forked from omerbt/TokenFlow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
tokenflow_utils.py
448 lines (366 loc) · 21.3 KB
/
tokenflow_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from typing import Type
import torch
import os
from util import isinstance_str, batch_cosine_sim
def register_pivotal(diffusion_model, is_pivotal):
for _, module in diffusion_model.named_modules():
# If for some reason this has a different name, create an issue and I'll fix it
if isinstance_str(module, "BasicTransformerBlock"):
setattr(module, "pivotal_pass", is_pivotal)
def register_batch_idx(diffusion_model, batch_idx):
for _, module in diffusion_model.named_modules():
# If for some reason this has a different name, create an issue and I'll fix it
if isinstance_str(module, "BasicTransformerBlock"):
setattr(module, "batch_idx", batch_idx)
def register_time(model, t):
conv_module = model.unet.up_blocks[1].resnets[1]
setattr(conv_module, 't', t)
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]}
up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
for res in up_res_dict:
for block in up_res_dict[res]:
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
setattr(module, 't', t)
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn2
setattr(module, 't', t)
for res in down_res_dict:
for block in down_res_dict[res]:
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
setattr(module, 't', t)
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn2
setattr(module, 't', t)
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
setattr(module, 't', t)
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn2
setattr(module, 't', t)
def load_source_latents_t(t, latents_path):
latents_t_path = os.path.join(latents_path, f'noisy_latents_{t}.pt')
assert os.path.exists(latents_t_path), f'Missing latents at t {t} path {latents_t_path}'
latents = torch.load(latents_t_path)
return latents
def register_conv_injection(model, injection_schedule):
def conv_forward(self):
def forward(input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
if temb is not None and self.time_embedding_norm == "scale_shift":
scale, shift = torch.chunk(temb, 2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
source_batch_size = int(hidden_states.shape[0] // 3)
# inject unconditional
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size]
# inject conditional
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size]
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
return forward
conv_module = model.unet.up_blocks[1].resnets[1]
conv_module.forward = conv_forward(conv_module)
setattr(conv_module, 'injection_schedule', injection_schedule)
def register_extended_attention_pnp(model, injection_schedule):
def sa_forward(self):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(x, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, dim = x.shape
h = self.heads
n_frames = batch_size // 3
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if is_cross else x
q = self.to_q(x)
k = self.to_k(encoder_hidden_states)
v = self.to_v(encoder_hidden_states)
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
# inject unconditional
q[n_frames:2 * n_frames] = q[:n_frames]
k[n_frames:2 * n_frames] = k[:n_frames]
# inject conditional
q[2 * n_frames:] = q[:n_frames]
k[2 * n_frames:] = k[:n_frames]
k_source = k[:n_frames]
k_uncond = k[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
k_cond = k[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
v_source = v[:n_frames]
v_uncond = v[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
v_cond = v[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
q_source = self.head_to_batch_dim(q[:n_frames])
q_uncond = self.head_to_batch_dim(q[n_frames:2 * n_frames])
q_cond = self.head_to_batch_dim(q[2 * n_frames:])
k_source = self.head_to_batch_dim(k_source)
k_uncond = self.head_to_batch_dim(k_uncond)
k_cond = self.head_to_batch_dim(k_cond)
v_source = self.head_to_batch_dim(v_source)
v_uncond = self.head_to_batch_dim(v_uncond)
v_cond = self.head_to_batch_dim(v_cond)
q_src = q_source.view(n_frames, h, sequence_length, dim // h)
k_src = k_source.view(n_frames, h, sequence_length, dim // h)
v_src = v_source.view(n_frames, h, sequence_length, dim // h)
