.2
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 11.46 87.2 296.8
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 18.19 54.9 200.1
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 10.54 94.8 351.7
17 ssd_mobilenet_v2 cf_ssdmobilenetv2_bdd_360_480_6.57G 25.64 39.0 117.4
18 FPN cf_fpn_cityscapes_256_512_8.9G 28.95 34.5 151.6
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 1.79 557.0 1626.5
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 263.50 3.8 15.2
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 2.31 432.2 1654.7
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 4.72 211.7 818.9
23 face_landmark cf_landmark_celeba_96_72_0.14G 1.12 890.2 1552.9
24 reid cf_reid_market1501_160_80_0.95G 2.79 357.9 692.9
25 multi_task cf_multitask_bdd_288_512_14.8G 26.29 38.0 127.0
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 80.47 12.4 32.8
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 10.94 91.4 263.6
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 79.18 12.6 33.1
29 yolov2_voc dk_yolov2_voc_448_448_34G 38.14 26.2 69.3
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 15.83 63.1 191.8
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 13.77 72.6 224.1
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 11.78 84.9 268.9
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 6.06 164.9 334.0
34 ResNet64-face cf_facerec-resnet64_112_96_11G 14.08 71.0 177.7
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 79.72 12.5 47.1
36 plate detection cf_plate-detection_320_320_0.49G 1.92 520.4 2080.5
37 plate recognition cf_plate-recognition_96_288_1.75G 5.22 191.4 558.4
38 retinaface cf_retinaface_wider_360_640_1.11G 7.92 126.2 541.9
39 face_quality cf_face-quality_80_60_61.68M 0.39 2584.7 8015.8
40 FPN-R18(light-weight) cf_FPN-resnet18_Endov_240_320_13.75G 27.43 36.4 156.5
41 Hourglass cf_hourglass_mpii_256_256_10.2G 54.79 18.2 73.8
42 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 8.45 118.3 393.2
43 yolov4 dk_yolov4_coco_416_416_60.1G 75.63 13.2 33.6
44 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 55.49 18.0 45.3
45 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 44.61 22.4 50.8
46 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 5.41 184.7 467.7
47 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 16.95 59.0 135.1
48 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 34.87 28.7 68.6
49 Mobilenet_v1 tf_mobilenetv1_0.25_imagenet_128_128_27.15M 0.82 1216.3 4500.6
50 Mobilenet_v1 tf_mobilenetv1_0.5_imagenet_160_160_150.07M 1.33 749.9 2778.7
51 Mobilenet_v1 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 3.27 305.8 951.3
52 Mobilenet_v2 tf_mobilenetv2_1.0_imagenet_224_224_0.59G 4.03 248.1 687.8
53 Mobilenet_v2 tf_mobilenetv2_1.4_imagenet_224_224_1.16G 5.50 181.6 467.7
54 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 12.49 80.0 185.6
55 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 23.41 42.7 106.4
56 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 34.22 29.2 74.1
57 vgg_16 tf_vgg16_imagenet_224_224_30.96G 49.71 20.1 41.1
58 vgg_19 tf_vgg19_imagenet_224_224_39.28G 57.65 17.3 36.5
59 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 9.25 108.0 337.0
60 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 12.59 79.4 212.2
61 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 344.14 2.9 5.2
62 yolov3_voc tf_yolov3_voc_416_416_65.63G 75.83 13.2 34.3
63 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 558.99 1.8 7.0
64 Inception_v2 tf_inceptionv2_imagenet_224_224_3.88G 10.90 91.7 230.0
65 resnet_v2_50 tf_resnetv2_50_imagenet_299_299_13.1G 28.15 35.5 95.7
66 resnet_v2_101 tf_resnetv2_101_imagenet_299_299_26.78G 48.45 20.6 54.4
67 resnet_v2_152 tf_resnetv2_152_imagenet_299_299_40.47G 68.70 14.5 37.5
68 ssdlite_mobilenetv2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 10.08 99.1 307.8
69 ssd_inceptionv2 tf_ssdinceptionv2_coco_300_300_9.62G 25.53 39.1 102.3
70 Mobilenet_v2 tf_mobilenetv2_cityscapes_1024_2048_132.74G 583.35 1.7 5.4
71 efficientnet-edgetpu-S tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G 8.90 112.3 308.2
72 efficientnet-edgetpu-M tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G 12.79 78.2 205.1
73 efficientnet-edgetpu-L tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G 31.86 31.4 87.8
74 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 13.97 71.6 168.5
75 refinedet tf_refinedet_VOC_320_320_81.9G 88.77 11.3 34.4
76 mobilenet_edge_1.0 tf_mobilenetEdge1.0_imagenet_224_224_990M 4.98 200.8 546.9
77 mobilenet_edge_0.75 tf_mobilenetEdge0.75_imagenet_224_224_624M 4.14 241.2 706.4
78 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 15.08 66.3 230.4
79 pruned_rcan tf_rcan_DIV2K_360_640_0.98_86.95G 131.79 7.6 17.1
80 resnet50 tf2_resnet50_imagenet_224_224_7.76G 12.69 78.8 186.2
81 Mobilenet_v1 tf2_mobilenetv1_imagenet_224_224_1.15G 3.32 301.2 940.6
82 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 17.07 58.6 136.7
83 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 6.42 155.8 394.8
84 ERFNet tf2_erfnet_cityscapes_512_1024_54G 141.07 7.1 23.9
85 Mobilenet_v3 tf2_mobilenetv3_imagenet_224_224_132M 600.45 1.7 6.6
86 ENet pt_ENet_cityscapes_512_1024_8.6G 107.75 9.3 36.8
87 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 29.31 34.1 162.1
88 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 6.00 166.7 336.3
89 face quality pt_face-quality_80_60_61.68M 0.39 2538.9 7962.3
90 multi_task_v2 pt_MT-resnet18_mixed_320_512_13.65G 31.96 31.2 101.9
91 face_reid_large pt_facereid-large_96_96_515M 1.12 889.2 2232.6
92 face_reid_small pt_facereid-small_80_80_90M 0.48 2093.8 6299.2
93 person_reid pt_personreid-res50_market1501_256_128_5.4G 10.27 97.3 228.1
94 person_reid pt_personreid-res18_market1501_176_80_1.1G 2.80 356.5 683.8
95 pointpillars pt_pointpillars_kitti_12000_100_10.8G 50.46 19.8 49.9
96 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 182.18 5.5 21.1
97 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 27.80 36.0 106.1
98 2d-unet pt_unet_chaos-CT_512_512_23.3G 44.89 22.3 69.5
99 surround-view pointpillars pt_pointpillars_nuscenes_40000_64_108G 440.31 2.3 9.9
100 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 247.47 4.0 11.1
101 centerpoint pt_centerpoint_astyx_2560_40_54G 62.30 16.0 48.2
102 pointpainting pt_pointpainting_nuscenes_126G 778.55 1.3 4.4
103 multi_task_v3 pt_multitaskv3_mixed_320_512_25.44G 60.00 16.7 60.9
104 FADnet pt_fadnet_sceneflow_576_960_441G 889.57 1.1 1.5
105 Bayesian Crowd Counting pt_BCC_shanghaitech_800_1000_268.9G 316.62 3.2 10.4
106 PMG pt_pmg_rp2k_224_224_2.28G 6.86 145.6 362.9
107 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 98.19 10.2 54.0
108 Ultra-Fast pt_ultrafast_CULane_288_800_8.4G 30.02 33.3 93.9
109 CLOCs pt_CLOCs_kitti 347.10 2.9 10.4
110 Yolo-X pt_yolox_TT100K_640_640_73G 77.41 12.9 33.7
111 SESR-S pt_SESR-S_DIV2K_360_640_7.48G 12.34 81.0 135.0
112 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 21.87 45.7 161.1
113 SSR pt_SSR_CVC_256_256_39.72G 174.07 5.7 14.2
114 C2D2lite pt_C2D2lite_CC20_512_512_6.86G 340.09 2.9 5.4
115 HardNet_Mseg pt_HardNet_mixed_352_352_22.78G 42.94 23.3 60.1
116 FadNet pt_fadnet_sceneflow_576_960_0.65_154G 601.25 1.7 2.4
117 Person orientation pt_person-orientation_224_112_558M 1.63 613.3 1388.6
118 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 45.56 21.9 65.6
119 OFA pt_OFA-resnet50_imagenet_160_160_900M 5.90 169.5 348.1
120 OFA pt_OFA-depthwise-res50_imagenet_176_176_1.25G 9.72 102.8 376.3
121 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 16.92 59.1 136.2
122 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 3.34 298.9 1161.2
123 resnet50 pt_resnet50_imagenet_224_224_4.1G 14.07 71.0 168.4

Performance on ZCU104

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the ZCU104 board with a 2 * B4096 @ 300MHz DPU configuration:

No. Model Name E2E latency (ms)
Thread Num =1
E2E throughput (fps)
Single Thread
E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 11.68 85.6 166.2
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 5.11 195.7 415.4
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 5.19 192.5 405.9
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 7.10 140.7 276.3
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 15.95 62.7 122.0
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 32.75 30.5 59.0
7 Mobilenet_v2 cf_mobilenetv2_imagenet_224_224_0.59G 3.74 267.3 611.5
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 3.58 279.4 986.8
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 12.52 79.8 215.7
10 refinedet_baseline cf_refinedet_coco_360_480_123G 110.15 9.1 18.4
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 29.27 34.1 73.1
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 15.18 65.9 152.1
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 11.05 90.4 220.2
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 10.94 91.4 238.1
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 17.33 57.7 150.4
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 10.15 98.5 300.6
17 ssd_mobilenet_v2 cf_ssdmobilenetv2_bdd_360_480_6.57G 39.95 25.0 106.0
18 FPN cf_fpn_cityscapes_256_512_8.9G 28.25 35.4 146.0
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 1.71 582.9 1355.0
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 252.22 4.0 11.0
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 2.26 441.4 1596.4
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 4.59 217.5 761.5
23 face_landmark cf_landmark_celeba_96_72_0.14G 1.06 940.7 1595.2
24 reid cf_reid_market1501_160_80_0.95G 2.62 380.9 704.0
25 multi_task cf_multitask_bdd_288_512_14.8G 25.24 39.6 108.9
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 75.55 13.2 26.6
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 10.47 95.5 233.6
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 74.37 13.4 26.9
29 yolov2_voc dk_yolov2_voc_448_448_34G 35.86 27.9 57.2
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 14.98 66.7 153.6
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 13.04 76.6 180.9
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 11.18 89.5 217.3
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 5.68 175.9 310.0
34 ResNet64-face cf_facerec-resnet64_112_96_11G 13.21 75.6 145.2
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 75.96 13.2 34.5
36 plate detection cf_plate-detection_320_320_0.49G 1.89 529.3 1971.3
37 plate recognition cf_plate-recognition_96_288_1.75G 4.71 212.1 492.4
38 retinaface cf_retinaface_wider_360_640_1.11G 7.69 130.0 483.0
39 face_quality cf_face-quality_80_60_61.68M 0.37 2663.6 7365.3
40 FPN-R18(light-weight) cf_FPN-resnet18_Endov_240_320_13.75G 26.47 37.8 129.6
41 Hourglass cf_hourglass_mpii_256_256_10.2G 53.81 18.6 73.7
42 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 8.14 122.8 329.2
43 yolov4 dk_yolov4_coco_416_416_60.1G 71.20 14.0 28.3
44 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 52.17 19.2 38.8
45 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 41.74 23.9 45.0
46 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 5.12 195.4 410.3
47 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 15.97 62.6 121.7
48 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 32.73 30.5 59.1
49 Mobilenet_v1 tf_mobilenetv1_0.25_imagenet_128_128_27.15M 0.80 1247.5 4084.2
50 Mobilenet_v1 tf_mobilenetv1_0.5_imagenet_160_160_150.07M 1.28 777.8 2249.5
51 Mobilenet_v1 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 3.11 321.3 774.8
52 Mobilenet_v2 tf_mobilenetv2_1.0_imagenet_224_224_0.59G 3.83 261.2 588.8
53 Mobilenet_v2 tf_mobilenetv2_1.4_imagenet_224_224_1.16G 5.20 192.2 406.3
54 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 11.74 85.2 165.0
55 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 21.98 45.5 88.8
56 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 32.12 31.1 60.7
57 vgg_16 tf_vgg16_imagenet_224_224_30.96G 46.62 21.4 37.1
58 vgg_19 tf_vgg19_imagenet_224_224_39.28G 54.01 18.5 32.6
59 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 9.08 110.0 308.0
60 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 12.62 79.2 194.4
61 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 343.64 2.9 5.2
62 yolov3_voc tf_yolov3_voc_416_416_65.63G 71.15 14.0 28.1
63 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 537.93 1.9 5.2
64 Inception_v2 tf_inceptionv2_imagenet_224_224_3.88G 10.24 97.6 195.1
65 resnet_v2_50 tf_resnetv2_50_imagenet_299_299_13.1G 26.84 37.2 84.2
66 resnet_v2_101 tf_resnetv2_101_imagenet_299_299_26.78G 45.79 21.8 46.0
67 resnet_v2_152 tf_resnetv2_152_imagenet_299_299_40.47G 64.70 15.4 31.6
68 ssdlite_mobilenetv2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 9.41 106.2 276.4
69 ssd_inceptionv2 tf_ssdinceptionv2_coco_300_300_9.62G 24.53 40.7 87.9
70 Mobilenet_v2 tf_mobilenetv2_cityscapes_1024_2048_132.74G 563.23 1.8 5.6
71 efficientnet-edgetpu-S tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G 8.37 119.4 247.2
72 efficientnet-edgetpu-M tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G 12.02 83.2 167.6
73 efficientnet-edgetpu-L tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G 30.06 33.3 71.1
74 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 13.12 76.2 148.0
75 refinedet tf_refinedet_VOC_320_320_81.9G 93.58 10.7 25.9
76 mobilenet_edge_1.0 tf_mobilenetEdge1.0_imagenet_224_224_990M 4.71 212.2 461.8
77 mobilenet_edge_0.75 tf_mobilenetEdge0.75_imagenet_224_224_624M 3.93 254.5 578.7
78 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 14.35 69.7 169.7
79 pruned_rcan tf_rcan_DIV2K_360_640_0.98_86.95G 123.90 8.1 15.3
80 resnet50 tf2_resnet50_imagenet_224_224_7.76G 11.92 83.9 163.2
81 Mobilenet_v1 tf2_mobilenetv1_imagenet_224_224_1.15G 3.16 316.7 763.7
82 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 16.08 62.2 122.0
83 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 6.06 165.0 342.2
84 ERFNet tf2_erfnet_cityscapes_512_1024_54G 136.88 7.3 25.4
85 Mobilenet_v3 tf2_mobilenetv3_imagenet_224_224_132M 679.64 1.5 5.8
86 ENet pt_ENet_cityscapes_512_1024_8.6G 105.26 9.5 39.0
87 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 28.58 35.0 159.1
88 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 5.62 177.8 313.0
89 face quality pt_face-quality_80_60_61.68M 0.38 2623.5 7321.1
90 multi_task_v2 pt_MT-resnet18_mixed_320_512_13.65G 30.54 32.7 92.0
91 face_reid_large pt_facereid-large_96_96_515M 1.07 936.0 2050.3
92 face_reid_small pt_facereid-small_80_80_90M 0.46 2162.8 5659.8
93 person_reid pt_personreid-res50_market1501_256_128_5.4G 9.64 103.6 201.2
94 person_reid pt_personreid-res18_market1501_176_80_1.1G 2.63 379.5 688.6
95 pointpillars pt_pointpillars_kitti_12000_100_10.8G 49.40 20.2 49.7
96 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 180.34 5.5 21.3
97 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 26.21 38.1 79.8
98 2d-unet pt_unet_chaos-CT_512_512_23.3G 43.44 23.0 59.3
99 surround-view pointpillars pt_pointpillars_nuscenes_40000_64_108G 429.70 2.3 9.4
100 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 239.02 4.2 11.7
101 centerpoint pt_centerpoint_astyx_2560_40_54G 59.29 16.9 20.7
102 pointpainting pt_pointpainting_nuscenes_126G 768.16 1.3 4.7
103 multi_task_v3 pt_multitaskv3_mixed_320_512_25.44G 57.72 17.3 54.4
104 FADnet pt_fadnet_sceneflow_576_960_441G 656.06 1.5 3.8
105 Bayesian Crowd Counting pt_BCC_shanghaitech_800_1000_268.9G 299.03 3.3 7.6
106 PMG pt_pmg_rp2k_224_224_2.28G 6.46 154.7 313.6
107 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 96.30 10.4 53.6
108 Ultra-Fast pt_ultrafast_CULane_288_800_8.4G 28.29 35.3 76.2
109 CLOCs pt_CLOCs_kitti 339.55 2.9 10.5
110 Yolo-X pt_yolox_TT100K_640_640_73G 72.64 13.8 27.7
111 SESR-S pt_SESR-S_DIV2K_360_640_7.48G 11.71 85.4 138.5
112 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 20.84 48.0 117.9
113 SSR pt_SSR_CVC_256_256_39.72G 162.99 6.1 11.9
114 C2D2lite pt_C2D2lite_CC20_512_512_6.86G 311.13 3.2 3.6
115 HardNet_Mseg pt_HardNet_mixed_352_352_22.78G 40.44 24.7 53.1
116 FadNet pt_fadnet_sceneflow_576_960_0.65_154G 427.27 2.3 6.4
117 Person orientation pt_person-orientation_224_112_558M 1.54 647.1 1310.8
118 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 43.22 23.1 51.9
119 OFA pt_OFA-resnet50_imagenet_160_160_900M 5.49 182.0 339.2
120 OFA pt_OFA-depthwise-res50_imagenet_176_176_1.25G 9.48 105.4 348.4
121 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 15.95 62.7 122.2
122 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 3.28 305.0 1068.2
123 resnet50 pt_resnet50_imagenet_224_224_4.1G 13.21 75.7 147.3

Performance on VCK190

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the Versal board with 96 AIEs running at 1250 MHz:

No. Model Name E2E throughput (fps)
Single Thread
E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 898.4 1419.4
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 1310.6 2691.0
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 1015.0 1721.5
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 833.3 1273.5
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 422.6 589.1
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 240.0 285.8
7 Mobilenet_v2 cf_mobilenetv2_imagenet_224_224_0.59G 1348.4 2911.4
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 2584.8 4111.4
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 316.6 708.2
10 refinedet_baseline cf_refinedet_coco_360_480_123G 115.5 142.2
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 263.4 443.2
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 334.6 673.7
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 403.0 775.6
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 386.3 830.9
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 283.8 677.7
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 272.1 678.8
17 ssd_mobilenet_v2 cf_ssdmobilenetv2_bdd_360_480_6.57G 77.8 172.6
18 FPN cf_fpn_cityscapes_256_512_8.9G 94.8 219.9
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 2161.0 4399.8
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 20.9 39.9
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 1054.5 2311.2
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 515.7 1094.0
23 face_landmark cf_landmark_celeba_96_72_0.14G 6436.9 12013.9
24 reid cf_reid_market1501_160_80_0.95G 2750.4 4856.9
25 multi_task cf_multitask_bdd_288_512_14.8G 153.3 317.5
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 148.8 191.1
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 425.4 944.6
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 151.6 189.9
29 yolov2_voc dk_yolov2_voc_448_448_34G 273.7 432.0
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 384.7 793.9
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 406.0 893.1
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 425.5 992.4
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 2067.3 2598.3
34 ResNet64-face cf_facerec-resnet64_112_96_11G 1080.7 1208.5
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 68.0 188.2
36 plate detection cf_plate-detection_320_320_0.49G 1243.6 2591.6
37 plate recognition cf_plate-recognition_96_288_1.75G 916.1 1557.1
38 retinaface cf_retinaface_wider_360_640_1.11G 344.1 790.8
39 face_quality cf_face-quality_80_60_61.68M 10145.5 25104.5
40 FPN-R18(light-weight) cf_FPN-resnet18_Endov_240_320_13.75G 105.7 241.3
41 Hourglass cf_hourglass_mpii_256_256_10.2G 73.8 139.1
42 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 536.1 1339.3
43 yolov4 dk_yolov4_coco_416_416_60.1G 115.1 158.9
44 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 127.8 182.8
45 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 243.2 290.9
46 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 1022.7 1754.0
47 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 422.8 590.4
48 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 241.0 287.4
49 Mobilenet_v1 tf_mobilenetv1_0.25_imagenet_128_128_27.15M 4124.1 9165.5
50 Mobilenet_v1 tf_mobilenetv1_0.5_imagenet_160_160_150.07M 2827.4 7082.6
51 Mobilenet_v1 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 1463.6 3245.8
52 Mobilenet_v2 tf_mobilenetv2_1.0_imagenet_224_224_0.59G 1336.2 2914.7
53 Mobilenet_v2 tf_mobilenetv2_1.4_imagenet_224_224_1.16G 1104.2 2021.3
54 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 895.9 1421.1
55 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 591.4 781.6
56 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 440.6 538.7
57 vgg_16 tf_vgg16_imagenet_224_224_30.96G 308.5 353.3
58 vgg_19 tf_vgg19_imagenet_224_224_39.28G 276.1 311.6
59 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 370.9 528.3
60 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 323.3 526.0
61 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 10.8 12.5
62 yolov3_voc tf_yolov3_voc_416_416_65.63G 151.9 189.7
63 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 10.8 23.4
64 Inception_v2 tf_inceptionv2_imagenet_224_224_3.88G 566.9 739.8
65 resnet_v2_50 tf_resnetv2_50_imagenet_299_299_13.1G 393.3 530.8
66 resnet_v2_101 tf_resnetv2_101_imagenet_299_299_26.78G 267.0 324.1
67 resnet_v2_152 tf_resnetv2_152_imagenet_299_299_40.47G 201.9 232.8
68 ssdlite_mobilenetv2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 347.6 513.8
69 ssd_inceptionv2 tf_ssdinceptionv2_coco_300_300_9.62G 208.2 379.0
70 Mobilenet_v2 tf_mobilenetv2_cityscapes_1024_2048_132.74G 5.1 13.2
71 efficientnet-edgetpu-S tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G 805.7 1205.1
72 efficientnet-edgetpu-M tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G 587.0 801.6
73 efficientnet-edgetpu-L tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G 257.6 311.2
74 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 827.8 1251.0
75 refinedet tf_refinedet_VOC_320_320_81.9G 77.2 175.7
76 mobilenet_edge_1.0 tf_mobilenetEdge1.0_imagenet_224_224_990M 1276.0 2597.2
77 mobilenet_edge_0.75 tf_mobilenetEdge0.75_imagenet_224_224_624M 1361.2 2911.7
78 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 413.7 887.0
79 pruned_rcan tf_rcan_DIV2K_360_640_0.98_86.95G 46.4 59.5
80 resnet50 tf2_resnet50_imagenet_224_224_7.76G 899.8 1422.3
81 Mobilenet_v1 tf2_mobilenetv1_imagenet_224_224_1.15G 1463.1 3166.2
82 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 439.0 623.6
83 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 1164.9 1958.4
84 ERFNet tf2_erfnet_cityscapes_512_1024_54G 20.1 52.2
85 efficientnet-b0 tf2_efficientnet-b0_imagenet_224_224_0.36G 441.3 540.4
86 Mobilenet_v3 tf2_mobilenetv3_imagenet_224_224_132M 1271.7 2595.7
87 ENet pt_ENet_cityscapes_512_1024_8.6G 24.1 55.3
88 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 102.1 221.5
89 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 2073.6 2600.1
90 face quality pt_face-quality_80_60_61.68M 10135.7 25144.8
91 multi_task_v2 pt_MT-resnet18_mixed_320_512_13.65G 126.4 276.9
92 face_reid_large pt_facereid-large_96_96_515M 5529.3 11537.5
93 face_reid_small pt_facereid-small_80_80_90M 8575.4 21872.0
94 person_reid pt_personreid-res50_market1501_256_128_5.4G 1119.1 1712.0
95 person_reid pt_personreid-res18_market1501_176_80_1.1G 2826.4 4673.2
96 pointpillars pt_pointpillars_kitti_12000_100_10.8G 36.4 57.5
97 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 12.3 24.8
98 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 365.6 548.3
99 2d-unet pt_unet_chaos-CT_512_512_23.3G 86.5 217.3
100 surround-view pointpillars pt_pointpillars_nuscenes_40000_64_108G 7.5 17.6
101 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 10.3 23.9
102 centerpoint pt_centerpoint_astyx_2560_40_54G 113.5 218.8
103 pointpainting pt_pointpainting_nuscenes_126G 3.7 6.8
104 multi_task_v3 pt_multitaskv3_mixed_320_512_25.44G 73.6 190.1
105 FADnet pt_fadnet_sceneflow_576_960_441G 7.0 11.5
106 SA-gate pt_sa-gate_NYUv2_360_360_59.71G 14.5 24.2
107 Bayesian Crowd Counting pt_BCC_shanghaitech_800_1000_268.9G 31.2 53.5
108 PMG pt_pmg_rp2k_224_224_2.28G 1176.0 1990.6
109 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 25.2 56.0
110 Ultra-Fast pt_ultrafast_CULane_288_800_8.4G 278.6 581.0
111 CLOCs pt_CLOCs_kitti 8.4 15.7
112 SOLO pt_SOLO_coco_640_640_107G 2.0 3.6
113 Yolo-X pt_yolox_TT100K_640_640_73G 106.3 147.4
114 SESR-S pt_SESR-S_DIV2K_360_640_7.48G 287.6 471.8
115 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 163.9 268.5
116 SSR pt_SSR_CVC_256_256_39.72G 61.6 64.4
117 C2D2lite pt_C2D2lite_CC20_512_512_6.86G 14.6 17.7
118 HardNet_Mseg pt_HardNet_mixed_352_352_22.78G 172.7 211.4
119 FadNet pt_fadnet_sceneflow_576_960_0.65_154G 8.1 13.9
120 PSMNet pt_psmnet_sceneflow_576_960_0.68_696G 0.3 0.7
121 Person orientation pt_person-orientation_224_112_558M 3771.3 6992.2
122 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 158.0 298.2
123 OFA pt_OFA-resnet50_imagenet_160_160_900M 1460.5 2329.7
124 OFA pt_OFA-depthwise-res50_imagenet_176_176_1.25G 279.9 456.3
125 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 421.4 587.1
126 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 2605.4 4256.9
127 resnet50 pt_resnet50_imagenet_224_224_4.1G 827.5 1252.6

Performance on Kria KV260 SOM

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the Kria KV260 board with a 1 * B4096F @ 300MHz DPU configuration:

No. Model Name E2E latency (ms)
Thread Num =1
E2E throughput (fps)
Single Thread
E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 12.45 80.3 84.8
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 5.27 189.8 214.2
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 5.32 187.9 211.4
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 7.44 134.4 146.8
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 16.70 59.9 63.7
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 34.16 29.2 30.1
7 Mobilenet_v2 cf_mobilenetv2_imagenet_224_224_0.59G 3.82 261.9 310.7
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 3.50 285.9 654.9
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 12.43 80.4 107.2
10 refinedet_baseline cf_refinedet_coco_360_480_123G 110.77 9.0 9.2
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 29.58 33.8 36.5
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 15.48 64.6 75.6
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 11.19 89.3 109.7
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 10.95 91.3 118.8
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 17.25 58.0 74.4
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 10.16 98.4 149.6
17 ssd_mobilenet_v2 cf_ssdmobilenetv2_bdd_360_480_6.57G 39.55 25.3 61.2
18 FPN cf_fpn_cityscapes_256_512_8.9G 28.24 35.4 76.6
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 1.76 567.5 739.8
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 258.52 3.9 5.5
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 2.19 455.7 920.7
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 4.55 219.5 434.8
23 face_landmark cf_landmark_celeba_96_72_0.14G 1.18 848.9 945.3
24 reid cf_reid_market1501_160_80_0.95G 2.94 340.2 379.8
25 multi_task cf_multitask_bdd_288_512_14.8G 25.75 38.8 53.6
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 76.63 13.0 13.5
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 10.46 95.5 123.1
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 75.44 13.2 13.6
29 yolov2_voc dk_yolov2_voc_448_448_34G 36.81 27.2 28.9
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 14.92 67.0 76.8
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 13.05 76.6 90.5
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 11.09 90.2 108.7
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 6.14 162.7 167.5
34 ResNet64-face cf_facerec-resnet64_112_96_11G 13.65 73.2 74.2
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 74.48 13.4 17.3
36 plate detection cf_plate-detection_320_320_0.49G 1.75 570.3 1225.5
37 plate recognition cf_plate-recognition_96_288_1.75G 4.66 214.4 279.7
38 retinaface cf_retinaface_wider_360_640_1.11G 7.45 134.3 283.6
39 face_quality cf_face-quality_80_60_61.68M 0.36 2742.2 4046.0
40 FPN-R18(light-weight) cf_FPN-resnet18_Endov_240_320_13.75G 25.94 38.5 64.1
41 Hourglass cf_hourglass_mpii_256_256_10.2G 52.70 19.0 57.2
42 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 7.92 126.2 165.8
43 yolov4 dk_yolov4_coco_416_416_60.1G 72.43 13.8 14.7
44 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 53.72 18.6 20.4
45 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 44.01 22.7 23.2
46 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 5.28 189.3 214.2
47 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 16.74 59.7 63.6
48 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 34.15 29.3 30.2
49 Mobilenet_v1 tf_mobilenetv1_0.25_imagenet_128_128_27.15M 0.78 1277.2 2088.7
50 Mobilenet_v1 tf_mobilenetv1_0.5_imagenet_160_160_150.07M 1.27 784.0 1135.0
51 Mobilenet_v1 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 3.15 316.9 393.3
52 Mobilenet_v2 tf_mobilenetv2_1.0_imagenet_224_224_0.59G 3.93 254.2 299.9
53 Mobilenet_v2 tf_mobilenetv2_1.4_imagenet_224_224_1.16G 5.41 184.7 208.4
54 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 12.54 79.7 84.2
55 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 23.02 43.4 44.6
56 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 23.02 43.4 44.6
57 vgg_16 tf_vgg16_imagenet_224_224_30.96G 51.98 19.2 19.5
58 vgg_19 tf_vgg19_imagenet_224_224_39.28G 59.38 16.8 17.0
59 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 9.02 110.8 165.7
60 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 12.59 79.4 103.7
61 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 346.87 2.9 5.3
62 yolov3_voc tf_yolov3_voc_416_416_65.63G 72.10 13.9 14.3
63 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 526.76 1.9 2.6
64 Inception_v2 tf_inceptionv2_imagenet_224_224_3.88G 10.56 94.7 100.7
65 resnet_v2_50 tf_resnetv2_50_imagenet_299_299_13.1G 27.19 36.8 44.7
66 resnet_v2_101 tf_resnetv2_101_imagenet_299_299_26.78G 47.00 21.3 23.7
67 resnet_v2_152 tf_resnetv2_152_imagenet_299_299_40.47G 66.86 14.9 16.1
68 ssdlite_mobilenetv2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 9.39 106.4 148.6
69 ssd_inceptionv2 tf_ssdinceptionv2_coco_300_300_9.62G 24.97 40.0 45.5
70 Mobilenet_v2 tf_mobilenetv2_cityscapes_1024_2048_132.74G 550.57 1.8 3.1
71 efficientnet-edgetpu-S tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G 8.64 115.7 124.4
72 efficientnet-edgetpu-M tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G 12.47 80.2 84.8
73 efficientnet-edgetpu-L tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G 30.57 32.7 36.4
74 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 13.78 72.6 75.9
75 refinedet tf_refinedet_VOC_320_320_81.9G 92.23 10.8 13.0
76 mobilenet_edge_1.0 tf_mobilenetEdge1.0_imagenet_224_224_990M 4.86 205.6 234.2
77 mobilenet_edge_0.75 tf_mobilenetEdge0.75_imagenet_224_224_624M 4.02 248.8 292.4
78 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 14.25 70.1 84.2
79 pruned_rcan tf_rcan_DIV2K_360_640_0.98_86.95G 131.87 7.6 7.8
80 resnet50 tf2_resnet50_imagenet_224_224_7.76G 12.65 79.0 83.2
81 Mobilenet_v1 tf2_mobilenetv1_imagenet_224_224_1.15G 3.19 313.4 386.3
82 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 16.85 59.3 63.1
83 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 6.82 146.6 158.4
84 ERFNet tf2_erfnet_cityscapes_512_1024_54G 138.31 7.2 12.8
85 Mobilenet_v3 tf2_mobilenetv3_imagenet_224_224_132M 611.60 1.6 6.4
86 ENet pt_ENet_cityscapes_512_1024_8.6G 105.21 9.5 21.1
87 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 27.70 36.1 76.9
88 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 6.08 164.3 168.8
89 face quality pt_face-quality_80_60_61.68M 0.39 2565.0 4057.2
90 multi_task_v2 pt_MT-resnet18_mixed_320_512_13.65G 31.86 31.3 43.6
91 face_reid_large pt_facereid-large_96_96_515M 1.11 899.4 1072.3
92 face_reid_small pt_facereid-small_80_80_90M 0.46 2180.2 3110.2
93 person_reid pt_personreid-res50_market1501_256_128_5.4G 10.34 96.7 102.4
94 person_reid pt_personreid-res18_market1501_176_80_1.1G 2.95 338.7 369.6
95 pointpillars pt_pointpillars_kitti_12000_100_10.8G 47.82 20.9 29.0
96 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 168.02 6.0 19.7
97 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 26.49 37.7 39.9
98 2d-unet pt_unet_chaos-CT_512_512_23.3G 53.39 18.7 22.8
99 surround-view pointpillars pt_pointpillars_nuscenes_40000_64_108G 466.63 2.1 5.1
100 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 235.52 4.2 9.9
101 centerpoint pt_centerpoint_astyx_2560_40_54G 58.12 17.2 20.0
102 pointpainting pt_pointpainting_nuscenes_126G 816.12 1.2 2.6
103 multi_task_v3 pt_multitaskv3_mixed_320_512_25.44G 59.59 16.8 25.9
104 FADnet pt_fadnet_sceneflow_576_960_441G 739.20 1.3 1.7
105 Bayesian Crowd Counting pt_BCC_shanghaitech_800_1000_268.9G 297.72 3.4 3.8
106 PMG pt_pmg_rp2k_224_224_2.28G 6.73 148.5 160.4
107 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 93.41 10.7 28.1
108 Ultra-Fast pt_ultrafast_CULane_288_800_8.4G 28.78 34.7 38.9
109 CLOCs pt_CLOCs_kitti 326.06 3.1 9.1
110 Yolo-X pt_yolox_TT100K_640_640_73G 74.80 13.4 14.2
111 SESR-S pt_SESR-S_DIV2K_360_640_7.48G 13.26 75.4 82.6
112 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 20.74 48.2 57.9
113 SSR pt_SSR_CVC_256_256_39.72G 168.61 5.9 6.0
114 C2D2lite pt_C2D2lite_CC20_512_512_6.86G 343.40 2.9 3.1
115 HardNet_Mseg pt_HardNet_mixed_352_352_22.78G 44.02 22.7 26.2
116 FadNet pt_fadnet_sceneflow_576_960_0.65_154G 514.94 1.9 2.6
117 Person orientation pt_person-orientation_224_112_558M 1.60 623.3 707.7
118 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 43.58 22.9 26.0
119 OFA pt_OFA-resnet50_imagenet_160_160_900M 5.96 167.7 179.8
120 OFA pt_OFA-depthwise-res50_imagenet_176_176_1.25G 9.25 108.1 262.5
121 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 16.68 59.9 63.8
122 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 3.21 311.8 675.5
123 resnet50 pt_resnet50_imagenet_224_224_4.1G 13.94 71.7 75.0

Performance on VCK5000

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput for models on the Versal ACAP VCK5000 board with DPUCVDX8H running at 8PE@350 MHz in Gen3x16:

No. Model Name DPU Frequency(MHz) E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 350 4941.68
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 350 6621.65
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 350 3967.01
4 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 350 8768.06
5 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 350 751.79
6 refinedet_baseline cf_refinedet_coco_360_480_123G 350 285.42
7 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 350 667.24
8 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 350 854.08
9 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 350 880.72
10 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 350 925.38
11 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 350 823.66
12 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 350 619.57
13 FPN cf_fpn_cityscapes_256_512_8.9G 350 1034.06
14 SP_net cf_SPnet_aichallenger_224_128_0.54G 350 8444.81
15 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 350 170.05
16 densebox_320_320 cf_densebox_wider_320_320_0.49G 350 5972.10
17 densebox_640_360 cf_densebox_wider_360_640_1.11G 350 3054.66
18 face_landmark cf_landmark_celeba_96_72_0.14G 350 20320.80
19 reid cf_reid_market1501_160_80_0.95G 350 10771.90
20 multi_task cf_multitask_bdd_288_512_14.8G 350 715.77
21 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 350 399.01
22 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 350 1441.31
23 yolov3_voc dk_yolov3_voc_416_416_65.42G 350 475.68
24 yolov2_voc dk_yolov2_voc_448_448_34G 350 961.64
25 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 350 1531.11
26 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 350 1764.26
27 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 350 1535.86
28 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 350 554.92
29 plate detection cf_plate-detection_320_320_0.49G 350 8169.45
30 plate recognition cf_plate-recognition_96_288_1.75G 350 2995.55
31 face_quality cf_face-quality_80_60_61.68M 350 31443.70
32 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 350 2590.73
33 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 350 4204.56
34 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 350 4939.12
35 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 350 2975.00
36 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 350 2120.41
37 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 350 114.26
38 yolov3_voc tf_yolov3_voc_416_416_65.63G 350 477.08
39 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 350 75.94 (6 thread)
40 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 350 4505.04
41 refinedet tf_refinedet_VOC_320_320_81.9G 350 398.16
42 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 350 1272.02
43 resnet50 tf2_resnet50_imagenet_224_224_7.76G 350 4941.54
44 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 350 1511.86
45 ERFNet tf2_erfnet_cityscapes_512_1024_54G 350 118.02 (6 thread)
46 ENet pt_ENet_cityscapes_512_1024_8.6G 350 147.57
47 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 350 1089.61
48 face quality pt_face-quality_80_60_61.68M 350 31639.60
49 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 350 158.53
50 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 350 1176.98
51 2d-unet pt_unet_chaos-CT_512_512_23.3G 350 246.54
52 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 350 87.66
53 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 350 7579.40
54 resnet50 pt_resnet50_imagenet_224_224_4.1G_2.0 350 4529.60
55 UltraFast pt_ultrafast_CULane_288_800_8.4G 350 1373.24
56 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 350 204.26
57 SESR_S pt_SESR-S_DIV2K_360_640_7.48G 350 232.84
58 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 350 500.23

