From 0bda59e4a7c8f73b240ae4da799346eb707477d1 Mon Sep 17 00:00:00 2001 From: markjrieke Date: Tue, 3 Sep 2024 07:36:04 -0500 Subject: [PATCH] deploy 9/3 --- .../Alabama/execute-results/html.json | 2 +- .../Alaska/execute-results/html.json | 2 +- .../Arizona/execute-results/html.json | 2 +- .../Arkansas/execute-results/html.json | 2 +- .../California/execute-results/html.json | 2 +- .../Colorado/execute-results/html.json | 2 +- .../Connecticut/execute-results/html.json | 2 +- .../Delaware/execute-results/html.json | 2 +- .../execute-results/html.json | 2 +- .../Florida/execute-results/html.json | 2 +- .../Georgia/execute-results/html.json | 2 +- .../Hawaii/execute-results/html.json | 2 +- .../Idaho/execute-results/html.json | 2 +- .../Illinois/execute-results/html.json | 4 ++-- .../Indiana/execute-results/html.json | 2 +- .../2024-potus/Iowa/execute-results/html.json | 2 +- .../Kansas/execute-results/html.json | 2 +- .../Kentucky/execute-results/html.json | 2 +- .../Louisiana/execute-results/html.json | 2 +- .../Maine CD-1/execute-results/html.json | 2 +- .../Maine CD-2/execute-results/html.json | 2 +- .../Maine/execute-results/html.json | 2 +- .../Maryland/execute-results/html.json | 2 +- .../Massachusetts/execute-results/html.json | 2 +- .../Michigan/execute-results/html.json | 2 +- .../Minnesota/execute-results/html.json | 2 +- .../Mississippi/execute-results/html.json | 2 +- .../Missouri/execute-results/html.json | 2 +- .../Montana/execute-results/html.json | 2 +- .../National/execute-results/html.json | 2 +- .../figure-html/plot-conditionals-1.png | Bin 247010 -> 239726 bytes .../Nebraska CD-1/execute-results/html.json | 2 +- .../Nebraska CD-2/execute-results/html.json | 2 +- .../Nebraska CD-3/execute-results/html.json | 2 +- .../Nebraska/execute-results/html.json | 2 +- .../Nevada/execute-results/html.json | 2 +- .../New Hampshire/execute-results/html.json | 2 +- .../New Jersey/execute-results/html.json | 2 +- .../New Mexico/execute-results/html.json | 2 +- .../New York/execute-results/html.json | 2 +- .../North Carolina/execute-results/html.json | 2 +- .../North Dakota/execute-results/html.json | 2 +- .../2024-potus/Ohio/execute-results/html.json | 2 +- .../Oklahoma/execute-results/html.json | 2 +- .../Oregon/execute-results/html.json | 2 +- .../Pennsylvania/execute-results/html.json | 2 +- .../Rhode Island/execute-results/html.json | 2 +- .../South Carolina/execute-results/html.json | 2 +- .../South Dakota/execute-results/html.json | 2 +- .../Tennessee/execute-results/html.json | 4 ++-- .../Texas/execute-results/html.json | 2 +- .../2024-potus/Utah/execute-results/html.json | 2 +- .../Vermont/execute-results/html.json | 2 +- .../Virginia/execute-results/html.json | 2 +- .../Washington/execute-results/html.json | 2 +- .../West Virginia/execute-results/html.json | 2 +- .../Wisconsin/execute-results/html.json | 2 +- .../Wyoming/execute-results/html.json | 2 +- 58 files changed, 59 insertions(+), 59 deletions(-) diff --git a/_freeze/2024-potus/Alabama/execute-results/html.json b/_freeze/2024-potus/Alabama/execute-results/html.json index b379fa44..711f0bec 100644 --- a/_freeze/2024-potus/Alabama/execute-results/html.json +++ b/_freeze/2024-potus/Alabama/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Alaska/execute-results/html.json b/_freeze/2024-potus/Alaska/execute-results/html.json index 6c23e24d..aba56867 100644 --- a/_freeze/2024-potus/Alaska/execute-results/html.json +++ b/_freeze/2024-potus/Alaska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alaska. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alaska. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arizona/execute-results/html.json b/_freeze/2024-potus/Arizona/execute-results/html.json index f05aa159..03b08e12 100644 --- a/_freeze/2024-potus/Arizona/execute-results/html.json +++ b/_freeze/2024-potus/Arizona/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arkansas/execute-results/html.json b/_freeze/2024-potus/Arkansas/execute-results/html.json index 1745b2d8..3ed227a3 100644 --- a/_freeze/2024-potus/Arkansas/execute-results/html.json +++ b/_freeze/2024-potus/Arkansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Arkansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Arkansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/California/execute-results/html.json b/_freeze/2024-potus/California/execute-results/html.json index 8930b147..e5228057 100644 --- a/_freeze/2024-potus/California/execute-results/html.json +++ b/_freeze/2024-potus/California/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Colorado/execute-results/html.json b/_freeze/2024-potus/Colorado/execute-results/html.json index 8cc88e40..ecd94776 100644 --- a/_freeze/2024-potus/Colorado/execute-results/html.json +++ b/_freeze/2024-potus/Colorado/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Colorado. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Colorado. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Connecticut/execute-results/html.json b/_freeze/2024-potus/Connecticut/execute-results/html.json index 7eea9813..6dd9bd3d 100644 --- a/_freeze/2024-potus/Connecticut/execute-results/html.json +++ b/_freeze/2024-potus/Connecticut/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Connecticut. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Connecticut. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Delaware/execute-results/html.json b/_freeze/2024-potus/Delaware/execute-results/html.json index 4dd6c785..49f26849 100644 --- a/_freeze/2024-potus/Delaware/execute-results/html.json +++ b/_freeze/2024-potus/Delaware/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Delaware. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Delaware. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/District of Columbia/execute-results/html.json b/_freeze/2024-potus/District of Columbia/execute-results/html.json index 2cbe3b20..d61efea5 100644 --- a/_freeze/2024-potus/District of Columbia/execute-results/html.json +++ b/_freeze/2024-potus/District of Columbia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Florida/execute-results/html.json b/_freeze/2024-potus/Florida/execute-results/html.json index 738741e5..b8056efc 100644 --- a/_freeze/2024-potus/Florida/execute-results/html.json +++ b/_freeze/2024-potus/Florida/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Georgia/execute-results/html.json b/_freeze/2024-potus/Georgia/execute-results/html.json index f9239dfe..3247ced5 100644 --- a/_freeze/2024-potus/Georgia/execute-results/html.json +++ b/_freeze/2024-potus/Georgia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Hawaii/execute-results/html.json b/_freeze/2024-potus/Hawaii/execute-results/html.json index 06e787ae..aa0f4a7c 100644 --- a/_freeze/2024-potus/Hawaii/execute-results/html.json +++ b/_freeze/2024-potus/Hawaii/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Idaho/execute-results/html.json b/_freeze/2024-potus/Idaho/execute-results/html.json index 727dfda9..110860c1 100644 --- a/_freeze/2024-potus/Idaho/execute-results/html.json +++ b/_freeze/2024-potus/Idaho/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Illinois/execute-results/html.json b/_freeze/2024-potus/Illinois/execute-results/html.json index e4fc3ea6..25dedf33 100644 --- a/_freeze/2024-potus/Illinois/execute-results/html.json +++ b/_freeze/2024-potus/Illinois/execute-results/html.json @@ -2,14 +2,14 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], "includes": { "include-in-header": [ - "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" + "\n\n\n\n\n\n\n\n\n" ] }, "engineDependencies": {}, diff --git a/_freeze/2024-potus/Indiana/execute-results/html.json b/_freeze/2024-potus/Indiana/execute-results/html.json index 362702a6..c947ddee 100644 --- a/_freeze/2024-potus/Indiana/execute-results/html.json +++ b/_freeze/2024-potus/Indiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Indiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Indiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Iowa/execute-results/html.json b/_freeze/2024-potus/Iowa/execute-results/html.json index c6666261..3cfcd1df 100644 --- a/_freeze/2024-potus/Iowa/execute-results/html.json +++ b/_freeze/2024-potus/Iowa/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Iowa. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Iowa. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kansas/execute-results/html.json b/_freeze/2024-potus/Kansas/execute-results/html.json index 46d4e761..f1b704ff 100644 --- a/_freeze/2024-potus/Kansas/execute-results/html.json +++ b/_freeze/2024-potus/Kansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kentucky/execute-results/html.json b/_freeze/2024-potus/Kentucky/execute-results/html.json index 81199fb3..74aa4dc7 100644 --- a/_freeze/2024-potus/Kentucky/execute-results/html.json +++ b/_freeze/2024-potus/Kentucky/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Louisiana/execute-results/html.json b/_freeze/2024-potus/Louisiana/execute-results/html.json index 965636c0..ef663de4 100644 --- a/_freeze/2024-potus/Louisiana/execute-results/html.json +++ b/_freeze/2024-potus/Louisiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-1/execute-results/html.json b/_freeze/2024-potus/Maine CD-1/execute-results/html.json index c95396b7..7efd67e1 100644 --- a/_freeze/2024-potus/Maine CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-2/execute-results/html.json b/_freeze/2024-potus/Maine CD-2/execute-results/html.json index 82be28ad..d5a6fc1a 100644 --- a/_freeze/2024-potus/Maine CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine/execute-results/html.json b/_freeze/2024-potus/Maine/execute-results/html.json index 1b157a8e..01b72555 100644 --- a/_freeze/2024-potus/Maine/execute-results/html.json +++ b/_freeze/2024-potus/Maine/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maryland/execute-results/html.json b/_freeze/2024-potus/Maryland/execute-results/html.json index 1adfd66d..49f555c7 100644 --- a/_freeze/2024-potus/Maryland/execute-results/html.json +++ b/_freeze/2024-potus/Maryland/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Massachusetts/execute-results/html.json b/_freeze/2024-potus/Massachusetts/execute-results/html.json index f6307b51..5949df04 100644 --- a/_freeze/2024-potus/Massachusetts/execute-results/html.json +++ b/_freeze/2024-potus/Massachusetts/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Massachusetts. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Massachusetts. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Michigan/execute-results/html.json b/_freeze/2024-potus/Michigan/execute-results/html.json index 564b5f7b..9e42792e 100644 --- a/_freeze/2024-potus/Michigan/execute-results/html.json +++ b/_freeze/2024-potus/Michigan/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Minnesota/execute-results/html.json b/_freeze/2024-potus/Minnesota/execute-results/html.json index 73a005cc..d32fe74b 100644 --- a/_freeze/2024-potus/Minnesota/execute-results/html.json +++ b/_freeze/2024-potus/Minnesota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Mississippi/execute-results/html.json b/_freeze/2024-potus/Mississippi/execute-results/html.json index 07735786..521fd0aa 100644 --- a/_freeze/2024-potus/Mississippi/execute-results/html.json +++ b/_freeze/2024-potus/Mississippi/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Missouri/execute-results/html.json b/_freeze/2024-potus/Missouri/execute-results/html.json index 11d9cbdd..de824523 100644 --- a/_freeze/2024-potus/Missouri/execute-results/html.json +++ b/_freeze/2024-potus/Missouri/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Montana/execute-results/html.json b/_freeze/2024-potus/Montana/execute-results/html.json index 31e80583..c949c681 100644 --- a/_freeze/2024-potus/Montana/execute-results/html.json +++ b/_freeze/2024-potus/Montana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/National/execute-results/html.json b/_freeze/2024-potus/National/execute-results/html.json index 1e6812bc..7ef9ebeb 100644 --- a/_freeze/2024-potus/National/execute-results/html.json +++ b/_freeze/2024-potus/National/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "7954565330d8d2e3cfd7405c9090876a", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** the presidency.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **46%** chance of being elected America's next president.\nShe's projected to win between **147** and **422** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **54%** chance of re-taking the white house.\nHe's projected to win between **116** and **391** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** the presidency.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **47%** chance of being elected America's next president.\nShe's projected to win between **148** and **426** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **53%** chance of re-taking the white house.\nHe's projected to win between **112** and **390** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", "supporting": [ "National_files" ], diff --git a/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png b/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png index 6cc323412701c3a773b9dd7acc73a697ea361903..395469c564a7e79ed63442bdc91186f43eac7a8d 100644 GIT binary patch delta 196244 zcmcG$bySpZ)HO^Bf&z+wfP^9)qjZBJBHi6BEioVra1$y@_t4$lNDQb*mvo2HF(5Vc z@ZI3=dB5lV=lkzl%jH_QhM8-wv(G;J>~n7ad?DWXMO0yJ17Np&*}uDZf?Z=7tIA&! zie>3ErLM|fH7ls18|;TIO+vBbe+QEpZOFnVZxI|!Ulse9+A>ZRmA8EgEU?SQ@PdDA z#&=gpT^eA!h~pOcA(vAc%($4W`EORPFl`?1?-{3lOi4v*fq2`oq9pQ$%Vvx2`v=0p zC!H=Q6)aFdd;D d!gb8~)}{=UFe(u<4E0cZo(xu{*QJn_@;ko(Rek4~>6Sl`72d zFx<_Y)hb1IPSz0_P+xV+ta|AvS)eN4s&Voq^k_u%H%0U$9>AXp%jDR^uZ#3N!o}E7 z2pMP2y^T>d5u*~r=Df;{;M+UsdDWfDqc%Op&hGpX*zfW;x3=i0a&STYU@TTNP(vIk z7&c3v&FjsGUj4}J-R~`WbznF0s?g%S7wvYHQ@yzjueCV%Tb|*xT;;yPwLQ;>{BKq87 zB5kh9_wrVue!dbFgSvRyJxL5q91=--Y5Gy1td=vPxELuof5Ekc+%iN+%(tMbc=s)) z_l1X(9R%y3d*dEUeW;M?5$eI`V`c8LxLYzsTTu032S_-UpIh2fC{MTpMkFHbL-X8u z#5`(1NJ8FXXIAZXE&D3hJ!b3Cu+W+O!N^|gfz9^S92mhgw`bAl=E8*N?*2!@ssmun zxUXE1^rPKGbkDIzOhJOTi}wNG@}`!KnbY9ugog5k#Y5pXx=Sx@AwDYDnLEZNG)dUe({9HZt&}h{3!5 zz8L-*{-Z2Wqn`7B?11rCmB$U|10wy^Tm_JigG62(Y$u(~DvC8~h~ijC zx=G)#acF%3t(JkTa6vmih*~ikgTvWK>;7u-^X&t-Am7FpKB|}RW_9vcHnAp3jUlc8 zdWuEl@#7b1Du_v)TUQAJMNEg!GzRZda!6}9y%hF2N4}b>X6{blzs%oV2b`Qo6g%W; z1ao0a?_z6)wx?V}+o!6n;qmo3x5n2K8|CdT+Ym~8cH@!r2rsG;6naD|03qmB;5qbm z%sd9YCy_ARc$d0w3_9)_?JLoDwjq-}ap!U5T#6``zT_ z@mni7i3E|Gxjm02%HtHg%d&q`^fMo^lf#`a^<~|Yjan48&i_nN1G^CI&03S+FBuYK z)=G^^lSW$c&Up5J{8|e&nt6Q(&~|KCu_{)4f4-Zh`Fm5EB~|-kZ>s+2aBWLPF#mLO z_D_#f&Oc3TqZi_u10 z#=hvppKvbZMp+dtfQ3)*hk<4Km_%-3x(=@|&i#=S0N-0ZDx0S>Hh@hD<8InHc?+O| zjE$g|iTSZd{UH+?#A!iV<&|0EVize*^YV>j0b7u0^a)SDJxuKO6rrG8byhNunTGy0 z4dJTn(nOGKm<&ul+Y};~47swdk5wzw|WSab4*orhh=|~pHixqyA9>B zIFj+|=A?^=A&Oy^o9EtBD|z9w1pQ#!+gGw2b_{2S-p#9{KuDm)nco*HF3_d>XwMTT z#xXw_ke;_^em9X?2R{VZGm-6c9%QFCdH%zY-mU^$kg$2^T&vYr?0{=k-J^1gt}rF{ z*3ninK(Q-ZMHK!VQjz#J$4lZ3WMeU_Cr+(#cudOW^742=Nqb1F%|hK+XGDIXfSy*} zt40};EkiS62OB&KXzr9ErV8OIgmf)j{*_9yj~AQhON+U`7{e5kRB5&%m#xi!P&h8h zfnilB#6!0xj)!=qPIOksM$TR;5fA3Y?6ArL0-?C-J@I@;?^A`LJvL)dhIt-JovuzA3Nc?Wmmv>^ah3p&KKiriWD)-DXDG$~rCS zh$D|d7wnBhoDt9VVYWwTB7It!5x0u;5pSsD^V6K;k{~|BLHNu_FVl)9NfoQZTwOnJ z;%{r?<{%%_BJ51r8_40)N47|^0ETumJEiPM!T1UO`7^Gi(rXHiKO(H(CEh>?U^gJ! zjmkyw#zI-Z}m_n##8-*<+-$TWay28lKhMEy&^_-OxV#Xg~?m{zwi>N2^8do#_ zaJA8J(sHy`@xQEj@`4WIL29q? z`cG8GW@fnpE1bYr7D872u+wX|#b?7(Abzdee6IIPb{w02Xs*M|K{!&lJtUXN#;U1r z{|JQ?>4N~IJ-O%;t27(ym&awMax?W#0*XoL$wir+`>Tpm%wp)$Y?Jsz@-|?@dCg%Y z{O79!4)wn=o}U80R9W^Wz@IYh@G9fAeIPR7&UL2qeM@`R$2&N(1_G#Y_7Az#BIA_J z#ovj_x3<;~pMlu154!TIk>c#Oz4tdW&???R?h@eG5%QKJN)@zg*Uk4{n) zRB?jX2yEwNa4ZSIxV~G-41y2CwRNSHATnA`{)0u!S5y_0U~~cm1{8r^i_CphooA!t z0NbskK^J$JZ@xy96!!lRert6VZMo_a?XeqGy}2sdtC3?w1Aeau6{PFg^~o}K@vM>u zw(DCSbEHd)WC51*#<0Vvqa_JA!`65&F0?v@Rl0z->xiK`<|Y?}5~hs~(K%~>wonvK zwHrYP3rZvB+>?XS--neXXF@h;I(hzq0bh``>%urWb*uxg*UWzBt*jI2>3-fkW_Hk> z1FNb>xku+>Oj`9orRjw0U2eypz@z0b2kz^J_;aZBEpQ$1v7GY{_aDCKW@~rcWgVrgRQ8UYd@99`Ve&ENXDPI2d#>5u4O^CXeU^&7aOTC0Z6T;E@ zeyTXx0WIk@*W#d`crthVdNG11T(8=y)NNx{c5}4h`#R-g0DU1|?C1;4A1&M3{TKpJ zaOpX8rgy$1wjoR8EH-F#88cv}IdR$BCmTYbQiK3i`yd=U!~D>TW^UE-oi`3|&s;BQ zZPW!A1^epo9vi+R74d()de_S2CGnIcWTl%j(F*lZo^`1!nLL)AmO)69T33ecUvl{A~@(u;+Mm=rKW_}#^5Z_RoEGu7A%?_8)qeJ%cwXp-!R!JpNzDgMl3o)?lm*y2Tu zS7r0MUx)6W;4z`VkGFGBPVqT1?4X`#@&de}$dxae8D&e`O_dUt!F)goL|0RPUUTe| zwVcd&8JxWcsdPN;x^bAuD;3aQ@4zXtcEJ&(ITOdaVfyXQOzm@{X%sr!`poPEVpv97 z)oT=7HEbf!N=_7xLNMVSYN&U_#Q89(_hArcFMxUSk%rO zvv5Ku?}u0$bScd=HKyd*5h$-la4qFY@t_iSH809yD=DE5TjCS45w8es{+H30aLX z!_CT-9TNnKF*0(K)v;IYu|FL)Dr%x7zV#8Zh48`jnG&dy@~zZ z7Nlo;db*GLCDw{i!k`UWv_2s`o#@v1i`G^&KVVEmE6gH8L>JW-M4T)!k>@?{iyDIo zk|-b?q&@!?st?6}D@U~}H3Fh3hITNu7D#Ka#i5t>ZbW$*LbQ@#6k0NGjya0DPf5cm z?O4Exhd!H8$PWa<9cMYDZ6{)}fpU_$wg}c0PEyEFd&n1B;XZDRw+qpus1T`QU?QO^ zIep3A5zPbnyY#AVTUE`Yi(VJKU#w*3tmG3kgsFVCH<;k8cAV(1hF022rb#7_yiJ&j zXf>Gf{#uWC%OEe+YomRUvf}J6zUX9KWbiCK1S>PuuMXa~o631K*ZbffJ!LXRPEXjq zMQVTB?cXEq@n;9p_-hJBXOuxe=7mt#MiPSahYv@twmT@(}q>uKMoi+`_x; zHrz1hPpuIj5vJe94R+_OPg@J6U>k;xIzqYD39mIvu)T) z$El0#=~pZ-?#1Cb0nKO2-VkHX_+1J|ch6LluJ_yTr(2(=jnBY=W6@Ie zj1p^@(cZDOgo=TiSioh<>Y!_HXkztpyq3fA)Z@WIjEn_~)XkSby0l6ci(gkxV`D>fDUf5HkWM~Lnb)Il$h6ceJzXC^^cvbX|eO>WAVegVJZ zql&&n!Qd0OKZVvHECy7o#OO}WtJ8&G$Z0?;;L>1u&>d^qhi2{}p!~ zvrD;i(B+P~aJ-^Y~oSqJj$Z$xDK6Bn1W*nydmbj>_S0x!{T!y4IO3Ehu3BCr85gUVS7o zh+r>zpvb3Jp|s3iCskkt;YQT_LH<_Dl6LJ*^*8MqnR#u+m5*d}t#KH{L!-B?2aKBP z;#34FPP0=1zdDMjzKhbIwH`bTV2cixEqq7+QDesdm_$Gps#7`V&?JkUngYI;@$n&_ z5mZ4TG(}~_NUhB^MbK02u=#NK@fc|sYaExM-eG$K!p-g+^%^762sLvtijmP?^js1T zb7Qp3LBDBh%WI`SSw<;UE`E6=KexbE^j!^2b_PIlQT{ITWe0KYS*Kd6+u|4-8Oh;r zg=v-R8dpQfr&m$_3n`Wtic@n4bCcm%3f)N>C=dLgRbVFlm<8_E6`AN zA?JGPRlu%3EQXOP;-#TvKV_T5s5@FQ+fL2@%*a}EMEK#`iDu*e-eZU^*K^C>&DR_U zqGFjrgoKAV*hzZ8UZH^|(m_VRF*F1v&2%RQ}s*9|sc$>-9I^Wtndp z5J5H<#gf(sB1Os)|7)E0aW8i%tecR6t7}ILrcm96(v1)^tRJ`wnh}{+ zfnfWZnC~O>d)IuZ#`bpcoQT_>l8dhvA!E(d_k(43QVJ2`eC3Xa0pqJ3c$_|wPHFa= zT-B9Oyb)cp%@qpma-$f8jGDNJaD^-$Hq=g4I;|nQ#XBni2v|ix;meb65ST03q?1Yf||DCrncr znrF(kU%2=uh<1A?@2f}E`I6W+yZY{D6@vc)ZK3f^e_}dqv<<#s$?b(GKJKKOFiI1= zwJ8jsQ6Y9#Vs|EW$#Pm9dLpz8q&1r~G}1=rKgrKd&f1=$ThY{@#Lq+=)dXC}SA zKHIv32B64IOWVl@2`d;7DMea#?<(KD2bDTd$bgO=7|G z7UsO`=egy*xI5SagCS>TGrhR>HAOHTAOQNb^k;oKmYmED>wmk#!ol$T{SfTy6zU($ zZM7%W+V!8_zu%LX&%>>nD`$DIX*bbGu3)B1+zTKdi)nw_$E+-H8ehy+ z&!tHi!M2+JfY%_go#Ma~I|$g!i`UyvMNg9$HM+5mt(HIGO3mT19uU;sJbePR1R)$Y z8?fx2+|+76KLOlkXem-Q)%((riQ!t#UwDFY-a4an$w>l+I4rqZ=3&qKN}a6RswEYq zn+KY%J*}indIQk`o439{!rj;JC(NN}L|SeTLVA^vBJzJyfOMo5r`}z~G;N>qN<~%A z{mB7>%?Yr}_c&>WivK;fUO*sFK07Mn6rN3>sG_*%lzfJ!86f|Us=YC>{F>i|9{$zY z$c40=>7nS}Y#?4mFzRP}9UW>p+jy4K63d5gc~p2G?lHSuyx)wJLlI0?Gs`l0ACy)W zNcsa7;grDou3{ru!ou=4(;Z0^Q%Xz*V^t=Cf@(~%zYMbV_b3K zGD?OnW@hKB{OX1M6=72~@)R~TY}uQuJ~3lCvf8gyoE7x4slZEmxbW@JlW2BruKZI( z<*x;>!CSLDpK;!A2+?X9Z}yTco{%=n%2flpv9u2CCn_m)ENTP5=-w(YC5`W@Y1dz# zZSUPb%qLu4DW~YoI)W{aPQ@;j7Yl5aBhAX|)Ad$@&ni*#3vPq7#EIDW;^;$lp%|sb zMh-$<2Zt&b9i#Ugc?jIZXZXX9J*5YTIhwqWcVUPm3e#tWqC2S4C4vzl!M78;NF z4zNPLSoXs8oA>8)AoFeW{9@3}*mb}5KK%8gG!DkcH_<0)!J2OzN4@$r0p_sFbq-Tp z=P>S;Fd8+|<~haRV$eLFT;E;uQ*m4jy{v{*!)4Rv=HyRvnD|1t_`B6@rnidXQ}=lH z$Z{2x<3$8>T72$cE5IR3NYRZ8O?8wLvFcNk^3R=LHc2vG{-l@J9r->F*^X#iFFo*Y zl{nu)*6zCEEj4t_AaTmrMo>@wY~I*GXJt?5{?W|l1;NV>+|_|pc4P0;I4as1w2Da# zlkz>96mz-DGjZFbzQ3+RSA7Fu=7ZbQ#^Nq0X7CPqSw3sXLw$5ypM^c%iVA$v)vwkesEO0z!k>|psh7= zFB^9gjB|!a7vA)KUyw(jje8dd$@Nx-AZ9Msa4Jh0Sg!74e5+V(F%0PTukQsLL)p4g z)E*cZk{GhDUTAb$ERGBc-XR$EFge=3{Jj1fz=kd^XG#T?qJB*P$0hu$`4ra_zgeAb zKrSm*MZ`z9v&jC zegOne>iL1Fjk`G^^zPpTUd=(ET*tJjsrmH{zhd}fkp3M9OMcVJ)-JbY&wIf48c8z~ zMvZ;%4U<# zbEDhNsH$8X8!OoBR%zk}u4k5Ol_=1NG?h`=HQB^4g$M7y^;I4t{MDyhZMi#-sJbX` zT^S!RTrLyYjSMDZe`CL=0}fUqhS>XK3rG6CON#5Lbr0akRClW^-#Wm;GTF+c4p-?-X65+ zu!SqJtf$6tQ#nGo&&U~5q};RGYWPncbr_xGAX~mKHZA<@Xj3kg+A&giGhu6~;_91k zBG0k)k`IvO@$_YwEc#8lQDU7kTAW<5xTE{*)s`gD$bbmJ;Sd5VEImfpEseF+cOXto z4YxZ7rDEE^L6S$U6&yEJi~Q(fZLBtuXj;GC7t#E8 z80b~2FnQs*`K5ED`L01}ppCTCb*?TS|=}?qeu5rvm>eKwOI`=wiy?z8O$(`p z3$FK!<4d>hDcm4;{nBF$UPm$E3(i`kTZ`ZPb4tE)Nn%89X%V?@hWtdFqq^%!TVtZK z7d#TmHGAXt$EnMO40bjG-X2*(_lXy}477)kcJ!Hs#r@Nq0PF zayEz7!Az|KLz_%!&F1ee-uQCO*CLSp)qZw$=1clPB1$%SI44iQXC`kuvG}hmw!#JL zfzIYR?<>vXtFe9cj7wT2Y;&4VQ6k)XO}i^SaqLz0r^X#^sw;S6Vk)-dUCpl_0CXXF zz?fW@O!fHW%G#>3CMxU#d;d!KfmaQm~ znU;<|Tc(A%!Q0JRR-wgv|NG=~Zi~Ow?y%LNIi+}Yv7P2~l>X~oVIkL51$AW^9=E|q z(5=zuknyFeI=h+i3t_|;EL?)F6J>F3U!2g8km_W_yWc;CuPR%(H_m}Cuf>p71b-8! zS3YJAcH5QTi3uiS6D)BEJUd!B|FY19eY~*tETWwJvh^?;E4MR*$Rp{%dsll8koAa~-1 zbLFYcp|Fu&xaF4Dtr?;InKg0`@9gaCunYv)^ORw6jdX;rsZHD$)A%;A9>ow^FX;g_ z8WAJebZx8#aiOsC{y=P7aYVnI*r8ynu)KD<-p;y+dk{=o;2Itz->~MJ$59pnKBtCE z+1I+d`C3;iSClU)x4z^nqW&&g_enSViS%*2ImA*^0KbFZ!QLqfXCLeu3D!6b<%AWI zSoqGx*c#*~our068Agxcwg^}k4WVxw*xV`>2QBk}=%CYbN+WK*oH|}^sxF4@fLNyq z0FVaD{q9(ZtDTc!R5bcpQLTHB-M(?}F(+`V4Ai@iwwHNtyKQZJT zQ=027JZ`l;lBiNX!jBbjqRkGX@cEuR#R|5y4^eiGNvcR&D6slz|pd2-JT8?VKyZ#tTYEl-pgHic!D0cPeQ@})_9 zj2@1i-^0pod&T!A?@;oMAtcN6YW1iJ=`;u^*p{b=D#`!Hv(TXDxwb2#B(J!Z`a!qC zJHUtLg8LXhZL(1@`uJ)0X?Evw(Pkx2L}NEg1i}4aE+YlE3UxsyFykV;tkQ^2w(}cd z=4?D-Jkv^x8y4tc)E}MjI*Lwyj(?+uZ(4pB^!oQGj783>7XNHoNd0R}<@^qU$?zcm z`kot~>TeRp#I#X%4*m5iO#!YT9nR73?EQa*;CiQk3;%;PoRsTZBrZI&6N{C=goGZ0 zM+cnZ8{eQ;+7 zOjaZMhd56HGNb)=E#k{u%cd z^+XDYDB`5SFW}Ae?ev><&4d4`pdjYyv2@D{AJ9WHso+r;n5+c!i+LDQehs%@yTgaL z!Jn~Y{V*~lg{eky;V-~5;0xg5W4MrpZr{B6Hcm8ncz-wE0{BoT78|}J0SU%3)59tF z5FZvRKK@g%EyUV*8&eU(etY%-Jw}(}vnmF-sx3C_?Kfb9k2^e+!FBUK_+MGUikWO; z0e{{PUJ-pH4n77!PWB7Kn8(p91SId&!CMgc-W7gxMfA79D|#an*a$c620t?oJb`0C z6wS@;;z`~IZ#ObL=5HkX?Qe?U=g;CWh`?2ouvl;VKb6E#p{KdK34eYL{$4V8g8#q2 zCh!L9p1%g=W&lVpU)kQB9ok$sBE?hP|Kr8pz{HoFMY}9zxjUwFu-4?@=AY0clQlLm z2F>q>=#s6H|6efSgW-_`&Cj2molOnoQ`j%AgCj^ViiwFcOWu{lS8OquHitaY0e`-R zsMtRoTrgym|Nggb@SBx{jEqsY%HsB5s&)B)8(`Pa#^?6$>gu8|em=%`+oB;adINXx zUx?{R46tT>DGWMeqQ0}^n=pcb0u$gmFoY!dT;L4{Y`s_2zX1z=2^hDkKa03G7f$dU ze67km8i;KO+!TZsUK|)Htw+u9d%V{%{(2qbvL$JUe_*Kq1J@NCNbwJaIB@W_-=WO~ zoHuWUuLTB6*ZD8jO^|OdUI+PWI7MyzIS8|Fav(a`iHxq{z)Ap~7DU#>URK>dWa)rt zv1tEJ_z%qi^5BIn3LA}*-=G;_2hU$3_}(7_>-&?6_j_hwXP{i60rz?m`Pe^>UAt$z zRG&xV7CQq82NpHIedN*B1fD#!kQs~e{v;U45}nE?QkE6m;4eqU#y$-p=Ol>VR8zjW zbO^z_{v~OJV1oCUKK%!4>A)>-u|j&Rc@jaF<e=|tcEqHb4x%|!UhVjng62#bTCluqAp{ELSFc{ZL0_DTaRrh6ulU|@l_dQI4)-+IJzul!=hsAf zQ}+IuN*Gv~%#y^CnH~yKz7cx$4iJI)S+%@N!MWY@BI-$Dw@r?_R044u68(R_ii2X5 z7ggxgib)Iq9{j(-`Ol&7#RA*?D6hNJ^6;5m5}$mg|LWNPAtg+lAL@Rzem@R?ujdZs z0$1ndqGId1^>tV1f+#id$KOk#-0TN+4l|6;o%1Ujq>DfcH&w)PJa3BVKlZ=oRWKFE z{OyW@#yE7V-sf@s0q7DoxNSt+15;I+?#Ox0m7e%oy#d1ib--)t{6&&+mzg&_8*&_gL2taN=1%1w zLc!HDklHld=fN*kPFhfC)=n^7VnaHW8Q>=jZRS%cmPP!p(g5Ch6P8^aUF?e`3c37G zw}(~5{)DVlCr2cLhi~w6&ATF3e}#ds&Bz@#miexEm6aa@;yAt#D^{$5B@JY!Owv_E8a4U7HFx7 z-I~@lOXiI(x%UB2{|x2T|0&QpKk?0dvKtsV_l@ea`5Ea*8Nxx)1uJ4PVe;sUA@G z;FA7SYw?>uHaCFYRjainTX6h5{O|Me)&0#o!@GZcB(&@dr^$l7=z~MjH44?FlLVZ& zR8>_?i+(s>PcI9xz{$e>5e8?JLAPp#Uo3L;MNeV!OM-ndMl!a(e2`@h1pFjCT3-a7 z4I9kuz5X{?#PI({CJ2D(5=t$gB!0Hekd4`4q}U6GKrYXYVp@F8hw06UKVOf&CH)8t zn!Tm3ZQdgHEmGnT-)0`02Hs+=;dQbC>3+5QWQqN3bf6^o#)CO0H3%*zQ67H}8gB6s zIhqP~)A?nceyM!DRN%HTTxC5-+u(In)Yi;#laIjl-vOE?pdGe9ZC6hDT>=gNi7$&)J>gRIzd_W&t0e@9&r8S(sOZJv1Wp8TIDA z$`craZ1&@LvU=@*a?(#7b8cqP&|{9V$zwMjOq4fsjnG_hBzm8Mg4wI&H;|L_^b}n0 zTS*7dQOxPyY8~M;>@m#B@zb?-BAoD#H}B*B`0v`8n9F|2qE_`C4;O z|GIi^PJ`vQt!6o`FbDGQ|8PSy^SjkPO3)_@Qb^+MW~q5Ql*K05h*+oYH#0L^{*@_J zWz|o0x&k*|E-r70-fcNoGV)v@qvW>ue9ZRZy0%G1;u~mUMvGVtIP1*B%+&R6-pdY? zc|LYqrlBnLX^W!Wmp&TgI~wv2*McF_(_pH23kwkOKt_|XYxRIju@(z0mui{b0UD}? z8GJUQI#9aAiOi8@R`r$rxL&n<)LpgAm!1p@tH4zpxTLhQomlPCiL6hYsD)27|1vY% zs9Nc0-@G*@reA3$o%`bQ3YPqvwA=D|d22sBw>SQaBYt0+m>lR{F^&~$#_*Q{ z`m*CCx`wQuME^zX>(gfr)4UDG^RN{V_QMUX)}H6c`dqbKIrj;}R$s&&T2Y;AV^uMk zpO4B>*lpcJ0K#*VEm$%c8d1$IGS$J{PL^3u)2r$5bL@)YibjX&d!IQIW*$B%F>k~9 z0$H8*Nc=WsZX4itg=-c9kilm(lLLs*r^_RIF0cu%`!uO_FHnKR644{EM|jl&eF%x7&s-3j{$?lntxB7Y+1^3au6;X z!;FP_)1F0zby3u|6Zhw&{Hk*fAi9kj{6%$%ipc`hsB5oIuhv#BY;$a+#0!*Di9)ct z6j9IXO))DD3E%Cn-p6gktIf!nI{A@~SJdH&LAU>r`ZmEMac>>HqQ?porTW%~?kB6s zPCa74@vQl=2a%6Bt&mGj^TB|~X41OQRF3cN>3%N+xmw%w-0FJf@|ZpY+ph@qUd0U} z2~NFT8)d-d7X3r>)82B~!gzsVlZ=7;GdWQfVf4H|Sq(mOEVBf4`CAAK6L=pT;ZO?M z))-W+bGz(CGrsP4A|2cX+ihWhYA!`14uRE~-G>tIiDi(`aWD6gPA#PQq^d7fV9=#*Xfl86`DswB$XN;bbhDuE#aGdjcgj;B!}dqV z!j~k9S)34ijT$97-*;SY4iA=^@Nb~;x!iKTLwecPp77k<;+r3)l6HBSFTjz=V;z2n zPJ9+0r}2EJ$+GawH1~BFmC}Uy4&~=ns2H{tSGYh zB|j8{wm0rdrR~#t&Wuh6LSh=9smj1HX&j+V*cQQ zD2Aimsl6rU<=Tmbnx1l)Q&oyKxDNzIV)|Xl*K3t{%`;S(G|MGHhr{0`>StX-hLYVt zu{E;H)8CaUQV%X7$ambe1(%qkZ<8{;`EsA}72e&bYccWe-e;8s&=lLS5xw4sngNm? zf8hbvx`d#CLD_E7bKX&cu(G`_)ryQ*+eNx;*+OU3nXgri$X zsN1Ev>q-wIJ2zgpO_3_!jV)AXl65OHAnG;4{3ppaZm&0GH9@zS z&hX+@vtQ>@UzqF8XS@gu&Bz4D8dR3+pHl3ns&uVPsjfQ{dJNpGC)KjaK%-@7=ic%G zw{<&FVqt*)_^#XR=Nu1npFgHcdjmNu!zEs_3=h}ysB&MyWx%@KiPfmR2#%nvaIU;F zvHTk6T5a_PTyMdop<98~o&R@+v_nWRCaCfD}yu2L}zz7vK`BrW*v1*%~i}@3y3x5Md1q z_}6MkC~W4y^ro9U$}3xT#-?HqBck&_8j}sM{zqev2-l7BC?G~0N29y^)fyxfmVZl^ zYG2uom$0^?&x)yZGyR*7#`QbinKm-p-UmZN;)sP?tflorG%j~%(b^(?a}Iibm{@f_ zaq1#ny8(#EtwqqrDHduSCKn;-#oI@4; zyv1|@V?Ys{z*v0zd*bK2f0pb-c~^e7`8;jbdqk0_>2uoO{(7~Xcc!N%+vl&fe>J|~ z0thKmUl`Y%uCrkfgB?E)NNPDp<89>b#54Sxfi4z)>!brXW;7#Qk<+y?pl}&Rnz?EB z9cYw$02g~fLo}{~X<~C+fn+xt^@2H4LYb&xca^Qfe9b?G+x(P2v5>ZLjZOxTJ$_hY z((kww#cUm0Q>y*?ki=Br=>zE2c}(_xVuU0Mf#`5kePiaDj1ZJfSDf-Hap)j)ez2C! z@2vjxAk2^!+^s41{nT>mp5^__Q6XvZ;auIX%S_sicX~^szswthOl4RZEZ2=bxcya@ zf~t>zrsUJ|&C0G=N93>hhw~ReRLf;3J>49;>I{FWVo2DLRUs`ibaSja=&*jBPqzMi z-6frtck&?@!o5^)^+A^-7~#?E9ljc5aX9--R^fKLY&7x~MAnvdtbt zGIlqqc;9~>333GdoS8R_!2L*pA3D+zFemDZY>IV}StD=Xf>;g1S80OIFU8Ro&25Sg zROXa?_fD;cU*g^-(=g0#Aic=m+TY7hr?M2VnbkQHAMRv3k%9aYBe<*aLUJ!xUZf%3*0`wf`!~>faCvTzizkTI$SCq2L(~t7;*X&sQ!_ z#}g~UXTJg3i6MQ9j<{#DJk9A!Y14A?3*-takL;<(z?=LdIdKnFCdip`W2=b%^qthF z=K1B(hIq=thCv_kKV(a`czcd1zGQvDv~cxI7PT{D{Vep+QOn+}0pFi-ZI5;sPp#t| znl%tea)(I-*IzPFU8^Y4ZvSoHFYfpbNztAmKmAtAMS@1?jO07;DQoCgn^}AIbB>WPl0ml zBUek~75Y3Ed}OoAeu{hQozEdIg*GGgHLp}*MGXx_ztg9%IXGH#S<5`(y1De2`5Av`P#Tchcrv z4*Fj+C^S-*TTix_2RYZr`xbUOdc?Y!M-mZHoqrGFhV2+o9`;E#>FU=uOGAx!oBd~Y zf^G9?tvIeNf)n4d+WKmZ?AOpCs7LIu-QfsDPqEe&1E}uZG;j|7wUckO>7PGW9WVaP z$gW++QM)}Wl(WtC++o?TOSbqqy3;wOw?Z4b$}BP7TZ1Ecz= z-JJvYA5j3AU7xN+4M{wf#N}a33-RXX>; z3DrP)D}BBPQ%~9@-bw+1E%RfNbu4h38+^8H>{*vAY-O=%%w;{D&xLi$d3QjY%OLWn zu4|}F4%Mn)k&E;fn!gEDEmM2P^^yYk6KD4@fCptV;uxrNaKiJ(-o9icDVEEyXTxRY zqlm{2?;sm8N1GXmQ(u)7L&%CH&(jH9KQAO?4JY-6%O~I=zv9o@#PiWo}Bbsa5*q9_O-sxXS4kRYL zqUXi&T_6QfW<So&Xp5#G9Px}ac2B8 z%D2sRaMy5yeCNfj>35=%=498Y>K}Per!XM(h)*T()?Mxz<-EFL+z}vp6DS=}(Jcw} z6Tu3a?N%_t3D8)KK2v&c)6S-QVFGD5J7ZV-&DELeh_k`<$*uM_1_7|qMm;Iwu}0(Z z=DzArf`(9ual10yT$0L4}Q)dr_KKkyfdhFEZ@QQ!-T>xp6 z&7)(|5Gk5ns+3;q;Lyl}x_I;VB6E>Z#G_ohiLxY$4ar9hwD7Xs!-+Q7(e~I3K9-l$ zPnIEK8jNetsIdH#a_eaxb?yhMojGpGnfbUX5b8 z^q$U7GFjf(nIH1~Ho_g94q2?(q^@+N{<&1&)ab1>_fjMzB|Yry=eJ zf%8r-aDj2Y;sJr++CXZIJe-TNDXUySaUunE%vt<^HJaPI#G$1T>KI8WamhmGeG+!-4&sF_E#hfst~>=?kkrj@Q+=d}M?=VAPW z0c0M3HZSFDf+<^|7PG*wu3(Tg-qS~N$`BEcn~?$6V;^OoIwaH|v?{19H}^JE!*t7e z5~E5?a{rLesTixi5KYUA%6{D&QA902rve;-Vr4i}3dU+wlCWI$uxeY8 zZvZKqGd6}N+6u3OO$~3dfP}O_wXVX=LGAHRRPfvj zdULG18oPY`$pSH9)B|Wn2-*yUfRPGyO|?@mg)~5$6C( zzvHgjOq~PVVWz%&8oFh9&9G_yuMrZjulIVqCOuOR>j)pP(1Q*n4<44#%-6!wg4iJB ztD4_}BbJmPb^1wuC0x&JB_QWu!5jO0>nw$ul5*oY*l(~(*{ntUZN3vBFmUaWOD5pI zDp<(cy6efLfZ}&^kHN_JB?QE8f4R>>O6MfFE>ean7Wro1vwvXcU{^YIw8hYwSk=`eB^<>sqw!%hbPyu&^Yxon*bJqBz}K25i6r>oURJu7 z8d#{(bp2r7UQ#^XP1E)G8=Qlt2FW#E}jmuj8za)j$d>Avs4RIE> zxGjx2wO(2+?__;aLY{oXb}W(A!Vx7E1b28Z&Uafk&#D8K2U2IMU+NJ0E0BM6`5o}+ z1orVM_@4*_p>^3el?dRrB6;+Z-5g!FAFOa?&1VoxAxfA8j8>ug`yWD;I0Te2Z*^UOU!7(saV!lRH&D z;HFQZI;+%|u>zwxM_RFifHQ2R|DIyW#sW>(xLbFry1?gEU*TcSx%6_fNC%)P9fOmYSe$G23YK@UHGggc^0kZU)!?%UfF020f66a-;r$NP_sDM8GL>8WS zrHh=nm!b^8jM=P{0forwM#4Ozp<;#JBb1SgJA}BL4sKA?}KOeiVCxAC5@`x zOH0ny=<=HiW>nmtGRX;zg+u@%tjcMk!oNYNJ%Y1 zPNVg$2?m)6Dp$6`v&Q7NZO+=E7dPF*Z%EZHLqUu;SG3&DW<8(rkHybE zKRBd+C-4Y4wHA8YLc49yO2R|Sj7>Av+i`X~p|Z4!A8UtjeOChy4V>xMDW|iFXet-N z2UDPhk)oSsR)EZ))VkU68-R!yrVpWothHpzwRv719c&)prus>IKhNoAFkZZB7IUVQTptg;=m zy2n`y&HOWinIF)@wjgutAR6i-|{89U>oEwdM^U&V$@8hm~DAAwr8>ry^e|UTAu&TPQU7QXBP>>c->6AtqNlEDj zl@d^pE@6QvA)TAnHt^r-TkwtIS!o zlSl6T@s$OhbWB%kEKVxJmG54j)srq4G|D;DyY39D!&6tO>L`P!F2lNS6$B5;mR~%I zFVJat6&3enUQ7Kv!`ksTy0wY&-H5KkGf>9~kcjd?MvpPBJwG2c2Ohr|xSP*k4o(7$%x@ndx+dd91RiUJY?Y~ym&A?uxSJq#p z$1X2m{o#EMZqFEz_>V0MHj)BUeWkTs$A83+o@~y9$Wdey^chN$yC1cBrB`T>@Fnw@dp7>t$jiV-r$s#7V+nEV^7{dbY7c z#RhG%egU)NubWwI9{zK*-spm6esSFcS>8d=+%PTN%+9au_?`bm zy=^jw^CA_UQf=g*odzL*2Y3N^fZrIshqi^qOaGuR)sH)1)Mv+czQ2vS{yy|KtfHE zUhHiBv{SJ$o(=$lyPM;dopRij92Na_-+Clc$7EReEi3u|WX7QxSz&DblV)roDS?A# z--cA_D}=qvvn>*bH+~UH3SA^~>0!ikxgzNr2L?{~lA6&$U}y=E6mBiEoT(b@pPw{#WgWE< ziU=5WMTS7^IWo=y?<48#UQf$AA2^Qg4>*z?4*0chZ`7buxO#@W!BJXq&UxC6Q~VsK zfFh~O^~k%6Fq@nJscD_`u+8MQ}IH*iBDLM09ah*!|;WjK9SAlDU64X#ZqYPrfoKvspK9-w{8)Q{~wc!v#gGDAUN4 zX2?;}(@Wc8^T%FYj9^@Lz_<&S3o;v{w36@pNE;V$;LHEeV6!ogEffrg2cGOt8u`H(LqHb*z+J~K48LR{!QZ+KNfL9L8Se8e zlnLYiZlVbebl((of)3YzDy2!?IoWQ;P6xd@Y_6xaj|kiCRb7wv!|9aMKq*9GJLvKO za6z7=Y?V=8XN6EInmU=z7CjtHo~gWs;nSsiOLFWfRj_9@Q!02UICcty-mW zf9lwjptZ>PGq z(C~Jg>(Mcd`H#F+^cLyed^4KW%ccvgdb3>fIS&N^)6MLkdJ<#r*0UdDUn7G6RN@qk zZ4$EChpsMY%2g4zWLWAKinxor7ZU`P0;Dvnjh|ML)&^nGU%M$>QtN)1Yd+6oKsgfm}?Hb z6U&~z^Xc-k#QP;}k_+>9MDDYrE!Zw5CZv=ihS^BBJQIJLggcvD+#sHd@Mmt41>vBG z5U5y()H&@+m7A$s=~sx2AM2kLR&dlcJ&sO>;iHIjC0Ae@dOb7rN>ElY`VGS1o^m!H&CP6A@}3 zO!LMbGy;8jlY7(heJN=hq)mx({$P8g@hq*)r+USr=9MqfK(^us+t<%~ z=acLApBQ)(CsaG_{aUdIx&;y_WJt~!`S2R0$VaPUs}y8+Tg&j3^j!7AoSFCyiM~!= z!uqrtE+);Ak5OL!3YM<*=UJQd`p{eLX&p6?@2UJ@m;N3UnIfuw6(7#1zP`C^p3u@F z)?XhJjDun40YKC~SiPp-lRU2RU6aF0wgRN1d|P#omQ;iAd1=*Q>Ept7B%nLt^Vb+o zbAO5lx>XjIr!$_|X&^SXu=Kl!)1Ku{)^BjII;>P`ESH)un7UXjhy*2I$W~Ve#7%`Q z*bdVkXe&h@zD?5^=_SM7NQbobYizSsRHh?7=aA4!eW7Z?c>zac<)b6j+%%btN+rLP zcRnuo)f3~aa@)01yKWU#O6U&&-q1^!&d$3D4&4CZ!R}5Qc^BMkm({k=zWP3ptxU5r zQkYm~F$s-X-x<92CJ~vRH@>o>ixkqrA{7eD$N-(wM2JH1sxu0p5#BVC9T})CT!gQa zVO)1F=3l^(tKOM*v>HW8tDIw{heYZX&qx9pq!+Hyn-~s=uJYtuZ=&{>`$fI5$(e;N zk5d`7E4m#u#+Kc0P9i_Qy1WoSqJ^a3PTyBmVeHv*`*m+qdm;EfSCw7O+5&Uy&5&q& z@Tm}>1!i3UVZ`qc3!prxJhUzARrlxpSB-5!`N4Xo3DH2nbt%H)W4|bU@O8!EgM#o; znN{xU@KR~w2vI~|guqj+DIAt~VrnT*>Ec@(_uhMl6N60EAKEFPKek{!mVrII6JDMz zT}@UvB6Z%Jc#=wx1Tgz&b}HUU&1ql3bpuF?ywhg)5LBw{nI0`m9vz429>hsJ6~2js z&~gUH@%_emHBlkD!c^y519UrOsNw(gn88`jaz2K)8?&~kca80YDx)HXy!vzb?;Ab3 z@xOD^f^5k*N5jL4pYZlzoLfjv!?dhM7H?Ucx>{tad+$?Ot|)zZ{&qF01F3A?h>a)q zH!$`;ewyMr3Y;qJICBh5+Aa$n77~wyhmGt(B6-`P=;Kd}Gz>#jq-*fq4U`Y+a92{m zeke>alnz3CiSc*}1^i|>QnmGBC_p17c>S(uqVA8y zr!amaB2kKgPKdnU&Vs#+Mq&aWxZi+AAApR#G3O~cd<|$sp+N9C0(e#0TL?%Z0PXV} zhnznL4q&B41$Wn>!vU0-I2fRQ>i*$)1_t#bGQ<4BkQp#>z*OS3pa$icmg(5TEz-fUa9e2K@u3ofnekz-m&bg#YO`$nH-_ zVTroC)W-sRmV*rm+DRJl%O@Wrp575|8bJcj4&!&)J$7afhxWBX@28=F+@G` zURL$3vt5HgA3T5u>FuP__9%brIRc_wl85hKZFONGq4#f)!l$7vwO8;F?2Z{C&5e)# zV7wpL(Ehv=_9d7O6TpyZNrQOL{9#{SBhzBC0ZBe}CmTv$|Ke9gFwXDzSJ&BL$t;Mp zH`?K7Y&P%E`yyc;VYHZ%aD3HHR%u_D2#of|f4oi@Vk_GYz2oD$`$i2IQX52?{%KV{R|B;^+y9*kvkhXRwYvr?r&U@(QXfU*z7 zJf^Wlt@?#IY0#CBe(!Ppv}vY-d2`%%+?fk9=eBSGYesN$vD{a{8?r^!CowhBH7mUsbrDNC&8TmO8!K3XgaJf(YoeG6}~bKIGO ze+!>aoKqy7y^oiy#@NcJ`<#8DR5D5?k3R`x+$06P0adMy0Aq`>MOEu1{J9B0PyCP0 zvXwI_ctt1{Pz!XbU)4>6jx@a8Gvd#Dgm*sk-77e=J#N3FsGA}MPvQYfs6$lOFkMi! zdUFEwC=^=8BEi=hu9^bs>%wi7-W}&C-inu)|Ds!9U_jUn7(^N`^(LLyDmE5dW3@ZW z$TMBaC-!gDzCS5h9}S`9eNK&6>nz)62jXs}!j}ds)@S!qn51B{FhpFa5&rDUJ557p z8R0&ERQ8YZ&Iot}Zy_#!gL!r2Kx!nfg7#OK;`!`l)weEK4UDD=8>O>DsTP56D#Z=) z7>`0T?(Yv9`;1bFGv*twD&Xtv7TV-Z`Bbml>3~8{y58BY`GfH+x!(eCWkH@u?Ps}5 zB^1t}&Bb^a8!z@BCKg!pdsXijbHohi6M+5vFvL%YN(Nacy%}$in|n2Hcuqt9Wb)IO zzS|K8BwU0}URXqoaD3GO=K?yyDf;*ymRS^b{IVS)&(|Haqe0M8;k(g(IU+ zrk99Jer=q&{4}bv*?dA>=$_qSJ9-BR#~lF}K|~B;1SFitA~UhaSiEj2V$|!tx_PQi zbI9&w0&cP*B42hd$3 zyLw0#0wxf)hX%st7kbVS(FyQp=JqZUm3gxU{AZ19~|;Kfg&ylAr}z{TJPu%$ zCdK%N=ssdIE9qUfNjBV_YMJ=epSMz#m-+}g$TV&vKJ>#zP-^U8(W^^}zKWH5bV-=e zz|-64Mp?2!%J1j{y8QMMA^o)Kn3Ezq8x9x(i*mXqEP%SinC>4qYJ;jRqlKCW@z zAZF4k`DihHm{|@LhIy(cq)J{aja;y^%)oL~eaT<{nFtyD8MZ`0LBZWGiE?w_{3HQ( zGD+#-o__JGZwoFmn?k2(V6K`5Q0f#;l)ulbbC|C^IiZb&9tjLHElLc3t_iMx`$}ew z`4riM=fU&5*NR&8#`$%TUFrqPw^ys*?WE8jdvhN?arrTGkjO`#a5C18k7{voXihZ`eVky0NK~WD~C6JPm(t=c^it78TP=Hg#7&kzK zD~}8TgfUtZFX+{fM8crfC237yVr~9BsAM=_w1ds4Y=1KqqQ0Ra2Z(3u1?t@{Vt(XL z3kQ&JrcG2^M@t#k*Ven9MN-SgPyK4;0JIVbqBiBLoRr%>)%hvKmON{>Ude*cgYs zdHdGx?FXal;l=Srv6#Y6*T&X+trN19FWG`!$eEd?l$^&#nDwTin-(`C`6D-uPl9m& zLva=KDq3UfRfaXY)3Tt60_SplLuv}df4+(W^Dm zZ|S%nb0t1WRnQnUcY-=K*)z;huCnwczkb9t?OgC3DpJICKHH3MN3#WFYOBJIxBskh zTn|7Vro8v7XQh}nJBC68DF^gNsOG5nviS+WAPcT`*dn{nYwIKbxlbKjm|1PJG;n&b zmJM*x#si`{)bROU!<$(bIvvYo(KjvJx_=@S%?M!*(}x7`iy0@KGn?*jd{_jFGXyDH znXl7V*`XzADu&{T%Ic_5+s4d^ncW#&H3T}md zFMJ!E8H6RUh223%ugLH3W)-#xHR$u#q%^RFx%+`Z|Wf4a=Ngnbn@ZD*=BUDidX3q0fYCKx}%$C z9}J=ee!l3M^UYApPx&i1Z0Bz?CwIZ-0c=em@Z}X1G)Q|zS&mz z%BN(}rn0))hMOALf0m4chc`BPCoARUt*?ke0C=APu$`;xKiY!GO+m_u4H+j0QkcX^ zdT*9^XzL1g? zr|E=`7Z#b=vrtM!eJ1@x9;eSxhVLGqkBtoi4*Icd9RH`P7W_&8;~QX6&FPdCxBe0Y zk$HW5%{cEt;fg3sx;#(-Dt%FDqy~Lcu4RrLO2q7DX^eyEjNHGX(Zj=K#ei{sY)n9} zsB_g_%4vR;0d%!}9dQi(%zTsI?8sbub+8t8NPjX#D71l)wD{1`7wQr6V_}W3KX1W2 zVaq3si(xZOA=EhIzE@ciz}h!9l3L$ag^BAcl!QgXrh&#AZLRMpK@L;hBhW8eHM>c$ zn6_h3|L}JAKsie!d;tR!P=*?KpHBig6^|eO=#H2GbwWus)Nj7w6I|zG^}wzFdN6=aL>BWXOt{_t!;}j?c;VjRnwr zlS_Q!7s;fbTrVwO6MHeDUnUhEy!gzbM$5L<^wq1lZ$k}|#>BWI8C^HK{&+o+lufw3 zYa@j$$iV{q{I7drIKvq=+3Ix{?!JIGy!`a2!W;e76PpcPU2+(--U7;l3SX5r5P{TY zc*JMy`%>S~jxxPz!%7_@jApT@-&#pv3}|pQarD4wxf;4>=4;c zKw+4x6K-jonLnqJ+(H6~3=vX{<}Zv_v3mp;thQ3&*zH6RkB=w1x#Q!Eigt~#$)12I z->aDdUrjCGX2Cq4fL@d2@?3Rj^%jznd?zwzsz5y`MHX7$!Oo%dNpuedo{(y;N=TQZ zeZMC<_CmFEJp=DsoAG3zRrFTlE(*0wTl@e3AZ(;+XIJJM@U22>UFfXuW#1Pi`viTDWE!WXcpQw+ zsKv;R#A!a(GIQtPBzud)aryC22R*es4Mlo7v_76?8d};Ytj{G>4&o=F(_;=v#d-!= z3CBezr7_t@pP*je%PDcRD<0mAP$EA^HS#{Z1tQPb$~O^5l@8NxWv26|QYNDpd6%>WOZfi`HDUUYLk-4D_9Ebz;7scCr3cIY^Yb*J7fk4JOfBQeS<&kS*M7^FW&^uVI;QVXjo zdA`%YM10URe^EB1pBbG4!RzDLkxI2cO3as z>In(>j^-zfy23-wc6lN|!e-7&Ei!m(IFseA&Q)bMR{nZdA1kN4!77i8?PQUmq4{rjpunc#6!d$~XT>^QML_0)&&vW-(rKk4dja7R!*sY}CE1^qZKyBtZE9 zukyw{M%pf&^k?x}1~3^Ii!#hYU^zodx80}|prq4^^_-d!MVl`PMdJDF(#AN=m0JCY zI6izb_Pwh$ArY{X2Ewz?)(V#T~D8qb$pBa5Yy!%p80mVL3vZqy5*hOm{=*ll=jXigSKAXW&h)CZl_fa zvx%(aDUQI9lbvVs3B36?E{T>FpB=0X4_EE$3DkDI01i&&_m*eMS=Qe^vwfE~NF{VO zSaqEZHM+b+T%i8Yt;VSRl#Y~C1yXN0Dw8-^9ZFU(uwXru&Ap%yN33IC{%iS}{;j-w;oKOF)$81ZgW~ zm^V+Gm2N_qLY;umb)~Q0Aj?zg2|0@%e}Je>hcnjYYzax6Vsuw1Lw*3E%{*f(ywR2F z3mO)Yv>!n?q^{Ps%oC73&)C0GoAW57?(xCc!zYYte}xEo6k;khQG%{DaVU)-X_M*+ zg$MHS@pW0h046pSfJVa#3kyqb^ubp(qaH=b@mY@?V2qfboTtH?sTV~R5R-`S_#fo`ROb|S#e!D2df{>izI zVDetZ6hQ;*=2G81WaB-K4^a4;6^p9U#Q4|UjQ|q2&R6_@22u8|MxA5vM38w->{z&K zgh8}3={owgc3lNP!oA(uuU~}SwSBE*qxC(L7apiT!zD=&+Mnw|*K%Fv(7a@M8H+WOhvPGkB#mi}g`i}~@75CScGtH!=H% z2F0J#mt3N6jESQ2IiwyK(T4;r@i^Nb#2gwsTK+=vlHBgDvpHp+mKSTgO+1>2c8iqJ z)2UAUS&p+ECwueqxWiJxr1ibNJZpTq(1UWcgVm7CB@In{e-k+?YLbmsM4<=<)ge97 zjUz8M;(Lr5?)F=gGT7f_*_ruTOUwOD6`%xuR%76w9%w#B=+`G`*)3b_lqIa@Z{JEOY!7%F~FYi(MM=4X&tZEGQ z1lKmbzY-G4sOJ|KD_&9J2||!tXBbUTw)dTMrq3a{xw)i1C+5vBt!2&MLx)YkMfMv? z7aI}1Gi0`VyD8B4(YDI_)?Z0SO%BIS+_AC7=>%GoF3z1xph1WHFCP%!I^df?ew(>|3Z8}iiR>(T?UyI{}6%O8!P+0p5H+lRNXMl|RaO~|6;u_5?u$>kGs zzP>mOC>a_GHysqGkf%zO7MjGo5n9QWE7kZW%j$((Mt3wVEv*LD^77aZ36z9)&+?-z zyaJ<{Azfaln!Z=>mJVXMdD%OcYsg$&Ty*`QPBxNQ2(qGQ|7jaf%hs4ge)Rch(fQCT zCQSMGVnH~wa!!U2>#pC*A^WDEb%69Ct*BmS1>7Ho`=iUaGttTuAfKCQiJJ=BV?}DY zb%=SBJEVTFk$p5k5CN5_k*?ySd-Y9H2zs$8&~zXwTqwL9_L#VQ6~(A8IL=vJKG%US z&mBIM$~XOI*+7695iz-By*x1?6A{|iDMST@AI-TZoAf0puMP!T4}ZEj%RUux(0SO( zZ-X;XFzK?KOxw)*;`}vWCb!md61Vq-y19zaLH;<-|qJ6e?oTn$-Nk<#=L>Bmb=1JcmmIn zrKDd^x9X!s{3SKtn*Cs!pw66>=#I*;%TM(z7(|+BTpjlB{YKn_m}& zbM_ppC4xR!(76#&zH~CG-{>0PtDJ>Y$YW=J10CJ7ZNVkIjDj^OlDlw46FYofZ1HE* z*{*Q-%RPK{l|mbwJRWxwaAmrUnmg3gR3R7rn=r4)#+sWGV92%yJeBu|eB^#$t! z4~yR+T-&(EkjMCgm$qxg0;+6R1xe^QJ{7`07&U3-VmPcBKX$p(Aqtzgx-J%%BfC4^ z>g3esn!Cko^1iS0*;{^z^l+R(RW!j8zXjQjE7B)VC4oqu^Bu-33@n?rh$J~A@ zE?uOOEvs;4CokrRP0I1H%u|g6P59N!oPOQ;EZH~gP^%5MounzBkW@qGcW(I{b}R>r zoz8!4d@1xv=N7)c?$eME`?vQM%~^*x$FEI=@B~hgoc}bY)jT9WLqGRHxHv`Jv@)vL z?HLM!)x7YV-iPrZdQ%MK)c+{6;7*E#!0Ylu9Sz~+485J@yJPcRs#~zzLGK**2jxe0qA_nk4E6Y*P2Lbo^<^>(;4=SHE67%o?|w?AtF8vKaNb$K09Ky!C+ zVIN%t!FaiusdK%KD6__IXW<7`Fr6~>&sl&Rk*J;j^5x4eA?AjX#F+-qZ>tm4C|rM6 zv!i2Y+Pd%8^rL+Qq<&o5%hX$=iwx?%GzYXlA!$4o{0D1TiP>ev>mAw$WO~eu08A-0un#bRi_@cmv;niRS_ zDdDA>%3()sfmWhTIqVR^4%19hf(Y{IVAB^-!y1EvdW)=T9=?uSJV%?7WGFWJ;bwEK zE4O;;7dyhVd$Hz4vOx||$>aRw(MITWPwf72zd_FPE{R&o1a z_2;9{l1;za<@5UOT##{UW(ygKgrQ0wuklCkXzFll!OkPr{P|z?ov!-2X z*`9amQ4#}aWZcbuym?s7+xs`W?y!v56aZSLW3&aY7KrB_cN`DqHQDcu$Zb7=Vxw_ zi{>~08A|8f1o#R>THp7DYA?c;i0~ogxybf2T8PR{%B&?=0h<7>SKk zb6~U%JHE-a9J$;cs~9fFj1-}eK%J_0kp!W7D&XkxEtWqc6yU-_^N6~Ofs5<1b)QG< z2W;3*v99`%>jE=CApR1cooj+a#dAxV+>sJYR z`;AUUt=@q{GLY1E^BlEi)=k4mllfKlt>iKGKEwM$Ko7vN}wdm+rNZZ9+m-%9NKQMX_BU zWgUAYtrW$JQz{o8Iun{aoU5LB{xdZabEl^?jSZpwNxdiPjZ_(&?|8?%t&wl$T`AA& z%xh+JC+=X}a(XtEd1319`0--{=jvC|H@M0Nub3BR6XHKtr7LgPfTK;0r#W*_LAc34 zFw-pn4(A9COJmln$?HT=854Nlq#EnpXxJW0gRNWb9MOB6kiJLo71>=nf-$+?)W2@2 zI8L*4solTxhg%H+Kyc96f)&l>r6~aW>=MV6TS{VC<>h#G@Qkv`-=uWh^SUbpNgT>+c8H+# zrHW7#VAK)pU^v*XXSnB2?dzNe7|Z&xP;VL+Xe8*YjYRZeig|HybloXBz5AjwpOp1Y z)~)jyiX>bb1$w_n{FPT5>Q7=X4&Op!6|OEH4>~_U9m<&^3GeT@IjALGezgD`UHxS2y6y?pL>_Zf?;n zBpe7{G{G_Q0E{@Du3oo@o~}}{1qgfxKKbj>qLcG1EwZ;d+svcE3(S zuD&9qEiv}>Y=KM&+7+cVj=tfkRSJ=A?)TYjCR4-M65=mHSFVNcP;q=*kVx^AK{?Us zYdNYp?Yh6tIn^Us2FtGsCTp`*WA(FL+j?{ElKdi$$^ld0aC%V7 z#o)k_rUB1d7T3!$2NC5A*#`;yJ#9)QxDp%mMb}y1J$&f+Ve8D+`h*-huU$F_zxs&^ zcO+1+(&$uzr2~jXdgSjXcS1c6GtE>nzX<)hC{0>hy@RkXO6796&X#+-(Uo#FXx04u zOPXA6r1b$|UvZg^VYA|u^*Sgr?6>&{nSzv!b?g^UwDu$-*EV+J>iGQliS@1}7V8&Y z$^v_Nr_iWHue|(FnU#Ul*abS)^HTi$<@S)&{e4Zx8?5#-L*HFb4>Cb6r+q`($AdQE zNqQOZP&;68!^UI&(fhl@3`P;88m}tB7N=w;DOr7fu*O}|moXH%guK5#6%R_7i^5vo zf$=_`uHmh1=S$l!S4U4A=2VR1+-l8+w?!BsBN8|H7>?}sXQ0of*i}O#>U1^nbWC1{ zukXe}h3$#;lR<^a59sHo`x^>$5XueLi(OT{N0~U1@L~nn@uD7nPZB|0_UCOd{mm2`gfbLlceb*kpOPi!O%2Jm2IN{Tfjl~Xin)D)a>PL^5K^i1qlg>k)6N)U>26~SHI=M$&bpf2!3x2 z2q;4+$7hjn^d1$c97K5Vo8>-o?J!ycKCK)mr6dFNjChRz7knkXphG&pc<0kc#4Bja zlW)VKAbEN#>C8K5;HXglwtc^#IX?YpDG4WkQLLGzhG?}GCqzSndl|^#csI{q8HpA# z!=BICc1^n0enTx{Q%O60r$l>%8Sn0{4?J!MMkLu(hpYQ%G|xs78#2SouOB&*^z}gt z$!T^}u1Yqgr;x=|jrbyiYUD^Lf3-lopq0*i&8ztypV?+wgA9KT(IJne7cm6_&Ygq2 zKGrV^#ZPM?%jt$}=G3|@0v>}^Jk=Z%J;nMlmX?)l1-~m1CcTpINM>z$03=Iqd00LQ z_(+y}Vk^t+52WXQTG}l2WX?i?;ca|w3*>^paJLWM)wY8(1borMh-zDzfA`xloME!h^DdoY8UgtZ6 z=OJG|EgWM)g7azvExY=?uWp%t8=x8zmyMbGxwpY<8`{>x(rV&3r@TE`o3j@4*n*J? ze`R)SaJ-k^zdHT^$Qu-#(gd zP#E>(@4!n3?nW4Ow=lvN>yauqk}A!