Skip to content

Latest commit

 

History

History
91 lines (73 loc) · 2.81 KB

README.md

File metadata and controls

91 lines (73 loc) · 2.81 KB

IterLUnet: Deep Learning Architecture for Pixel-Wise Crack Detection in Levee Systems

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

Prerequisites

You would need to install the following software before replicating this framework in your local or server machine.

Python version 3.7+
Aanaconda version 3+
TensorFlow version 2.6.0
Keras version 2.6.0

Download and install code

  • Retrieve the code
git clone https://github.com/manisa/IterLUNet.git
cd IterLUNet
  • Create and activate the virtual environment with python dependendencies.
conda create -n gpu-tf tensorflow-gpu
conda activate gpu-tf
source installPackages.sh

Folder Structure

IterLUNet/
	archs/
	lib/
	dataset/
		experiment_3/
	models/
		experiment_3/

Download datasets

IterLUNet/
	dataset/
		experiment_3/
			train/
				images/
				masks/
			test/
				images/
				masks/

Download trained models

IterLUNet/
	models/
		experiment_1/
		experiment_2/
		experiment_3/

Training

  • To replicate the training procedure, follow following command line.
cd src
python train.py --model_type=iterlunet --input_filters=64 --lr=2e-3 --loss_function='focal_tversky_loss' --model_path='./models/iterlunet'  --train_valid_path='./datasets/experiment_3/train/'

Authors

Manisha Panta, Md Tamjidul Hoque, Mahdi Abdelguerfi, Maik C. Flanagin

License

This project is licensed under the MIT License - see the LICENSE.md file for details