The following table lists the performance number including end-to-end throughput for models on the Versal ACAP VCK5000 board with DPUCVDX8H DWC running at 6PE@350 MHz in Gen3x16:

No. Model Name DPU Frequency(MHz) E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 350 3738.35
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 350 5185.26
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 350 3293.69
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 350 2613.47
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 350 912.40
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 350 506.92
7 mobilenetv2 cf_mobilenetv2_imagenet_224_224_0.59G 350 3752.71
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 350 7672.00
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 350 605.79
10 refinedet_baseline cf_refinedet_coco_360_480_123G 350 234.10
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 350 513.16
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 350 649.21
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 350 687.19
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 350 714.24
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 350 697.63
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 350 443.39
17 ssd_mobilenetv2 cf_ssdmobilenetv2_bdd_360_480_6.57G 350 590.97
18 FPN cf_fpn_cityscapes_256_512_8.9G 350 933.44
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 350 6753.90
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 350 132.81
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 350 4581.78
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 350 2339.43
23 face_landmark cf_landmark_celeba_96_72_0.14G 350 22446.80
24 reid cf_reid_market1501_160_80_0.95G 350 8422.35
25 multi_task cf_multitask_bdd_288_512_14.8G 350 660.98
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 350 320.06
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 350 1120.72
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 350 391.59
29 yolov2_voc dk_yolov2_voc_448_448_34G 350 825.49
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 350 1208.89
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 350 1351.28
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 350 1327.28
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 350 4498.68
34 ResNet64-face cf_facerec-resnet64_112_96_11G 350 2280.95
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 350 426.93
36 plate detection cf_plate-detection_320_320_0.49G 350 6612.75
37 plate recognition cf_plate-recognition_96_288_1.75G 350 2759.17
38 retinaface cf_retinaface_wider_360_640_1.11G 350 1627.01
39 face_quality cf_face-quality_80_60_61.68M 350 31512.70
40 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 350 1971.40
41 yolov4 dk_yolov4_coco_416_416_60.1G 350 326.98
42 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 350 313.13
43 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 350 492.18
44 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 350 3532.76
45 Inception_v2 tf_inceptionv2_imagenet_224_224_3.88G 350 483.27
46 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 350 913.67
47 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 350 506.77
48 mobilenetv1_0.25 tf_mobilenetv1_0.25_imagenet_128_128_27M 350 22781.30
49 mobilenetv1_0.5 tf_mobilenetv1_0.5_imagenet_160_160_150M 350 11945.00
50 mobilenetv1_1.0 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 350 5224.42
51 mobilenetv2_1.0 tf_mobilenetv2_1.0_imagenet_224_224_602M 350 3638.07
52 mobilenetv2_1.4 tf_mobilenetv2_1.4_imagenet_224_224_1.16G 350 2842.98
53 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 350 3739.72
54 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 350 2244.88
55 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 350 1596.44
56 vgg_16 tf_vgg16_imagenet_224_224_30.96G 350 505.57
57 vgg_19 tf_vgg19_imagenet_224_224_39.28G 350 450.82
58 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 350 108.19
59 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 350 2338.31
60 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 350 1287.66
61 ssdlite_mobilenet_v2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 350 1482.77
62 ssd_inception_v2 tf_ssdinceptionv2_coco_300_300_9.62G 350 240.00
63 yolov3_voc tf_yolov3_voc_416_416_65.63G 350 392.26
64 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 350 72.21
65 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 350 3406.26
66 refinedet tf_refinedet_VOC_320_320_81.9G 350 307.83
67 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 350 1000.00
68 efficientNet-edgetpu-S tf_efficientnet-edgetpu-S_imagenet_224_224_4.72G 350 1858.11
69 efficientNet-edgetpu-M tf_efficientnet-edgetpu-M_imagenet_240_240_7.34G 350 1100.45
70 efficientNet-edgetpu-L tf_efficientnet-edgetpu-L_imagenet_300_300_19.36G 350 427.57
71 mobilenet_edge_1.0 tf_mobilenetEdge1.0_imagenet_224_224_990M 350 4298.57
72 mobilenet_edge_0.75 tf_mobilenetEdge0.75_imagenet_224_224_624M 350 4813.85
73 resnet50 tf2_resnet50_imagenet_224_224_7.76G 350 3737.98
74 mobilenetv1 tf2_mobilenetv1_imagenet_224_224_1.15G 350 5222.53
75 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 350 962.69
76 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 350 1358.26
77 ERFNet tf2_erfnet_cityscapes_512_1024_54G 350 115.01
78 ENet pt_ENet_cityscapes_512_1024_8.6G 350 141.94
79 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 350 1094.60
80 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 350 216.55
81 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 350 4496.60
82 face quality pt_face-quality_80_60_61.68M 350 32034.80
83 face_reid_large pt_facereid-large_96_96_515M 350 21110.00
84 face_reid_small pt_facereid-small_80_80_90M 350 33214.20
85 person_reid pt_personreid-res50_market1501_256_128_5.4G 350 3750.77
86 person_reid pt_personreid-res18_market1501_176_80_1.1G 350 8172.30
87 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 350 154.52
88 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 350 960.40
89 2d-unet pt_unet_chaos-CT_512_512_23.3G 350 201.87
90 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 350 90.88
91 PMG pt_pmg_rp2k_224_224_2.28G 350 3477.35
92 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 350 910.16
93 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 350 7132.38
94 resnet50 pt_resnet50_imagenet_224_224_4.1G_2.0 350 3429.55
95 UltraFast pt_ultrafast_CULane_288_800_8.4G 350 1061.32
96 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 350 153.40
97 SESR_S pt_SESR-S_DIV2K_360_640_7.48G 350 185.58
98 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 350 427.84
99 Person-orientation pt_person-orientation_224_112_558M 350 9541.32
100 TSD_YoloX pt_yolox_TT100K_640_640_73G 350 263.49
101 ofa_resnet50 pt_OFA-resnet50_imagenet_160_160_900M 350 4050.59
102 ofa_resnet50_depthwise pt_OFA-depthwise-res50_imagenet_176_176_1.246G 350 3378.06

Performance on U50lv

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput for each model on the Alveo U50 board with 10 DPUCAHX8H kernels running at 275Mhz in Gen3x4:

No. Model Name DPU Frequency(MHz) E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 192.5 691.01
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 192.5 1514.25
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 192.5 1340.78
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 192.5 1056.64
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 192.5 436.96
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 192.5 198.69
7 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 192.5 3932.12
8 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 192.5 678.48
9 refinedet_baseline cf_refinedet_coco_360_480_123G 192.5 59.07
10 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 192.5 235.88
11 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 192.5 480.04
12 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 192.5 703.73
13 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 192.5 731.10
14 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 192.5 461.08
15 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 192.5 646.59
16 FPN cf_fpn_cityscapes_256_512_8.9G 192.5 474.75
17 SP_net cf_SPnet_aichallenger_224_128_0.54G 192.5 3594.50
18 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 192.5 34.78
19 densebox_320_320 cf_densebox_wider_320_320_0.49G 192.5 3040.52
20 densebox_640_360 cf_densebox_wider_360_640_1.11G 192.5 1316.35
21 face_landmark cf_landmark_celeba_96_72_0.14G 192.5 11396.4
22 reid cf_reid_market1501_160_80_0.95G 192.5 4270.81
23 multi_task cf_multitask_bdd_288_512_14.8G 192.5 361.93
24 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 165 89.10
25 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 165 742.51
26 yolov3_voc dk_yolov3_voc_416_416_65.42G 165 78.56
27 yolov2_voc dk_yolov2_voc_448_448_34G 165 193.58
28 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 192.5 489.60
29 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 192.5 575.05
30 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 192.5 696.65
31 ResNet20-face cf_facerec-resnet20_112_96_3.5G 192.5 1453.98
32 ResNet64-face cf_facerec-resnet64_112_96_11G 192.5 530.59
33 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 192.5 110.01
34 plate detection cf_plate-detection_320_320_0.49G 192.5 6369.09
35 plate recognition cf_plate-recognition_96_288_1.75G 192.5 1396.99
36 face_quality cf_face-quality_80_60_61.68M 192.5 21514.9
37 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 192.5 1035.44
38 yolov4 dk_yolov4_coco_416_416_60.1G 165 82.96
39 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 192.5 91.36
40 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 192.5 184.68
41 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 192.5 1359.83
42 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 192.5 438.49
43 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 192.5 198.88
44 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 192.5 690.78
45 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 192.5 358.87
46 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 192.5 239.28
47 vgg_16 tf_vgg16_imagenet_224_224_30.96G 192.5 176.15
48 vgg_19 tf_vgg19_imagenet_224_224_39.28G 192.5 146.51
49 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 192.5 37.78
50 yolov3_voc tf_yolov3_voc_416_416_65.63G 165 78.70
51 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 192.5 16.44
52 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 192.5 596.07
53 refinedet tf_refinedet_VOC_320_320_81.9G 192.5 84.72
54 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 192.5 502.22
55 resnet50 tf2_resnet50_imagenet_224_224_7.76G 192.5 691.62
56 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 192.5 444.04
57 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 192.5 1250.55
58 ERFNet tf2_erfnet_cityscapes_512_1024_54G 192.5 63.02
59 ENet pt_ENet_cityscapes_512_1024_8.6G 192.5 95.44
60 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 192.5 505.79
61 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 192.5 1453.13
62 face quality pt_face-quality_80_60_61.68M 192.5 21385.4
63 face_reid_large pt_facereid-large_96_96_515M 192.5 8417.59
64 face_reid_small pt_facereid-small_80_80_90M 192.5 23548.7
65 person_reid pt_personreid-res50_market1501_256_128_5.4G 192.5 960.45
66 person_reid pt_personreid-res18_market1501_176_80_1.1G 192.5 4052.47
67 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 192.5 145.11
68 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 192.5 247.6
69 2d-unet pt_unet_chaos-CT_512_512_23.3G 192.5 85.58
70 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 192.5 44.21
71 PMG pt_pmg_rp2k_224_224_2.28G 192.5 1170.22
72 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 192.5 437.18
73 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 192.5 4186.64
74 resnet50 pt_resnet50_imagenet_224_224_4.1G_2.0 192.5 596.10
75 UltraFast pt_ultrafast_CULane_288_800_8.4G 192.5 288.60
76 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 192.5 372.39
77 SESR_S pt_SESR-S_DIV2K_360_640_7.48G 192.5 184.14
78 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 165 160.70
79 Person-orientation pt_person-orientation_224_112_558M 192.5 6733.67
80 TSD_YoloX pt_yolox_TT100K_640_640_73G 165 72.22
81 ofa_resnet50 pt_OFA-resnet50_imagenet_160_160_900M 192.5 1767.30