@SZ*CK7h`N&Wvl8&9z)XFX+_C$#l1+V!H7~D z8Pqb7{%HGKnH6G3GQG6ycAb>O2TK@p``wA+hlCIW5uG|vz7eyLVpY)_BvK+hrgYh57FY z1+zPz4+cQw5^?c`8pW@m7NZ5HfrFdCav~9Mt0-wBmkjU8N=&>8+i@? zrbmgTW%VM;V_MCg1>M?&K)Cm;R*%+LRI>)wiH6n}URsm0hvJ+YunJ)*u1fK^7>`4P*BU{5Z7$JB8D&qc|o%roSPwMU!22w4cy5c3C9Hj`dT&lH~TG$n_t zs)VSh=y%W;wi($Im<~%xV5f6=PaZsc%2q4&GGDLl(j<|urtOMesmkhm-(>9(ZFPNp zcU((!Mqc@SAvYZ~@#NOR@=FvA^+s1$*A5Y}H#XJM92hMbO{tPWJ~GZ5;LwSLNTK;~ zymXr5BN_;82HM2|n5lh{A<|#1i_JXR&sT@C7r~l>)A;dMu(CJGJ`p_h5Z1Xn^9)7j zX%xFfvIqqiYUF0UtTI;ur(>rW=A3f%xh5Q9rb-)3HI`m~>>!cU{!kk*gm^A}lg1FH zI7D?!>A%0TND^e3E*t&1#HY_0FoLq5KIM7T4=Ca)eTDckaL$j&J>!VsWev$97zS|qoTBAK^k!!PUHE^0^_lvqxPBHR?B*~BCF zogdN5zMJ2nAVXd({tk{T_)eu*5`I-X_lvQFus2aiKQbP6a~m7wm7+T&(Fb~akY;Xn zCPIB0{G9Se=}3KINCEc)VkF1TI6(WQtPpd#d2j&jEGcfll{}x*F6APg750i48y?5r z-J+>w55hWyz`($Vwf>t#imZ+?JWjM&`&M_21ds0w|C$Mo1C*I~!pbiIKiW{mTkW|#!B~jvZ3<|iZ1*m?r#?Bu z_A>4wQ#o_HB)yaOI*9`SK|`p!$^e&kqZSu0IrdPq6coY90N4tPs_m%t&ig!902-h*sAs8xnR5T}FN^38~h~yF`dqkQ@DZ;@aHPVy=e!sUJ_Y;h?XD?;ats#@N zuo3chzuvg91b*r2P;VFe@I$u5aUTYFD(1J}1WdR%#yg@D;AeES2`E}U6jrfvyt)+F zNn|*pX>t#BJ^!CQAwmKK z!w=m4xtU%y5H z{UzcbX(=`_DM1yPzVAYRqV}pl zzYOAk`SCjb`Rg5oC-8+ai>h3qcXnXR$q+#*T-sj?=4@LuI)JjizD^6gy~rO-`{+o# zsBnP7bR#rUjdksLefiaG$K3`! z4%4Tn36EbsJs}d(t8@G@;a>|7uex_k=MYuhkzdKlyvE;TrOnqe{xPKPfY}eB9m(Qh z&40S^AJ_eT`}Kcc)FT02=qZ<=zkrqh`Dgx%yW!o;?u^h3b;`~E;@kgHsOu4B080FC z2={`Yc0f9d7FjNRWK|8E5QH|2u<9?Bp8Zw31|o@va6Tml7nZf|G z*8%d*{48YZzd^D6cdKky?z)~Ivud?9_5NeXgx4|Bq$A*==c^?{9vS}|6bQ5uPplpT zhoAxlEN?NeeHMe0Z{pDZF#$dq2$0vG;Cc;DDw>VT_452DFJF+}pBm%!+G^@X0j(Ft z#_IlEswi`=1aeNECja`b|LyAe`xTq&Q08Js7Uv+de>Lqu%>UD^cEGY{o6r2gbpD&# z(=7{{bd2qr-&Ozp0)OuO-|hcDANZUAnDH94f5`sNEB*_k1_lRk!W(nng5CT-i}MG6 zbgg;+k45_*2lFq8S4A@(EH`tW^c7|$abOzg;}>o%)`Uu$FS-C4>Q#B z^Yi7_0Fpo7ZBA5+0%p*%0{PTRH3po!cb{g;$Cr#^n{rbS>$;Odb3|wSBmueX@6XdSJe`%HwPvfdr9$?>688b>;HT z%UG98+!z=1cNaKCc!-z5aXeP9WLB_F{{X@MWdwZ&kpLL|(Oq_@jrH~RA3wO{_04Tr zdSgzBbs5(GV4wfx^2h3kh6rpUd?wT*JyiTi$Xhtr91m`%UB*_pHA52gdN~}!mP3R_ z3j6FYZ~rG3g`yQDXE;mz9=&>ck9I}tDC_*HM|W`{XsQV|kR}&=?~|JsqBpX))VIY*mvKSP|&t+-n2#JxnEvHh-*M9VaJn8bUeC-@aBv8!vuHx*|Ps<|} z`PolTcJYJ+=lbxfnk56JGXV@7p1@g%VT%2O@%k6nCWUbul(D4EJcUkDZ+YK$``mO} zajx{LNo034Fk7jA?$gbOJ?>q&zHVtbPptcbvLjHT zZf3A#kO~2eRTRx^ER7W)P{T<{Lvtf@8=qf2QP%G*oCnQ3nrtQ+fR06pd52c9j_?UD zubCzOqpb^Mq}QkZ(SV^C)%hMibx<^LEv-9aB4W7BrI}*5o1--RrRFLA)#MiGcvwE{ zKr_h;U}?~o^b}TsP#zN#-eY=0lHD}D_G9qlv#@9CJtH7I9E>hCSxglJt$*gN9MTCo zM@e#NG$lp1iH8bhDlMkL+mt8+q|nW^`!&e_FtaTg2qyaZLT2nnwz3jro8Sx^A9gC4 z&(_VwPT235NfFi>==l4s|Mq`1(uDzj z)Ydtirh2GAyx>59R_+Uu+KRipq%PRI6uFzpcu^ePotm1yl(}r_Rdc!4*baenxjSRI zv5g#TQUS$4NMie~7UT!;-X0O*{P9Z(kRqc2A;f*jvI6l&m3--Q;Xg_97F9&71p(^? zjFV&N`1>PPl2{YPOohaRiOI=qP*ZFvjp@JEGYSigxW`8^qh9sr#K`8?0`#>1=jgTurE|8b<%j&TJ$D zR1Fk6@#vPP>d(pyMwrKntZ)TzsmjNo%O43p^0Y)O3JRQe#x72C+YiG;%P-H4EN!nY zk#}*Ua}*K}L!zCW4^|l1Zg3{gHhU?3K*3ZQk2#$q52=2A-tz2K=%z#TMy5&MX1I{0 zpmZn)CaO=Ku+0)vQfWhj?c%Cx42RK;fCEy4)$Ahj-|M^SA*zM%^dLAk019s824R!} zUCWX?=+Ai`K+H*Nw>pIX)5P`$FyQWj9_~!z%kzG)g-Wx4_mmFycRhsd=(Gi}OZwuT zO_>1QS+(gPab9_uJXH?` zs2!mbDeXLrYR)W4dCr`W+c_Jrd1i0l$+(!!q!>fuZ)e?uN*AphzZxqF7NMz#2QV zQ0yO|YuRlRbMA~ukUioW_&N!rrQ8pg+9*asVr5DSzvO+lO>rL*N`8_=G`RG2XRZMO z3e+jKj;MRy>pxMbU>Pt&en1w^q8`apie0JxvT&uE5RW_E2uG8VfGJ8r{DyasT+fMl zL9f!G;*&#AfLjKq3t7YZQ!j@K503QzYFfv*R19n;;;6M>$*W6eP`8CTvd0iu{%j-o z%+NN--R7ud-vz8ZvS?R;$uQCDHi-n_drSvRhl7C4CkuQImsg1!Wynzo$N5qQFKawE z8~hsmT>$iR-atiiSWnr~GWs-3lyIDo83y^M*=;Vayeo9G-I@{FmowZ3(Zo#(WE?lF z6sD%q$Pb>Li&kD&tSVdU42xpE&|Rt&qQQ*Lnl%6(53oIJYT{!P-z{GoS=pIy3x6bu z#mdLP5<#aM1JWPi&8x1zLaAuv6T(Y7K#$vlBRG{$oPe6}`=p@}i{q1i&<@v5T^wLW zJ({cj@}cV9J;l=n)S!T9ApYY`-DoXdvTtE4 ziNg*9li zP@wE@jB`g%ngBWw>n3rR>C20=LC`evy2a;?wYwMche#jc5peSBYs=3^*P9^@3DS;_ z7YB>@R3>!3(%s|zkmS>47@DB7I6K!_r=%|c1c@4==BTwqhf>MqK{RGJqGpAC zGHZh7M7(p;XFQi%>5T6?C4rK7pJ2TD%^ta zSJAe(G{E<^B()sh5iU4w^gIc7wp4rI(=Z?scX9#B?t#*6fzERC$<4FtACmm$SDLIL z7boAUTRHxABJbD{081s$X69R$Z!|ERQ39e07(49-s`dj|u*r>q3_mZsb(lk@JmTLt z1;}O#AJD$|tZzXF`)5COCV%6KO-agpox;*5YzXJ%6_@y~gz8=_A`|m~zYFKhjyuPz zA4o4qt*|klDB!G(*YlEzcuDyDuCSVL*qF}GlIi%J^1dxj`uYNkMs!~?+~aVzOuT7( zpowgMZUGIKm>dBtlm)78j(HP~mH7Lcu74+BKm_CCa-@EcpHyYi$=qQ?2w9QVWeuuV zBBh+9IYkgBa?NGc(_^6MnGQw?`k&9ujy*gwRX=l7S(lj{JP4 zA{1KT2}^~{?!oOd)-u}wm4u_@r(R_j1TjLt(f`h(DPM;m==N8D+j>wzX?m+wZI#f! zYlcUHDGRzGPPIaH1(Up4Y9CwI-Pshk1L8mT7C;a?SDybw#!AmbynNNkNOAwyhC<6F z<^Vy&Gc|+Dvjy7oVr^=Qu9TEcwP@5HNWBJg!Zg$?GO)?;ZJqmlLh@@in8@z}L#_D| zRIlGFiBENcQ|oMR;j_`JM~n1Rrf1{=dlAhU#f-*&6TMA-mFM0wR{46?pgi>3NtgRx ziC%|dIZs1l{I!NoZ*~t$cYFhG#aT(V4Eu*9tsN{sx!a%nQLw>ML|7W$lm#zQtLaCGGmNOFh{V-z=UKcg5=R$D(YHKJ7vX2#i&`osGMyRM;}$}CLo z`<)#j^)O?~0mX;dN6cG|vpr`FvH{y7Bn%XxCo*5uWi$$OxnYh)Ws+Z5C8$6 zL+S0ce+U=!o9bZii@0tqW5M=NPR~fj;chu8V;BLK^^k--gwxH~4nNz?ERw`yoAFaF zHZpBaL7NXMnQi^#@BjIGqDZug5h=^lc5=5N929)}*BGV~zb(D4me4{D4@NxE^&d|B zY5`(^fr!?8;Qvo`cCLpOvR~GXYsYR zExEr?v|Ms>xkYhcO3lOvQ4}~~>{EUo;xKc@zMns}+ynnj;ohmC1ru}2da*ht6ns8N z1GMMQTuM4Ezq?Fy?-v1_Q>ESS=N3Tji&+6GE$ZOBt6k)90|-P#jF}f%D0U2QqMwP8 zqT@LnaCsBV;ci;KdDi0e=7RbBg+{}d&ikry$(HJQZ3~wUTs?OKvgNtOv`KNy=k5&M zK6Z}w_JL)NWc(hWnrI`qHC%LfqbBKLm$MJ2F-#YduaV|cPC5oCwdRNZ#}7^NppY~^ z8RT0$oONo`{&*>KiPxbX^)w={UDn6^?!Y8H>P6Y0MawT$Z(Mno@rKIolPS#@zOe#_ zNiX(eO|#nOS$?k907E4>M7mm2xZ7Qa6G)|))l>1t^Om?jBAc@^uT#d~>d zr>9uhj3qN>Kg(&Of3!TSdIV#J3Ln4E0``OQuDdf)h%RJ5x1_lK#ngO+WZ82t9O2l@ z1KYq?BJyD1VMM$__IB(VfQ$2M;(z~JvfMU`?G%N!h24Y%4R>u~nP28lIqkh=^FBLL z+x;mFUHht&*V0jx5Gi-!ym6KgQ}S2sx}%<9v#F>>T_f9Wq#XK-hwp|)c!s87{}LBpJ93+M`duD!iJXe zhrdAfS^mU}q|-36`X3cUu3H1C9;l)@`_6|K0Mm&Z_kdURz3havyMCF&qrM~x5l^4a zbl(D;wQdie(0=Da3h7JkI05KjDPOlpBs8;e2IiHv-Jv;Fu?jPusL6h-yJ}h;lEmB7 zdg!Lng+uGJl5c1AFAgN*)zUY0%tMj-K&hb8VOjQ$+SYG}Z$WNbV9+drK`ulHFLob2 z6*NRa1TPqF)a{E`A5-k6isXpxl2LIExOhCKYap};gQZgYoCTB1X%(nOUYar)#4gaw z8kzAHaT>xe9q=qB5fHGXn8tbIBl1i~b|{TdqC8Sa;n5?nPzzcCje!G{an_-3R7Z5Y zYNwUB1b~rRdHPx%Fj6DOn;-Y;e5N&Fs4b!mpcTLO1!@+#io_2jasjiasM4z2bLR3( zbkcz|50_o335jlQz2zVMDb19wPn0N|fvls$ox)`#N7D9>pK{%Avr^r~0!*1$^x0lg zpGi+lG^)xlX=i`+f;<=f)5;0|@b|z|7=;weqQ`W4c*G^tIy2DH*wC`n~&U*pD9%SHRtIvf`yLjjzMUMEUepi5AxmM0>5(Yl-W z8E4L*c>~k!GDkM%?&`5n{DR5(pI@a=q;h!g2wfY~1rrI*2Y;`~eHny()w;SM->T<> zl@{ODA_Oww;?IKis5rNV4@o6BnnH>ko@3}BEpreh`9}C9(gn;v0qN8w0$%YTWK49h z4zej0H*WwNjIsi}M8g7A;?1|43gt$($Xp`W&-O$s_Fr_Q5_}RFd@4;C*c7k<(>r9mkh>rCqHZ@qF%m#!w@uW9o|K=Cz@6ysJW}3W{?h~-c z^Gl$itLQw7@MbmbPX=-)w29>w6#Th;ua7dwKMLVY`Owc{XSufcW3%b_u2R9Jh_kw~<*hL<>$PSHl8#3wr1&^|#`iQpmn46Xaqja@- zS5G(jXW?Efhvfa`9Q0U=q1uRz#sjKn?~%HDUZi1NJI4Fp@+;en=c>u6vBj2oH2FVcIQ&x_17IVhNB z!WoA8T2t;-AVp^5Yo$S!;-!AOLx+XqYd`y@juc>X99|d{1`XLHPc(Y|2xer-P%*e(0(?e=875l8dEcZo8d%f9s z36tzL^H$Kx>m?njNnz}XDUuKh|L_+KfX${h|GqP|qZpi#T=M5t6cmfO5JMQh<40av z*ZVNlJZ^pylu^6R?I$R!fvO;xM-qMPj$@S;N5)cCPdKt#`-VX_AmYy=nWNsuTivSz zqN?4jUeDbtF#}Q_zs?r>5;66L6E!~Qd&dBQlkpAJ!CXVk#^>PYGF3M$9C1GL0=JLA zkJ*gxX8axwi)&wuC~t5DZ}dVN^sM=&VLQZy8YSAmslI7Mv)witjxyC)E#IOFb#s(p zkMce*=KL#&IIj&8|6%B~6Gk`V6eG-BIWOW81+ej$KOZ;(h~UD=M4V)I7a$r2J>&0t zmIdY`*+{g2NlV$?u}a1l(5;jGd4(tlEKsrr2r`bYr(E5Oq@_&Wa;&%gLi;nOD3W^D zth5l@@_{w7G6IxM3a58s3mnsf z6hR1nG+z&B0aG-wox9%7>@{B!uxiO#j@=ZWdNe~=tVusfI?Md-d+?6dQ+?DvNkKWK zAmkoP-+e9Q81&~Ta|<-LD#wU5=5m--ygE%ek)9Pn=di~iNeV;^{4cblhJ0(xoeVP@Q(Kk80@D_Rqhexpc znMe;8Hr5mVSa^m2@wM!`ppqU|&2%`x$KC!_r(y~h?xCb)l;9c}RM~YEP#Wu#Br4&9 zdE~(jpm~g)^J#6A9r${YtW& z`%ta#?=ru$XdY{AccIoPB4A&%T=!%2~40y&Li*{F>u8&6H2hKB+`w?v~OWr22>+OmR zHrjZjR995s8Va1?;h$)SK3SjIF=f$chsy7y*#Mr4I8VFU=%M%J#V%j)g)B)@+lH-k z(+b+#6rbJaytXq`H_5{GS9}FpS>O7t%dr0q;4l!_`FFB|^=MTuZ90k32c_?-BvBR0 zKn4_llN*2v;<)uZOFN~sj4g6Vr=w(JlN~=;uGn!MM>W8}|cCECyQJdd)$7h3kEuk`M~yi+e)c!%yC za=QcImb8Ga^4=rRsud*Ufg1B*=G)xZ1p2IaBxBh{%9J|>Ng5Rwh~?jq6QA@B5`)h(hcJ{>DkhXn&&7w6qtU%X@`+A<|flNn^+} z`C;p)S3xFyOTW6(vZRKA2>yplMfQYzmk-`=H@;Dmo^`xOU+3(EO9zy^wW*~%7LD>} zn@r=W^sY8hFmD4R+ns@R*My%FJm$)Y?A}Z0)MWvCA4uF6brF592 zBqHXTB9o7F;$&^*lNwb~x{5B|v%km`d3-ydoKk+H{B!BL%y1gGttm~{5tw+=(#qlG zMdc|DhHUa0owJxmpaJ}@dhbR(7}$M6si4ABlofyoD%kjA;jTM_6#um3l1?Bd|Kg*I1<@)uMTyP#PywBDU5o3h^9K%>4(x=*(myQ6rqXlue|SCtH5f!ma?i{PNNtD^zLoFx|mdsDxJUv{Ml9W`~ z>(Y8#vA{JP!=ye^m7t4H!+~dnck3w2Ow}=}14{R{CW1BpIgI0<5A{X8FQQY0A(pt+ z?gZ)|9)<*Vl^%`$A#1IdSe2fuE}s>79v?f3;Q75uzMrH6=(3|4<_#;#-~{{`ZTqg> z-y^_V?v8=7pqukgKo3_DXs2_ohYN+b`Zj|XcoiTW$oW2UTu{lSvsNpQ=x1N6E1H>>_PiB*;lD0XX8@g4YlJr7>? z500k>l);OK_^H(9$i=Bslayw7SB}rrJ`@pY@s+!H4~cklT-$=>vM2lg7yM$)I@#S1 zPnvS&-=a%4+NVDXGqp3X5S0$esB^r@YfAJvadrg`6v#gNzdFhvJuwFR?|WvAzvt;* zmO}QK=#xT#=}f-douFd*U~vw}wW`J1xMCB1nYza3G$7Tlb&CKi$!Dbo&AE31Fz?SD zWfIm*u43NE{TtLQ-~Y>{ypscx$ADYlxLe7@%u#dO%p_XWxq$eBHiTo~U^Hp{sR7T z#-ky1%o1^hp4I1jFj&2Uy7y8ft*lZXF?V)LZ$hFk!z5dCAjcb0E+;)B>e-d;;zsRb zp8`S+vw<&YPxY#GtK=_#W{BUeT~9AkU{fNhx~0YTC0XuT99^n1w)SL-c%P{5eqg}# z8X9*)zzy>)n)~`{j*i2Ry0kZvKWf&xQo{)9icGjT+F&H0;P+6CrPP?C`!-(e!>m`z z&zBpDO1xSPq!J?DTvV3yEpf0Mx6lsMO-$0!5}2Bv3l!Y$(Uh?38=5zFYIYTie>!P{ zR~@vL4kL>*Zst4tRH0R(Ux&~lIw<+`=Fda-+8zOH_ajFM-4-T*aFW8t+}Zvj6xhsa zK2c6<+!@}IZTOo0?ntdL?frIV&@(9eT+M4GrDN$f5aa%U8sjFAwTTm^UB#i6DD0P* zBJey%SeojrLl=SzuC)OGBLuW036_Cu8N&rFO&?y{A;1G)KMTYiQA4`7{|+UuV}-~y zOhRv*j7rHQkkCmkvd#Z9!4pUdNLVn4Sl^hC&@fJp`=z#z89_3;|&+=0Esr%>dW)Di#@wSS&Y| z|MxY&HCGLw3#tILgb}uqGCN@o7iOd^tHqQ_Uu2AOo{K8J^o12Ybh4=RIT^uw{a{(O z*6wjPSf~bDt)}qr0l-RNv@+8DdqI_}2F+fN7<1EtChKIV;w3ydtp4Heuo0@-diMcG zsav%d2p*=ZQT3#i(K0uCUrK=uO@`RMXJH9Lkk+6WzUb>eXgskkv@=n+XMY&kVWPr5 zZ*(DIGZaCR0xcnuI~m}6dhA&|Cp-B4TxMdT0uD<7q~dJZExy!!N!&SVh2sNh)Y3t$ zzNt8IH48Y|(>t^E^ay^{J@)WExBJ8NK0_03Lg_kTsa$UJVhg>`r<;7PnaZiib6=(E zw=FC1%gM_{z)y^{=akgi=O&qRn&6l=y@EL4_v>7CC**oGO0q{nLpfCTH^*(4=1xOH z^OsD^0J(d>Jz_h6qNT+(P%by;B}JQ)_5wBGKBx zey)6bmLmZVjSRCy9}t-aD>9mxJqZ!bJ0Sc#*QZnIx-0VSG>cRyPS}zxC%jYA|17VbB3xa10#)4+T_kl!xG?Y!9hIZ{ zc9v={>2!7XLqkJD@C<}8b;m{2ow)_E=J` zN1n(&JKd!=Jo(A9at9PYY;?8X=&nN=PgHwiwpEK(Y2Je$K{XlXalB1m8X+2BFGWcn zzR>PxkK67sSio($?5TH~joZSZLjN-RajSpNgx4_%ckDA3D7oO`4hM%Wj!D%w8*Hw^ z_%Za>+<9~IBhaE7w0ZTwWnqbt%lZP{0jHwX?dyv!!ZtrC#EWCvRAa&v_3^CG_=mNU zvCnj@(+#ffS%hqinv2~wML+iT$Wr8gd&YKA>@Dqab%w@mIVd|828$Bp-QN;T4b&7z z|E!S67Rsa!l`st_#+9mSVZOiNzrxB24GZ}<9GFA^_A0px3qe@`8qryf+9Qcw;PSQj zMC47Tl?2$RNPOMJbZ~Uc0{PLx_Wi%beh>oe$Lz3T8r*@%@=Kr7A3fyKE*BDLiz+`6 zw2TK{0;X2L9H6IE-vcML@XRxn6FQX`^ElmljKEADII;N2i03V4WLIq8M}S0=)>YOq zud*D?4yBrxGO%Q#MZ-D`Zf{+1)Fgqs^0Zj5QQ0Vm|HXe;vv~r5HOr3)v2DN}I{bKO3b%mv z{AxaOO-Rwc|E%y$RGoQcHTHcWnYe3pmr-JvdViM!K{X-ZE& z`PBxjX{QWA&zZ4td(I+W1W(Y&B&x;^D~CqW$l&l}s(!1iFMqLmi1e`2=*zwv_Dd1V zxt$s_1yq&(hZj_kDp-kmk~><=l~t5?&mZo+5nukm?ML#4_TQxQ2htr`5cp$e@jI?4 zC2$y<1)bUCe0VrF$gEu%0Q79>=#v4FkV@899A7G62ZV2R%I{s=Dm^K@ z@p0*b&ATLGHO4*2%iA;@_G|DHkI`Op!7g^rp_iNNSU=oCi6n8`Lvj%A9Tb`XpBQY~ zvpo6rp-Qjyw*^X%4;*x2B*xzLk&Fc@rkoQkI9#3-f!*wh-0(?U*22`4nDd{v$ zzf>fsk|$3^PP4crnD#SR7-CQFKx7xHeUuvN&R=CcEHFuzoRe4lg}Vpwh2jE~I~nE# zWg5}_Ui@aW4Yw7p1a`^<)^HsZ8=>Jl{#p9w z+4T`Z+B9tlKh^ONCGlP{cf&pU3We{mJR_D_56!C2zDzNF4Qs5Q*_^)ayVP<$r8rDG zzu8?rF-db@K^dGFZ|MODqva{v=Bf^}J=pEdsc3?w&$w}?9h49>-*HHOXPZH3a*xHJ zo)LzXN?$ccOl=TqKvpuJCVk%|X7;6OOwP4nXF9=#Yzl`v+D+iZl*Bgl2GxmY!usl9 z6>IU!<;1&YGA^ZA&sFO|7;B=8bR2>!((O`DoQBBGb%xjR&()LN;{m3vW1pAi<|b0J zb&gXezendOQrfb#+&V&UTA4}og)4_!r}LaKw&n~bMQ8g%Wz3`!0cX4uoD>C@jLIRH zeDu(A7kAQr1swye;|kRKY-7Z#RiG)u+gYAr$j8EDnZ$(WOK6wV_CXQ)_01I9C2{rw zitYVGnDlRtnj~hs;SEjd6!61x|tdiWAY7JJToFWF3Rcm6dCJN}x+K>dr<} z&hp@{f0}vQmGUHRq)^Sa}C0O8aY{IIc4Z{`}Iw0Hh>(oU@Z#+2a0)i1Qe6Lh`_3io@vFG zU8!hMt>`!V>_nCiL~r7`hy|4=nG@-a^*yyvZ}#IUKB2nOM4-K>CHP&z2k&c#YW8{S z`VuQXCm$1pl5e#cNdmu5FM+n=WNPR^&)V7 z27OAn$IdZCzAi4Tl8UDu?B6MuEYgNVa>>S#K2EE=h4{@;jfE!CsruLg}Y=Tn-wm z%t&uF=7Hp_$-Ph8%D_Y6JKFDu*1n2-p10Sh+ij-8yv=9`eLtnxIO& z46s0P%8g_3%n9qn*HdZqsOs#)d9a=MpikhqaJ(o&3WH=)b!sPcGzaFyGn?I|0vx;- zUDPv8_RwqxCw$K3T^@TY{q=@|0x;nF7C2qDG~G9gYpjsdi8xK-wKg`lTJ5i`Ol0H$ z<-bC;;{gv}XIYBrAE&8WTr>5$aP-u2774_m+=CdYq7M+Nr%_L(C?g2)oBi^G*>h7Xy=h>JYGU*#FZ`TIG4Zz>zYdN08*Vb7CFtUjsY1aZ(h+f)?cF>A85 zSCBg3f;ah|(WOs#AMlz(%!0Rs)=4MfU1!?q?wpJRnM87)KWma6VF9H$C7}jJF2*-# zcnnJ4dEBzJ5RBK$mu*Z*^y^&|nl6350OPEY5_W@J`SlN@ueASqJRKtlOijaJFp&mw zM7XlE<^DNw{Ku7+nJTJ={YhLJQK{D&cBLwr?-E`SrzO7%(@H!mv6O< z+v?U>j@V2#NOGaRsG#whtO;9U)52x=_v?cH5Bvq_7!9XxIq_d&1s;mU4Ra&lJb$Z6 zX;_x2oU<#0Nr>MSY->VfT; z{A8ugPl1ybd$+KtXJK^Q_>^!ALr%#7-ywuM$Y|&ALl zTJiQv#wP%^$Sh*gCv`t+@FyLFopN_n^5~r18^r)>kOnMrPktX0vZIHy=n3o}ABX%d zR1!wm7pDY3$-((sOLUQ5HoEgt;3ZR7qoP>z?Qq&@w#>Q3 z%%)8ffs5v?-gufT1qB7`miLcchfL30nk$$xt9E2 zmn6!T`*=^aRflpFl3q`}Yz1>^cqA&;J(%ci=P~fKHh?$%YX$o6&=sK>bw|tGf5e1m zIllOOkRFV&kF=C=5m4JQ-vJ3{V7w@dU)q`T_W>5a`!MkAFd+bOh*$h6j(*4y6#MurS0#|)USG{^*8jMf6n$5`z9? zyS@2m6AkVa8b>jTRCXZ7gD8Q4{Una}V^9Ja)Jdh|jVN`9QGPPZaS~mX7jJHeCx^y}!mf1`>Dx zjVw(9r}05&=*A}_@EnJ2k)-@JA^+b)4E}oiobp?HFkxI^V7++C{}m{KViuzqa{8~4 z73~OoLSdKWks_6sS4lO&P7vAtdD}iNo$R@+TDIgS53}W?G+R9D|JSP#&ex3=o6Jxu zxTmd9N7nFvj_copOLh0*Z1XN#(~Pz!Zh|9OVA((oSclob#BC^7?THMqQT)0x;Taqzpf^5r3fcSSf03@-o6iVf2@NWHg9V^Q9T);3&<=vvLplC8WkvW?;9|#BkNvsF|rrZ-o&Zt})ezpwT{ng9) zUzY-^d*$?=@B9vnV`S#~b>Uq3N@C^4FP0DZc&M$#n=%arFSBvYih3~kIKe^i(4=f_}}*|;?XZ*n@lUx ztCS_np%?cn&FHkq84VHM<49Hu^dC}zEJ$Tnk>+zC15^?10yv%8#{eJ1_|_K@Dz`kf ziDF+POAvaKOrvn$7L}Q&7VnEeY3kaaBo30S*P~h>VbcqAU(`$WpVBKPe}$}!fc-F& zS^*7+k8ya6%5CGh!z|z|d|yO5A#0|b!b+{WCT24)Mo(@~XTs}xd=v9P_FDQtreMh^ z=eRa06;1#!4c&>Zwq2p2&FfUO^eV20zUc_TJxIs%WPk6U{bSH3A#1(nkldMTHsDGZ z(EH}3Txs^oe7d%52^he!B(`ybSnA7%`-|84+jN7Ij7u1qEd|zcw>g6ERgT!9NhF=Y zET1I-LFg@l#21Nqa6y zQD49t?2)GMrU90^m42)x+VLF5vhFJhrrF@p1(bPwjZa@O{)Beod%304xY^a7rxNPB zLM9Yx!P<|HyO*L&V(!Z>XY$j?yoGg_<76*31o8qqs=Qb^lh+Q@XJ|u!^XGmBLAOD? z)>)7L_i^3Vm9iTd6E|Z+1oa>z#GN zZS+MPRC&C4M?^T{Sj^x1CdxInW6-)^I6Vtp#JH=bb+bwSQXx%ElH|29a-@aK7 zNs^=}1o-#qDvMveVs#dy(KJn0Q-n;(aa%NS42iZ*;Bu_s27DnUsusjtd;q}+iWVihdk<``OL*}B$te` z`BZMzVF`BWoob#nC*w?%r}B)1(~W`K2zSE0Vtn44N0D2qv7_DyK?hcsIyOn;i}?9t$Ebh#hGkj z>{AKqF<$Fg=AJ(9LC>Om#-3=#ry(RfP9je`q0M<`q>1zSkV)n<$BZJ~s&3{+hoQ>3 zj_{}fGr3&9mQYJ*vM6PqbW^gK{ht zJI$7=vaq=gH8?)CK;t8%ymx*71yC2%<$2Y?kI$+_)fGusK@_4(ju%9dW!bO*7kD?#wMwU+1#e z@P$UHuJgHLrlC4;UaK$^2MSu1i!QXiX9jAA%O(Y?SAttRH)VgSzVDDA5>S9MtT;DY zG1t@g*_&@s2J;i_l-*xtSzhPMaRBB;xIUQmDVUJ``O!465tlhw>Jle~A>Tz?T%`L| z=8TaqjBbw-9F~9C*XVsSZ4wkYTBW+&lZk3KL1G%nOfceRN5R{D1R9#eUGK;?8LJS` zTe)gEesA#`y6%I>%N@r{C@;aOHlGu{>>WOse8MU>l>OMY&om8sEC4rlIOA&du6tPT z+hPhCoMS-E(T>_7YBBOnX zWf`<`b8z*5b%HYG7E}LmmQ+}Txe44+5bRP$0Jo03fp0wHnM6y^`QhqvS6*67WKp;0U^`ECmUS?<~JT`fsKF0|98(VPjm#0Eb18@AVV8%yBHpz_>cnw&}dRzir4j zAx_^z=Bjsh3LL6W9^`_58wQqeK6|SCS5!6Lx^+G(E5%shM0A8^eJrPl&pl!qJNkRx z$ygfCFI6e;L;P)X%n#LfBfKJ+AoubB-uIl?c8}A0eActGi8xJVphI4V8G$MghXnaK zXgLh&1sJ7ntH+y@3_On?xi?u7#KrAgPMA8(i@i(H3aFS4O@sV@y_1e|a@U!+u_$<0cIx~|SNDK$-An#&*^7*e z@+O_O$QYF^LZRECtMi7$yA9(iPQl%E!KB>Uz@hHxoVTDRkYbx}c(Ug#(UFAk(#a!Z z(TJU$Wl<;>VyC-}5BNkTK5$ zMr7WFI=V^yx!2!u??Fxo)h1zM^AvqT*Nb7IvgJlQw=9FZ@d8e3lmI*t3!uDR09XWO zhb#vj6p$MgmiJxdOQX=#pnTFdz8tYr+SSFqX_R&z%Ky6GtIin5srCu)?X||gYM|e^ z0^yO_tm@EG-{uZpwdWVHP6k}8Z8Iz9O%S+Fl%ey3l?V1+VA|eO0TX5gxjm*xt0F#_ z+q#e9Qc|8L#i8{wP^h~C&EI=aN<#Qlj%144+$91#!2;DE{iHU z!OEFVr^Xt$cxq-#xLC})lFNMPmx$mEXP;Ns#A$_3b+JILMx6sK360ZLn>{$ciCa_6 z20p|hKTMD;PBnEp%vsW)GiaZFFj)F!!n+JzI?M1IA?7Q~vMuf@r*zYBG_i}dR(%$j zbImK$W@q=NB(m(Dcy>S4VqHl9&42CJ%ws$87BT7Qrujt5HG#{%AzLXby?Q_OAQ75f-X-hU%7T4)q+BX5QZJ!-S6HEGNzQyLqxM25 zO+-^5KC|DM=088Ve0*@@x$D0xk(ZUp;i5cYR51vb&P{h1TnI-=RyZ(E@f4{3M;NZi z<&n}|+U`LMn*Pr_P!`H1R^5IQ82A`>WH~J)m>l!FY{i?U52HmTm<&ZTn&gMPckwdc zkIdomQ~?mbLbV~!j z)mAABq{2ijIue{nl{)&{L((XLdq+8@=rx-J)3;8ic`sr8zkSnuAOb+hMW)b2rLvrI zd!6msmD;2i^7K~EA;!eL%94^v;<3*DsI~3;XDCEuQXlNGv>J5fks zk&a`D^E8npc3mz%pK=|p5#OS&I45rwdjO`O*%^0J(7T5xTx_6ON%)JQ{oo_L6PaNN z%kwm}Ei`?n>Tu*+RgM-CKjb4U4&0J_G}%GpWT)83+}<(x3jZ)3RQ-?Mx1SQYkFQ51gJ!=;%T&liz2r<}C>Cz}3Rj}XZ zVUy-?0|3Cb@qj14feAl5JWqVu~`vbyg5W)SLCE1fs;&@&!!tDef`u0Kh;Sh}&^; z4pCfj%`54HM9hb1>S^M0O>_UewXH$y1Rbl(F+^^nquS4O3+IjF*j7|UTuFW7*>RGq z(TW8wml1iwPIV zfsQ9ENoa?Zfwq2ub5qH zr3t-h=wUDa9_8lyr(1jX35}G`PRxfbO^{1viM9C(XJ?)QMI1atR_*ChA;evtyN&cf z0RihkFM5$L^)6Yz#C>6b^M1*8dO!p!NfV~OH0`f$5i_l^c~DiD*EiR3p?SEz8d+%K zOoAR==%OIAu!y_iz9nCa5Qu9tY}mZK%9PR|smvb?UL4%YZKoq$=rCI&lrbUMt4BKkApS~`xRC+3Mp_>8zb+bAz0$_Lb& zK|iOjU#AZBw)ctCoz@0^Q?4RI&|#`pY9IfZ^y%hh&9~+^Sfi>VI<04)_}o$~@`*B} zu8zb5;JJj=QD}NZl-pBtpQ+>h9r|QarE5V)ryC$EldfA_9IYF|uD5IEsPs_i|BOo| z^wTwGcF|uE|i|#AnJK*>qKI*^nRPfRHss>GZaj0o~acTLa)@v!I zHZORgmOey{6RWX-1^KXNLANK@m1#XW)iY{%qh(PJ%RLj#i_TVWrm8O&3Hrx}=Fy)L z$7e6I;=0k-S4k|BjS`$HX!R1sbH!d`+=vjqb_$)YVJ?G?cg%+JXLroBe(B=DS z%R$I?UfYZ(jI(c&@;_Q%j!XL_x2;`8W7r=2tjTU9&Amf-+YF&6*$*OhUiZDv_y8jn_^@L|p)XSUq( zA}z&jf+GU69;~^|^JnqWn;Zlbr#p|{eii4OGt1Y?@&|L9QETC_M7UHmT>7rTENN(Y zFM^r{MgMt{a2`C1BM{FuT=Bx7bcidaD|gO@!ilZ=602BDhs`^5i$@bDyuu4r%Q91b zb2*NY4!+KtH(n{aOmHJFHkivz!EBnFx$HGrQTuqXY%Ob1tb_646DLqg9Dd|6zf*55v!j!yJY zt}OXXDg zS#ugEgI&!SHA;$l_CugOCy7!rGFqPYCtyHA{!3M_yhm-2=)(PAsrs2<;?qvOS2|?3 zb{brJvK6zy$6B0=MCJF7j|f;HTW%_^@2yD6hxYK5sLTaZ+)F!K{*?zW9J)2UP43xS z#@|+{>1l3EUmgsOF-19x732&2UWB66@QI}m#IBlvZ4!&Qo$yl0q6u+S`n7lT-I&6?KEDD6(-$z4yjv?_LeOwt3G zZ zQ&A2K3d|5~ns~HqHbzRGf+-m;ylA&jp8>5ARiZnxT z=zSv%7Rv>cQSZkR(lr^Kp*`<+)^D(Tl?zK=Z(w|0nq}BP<+yTdGE47L zrdyx&3@j3=;l+Tqn4Q)A{bYzM`tbNQS7z zFvuq@ftlyg^W+Ra%?u1UGvq`+tnwx^;qFyk(w~WQBhLA6N`?oE znh0NZMh|S5fq~jpl~EwG_t)II63Y^bu{)B(osY1r2_Wi@7S{I)sg~O4tw$}Wkfdjs zS39q>NGAwFwoQGS(bS$Uf<66Z!VNHtjnSx=y&P5oe%f(3mSdGN^ZA_Q=(*;|R0^=I z0<-Guk3ske@IQ_nHb%@z*s`6?>m0|Am90uP(5#bMkM(JGdtTvI@y}%YkM$}6AvShj ziPfdqnak6&Hkl@_`+ce2f6mTt+<|wxPbd0z7ojh)RuknDOgq!4!aWkIrLBL*p=H!; z<`Xsu@7{izG%Pu2x!jfM8ME&Dkmh(Wb1J?yB%k5T@~vI5Aby#$iG*VW8J^!%O8=Wv zU8C1A3Q-_8_6x*!_^f)wgmBp%mV4o`Uy$GcX01IqM784h!%3R3=czvt9NzHaqtLSd zL)}|{Rke0u!*nU3fJ%duw35=GbZsQ1L0|&{(j5y#1wrXz|Hq|cY#e2 zrKxsY=c2&XSWe;(W?|}MI@!2_@UxE;GBw;UgVd4Zi2Afav;JNk=*2CL6Mvb@qoE8$ z%9Hk5)6j5soe~UcYop(pmzHC7m+)ex1b$^-8bO7F#0J*&se^UlHPiXez3|qsjGckI zX@M<WnAUaL8!jWBb>?QC&bO_(?|25{KEL#xZ7ILA>p2$6Z3ndG2dgrX7 zN2~w4Rm(!1bMpy=Pm$F;wyCg1OWs_s>OMxK-n>j}Su{yA;xe=UBlB@tw?~z!_&;~I zltz6-FAUo(LzmKpLE&t=J>#=h%k>L$U=3%SfONFxzSHT8G~kf1t4gFU{dwklzV1c_ z=562YF5QD1&=$L-hKA)GqEd9?GAbPxg4f2OiuTZFOD?em&rP_rf2^D^bRbgqV)Au+%ALDzqX$u0*;-TmGRb37WtbbYBvW z2!-TEnKE{2UoMPmv9k|WRC^Zbyw)Rjr;yw!uBSeVzd(1S`EAHu+vzYYG!B8hJ8?;< zKWxWJ#}*ozK2nq3Cl1H@Yl+h1$W!mSJzE#aZ%f|0KL_kFUr?+~QV4BaI`EEk;+edjIX z%=LWz0?!~PQ|n)T{sCrff2{Z)ei?Hz$bOF-+4ic0HOpD|FPH<=g^Md~kzOB2{-1H? zTb-c1*Fe7|l}+wdm>Fu8$1PRC3Fr(+s6o#^e_35&DtC6nE(0oG7u606u2^>Q1eIfgPG}-yF7E@D#enPzXWWNWUwavU zxvh_KNC%U|;uDr!T4K$VbK;s*-{+PIWp5AFIqht6Py##yf0p3X0W7!Nr8D-FC-}_UUw!L8rG5oq{0dc2+9%7s0hoE zl7+slUaXzPpVFmx6N@XqvNndMX{cx^AFVO>Ui{9@u*w6&OPi!Uvqk3l0d2!jSZ5~3 z)zL=Hq&mR<{!_rC8y%Yf{k%KaVeU3DbkqCBUC!@{S%p-`zTxSbZi|mgS1oYP&vT)) z8xL^YE9*gO*t$h;$(h6Ya+y%qsoTk{Wlx&PM{`l)}22 z2ZL4Q?-`-606@sV5dlY1qhj55(>UQBkJ#npE6o-_3^A!J@d_)HQat zjyH@PUG0v`i_0t#ru;TBRV0{R{U+B>idxsk*2a?BkE2I9b_*_ zZ&BId{U~`pnkQbT%bD2fm^dSc?*A_fiAV#PZGwd86U3p~?=~acOIQ|lWi36ar&s%AIS{k z++P{|5#Uw{t!V?LlX>rKW2s6f!TguC;cvfQ4N8)`HHd>9Z13_i-$ocfVPw3OW<{DM zQn+P9)eiIZ5Xrm?@WzNA5Mg+cES`x@z)|X?GSq7emDyy6-|~iLa%Vbm%kpgO$mo3KzhH1 z{yM%z$nUmcW=oEo?Wp2ia1f-C%f4mm$#S446EJz5uUBSxl614o!)b~z(%wY{>{d&Z z@K|8SJKRm0`0cqO2wmgR8ThPoE{W2Ex4g5)1Ao7T4a~zc)b-S}O}#3;^=x-5Mh$xNH3XIT zS!sy9Vb}dgeG-Q5cS{p=Ki{+MW;tvWtK#+HZ>H<41O?RAY^~J6-b{3MCAmeN#wJtwph3)?Q`M(AUEzKsP7Cm2^VkUkM$OQ**~KXhyiyxZtIY8D zUk2wkVP2>?TaA69J!BS%<}wyPfK+*6UGo$m{v3K`F-E@Uo$HSrDol}Mir|w^qOb^SMovbzw!FMn5m;6XxDI#{C0wgp0OLHj3aYWT=7nSP7 z0p11&P_;PeD8Jh~%p`-Q3EE;~8c==jVAsB*&6pxDyYWCs_3xMQY8S=9e4W*ocgL=o zAVJ0T!kg8m-OD40T;*oUUOZ=_8~~*sdLi4H+dp;^H88o@`MfaN_KJG&!$tq+i_y zxPsp;H|)3yd z=CrL4?*7p}yDqPRk7eLHl=SD76^SN)w_U?VzWNNGnpSDVa)!-32qd71wX37KFP>DN z2Al`m@pFAbO=nL8X=x>D&noLW&Gy`ZZJcLkB5eQ}2mp-`OWXU=sT9YVa!$1Pr4x*b zqkxrB@WEwfm^hH06zDcW?D(<012e8koa@;Og$dHx4YDVyxzo~d^on+`;m+s7wP`-D z+yp)wO|5_Ua+^sr?M`P24@kqVFh(krsLB%stxM1N9ka|ldrHBKX3Tokrf~Q{o?6b$ z4y^rlySmoc0=)nX*5&lxRl91d)BN=cQ?<&xj|XX2bVff3$P8m8(Z*9*xfqOgy%ydx zr{dgP!-pB1R8@eyRL5cOLXWj?%^?4Pbw=>xHSZ|nLGfyf;PK0!$C0fwttrhx~gwIBko zvOquxYF44t@$;qR*Dp-S{^?RJ5hvuriR2mgWh;zqzugSHFm}@{)aX49f9ypy)y$^f zaCCCg)?IhTn%Vq;bWy2MNM(C)Y;*Y09Z?u_>#}=brqmGVo@&dzefJmQ*0{^D2{7Vu zo#79C4^!*^>eu;BVAZ>LZJPtnm*iw2pEhX0ao?YL3(ymhJBg5_r`y!XXFq0L2f!B{ zn{5-fR+~K#j`pjIy({Q60<2n1}&mlt(ozS$$bl^^gBK-sEzA2h7 z=YI!8vtZ8s`3H&ARqZ@5;mM|?MX*=^-{XvZ!qBs|^l;gtDi}!5q93A)3dK8Z^?a%? z^}QI$eHHL(kG2zSuRw=Y$zs@Q+ivu?Sk);EgrF)(z{IPPO5R)Hx`|NYj~f%DqNQq$cuaadQI{SP!h~2;#GcIgM)X1M@r* z12vl^Lh&|inuAhJ4x^novlb#@Yr2Dz^jwjBrMrS2JJH{*r+N*`z~p``;l0=4dK8#C zgmZ~sD!m-Yvp}%qg<&Q695tM7R01a9)sgjt^azj_vY$Y2@wm;~NGNXddhRXN8>_o9 zr-IB!Fy3JXf(`Dvw2(GHLmH=QyZSSKOQOdvGr=9){$iEChc+@7e`#jI`WV!zoT;mR zYY)7rV6eLV7vt@X(0~l->4m#S4-wUiEo3};!ryNjm@)$=hFGM-M%sh2LAYkQI~uf#Te}NzzUJacLbQ;YzI$Mwko3lU%&HgpJwLy5U#pNN$VcJzT)`9NXt!cTTvcczt@?yuB6l{QQD|%eMnw?N!EEdj;VVTV$|OhDPp?j z9Y(k9WB$d$n!m zjO!jjm`B0HE?O`sCc1~`cG9saQqX;Q7u*27dxARk!L$2h!&5g^L?^p^Evv27{sK2_ zX;LBPZr6L>6K^|Y1NKdaVOpFN!S>gAo+b&eh0A!VB{ zZY|GRZ9P2xT&8S(@q^5`4^?HI_&l z<2MJ1C-;i%7gXy(q#+?CEhZjGF)@O&LA+Ar^u|PL+-5BqI}5d$hpU))WfPdfeE2#9 z32E_o{CwPNqn5ZZ4XoWuT*mk*&N4TX66EcPn?hqt!bEOsE6-P6)%G~QEBrzkYYs-O z;f}{-0Hq4;d;ms|E3|C1mh^l9lK@Z4&N#Lis_}9=t=b3Di}0q86R@+;-LBp%0YNaD zFz~=}h_P-%Lf3&8`Xq2@3-*O_BwMPiu2(e%Q&I)9QGkt=UG1aXS5AF}d?4$=wFAPy5Q~O}tCcV$Y{vkxVWxdzGXU zw_EhucNW@hRW-nStcmgS^@^wmA`&T!pqE5gnEt~gAfqR;db^1N$<7oVm`>QMCXCr;VQ1^PQNU4V~nYahyq zNuH3=Ad-mR@@Sb|F_vAe*jQ5djwh&(0RbXcM|v)}pfW#U?fe&^xEvq}-gjc@lB88Y zi{mni#i!txV?n$r4joV@3X=EtQMYI*q27Gw`QD5$JJS0jbqrePIivMk$6j(%`_ltk zoeD=N`dxEL!O1-0q{!O*PQ;OBj&}N`qh>fM0mw6rvlb1 z2jt%>=xs-N)xMau4p*DKDUA7@KM>z-hT4by&xQnnfVOBVAb0we#q)DOYvcyMExeTx zz!jQ-r~>xVoPgM0O~R=^{4K!(0|JMk|2>keBK;n76xEZ!NX0ok-;C3c#gOy0>_@}q zUk+aQzY%l2O;yHO8>U^pni)zqkWaRqUibNfK!vrUzU|Nl@yZWXV*hIi)zSe^v9H8j zk?hfnH%h4@I?l62SQn3j;Sn|yl|MR({s57^<@xI|2Ylox(jPiv3eS}^kUufOtMFOZ z4bNfZo+4e$Hyq&Hj;S)Fk|%GSZl{geX_`Y4{LA$c9}4l>O?vk(HP|q{RE;aoxSlWj zNt}^B05cE+3xgruA<1|!oE%1tTN^C$xR)R%V}z=PX07Chw$W z$!EDPLn8cRuphG(&qv#zZVFEPhgFWOZlm_T7S+C_8S03e2qd7o?K8;EmME{vEUS*Z zLhNqK#d2rQ+p5A2l#@)VQhM|8)YISA9r4+A^cha>1rW8?-bNvjf2 zXU#z{lHRFp=p|Zwc_LW|3?}?HJ+7z6B>ysgX^F)A3qLBn-ING@5;YS_%q6Farqdon z3O-lRXB1S4TcmSGayJ-MlI5J&ccYnX6O1m-c2?N9-+0 z9>H#x%IDThD6wp`@4ZFRtLw63P1mJTRD(URJW60s~N^ED*UKPmPx8k=$Y|RMes? z0m*okTetOzqHK*GEtn)_q|LBgeUM3JpiS7UTAUm=729>+oj9zmJv}-a?gr)-%m-Yx zUHzs-#Bwi63|FSU%Pap?!~;CzaBzp7?ryBEt}Ywww_GrCqj!CH>@{DIt$rmDnxvI@ zUMMhbeiC#o5&8yz3XipdY}0>#iW2_+_D`X2KtNP#;d~PnLqzvVKxE#2Cv1a0hec8KNoV|CE@66vG4*(P@g+_JMU73R5kN;V?V9C#_(K`L@0LwR`+y-qZ zGz%<@`S6T6O#2m>Pv0M=6gOpEp#g(MI|I2u5v2^=X3KfPiZ$Idk*`f zEt6hojs?d(z|Ys!sLr=Wz&S?j{`4)hM|`!8Cmm#hJ}1u6=*FgBe5f6EXHA%oI*1AF z@RWlesi6Xuk;$)j_r9hD-wJ}E-R0CTPTS_&`uN%}_r?-~!FkdFC}~nBHBSQlEYp)N zs=@f@&PR*~K(&TeZN)2?c_(@IR&f(LQN@Vi_>Lc)*t)nA&U z=M|2cz`=iW(g#UcHMnoFTw>m9C{B8HU_#rH#?4(R{-*3glVE(40qg{r$Jl;xl-~g_HEE*aCmX?^y ziF2M>w&V2alKV4oQREpGd|4Bal(^_jl#z}3bA9%ModsQ!t`z-m0LhU;TGnh7yL`0` z&BrGw{_&*c9&_+;hge{rEe|Zc7#wDc7mv>$z5H(DqU);`w}E4*Te=lD0hb@V|Mtdv za2+(bH7|QLL9@|mA^%l0f!a!6)I&iH4wTi}v$s>hqYr1E9B?1Z)p3IU4&NaKv!a8I zG0}2gWJ}o7Kq);RjW_?hqL4DF-`f70xdm}#&?Zpe?uI}MPty!1 z15l3qT+>HJpy#=yf;!lcE64vHak>=lKe_YqD7D9z_Ple9qwG&|U?E?)V}n@5LJ zkTgOwjW5kE>hwe*&LVAlexpy|dad4mQ=cLXxtTQvla>IJ&5=5&E=4L8xM#9x<;Mdq ztrWHI(F{f}AvscLC8cRR^=G*>ILdnPy_gm>uI)Hfz=5fhGnmY$^mi!hjhocKaDVqA z^Y8vmd&)x?w#Ijjd{slFas_n#k>>5%EjEZ0l=R27g8EnH8sL7wp?qlc0P@*tz~%<6 zB0#%bgLrDs5A@{WwU#S@{STTcS;xgLs@Z$|SMNtEt$xQ=cK+uAg(Rzp=iic>DHXk9 z3Mb}(x%RQ`RK7AW5?e4-0F-$iXk4|!%9CE3K7y`iKOsGkQoO6ew9(e+tcpxU(a)igpv7n(Vw0MDuDiV9tf^DxkdpX z0L(R`kwPT?do2r+Hd0{Ui%3iZ;I0H3{Xi>PVS15rGoGhg%$q0cZXMG{<%g;~tr{g# z;d9_vdkPe*ff(JroavWxovB{pC~_8`te{>Cd=#MgsaX2(6+H7do)bu3(zOwz4oiA%VI{|o%UAsLh;8~sb|yDAipY0tueSkpuIq^ z%&f63ro?v4b)?ob5a5Oi!AUKRMT4o?x0qs(9t zN=a9^S}j@UY_PTXM5p3qOl!5h8gL#5yf6_pU=8H~P%HW5$KQ5ms;{~0v~6gh&Hw5Q z(#2l^{SZKv@y!5lw^(cBn=5qztqIBQ8|{$Lp)+Q3U)-*?jaW`ozw3T2KlGEmVVRQ#gt_g51$yg;6!;w$(LhE$ z+B%!Casius*h(^taK+_=Zc zBgbf;tkyIba`fSQp}g=Z`4iNYP{Z+hnc` z}tSR#rB5d86Xv`pMnU6cCXE9j@GC^ zO5Q&7-$>4 zU;9(D#1E_sf(f1f89g^N}0Y=cNfuZO2TUx4-x=TO6tLTJY_4}A8)9Qk- zvYYoF%k?G7>usRmHYJl$c8Rf1Jm>R&-Lc7k7G3sUhIX zf?fyte+musYLB766fCcpgt58EX|v|kfbb?9&>{y^#QJRpgy=d49&2vxdW3=Vmx00m zW+Qd%OQU^a1FW^*Uj`hxqRo>oMTuxBux^%y<&(C_`~SU&EP95%EuSJp=aNv`sbsN$#vRZpK^3dnO+e7Q>qCyr|PtlIF}5qL;N z;aetkB-KecyAJ*B)HCb&9Pui^?|TUk({6Y1Epf&Dmjm+=+}X-lG)BTtUo~~;WFY=d zt{+3StxOvFj(AmPvFXHP-ImTACS=jCp21;2GA zKfNlM?$d>f>j`-jm<#qwq`Oo>u$H~L!?v@1?D?G^datZc4_B1Q>YU?z=G&rm6E#_l z1N?X3xT5r5$M8l#(X_2Vt5=%e_wA_{#o2BMF3QVGci~o`z%-`7_Sr3s|1W8`s9SdvE7VykUauSoFDP*-w4K7QtxmZt+pk7Ng?|b)`;|DWSb!;Zg!o;~=ny9QeXq^KNV+K> zdSDfVCn7A=Z1my_hTzOrnc|c%-GRr!%||;`z=O|(|4;}16iFNJB50i zSHeyeHUNfm+vFk=A;Twc!*r-t4fCto@HrIG^2}F+TiJiOgP-WY3G8>jqe>*kEP^{c zQqT#$IKgQYc4iuF_NdwCa^1LUK9;~tkg%^@WEpB`0(#`$^;h^{ICgYyuFw|8#%z%0 z!_@Nay!NOM>oS^uwVi;PSAsjKfqt>XY8SqIFx!sQY#;9*M)a*$6n0ewR9~3>u{@r< z$*GyIO4o8QSfH!0n49{o{ezE%nxi!n&0>k|sVk3rDGV>MK645>*XhevrYP6zwmn*c zGIwl-7Uz3resROs9xv~7^!uOwgN#T>VLIoOaGqv2lmdb?F3(YO#RXt0x7pR5Gl4OG z%wnonm+$c}8+Hr2DyA!xcFpCbpzH0zc_BPG8UqYe}g(95-BQNl@f={ws6( zU^#At^H$D?f1l{QP-fm36g+&jtfr3(4LUJCvA`?#6?f)}XZY2>@vAm-@GeO!h6z*! zda*aAPR{}udvMXn$2I_BO=y)zuf1TEV@fHT@>KWb9vVug_W@UpOk0c(gOqXv6+P~= zXT|v7ga2p{XHgzp>ZOMeibFyKd3w2}1}9$)0z*s8memkY$4MF!?U!29GO5KQMWubN z;&0X0jSMa7jlH!Ib?0L)D)GJ!@tN~N*#Iv-VpYsts&-HgNi!FV9t@k}K7XBqto1iA z)e>VIg55ku#duLHH>0gepeFVTI9kAXj4&KC)lYDD?U%q)&u#0`VJviWZrleCCh5b6 zy(%FEn5nvPw*1`!Bifac=R*B$6@Pd~Q1{yFy_mjs1BpwrTZK;wFhM+CSe(fz)Qx;( z+GG#WI_u2@P;DNbsDfr^ls4D{r)t*y&yrQG>Yd+d`{L_~DSP zEszTn8H`OBSoNg)22In5g2OFL?kS=aDv14<#6M=ScxhSRQ%n=s7L?|TbNg)WagJkl za84-qK>>YKgelGc_-_(%+hF4)Bh_1dB}9AptK(L)EEp2*rYlv)^WM0oGFH%Ygzx`Y`Rw$FhXtG-JK(NlrYA{_HuJ(Dk z#5fUa%;4B4;{JxKJWwgG*8(zATZ%9p_P9$p=XWJ}FsUkA#HPGy?}hJ5>jxowH6m(% z@r$Eh1hw8rGl4UL;|q^yeD)$H#2n}4;!a0`u71S{jZ7^!T*W1%^@uRBy#uDJIMkHQ z;Po!>NzHVDu$y^rQ^3wi&s(+K&fcBvmW2|N%~sWJ6K2q_ii0sDJK!Q5^4x^PrD8dZ zIFYL81gfc(3z_c_ulr1fbZP2K&98C?HY56jd59zN<=qHS0(+I~b2)09Y)1CXVJoWB&4HPp4DncXx58Oc@E#VPzKI*~v464Q8dDR49`1nBSI zp$3@0=se-hor@~*I%BBtSa$rpSj;nn2L|XrYuvU=7lxE*J2Ir9k%MJNqe6wKCVcZs z`GIoaDOKgH30z4GsP2?2^WaKb=+v16c#9gR7pP%3@ZNxJInvVBziNwGyyz&NKBa;- zT^_Po6ejaW_4uP7b~~&&`3`1li~|koCZW;JC@HJJ=!l z^>BpLZ_u8tC9YKbI+~yy0uU~jJU0F)djN&0G}8EEneVo??rNJ&ZQrc>}7Gg=~X3|_YG)uP(_c6FzzWKIc4#|8wx^+3s6z!2&!YAHGeEnvyHZ70OUXigDmtF4NGZBE8$saWzGchRe2te7O<};h zlC6^dfbZ~tPr2LZW$fPB@;Tw}T$A5C&t;cqlhPS8tg;r}a3j!Zy6q=TJ9#}a}V#Gs0=Fv)4i~8M3xkL$Lt$6H z?Z5N{P;g2$L$58oChg$0LQLL*C6BO+*m9bUGWzPKZLcgV!G(vbY#ee-Rq$1Ygio^S z84D?^MscnkFKYK#Xlk&6W^#zc8w^gFB})Ps+6%mKo~d3MqvJB4KNJ@M^IvpCFZg3) zrR4yigabJ^*t=uE#h(wZrsA3%7aum8q-HcXYoUZ=QPzyi+4A5x%OH9DKBwic(%_FO zJ$7?!tFXA=mg$$f(^Ut)JAF)LygG17p8$UiB@ZE7s2@5`Qf~xbqvR<5#%PN)9Rw|Z z;evt2fq^H3&ze&xw4aEEUb`c08%aPs*tX*CG5|(-fB7-{Esi@FaGUJ8BdSEsZM508 z|3sxcHBb||uMfy=~4G z)04+=yGefbG2fu9tILl<#NH3U9&P6Mm7-7I-E;(#?0N~>IBc=u&v}>M-~5Ok3HU|7 zw+9_;pbLG;fNo45z3mZ}+awC!W2!l%mLkDm{~VOw_Xf6{@%pv1BnBxF$*tv@yV)#g zeUe%9HHQRK7hj?Q}^a!fsdqjo^WIakmRJg%1`?#)8qg zoX~D#zD%od+v532JB%1|tzICz!ixRvahFPN=|Y9^3lHdZDHnrghyhV>*8K_%%w;F) zKjVmG^5}ttMHg}$JTQoGo}_0b+%o#~#AD=}X<+rSObG4EH+Je7Qtts1n89(okFmm< ziA}mWvcrriajzf4YS&jU>Z9Y=n>5=$d>)r+20&N`n-)Ck!gdyCjXD8C|Flm~t%Sx0 z;YPe)7#l5{w=Avzt*5ll-tDFK-tsg7cl0baof>8=yWUHS0ITA*q9~?dEL2Qw&IHs< zzzZ2Wsl54I0~-Ztpx*?R1pgueCKgLsTid|b`KmjXF9aV&XlE*5Z;(#&qMN-v8wrFS z2$o#*vMYdWxw72;Y^ZJYhmUxPN~gy)pzW?CVWDU}V)xqV>Y=18B?P4g&s{B`)C`G8 z42St&O^moGp23HHiuB;#Rsq}<&~7q(>Yx9#mCU^L2#G_5FcmMw>*R=3-oe-Koa}}H z(-Nk)cz1Z){}@GKY!e3+weqW$nBn%C_n|=+Uhp%<%1PzXx5#ULS{@A;ltu!>%;D}^ z$btUv_r!r!UZD=T(cco>@4S*CKt7=l5;U)~ z=_jCzR*>(={|1;UM-u{-u?>ic6>?qLGFcwX%oR1*g)2kZD(j=4QiT9y zR^re<1sa<|qSaI}AKk8GQR`KaBw_6!mtU3Y*nc<;Ds2eao~KI`2U@dQUnxsa&~A}F z0PX0KO+Fwtwo@Uh0|+|a)8SwwzQ;TZQ znf-m>u>6>n&QD_RRtvEES)wlqDYA1#%5(rEerq-lmLg=%!)nnH|LC`8M2&i!v)$Gc z`riD0AS8DXROgxFitu56Omhu}NZ!!MQ&zQ!c14S6YO z6I4B!@%DzSDyDxBu4U;i@TW+~HoGCO7UdH8TEdyA+>RTOdbG8zAH!V1%|8_rqes|oL%fH0Id-eU>9AJOwj+%%`wv&l)0Nn*nECexgp9&3#0d*vo*e0=AN_{gVHFzrMwAczUMeVjL zlUGrmWe$N2QL=%u_>b7s%zrTrngka!r6Bh>(9LzFL>c)WH>&7=wW}>NxyfSYbRZMz zXL{DOO(|%xz>f0VT34{14~~tS;v&nL7{USl+LVZeqzV@VQVA1MGQ*u zs-DiPtRO}l?+c4-QW#80{^H@1jQX?M(dvW`=O)$OCptzI_7|^ttxrmR`^KxOSy&TN zib(zKO0o+(U;5RR;S<)8kyptly)T9!X)oV~=CT1C8!2uic1idhgrUUL8ts+Y4zkO- zZH^0Gt|3($v7;OwWiqW z=5v9Lz12IawL-Csn%{bR7yk@t>IDxUhnEP3UTk=c{ID()*;T@8wP<>nY9@GMZ&hLi ze-c;9g3u{p_kDeIp)6*8_hz)q1k>EB7TeO`cw^4^T)y`mjeNIW+12s z$p^9m09ky|5CXD*RoKtG{{CuW^h^v!_IFMYIm)z`^5tvA7s{tP^dW=gT*bdJgD(A-u#gQ34lhm$vRAC z73{jzQkA}YCgpJyxGO?nF!h6{-#M*Qs%L&7{mZc(q?jgF!)~ybPE)x(!C$a&v`t)M z+yRrB(5U`s{!_Fs(G?>RI?jxDZViHC$|xxp!7x<~^EQ zWX8ubA4Vnos@af4jv0neBc#!ns|Z39YR*=MqQJbeWdyNkHrpNbx~8;iyigO7;|#nk z08(YW`sm^|`(5FGUL`Loeh(FJA^TIHr#UtDjCdUbbz8592SUH+`}d2bJ(_N z?^WLB_XpK_P}ff1?8=T&DBBXZu`aLe91V1_JWR=v>H;55_cv15G!$LG`3)fNEt55H z;|YvQ%hEIvkJOm=;-PUvhCYmKqk3RwM8>yc-3pWhHSdH93=uM+XNPGTg&Oi=>*wD< zV455j!4ek)44dFvVr?53%*e4)wX89?Jt76{414$gxX2erF+YXTf2pHjOPEq*)5;GA zK78#0Q{Ho;#(N}Sox1I+E~Nl!t(%>waL);k>x0lJ#8Q`me_ zFe5Im?gfSBDMHxMq=O)ah@=G1;)l}(Dj)=_MJh9-`bhkWalDm*>hY=8as#=^Plx->$~+T?8E{S+tX6;Lpp zjRr^;r6ZXjDbt22C@v0Imc3>D6jdXBy2b>QKbfF33(tVULFy#Eb$;EWd z<_m)_bkqB2mHDk*230ooA9HF#X)d3UFMn?8B`hc3b2{3(B_H|t+kAH#ml}dm+U1n~ z^bACSl%jhiC<)miDI5^eWU}g}I&cFNt@*mgMUHDJ5td^ai4bfHGw`V zXwS*%33#`aXyoj*UWelRtFU(;$QTs=cEGYFL7fy)x-LA5`*JFjoNSGImwbx{0Jmfp z`*LF{_*#9qTA@FWLZ05=Nj>f$_J~bpIk~Z9k&4cwScSz0xG&EBJaECp6k#_7ur3+F z+!8WbDGWVdQZodY%8%w{?mZCx6AozDSVxm{U}(ziwxN$4NSTAwj)STMfbj*Vr5VK+ z%9>-`XH8Gz6R;g+c#B6`V!D4zl%|=UD7t>RQ_oy_jKFbSYKho!|ERn*QlYfcg~2P} zB(hR&Ub!AH$Y10eRB1UTZT`e9y$P+TNN?J*qu#06BrFJlqg8&_Id)t~Rrt!w2iM~9 zQl`0XlQA-MX+bkn@^XN6d9WZ!x!|moIW0&GnSojf!+z;(ybBapr7YXCjZv59n~*EN z)^lv1j7qL#8n8>Y82m}(X9LO4qBy1R6YtGg#~roB@+UC6q}9?wV5UaWgF3VH@IiHl zS;m>uxo1*BrDeqZ28G7=#IlpGj$@UQ#GZyGWLxujML3}l&2csKeM7%)VdRK=79O7h z5G*4WHQeq~0KM5K+* z{5zel$63&A9u=EbjfzN}*>)JW7CYCY&YgA=jAYPxI1WzpUDt}pix-$ER#I@A1%0<3 zQgPNP2B-DNh!*e+md3Vr9t?rwc>>RUhF$f<_4O%ZLnM%CNUK_uRdh3@cII0u6Y`uU zX=n0f8tZnd=qvd?WcmcjL5JOio+ID|>$48Te~5M8o5!MtEED%@^-sJ0Q()tWP$A17 zLtwc{FMhrkrIaRS5X)u639KV_?UX~_Ug&i_Y+$_qp#E8h?HK5ZsBCP-3)o+&$J=G3-4{q;rebf zf_OSvrP4NNaI=;fb7!%veTeCy4#$u2a*w9~Bx3`C90()Um;CLuK4LL@%YD+BhCTmm zg=#&C0H@Zj#R+lrJ!(|DyFKPLJEiUeW+!rVC;8fCazoEpKv zuG0(ImtQ|K@L$t;xJU8%mW-8d9xsO$e{OIAM$_rkQ_ncbc+@+xLpPRg|Cp%sW}rDQ zLL@(Sc+!<3&b8QW6n+X9j3DXG3I~3R!`V`^zeCsewNS1>ckl$SKcYL5NSEpcTfPjUP-x`p>e;eM^x=10*`QnuK0k1%B>dAsU!!=c4{k6sL?9fCH~!(dAE)2~Mz zciFvv&EmR6ibbLRet_qmjnc0S-cP^P70nVCb_>+~>KhE_aoY)KEVv3t66XI~KZO+h zpBs)?3jv1#YC8MN3!kth?3Dkk4M0kM@jGY+eSZFHPn#qf2)Uf+T>~-05OF7^P=iZVL(Q1_Q{FEaZi>wJKAm>8XB5Akq-RNTHey| z2aCr2<Z)PJN9kh%=ZrJcq{I~g$$|8+g30Hbl>!|&EzQ_&1ED}WKGj}OQb zEIt1K0p9H9s)*=;kUyYyj;0-g$L($~wOo9N3ys%7Qy0}!l`ie4LYt_fOeihrukIVz zL;iqr(Z1ZDy8tvw8&e6)e*(bZu?a8~zdz&f16HffoR|hiWQRs|{g?K6uoDY$E|9#Ic z-!(^oc9LKL-2XRvG)99Y-e7VXR$GeCS<`}h0d}_sxAH__9SEh7H6tNvub;rV$D)_@ z;hD)*S5HxJ@X#MM086ovbs($L%T_es!WsL2hv)x}(I7Ek`ma7zW97X; z+>QV2pR1ijGyq8a(m#shQZ5HO^&GdR=}w2sm+i<-e;uh}ZcJ9JLO1hvpDbjc{jWR$ z47ZSAY{$k=qQFtl7v8i*~twxuWgz8$s)7@><$hV!2 zGDn6gTFWgd3idg*cOG#Autq1^nzlUXYHpU5fq2wn*^{|IbnpjwL8jn;Pl4$IGz#pS zv8~yxEnhBOVoa?EThF}?t7BgK%1Y2`K^UP6su)j57N5hB}kmh z=P*^tsHR!0FI(=xzQO{L_-;!oXM*frlnU?$=_fT7nTvpOK9H?jKy^<83ERIf^JK}- z#Zj-{+*<)dH^45%sN(Y~wJEu*_m|*vzY6z3ei{r8``y3FI;A!VV6ZB6usOvADDrVY zp{P&`_>`|EDtE@6y5)iK^lP#B0`L(0uyMv8U2an8R%`5e0DSA2P{lQ(6Z$h*O#=&M`$w9BA&L;o#=g!LujG46G{|ISWBrKs6@J@L@-k0rP$nle-T z4Sje{^eW(3U!9Il6ly$O(AO6@{$0Xb<@J1sKg!_1U{p@zAQ{DhBHN#sLr-$EC{zJ8tRusRP9Q)$nP8<|XEc7(982 z+k^z;$!%J6RXL%xkZ_5JpKr54|HAart77jwqpl=wuWk*strP9T#3!pw|+BuIeNyfDe@SY+3~diN6( zc+^B#{v)dg@1A=#f8xmqNZGsA#b3VNg$B2O)T6zNoT zg<7nQ{?Lnz&u zkogy%{+xYbAgqaKUco4%%QqDj?kH~?TpwFoZj0k!I}zk7=XM&jsqmev%#u%$0aiQn zMz+9^$Z>IlibX5yGa01Uwp=H=6_Ubq?_#q~AVe(f;hd_KT5fE$$Bx{ucioCVjjO2^ zAG=l6l*I%fE9Rpwo# z9tWVcMH>7^vg>f4Qic2GasyF_PL*px_1RAQPCrZ>Y6bHeM)}*mah~gh1XQy1PcaWV zlZjt+cWqwC^6#C>^7{%t?~7rvEkPTI>lpZ|u%>#!iMyS(wkL-wBPqI5DwC$-(^FfM zuYa6G$sIr~9`7>k((^z>y3Xv(x8wQo%ilweAVKF+Jzw{n7NH8~p|@?B_7B51E6_n` z0gM^qYE<@Y*`8}UqPctYmf-h!k)pP+JHPw1A4(OJx)*|LymHsf?6}2Frj??oj)`it z?1ue^T?%E*k<7(rB<{Hgy5D&t#vf#l6S+Oq{MIFFkbK(eizdAix2f86*LJt5#aOPB zga5Af)Ac}%0BGS^Wq%I3*Wkwebsw4WSRtdmEE_Q@*Emz?WSKgkAkrtVN(C^_RPK^rzqxx5Z=w z_hC28X?}0PxZCq^3U+L_dh1l~9#_SH4`;#+TrW;--M(hLyylyrJAC&;{x*SVHtrjr zo@J=yGzCiJqAf*sm2X1RUb{D}rVn5rNmhFwPHxXJ&6kR$D1sT2?aU`%mb;Z_^Er66k!rvOdcX1$<`bP}}*Jo%U?wcn*IC^xih3}W}P^1`42tDfr$d{ly5O9((UOYDR@$sR^-iL-9 z;i{*5<+rn%gO8`6n);(!BdE7H)!snt8aKug5N&arj%e@v`o(}qBpgajyG1A4ewZ$c zCp>C<_LkagE9{HYc8rqfEKk5WF`>pA8vbQHb7w=$2JQ&k<{kpg} zj?{p4g1LUQ^z+TDFdN)*MwHNR)IB8W*wkHziao-Mwn(IoCm4?PrR!;Xt_DMQiKhwX zU6)4W!S1>4^TKa29&;Zn0$!uDX%dn@-C#uTDd#TL&d_ zXR#7L{FC%nGCzFz6NmgP67=+Mx7L6w*f@K!6}p@IrzMnYvf4E=)7-7y)73#wp2Ac>rw+Ff(2kcVHLy)lj{!-O3?P+=Rb9pzSabvz&J*_t}3p(+h;( zjRf5&K^?s#3PtO)Xh8F2KF9(<2sI6D&q{7w075}|84M*#CisW#xMZ62VvfP2IV6&Q zv;2l%Az6S)(}$Pvi7_B6^Mi#5G@vTlx7D=H4iZo{NKz=iN+tmM)AW%J3=`d^NV0|t zrmYxG;x_v-I~cE8>ie0vDm`H`vRWRgFX-@(nWbEnPZp`#FfzTIj_n$+k9%H>05x?VRpeX*wOpZ&nh;Vlaj~ zw?x2+B#;DSf|A?^u3DpKSFQ)tO(X`EZhVcibV@QnGCMDd$Yq{8c2l{@K%=KwT)NoHm3f-EL?qTSX2dMz^7Vx$606GZ8(H58bo|Ody?1^^X_72$#Ojs z0X=-S__*s>2QG}}nkPvMSPUsGA4(fp9r<7jKg+?En+`c?)*7Z^P73}H#rpuu0 z)HPjli$=s~Q6Ig}CPn-g9u z6D%uM&3tB{Dlfk6T~Eo^huaC|KkCqB*Do7M(Sl#^P7nx%6?Mp6;XHXa406lQ0_=2-eq69kMGICTC#B$;-GCzHPvy_W(B-1HVAp}7yCTp56 ztE%6eQ45`yYp?TxAr7O28$(k5egmh0?UqI_$O14ZrPq1!i8HUl5$d0I`#BgUiH)f2 zkn1%=7{W5Ef{v_X*$p3do4X7#{NPO}bM9T3Ms~s;#_V~fbesOHEKU=b74lz&lElMw zc(O*fDeAP(8z`9JTzDynuH)K&ZX@6@=3SD7M?>r7!)rLaH@w_3>G@JZ&122vcVibG zld``shGRKH3y)XOt&V~S@s>>txC)@H7NO>lnfQJhyjSP+`?F!dI>01FDupc zVL7*;bIHOaFMvCgYboh2#d$(Sxu0L(myk`L8X$H5ak@0N=TJP~rU8c#4Y%bMkzQRD zetfQ0dAmuV^-%Iuo!1E8E7ZArQD^+QC2lm7)mo^NUM*^F|4@>jl+!Q@aD~T(_E$w) z@6A_!=xRT;ZZ%Gr8Y@O@=jT@GHSAWv@&Y^osKIfqq?i7LS46xbh;n;G|AQI zz=fQHSOkar38b)34kMA|NAeEYW)9^>*i`0}USDQ+-5PcsPjunK>!WoEbr!%i9QHiD z;ky32!^@iLsz+HPXJpbAfV)Qlp-S6_TXa7sv_VG8q&uN6w6e3?m6G(+hx;bFMUhq| zp|oq@0yIHTW}kLIW*c>b;<8vB!@jfhQ@ee^-NPOuBZ4rNg}l~30=jKtrTHV2kvRc> zC_$3}H0OL*>TIX-a}mbrHIP3hBJ57Mu033hT(`-~dtjbh5Q}z%Q9>*a#KJ z8gORE&I%C6d-HR{$ez(vviJM(!* z{Y{d7RG0$bv^^QK!`s`#c6`k+{>u%={^{%e(U8l=v&1v3_(z*y(osR?12|B(G)UkT z%f!aIj4FvsYA_)A!N3Y<2xEV#Z>1|(q_ncaw0l}lZ?{4c6U1^m(Bq`$aHGRPFH{c7 zcF>l4ry{Ocw4G=AD|s#r#iRxfPX1dV7C94GJX5KeX>Ad)fRB1Alml50<-8Q227zZG zv7=idX*$8>XMjlMgj8w7_&rUnV#=yl5u}mxY-&i4%#!Tk`4ih;&B|^@%Yn!eho8rx zDve&#?C&zoR?3#qL5gI&E;%qGs78x}B}}{lMmZ)P{%9zD_=5=}%*rnmcMz=}@v-B^ zED*p{HEB6FPDoYE&Q?qqs(0H@fjXVc!F;cDkkVgAk}^;6lhykar8w@B&8hED!&xa( zvKodsx~<<^%y@&UkGtEHEA?-Cc19U1UQjo{To^?40GZg?cU|Z;r4m3NfQ61+`EQ-fjz*Bxj>E!wSf*0)4LS@nPqb2W0>P{C?<0g5-tzWwg z=HY52rh};J_F}$Osqg9{+B7jpx8P)HCQL+3e<`T4Ci5K&B_GW(oiTGvd+`h~t{6w$ zrKAAkOy>{#P^mfM0b0w1caw_XnQG}=hH|6~FJGxSW}oYL(q}q8=Yn`fSbS*cZs9Yd zmf%y%s&9<}jzX`I%%dgZ*X}skI{V&SbxjH#91h`~@*gLvr21zzzbbEBdMx_2p`ksR zjR{~LuIE~RIOTmDbub_iwK9!#S2*Kr z_0VqGW7Nb>>xDF2CAtkR*`;60h^J~8L6^-HH-nnN6D-tk;ON)dEDn|0e$|mTxYK4c zxT^>hf9ZW;XK-1M0y2tWFbyHK~|4Ta8`FT?@u^Eh|Ylt zEAtLg_ASeu9-zFlCuDJ`#}M{hiBdZAjL3h8DFK2GT@w{teC(LcB)`S+#`N0gLORMd2AnCPADOhY zfj*NhhDBsEmpm}HQ4H$)xJzEZ^k) zhoBE=1Vx*jfRWGk@2enRC|#xmz*CPa6a_x2pG!V;eXG*?|hnWh(7W(|3Ivw}Ctny|%dekhuxETWDfh@*l^KrHry7LeW(+M2( zhM(qDGYa(Q+wh4n_U7~JE);%$7H4u@9fYGi}}*lmnY3!ed;f2{HuO#pd!Dee zpA(Q)FaUwWt(A0>HER&Mx6>VW{gx0qD*Ud0$IDzL1Dv$n#w43zv+N5t=F;LsRsM+x z)3A`;Dc`f@Ot_KKWskcY4;Kgj>3aRMS--8%kO{gS{4fp39wXue8f<4%qMkEOA>W16hE6^;e5$xV5MUR_0>|ccSd2ei~2Cgx5l_qfx>v{9ZruG2Wi0T@==5*! zgRn+SdGnIv$1!Ww9@`O7oQIZSZO0T{irEvvjk=!#0tuqYARdcRvX%n9Iu6&>p<m%i&+iP?cK$L_-9G}^!Mjt|* z6fdO*#@sAd-@1Z6WCaLt)aPxio&*?vpjrMkxWb*O*hb?#pVff6n?#d=`6Psf8ktH8 zgX-FGQ2Dy0GWQ$y(hP8I`ll1t`4r)-B!xDCE@8M*d{$%nQ&xlA1GWPG-M4j2L_>D1 zWxilyYc5MZXG2u)xpjP}NYMA~ilq%G$RoS1@xQzYTd&1XNL_%gBPQsUG zN3@^qkG#JuT>O~uE&U43wSt2jnOX#)SAmbVh9X6lucJTCb4==8l+#ZaD>|?HA))5z znNBJBpBo6z{pdw*ShLb7*xm`KgfzsCkLHYP)?YXnSQszk3EjZC=Fr<1H%nI^19GAi zPu=Vm03NEuq(#MBXp*$jQWVI`%+v%zk2l625?Tu42Jh9%BAkrBWI{I~08A*tRzYjq zYYd@vO{?L9^VF}!mod5MR$Ht28?*AY@$Xzek>fTc3s&+`56YW9&&}-|Z;0woahof} zj5(48f3j!Wnn9jln2b_QR6Omion3()&i)$AGM9^!6Z6f?Zwl>5=_-tWPKc>`_iBg7 zdm-?{z{Q~St-J%h@UTVK$l_s3fN~=>U1V?=c!RTdhDH`-zyW1zB(S;ln^W~==DV;n zB*nc<;ZwXTTQ29#32LU={YCN}g;MjEViu+$`)DkXkn6>>!nh!;c#d43(UP4^eB3^Q zb~EMo8MU5NN*K=N;UUHVaIz6=2AJcWN`+Jj9FUEco+fsANP@f>Eyw4qjvAZZg`eCR zst!iGgy4>VDl(Zfb-H|Mvjx?;DS4hq+&90~!w%9Ca+MgRsCQFoi1x7#&#`x;?|l#Q zawr7L-sz$PkWCQ35!2@Yfx+Psb=8Xckw50SW7io(+>Rlb{0_f z`SI|H@puwlU{UbZVTpSNA&UJZ7@@6k6Mey|gqQW^`c#$c>Y_=DApcS)SFrhTg~MnyU(^1CYLeLcWA?_~Vv`o7 znf`#xCJ+ZnWSj!pw+Zt9mN_U53&5v}73J6sYe#$??+C|E=YBDeRTnCHQT&q=zjz%! z^-}lEOJLtSaJTR$^4)yr20Nge;l#SnoNYt^RLv6x@oR4DB0eh-oyR6cFbcu-G2*)T z?QEIee6-^fza}X>I$Y zg+w8mnfCf!4j`dkOV(L@0=Wa}clB9Jx@mjV^AfWT>lR^thp7ibGHJhy-^Rjjx1n5C zMriddf;x+n{R0A93ny#r!ZaG{Ve@eo$&cbv;BC_h0v)mj)olYtP&n|uR!^vais)?B ze!TwaS1tKd$6ucK!lj zFx^RWK&mr(_Qefd_*jkc`j8P18iPeJ=1ulZUG4=cSA7^>L*Oe=e{&%Z0Sgj-ZGt8O?3G8K&iqn3#M1F{y6L^ctTI zurNvQh8`d?{gWR&>mx86EY$39vl#g{`@>C9-B#S;;&xwJfDjPZ-z?bxiBJpC!@6?) z=0zXsZ+^A>WR>(K%Pd#tM3LvrGFN+ZdriDrRC?#m2|5P3!boaN!2hCmZ|nz&^1ea# z0TdwS%i~q{IOYkyKC0NQ-*Y3$^;hJ7e+@5*doo$A z2XbCoygWae3wWkwuGPB0<==noP5|PnOPLeTSx_sU+aKl0GF?x`y+BmpPu}?YH3|4ppIY&gcP%SIF*v8NeQTbN zE0R6WHP})6Bkz7y(v~!P#T30*ZlLf2t=w>MG#JAbsEI*GY*<|U z{TVgt;TU?%UKt;}MJMyNrXw5ib_L{}k3V9f^uEMBPCaFuqi!ZbotpN`9E}LV4pwWcG*tgZx z7D>xr4z{#WTb%gvY>>avo-B$w8Eycg8c@P$={B6!qxnrLNn#8q3udo>7Y_^%SoPb< z&=zQCYpv7dkuq=5ypZGB0$Yd@XKYkdNSX~))tw|@)SSR2s~$gUrpuXta_LSKB&T_i zvoBn*2FJDNPL9k%7?C8s%jP+ySO^tIMGbA%S>WcX3GrX?P>H4SM-enS&b4$@1nS(P zh~^#1ecGbpmX%;%QifTc`+TfUSI2W8 z_%MN6Zw}4_m{mFB5@B8g4808#60>p*49f`mXa|RdduygvRtkxML z+qio~TV{JlyuIkc+v^``BNp0Oev7Tq2WxY{_&SjP+`uJuEmVBCBer;MO{o?re@1h5uo?Ldf#lz;uZh~u zdf7oHIEJcDtRh?IeEga`6#hr@fJS+GazC9gGo>mkYuEl@#m0?>8CLDWza_7Zd$2Zz z$a*j4u_fuX(P+0knx0VRQJQ)DWIu}6YHT7|Z}{6V^Wp!;L9xcis!{j~@1FPm64jB$ z-$tVZjfOv%pN|c+p;fVH^A03aD-)6WY!ZOtirzMwb#=Pchmr{&}7 z?2ACUZi9a9!II*BSYaHe^pjj0EZAB5{GDl+d}pc%5`bu-vBcDF;n`a{u$zX@F{!k2 zN51oD{Z=&3R?6$?R@yl*m^Um1KXkzet)eoPhnGhZrGMK+!z=t1F3W z_0MWi9qVT}XEcXig~BkEsM%1E)ep{1sv~2{j^nb!mK~kx?)BJb<@d{N-M&bDBpz#| zl064*CB>G5bqa@d(0{?a&u!^vWh9XBF4s5U{UTLH*g&pY2W=_)IA5toVayo-%9EP6 zasNB|PB9YovkUNeY#HYo)>SW!JO}*7pJnU^TeH8+fbKFag#mQqX6=0TNWl<5Zl<$h z-OaNI+nKcWMkLO!XyR%5#8$(G2y0 zd~uJFVJu8CK*}OwIZ(~u7i@LNuH@w}8ToknT*@3zes_D%a!(#G_Pgu$u+`BJiPVNV zFE(XDO9EW04d7C}jg(2ZhK4%j`ga30z>%6WUB;IKhzpAcdHZ{}nYwKv&=iYwQBU%>=H5Cv2w(HC$j}iUj8yKzGQT z2YB9V>qG}=`}{2NW60?w!bj9Qa$w^iPiN7lQ0ck{FFKzB2`OJO;Vt)R->==-Z16r0fJ#6sEyZU-5qEFX0)E{& zQGBbE?s}Mg(X%f;Gm{4}3LY`FY8Mt1tgGe7AxMVnr|=L@AEflNZ=nZ0|HBSWaK@#Q zJ#?YSE^1TAb#=iSWJ>W}99ihwy?!GFZp5U_i@AQ~H}H5RKP^46{OC}kBLFOGd#FFV zG%d#M3EfRR*~;M{?{93?Mr+BS#(jJS@QNcwGG~2H9BVC&N&m8*!5A+`E%Ot4_V25$ zRs}hk)g)?L-i()i&VvF<`K}A!Br#ZZ2JiIYUw}Pv2znLv_+Vx&_D$tKuVH_d>UX_7_l=+T^)a5X_jmfzW-|Odc%t}1wB;hLa zw|U-2wIxWNDImjG-<5tVgDYA;*IpLi{T_t-+1i-p3Z}!