-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn_classify.py
71 lines (54 loc) · 2.36 KB
/
cnn_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf, sys
import sqlite3, os
conn = sqlite3.connect('corals.db')
c = conn.cursor()
# Create table
try:
c.execute('''CREATE TABLE corals
(file text, species text, date text, score real, rank integer)''')
except sqlite3.OperationalError:
pass
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
# Open a file
path = "upload"
dirs = os.listdir(path)
# This would print all the files and directories
for file in dirs:
if os.path.isfile(os.path.join(path, file)) and file[:1] != ".":
# Read in the image_data
image_data = tf.gfile.FastGFile(path+'/'+file, 'rb').read()
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
i = 0
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
# print('%s (score = %.5f)' % (human_string, score))
if i < 2:
c.execute(
"INSERT INTO corals VALUES ('" + file + "','" + human_string + "',date('now','localtime'), " + str(
float(score)) + ","+str(int((i+1)))+")")
i += 1
if i==1:
if not os.path.exists(path + "/" + human_string):
os.makedirs(path + "/" + human_string)
os.rename(path + "/" + file, path + "/" + human_string + "/" + file)
# Save (commit) the changes
conn.commit()
for row in c.execute('SELECT * FROM corals'):
print row
# We can also close the connection if we are done with it.
# Just be sure any changes have been committed or they will be lost.
conn.close()