The following table lists the performance number including end-to-end throughput for each model on the Alveo U50 board with 8 DPUCAHX8H DWC kernels running at 275Mhz in Gen3x4:

No. Model Name DPU Frequency(MHz) E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 137.5 396.71
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 137.5 871.54
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 137.5 776.98
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 137.5 608.44
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 137.5 250.90
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 137.5 114.06
7 mobilenetv2 cf_mobilenetv2_imagenet_224_224_0.59G 137.5 1883.93
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 137.5 2299.17
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 137.5 389.98
10 refinedet_baseline cf_refinedet_coco_360_480_123G 137.5 33.86
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 137.5 135.29
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 137.5 275.63
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 137.5 403.98
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 137.5 430.43
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 137.5 264.78
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 137.5 424.78
17 ssd_mobilenetv2 cf_ssdmobilenetv2_bdd_360_480_6.57G 137.5 255.39
18 FPN cf_fpn_cityscapes_256_512_8.9G 137.5 275.09
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 137.5 2117.40
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 137.5 20.05
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 137.5 2180.70
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 137.5 954.51
23 face_landmark cf_landmark_celeba_96_72_0.14G 137.5 6770.42
24 reid cf_reid_market1501_160_80_0.95G 137.5 2488.00
25 multi_task cf_multitask_bdd_288_512_14.8G 137.5 207.78
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 137.5 50.93
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 137.5 435.65
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 137.5 52.35
29 yolov2_voc dk_yolov2_voc_448_448_34G 137.5 110.82
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 137.5 281.58
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 137.5 330.35
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 137.5 399.89
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 137.5 837.13
34 ResNet64-face cf_facerec-resnet64_112_96_11G 137.5 304.40
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 137.5 63.27
36 plate detection cf_plate-detection_320_320_0.49G 137.5 4798.49
37 plate recognition cf_plate-recognition_96_288_1.75G 137.5 884.38
38 retinaface cf_retinaface_wider_360_640_1.11G 137.5 1171.76
39 face_quality cf_face-quality_80_60_61.68M 137.5 17806.60
40 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 137.5 594.69
41 yolov4 dk_yolov4_coco_416_416_60.1G 137.5 55.46
42 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 137.5 63.78
43 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 137.5 106.01
44 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 137.5 788.10
45 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 137.5 251.22
46 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 137.5 113.95
47 mobilenetv1_0.25 tf_mobilenetv1_0.25_imagenet_128_128_27M 137.5 13994.40
48 mobilenetv1_0.5 tf_mobilenetv1_0.5_imagenet_160_160_150M 137.5 7508.79
49 mobilenetv1_1.0 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 137.5 2021.15
50 mobilenetv2_1.0 tf_mobilenetv2_1.0_imagenet_224_224_602M 137.5 1862.71
51 mobilenetv2_1.4 tf_mobilenetv2_1.4_imagenet_224_224_1.16G 137.5 1252.61
52 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 137.5 396.44
53 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 137.5 205.59
54 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 137.5 136.93
55 vgg_16 tf_vgg16_imagenet_224_224_30.96G 137.5 101.28
56 vgg_19 tf_vgg19_imagenet_224_224_39.28G 137.5 84.05
57 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 137.5 21.61
58 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 137.5 943.25
59 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 137.5 530.97
60 ssdlite_mobilenetv2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 137.5 873.85
61 yolov3_voc tf_yolov3_voc_416_416_65.63G 137.5 52.53
62 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 137.5 9.41
63 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 137.5 342.16
64 refinedet tf_refinedet_VOC_320_320_81.9G 137.5 48.37
65 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 137.5 289.07
66 resnet50 tf2_resnet50_imagenet_224_224_7.76G 137.5 397.0
67 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 137.5 254.60
68 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 137.5 719.06
69 ERFNet tf2_erfnet_cityscapes_512_1024_54G 137.5 39.18
70 mobilenetv1 tf2_mobilenetv1_imagenet_224_224_1.15G 137.5 2021.57
71 ENet pt_ENet_cityscapes_512_1024_8.6G 137.5 59.20
72 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 137.5 290.10
73 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 137.5 120.07
74 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 137.5 838.06
75 face quality pt_face-quality_80_60_61.68M 137.5 17811.40
76 face_reid_large pt_facereid-large_96_96_515M 137.5 4997.13
77 face_reid_small pt_facereid-small_80_80_90M 137.5 15164.50
78 person_reid pt_personreid-res50_market1501_256_128_5.4G 137.5 552.22
79 person_reid pt_personreid-res18_market1501_176_80_1.1G 137.5 2361.76
80 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 137.5 113.08
81 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 137.5 142.42
82 2d-unet pt_unet_chaos-CT_512_512_23.3G 137.5 61.21
83 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 137.5 24.91
84 PMG pt_pmg_rp2k_224_224_2.28G 137.5 672.85
85 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 137.5 251.21
86 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 137.5 2447.79
87 resnet50 pt_resnet50_imagenet_224_224_4.1G_2.0 137.5 341.97
88 UltraFast pt_ultrafast_CULane_288_800_8.4G 137.5 164.96
89 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 137.5 214.20
90 SESR_S pt_SESR-S_DIV2K_360_640_7.48G 137.5 135.92
91 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 137.5 92.15
92 Person-orientation pt_person-orientation_224_112_558M 137.5 3981.36
93 TSD_YoloX pt_yolox_TT100K_640_640_73G 137.5 48.44
94 ofa_resnet50 pt_OFA-resnet50_imagenet_160_160_900M 137.5 1044.55

Performance on U55C DWC

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput for each model on the Alveo U55C board with 11 DPUCAHX8H DWC kernels running at 300Mhz in Gen3x4:

No. Model Name DPU Frequency(MHz) E2E throughput (fps)
Multi Thread
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 300 1178.18
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 300 2609.77
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 300 2135.29
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 300 1731.11
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 300 697.38
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 300 326.77
7 mobilenetv2 cf_mobilenetv2_imagenet_224_224_0.59G 350 5370.48
8 SqueezeNet cf_squeezenet_imagenet_227_227_0.76G 300 6173.84
9 ssd_pedestrian_pruned_0_97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 300 904.75
10 refinedet_baseline cf_refinedet_coco_360_480_123G 300 94.32
11 refinedet_pruned_0_8 cf_refinedet_coco_360_480_0.8_25G 300 331.45
12 refinedet_pruned_0_92 cf_refinedet_coco_360_480_0.92_10.10G 300 717.55
13 refinedet_pruned_0_96 cf_refinedet_coco_360_480_0.96_5.08G 300 1011.15
14 ssd_adas_pruned_0_95 cf_ssdadas_bdd_360_480_0.95_6.3G 300 994.51
15 ssd_traffic_pruned_0_9 cf_ssdtraffic_360_480_0.9_11.6G 300 672.57
16 VPGnet_pruned_0_99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 300 946.99
17 ssd_mobilenetv2 cf_ssdmobilenetv2_bdd_360_480_6.57G 350 720.55
18 FPN cf_fpn_cityscapes_256_512_8.9G 300 725.33
19 SP_net cf_SPnet_aichallenger_224_128_0.54G 300 5669.09
20 Openpose_pruned_0_3 cf_openpose_aichallenger_368_368_0.3_189.7G 300 57.89
21 densebox_320_320 cf_densebox_wider_320_320_0.49G 300 4922.83
22 densebox_640_360 cf_densebox_wider_360_640_1.11G 300 2205.46
23 face_landmark cf_landmark_celeba_96_72_0.14G 300 19902.40
24 reid cf_reid_market1501_160_80_0.95G 300 7476.71
25 multi_task cf_multitask_bdd_288_512_14.8G 300 536.58
26 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 300 147.58
27 yolov3_adas_pruned_0_9 dk_yolov3_cityscapes_256_512_0.9_5.46G 300 1229.14
28 yolov3_voc dk_yolov3_voc_416_416_65.42G 300 152.95
29 yolov2_voc dk_yolov2_voc_448_448_34G 300 318.21
30 yolov2_voc_pruned_0_66 dk_yolov2_voc_448_448_0.66_11.56G 300 779.56
31 yolov2_voc_pruned_0_71 dk_yolov2_voc_448_448_0.71_9.86G 300 906.92
32 yolov2_voc_pruned_0_77 dk_yolov2_voc_448_448_0.77_7.82G 300 1091.51
33 ResNet20-face cf_facerec-resnet20_112_96_3.5G 300 2500.45
34 ResNet64-face cf_facerec-resnet64_112_96_11G 300 907.31
35 FPN_Res18_segmentation cf_FPN-resnet18_EDD_320_320_45.3G 300 182.27
36 plate detection cf_plate-detection_320_320_0.49G 300 7895.80
37 plate recognition cf_plate-recognition_96_288_1.75G 300 2312.90
38 retinaface cf_retinaface_wider_360_640_1.11G 350 1764.23
39 face_quality cf_face-quality_80_60_61.68M 300 30667.30
40 tiny-yolov3 dk_tiny-yolov3_416_416_5.46G 300 1634.88
41 yolov4 dk_yolov4_coco_416_416_60.1G 300 156.64
42 pruned_yolov4 dk_yolov4_coco_416_416_0.36_38.2G 300 166.85
43 Inception_resnet_v2 tf_inceptionresnetv2_imagenet_299_299_26.35G 300 301.68
44 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 300 2214.22
45 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 300 698.57
46 Inception_v4 tf_inceptionv4_imagenet_299_299_24.55G 300 327.53
47 mobilenetv1_0.25 tf_mobilenetv1_0.25_imagenet_128_128_27M 350 18874.90
48 mobilenetv1_0.5 tf_mobilenetv1_0.5_imagenet_160_160_150M 350 12898.20
49 mobilenetv1_1.0 tf_mobilenetv1_1.0_imagenet_224_224_1.14G 350 5325.89
50 resnet_v1_50 tf_resnetv1_50_imagenet_224_224_6.97G 300 1178.59
51 resnet_v1_101 tf_resnetv1_101_imagenet_224_224_14.4G 300 611.32
52 resnet_v1_152 tf_resnetv1_152_imagenet_224_224_21.83G 300 407.69
53 vgg_16 tf_vgg16_imagenet_224_224_30.96G 300 295.64
54 vgg_19 tf_vgg19_imagenet_224_224_39.28G 300 246.94
55 ssd_resnet_50_v1_fpn tf_ssdresnet50v1_fpn_coco_640_640_178.4G 300 59.37
56 ssd_mobilenet_v1 tf_ssdmobilenetv1_coco_300_300_2.47G 350 2180.88
57 ssd_mobilenet_v2 tf_ssdmobilenetv2_coco_300_300_3.75G 350 1472.47
58 ssdlite_mobilenet_v2 tf_ssdlite_mobilenetv2_coco_300_300_1.5G 350 2135.17
59 yolov3_voc tf_yolov3_voc_416_416_65.63G 300 152.84
60 mlperf_ssd_resnet34 tf_mlperf_resnet34_coco_1200_1200_433G 300 1015.18
61 mlperf_resnet50 tf_mlperf_resnet50_imagenet_224_224_8.19G 300 25.83
62 refinedet tf_refinedet_VOC_320_320_81.9G 300 138.97
63 refinedet_medical tf_RefineDet-Medical_EDD_320_320_0.88_9.83G 300 797.82
64 resnet50 tf2_resnet50_imagenet_224_224_7.76G 300 1178.36
65 mobilenetv1 tf2_mobilenetv1_imagenet_224_224_1.15G 350 5340.33
66 Inception_v3 tf2_inceptionv3_imagenet_299_299_11.5G 300 714.44
67 2d-unet tf2_2d-unet_nuclei_128_128_5.31G 300 2021.76
68 ERFNet tf2_erfnet_cityscapes_512_1024_54G 300 90.59
69 ENet pt_ENet_cityscapes_512_1024_8.6G 300 144.02
70 SemanticFPN pt_SemanticFPN_cityscapes_256_512_10G 300 782.05
71 SemanticFPN-mobilenetv2 pt_SemanticFPN-mobilenetv2_cityscapes_512_1024_5.4G 350 230.77
72 ResNet20-face pt_facerec-resnet20_mixed_112_96_3.5G 300 2499.11
73 face quality pt_face-quality_80_60_61.68M 300 30562.20
74 face_reid_large pt_facereid-large_96_96_515M 300 15187.80
75 face_reid_small pt_facereid-small_80_80_90M 300 33132.60
76 person_reid pt_personreid-res50_market1501_256_128_5.4G 300 1637.65
77 person_reid pt_personreid-res18_market1501_176_80_1.1G 300 7096.63
78 salsanext pt_salsanext_semantic-kitti_64_2048_0.6_20.4G 300 152.34
79 FPN-R18 (light-weight) pt_FPN-resnet18_covid19-seg_352_352_22.7G 300 408.05
80 2d-unet pt_unet_chaos-CT_512_512_23.3G 300 138.36
81 pointpillars_nuscenes pt_pointpillars_nuscenes_40000_64_108G 300 42.50
82 salsanext_v2 pt_salsanextv2_semantic-kitti_64_2048_0.75_32G 300 58.46
83 pointpainting pt_pointpainting_nuscenes_126G 300 21.28
84 PMG pt_pmg_rp2k_224_224_2.28G 300 1995.08
85 Inception_v3 pt_inceptionv3_imagenet_299_299_5.7G 300 697.54
86 SqueezeNet pt_squeezenet_imagenet_224_224_351.7M 300 6560.42
87 resnet50 pt_resnet50_imagenet_224_224_4.1G_2.0 300 1015.14
88 UltraFast pt_ultrafast_CULane_288_800_8.4G 300 481.47
89 DRUNet pt_DRUNet_Kvasir_528_608_0.4G 300 479.90
90 SESR_S pt_SESR-S_DIV2K_360_640_7.48G 300 290.95
91 FairMOT pt_FairMOT_mixed_640_480_0.5_36G 300 239.92
92 Person-orientation pt_person-orientation_224_112_558M 300 11906.10
93 TSD_YoloX pt_yolox_TT100K_640_640_73G 300 132.59
94 ofa_resnet50 pt_OFA-resnet50_imagenet_160_160_900M 300 2942.50

Performance on U200

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U200 board with 2 DPUCADF8H kernels running at 300Mhz:

No. Model Name E2E latency (ms) Thread num =20 E2E throughput -fps(Multi Thread)
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 3.8 1054
2 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 2.2 1834
3 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 18.4 218
4 resnetv1_50 tf_resnetv1_50_imagenet_224_224_6.97G 4.2 947
5 resnetv1_101 tf_resnetv1_101_imagenet_224_224_14.4G 8.5 472
6 resnetv1_152 tf_resnetv1_152_imagenet_224_224_21.83G 12.7 316

The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U200 board with 2 DPUCADX8G kernels running at 350Mhz with xilinx_u200_xdma_201830_2 shell:

No. Model Name E2E latency (ms) Thread num =1 E2E throughput -fps(Single Thread) E2E throughput -fps(Multi Thread)
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 2.13 470.6 561.3
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 2.08 481 1157.8
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 2.39 418.5 1449.4
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 2.11 475.1 1129.2
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 15.67 63.8 371.6
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 10.77 92.8 221.2
7 SqueezeNet cf_squeeze_imagenet_227_227_0.76G 10.99 91 1157.1
8 densebox_320_320 cf_densebox_wider_320_320_0.49G 8.69 115.1 667.9
9 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 14.53 68.8 75.9
10 yolov3_voc dk_yolov3_voc_416_416_65.42G 19.90 50.3 82.1

Performance on U250

Measured with Vitis AI 2.0 and Vitis AI Library 2.0

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U250 board with 4 DPUCADF8H kernels running at 300Mhz:

No. Model Name E2E latency (ms) Thread num =20 E2E throughput -fps(Multi Thread)
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 1.94 2134.8
2 Inception_v1 tf_inceptionv1_imagenet_224_224_3G 1.10 3631.7
3 Inception_v3 tf_inceptionv3_imagenet_299_299_11.45G 9.20 434.9
4 resnetv1_50 tf_resnetv1_50_imagenet_224_224_6.97G 2.13 1881.6
5 resnetv1_101 tf_resnetv1_101_imagenet_224_224_14.4G 4.24 941.9
6 resnetv1_152 tf_resnetv1_152_imagenet_224_224_21.83G 6.35 630.3

The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo U250 board with 4 DPUCADX8G kernels running at 350Mhz with xilinx_u250_xdma_201830_1 shell:

No. Model Name E2E latency (ms) Thread num =1 E2E throughput -fps(Single Thread) E2E throughput -fps(Multi Thread)
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 1.68 595.5 1223.95
2 resnet18 cf_resnet18_imagenet_224_224_3.65G 1.67 600.5 2422.5
3 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 1.93 517.1 4059.8
4 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 1.65 607.8 23221
5 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 6.18 161.8 743.8
6 Inception_v4 cf_inceptionv4_imagenet_299_299_24.5G 5.77 173.4 452.4
7 SqueezeNet cf_squeeze_imagenet_227_227_0.76G 5.44 183.7 2349.7
8 densebox_320_320 cf_densebox_wider_320_320_0.49G 7.43 167.2 898.5
9 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 14.27 70.1 146.7
10 yolov3_voc dk_yolov3_voc_416_416_65.42G 9.46 105.7 139.4

Note: For xilinx_u250_gen3x16_xdma_shell_3_1_202020_1 latest shell U250 xclbins, Alveo U250 board would be having only 3 DPUCADF8H kernels instead of 4, thereby the performance numbers for 1 Alveo U250 board with xilinx_u250_gen3x16_xdma_shell_3_1 shell xclbins would be 75% of the above reported performance numbers which is for 4 DPUCADF8H kernels.