|p3GkWB4@^U|Mx>o8Zs$t zzt~nfw>QI)RI85r$Y%|&2Ns|u)mSAJE2Xokrm|5>aJmOdy6l-qR9{VVL z*S^RTVL???HRv(`l-E=UDx-Rzo*(fvw7`07(b*RZ4pes#jFcJ@_Li_gn$(TSn(?;b z=uT54z@fbz z=c)?jo=DP^T+wo0ruEK7yk0M3B$KM{V^GdY!Hvk2DVH-EQ$&UIX5M#Bkh&M|82rZ& zYl>WS#_;gtkPyCQGqnMhBDLyQ5CSH3jfDN)Y{zn+F-bf8`mm=Lr42tUYzUyOm5i;4i@EW)El|js}&tXQ7#j&P1 z!!F{Qz7Ws1odq35x6`^Rp0x7-uZnKUHE>*PjJ(sskoHrUbBlibIHPEvx7ka7J>C3P zpZtrHt2VtK_2NZ!|GNUBtIRzh%w<_;Ab+K&*hChf)iYsBn+BBbecMb)iCKzSLOb^c z9}{!y;O0a7mItoZzI0>Y)h_3~dIe6hfLtqv8S&6&Msbs)X@RjH+* zZal(tDo^iwA+Oz-Mtc;?+(;)6x3E5yB^AD-CZ*| z9rcqi2Eux*&s+bFT4;rYp9H80r7X;rpTaW+7&yu;&4m%qF2~r(Q4$+LEcDv%=Sz@F zp7KNj6$9)sgSh8Wtw|vaF3AJRGeUo7Vt>aTeiHQ8mPXV7!gT$qsy843R{5S+FL5hw z&qYFme8jneB*1uR;@=doAo6==vb zct834pW@fwk}WlW8?5S|D%R6qf=_vjwRubuo$!5AVeo+ty&=U##{QYG3gQ1z(o2Bs zDc&vF%ZH$G9Ebl}g%yK9=lnQ3-&gsyxA=7hr+WesIQKY$>E%?=?3;g|;IiAbk2Uzo zJox1E>no8z!bol>r%E(`T1c50tc=RO*0eVe(#r+!<;G;WRx1gf1Bc3vy<6~?2uxjE?n(2ondY;(s(_>OL^fEPA%{6_Tlb=lEx{AX>L?=UVy4!WACb=VZ8vNINLA>s8 z`-T)8^Atd@Eir#O1-QLryF_4Lv!?}W47~})`yYWgpXF)~Xo+1}|Ecx&b51+~pYwaA zGA}XwOAGj4Q-KHT+St1Sc=#Fk7AoHX)v>)}f+hW5nzkg+>)!#F3-9H_V#U7>9=C}< z{JnCQZ*}#}UBI2UB&|Rrj#;kF+y#G6)o;7B@XNOXx?8}W>EX1E0T+0!kpqDJoj#9C z(V^do1^=opz@nrYjC{JZ1>oyl1-5{@-#^Nr--;C~lgLjMC?x@X^AA&4hnv%Ipr4o7 zl<5=t+philByEvyZEuGIW6Dtj@{)+>cX)N_UI>sT|M#S!`|dO+*PDXK)b}JE#nBfJ z(ABSSh#q2rCQKAi*1!56LNfZ1v48L^RRU8!84{^VD2p+_)G|wDH3C@Z0{AD~Q=#jU z9syo?`Gh^E4`bD21!q>(J4s3XGMN$tJiBjlNuRTHR^5`IQNRJ>Cy9S2=b)QPBClQdjQoHfjHg&?%Nmiee>wIZ_KQ6dfVk|@gAdZ zh1?e0_zaU3|Nr}@K-o|GgXi*1@a@qEXYwiD_{*2#{Uh7{|N0j~M1TK6tgDsL0NF%} z#+cg=n&1B{;c*49FzAO14X$s_QUv8>v@V{oksPVUS2gS~eo#T}MKGqa2Z zouI0HlhN*vZ1+LBQ(25K*{PwWQI_+E_eQ1hh(HVx2j~EO?8!|}v%6(Ygcr#A4G@gI zH=h>BT>(sB^wPL9=#RHRW>%=Bs*2`-dkqd-D0o?Fc{L#a>5{M=(W`8hLl0=K>Ht>b}(M z^>$q0ZB&P*iVW*k7KmM@$#KB;1WoagVgEiy-^>Q@MK_Ki$?$658yTi?PC&i8CTEB0 zZU9CK&95Jg0^ZMxZ5F9#DQv5m%^%BfT??<7HJ_J2KV|=GB|!T%w$%J{C{FR&tTaM* zrS^}1jTx={C070S$b;4T@`lYWbc=fL$6UHJlK3~GKEKymCE$+4 z#hu~V#ebXDF7UEN^-q1<`95v;_5?Iv+QIlP#m%`Atxtje_nj~Qi)aCh+HKjo#W}uy z$2zvzznnde>d1h6R?!+jOdY9gd{!o zRJ%zfVoIH-RTK`QjB8x5lwAdEkFKIj2;(J^A zWRr#;#fq7{7v%(1!XM!0BmAslBK};o>-HeheL?Km|H~UAB0DpcB(|YY_ zTzMrrnCHB0$+i`Zzk=qtH+>@632hyrZVs%zNV$m{d|_@{wr&Gv&`L&m(&Goc5C6|9 zA!1-i_3YNM_eOF&oUj#*VzGLm3H|^ z!Dot~tjPd<$i7rb?Ct&ieePS;z~K?j@^Bmn!)mnbFauzvt&%iYV|C6H7Q%L}aLcc~ zpf3tma=2WxbNtM$yMVX`7z3Vynu`@!Hl1@Gg6K1-*cE*;1tgst<-Qu4=-?wX-L@-P zm}&b@b99VD9hoNlPwl^oVhaZcM76O4&dx{EY#*Im}`Mv*y9fQ zCh9=#7a7H&F5`Q=uT3UsUBpMQvK^IzuafB}gJ4t=PWcM!O{(P|6M(y#= zOL*ahfoeQGKBmOQ{l8F8AUg(Dwe~=2UuIw@BP?N4&r%9kNfMGr#PelBs0+26XG=US z0V21^Z$T1`Hdk&Y)iUcHrrhj7jRVMXgfiaxQy$DgmheejY?97oAqmmH$Ve%r)U38Y z>6j8NA=L2oad)|kv*S0Svy_oBzRSP5-)iP*#5^uG!P67?>W*$RsTlUJf?6mRz`k&i zXMevzsqjX?Fv_AOCpBY+U zb21(MgrVGkmQEX#kBPlvkfYJD))M$3;Tut?f&cMVq`VX6H;>&|umy&OfBP~x&S4g> z(|r!8v^)JxDFGBxf==_|$FA)fp9lXLABbkNl#&?TH>RNQSJIypfNVRUpvHNa^Z0ZV zk=D(mfD#5zRiAn%%(^lm_*j@0dh=R=i$TbHKZS~ zx{Nz!12%m-SbWTYlOGL>QO)||06w8KR^VN(@EQRJ-0?Z#;lj3hveGp=$@qbYI!F>$ zs`LUTPxbR~{YP>Tr6Ia>)}C1W=88U{?Yv4SHSObyTsSQ@$=p`tiXYXG$4WFk8a5jL z5kw*A6f2o>A0*YAV673JE$;fBFJv8e=jp*i-waKRrOP!=QrvD396c2fZ&d9zQnx|a$B>6-yWQ~JpImmYSb&grVzs` zZ`M@}nXPx3ICbOP!_~f-QcX{1ZdVeTCfFwjyG@|6T4ftSFF7%D^QG|R!*mtPAC9>S z4LmxMuusCsl;+t0LhzO1QlU^IoMZ|Tk2SRBuMcXJsPfwXDyoW9p~MDJ&rPKpqTcQA zgA=gyEiT@?yVxB64l~;8_|eF)RgSgkZg1hytn)+|l4|kC0w~_Ui;hQHqY#fywQjk! z6T+u>GDH5h@Igk3Vj?=*7s>?f-M+7yY&sx|24-0N>RlA4f$pBi8^6SI58(aYV4Ydj zR{aydS>#IgjgC#Ly-x3Yz-*zEKMjJ4*1e?lV!lSZ+cS8_>lqg98Q7Nw#AEHZ$nr^ylsqZ1*W%Ne*&> zb2~yVi=i+swaTz1uN^3!&=o2~byTDSj5GKCu+f|IX9Df)@&`bl)Awh8m_GeDHHR!H zCJx1X7;hKPVUdIXaAh*jA~qohlmEP)!Z?)84!4q3JD)ke%Hmg+GSHqmC5XzE(hlaS z%U(-x6Na;CLxpl3?z*7sXpt;WYo-Vf2krh5jO2pxincv69%)g4NR!A?KIdyiU!?E`R9>?%!N90hM`G3?#Yx7SAkUb4tv&#pQ z3QU}MFiThybK-A$DzGlfa&qL;CzPwtT#DwPwIjRfi%r6>2}(V_G@bh6P;~fF@|SM9 zCer38iNrg4=8|Fes+B8{^maqD9OMX(cBT}7Z^@1UW~q;=owELm-#h6aL13M#$WV$? z`>LJC8qKE3d%MHFtv$LS&W$}13<%_hH$=_mKNS5G1QV-FX+dB@NwHA@<$*`;y61lz&9MEm^753s{?e-Pa~= zvO(r4aG(xzpGFybr?eA%tL^>cN_LE3t|1u7LnO$54eSj-Yx-M65A`4MV5qZfzUypbZ0z!8)s}QOETfdv#`f7w8=|8_Q-l*LkS@Im`B9zQ5acAD+M)V<=jEO0ApoOcFg8*fAV; zEBQ$vv41kJ9w%xNkMf0m=?Gh&tWo7v?|Vz#jN2+Pu=MUdzuAGF!*^mz)BYeuj%gpd z#_cW#$VITC2+^n|zbiRhwd84Nvz=vmH}e)w#|_euG60YT=Bkz#cn{ewaRBu|zh(hx3r%L+fO_JJ=&h zET>LjPCIAi#-TMZWHS4dM~_$pBNW8us$fbg4i>0~-YdqTFM$LVbR_Bg;|KGOxv(on zGExXxF)V*I2fO*mg!U=*%yPu*R3+d~^e!M*hYC5st`q68jm0_3XVu5Wf5hZZR(WyU zvJLpp*F6+lrgCdS4zw3BXU zd!Y|rrM>-RkeXWNht&uEh<$SM+uF~a2INn6^3o355}w_|M#;0)RaB4FTeAPSQX(5O`cAi|Yc z>G^p4CD37qO3CslPmj?lCzUl4y6Od4116Mfb8p%{Rokq%jM`Bl4>vwLS_&wo1wZ`^ zACa|I=da2+K8(l3Uf{!LQ9J%7$0_reaO#J_;Y>n8&lgwzAKZe@^Iy{5vd89 zSyMIU{k;c2XC(1q*LyV$=wyS7hkMmbl$F$ZLe~By4n1CXuOO2e^ZV7{43lBP`vRHAB`zST zXe0%66cidD^CDNRDgp-7J^U@^+2RTJ62NT8%Q(6{Iy3G#O>?|@pL|XA;%}Q!0`j>s z1v@n8jqU&^))*kjXgTJ-f%x>AgET9X5MZ&)aqAu%y}gY-2+=*OmEb2kd+i!`I%Tqh zNHy;piaKo%<39+xjpQ_l-roJ*KKCn2@$)cKJCbLp{m1Qa@$`U87dnxS1h#E^42Oxp zg{X!7eA0Kr^Zj9pQ})mD%8*fqDJ;mL|Fd|?c!$VYPrxI?!uU4+y$xXpMcUoKq|&T~pV#KQH*Mib&-%{CfDeCj zFE$q9-x!C4)3`%f0{-NKpE#4xF4*9IrU)l%2#gX@j7Cz7Ke!;cdi5LE;l?<*qjMRu zOKV2(W}mIp*v*82xR5(zA+R$vtQCAVO@DF$`&NgBbMw-jx}A2m!sNT_mBWVKh?rOR z#C?6rV3*zaKdduzkqXu^oHUzmg-p4a&UI|+trlZG~ zQQ!OgIn=9UAyu&-b~&D_wmREznhzJY!h*f@ZHpqUlNpK^{a>vLgCRJ$Y>4Q!Hs+0s z-s5b^09^UzAhJ0=0)#{X!_t0D=DVyDY_z5j;LIkXS>+18Pld_CIilXDghoA3CjT62 zwDx(PlUkH9q1l&CU9T+K%8oh$F?~U!t&+Uw!rE+s!;INnB$dqM zRS>YeGai+X;vH;~uX+|j8xsvEiK8!$EC>?cz5=Ftce$4_0;*K_+@l043AQ+nR%Y!J z`k2{B0QwqRZZ8EXPw$LMp1my_m?hubY6@RDQ3+oWD-L=TN|sXb?Do3vk072rop9NI zTVx>?Dz5J)8n_A0$u0M5y|P#DvTDe=aGQhaZl77}Ar!#_^$I5u*Q3^|N*@SFl@wN< zAKDzLB%={G@uJ-H^isY?P}?t=n7vOs+M?@_zCP*3Ty#`cdrt zS*^xO6dUvTm{vHqv{SR!O<{Bu;y`R^-EIjxYePsI?IO9tUitga{+b4`#>85_!`@n} z{w-*I+cRP)DlXX0_i2&NQ0MP8-aHMuuJ2MXu9o^YSFTG~#Sc6bl`sMlrlM?pHfqYoQ6F@wfRhJP%HxC1V;K z^3H*cpKo+-Jd%K;i=}y9WrW_R(GV)5Y zfFy?h9j;U|ct;cqP+vf{(V#siKg^l*>r@0a)P9n$Q>p+`2!DQO8jJ*LnYO6he$xP! zTOeVQr7ey}HsgDr)4KP;M)`OmqF+kraWWUNP}}^J^c3?(u3|Vc!~ZlfhyC zE6cY)7nUzzxnt1ix!&bqT!Nv&$55$NbkXhmaJBcmN{W2H${9(#t}E~Qg-KY9_Gw@p z)3onl9R<%1p_S)T0|`cUCG?%=7WJJ8hoP|5;lwC~UfxlMT0q$2`yqZZ(fdG!UV36< zq+1oeZiD{o#{0(6Qh@*>3by3ieRwT=g@F(8BZ*|Yq%r(6ZdKm*GKjGgl)`w{x8(%j zFR#`8&9ew%aWM)Ez8ivyhzlq!D(FDSletxJb1;?Mvtur8osF8J5HOUII*3!-Qx!kW zFS8$P@BBRw37C-WSp9I&mK)hY-aqUADt#T&=1O31c|;h+-dT%}E`9tGu7O7TZ}T66 zoxS*W;FDIsD}Bxn4mt7b7%!gzLpozDZo>G^BCsJWQZiw*@@(3qg|58&5isA|BCK$T ztY)O?$FY)v+uxE-Ua@Vu_9OOZ0v~c_p6rky)dRk2UE-fG*e2<#pf$@y-#c zsWifgiwI(^iw;fbHiwPa1(G_`BBdUPHgVBSH<*-&Q2-=Hagi*gZ%pEdn)K=t>6wf` z!Y&Us6OuH5UUN_r(e&cpMy1UC6pf9CE+=RxXvSmze1=cim14bLngIWd*^xr@f)x;d zA~};%qM1@W9z1VZ`LI{-wjNI*?yFDneEj1HBlPigF-VG30CDbs$B~|91`s{9%%Px4tr5$HB!N+W=}$o*$Dg`gF3% zSP`S*Ngc!e-8f@v*^4G$J1i-dD$t>@-;GMF1@(2$a0=rFlWB(wKb!A8qHcf;tS`vU zGTc`c)ao?$y0Kh8y@-dA8u#mq2ya)G#OR`+%S#b?H*ddkF=itNm5K z!-%TvOERZEJp0I40WgM&Y-Y)xx}VA&$j4up0FOz$Xl-MP5s!HJBAQ`fb_R zPn79US$go;nH)7=RRujZCP46(JHStNoP$UZef@(t68p>0WXA#*Js}9w1mwPNbO7Od ze3kCwnTGm{{(p}f{w3&DX9XxROw_qgkAHJ{cV{ZXl|0{Hi2x8xo%4PhV))E^G`XB> z+d=O5#l?mazSbV5e-lwp&^4iD9T1h+RGB!eKR18O#_jx@Gw#44%ytrL&veX|Ux(=S zH#ykttnb24J4lIP%9r=`181sPBgj|k{lma7=URWPlwBa7F4GocC)*KF2HT>=uP0_N zy-4J|A3J|D*ptS+QgQEcia29`o!5TiMLmGg9D`Ke1pp5Xa(74XQ{C%gPH#m(kkfYk zO{NDkUqJ-wJ!8-fR)c={sK)&^&Cj5H{T-(;S)9w;;+&x-ODS?LZ@6+GSVK%KqR5Sd zWvH9&={YfMhMvPfj+0}-_gfwkNsJ6W*|6Tc+Q8*{<(8@yGUS;9+XJe{Aa>! zxEY#k52ZYV zcXilv*IM_eO0332&}wtSyJjJpLlEBHdcOH(JTw(*5ZmcKJ4VNtEuZMSdm`6qXBo;> z5=E@~RJbDC!RdaE-Kbu_$v3Aky6Y@teJ=c?|E+FE-B(nJwY zg}!W6CcunzIX!L1`1_I7XUc~SBjvN+F6cSbF@S+2Tx4;xva$?4>I6;X^=sSOhMo+Z z*-q?W1tyZGVPAWnKjABtm7pXJp}uQ#8oAmzrN7?j>>D#Z>9rNV;(RPy&G;8s{)+S) zWY)L=*60emNOwfyyBG@u2prHTP-8f_ecN%9HuAa7I5nhHlEPB13TR)1P#}SMy)^RW zHBwgFMN_A@4h`d~v3S+v?tX`|=rh1;JbyH&Ra0Hd1=J8b2!UxiFhHK0SO@ck4gdmQ z0Noh++lq<%=u^{#{7lmcbc27%qC16WVI{7V(^d4T;cikn{t1^ z)}8#*<(Tx|ll7-lUg}d+CxvGCAoTnOtJ!)w<#DdLJW!QKAq=_cQ^9J}O$Ev=JEAx_ z04OaCG-5O2baW0cyf+oj-v^r>CX1?lmwbBai}F4%-?G`lK_7N7{O9lFXyisD`5dq0 z71?6+fG)q?g-X}F8mUXB2jJE&fK9Tm$Vi;U?xHIlT^Ko%Tov+>$>Ji6SY~@OKN8o$ znUu_60_jFBF!kV`Ydq9}EWv{dvJXiu$1;jkb`?keGHK~cUEFI8UE0`Z!r zg03rNXWaHaL3r69eWf#xHyVjY80F)++w7t5v;mfT!E#S7^aWzN-|1;+kOd?yz*2;Z z!A|6Wc{vkkA~*@n052UK2Hd+s46%zi#|2}9A7wBOXRK{bO}5H+hWf6}Nu*l0dctOD zc^Mq{d_GU}Y1up}!W%u`o$^jelPQ$sL8J6g=hH-^Wmcs(!g^`Q>~upiU^NxomJ+C~ zHNm#gW2$b~NKn9xYC4dm`(S#}u`7YG9vhm_`ipUWeih}d4y0Ui*xqHDMOug`c5;qi z?;E&)X{Xfa1E)^)09AjZPvc-C6XkRuHGzPn%$(VA1BwyZ zs9a&HBD@Uwb-Mj_(g^f|3G0tKtcqiq(KSk25AtG1_kMo?(UpmfC$o^(jqC{pdj5H64KpW>x_ka z|9|_w-@y4CAFKzmV68dl7}vPs8&9OdB7k0~gxBW$Jfq_j^4$-KTN1zqA{L;!yUu_; zn}|r0c{}YX>WY7)cJk@%u>$1&`E!Qeq9R%#yo{n%Fg{uv9D=|N(rAJWhKR7%@4XEn z;%ozQTR_;X6Cm{k?xzXEv;INk=Rh_=h|_HPOBy&9B&K(*-=Ur_0f&>OJa43|fC?hV(fpNzJ-=PpXP#OH7MxV`&jdu=A65ihoFSl5{u`2@v^3G=eJKGCZ*KQ85 zn`^iOOazkG5sZ#m6}I0_(QTkY%jLH7`=kQ(!61&bBI0#&t!XcD-ph2P?A1uzS+KXZ2mqHNN}UzYToj~iFzKuY4#)?Qd;FSfmpc%bl$lfcN5xZtsHzNz8ZT3F?%u{Kna6B)H{P1x9kaRY z#+cdw(%tASD%g8HF`&YM72^)9do~YI*y*m(C1T;!e z;yu5M23eqsZ-WEyr0w#@9}ZndY8%7@@4KdclKeq_65MQ$v*+kfx^lTEfC4k_h|)$< zXjb|T#y8qB1fRUli+jidl@JEVf}S;Nqm++bi>a8sntq@%%Sid?(|7E8IKaxH=eZ8iz=hrmi;LD{)Du~a%L}r3dgVs}#=&B|Chbm&B#yk*v_Dv&X^hJcdI~;M~{}u92VXKDWex$ z;^n3&LmqU!_0QokLr|f)=?!A1O5rC`?PL9{^z6QHvGQ{D@2)n~`h~<9G)?Ac)sMkc zf>D-qF$U>e!Sx+TgJkUOOG2(MNPsNeTVpn8g5N5M*DgXygv`PX-VvXq`qwPS289c% zQv!|MZSlJfa0BnyqY-@9X)oFK2huV~wUK2my$c7+X`9ra&mULKHhi!i=)YdZ4AQrp ziyl$^r>1B{0{+2eyCt^Qo|@(ELCl>yTg=CYYhMS`rax#W`ji5gY2SULe~5T!)&71r zNhOlO1Sjb;qeGk*4N!Mw)K4W7<%VN%`Az3^)fB7Po(be%Pbpp;l1w!AyuB>{WaXZ z)~gp#Fgt?#u|Yyd3b*P2sbL)k&e>v-Td41oa7PqqYMh?RqtqnYRP_$E9MH0=$~?LU zKj0~4P^PMEjMQLCv7j|08>ZLLD=5!LuTk>FxSD&P%$r*S06J(kd9BOE)-OK%8E^~u z$g+^}cf0xdnW34-Hi5*%qwUQjI5u+rt>_@|>pWVJL^mH*=2+@m{z*joRWfj*K*)RWCA^xnc;AU5(?xKgNTPRyr#_BNepaom#>CMee-+hCB@8d1Nww3bb zQ*~31a=n#DC#APiwt&*-xZ1}o;tMPEKAbt_umWC})fQ1c5@b!N$Q2edQ++MrL44ot z|1%;4NrEJ})aDfAs~)#*69G5JT$bT+JSKn}#c1SnW;Q`9w;t3va@hIp!RK)BKA8{b zO6XU=LGs}Uik0ZJ;6O3~C5(x4tX|ZsSX^~mrf@nXa*yNXxTS2u)HqNrbOG?hQcpse zBRKj?S37K14FM{G#+TNK^DkBVHj(=0#TGna=jpd*Xsrz4U=}|Z_?t)*3D7+Ezuf3N~ot?Cp%Qy3pG7oI*&y8qwb zC`1B@3xSA;h#i^mBK&gdwdO$*pD~$i@t<$-fD(Y)oNr#NI+*X!fk$&W6E}E)$aq(@ z+E3|>Gxgu+I}M~@mRzes?%zINbbD<8x1J^t6oZWl>UF#hXBAg{N9NjH24bw|99j30}D=pYTd7X*#qrcemX|S4RD(8uA--}@jznCqp4@`JB*mWf-Z;*ggYy`jqx51E-gZxO)lSLqSXLR+2 zP)@aPUw@YEb=zOJUrB($e{WoCUzoKJwm+VSh{s9EGZ|pThCLAUw&wd>MZG z-)}_f>?TW5&_N&Lp+7F|{4OXY$e}v>K##KO>&J%)bhdh=+p|dg`gwnYz&!9r$^b!t z?JYbAm{Y#LX)I%#8Q$euR6zuV+ngK0M(yhE9q`3G<|50-acOT@MlHu;U9p9>94LM} ze>mQm@oG(ZLU2qG;dQcwpAiyu1l@rvvixVA-6C`M@yv$`K8#pRNYg5$KI~`A`aLY@ zG0U|4ZJ6`l&Gyf>Q%6>=bHr(gA|EgM@N22NY)W!V_gx`)?h z;hi`8ogbCJ8ByWb7yV)|mfyvaUb(tN@WlMC$JKYKU+sbJjS_*YZ~uGMpxm*g!I^Ga zbb%-vg&UPi-iXobF}>8Pu%^$Jjd9N3ADpaXod^E(Zu-&Wx2NF$UZ`WiS_q;c3fz3J zgB1bh$sf}82kD+H-CXWE(fci~>bG^~^d_|cn*LCDKYg{iW~tQ+*o55!z@HlER~c^+rqNw^wO16AhW+m; zi@x@Uxsu0p{W_EeN}w4#3vlI_@HHg23%B~lbm&Ig6L?l1v?z&mJI&O}rs)acHc;pc zIH3rd%=S3#;yk%6D*qmUlqQ&@`gMAa(ag+^zP|KznMZxhVCTysRwf`nl`vj*#j(;&mYT-gxqBb#3Q6EJ zS=fa-WK@(l*A-Jte)o$c;`{wdzF+s|2a@UY67?*fI2QfL6oI$K*8x}=nkg$iDU4tQ z9IYgL^OE7WmtB_8;-z6@rw*6(*(Kb#HfcN8Zf;h&(V9;tPB>+Yqlq^SVpmfu)C15f zo5)jboH;Zh!y&eFt1Y33P2M1<&I9o5Gu$5iAA^G)Lt2h!Jy+)cY);*8|i^+Y$Hl>d~_N?OB6ryBz$P*dR8g)e|eUE5tH!MU|HTPF45Gx-x{ zEiS?)E(^o0!Et@)3Gsw-mh=PMW=GMVKYtnujsd`ypslz2o)Rd^OhlU+BRH6rJ0irv zz>d;o7f6{OZ7{>RFEGx@x4u_50=bM)WhT9}Hd>DuPIg`2*X)=|P8Cmj%GysQ~$EMxaC`T~M_EsAuzH zNW(W+rI~zib}zRR)Zi1%9H}xj!obp-k0Kk|vo2&_eh=_rl_N#1VWH4j`dxrrmpfQn zB->8zxuo!>{!HOc`2!ZJB(s>y`tP3h6F`R#TR;z-%4wx1Vun_G5u5_@zuqw^=g1RT zSael_29Cy1?&@6FjkT3UGb)-L4*f9IAMAS$d ztkRX@BNC!`>j;LnL`r{AFD8$qb+H_DeBE@zL)GTS=Xn%w{xZ0-(Z@3(5eV$Wm%t(8 zB8gnHQ_iYmUl6aKpui*qi;L(RPPRDvClpru^uxhaUF!Gt!J!nnue9)`^LwG2<{!|z zgZ8XWmNb%Ke-e3~bigv2nt`2;!5*W)p7jl~>U*8I_w5fEQ%>RCB-8!9TDU%d*-w1|Vp2xNd3G?G=FW&jDP!!aB5bT6`9shfC}D z>#F2P)y;pnzH21H<2p>bflR#s0Q^mmqwT9RgC**8yx$xaEDbdE~xTi zI=Nnd5%o6*x;W;1`7SHL4duQT%VNW6Ulqz`bn1K+zPWqbF-|WJ;V&u#rGSM;iicMSDflM z2~DC52@tEAktOiKM4PKHTJ76g75qnhhzd!|_uw<{Y+Iw6=Qfl9V zc-axp@|mlUn9@c*sN@^XA%AZd(IWI=0^Uz(Rr&Jfea(XufkEXrue7~anKSwdb((x< zVsZ2hR}`J^ORSnPsD687wf?=eI>1QKYOE-x=J19+ZSKB|x%t;E$@Df2_+80!)B+){~X0rKX(>y-D1kD@8T}@`iJRS$;!92P^zA zTy5=Y`v_8DPYEC`K&9F%_^LHWGitRbg|1s3p_U~PXnXc2#_}3jPGvcSVE#BFMo$_4 ze@-?UE1HR;a=;EOm0cX+|J{D6{$jXnk{CFa)@$3BH^kipX^I?w!(*ay8uMA8hY(3y}G7;bIfS zcD=s2O1SB!S*tbc1AgexPfKolPHBwESuW? z_77Vki)}ClfF3aGmXfTE_eek9PV-r@AR1`WAJGL3JZQ=LsuQi#P}rUi6T$Pe;ZFwc zo8rc+NUU;?N~wu9bQu=AVL4Z1V;xvszZ=v}!HxUUNiuT`#+j|WF;cXBP}6t6 z2a07*5%L-8;9=iUd~RdZ9$-5`yPrAu{xJVkgw{8A_L z1(wHpcH9zRo`m~eUrc_XN~tE|b2K(|erE+bA0(I~#V<8{J@aDZ^&3@8i)V4I*aoua zUnZ0r2l^~^r@qok5T(RI#psC}{fq*w@q>}NGa|*@^khtNqF>xsW~xJi2dipR6*f<1 zyiO{AFjUPMvexPspdvfk78zh_)FN2Fz*LBpfk&^SxR)Sfb^gxkrM5Tb9_pu8-5zkS|qt*8h`HS)Q z8=ocd%9+DR7w2z@6F?7*i487(HCtbEU6comfZ#xT0B14FqS~}#M$B03!os;Y zor7$0ESX=W(J4Wx((SiigVO6rM2E{Uu4OqvrifEQHUT;u_-_p@4NU*E-S8c5we(+k zv41h)B)Jzo&9v}^3MUCSh}5#yy}O@Tmk~6f>;VjJonrvKt4(GMrEv^ z&vK~x)!9jW>YC*@w^=e%K;`IRuaGxQ1Sl!T)&eLoQPAVt7RRwlyYKbqUbG|gKqBsE^cXAU7u6z*>bWe$q>GwZtAA3y3cZF zls3rrKX#s}bjfe&MB>vnWX28*QDy*y&YVLjy`>a31)nu9ehnt~!#khLGS|P=E}7T4 z&Oj{rI5;o4_+}$d|CZYJ{(v9UiV8FL>jziX6GxYANcJ6-4j8VMDUW(bWO7eReI_(fsME(Skl=g!13sKj6~+oe@u@Ms_B~i7B&xh(J?Q<+e7^?79fE zc6kY+Xg=(+zvv`vJ-7~q_Oc(asBHL-EXLE9TZ&u-lRd__GO6^<#edSLa~5wxautfnR7a53%2J(X)CK9J8V?bq zia=tGR~uFy%h`lB{bP0$Zdt$4^?3ccv8DKzEDryC z-Eu>bIZMtz>2zNNl}PR&=J3} zP*4!Jox{$R2b`eRb8Z!TmT<2%bgaw_n~2T6go#aG=lZ6d+M{xqQ@J%7#c6E83oFGf zf!!&m!5EYY*-Gz2h7)6?PqBUf&}a)Y8m{kO%4PlrxVdJNl{1lk@o-#Ky0TYSWvMu1n|9qq`<0@}bfSv@lR z6r%+eD(gere3Q_;UkL1&cipm7u6^VoM=|~|H*Oik-f(yN7Fq@OOMx>1DHj2U8mh&+ zT6|ROYkGOUnq~rqU9{mI2_a+xYM`aCJkbkB&ovh!10x2okH<>F673pTE>~}i-umZs z{-Nn!3ZSPVQ>iO~`4y1xwFx^WAd~%?s`x(XKg8e3Kr+ldu``KO^3l$LDA}s1BEtD#Jw1N1&Sm?NeVs#7*?^&4q=qi}9uT95?{tfsj(S#qpZ&p^tNh zS<|`r0=u`^^!z9V;^eID zCn}*^o=ngHU*BMwmLr_;?y3@srWyU1JZhx>S^*)v@?Bu0Fmxxps62_^rq)LUE0W>$ z)AM(!TSev)iw_`a;=%JlBR4Vd@{o3`0vR|dZAdq)- zydRs`d`^UksVBN(!aA+}DD6zg=rWY-56yH+jPN*n*oF0b^C0G4oF#KD%ipj1tS-`c z2^08EB(Kg_3lS)LA1zr9Tk&!q%1n{|ka^V)30Wb95zN){f~5Onx%O&$InyMsQPW4T zDxQ6fO%N^qFUWsUpm_Pnu!@J)6lUl}aq_n+nJ+@Jk|%hsE2#GMC6&kNjN78%J>cAU z(9ODScuplAAPxQ{7ym$qS2nV^(l!K(sEN=e*UbgydWmx*^cvbW>HPEaaWJmccxRK{ z{fIfs(J09CG|nf-c*5mIN8X}}ck)sk;bm!5`&B?~1_N|+#S84l$&H3YStC^Q)u(${ zLS@q9`x_gi=xm6&J?BpXp7tZ%LHb#>HB-fV<)M@I8&{4m90Px+B2K{i?VAkLUEnVf zH=|x`t2=lAnXy;oRK5LpKf#LBo;|7W`(nFMtxl<(h~?Xe$CY4s{xQ}pc>Te6h*+S4 zZpW<8MUbgbS0rEAy{$Rch3S3L+jhABGt9L(C0sg1ylcZ3oM)|74ZuR{wZ3AkFUr4}6Hx97zB)qt+2D@SvV0OJ)`6|89Y}*fMRw7BL=ux4sUlI*^Qmo3-iU6q)>hgI<8T za2793e7Ccwtd>&3(`{3QsDl}(PBx(4!-&iU(mZ9N z8%8*<5Xy`j)^DPL;^O+V14a&;i+h?CmKEDG@3yC9_6>hMEX=hS&cSSoMGb4M;!C1* z)aicJqDyDZ5`VF!`6P>My2>q0s6e9gVQ5RrO-Q`2w$)Fd~`z zgL-ge(!Jik0@|XY3{tp*ecbP{XqfCos#Rf^y~0BYd^e6W{L_Aq zDSYjs4r6CVPZyNF)^$-__i9&~v&_NHGU2{cTrF}y+m&%cLi(sI!)~zY@&zFh)WFDpiPex^O@R5A5iG=Y`eCmnYt|>ovLUbkWtA3#v(Z@KH<9Ar*QranTqX)ze3ug z&rvFEXDnGAb{lv(&uNxCJ+TVg8{K~qcRpMr36pz(^8lMm(LvqcXBC>MSf&3q=M|O` z7uTo`aqrCh8!qCb3@*>r1DVRMoqv3m>dMm+N^2i~2vBnt)r0{usF;ElbwL?!cs=!wmaJ>1e`cWPjlyIyZvP#JLNZvyj z;>*>{sjsW#S&6UafwtrNARqV?*=eOf`cN;C%wxMYiBVO1rVDRr>jLn{V=Z#1Yf+!3 zJaZUAewh+WlB1JV`IRUkB?Zd0xv%1-^WLLSAZ2wTZRFai9$Vy}41*5wy1s12*rLap zf!O?uj!yW3f&TRZ8tanv*XJ%`(MECnWyHA<-G%{TR4DytLIjE=UY z68H&EsPx=7CnAEj|g+K4m&$s>IBGYFYL)iqrlH>V+CUH#)&&x|KBV8 zSk-)f2&WT3u(r$RD-u$g0VUy#=r#9N;d(|61RAC5l!&4ZYKzD~GFVi7nO``p)x=pw z$nHU0BX!$%xQc^?3SIXa#Gcj-hBFeJ7@Kc7eXckmfA6Dxx}jWkrS-82x$-Kj(b5lC z2vZGaVb<*a3&6OmvYiQbst?BpW+^18CGuF1ZVRgOlvm>;WCgc6KhR0w;4Kz%8tZL- zoTB0o9T(;bkCu2JGHF^F1|iFq zwOeu}-%3%D#F-#YE~Y&j2<>oYKOrkVQ2n*qd4?!Tzo$0N##pj3)}RkWubEQPw()Yw zH;@(QZtmFN$gU5aN(0zZ_Rof8n*6-Wo%nlT3|l`^yL-^DIh@xISS@D_pAZq9el=Hk@(dD0@WaNhMpPx?MM7-xanUMYRc zfj{*fe2nlBsgvFA!TxpRqQ`?nnrY~A7pn}BQ%tOm+FU)nV6J4)c>lcH6!ijdaH-kY zUXq(nP%68X<6Sl^cXtPTCQ%^xqWK3=l+(1Qyq&v1UmuR*TPIc5HxHm?Zprx}>9o>^ zg^iF1tV0{#o1!_63EvpM2V=I;Sewm#9bOBIx6!~Qg)y}MyJuhBE>>I`1QD%n9Z}E4 zf~T>BP>=ZcQof^^@0GBexb_hJa$F;G<16}O#?d@b1RfD4C4jc@oo4zd(fZ+@-4QZCY& z{1~|RPs)Rg2}nOZdg85*ZOuqFU^!bNKpqs&`n zUKogx5PIEY&!}1Y-p4%Fu=i>>!-XWNcQs5VDiZ}^J*moebO;rpH(5vy6`Pn+y;v`% zrs}Qpg31l!f*+T=+0xg+6;GHn;7Koc3}%|L|0eMIxDz~8Zr!mPMLXHsFL)h&1Z_^! zZBV%#yU6a&>HhlD`*(MN8AV1 zH1;jVNwuEb5?4bPGwHSH#%R=^MdRszd2b(>)VQvfzE9wjRM%qAr$Fa|<>a4C$rX|I zv6BNJ7kF?HG@l3weOfCZ8*ci9igjaE`5z)wRO*YKlM+IW0C8LjkXB&sI;ByZk4snk zupnOZ13}za_F)-72jeB7tX)z-rMOz(Q;MT>?3xaXWCE{0cnh6i*5tm`ki*&33k1Zn&u`6kGg$r3wm-6Y;4%9aF ze6`-;z>T4^KD~Rflli9|Bg+CNEjzd@DT`KWUbE^&U&`||b^ficb>ilqp&=q0;!AHp z9>E%Of<$f?0EgO5z`O(~l(FyFjbDwGF77tK{7D5|b-?JzST0bPXL$zb8?gXY9>te- z+}&ZQ2-_U`NIR2d>ak4R7V8Sb9zzZ(3Y4+qdVUN5Alu)Cgh{BdMXpM^R~;yk_VEXlYpuo#*i9@M z*Pc&I$ea^7rI_S4NhH-PmA8$jq*T``lEu%~sN;D!P@0gnd^(EH z5ys!vp82BX4YgNg()x~4vYjDkc#uYFmWN`f8ZE3RrUk98FrDo=5Dixaape<8?}eFNTe1-&?|c(g?$@RspH~E#u#)f$z4!OXvQsQh z#)Jxd294&)9ch1IOhVS!N$A=p%xbVcA!XXZGcp(=!6am$1}O6~DJwOqUgWGo)%>+d z$k|IxMR|5GltN_3op{~sqb52qQu-!69l0qfyQ}ZWw8o29!k<*;DGedVC&RWDu(f($W)D`R2w-A7C-g*lzs0>;^ z3zZigS9twp%nkM@H;vjXl+^KHgg#1jB}1mdUDk1_!*(;5uKf*{=<0VVfeFtonAag} z2`F=AVr4r@k zLHdbYmGX&N-e81PW2jbSAv&aOS5L(rqd#E8lNf^hAjy}n*2pZpK)>lnbzfy2V3ybw z9eO6qRY}$tE!MD0L@VBkHaWW7gjJY+!e9lM>q&v&IiuK#yGMB3;2uce9r zMm;bQiVCngIB@*7p-ni{9?p0 z0~jYEBCD)(OxJ{soB?#_rDl<8+`%%_TEA#0?ZzI38p2gp!|nZ-;;W?HS$DlZ^vk=Z zaMNCv3ZHC4)2vEDldld|dX1Du-fYvz#dQMt7N$H^p;&8Y8~Ls?$zZOtRaSuQ`6|?; zkgxXLRdiK~3%8#pDnoBI&`JiynvZ3JGi@P&-A|maW5XHiarBiPeR|f>IC3slz?^Dhq}!H z`rq9}dBe-4^kG}Fhn$l>T-{-&mz_2@J`&=ha9%~p+`AkFV!2-8(Pe#HqO)G8YHo6i z4~#S`esEuW`28z5&iIN|q%*nZaOse>F?t+!nuD)VYTu|k8lyvct&rkcxGmgYumev| zBXUzN z@dES%4rreU-*kAd6)aESZ9`^YxB{Q6!==2LrSa$cD*e6b0NznR-VepZwoBOn{X zBPvz=sz#Y+9i)>$5y9XcDy@|x>Lf6p6`}uvu4ED5 zX1NMf-a28gVz|}(0pU%cyV37b99~Tm?^5B7+(+jIUmbkUs#pBbggY$RsxTBe$q+RaRDS?&ekH1 z@aq4gW)QbcTbgSmbqx_0_hQF`v<@W^*yB0x(}qqYXC2o>YyMC*sNDR4$4P?OQbZty zqxGjlCEf3*o7HK{i%Ks#o|h>raAJM{?@O-{` zp)po}yP`Py{+27dfF26d0g{S_vQT9t$Snp;k%szN*ek$nQU-t@mw+KEga<)T0*_7N zHPP_CHN0L?{?=SE|Avpvt`S)wl_4;Wsm{oPwf&i6!ab41bt%r9EbatAB5S1%?;44y zdoZk6Sy$Bz#;zv2jSY?)BNi$u4FyZUS@PF?>0vS8wlpe#KbwPb5F?(6U-F@kOL6Sh zRIN>2uk6c#=n)2UXk&U4gD24ogGsYg;#0i5(gzHD$9}{CE93>r5}+gxCgTI^pB@n- zb<%v%9}zrXisEqDczwCtYZN9#t0Z(BJ;Iq^bu5Q(6Q>{(c%HMAqu6LZ$#$(VnJ#|! z96<6~!h)M64YjwUEfA_VePv8m{_M zNk>@{mDzmBW6{nX=&+v%PSL8ud1hYfwZ&uNwJ}z>NpPJVg(iV79qJMMbvGftxaH?h z>W-{v5znpo_W=R2R4OYKFVo+$K&DBYZbe7Dnz0qVU|7@pI6D41c(bCsr@<6!stM+2 z%%hKF3BAaecpJaqdHtR|4U}L5`@fF8m0&%%>e!*D)`$QQj%l>>Kdz8D?HW*1fGfvS z19rLt&)|6`(3B63rDeA2@;up|9!EvSXPcWdAMR%bWQN|wC{|5ojR29`F-Lip&~9QsyRbrT8(F~ zy~+N-hr+X$dSpQPGXNGu3ex7G^)?_I>dh|dEqZ1y^CT;8>YRMM}OE z=E$N`!#lNrC}zMx)Nc3c$CS&a&8f4Vq}<1u?HnSc@~b*wWkb33Yq=oPBXoFpY`#PW zm>KF*C~>!>953E99hgN0N)CK5t9_(=C*(-Z+~&e9-}K&4$gnq&jm#NnQdFmlwt0Kd z7|qr@jxqIp%sWpIfgx#eRfvhyFsgrAXRCaIlL^8j`%uZ9+xQD!_G}TEnWyU9>^v^k zbGI!Sbqy*Ee_`;Ms)bq&<7c}DQP)SrY0TOyg{M%P?#%OlI=S{}=Co-j zm;@a_33BWAa5A5h^~ykIj&mL=BCut60b~~}I2EJFX42b~;L0>+h|G(}bAf3R#BY@n zxs*$MbxDpgMSQNW9&ZE1Z3no<0gD#tt;7-h%ym!q8&iW;63n(*Fa!I;fd)1rl8sdy zm|ZvKjM$}=qJRS=03TCsit9>+3$Y;i6ZjqK;AZr)4ZZFU7C~c+z?u`T@@f&))_E`s z{nev@|J^vhSd35&7LD$f&7WMvAdb&lAo<&9bwU)MaiR?M9aX=Xzw_lE0lRApDV+A=jR+(STV7HpNIL z8TkXOd%0Bqr%WuvEV`$pjOpY94gzf?E!2X(I&o^Hif@rM(tqkkv1Z5L!PBStr0#+L z`y}u;0nLg&d}>^Z-0tOyt*ig(EkEI7t|$8j=nk?{~9b|L`B-lD~Ni zxZr2VvVvFlzbw*=Jdkzybo?jtvq-qUWUI4xzWk$Y_&@ZqdxBqB+~>GI zw_@zj{3|45goCfsoo{gV$o&CcTn^|LG?+DqjO3%hlM^tOIJUflx+{bP$Hf59tb4y7 zQJy-caet~V$R&42QSZ%qAs>}_MLd?Q2fu~~U%8Yz05AUsPY?_k{zpgwIKvapM!=5Y zy%)#sS>u4VDIn{S6^ShpPV}L7DjE)fI~{k#B2N8zBcUh-wN`dQAH{8{}0=P z(=!AC=>?nt06cn7nf~uj!k4iEa#tM0$_l8KPEoT%3b(7U6>or#6btEJW*Asqpgig# z?1*8E14@_t%Wl!+FL0$z)bvV@9us2%jTOplOmJ3BQGNl@<|6R+{r|l1qFh~H(*WBm z``fSPo(@0UCCd2zQOdYQ>4*|gE@Oi15}+lruR@1f%mKqg@`=Hnzig15C-aNKy4kt6 zToH6i996(d`TDp%&cOyK(SL?>QZkby)o(c|Xdf9sJL>fVy}uInFW|hR!QPDgzmyaS zd=PuSp%wqNC3pg7q^y|^s{Uo9WB_gxp6dJYe;6qdAokiim#s1U{SL3dZvDjY)9UuU z=)d7BjJHM-P&$tc&rxmx|BNn40M}Gi}otkq) zdR%`+_(LwB7`8IVM@o=Ww~7U{f`oRbb=NBtEz7Nk)htIEm4FJftNO)!kR89l!me_m zsg1?yK+Dg&CQ9`!A-AV7ILH6D#03Fm?sU{@qC;4%z(Qx8zQvIAzgq>wPjX856Ps&| z$ybvJ9<$jp`twurdnlY9@TdJ`ZH8{l$Ypg8Te!SkckAnr;#?AY8PL^8bYkq4)zy)DQjmLdWuS4m3%<=(tx4@xfYv zaf-S7lj{HPTY#cl2P`C-IOm7;NX6z13HX>t07E!P?%l;PH5(-*{0sf(jzo&h z_k4Jx*|h1-QIBhP+f569jYOp`{&V%yjdqz@v_5%mYN5cmk2+I*ZvvkLO{DNw)UmGv9gP|eSN zm3cQg)d|R-@Oht=%&0ebR_qx8OWft|{`U7xD>4gcT(%?9M`HishcxRV=P=FDQz+`t ze{edN+ti}TQvGbG{LIbNZC&{KwgqbcnC&FLc>8Vf)%gM6WH;@9zosbE%zZ2Fm*L;v zot@d9)qL%erEyuQ{MEomCWR%%ig5lZ5LT@MJAFS#j)+dJQ27@sg3V0nXpZH{;bHLD zcYt>929+@l7)cJT`QJ6}`(0D|Ga5UX9$~Gi!m6eCRhj4K|HD`#Anx8$3jqqe18~hu zKA=Mk!k$N8uXQ5&z4=~)0lEbcu^lPWowhwxqIdl6(Q3=%gqNMnC2~9VZZ)l@D$@@4 z^cILPDj>X+xA`n{SpfgUhd3`s1aI|1z?$}}!stonQvsUx5GBx4i3$_B(THWyWvG)s z`2i#nH0#~Jd++_Y>p16gDua(3T@b|uAi{gz{$zKRx?K-HPK_l-z7hA;V>m_)i@Gsd z=@PLzmH9}IFMhi)q|cFrQa4Qn_}pd%H4TM#2mjsY{!2K|-1oi+0$k_AM~|M~LA@6a z9Is8|cWWy<;I04wxy@nw``P-$_e@|7rV((T%<|5=$V~luAl*tWPicNIVor$G;4b5; zm`q)kwng1EZp8%i;d12d|gMoVp=YN*b<<};M`2@FTp13 zF!#QOvfOLd-#7fB`|!E_xafZD!Vf5gV%!i#>nWa_8-^q%-Y4L{%58s@H^H(94${(#Sh;fKyA}O#{j5n*6*kS zkQJBt00P)F5`cd)GS`k>?YN8qsIqTCnqb(3!20LEN?PfQh#kSCYVFk4+>62qa7 zMN(t#Y$N2O-H%Qt>2Ov9YH`Lm3UKzAy}lE zPp~uB6b7Wl(?OyQbb22C{{7qegyP(bNldgmmU-A;6s(L^Fx_+xutY~Q%tS!>nbYjW zUF>agsFqK6y48k7n#Q3Z^6(o>%D!*|F%H65-gEi+UhQ=81;$HCdqh+O6kEI;FJP~L zY@wXnX5w;ZXD=et{P)xO^_^GQ{8{)+8VExog%^g->jx%V(~zi=cl-_&B9ocw-lrY? zFMjK^*WP;r2I1(*3PN6G+$`Q zUp(is`;gBG_Fn4Or$_w8;V^}Z3W*@Mn>LpEv`K@cz7?G-$5t%(*Dlvhk8Rq{(WQuhSQbX;SWin zD|Ql~LX3S7|GHv`_JCn9|KAS@=(P}uytTkNhP6WFVs#DUjSDovwSX`QKTV{Kh z&!x30%g|Jn6%@Q-N?>>H`daDv0;zoaqSHTH@CinNcGZ1ya`IYFNg!>=_NE!3RrOR_ zJ_-4}LmZ&PM=_bT%A3auwO#lwz)e|4vCO$XPe#H+BSDIIEcIfvN&U}4;_qle+ z8B|Kx_Meu(@OzvQqmZ@9hnVs!2F!3|gl$#*aO34D3xR@+JQK+#E+-;C`O6DvwrUQ6 z>3k?vKUL`gIux9wlkjtYVOLp`Nx_yqkq~J!<9`Ru3x8U zxj-u`v3e#1)!&qrc85$}7)N%Da+3jc%*yJ(!)Mfp0v!8Khyoa*S##C=vfG_hpPXc2 zpj~*iypSeHF=`K8EcS3>Mn&xW;-6I6a5Zoz#8K`*7v8AP;E~$2wYn zDFfc<&P}9TjpPCL)nBLZ4dHEzNJwb*x>yZAn1J=i?r=^%{uzFRpe9G1(&E~nk@;9@ zOy5crm&L;oVS8{R8(G42_k8^ z)A($Y62&9=z5t{0jdO_52*IP+BY%wljLzUE@>$MHgN8?n1ny)4zNFo;#RE=)WCAX2 zLo~rSa@)I2GA}kM1l$ILe;O-(?Kz#xN3mbu*E6Y#VtS#Ha}|ngT53VE_`a3zk0>)=4(D_UkSF9m8iOt|NFj_c${KRrg!=6PQwJ1g?yj--A zaz?$voznJ;-#bh;gbqaEdGGUsH|qz>)lRGTi}Ir_=p*S)8@>Vktj*QPm5KO?r{N+Z z)Qr8pF^C-y#MuR9zs%0hst+twQ06Mu+l;cw^(f0RKNTmL)6M@1d)9rzBH}h|5l2&4 zZV^@9Aubg%@a1Kuu(u71cMN1=}k#@i8P3Ghom$}Bd`D! zleYEmcUGZk`d?vhep~>aTbDYYI z5h0;KGsTcxB~9TUFcKbRP$Hn4`hK$%Ht(Ny_P9S<`ittR%MpED7=1#pDVg-Dn+Y^B zc7@LvJrOjdU1?E37$MWKQf}Hf(Mhk{r8kJyZS<{jbNtJv8qSIQH7Gw!>wV+piH=B6 zedcI<+=P3kMo{bO72Cu8&!0U9^;VsGVj137x~IF(BmxR1~_&a8Yw#tb17P=`A? zIH+qCcINrGna6W?TaVUDFpgAR3F7YXoe>4I-mW2VdgH(-Xx6eGhy%L2HRcW5BWlMq zlRPkqc>>gxzA{i0Z8{L?c9`8{f}=WDR5yl~(zVm&!eMiPk`#Nn!9_?v$z=8j+OQj4 z^mPo1TbC-t>sF(9Nt3A(<_1$jCPtw*)bpt*824&z9|vZ67b!V#Ceg-~Cd}p2Z52^d zgh-d0R+O0ij@|E9Eo}kE+zFXwIWkjEznG|x!D8-gK`>vohn-<#EkZX`<#8o@qw85K z*J5|j&cNeCjVu%yD^PD=@V$06BVF=hsB@N1c2rf1^9DZAh<;F}!HXE*G&%EBY~+!g z!DiB!l}_bLebeU$sman8tNl@Erepc67E+_K+;9b2w@fdCi#o*?5!&Ryf?(048+~&Z z>nK}DJr(tMwh*T$$cDVy?DQ1ZV9p zO$w#ilA%&3Zl-lLl$7iIbgd~8X#$bhF-DKW6CrN01If#I?({RoLpH;oEF@~aV%C2? ze$N!yL@A~$*Q%{Uf&WW|ka;=ea_vDP;()}~bfew>3;XEdm2t4jbCjToTz!Qmk}TPb zCKX1ntnS&+h`eb{lWd;&tEKc>t!m@Wri)}*{N5z%2>EdoC&_dom7LpK#*hDoHFwqZ z&1PI=e(r$_0$EcNad9-ePir;hkfk7qvcRpbUN$lJ^do;|K3qcsvYGam|xWC^`*HwL4 z{$3`1sK@YJ8LqEmHCQ~~T-L2pmSIg(n6FNpvwHO@?sP|I=EDsAy>ygE2+IiMP0?Ru zPuQ3blptrk)7)W|VQ6-YI$$W0TE_2dzHRjPp!;;)jN5!Td|y4(Om`xX*a`Or5xkq0}Cznwlu2kL%p%@n?cjN2~$1 z8rDBM_j4x1^UH5e>&nT(TI$9qmCoDKYVZbq&=}fT45fv(U(<{F?lFW5OL#gJr;rl| zjCTYNth|(nxeO$lyEy$NHK_lp<=aRuj}v~+b?u`l4e|~(HSXY$KX+QVMD*Ij*_nWp zZ-WBD|G|7H@r@fJBSO7ilPv~g*b{?wiY2QuQ%}W_NuyYQY;c8K8C5w@20fi}pIA@*Qdet(h1pYMcpZ$EOnp+{R465$(%4;(9FYUWe}c8btUp6`W|ebp zdCfhPWa_&91pb6~Z2@9x%>G+)@+LMzU|@1Y(_J40Z(sbTZv`Uc7Sea{=jvQ>!8Glg zGtbFw1s^VI5`*`|CSjPK%N@ybcN+CnSSW%wZqQ59D#u-MuJb34Av%G#3R05xjZY9P z>c@;mN#S;@4c+;y+92D%SAF{f%F;+dwpV9 zb<`O@^LuHRoW&8Im?6j(_}M+kQ!{c^b4kXC@@|XDQFO929eHCCo6G7|c>0>zr*pWG zu%Y2No0I%bBGYkHT6%Pz@j)v z_}9G5>U%oTlcMGNny+9D@xckwVRARw{o3wF-%*xg?v?t2GJ34;}*t zHmNV!{Z97=tkquV^)$>3vv~ETEycFr^@AouAl1 zdmN#CUNTW{^s}+PUpbW@JOKer9tAb+IvQ$EBfmP4zk7d##R30lRQ|NTZ&h@@+y%#X zrw`|L)kEMtwr44|O&-kH0djZbO<7oh#5@3%I->_fC=dK-S{?@ps5BEGYVn?*bw3pR zM2e=A;VG+X*xR^eoFs}DBf(jQ`5j8%;cBXOB-|}TKJk2++Id@~h_j>Dj1^|f23JZ2 zBk$V?JbJ6t?0dTlP>>f#BSy)DbC?hOrhv#WE^gIxjrN3pQ^~jeeP!EFB z+1~v*13!0axo{x`_M>1jKBWG{svlyaAZf){kQ#wrB|DftZTM*%Oo=2<`8@e+T=}a= zC8@*)p2w#10J7fnqLFYmWOm5-4(dO@d|cw_Rdb{DceNZA!ytw(w8%1RQUnfd`DAv* zc1~>I#smd%9IOr$aXiIm)aI0qQlSkfI~$#@(VG24{O>5eK^{mEDwxNRU1x>F*AHGP zhg~m3EZKV;RKokY>%FbT$z9TY-l6Mi_}W<$puEtp4dPznF)V{I$Fiv*1zlJB{#pLd zUWgJTs?i(ZM7p~lK)WhRWzSFwh`g4&JW?c?xudv^SDE_YR=(c0JLKfT^`~AsV5#gJ zDzC;ZS96$M`&MpDW+RGfsAZ?MNqMdo!@T?OmIXd`M_Emj7_aoG@mKsHbzWMyd3SlX z_tTtA3Mq)G(n`Z?HD@uwq~_ZwPwDA94;}# z95vR)T*HWW8_Qi?PjW=VQS?#W6?YzKBkihn3|AZyE)JpCMJEeze8p*VV7O=vMLP_45*?owhT3!0qCpiRLB=YVW@MeO&ReVNr@d&}h8mm-= z!fsi`86wv3VCl@9r!`K3RUE6Dc1HyB9!!=y69Yq-FPmLeuYdNrW&+c)O~(_jwop1& z{rcw3iIQV7b}O|>nYY;0W0G=UcgS6`oq!3 zSK?k8l~aPe0=K0bc;|(qnjcmMN+g;bW7$F+9d2-cxDJV~+>Rn5Cc^G$$jm$VoC(4` zi0DrfBI%o2=hOkXy_AkT#+{1IKU(e-k?F091;2U4u4u#@Ro3IURd?10H64)O@u7CC z>?;5f$XevC+qK6R=9ZP!ee@%?9?#yWlxd_k?y0tj9L&DX4$79F=lMn~LN0^@c_Vn( z54P|U-qv5YzmPY>$5SJm$+P3Ll6~B(QH%$xiL4FI9mbH zhytF=rHvsnKpt{#J?M@u^5@0po#+kcjOrGUQR$5-{?+sB2 z$P9fpLqNNT@y6g?V=OKrQx_;5uL~OpXB|tqxvP}^zB8?LKB@}g%?8E;^t=oV+Zo*!Brn)DNYRXtHt2IzgF~t1bMv$GJ_w2FB*nL; zVu&_fltA+8<8nRq<41Vi)PonzYz3)H?}dLwg7rJvCwYGAP1|Vb{o+~khW}9UT$b$O z5ol&l?;=DlWvV0cg}q4m?i`ab^>a1DvZI%%2Ly4DQG$35%nNboW$Nn8Oc~>oNNs7bgEMdBnFU0JJ+|0mRC0uFwR+b;vErGVF}O zx&(+QV|pHC!Z^Qwyie5}@A(cXly**ue_F*n-_s@$#?xl(cin(}K2 zFqCNn-;o!rO5mU(XmKv0-gX@6GM5pQk1nuNUy$z%!qWe|R>gk?1s zx_m2F@^ht?|NI_ONUBOR4mhcHILy}9q^auywfap5lh!x+rn%f-@E_@30&qPfuVk31 zEGdH1m_Hw_$p_H0E$U5A)_}#lb2sbAbSV+LNpp*MfWt-bF+>~# zY>ivy-ku&+Cp0$4wE&>exIVEul2}lqM9&l<~|zt1yiY{Qb_ z*sxZ6I>qtr*&ZcWorp4>^`^eEu|1b_%^G<2qKFAc(Mg#gPt&!z z;L=HEt$41pXHH+U;Z)ET67jsTco$>7ZzLsEbG5$kD}{`2n5JwvD(TOeN5P4b@%)ot zN|TFJlo@mB(tPq{9h5rOW~%DQ!p`cvSE?9mA(u>}Dan3SouA~hnrLz!fk1&F7Ti#kFjfk(nSK^)gipCTlH z{j`JrOqF5!vwDTmG(Xv;*8{iH4X$GAIsZdO^~H@7(z7&Klx5JQQ9{qPgVdI z_K4t=A{HKL%>8=u5rC%H`26N`B$JOv^OP^9C>Sd;W%$@-wyle0RBe)6ww1E9?}~UO za@)SowS2ZZ%g5@L&l((?m{|}@`%t1i2*R%zW$xN#)&2VD7)T#Y2R!|Pk+3r}6lu<+ z5-ku^e7wOT{JRgLpnzH(6&Dw`AyI(Lk*wA2)uyEa(30eZfOG3$OrQo)lV zdVIt9GHdru-_@mCT8oI%m*=gg?#XQF+pd$`8Dt*gjC~8KA5RO~7_$)|l-4w#=s?yS z+i@8{mhl_ourBO*->n;EB6@P=W;`&9^F=aD4Akyyn_*L{+~Pe|=7X^cb~BlNBQy`g zzXsypF@r~(F6CiQN=BiWtR^BKZ_QNA&(dD&gZSX1C;SOZi5%v|?cN0w#awmF)B`PB z&7M(zFK9s&iOUii{h`6(arAorE$xZ^PZWHLdU?~Es1IuZuPnQ*K0x>33@{u^~v8&yXk=)LopA``o9JT3YSb zX$a9O^p_{5a*X-C<~ z$jl5e)Fu@=%s9I-YUcw0y7d^N4q;`FLb#9bg=xLpK1J5c$$z!yE44K9!IX>aen2Fo zcnCZBRsl#@Z zk49*QO!d27$Cc=|yq9Tum5q57!AH&zV39|Z)o3ETo~CWXT;w_R#;mSW*-=;0EKRGz zeCe#SFj8{O3PyY!mRw75((<{%Pu#1 zy#4EoRBiob@!Z?ss;evPPmX&W6bApzo?fQ8?Jv?RWxTJQcYOQ+*~BjD!|L{Q<;d8R zT9@s|%Ufe7WO3IFqQ2qx-L||i0y3$%8(PeIDAjf%eLtj!M$agIPjeGfbEqqDW1TYcC^6~)4!l3D8UVP^-$ zc_Gv(^7?SC*Q&B9E5z&V=`a^7&7E-huU%9h_`i|BC-;}0Dl@HhCleoUj@^CQ$GQ5F1NUj1a6zy@sIIBaZ<)>U(Vyyrc9! z6`Mz&W~Q^t_!O3jpHyO@@MWGOT~~f(xb47(rlVQ^^UZHIW9Rx47G*T=o}E~09h(f( zMAe>(qv4jvKjY6F3|jhkD*8PMS3+5J*_kB*v4s;;KDX0KFjSl591S7nd6}n7BP}}% zMB@2S)5-w%cIS)R>Jr}#eskv}xglNFGr6q;WO)?(`B+;3(xL>7+D|!I&n$Vo&RD(4 zfIrK(F-;VB5f4fBH%YIiG;4RBY}+rbDyXTu1mVO-NEkoRJ=~gd6tXkgVl{0{Zonn8)?TK8R`$28^Adm01Qif1}o7WG4{18stX_6}2IZ04AJAb-lO5hM@zi>+y zDe-&T*twVfPAOy5wf0K0EHcZfRCzb0>9M#dQnE?<1kl<)_3DtnmX3jC!IZGLPMz-L zshMT$8%w5__q?`4N1stTO#(NXz=eJ zq5F536M5Q}Wga>`4TU>Aq>=roHIkDKGD$rAB+JjFwOFan=;UJi;yGWD0FUo=NQ3m3 zkma(y*OiIovyBjKvDK9o6pWjQa;i6ahpPjUZE!C1QakB}2rerErufqw7FJq<^4jf% z^tPvdP% zXzY|lP?CwUNQ35uKNhLuhLNyge;8Ac(n4Qrl1Yo|qg2b=LQLq5bUEJO!dG>|su}w{ z8a+?j+TGm^w{0vDUnKE_(3T$l86SY@2_^st9|Bb3y~$xjq~R?Le5zWgSB!iFZ1f&J z5Tqu$R?k=dqP*e@Rle4v?1OzOhLf5F%cvn$R-*V&q9wV)EwQX~4 zQuK4IVaL9~NFrw&gkfWOW<4<*drZKM`Tnzyr^Vp`Kduaf#q2AXr;?@2n5q10v!vG9NP%d8j^j`GS|G%iQ=LONkI;=t&HWMbS{bCd3&JmHun8($cJNq=uv zeR~G{`)19w7J#AESd>TkMQ8|8D2u%)ib@Z4MN(4I7Xw%cD>g>G=lKKREZ+u*SI1iJ zZf~h&mkh73vwb|*YQQ`rkbwCy zw_>=tgzr7P>bIvXAV%PWpJjSYv|m*fvsO7WkPx&ws=eU=o|Lc|L*itu>9H|22)^yT zzlah_!siE=NWXwhUFSnJTIma*^TY%Rgk`7pTZ+Dh7}6bw;`vNP$fa6X=(yuzBqnR8 z8*h&yA7t%cWgj23bgXo|NI+T_gte-fUOFfzh)*@v`$Sv)tOVf$-)MuVCtKruuHmP| zjm2T+mng{8n=kyaZ7=SRw)H}gyx#?R^m~kl8LuN)<1FaJ{E+#BlwOu3U;fv5`uP;P zrSRC1HNtP+9&L=tl@vyfsSO9qkbe1|Q@@s>{;oH$sMh&T>_zl8m@@b*q2u*@eujde z)s!N*9+eS^dBKo0h~i*8Epp%5%gHwD7H06>qo&YG6)~4Ifx7#)3d<3?sdyDSx<50h zg!`lCIie4@)I9uKfKz-%mp&oKSYDs5WCY9LT`F{=C9+HwWpWzfgY~8RSp_h-&H%+X z|DEuCFf;K%dZkDac|n$}YkDBKThp`HEukhuLR}Yzd`;b-I$`bdB1pgyP!9~%d=N#| z-K!&@zqKHM1D;zWYJF0xbFmS+zqG#o3AjuzuJ$KgKt0sIJLl#|fs#YgT`iI_R||Ub z?P*C0(l14dIys|iYRA_0q_C^co{7{B&e^H5C?iyAi@e_7_EG*`z~A=$PZ8DJl%NL4me0HM9)E!}fC7L>#E)B@0pmli~p{J(2>?~d4wO8t=ez!1RZ^b|;BJL_z= z?P9#`fuV2CN7g6!^rG(lJwE?cb$G9DCohIoqA7yz6k)&|Y`THf75r6eis(V>&KbXq zQGK-+8b*b=ikL`Dc=0p$@6z!UTggm=ACYiqn-M6`E=Aq>{l6TT<+Rc#OSPmNkhP;T}`u2voK6_(e> z1iykd?gtzR1xxh%Lqmj@-!J>z+v5;9?l9c4oN%cB)L5?$l8y9y5MBTO z`3_J<`0Zj5b;ENz-5~{|uKQ$)$!qd|r|Y+`si-eH!#yfV?B}0aEk2^3|2oV7$2vOe z-qsX{CqN-u1@8SHiwz7(#Y9)_OvnP5uQ2RanXkOe1dTCYied=5A0T&zl79Jrug`lg zkfCz(!O*k)rGTi46^lQRhp03rh>Cgu%$=~iDftNgUkm!4EE0e@B!T!t+`e{cHs18rV~D&9VLEK%Q=c;MZk zUwrdA&KHivjPd>(!X2MyI`KzE7#`FHdX) zJfR(lt{fdpmKsl=q>hUb`yz|{I~&Wn`RkR%>2R+z-Wa;{nhs^vsJ z3Y}t3b>nW5@cLLCD-M~k$wln$A=rm0fiJ+tZ9B5uojl{JBQ3J8Tp-yIOd0@^$d-nd zIz7%nXHQ|1$eF8BN3b!T7a|?;XpnGtha@a+kK+y=q+D+N^Qx)TbzT?@h#yzkdchPD zz`$EIZ_D?>d6PmWk~*}{aH7&?<|a%(`gk5%vzIZoa#n~ND88Ob_}|I=4@#iFr;YTB z8{zjcpdg=|$i%UVnBTAw7wLQ}-8kCW7MS;<=Auk8#**f51nHyAjw`SVh|ohX<`I#A zH`2{#9&!~ZHCUdA1NFD-;W+a=a33ZfBc@Y(88IXaost4aYGbzeuHWXnihND4s3cn< zQavrxTmB37V|F}7jiL@8y0BBBoqnBzv%Vi_ekG-`#ax-6zv4 zhaUfCE4Lrt8sA)WjkfO``Tb)Ox56UR{g zYc{j?1?q3SH>@86@nIAo%HtzBD_Jq5TN5~DHDR5;waFR%*Ugcm$y)-2G@6hq3z>@xHxj)f!uZHIIcHbhV>+E%OQLC9+d zruXN%8JIpl9s~p2GbALO`v`b+FG#wmzyEke_0)UoH*0g3xIdS#h}wlEm4M=*nZiDp zXn4z-(8$N%17S(3rVD`?$GA4fCh8(F%&!N4%K&inK&k$Gw!gTEP=P=!+(_yByv;w% z#{_$0x=291MAtW0>5KM;?Z{;$^vir9jgtRN3Mq=95B`wNxZ`M!$06f6y=EFhBBzzF z*X60WY%*7_0WJs?IoNKa`&$kAhTj8wA z>5i&-Z!8AIZUP4s{U-N-V>A{^A4b;{!{HwBi-;L63|O9FTKPGoyMV{&@f~F`=D!#7 zV>1Z*QR`Ut1(eAYZECJkNF*Aj)jBxUUH^&6HeWpp({iGqWK97Tm((9*3bag3O(_~k zc~Ocf*SYStpgH?W1bIF*3Thx33!0Gl$K4BUwonUn0{XtmOag7Nhm(OpuaBoP2)@e&SvLNMDg%^69;_kWl)m_J$du>b*RUA zJqzZ`=3r53j@=J+Rl&ms;MsRH3Ap;#9j;*n6gD5O4YHZk{3Dz^vZbnfj8f&`wqEbZ{vf{nr;K zCxEcEMa5$<^VQa(UX|$Mi!RuG(h2MrnhhE0eO5N3lPajT+1y(Hhk9A1G(VC!(qYCJ=% zts|b(9n)JS%y^>%^Do~7Y>AYt6!S8cfWdpm%j0D0lTALX6}%XGd%wi5y-a~a%ImRw zC|22j2ZlxX5FY|R(6e~#m^ZXGA*H+=Q$!Q@o)Oa#vpm1FF06vYgMHYy8{uSG^5lJbIYBCs$ zKaa-}49<(Gs~P*lRpu=v#+B2ZnH-2J)^WKj6zTk+Ajw3FIh1nB;!ar|K4+IZEEvy|Bkv;ASJ!FRf zClT9d%8`#i;wv|wz+F0%GStd;>FF${N@& z+BN+$Prgj~gki`vNng&xl1OeEw@3%2b})=|hRVxBLp5KMQZoSylkm+1Ls}Nz?Kt(vlFmjrovW?&OgVl9hh&!-8FdBsO3~nFmvJB>|Ns7vWUEUZt}qJM{R}|L%sQ ziP>^jtlnk(Kv*})+;^&xTdLF(N0`Sa??wZ z#oWshcyd}75J2N{J2SNomTAem86I<*J5n%x4+ z!B8qM22eR_C)6()r1m|#6{W-vQQ0JZ4S%3|_c52hy!Rs;z~;QLV088-ovz~0v6WSZ z^$H7luV*Virj@)56bTPP2}VYi-L|=Q2-i+S z`sTm!K;wp|XCt3B(5P3tFlv( zsJ19RcuMe@K*ZYhii%T1)er;EsdMOjc{@{HyKCUz_WM9#3k(j@c4 z7Pz<_87J2|3|BiCU!Ba@!M^+yVgf#OkZYrhy)R-&;BTLln7W42{cxU?22bPtK=M3! zvHweXQnr%hL4daOhb3@(PFWN1e(}=)Ids{V6UAz6tJggR!C}5!7_;lME9Rg1-i|9y zKrsaxn-l$s++tE(gl0w7TelSu7?RX01o&4T^ zNV`}AV>9}iT<1chs8nK0dbBk(cUrms9O?5iN%CR`7cm0fYz_Ys@0HBo1IXS45o05w zhOUP06g;SnfLS=Z4aNg%(L7}+>qxvDE=`-p1&ez1%6Z;2RoiKIanWcxd63~AB?_!W z%eR-9XXz?1rn=FQM>u|V<^=a(`M{KfNJK^?a=E+co$u$~I0+{@I=J3>BIuJkk#HU& zEH5q=-k~92)(4|w1r4Rvzq$sI#20$re)ls~isgy$l(qCCX%#Xc4I~+}1i1~7Q0EP< z=23>GbVFYxg3h=u6O7sJTy``WvqyQ!EDtGX;OA(-j&WqoO)h5OQK2%kj^*wcVQO*H z(caygPk0OuG9<5$B4k!mR*SSZ7g7P>_&eq$aLn+T{Tg+kbSrg;V);+%z-T5f5)g?k zG*=4`gyL8Yo&e_+`gC=#m4O%)g94KsVDdzMqh0zkOQ$|?o=%aSxNzCLIgGV9&l;g$ zHS=5M>pnm@%D&=OLSsodIaZCB13|At#xK#scQuGFUoG^N1%Xjv7pnVqkVzyUdvNxDUz;pmITb!-0U1Wn=W(ucX6 z;$L%@xCE3e^X`5!jJWGkwiDF+k8-Vr33=O%3@ao!ZU0~$h?vMqqN{GfkQsl#t9ruG zRB!~SIEocfm`<6J6~)%3$MLC13VL10o43a*uXC6Uv;r+W+qP>e_Vb&tF<@d_sNEph zl+0?NkJp!Kz#J@xWVb6fS#OHPQt*Z%B#FB%&G%YK%M`726e&qD>UtdBfG8di_Cvhu zvugKZyECm#0&W!cQsgg4YV{FgENhsqWpUp)0eES3!rHw5)p&bM_6N%{oYs>s(cpba zJh;G>^zP9cYOHi7RjZkA%-Qk@NVt{1b^Uy<(C(t}-xGM*+=85uD@(l&Q~MD{XsNXN zA;!w->5pqs+0&oupXip$T$}G@!n8=%3)Cfhj3n;yX>+1M4;NQ%sRf>av<^O2c9-JB zg<5quV3OPR^jKuySSqZ1GyfaBLL3b)offin3DVHazGg@S=5_}?{=H{xu4gHyj?b)9 zj}EXn?%K0+K0O7?qum*)IA8X;AE5U7&0}~^Js%++KZS8<54!6V9&ACrbUrJxMk%xS z9SprbLjz`1Lj!M&+h0e%nCjiEhZ)3>Io`y7a-+SU7|E4gh-qj!o{^P85h0qg3g#si zI$0YDa(jyM_>aE2wRnCHC7m&Mv`8hNQJby?%8@TxBOTtMR{Z|(werO#_aJrHhXWf@ zRq7~yhp|9FXEyGu?&@3uR``LE}$>(Q&j*RpWlc&kjj=x&NH$yrIqRF>3Ze^7HXa z50^B|tQ*0^Dk@l%ok#_QFdpsBlfy6P;f-DM#yW#>*UuCwB)`(JJIrr=p!IVXX$}(E|uXyrr8)W@3oZ_)Xqyn$nJ-L!3 zfyllnnZ2+&?RZ*8%WOxnTTu$lh7J&=^t{_1Zs9TQ_1ra&*Q+}{Lxp!4@i7$GPV;}Y zD9IxjAi)_fPhv;(gph0{aV|RuboESioAn{ZGdj$fL01Fo}nGx?Y3EkJWB6lYD52 zuchW0Uv>WOqRg8aGGsdk``abk_|ZqaKT~c`LI59`TA}=GOPRsl#wL=>eDpV4?OU&y z#R<-{&PU=%rWYqWd2})Zd2oA=VqH^f%)N@Qu&7^9`7?eQ&NofM4Ws>~(H^PYD%q%$ z6K+(HFAUCUwdxeD8ud6*tP7-zUr3h*AW!zi^S3MRg_S{+r+!@p%GEMawVO9d^0LyG zjYqDjprhcIAw5%oN-FqrK{6}d>!JLRfyihk3+2A}lR9C$C`zx?8*T@|jxZupiZdyG zY1r@aBJJOe?CwtI<%7%7y94Se(%UXFL=XdWI%fRE1LlEF(fk5(70ZBCJ|GxrJw1I% zJE)vkHEv$8^c;O-09zhx&)HqZ7`SB;zN^?37I>hVA(r*B_( z$fNa&k0sh;FtfFh45_eC{iYL9%gRYP_7{rhUWsf@KB>O_KoN8y6-K^!4U~?AhLC%k zn}O}q9?!TU=4!~%`5RdPkX!u4Z`E!mob7=6bo@E0PiP9rO{=3*<1VE^_1BISrJQmS z+J1v)Z{q7_yB=|x^CI_rkTyDj ze>#`hFUKNew=!A-$>wwm#G6`H!OEpjJ(%~dK&{CP7NO4^9Xc;iZcJy-QHTiry<3PqKF`Que;_DF>QvdbtTLj^|3Lvgh6g!6hn|MGPTyK50rXuB|R;^PWi-P6pCwsI2{M*S9 zzs6vgLYt+rpzKpS1w_`rCFo<446b=4nG1~<|SF=%gP=uBABZ$2&O zFWW@CdiTzJE>ASATvMkGaezhhy+#khc4= ziPeuVwv@uriy9qQ64lBlSu!rl}0Jyxd1lL)O~-vA@;G2Sz`#x)v9>uA_qLr9vN}=K1!5S>`SJi5}Vv7#zpTGUvb! z-3;xkvo!`Pi*hFVH=7y%^6gGaFSuJm6~t7 zHD-z_nt?c0TcN8ayZV7hnxK6=z-{LdAf%$%38B>rcveodW9j2^CM_B`A$ESCGj0-mivT9gi19)q`?c&2-H9 z+M|Sn-7+FoM`7PT37fW@s9&1)UogaX4h!GRE9Tj%XDUQVrk<`A=|pgtExUzAx<>unu$Ka^*<*MdyKjvy`E_D?0UuUmxr7z_*i zamZdDf8kOvU=qV0PaI{BlcJ7sr=d<%a-IEIw%n^+BJA}m&ktIz8Iq?`RQRI?S>dPq zpNb^~hd#n1516HoLt!p=HrIbM?`1e zOk@h8o}%HBwhrn+zHkJZ5l5cTSA&XqugC%ZE$DrPtf6K&wq}c~b|J9j+6~7nJ6P$V z48treA63r6@syYXxl5`W+vEIP-%RQv3&mD?V#_$G=W_r-`1a_Xq%lP1qdSUgA1D?R zcHst^nblt8Wz?0=HHv2s-HumDUl=G&aS|cm-3SY&u>JWjp7(u6$=ArJ5q@{{ClT~k z@mLK{4xR(A@#B6Jgl@q|rtB!%L;3Nw(I=GMosl}(*JO`q+P6NNzdh@+V_+AdBk2l4 zJ>Gl;{RmHw=i9`U*7_PrBTMo2TOqIg9tF3}RA7Hn)$jY>+dqZEBd%<5c65{Hht2~3 zPE{5(kq#Qf2>gj1C0lCvje|94PdofL$W8(I#hTE~ewFEGK9u?;H}e6&{zWGr+D{@- zB)oh*lg%X={5S*zTz!%G;%{GG9!L*FwD>O{Ojg)9{+_`0vWxshD{){VcG3Sx$c!l# zsFe#UwX3XsG4Xq-+{;ZqT14Ks0rQbF6_f)_%Ln!~NKQ5Q8+ zH_#cy3>@L9Tq}_ZnBfI_9xA*HSo*JdL_jJt?i}Auh!sTt(cQrl%mzMEb$p~lZz=?d z8|(W=0-}TwOYDcdZxm4-qtn1Z<$aL&YNbd?2uw(`=xJnyLzto@ zhfN+Zm=}Lev^CMrMeb6ihL(i#B`w!}@Sw>k$je&%EKvu#|?@cXX`#%k4SJRK9xhDMvCxH6Gs7 zE=K1i&4tzfxJ!oUCS42Jgk9ZN6Sc?COnqq=J-$`2@rBANGzwPmL8r1|_Kdar&f->K zoy^H+V#^`TeAQSEY6GR9FPSnmPZ?J5KgSBVvLrWL_`^t_7z-&mO6RF{v+`8_C{hQJ z&}dRbYxf>II(JO|4{<|A>_(u+>H$bX5J0u5B%a>Hrt&+>MpfssJt$~ex5h)aL6q6r zgO1iYyx@b{%^t5)rKCgPFHHA6o#BZ3!qs7}tk%5?H!&Bklb{`3zN~SSPDbra2Lvdw z=5(ONYtCFNnH$Q~!rD4>r90V~H;;G<5c*^psT*^>9u=7l1G)aoVVdi9YVFb7*xH4Y zWC4PzZd8mH5wV;WkrZPCZcrz{46@+j)EySH& zv6-_>U;pSJ3E6!MBwn39zVF!9s~F;ioda3SSL=pC>A+Bah~|e$Ts9O!tX0n~;6JJd z(q#R{MZUg^)`==N0)yy6tFak@{~cvW5A9uDC&U_bzF7|e8?5i29!|2DRrSgiC&Qu) z*<%vyx6eW^1Y)N`&3+0xEFv#oYPvAa+x2aARJA5Fzr{bQIPG)3#m5u^>i4f=&I^%l zSbO>M9>SoSy4Ei*Ju;;qeVtc?8y|4}+1y`JJi(9-ckW&7cj~b2hA}(xj<3dimqc;| z_t`Fj!MFpP_stPKU;$W{g;|I1x)G|bnoKyYUmeNqChEuGL@jmA238`ZsgSQl57%W? zB{FmkBKFnC!zYlW$G283aq{$L$d8_Iam;N&9-EGRV^hx0w*E1Z(BB~ersf!;C~)?8 z{Uu)$O@*bJ$bBn!yQmalHvZF zEECO`9x{*1t|8;S3*+lIZ~2WGzHrN965==NN z+uKESo|)o(@dj<0&Snm1Si~p0B0eXi-lG#tL>`ax3*{+?Zl?B2ST1Q=M3h-UL9hUk|%2xUT@97titL5r9K(%@;BDWquzjPL6D=!~a znvgece?#c+EWFi_`J%$V2a%E<%bIl<2nm*&8Q%R`9G}!8^6PTK#~kQUK;vPcnWjI- zAMXCtV$ORVkt(-i*h1lDP+R8n`mFJ4C2>+wD$^AqjpDDPcfX8!>ikn0d0%w3mT!#Z zZ=6CMp{a%rFJ7>F%KeD^%FV2^kt%i`(C4g>%BC_XGge~2`W%!|g3pYKS?DL)y#B)p zWYRze`h^n!ZSRf@r<~}%Gr6Z-W`wfX9uzQ~B{x&ScnKagc!dX#_1=~)t?g(o=wl0b zU!Y8k2~9TpL5sD#RHtFvO2#vgWHj80g?+rZdm$D5bfygprvwRy9D$l#ej=5hDm$Oq z1291fQlmy;agXN#8>gT-9xm3yLZsm5?y@tT#Zflf1R0o~)fA1?6U|)1qgDMyzFL($ zNq`^DQ9r~6Bvi?z?EYf~ww!7QC06vxA=73}%l6nZBTJy)PF)MjqEV{^mOKxTI$aR zC)Y9(o>v*EdRfooIJ?ss#@fP&`K6e6t-{GI7ZOFdUkyR#?i+$y|QdNI-o9h zT4!aT8h#ct@VEeyP3VTPQVs@b}oY>#0n5BKRt2^(2oOjfwE zu3qus>Ur;E_onD+SmbB<+sx|=9j_VNlDz#HHQ(ey%D*AX&hYTmF>U~eJ^fQ1p9+yL zxl4}@R;~$7#r>(@*HB6!Y=?nwFYFkKYgFc-pPu$PJNlAKu4O zX{LzTdGaWhR?284q_Gj3V0Eb2_ck4HN91`wl8e_S6i#brH2G?=g{I@>7{`qMNpBJ5{V z(E;bBI+#@p^Ow9oB<*}{SW$OgMzFWgom(AoTE{hsL)4I1d;SD?Db(&U#R=p+xK5Tq zW8vnyj^!mLQ!N-=V5m(sFYDr2s|{;-++~Q8*i$5uvfHKXK^LQvrA3H!j}8(G`z39?+D|K_Hp7-? z*bz(k4E>b(4d+qmaYlrAxJR1ka#suJBo2S}-v>rxEqL!03IW&~RdwPl%4g@`j{Y0x zZz+EZ=L=xYp{X1O0pZz?p&`Pzja&|tv21+F+3HGXRDBwGlJ!w#ZQ3&R`zup0y!~kBi5ZG4C6WS21=I-vvPqO` zZD0y$zWcOwK|G+({gtJ6#l_=yHG_*cK@m(XWh%x05(5=E| zDPyEU+diZ1Uw=exL(L#;g;OfK$9*he9EE^S1l^g_vVzvDG1mnF!0}5dp8cXCF8>LK z5c{PUwb?N9n&nc_Gl=fYW>kht`&N_ z*t;hZk?5J48D&<1PBGT}*0WUczXewP;{mJiH^hi*S4Tj!p;u3{&D4N%m~tiQ>JpY582h1JqhiGi{)@v(B>`2& zca2g;VC~_1v3B0rpR>e42{vj09E zFXq{2GTtDOj|Q$$pG?=UZ(p1jY~W8;R?X@VAOE$}{D|S%`TpTK(5qx_6LJIl*7}RR z04t)Wvdhp5mV*43-%!%!ug~g-K^sUuK1)n9}L3^q&3x+}=8+MkKmJfO9 zC6mRdQ1*nsYgapd6>!MfQqNLhXib#^RJ+jM^YX+DB#ha40CMmKii;KZqBBTltwIvW zqe7^^&ba;7S65bVYa*&cb?H9C=x~BDely$Lm~RR~$XgmyLNq_JZqhRJ7&dyMju*aa z=tEnuYDQD-&-kk0@dF{Lkw-p_quEyj(N(^vsQlG@6A5?5D~iA^pBr2qct1Cy#;Er= zP2))AC~*d2AKh<)ZIGM{A@b8RjOLs#J9wJ?M548S&P@0;&5AQO4Vv1(QL z@mNf(^7FQx)!6qvy?&?)x2sm@`UCkv*dferY}B{J-X-o*+Q1mbKkt&+ZXJ_ zC%+!$V;*qc|5s8@zXKg@p~z)r;m)4m$T~SWdD}iioru=s`r)yzF&OKp8Yp z2bq2XhtWauhTvhe#8a@qMD_51(2t(~gCrBroVj2z+JJgl5+&rY{-jh5Dc-osL(CpT zOMDI@ns@|$^`GA_PM@S4z+*8!Sm#x6Za*gLX(0VHH8W<|Y~x2)n5e5j+^Xa)$kteT z-4NIOCO8|s@K?SV>%E3V;D00dsdYJ}E&>3W)d>_=+x5Kd5C-L!0^BUE%y$<&U&e2; zS}|>r6OPswqjk&jsWOtzF`vs)$&PV^)x8wwH%-s)dR>{^b)cN&tSp_#s$H`7Rv#4~ z^8qr72gfdeo^;s-WN4@4cc6cR)%P+?ziO^YP=yQHB>v84Bb(urzN>8in{bK3V ze{x7LF!@kEE(qL>o-;#c#Gds9pYU`}I;HJTz6m-X_>%ws{qI41DAMtGHHiClMPt3# zPRQ?ilq1R=Q}&-{65PB&luYG}C>rVeKA3BiC<4LYIx<-UaIg{_IlV{lp#Qnsvx+Dn z#4J(;SlTIvo32ABUut$!z%O@auwLpUQ7^Yl&@D@l`0ooKD*P`9L@W|fUF!ow1h5YA z4^RNI5Qam{iduUM>F>JyvlzU^fQmN_2rRF9RmSg&Q}sD0KVqI|0na^1t{@a5Z*9 zWyOswCVq8G>==<`LyvW#NmU5(!iTA&U%kJ@fHev3E!y#E#xWu*3EQ1j3@HQ-7mE#! zZZx??|Np~xq5r;Tu>x#hwIm7T=7c#@88hN^*0T-B{D9RIau~aXp4|YXtS@v4P`yA# zj@3*(1U<2j6nR7i+_$0tph5lb71i2Dos-7<&AQGV9Hgm)kBROH#-d|p7ffn-sLz~M z^+Rw#s$ttzjV`c%Z>3#<+@D~AjM=WM8o014&;2SgYZ!1uoK-N@bC80*oyqubm;G|O ztowamZ4-onM}m#AS=C|C+d~m&rJ)aS@!YBcxo&$_+(iUZnDmmNdFtWwxg5~*VtCCx zACP298rc$b+z>;=x?$eadqDH$(X6O-*S(#LueYl(t-I#Ev>RJIhZvR%t4G{?>KMqjI)KMOvni97( zMyNXnyhGjQ-E^{j^te&e7lw-CaI0g%MiXl8h?yzdC{*q^6E9G1@Pm964{%CVtDo?92Rs7OL z>APNI!6Mcrf^V;s;mFdKAXr{vI>o4Sdz%Rs7~TDf;qRjdoqTLqW5F<(3i>J1M@0H( zp@65cjv-0edF7|NfJ93EDGpKd=`(dK_U_+tRVCQ}Jpzz>P&6MaMBzvVJ5T$Sf-C5O z;YmX=T!