q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
out_source_all = []
out_uncond_all = []
out_cond_all = []
single_batch = n_frames<=12
b = n_frames if single_batch else 1
for frame in range(0, n_frames, b):
out_source = []
out_uncond = []
out_cond = []
for j in range(h):
sim_source_b = torch.bmm(q_src[frame: frame+ b, j], k_src[frame: frame+ b, j].transpose(-1, -2)) * self.scale
sim_uncond_b = torch.bmm(q_uncond[frame: frame+ b, j], k_uncond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
sim_cond = torch.bmm(q_cond[frame: frame+ b, j], k_cond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[frame: frame+ b, j]))
out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[frame: frame+ b, j]))
out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[frame: frame+ b, j]))
out_source = torch.cat(out_source, dim=0)
out_uncond = torch.cat(out_uncond, dim=0)
out_cond = torch.cat(out_cond, dim=0)
if single_batch:
out_source = out_source.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
out_uncond = out_uncond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
out_cond = out_cond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
out_source_all.append(out_source)
out_uncond_all.append(out_uncond)
out_cond_all.append(out_cond)
out_source = torch.cat(out_source_all, dim=0)
out_uncond = torch.cat(out_uncond_all, dim=0)
out_cond = torch.cat(out_cond_all, dim=0)
out = torch.cat([out_source, out_uncond, out_cond], dim=0)
out = self.batch_to_head_dim(out)
return to_out(out)
return forward
for _, module in model.unet.named_modules():
if isinstance_str(module, "BasicTransformerBlock"):
module.attn1.forward = sa_forward(module.attn1)
setattr(module.attn1, 'injection_schedule', [])
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
for res in res_dict:
for block in res_dict[res]:
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
module.forward = sa_forward(module)
setattr(module, 'injection_schedule', injection_schedule)
def register_extended_attention(model):
def sa_forward(self):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(x, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, dim = x.shape
h = self.heads
n_frames = batch_size // 3
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if is_cross else x
q = self.to_q(x)
k = self.to_k(encoder_hidden_states)
v = self.to_v(encoder_hidden_states)
k_source = k[:n_frames]
k_uncond = k[n_frames: 2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
k_cond = k[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
v_source = v[:n_frames]
v_uncond = v[n_frames:2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
v_cond = v[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
q_source = self.head_to_batch_dim(q[:n_frames])
q_uncond = self.head_to_batch_dim(q[n_frames: 2*n_frames])
q_cond = self.head_to_batch_dim(q[2 * n_frames:])
k_source = self.head_to_batch_dim(k_source)
k_uncond = self.head_to_batch_dim(k_uncond)
k_cond = self.head_to_batch_dim(k_cond)
v_source = self.head_to_batch_dim(v_source)
v_uncond = self.head_to_batch_dim(v_uncond)
v_cond = self.head_to_batch_dim(v_cond)
out_source = []
out_uncond = []
out_cond = []
q_src = q_source.view(n_frames, h, sequence_length, dim // h)
k_src = k_source.view(n_frames, h, sequence_length, dim // h)
v_src = v_source.view(n_frames, h, sequence_length, dim // h)
q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
for j in range(h):
sim_source_b = torch.bmm(q_src[:, j], k_src[:, j].transpose(-1, -2)) * self.scale
sim_uncond_b = torch.bmm(q_uncond[:, j], k_uncond[:, j].transpose(-1, -2)) * self.scale
sim_cond = torch.bmm(q_cond[:, j], k_cond[:, j].transpose(-1, -2)) * self.scale
out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[:, j]))
out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[:, j]))
out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[:, j]))
out_source = torch.cat(out_source, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
out_uncond = torch.cat(out_uncond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
out_cond = torch.cat(out_cond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
out = torch.cat([out_source, out_uncond, out_cond], dim=0)
out = self.batch_to_head_dim(out)
return to_out(out)
return forward