Performance on Ultra96

The performance number shown below was measured with the previous AI SDK v2.0.4 on Ultra96 v1. The Vitis platform of Ultra96 v2 has not been released yet. So the performance numbers are therefore not reported for this Model Zoo release.

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the Ultra96 board with a 1 * B1600 @ 287MHz V1.4.0 DPU configuration:

Note: The original power supply of Ultra96 is not designed for high performance AI workload. The board may occasionally hang to run few models, When multi-thread is used. For such situations, NA is specified in the following table.

No. Model Name E2E latency (ms) Thread num =1 E2E throughput -fps(Single Thread) E2E throughput -fps(Multi Thread)
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 30.8 32.4667 33.4667
2 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 13.98 71.55 75.0667
3 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 17.16 58.2667 61.2833
4 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 44.05 22.7 23.4333
5 mobileNet_v2 cf_mobilenetv2_imagenet_224_224_0.59G 7.34 136.183 NA
6 tf_resnet50 tf_resnet50_imagenet_224_224_6.97G 28.02 35.6833 36.6
7 tf_inception_v1 tf_inceptionv1_imagenet_224_224_3G 16.96 58.9667 61.2833
8 tf_mobilenet_v2 tf_mobilenetv2_imagenet_224_224_1.17G 10.17 98.3 104.25
9 ssd_adas_pruned_0.95 cf_ssdadas_bdd_360_480_0.95_6.3G 24.3 41.15 46.2
10 ssd_pedestrian_pruned_0.97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 23.29 42.9333 50.8
11 ssd_traffic_pruned_0.9 cf_ssdtraffic_360_480_0.9_11.6G 35.5 28.1667 31.8
12 ssd_mobilnet_v2 cf_ssdmobilenetv2_bdd_360_480_6.57G 60.79 16.45 27.8167
13 tf_ssd_voc tf_ssd_voc_300_300_64.81G 186.92 5.35 5.81667
14 densebox_320_320 cf_densebox_wider_320_320_0.49G 4.17 239.883 334.167
15 densebox_360_640 cf_densebox_wider_360_640_1.11G 8.55 117 167.2
16 yolov3_adas_prune_0.9 dk_yolov3_cityscapes_256_512_0.9_5.46G 22.79 43.8833 49.6833
17 yolov3_voc dk_yolov3_voc_416_416_65.42G 185.19 5.4 5.53
18 tf_yolov3_voc tf_yolov3_voc_416_416_65.63G 199.34 5.01667 5.1
19 refinedet_pruned_0.8 cf_refinedet_coco_360_480_0.8_25G 66.37 15.0667 NA
20 refinedet_pruned_0.92 cf_refinedet_coco_360_480_0.92_10.10G 32.17 31.0883 33.6667
21 refinedet_pruned_0.96 cf_refinedet_coco_360_480_0.96_5.08G 20.29 49.2833 55.25
22 FPN cf_fpn_cityscapes_256_512_8.9G 36.34 27.5167 NA
23 VPGnet_pruned_0.99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 13.9 71.9333 NA
24 SP-net cf_SPnet_aichallenger_224_128_0.54G 3.82 261.55 277.4
25 Openpose_pruned_0.3 cf_openpose_aichallenger_368_368_0.3_189.7G 560.75 1.78333 NA
26 yolov2_voc dk_yolov2_voc_448_448_34G 118.11 8.46667 8.9
27 yolov2_voc_pruned_0.66 dk_yolov2_voc_448_448_0.66_11.56G 37.5 26.6667 30.65
28 yolov2_voc_pruned_0.71 dk_yolov2_voc_448_448_0.71_9.86G 30.99 32.2667 38.35
29 yolov2_voc_pruned_0.77 dk_yolov2_voc_448_448_0.77_7.82G 26.29 38.03333 46.8333
30 Inception-v4 cf_inceptionv4_imagenet_299_299_24.5G 88.76 11.2667 11.5333
31 SqueezeNet cf_squeeze_imagenet_227_227_0.76G 5.96 167.867 283.583
32 face_landmark cf_landmark_celeba_96_72_0.14G 2.95 339.183 347.633
33 reid cf_reid_market1501_160_80_0.95G 6.28 159.15 166.633
34 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 193.55 5.16667 5.31667
35 tf_mobilenet_v1 tf_mobilenetv1_imagenet_224_224_1.14G 5.97 167.567 186.55
36 resnet18 cf_resnet18_imagenet_224_224_3.65G 13.47 74.2167 77.8167
37 resnet18_wide tf_resnet18_imagenet_224_224_28G 97.72 10.2333 10.3833

Performance on ZCU102 (0432055-04)

This version of ZCU102 is out of stock. The performance number shown below was measured with the previous AI SDK v2.0.4. Now this form has stopped updating. So the performance numbers are therefore not reported for this Model Zoo release.

Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the ZCU102 (0432055-04) board with a 3 * B4096 @ 287MHz V1.4.0 DPU configuration:

No. Model Name E2E latency (ms) Thread num =1 E2E throughput -fps(Single Thread) E2E throughput -fps(Multi Thread)
1 resnet50 cf_resnet50_imagenet_224_224_7.7G 12.85 77.8 179.3
2 Inception_v1 cf_inceptionv1_imagenet_224_224_3.16G 5.47 182.683 485.533
3 Inception_v2 cf_inceptionv2_imagenet_224_224_4G 6.76 147.933 373.267
4 Inception_v3 cf_inceptionv3_imagenet_299_299_11.4G 17 58.8333 155.4
5 mobileNet_v2 cf_mobilenetv2_imagenet_224_224_0.59G 4.09 244.617 638.067
6 tf_resnet50 tf_resnet50_imagenet_224_224_6.97G 11.94 83.7833 191.417
7 tf_inception_v1 tf_inceptionv1_imagenet_224_224_3G 6.72 148.867 358.283
8 tf_mobilenet_v2 tf_mobilenetv2_imagenet_224_224_1.17G 5.46 183.117 458.65
9 ssd_adas_pruned_0.95 cf_ssdadas_bdd_360_480_0.95_6.3G 11.33 88.2667 320.5
10 ssd_pedestrian_pruned_0.97 cf_ssdpedestrian_coco_360_640_0.97_5.9G 12.96 77.1833 314.717
11 ssd_traffic_pruned_0.9 cf_ssdtraffic_360_480_0.9_11.6G 17.49 57.1833 218.183
12 ssd_mobilnet_v2 cf_ssdmobilenetv2_bdd_360_480_6.57G 24.21 41.3 141.233
13 tf_ssd_voc tf_ssd_voc_300_300_64.81G 69.28 14.4333 46.7833
14 densebox_320_320 cf_densebox_wider_320_320_0.49G 2.43 412.183 1416.63
15 densebox_360_640 cf_densebox_wider_360_640_1.11G 5.01 199.717 719.75
16 yolov3_adas_prune_0.9 dk_yolov3_cityscapes_256_512_0.9_5.46G 11.09 90.1667 259.65
17 yolov3_voc dk_yolov3_voc_416_416_65.42G 70.51 14.1833 44.4
18 tf_yolov3_voc tf_yolov3_voc_416_416_65.63G 70.75 14.1333 44.0167
19 refinedet_pruned_0.8 cf_refinedet_coco_360_480_0.8_25G 29.91 33.4333 109.067
20 refinedet_pruned_0.92 cf_refinedet_coco_360_480_0.92_10.10G 15.39 64.9667 216.317
21 refinedet_pruned_0.96 cf_refinedet_coco_360_480_0.96_5.08G 11.04 90.5833 312
22 FPN cf_fpn_cityscapes_256_512_8.9G 16.58 60.3 203.867
23 VPGnet_pruned_0.99 cf_VPGnet_caltechlane_480_640_0.99_2.5G 9.44 105.9 424.667
24 SP-net cf_SPnet_aichallenger_224_128_0.54G 1.73 579.067 1620.67
25 Openpose_pruned_0.3 cf_openpose_aichallenger_368_368_0.3_189.7G 279.07 3.58333 38.5
26 yolov2_voc dk_yolov2_voc_448_448_34G 39.76 25.15 86.35
27 yolov2_voc_pruned_0.66 dk_yolov2_voc_448_448_0.66_11.56G 18.42 54.2833 211.217
28 yolov2_voc_pruned_0.71 dk_yolov2_voc_448_448_0.71_9.86G 16.42 60.9167 242.433
29 yolov2_voc_pruned_0.77 dk_yolov2_voc_448_448_0.77_7.82G 14.46 69.1667 286.733
30 Inception-v4 cf_inceptionv4_imagenet_299_299_24.5G 34.25 29.2 84.25
31 SqueezeNet cf_squeeze_imagenet_227_227_0.76G 3.6 277.65 1080.77
32 face_landmark cf_landmark_celeba_96_72_0.14G 1.13 885.033 1623.3
33 reid cf_reid_marketcuhk_160_80_0.95G 2.67 375 773.533
34 yolov3_bdd dk_yolov3_bdd_288_512_53.7G 73.89 13.5333 42.8833
35 tf_mobilenet_v1 tf_mobilenetv1_imagenet_224_224_1.14G 3.2 312.067 875.967
36 resnet18 cf_resnet18_imagenet_224_224_3.65G 5.1 195.95 524.433
37 resnet18_wide tf_resnet18_imagenet_224_224_28G 33.28 30.05 83.4167

Contributing

We welcome community contributions. When contributing to this repository, first discuss the change you wish to make via:

You can also submit a pull request with details on how to improve the product. Prior to submitting your pull request, ensure that you can build the product and run all the demos with your patch. In case of a larger feature, provide a relevant demo.

License

Xilinx AI Model Zoo is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.


Copyright© 2019 Xilinx