`&yf<+@At3t|SqL0Fgo8botoPVXayh z)ukR?e8Y|-$|s7+`I=VcX45(95fd%T=w`!tk-?&;Dk2>D^~1RVJF5K|7zJ|ljIt#={*z1n|QlAoMj71mK-e~#%r)4rO@%MIpY-4l#|?~Wga zC#Y!KneuDi8To%_1}QjU;OvzF!-~aj!R-i;>(B-m@xSMw?<)R?%XdV{GSVeHEWA(L z{=?X%qi1NnwO=H^!;>(30R(8(4e4os>mkA*hE4?+V!4|54jkkr$h^S*Le#Y}P^YaK zoDd`IsxW$HBv0xKQ&_<}I_f8f#}=VHMqN?f$@!k5tkLL; z`_gfwFVY-Wg~GV7da#~jH$T0(EGTcpIQiMss|Jq>3+IYWCXatEr8-P3PibTO@pC! z8>pd2%iP4MUZUp36%KDIXUy~`bQpKHN7>xlU~!Tc5Jg|$LP25rn|~-b8tg4R@?*xXzd+02OjyXkUOb_ z5K%xJ4_@T_%$zv91pIam*KRHKGPlag6=8ZnCoOh}W>J=ijh)T>#guE)5{!bW#%(e7qD)}04&q3aW@X7D2pb*>kg9w-CbZQe^LK%Ravmln+d^S$ z(8Ef&UGeNLt&BnQd)p46cQ&kYwr0#iN@{IZm<$|vUY0A<%{i8eM)XTsqGYP|z^i80JP`a&c5 zx}5WhO{osqQDK5=tmO_X*v-~Ldj)rIo++jzeFcG|RQ;E+HdSEa)1Rfv#Gvv$q;|$; z_xFp_j!Ej+CvUynKp^QJXx`&8rHxy`1DE=xlI^KDRS0U3#g!y0h3H(NtZ|paW|g97 zd48v1$5#gEhuo8w9YkS|?C65e3&EfAk_D-LvjQ_%{S!v=apOoy9Y(z-KvU|dM^kjm z>`C{y=ygeUEO#}#!`F33S$U+sf@9wRqj`U3q?Ju4^odo8vzm)AgN`Uw7m@v(9G&9f z*WXqjQlldUo*oIFTK|%??bebLFkCG%?3Q$%y*h^$N=0~!kv`=O5Tp%vMd#uYibG?%ymnifCy`EEwBUKTy8-n0k>wY=;h|E4o0jJR1iARvjb-=48 z!`=pDrJ4_gnrlYLH&1#WVXxjWp#HU+hj-el=&V}IPO6+yXVRg@1} zC~2~Ln5m6omBkf!YmS;EOn*1`1}oI~%sTtej<{ES{rz&cc=iHbaqN$%_n%klyzQV~ zk60g-R+;C@o2UvZUK#DehB(puc+&za#qX;l^{%kbjPKHrN85f59|H+U=6lm2jY^eD zFN{?yoJJfIxJW_;oM4?sb@n`G4#QS^i)y;E*X~wQK#QBuG&fE16RV|>_-64wB0K>h z$rePWumb1aB=LTbRT~HEbhc{8Hz`h>%&oxHYa2feGX}{@C;q- z^=VNWL3H2CC-IA@Tl%=srVZ|#ytfbAzPElhDz=dspesj5;$Kg8sW)1xaob%KdD|%J z()g9j^n}s^B2RKQZmlk3w9xf-IegB!oTE`JvDBSl%!!LAqe|ZQJ!Mp(ryP1Xm3M8v zuw2w6=i9#;dMyp&v=(>feuD0-HeES&W#HXU(UX^Fhp?&5tI%9NyQMGou;e)0t2XoG z4~M3u;4_aSe|K0P>G;7`|KoB@!Am(jdaVSuTZlKCGrio9`$B#j1r5 z9FbhDo^ZQv#ceb8p%nbr+DJYe2pL4%FGs1~qTYS1K*KGwSe9RhHyp-q_RKH~3tgkm z2EI}nQC+k@%Rs{J90*foj@2HIW%v=R!br8M6gtBpf;m82JEWRzKHzZ1 zmQeyspwW>wc?Yako~do27{_lOPQ}@fj%;d+s&RPouXcLtZM9FsTnz`(yBr-nz0fSj zHqzA2S_e&e(-ppJRfef#D>VsmMae&X=G3mm32V)ps!kh7(KY}fwf$ud>zYSSL=V_w zpt_SircCAPvNj);Mx*jUsE|1K98~suws5tyc;_{Na*}f!mM?P^?{`T4>^q*VXjfc# zK29JSz&?wuYij@?%B{Ti>RAKsrp-y>rrw&&wtogCiqtX}*gwoz ze98fNn)Sq(l(cilQ{QgYQH6AN-kB+A3^Z-vT3JL)a?#UFtV5z~mzID%Lb&ju>~cy^ z6nD0p(C=HC(MHtPi7Eq^T$_7wmor7GlOwx2tLNj{Z-*k;bQP-Xw`hc20Ju)f98qU= z6wPq2#TUvA?)C*5-L_`=ID?~{m}GQ?)#=(ep^5DBHlLE0?j)k(0!}W^0h4(-CumPQ zzfo87?ralx2e28da- zZqvJ(9TcOm@`B>4Y!_PJ9%q75`X36RQ7GMp^-V!iajX;N9jO>0|E`r3b=YmV(BpyY zQ99))t4QeR!T#tEZq3`D>(DO>*mBJXLdVngrTS_7h5vh8?ZA+`cI>85(SVWo zj6&#ENrg#YvZK&bO7mED{d6^Cu~&fud=8RF)5R^}p)6$`TsupN=UY%YJXY9S+V*kja{CP1~bySAyQ3$dXUKmgsw$DD?mi~EmIHjO@J#{SF+CmAVACenJ z9!Z{ma=m`=9bo+GB4-QAae-qF!uou9q;7u_lf|fPJ&hBcB>;L&wOxChsMaW&S6Xwv zRh_J_2J*kkJ;fl{`H_QmmoX}e1XV&MYyEso#>V<=))3Eqdiy2jN`tKzRZP+HPd!=Y zn12Q0=<37XrRjoZ8XV z5pCrg3r6DUUq}|$^ChHjaayOmn$2qzt?D@16nyS&2bENaG#L?J90wO`VU&RMxy>p@ z4Y)4*KxifU^-A~IrE@r)W=E;nh`~>v`b}f2>%PWxHVJn|UH2>XidjnIYoN%MPW$XM zn%}K#-7PSE^K|>=0U6M(=NU+@heK+c2fBSz^+5EUY#MV&DyGb*?50U&cBaywDXks@ z?MS%B4CdF`TWY*6GTe!m-`R^a<1jnC?Yx#UrgZ&@(jW;7Q=@#oz{)9N_#pzP0Bw$> zCy2osJ?uX5TW{_z(uK~uL<|W`2Ix-lRatZi0&q}Gqk@D3XF$ajj8Lc9qSisrNf)cQLk4dA{k#3737+ z;HC`9a`=R#;UwxmL@0 z32$|a<4Sr$BSGY;FUxeDzU1igid*khRfmB}>+=x-ifYHr&kCiE6IpbIrMImsnG_s9 z^(K7V;(5ytE+!%;{1vuIZ#PH^rHzbHP+C?EHtl;{85WB)3d(_Tz2vXMKi#pIUUE6n zIoCZ?jS)N%AsNb!DPbpZSBfzgPi*(+BwqAAja#@X&yeaEaSsh0xQ?imd`BU-x%wvO zZ-}br$sJ7Y0i27=V+l>?0HZETe!pTlZzHY_1xST9%O>{wQLyaWKQkL@c2Cj~~>T#9?KZpVt)rLSjM!(|EBD7LECiM!}>4QHln zLv_|UeCD%m%4B5JA2?qqA$@coom!VqI7_(ok;_&tq6=Hq+hurmJ+a&!`^`Boz~@JO z8umCGgif?3z+nd7o>}#~u?D%;^W%fcyuo=hRL}vW>7J*myCl^2j4Ql1GJsfk^M?Qk z3e`vMp+0k;WRG=sMYEKT1LQIacKyVd0a#INahIQ74bD02q6nUmt^O(erc(*DmfY|b4H%6!_kc>}f zyVYm+QHZeqdw$osqIeNVx?A_aE#Z#KPO2N9X(>#VA?lgV+8b?1W(fzfW7Q#*PW#)H z;WK&0a6+Z$X1xI-4FrV?U2!c6m35YvE`qpkrUXiL|1>pXcdSty?Kc>B(&XcK5Or#MtFeppZ?-yrdDV>o4>gono4uNts;z>` z$0S3SV)=|;eg^h0budLMz(YHXe8SBrw(jZht{-)3>ghhD6Exbz*b0~F5oLNvCxsZx zcv6G%Y&KpNzAjyy9teza()9)#V*&RJ8sk|z2A%qN53tM(Ja#mDop=GdUxjdI<2-4$ zRiVs9msw|{$|xacTUh|!YpFGjEr*2QYet8k(pM2~PnClZ=orT8w^A>jYLyW( zo))UqvvlJVXAZS|;ENOdfS<9}rCyJ7lZ%@qmGX4vXXr545x#3D4$6JPR~1tjX6EH& z_Km%iiLN`HeUlmqNxoV6vOU^#ZCD;u;Qz$u-m8z>Hw(ef1gXg}yi{?!(ZG&V)4N=u zdvs_kMRMWSu*LLNvm@p&jal0qvzg(SP?z` zVAS~IQ!<<4B5)BiihF^8bQI&7+Nyv;PiC7~CjvMON;P_+8Hio;P7S+G$|)MjCO@|< z_cw3y55L|d9&5kPtpCqrbd!xg13-K(6i|YcAMzvxRX^VR)E}!+Hhlk$=z6X-d|6kL9DD8{ub9%m+&Y zQRqgAX`XU%&1JXV>DD==TXHQI3Su=iKxqBx@@8bv$qqF4#_2~UwT)7bvP1Kkn96K1 z3J3;_)QTB6F+VrCf72LX`pLmXesa)onqJ!hd*aZA22XFE^PU3|&bu^7CMOt_?d_`B zG{DV$ukrlnMnzCH`V!{=g-Ku1Ls+E<7oiPhLi#j=^ZqoDhEPm6HCw-9YQ6fi$UK>$ zr22vIujVk)NwSIGUj)+*o>&;02RB|}qI!#UlMZ=*i#xdEnFPY>>Ax#D{ctMFL|iEk zP~(p?RO~Ia=@%oL%7O>?dbM85)eVurp|N~rg!d=iKlIswN`SPHW~Nx;`KSW zA=4s0Gw1a#-c+f%A4kR25H=CLo|-9oA}~RTW0>Brm>5*Z&0}(?dO}Y5Is3Zp-tPAS`idrh*A zQA#_x^kSVQGYI-j8`{4*4=H{v>5T14mqwAlPRqTVYk@y6Ua*Ii6blW_OOqLH!PqQk zqJZ$Vn3!PP3*gfdF< zUOkU}%}AB0OtWwKxa{fQ?Q?>zz@(&3`!M#EAlVEoWrzB2o1?%vZQTTE!E^saEw>7kjY2f z`#=4WeyAZfXk^q!cT6nZ^UaWYQ>DXG0mU`cd~PZkQA6QY>swM+OSTYsAUd#)jY0gP_-*IKW&C_4540js*^DivpOG_yqt?C zNmV_3)L-TDwk^g#M;;4W;(K(nhp-caDAx2T{s1hbe5Fd;2*OAnJcmV2NZDwULvf?$ zD?g_WiU*=k>N#*xI6#+0v$I=74Eo1dr>KB6dYSONI|>Vp(a?)vLu zsh>W$DYc@4RI^Y%3ULrc_@)u|j74~Qd*9)-p|zrUp1<8lF3XGY@<<`vHEF*}D_L#-n`KS*4Qfs0%B56b!`6=)M5Bu>6+yC}U2!?>(xQq;CqHkBnfQ$zn5rv6D6^gQ1g2DFl?T z2BFZ zV*Ep}=?dO!>Z=sN1Z`-30o*vgx2bm#pUe}9_`6ct=Mu}QarB*o^$|sMTvCEu3NyMN zmQz(@7(F_!o2B>B@L#NZn15-oAgXw`WwVtiID>jA7g`$-^+C8vZ5VqowIF7xTrYbm zOvp!l+RAQ(UkH$2UIJA2{*S^quz{IP#iN^Fd){(p2&Y7CRHf^(58Z)G-2&?%1QWN$=wojQSHlM#?j!-9@Q=@By>C0f~Wa~aKY zi+kj5WP9BcO285lG3^+%=xlIPdU+6W96ltBsMh88ylWcPHYh9Y93J>XL+`T`$+x7KDFpo z>{6yM_NB-#s z6U)-W6_q`5f$8PKZmmk&ws>`3sObKxPb}KX<+ttj0Jh^h3DY?a6Guia6LMiJW;|n+ zb{X-45cQ}!WezEqwMR>pepMKI{MYtE%0JK96ReeI#sS1^QBKp&lGp_FREk2oAJwKt zX8+75fCfYUiIpM1ld9Fu3-6#@(IqvmW2ohoiHm;YG;T8tCm)D|!sx6h?i~z_E9^$H zLhe?MZ^40sDTXYub!#W}Oe5N!v;dTXpSWcQWY&}9o<>;)i_*o;Ne*Z%^VT0|>BiOx zXjhe#@t+@UM~|GTGlsJm=)`H(j#&@TBcsk@3`@mnVq--lWZ+7wIy9f|;!4rd`fLA8#buQyQI=P*SfU8$$1B#;3 z07*3fgR_1Bh`i~V-`ds7`4ZYNh7)bLSH#k9I4W1Up9VKrIf?u&zoQuWj(;In@_k40 zH@sHYVBU}_!~MG#_fj|;6#mpcm?u#loR^RqaNJM*P44tzssiX%q(PavaWv4yrB?^G zkUW;~=HPG;(&8T^NzOe$17>Jr=+~)=(Fy{>d!naX6MbP5sCZ41Z~u8LqLO(Jv5Qmn zqJAb|c-Imd7MtnM71yJzC~R1Cm2fcH#iCgzHQyY#c)nd94eHzuU|6!b?E(c0f~kk- zJ-$kqZw|?k=Y>*z;lanCL8nd9_=7Ptop< zpT6hwC7-TCzP#`?{2c~QQzH>M`CYAY1q)}_22D#g?D9C>oGDi!!&_!DQOpnLTdp>g zFMA))ajh7S&r%2zDF98e9S z6lIM?N$?U&!r5SlI?Q>M$wqQDdH+zT#2O?~5fE^E&5Y27>foeFCpcETO24qj?+j|~ ze>|Sm)Wccf?ztVFRtsn%o>Q+}d_C^)y-U9}Rbi6?qhfa6Tj=9aFVOR}2a^}n4GM1c za}HSu$iGunvtK*@!{r@Q1e5~L_Lkw$IL5$1Bj@Fm4q&H}U4)0!kEBeoJ7P+K$^j=h z2#R9Uoemmmad;ejRV$rdwmz#`>K{fEDs;Fe6?$Yr8!X*`A0`y@=b4+vUb!v@oj^EP zT;Yo|np~9QK@1IUD+aw0CwESEQlQ}H5c~0yRjR{PHm9_g-@N)uJ5u(V<1P)?hb@kl z^a0Il(jsxTzpnm8txpN_M3m|GZge`i7&=hsDyp z`{yjWc$HKaGp9FI<nQjd)C1Nypw*gO7M*piw;N#vD&73e43S;c z0zG8td~8az?J6K_$aw+AaMGgfs(!;y6m!Gj0t`!ZWYb^u>1tO1kyrp#&`|-u-BJVy z5Re7ADVqa27h7Mpi|_28fn;0rj7!_D%NQY3KQ4NB5BlXGV}fsH?Yr)d#GA+crp@>R z2;kpBt|jJtKS;ki0_DTWonnPu%eo%8TwOTF8KwbFSbveBtZ85Jr&MlE>X-PK2A)4Q z$6Ix&MX*L*;9@gQrbn(+*`rC}4 zM>49WPMx1`2ktduP;XSVM>0xO;o|&dcuFASLK~T?*-)4W%T@F|Je%86wmzLlIn2&z4ED{$< z#>i_5)T>5b?i#X3?UBEi^#(s9p&&B>5T+qfLm>SR`R#GF@WY={J`fet>%55OE)6Nr z?{B&l0liBUupDXw18~FTZtWtAbH{+!RrU{c61Su@ zF640JW;$ZOL~z6U_TQO_5(7$3!ip^RxwE8+NO)fp9kc^SkSCK6G@z3>1gVTxHA^K- zz~Mb)Cb0Q}Y8(Yjz9Rv#k6rj}$>L}uB^rnwd>bckBmxP!mhe}hWXMajgWLpZqwv5m z#3mLm=%fHRC)8jQ#5u_87yVOYVWMd5KS!D~6T<;)uilL4?ictKA9j;t9OeX4FXMP< zXlQ6%HVy$pe|dyKU(-xfqU+YSIuGH4-@WnG&9c zdxq0v5_$e=?0x! zfns4vs|@5XkUTx^R=Ax4R23$WboSi%Z~2U<#=x@*EP`YJ#pqULzyalcoacGr<3mRQLT|i(MrTBr3LVqo5gclbr=4$)dME(P!QhhA$&-L?V=ZnO>f5_2{kED&CnlW6gGD1^}=2`GeE zGl&+~DdP)zwDlQyfweMt=HiIlo<<{|qtIhFYy)QeUbV7>H-dl4fK|aDhSV#M0~Q?k z`wUo42&(ZELrUWxsxjsy0Tt3pIvPCuVHiCQ{*EAcD;HZ4eR|P-9N>>zg4Jq2;H8N8 zSw^e`@J`&F+D)GPp)f=1??YR zCg2kTnx*Zc%oF=)5%kK2rU2s2o^#;A;icsTZDDvf3}vf<{{a4zUf-&bMH!!HP7*~QA?hR!Sl1eko8yb_w}z?k4NwH8p`;OEfh#e8 zL1Zg!l6-$bJFEAZ(*6KDXKoa_Rzw`oev2VQ3l<*v=+>BivH) zXvc+;=ZmXnu4Z{#5c#)cD6|3mc+mN+m((}!12D1UE2}@<79HH4%1X89F+=XxJ?IBW8AKq=sBAltqn#EYnlTniFp3);{Lw% z9Zh67Hd2-SZdi<>Wd-hF32dU=3W~VhjV@s5 z;{vve5%pi^7Wni!HD3oawPkIWyICwW%Byf$W<&nITYNv1>}z4F0N#yI5Y&nG?s(YI-Ix!XePD>xa(s;FKPZrLd)9Lg`hKx^L8`88*;HD@lmF#w4N zM*dVmy9LSCM3TrmUZx&$8 zcOZBm&(1%>r#nj35qxY(N>{CTu~fv|Iy;Ib%^YZ2*q@<~)w%}D#j!tYzU0sedLYb* z80uf_Ox*_nV1XILjeHoh8|xvEV2_U2g{eHyfT)V`%r(vnY=k+a2YK;NI6YH=aV~bb z1qb?^!5S8)pH(LD(7FV)5wqn-knv76;`9Eeh6-sw0S!P{e%+Z20u>dQY>>RE|!YqxBB7vOx#*IoCK_q-_lE8ZHkHiF7#hd^{y_U)Ba*(MFx<~Nh2F2 z7e*uf$h1E-6p)Ifudgl*IY&Mg_8N{<5bzbAQj%SyI3#j&R^*%?*u@Oyl*-j+r8}<1{MBgry_n}12r$kG+pFk=NW@} zBFc6@lolYDAfRer)dx^baGa?xB*o;}gG06-c#Z;HnxEUznDOM3&*YUYwHcRnT_@93 zZDp{>2BRmD{VR*`g}!f`hW$k>wnsk}HF*uNZa$j(qnBlJB$=wk=_{qJnzyEpve$7e z_JQq-W%WU&-LgSv`OKIjm*t>TqAPSnA|21S_qL(R;l1p#Bt_vwqL70|knO>2)iaRn5aR+32!)MT|#s z#-z*&2Ln#1j$J3*{ml=w>&0K!a7*1xo3BzocE{7Ib=ubuph95DeM56|#4ZqIR0$E> zHaA&*ObK8@xkNslFj{$1Civ!rQ!ALkENlmoZQ^EwAUdyqG}5GZJP@$VlQ^cO5baA6YKyJQG=uS$|Cbq zTcBQsk}AK-&;d(9P9j5d(J5R^(>QLH1K`=6+D}fH_NFiylqxeE?!TWSIx7%7@scaS zKC(TsX-L_M;Ob zT?e&a5i%{?<@QC#5kHvq)JwSD#eRN0jdRh0t=hSx;}9s!4K95SkK#@0WeC`|ssb(_ zOu^?g8TJ0sBz3S?BJLpA;c{_2UDM1iCv!l{0bu50#doIM#H?B&5Rm${0{D6%0}g!m zrm8z0*mb4MOljY9cK*N<@LUhJGA9)^t(Dp+4v2EPR%(y3Ps3in9bzTiSYe|n#u4azO9R|Z@%=bgz z8Gv_~ohHlxf@aod4h5e+TbvxTLv$${Uz@`~vL|w5jiW~+5xLo@|`LgMw=;->Wojehio`JQ( zYThDn;D7E%%i0oFvgPM~CpcrC*X7FLtO&SRk3lx+981k`BbGg`M1sP^);dW?k%Y}h zc>!%7LWT*+*fLoDD5F3xx`LwXewrq9x)5#)+yppZn5sJiMs6AaIC#!WfPv*wmC28f zSVzd*U1Gu@eCGU#253;@D}&e4t^EzjXO_d+P4jV(1$AJXIaQWT|hx&%(IEkWydBMvYpOB<92vOQlFS zt+iOc2p(H5t+PGaP$xM&ZH27Y@1Aw+&bKUvc554ebly;kv;QI7N{!Tm32UXvqu1wv z`%6CPvY(6mc4D;w>>w~UL<<-!=|;8K5y^?nLbmZ>uPRs>C~BE?-49C-+_HRy=9c2C zC?qjp6fUXZ!g z?au0~-f~{>*kil|7x#q2xXow(Lx&!um;r>oauOMH#{b)wyZy>$;vOmTVHU53gV6tDBWe1K}Dj2+A@2 zEXVFSkhhotZ}EXy^jCyVAW?OZ9y~v$I1!u4n)bU6`v1@T;5mao5y;eq*Fx-0rtFGfb|5Y!R{ zO4|s-@3fd{jhG^-$~AkxTPF+`Df}~y1u{XpCjj7a-Y9I@fR*2&mKYUFYNb$M0~VDl z>m+vdFLiZ+uBnTtWU%vrQum~HGF3<~%3<9D2I4aFNHB>SXBLg_a3UOH0 zz|wBY3kz@0{LL4%JNn2`G(FY>%}!4L2%u4Hk$~QXSS`hjB^qLvSt zx+{(+l9W43768o#K&#*=ataa?+F*D>G;rw1ALMax=UgEO!VPzEY5K%5x?~6nnKdf- z%=<1r;ZTFg=i^8S7-BE84CQc^XPcBI=PBA3H;RHrq)4&Cl+qzdx|m%4E1xt^+`(tW z?5_Em*DFd~4BTkb_<9+_6)i9C2n7-$;F7&#SYqAdUwq^oPp{2H8z%9IQrsETWx>K6?wj(TAr44R?OpO?v=+} z_8FZCyo!#S(=1>@_2?GH0dd#XMxGWY-q+d_TX?}NWvz51*J|Lm(tf(|UjFdHlm4^- z1Oq|yQ&6-)SJ;sIuw3(2yD_zBG>c}rOorsuW9QD39{_(c+`2$3f`*s}d`Ensoo@&0 z=T+5H)Y^4c*CN$gEe7wDf7>#*g~JCVx=vEWd0n)+#wP(7#_&EpR&}DjYjiSa#%N*} zFwciOf@dJIc`B;q4_njv0u%(%I$Pt-e`hWi+F}`p{hgqc5(1`jcDlK*BDDM0y%1IL zUM$AhIdsfBVh&^sx<*l-Mp6AFonP{ZH3W(|?(=@C%c`B0bc|a+vRHcSA-v?i>k#dW z`)JE$*nmp=cy;+Ga%@tKxxX%ufNP|Rq4QD$(SzVeqll0rrIK&%8aTy>=%?eB-4|NW zCJ`|=DLJd}HHhn*r6iB&gOSCUHpM54lOIn*1C8j}EB0^BB6>dB=>JT7J(7_PkZ#if zTr;Ate#l~^e8r>BNzB@Lx_Xma`VH@-M5uj*m6{+)%fS_F#~;Kw$v>-Go+qxU}8dq7|zJCdipSrP-7TJs8G83$RK zJo&JMT5D;e+}n|vboWh~M0wLmY@AYa&x1M&c9|A0v6#{{{I&X<4Is4lDuo`Y3U{hA z9jC~H7jGKcUlL*&Q&<0owZ9CD>U-mdQ9wde1VrFVqjW1N4I|9Q@NdER(A*9FX;J!`LZ-}k5HByc+u3?buOqOs;*`iSF` zoNd!C2>0&wKydKma1NoFir{-5-jScup1i`u^;9BFG%|A^3flNARb8lUJ8Ilhm^mh* zNQwwn5Io9OeK}(7KqKhFccA9o=;bQRdywV%MvICZN)ootp>^&MnrZar^Q_ji*EXW$ z9V+~mA}IX$tf$gw_F;`?$D$Yh@qCLsygw`!>*{{|%=CSqyO2Xh{sG$G=Rh~$XIT+-)5)0VVahxX&f-8f z+bj`ID~Z6SFZ?XbS=9o z9MZManaf}9C~GhilT4G=wZHxmuBB0|XGyGHqQUluxuj_$#)6~auw0YF7p+r&VDqKn zr%Sb_%gYJ}uu6`3@-<@s&#lyu&vtT?HT)3C!Tt?|0%6Tq}e}m#&nN0pVW;1&d=o`)DWVdFvqtQBVx!AUEkQ8knoZ%l8)@S zeFRaQCbZrCPj&Y|IbFAg!KRw>>cXR?MVzt??=i0&bmDo^NQN6dGt#7=wQx6a?c_-F zV%(8}qV3dXkr=-K`=S^Y)_iRh%l$}%{P>i1LzPlpQOz^jDk{OWAQYl5_j zimdxIq-F`=Sg#df3Xv){vU=fkl1qG3CaHQAZbcNC-rn=Nfc|bF>Qa9;+c)!{H7U=! z9GL?|m~>q?#h0@n?zpy8Y|AS3mv{is5wpHjwq~Hd_VpB*^f0RDu-8x zYeNGQakls$_yQi1a7l**ZzpIpU(&kwq&`~mc8THk6vkSxZcP_HAZmY`n--H+Fcz2X zd)^5IuiuN87K+N$z>ox$ZT}87u*?dH@YHMAMj5tnyQ}YN%oIv zKOV^a(izKctI5VkOj#_Mn=)8FdQWUMjCJf!mP@gELC$cIZd>snLxoYtIHrPuL*Bj^si|*K@UZFdE>j z5w7~RF6uc~WeTaMM)BM}zZpn4k8vj|H@>#{YK8pWsKuURuO2RPH1$tWDh5h$6O`7N z0**be>L)u06t*+lIjX^exKs*h{6kxAVPrFFZplBk6ropz{Tu8(E)TT_u!39~jxhFD+^2$$%{n8p%r0drm^t)n+qc}xwDFU`*0%pq z;bMXq`6*FQ4GH_Zg>_PWk0<`aQr!@41kAFw-oqzDKdO>SNc)Rhh^5W9BWCw(l-8cu z$8#ef$4?J8JR)ehhQ>Xa6BLNLff}Z(1Xtwo0vUG{&kn@MP_wgJd3OUj`jW=*@w@ZH zwhA+@VRnVk^JjM(lK=dPm&wmnC-!^xzCYX2+Sj;pw;r0;IYG;Z zYBOvbLPuPnBXPUvqJOekdG@PNwNL9L8mXoo_{9l>wSBrUm|8zKb1OZ^A&@o=t+rL0bT z8f;8|tE%SL%tN!;ZK|0q@`SIg(aBrWBRiiumO|g;b5XE#+HykAgWqpgF1*`b5AAVM zGUh3xz;z^vd3&iI#nOl33O}h*yj8$iaz<|B+#Cp9%zmH>b>njlP+@`sgAmc zS@&&xF}wM|E{WDsMeZ@zOZQ*X_Dx>D-_*L|Hz!ZPl}3Fz2b;<@7&%5R8tGwjZJU&k z^Ur!@O&-88PmC%Cymr;{SlM*BYqT9iD9-9CttM2Q7HjeSe{Xa1emt*Zz zQ`E~*EQy7y7mA6y=AzWqjq@}Gvl|;lz-jTT&2(*t*$@*L*5f=GWSBu*xrc5}H5(?2 z5ty%+=Bwv>-8*y;Hv8Gfuh8Gg!T~k@=jfO<$J67ihAIa9FJb_3rgK}^TmCqO#td)m zvtF|sjkls2$-BqG7Vm;yVQj4~7fA*=vrgFi*Gk3 zY9rsF??6Io!UMXGa_U?ZIzZgk{qRld(2l3oJ8LTW^G8ZatseS%m-pIE=b_EN#z%NA zXj9i+$yy-ERO_VCWA6{(Kq698oY*Dh(WLFr(SFrGQo}P2fKDhAC~5p+JSDahD)XX$ z)l$0sg}ub6+0hNWj|eTH6Je*r)u(6eLaUiWW|HcMk2u*9+353w-OA1CU~K%uo0^kS znBysBSYw54)vA=&kYj6>OUzwj4v+D{3-vwW_^ctYM(VnF84EnqS@JVh4|>{9!U!O85cpn9tf^)U~6(Ke$d&aOI3X%1Zzn^cUkwuv2ttu^k#_Hd~9d$_696pzX{)6?hP+9Qy@U$9^Nc+?%AN)Cza0<7tsMZLwE~#Uaxk+z)er25Y}dPo$AZqo-_$93ssR#TgTH;5@l)-9mwu?Bj{#_O5e`LjW zBp!$e z+Vwp$5#Y(OfKxL_diiAu5DCrt7h-#M7u<|-S!6#mv2rJ#)`k>cuFOG_%^bSdaEfPx z^VGQ(Px@QLciMNF5sw7$zNk8`mGQLah&^=f5p?}I2FIki;(YzK=sF4^%&K(a!`yT~ zF8yem=fFsS&K=sG?rqbZ<*_ILSi|v1hNpAVS+3*;FR$zADK>#GFA8I^-+O!1*Z=1E zQMY4RwFlX+K*;A~ZL&s5kRVwhI9#HwUB1XXf7A;Aw@NN+fp5}Cjhr1uuVDl0MMMfu z30DS*Zv)dKGxh^so{ya|MJ&>sT%!C)r2>R3S@8O)qlnXX*pQ9PC9ik5XUj_K(R+9` zA**sr@nCS>agt3-Y7Xj{* zIxS?A&})~}Z!Cjxcd-Ul4BptTQ@PT7pg!O1Om4dJz$ozDv8+G4;|<>%LjR*CR&lu& zyGO=rQ>q&9Yx$&>%T2w(;#G%Xu0e8jOefw4`FQ}LWK_7Ve$K`$m#op_9a}W-c5yZD znWNL>&^xp``PmUIvlo6MT}P?pQ6&uY1Hd3<-W^p;rd#Y&@5O9gm$6%Yk*G$ogExKX zLnfPwnN_O!f*v(Job@rt9c~K>r|7PGyR@N;qPC5Uc?MPa-N`&%inrXh)_KV8snt2r z$pAMptrX9L<*2t9cR%z#MdZR_UTq9#sD7B)F1Mc(xmZl7&eWSIw@Y%~%W!XYnbyE- zW4RB@JqKk%DF;9Ueshv|PD+ifd0J0o1bqU2850CuxxX_6G$5PNwvj#uo5_}@zpei_ z8s$1C(}7Q+KW$&)o%rU<@iW+&>y;swD9wzN6Q$Nt+0sd*H>I2jtLZmv%+`ntZ)M@M9~?uQba# z>T)4}eofoP&vy|_vV0S4NBt+Jz6Awx9M94Ek^fFxH2dN zU-lyeI<9bq7I}G`!V>x3dT10G80Vf2UTusNZRmtuZOUU;TXZ}SwD@w@_w{+nJ^H{X z)#Tw1z3waez8ZyEYd%LICt!hu_TDAao~XA?qUauU#hrFHtW|J%BHgz(?%4cJcl%rt z3#DqYXF@5Fx-$Fd-|KxcBMgXe>Y`|?Q#Bl)&htwp{L%?nG zzXgHur{`!1C3-QQ&~~grT2EYkBNXX3$9}|on)_l_e*e3$y6G(Zq@&$DNv6Om2>Uuj zMAZ8)F_SjEWy9B?OkAKqqbNSRE51(H35dCuw&9agM?WA@^51TH(iQR>v1>Z@qSv*) zCnpehrUQ#}ph6d4X4|;@==S+TQc`9Cx&|bm`Z0!|=}TKQ<<{W`-$XAkG~x7IS99-) z0|!{e2DgN}iLtYt`==E`>@C8+nJ-@d_G8Hw5*AVcm#@j9kjTq6Ex20|5O_#9eV*Wh z*1bJ;MPJ5M5TKPk1fmDa?av~r%R;02t)o`dESUH9nNJz4gZ5RfdYT3u&z@VJb_7Q^ z%g{VJWr$}8oWZ}Xg4%o!WzhNP&q1F|ek{{ci+Gf1<(|OP$f!o!Lu)`J{ zA=S#bB{`Go)0y+1h|6iDg}_?-M}nVF1=1C>+$3)%%PwWI#%3KIWsMgYZk25mXcl;N zxnVa_SHX0v9KJk1E;R&{g$;yv{j6m$rnoS$kw{sWPtb34QU|<2W}u34TPo(+B$#S=dbqU2I(IZKdgfVzW8bs-miU5=AahU z(y7{5#UK&z4psAVu69YPeCc<3^x5KxvKXEI$9MZyM{mnrlqIxJ?QU7B7NuvL-w z7{8(GiDlupo91{~oY{+t8C^Y}sduaD<4r88)4#ayChOS-1zC)KqZ%toIHnMsxW?!? z)T^>0Y+E+Ek~ca}ujG*EIwIqfvQ@+mw$S&J;%Iz2<*=&ZA+adjDC~;rvqlSxU7poIQmCfruVUPAFXM-l}^*iQI z<^T_1F(m-n>HKKlTyfDbQWG&WDW2gQq(cewF4#UFm_OcS{Jlj;IrfwP1|hj^8}L~2 zBT{IvWpr6H=O@@cvcaV;MNnGQ=Lj4y3`%p}+}W4mM+p!^Kb%{D8CG{J``t3JTf0;K zMT&~Q&M))Qc-9b0iyu^T+d5o>xQJattMn zquQ;B-6E)jGxnRSQTuKPRB+Px<;{I9!*Loon??wE^iM>kJM)H9@o7XeC~cPu%os{3 zQ6Mht1+O$Q3AB^D+E(&>LkU@|1mi31*Z}Y2&ha6Mk~-ygLI9%Fh;soC%mg!tqb3#% z)McB@(+GRwGbdcE)Jo_xMgC)tGx*9Z6;2sV@nB)8>KEv)|P zxS6K!?qVMY&3hbI&9Jr&;Gw}vCnvRgvUN##Nz*0WOPCE7DUq*M*WpW&|o6I6_v5zQb8Rhpx` zYVBD^l(2XDm~Nd4oi;aA4EtD+6^1#AFX4T>UB!|6=X2e|jp1UtgO%?1H4S_w3F zBe&H6JwM^1mFFmqUB9!gXXj~e9DZdw%q~Yhl~!8;D>A+-fum~~5KagfAf=C_IFyH} z6ePT@=<;z)`Z{lZejw)v!fYBcBpohcz@-u?r8#mrOsG~6Tv_hEp3L(0J2&|Gkx-8N zwzS|lx0YOJ@2{pAq5rIQBiw9UE#?$OV24p#&&mZ~{6V}MZT>Co6TP-MPg|gGNj!T2tUAzS0U~;YTo42Ggz65GMAG}Yx|Mk0=+o0Qs zPu_d37)5G$@R}J#caASZqBeuva`&;`iNZ^AsojXvO<3^{I0w@gl6fAt zZpNwHnAv;lL)Da=w|)RPn~O#G!o~n*x~;x}sB&7%@fDMprJ}{S`_Q3IxKQ(bji#0% z?$He?0*?qnI}f)4%B*8ya0h&|fI~&KC{wyK(Co=EYZNkqDl~d?xp5vaup9r(D2k2! zX}!(naU~LKcDt_873$jrF z=w%BT`kT*{CI}A+35kL*QX%G0Nb5!z42i2{keDi_39wlX=HRD{3FWPAhA2uJ4qEp2 z%|U6ASu)Ym0cdA5Gl42mf9Pz|6%jRa(He*xXp}etjEgFUqAjJu;cJtZb8^Dlks;ql zD(AfrT;`p$;3rkxi#E5_BG+ihb!*N{K5W0P5`kEInWmaEn*W9eCIe zmKZi0@j3T355*FJ6peA$7bCZ(B6OK_PtuN8_xH^dnOtShq>G~YVUt}nWgjMF3@z5@ z->uM`#a7~H{?N`$^uLCBpE)glAdy#nl&?=ZwqS}TKoM&uE@J$0)yix|J|}`&fG}m< z7ZD)31a`&f4xu5_&cjbVCKR8=UmVft*Sp9ZZ_U|b6)yF}v{|1!J?>;Fz4-6dl;?5? zqh~J}KH7P=^RUSnhvD^_cme(ZWp9X>)*ZbDkAd!nG9@H=z7T3z0kkGbQf>>Qw65sS z?&^~}YH&B(DXjboS5U1P_<{Ky*=B{$nUml%1*|knJY_)U{INgyl`J3^-EOvl38cTq z-u>~iBaB8WZF1X6GVyzmO-|ZoRrfp!A6I{^K)CDe7nT0kGYzI)L>_hR;YO}-tBA^;SzwUm8BOisvy_htqOZQ}+CO8SmMlgBR39$U z5^ZFHd;&NqUu+K;9DQN=7{ z7-A>s=cRH_JCEc$=TqKg-W=v1{-6o?#$rZ8s|*4}6!PlR@`hBy4_^7o0MY{|EU6Qt zst&&idf_Q~8Z?A*Q^mfeP7jbsoG=GUw*3x`pVNJ4b;Id8z18w95OZkA$-PHO~}eV{jJSsnookZK4f zv9qdHL{H<@wf|3(wZWyE%#g`QRKa=nmn7E9J+E)Q)d!RqB+9&VG*>s|Xmr6#S(*@_2$a z02}R}C&dl36a_8DFdjo=mN{J;Vc@w$c(FHXojx-lLH&gU54L^w#_9Koesta&Pw?wG zorH9NW;t-nzu*OcLO5Ec-bzEE7S#WHbMOZvFub@~+3opQ=q$Tk3?IgPizE`hZ5S{Z zI2VJSrz+F1*zx1!XEO3I*cAiP4&2Cbx=V~diP95NxKtl|VT%6`UEPBQqdxdiBebmDK(X9rCtL&Qq|@~lDdP&|k_#Dd?y|Dr_~z1XnX zE-8_lNmbvoOE@#-8*#1cM*Qjdxh!Dxy*0#^dOS~u=Ds~01^DrDU{c?Z^^5yP8e56( zv5d_ov%ZIkn(Eo`TY-I`wf{k_`%da~gQqH}4%tEI{hcDKJgfj|rrr5(w}5YZqD7i% z@-xTBreu~6(Z0~_t`5+EV&S7N10jb&Lw|m}*LNA9NO5?(%>7qmg8eQCMb$qjh}jis zZq1CX2oxwm1l+meNWBUZHY<>;+_|g1{^I6kGV&#Zg<>F5E`_ai8_1=I@`wM5r?8&^ z;mbqC{$$L*vYOkaz=N8RRV^>Uu?v+krZnpIt#p2zzuFY+*N?yw)B38yaP#svEqM7% z+?n*RtOfh~b8vm7%GrwlUjBbwE~?n;FS05Bu096HUVfwZSRy4dVCa1}VEpwfCRZfA z{x#eD#s&*uaNOM(QWpI`*3<2G(a7ilTD$4mFKT2Xf17EKm=-XISOQJh?6AosQ2zZr z@WDS~m4qLNIZ~18>q&!VKEr3IVzWLc7J_I4TJr!=FNYA<7OXAVf6ra$@1LTc*GB{F zTUwNMxE)E6BzQ)jE6f9xtP{uyS1yS7KRuFgh{kTU-7f(- zg}%9vzt2u3;^l=S<1A9ubTY%GlVEg-%8K#DUGWalKUI+kSosY*sRM5kesiI5plT)H zbE7e1Um$f#O~5n`sZ)A_ih3h|+93dHn2T)^Hl+NC84HM)B4gfS{QaWtG$3_VJ8-0~ z3MrMs$_3xd|3BUZ`u8s2d7}>izDDh!hz16fm4pFCcfmq`4jee}HW&EuQ0*TeT|`%d z--@~XRR;p^wz+}dDs?Z>7r`#;bh`VR_V4DI@dc$%Xka%-YC&$)oN}usiyDstdFENB z?NNdIO~IaE{b?Bud|MTW*`4V+h@gkA_HvbaclWo%#m-f07}>yYr_5=d2PhAh>?~LH zBTGu`SJhuC+JP6IK16wEy3u<~WML!p z%^kE?`t#RU7sqpgeKW7F6rFvUcY&w!IJ5&AXUv~>f#_@hdlC_)LMp&mgbedP4ciZE zeVDzE>)4AFX#U^J;^u$o3Sx$0!}+?PWME>Di)X((`7O%FzUSN<2xp1%3HyK3UR(v!f^eBQZD zCg?`4UG4E(wXJBbbihrKTzh?CA8-Yu@7>k1*yeQAROrad1= zpg)eA(|>Mz775$l{jo=20GGJN+-Nrp%2wJj_@Yds{_oopGkNg2$}a6;FHB?K zT!8|XD5?9eCTNjBo%3$$y(Shm*$iID2E`pEm{MFfUOp0D9{Gpe*9Cib0cVOr!)8cw4rB?sl!ikMQLAftfz2HMQ z|F3oCWez?>TGQb$sC0?Md!<%s7U3P(^Vb#dN&(ODz@p29l2X7Dw(=n3i;$X95aEvLJ@;eDpLrl~4UyY@^BIun5K15}9SImj>PAS#c>1P{VqdgE6_u+?Zu4jBW zO%rYA$|T%&CTKESKSjNkzzjZ&B?oye;JFlwec0b(l!B&qk@9@O-6i(LpNzM(yDOXg z`zw40i!0(1w9X^Mw7D{GcjeE@A8a(JkTNNd&0qo)I8N)sOmbhoiGsOYJP=UJ z0n?mp;OaXN_hI9HK#PQ-A^-Unvu+?e)rDQ$)lWItbEn~ACVsNvm|=|l;Q4#x$kO8l zJ1Tv0xZVj(dr^l?4is)RT>3>A$us9=p46vHlTV?q>A5_Z#D4{MV{?a>iI8J}ND=aI z^98m4XJ0qDMam-3`;{ zeI65|5(wYDipr~bZIaVp^m+Z>)rYX-Oq*%Q_c^7|Vs<*!W1@fPPAnSeP>E7x^>Z^5 zx!hByc!9sZBKKEGxtcM!bm3>0=DHvCz8BTqm+RJWZLU`*>wB#P-$eZ)hWsgeHZzwd zkI0mzLOe|y6oPL_lXq0hiH`HDbNRM+!5~HvN1D?orZ!xwQ+_&|V zwsxRjPY+t^d@t^MZvmNT)O4K>Z5nK_z-En;eZ_g~fDLi13mSrYBub#+{!7Thhs(XV zVm*<^z-wL07aI=Tb&+e9&XE;I{T8*eMkm_Mqb?30WN3t5A+a5# za?*yA%*$mdU1M2;L1z*6DK? zG}CC>&*1FVZ_hxCEHzYRX|XbYq)7Jx;|w5;9qxOQdeLeUQK6 zD8}Qy)yKo7pBT@c)685txDaOdXCX#){d0hAnZy&*K+J`E9=U1Uc9YY`7(Gw7EN1de zjdI=L`hg*%CAu^letH~|cZl8KhTD3GnY2LYYROHM7kM;6paZ5rrEn8Va*qSx>cZ(Ufg~x$is1qcbZuS9^+_RI{r~&@y#h0GS@{`hz zIcsiZ2RsMijw|EX$1zPm58OVM7V_lFOw)$wZ}u=Fn@}gD=}X;CgjA6nu-V||rBI#& z=fCxG0zy8K*Yfh`t!Rz?fh?Jf6d4f_5fzZR3bRvrg{9^C)&OE#IrjYdMSIFRoTr?IdY_^aP@*CR7h7Rwhi| zMpc?TC5aXx=WDfj0FmhxJMGff^IdUu7~M!uD=w1dY79Zgcl9!oFok_rxfqQ z_!so!*0}cDLC9*_=egMtzkim?Ed;13=2zJX2IWJ(gv@HvVDx5`_UMudDhLn*=4%yc zV3+wA{!^#UDI1Jvq`>iSeJl8qia@_9S20m+G|Y-!_ar5LNt7zOs+l4|un8f|aq3>{ zvrz2Q=vH#ID4o`=h_3-RQS69}27_7+pBqXr^ntkHTwP(`RO&jaY zQb){G-R#U;%pAV2hJ7>3)J1(s3=th@YFciW^*}DELzsa=EnKD;JoWW;Aj(wwmit2r z7pa@^1lZ2xlb;QkB>`uHCM1dq=5Y(r&#{uNA&qrl&eWl6-$+O0dl)tRB(RUiS$Xfz zFMY}%vgnt09&XR7JMmdR4o)bF{2>?LF%pQ1^*U{)TL19i;6j4VIj-}Man9{7t>RB} z%-TrG&f_Z3nMIu+d(77MrU-OCAaHP=$r4N5n^@sBEnir@1zm%Z=Bn3k%krgcT@n>E zQwAyfDLx(gc;&hpS?QTwW#Y9=k`!c7M6%`5UN}UZjC7k%cgMoiGL>Fmoq$JNmU@L1 zA+py;vR&3xqS^IzfS>+{l(wtdko)$t8FBJSoD;oO+cl3MSd@l6?3KrPG?(>gp-SEx z3@+J%NMX0O-jw|=jwu`EI5VZhbEqRLcNzdRhVdn*qZ-;EXN>9W@*qQ8v@M(>p^9Gj z`y7L!bdu&&N9mWq>{L(ubw=z5w2^?3I9?*~Kxw5yA)2;>U`sCfv^l{y@#$CJ++N;O z1|VwVt%&S3Ezu_C{&kq~OYX(a9+|Lr$9Iea+Nd=CWr~$WhJRZigugmjRe*ENq+4C+ zgSa|jm#V%f*+CjQ717J-6CMcK0j2z4fhNZk(*o4IdZ?d!!Kg_cb2VLWog+8pDIX6r zN;kZpeBYu!ik#nDp_OCuwJ3nHA_eGKl&dl(Xu(KrASA*XIVb>IfXba!>cV(715h%h zC81DLJd1@mO=Zn>+mtTbuNzb6OfZX&->9#6x!?VL#s|GPYOaO5=|kt;3zkFxK7P<| z_qtjkw`>F@U6ny8XoCMzqwq>SJQ`%NwLKR7cYJH0h5ONfu#>!{Dg;w$#*R9-1*2+? zJTKl?;5%M!-bYF1Pc~j=BSrni(_X9e2UKwE?1?}nxLv6i&T9C`on6l*^q?Po{HB88 z0|p;f4U8vFX2eee>6nlukqOdul5;MFx{^&{eR#0ChlTSjhRKbz6o9pl0H>&o$LE>f z+p9cr<~SDhJI{+ycf5MKVRe1o&GqLOaSz7&Zs&{{Y_JM@9mgNh6J|nYg9C1+Jg+8; zWu@20OC4jtr4P6)w1x4A^Kd*yo}$TsqgInO|$v6 zB`UME{cfv%pigC%B9sC;H7fH2EF8)=xn^C_bQR7iGxIB=0!0(Zu5&pEX6SSL;w2r0 zw#E;1k*baU0ZejBqOZp#)kn_Uq5rGM=En@7sv*xcpN+&f6C;&G+g8I5dw}rhDTGBF ztt4{xLco2S6|^(%HQtpvX^ej4d7AVISIKZEIY{HuY1|C+d}BBcg`)b(^W`Cz%P5iO z7Y7YNNiCR9pY*2I(_2E}VK?tYjpv4zBH;2Q(2;0LTuU{#uM`$|WFsJaP8x&psw=6{ zTX-bFi0|}5$>XYrD(YtcQs+`n6NSF{jU{;Ezj89+<8YL(^H_@pmU~i%OK%{pc#P#U zozP>`IM!E>S(PMbZrJl*J{eZMEwny=(+ovdTzYt!Oa zUEK%f-K*PpqsSfwAEIwb3cQ_(dqvP}g=VXgD{C64L$3t0QYrrF zW98gDRgq!y$=b+Js%*tDFc{%$8N$rHU*x`7i)-7+W@vZ)VmD&Jgmj#1bq3Y#JgWIx zfEL;F+LVh{#VCY^w>x7Z#(5$TsskqII>v94F5TN#>!hFv5^MLtwSh}4#OixMA?|2# zKbJEb3UEDISBG)Bo-fD-?imUr4)fC5bBA(-@Glp><|DgAAd0_mZ4S}Px#`>S9t400 zwFxF(B>9JH3ZtsnT>fPX>MhLi@MIviML*iLD1+)BhGgl7t(bJAzb`j3^7UN$g%%A7 zXt!`A{i~m%#^|r9kT(){e+}DrQ{K^^YrbJmsFSc- znJ_sVDvW$JP~bEV|C|oxmez}`-)v9FGg`m^D=qHHj__nP&aBb$Q{&cgRBHi>ao{g0 z#Lsp?y&EegAM<1$w!f71eLQN=W&@Ln&#KmhQB_v{Awu=yT;K6WH(I&#Cc3uro}~6j zdDvx@QPk;d?V3ArJop#^w+X@S@%&8UWRY}t-)oG$8dB+LaNaz1BoXv$xVnyp5mXrk zpndUrzD4WVs^DTBPCk($&I2V`)=tOGkA6WF4!%!SJ;G}}Ijn!gOJNcKapBqkF%iSD zT$E59aN6iz%FFE4BW!lA5Ui#Wae8qL2p4`x<+bsVswg0VY}~tlJ}NZ)KFgx*3r%KB zffrPc5PY*WzGqy_TLDbekfmw_y36oEzIwq6t~2x+f|p9e-x~0SxO-VN3L`;tLhoP*ouF7YQ2e|mpU zpB-%TO1699Nbl=5arOO@OW<%n(}r(LHN!FMea^c{*3P}$rx3B-Le?ifncnGbrT<(@ zUcC~lP_SN`6+Ugg%VX`TdSI}c3d>jnVS1q-<@Hpb-Tf&OD-D357--$lk6D4Qh-)Ii zOKyL<4$bzL_JQACuHP-w|APc0JO=Ik~dY7WX>y7qRJFhy*hgMyMJFh3Y9 zJFs>d?0!wj;AS&a*3UMa^j}vN%l)rNZ_xWQ4NM6owP}-&Yh5iIVu*0cv29XMK{`mM zeKP`Lmx`dMXnS^j;IsE-$TR-x))jngt^^QcIf;j~x zHo-}^Sr@CBdSBfKFzTXG#`9?PP`Fr5=`)7Ez`*Sn!U1W1=N*c^$`xh`7lORCnqPC5k6ExvB447*t`4p)9RQP zh__19?qG0r&1-hbB$~WFXuvm;7{5te7UL%9zy3fu1DBbrx#%cgVtK*!#Ckyf8yF0| z&wpug`FHc(enPIA4WFW%-B5)UPWpAFp9Hrn43#Y9n*gKR{08NTk(}I7$dV!j-e8wY z68idOYy^q03b!@=KQr=G#!|B$QbC3MW8t8z;bQ$M#n+-$Q)G`9MDEC_lZX2220W8_ z&_!ct=(%c*`7Cj5V>&LF{=co&8kQ{vgO3kY3YBm>W-80zGup^W(mSLr$o;f zrVX!?^+)n@BJ&>%c7-8;|Hc0u?(ilSbBuSk7-^gq;a|9Moy#K@bp9=!Rix&?&`tv%@cx z5{E65lfq#O`zw7bmz2X83X+Z8^2Tm|7G>%jerI48LiMbO%L|p=!sb_2;zdbUH+!9O zKqkGvmRzx3K!ih?Am%O=GNYnc?-@-*v?-2}l6#V#`HFK5--aabw#Xw1bK59v{rvC$ z8#Vu?RxVhU+yB)KLvpVKYo#w9)?X#T_`l{xtTvxf_)=Y8I6Tip{7R8*y+;BiCvDHd zH}vlJ1;O1Bg7!I2ZgF1&9Ttx6&Xj$~%Rq#`aKKm<6w5J!~rKW368x=VjT?|)y! zYnbFCUr2w9h=>rr+}zT2+F>5@5BeExETK7{D)X^)DdmLL^&49B{zStUUH&TMZ&LzP zZ4ouPW((xV(E+^;^m%i9uVB?89~A3eQ*`K)vjE@~I0+$5(apM5+gSG zQ<8xHK>~OpXo)>bJ+qBjw($GM?`#b$DdrDnK(jM}SjG*zCe|D)+TgY}0XP@P1tseh zx7j|%DL4wZ893j}AIdsoGxXt=pcK9=p=#Z!2FL69)wr=UsTNn!+dPGpbs{S zAAawvgsromnEpe;0FIKoIcQ`omG(-yc;Z#tl^7>O@FF>RsF*Z*F$KRYin25cKM^YW zTQ&eKmaaWM37AA3*<6Yr%rm|as~CQ<&EhyCpiosPdCPmWM1RYR0e932PhsIb&eqC$ zl{N3Kl$5FMwPonpB^ca5+Z98BJt@LnFl)CHBMf0%u>j8% zZ3F!`5r?+b&>OeyadALpU?S-zufe{OXW+dIjM}fl*7{#+!-D`IKbZQ_7xdhWUy7pa z&r=F@>1`S1h$0nkU1i+Y(9H>ecRN6=;{jdP^B`zH2VqpwFj=h-Y5j2%ItbQ4gbIGX zx5hONiu_zk^D?&@L#-mweS6Gqd049F`olAzQp|HrEq-QM&R4V1-(lvcXu&BFhHxlE z8W|1!n85veiUlw-rB6I?B~?e>ME3p5vxDQ^cV%zhXOV_WQp=&TCc2333V#MV-;XZ_znDF;RCyEu z*785$`t5faVmqnAizjo4$QOQ?>mDkNd|-f<+lEZl3lErsPYU^FfZlr5&6SrOS{ z0d0K~->ew1{%sMG=-l3aD(G8|!F0Bii}P8|-kshh{_~Xmr7jMB7ENqLLh?W{f3y<_ zP-2q+Wr~bJvD5b;d0i&tb@Y8Cd~(Nq<1w}hU{2y4BWDQD^#N|K%n&9-XoaPw#wH@d zZ~Kybi}k{FMRCBgZ<;WrL?jctDTIt69ImfdY!50P`Ad)Jo_**2VHtCjNF_xoL3=pJ zGXzd~Ehy=}7bjEozD{T8pCP7p(_7u0LpfZss;{j*i;cuDhDIQ6*Z&8K%j zo=JT6L=-Y{ytb1@>UjrsJL6>%pq*qN!mPZnLIHH3WozkoF?YQ=qzSz`df^cUk;q|< zeGNr?0iWQ z3H1)YpL^TnM$u$l-sM1tQvy;)iGPXbd%@~`EdB-;Sn^c$j~)7&uBUHWV-K_CWP8tD z>8z{rA256fM4Q&=#sq7Z`ZL;M>s@;CV97%NrpQ9Wl49GRpB36L51Or_4(0P|b4K-jTLk)7#s5Yj6SRMpq@vg8xPtMEy}(JxP2u&4~B7 zRFsPg6j=8t1cov9DnDevZc~hr45sCB%tYqRU9(qVvPLfdNa!eZy@1d_7yTbc^)S;C z&5-wKWED+PSCWD(AVv<7ecSuj3r6}QpBK_A4%9s>2l*|Xs!eu7AAZ$po2!YfZ7`@I zNI}z=14NmhQC}vuQ0;h;y(K0t1%1I-VVQTO^+`VM(;@D6l{V9r6N(qv-$eUFk~GbH zd1B_%BB2Z?5Ql(-xd{6G7`7l%KD*@UdRG>$v6C*2=5}1sOQX3dwXe#Lv|JtV(C!CF z;Zn8(PM@joi2-Mg8pgzaFPstsk<}if`>}aMD$z!VVWj!|OtCK( z$>A&<*d5)6H=EJvG`|kqlJ_#AB>zavL9bp=uP6><{Jp>{T#INS`S6g->|PS|Schfk z@V8D0CV}tuQbJBxP_{oTRgx;Q%0hXl6rZMtn~7<$wxfD?_nU;S(p&Vsv|0l=7vg5D z*m5ht@9Mnc6A70I@bnu5KnRm&aWaAhr`HSFKK9)_$&2H7bZCB!~pR8IGAxZLmJ1p2JCiHclck;f)ImMbnnfuL}> z0*b3p5n^Cb9^Ue6#(Qx$+SJM9m%G!>K4C=uhd3daNr}GPK94mk(*dR^LADfwF$3~I z22by$**)ab+aOl&vS#xCV($A+oPL6B%dJE-BkVQOf!TG(siU#vEl+Yf5DCnAaL|`k zfxS2oJ7qiN8d>YOAS=$r05?M)G$NHcGdg`@ZWL*pVupI|uxYV&;RX>{93~CtjkUOp zXT?@p4t7G0Lme(t=tPzSMk)9|-V5CKUN;9E1zV$t>YC?EZI;Y2^a_tb#PdYmP7CT) zc2B_;2n9PB1l11jGsZL+!wDeyI<4-$&U-EJ>!t4#J?2JbpllJg+OV80%xe&wr!c2r zy%|x==ZOJFG84cqs^-cD!-{gN5$1tB=$jCe09paapXUwimjWZ`pF0Lh;Su>4LLR5m zygU4sfqs6MSN3~6sPNR->AtK|anUNdb7@kp8RDBZ1r&a z1-4V;ma`Naffon+ab3KpQW0ZfnVM7H@z`Es2*1HUOUvJc+1hT-*ZDX!P~65N$-ThX z!*+htd#7<_z!ebZhK>c1JZM0)dknCPz13%K&s!cj3^m{imAeGtT-LcQel>RW7d1{= z8DJgBmxfx`IXd&6m1U>P(5LTE+>AI0KagmXy@ccKzDRe@Vq!A?`e`D_WT(7z0DbKnt z2kz6;e2)$~KoT@~Jyrpyyd2Sj3ISC5psfbX-F>b`5;9O_wq>Kf2W4yaQTA?%7az0i zT^?|n?$dTy3H+?Ic$wKFdSxP2uy%wC*!Q%G$y%+SjlObb%L!K8s>=^`z1glk9s@oa z*4jX3Fb*%9VN-*AB6r8x^B*I7=Yoena7AMQs5&|K3sA}ufZhPApX33&2H(TC_Yh_U zYU>AKE>|8^KFtdjfHiL!O&7~Ma;Njp32FNuahz=1qm|p&{}*#_6&7XK_lv?vmm(q} z(%njTDBYnVt#qSE*8?J;qSA~slG5ERAe}?E(o#y-z`h53-*2sbu&;fxu4|omGK0@N zcmCrS@1I`SR6RolZ2qfE^PC`LO}}W1^vcop?~O&4pB0+pcSZ=8iZ3>FW~L#mtp_EN zetf#yWrDcAP>}p%>rNBI6Tdc-8wU>r$7XmnG}jYxz=Y7~`QrQuOX>&HRUr6Xh9=F! z62SOwiiR|&NCyB1D<-F3t?$wL%Ym94P#gG&(l*^$?q%NvdF7$IpNX9_4k$CRVy|#U zMROX5W0D$2B`z>2fR|vRa0@EQ$e3Ow9@<#>r1hdlLD9G-s&#&1u(?YeQ0d>b!XETE z%U;O*IvC``5W79_Q4*pQVaQTXjN!9Jj91S`#!1~%|9~}ek00>{w8lHlh?Q6;S)+j1 zx;jz$snrL|-XE`*d&oPN7ED)?_K%)lck@2_^Of)fh!vAW4ELxSH<_`2=v(6ybey#d zNCi;#2dlL7wX|Rfi@I(=MQM0WOP*rAUv-QyJ{>5bQ-<#!OaU>I*f4r|qCt;IcAWw{ zdCN8WbhX%Q`ikYASX174YpHxJ7+Cw9<72g;qCZ#z%*yU;h|sn8!wcq${Ut-i+=ta} z2v$7ijO(>HWsMe0TWj(Z8?iL2BAUEW0SoRa&BZE`bc8jq;y^Mk=*YxZtt$2g%>)43 z=GTOP&F%?83Ma-%4NhaW&Yq!2?DMGgu|j1g-i)W2D*Xx%c~wQ)L{Uh#zEio}0Opi_ zF?rP(S4x#f(lj~vmq7KtqD!Fq{BXk7J-$eF;G1Ee9AR;6JNzvi6f*S7u0OVP7INE4 zI6H?2v|RFh3I{Ry>ZgVxkmpYdv*C{fzyMg9zYAUdv;{C0AkDr0IxKU&Bt# ztQZCr_`!Q5-?b3{!vh{656#d#9|m!Qn%A6{<3x!pO5Zk)IOdljOa*<}@GxW)izX$l z+1Z8ziBX=e5<8@pPddDC@6?t?&1e^b-kjj(rgA^w=dAGkm-N03ZbBi|CyRGR^&L9_ zy3qXS&(DK}-_!iIqfwxxABQ#qD-e*cb;*uk3gbEE=~}MOGBBzoS75lipRonoiIof`zq7$gGY%*GOgt1G53ziW; zTOvV0PBx>PDB3n#TVzZdU8*`+@kM~IO>_?{faBvu?`q(}Us<7(K%ZbDAuZs9vB&xi zZu40pDMZg#0BF6j7W2F_lnR)@3*IgZ4Po8Hg7daQs?XD9u@aYBIfy3% zm{;lMK8Y4m;ij1E83tn%E(6jk1t)qdtg9dzHH5=A6`sF=8rCeA3H!sQ)3XF#`)Xd+ zZ7=_UcPGLK?;Bw5lv#0A-xZ8{yEYWG?jcML{{99rzy`{`6g-l0{c>vpDe5CM|1ZQZ)znbzt=OsRj9NoAF=H{%n|TZQ@M-uQzfa8Ct) zqas4_cO2##IImNQ0YXls=cCuw^f20+RbGb$tIQrwT7|(l5traS?pyP*?f8y&Rf#G9 zDz!OtL5lm;3DS~o0Y>7%A2`aG&iC#0r-gF#7JpQ z5g7amvKiY%)d|4-QWx!)Qc>Vzywngh+Umh2wbzNjtb_$m6ZlD_uz2WKvjB`g3*IUn zcwOgegaPxF`$iOSLts&weaeLgOi5VqYEbBN!!5qC_wZ(`Yb z_l^rS)Ns+>OJF+-o{S>EIsb2u29_rOM;;AYAyZe;n(pW%W)52DE(PAe)d+y*+qK z9fk9K`~ivT7voMh_~;W+iQUPblrg>hHqhR_>?JqVO92KLE}Bz+3rbdnMhPF-H$UE* zt*6K+3=jF|bBzk)X>xGD^alYikNQ}EL2px@QY!^%(Ovx23m0+EJ(j!pFW3H;UE~gz z0ssX@xsP{dN38ThP^Z%kHrQnFBSGhH8d|upd;jy@7hEYw!O74^fB!d-IXmWCdtui9 z>wxC}pKx~QADkWF!s0QA!0iv@(GN125Klpk@#V(&17QHkDhgeZ!l+Z62Pt|gH45xK z4~lB37u4#~G$J^_y-pT2O_W^GwwJsA5A&aQ9OD1+(QM)kmAug)XN~T&d<;}TQup|s zUf~G+gQaiJHA36Z+SD;p^O^uyceC*j(6eMFY!|=Zc!?wCeKc_H)d=>wDXC<=0s!H2 z*XZ)`JK=*6Q*H}Ou6Q(2-0LZDBP4Ar_|PrgRE{$02*lK8wW+I3zr5W%Oyn>ME^q0Q|Y{AI_u4y}ii(C+GBTKkxpZ*Xu~ zL5IoB(arf-=DfgcNgmukJtVPPSoXNK=!EYEEWMF43aA@j%>7T(x!1}ucg~!3fjTCD zicz0#C;AC)pB(}Qf!nO09%U!Sa<4H>Kb(zzpMw9k4-SYkF0Z}+{1f>+1_K&2d=4bu zwf+X?XjK{oC`c3EMGA^YJt|a`Y_yxY%~}v5_y77UniN>^3mj2@|81fOV`$1+eIVNu zJ6k79ErmJ${$KiI-+dcYD5?@G#yWtkHxK>~>OB7RX|jY?u?gnNq2F!3nm^GMn~Tf& zkKCd~r54>u^@2kQOuHI%)YksgLcxUP;lwnGFgz-s(Wm*P0*(cN+-e`c;jo>hE zgD|w?ZKyCBk1U0C@L@|HM)t zyo7q)-GKPIS1cfc$BY-JjV>&Gf_J|wW7hwB zdQIb*0p?`gY(~h`=4ZmSp$r!exvu2BIhn4hhyOT%?hog|fTi+2LRmq8i~p=u!12_{ zqWkHDxOokd;johxLIH5^x!5SC60Fs4YFTlkUfK_iBa<&E5PnM>0Gpi_eh|ijvK(+% z&`1I$w1^5m@3;(dCzSC9wR#)}zik7G?+f zD*-hz#?PI%UxL1KEI0OcaD`d7EjgI&$g+wH%sbNKC`>Jo@fX#fH46xD$7(u zS$hHpL^ELNi-N z$}_Ug8k3;H0Gca!T4{2G!tQ@kEJ@|x)NjqzFt$U_cAb@bM8EUuL*czXr`-u!q-Lhu zm5alfy{U-6e{mj8HX6C#L$=kQf9pLPXeI3@=upUC4&53Rz~@-`8NTHPiK0aF0A~MS zYl<0YGDL!sXZ-WDGl6lI@Q`;u0mymEM>|u2btJcbwd5Blop#F{yf32o+TZ-|RM?lzMV&EuX;HzIhqAhtWqTn`< z;SZP1ZKPz4zx^)uI^2o`4FmmB*zvCN&+mbY!n-%2m@D%wDJ#6yQrQ43LNkz~M9@gX z)}|^8%WOuvu+ERf`$2xd1$sbHz}}%7Br@i}<+ubC+b>BtGj%4q*L+~?UY`wbAwR|) zhD5Q4by{HN7zl;5hP0TvJa@Ib!f=AU1-mKadRB!i1Wot5oa~WzCU!&eJ4^k{=F0E~ z(yNLyRKIi7mnX~DOT79W2Aj<%nWF^Nsl4iPeGH#?pPzY5lpQl4n~rgbBJ&SeqrDs6 zE_NU0<<2DQWyKNzy?%E6p3<@kTCjKy7&D1(4og&jA#n2Q`bc`Y0SDEe1JXDTU<->{ zHGo`cC{6x)wjNZTgDPdcfA#m5Y<&1hz;%f*@UliqQ7p8tSNfts&M12LJ`aD4h`M;f zhibNdz2be%W=9F>K_rcfO{YU9cDHWh=k%RFu`Tv(S3Bli1*|R`CriH&;X4BSk^mg? z=?`BaBY+dojbL(_^B~qJKt*5;Rih_-Z@vzOCfvfda1TRrwT ze+B9!qi+U^&XYtJ<_pWcuGEIfOiyffi=MPya2+HdvFq6H_VAca4rf((m81f{DxfTC zf?|+*|6Nj9n_MbqCPK_-wpqjxbJp}CJ`-GCon#ai)RO(0H4RSuH6F6sMGTGgT9(_~xw= zstY@N#9heH()~rnPxr!sU8!*BYYr5XAX~q-!u!6-7t;|EN%gqb2fq=(hj!+)^@J2? z-!%$aPb-|%j~u?oUSM`z#0Td$Ds2Y&$lTw_@SR{>11^C0RBcIM)nqgCpOqV=~( zh7Z*8Ib{6~0sjB4qnBRyDEzpiK5|;tsW4tThZ?nee^bRnp40uHBc?~rYm=I$Ys%HZY1v--zB$P7CIV#EF@^SU?L;HWY@E0FjSm>K28NvqYn;o(Eg>l6k%f0)H5HoeKT~2ewOnztR`a-F|VdA6IF` zh{#lliD0@rsR^VDUKlIP@DsP)RnTg!%iA>;a2Q`S*iR#G-eyBnDD7VjX|7`OQXQmI zAN!d{;}^KM?4MyC0=NIuzruvJ3LxqX=3P;J^gjSt7E+6infthxgF?%m_}xA~GKH6| zk1IOFOHuAyO{TxcebYq`>TMCm751g*^2xpj)%S${WT_;dbdo%Av71w?__84)>N~@_ z-Ei2zpz(b@Jc$?q^+VGHLrrIzX##r(f!txVH+8OdTk$@xFA~wTl<6 z42_Lg2=C<)H}86^7)#ei(tdjz8W z90vE*Z&r8KZC0wGpn)KQdS?T>TesT>G_`e!MhlG{EgV^HuQLAjI{?J(5F(BB$q|gj zIB6@;Ykmdw4c)N9BrbcT!iy%Zoq>1odaf>4q~f=iaGiT>!c2vD(``fKdf1tWP2QP^ zXM!1v;gA_-4m&9Rl#>U-#KNxdw1Y;VB=Pc$IYnE%99T92 z{=*}G6askUa({-;rrq&YE19Zya-7}Jia3l)AOGzC9v_U8Uz?2}qS#Et~ugkXQ zT1t$d*Wr%PfLx(Y0HhTAnY8?G{EKYY{5XL&r>wD>N$WDc8{ONFjXgh6Lm%&O5#Hr5 zp77(-9vXj;W=F9nDVb+vFKX@V(ON{y^sar^T9t2e7u#Yn7UmS>ok8a&V!3lgfmwKIJVgORs7VkWU*BOKw6w3rm<|AB$8?%StQrJGh2cAPE2 zMByjC0W^*5Z!T96~$)JY8L-QKgV;ekwp2!1%E%rp%3Fy^}0fci*6 zouE~bp~J3{?Vwa{N>rP2OxG)fbUJxtP;4K^MQmUhSMLepoAforK{M0++_2J<5!=xY zwcY!+X;Z56;TQANGsOe1`xUp1#5W%BT6nXOsl+M#8=_{?fyZ5XWh8Bmt`h3&h{4J2 zdgw68=f|LPpXS%rPn60=95zNU7az^hPZftU$8jzS-9^m-$$003 z`x7M={MsM(hh*WhysvCW*VMCAJ?M_wi(jv4F=jj)q&rwYM`GX0J$`>#MUW~Ze%9b! z?Xg`pr8c(@*fH4aHRan%*naA*pXZh&vqU*?MI*fv1bKVU9IE$DEKbDKl91_)bcCDM4?A!pRBE`KoSC9rn&1S>OZj+bC+cGFCJL@M!6TnGj}AJB%-s10 zo1Mp5y_KA+Ix0%|)P5xA$;+Ig_A>jar+h5O0R0^4h2CRNwLu~?@83z%771rxiF7;} ziQW$44vU&}1p8VYx%ko(AsCotO#CX5ejq(|s>C@@+zkt^;g$$*XJZOF8{f|2)g2N$D z`q0V)xjz=*Q=Q$*f!iAg@t1B#JOB1{UCV$#@);A_!4pPTjZQ`EF0yd$xgAl)g9;cb=p}U$|!lUAeZbxsB)-vau9{}AG!Cxj`f3!skcqxnVA_0 zhD?9VyM_-JAzKo(y;b__UR?v3AIszOK^;UfKaO7?iBmxNce*c1ADVYb-H;MD0j;m+eVSl#e!K-xBnxleF9Ws`vxL^LDI(A-n5T zhkszCTk!j53}zZ+$~NQ{)SxOd^yLm-dOI=S?z(DD5@u(r#NMpAN9fhOoA5ySHX<+w zckjVPpo+Zu87DR8Guw-3))@7mX^%j@0wbP9o}T|Ullm&92I*weftyh9G(^x#qB!J9 z&K!;ZcPMiC)$is#*?iMXBPHXaU3Fm<%1B7?;N0WkCr5tn5bK;TcTz|=97pfeP7O#g zs-AN%W9m~Qu3|0)br>MA^SVgH_Pmzu{^FVotPxWU-yv6i$}eqvTQOl{=j6)UH;wJ# zZP!JZq($W0Dq;}7;@-yCz2S7;Th$cpwyqiP%t99=6SSg1 zxeCts38Sn9wjzNZ%!FVRpkvsuKjqV~%J+CV?r=f}jcgV32^$9U+l;ehDv?@x?Ujz~ zb1pSHHrkIBt`AWYmRB#oj1(ZRx8AjgNA3&GMrCi;Q#%iqTK2YRnUo0Vh?uTOl;2#N z7^KetQp^BsvO?gU(-@`9gtKCRyAtF)Rl)p}hLlBPe){A6pbcMprSU>3L+F@HGtcS) z@GXQ^f(Xw`@BCw#a-grse^DaF_=&|n&brXrEFO{eZ0Y&LLzU}>)x;*vRk7vf{lp&L zJ32g&ojfAKc)4oALEzTE$}LZl6s|V+aG|=Rj@z_{zoI@L*B6z<_oE&{)@dGp74_F% ziP}%afo|Bh^#g^mjG5{FB;j}&-j&^=*Y6UTg27z`r@2I&ABkbmID zviY4oW^q__lb=&PS$N-#LpCGXT=mIhW_7Z1Ly7rfgi&)XhpMD#Pts*!9pmOaJV=Ty z`@X7v<(juVb8Tk!wmJ!O74vXTdEsm3H44?Q=W8tpOfmzSV`z8j_3gjjB8G09MrR?G zlZPRMjXiKz2N`aR)SJdbZL z|0|iI!Pd0q{j~c@r4xf6ra!K4|Jo94>N*Oq#v-`KFjj8INTRB9$ZOdfvrWcT#yyTK zc1T>6+*JE?W&JHBck89^_RHTNO&+}Lf{sLEM_-xf%GYsuF%;{3aG&w5pg>J1jR3kH z+J|25%nUEFmyMf(hP7Yr3i`hJ=q2II8))7gRlJUvPjX!LA>Oaywsp#0jf*)u$+c>G zi}hVdTB0{jU_UCiWiEC;d0WMeX4A30t&GQgl%sUG&(UcuBgxx=0A&CS|F)CRA+rk%-I2jlms%p3r;9JUeB(YWbBz$R@1kPo9waKiG^F&yT#qkcIrsrmW;UpwTo9f z4a;5g6JU15j4?RZ*j)iN25%uGy}s`5Q0reFpf@rlwu^Wa#6*!!`pqE!i-;L4z9N1( znO+reWlGVd^l!$0B`U8INX*XmKHfQqytrDVH?pM?!35F)Z24#BL5AZ*p2>1MCRybu zRUXN4j7_Q$X9q6X54RxP7)DjqF|@TA?9lF@#9*1)y^|GZU)YvQxsKWO!<)q(xdU3kJTRY3U9Lz?TRJ|Ax;!|@52+w5zGi+3*?n>D6s)qG-%?)L(mmf)T z9v5(&aK}B)*L$K{V;6g7qQ{RHJ-pRVNRh79_5r=r`bKX`R`9sT;fz-(U*nEarwtpt zX6_<|a43%7t73XQQ?$uk_XLdDd(+cc-IrQDY9{`@1P^HQ&G!hIL3+?@lFxp zH{9L=#A;FK41bye*d}DFhNaS z<`z99-;n|An+?_UbpPySYnQm3yOsDZ1IG2fx3FoF>~}?3n~^9b!SZmt{6e_Fs~sLg zp;K9^%NbwAX>rfSB!btw;bB?J`PRvs1YUt9Q zXqfS+UDUg#c&Be_vE*%x@9m3{R@c87&~5?2pRh$|+=IYq5}&ULFN{{q zv*#v((>!*W(?ae+bpnT#W&u!%c`wJu>i4L;1jzq|3e#jP zdS&m*YOC`hPWS1z@1@tPN8{(6HlHdZuFcd=^+z4eZEj9Yk!|lW<^rvA=2f<3?-T1L z4@{C;#7OK(gicDjzpNy3?{$i<%D?mV5svffKrr7A z7OfUpao|dU5;!YtIH<8#ZJ%J-Y_R*K9JxqHaSi*Ninpe(e#7)Zw}izo z3x&qw;u<0sxYUdSG0$}43v}Xr>_Tbbu}YQI*X52ES&M1p)Kd+c<#sbM#-N$o?sX6W z0%PR@z!f0*(&woR#V%)wy8X72FJ~{QRKbjLYdoBELiqUynDt#SK9<;Dn?Xp3iFWV) z%kR@+J|}x98jFH)@u3T@;X5m-p?JzAo&(8di7T_YH@^UVvrXp%g$Kh;ynn9z&!0 zC1SPlZ*rM@CA5-O@i~L--%bmX~?+lJ`E+GyQ&3cEeow_!3zD035Qe{sU)0( zOh&)9I(vq*;+NE^q%km*WEM)7@`v$k9j|O$clYlaI=jnP3KE1Vqz*7Tx#rsF^0$r9 zPWEF=em20yYcYHhpg;Pyrtbq3OF)9GQ}NIOxI@2xIt!ePplMgrUqV)uwujEO-Q?xT z_zf3EM$m4ftNVcVHJMt;T{Yk_9Z4I2-FZ!%>ZU#a8e!yNQf;k=C9d#vrJLh~{VWaQ zX%ZHZuU-%l^@~(QckJfmi+~T#FYMPWQ{Q`XTc=jmM^?y`nYOD{*TNj4Loj2wFjrMJSzy#<9$5jSsKn~5;VdkTY!wp?^pUL`~`lbxt ze!JHm2RHVe$g&+Q!c(A+bv}jkN?Tn2?oV)2EFE<=woI0kwCyOaGd)S)&xlS}DL#9_ z`RE@U8-%su_+?gu20@a%TEI7ht{2iXFn0sh!@~?fQFeW%kM8-i`oU1GBQ&++yiPF{ z=b820NxB%{EOKr3yej*2;4x6uBNsNQqEzd=*xx#S3&gz!T@?=|*B#%Tvm4e#c{Gq} z3zoJFlSPN)a*Htw#@$Z1mf^3y4=TNhQ2?OT}gDmS&>w+CVF+aSYC6ndEhF+^Qyzgm3wjs`n1x?5!iFDn?(Q z>{(B_#2hpiC|+~mduQ2WH8<*W@I~P@;kO~@N4e`6s?a*cM$yGZ0iT>2nH`Dh%kTqr zYKI}bd_iNcCsb7z68gt!`A1fjMt%B5dVlvpK&n+ZE35dS2dq0UhmF#my%c|~X$(K4 z{cIEvic2Is?@SOb9sZ_im|3?QGd*$qnW3BK(qI%8u3HPWA~rbomdyQ zIuZ>XYKP7^x4Z(*wqp-=p0A%^T%=FX_XPdR&!lYdSMe=dg2XsoY{rOcerM_!(DF*2 zXv7)4sy6FSG6agej_U?|M_E!pa65ITq0#oY_?~%1l-kL!#L;3aWN1ZGzV-U3JyVJ$ zd|1#$Ad$}*wlE)hPf5vCo@dt9uE2K(AuwJBd7-{)*u6pW^4DDGt`G$`+K zejnZW_$De!kL7{Pl}PyXUX^+7-=%1J(p9IJng1X#9t;q3jj`T~^qG()B|A0I=_Q16 z1Hjsh>hSJ3dCXPHbc5^QJ}B^v3&)yRhn?(%{TVRNwl_=lnSnY z?R0s%qg}cc;+di|tP^=6#BF2D;I!9Z{uq4U^sjB+jibf~k99*w#{bP)o6G_*sx=>- z2}#iSla{K*M#MOkl_vt#psAIAt-ts^R>(csrcjjvSj zML;>upv~=F6L-BbVJ{-oGHK6=VIuS;#$GH~KZHYN*7IZzEvx}zIISUmt_$TLk+7bw zDqider~lP!RBG|5%o-s#8b`%a2ERs#F%;udM)bHgYiv#vrFh9}(Gx}uoejnm9+xlC zAbl9}neEqB5L4g1UWr!X#uYd(5LQ6t)HMf6@$v@%D~Y11RIjFnJj8mN)thgb3%t*y z8sVGSZ0 zozpRX9om@_?{}|PBKwk(%(k5sTH5B~^B*lhCU&2XGa|+zU1*{6j7YnrK)m`j|tIf5h_0?X3N!GIvEXzHi*e zT`^ENJrj+PMpqnjWz@x?3)5;=`7Ot3mflLMTUOLxE=`2O4uHtCl2`j%&Z~Ck`1jk${Romm+=-B}$a!{tNf`WW7+f_GBpLk@}YcsdCa3 zkeyD(_ydoGFtZ8wFB*S;jF#B_V(8Db;F12$$n9vNf5PguIpVyz6#n9Jgqk=(ygD6` ze(%4dMTvh)P?Z=^LubyF3u|@ro;y^R$tfQDEKnW0wR{j*waYSMj1y8VY>!9&_Z9z* zG@5@IZOTlSvD=Kxf$`)xom)k!mI<21&p3X&0rj@gG3A0(*%{UZt*fu&pa>9Xx0wE0 zr@}E)@&9QUuk_Vhn9*yLgPg>#9;L~Bi|?f@4OCq+#ao6d1T;mXK(!j?(zPMW*$b#(08DyP03wx`%?QGhZ=m>Tj}+xCV>1md?wQmfxkEd zn&P40yAt<4!e4a4Sn+Nc1B8Fu*k2P{)bD47{t$Qk=KXB}(E&wdy=DXbGH* z^fwMsn)^`^jLMnWNFlF-yfcuXCfRp^sWI!0>E-PMm0eY-emC)Lesh5T1hNE4v##Mt z=_dM@JBy0K5D<>1>`xGm1m{13Hx!&h@l61Wya;NQu9ZCIH#=i_bv&nJ53tcgo93Vk z&Wp3%P)jk(zJv%xb#JW_nD>}s%sT>*V6mj^(_7~g$qRn6q*5FF$k4>AE+;a%kt;E` zF1!tj%}xrS*^>yWq6#`NJt(c8Pi;uVGd~w%rVXRQEb}#5UrS8izj3Q ze-xfDPb@VliSHAY!02L>E-lSd{{ZakN?#uainWQIA1&;h?e=^9AeW-4#|6N)XQ0OW z+->~_g<}-3%E_!WG=pyZ!7=du+jhy7Gy=-fx)pY@mQ>ep(gpp2sN|DO^<)RgO?i$; z*lAJW-%Cnu&(@m*_(IZO0BukJ@L}-oM3mDSU9v*lX-~ zn}7`$br4Fd{|;qofvo{H-J7BNaC8B1pn!*lt>r0NL%b6xS7sXN`JPzb5)dg|mj^?V z0mN#OUSZu(aD)K|#t5K+H#O6hEZG>vsV`8!Np~9HC;uFIvJXh9xS~nCmTK7s)g}Li zom0P}1Jrvq98hb~22dXVt;HhSF)ncHg<2Y*R;s?@<)&CO_5;BS^l_r)HB4+bq4YTm z5`SZ^(YV5KZfim_zh$uI-c8t=<~%CSc(owcUtmoMv|l4{D1^d5KO_R^vU$3yLIERl zCW?Q-$*Xa8kGKY4Pm2v+ z+u?u#nW#_GG%(#S0S6$EjsnBl&1nGahPr$09V3#|C1@uib)PnlOCAl-m)M^QR5yCL zStCw@&}^UIgmvPtl8u3eS>$1sY9v?!U0`W%0th;31Ym7U>=px~Sz7!P-=7c3A2>bk z5bNu~=dRM2^+rCi9A1gE{T>`Z49A=nQBUmEt9lvkeKaUvVmIMf@*1F)t091_bkdxu z8OnYH=q=lH%(hMa0l`F_Db0_}&MW6U*=&IoH$zL1gnc(oRoGZ7_lgf=e<%fW+lSkc z7jMuBW3Q+2;tX%4l_J{s81|BTHC_4nmPQTO3}jh=Y2a>q-{Y1o7L>I^&Jo2 z>q^}p?_gT=#c>wa9q6@Yd?e>rvWcBbJ&V*IBi!FRFZn3X2F=S+s^uLzSjNw=fS)p` zGNTUj(;AB}rw#jxSr#3H?J33(0_px*_=Bn=T8kJ4y!jz6`4n6OTaoSL$1hLhdE7fR zSOEn??4YA10;KJ+r$EnoD=NFh8o{({y2XGRQ8@F3{2snneF#^?)3Hi|FTw9|7?_Jd zy0`{;9@dutiWP${e}u=Zj&ZjeegixUYY+c;VX`l=R)zgpd_)wn)%R>||2d_FI2>T` zBZxUIq@K8Wys^uju9MuLsOO8a=U$bpcQv{vsm4{C_rCO9{|bm%mMW%1yJGV7m*&Qh z%3Su-;~35kaJSh+y2RRP^MFMzhk+(bh-b6=p0Ct9Yp%KP~`@(&@Bzl2v z0IQ^r7?|&o>io1Gv@0IQfuJKDu#EBA_L2fUfX&j?=73=DACEq@dTzUReJ;OOfGZ!N zjymu5F{<3MlK5?vbkXw#?}=OFtt@d`+MhU$ok(7kaa;DDn|-e1IW}k2pn)2Br&b~@ zy{U=hhKibOb~m=`UPez_1f3Awvo)0H-|k%FmAviW!W70k?dh_;pK!lX7E{T=KyVm= z9bvA=0CO1riF$g)*e9?p@AVE}FrcyQ_v+Ha$hD;OXV+ZS-EW zVy$usfp$zdcS8d6h0i)8#4xzJ`jcL+t8Je`ArNor+HEM?_%Yv;T)ihXuJydn zsVq&B45|~Q`2zO%?v)6tM;5#S)_V(gz?RJbZm&5Y_e?Bzl zp~cP$+yiVX&+*4KY7sv&p9o!~8{g$STFIoC>fmh&_OKYM{Z_E&exwoMitZt!lTZygb$KG#2D&4S!;{IlD_mmwKU1>P z2N4ohEr~5)o4qi(d+TN22-Wpz?u_mzqUu1x-y_$B=04SUC(T_O;u$peN09&k^z>m& z4)?vjBlpZ+ZH8FS1gk=d-)oPkU=~5NV1s|AICPkKEZFrk4rd`H>-lZ4!*9S-iKXTf znxM1exk>IJ5%ck|EPJ?N-!y=QzCULNt&opCTbR04R^j%<3ecScHOaH1NWvm3V5qC%tU{A=d8!k=vE7_Rdg z-n?7_3ycV4+H8RB<3g^&#+?uS`q7hg`t&4q9+qPcC7sTiyvLG-SOjP%phYn8YjV~( zQacZ6=erc0I+px&^0$6$TL`m#^isg}tZvY|vE06>SAmB!V7$Q{hVu2>F<6bs?JDfE zl>#8X8PD!s^xf)LGcOyk)6Gr3z<}BnU$f-ldw^K!NH#t^d#F`eA}b*eoVJzd>j|NKdwmFDTpE*GL}S6%Xg zgBrLexHCOmS1r&QH&hUIKk`H z!>wc_o}a3!q>+ByziVF2XsA=~+_=w6j$Zlu<#d(XdS;C#(U=Smws@c=_V%zqppFU< znhGn%u=v6~5C=j?ljM17$3O?eS|vaz*-VdxN^kD?>g=+kq0w_I%1A%<>YuCdiKpb$ zOszUxY_(?GSaC&=s-*BOSFe}@W7eUbGQgP~)rXnCxC?uM+jIJxJ-$#eQrYJXR7W;S z!