for _, module in model.unet.named_modules():
if isinstance_str(module, "BasicTransformerBlock"):
module.attn1.forward = sa_forward(module.attn1)
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
for res in res_dict:
for block in res_dict[res]:
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
module.forward = sa_forward(module)
def make_tokenflow_attention_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
class TokenFlowBlock(block_class):
def forward(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
timestep=None,
cross_attention_kwargs=None,
class_labels=None,
) -> torch.Tensor:
batch_size, sequence_length, dim = hidden_states.shape
n_frames = batch_size // 3
mid_idx = n_frames // 2
hidden_states = hidden_states.view(3, n_frames, sequence_length, dim)
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states.view(3, n_frames, sequence_length, dim)
if self.pivotal_pass:
self.pivot_hidden_states = norm_hidden_states
else:
idx1 = []
idx2 = []
batch_idxs = [self.batch_idx]
if self.batch_idx > 0:
batch_idxs.append(self.batch_idx - 1)
sim = batch_cosine_sim(norm_hidden_states[0].reshape(-1, dim),
self.pivot_hidden_states[0][batch_idxs].reshape(-1, dim))
if len(batch_idxs) == 2:
sim1, sim2 = sim.chunk(2, dim=1)
# sim: n_frames * seq_len, len(batch_idxs) * seq_len
idx1.append(sim1.argmax(dim=-1)) # n_frames * seq_len
idx2.append(sim2.argmax(dim=-1)) # n_frames * seq_len
else:
idx1.append(sim.argmax(dim=-1))
idx1 = torch.stack(idx1 * 3, dim=0) # 3, n_frames * seq_len
idx1 = idx1.squeeze(1)
if len(batch_idxs) == 2:
idx2 = torch.stack(idx2 * 3, dim=0) # 3, n_frames * seq_len
idx2 = idx2.squeeze(1)
# 1. Self-Attention
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
if self.pivotal_pass:
# norm_hidden_states.shape = 3, n_frames * seq_len, dim
self.attn_output = self.attn1(
norm_hidden_states.view(batch_size, sequence_length, dim),
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
**cross_attention_kwargs,
)
# 3, n_frames * seq_len, dim - > 3 * n_frames, seq_len, dim
self.kf_attn_output = self.attn_output
else:
batch_kf_size, _, _ = self.kf_attn_output.shape
self.attn_output = self.kf_attn_output.view(3, batch_kf_size // 3, sequence_length, dim)[:,
batch_idxs] # 3, n_frames, seq_len, dim --> 3, len(batch_idxs), seq_len, dim
if self.use_ada_layer_norm_zero:
self.attn_output = gate_msa.unsqueeze(1) * self.attn_output
# gather values from attn_output, using idx as indices, and get a tensor of shape 3, n_frames, seq_len, dim
if not self.pivotal_pass:
if len(batch_idxs) == 2:
attn_1, attn_2 = self.attn_output[:, 0], self.attn_output[:, 1]
attn_output1 = attn_1.gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
attn_output2 = attn_2.gather(dim=1, index=idx2.unsqueeze(-1).repeat(1, 1, dim))
s = torch.arange(0, n_frames).to(idx1.device) + batch_idxs[0] * n_frames
# distance from the pivot
p1 = batch_idxs[0] * n_frames + n_frames // 2
p2 = batch_idxs[1] * n_frames + n_frames // 2
d1 = torch.abs(s - p1)
d2 = torch.abs(s - p2)
# weight
w1 = d2 / (d1 + d2)
w1 = torch.sigmoid(w1)
w1 = w1.unsqueeze(0).unsqueeze(-1).unsqueeze(-1).repeat(3, 1, sequence_length, dim)
attn_output1 = attn_output1.view(3, n_frames, sequence_length, dim)
attn_output2 = attn_output2.view(3, n_frames, sequence_length, dim)
attn_output = w1 * attn_output1 + (1 - w1) * attn_output2
else:
attn_output = self.attn_output[:,0].gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
attn_output = attn_output.reshape(
batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim
else:
attn_output = self.attn_output
hidden_states = hidden_states.reshape(batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
# 2. Cross-Attention
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
return TokenFlowBlock
def set_tokenflow(
model: torch.nn.Module):
"""
Sets the tokenflow attention blocks in a model.
"""
for _, module in model.named_modules():
if isinstance_str(module, "BasicTransformerBlock"):
make_tokenflow_block_fn = make_tokenflow_attention_block
module.__class__ = make_tokenflow_block_fn(module.__class__)
# Something needed for older versions of diffusers
if not hasattr(module, "use_ada_layer_norm_zero"):
module.use_ada_layer_norm = False
module.use_ada_layer_norm_zero = False
return model