_VwzKjGM2Z+T20>eENY_PE2+vx?q;|vo7AqnzzuYbYHsO=K^+f;d|SDvlr#nZuaH2dmWbE zY~G0_$1*eq{;b+rlX;}qO3QG_l6}_sii3XJ1TT-ICS=sjvEjUt2cO1%VoF zkmm_FF$f+t<%`@ij0Vf4@^b&p|1bNGM*2Afnn{^n1(>cfwMux=3CFKje3>R~Lft0K z^;`y`K=8ZWiHmSrEK2r25lnK_^Zs(s99-e@4ybD}=*HmU$k6@SQReQ_cdX+I1s(p5 zwlYQjF5k= z^)LZvoG~jX=$Ctxmve5X&um*ucEo|4=ERLgKCJN?u*j(3Y)ZV(S>fEc;!xe;OeXh` zM$g|RGX%{iKvuh*hE!gJdlcM|hNOyvcpsDR56*Izv+l7vUg!W+z`ZA$4%4+RZ4OZ_ z{KO-)X0)ga(gwsjnuy}(cY$b=Mq`8b?g+es-^t!b>{(9Sv*5JdvGedhJ0BpUq`yen zJL(}YwUjulilu%ycaExa8dvhl;kQ*?7EFvx6`%eXz2UMW*Ub?fY=Zy_R9u5@9eXFp zPv1od_1M=lY{9m49|Mx#=z@xww7~~CG=B_#WB57S$+bKtdvb{JF-VnOGzdJYaT>8n z&hsE?EVClxIbZ9Ucx!#UbK+Y(*c9R)fHk%82>W`;%*SKyZXsAW&MMhzP-brG;%s_9 zAe3Z{+f9^u1=V9GRN|Mdr&`?{li{=BAjy`>Tgfg^uU#HWANy?ds5t`b?{MuZo#<&+ zGD*y<9Sgy+C=zJ#wZPw`?H)w`YY6)$>|KIKVg27s4*i4p&A4s<)9u$xyYHoLq7z1a zd4Rlzcr(?exGYSPspd0BWK)SgiL@%ZweHe#Or;XD_7g`;)F$0vZf9<1OVm-(ngrvP zz0<;M{<qeEp2610*fA0H~F$5~qHPc(mPz9}EUo8={{J}l+-JOrrVS(?h zRhop=cjF!W%1IZkA}Cyr#Tw=5`+34~${M~#=eLlHdOjX#1Jo!+pi|f1H)cdzx4l1$ z4~|R?^=;0smmnq?`C0X9dvp`E(cUZc!47xj4l(A>T{Y-H-eHRV>5hvQ09z(B`z6or zLWdg@3z1o7oo^i)5^mGfS#BxYk$&%7=%ElZ`?4`p*?+F!*30itUzb?tO*fy}bg~ak z{^F{dhjlKDG}ax8fDun6M04tME5LPp5;Sug+!iC7ug-~Xacc2R^s;NE7xgaiA-3xM zUiXO}dT)F5xo7~VrGB%`n)wVx?x`k-cJqXNoXn>mMqp-zZeN}6S#Fc`^xN5kvWHfq z%*o@OlO`{c#5~SQ-G9tffv8?Qfk1{OB^qg(Ov%~SL-Dzop>k`+AsQ_0?m;tM)Y9ew zOFP^nT=X0>LFC>{Bpzv3`~|bB*a9>E3#CbtKV^?em%4*$IG|q3m~Pg_>6lg(CZrv+S=6(3wMd zL+1+az5j?@bEW)j<2e_9ZOya)u+gm+Dd=ZQH$bd#Y^|&9OPU8-O*}PCNv#bPua~+= ziwf->lj)4mAD&B|k7hraf*PueHY%5PD%bFSoCZ%D`|6s6ywdwTK#UCELWNxsj7lAT zzCQIjE%#xpY(@4{0tnfjP*+O0@hHP;&F6a(CM%>o#$BOQ;%wTpUdFe%&t+o@pE>xJ zu`>b0PIr7>eqg2r6$R?s z9mk6__mT>YcM{8hX!k^ePcW)7Q`SwP3f#`i4576XFY)8Ik8_?4cJ?vDG;w=C#ABu7 z6!*~OB4gLI-l2@3&+Q3KA~*WwtfUbckgTlRJ+B7`{U8X*Ez9Wp&U2df$ay*5R(u(% z(oFM%SpJ1sBtjcc#=gZ@tOiq?Z&@aH{xbG`;KGZYp*I2~6C5b3PYeE^_O3J#%KmFJ zSu05slB7f>B>TP?C9?BeKV+v5y(= zZ}hxh-Y@Uh|A+s4yFbl6bN|k{&vl*aT&E;gPm|jW)jL7kJZzHYRVWnzs^xW;4dako z{f-e&r_Bi;lD8Akhv1BCdl+h%xSe|{6T(NAfyDIty+Xhd=0?E{W`l?Ky`BaV1&q57 z)T%R52z-;i&TgdsY0d(^iJkFJPKZMm%CAiBhP$^j4V7oms^RpL;u{Cdege{p< zO^>Sjty0WITg9Gfl6z;C!6GH`GEBR7(4*`mFuOaTpX-Tj+=J)0u!LZkNC=@~keOMb z)zk9y)V-nRtEHlHSu`C<1tpuS^~JZV944k00ue744RE2X*t!^XTMc*iJp3xaG>q&* zI)ggLl(O&Nck*|)F9gV3m6g9WwpI(5=Jo3P($ojn$1U|9FzKO_vLXt;|8QVt zx{6uFv)C=&&e-~`NvJ~*H<7fbigGv*K2(i*h2uAEYrC{JU~XjIR>Kiq7|?aD=nmWS zz3OeC4T0uRo<5%Wv*N&yTHhRJo%zIC@yuyI2CiLgcF@ZRAzdy0Jp{^>fi}eJ4d*w zN&4t^aDBMj&EV@ARtIzWouZoLA}Rnt%{}L0P1A@3Q&pPUs6S0j--d|y%MZH#9Q1UT zp$?*rB(g5N;H*zNA6KtDjlrcYg@lwSlW1oD%jSI6f}%mpW2Hxy9GjeVbX2tO0HOE7 z!Z(HB#w7QL%Y<%4b;{-F;5v>W0-AU^K{Ei6RazdsED@!D9zHtqtUDp}^9V8``fby> z#P5VgSb@ruCh-W#lRTYk243k&_c@>}{riH)-_B1p#!cW?s>o?L06Kk0J&{UKU9rcv z)Kzh)EUhhDqXC~yt=+X9d<(@b0p7c6w3c;f^ zjzZl|37!dos&x8s>GE=ZsA>amtnHf`cz;Y4R|9HS_08DlLx@EvRki4&}QI);g7fc(bPB^KH>LzfT&!xq1sMY_yr_#g!h?iyW$Wu4nC>ss16wm>bp$ zHPc;r6!&>*WK-_CC}-DVp?Pp%d?=<^RM%bXp<{B zTQzzXZ=~hpb6gzm9nkqBVtM5Zuz|3|+tHV2&vQZIM9nz3^Y6&r>}XA*hlwU4-{1HaGHh2!7fN zdjMn2QnO_BH>xWAsqi8Z9za)pCOUSY0bH>$|C>fbscPE?3lQT`bO3pV)$%`8oOmt| zC1`hzUmM&g>nrp$FW*SEefvo%@{C9UP9=KI0l%Lie5#UAm*1AIVIw5BVIU;CHiD1J zFaD*~T$qBM^~jou)@>+kom$s;f)h%gEM-J&7iC7W~xeC=jts-b$T9}l#WEq3r_+{xOJ|S zY5WIUkT+~XE;GgZ4)|U?I4Wd1midoiT+KV47)?t+!=OrHV^YJRrS_Je$u#tluOxQ+ z1;9>MA?)VLc5v@mEb{K=*CYP`LKzh0*HYV=9qlF69}~Re&PsB?crC)@UkrH82QKu5 zsByRK>#eZrN2qfK*2U%-W_xmO=fVr>^baZm3H!oW9lf7`2|D3#n6M`ForumE8mPp| zt}kDqkM%+6-FX(~@6@WxY_!LTA5D%H9_a#-8lup=ZNzv1Lf6M)`*juZUF4>zOXAGP zLU||YZGL6#yGPTz?xXU-*9Oi#&(_sAI@xsUZ{#KqikCe28FL+L$!6snDGQv2uJNb~ zi? z)jtHXN^;-jkPM+?COn3x&df|S<7G7bUf_&qG6>;YDMk(pH)XtHg2A3pzngtcqgFtEXIV1QdL{J!4nA3A(itSBtkkyB`?)MTZpJ~Y zw3d1Q(e&ZvwtzvYQT_T>2)mlhijbCIrs^T}fD%qkkHa}U;o3o|tTcQ!xP}qZ4;h?w zQhQv>J=jBL6$cP)>-$0q1ZEdW2Bkj#_UxW+L7d!R6eDFjb zIkJbiOakZj)h)nXnL+>eTbrJRaj?A~Hvw+Jd(Z0M6*~RCI=Wqfo}zIy@L}7=Pq-Ed z&Il^0GI?~OHD`HxP^n(6N`DRZg zX*&?3py}|j0tB_X<>1J-&n2L=gIZdizPW>H$rX=Wtk{pHA=J3qr}V~ay?R_ftWvP@ zD-$oL;ED83p($!q5NWkz)MDHpcuF;#dfvGkpd`w5mKt!jmw3|m0Hjueb&(kl=Re*M zT=j3_c*_8d4sgw?crgG?b`QRDCGTImHDf(9w0ycdwW&27(;!W)k*f5`xqVF`t9VjG z?~v4=EdOXgkbj9!^mth3B6zA;p?KQoD@wfeiS&4iNHNxQEvgyQk=1l}g%1yK;yZ!>k8VKn)1Uzr|AVNCOyM%ygJoCUA zAkvGJCNc0s9YLqCF!v>_y7y9f*{wO%_pgnDywE`or1uhFBU_c+4llOHJv(DkW`O@9 zzLCd|eeC0|(*Z0>!z!BP^3{+C=^hVaQf&smeghDsxk2af?o7S!@uhXl^JL11LH6_j zaKaxrD2rvWN*z7!FR?1M5}vwL04PTe?rxG8?F)My;i}~{@JMN@0vql;BF)uLJ zK>$Bl9<5P7u$M~F{TEG@%^%Q)l4)L_hxMMGy!i0~x%PI|mh8Y&NWIwgdbXrU`r~Vy zb;xQfu!6yLRWG>@8X}-zAA;(*t*_ae{Tmkg^kx+S05e!&@e72-4Yijs6~`9m(Yt;w z+@_YxU-5F;dV(HF1rz<}E26c>jXxPp(j-}pv*rl?rN=lfzSJq?0r6m&rHLZT$<3T+ zlp-&vCrVzq;1a9VW5B;l$#HKediIjT!#)F5QkmUVDMHvVhyBszrRYoPsn-8KpRUM2 z1c&ua=pcALSZlzkaO|yKK=wamR=@Ta*9QI5KTr#9_A`f)#TFt1a6SGxC_JG|k9xFppg2Px87$D38!;nsGm03XdrN^&q=e8~KGg z{p}*qzoGg?XCX)Ui{NzO!YGF+FEE_@v*a|I-0Nemlc+af)0a8f4^`e1jA%U%lyD@z z)>MW&EqIPBRfOoR@2F$s>|>NgLaVp)FI>NJgSl%iEs`&nK8an|{a{RBh9M)|%B#*8 zyp-gq;T(CEY<2TeJ;%N(P^_#LJ#IibsWD}Kgs%!;(|%G9)M_c(Sam1a*+8Iqo7fEF~3@Ea)(da@Gn-0*ZJC-$!;2C#Xyhg2;E0Dt>dxl3H_KX<(6q&j?8-IV<4k*Fw)`mAF!=R0IkFce8 zCwyftb+o}acYgVOqv@wV{QIcne0k`{>M1{S+l~tT97i}fwnA^Buv0T{N^4P6Vuz}i zOQYWL(fM?ZDU}(@JsdY5^u)p6Ys!^(U8A|;z|z>uG{4bA)gL9RYc8fc?zv-8$Fa)q zFD?A~W~!JG^?Vfc0r8Y z?_SNI&hRnk0UHMW0ko{LD!?u_5 z{zQW9n;DaOqamztW`2w(N_SOJ*fMlH66X6B=H&JG=T@aW7~uXcWPIz<+82KR*eK*K zmatt~++4{4N&u5*toD0TMkTnV-1@^k{VR`OH2AXJTTM%lFxqLJcmI*=Vm&*)wIrav zLbL$HfZRM8{}k*4z7UcGh9{fH3yAqn#Ex6+d2?b)m?w_p>YHV)DeUZm0ZMEptzh3g z)*^D^GMy^{sxpy!D4b>t9bP!9hWE;|OF=looA)IhHDg!n?C}y0KS`$0!Rl(iIX!|Y zneRrW_hlmo=KDIgP`TowtG|iC)p_NfMt$-8I8z{II=ApFGDBPi6JN9Sfm?SS<=bP= zrK57hrT?0)h)A;)>=kj9xqHGoY$)(f2=VV@emp4kSS)yLJF zSbfuPEb0IdpUn~MYCEEW=R!ZDw+>vq-on$CrQ$FWN+Xq_7?>PEmTtXbuoR%KFZYC< zrX;S7;9O~7}mC|ED|gT z8v%RF&F1Y@jIcw9N5Ne+zwwx5$QvFWZ2KDfJP(YR;68iX8FL8*&G-?||Zp zRFUTjHJnw59d1v$o^h39s17ADAT&F3tXsmr`tRFB;Ka~;U$`SY$#Z>DitS7PU4?B4 z6YrSWkswDuIng+lgElW4Ocw~j)&tI@DbRs_R6m>-5SqxQxZ+fB$y09(taE{Y;jd=w zKVI(2vj`-fUs$3bAe)umIc5$-ZEKp&zH;08IPU-c(*O6F3iE90af{imVUFY`v4M}N M(FMbjvo3f32h``3pa1{> delta 203555 zcmeFYgim$E{6oEp%6ud~H$) zpA4P9uVV`d9J2*R3O-*6u3bsHGmr}xQsdiKk@zK#?^q|uW)w@l8XBF6HH@1pi<*;#{CIggj;h3*tc)B!SjZlY6GRL7(VlDw2#G$7X zpGWw5!uGn8o1^2AIFZ=>mG$mu?q}Xh6W^j^1*4yNv&sU3gEyTcX>)s}@xKc@Mnrtp zq-)SP+ufzyUapRaFbP~6jA)0CK8A7JocF+EF&5BzIasdcXB&PcRvIo}BhhLnrqQvI zQy|)%8GD;kcU{PG`7r+gu;N=gW&Lw>=(Gj@(v+B#r+G&0$bRU&B{8!PFTjz_oynP{ zIyZjB*8SCYGrSqBuYDSP~U=YXu< z;U1n%kHsEX@d+eLJ9T_u(DPS*Q?aky0Aj`O$F%gHBVOHgYn-1bO%4h+>As~^Zi_QA zso7+89L;#h%Z_tDenN1Gm`0Hx$R@}EjrEo-0UA)V#G4hG8SC(!SA+rU^A2;prLzGx zY`B-^E7!mEwkG1AjcbXgh2%i+g;z#;UDmKLWt@d93Bi&uuDe;X_>$t9@D&p2qlh&b z>sJ1bH0}rkQT#`r&e-_bg@>)5r?q3UX1P64^$s~1UbNgACwJhuT+UQ^fh!e($OznJ z;G>0+rPGvu$lSe1ORA!SXS+$ev-rmDCx!OZxxaTm~MPkT3t21}@@q zEd^cRDEw^ec_m(XnlWf|2zH=H*sndaUh@^tiC1${3oP`D8G+ zx72R2D^Y(O5_jGBE3H^|WuRM0wncrdu)_=ibaav$f8F`#-(R~XC5fN34(9=mIJ&dr z7bV42U22Dc`+>_6Mk7~`$Sp2kPRbB$n_+EJ-btB~@%$DrkUw02Zw@E=B1u0VHXl>2 zyd`ba-04)|{MAFkDhaT*KYO}(y3G9Sa5fzl{&l1jt@$Wu?NkG9kZthr;8)AaT%MU} zXGYJC%}=fF`DW`>yS;)Etcw<}1|Kb(SfBG& zQ4`+w$LwVGqmAQ%YF{-UsH$JbQuI6q6?i|8^!LfUMt$H3UIO4tP(c*wqfyv1(nE>O zxxZ~ig|M$G_59Bu!y}ILL8pz2NH>w|TG%+C zB-manYLWp;gY~GDD_hyj+ri* z6MG~bxcLQF#3Yv3%8Y3mhRz3TNLZMZ+s5!&FmnQNzMe6{3)bz@aH`mXsQ`^y?G&~H zUZcqCS`22hZaD%X73yqLmJLH<(c>1|uO0{7*8BOCXZ3k<@f?1~fR*`>a74?nW|k=b~LDrZ=d?JmqpBwz}AF?o49;90() zKNDiux;|=fZ4BvHaip9Pc{8r=pYMox%}@UH4|dI!jR&#Jx*0TS z7fF)2WP#gp2ykq3tE;*)1lT7kPOdL+NR9}N$SY*+OkG_>(ZfxAb`u1vnK9u~J(uLA zwCtGL%3YV-rSJps^R<-S@%j^mS14Y}?Y>!L`HZ}F$>Okj356+R!j(0< z4Ka-HD;)M^LV2DGBX$#{)y4zd!l`DK^A0(QD z9OJH2ofxl=)`%3f6dm|%N!v?pAoa9D8;}r@_3C2%awT?HL9CXaTi*8kjI{-xTOL$We{{m+(O^~=sP%!{^^GgdnrOE5pFd~^h! zOc>MuE6FeE-skwip1rUfcMIMy;nLkh`^q*|@40)CV>ggf$)@WsVSYS=`L?`9*j2gW zNnp6XP4*i?EZf95#Lm0h%xYTu_Xy1WhiuBC@kcQy8t}dzxex|;Hu`A6t%~RO1s6$w zY|0?nr3H`l&tz=oNm)Bi>G*(oq>pir(QnPm?g6&mSI$F0T15{R#-d{?*yI9S0h0~? z**dabi2cO$1`nPXSwA}E_CGA*k}F~28LXmeoY>mp5`x=wU|jjspGW7r1Hw9pKYa3$ z^K{zbmALISjdVM;(ejoC)3I{f)#jWh)!XG&8ET&VWR{p?8}{7c$|-^iyTzxSIkkV$g{ zb?$~>s&vO2p#~%&AS&rJRz5#aU{CGXH{;GH@~A18B*bVkctI^sfPR|7UOU}wT<2cz zTW`lWIWr?b%5SZ%UYlXxoogw@VI*xfx92?+Va3c~5NiUs#?L3~F(jQD*Jw$LYf@2p zbhBkKy8PnmYj0@2des2|SyP`fAJf;84-l_m^}&7Wlifs! zMe}hdiiA)mu?+5|ED!9aO84WpVU{egY3Jfh<-%2EPR*SCkCW0GJ;yxw#@)A%WM}YT z#0+N^;gut#%!{u~jc-3bs9MJy0e36nKWsyvN>`cSDLrUlmZBJeRbkq zv|efZwe8Y2xmm-McHa$=-7+aXmE$O3!Yvf|eONGqscIco@1MgbYBpB(BG=)5L=goK zZrcTdHol}NEgx{$WpGKc@#GXen)VlKb*H`q&X3+(y=F#W`22Y$avg}3ejGWwx%Q4Z zBzdBny2^29c{r|(H9#rN@0W6c)A-woWY@+QC3gLp%Gr5K_U7osm5IEsy^ENJOF~52 z>xPJgINh|c34{#-lYay8_H3;jYY_sBI7_kZ@Y2U9pRL{O{`-QD?&Bij`dfF6Fw^W* z!q*EWYF83GC~pmTnI!@9%|&zVX<94|Ic2gUfeqMvyn_1x`Ky79+^QVGYk2R~<@n+H z;+Qd!`uaxyJWMeJt%PP8x=v4zuzU7)3U#~d%x`KpIm#zIFueKpSPl%*c6L+@vZYfz zZkb-Nk^La)W+yZZf9!a_^zzB+_LlQl1w3MPy2^4FkF!5R11JIdKhsUV)S)4c8AYQk z|3Fm6JM#*_OEQsByMkD9R!B&<74|)+MumPtK;aKB=G;BwTb1=Ty{Tp&A%Tgjr_e8{ z+93c{p(%TdU;#IpUhw+)ZJ+a)2~Lgo-pmWP2#_8Y>PIb8oEYaY9Dwll+3%HSe?tU} zxi3V%i;&|7!u?yJ0@_Kv_Zj|Xm1MitaZ<7}a2b}k1&;QwTo$&@soFybp(A!s^kVL! zo=m$fy*S~iV$$Pv&8Vrg^*=QhyJT(?ySE_%UI#4mo$NrLD zn{HHS#`WdipkmR4Al^|jsFnfGTMF?)=1A4ub%hyZ$-0(qWYM4QdZ^S)dEJV?Wvfm) zx$|W%%iY9&TbH_Dz6Z}I76(eLLkyA!gfzrN`eM#*^Gy0d1hy7(MGLb`C12A%3J{#| zB0{Y`_fA*9=6K?>Lnn}S?sf@w2x-#oRVmL$;&^rKu{!4$>UM09TnFIvRi0^WB-J}e z&01%Y`{U#!dF)DGnZEGv!J5r^SE#=Q_w}2yukP)f-2zsa!NWcs;V~cas4sqV=&E3D zj%0}n)S{TLv>k^}V+`>!o$L{EE`+ZGesj!vto9%{$-)?M|$++UA6L-+9pRsD6lU@G$z;m@^{?z?qx54iV z1)MKF3(x7%6TPy-HUu0cdJHw-IR{FVzc_Pe;5oM%_<#-kWS8E*9!&{FaQpQm&r_zO z`@2=-woJ9h1Bxt`VYB69S_^5<7arF^`(1oRHM(=t16;C$(oQf!?vs^R<1k0Kg~wud z#k(+iA-jOG<=VhRVV+A&%H;I%B@HPvwW>+8Qd&k|RrwEpez#`@IF2-5k3@576bWfm z%2WXJd`9hG!h&dI;A^pHQtG%4OMu6)z=(3$`rVeQ~=Ypr$>)NV?+`hY&8%)ulgQc8npBZA|#nB9a}RQlxzFNuA-Ei zZMd7HDT>l-@b~FY_JC)bAq0&GB72T}ywwT%%m;5}JXAE5hA+=~2NXR6|7ZSBzml4) zx8}#>RwA9FGVvR46+YhNc^>dI-!k5*|2t67!o~JSK}U}B$`vz?4$lvwPTK{Wr)ZwZ zHzXlqV`%IF)dL!$qR~9~C;+2zzRH+C)V&V;xlKB-C1k_54 zo|8}*@|t{?9OpJ6`o%(!6*u%cXK#I-Lv67Kvs^@KWB5aU%xxy2a5_-;W&+#2HkUrY z(}(i9sZFic%9w0*lXY!L*S)t|G*)#>gd1;`%5}k1UrfO~$eo)@)pXj3NUMF*Ts~FI z_vI8vP0HFPt%MO15GfIeklV;tF=smCF&VdS+)k?7KwLJWOFzh?L5>l|HWN}Vd1 zjBC`x@uPP_Pa&?s88;=pLUP(NA3j2#nQ|EV?p@t`yp|TccMlUs*g`*JBBVcTBH%%M`s(%{J-&L^>!16aCJ<*lQWdd=zu$En2D; z66E6GktaJ;RaR#o931#+!?cD&1!dp|S)^f#1Dx!LweLMEPN^R;L**P(m+NS@y`DWQ zQaqd1P!S8Rb;$U4+Pr$w5-denq!q->J3-S6<-)s}Jo6iOIGLoq@tvRL_C#8Q1rKX0;xrr@ z_^zy3UNTcTUn!u-woOP(Kr+MRJe3l;U?jTIQa+EtV+`~3#^h6?f;5DR94!M5+^2)p zm{xv)r}~(R2!i%RwThZ`yEgWgm5&^YFT$awEg$LT29kJ=s<@<&U#8^d@dxl+;d-y; z>i@My6gFV|@ut?Ax0VP;s-)Z9KcS4v9=`-NdPfs`)&Z)@&_xCN=u6B<3f%Z{t@}`PbE{^+W9~*`r9%uZDV9H0rIW53;bd{a{=??33^Uc% zn$^Afpc9%2p=1%c{nI=QJVUGFX^%H5D$~*Ya(vT_D?bemKN|JS=B(Uri}pNzQ+VPZJj=o3%tBL_rTZ|~@t0^OOlT{e ziANv39osEpS5su_GAQOFzg5#(IoA#(W4-j0A_jM(8wTmWtvvj8wmS$PYO<70Dp3w{ zxk%Q1IZZ%l1?jn{bcy(f24!L zux6hab2b&AL&dDVq}MTd83n@$rbjTkcJms1i=6Om-dVd@p|dhBB}D+Ja{qA?G_P)7 z9?@tM%g(J5w)&2bmh*F`X$GrWs@)`V4L;=+VLrKMn)m>7Lh9{$M6pwMKyez&Qh(IG zEC#JJQbs?Lc~O4Xk;kGg;b&W$A4Hx;WROwSi-<`gS1 zC)(}B3=dM)=6mx}i4n+1JM>S}OhjvIr>RAgPM;Y*2^4>}P&mP*qQj966iw{`up98P zz~yIxEI-Cc1F=Mh({|Ksul7#%=3g-cxh8Qs{0X2|)!CBBzTM8GQF^v6wZ>=A98`Nj z&qUf(#Hu8PJw_xFPn13s@DlTEOF}GUiO5EJwPET4Z zn}n0>?)+5CY?49=@2{bqLvEi!>R!3|RWYe_k>W^M1C_kjr)Is;Nf7(dX6i6I_5oqQ z^RHYqw~qR_C7jQ&(4qX;yh}LC(j`C!mK0D{45=q2h!Zqacd1!=0`)1vO+J3-yGpLP zB04v9WQ*Iy8$ElWpW_dm*5SB%yg#Vp-UfkV-cd5njRaOH^eWyh zUR7t2m}&c@n;u5!BN#PK7hS_`%DSB1W_9X^X6tjT-~oOmb`UJY zE3OJf&i8LyQ!JqPj6M}YP45>AG#nZgn|H7vt6Zn$59YDcvS}k~`Z?{ZmVrBx(_ZgN zy!v(sPgtmsOI;=kss()G34X8rva%2AU-sX{Hrq1&6YPk8XtL>oMW4y2Q~_g9_~-1L z24<|+dnT6|Ji@~PwI)KnEEibBToOsH)i7_~0@{wm9rFFZZ8-Co6DeO?Q9Iv;bka!y zOHl_dTC=Jcw;jfg6jD|%((t;nUP4#MXc`2NUYTz#t+ ztNmL(MtKR4d&&fv?k{WL!rlu_$Mx-IuJe)u{~FE)ik}A!_cVO3znVEcnwx+21QYAp z5SJ!bt5M@_%PA;`E|h3u8{ZkuY}7yOad9{tcNxoko2zvo7Vx@*aC>rZ(6%j{d2`W{ zBHOIj!W}ObknOwUq?d2Q1I}BLE)TZU19U&FEw<~;i7^EE2fUJYS z!>dr{ZYzW0LXXy)a7OftKE*^A!mQndz_w?F#ys^$=Ij9_YcLWz!+Zm^a3-neu%m(! z?r{;0d9fvUdcXn?JedOLSY%ciE&j~HI^dG;4@pWE-x5)mAzcRZz#7r}i{`z}#gk~8 z)-IEgBPD8%o^7?jMP?!qe8QsuK+trASAb7KhSYtOYDzyN!j9z7>WMnm2Q|L~_wQNd zQsv@&{C2kP4PsWD4g{`KPT2<65e-7JXtBp zgpiy(fTwNO)s}3p4eN_4SBk$`pG2!HB%UQ60t>5SHdWwMRc+6uBj_;@9?G(M<`;fM z-tv;Igs*8ICuGFWsfcfmkdMxzYWlKA$^3kMp^p`96&n>4gmZP7NaRaJpOp(_nFJX%90kFKmf+@VuXs!q{6lQi z#i6{(4atJ`-HWvF`Tb(Z8kfe+K`!h$ponuLsCbFyx&fDA#H0`c4GjqBy}lIj_DG z;&b#2W^pXC^=5@NDTd2mW&e*ky}ClYX@N^;r`WYm{4@cMSco^LFs$jSmfS;u*=AL- z^R6eo0$+h#O$Fr@Yz$M*$=avK2on@#tn;{1xm~XdBPDv8P8uHjh|A-^b&o10WZ{>x z<;TlnV$26wu@2W$gO0!kW>Zkrf-4dmVs(tq-K(frR}sA41%t}nT{6A#$D2^@bbEhb zH}m=3sRpoea*n-E{|D%OUYdsKv?E_)>vCX%HbQ|bLjE}N#ywp&!_Oa+Pm$|r__sRo z1-cK^12LQ=n~R95Y5&J8e%sfo5`9GRHnuTti}MHzWckWmXB?lQoSar)7ZW9;Xld_A zpot88*@jgInxXsU(dM~NqJfwnQj5g3gxwV2eY{p<)^O?`Y^YO3@%BK;%g23x7T8=J z)KS}U8kQYFsm-=-&cAVU$8<~hm~$D6Jn|7-HqfM6aFY|K{OxF35xZgol}&yC3(Py( z)0Bjt*~%oiw`_L2X{*IRAS)V6chk@~OdPxRA-s@Xq29A-+u33mE8s&H=K}lZqoBM;A>Oam@&Ob-k*qLHuzgY_MPy8TX}_a4Lo-1?iS7O{x1X zTj8|XrkjIA@!n<7$3?kQP_LzlF(cc+|3SwsiVJi!16LP7cuf7j@Q4jmULGk6_A#fd zSZEha5@>^TII+<150}@VO|JJ$0%N=>CH_)Nhdac168nN3`mF(s(SnTj@{L0*Lzai9 zhcO0AlY{5?or7=L8)Rr-d6;pwdvdV4x)Md|fin$NMc*VTPgRUikZVBJ16e2M6Sl+R z%nO?W+YDMUo+4+zK~iI!*mrx4ol%qC(zGG{u;_gF#W2D>M=xZ;E2H%!!~bB@^tQ$J zJBbPnP{QQkNp3ut42k76RL?goaPs;Pm$*Z= z+aL}bclK&T*{@pw9Z~F|e`qD=JL5NQZPTnCR^tK-Qz+nVEFT>iy;-91N7v`Aeyf2~ zlHgdrq-Ub4-;};gWHxD+8B;MyTAe72f|~nI)t8f;XGNwhB^l8#!GS%drn_r}95`x7 zxi%f&;fw*r~yh?8y~j4{$eIX&V?zp2^2(|S@PbZR%=h) z!kw>mT&nlr9oH|`=-{U&wUX!~H{+_%B1iK$aVfFin-GXVpy+$uk@c@o)>Ov-_(w6= zgVuc9mt0$F4vr|Oxb^Q!6n70m+{}&5qEko@sP0)gXMyt*#>b*>=F<8-G^W= zr7Ed0bPe(48W9f}HMj_$*Ve)p{|kv?qoKbNcePD=7d>w$<@qPlu=3Gc@^>%j@@UUj zr$~I|CFDa!jI!aie=R@QoZVG_?T3Fa4KcV0u9Yl_02`9gUvB-caXUBt+`rcD-V}R3 zk778+I-ZAuAjp%vkHlEI$(Si7D4Yk8c9rNdanEJ1hlnz2qI*}^Qo;3P(|&3}T$3W? zAt&R$MELs0lCv)T#p*aaS{E>ZWnjC?f`sktTq!ErJ!Xwb-jN9pt9;AKouC(J!x2(+)CJoSVcB zK4EnpPd;B${7%Nf#nt(dj<59p9{KsPl3fG7>F0*u;5WYi$Vo%&0uO{drJ#jL%4^wx zO`-$!|5=18p>o*GxFj*?Wycj~@dQE>!G!Bw%%!k%+2|Ibnwpvo0r_QqoYKXT|E*h< zaARWwd^uVmSs8rg2V@3}d+_(Y7^Rc*Ycu?ZvFdw~a(>>z1j>KVK?E6Oa&88U7tkiA zYbPhVfHeh~Qt^3A_^o}Dx_E)uhTykcOn=0^tFIL~C?YT2i|%FdQbClt5#1y60TK87 zRDb|+?J5z^6%Gm-f*T$75w$V>Kkr@nSqEO`!P!lMivu8Miw2q4$GHlXNyLWurF&%0 zEx_1H04NYmXJDk!bbwG+-W>b728QLmD-VP~=yo-d5FnbqfETs_Kj!Yi>QneRu(`>D z66o0o?k!9cf|t%Byay)#w2V8l-}}QT?d<#i4cUJu^IrZExM|Z;pAXrW z`|`rf`%$Ty2Mf4J)&lWTzzg56pCszaGp(Jv01p7^;S1)$$&k>)`p?E@ZrEZ-W|003 z;^z;o)~D)0=gco-NrUifm!w|Kyxs{W3^JyXbf0^_I#$7blPd0ol43Zs3>P@+P$IlU z9L)9?Y}N<9IeIJ&=az7Aa*|k6J6{j_bme7l%mamyaQ;hcK6h9Afv31nS5jns25Q?B z;A`fs;y=g9lwN-ytFSNHJ6amdWzRqvTm#>gq5w?!Hl~BHf5G@1A4vutCC6$RdQc3C z?F^w-h!%W}wPa>DEHF^RN+(wS1>1C6(8>XYdz|h+_T5>HGC_wQoH$QZKkY;a3HfX- zeDsnj-p zw|qUblKPQA-)FU;l`O87r7LlK z;gUWgPyD_y+h*JRj?#!x8`PX18Bu$GQnVv;n2BhZu7pQ}(6DP293v&XL)%Bd7SQ;t z#6r&5clOHdC&X(BU~I@bMw!oxrw6y>@3M+qW`bFYmeXQTbJ3Bdh-Du=xtN*)0FD^3A@GWfQf- z6!_CVTj}ATn;uZ=Ysk}I9c8oeOC*~**(T~9Ef^l1+72AdJ@}Ku#P%j9N240g!~sV^ z+I$kx{FC~#dfNQS3d?^vA(%HqCmQN~y?%<0*Fd%0rsMk1NtxUE--5d66Hc*Dd`@sJ zBL&u#*9X2j(k=C6WX^r=jXH?4jv)K_{`=*ae!v@?ZRRE_@0Tv|y05CR=H?AFKxF#q zIjafL@b&ny3LpxU`6<`JN2UK&ZL+NEea??ReE49rOXo|X+R{u+O!NL)kbWo?CKK_b zgJf{W!~er?y&8M?ieZM+tKBSG_FT?Ysu+TdQW?%N{V!Zv3>wg_pN#*tcmVMa6-Bi1 z@oGh{%{bDr+&PA6rD^3r6RM^HRcbw#_@&D2_o|Oa z%UDebLnpa^5S0* zf>vD1nKZw(=v6njau2NF!Dc~;oQqYJV;8f;FAC^s-<>^GaXqvjva|3uDK$%1Apj|3 z{RgGzrZeflX%r|XcN#u}aIQC=HLQ-7J?@OcXxSb+H9IMLM9?;L`sjkl_`=`7rPuN2>I^w+YviMsWI^dB)VX zeT~a`>~7f26M+JwlK50W2CgO+Lx|Ul$*)naScq0=Tdb!@PrO_|-HrWsQL|8m%6oCt%IFBRMYT@gG1>HNs zjWvRDf4>vCpX^}GK-U@F&W9~9Uv`AD20Dn9JCydZ0>^j2?=rAG#Gr09UKE?Vs#YgG zkE8iiQc`4N=E_Dw!&9R-8VgYtbQ*J2wPY(J$nsd;6zr^Y7g)}F3A5E>MRf`+VI*gD zz}_k8xi`Onj{++;6}SkvFLd3`drnv)tx5|IWBA3^v%Kk3)Vo4>So-E6|{U1Wp|v zly@S#3oR;I%S#{y@k1q+I?E$@F;3~A9vHKpqk{nZpw6rg{lbG#Dwb#=O>siArGY$; zd~vSvm(J4v8QItZ2&V&&iYENGx-%hxOOKr*WH;Xr+Zk5Bv_5(VY~MkdRM>U=>Hj)k z(s&vT_D=1Lu61|d(*achw=bV3G6z~ozt!p#dHHtTb{~TqjMIM<@Iij|i~eFVtEj-z?%$?LcI`xD4E1u!z z8@@c|=&@0A7s&0REquK0_nmykEoJX0MQY?5s;qA35NdQkYSth37j!|{jy{fPS12$V z<1%S%lyKaxG#{*rkUjmw?%u(PFrEbtXZyZ1Z?1X>jkb9yR!B%`Lmh;vCFO0NFox68 zv;U)a`}}`H4ydwSryE8BIxBkRp@bQ%2=B;h7~dIRpZ;TuSzF8dgY=g zJ&UCKChVVHfagYg8h6$9fltmVq*hauR`6pg!c*x=5BU& zY4g~lS5+rw(0c5gv3PiTqY9@KvcHImEg=(}swrTk| zTZT{DA1aSnU+H!N@d7J(Y;N7JLlH9?g^z#!U)q3`XYI{#XnJy1qc%AmuT7f|{E(d)J}no8HjD?<%-SHfHjEh1 zAsKlIKEcDSof7%GC9I=zAq<@)mY?h$F}sPVsT#_-N2z3r-nBfKsXxokZ`RjQfRdce zwMRWR6?L^^4!yj>Z&9wakj(ZCf`((dPh4X5PWMo8USn=VNgFCe>B!H@jiRgL*%byw zddk`fp(vxo*BPvV$7-UOez4D*58Frwa3Qa^@05Dy99YccR6Z1x;~B8)O0lIry)A81Iw9qdF&N`VJprUUG*7jq z`!5@)v|YnDI5)rhtOvA+Y6k3fsAxmp?bOs(c`lDWy?nK{ncV5{H>SiU!^bo{_#fJY z2xGXkqNjl~$nr=LA8WvN6fQSk7MA<1MqWEvyn7jd5WPO!TNmQgh~Gv^4*n~PiW$a1 z6YhR(wIeIjcv9Q(;~n9EUtDAGxi@X&=@&Exm~yTsU#L;46)meil=g_p0L1V^ev%YrAuTP^8OpN&Q#vnHvXmEjnyB_q2s zMA#z#2(ouI3cwb{=x9D!La*Jjfn};j{n&hGVu8``mF2V4NwKMYAp}jg>wdZakTIO- za>&1Qmi5@`=lg3pm~QsX86brEkm>jZ&L3o>MQh*J>h~<50kD+|y|Q00vRn4n(}okn zkrm{@S&h#jKi@5f^bVT2BBuM)Du1B;8eg*vFbhWab!)s~oIQ7F^Q(3e=}!q|lju(u z?>Rxg>3GQ<|9N3yIZhChmTBVlq+WR3RC&+>efjLq)qo$cpR~Uj{E@?5LnE?e+Hu@!d`{5y2?+xiEE?750m&T%rl;R zW)SxLqYJE1Ag~sG-PmDcs`F4|BP0f&FX5oJ#3=>(9QgX2orVt-so8eKH6Mv6{YR_f zSJKkCCRH?}_w4x*sifh`-~08HiG?i{(Vqs`*aW}btk>nCyJU>{@=OaiPn z0U`44Q~d%Xfy5WJms4fn#g;fL&hrh?BXM8o6%uo))2lpG;)Eo8@ddv97epjES^ z1cLU?)v%k*(Ha>v1!|*rC)e^EUPKB=IvjQ-rrnI$#TQ32Ig@8lXxyI^SIXHmcvthEKKosb?arNtpi7L4;pbp6L?+i~>2^N> zo4|Ae_bAT=?)$kT#h^F)i|bEi{;DU6EIjck1E9e98-Y^xwb zVAmSIhJo}KI}i6%I^be%cFWG;FBMM7`Kj+#OBR@wP6O$)wYSsT#9oGpGo{xU)BGz4 ziPB#AbboLqmI@K|Vp%O&d!R~}^;SF|iA;zfAnfOl#M~y$bEWpsHm4|dFWL~4?_hrCa@0iD#~xVPO%H)no5!WF$BYHe+0V1*2$*rz zE3WlY-Ku57B0M}i?8(-U^BNX(>v}>!8T13_aku;P4HGZG=e0Z(1;p_^Q%^Nh(Fm`5 zD}t=wT8v4*-=5^<_72tDNv0I6xOsFEY;$5`$YFqxzB|Ja$u3xsB63!-6F1Uq9X5i$ z8DJ|ijVY15B}Baob8g7eVGnM1bp6CelS+8_a^Pf-Do%yP&pan!ub$s@yUHsgslQr% zzVniT1H9=0D)okt1u(%N3mvDs9>MI99Ar%Y7tUyQ9c7FwF)hm9!3{=`)9DFwKp7(h ztWIvP)K-#ky6LP#-6gV~NJtN>7f>YyejNOEsk6SMfWjUd$D`$Y9f(%=S{kZlyN?W1 zP8s04PQ=AaxM!wSPPcU_%!oeAml?8sc4*C1))QXlNYIq4bb>JS)q)T0Tql^@&q`{P z>Gzx&%mD)I|aK{3c9XD>}B@KD7mmXCij+33S}_KZ$4Vv7tY zqGz+iKD}dk7;2O2=+JFj+s+^@d9bweeZ6}NxS7hLsm_<*+iWKbdyHNie_p%WmpR#_ zv;SLz+Kh%)H({b1A(#;)>8`w)InIgpUKg{PVdEqF6W3qzu|bsJ+mp}B1EZex!@He) zS)Z2HCd-VErlRZCGr3;hE6Ri^*G_BEug49VP7V5xzm)B`&wLR+K|_QL+Xc!vgfO5d zIx5lQFM(X&c9eoI8$1zjsU>@LBZH)kol+!Icjj-Wp)jzox+HoUb5FMRj~oZ#>&(50 z*10HVX@ALs>cLKx^-Pcb_Ld#<9D5tl2M->w7vQkNt@+p3)1&ja_S;6L>w7$%jXhFa zETjITa&=@WwWBoALYDGE8V7(lpX*fJNHBd*>JE$~{t-y^Xx=*p3HXKo+}`l`OD0L~ zV1+p!@#9FZmUB&ytQ(a~sz?wg6Q0?&%fT@jK}4&fwd*4GK#%dP6CS!zmHJ+s z$?~nqMG+(jx^c;jF|H_p$5#9B-L`27PSW?@-|4-q5-$GpimDXxy3)(`^+;{ zP?5! zs=Hr$hOS+r10;P83!TUO3{b05yei@8yH_|1)assowW<45SD!k>kMNd|m50T?rFnlh zh?KS35-hNSHOwr#A2OS1DJS}c=1>-^jzrN6_`Po@>swr%MC%p-iAt?pzK4 zjq*o%#$W2_2$0=h3cPiWrUT20zWr#~<%v;WBhN7ukj_67?GO6x6*e&xPbX z(@LjtzE{SNuvk5?kIM^eu4IXSE=+iO#UW!K9Mxp2{`wKku0nMt{=<~)jp9tOT7sK1 z)R~v3BAfD1e)w*(Ph{qkv%mqX8N9qe@1tMr;ACh&g~I7NK@e|TfpK2e4uEL~ zM;N}81g7p9RG-|l{nuh@9yEp5xsg}F%wXz;};K_ zo%)FS;yhkw!kf%5zr-^>se%=R%vJQZb?h?Bq!<+$6(xbK>kyI_;H)B&>h`=fW#poW__>LHEvy~~&>H2}y)1#9q zD!#ij+KTA(VK&fsx2$%0d@w2SLzMW3y4Cu?e7W1Qs9M5CNXi51JBNC|wWvko{Jdkx zC()hxa%dpid}ld2uF$EW@9nU#Nprrq!R4T<d8|e$xWcG8Pe>irxEV;ZnsDbUsrH04J7v*cLrN{y| ztaHiDgPv{I z0&Zz)j0yAHPV}n#Kg@k~P*rXFE-5J;Qqo~Z$Sz4o)#dg{8b`?{}nYj;iKb+TRNd;K8cV(yJVw;d6W zXDCm@2dm}A3^$wVUiTzG3_K-U{X1tCwZ4Gtm`auuc7n0ziy@@eE5?iK?z+838#D8b z+3FI}Btx=07{7#wQ*9q*=FmtTRkF##RotL_Lw0MH2>lRss`;JWGv1K(dyTxC$Hh1H z0j4m;Idkrwe`ru(NE!U!bPx-vLa}a5VXKhu(z}g?YrpPrm$8j+fOTcrr!zY-kLs~) zZhn^WL!>H0G4lFi)`9cSXF*yJOX17rBsy`97kC-1RRP2 zimo855$$=iO`VFbmw0E17qcg0vz=+aOw8=&FTWKvwF-^DzJHkycUo8;#N7Z6_dg4 zz-?b_Mb<5y4R+1)5Q|vJ=f|{RLcBj^_J1~5I52_&W;|wXIgmJ| zqE|?*h%Ex-J#`Ta5UsrsiiB7F>#mdfkBX_L9|&pJt+9K8cW{{(h*iwF#iv0>HRCu?efbr%jpq5ga9rbSuni z;ZZrCq{xd$GKfAtCO+}ww)#0m{N~zeT-~k^)IQs%Sk8vT0?AlU+TrR9VfMpLg&+5% z8Q7F?zJu9ey3`iT=`b%;b91p}*76Qz;tivf-7)}2oTgA0R)RSv`pitth<4!l9WRiD zmi!cx+xGSvbNXzDd)oZ*2R?{y1s2JnQ{yhfSfh!VH`Wlc%$YFBFw7{nrR$nH`Bfxe z5b0qwaL9-d@(>c0p8<;D^VbLBR^w&wV-A$L{uFA}O`zU%r?ID5Zf-cGLDoEYh$LI) zhtbmz(q04eMMY99E}cungI!Ct%OT2ul@D7Dr&a}u#SNDOvv;L{HaK@#ww*cihPgk9hgx7%WeMr7!~II&F5bnwUdVn{CZEV15hilc<+;=|dLh|| zi-;+F6t3&i&y(?qWiP>=O($`S?JfljDwGZo6p}@3%ua_{L=$(`@S~19;}+8%sLOV7 zRaZsxXF5c4ys3&|-io0YgK;$G+!|g&w;*#w zcQ^B|KsUdYyAjZ%EMIzRN%3rx7{ zWEwP(j?g6#I))0p$FES&S9a6ORsz#T&~JjDrlnagaEN*K$1@4%C`4*kFUb5+q-jF& z{^~^#Ma-TpN=2?=h>bucFQzJK)7%fj`7G-gCQA9+uRjED3$I;~J_M5vQlH9n@`*Gv^3U~MScye_>s|Ne zg_Xv?Rb~1#*!XOY<>3zPlyM-mD2p|@k2U2=u<6CTGttXabw%|SwkQ(1J{L;ECFpXe$p4%KJ^5oPNv8=)tjby-z zX_c8ut1g2ZN#|~n8Kb3Dcfe#*d(NO!6*^TLs^|i5?hlU?d0K=SH~wU9I>$oKph}VC zb2-kb(7@x+m(_mrhqm+eS^(JM&mr{;QyLY;Z)VKBskC1)h(++3DSF!tm&N`M%Js(^V%JWEZag-I zGXsS#)-w+-_nKw{{B=(=C&yvoA9MlvfE}E+Y~6tQeTfRiTLb}~LI!s4(q_{ZzP+jm z#6w*wJz~u=IA~LiW%D&eM0ZyVcY|t4xO-C(VcC&tJ)W=44xQ?O^lTK*Ow$RG!HG1< zXLcEuf2<>{VH+d>cGD5zne(x(K5hcS_+y!dtROZ)?=#1OkP9(Hikex>(L2V;5$i7b z7HtE?*xuOJ&Tg7=q(#Y8+SOvm3clKrhNAIzyTqrBkpjtb zrjfGOM71Yny-)6>et(s};9UacmmiJQ3%+$nTa$_eEUzfI%=^AUWj8?er#>_Tz?=lT-?fVH%kkVEhWe&VZJ<%n+Wd__L9nethX`4tTB&lMM@7VW(C7R@)ys7 zvC0Fx^!KUZQQ`i&SRN-L<-oAX8~+k9cm%f$5;WIo#iKqWaA`W=K6qI4~PzxQ#rtzvBJZ zW!?YW4?;`z+`_A)kxEegKEJpZDjY=_h6kO|hV$s~Zd|RbMONDq4YM^dAb$q|aaRiJ zUH|-h^7rq8VEwn9a>Cr-LdJ`7EvZ2JIvzrX-Xa+F8RVVrO_G-h zt7mFr3wswILw@tq%wykOcOj6*;o4XTRfWZQrA~?5mcBl!I<51~8LyHBzs&Mw=jn`n z_oZ;+AZMpJ?ze`8^T!i(I9g38FdqvKU)tTvXptRpDBM2aB2oX<2gicjbvLhA@3oLf z3P7gF@AM>UKavqu%oGK%c3Nv8GjXLuKs&rhBL)-x|ILAr0-TeA$vx46P33s7EIr-m zt9?~yGYj1!^h zWX*yAvrh-6W)L3eH4wgk7B`*CjTKoz!$HjfyGG$O@JL)z8lYh)soNpCH{Su2H_-DNVN(vGL=EUEvu}#hS}O z0e=;*Q+JBjliVQG`w@V$sO1MkG05BZSD%eau?xv5n}Dg;uEFpj~A@N4x}SfAd1%lr#i_ zN)Xsy^i30aJ)>xY14+jyz}CJ0PO$yhzYlw=+#-xctBl6wb%#C(S#uERyw79CA5Uaj zI5dUbpRTudgxBM=_*V=v2;bL&BXPTp&S)IhhbXrm8w6M~B8%7gJxJNIm}zTkvlLbP zj0wASY46iS&gTfhd_u+xx`6qDed{4p>$+#ukmGxrqL{mW{B*t|wrMN%hX^Zq2-*&( zKjEOr?OR=Fv|rbO2JjsWHlE9bUc4kvA);N$W@PSMe??&-+F-DrGcfp&=75?3Rl-?*W>M0??kJt z*q%pWq3JJmR_g#UB?M3fW-<5MVs-7~7gA)Bm(56ktr*nVdvh)SjDi56;$dJLVT4Cc zW+U3SIcSx!_1!zxiD?gyF-t3#cKkc~xx~We_6B}JK&$+nq<1tgsSmGxax}Y+#$!*% z_{my}4!MWB9*gOLD~mq@@?Pgg%r^}tm^9dbzY*|Q+V7;XnfT)F6vL!}KBO^?{$CRsY%;q3kdCB$+!CU*Y?!%v)_Ha|Et`%j^ct<$+}2*0ct#h_ zZFL}7#KZv-@Hog)Od99K(@DZNAh;AKsCaKVi$csw@{hCW{b2P+N8aXef^#AFdCruy zm&ts*P6xJz-sXu{JOl_CA~0S1G}ZzwlMCLm5<(n5ot&pIZJ?);#lyG`!9np?b-2F(?(Xj5 z!Tk^xqxg=GTzs2Ac=BC$z?q-o&AGg2@7zw~=}E($epLUqgZYwD%=1(k^yMfHk1@o6 zm|3}IWgj+P_D5tXA7Q)&72NnsA7R13f)_nRMUjwkx;_13jc;}-ie8by_v&nUW#wfy z-;}6P%R7Y%6&6GUF&KnU-0v064-pN}GEAa!^I2au*0VgwSJ+i&ijZAu>ku?@h^E6b zLlASOrf?%7WYvFuyg89>t5q(sf#%S=L`!V9ygn>*6_rX32L=h1hnLsZ2WK}oT1-sn zO}=g(mCs}u51H`m&{$T3XX;FvIaH1B-FE&wxNG?CMd6GS?v)MZ#t1sWp?;I^+&T>q zWXpndaW+8wN)?vFp;bQ=?ytzdOVRMS2{xVX{K*+@|J-YBy95>5oXwZ@dD=#bGEpqg zzP>(#f$KnSUNa6wJ@JQuko{o(c}>YIf+AIJ%OMJY!()caJlWXT)Y6|L5B&+e)m;zYq&j{(d~;*>8tLOw+!8{9lMZaG;^YR(4&jhP(ES{z6NbzxuJ*?!72@q z@{hg9_qjYB4Nq^inoovESJPukRdft~GcyzUqza)x8o8-LPR|+k!*0BdJ3^&RIzuxA z+_px`*9Q4XhF&839l`z*{^tb6pTm(nwa)^Hw}MbnmBw-qVlw?!1c8mZL{oug$q4w5 z4Ioz>E7amj1bTc{z1rxXb92S?QItX5$`iGn}-Nu7dz|=zH(6-q>zSAI!m4w z`tnQsgBsPh-yP{TTv{#_5lE-k4y^Fqk>Ds`{(b$aMCn>!y1qQkji8nsnXPtE???jz zLM5PJ?e6dYwCs^!3J+pb_#zOUP893O+Rap?8$j1F#=n1^PBwb;i6Z;?rJx|}Oi7pU zTTaF|K!+cS?V$Pms;Oj@u1sySgF>wUmF0fBLjIGNlyJ%tFf@}DHgV+A2x6U|$>|x* z)ax|*k@Ys8UWvwrzPUIe5^y;wti=WfjW0Y7mUDEyxr}=T4*G-pe$ZB-jpymf@mUcq`AeMpyt5(M`X#PI(_Cv1rwX&Nq6=o*%CMwpo;~(kHB$o-1=B z*%5UV^HJ2*HD=advMhS_izG6z^2y)c#rpQX*`euLf=uvr*6H2?GxiWzpBYU$LL~wt zD|&&~#FqdhOch{@Xmt%NrN%8ywh>^lfXo;xC>mkD-be9MuPJ>uoa=rEWWMIUe#IJT zw_bm(M)&4HzSdaMM{`A44wJ<_%<{#I#b;iZy7~>C?ILmTn+|7S%TuNr*k-wj1Sp!Q zf0N~uBP5O`8}rIQnoY;Lr^In_App;vC%m51<3LyrHdAwxAkKK9#)h!{Batj*7Qs8S zj<#D7cPs8K7)hkV$=hV2{~i^O!eC%(yWfnPJ1Wo~aH^Slb*JHuShor%w$oqjQ)Xx) zPCELA*r{&HOgcZ0J`)uMBN5Nc)If3fXU$gx147wsfm9J6nO@Ces^E*b!w^haZ`-n9 z#dhMTvg1z0&9sIhr(p_FZa6X@1zn?((#tzazUl8Y>uu2I`6Tuiu==DM;cSP0AgV z8#v+-wGb6`NT0zuSP)gA>MJ*QlZglZg(7^5^#~c!Fj76f!7%3iGj81WE#gd?RiU-P z-&PJ}v_gyLyha!s^MsaAZC0DyxFW%T^|~%j6iN7JXSi;E}#^ z>dpAt=wF9DR_(F2(g}lxUYWcd|OeN-Jp; z*~A|%Jecd&C0e7K4-Tk2vvm$>o=H?MQHcdT@$e1lGay!TKJr$M4`HM)m%eY$*2Uon zOgrn{T<(dgYp^bk(6;^>Uu(J?EgWKPYg^yrAOkBD@nLmn{ z$J#VjG8l*Um0`VN3~Z8+2j}=#(|s5p0{(WF!F#doR~%o}vvsWny>?)W zj3COP+81%_H@^w#)($uO1!vsPKF;XkcBC`C7s`8J@!+649+=mX25BQ~Z@5Ijq!!P4 z4%Hm4y?CbEk3DY;+#j;Y1>I=6#R?M;+Jj1--Pqrhy3k)V+L7!ieVt5i4IGVO_Lq?> zbDkbi>a4)rdTN^mlz~d~LLQ;0f)%d~mY{L{o2asFc$*tN*>=gKQ&8nFK3iL9GwOG9 zjW@_PS3A1Os#8g~>304xroyrtC(?F^YL$cgMUzyCh>x_l(gm-@ymwEyi14+5S!B0Z zDXUJkO4ALzbkE3U62YTWyUY(glR41b@ocvj_FJEYUr6{u#~V{3iBBQeI4mvsOi1GM z7aCGB8_N$iPlSs1W~C!qJ_%f(;gbETxHLXcD$}16sAXH)y70O{PrTYv!{LZD$N54} zM@kn;Zll(fQ`ye^@8L=2A49E+xoJONn5-0ONhs)frS{#Ca%D`w>3}AfTA_F^Os{sN zEIWkJx86O?2IUdqJ&J1XMh+$V=@e!P|>h;Acv}XoADrDq7tU?*Jl}BL&aM#;|~8DWDzIhf4u`) zJJweYYOObC+w}k=OXe;qM#crINEmbH&^4 zufryIs@RIs8fi&S9U_ra>|M+g%{HGU#T}6E{H)Y5>x)IQXP+88X19>T*(GFupmYlx zu%4DM+D~;Ja?M}I?-g!}4&fLiM1P1YoTlQ%xs}cAkhi)?o;E5wmpVVw_wm&@jaz!d zq?b>F_RV<|gs>Y=E(d_@LtG_MzxWq0(B|e z`0M8K1{JV({Uu3>6@~lRG+$rcj{ULFm)?R&MvkFYE{lG)Uu;OMU9TP2k!1{WxI_G{ zm1ZK_86QA0bcrjg>qswd-*2uLlp5be3Vin%rQ`NlWm)0F3Vdf&^+>ig^bwDCFm$jy zP}HMaLyJka&tUao_O^sNrOEMGOuzL)anUg4%O_)}YX)D*B(v3vbQ4Chq{(DhxD#Y8 zgCCL#iD#D%G+WhH_(&jKeRpA#RF}VYbACkswy+Z59}Swkcqrv0sppZ2J?XVcwf&q1 zd3!14=Zv7KL>@}xWZ0%76G{CBr58L7Gtn~@HYLe!CLNzNvDFU3hvT)D=zUJe&ot?8 zh(uhG$CqXTFD7b6F=aw&Fxr$eJ5{DfvPE@1O6in@WEEf_e;3!^=1UT`k@zabQRdA<7MpJ=0*7*0h|Pkh*JwyIM5DpRz0Omm^sB+$7c2&miQP~Q9B z2Mm04{*SJz_4i3P#!j|ZNM<(4r3x?*9M4OVSnzlna(b)DN845c$2Ayat@8)8{FzqY z)&SoVp%bf`S<5+3_wJPT}q80;I!wGyIKawU7W*mSlk}XGCt`|xX_TBa( z)+~+OCLbH>t<9@BON}x1y~6sTgUtqioD#3uo0^D3 zyxR|7Bs#1)|26x=vDxZd{k))+9OLzG*b==;3BZ!_f*gq{aOp_SFI4c?CPWuu1R1NmQJ;8>oz$_E)s5Q`h<)1?zm#lq>l0)sL+U$OjF=!4L+k78(-}&Z zdm)?0^I|`YG<;jC>FQ_PNUp48*kj?0h1;{<<#Q^}=7}w;&pg4_$v10zMx>UU^iEQ% zYk2m?7K5p(C1*(gEG8`2;m!zvi_*+)0-)6t%Bvav?X39aI7UwFpEzQT0!vhZCBIwC z$K16*ZdQUPqu32CQZq4&fbb0n3ogti9y1NQiMZXmAnk|{i90MbR8L_(Ob!tf_h#Dy z@o7}9g0c`>9=G@UkkS(QCzXBUcGs2Itol0N;B27VV`zG7S{$+6|AB4^odX5R!JhpA zNAUs|Hu#L%6ocx|xAv?n&oKQ4R(lmtDFTKx)!O=8xg-dXw`C(~f^k~AF6kBD=CNHW z9JPy<85Fjj?zoB+0OsQTHuruBf&me8sd{*c{3IJ?BWL#m8lw0k`L}6pOx~*V>+p3d z$=H_6XkK!`VHKqpj^}PZ`%u_++~8c@Yi0R1P1nsat0Ir@26|C+*$G@XIh>?ov7uyp zRCJ?q9TUY?xCF5qAy5S`l_T*~Q`$k1v_`gi!K7v2AJl(Fr*f=cbfT!w1vfscwpz?l z8KSs7#+1Xap$VryO`RQ%HP*@l$X^P#a^cU&Lc5ZYN)U=VFC+iY(UPmg%spG(X)BMv= zf{~nSw%gXzuP<lN4wrkf_v-Oy(F3)w8*ToMF8^8~Ibf0L3CQ zg8f2cfy~kTrQcp1wQk8*q0X`5{f*1~nvITY!voCkFC^i2RsMub(nZvJ9)9LM)6>v- z`@Qt*tCI?~Iz!^99jE3RWbwAOG9wcy>0uRGS(SV>M)|jST|eYiJoS3Ak@T914?&qT zKps7LHzKjNJWKGya^lZah*h2aml#M?`9H5RKf}c3e)AQ5Nfo%+*}hM}E-VOs=V5LOhIwva=~ot$ zL+SV@>7{dNW@#a^q|n^=r6Ufr*fT`mdW{i-&CaCqP@)%`-5-a#ht4gE4ctHbeBR1P zF=$gVUUj#!+y8g2J#P*pcMpzPMzY1`z`n&}(~W<<`%_x4lRby8c!P>FS>FJe>d0`h zs2q37{xU$yLNef(U&KF`eSRp1+TR+4E}x)1zMI5v5L_>U?QxB+8TrTf>eMG~Q`0}^ zM6W-wLzi1fmiYU}<0yVvZ87F5wVR-fPAx;+$@w>q0#$Rk?F*z6a%B9htU2m#zAEjS zGPCb}bxuD%-Nc9SA2=V+R9@7z9M5at21lQ9nc3T?^~^{cjl%3rx|%w+IkJyqxnoF;9l`Eja&vb=K(cChjpdF4ls8Ew8oJQsd6$&oDD=JBU~g?)A_bt`Oyivd z0b0y{XXw(PW23e?Oz=oqp!7+)-E6hX^%*r-VuWL2m8}~>8oX`?9_J3Blo&ffS{$;^ z>1#9+5f3o=$kVoGI@u4b``v1Om`!Q8SX&0$*T2~l5iEQ>5_n2Jc4fa%bNF&KIO;EF z%ZKSNNDjTp0-hf&AtR3+8+`U@T1<>!{?cJ`z`r@)@KjwWp;#O!abo(yECOJKT5m_gvj+KCFx*3I_)^TriB~+U}eH zYmsD-5o`l>lEcBBRny+8(T^W>(WiWE1v*CvV)2(c-v3~G8`dr{M zfgq+*)+l$5I%A(%5*aKd=L3DJYW_=X1DZ|%ftx&L)u7C61*eOR=r&cz%X|xK{hp## zPHiqvs$TyX%`}k6-&5|W2BWMEv%In)-Ji&tu65g&bB;zhT&9)sfUS=t{+Vo#~}~;58UaK)REAK<;LCTo#?EOOa|Mq?6k-_tanEZwK&zxtI{iG;OoMfo+NwVH7_yjKTF|v(Xew_?bn=i?)w^H?(+sRFkzkH zC*LrWT0RDHQ}H{WO*0z;dX{`dGKe))*u^*!(^iP%ki$lC;n!7adEVo$lu1n z3Lh?~F~U8|1QV$S4W#&PKVQNFR*=kxdtv}h(geedBCv*$i>6bx%ZkT`jOBvI5Q=8m3bvA z7Lt#Oidt3`(*1ho5y$WM;;u=yK|s5EcM$-vK(d98)Slkvs=QDp5XaMTclTifyGi!# zcOlia&!S3E9Sbw!%ybs8Y`R}5>=sI+$}z|_GO)Y*oCAD_sAOa=OS$8sVWJM_>fVG6 zq&3~ipy+PHrXlZ|`i;pd_6^bVNSpC8k*&*wio=kF9Q_mlYp-rri z6FdR$>w#g&>LAzF@8OQik&?t)#dpGj)pqA2xt-_##$-k)L1CLf;zV;p%Q$Xb&|NNw zjg=dO-#bA$gn5T-GlXEPg=!d7cZiP`&-NJxTa;nNJz&FwJUw6UNeFu$Yizs^OXD*- z(e`xwWM31E%qgXATR7^*2949K?(P=rlbxplx1_vv!EWyIFf#TU=hceu$u4Vyqbaj* zzN+O#)>Z)$T62lqsZ0KLOEDz7#+A&@{r7%EUEetYTG&Xotc5ckV*xGQN(;Bem+lUO zKYm%+`nBFQ0>9t%Cn>KfkToq%J2CxTnJnl)%1Y|!5)^=1LCt=!yzIvuqRISimE%z~ zZrRz?Gva4PeSmFnXCv<#9qnD^Pp1auKK@&i0etY!pO_8anDq_{ppy4-Ib*vYo{*g* z{Y)3mEgn_&^*JpiEzQ<4mx+mI!u#{3Y&vozV3rbkqqQ0Ed*B5{y+~Xr5hnxeP-R$l zvn?&lnlYGC@?Lflc> zqtr_m-$sw$Im99Q?}dKxUT4JvsYCZcaHyaePIn}xfPY2LE#tG?uo+AE3wNiO?= z8XN9k%mRbJf{R5SbCzog9{82Ef8)}VE%sR7J~abX{rb;ym+0wP zotVUOJG>(}|3SsY^SL@#lT-cLMjK3Nes&uc2~t8C_3v0_R%78Kam+Ep)o$MV2vNo0NAY^Oxr%K_@@8Oak35Y2I$%1R!lf zE*hVyTwJ4Y3_+Sl-R!G*e`+Sxejh)lxY=Bhq++czZFtt_%P+9k_;1TCUVIN$6;I~x z*goFU?06mMl}0GahZmTN>^G1qXrTe)y864mzP^F#YLW9NF3;#MkdNC;59j8fuk}3c z5$WrbLk#>ooRdSvKqbWZUdQz%bUKR2_J;D5uWAZpPc}f(SgpYPVbAZFo>TG`cJs?3L1ek{wm(Wb~FmJr2cw`r_i#R)h-JhF0>*p7x%q_Eg6(>dh=4 z&@jiC3I=^bN2DYA1^vywij7e!m7B{G3%Nh(PZdrAmN)k4c!gGM<>vh=NF-I3&$??4 z5YQ2}r5AzV2XF0IR%SCQ1t-b9(Q5F}hy@E7(|_{E54`V2xO&<(iMwZHrTI48z8_L+ zzp{Ij8Hk#+AK-D>>lR$3D=*Vy2_Go#_xAmXYxIf!^8ykVyF7aq&uBBgB>1r%N;ar} zBvvp{$T1$;5lT|>*{nbEy-dtiG;F6S5)$7Zu-a~RFvmkdSDc37&YSUxRnb{E`(g26 z`r_rx7D!liZ*EhaTkj`GsL5&jwG|8WJxtyYjxU?qIU-))l7~Q9t0mg}^!D7|s-kd7U#OXQN9Pc$1bU~si z(<0^O)W}sx>EmhV_`9GWQ8^y(;wIM4q%oan$@NPVWw+N2>fqhd1d)Vn;tk4`*J`G- zQj-iRR-&!9iDFc^${llIf16mNn)ZZfOum_VXjOVvc29?ri27Sk7Ab;)HKlzKRfBEVyeB7F!+g?L9ic?((>qEJn_2?FdS5zu zkacyD)1M=2@M&d>jt*0f$;Gs>kyX3?9r05;h10#HaMXkAoKSXiw$}2ScmwFd=OZ3t zG=u&CvklKmV5GAv;OM_NkUUk--e^1$auWG_g;+th2sB%Y!0N5$=bF`sxX`bZ-yl_D z31maj!H7%a`RZs6Zz_=P7|=lKKdAxE0abfhDJgX$R11+6w`;H(!BC`m|8qpoH@O#H zRjTh3pa_eiO{`l!=;!!TQ6pqOk%Rr!Xgh76^Vv7M@maC4s(4RrMqZJT3zscc)P^0Sy(e zOL3()ZWLon|F^H2kjQTaUL$r)!KUc;FhWJbVZOsOXni?PHT|9H68A-(>{FQwWrm~A zqX)gDX-;Eg5c+?3p|kx?az=QI6`dMqTKRaa1F;Sj@}2LdQ#L=pbIdjR=rl;sye#LX z`v({`KK7R!)E{n1vB=vG;!#^!qvf{iSFZIHo!Wk9EFLC7>yne}w9_-R>-5R0>kaK! z!`LyIN7hx;7!v$&6BoKPI*yqi9^wIGFH(0Jvo!stn`nep$6}?~4I0&+1@7EVDxV+k&ezGR&|yBf z$AADtiE(=#S>uTakbf%l^$IeT`0cjZ8=A&Yp&Re%H z$6HU=W!`L%p&p+=WHY0nnANH^N1ofd?-en-S?kZam>1FrM8-I!6Ad}ZVex@A039c#j zc#_)`73iNRZM_rxyW@lNjYi?0hv&`@e?XXzGd8%)^DP?yFdut3jjyn9eYC-){lo#o zZo2l9@8vb-<|O1tY`<4bw!BFkDJ(^@kf_-W$8GfU(dKkriOh;#gSnkdY+sDZ_v|kP z$@b^`g0Ss?+<=CHj3@_aTAg}hSThmiqxeF?ZL?)#GOU^ucx_LnMbHijie`p@?L^GF z44>&>to%#52fDT5Ku-2$m^x5(qijVT)%E;yP-_L$lqNcx{N%|!^7V7U3J=5uUIM?J zAJOIk<^HCA4sdBAAf%s$N#eG8zBN&lX?rDTH3L;x5rFOe{vfes>OYC_$gfk7GscnN zEC;(OJP&tA7hG1&x1u=s#}^Ou)lto;Cf`Y6+kM9W>_cT(G`P~KK(;}E7FumLtAIOo zN@12plQ{?k5z;-THgwtTGZof(KIn(q6;jyRHP$?KE0&I>k+jd_Zbt;7jThdF#*so% zhr#&QuSDboZz}bhDsI~zZ-utPeF?_x7_OF290n<_DJWXQEUfX(UaI{WXSS^JVUE0O z+R7)v%Q5r8u-=$1^;7ml3UjFE`7yK*BA{$wWdKKy9^f z-J;rKwIK~{wo_VPVb&m}G75Q8QRuVy5CZ&trVk|h!f^^;S^}~7Sgs;DlV&mLorFjx zj?E6cAJlc`0cR8@u^k}m&jofu+S>sS?xKiAON7+<@6vG^Mar~|sosUnCRPtQ_}8g^ zKV9K#ReY$vDJ$dqBjW+Au2sWUGQ~5v&H18&`NzKt3Hr$Dwpwq@Fl1(u%bG;B~oJh!!=_ z*VB6=T~HJZff5@nIj(oUDcs60g*OJDUnoB69QY#fFeXvwBH1uIBU)cJnV}Ttm((xw@tjM@`cZgS|s?!|8Osctl%ML zs6)U%YJBeqtaMu0y7S#c2cc#QQD4oZ+qYX=rgVo53uZ48ahw`iluHqqT(BC8?48*cM4DSU4;Yp2HdFDwoil{3B%=UlW<>~BDL zOlm`xb?gm?HfLZ7l~81>?*Zw$*L0J$@QnYDGr0uWV?^(e? z(6Y<1wYpVz%lWou?`dW3$HM@C{qFFeSQgb#-5ZC^nM!71_dk9GJkhye*L2coV3t^8 zAj-?m@}b0NiL-r6bp^P@kHb|{D0i#xXPL#5XQDGh%Yxe47bF4#Mx0tWw?SR>^7|QT z#(h%O?uLXhj|5eGKAd$bH^El*3lfX|EG?>vv|DrO(Rb!@UftHBZNY-}KXOQZP-ROd zq%|Oy{y~Q2C@p*?8^>0J^HPiYxyRKR3LwFklWGEKl=V)qE?+INFt*Uz41fi=D@j#C za-w#>V}epa5&K%VjsPgx>1eu>X%ccW@^?UScW}lCm`Cc^hI7h6&A(a$rK!ZTUE$CX zLO zYI=dStZ#9)u`X5+Hv&zN*ke=z(;rXK5gNJuiLc{^vvtDyQh9xoU#U?xA&oEFiXw96 zepLGApS9A|N1H&qMT(Bl@jr~*esrx9*~X_JU$%q2 z%Ouj$tq#T$VZK>qHN3&!shtsxmGL&>C|$x~$OJO+T|$Jz`@`f2RJi_^r+Y3PbzExk z?=gLWm@bDrd#yLm+zcl>fk!2e7Z$owc!jPDQdz*Ts0!rPh#-bMxKY zt$uCZh~ORBYls>~F?CMKnBpIteW&=ag;P1n@Hkwxj$&YT`X)8~0DA~1LShdbwN$($ zT={uf`yStcM$#m)%9hl01Thh!DCS|snCA&fGrgtktmc22zI%oV%u@_S3V^QeWVMyj zbjsZqxTK_oGE-hoZh^K~lLF8cPX`?MF&5mQfo@7p^%99(i$0Z4Aj2<9#2l@eL5_`- zUJ+;ZLAeyjkd^oIP5S>?T*1#9`umCN#WAXOJZC0-@K>y&26wkcx*4#`#Be`WXJ3*} z&5PpORC(g?KbHrt5a^!i!WmWRK;Kf{^I#Ev7JxYVbLByMfxWND!sdev59@+J0mCVY z)ENbfh>PAVjS_0B*CVa@!OTC(2oWFh`;8lZppS2Hy>o{41GVuHKoE_OtdoIcqd65J zl3r24iGQ379U%kGKTA3)|ENmYsOS|nGL1|$GN@nZ!IBE6cowb2On?gKyvKI>=Pp;a zMvWCUI?}lmSz2n`?%ddJ^zt>OpV#9$!!`tq}7p$u7WQ~hFc!K5l z8jj=KSMw&PUAUy&z^YIYSv-V5-e*BiR~M!Y7DfEBdDZW*Bl=lX1QKi1A4J3l@i3+} zXT(vzke{IY`N8A*!F2hvKhD93!p3BY5<^5pz=HWD81(~%69q#K++UIJ=LF^3U z|4nlcXwF#R&rc3FEEsdaOyr5n|B9Nv zp}~rZih70QZh5H6DBw$2Hk?IUR zM?anT%kOc`zy0^-qVQq)uVZj)%Hc;Tqi}%2AV0uBKM?zaegBa(7<~HdTKPmXiUXw1 zpHRTShQnfcBSbkNv!es)4;A=Kt;gDTe=rIGB ziiObKe1wH+-o)K^Q*#_Oj6uM)RzRMeoYSBQ$j zNMIVon*EXMy-pQ;7FO^dzzryfrEc^No<4P$=etx%arOcCZN==mHbelrfdg`-16kX~W~I#o$^GF+{y@e& z48ojHvKA36M*%pCf#h_Xv*|_GNqjU;g+)Lx<6&VLUQwL9^^3wrMn%m45)Q%X{BNXK zPZSnGVb${9p2OY$is4ZX0sV|xw&z3ZOCO{V=3QX&Z_T`Ox;tx8bq#WuZjjxi!_Tia zXa)fo@8{snTJFA&0&z{y#>6a!hkO2_~cc_N(XtRwK2S zer^F`S#;rmj+&{pBSCzipAAf|;*Wx*s-gj1wC>Fed{MHO+CL`f&fck^7}Tb>pjm1<$Wk2RA*Uy7Q9q5B|v%s_V%d+F<=gE zHGhR@J%&rKn22{wx)NG_L0f`ZhS{D>b{?o7|r6ii(m3GQjssbc*)rgcy=;V0OPecJNDqCfFma63=o~ z+EKZ`-Lj`sO-Itn%Yf1%nogjDl?fqWPlsXK=eVO51l+?@%&}_%Bi0*%x?~7mA&#K4 z{ryaZJ$?;+==5JuA}$RVS?U06w=2MdM`BhF=Nr86s3p)r)JPV?p#0W)qEH$@iBFNX z-z@J|$)G+6VOP}S*`?xwlIl^Dd!Q*v6^NbsQzG&S_cNA6HW)PI)L_HNcFsz4gN$U9l3t7)f6GdTngy4jlGV4px0e9j+SsL zp60+?pu+dsQvf`drRU2dQD5(ar7wpN(CIUgtAnx`GS5%(LU;Etp6bu;xDBc&vbIlSxRb3of8D!Y- zZU^F8v$?_WJKv zv+m&r9@3wA4|`ZmrPr^!isoyYR)aOC%TMV}umCT!-O-aov~ zNz)H(SzGPZ0kgW#<@R(J@5DbT13MYnQ@wHrf+o+i*u%Bnyj7RI8_%g4Yr&n#hA;sS zmlD`3=x)$v&diNMT57Zt8$V@kwYnN&@Nauw=s{Xe%?3b|!wt+8k87^lQU|!l;jb*a z<8pFx0-04L`upBQb~gJ}*+dRY!XnKw5le84IvKNR5&ceROT|y5@1*nN#8J|3pkl{O+f+=%Y2H0yH)+IX zRP(#;;gyuwyfdRtLAj}a$8rTq#H)uy(s%kYrwKZ+k2J)w823nST)4v_!kf_8#EXXm z5S-fDx*NmA#Kh-hGR+&ssO4gn2xu+h=*Q_0(tt~00$&77{sw>tUx70P{pU0>Ep%e8 z0mG~Pr{NGSQ{8>64vdFL$tm83KccT1KirEbYnv=NiPN0_tYK}sH7KNgWDQ5cWzQo2ad38X!LnpfY#-D+0y$l!3sKXyjFT{ttxgf zUJzDW%t~KhVp3w05L8$bv8xJ1#WT16#O&f<_LGVltqVDc>FI!O4+79qS)5>LllIa5 zE9m!m2@=Kj!$|l)p)KF4vdFc_%^`eT2bvQ~g4_z5aLsNG%b0lSmJp<1^ru|j^!8#< zA#;V}-NG}l`nkHber40Yw61}5goz1Xw-!-YuPj1zSK%!Pe75PgS*S*_*45P|Z=Cu3 z_(i@qEB1wIk#-D-KjEynxdkyLihzF`jU|~cYq8=^glg>T)4E1RwrC4MP*)0X&EY5% zYX3$SYk+1y^>!6)sxFDCNLLPuL|?z&;=BxyYgYIvjF(zv7A{fM^@!8eE^4QTBs}}k z6?fe$e6O42$lEbLZhW6osEv0F#yl-4v_SYk|2rS6QTdidy~CD#QjOmiqUZMf{AP5n90JKKtI$>JvP8(+51?T1M^zK@2W=(9!c($4{o-y7dbBLEA$yeP#6g z+_x{Ub3M4}Rq7w{X1}(N_0y|#oaS)rF`c@E!5+w6IhOw@l&JT)2Ic0TTC}_+(^{**xWQTG<4>0Zvx4r_%?DF^tpA$^%3H(6Iea!qNZH_dN zWOzvipgM~T&;?#0Drr>^>^dyJ=40@=cqPZr*DLTkB?5xag=>(;qnXqq5AAXd59)}G zNq-45iB`Y)O&<9sPtYrguq*7@O`!U=b;Qu_yB`GWbh<>4uPD4ZikdmJkRaO z$5^J3GxhVlfTmfI&c;5%tYbnhlBUOdL4Pq+29=mI97=7bg`0di(sf|Mfn>U3o$5 zBjiy0CF&r_&dmMfoLNt+Mk&Z=cf-hsy*l(h%tM!><*rCN$oy9rb&5!7j)0C-aiq2{ z%`#^3xXyLSpK!jtz1?bUvdTRS=T?&5g6^?;Go-6EJFz%ns@U?BH?lt8PP1JiG;>7; zKZ-AWqy{_d)$;?{r|L`ciCn2O4^>0&w3?^4Tas(sIm-;8d>~)9$jf=w9sA*l(Qo;N zYRfNXD_y#1RE|%|20q+-5Q9SVdZv~Q>JyA+(&N#)wKMAeGNg}A#F+td80-m3id20_ zp?Ga`reIFP)9bCXjRh z24soSKU&;Q%swxYUbihj8wQk(82eXd#Tu*g5w;g+WdBa=EnFKJ;xKLXUtg;~b3PrS z$44kK5FVJ7=$Dh5boDmR=R{AGeI4!CK~UI*Tc^f4$q-izuDufv~?$jKE@-ou%h2R zB13{t<2JO*ZJKfRzTA+`;sM9F+#6qHl`VBfphL*+O?2FfhR!8mFC)K7bVZtvfxaeY zw%Dl&IiFG!v+p(Ab-!R``*z30Up-AAJ$ec6FKZs>OCNs>QsM5{lJtL?8a2f@FQT36 z8P_9I`ukc0$RC4BvR#3aN9&W~7sI>?7%(Puh(AL?6ZXV3b7lVJgy= zX@fau(p|MCz^u2YvZ~_`mLhmfBu)y|Qj`zoLje}bI*NXk;w|Jrqlp;1kB2Jh>B6XI zPu^Eha#Z zeiZ?SMZDagQePSO{ystQS?0 zeVivxU*p0@pyaLfCgu5w{oV;X{j)k~k#LM96a)#lC0@% zZhO&?XCI#0x&*OX43Ld5Ut>lZ(FBBrO*t;iLnoMn^(RClCPCizYpP?pg-*SRU1ii- zUX=B{@lrbzPHh$?aUMVk(w(etu zoc_Zfl%l<}Rb!{tzjC29fnZJ!mGEEmWx%v~nh%-h!{3I`3ju(dS>%($LxJi!@6T$f z*~%U1=)2OgbOJBY8js?sOZY_aE*WxHv&IL9_}A#pFShyx-zLK&CC3Z3Av`l`D%M5K z?g&d;SIQ6=_$#N0vR&cwIE{r;fAN<`=Qjr9_zTG$7?>DNlsPV@I}(Y& zcrQDu&a^5F2j~1<@%-OKR$Y=vG;byqnU9mU54r2C8Jp@7{{dzp(4U)7mWEb5kiO`< zv+qFe^LYQ6Y8mc?)a%?w%%;&{Ls`dPi1bez&xJt8Wt06Y{bt1GR-T^K5yxmD@~tvY zPcr}7@>3e_fpdBOcTB%R^_ZhsQ81q-Ctd{A+@ zDfN^AA8t-X(c`V4WTZov-1IAj*8|rb{Tmkr;j-kp#%{}tmXVeN$)2iZ-uE4gW71f% z11I`DRo1?FVc8fX+|wk^N{FU;p_N&C>GJCZxLw%#`a7j=j6H2~?-pxnpCyUO`A~rA^@j9oJig zPn`t3Z^^KK@)u>(zQsQ73 z(mpQzp?;Pmzi80Qr~v=N&wJdwhO$~_dX3nO1{whLdba{d_98sG z*Wa?TUtuzc0{_Vqa>B^7%>8D!lf*`L?MoSwfvXP2x};6$q6@F7>9@PiKk|murKP7y zGDp`+w}t~b6(gD)uklVn;1_lKuNCQA;~R5LSI7G;0mr|a_{gd1EsdzD&HFz({Vl=z z6c&J|s#ydu-U{4@-WdfKFf7dOIVUgX90%{aJVW&Og|)TM%<2` zOnRR)Qh@>FmTrgbA-$=Wg#spO;kTOm_>f^Wh|Pp#?%BZPTN!B5Qxvr=+&vtXSABBUH<)B z{^DqrN*^CFhCzuuSP`bJ7ziinC!(Cn&zF1ewNwzRr*LQ)^LLFbEwTq`9vj(`)e( zrLke=D4VIXi?Fz?jveNaw$u7i2RQU2Xwy%caO?xFky z{_g!`l0iP43TcC)eJIi2I4K`kJ`!7aB;ybFi;ih&Tu;pZm;hLe5G(yItFaEwi;I)w zV#Yq(o~fqd6V0y%!M8L(7vgrlpCON8Xoc0uMwy#3uB)TcL1|~%HZwVrVL;^Ru8zl>VN;2aj0 z>F~C*jBe>vOTCp^e5`+eV*~M$LtTCspqf*sNbsQ)4QHgj337AX{IY`$J#ZI;QHZ2B zU7a3PhsjqgX>|EACJHKW<~f*(b|peDe}N(M1*;*-!I>n!>15A^1e<Mr+X~Oq9ZF6&zhadU+90d7S)<=#+rGYCMRS$w=7U2nUBolK2^1wu_p!#%%EL9n@r6&wmKhQE9v(+pj`tTr2;kpx>OkuvW5h z@q9^`@FxiRvZvo1Eqw{d4LWU4NVgH;WsuNH;Us~i!o*=?hzkFdSUnBB8~U083xiO6 zDeXg|2P21;0Et*7z@qaeE9C1fy^oyu=kxp`*NWWZ@%drXZ`qyFj{pjIuM6)>}kss-R`CZRRM0NvyStMloj@rwLd~r|s3k0}qgz;ox1XVg9#$9_{@TR9RtFt6fHM4^DUG4`ya0Z{~ctnc!VEiO;6Q z6B9U1VT`@0ym5CtG75>XjQPA9Gh3?w3=(pc!FR7;r%KaOKpkN=MQwn|mqe_9Bw;#% z{V2)2e+$5_33Yo)Jnp-NH@h$QsD7M!7T%OJ3)U2Tvne;ne zvjGhPzVOHB_nk4Uc{dq~dpRRd{?lW96J1EMZdPis9xv1qRmqh_t&vpYjpH(5dfg}q zoU)*d5Ca|421_q~$Ia+^iC?CxXQ{ouSrjN@EC`FqFc7c%#r zMoNoR0VdJ_{;g2KN5Ne>Top%sg}FvrOS@?bdyvYfj!{(eRf7O5DFXb^askY~NrF1Bv+-i=i#<&~yNk^^PZm3bqDe-!;(UFP zU}V+YBGe5WlJ;zTVYi7 z4(I~Sb!`NGi5%9#^BjTl`DRYq>^K= zsD*&VQ~pD35HP(>eG?Hy{oAc7QOYod8CM_x7@-ohf$h zMwhZqr&x?&0@hdTUo}cnb8@*b{*Vv$V^DP)55j*kLi}PYZj9MuOPm0hfYa)_jH2{; z;Hg7R#JH~GJBD5)u~V?}@qF#MzC`jI_Z^`m1Z^3!6QR;*iz8-|25&yi)ulE`H@(FA zt)s=x)CrGZU=jI{_~$sqrQBXMj%Qgk%NIfC60-VVDE5G-L*A(ZKmhNUU|`cZA8{lXrfbL0@qs)d<`kp z^obtmMk&JUG9k)uPeHFIhGRO$$&RWbc_|IeI?j0LOq?3}xI$|G_UWt9s=b)qBHz8O&HK__HhTgymw}66dakpQPuV&SpUX?AL!F-P-Q)6 zm%PZ|*Z#}74-F*|EQWF3=a#AP+K+*vrGcvA3!!@XBPlHm&#N+fi4{?9=NrB%(=-0r zWxLmjvkj2`h4AI+R*4fZKlcRyd}aH{MgXZKLg)AS;d(h8oU$h|8_h!d?Pw55Bp5&~; z;iAg=aFfDE!`U~RU#h87Qq`{Zr^vPYhh-Z*S09+HSo>lhS8T>a-iLkAyER@iYNBKp zM$8et+Nb}86?25amTmOAY?LQRyjl-Dd zs^zj;W+SEWCwpfV?Cn|Te`+qFN7RbBvIJ%mrO)mrnBo#edJP=GU&bD#9>H2A$nz;# zJV5xoq^CLBqtiP!Z>t8`{^F?4l+!kS5w}gmX@VQD;yA-Tg^t6Xf3#${UFmC%m}E6kboUyd&gsypwkr79 zo6s(C4^MB@{%IJo0E6tLBdRJPpA8&30Y~x;ze`}3#uu@}1t#GS=h72djQP5gEF&u& zeNz%A^jhB3!9=3`?q_N_(*@&&Q13fC4e8&pAByb~&epaou)BeSB*lcYq4nqWsU3dO z;QuM2Mbht<~YO`iU?^(Lv+=P$(2ar|3naH0Td+LzGGu zt+QJh5qFW|AnfH9`8*OjX3{gqMx*UdUEMbv%~M%o_S7V&?Pof zW-KtpmkHmyp%tK{Eo+IQGO@ek)-Q>H6(N|bGT zO|kJC?o~hLzk_}uvV7d|)-~W*{Z-Zn5&2;{F#H|Lk_hX07x89K!1Ge^Gd|Vt(2@7H) z6}nfkZp99_EcQ0U4TL{9W_X_pu>Q1nLx?N}^}+LPzWV&~F)*rrE$%m2ZqrHT5b=YT z(|U%o=8@HM+n`zIDn{5HvA!>vzaZHhS~SEBh~}3aQg*s5`%K?|0u0A!Nd?8&jTdE; z1PrKw0!xl06}SoF>_0I#w@5S8#2V~pFJ6nMeJj${7U3G%Mw_1)or0aA=63VCO{jGe zl~}+-(@5js^wjAz=bfj1kawU35!?IL72X>9fKHHWAXAR_TwT`lY}x4mKh6o7Xmn+j zOA|<0HYttg(gIQvYxswPrqv0H0dag=DE`gghnR`&wN%m?AX8u(P2Lx&L%2#EEJ`Rsbfm~-ZB*}GSHEOo4kj!Xw? zl>~fwyK|uj@<$eBhL3d|(YPC^h8wi#oqg8LOC6t3?ilkH@ z%Yo&q{75lc!2-(^@g=yc|+@xG5H8iP*t%vgHXDEafLvKY3>ozPQ&^+{CoPXCE_#i}(&xU?QIFKMC% zY_tlxICf~K+^Kfm0RzPHW|cW2WrcnN442q-hs3|>A$}ACU*0{tu;|)EL8r%!)+1Cy ziv(gN>C4KmF?kPGiOy$NMw^T?oVZ$?s3Qf)7%(fmp@_J3|MXy zgs?2%kw38^?;icqZ-8vg{7tD}PK35K};m(@23O z3NK-JQGc>!)JZCnqpdcsXo=2S15U@z!XTknVyv5O5_^sY8}aRAijw5~xib^H&!9Ii?kUeiKG5%weO+07)6q z1G^|Y2i!in)LnMv31eH{3Fg&H-6`3AL0sbusHVLyj2VHxJr?L~egUjo+}AsjiBgK( z^U8x3P{NMu%yZiQS0V*jxXrzKj_1#%dgqC#5G$x=UJbFt`Q#!#dM$bHQ;ju+u$(WI z#K*%-6)z>Mz)x`SLP|>SNRjwZ47+3HUWE}pn-3$VviG`H7oKFxK`bt#V3j<1 zM$?<_%10rhlX&oHxLo$D!ITQAx}XMLv$xD^LlM)s1EWvF-S>>T64$57TJ}(NYi)#! zA^jF6czF2caTo1iA+~!=`ppcFdmB$KYq0O)u!LG$kk0#-^v|Z}OVnGA-s7Kx7W0z# z-uT{q1khu|0P3O)Ai+`6CD6eZLa)xK%x-%D_#=MBpt4`s-vT{>Eo@pRu1y2VS#|$i zj_S&NjpSOU2)Oj`j)HZB;0MGZvBOiL3F5vf=MrrAt;-ZQ$OcdIKxh#MWM$aSDikAw z=nNXP)_#y1epo@&w{jO>L5oJo1Xe80`1P_`)Il6A8cY^sW&FSTCquq$?zs~_#`1w7sv(f_TrY!7n7asZDN5rtWykNC6wYC)B+|>Wq z=Xwi$!<9_osX{_RqHOdZ%#;MtAfKWGNr1-W8JcdRi&C}qd@5GbtE4}nI?%spoz{;+ zz$qC8&hGa&`nx+zisZC6#|U`#rvWl6gnzd!p}S?e@9I;iRRLn5vz(bb8C5(gci2F% z5KL1Da%8sa34`Ej9l+QBThM8^lE8=ukaEATP09KG`7ZBX*Z}7LgoX(EpNEX#-=k)u zfmC_>>dKb3nFd6c?9H-jN45Q=1@+Jup`igP{5WPyc)ABdt!sC8x=!a6NJZgBphKyp z5P};Zc@TT|VR}?E^0+Cq}3rTrmPTqwd0@3~CWD&z9y z$yU%IVUwp4pnpVy{lK+BdsCE57;SsLML+Z@eN`oIxc(y~nDD|xnL)Yr zyZ}_IT8s^UHOo&)iG+%T6Do%*`%Emz=jCNp<;frQ256PGghL zcF_;OF&Yp^dvnt0i&Iqi=A7#1X7XM`7iE2qsrl&pM+Qe~vAg_{=`?5P)|u(q9MROW zr_XbZ;)%2~AhdLCu`?4R^FalRyZxpyjo+Qarz&_=OdPaG5ww=G)pGSsgR@Jof$c|} zh>wqQqYJa?U|~YGWW=|n8w)YA#@5UqG8QJ#0AMy5rMV822r4}4N4SL@h4scqGaJ0> z=Pk$c5hF`)69ju(B%@BXm<_uw0z&FNAZ;{7UYw8At+R8Tizq^&MDPKX#zcA`;PlXZ zDEN(owa<`FpvT_IN=y6eDAYnO8llhgc>=3ZuziJ*3wwlPU@4t z8%Fmf(S!lUxauxz$>BoT`Gl6K;8WfQ<+fAj3z|q`By( zx*eiQC62WGG(1e{crK`|x=4WlU8YD}F<$g7QE&zu|CAQ;bvWVmnrn15P{X`WvG4$a za6MOW@9wBzGaWh?i87@?V8$P~alLkJIh%7AUm~MzrUHRQlxJI;F$Lw$*2`IToE8(b zQ&P-tzr8pdY`syAm+zG{oZMy@sFW(*o~Tp#gipudbMFC<^}9cZ8i*12x3WuZ)YB#noW`BaC}pO$Z8l)hO*C^&5&F>g0FTxC&=j$E$=;^zP?z~=V0xBuBXpR@KL+VeXr57Wv{-7;S-S; zXTs-8OxQ2uiV+Jzy?Td8oFAWLHrc+4=P{F>p4i;k!&uBzN(o#p<8Dk}wbPFESpB`0 z=QZB)!dafG&}Awh+|d~}BYsz-7QBsJ-NY6GS7SSwP24Fyo8q#b#+eD#Vnz}zK|_d4 ziV~-bU;5V$nFtl3bDqe@Ln{?|=Z)iX7>jB7@p*b&3a<5Hw$$MWu7X&Wlau&=me!*F z8(_0>m)Ht|c0(LSi!;xw9@ zYC6qH@ZOBWtZWmaLQLRbdld8$i6))y`w8z)Zy(a`HBn@$+S9@Gh8O!w3W5R1x0Tl8 z>h;Y-R6UQhF1`2K?#m*>_a<}nhKsSJXI6!duQPg9yQi` zm|u``ri-oVSfx}UlP)Xlcw>4V`S$&rq1rUB=t|RJ|FHyi8T_w`&5f0&Nu$g^FI4?v%}p!HIV^G%|wF6Df`UNqHGFMg>MI)ilqz;tA2-4`+m(PXN5KPSr) zA0ef!UZRcLJ;n7Wi1F_7*199OpY6r~eTU?1y<=~5F0MsKS39O415hH=f-OS~$axq+ zV;h+v8Xyhiso7vnX4*HY{5kx0Q@#73Hi4ynJthU0)o*wg7iUF>s<#Bnd$U0-7OV4i z`Z$8{BAK~lCIIp=oD~*ohNf|#Fzw&C@DtP+=N_Naw^V9?; zY_Y5+{hfg6p28{N%54%#d^o#rogIAPRbaHP(Y~C&VHhSiS!$aFGIeLv2ca$Br{If; zPpG9L#a?foe^|=0n5m_6NC2AFKLtuH#Y^)s238^oC8C)M5F!u!_L4?G%MOAGjIN5< zL{H43)Ij?0eD$O^P#-w1z4>#6Ngs2aU%jg{V@a)}?-;j^2Hek>1GW6_5081f=eX@x ze#T5(GcIlN6+%ar@GNky7dI;$rnT~E0*vlGqHNCM6mfBk`pH@OP#st+N0CrFmWL(}*~c;{eQU0?>@zZv3@n6RSGXsOpaf)1A?sK?Bz)$y%9a{JJ~f?{g$`B z4D8UE_+HtVQvI>7@;slSqsF)K-)4eU37n7*gMOLF&GlKJDI~2^6RKLE(hxh1!J^?< zhVl2rFo7qL$`Ka099R@!MXLj?#LyQd3SdDPa%5!(#E1mkcG(Y~ylh2AC}PQq1Kk4? z=qfNPNJ;fAxDS_$w*}qQo0F@@n!AvU;$Fpk$hMmN5Gi0e z(c&{h((i_}sGNT6iF2WhAv{#cM}Q}gO< zo@M@gBU+uu(){2ZW;_QzCp;tOPZy*{p`#j z1?%@@KQ(L4DvhypFSEf<$s`U-LjX)1PMV~NPrR_$@el#~0Zwx(`Vr?GzpGuh>(N3zE1hayTkof z!=a&|nVf=*G;Vd87Zol_74+RLQb3mM4vw*2`EsYo76yZ+Vpq&_BIAamfKHX%u7!Sq zyGjx}*W_wr%{F(*)?03L+as6>V&67r{kE;Oak=^YH|JzOVGsNJeJoVTv^l5nrgLQ) zqHKGUH6xa>?21$l%le1J1NtmTNHdei^O5!>#n6yE$ik9NH6NB2=}A5)?y8x`i@EW< zivQx0Yhb(5&huv*IzyP2B{TO$M&EXRkTSIe5^>S5Ir(5pJd2yXob#0=&jC_cK^M=i zC@Eo(1C$Q1U5`KUcKhW*{_e`%oO)Yb2NiLKWBLtZd5F_a3w|9Hh3MSmmz!tM5t?hI zs(`5~vt&Mg|8u&?D69zzVxlG0g%b_^7{D*>78sUbF&n`=6bU$G7SOl2)Jj&UcRj*4 zy`DL$p8rvHQ{!55AG_)O)Y+$vg29`ReJa@e(G({OI1!gYGvhRV>*&rX3#VvtNy>Kh zE>1(A)we4)!1U+4BR$#AUK-HVVa2njh_T;@*N-z4T5b-HY7d-j2GbP;K4HOdlbm={ zsJ~?*vzQJF8!2rJOTPW^Bay?DI3qQ_aG;d|JyE;KxTxpiWL)ze+{OjaB+!EN?vsf} zmMvN9LM;CRhEZm)p9px=?l^<9C8ZqeP3lf^DOMFQUH0Mk4bST>JN)#wx1L6Q$ySVdb61=o zpyAs%qio^Ufu`_va~se}RoDsU(r0SDmBdp@83`6_>F8kfI_5QMzG-bk{umVb@jo~qJOPeR#hxzRS|4R%nS;B5Dw>SIp1 zx>FxiOooDLZ-*J~{ZGh85hUfs$|kUIGfnP5?p{%Pd9?}thQq79nU3ygaLS~N=!7Gf zD)W^DtYWHuYb3pS8J5OAt$g*EcWNOG__0dGNXN*1cZXbw zU^#TT?4?qBw*@6lOi^A5WE;t=@n@RMM1PD zJ(VQvy=>^95sU#DS$fTvn+3Ea-SU5`%d*G6A_YSDGzw}xKN9m$4XbYh%M9m)9-+sx z>RvmSau=4pudmP~@ar*X934y4xNY7VP`4u(8NE=>ruT;hnI*-BqkY`-T8i^M#=Q@I9D4QUWJy7b(fIj*~ zNnWt>1*|)x`h|q^n6Ob*?<1lM2CynQipyzbk%$3XNTwx;_mQvow)rxE_}#vEDPN^a}JLW4X}HP>+5w!P}Xb z_%UXKF$*GC)EH8NEb&>?jD0_UjlzNcJaEU7$(AU=%+Z@(YYz^7U^Ov-4A*<%Sll>z z9fCs9S&36MsM@LhL2gZ7_4AY|+<-^j1Vd%QTnk;(SyFK{hFVY{>_jKNzRt} ztl{9|4=1+@j($NJ!rDipnZtn}{kB=?ihT`_zhJ**LD}Fh(a8&~+}i)JEojr~G*M+e zO`We+LHY;iPJ6KaD<3LaoiDyCpZDfcN#B3W8-iN~HOwSkd*##Kr`f{+N`EWmVj;!d z;GrUMSJxsfZmqiO(q1$+>m7kQmzBh6|8>=Og1611&4(rm))ffs`B;>$<#Su7PdLaH zEPdo(v`|(U_m?3iAbTB`?a&16a)Y&eI15ciJ5D`cgAU!sHROa8^b@R*G33~_JkvaL z9pfzo`mSEHsrWY??Ot&tDIp#W&}kGWW3y2H%)J%9l66>!iap(#k~Uddqn)yvo!bfF z+;RAwnwxG%yyQa4zbY}5NHaiVhC_Nm4mVX)Wn`i_qSppn^D$t0HyTMTK3 zCYdfdLQ^&SDhqB6@GY{b76r12Y^Hu*{MKooFaK8G`&96~TtzBL7=&!JU2TG)Tf;YB zuqj?m2wPb<9{7(G>rL<26L&C!l@Eu|OdiglCe8aJPX5U8VwrBzAa!&vkw-MtdSd+m zC$waq_ELM&Ieq!7`X~}2dt_r6KfN|76=eG${D_zE>}+I1#p%W=1$XWur|lVOB1T5& z3+L*pd+~Isl`6mLdN{uNaVBz04Fi_otKbt6sl*i@Z!kDP?$O6JCj!!SxLpb?ff#{JO~+4*R&L zdfA1f;wj*w=(j*xBq_1w=uzfdq{2IVx+l0$?$yy%(|c?|momh?<#r8g8P~69SdX>@ z1)J0M(;VljkzmDn%v&DW{jjA4X$bH6FHs}u=`dh*XkWNW@~5`;k-X9~(~Z(@&ur=RB!q)&E(1gsy(@%H)|ucrjaWdtm#5T`Zb0zQMZmI#>Fyz_FQ z2e)O>h^xs5zN10egj&O-36BR?^{6Y~>#KWta%peR28AKlqn`=`Q5~r?@~jJlC06f;b{rac6OZSK08=T ztSKVnA}#B(9fib7^gIqH<}T;8Myt^6K-!mu8ATHFI7ng;^U>bxVbl5jxld`g_`P>G z@zKg^Dfer{K;TujYBwG~7QrlvtTW#gQy?Z`X6h|_zDSQ4=CrL=s3;s;qWKJTBG~9o zX!^!bUwukYUZ@m%k=DIT?Q-K@`jzgOis3J&vtjBbPgfPu>j#xSY7>rO@?OUk4@XC` zn~x2M$NgX?l;zx=t%~ zz_al4s??Eywff)QP7w$e=^IO7qyUE`?s2c|%T6X;I3ypJyEQ1D z`u^ERQfsRU_?;wPeT;+zx8fA%+auSL8SY7DuT0Mz_FU^* zMj9+;w{~~OD>XR~ZW9aWEJ3*e7-?@`Jv-f*HQ`5lOt(FlBjm#iF9kE6sv=CLY%Lc2_R2js`^b+G&UfkDE(m;VbNXwp}3( zyeomiY416BIWRi*s796nu7gQz`RY|0=<8M@;#$I0A^2Uylq~1elfmhfChUD9pR`|# z>)kakn5(a+LXr+Ua(z$P4G+yO8dc=zVg+U1HL4cVrQUN;9K157-&>oijsji{U6@%N z6B|XDLk!lZ6=L{YxKEzEPjXo4!sAto#;`-vS59aXPrcOswzs!gk#`dSGxpZRx1R$b zUH4;AsD;H-U=4uTV5;n(7SrJfmFSq{KG?EiMN?z_x-jon(a>>CF}?nEHZ`>AY|f8; zC*7;Wk%{zp)AGI@cZog2T6Yp>7rYS96WI#?Ej9y=tJMxf@hfb)zc4GAjZUkMr)sD` zu|CZWc}t=0{TB$f_6*8~QR6$;`E68uoOU=*TWv|gc#y_Uik^GU8N(4}i~!R&TDI6M5UrVE5c!~DF0 zheYD#3v_BS9c0f__(n4*dc5=-C&ZL)pCxAM=qH{4jyS@hB8dDML_$<60P_!{)r>^y zoYMf)%PF`NaM$ru>bsS^Qm&GEHM2=HjJgGuHAz;^rr6D;ty$5hfnl|H9*#LkzFaS3 zHSVkIPV}MmFbOrF>5Z*?^IJsANI7)_c0~9x+tIYncKAfqBGe%3a@VE_ul*|X>zBMF z)xksp;ETRQ9loADQ}22OJ-s!5_4RL+g%uduDtxpTgzp*uXgbsJJ>0;_gS^HkaF3?d zZTbF`Y@A3p{EouNp|>)xoLi1KV>vf-Fp!85R=Q$hkd3EodS`gIlYS4C3L}OkM4i+& zO!jB4b?@tQ80rZ)?1$H)!3|j|(J}8p1FhI8a|L==7#t|jdX&Qb&&`#jE6rD*q+MA( z&kaUNZMkWC>-3&AICTz`_y-}gnogF!%}Rbrkx*fXN(5U3m_tY9?C&kxn{DDohl{Qq zfhTJ_&IXf%XIX1qxc7y**LqN<<9Hm)w2Ik;3iZ?G06w?UU~8I;_!l`#!`@dXjgeO? znIuwxUN>#Bj?0UJUdzXitkiu1<0WD zJqh#dr}+Pv`|7u-w!UvlBqSvC08-Meq%Rv8$?A!>5xXcQ5psYEV@$~ zrMrh17~VB_?&p5q|KRz>>s)%&?T)p+>yzJN-UX@-{PAgCsre>}vQK#vh)&W-5(R1o z8hgn*2d6-fY-eWCie~-!PMV34>=rq*-y@0Gc;z9MzEqLPM%ZgYtmNI<12c$(Za8va zn0Zz6bfHL>v4*QegrtrIYo+KUOAL5%{B}v`lv2^^VkHJ}y_pqs!Yi^Y7rYH`W&WjV zo3sh$3fyKcle}cBZJhBb;!&vl&g)T0LCN{OZYF4h*98j;(k?w@uZ@^c&i}U{Mo*am>}vklFhg z_0=gd%n?4Vn+hln)eN+$xF0h0mT<7{?jz*KjY&gbB+Q4Ly!f+~{5ixlm4x-#;#F%I z4M6efD|hcN*$%T`9tcmylk&PVT)R2G>!5teXSA5%HBKvgL}M{QCj-AFuFJKAUZmTprn5iOoF|`L|Kol65GQf8$2jq?;J9#S;(n578h#{$c8{{TF)P|9ZI3HB zm3H8CR5|5N2GDHF-QfdJQ((Xi_fb51YmL_IKA@_R#UVJZm7BOV&SqAcjQ$Yywk#dGvOU-{ zOiD|FHE}Wf#N2DO$|W%Q8tm1RMK$Wp^>J&%uG-lEXUP;{mVV@>fug9 zq~CTFYu9bW=)(@rYriX&b1+k<@oyw{#5%^N`ypw3fEwu4u++pQR6O?`C%0!f%`id0 zjG?%=-@#AfT>o8M;X)enYs_F{Ti)4zU$bl1*|HRyg2USUQ#^`_mb?3z$e7j4Zfmq& zCKGug4wU@WdLKbqVY_`-+yjlQl8sIiu-ePfsZk+ar7~7x;Ej{6m>!RiE4h+xdtRlH zE~x9dIl~w7=32C=w4ZOuz7w(%%)=b!5?#OnN<&j$zTGa^8%~|B268S3(BA4h@)6cB~}Bq0fV>8R~C*4RLsZl`}U=f&DO8n-=uh8i16yRRS8 z=(gC)W~-B5&$GP1N}!-SmyjgC)ScesI(3ay+zQQ5?{V%MN2(bs5>Dlll`FM#CKSUR zEX@)*c;$1fI?%HiS9n8KAjSg2uT(5;Ptp@_^=4u-N}Lu%(UdNRE8_afT(}mb(V^!) zgl=C!eCTG>V(jVz8_%&x*|in(E{e79vk^IWU*ckEk=}J zln=Y=s$1hUZKrSF_6a_hQLLXmD!)~P{#7wJA6*aw2Sq3{_h0O^XGBOk4d6<~C^UpJwL?)~wmkgJ7eWf7TT&Fc?5vtG3f$6B>Mwby6KKhn5`_y_ z1m9BJlJrrOySmf}@+t@OOs<}MwBuG+aH&s%DX4VOpytftVT(l*Q;au3f-B+GJ2-&e9NuWSk?deV3Rmgu6 z1YyQSX9vE3Yx_I>Bl|3?%I>^`=I6pv;@j0b2$%Ucj?Wo}27VU_p9=I_kF1SUJeyad z+p)wASsU@F_Ny8lDL3oeYF>zx?Ix&c-oT|!(?-~hgqn=Ta#^s$(Z6;rkk7J<)2in0 zBGmAOJW{i7N&60e`Df`I1emh#e}jtdtRMd+u;naqxO8%&MoW#l*kZ-YLF+>F=9Vi; zQ>Y?y8Oq+DtZ`g-Wz@TrwM|I}+mAVSf>Yl@b@@$|YA4x_s}>20T*u3Z#-xQ035!<0 z+q64($~j)Ph~5@UXJ4>s45Dopf5D*ig*aPj|g7(#{mINcVu; z@aabH4hqRD_4^3G%DI`8C5YV1140YWp#nywE?1#=IK0AZ+jM}dzZ&!nDiPh_G*8S% z$)2N8&oU6O9q5<8pAGO8DdHA9H%j>EFf6f|h~Ks@yl>I=p8c4krr=iO<+gDXM?yt2 z|BlIL^I+an=Z9YI0{-AL+5=Skua@^92~hdy1rjqL_$$r5?8t21P1&}zYcfw7$a(ER zBQ7yGmtn~sru6mAVeXQbnR-_)aqb!1`TE(s5acCwN@8`-?4akl`zucysgob`d)XcS zL)q2>;=TtTZ6+4uxE@acMa(^OoDf+1+Y211?Bl91h2cO%LZr;eunedF-sXr@zKx3BAzCUb%f#;&+CvOCIit*wThknvV~d!6q0YDlNrL!U*{2K- z$WDL{%syDkJCEL6!xk;zcIT+f9E!FQmKTzUY0z%Q_I$i)SbcwTrLmk}vVwR;MaU5z zA?0R?GbooQ-rO6{*!n)2H_x$6b729TSvOBSXe(LSe{q$mH&od=igIcO%MAMa@R^*- zbD5SrU8yHadK3_VBC8r}?9&kNnm;9hCK1B6I`Gsz-m*#c^UK8x!PcLxOg1Twp*B@b z_CJ>}^Q8kx8Heg^!4(h%Eq8R$#18`D5}?RiyWWjrC}YcAv~`N~BMau2JWX9EYghFllwq@^>o zIvU&o`END2$@K%cCYKAjuGdrpX-GHvP=DNf@aGZZarBd-r+2Hie$_~R>o6`^IevcC z;25>-N%WZ%wpId>vNPpJB#kyb{B*xYRyp5k44w3B_F8R#jzr5=$kA-#lfo%&X*ghI zhxB8Z4;*N32g>$G~>HQ=H_v2{V%Gk;sB)Wa8fP5wL&N#)52K+Z2cY21)nHX+q`fFhM$e* z@6Jt!2?3@QBNpRiV42*x5^TRL(2kg0>L@E5TFj8utTEnilp1`VZn1m^+NQD_R3ZA< zT&^<}%Rl(w7qbgS)p>J!zSu+}MfU7MWMKskE^#NweN@c%b&bPk57&hJ zDBs5Pt6>XO*d4TA9~{Wh9!A<3I+2)jKg01A=2XUgc*{zz8Q~P->rwq$SOjvSa|LO@r~lg=NiqNqlG5wtsgSXC4L~s&uK+p zNS`M<4F^9W+45kA=T_Q_KovBk3*jsQ~IJwr3idUelW!4n^)h z;i`FQbGChcG!wl%S(C`39MMUsE$!Hc3QD@FuY9qp@}prX5eddx)x$Qs2?w>c?5{BC z89y;v>u36xAQD8?o-PgdKR+DX>lW%$0lhYhiDrS(pawuGEDLzl1R?VltbxqgXclFq z)qgG-Ao88`mQVA`mT!_~)bo!gycQhdxV7x_4vGx&f(TCuWA+r?R0nfhWDA(pNGv$; zQt=K@9qIxeR6S9*40iQoyXN_f+O>rEEQW6IZQ^EYz|5mbhZ|smTXw2|e!aFbtL+}8 zrJ?SCVw73gMc6<{%O0#8+*b$jT^h@|k9}=Dt=fj?th(h&^RsFCv#=iq$ZW9n7)d#W zyugg(Z=mz|reW|ZbDLh-TTTp{hZ4%lJz_T{J==G-5w+!1d668|G~{_S9=8)9bY;ZQCO7i3xzfp13YPxs*|F9DYLItr8jAFAx8ikRguwqSd$3bO`>0O(jU!8 zI;$7wKTkK{R^xca@fVBpmzz_KwRHh9TTj|M^f{u_-8r9TJ#O=WwC!k)bnp9mDKs2K zdZpYz1QotPUW1wbWSCzJT~iZx!1vt%ECjO8h)Hb9vXlh6OY@RQ)qGw_r@e7-u^YM` zD3oz7$ApA_pJK<<@;{P%kN8LM=}cfH9GC-oBG@PEg;<4;l`H=otc^dAVYtV1A4ca~ z&0KRx#e)obPlw8u(kV^e^d5W!vmZ?!u)er*VdI$`Jqz)SOlj0F-UIrU%v&Bl8w1Mp zDaMH9?&t@;N2e`#bktt;(>}RwEf7d38qe8yKql@?T3KS?j}M&|N*yjx)_hl1ezp3x zcBFXh<3IrRV6!u$WX72gOxRd*h${}Dz<1haKafedZm*ZWQ41Vm&RYbgY?$S&prqmE zz}m>-cQW5j>7yx@41cM9OSvMdWcn4Sst<0L!{IR^NDFtgSYKd(G!_D5Vh0^;0S+5< z(+2}4H;E=wIqYHp`YvKqpb|aFvN%ou_vntjO<;`hHDTu;XYcbDer(q)EsywEBMP>* zoF(UU?w_t*L7tKAG1?gkXh+8AcSpUwZT8+t;p|um`wMkMqt9j@7;a)%j+OJv z9S0f#G9r9;P=;gKH!X2Lxp2)M4A>?TO}z6E1H`kbnaAvmcX2Nx#Om+6M*gupU~UcBwHM5xcm1dG|bYi}A04bevJkqZE7ma9O5Uc1?=&UO9Qp#&0lJ6-NJb z+&NRj|M+gwY+3e3(p?^KcZOl?DOb}WC0fliPR%8a#29)>^0WCaS-dX}elbQ+-j51W z(#TIiu%7YfpsK5&3k2qb<73&jy(_08Q5d(#yCV54ueI~z-Pj}x8Eu<)D+R_6=3zaG zxS3TUrOw-A*{&+7TW$a{7>8?@FX!~wQ89j%N#}n!6lwo%4Olf*e1*iCVBCY(?a_t_ z{3doGS$pWQyDR0S#>L% zP}088=TClI&HBUslctyQ+@E-Roz26Hg&0D-cO_GaVzI(S|FDuk+*C0o*mwI3DaL)W z8cg!v&p5v1u6mI15=a5OvojPK1s!K9ep=ci%&#)rMn%_R7Otuf07BRhwxun|Ill`s z%A7BIt5desc4 z?%*9rM#2)HF%4EKJPLRV$jGq@Kbd**>Hd|-$8Jh(@~BKu4Raf~Xlp}Phm*g4{aTZu zk}bfu#qqPCX(V7q%BbWNHBSER6#OVB|>Kh)==IV7~0u z_D%%u?bj->JcVBU;x|cuc%HgS8ymzV%d^aIOF$$wGFLebs|suqOy4;Z9y=e%;nZmZ z3t+@)V-Kx13)A%jdw>;4(MD3ErF^<^^MKZ04NR>~qxF>NTYnWw&vI84%~?c2`jj)!(CER!Su)%*hCKFIu6J6TF`#*7zxKmpSQ#7I`4p^U#=12@ta zxnV102%id$hrq}eL`FpA@Wf1yM`!i-ilctvfk6brMv#(MrLBa zfq2N`J?f`5{;%DAs_j?A-JMSLO4EtXyK(;44Zu7iYmB9|y+nqORhI~zdc^xvFY#_a zHYId~2Og1Q-f5RSC}@@})=R-b;i7XySqp}jWG8d0;-N6S1~Ak*eNMQ@gi z;77IGeS)(AnOo=5+Pl)htV`I$+E4wr5d+UJO-J}8SkH{km=Zs^;c^iHL=6w?WTz*4 zHTGFF7pT?w(HDC+f%6&|CwRewBb${B;<*|4Fp=mz$m5=!?CRY)L8N{085!<{_~y8Q1ox_ zTzX-#FR1!uQd7j7PnUnXjr{jZA~^miS7F)VU-DCUj5%r{fh&TnF_D=FmxsWakoB;1 zY0&WUi4c;%xB;wQ1|e4ey23EtKt}j8;hTSrVAcR~OBH#FF<){KwX|W}W?$%(-2S@F z{tx_CO8@^{@K|LF@Q_Jwx9G)2M^HhLI4&d2t{cZL7&;ZW{08PvSSJ6`-wfYq{Fhz$ zyO3d?7!xxwFv&)3lRAc11bLnb6FBiwbIbBR&ex3GbJDHBgSG+9d z&tOy`BqR)Ly}t1-Xq(7krqMvuabf{}Q?Bd!+czy>>9>Rq*G2~Jy)?PLV}gCYg#hsw zvrSlr5kZWE7`a_s@l%6jVQ1#CamVLV|wHrum z(_%u^zbysMGVpNgg(n0*GFn_He-+Q}mK)boKp*D138vWo`o@lcF>5MU$dwlFkG9+e zDKtF0tsHSHtXb*B(m&u|M`a;F`o5?I6p!QvX3zDHfkcEXUz@liV#0AY&4ffHiQGd_=C;t-2tk(W$9$|zy{Rn zej;U0{JNJnSQvkpny=S5ehT27n5}@kcVjs9eL<|5&sm4wr#Ab~+Q${`!(JeM2?Hc= zOg77&EqR}7Txd7$wH+_`FNfWwzj|7LHS6Pl&^oa358=)}1B)o>-XrY5nSg`V6Z6XQ zbV&h_*YI{MVSk^Y{OpT_&)!q|9$?j#Hy_;)2e=cWUpikagCDeQ5S?#8A6{oEhO3N( z7PmW5;!#Z%d=e|lA^qRqog9-X@b5P9SI?$1DY{z6Da8}1Pgh)FV=^i7cBJG`2K?F0 zI^RXRkAVr=SIMFQVV97j%EGvOgpu&YcGRtK0-?Pp?;C`eBLy#L8jj0SBvLp3`ts8{ z9}a-9V}RDb3)C7c zf&nD!qIanywoU435yTBXhD3m8oeGhSMSv}KN+kFSv>i*FSl%%UkC@QE$k19^4gM*|dl|09|L*&>VA`iaTNFR58Q0eXQ2B_nNitc~l&C9A9^! zKlmdruJ>P)h97N23xo!;fkLQQ;2y7QI^IU0OhKOt2N0(w;$9_v+nnb<78;sddirYh zp>`T~Jn%$~meSCHi-IoKl|Vdq^9j%e>wGo8-cBBbOXa@!{cW()THAJ{D1JqV6EjUj z{ewq({-qoL;+|R8YLrRE(!6}dQta25%I7{Q)SS?!Va%U&_g?sy_d(QerNr($B=~V( zPV!0B6Hc?FX!mM*CRP!Mc_u|3d1r3N|j?ea?zTBr@o(sDCQRw)1H@nJt)>J9t z78h_N#nTAE+5s-Y1*UA*lRc}|vGNR%7N`KiSZ-`@=3!$-pXb!~0+BH#zg*il7t`v! zbzAu+xJ&W7qkOkDqRL@sd{-mVJm9k6pULDx)OhBqtQsvtc)sh|2$FWG7tPGS88U9K%}7#!rx~g*a29CYQ~F1LPRixg32`uG~%pvWVaf_gMJcW-u7S{!baqTy`W_~xhgQVgC;li2G7kk*CMT+GdGZ< z?1S2@U2J27ptv>$KaJK%Mgh%a;jqz@UzZkCCf8uUp`0jy8eH$e$qAMdbDDAW>qlEG zTdo{bBXuV%aqXTIejesCdWbWa>*{yy@);8>bVff;PC;BJL7%{mYX=)`DJQM3qu1U9 zifCZ``4ZB8(-YM_NA+Icw<%5yP$r|LW{^OkPF@TwPsU4;vESA#3bApQF{& z*gal-w-~yhKses5M-Y%a|2N|!@OEb3`=XS>WkAI{6M~@&RA5YgwJGC=E`Wkas4oc} zrElt^2*M7ZTotU1piuFA^eS=D*Gu$4Ce!t;iiEpnH+!&-+jy!n;9FB`c zrv&RS0VPQe>;n>J7iM1LRX%PX&#ilt9c61B28=NXS%3{KEc8O=UhO(C6b$ACgx;~O zfq-(zU-o&9|FOLGr0P;p1X%Do+#Dy8w2C2uQ&yFgANp`lL}OxVfYR(;8j*&wp)GqRunYM}ym!3(ItQp!;&0ar7d&i7fMf1P zv*);ZW+`gg3%$aHp79t)oJJZkkEkzIK7OUk7d>`nqJ%SNGXvpxDz{kUnchjFhj{Ep%XTbusZdN)EisnV=@4hM?7K-bCV5syNJvNrBbAwa9Ah#W}+*9Fx-B8ry?6 z*FI&?6Mxx+AQvYi4OGxA$KU@><`6}Hp=yTj8W-K!emhHKJHYVR0ItG7h`}`VN!0(?d`Nq3_o}OHYLJBx>x1 z@v%Uk%dfo-*`Rs`wskg>h>b1MX93V{FjjM3pPf2JR2je`^!QGL?l3VmnP>rE_z9Gg zd?xCQ=uQ^l7{p@oi#nOrjMXea8EwA;PFQPQq9JC6_)7yMj8?+^ILcwVp+`?Q(>(Z& zu3cyX{zj@SWV+RKWNK?J_zyKHQA~Iuf0Bb-iq)3$zQfWd5<1b&J`1R=js#~=Ei%On zF&ij*zewina~#)sX2)D?XGB!WUAKglg8JGSpD{~HZhk-}kq+TYd;NcYm0Vys7JX~; zz4e2jPv;Y(zW*_-4CaxzN&R&elE2`1G1r203%@rQqO-Bu zZ&O_edxYnvO-Qg>(lvQ-%uzAM5!cAy8Y)e%_$teyiPisDTju&w@OV^T^XC8pjO?n~ zewrbZnlAWfcw#&7ZpT9Q?2lb;2n|-jKD2dLZOdl`i>Yh2&PPR&C&{?wQE^jo(ofX7 z`4oLbM%R^e+b-(HelVp3R|h_gqDBh0Vb8BJCNrxu*&kUws!zFR2IeB)BnD z7|;rLg)#=NG!kQ6_CeZ2teU|8{-hjcHr8tv)zsW8@>Nb~VK$z9^|g=FR$1x{&24)b z23C6+8eVapgv9%rbn55{5w_PpO4_?*!3ByBk3+BMuPS1v395%!RN3^ucPlh2FC)Pk zERljF1nfa!TACQ#m|=hZX$K5Rcly)Xvy<<`8RoR!1)kCd_#AhN@5@e}SZ4Tl2J-9I zl(^fBiMpro9{?ha1ntvrDRS)4&eUNi5t-Trf`M{CW{?#SqYK&{{Ihy||LStjvjpfC zD)yR4nmYA2D?OW;l0qqzztN*g0ZmBFsb^u{Sk!s^xkR6*Y80Uqt+d@MO9BFd>5{h5 z(#OgZ9^UfEl+ZfaNIHSd$r{3G&}@IX+@#|H#EL6Xv*@8_igBS1n>M^*3OQ=z9EMK{ zs2wv;?#~<#}c_I}TI-*vFs)&RIg7?Ymm5uhBQ4@tLAIz?(Z#NB?s zdv8<)93xih0w1{Xlk}N8QVx-FB(+y7urE2}pQQBNSf99H4To-fJ+-sr8b2qzH*5Pd zZ}K_2`$=~Oa3Qg7UJR{%!S_E4BS9D1;B%0iF3jIaa&NdOPq`+xJeJ840J;YaJClPA zeyeMsRKAT-q9IT#7FqdK*0$$+OGfJ%IgB=nHd5LyAMKkpGF0(PgIci95@3YIdN$NE z8&FvBI-( z+Hy6N49EcIP&iy$svNJ4ge%L5FV0xtc|F2VIgM+pl&q(bMpQo-jVj8irDdw*1RPBtWx2uOJYYrwPRDGN%#*zL!=)yZ3^h*YZwNx|Tl#Bfuf=YMLiB*g z_+kO#8#L&1HY-=kp<>(xxh3$2>Bndw25Eb_u z2%uesdnu+8V&gq$$xKQVAyDZ8B{&QHzrTC>^w0He_*L8K=K9yWdWwr)qzHN>Z%o!| z>m;vEqmZkZt9?`sJGY&wDm+-<{}dP4e<=Lr?k0;%>UU@wZZUBTPCu`J4Q9g(B(ij5 z$Yz`$A2l3Cj3B2|&IMdN0-n)!U;TT6p$Kcip)B!V>1Vd>&kRmF&%FP>j2ko;4bEtU z7lj}=G?S^aCGHVmUid4)?&5B09TD_7tEsDlFFNt+FX~5QCZr^fo;ZE9#)jwj#rZgz zL2+SZvg|yl09K9~heLOQN&lxHEJntEpTc#>x+lpZB_CVT_PeHP?qjnN?~S`jG8S*T zlckl@fg>s>F^enZakAVk=LANLR)(~98X>ADR2pgU#+2+Z|Vj}yU zK?uJLbseS@Cq^q;koyHT|lQ=~u=JbkCVQ@3rW00EnX}?xv zjn}N{blP77wpt5k9@bY- zDg#6soI2@-XF-!u4rnj;II){M&B35g)EmpJ+7Fa z;}QoanYN|UO9!yDXMG$|H+vdwe1aO;tF)M37FQe;u!8Z}GKYdbh|s(sO_|HU9Qcxh zeSr8UYpCF2`*5sraP$iC%?V$IG93fgrS{(yT0Os}P~XXnfrse5CSzDOss1(!xm{UY zY1Or5S80+s?J)G!90IUl#OKJ`Q?oy7r?-VaQvdsH<6x)lsdvps$^sFg?RZ7*HF}9B zfoFfz3%w7OO4k0E<9#Ex$t#Lw-|rly=Fz;cUfW4Ic`w&UnA3P<%C)CJEM9vNlsbWU z(7Q3iQrle#^ID8ig?+JFAVbDabk{v@d|8`8Kx!wc#OhiO&73%jFYSNVbkW(_PBj}0WOJ$aQfpCkpWYye&tuvp*q`)cq;&pnN^vYDy-u;{DN| z+v|v}@SWqRm^?fG^i`ca?FUG)m(Y=AI1YRLwY#S@*=SeM9c> zRKPmyaDzOz$0-9J$H_=)OS8l5g!L7NynreA0mcypjMs@E>7tWw=u!FNEQ_)+{l5SQ z-V{-)uo<*fz3@WFb#gP9U-aHuoy*C~@X`{D>6LtkEx1Fy7F@Er*!!B>;)#5GJs#Y=D zxB+y=&Um_4%E0FcY_sGK^0OXnomE>)R+LXYiD0VX`;^k`zKfJJrC^3g;_+9j4mQ6`6cze?dWZv%qG z6u2`3{sB{f$wbw<`B4D6-kJ?eRnZJLT(=m-tU*RTEwTXdyFc>rAS*Y=JH0s-LNPDY5g+PVjXvH+s5)sdLrtieHO zYy+e?)i}=br!Ogc8L0}3T|3!uGpL4qtLd?i#^>Z?_|w*V9ZfPiy8Q~Gmm}nuwDSR8 zkUV{B{0S_5?M1C){~WWR)tWHf+u_~Uq=T9A0Ufp#A{Zv|APPiKbVgc0|D~v+30Fd{ z^Z7mh*wkAes7%kb)v?i-{FlmSq^uKgX7|aq@?o?W=~0A0@Hq~3XJVq=NKq%y?BzP9 zEPr>7*j>i#-#CN$i9)a^=Op>qYIn=-kdk(rE1h4Q&D;1Cy4^Hr4h-?%U3`dgm5Il{ z@E3d$)T6Q4n2x?_O_K2UYXw0(AkjA#T;jM)QL4CG>+z4!9$unTDGvS4CwI$2aKZlu zVMCNEPU&Ka0sBx4zcncYKTz;%!oy;lFrt&aDeC;yUy@csIaTx6r^JRl3hp}U{*P|J z!XtRI7VeF)OUqUqz|SjsR;P>eF)>kPww?iBaZVhu`h!Dihm8CtPBN1c)YXG=u57?- z(fI~(fk{&1dijszn+9_$Ym4$AhRe5K_GW=;Qv>x!U`Gc9cCxLs0H-J~F@fvtE%flL z2d>1FYmnYC`wzLC<&kmjU=PI?gwE=+WOCMp3kU^AwlaA zCzOP*gdNQc&R||lvelkCfN!~sSeMc^y^hqxf#*xY@cQ{ zCthRF-8nLxNSV`u?sRFRs>mV`$$J-JDQ&90v)|V-6oUV=j)7F6CB6ly%({=(JwV_V zp{n!CKU@T?5LK}KlC|5#+3O1HC1C2b^B7LHN}snD(AUGE8xbqVkNKwg?R|l6t0|#o z5LV_ZPi6l`=}Oo%`sLxnq(O!d=s@t0QRQ5)76?xFe{SjffZ(I+66TFRzc^n6`Ybmc zIeKW<`l_v6WHiBpVjCuK?gg%FZ9TnjDA%CwOQ>iFT_=}U>{PfT{~KGB?d9`e_s}3U zFR{Vt>65McE?#(7@5V+2v7}HlN@l+MY=34OVnofNWRIpMs=rIQ0}Zz&NcF1-X!A^* z1i}n8kj-LI>%;BLkU06qE7!BY1n6M5^nOh}xyO^-nf&i0@nxwt^?oAc+I%Hm~%7_0ieA;4YR^=D?|^qF9`Q5!3?`pBZr?)tQ1%e3}_J z^m5LiWtWkpeFfRzp_}C$CGmci6Yr)g&dpn9*`AFEYHfVfDSUW??%?s4hk66sVDR1H z4+bihFvM;6@yTKwA3K&!S3)U28595#93*jMfm(&XHhd#qVpBP!wJ!{omM-nqP?u7e zgidTnP~7@UfMXwB0R`$z&dujF?-`^GWsc`?!x&`|D9NkiuE#sSk&|wk$vbx>-x4#j zC^Oa2eEw(X%)zdP>LuIlwzzBs8_jlba6^OLf)xv$IS8D3W1HJ^lT5dDAo+f;Hz@p8vDJ=EFJJ<75 zkJZ6axG}=tAe~=FVaBJcX#>wuGp?>z8Z`^St=0}!wTeZ}AIh=T!|s4`s;r^S+ZDHc z-cbd^ZI=yf7W0whOA#0rN#{CGBktRQ{`T$f-Wlt)uH0uqpNL1LQlt*gaY$iutY?Vo+eg<_HsXEA3_Rv-#yTC(5;m=+7@s-zT~L zvUCM-Y4YS(Szp6bv)kAi5B{nM$mPK!bW>*$`mBLU!oT(p`KRo&)AjO-38@Tj)5f|d z#h{q9%^ai7V`?By9dFRoJKW@$@6?Sx*_2E!k*)l84Xqj_QM~}2C>F|Ey%bIr(ItXB zY?ODj-JAO(pUMhiN#ACI%aVVTwl1Up!YBmO@TpNcyvk$jU!+(4F2JT>zhX_;{3jUQ zzj*x63)nMY9IsxNRka*UJX||LfZW@G)!^qp-*ItmU7f~wg$zMZV|E||Uq;}les6}P z0AI3LrM$c^sD141Xc1_Rp%Jnkhvu75y+&D%k=iI2BIL0a0CcFT8@5dO8@CJ@}LY^H8;^if5g>g_|d z<%;pZiX3LmdLtW$S6Db&SKN0VgECIbgpP$X(>_yCdzbI{XbK)ZUb=?}pROA;GJllE z5don&YVkTmQcJcbky9DT4u5{A)@UVTbIO0i3*J<H@GtF(^jXmzH>o zHmmI_nuh?9)tDU;Paew5^7A!=K`AcV)fi;M}29u(8<(HyAjo-yu9p>uocoD zi3WnI&a-;#&3+QI_2EYmNzhY}-p_M>^;(=j^QmElRUf}ZvSx^Ll}*6x+KeV zLcT|9T#gepiC~ge8(QMSgtf-Vn#l~jSI6*Vh9Vj97l$ZgZv9ezzoX4q=$&qnT4kO< zduWr)+l`_ZQkUDI0A+v62*~_U1<|^eJ9A%`uzM8;+&c&!7ZhH$Y-KMy^!Hs8>KWU0)1Q)fUh&E$S1&A8bYX76 zS2Znu?BNTl&=AKLSdZcA`9RyAZ3ZF+M5bP9{Aa^&^c0*;kC~~rUZa_kak6w+F>6i- zt|OyEJx1Od`sS+1PQF zf9Z-s^Em>#I<6vni4G$6cXUmDJvW6bF68m-8nV;gNNACdO@5^8W9#B|D$sV9ekdqS z+D}if#CY}TExs8K%U_wn7qOAD8;;6vrv-Szuz{8fk`K<^GPG9-VH zqawChO3eto#hfOAu)E4NE%-Qg{a`g>E(2uDcFb)fqVqHODSnFh9PcD6o+$2w7vc;CLW#cwb2pvDcg1wo^87pF08yfgiK8vj}0yLuJMQOH|3N$sG(=?p@T9jBVEWYmnM< z)vsycm}q}W>it~CLj76J@#J)F$F~!m^|41W#V!wCLQ;o+ly#acJ_`SFdi7p$aQxmi z90vXuOHen>I3T=8>ISODo>{59?Os~bEX6;+1zz+RcGcTgh;QtyUM*8k;Qd1HbJ~*p zGN_gqz~o8*FoNL<2_H3bm!U2(pOsZQDbLiLmS?w4;Na3agn(^ zB62kVCEWWR%BXa@oyEtV`P5mPn40@w;m$oF2q#ii4!6t0(4gm=qC8Vh%QXBbXHC*# zarkvHv;Gwny2{LOSM0IBZEJ>Q*qtXCJ4l-mq__8?VDsQjpgMfsd{mW1KCcGg!liI&bs z&G_!9rYD{9B$uzf#1Cnil!%3&;30K%nfj#t%0mQ|ash_5( z^Na&w?8jy1WM)o4T4v$q93H(x*mpR=9F8X}>4$CCfHEyNXvTic-A(Zw)t7+7M?U-! zo0B+n2)f&J2>J~QX8E<@nCw9MT_I@bZa#NZ-(t;m1D{FOA5Uu>k^*F+dNn?2?D7V; zr`UH?PG~w_e;XB~<*4_`|Ab%@RUo+<@@oTjko+HQr$SB8OnW4wtSKmFWs^NWh}B3D z?eY9$qa2Y<#c%w}vtXrhjrJdfOF`sYiQtcSEmWp;0{8aKu+wJbp}sf~O^QP6mw{(p z3o*R5G597wtugQ97vhxwOZOEj)15xqiovNaJJ{ND#c&Caw{&7$h~=S7JGy~g7vW-5aSDdvKLiJ#baeAbly&Bb_YO%8NZzFrv+5| zET{0amq4jT;2j=h_Tb_nZqW0ekpc$A`qZ*QKlNK(t=RH>oHXQ_gn_i{{^Mu=lb=18 zjRO)vr~*g;Bo)CZ%MY|A6afS=;%+e24oH_pFz}Vw|VoDBp#^)N$t0Z)Wg5{7t_wiE6-csb4jp$ z1Yg}OU~3maQCtk?quU*J6(ke~`yT}e@*iLYx3NdDs>4)`8b78Q!?jqIuBn<8quk4I^%e``4TcgIHL9?aY=g0ks6~c-DMKS~V^h?K6ua^sc%= ziFE+k1a5rz&t?59Z7T7d_gYHQwapJfr|TSKkSRf zN2XxMr9-+g(CZ~s;W7jpV9NXlChRyXlc5GSt;Vq6nt%Vm%RfITl-RP^;QMzYxxeL2|FI0QujyC&Jf9EtIt>+s!3%=2K2gxCoA4$^jDE|5H-cb!?uf+loZ0 zFD^c@vJ!a1<$%)0p(xPVnPU??0uGKSQAb12Q~pSBFCR2{q>5L7$p}Scz(PW>S8isO z4wZe8vd~$7oMjs1mtG*YbZtNx{KtwLUxDf{@tu{~N(uTz*vco&2k-Ld#~0b{-9JC~ zk$HnMcpK(~=SL>_COO{ea_{}}yiKbM?o8 zBJKDGd++{H?f&@w!QL52GHWOH`V+71(`ik#~B>Z!v@f9#@(Ep2IGGM+UVD;2^>5 z(PllV{T=h~F}raOLQByE`JY@3x^xr~&|JRb-f=;&3)R$nUzA6ZI`P5u`$HQik+~0> zi-3Wbd?;jHYvfXiO0?qx-T{BKG8We5J3yq35w*saGk7Q`?k0i9{(twE8GM3&$p~O! z;S9*l0hAtd_6?(#tO42mw`qspawiVhVN*dom@3mSutOY)M*SU!|GNSlr(%KowiPop zx59bHygyN=(9UD^z;}7&X_JjXK1LA&6p>k0(*;yG(R?pJVDW&QJP{6p3FDvuEh^Y% zDCf!e9smieY)p-|3mA^1W?blP zU;E)q?bj{;(3@e#RIm6&Ld(7M+cxB-axJf0fJ|$n4?d%=L%!n~47#)@GLG!W%6$AD zH&q1SVfidt1-O2g073D?h1mngB{cWGB*_f9>0t7Ze`7`sgh=9qP$?9|g#&X;A zhs$X}1dJE*JJCz_SW)OkK=utN8*Z5Nuwu2t%a$pfdw>kh>H>|6toEGtr8(SRxwG!R zj7)0@XkVdVze)GsN69o7k8}FsB+|_xUme((ZKo5ktAqEadCQ>Zmf9kvS{dkHli11 za;Tp*=!0-$8DA<&JO)*Oy(#~(SpJL`_|Gn|t9$a6^gO+EVS_bb;ECMOq}>nMD;P23 zTf1P7i?k^8yq?;JBXpc7F03<$O>%KhM8{saTCxquW&5wJ^bu_Bl@hMGSi3iq;)QPw z)whCG=M5SC?fs?hn9g|aE6$v=|E}Cj6GS%nH!uRoxl$Ysz4G{xjH5)tc)Rx01jmKu z-PnaCHvA5s^}~ox&+8BtReXa?;0BPxw*xU|uGs~)48Q#T--U4J7IvD`7AW%t65V1o zKr*p`rn)RLRZKq&I7r5W0Owz;6jJ$$!&G3;S2PE3TClE3(|X+jLz4ox`^5v_YZpd0 z9A#K*x5?lCL+}F};os_Dp9(STz&cV5{``pGy9$vq#D&GO%Rar{nGbOI_LYI=Um_q^ zgTRXT#$PEexLaGqC1%a0GtflAq?he^Yo;=TLw~4PYE? z1U_4LR<%elm{l7lAUF7+ghEbYID#$o!i3c;$?0x?C|Mau8Fk(KKA}v$@(cP+4L>@& zLTuSFm>cT>ejudHH&7`onc@xdvC&QM3x$8BYAn6 zi{_GpT5+KsP?Xi~_JMBl%7Zr~wYW_TB_wFul^wAD+N=00go7e!Bz42&AAL zJjwoj96j#FSTsdn=|9^&E_e|SX$h7YQyYvg6N@)ltv{Ijf)$*J^Ccwkw-8P=*TaL= z{9ME8q6+h`vlu){&|^;_%s#7Gm|HjPO<{sk4}-LDwl3i4y$%TcL&4QoAyPUKKnP@ zD;B$Y9{i$Y|07*i`T$%*?oy=)D@@}LpyhT+Fgs(5Nw5X1p%?VXb%NJ;!=^}V*8efE zF2e$~c$YgtNrD4YKd^W$!nYBXX?M2L!#6P-e?Ok*Eg3r4n~ciD zvMy)hnhE{hgN~fQq$!>9xC~2;_$%C@7Z3xsJ0Y$j=gf7Y2SS{I)`;$)T^`VlE75h?- zN`0Z8W&KFPhLZ0*n^u1oIzaap*U9FQY)$~YMqYoiZ^Bv7=?o85|F}(mvH#NpGROJ< zN8MX~Rk^ic-;^LAqJTknm(m>yA}!q^jg)kAfhdX~9WGkB1nDjT>F!3lyJ5jQ7kl6L zbC2=<0nd28><^o<*{pTVYtD0?=W+ZFYjL+rkMcO5Xn7r;sb)0>jb8M8LBW%#oS~)3 zW2*=@8-X0{42OBMMS3}|23K3zeJHh6ZccfpahX!oda7P;v~Z5%!e{#EWd^6;J|gf1 zgb~P49U={?O+fR$`TC^&pPi4^o_9nF#xAjk8FWT7G6VaQa~bo$mi#>}KcG3#0aY*+ z@GX`#EY>)0n)&SVM39IVW4{xPIgz(Sw<2v+2cfQ01|zlZj!?35+F!6yO`xon??!pL z?o?X0I3MmVoD4KfXmB(nER6lCzwL9&ulQi0h=Vs5E4OL&^^-N*!DqmZ_k!P0K-h=p zu+b_@NusmP^K_{#JZ))e7o#hY;s%LLA1_RcA&)TpWF!`qe4|~v+6mVEonKZ)=rB0= z+A@7e#R`&|p4zRm6YQ%edFs_!Ecz#y8(9u6vH76*9-)AozR$Yk`s8v?SRP7)0cYBr z$MN-RvpyWMD*lr`d!Dr4XQFLrwwqhcK<2lU5j)kfBkcKN#-t_GeL1M!TkchW(2oLh z%6~3Uy=VwW6Chw0rDb)(Fc_e#{m(ehaGHK+{g?%2B-@KEI`C?~u_;C}m8ll$vo6t<<7Su_;)1pz^T8r+Gr9I|FA8bP z(Us#j)9!K66ou zy)x(bz9=PNQ+@4o<6N3pJZcZ=w$+@}cui&%;#k~RE`^4)p1==%;M=9;!gHRy!$>KJ zI#*-Pi&=Cod5~qTmq_&p9!7bPR`tY%XWaUTy`eMKz?-$=L;AX_N!#dF9O}*3&5tH? z@xCTRO8_*0y_5_Ct11u{$LU&k6(Db71GP@s=?h9$C*PC2La3f;d#WOqz2Rz50Y8&4 z&l&6TiM|`<(ux;imY!NC7MF!BJG8vweqnGZnS~-)?v+uw@wDcbd0{^B(Kqi5-VQph zrwsAuf-JUp=pB-mLGY(cXDQ}?pC<&XoF$2ckW9$uuDx<07~gv+Dg(mE5N*%D0c)d+ ztmjs8vNXPe$xo&x2;VKs@DoqKWP3%$x{-thz6)yMaW`6KvG8N zk4Vwee6$5Oh=fZ?^{zMffRi7+VCdcpZ;_i9MlD|`1yJ7fZN_qDk#NF3&?zP{d7kV< zlgnkr%)aOG{vkc@6M{>WKb&dfIZgGdChV!z<}zFZcy(^-v7o7{F>jSHb!uNR6HJ=mCy*4; zcQG>WL?KAhEPveC-|t$`p?8^4eOG|(V&m|VBj>`2XP-S%wsWPArpP#)a)_3M862}2 z;F}E}N-nZrq_Z6Rt47TA6aJL_`@`+?q)w{~ih_2TNN@Xv^bQV(VZ~zOHU+}xUKWOl zN4q}TLH(9s#xnEnk_JU%_U4xb^mn0A^5%PY@Q*u4mMcU!*8`rlMv}?*r$uVX1?nfo zx%NO8MV9XF8vXigne03z*Dq-d1IzW%jFO+O^D)bBmkU5%(na7`m3e`Y77o_oPIEIN|$Gi9aCQ|Q)$`g;a4|6P5 z=>FrH{gUWWUj%be^@p513PBO@xg!->6ft&O>P^&1^4#IK1ae^lhBuA%zo%h1h(pbS z?m=5Ow66PT&*-M#2Dl@A4t^b75Md-4wLx?D{3gV^BZE}3o$R5@KT z-)Mb$vC!->y}`Aylre)%ldRQ2IX?K!6QPKgMj3e&oz;Bb49tun|ZA@YJPaLzS63(JN%Q_@3>^dtlUIIgf z43Kp>nC8g~B(e%uIkQ$QDEOx=PmT2KEb?v;Z7y!x4INZ^+_9 z5{kgxGE`})#eeag?==iFVH`#==cMT>@7}GDyMkPww$b^K91u%0utx54_Jh=KTeA(Z zHScAkSVq!El$T+3MTHV~eVoNv&LFx&>s*Y+hU>XFN(!sNsR*aqhgD&&V>wFRDYY&U5VIFEO|S-c}=3=3Wr-YxxEV@a51q{ zwI&r~mW@sV&!o;bHtn{ga9nbXP+DggLkGvw+SqlZRGWW|=hDiUXD-fM7w+++>tLwJK(Un#OM=ro!|-q&`z zaFyEYTlE%+H1Hv!y>J{}I$vGduBh%B?!dQ!LiF>lZ-^OU+4Qig1(W~1S7`ZxV5jj} z1E)2pzv<_Ea>^TlpWewL-V({;$7=)BYfK`DE*=?USpPjT#^E1{TnYS=8;Xe(=LSB~ zcOwzqy`b1(sCY=~pTyV_xL}aFJ%|u%2`5 zCnoy~v@Y=%#~WxndE^0JH$S~DM`C&EoPRx93CdjAIon`%DRNmM6>?)3r_(-tD|%%Z z8_ldU>T+QDK&3x*&Usk(#CqZb+x?R&)s6@kg86pxfIt_d02Wi3*ocMJuam71s1fg0 z#r;bh<$H9tRnoUr?T3mX13HEYwyV~XN{3>SDr|_GZ%D60IcXR83jL%Ww#RZu*B-uL zJiml`Ox$AQ5QS(9Sc1!xefrgG4Xoo#>_;%BV^77fhb6q7MJ2I%JIylSL} z0UqX4f~aTW5X$+qP!txwO^j{YgsGDUE31EZl#)0GcQm8kB=B&W{q)AYASbm>ANsV} zn9c&@>;g7K)58_tt!D9xq5N;!GV#_eq1uyiNGZbr$kiA}*^H8jKQvF%cC=*|kF2;8 zCAGb2pO6;6t_VaP`hq>9p2DJG@pOAqK?>xBaB2vQEW?p+HlJ)98HN~t^cpkvI)y)| z(aaKXJYu{vqrmw92e5vKc=lpLJx}lJW^5C^7u|fb_zGwHqA~hZ6mb{yfcl5@ITOFS zf-{zq_qJpLi${e1{lD=|<17&TLNXhUKtYj82!j;q_%eYP7`IFw3Wx|Rodfly%!!v& z9Lu%NyI>+Ve)y(z{xft}U0#UXmK+{0XE!cEH+B*$-~6im5ho{3D=*pyDeALV@s`W@ z4=g59tLn}NRZh8i-wP0RC8i=Hyp2WiJkHNut;~id)cVt1hKs#gu`YMcLKRRmB?TdH zf3p+CfcF7;m5n(Ru2A@>_@x{t<;R#8Q$5U)UFZtNtY{@>MFxs*qPr33v zrAD63XMIpuC)h?V`Ut-mZCbyd|4*mV-4EbBx~iDiEkeFc z!F0z6Hh+F_hg0_EB-(T!CFbC~>ruwA3ZeW7HZ*2F<9YSLOW5+8Ds-yo?mo`~D|L$1 zt@0T<2C55C1MOf-l#0G|O}4opE(HiMrNJy*Zy5(YgTo2)V|mcAr~2G29G7OHZp^wl zRv0@~VJG-_>QwR+g9G%&)S1-t4P)U}naJ4MT;DBvCY@cv6)dl_B{2-^_AjhXp5a4u z3LJ0>43qvbgQ?vztC5Hocd)CSzqYS!4&b+P``2?dO8LKY*}hOjkCzk6lWQExPWCB3 z?!PDdH!;8`3)U+~{^FfIn%M+9<#n3MSIdB87A+2pf&t3~*PThz2CF~hAObj!%k6bn z_e4pe%^!zKBWPJ+!R6j}9$<bAGA|o#jApxb;MF^|Xj5bYflX(~J%bdC;$I zEdK8b{%n6i*kSS6et5tqA85m8yZi9PUt!-Cg&8e=s*GR8% zYN4W!9@Dq3)$r5!7#`d(@@@U;WlSw_n31tR7`VP?bLIy}_9g;qW|#F8IAKWf+>s?; zG1}&l8qu`Fh@5$m&7}*Y?po9Qk5565C-j)U-+Mu?03}7u-8`kf`HqyrX6NEUBI6`u z-=moidylo$M_zfQBqB6c8Gd!JX;%!`aqIm>kt8Bs5)0o&l5O?K5_t0$rCu3?E|U20 zJ9gICHP9xXtTQ9VrTFynw0c|2;K70OOg+6n#e?y;F!f@&{(^+ZvO9q^2-QDv9DM4r@(;y8H(h8i)%{(xY?Rxp4QMon6{IM{{Ah-r9nOq7^P?zCt*;Rbe)dz##R&f5 zIC|X`i>iFF+c4L(GR_td=rw#8!bRO^26My!W~40)BChm|S-6~d2%KbBz{s{~4hqVg z7I8m_O8k6Meg0V$Jigu=$`OTUw@%_k!(VXUn0_jT6;3 zX6tJFHm#FiWk9}#0#9?@ij0b_&mE@d|K3Fs@V*Gfte<6zW8|}&72^5c5`JejTY57I z1W|Y*wGF?em5mB6{Y)U>nHzP{;h*SnA?OI*uzLm!EMqp&ppx4IwTa?~pEDz0>*#(N&)7<`et|5f< z`#l7Gk~L^1iiegD*sX+AeBCGReB0?6IG-;=U5+EHJ2|eH`=q6ph&!Xil{z}YY&n=7 z0s4rLbR12factwM03FinAeVYedRQ88i?sQ48wunBYtoh`$yvS2j6jZ3Nx9SZbquLI zZ=Z?mI0&A+s_?Av-kzype?JvQ&ZbvQ;Gp!e-YV-aMxAI>T-j!)tN-VA(DyM}FE-_= zD@!AL!lwJBzi0xuaX?GV_0ExNQOr{K11Noi?@!$n+VRK}v^&P0)Be7vGWtVwLpdL{Qf@gt!`z%hCK))$6{;f&C@g0>( zgom_}`n|1rBf*~?>n@%oYLHLeSEa76q_W-ZQKuqB_-qY?ry2*;UJVAF1axaH0`b3* zhUIEc12#Z^3QUbcBL`lJ!nFMIM-`dbqZCO%88gwd%BpEN$Nln6durN>fa^NlXo(>i@ zGb>lvk_vwI?hm&}KHX$*fL}{VC^q@r&H_akQb?(^A*V?{Db^6){eU*P5g#J5Q4+u&zcwi4(HRYSOL{p;)ws4Q5a~*=h({im3vP+49K!?dEP5 zeCU8Ld}M5qufU9e=-HcSl&{*BqZt~&zscfoDeRaj=Q8Das;kIIIEh?hhI5vf3QIp; zUK7N!(UE%py`amXVVAjdTk{{z6qw+kZKn;+FMN3nhXbRbmNZ_ZWfJwfcJO)Ubx^c& zRZo7RU%s}&L^=q^CQXc+s8*8&%xm|rTN5=J^;Z{G=Syj!3F>{%=c+>*tKIffNn4kl z7N4nG%y+w*?TnpcU&nwWA_f@!yGDObZGke^WMG>Mz-^^xgdAFM|L*iVI1#Pehkjpg z{4H}sa&UE_CzwDd7iXeTcVuMcUczZP{=(7dR+Axi2C$E~-^~o0A$ZQSX6U1@@R94t zt4Pv5iCmfO&I}r#-z^V?qh|V^Z%huHAHK#gHb+aX@>O{235JCrea)1s(DLZ#tR83a zArSpIEOndm+sw{*>jSTh^1AA-CFocPUhss(0pv$1{#`{VKwbZm3q-BW!*d#`22-*Q zR&egoOjcRNu0f}!T^i%_csTbR2yl=#E+s{^ii|RPgwj>C*1gpNj@D^C%dJCtsJ83g zG<_H>*zOw4l?-}M&dG78T*@5n*^0gN-YUA|J zbn2(8<N^kbz53eeokxNK zHqi2hn!;2xb8K>tR~qgUX8|^O&h7lQFNMLGLo@}E2DNd^QmDRMd#_hb4UAs3g35`r zA%UM=;uTU5z>A|Nygl_neegO`^(K~R5#ehQ(w3(2;+qV$9%ZHY$QD}RknaJ;$>HV5uKvY))h>|WYbG^8_e85on=avSt9N9g6Ko%Qqbf z+?PuWBk{Isd@nm&lnYCfxfmj49nuwdMnw?v*t=+t5bI$lme-C<@Y|U-6dC?UZNLY$ zN0UT*?&Aq_6q}Z^8IX($;Ed}HHRUx3I$;&0P%nYVU>1G{lL|N~F^@IDHub>5_ZQth zflD_>YopvRq=LKall%;PXs2Aaeu*o?FHXW$bChA-eb^>-m=4fsT@uIJX-yyqOPV@9 z>Vi?fpX$*mmnqBbMfHV_NEDwi8eRH0W$F4B^wGh!kQ^j>$SOhc`-IkU|_RaN-Hp!`_|w0bKqo-<52qhdp}9|9VE2t#$Ux% zSkPYZm!>jiI)99dIXBy2@7YVs(69Ska5Y$)W99l2?l2-D>D3L z8AwG1YHCYD9_#NqmmkZOK+|GtVWo$f=clAan+albc@Wp=7x~0=uhd!j5NFlkmB4cghB1BjT`i^Ka{d{fza9yV(8@8&Z`ItlGsb_foO$3Vi*# z-asZ`&-X+^-Joyo=8Bk))MKtsBpd{2k0X)5^TkC4kgUUC>cT>jAih>3&&-uj2r|h| zbYU%poA)HKvg$O@*i5-TXiLcliBTP3C^^y7aD5_}<*f;lTQ>A$v+k2_3EteQ^28cr z@4Oo;ut8|lK6o<2uNP#r}{v$64?KI98qd~=|y?cLlJsB=f#enI~q07 zquo_dv1@T$>IoCU1D13`H*nAp^V=z#3x4fg7BOCdSP0>pg%Oj%Y(oy~5ipne zBbZ^+3sQq^L#Yp7M^KNeux1s&Qj|L3@BA9goUyoB7_X2!93t5?i%%=}ln-SuYaq?^ z5T1WGkBQDH=mh`E#6?CZ)IR9Q`rSH-opvmc0(*xDyDf`D8P)scJ%0uXB@8Rg~Y2X zzCi`}8egHpP=<=yHx55hfs95R&O|kfR_I|%iP^TcmIFkg+={hKJ~{jlDSawmhx}Q8 zwo^_7uFVtD$3pK6Lhol@q?~>(X9U5x(FnBx4>LfUrM8V7OzlGLKmm<9R(1HJE8cG0 zbBR>YRp#=3VW$#jVr*IhN7JEznrELr^6F@PS_)x+K)guO$4qu9PQ?nV8xUOk!eJ{9 zE)E#qg~FNoc0CKKbsl2B!i|alHK*@MBKN#IoAunCxcmXs;H~wa$9@1agac66SdJAW zZf9ZbURxtn6%tZ@#4B@Uqz$3bFnR6v^bKc|#nYF|2S0q*KPHawzRK5(sFI=0IqIRX ztTqady1e29x<@oPWYpVO`<@?^>whJWqv(L5N&)x@7z74;)CRWEan{&(kGD*vdbquI z+==&69n*KG%eoYFQZKFO{0kdMOjhTdTxvlgqs+|>&Vx4H&B=)f5%20ZyoKl1I0GTY zkC-(&+Lc5n!rg!>ISgn^<3bX=0UGKN;o)T=PuWrbTc|l>>@)eqB8%2pXu2F>nDFZ% z*M^%N!NI-+l_B>E3wY}G-Olfn{y1KPQGRuzYnCc6cjq9AVUMGo5tYeO8+Lkygs99O zok`&-FhvnSFS0hRwxTL(+dn%UHz`xGw<}*4zDW6-v!c8=#w+G0c*Z5^~BnzaC z*2(@S(H0$%^c9JCT|R+kH||mOWTa8YA?~l;n(hsEnv%@A=e523>ABuIdJtP>FjHwC zSv!|kA(tpLuzs{d={j1UpeTC%T4eLGY8yZI+L|?9j{)$zcz(4(Mc!q(YU%MXBN~eV z7BK@HBEyZbA+xu+b1C6f=!~>BaitE8!Q*uvz}H!8=!bIf3055Zk1Guc1sMhO*`k3C zqytC>Y@i`vyV)K-etT}=Ytxq`ynH$b#pbX0NMqF8-mDcLR~n-SkX)PpfGt?Xk?2=y z?g+pjQhF0&6`1+B4-T9*3wBOde@^^yp$5eS>0ri+oK^eUC@&^r$OPvu2-?-vqWgBE z(iz2OYInhvxES+O2h8Vyl0Dt0uA0MVi(I)@^LgxNnMi>$oDF+x)jm1zh5VK;51XAP z@8OY3KL+Nc_!IY`%pMTWs4X4C1>4ScXM*hXEoX{9m3mfv+rEdjt@*S2;$idWiCzIc zfLT-{u1ur;EfD|E(!)z5!z2)o!@AwD1DIrIwzeipid)jJMk(l=2NZHz=srz};nS#< z%MnuX>An5Opgd3M=L5fx218F%;HXyqeboyJ=gyZ?XnH9Vrxz#N%yCKQage+3^Y`;& zIa(!V{qkqQh!^>_A$$k_puP^puU&e z{yA^zYvo{k`anKr-dCvgqaxnZ281}raOETtK|2)&QbFi0|Mp(QD8$6f{k{u0=bCUe zkVD*@?5dn94z^R}J+yt4k@8^P`6ty|CrIZG)uIJd=F)a!0m;ANC3-E zhi-7cVJ5R=t6fPtlIPn}dy-y6-2JF*7SJ?^f@7Qnxl9spJdAo+7dSkh$f{Ez4fGqR zStkw^vy;-<;-VP1WD)5rX6hvmTSK;Mq-zmOF#pu)9@W1EoKut!Nbdk#j&VuCG8jt= zsD}!;`}rz}?*V$?SF;0X;5Jd9#H=U1*4-_<$>e8^Y(y4Quuw=aZIgDEF zS^^?|I+k^n=uCzgeJVotT+<``6TRGOFR?JzneHsh`G(N;In7scsU+5l0BJad`R0&1WJWYX+;H;jE%=E}jc5 zgGt5oKGP$JFzCKfJUBCYo~EOYIK*vv4`s?nqR=&y-SNxD>n9XOfF4jCRiWR@kdY&iLpUB~B*$z8auH(i#UahI3Eln-DEv$5`SHe8%O;+**R>#p}^n zQh;BELzO}ZIbpGQ3l~JNXek5Y;vRLfLKb=+r1`_^V@Mir&4m183h#ec;TJh%90pPj zlP_nNmt8;!WmP=$vxwb%wSPd(z-#{#Or0vUME-W{|4}w2+dzB3S_DL@-gj=$ToHG# zLV;})7^o%pGVL$yWm#vxVYyZ1rKm_qmKsn@^6orjI-|MpnEqK{Ml>i6X%Z3>&yX`?;${1 zr=VD<0{wFqJn8o-O1M5Yfe!Z`HpNAB-g~iUwZ_iBIr8>hp&^HtJuQN-O*;Bt38V;J z3S_qHPC^(w!@tQ0;aq^nd>0HjM)2 z!m%F58xv!TBD|{zPbXQ0uR-$#57KKPPUL0lH+|^WG^btXm3d9)wPJu$%wGA03!yXr zKfh$p2^r^vaA?Q?%T$q+_Au778uwT#av&U^dr!d+;ojQ$_&lQeJ>^Af?IE6Mx%xw- zqw#G1hlsD{_WSwgOJer>%|BSF-6H@v!jGU@WeWN5-})15M8|G-jHWr4_md(@5T7`d z?ft)6ZExX=0X`HU)SU;HO+0Xd1p<%cQ2|5QOA0&$$;2`gkJonkH6PJuF$xcCK-QJr znXO|6B}35cqYRh3z}X1YJ(31-f0A#{Y|w_9K0F&eJ~ zSYDF84Qj`~RMY&LcC5@?D<023IN;`Vr zQn~-6-E!oPj1>Fa2AK)d5HWB$TTpVo zrEmjvz=C;f5iTl#p(EoWtPK9_WNK2k|K<)@`9A3XxBn|@#9ugHgbCzooP&MN2-|@3 zMpObAi-d=eK63U<$138CeV&ej54}Yh$be{bHy@6)o&M@laQ>&Z|L;4S8VJ7Xfu$F2 zj@+dx=>-rfqgpwrLj+ir<1gCAMKhE~HWubmls<+E0ud>rQguETxa0r_zstwa=8#Yg z!^4#x2QUO`^HlB)XvD`GuX4-+!?!cc#Ka*g;PyO$fDRcXID6O9FI(RgqVxl?LhZoN znAAVP&x#VNA%8<;OL+N#CH=b&t zc=V;gV+hc^#OFaFeL|MpsA*6+S-KC<%O|VwgXJzmiuq#{5ReX>P9XT<@S@zq7!?yj zI{1@E@g)m%rSV&ICbZ@l;6y>k?b4Tpi^0viRWRq)`b{s>coZk2=Nk)(Lz z6SSi_7dS8264>vq)m;KiG35Ot2N=CVAG#r!8IZ!E`p@PO+@l6R|1BSOE-T8(=lQe( z$8ZT}QAJhqIb$DRK>68m|LxbBNygqN9NK2^g6P40WbcC1)3d+sNdzIyC5$KoGGe=) z$E!2;H^e`gq)Z=tF+qmA>Or%Zd%-5-ZBBeBzGV1LPNF^g`1B^wt?$9DLm9?-%3hJ1 zkGocXzH`~=jk`5>)9-@_6v0~V0+kx9rNO7}_G5n|x{&=7ObF&NG7+3oA@q8rz5g*J zAYQb-yVjy^ui}niR1LjzR9WnJTN|8Dk^+ERrSyT@Mow+HsQKa_`BZk-uOe&lT<%cu z47*gw7Q)(JqvN!38Mxt-lr2&(IOd1A0si;&X!Jx=$k$@#OtPb!f-YYcB-3t&oa#={ z4@HbCu9PNlS7UoweeigvT1Z!9Tyy>K*2E!Y|IWOB@5jqjn@B6wLfc7g;mOg^um2o| zdo*ZHOa;!HqflTb``9Hi&Ju{mECr^X1!>jKj$qr0#ga29(kUn9Gd4i|Qy5Wv-jm|T zQI)0F=F;0a7|?KVm(CMCi5wUTjwhvPf<}+kEYwPP`6BmP5)lIzDC|k ziQkk|R(*2z&T8PsB1Y=Le~!c@aL$)QkW5zJ=)G!8e7Y#GNTk7BidG?k?=Ir6)Taa{ z1SkGF`x5V;8&d`x8o3lcbbgY+&Pc0XTd6&|RstIqu?jo)te z>1O*|3kEzDQSFiXKtlSklJuW;FO`%SYArUPFzb}tMuX+l1t#o|R{X#VXkLNvjX_b& z8f@L$Y47|2fU~n(t7I8yEbv72g)HX^Y*Z7!F5YG=f_WDH13u7%_u6lL!r^n}#{bsr z*Ilg$dPO!IBCar8kuxy|;BIo@o&DW`K4t`f&0tbqg@Aj+Y&ch&vR7yOFQcCdTwzp! zd;8MCVWfcbyC5^1gH{gX6&3{I1~op3#Zno?7lr$u)JQPt1>B2hU`K|nlblR3tpdeF zXDqv2R>yE-3gF?kgSnt70A`=4{nX|@ho8;?5|yucs`B#DBinL4B9FW;fZGd!dN zhd_c>PzabIE#4o}cH(*LEHMf#O~I-80x4`L@6Rot8hC6J=kp5dBlPP$I!5v!4IA|h zCbitxKVE!70O1{Wruhe~#cr++LkUwvCQsynlr=d6}}C!+TCWydDDST(4! z9>X&|B>R1#a@|-%^F7|<=51cO2 zD4;qdf(q<;GkB5JY=K=4FtSJaJhyc_8MqmccQOS!L(yNG%Z^a?z zm8q@VPcPyRElE{c;WY1y5%xUk?1;>gQ*~$KRAy`FhHtWWK!Ey4z^2*0L!^CK8fiUy zbqAp#hzLb0IMDUU zWCjx^lKKD35Uj*I1N^`x5N`Jv=O{;`Fln2Mkwk_^P`*aU_|HA}-MUlj2mPFVLezl$ z6Aq!6E%6~(>30joiY4~b!8NGZVu-TJd9`3@CN#N*irUPsxbSL1Ij{i}EmvhwQJGeL z-iciOwj!>if75j&eedF+iOaA6#TO8JsKH(P7e;|v$;wOmyA#kuC;$EneKy@nhWHBW zayX60EMjU{9R#nP--S$?18|C=siRgJnW%m}kv3-otI-m{iE-VuJ^ z?h#OtOq;*BSw)sX&S0T;j%crdRmhHM(Vzk#ic71>P&w+*ock*2fJUxr4w+G<*Lm?h zGNExZ%#FE*25YW9H&C|GVB+n$F1*wP$uWKwtYH-L?>cnLib=GfQVFih&=QC9y@wNg zZr{B#*py#8a9dMMY>vj9F-8bZeOeY_0@s*OeK(CBg=CRLp&MOeLe3M#bNgWi_a7aH zW?X86hBaR1w)v%;FITlk_~)dq_&CNd!VE-q#|(hgjPn2Q0Z?XHyH?3m07TP!P&oN# zTvvWPdAs`t+eg(n#qPgul+WRz&pAd&(x3)*8uwxoT=kioQbe*Pn9ECYp7LQMT`Z5y zSqD(}xGgaNla8ZT6i9NGE=&AXCWTF8R6NOV_1bO{IoY)T%O9aiM z>k~7tN$*A-hfS;P#IIEoi+FUlDVO=+HLJ!mHDw+MqO&y2yql*?lh+d3m0a%k`j&q8 zoAQAJ(J!)@YJnLY3^B`rU_sNaC?AWO6!;TL45?3Bp0H>35l7_D-T-5pQRtz1sBII9 zuhaYlMxAFDkd1suG#}l<$l0%P@_FfW5gJCjRP~|&SG(`aQOQT=E2(V^EG>h76&cVx zGm1cBENIO2CQJwo!I)aVK60FNN(?zdWSoM9GhWX`nv&V{QlR}C;`ZehAtu0CrcwR3 zb?IWlvDo#G+ytj-b;3k#t0}&M-89RE_C!UpNr7sU*_}@1jN%p!Oa_L#{j!~XV%aEQ zAVWdq<_Ofd_-IFwPP>z|?`t41X!xq&nUSFr+Z!r0mx8`i$}P@nHTJWjjm2&yjQzst z;Q(=E^orj?r&^wk@c-!ROQ$|v^*!UHoq%dwW#eP@qq@z=JbMgF8`I^dY+@|S6AI;h z2inL_?pNu2pW|-KoV!6E-|qZ=zkn&4X`)-$YV;@P1nxCdKH<+rtXwDHykx1enXj%<(PL?yaD>;+Y|jh-1PT9KBOkP-lBIws`JDCIThfxe1y|N%I}a~YBM#OIJ31& zArF=06Z-!NA+_@Nql@42yOnxUp~PWkTP}N@IIj&$!pZ@z=~NXb zY!r#H>DDsrLj5{GK5g^yW+wEjPfYt31{T_1)PK4IA{2WSFtbt+Bg#{$k(E3K!<}a2 zcU&nQ@{49rdI9QHYVLQ#zqATwCSq?#3u`nFL`|_eZXhG(%j#ct4O=iFwG)MS%Ggj6 zXKneOr%o14q9>1drSUrSvtlsObJ;EB-zWt?eV(w>hP8{h@zoUCebkBldcJelV?XN4hKmbg&uQ}{Mq2?xCaE)$5Ynu^1WSJiAi8LQvuI8sa9MK<$X4RT zvjz?!_Ho9hS)W~R!t>_$Z5xfQ+h+ro%_}{Lq}KN@z?@iS%vN~GAaX`bD%LW-7?x8p z%?fZ_k&2=v@w`?SAH2pl{Tuay2pCzm^=+vOU42xppOd~J_c_Rsix+zSzRsuLvfX8O z)|itPesGv=NcbhmYP#J-F_&>$f1P5oBa;w{oviTYAHNoFSaY)Wmv2+giJ zk#wAJe2JdsP6o>Jx>7wZW<0dXI78U5ne7OWI(I=~Z;{1$^Lo5?9aoD)r53+>zx;hE-#-YlM@2(y!2E}{HRw^9 z0aRf(_g9l-$!kQ~t5F*y>ckxA+$`v7i2V?jH&I=Yl44QmG3rK`rP| zrZeZPe~hqS*a|wWy{R~POO1GHdVZ-@gB?-;!3P*p?YxP((g49nqrfr-{U#Iilzi1a zOLI-G5Jl&m*$(`#ovOlaTvblUne*xAn_d=*NRQp9|wmKs)iaLd-ggtnwB5|%Rp zjvlv*!Z)s1ra#P*ye@x|4W1v5(E!vr?wy-8wvc-R0B?!)_-c_)7ZletI_17idYin~ zPAvCNJynlNB+NwLR1&w`|L23aW&0|yHjJVXZ$=r!RWV@o*pwIj0K{TkQ9u#p|P=O#~b*=dU@vg>jhOb1rjXSoe@`_5wV%Hx>5f zdyP$~etCl#^2BHSYoCGH_>Rv^jUC7c(&gK$@nNu3R;*?M;JsgoI+wUxu4P);)O#d? z7CfmFj;ozYj*fYZrQGp&h>8>3lr&HvW{rZ<2?!K!Mr0`xUIf0qWwSXd^e_RN>Z_W! z4LA%A&a=Npw?z%FA3UdSU~Azc8O_X>YFxYnG83$JmF#Fh&{%#Dp{T93`;P?`uIP`OTfM5=l&2%s)ie=1LqbxlAd-p|D^bza!U_a3!w z%|T*d7Dwz5JvH|-extkSFbzCybv}Hju30Y1KKwdmfO!evhLZ0FE zM=sQf#pM<7u|R-%zr3+?v(z$T<-o6$8kTn+(rEnfOFT`{lGV&_vs3DU%9sx_p!%p$d&iTJ&D_O7l49xcB!n*`V!8q(yq?l zS#?DGJu!c8x5e&_Xq@1^Oo3^=vVz9Y!Pni~hSMo&54-?mm)?Y0So8@XLKQ5<+_? z)`>NO9;S3ZX;1l;6#m1Nz+R*v&6PN~wo^YNAW=WWojS#kk4a;sINOBmM!+)}pkF}bsGY_3veV0I| zyZp31aGOuoD-^YLubl6efPjQtNbn`^Ig?&4S7JxE!^(nWVXdM70z&K-)ChurO~;lj zl@A7bX9sC79)3ooWKw1}@HiXzqbs+vG?Y0kGj$kJA$vMObiKC6VDf1{s_w;o1g%ly zcKM3?n{HLi&FC|=x85|g3m?g3}sGfjBi?PtccWkO2Z)!=jNUAsW=hOLGnmi*tu+J8|O^A8qjOd zyY9T72tmJ3MkN|@xnAHn;dguS7W2Yd;<+KS%!S$TL8g1pIAM4bm9d9#VpzlF$J5Lw)R^l%}5xEma5opD<*dAwWlL7 ztU6my)yl2^a^6U;);s+^2L~~YXQ%1_|F>%J{}zkDZ&xn6XZjhknDnxA z+kr?|G%K@Sl8+3T_Zjq8vz*}i2&~<4Qh=_C1^88IK>BRf*o$y|#H@};PVV~KEF}?p zN6_`Umf)GJ&m(4SRWgrk|D~SD)qe>Onj>KPlvlg+cmZvKHEaGT=NVaC)5CKn*YB<%ea$8SLmycBc z3K6ie03uAJI;+ljhdSmcB`!E)!!TZ}{wt9DD+D+vni-G~+^v>hsVba+rStdMNA<6lohIgPboM2-+UMWq)9V~QP zdn-42oefzFU~2gg-IQ3wBo)vh<&HTD3tt*_yR|(@@<2h77^7={v7+5?Nvo-K@C3l8hzy}B}=WJ zUrf5b|It$mx$W(PtFCDy7m`KOZ%H2f{@U}y?eNTR#PpiwiJ&%?ZSeXzLei{O)bdM4I5M|(M2c`p7O zq$hvekE#0^1(hcDJc%Q+LsMEDeB6Tg-ALT-M0QF@F5DmcaR+OpZgXTrofkjjAe$x@ zOzoYrdB;`<w^8Ib z5$EBY9@yH|T-6fW4ou|ff66t6nq4qPd=|%{zekMNPd=mc#BoReP4;4{{`hBsRu;rz zQ8e3%pqU9OvdMY z`N{fl4x~~_3F6$CBI)EKzyg>4)j{3HYx10wB+O(llqe49lAUzsx@@=!WTRFGA~o})3&6(&7y-(NRy3^bnF>YQ@35Y> z&}0yEq%2$Ql#VN>e1reK1hG9(Vb)$9ba8+Xvh($<&7mC)qKy0Uv+=sWglElsviQNo6A!_7GgX^R*+iK*b*u;;?jV^mJokj;iZp@H zMew_kP+YOcO&ew6OdG+7#m}t!MXYsS5^KEbbAwJ=RelQ&Cad%9iaDE6%59an(i>9; zS*t%fP9!TyD5u|_!ys$Sk)I5O&3td7Bvk(yxHV?@7F;|7*E&lRx}Z(85}9ZwNvoW# z{{A=X(^Vxlmtb(gJ6CjdTGh0CX97VXaI0#B&3FRzb3up7@>SDR1G(hLvhO`Ynru@? z5M2MtLA{{mOjFg+$14F;SU#2Y4p!AZm!9ys@KX%vUKH@Iyk5-gp#`yxK=%sj;Oh^L zQLk`zBcEIf?YhNNh&sQKHcx=_?agsRagaPWlKz;RVaG-{vq4nxkQgLeR z#N^1jw#OwFaGJj|dHojUz$%)DQ&7HNu^9`n8;}|%UvVvf3l7Bt6+bii_;DnP#QgM( z9QR!&9Y?vT(2d%8o}bIEoc_>FOJF3&PS$?7`WQPl=;_e0pL#1DEcKFF)_oLek7*8Lhi*qSOg=&I~@4GxEDj&>^-s>{J(6nMKbR>_oTGXEb5r=k}Q&)k-THMSo1C zvEM;-HQ-8Gw1;eczi?_xH}B>^R!tlk{h?^s}ZBTGUzW8=_0B zhFcblZ0(MQc*o^;XNfV_0T){zpVhjXCjL3Apvux8Y3dT~Xu4qJ>pU8OS2-5$uH1z+ zv$h20nxs{_D@`jz0S+{F?u45saBaQTDe(P&gzN6S^&FVpO@NJ{oV})BqBHBf%23y5OVc`WbzTM7qw6zi`$BedjSR;! zsVd2c?1Lavykqx``%06w4BU0B6LOQ#h(buv{JZw;Wua-H1Bc%#)7Hs;@Locf)GF>( zvG?jT2;sD)qTKzACMBK}baWid8(Uv;s_k3L0Ti;h73Fm-{zc30Q)imk%7qx>7E6!Q3&w}2M0j1mBEr=VU}i*wj^ z6R)dTuiM%!C?ddc$6C&xcSW%P~G0-10#8CTsww=_(hXrxZtjFdixMwyu zkge4zBqWm$bEI2%o2}L3J_eCQv)n)D^J_!p7}rKMx<93IKBgY2gkpyvHmBX0sDqbvr>SNlBuJD05Hg+vaUDR?26DQrcpC7oC~S4{P6n z;L<_#h&tZaAJ|mON2b!% zLucG$M}&Z2*rKkyPrWZVgZWvs|g7OqO+MCWh zp=XdvO*T*%M#7-F89dKTpt|D%a~U+D7pB7-5wxq_V~k+@`lSG@mPMH!OxEI)J_?uC z6LDL~t6lVMUrD`-hzVq?KlWZ?zu{U=3Y}CGA)5F$PUXNMxR>NM7;(p_e|Qi&7Q7^e z?KYs%r$Auz457{L^gUS-@v0TY>tq&sGedlqhl?6JEW1qvw$8o*lwJPq6<&$c4{u_& zUcEDEGD&(m@eI|q@g?1SC|VD$kJ^ICc!M`t-m+Xmj4krZ#WRR7g~* zt6U^fQcj|+$c^SOto@MX1ZL7FhwCjv0|gqFFv| zuc^KEeoj`4L>z*g$!F0s@1omH&>Upe>Bh4=2?txhp_t)QefQIcb@`$Il{7604T5!( z^s*~m=%9DK0(7OANEIoBTZ%>fCI_sAE(Apuy{3E95nxhum|MZ0#nfN0;sB6_bSiBr+rAh`5|$yKfQ4xDOBUjU*Naq29^FvGCE3np!D zeR$6B$1B}tL{Z!VAU8dYC)Aj}4s#on`ze(Iu2<-@x0~DL0|!o{>QB4;Y-Tz-H%07h ziS><-MW(Nc*-sO{l!JNKhv)oB#;1TN!XV=1j54AV4ZC=JbW1U=EYi_byATX2WY>+G zXJ&Kb9l_dmxXLYg3B)ggQOs&ON2@cnvdF-jtAC|&Q1ro93F0uEHI8^?R}$30+=p=v zAzpjpzisnu#;qu45Jo6z(w%c{{0iFfuefaDMzB**`Fhd7=4`6mx+?L^Z&Us=Hgz?V z;H#kj)D{1ZDMg$;LN8^@P7M8caG{8T5KN{6E(EZ9gdpOB?8-qIaR)A6B(y6mqY`~) zv)sTPAe1jxxB1zHQ4Y#B&o_~~6kQDFP=ik$-_yg!<{<8>)9M+eT-$!S(sc^&mj;b~ zrSqR3qHpOY6>;|6&~LBass1RxdCK3NtgCZ{m5$P`n&*w*#F^=~Shdu2H4j|^6U*u8k7{5PX;I;_ zkzw2(-5=Zl8_|87HdOFGK=FUQYgZX=gJaeq)D1iAn}p)^b9musy^w|5e|@0O@MDZp zRSQse$#BU~4-&B{2v#v3-(H<>uA^=c;xeC^B!}l-_A~y;>rdA*0ouPRg8GAvbL)&B zrnYA~b@jw5d^ZU=CAB+k^PGQQsRVsg0=YHny%R1o;iMN#oc6}KQyVd_J^laHmm*-l zCpWRkB_ajqN1`K1u@y>anC!AT0k$Qn`?8J%wrMy3{)j$(Crc4#e z{y0hX`*)K4-AS90M5@4bl{HBxb9fgH{idjk#Z_#)Uy3x~>lhA0Q+KQ6z>{Ye&hg!o zhr;$04i3(*(z`k*Njhtk{s2}q!Qk3Eqs|#jbN{;*{%NeCqCWd+-e^&u)n?n+U%hVP zb0_}W1TtT6nj_X~oE9->hhVoF&ZOw^nF`<=GZUr(C*y&t@BXOJUkmomvv7GfLPFuJ zN8corX@L{VFq7F?6Vd(c=Knu$CHwCOPtD;&e#;dxqF$B=&Tuls&+zQ?>tgKh-@kYK z^GmX>TKRkX!TKjhwZBjO$#MpD*uMk1y<#^xNI;fu`BtZA#sBmS)Bz5Nzl8N4(5V($ z4cbW+L)4HNWF;3OvHPU(dRhOy)y$`H?0*|)mdK;+;#zLh10WhK8JD!^gLuDW} z3gUGNKhIv|@Ve>DG>*5qk#Iz%e3yp#3$^oJcsCrmCmdp;I@n{%iFsH!ICn@*X$T-}{ z6N6xYD!-$eyeItoJHlX4rn+x{LVW5PF}%9k{Db5TDFdH9laCOVvr$v^7DgS-WXdjK z8x$QQmdc_><-&bG@4975pob2SOG6xSfco9Q!~oF-oRzL3vJ*6d>7&WY!Cs+9uc?6d z^vfbEkB#Y1u2j^XG5~_kk5ao%<(8pavv{+=t~lCeg1}LZoWm9|gpi?Vxr?_1LmIZE znmQ7>yuUFOdTw12aN5qX5ru!Mt|fV;sWrYxbIJ@37xw6RJ*QjYm<}0{4+zO`5)Y0R zzwjF*fUvvI2O?3j;5Iz#;*)y+%(s$ys9YtH&o^Nrt9M7y>x_G1J@_a~;`U*1jsIRl zf^1X`!9_|l5b5;YdAqpSYtTbtzvETS0z3Y_^|?+C$sqFRfm|JkGir!9f8Om16V4Hz z?Iot0Dm-7zl5YC(FKOZI$C~XxUsz_VUsuUtiw}_4K6(ighzL>#(#x0Uv!EbZyNcaz zT>*9m%!akqRM|W6SEr*KBuVP%zoli;nN-tp z3la8yz8CN=SQ`5pjB#c8Y=2A(@4zsyW4Zi?`2_pJ($yg&9NpKlKko(n${NPAlQvV^ zK~{ZYg-xSg0mn`AayilgB(7Dg+6_Zn7}s zWIW|qe*R0yZ|`6X6?6qJWnaXgvwtG}Si3;{Xy68LLT>qxjUB}F(M`NL z9I#0&=l|f(y1zbyp&NQsj&T1v)Adn1wK8!SF1U7cxIhsG+{-xJ%T$QjjlXtB-csaf zx_7-dWFnr@Pf~B(74)TTevgn&`$iy!&R!)peqIDwsg(QO(p-~=JC8k? zJ5JWwze_gFT|7qCA;#pRPjW1mnwf1ZFGb915Xxpaw_Q?1h`rgLij$JsZ+TUZ*Ru0g zn*VvM4Sx2H|0xCw?86i-jv7#gvOm8Bq=Dm|tjr7Dw{QK#-o!V|9tr&K%mut(N{?EP zzc&Y}7|Q2aYNWkl08sH)C(sfLrmjTJ^+VLCKyqWaW#dyk^0&;&V4AQQ#X zbKPg7{c?BxCH-ylv$4iS6nhJWn5yk14qgQLAjGM#9`t76JwCT$g7pt~~T+L~^L*G-s?%+A7(=tR^s2zo>+a{$? z3A>5$e(gMsi$6R`O{B2Dhh$PSK;PS;=4jl>ju};ERys#u%D>9K;nWae)^xdO=K&+! zlUu}po^XC$x3Uc!s3UB2MjmkE-bE$0p*WHijmAMKOh8EZ+P0_Fs6_`3E%OS6 zysE{2Ysf;>GC}v5_qAN2;~oQz389%jA8dI3F@)u4MC9o6=@k^%=*R%>GQ=7Cp4yjH z@e1$jt<^uA%eUtKa=kG{?I@f5LJvc%4Wq%a1*4N4Z$!Zsn)5I?4a)YO9Bpok?vw!I zHW}05s+l2Bk<`+@d-A6$L!oF)r1Ek4ywzS6wT%CFqV$*ApO_5CeuR&{X;&kD87z*h z&#PzHj-K6I8osX@d+gvMkd=(=@%EgB{kadn#5`cU#xst0(Ze~+XhASxBA#bl$60eg zo@0}M;(%{k->^&*&mBJON>Rgs|wH!qfG2FxcKKn zDZ#7x(L0mY=w`dRLq?A3wWs7x|`^i%nXWU&b#yIP`Z+SVg{)exeG%y75E>t6}G7b;SnKgljq* zi+}v)%3+CcS8d`vjrzCsJqp7gJpFM58K6>L-(R$o%5fa@(x0{Lp+=g(T6_A9wy1*G zxv?kFVU{*rL<_7(O|RL_Ao)R%;M|!=v?4-#somA-@Vm=Ly-(rf90m&a6u~65LEiXh zN&};AyJAs(d9lTq-1^L0&s^l*Aq@nesty->6hWt>!4(&23THYDnK39M)8|F$%t9IJ#jCL!icWgr^);K2v`>D_pkx?n$t#!MI-0t##~2q z#m20>%NP1eW0)Mt@v5(BO%cEFk z%)iWZ!i1)EHdmM4DWk0?#e*B=@?|AK*d=TJ8=L;PUL!IZg&b+qya>J)4dGj|7rB+l zOXueXwTtGO!qep?nc7d`<3H?mL}ruXcx^}*ByQW#l}_o9B+C!^3Y0$S6_dVt@HY~Q zhMDl%ZL%C*^d^je7+{_=i!M5y2Ik${PV!(oISr*B-_pad@;PpG%R>*y3nt6ErkRRP*>}%McBOdTfS035-RzXg$mKvSkFA;A` zr8c{^f++U(wKGS4+ zv{m+o5}jK;h#XUuJrl#YbEEcaX?5w0iDS5yU9*bVmBko*Ja-CPgUgr9>4jXxtfJ=1msfDUKpJix4CMB zy3+fO?H``hP1406=|W=?x3_Z#wrRdI9}xYjDqKI_8b@G~r-PEn_0oXQYBim5467%T za#C@ue~ObLa2mvWF1o+>xyVcrc|U{oY*>2yg_gJRWwZ@L6rM_=$%Q{^SuVDlJoQ(I z+i3})R}&Q7kb3T+*`d8gqS2~ z*Ltr{GjkcQ(U6HpEY#h1EB%%7wiU%8zbeWR*Q_P~rR2C16c;|w49{>!bn{!^?)V}Z zB+=;VtT45xVi+jI@#`uT-4C$B6E=;e-=W8nVG31@KgtBck>t_Na?HzifeEY0{#*Gq zwkT`r?d}&Hhn4TA%#?-uCGWW+mFHOw_v1;q%fKs$a^SVSG;$PBr9J+) z{|J4Kx4k;S0rb;QNW&R6nU{Whg(005k8V+dmuR!Q{vAfW0>kYmOj-Ro+G>|#I`6~{ zpJW#Az83GlV;Gg7ajUgMETicsL+dy1Pt+EJoiXnI{a-~tjTyRU3gI0vcx$G+;8yxsY$6VeM)7VU=p)QJp_c5yAByBGDvIN?SQ@1s4(!O- ze>6$cJ@cN&NkK6pHbds;7ssKtIBCA5U1W7v{&xS*QEh>PD|w;@ir8eXL%*YyoP~UP)bwxd zfUS&Y;I+(q^+2uAST_D=rno@D`HpuClJyFKpkR1hjHY8##y;7c!HqG(YT1q zS!mR}^q~^-lFi_lV1}ZiY2c7)G^tW>`op}{o1i> zqmDq;w6ae!@vZpn(Q2*TGXxrT1#x9Xp}^GSIp>}pQf};}wJ^H%c{1ge4;*5s-=>rg z+2Z=Oas8s>Odf&%#tn#G2^yk88{npaTef_`p5DByMSo#B5tfcc^cqI`L?rI!GVUF5 zI0y4hSAk9ZtwjMOd%iYr%xh>e8FnAJ<+zfzxgJZ`Q3aIhu}=@Rt94dq5J$5e84~4e z(JR>bwwxs1A@`+?z<8s{@im)uvcGj%8qK@At#NzO&yee0OPo+Hym_8@u+$>nSm4~e zk4ZVfC%R&cI@@dVg-4ATb8gp8`K!^yVKJ4Eg!?eyCNzsroa0ZN?U~Nwz&OyF9c>E?WTsv4VrnvR~$!O5WCKJ z0g0PwH@s5}-6tSEZGNA7Kp2_@zVuBq(*>?Xmy4g~t#2vr>3u!d^XBsQ zCu5%Bz-#F)+0lIZMIFJtl$L_?ebw4(jYef+ybbH0p1dy&&btub#UQ=C1ZbqEkWBhV z7P1tDgF`nj%Jy?JmviJ_E;?ey#aP%A2*pD?Q8Vv@KaG4-38q-DS$3J0sP0(yHC4=d zhFljhj&GjNG-Um&)jw5era-66!)#@EB*r{oVW9uit0^q*jd*+)T9+g|d;^Hv7q>Tw)Xxq0!0`X$beG6V+ zDiWCvpg^}AAV*=Z>JHhJMfRSP^Rzy#VBxg6->9E)=pmHu4RcQU{M(e7ytl%xucBMB zUH5Vdg#gFzLBU*s19zPPvg~+?S9HmGjckd7FO)scP= zwN>L6w$`Fff%*peC}rqBhApBUIanr;JA8Vx^i(01woiMioV}#BW6$ACAxDyxaZ5d6 zQA2O6BnM3OwmAx|3NYm+oI8a4GUwyxIh^v*eCA!^AV66B(?Tpr;yYRI@4DcrUwV{V zHtxvouo|K?N(M9Od~uzK+o^hGnahi5vZ0@xddP=)UE&ZuLT(3!Ut<&Ho*LT+0=>1W z@zb;cI%T1>%Oi5zH=}ifht97a%KI&Z8>|a+o3z}#f|oWkXXqRCjIl+#wcuy+P%;Ef zL;-O5WBJ3;MgT#}9w3@kPm#^)NXGSi>79|mZvP}$Sfu;)(i-FAc>DEFC8+1A1JGAP zRZuj581KJ&c$6T}+d(WJ&-nHn5A&6;_{aRee?N-AXR_EEVwHA<~9}&V=X9DHLGR(ShNUL_s1ci-ZbXuKrm+r&s%j8aQo7t z^aN*A7k33v|5F61(6Kz%>c3A!19EoVt+p^kE#G+}xJZ;fk8XxIMqsOg*S%9ggWX3^;q_pq>Te065j%wPS@Q*-y$^lR2pd9fyY! z6CH-d+y;MM#tbqbMD>W?9!3b1!tMo!N0yuO-PcbaKj*y+5|_lujM!%&eW2PV9>E-C zCxJ0<_N=Asxap8#dzuM@rTH zRU7=X2xigh=I*D|sPz4KUeyOWZ$_d`+C8@!xo)J5J^1bo<;v`5d@#3rU2F+coP@^h zrLn2e;1#K6QU+R)bniW{v$833_sag>?hMdVlC`hQX=lY+xy-3LeT;y z*sXAu)ccr(>; z*oobTnXx2EW5)Tt=R`T#z$d9F6U-JwGZgKw!zr31mq`+i?YkMJg)gk3eCfQ`!$4;n z8kd&oh-p*J%&NlGA?-cubxVuw@A>OPp%&|lPjel&e_eFTw1*_B1HDJt%}PTBvb|LX z;PqJAnvt(l^PLb=8dXX(k&>a1sY`JT{K=Gy4jP0M?8ZfB7C*tmQjzs|r=j>QD`RhP z>b#?2-fPo<0f)?&3`2MxRv7*pjCR}tpXl3KttN_=1xsOtmVRvYv*^Z31d;vFa=~$| z#rL;)v7gTC|H=;3cIA8AP2ji^y?xW!Z1h$ZXMRkumE@B0w;hN6x|hiE`t^Uy$wd%o z2DS@-AZv#y;-%D)ws3|ZXv=$j4Y`1GcDdxUEaoOCBcQ)im%q?suqAqhmI}odDtQ02 zT#^p&H&)8&(rh!=mGFLQgqCdaPFQS+FtZTj0lQXbqMO(G(}&VD>Bpn5S0`TKufRaX zZm(|80L6?jrVrK~=M~>^LC~(MJorWHbYukQ6qbe4KGSis<>9})W;4^`B2*xK+PWil zYnVH}5A59BIt{9{bIQ>d9F2PItW5piJ^k71AoSxbn)`m>Iim^2->#7M@I@c#{?)+c zKL6t9c7PAJahLcX=V2~=wOZ*;1IL4J1XZk~($wdXFrZ8Y*aX}Bg#bng+mb{^@Tsiu zlRpfoyA3|z>={3n`H4xm)PS-9`{2mZVJxIU>ptQmXHj zIhs{-K2)jk&rV_1ieX&q{=xtVpx7z&*tpbvj>AGhF#jd)jU;F7qLsE-p+RF}9fro> z06BB>4*>TLCwWd~n6+AXI3_mzetz{`MG-w}pucz^nDX(H@4i;Ow$cONL4prX?B-n$ zeC9@E?tD2fs9)=d_NB{3t|^~pA9D!K_q(R}VhOXNf<(%QB8HJ1xRW$Re2#rVKcXn~k_vp?ofN5QEV73>D05x$bPs+KPHani->y+0h z?c*2MrkH|f+UTzDO#2wy%+K-Yk7vsd+VY*5PYrnyRO`HymL|)b?>|a(wJ*e(OBGiB znIMijQvKhztg%9a1=?@7R#_47xuob88wwur&W@}qNVQP@{9eN&v>sPtWfPIRYE0VDA|A9E>8^=@TtTx*=FLV_39 z{#Lu#2=NdU+BI*7f>mHt)lpis*hDhSJ+&=Iel+=2#2rkSip(C2aLhaeG z;;S9!n1^JVb6~FCdj?Ql(yK8lhj-TPs?Hu4iSwWnl=yoGM?E%Xri{L( zYjv8X>khKJx#VIBXe`7WD0PLy-ke&M>dd-kU=r{6>zgdWxpR>~c^h>}ViM9BC&22F zeJn_j=e#gtb1X3B`Y0^;BY!mN!blRndCis*5^MbwaUN0m66_H$w#uLMK&++)A(*Lm zIVpiKLsq@FDi)fcq!)GKT5o&Zy+CndQG<|oy}64>Yvo2iRlJIxT6R#D0;rhd;K_rr zwt8S5=YegEY?ANqX7jBFr|ms=Ji77U13Oza$!lAi8L<;+wpQ&Cz`u{d$axq0-fC7k zXlUa)JF{sjM(lX!&jGnss8OT0!xfl#PjLOtUsu@0dN*eJpiO06`e8WOmRd7zxwavw z>s{LRkYiR>G}05-_JA%BVRf+_bkz$^hNlkdcL{m%qH_=}k|(t|eI|;^hF(6FE0>A<-A67^)?x4q1rvyKn$-z;Zky)wduQ` zrm=6p*hW4za3^3fj=jM*KNgX#gV>LVQ|5u(Smr;9#cXNI=LBhS)xmmeOIeF!LBUI>G70 z1`n-;BqNM4Zza$T__qV5Fg!?;A<;#unpr4Dewou5`adO&IjZ9@eB84FczL@;*+Y3D zM)!m%C!9*(1H~deS#hk-PD#SmR)cm;>DhOt*ZUWLEm*P+bEk))R`OXG&VCano`|Sb z0fo(hJWXvQ8>zf}(Jf$)wbk;-e?m-;EQT3}OgA7;Q`QZ#-^50WZB20fpe4A!U%UAf zKtV~<34)$i&Fh9ntNPE}q_-PncIIpf$aO=s3%vGLyq6m=2AKuzYq7FSv@gj_nCHZ5^G)RTNyxpN{V~l!ZEY zR3l__C>jWBfWI&Q$xQa9RXvuu`f|D+*7S5tNrQ16As-lX8wD`-=r|%xZ9gR zgKBxzV|-_!RBA&wbRmpH1`_MQL9b=3QN82A{y2FL#M!l3?nyi)XKIj`snFQ8|AG@Q_;Dd z5L`vx6vvP~M(ruw=j$<>)$>KN?6kTbmHbN|Wzj$7=7F^OQ$FBx9%i6A_}=bV{Pf;- z)v=^bV?Q=gu*Fzbl*lG#n9U%Ms>m|k0kWMm4{vdFF=Ejx^Zp%871bD6FR#ii93GtI zODsMARK(Uar9n~~&`E(Wui1&I4<7$|zi1F~KU-vnXoik?8T3%G8)PX>t zx!?BX;>pM*_Q+V|&}Om3x_dNuxm>vUYvN7}<i~ zr(P3sZTm#IGS_c4Xx#7``MNCs;m$ZRUiaK_Qtu9(d)p$|i4E7@sBpv^dUUKeK5uyx+^gRrB@hy4O^6q3twuJ@iltf&|_hFFQ&?asOTcI&gKG=WaOpkR|jL9p1v2A zwdiBt-MfWmt&EMz3AeRPfR~)EBvWdwO}2!15_K)~{kc(f9X+yIeG5v@*BQ3w&zvdn znJ7c*2+qZ^JXys%(&J=qOVRaoUS)KeYcG=bbK#aZb6H$3=CK-3=ZP{F&r)}d9 z>@%-0HqEmTS3NEpN5bpt#Zjmp!K(^VPYY&XcPjLeekrS1F<#zL{K7f+$C2Gu&~}fF z(TI!nVxb|1SzXB^QR}^jDW77Uhh8kVsx71on@%7!{b7lhrzm-#}m=?ItdFJvhIr6|q*AemqV3lV_;%taE9#3A6cB{5<8_3le1V^xP`gpal%hyWuRulq%A&N=E_Q#VaIm}`uG2qioO+h8)sOAryU$`sGpNw4JD=*7xsKeYqV84@reHTf zil>w+N7H>x-#m2w$U$Y-?R$-f(zke?bU9D1ve?4L6b2rfxqD9w9ybsIB1SpqK5#dp z!TdkP2ybi0#BF)$-!WQoJRc=dmLaRKL|K6#Gj;lrc5v1_gF9zPpu3)^$93hl>pZb!A??WgfQdl0A6sG^#w#6}nB!&+k5@4QsG zX!f!>xa-pfo!jz-s{7oV-onl=@fvOiJs2u=Mo)i?fK;Y37vjZ*yv}*k$n*)w=mfw@ zQagn3?<0p4^T>;uV|4+aCLP=Y_{Iw9Xzs8i9x^^E15a(&z^LXRSuU2e0VX%Pj`sYcv8ME6_m3zf32Z)(?P+i&f)Ssexv@rg_8epLUIB8;rt&&gc1Hpgk`jhl=Id#N9S0feVs z1@l(idV6J@sd9RsDLJ?}A4c`96v;lGgUprRhKP&44ISZ@nH6Y4(jjG8H7fNnvCE5AVERbHkz7e*mwKd zmi2AA|7rp&@~Gbo8->NF5D}-!AU_U5`fufu-c{ynA^6xAne`qzzj97|nI4gMjV#~! zUZm+Mr011Z9Hl^E$`;^htcXI=WW0#z*g)N?%v+| zEVs5Z;rBg5%}V3J=-iREb#pU@I&IZkAO>*tYqC z{!}-vye;D$7>EwC|LHG(9Gb>?SDbv}BLAa8uO+V5?LH8pxY<2TVzTgme!1+W@+7E7 z;!HSQTS&<2ecIDPI6}qh_Iw2Eh@$^YR~8|rozbFgdK@*MB z7($H#A?3)Q)cX4Rho!FQO^Ae-dvTu1I@Hd0!(#@N7R8hw&c^$hN_RWtfZ-0(1ckBj z;y~{9M%&P*C(93`Q_qW$ytKk5vNQy>N+gFNs8t$W(8Va8Q<~=wAM*K%45Y>@n=-mj zXX}pOACjAoK2ZJMJyDg%?mI@`_ps3TRpf11NypeUTJj0fM|k~ZNm|98@yu#c%*bj@ zw;fdAi6oi=G>6w|>nt9tWf}VS8 zx_J^yhlPF7e5l|(Mq_H=yJr$l^1*JRHibh!Se>cDYP-(KP1D1^k6P5bd~}g+BH&LX zMmAr7Gu#?QgdUi2E#*qL=~8~r$Ht&oYR$e_KnDNA!wTqs^l!idMhhu8ajJVYJL3^^ zNRpS5@6n!_P=uUW$^4R}{$urL&w+{a#7ut-IX>i5dqA503v?JXmvBnt<|1+^Ra={# zP+v>Jd-3**vkbnm|Irx5!}=>(ua*`sI(;bcBxCu3J$MWDa(ezJVenCDaO3sy(mL*C9moF-$e^Xhu85~)IZSd_ptWqKxe~(jg9@so*@oH*CCY_NBtqR z>{f79*lowdNsjb3#6LO}6rA*FSf9lR zKDL*@uX~RtCvx<1`lH7E6$^Mc;$$hv!Rw*^j^L+@)879b1N>G@ffj6|I}(AIY+y&$!CW*l)`X+YK$tw?Qf}aG7f^aFNDCDP5T~r0n_B+fmnkf?@B5a zd>DN1z5DkuWXf8&4@onE9h>`r}fY6cKFpgisvJbP&~=5IgDj+<8vt z6+(vrzv90L>y}!->c!4`EsjH|SM9FS5zo5}jvujpS~IFAUq4P$Z+0D{X1wtpZ?`St zL62VJRXou6&;q_oa+t^m#HjHuhJ8QrYJ&Nm@=T>fQmP{Qs~Xjuy#=T<;32IR9MA9` z?mBa(0C(B4`9O@lhsPO7Y~B+)?9OIWQ6lev6v zR%b%gdlJxlbYjA_K?rvu>TplTj8yj?f~DAvPHg5gNf>QNELq8kfi`L_1{)vuQx`Ml zgILaxflh>*$?`@-cL*~<6y_()JbAB%`Is~AjKF&_Q|dd>pqvE-;faNMIFww*p%9PeA@4SS8ngPrnNJY)(E&GkIP24Y&-%Z&fCAXh4@(w8z7&+_ zswFUz50XC>Jiw>a!#GtJ!jvQCPJQgjtC4^234MnHYRU+ZV$#p^R-AyHer{*1Cu;TC z4QrRE65mt&dm-H2&@F4yfOuLpOP#sQg?~N~2c!K+)KArd*N9K!2wE)xAu&vA^3305 z`tLj4qr@LQdPlF^AvbNX^+`><(!dRpqV0F{|0&M- z=%z%-_t)!O1PVs))!6PQD2MyF9N0ss_xEvG2>u4Cn@NS7$WT!B_i#^RwD59D0GTpp<^3v0ovHSn)FG42BWEQ;iGa6s9*@N>0 z!I?8MOSZfHTbx_jjm_=vFrf=_s5 zHq=Lc)OA9(i1${~Rta#g#AG}mi}Rta;1r? zEjXAp>QE@@skkaJzuQW}($r33+S-STMm%zUkgrsWJ$mQtIjth}>4OV0;;MRFE2a8L zj@M(mVtjqI?iN|W9X&$-CXn5bRS-!ZC}Tv!pT#}#OimIxKfC5)&k^N!8110G& z0h56xfl}Y#YsW~sJ-bRud0(!YE|}0WeYVl5s=0nzgaV`f!1R18?ai90V>}mQ{ zX4MeZ4gJ#B|CJ5@9^grY3Wox$5ljxnLc3fRYf|rTe#r;*Q2!YHr+BbW4kBk$mAL1+ z5?Qi1P*H<6A;EdB8Rwq@itY+wY1A0M^L(fXu(vhL5-~1>A2{mlYt86v@#1)F|J(Rz zCT(!yVkNlO(-dNR@UhHVBAZ7lWq`v%<9}-Vx)5?};;7`a0q^}dEDM8@(Bh9O>cID8 zfUlOH9Jd$1Y;^4GnvXzTyG!xRQN>t zB@uCt-@BcOtB471B0DC+D|x)8v?%u)S%#ga z-)!*zCGk6Oykj0ZeSymI83N-t3keI&nb=pD`S zXS+J(@buPEv)}>G|IudF>*Db|`w1zB>H1ZOYdGfJ7?;RHK#&R0 zWquaYc*;*KV74&gsCrV>v1XdWzMe;}RluO_ zzq`>8Cl0#+c(AH9o-UZF7G|!Be+1!@5bU-!8>fJC z7#>~UXCkCOzV>-)ZYF!dD!pHqEWNj$dA)bE-EsfG1m$vKL_$OCgss26xHRlk>aQ$) z4h4>@71oFXH^1-ZPvU0d+S|R$R6<8*C!IZTg#J@lVsnr@EH)2I4BcM)dZ87>Da&TD zEv8)F5L~fbjsd-lA$O{$#>;J^MoU(=QNB{?4qSZyo2Qg)#~3q9ZQQh1hg$jziw%*z zbW@SoLA2zsm|4ftad}8&lb9 zZR&WgWGKd)Y(%p`jVb7~%r!7Q?l?1=$U?G;vB=S`c7MgHSNza+tkNR2#RWfcyFp(7 zIjTN5YBV0M^{Kih>iBJ7&}#7(S3ZPy{a_fy!Nr+5+Fo9<6wTXr)%v>h_mP+kt_S`< z13&*m4C{HXT>)7K5@|0!E&z3G31Pkto9%Zdn!wejV|C@*D>56`clH-OU^wo} zY`;DVD}(5R^VjMQ8=Q>qR2aDdSGOs@HO&@?CmEh975N7uq@gU5#+iSag!Q=o!1iu+ zn>c=CWf?d}%J8~MCLdDH#jYl>Se>Fp1d zfG|t1mhmPm@lx&~XN}Z1PLi4r!Kq8*MbhjBB}5XUJnfjWwpJ%5 zk}b;bz#>QHA2hoYSzO`t>gY`l0Q-vD9S0+|I7P*2iWOB<`>34B|V(wDjtj6_U+=mx!T_pA+D- zkZl(@>EgN>c<-59<)0q)Fq=YC`$kR<%acnW+ z>b{2UaoB$x0od0Ik)_e|UWU+#gk@H`k|}a7+~hvq*ZuzHP!k4W!9-GyOBc{i153j_ ztIJ2OR6h#POh?;QJ|h)s(j%u6Jt#_94GPr*iKvatW-17=UI*0%)Lh3f{$Lkh)}4 zE19$>?dg-PL60!Uphy$?H;WKNWLMk^X>j;=?NP?_ zb63{S#h1@8#Nm9Zd{PGHg{cgg9cy z2SvggZQOiA(zyPWuFJpIOVz+iph&~&`|poxnJuXyqAcLVlQ(bnOv})xe@0*lQ{q-j z(jd<~dwwPlJGw78cBj{GABpJZ8CGAm*vU%}WYcYYTbBRk?x}Q{sz=PDrEiU!k~w;u z_(O|NeUYZ6w>g_!gP^lCvcUhS9gF-Ev`9ZX-t=6M5PTvluMu%d2Kev!4;{3yx~@cE z!!4s*nv{J`d|RCUc;R>j&9}=`Z@m1`W*{kFH#3;1yqlpZI);X#{pH3#8hzcZ@_9h= znl?D9%}*y3nsu^+nHrBpPEecz-f82o=5J)Aq_l`yh9dW3^`&TA{i^4S{`luD>Vxq) zECSzaG7=WXXva4lG6>us zB)Lfx6Z!Ocgu1Qlsx1olBBQ+bz8t4#QIZ(=94dCxe0X~5tlYExt+bTp@5N4Y?AjJ9 z$lf|~F~y>C%XjlA0y0Kct_ypR_11dy@ckvYglG8SSB+z4MZ1|=`38JNAxxx|*J3iB zKvGq08;sIS&s~8~7N$&93(+I89Sbccm}Aj%zS`9bp?Wnx1sVQC!JYo2MPxgS?ulId#SacqIN?n4S2&1` z&cFjEzH}ym--C8dN^pm`f4jr0X36`7K_(1t8Cw-kUEQ2oMIQPZR`wwsyfs5d43u4U z`8*bVH&x4m^1Md5oiyy~MsD5SmFC`~m)o2u&gdWjxA|en0cZ*xH|6LFu;2ICu~Yl* zI-4`>>N~e}rwT0l#N=O3H{X9FU8G&tUGqXjdhXfpIGVkC0fbF8RXfJug2d&zq!lh2 zsqo`72f6-}^S=7NQdr1Ip%#B?J7(1g7FCXYeb~^8(jcSn=M`JJ4N4PGUZe~^1-Ul^ zFv3bVG=2)kKErJBFX)Lo54;%BsTxbEauXM9h`aoUH>T6}L=S7#p1z(OtFk`IEj5`o z+YYPn)@ELFCTrHM%cDP^ile-?xK`x$e|UTAzbL<`Z4@a5L{t<6DMdh}lyEaH6sp&b*lu}^ar2H6bF?I@IG#L+~gl4_kvkh3)YF*ro2_OBB(s*9j_uF~` zs2a@zpl7hoggY&tK=AB=TR#=VzO%W{?sR01Pyx*=O@2QvA@VowRWz$cS9WEe3FhY{ zShmd$pn3M%WagF%G))hBx`&U6D5N|#7N(|rESfvPp)3z0oti3-N`>~b^k1y{EDAFuY7l5yc1~pTphqW1pABN)o=PF0TJ`*(w8^xiub7RlTFygAD)OeJ}CBa7vaN zCOQJ*X3zzIIMuva@TEQvAX71#b=iiJb9I^F92_1xJLA@Y(s~M;^LvBOHygxYorZ>X z!VbBf6LhxJZ=m!`9WoxnoKklX+X*E<}`b6(bXlC?|19O zU+CuDJ5mCR+~S93D(+2ws9%&9OY={4D+}=cP%;59FoH_RD}J|;8ylH4&l_qEK1do? z{3o0f-3PD`;j?PH#!V4Ud;hIeE-lur*`><593DFo-vU&1(=vAu*U<$9SDvg7#C}}o zdiXKfh_n%bgF{4ZjC5MTl)f!U@ahe+_{&w6Pmu*XhNXbRURtMzGwYt7Z;53$$$1&> zqC}?U#Pj4Qg9w*l`bSD5&GG%xVdX!C5+8Nc0GYjX`Nd~D>NoVsL)nU(^;3$_8(+t@HFi{3Fl^5AII_51cxf^pHjsAp2ZUo=n)iK zkb{=Fr#uaxX7+k&7Aeb_z@wJP9M94!P#(3c%?=Vyx*Bw=TA{(W$OdPvgfk08;@g~} zeIE|=E2n~g4CjOXcNxb%CpM!ikuEst3{E|9Hl}I$s@P!u`)J~j+T=4>&@Jg<@*Phn zc%^CcsQvV9j|-58X*yN8jrj4y>bF4AiiZ;XUU|k!V~Xu;PYKhWwi?f;QO?5hN~Q&^xIA268VcBRu?`>Psqn$-2N#m2cUB2kp z1a4Aj`@ogo0N4T}KpMkn{aP0#@{u% zPu;n5K;ee2G8^g9)`S*hrK~rGKk7}sgf%%%OORSwIt-W_H-_T`LnNKLLi*R6c>5d$ z!463&Kz(>}%h-UfpoY0uv&Qm}WM5=!cg<}6@Zdhv)+T6KPU?kwWVN!ObaD_DY>@lg!esnt-(_JAe$~*h+ zXW_Y9D+0~XT0QC5OHmxv)ehFI+Q!FpbuN)=n>=0LkOV7hyWPv7ow2KVDDQ>ztxKaX zzL{N7x(7ldq6aW`qugHW#N8VoLR9yXOT0&9nBohB6Kf~<1ir>%5BKobS}}P{uoMRP zop#*O#qGKCyxe(=6$xtSLU{=e49jg~NcPdFc9cFO&G4y6ui@=5lRzA;GY#ZMmet!FYt zv#}A7qTb5?IQBWG^lUR>8X7TGAv|;3kvBPC^&vF)n`1{ae|z9;ZE|C*cz66>t~u&l z1yW8F+sP)i4)ClM&fiu*Uk(6s_m*Zu< zJ%j9uX}+(2=nG-&Ygd5|%637bCfG$3!jE;^Ln?@xJ{@OGhWkg-$S!v1eQ_34Xm%|R z2qgSHR=4>SE1L;PDJJ-k+pe5hr}3G`L}6D9COc*!PsJ-r+wRz=E&1e&L5NxGj%DIE z^WQ(dMRrIuSlu1~!Z*2X{^PBTP3z)r_iWAc665xldaA>;)>4$VmPs3BfxOS73B7iV z4g=#V2jn0e5jwTDcWh6HsQB;sXjS{&iu}2DiK2n8eW@Ym%A2xnx~!DoclXqICZeOC zSmmRHOGx#&yXX4rUh;ctz53AH+l>^xzg8#BWjLYnqHk<#@ABvMI)0tf>X$rLO+u$f zV&CC)SWLfpW@#I4dx5?fPxC}Uq{-F*<)Ltds{?b$5FZ7+Rq>mC|BJZv^NShg@A!Up zHq*4HLdWo>Y=y}<<0cSjClVf-Y!G3_qSM9Et2^F)fkPlJ&<@+wauwufCZ_`Q`1Xy8}jm2BhLI4m_M2*Ex)jsPqJP zZiHWZx>HZ8vJpg!AyYQIHD06E70XDw$%75xnnLo@f*EVq&GLq0>Ym>U z>hT4edxIa+w@!eYZ0ipByL+>4`$MgJROCBLoC5vvgBd2HNqh%0CsC#VEl)>H)i}rb z`iOXbu^?anCXQRjqCv9r(23^XwV`rvU?>%u1Tl$JtxPEQujeOkS;x7$l9$1^=SwiJ z^j!4$dyKD30)7;RzswEZQszyc7GMlR=X-V(QT?UkV=&RGX*)HUR^vGrr1piuF*Z$Nyg5QGtdZ{v859FZ~!* zk7sL%(GYspIsXk`?+Tt8=mptPd1IPjd=c7w&=8esXwVt{=*=R$xKMYyfnvfpPyH4d zMkZ4t6$mz&ul{;X`(5QlMeC(r?pw)oiiE4>7g^Q9WP&oIMVI1c{qd|V!eq=>)~NR^ zMA_7f!jxP(eum_)oFs}m$)}A0A^YKQTm~xH12RdVTskgnC=;) zh}oPdx!zPysnx#3N7kB!(fdn{k)Xzt&l5WP-mnS=50c#httRwoGVUqFf1yJkB^sdD za_a%O-IoL4T`v>PDH&bdii7SP<}rKoa4zcTPTl_XA3loB5!Ynex1Va?CkvRa!CIAc z@q1jrhu^OEWtKq;dsXf25>=lu_5Qj{0+)B_G!GdJl;J9?2{={{$54z@my;By9^Xa| z`*N^73(2s`YY6V*JH31=@*5E^zK#j|?^KbwCjF|+*pIO^0BsqjSL-6H+NOMaLLT}j z1dPGNi=@BbBt_WZWOMUbCI;ENmx&%*B)ypBr(<(~Lt^XH7QJwABEq~rltpm!2v7J2 z7#em0!xWQ%&U@T55;8B+H&K-r0152w38Rm!D>nVY^boz$kvXJG+rr~rPT^B>mV%gxAQcfO-aM9 zDq@SG#gyh0=|8L(;&)e|Zz9ajwD|QQD0B1h z_=)V0NyK)f&@L#?5y3FDaV_xK33jsl2$)2^g0St{?ukeY{W7obmYQ(#4+TYZXUC(#d_85J)~j z!vBZ>1c?hX?AZG`TlyHEB|8rs%3Z90e6n4){J$1S&;V^EcmNo~ zU;0$;`~7ebVh_-%vP%{!wD|T?HP1P&L+`!wZ3o7*pc_YJ&YB$N3BR$`25x`0^?wNO z>-;$5z5FZ1*9oq3T54)Nubfh=EVo`%49Qp>CiD05pr`KXClhxtGRfX?+uVG5rBS0w z=cqv?f8r~!E}-_zCIGaALvp~Ijplj2lFJad^yJ97E#7n)qi(;A(E&U*lR7+%$wuG6 zDcudy_h+O9hriVy9g5ivudv`VvJRR0ye7hff(BzlE3e!aAX~{`T=0 z*Y;3qT8yXk;WhN=!$I@|HkfD7B`Vs3WE!W5Xh9hi4Xxn^*0;AVfxY-jIwP&h9QK8q z{hjb**7Pw4VLuQ%#f|Y@g12$NNjPlmhDZ9l*sl!^3-5tF>?m>FZe{<~Y$I)V6;(_P zv=gNv5ZakscQQi-1b6!IB?fucI^c4_pwYU@}Tpo^dKzifmlgSEi_i)eH`5^&!oSv$C&krU0R?6Q~ zlU~5bs{@x(YSXq3R+tdd?qVuem*>Sx(YO2k{5(yM6S>lt8cf-t*MPb6^!JO}g`;(j zZ+2r}OZd#e{+p}k+v0~L9cWbIqG)EJ*7W`FAUgOG7acS#6c_CPX++A^WND{Gi#)iX|EOPgWF?^ z{bKno#~51eOZnZ2+TP%U!}4|3UARm}5|jDB{k~d$d03I$xvi|I$a_NxhC+k&NyS9r zVZn|U+lDqwK|R!ZV4dPX4i1h8%O3n&i}d)I4use$A-^j0A`qnc!j^q0sHjt6M{C}X zi%s^i8cf;zEi00-;$Kp<R zn4>w$iE=!*ne>(uKC_GYv-U!=7OGH>z4GPknNOu4QE^Ger!YC%a82giNn$3!cM=uG3f@j@`) zyCammguae>X&u^q82lV|e2^70-Ry;vOQl8w0}eP>Cai{gBdWhd+{75# z;s)f+2w~sz&H*FZ6TbqXfNrOTa}@r+ul7CNj85LTI67E<|h^5*D6U_z<@DyYLhUlQ9 zZqYx#E752i&|lG#-^jcsYTfe%{<#vQE=&a_07E-Dg2OC4(5m~WHDCRqBNOtD`s2B4 zZpq=|uW)4?rq|#&#UhmlnFM8d9{)O+nIbgZZzdTkwB+lI`gq^PZt$;@`~!a=Kac?; z%EFJV=~l=Kg3`CGa=Q2iJR3=$W2vDGZz6%F^eGoADGm(2D!bywXZ&oL6aEGp11g;3 z?Sq_Y&JzbKLklZP>4)r~s*jqiNOjn{<)f6soOZM+A(O>S+0tz>DcN>DH0zURcI(kP6*m4%gYy{TI8kl#!UuVgX)sfZxJUSf{Do7r zo-=+?t;c#K%XZ_c^2v&`v2{;q$^L&)ygWCaa8En~AoF$atum4tG1k*e#3CbW%9jc#^_si20*F<KXS4=N_I zoNJI@oHpFELl!*Y*6_4wWD&)C&gOMh@ka~5r9Dp+MV~9DOxLs&^c&PT(LJorxasAG z!;wpzFbZ!WvUz6Fi;)?{a@JvI)nX0#o;Fq4mQmLq)q)V&62`oMxuqE(?-(|V8EN|p z>%p%S9;&*+=(N5Z;CEciw~*{W|igEdCHL_+@%-)bSvskYG|}z zc1nX8;gBqqZQ}ZO^Anyd)hAdd2W>a#@_7{Txdd1tinCO6-JG4?VK&YDulxFPxCd2tAavwhBSX!-ugzSkJ zjX9sguicRu3pFI|08)hG=~X+ak=XG*JyZxPw!JiO;d=K0Z&CJmu_iNuaUX>J*d5mJ zidFY5(V)*W|1?a9`e=s^j1c1@GNh)ODSP7!6iGkoznGw;B#U>|C5$@oUEVW#B%E(q znW!8{6jL>~Z7QG7V|7ptkZ=Qb^DgELufhx>iVrn zCi;geUvXsxZogkVh=^g667GFPv)T2`HFNl2 z>a93>dVz|35}2{u$o0zq+U+1rw#L)+o+LgsPJ-}QY#5hy?AjdMhzms}Q>I${Ja`&% z^`G?KZ6FUTY~PuMGevOe_1FyJivx0Z3Idaa3v(!v93 z;?KLrOUGvm{9W(XMQ2Q}97WaL&LWFtBBZBBL*0{zC(B0t$7s?{W<7OF!QDkP_$D4C zeoxL*_p%O@w8$T<#P{1gSK6~)!-hJ4?;CbAB@0XtxssO@nl@1U6ah?~h!?3}Bf*pw zM`Wbv^+Vw;V(%+7bJMnL(grkEVD#j7ahkrAc!7FidDt}isPAhLA@E6$Nu|Gf(;b}q z(M)Kv+%p)&WVrmYS^Q9(C3S2y=qg_XhS=!pru;_zTdVXY>|#lo*CY2-1s3Rss@OH(Kcay|YWN+ox@N z3QjAVz@ByUA-_bPX71g`G{Dp8?P|2k<#)@dHh;7BP>7O8O!7*GjDwmB5!_FwnE0b? zq;)jDqM!5MgR{v$OZOM7aa!ff&vcTL5cXJK?%J90mS}q2 zW2C8T$(^xR>AXtRmt5yI5k$$tMiO!U>4a)0bXYc9+^jVoL91VTkW1W)LjaK+A-=IU20nf6b!4$VQI>aU{)_Ry=+Zy-iu&`Y27lc?UkfizbZ zZQVz&gQly;wYG;>Hm~HqQmH94H=G}}c-e%8Fs|gv;bh9jU`8WUZzoz=Rj`Hyb&L(H~r{Erw<|*Td1;1Ik zv{cVq2@1x5VQ^C9|AHLCetCx%gd{Ku)ef6QDMdb!eJU;C6UB-@W+TcE&nyHMtlZWW zeZ;^mx)T?<1GJ^9eaTD@xov*53nIpixo^mv4B!6D=$}tNyb64ow_kSbVSj8_7pX3S z6Hp{Iz0zz%YF6V$)&Sq&D;MLxGq@L5qrrvQSD|2KzTShl=gKx;;w75nNn98p*TKUFC!?Iqa?> zWJ(~l6%2pH)*$c|sQ{jqp(omJJy@7CIH^x%d$vKB73P#fPLp}41sqR7 zdoBOT_faVNXBXo|e`U(jDbMhiLTv@jDRi+*a(GBRINQFoEa{OiVD5tYY86nOff!GQDH+UovM z_&RI`nllkr3qh~=6 zc1@HDSvhD4RuVWgx%wixfR(?;{^I`m4#zGx*2tVYIj|m{&xIO^FP4~^z72{fp>8Vw z^ZXaOri|)Y^4`5i8_Eh|Atd6SjO}Az^P3Y|&`%E=q-);wc9C_WMEOvR1wg01;5L~X z_Bc^IoZcCB{*P0w`)e-Em-o1I&6& zsoHtwyrljwuVjDBGi35=0_J`XHU)=63UYSP`tM3%JrTx5YZ?e>=4;RzhaGR}{=e*b z92%_KO<3q}UH2#j_?;j!ZvW~U6Rt2D`0)GVny#)f<8`9{#zCF*9C{U>;`tbWWlX)g zj}ccwgvE##g(7({=93z~sTaIE5Y@RDe!*b0(UtD9yknCaV$=Lj3O%o<$pljBbNV!^);?o?Rnmy^rZFf*EO}GS<6(HvH zQ4PRCrH`j-%J@40leuZS(Ra$TtiQpa$*+Mz#BUnj*89#^?G0ehL#zEo0gZefQrpg$ zfU6!0i1o6>8d)GN;yXkX+wLuaqe zSLrQ`2=)>fY-mIGsIH-U%Is$Ncgb$kiZy?22B`YB`2`^QjP6jXWXkW^L(cFJ=_;Wk*I@F1~F94R%-~_15sg0J~<#Re;h~UQ;p6q zU+zrSO|hPM3DU{4euwSq?)y~P&D_;@l@@O%#payf-I=Lte6HU1`Q4fb>kiE3OL;Y& z!zMysHtDI@^hPx4k<^vV$#I$;o5w@4m%KPfWp#d^z{FZ~`pz3W7BEtooh24N^f(uQ zdQOwjIT!^$t?fzYPiCg(jN0JLX@@aq_ByL9S86rJkt|OX5|5e)>kpn?YYaS|t{Mi; zJa#B=`3n@0uBY$i>XhsdawXJmE~w6Z2RFsITdPJWF*$`bO$F|IhKS;GhJWObCI-oL z9fPTzL{T{%)y0j`VB~zuaXJ^egzzqs@k)km#*N;8q1f)6tjMxY4b#IV<_is8D?`|K z3>ZCXyclDXA&L*7!NMg(J9Kwfml#T&H_%RMg`ztf^pUZ9@6>Bh6HTJB)XRD&s8RE7 zxs$?cuiQN}MdjbkF`tatQ|Jjl@B03~M+_RxgG}{7pa+|NB)IQ_KsOZ0DSkFy&2j>& zw&&P_+!#+!tJ{2q49I!BbM<6Xtj1r-ML%U-AIgqF`;=UK zBru&kB6Avz{$q9c);r;##a)#Kx_q?{sD+R8>s;_kcPEdnOYL|4CeBXg((_mSAl*_4 zfIiZvhCZMNRE?WXHYU((Gj>u!@`IqSPe*M;W@;Or(S5lem)RNFbuH@tT6f8kNlV+; zQrmMkq{;YmvVmfI6Z`)O;>O0exV;U!D^tKTPq!52+SCJ1OIaYcOtsO+GYIfp=S%AM z2>m^+Pr6IWw3dTCb)l^c^~N6V2j2}o`hdIi?wshG=)XrQh?m50wl=uL<@itdEcj|3 zl*gqW`)>y$_s<%XK^K+v=I49hEI`>A!xVQt^fN2%JSFB>Z_<9yi1l(~C&C-CYg_6! z&k&g*#l<*KUb5^{pZ!GPm(Mr%`r(jY#5nbjF`hyoeFwpI`BVH;*IERv;J$BK{~+^T zOEfiB0K{Ma$6(f@P&fRpHd^-u-d6&ou9Udt@s}N(A~W3;5N20Oo1d?$9*6h32P7s52*43sbV8+l2-D zZCfIrUV?v@_~XZWV5A`LkBPGkVjD|;=JX35hJ-wL@zU>XogsnKGV*A1OgRq*HER>z z-2m;`Jr*7HO1l~I2wjJQK>QxA2}rME%6+$UsOeVsL&Hnfu;cj0)K@=rINyB!pNcYt zu6a7qyut8@My#|e46t-sCV@Y!!AWw)K=B;&D5a@n1o z=`$)cY%(BE>>`5Dc0hp2?#+a^^pZvipCVqU-?YgNmPz0ZrLYF;R78+fY;>$DOLu1l z1nN=s-vXbm!L{NJ4E1amOV7oi_TE7MEcQ18w-Y$5KRpS3i--wWC3?(KSZ)kgLbjW@ zGOB+MkA7;PK*dGP54>dW?6@z0^j(wfTG!G(pW8K#(9)-9X6={HVvA{7dn@#~dVvqj z4ke>jc0rB3n0I_^Jpb}8+gP!F+-h$Mo>QLL7o=_HZfTo@#3l-~bj&r1HQ(>H2FuUz zE7#uibJUY4o9p46Fa|CZObp7&krb;~8o&o?tHlv&FS+A6TV!o z5X*~qh)sGO_>pRJ&dY!#1>^{?aH3kU>WvN~$)93Go9bybQr1=mCYMjtLs?W+y| z31i_vp*t6^{1A`*={4{>wgpa>t9k>MH@;4>O1mM?SdgBrcIO=lFJgM}kJMKHPuAHg z4*ugm|8nfbPofGvg_hbABi5JY&erHWfIsvBRegbga?1T@tJQfG>Lu3ylaT8M~2AL*1POWJ+wanZ7gtbkVwa9MYj}*c_uNzTrk@eFh;+YmZb4_eZ3_i3OBGj~?04A*ebeUnO zYp14mG<>J!W%BnMf~P-&DFxi*HY?e_D0x7xV~V9NS_2B4etv-tg@k*V`;GG^PMJy4V`53VaJKC#y>iSGJ)|Mv+Ss z%u3uTW~`s?e)}u0qY`qy*6*KL|8)O|JiJSMBU>>bUhnG^^07|d=6beb5|8AWYd&0e z5+jWx8?i!9e35z0Sj7^I&!f!x1-B7*`?A_1pJZoe>oU9jtzkdhK3xc;w%Jn#?)oNR z%4CFlDEL-Ru@A7km3~=3X|I6f$TS(xZS;+0qC0+cU#jHM{!ao8h00V~_LF{8saN}p z8t>i4?rYQn-ja>+RjtBuE8R8${u>${V6wTV-AYF;@UN!u=)fH0s>*KJ<2iJm@vf(< zJK4fx&#PH=&a8}^tcn`zt&hh|6PVl>u{ODU|55duk7oiWtpUFrFwfCKr}s-$|FFfZ5%Xlu>D?Zx~~y%u`XUk7D3Io8OqU`B(om!*D=l zY#sms>VSEGH|Kd+-RQW_u6mi7B06D**`WS4C#=GZP%eqLq;42(_B2QnUgf7h*xpM3 zk*qfCuP?MRIes&>^j6hi&qQk90>R{o+N)?A ze!curcDpT7)y_Ypt|MRp?6KS-d>C5`Cx-%1d~Gea;}h5TY>hikwL?8t>Hetmn%WQ3 z96x3Lan{k$aOBfL$UebrXMG^IjPMdLR~iI$vhvjP)CWh!M-Egt%zG<|S&Ew`^vx8m zv{j!dQ!N`LeuF2U%*Fvn5xEpW&&*Y0E`{s_Rkwn~8uOXjW9VQ>SxvI+$me(^{#8KC zd%eA%M8L``JWk<@6yc?3rh^gLc`H2KU%pRK%k`L=x5Ge9D5DTycJReYgz=kYl%9{+vY9KgxjTt=M<$654$%#IywFk zb&T*WVxbn$dC9-W#xnuaHY4C-Zny_LF3PU`t|gaeu+UWdG?LKHWXSL$ReTdhL*<*) zIX@`>>!zvRze_bd z>M69HIjc$_1*}EnT9Qt%c`6sdIzH?jlx)o{UKy*Hy4NcarR@~vgBpqRr?nkV^9M$e z)s|7cZOL@wb_=wLOR*V-zK9)#+Wk% z9YSgd^|A+FDbHgvd4enSD%REl@~zAM``_4;obI<%n*y_rNFI9wI<~Uphhc33Zg(^kkt3Ws+#T2)&gcn zM?4|eXkk`Mcd{vP&0=>sy#d>oX^Ow8JbbSkI9Zegf@_sSFh^qZMM6&?r0V(yFBSOP zOKw)^>)V|5yt7d}^WJ2A+B<^$cf9NY6&fll6;|%%WvkZ4o?ZwNXG$FwUZPQ67MyIZ zG0VnB;ldj1mMDoA=e!;V>3G(DH=lDXKFM@ zY$tjKpDEGhFbIODxowQ8lB_!%x}KB}dyr>ClDmG9cvwH6MnBUOo4CU#MIm;sYylbpfwgd7vOaISi9N2|i%eU$)gNPYE37obYr4tN*1RZ8Daf$*w zav4A}lW0=T0B!RYer6v`x~mbH810z>OPZ~o0GbIypxV^0SuCZkwcqU@-ljDT-HI%h zrG0oax{a;4+Zmniyo0k?H@B_r&2^fdj|Y^L{({yD$@_cUDCx_+JE@Z`hLFc)4Z4c9 zwn$S*CGv(b3kI3YHKN$fcLdvuZucuE%6`sPBo7=fqLvW8T*K;2;0T;KSs8bH6zXU* za9@(RiHxm60bjhA24rRlwzHlW{G=j(!(lW%j{Zjh(WK}JuvRP)*?5*UugE}GKH^!5 zfPRW7T^BObRAJGse+o^D(P{Ni4^avdrXHcT6LzKXF?1f@BUbTy*&0(t(3QYdjQ_s*1(D0j0@+wozywE>Q;ry}llicszKnYAM| z_49cbMuUIw*gOX&=pEt$vY&lmRm!()Bnnnwdi^7<+;&QnHK8A$gPJ)pw8xbfh{)1e z)8@?0b6+Xt-8y}(b6KNm6-xC;XM+h!QA5rR>^L2t;vvt2i%m3>Ke0C&&eH|<~jXR@vdofA>~DArB% z`c{-^7Q<+l{<-SnIPRjxtx#|&ea9V0`t|f*a(;AhRtt7nUh6kmp@zoa#mxVNguD)- zDpJFLn;o?1=fD2;zHY{>^jClE?L(0*>cwgoGmV(a<4vB=Qm+NZ^xY{6qSzKJb)W{| zEnc}CFQut`>Xl^DAKSZ@x~ z)1HSKhHqb*ugvELuO1d{?obLj|102}Ok^0hH)A-(Byb=}`Ov}tAR!tA&SQb9Y@w0< z50g~+D&nPPuE{IP^45wlVewE{tD3YTt|?)`V76&9=#6?~r}$l-F8d6yt)5l&QfPj< zxvu!>n;e1yekEa=VpD_kDJXnhlCE0o!U*ri_1w1WQziwKcgG+2j6stT zfN;$&M>~257%6N~?I96)cu^ATI!Pg-4%bjrN0G?sS_p0@8_TJ^H*-PpNwo4=%oF3> zyH0-XtbEoaH}wP@hqlSgtL%t<3wC*AhVFYx$TduAgDI4tMCr{cQV?A({A}K}Y=ivw zfmrcLrtNv01Oq<3?@5D;N3L%?WM7=UHASqI75^zrMKg9Ty>KpCK? zT*lCF+~>_bAX8=OMlI4*zpAmUdpC!TNPM#{pJ|gc+%e0PQyZ2vl{W(AoBm)_gy#{G zaXz2ECaUwcz&Wl6;VvD}{)v$CF`pB*NsN=L@BgqKn17f8kB?|XBbGN(iVD(aF1(UQQjlk!G{_`%Eu`$hm7|a(@ z6Zoi$Pas5XGQjxyd)m~(#&lu^5{BfG#t1hn9W5BD{VrFA;p$xxy!8BB(B4l})|17X zdURShoS6Dz-Y%slqI1GiMaN=H=0P9(@wepssp;dNBYgi`k^?Z;CXjT5FE0<|+-%y+ zRO*isJ=p3s3E6&xpXB}d1ktKH$1?|srOuV8#kzVb;tP$v%tM@akdi&%z`S#JuNH%b z()T0&O7E9%XQgiz9)r+S#{>12Pj*_A>wKXYX;W49@`aPvD%xGWEffRT%K3&c1Kku} zPnBoaWKfE@3I4&L0nYU)VX3^2oE7=l^J8)$v{#vE%NJi8UY_Z%Ty(&*lScUB3EnqUSg_Jeok*ay|uwz z)Z)z&DlUrSMkUOkOOzDr^syB4f817x#Aw)^t!qU=%GW!Z9lSY(XwXhBm%>kW=Ln|F z;bT+;rz)g;>q)a8g66tjaumZUFkE_iyw~3g+A1d~h!yETCh$%dKPA{j*#~o#kMGPW$Vo`onRMApWUv2* zx~@|nNAS^~N~3xG_)q`x`pqff|Ci#xR$$0Zm)d}=|C$r$pno{Kdu)lJgSf(K!kMxi2bwi`Ts!A=u3wkl?V0L4ms}Ni;`-$t zV~=-KS2SnM<8~?qX!-+K9bP5tK>@!wCmbgD2%wfTT4MqlWm3&A)+<-U7T@}KZrRpE z-B_&6aDf=e(Q$Q^{htR?wOQqC_>Rx!L9@fwK**=b#a89pp&5MG{(E?tvYjHUEex$H z|DL$tA)*rCiBpm#9km?hV>mgq-lqd*X^?;WBq`D5@VppCI4PSKA?;7Ms2?4!_Q$yazAu0S^coo*Meg}j@pfQpPkSC!?op^sMOqqKYoLA_jecritdaUjZ@H<%H^A)i2m zF+R$>CaO(L7rI5qO9VIx-$m1-88bKDh4o^pzr0vn)0L=N41YI2L9^NZA@1JePBZY4=ys#W?M0zD9&kt_< zp8Gtpooadl3aoH+K1XfSe(m7`;y7|H4)ET-Zlt{F8#$LUX98wZAWz|Vw@I?QB8&6R zH=_#b9HkiC;|&;1$@hlcP@Ns$1PVcF0xg;e2&5X!?EP{1=! z!<}jVVFN#L@?h+#lO*7asPnr1=m!^i@YLhoY;Y3Dkr02VU+lKyem>y|Nf_<|>dujK zAMI)|b)q>wsBo3Jw}j~AxzD>dlG|4h$ye+ewGSf#L$`EP8tIJ2M_X`9CTr4t+TY_$U zpmzZ26u{I520X3)XgJvh^qgViH8e`lZ_K_ST`VY{PnO6*w@3Zs<=I4qiN7*YhAb{A$wDcTXu^Yr!uud5! z-*dWu;k>CS%6KOZ%eibR3$bl89~XP=98tHMWgVwAO~Jx$yvn>j2Bn1{-xh>W^NhxF zID5Yj2K2VwN{DX2#r>Rgs+Iy4JgjdwdWJ}@bGgq_m2Fwn?t7e-{K^@aCjF~VZv=|s z9U>nYHu{uW4$~vMFZ6*K!Ma1z{ey7OzfNilDf8Gqo8ZXA_Y}phN|KNHjf-I_Pwj?b zkImM*@Phfr%vDGa%DIVI4|>I_*FaWOXDSz^2a#*`FnrA?iT=em9Jonw>*c?Rs{c4K zdQ%|sK%;*!Hd)Adr@;fRD^|=vDAbZLz2FMw~$lJBVI|dX++yeU~d3` ziwPY{oNP9`5zA=0YBdW~LId!N^b8_?DFEl7Z}~?0fj>Qr4WJ8Tw}ghCcmkhfx(L|r z?DPcCsL$^BRcbKFMzFx@#3uqpKj7@ZK49S~Q^YN6m&tswP_ntb(C5*CchYmx&7jbl zfK>+XjF|I_tK(_mF^nJeF;4{@c&9xT<6~{fcJa?^^q4Om&mVi1K1;AzI6L0Zu2;zr zb`JV(`4z@(X>&sK5Zcd01^QWBx7N-bwKa%_>sFAs(`Co9>eKV+Ux;N-IC64CRBHAM zkxttFnvNaKRCg;M&QTUH!1WyM`~n&y?1|Nj0NnL*tC=>F7(RGCNGPK(RSkg3S2+C{ z7Hoy;ni#be6QvXrrt?p(bFZWy)~pZX_|!PBZjqhiq#g=G?bd|jUu=e(({sqV%X1*0 z3DQ1<>%_$!oScxdL}jyh9+)h~@f7<~4qn-e|4^xIKzyPsGh4GXE@hXL)&(ABy6CKj za=l3qK23Yd!2hP^U)IC@HQ>^WsvF;@P$5CxWVaZg(ftMbD{(Va@Y*r&>>;*NQr)v9 z638w_idrEq7HhR@IZL4B=A~>b?>9jW#-#GM{I@B;9*RaJMk0{qN!lKe;_y z!$s!_*sFtSk62!anD6Mt$+h%OPYw5`#01SL;UC9OXWx?vT5R2Jq{}{v1Cb7hKWdN4 zuGSD>e|Q&364deTg=qgdN!EU~ng{h7RzLrv4^EO-Y(0OOdVt)amj>90s{KA;?xIZc zJ^+Q45*SwRIR#nTnXgOUssbW}jDA2ApbvRr_ic~UZC<|>VL3t-N5|$G3udGr$S$Hd z#c>(W7Oye~w=9QT2K5*xYG{9o3?8~U+^4>`cZNaZt30#i5dOg|K9J- z@Ll~$PVxTF5gE(rjCHFPR-Dk!mkCFxlgPmfqvGwZnEcA!T7KsGLXZ_-c{Ju4rCOB1 zn9Ma4%|3ini2PpGHkiGj@$M|ey0~RvHR$G)2lZd4{v69mP`LiWYU|>4on5leNsGz) z{-{9Z)qA3YA+aXS;`b78x9lE2=dzZe-&{p9&}j}W#o7}U0uUQgC{AEYP5tA&_i+IbR3`ZHt<4NN2VE{V)Hs@!t-fiy9Q|}; zOZl&K;qnKt;CPS7Zv9~>nDVi|Y?%Wo50-O{4MOJM8BsAbV()Jx_x}WNm#e=ugK}r3 zBe97as*Sza(s_b!U!cYjQ7}co@O-ZGECJ(ca;aS|7#iu$Tm&I5pWaH&q=4v|+c$KZ z^X1?1eM)UL$pA{UzV!UyX)YnV(}70^Kn&!Tr8;cZYm1?HOKr!xf40HtTx?HqF}mb-ceQ19SKc6MeYGxVP6n=JcwbSa zz;x&?gOZJ=*8Q@d+=0nf6+~!t$E2~=5>z1NYI&qCp1=e7E3oHhTZ!yfN3*E4Q5jVA zMXA=PN@~~HH7J~#rR#5NOiyd=LLHe-6huYH!LDpRoHkDTnI6wP&EJ`A@f~PjWTN(E zp3_PfyTiQbq5GZ&8Sp443~}Y@fD~T2mYMaMfUH{8Z!dAYL+h3%;7CmOo!O`nfzXM& zhTWA^5s>|Llc1Z{COFQSQEf2<9sdt$UmX?I7q%;15{in_NJ&elgo<>FNF&`ygTw(* zN$GA$k&xT~KU5SLBMmVePZ_Qccs*iaD{SP3fE#Oty<%{fX>Wy0xm_Q&-SivD3eY(Ic_mXCycO33X8y=dYBLAF>q$fMKMM(jhoH^OW*bbGC|AP z;1ROn)M&(9!_KJdi)%jq^d_wWFJz_PX*yNJ-Nk)GpM30-UnwPaG!#kk(#J4ukTITZ zvelFQ)lRG)kyU)0Y1Hv!dHPolq@W@SaV>k_ymck-Ev zd90=%2hUQhFEwN7$^d3dq5{t0Dv+$e(br5DlMme>Q_l6}4)d*?W4mqWcu6B(b!OXY zJP&p`O-I6O&7mGP*q(}XZY6hkS=TSEV}6(h!V(xJ4;_RR)sk{bbR<+HENZOY#PEZ_ z;&aRCwMTK>1{xWy-_2b*wU zFf3!MV*U;C%+qJDdVD$jGJTv zTkT?}^$E&hHd1tWxm5%pw@K$~l&z&5jq13`ogCtSH~+);1wm5c_g3Akh1f(?3#d-q zclsQ`^fQAYRJZfMhRz`HetTZ`pX7w+7n_z!WZ!oAFpXJr|0HjPf8jtm)DSaH^t}L&=FmlIN z5>*p$UhZ$q`+YHW@cc5E*#bGaBth0sV`J5?0}n8j-jG!0#z8(n62u(;MxAp-+ys7+ znrG&Jmo{y;Sc?f8dG3LAnNj_u_G9(GpLSlx2@SRzp5`cX)zCZ@n=bu{c8~yBEPq7l z$q+|ey|jA|2sAUlsCzvJo!!h`p#4Z(n=I>!zUU5n=Bq9gMc@3mZ26vluq(%Uh>po- zy@yjlUQh>QP8MdjIWX+I?BE(Z`j@k>>G#rf5epELaCLd?|5MUDBY~eUdSbqOHJit< zSu*5)sG6fpE2S@e{8CM`^8L43^B-!b}M+SO3ERZO^XJLNGk_tSAtVwH)m{MVE4 zoQ3$&Jay{NI7H=vG=FvQSHc95Ql20!;x$YO_YkDhmhIh%%2KzMjvd}(A1+PKiLM<4 z*he(}kc4FgmzlB*L&O9-PdvI#6dRG#V%FF)4&ZYlo(;+ZEYk-yV4&Sz2)ke;q>~MW zfF{i!T~mM;x7u~d*miDw}pYk-rZih{O^U~Mi2iD-drt;60vVn!O)ho zs}i57QKD$UATKe*NC*M-YDFdtG;)t~x_`MK2Hpjt7uh7fp!;kAaOQ^=u(g#&lN*&`}3jXh>iY5~E%le7SK6vTTPvBCJb*$Z<)EIp!ca+sni>RM? znu7#eXh=zgzx$51<(=w@3GBriMxVh{|3R-n;_Tw4O6 zD|mtiUg(K&9Rr|;(1jfJq^}}$3aA9Pnm2*E;K^-ZbbycuV8C1*$gVv7QIWllz~2xV z0X_&-!Ypq{0pcw%po!kPQ8{3{{6r{b&K3t8uY?i6z~Zm-)dg?gLc&Mr5qxHZs)J+h z+(u!5o?~7eZ}%#p%X-9cm9R!W<$p^)q`XnF?gGidw!7WhZDQ~UZaE?d_eTOqbN_L- z5l5B*s>8*rC0o;Edhl+S>P!&oke~*z6@#Ysvh^B^ygo@$gJ%CbzpO5%NfGG~_ z&ZQ!x0iZm)C5l*xExGhA#6qC+q5c)r*@|dveS!;a!vFbnK(4`nfp{r0gG-DUAqruP zViFP&))FFx!*%l}n*oy&anp)o>%@GsM`6I8bw!9wrrmBr9WXHO0bN$;$C!8QNDMfb zF3Digk`I$X5Cpi37%-8+>SAZiqFvoY*#BQwCjIZqiz?6R!LgP2$VT>%Hmi`rgmMKl zhCKtB5Nbs3{^PQhATj#C)*kG*Y>2xha7IgkVgigNWIlJQW}1~O+AZ}a`SOq^{Wcq` z^nd+BL(aG_j)eN$kICR`SYu1SIGa`_C9n0Q-?v&z=#P<b2_h$QGr~ium62cz>1y!bX*dS_-F`D z=h^wW$Gh)AcaZp9cQV$dYKX8<-Jgq!)PP*2Df-q<$~#*$-k|2`be@4ODGQz44fPkm-=!My=HmMe*7@JO}%hj>sDuQc5Jz>7xSS4EFmh8qKdz zPEIMJ5#o*-A{caWl5m`+09zAe2FDqW(B?|kS6Z-HD(5a5g!lEay?3*OJ<+NReO-9) zeZD>H1yEBkzOtrJYbB=knM(uDR>S3Z4Gv$<4>qqk-?!!rE5Sxc_X#p(8^1h!;piu)#@RQA(d;?0L@;@jynLp7qmq@gV_>Y>TC{3NN<>iQ7Uk@#~K!=IG!crVTG2W7-ER&EaB7l&|F^`Uq zrRu63t>W?k*}m(MN-w2FG_z6xKY+(-x}P0RvV6vVa9g`x?EECHu-O{K3x$ImJ{p~x zKP+v;g%};JH%|_w7@BZgx!40MAxbnm!|+tbmTo3R?4{t731%_Dj^3+14O9V2s3SIG zlv6tH>b>#whfrCW>9m&lNFLSUw0($SZ=w_)xd6@XB3r0#+a(^*xZ-^Iru`s{L5>ERw_MXKfL!F)$5u51@XqJ=;lq8a1 zBYId=6wc)R3YTQ!7Nr~&Fab&#tX7p#3!GRvfl9}LrNr72-B*$tZJv6Qf3u?qDs}mI znDH5d+l)%^r7$V${xBbE-Xf>$`BtGHPia`-LNN?wVT)-y4ktC z=O3r8Or9Q)==neh0yfG?oelZ&55kQtklbqBCQi;V>KRfFO`;>=k_x><82AHIGOP+q z|y;mXT8W7CV$;N^~Q*R_N-GuASgX}6v;F+{O_PYsRgc*pYx1*ZA zrGRf{w!2^o0)d%o!X&jaBlr|Xx~@N7N9*T*%#cj~@;7Ec(%aZy!C?^I}<9;WLIH2tkjr9EXZq>V+@Q>={&lM7jgEGeYFvreEt8*U&v& zv#`j5Yk@a&G3}wX$9)tNrCcH_MsoW#yf%AV=Dw#`{k1;IOEmm`ERVq#R16IG90^w{ z?0127*Fw<)7LAv}q#SQ`T()Tuaze}TY8G|WTkP`lI}#rsT|ZIHHBbYvGMrCxo({8t zoxj<8XD`uZxd8_zz{-dz3;CiB6*$K0O$qu#sa_xu+~5`$2}&ufwRoZ7m2Fb(D(Stl zow^I$NcA<5s}$nW4hgahZJz)XIE%WUD>NdB+h;uI)ht7fv&^+l(MqC604S!b^Z zxE*Xn$q=zgCHPVVlm_eY^~Q3`IK}ym&$Ydf&2UMLWOXd;KAyuz1c}Vo4?3r{kiqRO z8^-HNcOM_9ut{D{S1N(=fH8V&x%9W^pXa?XHe#SGYYtNJ$u9=*cQgB~Ym=_KMpacm zK|Dz;0CQWdYh+gj2is871q$X?mM+He**Pr7S9#} zXMFw_#0htvd^fjcAc}>rf9U?NqM3OB(t4}i_qMYSD9uNIEbtt)*=Cek3`gSo;zbuP zVx68H?+VfhdcZ#H|6t~v6B8gWwt_o#ShjwWj$x%m80@%h)WcTcRVV->Z;J}s zqpdp(?^>-lxD9wAMDzl)I){Xo&|XbRQNqzfdi~q2gr{<~#;KgBiu+rpC`e==Yx#1zef#j5}lQv4Ra+@QQ! zF&(+s6W=LQSj)INV)L^rQz1oXBp>fmX4{vdts}OGqJuV~r9s`|@~xn2_93M11^r?r zbkZdwx1n%~{{+py+zc+GG}Fi!JWUO8h6^NpV|G{aSY*kODRDIoaSAlL>Ush_HlVacv_z; zVVfSH)%E6r2R5>+7>w;$-*3%|4cxmZlWjl(z}8&_J&+JISm1#H!MzoPiK!jUM}tdx zO=o*8o_**%fG%vSdwLZ_XbWri(pcD59gsM;K}1EVf!JtIPn{nNh`ZvjTqelT`{kNg(J#SaERm&u^kbyj5pdZvcy0I1asezp?v?s|#K7|xmZ^Vm z0PXI?sNi~TysXHn(Z2va_40+(p+UW1D49&iRtMBAjrE=A^Tmy#UzyM)-&~dki@W^S zb#*fIAR!6yR;DwIx%tevJYiv!nWb= zR^)pV_2(4FJG+99{2p)Y_UP0h#I;U#fE1Tmj1@YZno{R>*a7TjA;U{=l%4sZqy-4~$fU)!U&GZbJ7+{=BOyiuu z?4uBm(M{pD#;y*$A5qcKUs=pB2YK=0WXMKIW5)(1o>W_t&rkB26rd`^GfJrCKiIvO z*;SB&J539%e)$^d*d!rEZm&@EHkXoN@cXwTqo5CKqYJO%01I50ia=QU7k#xXeVsPt zS1@hLb<4gTi(aS2 zzyQ~um~R3&l+YJCZBjw38Z?BSDNhuhjZ0xC6ze7P$R&_jdMd4ouj0>m5VHF8H{q8> zw|*s-S}N!p^Zt2xzLV>~uJHSY9=r8Y5A?}9AV_B-$UL57JOW5jow!e+zrgD~%krg_ z>)cmf%O1y`*W$av-lcR;tNpS54vgmP#uzRBo8ozB+Eq_zEqHpkF_%`@2+NC%H^P?g z`r)m-TK_Se&XKWVmHoz(mr)`WcWw)^)e4{f0jvQ7$dbT!?p-MxCFz7`)p1s7-;>4L1aRkqK>LZ&jG7IKy3 zxGE836)6Quqd`HM;C2#J;>(1ACD6hak42&ejy;z(mz1a~0L8L+B3b_C_(ru%{rMtO zjs-eYoNyBT&IfXM0s6W-xV-}-d1i#C_EAin+;EcXw;&xUS!yxehQE>j=EQF0r zS-&VbfGnqLTjthRK1MOA7Av%QoVS?#`3RAcy2tQSP6aKb zQygNHS^ZC`fZ&}skW&ZZ6(b6^)?hM{cdWW~N|c&edxL)(l{qewqB-(sng+|v)H@Pb z(%}U=NJD-rx5Cv^6$xt{rr2kAl^cq zsAoeaowcle9Y_BhjrJR;?CiRDDpsF@o6=o@()wcXux>7^ZJSxKOheVJD61w;&_*Yt zu7`60W__6e#TR^Y#b)No7dywGMw|LHH4R3v&tZ!^Iq6AdT2&Xhx|Q(XromD}fj~SK zgp3^U3#aj6Gum8FRXPN=&bt~-`t4qbnVnDp=0#@GR4$^RaQ`pQJP z6^XTuL;c>`_zW|%IlW*!h>T*g8be^9LoyWBFs}uEU zSJTZAS;gSJ$dZ|xo?Dp9Sv9)c7W5wJjW)TV;$XVOcg7}WVtR^#At;F?_sTAokv zW)Qx$b~uqGWJzvM{Y%w85)uJ69;8ndjszzPrfL>a$OP9$B_@Q{Vo6t?$;Crl-x|d@ zje7#PX4t8U5bI-`h;?(fZOQ6^L01}n1b{mRqA&L>^S5No_%{+oicf`3cUQUc*s2Ls|aONHu_aE629Z7krHKU?Su&hFc+NsbemdG~K!G zr~T*#kk|E(BUA&(i)KZBa-2kb@xpQsBBB`s=$Cfpds!O6z%pkj+o0IBVwLZ9>ExsT zW_YL5$;}NzrUmhJ?z1Tgt<6iO1m0sH6|mZzu2as~O4>Yu#s{!3 z1$(xi{dN2E%USvd1+Z8#>Tqp)DAnvpHbZEh*j@zl+YG*7|3awrW%Fw1>rmC}O%!Zw zX3_Y>hD5B5udUnl`;x;rFH*CDy*jr<2-zBq%VHs_D`w&4i343k)?rL<=UYmcmLMcn zkbup=D+`+{<7})kocbAd5Cv6yP|evp(6m$A7QJ4YS_F#CCd^+yT?P&m5JN@w6cN=1 zJTu10!##C@bnJYRFM0tc#6FlO^cgrSdeH6m0{4te%kk64`Q;6=qi-6{o_7N~gp6Zb zcB)}m85dbxNLo$L3txNy9Sp6h*ili@%Tf+7RC%nHLsQ*K_$jl28^Y@32t<~01>1C7 z#)`Os5S|4etFq5N+wH^a2yHw6O3`?bV}~%^d%N<%AE{I1i-U+nno05}qyLw~h8Y*WF2*W0|PGSk#1$ zK?(k;H}L4s!Mf(Rhy(L}#dSg5!?ke>k)urc_0m1pW$DEiy`+~$64MqVOsfB2zV*LY zmp1I52NAM=ncKLHxSJ6`@)oi!_pAF4ADYS}k_$lcy=$|L#ao^3flS^Owq;aoQ@vqE zOokgnebNb^?P)Trgn^{qYZGe=f(ka1I8#<^%gl!@$8&M$R(sM~WS)bRFBVDQTdbcLMmeLfr*Mu{kc5Xl;f0uV}|UCa4pnI*=aDW}}mxv~u=4;!jpz;xo9}t$w3jt|DWP zk?29gS0gd2(Hy0D5@QSUg3m7;Gn}P%& zI0JP;Hc5C2^%hGs@YJ;ytlH`mKd5uB!l0>O2#g|F-#!TOhrwWbE2s6c3BpbFzc$o{ z*kC(@fyy;+dVWUK{oMsDEW^QhhJ&115JsHc@sv83p zo2XXhxlB#9+o5#~Fpa}sXmwnoZF9_9D5%*8AIh3M?qYKyB!m1RYo^!B@^8|B#yOz= zm+;m-Tg_lS>ZFZ!<9oJ`6zbcqzP04#5=7cGI5q#Eks7=fsGmO~^~CC{H*=M%qwARE zp&T!3hPej82@M>(LjV46t$ErzVNWlFlvy!6`JKV64{T2bMNQ4 z*B${euX!YtDzVdmatQz35Av|@%N@E;8`3eFN_*btHKT%;do<696@FSP&6-PoYMVA? zlpU`=6o>bU*yoiy|M`n{N97L(PzM)H;4!ty z&YpZtu=_h{gvIZs&Z<+j%LTpG9Q55^6;XT%=~%1k3}!F%1%9uMy#^XZ^|2$LC}{x& z`eT5xM*%=r5->rY{p$sp0$QxuMx*=2@C!)ByGpCSB`8fiV2nTh*%BxovV=~Pn8kY^ zhyYc0Qr^NZ2TOV$mV&F2qi0-C`|2s3XHGSEy((LVPNvJKQED2*00H9?bD6{kym4F2z%%l+GqPy2_riYo?D2n|8)V*~$r;Pe%}x-V z`kq|sR5681!qW~W4jBmM)5es<6wAK>A+oiB1bU;%v*}&a7tHfT4XV2@FMq)fx&TyA ze3C+Kw;S!>u#*~v+fK{!16_J904aP}Bp<`#C-h&$IZe5jF`;LcjLGqPpgOiXQrZ=b ztl36iFGOEN#P}MG%0x3$LFeZcd7Pu4H{x~X)W$T_;W zcp}(oyfL~6ES&<%u)`mJB@WPib@@c?9RlRHMsogKRadjL*GrEI;1z0+J67Z|%%S&f z0oEB4k;qR-2YDn;|33S-YO~hU+(u!u$=N6p5IvkR;8Z%-79uG8#SI3~w>+Ko50tEv zzud1;_gP(Uz?twzMD*#n}P&n30RQZ0T(S|oU7uLfEfWmyHTo%pjv1`R& ztgjl`D58!MC{;yX*hw9@C^bg`3;T;-L3c!-a}oMpt3w_nymxFw(w`ym0=KO!xfCjk z(Y&ZSw}S~hE~$nc-FUJk2t>Q^+*;05(}{|wt1H8E$dokury3j0Auin!M(vBRQbU&2 zma&nZTCz#*9-^Of2wjD5!ieM)w1E>zf|%5)=W;*QF>vvz>O#df^Dj%#D4%PVl1dRy zs?!@WGQI8t*g80hN8(=QyT=sovg%dLF4xRBlmD`Ei!2#bu?T}II zvNm!}NMcc(XI6rxh=jcM-go;r&Wy0u`vKC5!+(`opH@h${v^2Gk1<^eMSc%h5-yDO()`P|y~Qq;Eq z6o5LxX%j8HS;y8U7l*`RP=Np03=YkDVcm|Wn>iynvfrO5lT2{U(d3O|w~t<9pL+#F z22u5!`&d2qGQ7JGz`!}WJ7VY>ihaLR=KKWz)x?)o>wwk~k}g(x+hFu+1|BSqx`0BHAG`2e@0i6 zEnnd+V&a7E=8%{py9Iqi$Dc?|aRA2}D(n;xdPW#x7!@XiP`ET*s(ta4&+Ij~WmFVwxm^+XX$QOB8C% z^uF?zN-r+1nWVTg`+T`w=A#2ff*@QydR%xUUq#|%-=lBZf$ZQ9!EWi)rD02F)O5eq z$yN71ON|WbgD?o7H(e>v1w$00YWQaTsl54U!Futb28S4i>Rv}4!n1Ft-eZBv{)OM7 zHnLjbOz3B5y<*%m+FJObkr|uB<|a-%1IrIo=?LkTC+iEMf36K8ylEH}i}carxZc&? zCgaf>DbO}Sap8goQv<`0_vGA0Iw|WD;-$4QHPGVbCYyo8*GP)Ca~fUfG^qpGLCfh& z6@wB8`gQ%GLhqW<)5OZFQt}En?(EcNFnjZ~xHD2f#C0dqV+C7XR#Dkv_vc7%VJ)-S z*_oDg)6k=BZu#bi!PzEW3)ed=CR^yhWJR30wEvqN<(BB3i4v0#_mh=u<)3c63WAGEW1e9W{!YnO z7AM>zq!B0PO)HI2OI8>7EP95O@e~@H35NBQ7@^+P6-5c*l5@z9=Qf=6y7CnmB2&jF9jJ_v}WCjLG2?FEL}@Q71jl>^r z*3Bq<^l=_f2pM>kXjk4-nV7|^5g6-5%W6yuKUrT{}$yZcTk-^gkLv}nPab1bj0(i)2$JO%PvDct2(rr@DksC!85+!iBaw)7rbYY1CG zHj}o^r6q`-t#<2UkNmosl$#0s9U$K^D^@C@R3M426r03&rDg%*Ccv0J?0)M9k?xX| z;K;d)89zl6+#np0KReqfr~q44F#t?ZTX-0k+0fW={CY#eM`+S1KJNPHZw_lP2zf?_ zh=v7s^8|ekV2#nAaK%hF^k)}vQ$wM`j*h^kylsGdT-F_nivvlN;;i<0!Bpj=Y8=>W zhRj!S$lxs`onpt)pX3~q1vK6Cg#?lhkb?+m1BbfBu1J_im7;ViNZ)|N&LD^ni4*py z?vCf~iY^oZ#52?J0nrGupYNK!AZ8c|=WT8HF&osgZzvlKp}p~^=7;WOfB%yjTUHt= z#|3GA{x@18CUR{4IwF$J<;oVB5A}$sk*d)x{9e0>vWR(nJJ=iBiF7@ztlvgQ0geOT zvk?}}^3LS}XHWk(Pjq`%IAm`s${d{KAr%3?G`9FnY(tJmp8uj*XzWMU!%mUyCZN<5 zy89?J7Of8TZi;)PH+?^WU*@g3mqnVc%Oym zKIiAJcdDDu(ds}wN0ka|{o2fy4pZBY0MS8ShnRp8_iX87aygiH*bldmb(kCY!iZ8xtN$;tmU8xW>P}4^?Uc59%M8u4RK!b_ z07LIy6v3{CPO8jOwiR*vHcT$G49be^_)9C3L>@5`g>ODBJ0WxyY8oK*AI3^K+l7qe zT5@7{xFUE{@lg`6frW3uVIsLM7!Xy1AHDb5;WVLwrf~^iKHNi7p5$R+Ab;2f9$;_4 zUy*9}C*b$^SDGjYO{1O|-jkz_YcfRbjE_n%gnGMc9Vft@2`m`74i@q~GITMUqY%V7 z8ep#)KJxn@lPdH#8kk;M;{kD`yU zmXE#$YyOMP3?3dLknBVz7Pi~|EAFNsUGja6G45%e2@HT{>$7f&J{Zm ztDY9HK5dfNKE!yZ1G{WdKJa}0vfVOF~lnwuqqJQYx%q4Hdj90n3(jUw-ovC>Tl?jnt+gV zJaU{?5%Ucfg%N`gfJ3Ahy4Q4C7Vr+-SKS9RugR3Z5UU>S!-n8=Vjo3=>(@KhFSA^| zd*~0UvhQgt5xB=2Bv1=<>KLi0sDuYKtNpJ!)tf&Mp0S{WN4mnTLT{r1LBeBj%E*3^ z=%uiU5xn9|9k|ke=Xxw^0DTHaprThpT_bb{7RJN5LoMaOY|{Fx9}VIQ<@@9fmo~K&wKt>L)Q1l zAOwBa6Hw3$SsVY*V|W9sZz2U@TTbKKBxl#QtcoNGFSm)w5@T6g^_N$eK=S_H%&ih= zkkld*{i>`|p$Do^&~>u}zLXobFbq71Tz}Mcq>>3w0|o5!E1z|nPYjNQ%B7vC*;|Ig9(oKuny2EMpi8}c?i5WZpMsHa!Y_oe7+ zpmK-6$cl`v)*AwKzysu%0-c!P7bfkM$C~rMU6J)7TBMdJuTKj}R3w(q1>>P)bM`ow zS~RD!Us@|IgW{Sq>EJgSdGNSx(R$vd|X;LSX>%w%MTbctII13Znn!cNIkZA+98>>)PTdz{^+zUTK>S2&jG+I!ubGUX#GE z9yrHp=<xYS*>azd2ZELt7n<(9hS9yoevBH8O8K3ZH(od}O zLj%b5X|Qe#{A0z|AmXqsjMIHNJrNO+W7|oEw4uKox1Lmc=)2xL%95VQCcTMaAYklD=OgH}=7*~IQ%}ql za3eDT930N33)M^R#(8;FU;_-0yVQbL?onMGrwLqb!qQnvRFM;q%hDZk`i+hd+wx1b z1`8CgWYEmI^SOWOP7u+Jjwey%{-GAKQB(x-?r+p5UcSij>)9`S@euY5HDB6(C4f}Lx0FOKDOvTA+TEv&zp1_TbUp#)Qa(!aUN5f zwtPhUU7CFtJJPFGJ&CpN<$pU=LsUatiOKrI#9o_`QYq70{fL}c_`$ke-;{HWM%2oG z??f~a%N>|1Adnh<$A6Ji#-LHil#Sy6X&Ul^>!48%1HM~oUEh_`=L6a5LlH4HfM)o} zchDUTFWf+4#XZ-)W~Za|0?env`hZVtCjs-fSI2RXB<;*4gu7 zVBeng*#|U6w4KIODh{K;&G1$s*Lw-&ZinRRB~JN(GO7wdcRE_>$WRWtfa2<^s!TH! zh`RjiB6=)q!g_(_;P-bvekJRN2&ri4BhIy@Xfd&Hsu$?lT|G&>3i7ea#D@tuQO)E} zt8C}KbSLrZMi;)Nk_aK^%oG}w1RTsDaWl6>29+#_54Q!jE3jZ)UlVvU&QKPDbZy6L zT?5aA&B95ATqMEVU3!=?DpUV6_8%cAghGV%@^nEBi^q((P#4BZ`}Ndk|6ixa;>RA< zz)Bz!R^!oSVl-ess)$dO-pZR^%hQ0H_qS4el{eH@({ZFSv$Bf~y;XExa zOUR6hUOrY9v&*Ps(8%uefaSD=@ON$8yz_1#?_c&$Qz3YX=lh2<;XHC0uHPM*Ai>qO zaeH8`Oy?%QSGmEe&auXLVDA8Zp| zlD=#cIar%wiec3W2egg(G1ZK1+O{AxoXbeymBL?N?ZKvz;fI*-u5bVvLj!qPyis2mJ4ZP|-niV%14wL3Jx9H)8(qTrczs(?trFM}R1! zwlbU>103PG?)py84J`oIW@?+d{b#onu9H9M>r4un0X$5Ke_C;A<+6fUN8ce_F=h$20C|0V)}pW$dJM%+%$;^q ztj_=|JfWeo!1S4c52KJG?Bs;x(e6OoA8B>dr@rOS=~QRi?=(HeHAF;mo!~!wf^eGt z;JC_H_x^3ILyq>ViU>|Oyd2$2vGa!oX2(Im@1%%#xc=nt?)%-lCtaYN%N$ZkqIDT% z&91rF$qnaN_CZoEHiWRUcQJs|cFCo$c6`-{~DgpW(L+lpoZA~?TlQy&$hvqslf&6oY|FkMWLOyJogYZ53{jKQku2e`SgMGwA+sdkx{2HeUFI_gu`dk0LoFc{4Yb3z`ajLkcZTBoj;Gww-qN z!l9Oh58ZxAqG3Yn^Xb;O^W81E92Wbman&4ec{cEDYX*AU6#VMH1nbgrOB4O1{q^60 zw*Z41=wD?SgN?bl&@25+jZkH0Sm{lvdIa6hag1&Upsr-JSxmji7F?AYvkld%vWsVr zQ!|=6!F3t{0T#YEx3Ft0#~}6y3Qtn{+@Ad$`h4--MR^pj`pZ8Of{S)jsGR)q#zdo8 z24YQL@WQYcy7-MhyWztNOX#STWm|pp1rHt+yttX-P(H#!Ol{Ejfvly;IHf?lro1b? z&k8x(_x7X53PRhTN=*lTMPm;Y<@AXtOuD^i73{u^8YJ3V3>`|PZ^EKw+Jd_Za)!ja zypzU@hVpv`hAm#|GR;s>B3k!G(W}-y=MgAD+GJ6~i@ek>R~1W5@3KzP3t4iSqT@vTxvI1kBK7{~%jaHMnijCzqe9#AcG znh5;10o?5IPbx$SMUx9Y&@2^UR3nviBz-tKe~2~LG9%7IyXprDggNyrjAn%0$ren9^Lt?&ED8p*c0|vvrP&)iK{6ktUVnEbJ zt3VT`6P<7?ky;{Tq9F}vYxpKz@oT;j((U%e(7DKt4hM+=wt3mBp{%~2OMCgyv`vES zt4vzx;_RJT;E2h32)eRaYHa!M#Tcg_kvYGtsIx?x{_y-l^mU*)e~h`z9gM!ad6K=@;7t$Ut>-`$nWl(-c;iTdUa(387xIsS_-2+!~`wi(GA zpC~Ek=# zs(~vmidw;SRsTqCC}@%a$V{>=0TnZz@Ha8BCXD8$<7^7?Z`}IB_wV;?y0c)sDb#u9 z3Sy$4sYe+RNOF1KUL<#nD^P%scI3llDf>YZMZr5Z-^BOh*$HZeoym_%)|ir{niaXe z=RmmVoqxnK@5PW9ft{H~3aJq9mh!eWn-JRxYIt}#HBh5!CoE&GO$#eK8xupKaltR`mtkVJ|3N}7el zG8DwkzC4(Ukq>+S6gGJ0ml=Ir;xQSylsX217p zrxf{6X%y#n4Jq&&OMFN%{P>wGL21mJLi?o6R-_}9>IE&}U{455^jemDtKEOq_kPv+ zLz<7!qAagOpcGz*~5@O{g&Y* zF>^`_5kCHHEQei_oSniJXJ=eD<2hX}Y|4YOUcO}q0wOMjH!-VE|L^VU>t%d2P?Qhyzu-kr+mt}o z&}1+*8U{v}ET=G$6KQ*qY_l^NNoN#ib`M_u!VJW%Qc9h!*la}Y3FW|X?$Ces94%^; zn0RIkvp7C3Fs`My1XiO)rduJxPafDZuPnq=cX)aG%pdwkbU&PXnxmE-+%>qxPKF=Q zRaEh_t@Xx)F1%V4z$EKse$jh7T)@ykImh>EZ*01oXMv6zqen7e@x`ztArE%EKBBt5(3YQFGd2saG!{ zsg+$}CihK_KCD2!hIP&GRJ{w*G}D-orYo*Yt!n7E3*!}kdkQOzpIYwf6NxH>9WiTdg&6q%P-T=kw!Bdo?h@jJ_=r!}HADISr%QeY|A+15-cbbG9+^D{{J>p@CG(cJCii&6j zD!@YMyl#MGDbUYWe*$N^P96@Kb=$wz` z@(`#|ND)48K88TP%e@G>pYo)braUS23co|enjt#~xR3 zL5I$+dp-;t))x=>JuU*^j`k=dp{Sh`r5j^`#jf?pGi z&QxUq1|nq)@rN7mRqLYn<4(U=zY8BudW3BAu>#p-G?%C6I}=||R)g9yZEl8DF3r#p zJ?D{)n!=!x4ySm$$x_#4sz*lB{wzAh&C~7+gZBq10-B9KAOD`4*4b@e>!6$d|I?kfK%7C!0c$dk z4f3Ov&FP6PKUjx%fytpI=T6;Scdp5=v9Xr+qe|x}`{k0Yp|N?%Yoi0*!hJk-x)Y;S zYHutBX##o4BB9x)?5S$YX}9Nl+zw}q3?!j48n2mHS#nY1S1Z34Mon7B-pqa|X9LAwzhTi)F4rj5FRSJGzSfPXYJ$%haxIO6S$81Q4qwGI4uG;DAGaOc4-I z+$vjubqveN(^wu81JU5m+$3JYraT983WlwDkow}cyiwAUUv+K9LQe`>r++#6-DnbM z-g$#&b}ZfPuRr}`)iJ-`cNSay%)6)Oqnq^+8s07GC5&B<2{IAz{z7MRot;2gidJ7N zd*^~djp&<*@oe`HwS}Dy6+6>y=SI)#x&OfXNkw+7nsba}9I;IC;ws&+LqKB41>srZ zwWDE`165_Hb@6)?gsrh!-btq=a*w8%ce2bnxt1FhwrM$`WVRo3m~#uvj@F$z2W3YP zQiJFaR%7E0omd`yK7Y}nUpvQysntB0#Te_ka+aaKlFh2H%@U}_`h;aQqrW=cxi zp5~RtY?M$|Jkbtv4z4~kWo{TUoPUo?PZIHMF-1^T7w1MqM0DePDD5)8DAO0FGR|e{ zihZDMU9pkceTK1O`>xEVPaay?<^%eF+Y{F*p)0rRpUBzTv70cv>*(Q2o0(yHScUyJE0WQD2}-qN1nyOdGCV08WDLUMg;ylJwxy;`Y3K+}VXP99 zit>#`oZ5)NSBY~MM^%*6pxX^WV07eRIYJ)NqG8n!hZ^hHVZ=ILi%YdX*UNwg*h zS9H=Jcsgb|c2~iLgk=NlpAfKZKg;sj49rrIX=ybW1z9|JEQQbuj7Cj2hHZJa9Apk6 zva!i6QhNcmvjoC@=I?Sj#$W?KuBZvIh~kT|Q~n|}owcK7lKb?6SA_{7-%UQ%x~=ZM zN)T}UOv>j0^_tA^Q)MfrL`^IQM^vPnU5!?Jd+p|O@hZN$KOhxQlxFNdDFh#wgg@Aup$3y6tCo3|@^ zZbJ(L7MUGJ^>8deCd148`=kJ5U6Ut8LHJ#xYXead!T>ERrpWAy^-6Fk?6;;C0RVL2 zwZ4ydlgc$S$V~;MnoG8Rcfv+@pxyz9Bm-lW=S;7*T{8JTeOs`f@;>~Y5Kof8v6Uns zGUt+a-jvECdT{TRCSK}x;Zo<`%ri^xF0V{kiJgG@Vq=}cmcV)M&914vC%0U0ko#wd z7n1iR7jB#c3}=?Ysx`k-`8SaT4BTu+Zi(JJI%zx=q5*?Ic_be?1nC~B9`d5LpQ1!# zVFEhGmb*=ec1qD%bZ%VkO53X(KCEw7aj8G0DhxUG@e3EQ9J zz7TDmc9B0shM!9iw@TW0&}@ME>$`cl?PPei|LCXV&?6&yhbz5w>%CSr{z`h{NOPf%7( z^m>+L%~}%5Za$FJ=ynfy%J^<}siDUGl{Zofz#N4oU8w~G&9#xD0-6-mB!a*b+a}eN z4TJmv@s)Ne8B!D>6?qC+g=|W$>kK+>KQ)*Scks3zP9CgWRu>Y6I(c#9A#hEyl>0TK zknpAdc>ZuPy+E_;Ci(qv4``K5#*z>y>(MIwnho8mb2V~DPkvp({W;;x@U$^UIA+Xc zJ*>X}IlGqQjf|_1!|uHYCj&k2#-J{Xt&8D;8$0=>jzs$Ynjj2oRy<{wvYvH4Wx+c-I~4fbK%Q>Ox8}xCr&c>jtO<~ zhW`@PDVY$-(#P#yN4fgQl%4+i4n_*oB6pL8%MImue|X)c;SV_EcanYw!YrLyeQ?2*>Iz~R_$GFI+g8Ai-4I}Pm!$4h1Zpcn_X`^+oyZp2tf?_~xauDVaT z#>0nD*JCBm4lnizn73ZOMnMIwAcF5>i(+8JDeLlBT+VT=f%{LEH2zU5*+fW@JC@{U zINiK1OU~~slW4*E1zOG2v$xwZ?0regJt@%4QUkX|-t%|!$3x#`@Dk6mEtN5V(Mk+l zdJ2rje-HH(%MqL1Li;qj0l>~;+}O}0c^|~?x`&a0NjeKi`inb!aA|51A@#e5T_LP8 zlbQVSh?3Wo>gvo!m6k2bgCd`f822g9)tLM#PkEjltdASK*B#fZ;k53@BDA>Kt*`2o{OG<8|X=6B6maDE* zLzTgc7}?rBZvyMEG$~>V27;{ZH6OIHWw5WlQphvW4drs@>9-@J5SESE9pdb|X5j+@ zp{pKSt^16~L57-$%mNWVhZg6udXBn`SyzH_hyPTKX9vn1jc>{#lP{%!lVXNN-yD(xukze5^`GBO5fxL}4-DuS%+?O=vuIs;CD%t8w=_NVZ=Fy0n| zV|*%wc+tqmTQltSGu3!uhaMNL&nXt)=OPng;QOA+-SPjPpHTakE8m4oh~tvT$dKzR z`DG{1*#3S*;LhI%aCJP@vVn6zsp*tv_B-Y;#v8*Og>3^SJDp=rT{P9Z8E1)M$%w3<uinU~Yu(kUk`dp1Kx`-6~O-|BTZ&*<8;@-=f_+sj1@ zkc{K*gLzUY0-iZEUe=OE7Ompmta!KKh*|ww8y<$Fkp}%*htM~lny7@cfr9>?o!2OP zcugrXMpZW{zT4TaQ_^_R=68M2@oncgTMs0ogkM38=(IJ?4G?;zFo9fNX!?SeWP!6s z2ru2XSalOQJgI?UrgNHsbtaJk=OmG3re})ObXQ5IQN2II$lvGO>6!NKoN<4iKEZ3q z2x1zA{T&2~&^~rvW|^2FrDLcAlO~m8AbRuut&;1roG-W`S*^-N)JvadxCUK+W}R_t ztghZ~*$@^Qe;Q6Y_UulS{8A?ase#`=3&&2orIa^fW|60Yv-7a5k4SDmdKUk#`ehPKhh z_Bu`(0-;L|vzYk^A({_Rt1rFn^%v$P?>gCCC8HGS;|Q@w7^fx(k)P{9_+}K9?|CnM ztR8>Er4g@8JX=y%`#?kBS*ufPcdvx2@~g4^rTs|^_I6;@x9IW5G5+Wm8Mu@q1<{#u zJ4gsax!Tk&y5TtC2$cF}SHVYaP6W|*k4qAvU`$n(+3x7W89(Tz-e$aROhkWYH6BI0 ze!TuIt83PP-E zBwJg~tMn$w)>!0x^wd7G;p)8OZL?&^aE?1yeP8vk6O8Ynv3vyWvN|XES{;(+OL4QJ2<*`&F zuic;~5b=o?r{OFV^TziB5`_ra5(;zNA8JrKM$%G`cNCki%NB4T)4DRHTt!p1FPQ$T zCGR<~r7kd*-JCXegKj*aD|x}EZC8zi*9x+r&*#924En-%-_MNH$Gh>q zw`swMx@KXU}*EP1m}9 zqu-=K`nY}xG)3|%kps#bu_d^_I>vsW zOjT6i(!QVAfB2D5{tX)7`%j>Bk^Uq5dpGY)dvD+Gic24Jak*!{Ivb#xZQwg*yRJ2y ztE)6FJg#|O7wu853QVsg-B3{FHh3aN58}E^IL4t_u~o=(0P*XOK$Q2`rEhF?Dh)VE zEKn%1Jo@9~JO&P`90%weV+5E_n(m~nWz<*0iveB=YTw(k5^QJn+h-tBHUr=za5iHf zr7qdyce!g$MfJy@eE=~zEwh=+KZNiG#@i(}+;02U_FWO2!?9$|D>QB?mdt{yUS0(u zX)w}xmOZ(Qq-s-vBb;geO(G2k+|K&5!g@S1wW_RU|VKaF)xHdrUI3YWS zJ)yLGTs9H&PM`?!y^U*u34e$^yq;eWJL}&^_ridFF`CH0LtNx+5f3jzcg76H1hnTd zQ+!T~A>TP3K-Xt06qeI<)z$W=J~11`z+8>hVSt8-ugc*g;~uvLHk;0)%Io?UWEzd7 zz%uB!PI;vNvI1>Vb$2HGBf61%&K+mM%_6B%Ee5$UH-@1cYCPyd11^H_^Yi2JH$RAD zayT;3b!$R3p*R6hSkt>h<48^T0 zM+e6v&M(rUUYoaZ<4vK+F8&~WMzmr?B0~816BbfG2~8mgKnj&me45$?8HbxD_hPMM6{ zy**9Md|t=is9C^@Vd$fA+@pKXbT{M^22vVnfUF_AKX(=@7|&S-Gr z^-J<^%55m?@HzR~u7|g`7nkosT!AhKbK%I8t7RD>+|yh4`thUIrkYRq2FOw)Un65k zd#OF`CL$4ScJCes6BgUYx}ak8-Q(&vM@pkD9!6q^tg>prwUV+HCX@tyBH-7?DJBWD z0fo%gOBo;|0rG=@G$l>zWg&&e%eRbpUuhe^gWB^)92T=tVdi|P?RBNRC9sg4cPbO9 zFSu&$k%_KMXX}d_W{(|Y)s=?Vd+V9#%HtiV-Co6Kwa?2!H4pcrzKe*-5c!G$=>bII z0?dHb@-$f~R$29*0|!ycR9+PBg>o~LUY2R(P7md$+=j&7ats(#I3q%6Ib997x?)A1 z$DcOOxveGrEVxT9TCVShSO?%`k*;bw_hf-~7Es2<`Nry|OW~6+lipPE3Y%=r0E^M$ zud942-Cy{(W_l+S9CldnLh>O54mPiw%L;D=SPYpFQ8j$7Y zn!(+@9;A2N%y|HP-;8aDvL4vv1IE9UzGtcf0>uwc@uspiEE#zqU)rFS9tTyvP*S*& z@~kiHg91M)*(VC%zVCC;#d{1hWZ$Q*aH2C#i@UL!X%L2dB!9ij-U)Itjk^e4ifVKt zbFX>(o_2pUH6?f{RJP^N@(Ww@|Cmyg)o82DcJ7IY*1ohZ2SX*5Z`_QazXkDg{9gZL zKj`Yb4Npnv)|d`3qa=Wg)Wq;r{E$C2tL03#5(OiO*%{ULk!-R?-UlJ75B3*7%1K2? zt{bB}@9;of>wwPx@V?$*cHXj&QyK4St zp7h`Q0dT5LN{sVs1PO1qS>~|Q;pd|ju)M&zQi-(nz;!+93H1Wiv~$bqJ9-$S{Lj}$ ztce|2J&ox4LbW;ls`(liXcp5k{RUr|e7HdSHwyT-_$0!^|D&Ksee)ky9wF)yM0%)! z8QEigO?yPaU{rP$!xl9lC?Lrm?HGlp=z-fSFN*b$tGLKx963<}7*@V7$Bdd%Gne*9 zL+Woz$^Q+*b-CHZgu6-twy(?$sq>q^XC7X7iLgZi%`ga@4KKA8@grZ0f6@oThs5>? z{^$rPkF$L4AU52;x(_HfA?|?1JD>E4?ALQjz-o8eSXSu!yvBv}1?}|WA~Yo>rA%A? z8D$%qg_W-Fcu=sI(>-ZWrcO5a3i6X$eUEqoMihMpZwcyj#cpgzpasjjG^mL6ZuAn6 z6W;(SHMr&OY5Q9z|DltYsey?BmCgb%Lj|PP>Bc^5pBCn*=CNgBwa@$d=Ldy5CAOEM zc)H@lN_P>jJe86@D@VO44&U$vo^x7N&A21EHaKunJ310>i0>yOm}|_`UxvBAmTOxZ8oD0pF{XYCJkzE@Q*}-@FM`SmLQ=t>o zB&6U3XC_o&>8xymm-Uaw&IxBicjly}!`bO~p99NXhEg=OTORw}2jC0%EUWj$0b}XA zkAQtN{@5GFzby7J@ZloPxvLDfEcUw};pVnBKk@&Oz9j(_JB44v1s{H7&>vV1wUQA! z{5idX!L_|WZ|4n3tpRJ$f80kv#?cChqLq^cX#;(55cQsPFboVeqX1?~(@eb*`48!X z|Ie;4T=^_hV)WamXyH%`*h{~KqpqryuIqzQ+}4^Yn}SJjbLPL>pBN=S4{(74HoxEp zl%D7yi$Mmg=2*An9M@fm_<3S`bpS{_fLiUJ$L4>+1TG)&pW+d^x zxfsiRB&~UBs&#kHz~)YHhyR@N7pw<`&0B%K+r`y%E`r~w#pR+P8uicfT_t$-) zwX%kK{u5GkWq%lcDgrWt7$W?y*mO+@l&BX?qx$ibRxlQHbYhIh2!FH!ix}hk>|o58 z46`p`m$%5N8L-5gLaOtt<`l@Qhn{-};dp`JeDt~)$ z|K~XG%lJR=f7G9C*=nubU_{%%tbBLKdZ^_s4#lR23Hf{2@%_k@4#346UwJ8nj{LLQ zKOzEW@rNX$`MuemT27z#I>|u)$&THd9TY4PDHp^u$a7^T?*5h9@)5GsOTe^bFv!Ie z${o7fZRa+23?Lfd4$TDeGmPUGg0cgVmY4!WV}*06ps$a#Hps5Xv3Ze4Pdb2| z5pJ3Y6t<#2`!>Nc%*U z3{p%H6N(u`cW}ssitDIGg5?n75HR8?kb9o@-LR>eTfc>q;cLkd+hcZ_pH2&ps*xDaJ zBerl~3ndp-%L-%A$#`7&jgm4VSEIqg(8KBW35NcDY%AWb%E?I4_M`;qh)MVesLNpZ z4(NyjeH4n0Yxg%EWq(UeE;W^<&Q0(qZyxGSYHVUZZ7uE`bROd{9o%dGr1RU<4Zq6! zgssAUX74vD(w2ve5dPnTZCXR}QD+*IOdrX+DE{;9^9-2=Mpd)0#M5l&S!6Zn?<%tC z#I4HspW2U+(lpluHqdl^wdpzfn1A^C3e{m@Sz)m7{_#?M82c{psIus*!Rk&v>MGPK z7V`rv-3RRkyS#3tYqcLk1{%n?t=*`f^VA1}5Z+mTkgo5sAeK;;Hx|w_m z;n%`BiofEqURxflI zLtT+#EC(%3$n$oW0-bsk*9{;0ijIiEm))R7Kk{l@cV1f8D4TFX{_i?>GtX{qeQ@0v zUh97zwXD{_Ad|Dr4-#u%Gil^fs-!*dhC+?!+fP!iP$LZL`mD|D`H?+MWVT>91b5XL zAupP6qK;n%de8r@LjL>#MGfcZxOI1Xl2SC@_kl zH_VLUWgyfPtz z8U1dl22`C$Ktu7kI;o6R&%IZ$mo}ww@9sWv<@{rGQ@O8!0kSJ@&pKD@uCU+yM*h2U z1ML`psrd*Z!^I$xNON$+ulX55K6$bCJ}O7hqVw1hLOem1ya{cUq*lL?s$!&1no=L zQf5y~J1#2<)V~^~`ilCT`ioZDwqD;sRUgjwUJvG}sfdFD`u3TAr|z+cG~U_!cV3&& z1C*?WWpA#po>&bs)R$k9UtM49xVEG$uAj{7YD}C5xAVaBhVpgF(Lv<$4<`bjIxsx( z@bJ)b3=XMn%j4ZCS@`8zMs%t&wk_-|Cu-Ch61?v@kZL9F?i1gqakahN=~d>SCk`Gf zu>L5r_ojQlkVc3MQ^-HkdHZlEFKCpe3Th-#WS}h-IrR~np7b2_2;AWd2(#9!cf%?& ztRL2X4;<;=0Qi0mL?sA#f84CK?jfIS@Rp*WJ6b{03pPgasW7#noqZBEBX^u(zK(%z zNjAu*tX!Zw(rv}#>!n_xI%eW|78wS~Xe|&GLpw8#BPoqB?1JvsLMAr!-W4_i#vjAR z-ee@KN6dL3jtG04-n%&7Y9;4hK3W@)5}u}!%LRXMTL9Wja$$(yb z56@MGRM=o=IW*L>Q|*ayNF7j9sc4w~us_E?m9Ma^bL;04{Bhc31C?HFbnq2oH0^~B z4$oDC%LB8Xq)>sG5y?7_>pMz*$pQo%r<6JOnPb@B0;4Le%~cVNBEO%%WI~F<@jzAR zp?_pWZZXl2jxBoz?f735Yh@-JtKM-jmW+7%`gHF`_vkEEIGpNj6g!J~PeLeTqkIr% z+=I`Uozl^W74Ps`5*3K9S1N3Y!K`#<_RA~i*-OPMFW0`4)@eG_Mw1EPpF5zq6I<|g zYih-N8yF23U5-9E<*_GkX1cmuY*P~s?DLr05_G?0z2LEj3?M`?z>N?eSZ1B`JuBU_ z^D8p%>VBg_9ZU`OOuvrP*MHCM%L1`<$q&UQZMZbjkq97a$=~D@jach^%6;Z5aQP?Z zwIdD2p}6FB_SF&)UDEzMw$n%f6iV_PwBH{U|_CYCzO@pIXOUl8<=Imn1 z;qqg8>#F~%pReC@VByqTZOwb>yIEyG#;nOAOjqW%C6GT+{G&M3&!EPpdgj8(v}099 z)(<1h;17$tZi{9Z_WjkRiY>uI4m2pP#4KN|-TV_qDf-%{H{5WxqPigtw4VuF zp6Dnz4=q&KXAwf-uEaH`iv*XPH?x!)dgVm=y1=H1f`qbWl(`V%Q31I>LScARE=t z_b9gU`u7Kt5qs}8;=x>7L9)w*`6y{~!uAx=6mow7*K;n-B5jPbFc8rkpurqZt++Yr zcd-xFTL|91Q8EMo8-}&n6c7*f5=>Xcv15L{2&l(JQU@Z#!MqnZTjS-=f-xUZ2C{dL zJ7wNH++Wo#qI64X0K2VQQp39witCF~hSaVp`l83)9gJ6hqQ)iS@8)H|UgNfg5;&+e zWdH3G`3l71yOSspi8ux>R&oY<8|^8eL>8N?3*p%|nli&3k*mws5Y0;g9j=+Ld4eYA z7u+q=LV;HE@t|Ex##G~{NZ{vAx(ag*vEE_P>o+EAKtRalXLw0sg9YRG(lZH_nNWPn zr29g^s*2>P9%s$S{K%LcH}ZIWi1~1B#LzUnoBSJ1p>TcY(T5Jkzpd_l6|vHrp?qyM z)Ens*iiB@;GnraeV7Bms0=k6zj~fH}lYrb2Rcx#ZT~&z+B^T18*7s<<5lp99j?e09 zoQdM=hc{X|2{w%@avCA3ZBo7r3RJ&`D3wm8F7Fv+2x>ca2cJUzY% z_IJ6=V|ChU@`=}ZYNH9^$Fl#ujsR?xx9dB->PJTt7=z8oQ)3cK_>;WRIEG(wjpy$@*rbrN;{F^!}G zF5j-ns{BC6a3B;GK@-TKrV;!DAjPSm%H{)cabsbgEf*4tBYkO-l53NehtD_=Wh7IN zP}$~Amo5m|FD^ewMYf*CzExqcM)&vz<%?xHRa2R{Oy}ypS&+T$i9&W^s%AMd>A{~k z?HiI)si8aO*vt9bk(XEG_f9J%LO-gdM}~!d5-c?FZ-8zB43aoZWt|hX%O{hKapNvAlO6yoI_&GVScsFJF0Tad z!48L=>gxvmw~D7JH4#Zgr5u&k1LGd$QwHohbx3MZ!n}QH9I2ikN+Opv;#t&wyybu^ zkJ&=>_&~>Lm5;*T{vc!(7PV!bl3Pfb;Ny35<(?Plvm{9IAf?9lq9RvzE(jQ8zXV1~ z_me_Lh_I0|@<({LbfAq^YJy+e^(`1Lcx_q|r6M|yyQO^TJx!-ju0k@mod{EbHG7(+J{Zc)AM}I= zJjIY`hUy(#fO-5b;xs!W9}I?;F3Zg1TfZbUo?~1;AZzS7Sd$aZV;*l*hiL)GmP9~wuQn@d?29>s~A0R74tfAu%Y%t$Wp za2cc}deiX;GSR|TN6BzvLWWbRLh2RXnN;%#yYncsy!~Tb2ZDzMdex-?ErE+do(GHK zK~77Dj7ndG2v!G=57Aw~xc=|b`&>ByaDq3S4mifV!RSO2^@f;lG1+Dr>P$HICP$-* za!Rwozbl7G6pO`m7l}z^n&h&>$z05754y`YM&|e}fje@^Q{=_sxlm!b7i{93 z93(yJV1Qp>sN9965!?akl^qe|_AV5xH_7JdW`|cdKQpT_?TJ$;f;*NrZsGbV-tp8L zT8kNT%=(OkgKQIDq}RvUWl}wu#5)3zylo=V?~Vs%@JCB1g^4}xc^3!QNPm_>-V6O& zzphC-J;lGz#x6Z&CWeVwOoqgEe`aW->krQZKp$G`f`G7x^vl#2s|j_P`LF3xXrt7jKi#`)T-0 zlG=4FY|Bn&c1$~Bu({CM#~VIPbPqe;cW#YdI@#9k7O}82RNL6(rn?_A)1uH|Ob;Qe zj~#I3s@GO)rt5G&4}GW+j~u<(^|g=1^mA0dUB6vk)V7F-NPwa}dyyFGGVFGNN)ofJ}n71z)*9{3lq&QicXwIe5gzbsA*c2 zzBCP4j~t2wLk$hg)j@bPm9exb(qbMG&x2)@gHTSi z?%lPretk4`u+oxu)p&h~=6*~u7~$)Sn)@@Ka1>ir3ixzpN z_nxa#xo=KtfSTrJBM(=bs^H8nH1JSjoc;&{a4)urgApjtf^?Pi(Wa%m?a`}|B0sA zgS5R1bHsCOn6Od{wkR~9X163JV>h+TBA?yauju(+VM-~DtaW+)-etG=6aw;VYKP^{ z2lbxh8ZDGG3Js)f1%CGJHU*}M$CR45Gx;u5{8>86JO<|K3=y}LZv;Sb7UFXTC{4>=TN$qJKqsl^1YeGVpS+t5E1+?AJrew# zSZRN0@ODwcB0@&Gx?*F*ms6Tv<_q7S!gi0)u!BEHRmFC}JT%S zXQAZj&Nw~zn4zf=j6yEGpNF{9%EdHQ&Mg1#ONTZdIBtzsyt_AI>T@4#Z%5wNmYQ)k z`0NHkS0VZ9O%Hj;?AK%3w9?yCST1d!)YaGTfn>7z$?Ajiy@`2RftTi!pZcy z5p3EEi?Cfk8Zf^(8XNR-29Xywvr2)`T;^+NvHa@;9KHway!k7f|4OZ>rs$pr=a`(I zSZzrL1)87uOgCU#sTEd6Hw~x1cz|F+FGmgss}PV$pEU{ldU4qe-a8;-`2}1q55fPL zrY+|FJl{Flee{4{k(3*IpCDNjn&ai~9Bv32`t&BORk{t^^5g3#(?-ySR%ija_!g0- zf%sA2#=jC9lzv4|m~x0eK7RF72r`;*e-due(jXAwA5kOKP`$toh8I0j-OQO{A)q|Q zH~P8j=}+NxECw|3eH99Mlx2f&dYFqR^9FNN*RW`+R*JSDo$1k^I%sJ*`ej*uLcYiH zsMpezz0?HM`#q?Hkxu^WhrWnGt;bu%jss?~1Sg1eIsMqtbRIf&!Nu1XQ%2@L zJuTvS{~mmK;J z3L1w6KVf=c7`5YLV;l8ECHy`s@sD2>$)Oi2lq|>@VZa!f$Gx;oX}w=;JKC7Nq~-;NrA5QFT(w7<1 zPsYX@mK9U*pCuBOyE)szOAoL;ggl1f()8E9P`cbTrqFM>0N^KK5i84$U*+gW_F@jH z@Xgbi-=X)Y89$H%OJGXxy^B&)0Ea%BZ#}t!=2`PwY5KDq2N1=0?UBj8yKEeI$bIfH z<`Os1BeuCWYyj3Sq1#prESU00CSmI_HRd1pGVvKzM}4|Uch>W=jf+jQIB_TLr( zk-pEK{c>RKE%UB)m}-o4>DC{ri7_nR$2i$BZlyHs=>(u&5p^|s!#i?T4{fxDB7F=s zzl7Yf%gOVVI75U;Z!h;N418= zS3UsKGHW-o7ym#Rc?d0rZR_GK5c-om0T`}YqE@*)$_vF5kq-c8pB?;3uDNAwnGV#q zt1~ag{G#!hUeZ~Z!zXT|GZ zsq%*4n_kYNxB{)O9m(FgVbvfjG_iiT`0`@PhQ6T}LQlZ2@aobL&Uy^Z*{=?Mt^b{z z4<;*clzz~%(df9-@FTw(-J7FN&w*>o5OI$q_wc-6oKazO6yo|^x|EmeviyTCTf*gz z=5gju_DK4Fd+3`e|1cF#PfzidZ|{lN?GCg}Aj|S0UnOb~CHKfy1kK$=2N5k-Gz)5o z01m?0=$|6&W1BDHiyUk_H1!N>$=z|tDy%4umgw~`7N4E3lRGdQ67~(!+~v9LfbNHo ze)&+%iu^NF48U(H^`GBvcb}r+?R9?}jB})*9db>l>r!qMr$&J;wnfp@ z>vf*hf-vg2%trI-Ap3xgR9{g~Y*M&$4E?A`k`!-5!MuI@&JpU^!_#xA*xgFH=ev~JRt!Csr{D-LG zwezozziX3WK)}`cx(tt0#PtW?i<3lCw2sD^F1LA%g2>J`4W<{v<|&OYsg5c5EGp;$ zN);GG7*8nZ#zM?N9|SH{sF}ij1%>Gvmo^fEjgiEy9ljnkuOuW!0(Q;LO}AI|kMiq( zo}YV&+~V(G1-M(R>GMmPhEkrC#5YOB2CWYl3Xcw5 zp|Y?l<6oR(e`h+S50IsaJb6og>UZK6W5`Fe&7H@2+G;?79`Ov39`7YWWVG+>{WYgr zm-V|jSl&nL+ys9Hh(W=>Ut0&v3RlIO+{hq-wZpy>ipjSb=)7DHCLan;5VBiFe$0}eX4>#h~x`tLIpayOj zjb4xCRSNWGe?&jc>9q&8V}ijXI0nR;i9X@D{J8H;l-`vT$iA#Jzk_LSfO*DAU&&Zr z+=k~s^>>q}gx!^fmVX3et#2?_d+#LwW-c9>*&$Ri`pyyeF#B-~hwt@#(9Fzv#iaEE zvf-?FP>Bp@Hi9ta55u+-ucDZo*%HFAqQ51J_`aWsXL}aC%nGkQ9_2C_ig?V5{R+AN zEQK8`t{IC`3&9PUn{Tm60+5-U`@GZ94B?3TO+aArD`418&=@5RUHq1N;K{|fV0RFOK!Y`j*3ccYfwbH#IK_gnlu>7vX)Z7tS^_j&WQd^xzils%* zpnj}vIk1f&upqWjz}^y^o^KS*@!MgZACmY3K}EV(!MMOZx*(<#TGwr?z~@o#?fa3G zq$$Bg9}WyUSWZhqU;K#Q)ume@>7pUWDRpe)<*-`AWNu`UE){-PT}0mOzTzS2+iBnP zwZlP;ydnQkxkoe#QTQVoZ6zaCv+_F7u?_ILePd7gan7Tq2k?O2ARS9Xp|LEPFMfxf z5MTqbdgWLX;#F_H1oI@A=z-AB=V{O1MRLm#`f_gio^ddNAxlZRRNC_#jw+|4ToJ|k z8rR1bVo;;;?!R5DDMk$7w*aX^yUc{W06vT1fatBQU#f~?DkKC6xy<&4+^3#hU$UwtM`;eD6U+cIw znU7`xo6{WX>5H&n>ZQ*@kMaBpi@{W&(`p-)`T7(YEA-G=D?-M_Vg}oNd-C^kf$kHt zNe}r*4tpz1De#L4Nwms2z_G5KKc%suJrQuVUY`C@IUmPdU}27DJ!0M=XiCxi@hTvXKUa0gv>9AhrrHiR`IjR-SJv`3cFku38$-Ps5cqrhaX=2PzHhB zCcy}5A$pRxWs?~)@RrGfpjH6DBi(KIS!noZ< z0%p;rQx%Gmh4aU|$e~7E*R&oInMROPJsU4W&v!BIt;+}@SGcr2O46ox%~e0&-O-RF zeYP7BmNZzXfoDB<8l1BiQA{2kY15Is&}y`s8X%oT=O<%WUtjOK8)2f^9!1MZm{$@9 zq6ZT)oD||Pn}abm@#;zw^(e+MKt1ri=xyu2Qu|G;7?W$tBV)CFeNe3`P$7z|4l{q_ z@dnQyJT(ELr_uJ`U+y9qWYbd$xQABvf`E^$Kqrv(gYHX-y;8nqe#X_=6zPw%I*&!) zhdl`JLUm6+eN!T>oexAvPY-1r%s~V9MT|zHa5cI*7JyDtxRI$Ta#qT#$D)-VX)JN| z%S4jVf0bm(D0gXS5N?9B0;W*qM;WqE0&d&uk7i2!GIBi0f=uJQflNeks$2FubiB2= zht3Nv3coJanN41dy*C+7EUN(iHtX#9OE`CU(4V^mq)SCSElrTg0sndv+(e+!u3CB~ zoojM7H3rPb`J z-}}@drg-9LDAE0!a3==uwrJ&gMv3wBXVrC1>8#NOs48s4pVgfZtiba4TGTh z8vu^a21-8dUqFJ?4kQ>@vmBX!qiR64=4`Ru;ho$&xKz@d=s$U&r=dL_O33h#DEmH>8kOeG~HQV}05 zNa+#n`b4?)N+p&dya(UsthR1f7t$%kr=Oo0g z?c#P|9660YG9KY18l&;qANm{nDsC1Kz&NZGWR2UXs}$O;+M0*y0{A%Y(MI%I;hwRr z)h+>!-)+HLoGk_d3mj&f5Dzy-a5&96n?OkT;WLyMQF-!i_8Rq8jMbEe#4>VGG-yDb z5C(xE;Aj~Mwr4)ylXPnFNn$31KRzeadDOn5}s2VL+blW-@gmxo;SxZswr1F%=y2a_eLMpr_^y80d*pL*Zi)*Oy$ds zQ)Pm2eG==o!-XS_h|ZUU(CF(>6Y+)U|1l(C7(SV$9c?x_z%zdicx(;0jsVD_plqRS zST+1BpvcxNz5pY1m#ow#DaUSFa^y+J^>)HQF`^XySd82pdC}PYY^iyV5?H|sEZ*M| zMhM-&fYE0&@IxtaUQv`@J6A~LnOp8k6xfxjh_S&3iOJ948(X=RhS`hbo>up-4EH$o zAO3Qc`w%~3e<~;!^XbXQ8XL>lt!$OByXVbA28q(kGnZaaPg9`tyESz&9 zuTPGTJ0e9K@V9yv{;7w<{^s_}=M&8eM;vKR_U|DtCQG%jjxo$)!W`8J@!6|e2TKh@ za$uSE--}R?P!RUaZ;u8GTqSH4IJx?IchvQkTn(W=r$vO9@KX4vyK{FyLB18DZ=UiG zJG;F#W@BJL2qQW8jWpPy9VdkdObGevn>ymz_x2W~vfU~FB31uD08(*Ekb4nAz#K>I z66=de+4Qjzfzk(5#eBj3n50PpuI*0*It*@s_}kY(@VgZl2cqKA$xEZ%-ntG?13ohaS~pH5I1Rex2FWX$=#o(>p7gMmZv#`MBneTSc@t+>)l<$GUxLBxsAbA7WDgOX^m8u` zobvjv?U69e$$&mw{c1@(b@<{#IAC;K)Y!J_`Xp@6q9mLWFXGbnJQ>^tRg^-w zr`e*_1ZQXa-)`KY;|-1KT_%CYFDWeNC3N4g`uPPwNQ=9RZAS}}l@_4@FN5U1)}iLp zIx2E2zM-D8w^^R^+;*3qIHk!RRtQ?#9-ATeJbnR`=&xpVJScf06_Trdb!o94oAxAe zK2P1X(wU^`9=oovsv_&Iaofi(oU8T&W&C@0@|5j&Kw$oTax!t_#RijEos)hM4oW*Y z{ywzWCI!^7Q};I9J9=p;TCmcDy7!~^8>y?*(j>O%?0WzC~!%?QA{iq7J4v$ zw@u~Wu>0mlTf{bRW>OCfnj#})q3c^ZAY|U2Pj=pTi4TClt;yrt6{pKx3A`5U0F@eM z)|a-qC>ctGXPcw;O@D^}yFn4l6DgNMzC^J6Q{e=dOE7Q_eN>Ba^{a1vF+=pwN_@T8 zm`~3@NcX!cGy)KM{0J})a*yB5cmwMENY>afNmziOysGb-Q+oRc`t>C!0C|tcf!@c^ zb$8|`=w2QZwuT*wcl`PNi1qXOa}+V2J5c-SM-qlN=m_zRU%9a1 z0KPsCOtz7pwC8`>8?{tFZT>A6AHiURlp&YQUGE%z{pDW(YxZxx5>ce`K6pnT!^QWN zcOsq*|7A54{NDvhgEia6!EVwS^i=|7F}Ra`QKcgIr;jOnw8vim>%CW1vrAmljgAkZ zhcoyHsgn4NYBByGSHEuVW1RQs_*LfFr{BQaNR&p*?eq|Mv*6j6VKv0xgc5=uFD!f$ zMwR%8B@g!K(KksWFnLHg-*hVTlfQ9UBEAoh|E}m{#2pg;PiFBfR0_+%L5a`&dfFDk z?*5EK21J6_M;0C3vmGM0{(je&?*|Bfo>~}l$Dp|(aB*zsB(br1?$qyjv*o&iaq>X8 z{hW$R#NQ{wLWAx2L1%&rS^@q5;kdDCxV3|oEbM)b6s<}A8}dvGw?Aj3Wn5Ll4ENt@ zk4hp8BKZSvO!x1Kc+HG8+sd&dYy((^uk#J(hGc3|@C&Bq^E)r73IJ5%yJ`(Pp!CqW4w!qQM*M0wCW42tT4F6@RIpy?FHqTV#ib8VkL@wd=D0D&1uyxz=K7`=y z-aKV0l$b47wewwP)e~)PY>ef!MnGfbtBO(UhIL%jcDCbcSbOACfj6zeAG<6`tS^c< z-Y%`FqzF4A0p;zspx0v87i|RpRuAPRe#FOxJ`Gc$4)I5?w6B;?eXU4U=C7{i?2V={ zNQl^o7(xgnJh&1?G&-<@u&HXP^f4~wArSWdK@xCFL#atq&`g7%ufUaAFulLLN@I%rCJRpdi;o3YoRMRTOI%~L4S#}XA><;IK zYcCahwIdxDWTE)`L+IZ(IKKr)()Tbm%~wLs=M?qEVx$zY)_Hx4)u`O7Bc4f15tr!| z?l!;EFK}nGiJPFl;)TdE%Hwn5L?Gb`??-BRP8KDw@DCPzQGkweEy+aLH`CA!+Nuhd zFUDttkno$BM%TFJj7&LvN*4h2tD{p{wmDqw`mpj;XAy{-MW~vE5^>vKu)PqWX#AH- zCSZ-1nxKN7Kp?oq7eD7#zXn}dUwfd;u3YD0Gn}i@HRm1hnpjwEz5s=&uEHuj@GN6z z#MX8$hkRhfwbFu7L%Bs%Ba+jOtPDDh#=Yyq&wqz|l-H}ydyQ*M@x}hj3w}3~@x4eN zgN*k>JAocm{7&W{%yY@|GwkkQsuPDZ4W5|n52*_rvoV-EUTX&bHC@^{7zJcCVXKTCmPf^b@9@nK8U_vu&Ncj^Eqp5s030_}2pUh3lnk-bcHHdVywsD*!yK!^^oWlg-p7U1KZ3 zc~F;ymz(t&e3y?62cxW;#Uy3`bx!dUta04b%T`PdbKQO6lIFT`WFhEvrc7?vKL7m2 zA40o^q75@owkIFY{yAFb@F_a~2O$>qyG2k;;q`kW5uE5uZVkO~uE^C;zNhFe59OnYBEFF>kz zw0X#=ggZOyDiyLO;u_Ii);8FmIMN}5;X*YfGYH{T z?!`ccikJ>&cEHD*$r5w{mz(#~H4ceFijv2fnP2qkojUfS`u+>DUicBsWF3M}p9`~7 z7J$U=d%kQyYdHB_pY-T8VBqW>9sT+&=9otnAr#soREBl9si47Evwwe<|;g;Y|i(2gdu(+n+YUmHI$2|S)d<4r}WwI#{d1= z_?L#JpY6VbM69e0@}t^BYwWZ8lgFED1BVYtb&cx1W&+VKY`XA!1}Yrspa5~uEFWl* zSM#}%u*2anMT?==pLTP-zKBhV9W7BKn67t5eXoujt151OiOQKByvtUU6Bq%a!%GF)PwWmi)u) z(C?)+OLFlw0I07=3!nrHl$j|-FDd|@^&rhgrhLOEBOqRe5ANfk<;|(8(_6hENNSbI z45xhx$`dH9Fb`zf@SNzf8e3Gsnjj!g;YD=+moI40{1A+g^^PZ!KwP;;8QD|A9u9pV zS!X24DAH4(|9JIX!*yanw3H&n&+}*rhUk6uTuB3S5BRe%}!!FO*2ln z=P-ployI1DmpEc4e84FkO|wadx4-W;fSl@+F9M!igA?+N#dI|r@Q<}(Kck!9VTa%B z|033&50_$MZwiFjU?HBj-%qt?u)itIz>V`Y3j1uUDn2;*^@;5FA1*H?EzXrqn8Qck3Uxa*j!DQu7iwFzL$D^h6M?VAKj7PLYbO^Is z$h7j+y6nOxCg4V$Y<^0tUfM2bdxCVd8B$rGa~>+wo&lB0Smt-=mN|pSxsTRmH&;_& zP+OD9&5Q!_0JLb|$x}Xam4U$%;^_(dPt;M7zb2BP(R6)b$$BxGHU%dA6r0Y=f8Zq36^_ z{XN?P`&z3zFExuFpJ0;sdomiP+@*fL-yS}Lp+^&8U^q5TP&m3AH1R7PemNAYS9dxe zE>g8loW>AM`@`|-<*?>*d2p`BcWn7m%irv&sgj)%9ca%M(Vnx1FjY!GH$1aCy&xydNjIXo6kKX52 ztdGp+dVi|98?{ECPZJhzZK=WoZ?ekf8^<{y)5>6`^jtY73CG0@OqL#FLQ;|WcX8|; z!nmN#Vog zomJfiXUY48|KZw;=_xE?Pjlw3Yet`~cK^o`2CxT!J<2C~$ws0K_lD*$yt|eN#Oj-K zI(sNk;Adsn0g1#6CT>q8%Hpf|U$%Wnk4N+A4@?|1PBG((<`1^B6N)z;b{=U5<9|*r zak-_Dc4xZ>cidfyPqKW4+Bh=Q>#9yoNQ25|tqOY4m=VnqxZ`-MrvmHws^_K*DlXKE1;p4VpT zs#xU6Q^E+CG|_+}QsA@>;LLKPBwz=nu{=FES_^(9a4Y&=;xKaIG6@R8=PArlxQ=U3 z6Nx5>XK7pU2ra3RMHkdee5XHKyFx{`+g zLMTcXv>PyThMS=f<7GaZCp5E>R8mKci0a4@5#>N7AZNm~;FvOwMJEihz3jaJa;ByF zn)wMAg9^vLlPYC0E#q$5G!1}spzyS@d&QIYsGEiie4k@pb6|u;nRMvs#mNL!p^61b*<45Jdaeu)|mGo{>^PlDKGL{gp z(*pNJ-&E)uA%btG`KjZMEBIdW25H?sAj@B{N3$ku$Iap8Zc|<-hJn$%=-jTkzh^$+ z&CC-Y>wT1WngSz3d)L(yMQRESuBhc(jQ3I)Vlx4CDqf{@s&UL=(u{{$nI{`*Q*O0B zI5+v)1jJ26;iw@#ZOL>>Pq#t$9~_&;Akgjnkst(xq4cj`2iPH$BDm!1?23rCsk&09 zw<%*bf^L;5Ppr1uM48FZCMJpCnqA!sL~nTCuslaO&hocY4Q53?IzXFUdM~uR2`&aU zI-O7~Fv&kHJd>w->XSs%_fm7ulbzp@-=vP^>3_n+aDAAqH_4mLuMR$n zbDD-$UY!FT1Y?IP#d1AdWiVdnH_$eeY7nC!>*>-8R@(^Ni)y#ym7Aa zXVqu#N6Q;Y%!wV_%YjDY{Vm^D7QPI55_3;hTa@`QXon6~*AU`A@F@IZIU^ZDgjX~| zP^@bE>0dFA71IoAD|=a!nXV)*CRr$snQ(Z;bj)>YT%|~-%rtbuhQwQ z;#a6lNa|vX>=W|`vCGUscC+V(iwjKVJnl@g*TuL-@#H_wiNi@!{jdMcu9fG@d>cT& z#-9D00d(L@ZH9b$RUNl4xXPvwDqg_pQF8z}Ma7;#ZiFAx42eNpKhUW*d zy!q_wpR@?QWph|(GLF=hx05=bP${r?AZQQ^DG>3Hh`fc<(pV~g+x1P>s~ylKarpp6 zy0Ihjr`>U3pUQxQMivR-JMH=<*DZBe(J1W6erm1?C}tvRP;X+GAdu3=;i>9Pu4`H& z<6}#Bw9F15Du;1;v|b>5b!^qhO~`IqTpeEhI7vJ<86|gpu80+MM=@lIuDu(O-1g>S zsmlh>N{rxoVmL^;1`m(>)?pM>sr*|9 zLU6cPexzye>P#BBxKFT<1$%Qk)jtcmV!nXvdH-g{DwP$pn0r9*H)F;WxSRa-w|Lf&97T;}${2DZ|^J8C} zn*52e;?NlWis7gn!qeH@tFuLjPU*_VG`xf!dcf&n)blc7VCBor;P2nR=lGB?3A5x% zFLln&6+kasxmI09Ef4N#bmB;usf4YK$J_VbZOCN9WpD?N0qb)5OYEw+kfEu177B|M=Kl>r2OFl^98W zdA*p$e}{n2)1CpYy|pQ|%TD}SGyqRk8RhA%mT2C(4~)Niq` z-3@9yxaJxEyEG86t1r$^B`zRCglQ!H_EkjStp{+$cArJWV|Z_xc-g9yBDzH410FgE zJeZoFK9+i1ZitD0oU>slWaj$c`0gP+*5E$c;-buXj&ts(I%6iEJ7UBy_fJaX-c9z^ z#1tH%`#vWgPjNyr2>naY+bY^##w@&qO+zr7Sp6(e3cv4)1M+u07OaE>MZ z9U;umH8-mL=0+sv;LSN!U(Z3tP4N~%p9GiOuIiE$t-J+5S9#@saX43$WPHmYLIBG88V(wdqJ zbQ%{~vno-0Oai;R*e$x0k$UVK&mGMczx6?BA79r9wgo+!IVNn_al=Pa<*^eC2lSr zqc0^2l?<{uB@K$8`aMQCR%Q;UXz zbd>5+Ah*NOW9C=&zxKH0!68ATBn@F7vlufjayi;nB6&s|ou_2f=4H`x~r z#8wCRUbO(KKAXlzcbF)H=1<)(qE12Y@Le}c^gM-Fv|&0JF)hxwi1GjI4Nc~uT#fVl z&S`5K*t2yqUFOM?!uu9m)t{+a!I~Oo4L~zmW+1Nq6P?N%KRhO_^_Hp}5vA7t*Hjei zl@BlpiHsvO(*tr4qg)OWQLJkV2HhW2WhyLY!TZ|2V#85HiqFWDiIxOX`G2>&FO45C zZ{HjN2F_KPJ^s3M93#t*BS*Z&jl!{m9x*9KT)v!~2g6*CijdHWQ)bdB{Y|f7d1y~3 zT>sBTYIgPYStbjzZBL0B?G1_z)2evI3&Q+~l&SxQ((@E>m0@P>;(4)oTAO*+lNoHa zPCK|eh2#20Dl06^fVsgh7WV0*4Bw@%wwwI+>0jc;SH=q4OM-U}x(sz-xbfCI_^S(A z@7-wjRZh1Em{1QxICVa$7pSFXeWn|#)t~K$j0g%cr#|Vg1s0(TpHN`<9apT=om)|N=74R_^<4#O_x6rZVdhP;%9?VjW4iGh zn2hfM)LvF%EaE*q=w25B^Z_a2E&`kYW-=lwwzaG~U~vM?{GZbo{kpbACG?Ko))Qa(fO zM!mPuOR9S^=?hwkIrC{unxt}Y-az##^k^jSM}_ipA-=&}(wax0%JNgj4x@@^jG;R-&g&HgR5KdBH7PQWzc|%opmZ5hx zce@7!bZAd6PUoP3Mm00_BJHU;?x({r>YRALoY$jx>PL%sYKoXiR{5S6MO!Oo2}_j; z{8KgKE$~IS8vd>#W_Fs)X%W?f0rt)4CAZ~p`-;)KRnnpv??8yb>Q=I*v1`D1S~7q7 zun7PO8-wvkD?&_v{Fsg1Z~I=mrYpo60R1@p(B1g2+uIl+>fg7_vUJ4G(5@a`k_M%!?lc;4nm^4^|UOvBAMb5VI1Q!>oPUjby5K;mB!N~+z?N&n|jkmya zGYE#55QOvR2-*6~?DTU(?N&U(t#L;bVF;wtK2J_eQiFP55c8&q0&pSaDG3;8{FdPw zn2MvN*)i)*@O#YmCLKu6R+9K%@+LOd5wO0sShlpb7$#u~j%{J} ztE@+~-HA9YKSllwq%@M8ivjgt{Xn9hWH@1Vmt@YISOmLKRuW~<>UYM8*Yp)C^4C!) zgUVFc*VAhQ{ORq*J>eopKL7*r*jIPX=b8=LApx@~ zy{i<2W%b;bu*uwZ&(nP1kMg;Zm!hJqfQ)goMeMp^YyJe7e#7bNVpHl=-VVOVmX3rA zCFbtGj#D*ON)wa_xHxuFj)0C7*m-20jR%G%J83~%GhG`#goUAh$4&F~a6n3?1ts>Q zJ@6R*uAYPKu#BP~x&i1uuK}pH9n{ZHRAKs~3G9m3+wt;6?2)sJgvvJ_P+P`G(K2*b)@8I;J5w{2LJ9hvDb%X@M9qiW;LkscZX2%DFDW~y|5L5+Odo?ah~hV@MFE! z>sm(lox>I>6Me6YQr=ch!1WcgWD-Hg<3Y2!BmrOF4tyILJ zBLY+&!`~~UvEg9X<8WE3qml6{LoH@I2~ofKU;jYx$;-4ZaMM4Vld#svoU`*``Nm=d z>4pv`=t?KYTyG3#=8>&NmZSiBYIACx>(S4_lIXhH+!6``xnz6NzpWXHAE?rS8_xrf zz5wkba{$l<;Rq*Re&oQj(WEQR?RW#oM{Z>18Hu}b>ZdCJtv*+Ws?(jZL?2u0DOmDY z^ueS!QE$xT+&6rJYO!huar983>;QXL6_@QafV-Zt-`!R0JAS>43}HMrlUrJ?4E;!H z1YXz2V|ye#k`JP!E0Z@WEI0kqadW4~Zdvr-8J9%THhIx1?1}p$+@ia93BU7++NLp= zM2ese`o*Qq9=%)zu=3yR%9q9msmJN-G31@Lr)ALdr+=Sp3p{&!0O87?n=k@Z+dSI~ zeX&7H;-nZotC6oY3k5#2fS9n-om^yqNz`u;FTyb^D*Fxn+yV=fCO9F3+%xFcentW!@8R?k1}ghWHvUi8b~7IJ>+mXl8&L*kc{VK z)hvzq3`1i?@Oos63*V%$$zpoC_|3%b+Gs;I*;EprC&tnvg;3{T>IM&GB}v6X2syII zb{R7|nO|B0Pw9&CSK;5J4b?(cdbZdjH}<33K+&qmXvFpORYi%L&(BU+Mkc6Q{^&n8 zGH;#eRHe-^HCLj!CcqW6SF24|zYQ>sloh(vhSYX{TQVaLg8Q$$x?-~1AGee z=ic#zlOgKb9C!nT!aIRNy+2(vR`{g(K3n5#|G*P|d(?({DA9Yviw`FWY9iM&O&@3v zfpo`jgeeZnQPn+n?hiuP0|QSWH6o2AGr|~K@@5?yv^U%SETC!o8h--_h@@%mT7LZ& z|HkDX#_)^Y@;iHo1hSRi(&!Y#=g2)bogx9us@5rv@=OZOmO996`tj|AH)zv-htJK} z1RO+vsS!rnqOaBL>@kLy+K2?HP4+EIE?M}rkm8oVdzsl6@48BlXG(At8Ts+z8FF2@ zwq#j1g4!nf?S$s83f&-zH!*E`uq6+$2pQg&C#5|{ zaavWjdV~Tl`KxWH2E_bsd+CBUttw+|6Rdi*#%<s&$0-?YPDTArM zA?JEU+-ydM(6ISsUpnmdcDMmmPmdu_f)z`)Yx-GXt&WY#%|-!Fj<>Ld|2ATcIiS}i zS3n*oLO%Q!$g@GW;F(? zT3GW(y*lIHy7!gNCkfIU{BT@xiWE-sxK88WPh`q}^zAho4O-JNNr^U#i`@Ps4 z2DlQ$NO;TLIf8+4rWt%SiWF|xNWvb!aq><)Qt0~L8{pt9D-UQWrRW(Fg`8+v;_xSY z%MSr(YWQR;OH48fD+m>~frJFe2(3jJ^6O3ODy_Le>%e28Y=$JJsQ^2$5WLUWwK6&RJbe8IRioOnpPXZAIPvyUy)I&o0$8xf7Q zoybV%k`m__F55`*@<$!ffLgAErmXY*_;;cX1mm{;gf|>NNx01WDQb2ZFF%M%!+GFD zBV9w*Gqnn($@)P|n)NJ${Y#X1L{dz@rF3FupH;M$C$Bl1y(3g*`ca;`hOU~C!O+a5 zG$?30%+Cqiurg6@5j|YAdl@*@FKhA?0Xw_d$I%fyO7EAGYv+Dm)UXa>)AQDR!(&p9I5DMvS6G^unqeiG#k-iS5Sl8J7h&Y zwRGy;O3*upVdPW?u?-&S&woF7m=2r_W zckrzE!@f9%E}R#^t-zRLP!hz+Cg#PJud6<0!>R(WIrf2r1 zKEWloQJL&=MCV`@g6?+Yooc*loM@qL&C--zQ*58`WjDs^amYHM3VCBxrCh_=pOCLV zKdc`kBg5LkqOT$2!o-xxTM!?qm97g#Wx~K>%(}=^`HBwS3E*3hi&%#LJ53L(X_b4> z$a5R6%@W)C2px^yms>Nd?|V|mJRTS=lDCFNYuE)SY{rG*!>H%D>078)eVW!N z%UJ4+8{jfPiKn!K#f2U+r}N|j2*oIdNRiMt2&4nxcviTWD{nti_LON_3=^>K8zB-` zc+nj1d$JKdfpC&C-OyIXt2SG28dOwgJ&!5o>HabS7%v#p0ug$4f%Gkm{{-~03Ppit zFrc%tEZ|2|j}~bZM(9R!lw~MHPo5kN4IiDT)gy_9QLDHz#xDrN<7iTA!2-h>$}&Q3 zff}-f>X{<-9JP>>owAkakE%x}Itu+tI1EmU=ut`OCDre8EGo= zze4_AD7c-`BdcDfca{bCkmw+8djyBsU_Nifoi6_mENSPCjAx@}8h5(=&k&-na z)2jjz7R3X3WAAo@>xZP%MP2pNrm%G-RBX|GuqB5Ja6q1(!H?YHDZk*xo$-6&(QOTl} z))N^($F0MrO7+(bSfnQy90DIj4{!j}%^x^#F`sWg_PpB=6u#p3{}g4%0|ky3`wWK* z>fP3&p!EZS0PUc`@usuY;s1O$mNWvK#Spe+)I$t0X^p$R5ix2^^LH7*?(`c*)`w?| z9tfw8rf5ZYaA#G)PRjIeP515|{E96d>90$}o&QCSG!^$@k-Wm zwB~tImE}`Fb;Znia@o^kHR+NWK6iUYmBFq$DXV*!QBL)_^i-?J9YCw&N*|41;!>qI zQLb|}B8^31N$iwBe@R;dOXQp25H0=VnRVvSvQNJIL9!iR`Rs!)+0(s2?iijn|^7vu^S)e|@ zHhh5fP;wquIoT72pHG*rhW4YRD5K{dx>)O?R>f4qdY1TSFE{<7 z9294dr>-Q?{U*D>tyv^s(JdZ3Yn*(mN*y$@E|-w)^5d>$diI3^uQP_RUvF-nKthYN7pWl*~l8?*(KyU_Y_bGVs!Z&J1cFbOisoOy5bEK zBCkz99e$W{jgi3-jvUOCtE5UN2!02c;+O6EU#pQ3 zAWKG?D>=k_LI{P|6ODeP6(!;+9Bn4iU7^iVD7J+*5myrXKLSpZRD31fJ?_X z=W|(rOmri~@4P{6*LcpD1qJ{#`W^^L7XIE>nch;0oo9AhlTs5uRzBnqceV>v$jUUP zBwiQ%@B+&Wj|+*@r#GlJ?fpPKn6xVD0Ah*MQeh;6_3n-wZzO0s;#t#ds(?#gDhLa0 zm1-6`v9lT6E?X}<0K(dTd*Jus>T(mG!R5@&fI{+eACKge)J@We%`@fw)=+BiN^767 z*RXdtCJfw{yIdjo75gi*0|J9ifcDxV6Ph^Re+->&O_(Y!ltN><8Un`iU>lWYlRyK zSjcLd1Zp!WQ#1i72|3HLLK?oF-&Vy8Dc%?^#DBM*bRrxOP>2KXy#pkwOOaA!k$&(G zf{|{-6(-LP08&a07>XN%zhcEs+h%GWM9tLi+IrqI2d$-1tw)O0TXQq8U3yK65udIO zFx{{7XjHRbPzs2TgFpmR2dinim-f}7mrDwZn-PA?9hApSYr=> z-G!uyDF{D9#mf_O#%3-?#&&wp7yDt=~%rJk?{?{no&zL2>$*UOQ0mCL*LpNYZyG762# zloO7^Y!J=u>0k7ui_qlsVVT0Ow;cPm2|J$z%YN`|c~{vR_DTNUwk=Qo%+%j`x+boI^+DX+ygUebPS@?^R)gZ}qE_WkAP z2Z0=;MVNm{>pcpd@o2ubYOXp%)8*&MX?mat?pd>0SZA#>%DPhf1t==GTm#kjGdZ@F==wHbh9m;wH?_GEksH!0|;nTkCTqusa|NN z{Q987AVSNUJ>{Gak5c(*D)@A#8IA}#!^8F-o3-$OzSEsWp!jn9K)nM^jy*Gos8xX$IPcG#EmSgGY!+QmZ6PobD?0pT}0ygDY! zjOz5P&OPB-liz*-WVd)g(dX@x6d>M5ot~e3Nn$VdcjrpKh2x)&=Z-T^;(hydTXmu_ zXhGyUneWZ7hXY^4+ddIe0fnHL^TXA)V$HJ<)a4G^@HxHT!kX5TbY(u*T8-MJG8m-c z!ua)N713tBUEPoY&$v`0N#gQn{!Hs<$`e7;iuj-Zx6;H`P9H<{HXhyLt3(151s%4Bz6+=+ZADNfsdyGCM)RMM!`kR5 zoUU3=g`aTuuZ0Q7?+#=x|9KyhW#(65>J|x|Qo9!F`fOs^>O{@?1M|JRa4pJC&`&%p ze6=UW@Ul3)JDEobg@A=*n9M4Dk7v${3dpC&0{&AcXjVM!6Fihx-fY##(p@pVOlt6y z4P8x()(e3+8UPmV>0x91VHRnR0l(v3ME<$cS8rohmFW`{^;~V7j#s=Mm@_v}r=jrQ z8-mfEYZ5jbmo9zg(QX5_H_4+%k4|ndNpEt|Z*o*?O6&PHoIB!q>@wIZrj~k@glRTM zi{it(Q}t5GJvj#t4E3vPLY3&`W30LpN_Ojyvq+Peff`g4bnRhq0xcAAqv3rKm2kE-KV;)B#AS3=^d@)=Y+X5)K_6bvc zlWd|{6uICX^iVOVuIW?hTH(51rcQjf>j()H>r?b3uj_Q+FyxR`R5Z-RfUecSv`6dlNeR?{~ zNOSHWiSg%H2L|=Opa6@Yi`PHvk}{vB6^ItM(vu{~c)MPxXWY&tX3{xq!G1Lo>Cn}~ zGnL%?#H9A%g`Mc;P*s|s>7>Dq?ezGxuf{V?p0sszgQ9RElK@CIhMvVP*-Fp*M3G;9 zf(i;3-VtINbgH(I0q}RkzpsKpT+}WLWK~r&Q$V5%5m-d*t)Z_2x_^y2cas9J))wb? zTBDdy=<`KRRZS#bLm8=S5#C6cPb--7W+gW3E`RG@&kz)572COU&j zVR$f4qu5~bHT7TbWvpn?4Jd)VSnwPLWLZ)yiTd`O%WN&I3mNV!g}2MljfF?Q3|&#Z zAn&Wa@Hjm{a#^m~>6`5FI$PkKsDhw;?)4Myqp*Vg+tV+coS{+xIq?zq>Kk63US6En z-fSKF&UHzoKa?UnR-mSntCa^-eDw@xWr#yt8*dv^ofpx0+Hs(85qyR-DFX9d$O5Tw@-wn7*h!DuVjW-qVRW~aCU7ft$Ewa!_Sj@+^M_5DV|K(h%q}x00qh4|B1>_rBJpjKJrzHLQ`s93Bmeis zeuYrYSp|hWk1@_3pHFTMXrVomno^Yf{tj43}uXPei6&&zAX7#ZZoBMl0281rIbb{`{-@0 zB0q=!JB(fDwlmD7*)%AEsKF!X1Q%Cr@~}-+d-{|nQ8(L<*{!zD`tr4(?hz3?SJtt1 z*j)&TI6zo~rC%m>>?7Nqs2k%T-T9SL)Knrd%qC`xh+=Lrke`S~c2!D>4_Pn#NXu}} zi+gT2xotD;GgS~Zi@=O1TOnUH+auVTIyKV@&O&c(RRC(Cn;xkDdc@NDKG-bw?Aix`WX z)^y{~PocJdqHhIG>>%mo3=Y`m1sk!kI`Yc>X~d`P2E?bGH{Y_a;xfhjZw~q}E~V2> z%yLv2n*;|ka)%kU`gi$3ALd_eshZS$m&_jPr(d&Zlo~hBCw$+u)CoGlE?A!(E%?fE zQm<%N$jZgLR^Zy&PQvj^s*kJ@-k#mGo4$&(exghtvZljl)-~6v*{QY4l#T85(He6} z5oH*z%n&sx1x~VHtN1N3KXY7>uk$2o#!(zRrjt*gz-g;z;xX=eq^RX0~3rcJHtf2jlzQC4B&QvG_3yc)WjTU{xesRl00aW7rD) zVN4|A0iQn$vSS2-` z4Yv@B6|0bKHmTO6gG1nW*rHyV@?;cLKW0Yscbmmf&zGyew#I5 zA)gWZSdMi(&En=|ec$>I`N7-z<`gPB(>2?ciWJJ}>?!2PA^6BXK@oQk!QXV#N}tH> z9jIIDB*QOq^1VBWO(E{)CNKZWs%CZHaO%O=LQ{jy)VGSY^LT0~~waTACp5Ny z1yh7t$<@148+X|8-IzV&-P9TbIK>9B>2qN0n?@QJhfstS|EIiV?dMNrs zPwEtOwf|wMGgZp8;iQ_^)#m-H`9O%Lo#wCzG&8>7Q?9b=#)$B2MZRaM>>%HCnHX!q z)f9wWYAP(>y02AkQX7PIx8%Pd`=6e>9~Pplt_8uMZ!(a3kP#PuHy7pf(nWz^_vON~ z4-fXM9@%u=cXb<#KR{D)OGWzKfBnWOYEaFIV=I-`zkyqka<{OsXg#iOH!e%;L!hpr zSAp9s0@L=zvFpUmBHYC37z&%~w+9vL)28&pQLa33r8YYp&qdj8vk26`7~j80Y3{r3 zeX2oe-T5y?rif&?W>kPMPVqLMQb zg$6DdKt*!SIf>+)Q4mD3goY+d2BFDK=AFiG=AVDwKi|ByW}a*5vY~12t$R+Ls$IKw z0ptz;Nnd2%fGM;Qsxy~#*JQp0-L3#yk!(*ve=jDD{SjYb11oHDm=YUxNH6A(;?WT> zp3Ehj1ztq}1h!VnJG;A4?DxwuL{siNvmiy1(%egy@7zZ2XMEA}Ys;RpQ991rAGd&9 z|HRi4TjaUg1t35_1bTZBKxRkbU~66q*$-VJV;K>y)Vt@va_z$cQQl=#R1bBJ?U_$> zVD)%iD!Mc_TgM)gyNuB}pN`xP2st{XqOSO8<76IPXA=`{?y9I5_qAlod~oaKzZLPp zfbm3$W%Vq(jcPosg1d+eKbWs}QO)?IX04LdCQZC(H5YD7zV!QFTb;kYLFr=;Z2UWv zQ+nJ{*l_frefy;2xqJ^;2wy=_R(&&+jpKWNDk)9hb+~=*cj?Ln8gU zvHojm=-sc%SKmHB6j5-cd*#_7VyDs+XNL(>MD~;Qx`vbjnf)Ga%XzWb{JvBpbut2Xc9g{A{9u6H4JLSx-=t1F}|U@DKRxvb}KTdMf! zldD$A+YB+fXN7I<$QV>3IvLcFx^&5xJ<#i-rM9D6a@+NgQR|`@+#$y5{G^Yh-{|7& zeRn#Y9>kHxw02^FQ7>NFUCv1%&U#mj81 z`|XzFC0-x2V`&gLol+cvgZrl#0*<{BvhN9kA?4PiUkmR6q+DRBP3IET*-} ze7^gz8fd{2T7@(ntqb?d0&3L!I!BYoTg}I}3S2BFJar#o+e2vEQ@p{}=P5HiCrKZmo^x_rtYia*6C+1{M#8ePfWcgaXmyh=|+?I+!`|6L3 z5cg;`hu}(gLo44vmXjB#vR>BC7U~BbY-B-+!!A`KsYc=*q4cjU0v|kDl_IIED7r}G zqbnvr#5_4$MhiIHhkI~&^WK_qxu2^CsxHA2SXkm2^3o4AX~Y8XJD^Cm2(H;Td7WT% zuo91mtihCjPBRvnF0VzjI5!?5it_FR!{p9Pc1s@6{A~00F*FzN;mqf5ijf#BuTK(m{G~ z$J2yYB+1f($`hJ=WT-sQRKV^IP-Bi(34vm1Ta=1JBFc5Lq5F5H{0?kG6IadVQ`2Q;DZEvYx<+-Yy&O+cwY5*-%7>h z;w?a6_*`Sg?14K`CGx+n_6|joYfW5Rr{&)|zeW{K&#()&_}knGOZa z&PS#s<0P?X%BL895VU8iYD5Q*pLN3WPSj~T;0c>kNINgGUnonZ(m+gGRA-z#BFS+Z@jo#LAEIx4tK zdsp2MGKnPTo2{|w3x)8yEPqa?(M;6IuRX0uFDT-(Z^%kpx?|!H?@!@9ZkyiNUN4G_ zKm^&nBnW(#J{9Pl>D?|1CV(|Kon0VN0CB=RlHi&&3TLeNMTQl5t&}14-iL9oPP?tC zY~`P+Gh9CxPLJlYt{)-8`F)q(8uoS;>&TAG+tGTC2v}cZe*!%QGYc6pMGuhUjTq;5 zCsgehD0{7!O(_(g2Lp7v1eSMDKyoz`h#UT_b9d-B#!SZ?!y1+l_G&%ePx~T172k9K zK(WZGNl%W)ZaUF`-KIuSfaK=uCN&a2t~dy^NOmE7X9% zT6rh#=TGDiO<#1m!cGxspT3;mky(lTXP*;h`G8) zJMHxmI{x2sUrxAUFjcpt>SNRa&4diRd6>RK>=qi@yK+TsWW0|#yW1v)TGD-osz|;p zy1-kTalDc#K*gW&0gsA6ED8Q2p8uxz@lI_FwKEh9dg8c_#`s}8$ zr67ASyz0Y?r0Oomp7H{_lXdt&ORtjfU<~oWHKiX$Wwn%(`FTXA@<1^APJZZltc8W0 z0^7lwi(sDb9!zT%OS$)D@0Uio+!aE{p7F4GoU^43!vejENGnLAF%oZg^#JFmaHS#D z!KceF^HRvarx>}M0K{lynl@;>@Nrtb((#Uo$9`I8*hnLR$8o>x9LVi#L!=v{>q>}> z<`3g_{+%!f%e+S|^71hTwzVB=G`KnGRd)Gi-_)@4+`Abksfk)Ki1Q?6`P%YpblZnR z>z}lcHvdaGbjGTN!JMA}dhEdOG_cp3Sd%3B93o*-#WWrK7|hdPPO#FyA>^1k2qu%d z#eEh%2Bn9A2~c`)IL+1x1$aO_t$kq>hBD`xvEaJBn{RZ?Er{M%s;w7QZ8WH5Ynx8- zy3eZ^@F>dk=@|v@kjR5^wfEDsf)EM5*&j3poDvTS$T=TN;E~*-i&E;VZql5>$xszs zQ{G*jxV_wMfI>!;;!Rs_s0RNY&GN1bFneXC%C4Uq+QgurkTO+nVKt_;ZLTci@M@sk z`-s@td4wkKX;!HftEV1Nh?{YT+m|yRa3%g#*!lW_7e{+NWI;4^h@hjB0x1-gzKD-1 zlE-|SNRA#RT#%oYPmvovdP?|3eDg*52p;B8smE21TX*ReFX_?E~aISVp@;GC*m? z0?zv(&t5IY2CM%Qq^$_*03t1cGTmfdtNSC1#w%fc9spP|eO>lJ|I!o1rNd%xoL}n3 z;ApH2s{x_xiyF!wDl?eUVx^SF{Rz&+?gU6@B_0bQxeyQyCa1(Uz1A}WVj@n5JAmGW zthCef0DM3Ll2ct*vypCvs6sb~<2k*lj<46oU^Hn;%LABFf}+O2m}=72+Z#xZR0=|} zKwrF0n-+6rvX?57AfB}qoXR`plRCQhZ_Ga|*fad44P(#Q$h}G+*Z^4#&|JIn$ZDqG z)7rz;vl9dk6E!JOJc7RQm9l*WGj3f&YjTK9a;wjq+>`{EXLni04h0xB;Vl@L#fft@ zs~NZ=nX!l+bKW&GWC4H-n1sn=_f|6G9i#``80_+YqWWx0V_erBy4VasB-&o@1ul)P`l5~5p z!v-aY@V14|6e591PF~TMzBzn&^FtNVydzx3TC<2^cn|m{ll9513BAWpaNz~FXvgFt zSb~=BSRLZCE|We#^;G?!T(eoyTariO@rMl*;Jdc~rn+`q9s9Ngn5Cv)Ug7fE41bmr zj^VRV8H*|nZZ`xf)N-A_wqyn#WO?IZ0i7v@70uhGuYG_+QsT9cyB;%?YWt70Lx`d; zZFZN1*PF@Z=Uytod}n|rQ57;=5-G&-XOD%p;_hUZu_(uXU+T{=0~cHhIn68Rn%E1V zRY1ZV4mN-ydVOL(-llNVFw%G+E1o~B36wpMdjqjF#DU|;$1WZ-2`h@$&J9w395`Je z&OQg3PHAM|IdTvFVY=(5$&w0A9aL2as9GZNC>q8Tpm%Jxo;ZVb1uhR7HCotZm~FCM zoQ?nf&L~X2!#M^_Z%NVsH z1sZUy0R>DkD_)iu3*&h~c&!Oe?AAWR_iM&#w7?d0l!UEkJVG5eA`JdwFJR+@2TFiW zg?X@#mB{NN=nbBFOfL`srUEn7z6LjgdwTBmsDDS){)9;p#bLNI@AR;#uim2%z$J1+ zl_sb$DG1cbf{6;xk`v@A-+ld3s37*o_WERWSl{^-2>wI*%;9IDH~cX_o$Y!|e-HMx z>&3V?Ki;Boqa^>U!XX69YtfB!J?EDZO3*z6=#Ih@s51DRj)wmP!#8>Rq&K@3tAEH{%z&@;#Org!m$usw;C2yYDvxxR zxneAO&rk9#fjl6nN$SN_kjg!Wf%;Mmrp{mTRKoyA5)<1O0YrkWJW7|)kBJ3v5mi7$ zEOj-Xe@F)WFc7~{kd~IVHsz|9Uax)49ze{JwG%goDsWLVkZ*&Gp<+5%gcVp{o>f32#-ix^J-C? z?r7X{c>C)g#j^92<8^7rdj^*cl=F*Zx-bin;nMH1CL_@Pc-4xA=g;E$_qFy*Hr1`* z=~mOlv9{henC)AvR4gG*NihHOvq6;#sIaw1_B5ZK!-jwH%E0Qm#IW(3PnGq%+vshu z*+l(7Cr-bA#11hP|DOQ$4}{}q$`HzLGb~-g3Rb{}771ojxkMN^o+H7NWd8I6NbJjl z(OGMG8bDNv8N5nHDA9$EDZ=Fr-Z7pphIADp9 z7B&NsXl9*4{p9DhuB$9XO{cYs{ABn{f_~uAIzeInw>>b95-2kykGqAPJZxrs+~Db| z3%tI!H^@3W0ncvjuX~(?qoRr$51}9H(Ua6pzeh^uDg%F$z-atHcxd?OId+d!PgW z6wx}s$GNjSlph0r`FkT@$MII^V=nz4U*H24_LgD`?0gLqTx|kt`u*7rHL3I0_{RjK zSaUJ{xPR!FKEN?tJ-eIkf6lwz2TtWX4-w%x+m%4>7~@4wO{9s=9T5HohXhur(M<{r z>5~l#-N#io;APv?iMWY@_hN7{^hgk4>^aVLC+HB6-=6m9#w-@&?s)z`iv_e!#H7mv zvi!BWY{#qB03*W82(&b+Da3I9Wq4!I3k2e}D|LF9)ktuSo$0UlV@h>ETzk=@0OjsI zr5AC&rNW!A5F#CCH_8HZaH|(;tiNb(T^9mvDPRuAKv@RTKf~@m;5%nDgHC=kfc+&K z3;pd z;4U7te~8C0WZ5q&0~cz^)D`h8nw?-7aEu~dg0J!aAv@#K#e+}kmy3;gNOplNqAwi7 z)V>1T_3|wa>kks8WJ2)uL|cIN^rVQ>{%iysE4fPhF_su^0|F~=ZOLXXY;PV1WV!B+ zXk6%fX9oJ+QMcPLfbT?IxJdk_^wY^$+TsLYUPwMoiNZ9McowuCiLz0b%o!jY#p)W& zzOn^4f7J`e06TQ2IQzeY#ciNU@+#P&sAf@7Z`@wu8wLGdrbv-7A}zYaO0P*&+NUx@ z^=qj~VtF(*b2=!@hwy*p!h8tddd@)G3Cjo!>@7#FX^;-^E=-h^x*Ry^Hh2b|qyzl$ zQQpgm3iW(#E=+pD1RRQv&cGK1d-(0N zBPThUTG(A~v7II&TX}u61lOFNw9MD%MbgfJ>4Ddl>1d^09XKDp6h?CBaOY`PeDD^h z;COn^_+b;LAtw(BHN~BfvO8z|2WH3BB#AL$$@f_qUTl0d!>*dlQK_KdIn`=Rm#JZrUiuurmYouwt`) z{SKRjV-ysMkPQm=^4RWxqZ%0x1>e2#B^V!D@OyGGa{0(@sZ%N)yViAb!zbiX=SNZ; zpvl7`3U8v*tFqtyJW(PAx0)!;T69$+oAGfIo)3WZh!@{5cJN_b6a@2fYfs_V`=AF# z=nDRz%9xCt?>viS1QAmZD1&L2uVr_ipgS(ut;Y=JolNm`^ZSg`&?>mAN{lrMI*i`Z z^qWZW*0!(PrD*bKvFltsoZ#Ui{7N1xW|9rCh=3Aqv)1BgPDuw`?AA`J^=V0BpE!#k z6OQReR4Uae6Dmm)x51O`|2PE-|Gy9k1@ximfQjqRS}Ve=7{e7Z=Lk{&Vbw*O$9=g7 zS%t%$WybjzhF%9lv%vs>$B9`KBOYS@1z8Da8t5qJ!r?UDUIty9dYXBWUTS zVx2sF-Sx)&l3tN6X+TZ~{6R?JNG0S4XrxLv8EZnY{@vrS+ z4@>S%yw8ZPvf{v0xrC`E=v}Q50@z8y^8=U2=F{A$ZA0~Ut%n$(g4vVjXQvmoe){@3 z?Qc9=9x7w~B0edkl(71)zzH+ESl-exyJ)V>qvdEKhI9KlM=F97AhT~i>(&YU`~=1r zzu$S#7w9NnmsHw<*%@JTn4YzF;@Dz!v%T?L-wJ#ysfcOs{&e1sF5_>gv6+R=Mia`+ zd*ZoJA>KMp(A@WR&fuLcejg@cL#F3`6${9zni=+NYrI3^TlRWl2-Mx>GLc(;86boj zadSnjCGs}O94Oc)3YHHXg_{}L;*49iTtb(PnKj+QH;N5 z<+WhK0`tQu&u=O0btwak6^q!$vvO9p1{2$vPwo?-)k!8?I&x_mMZ`p>jAr`o$9d#E=%4O=db~U+cEU5LK9e8=~Yhiww%v zNp){;~uCR+P3ckh0LqaoGwxB~Ds5 zuW15wLETtN|HC6JzkCQrc>UD0Np3aq%Y}@=t1wM-?Fb{y^i6H5Vh*oG%qj@o|*Ey)BE^Y272_qXc&T))K+ z3V`bI{8qm>6q`K~$*?`1EQL!{qcn1EqGD%gcloL%54He@2F*C3l_y#{#QP7I=A#i7L9sg51pCOA`&Y&?WPLD4stDNgE!!q*t@Np)$4lM1fGHzL?*p1p zO?$j{@$$imfkY)!EAjL~oVpAH*}b7>q9f3-k3&%HMg3XXYcsCT$@|dt+umAZPr=w% z8g>2&OW?#snLM>WWJy&19?hKT7QCpxT2RFka#OA0saA^MO6`luJ{8&x(&9UK*i}f! z@%`V!pK8^J7o{&>6b-(9L^~)DEU2^zAg5BC?0BBOc$gzFvs_$q?)>gxV! z0Ih8!h@zzlPB#s8Uk@f?RW|8--Z3P%LQ*=5ffze%;o{LNXND(iTW=Y`2G*=9Xb~w1sX@J<8yGwfR77;#L;UI?|BM8u*|M<$;16C2?Z1cxxtvgImL(2p zHD@t&hRr8}U^s##0~81%6X%^5eK?RdA?`>MPuIRk5ImtqV;0T68>e^&In?*fsW`G8ITr2ya|Z2l%TyUq z>CS{hzw}P|5nksWp_x{RqtT;*XGUlWw7d-?#n&=^P01jEGVUK7R&5F6CPdfIoD_b@ ze2hDJ>m>T5ez35Q)n_X#lFi^jW;$j$64harqg+5}6o|_GLUH$h6UPN#Ba4#&>ilM3 zNT6*yhdJaCKz8>OsDinT&QS9SI_V4ZH^o2U7m;Q7lI3Rm*#W^#!n_am<@3%bG*?AA zzWFt`%BPH~Z^zS2**EQKr|3D(f^cS%m5c8+sbfA-dr+@^L7^Tv4sl*=%-$iymU!__ zu^+^#y3@T)r{pKt+7WvnuihT|r~(<^^|AySzCHxrwz_?##EzJoA|U3&ub&ZFgfz`fh<*2++MQdI(J`Mprm{v zSz2z1iY@L}@06827fWts&-JDIb39h0s!>0p)_#dc>l?OrBupl1sD$=raiknTJ-ptH zhwjr(SYc(qTh6F>ptFXr#NBA=#rC985k^vFi3`lxKD%$1zZ7_uoArE@j}WVhcwp;G zEWX0?7LIXJtewZkIEK^$n(NkHIZFFGChzY<?>wPh;oqX+_Oc^c=DQ?n%noq@a~8 zwSl|JdX&LZ;5rGtl@jV!$2=XRi~>aKC0If6*Vpd&Kfj@*#iNXeZ@@m=4iq0`Cc2TCmipk zLSFMd+D(-PU9WAhn|D_->pixFBE(XF%NeWUQHPQx-*S^|&+lN(G;B0S8PX?;^ppbS z#7^+{cZf^X#DehGv5rnYm_32*_t}Xg2y@2kh5!k=hF+|ereHFC*UX-aJmJd zWv0qtWPni#x92b_Ow76dDfb4F?w-jor?4KJvkL?~gPh3-5O38_i6$zws!LEE$u>UF z--;8y)go{2?N+A+mbZ{>gew4j{6;PTuOiIj#OjTmLnMm^CDmUGXG`yGj+a=vP`PzpDNeiOLyxy zV-D1Tz~qa#{n5ozmt|hv8tbfse(n^IoDJg@4HfD1T2LmEfwi?<3eNF??ZsXU)?!<* zHP>)!oGkYP)N?)b%eXLiaaDF0HNbRl>SRFE|`F(6M@1hW&k9?S)0gF?heT9eC> zXv!*gmO`{k>Gnq;7od@&e4ScBMI&{l$;G33F(~@Wk-;^&OU%>57FBxlxfd3tB^#(l zxIx48J+SmOkXI}qt!Y3E;(D_et6rzgm2z8u7CMix$b?pghI6%!cB`h$)~lv|{50!S z8tZz-2BK0-e6S2AyDx?GG=}Th9q2a!)pJ9yONpTQvvJ@0!^F5<)g*&wL}3%i5u}70 z#0?hOV|?{eChVg?Xka8eiFN~+%i33c98yQM=J#~2{`QwNU4VL-Xkf)64GPlClzTJo ztz#0$4-dZVVU{a`SkvuKWgyy$yXzcnIq1Hs&9%mUXtL2+bh%8b`?9ykyG8rc7TMtM z;%CQNrRg~HxS6L5x*yJ9}KGH5K|vhERGw5ve@19nA_|r z{fbj{U%u(3?J-LH;4q;k-2jT;L!qCSV?F4(BpbL`O^%QD_H14)6EX46PuV7cO^L>^M8j604infwJ2F$4Iynm(rViE>W1t_7H+qO3769i2~rBi&aO(LVJNGo|R( zsF96FN(5@TM8%E^n;#{FU>FWRwB6JsQn}GWa-ymb%{fyglykIX$g>mm3YSpMoorAW zOh_Tyaa0ko9iclz_se2n6RMqPAO*NQP^VK~D#V%|cBjS6&v7azfFxi~P{Mr{Q2)c$ z`}*y@jVO7a;9b7S3B++DT^1ag?{5oAXyj9H&82bpi6Ji_a>!T|Dk0lZrPss8RF^*) zEf_5wr5{%tr*)%_ftU+5J?R+pbT%S{qFi<_7=sJRlL3qMZK6E+UX>`yauPgLqK>1a=`D9RmPnA4RgHnf+FY9O?) z0H^}hM_CCHu%m+_Z1KbZbPSBy}j)=8^-xska#{AAZ(qEF)ER21ts|@vfHLQ)8aUiq_MoN@m?D$BfWnvM#!{ZKs+i6X*Uvc&#(_c;OF`d zI7W(}@jEHD_+zV$LqZOTL>oTtOfQ2Su&c!CCfM6YA>a#MVF)yI>llzwSWiJkANGJ8 zzQ~$#b0;0IMMkXe-Wm$h zSbn!*Na2udpt3BZd-Y^qw@9SNQ_Xq#F&B|T)+5C7|&aC4qU@ zNQuBIA=Ho@^T>VNK8KNkfys46^Jms7AFuguIPa-~>O-~8Ieyp|d@sA&Yt%w7-*tO> zXDMtACpe7Id^#@3{~~5G8GMW@Y&{7YBju*9dv?AisUTY$UCBv-fOJXbs-uc@)NF+w z%)VZAd!b`CPvs7DF;N7lF;upQcxvy(_i;<3AReb8L}Gr#1L?VSQF!Kyj7Ltr6Yit9 zU_M337x8Z&u0^Er7_DECyS~)t3G$TkhZz8ii@7tCMpf8kqJ^BegH+f5+5PGmiI5oBZ*kY&#QwX7I?QZ(983nMqdp)8G^v$+Jl zSuR)voxIqWh-rkDbd!0E#Cl!skR86w&_Rg_^yLB;ic+t{yhuKmfRW`r8EQoJWRM{8 z0A$ctHGRXoyC8h&EBjqL3_rIICie)PF-gVvMU=eTfNMFGJX}CNhC7K%;llXy2!P3C z$V@uoz#3FR?a-kopi}f2WhFSlwGiAjo!-VlnzwTJ`&VQ4N9XM`T))@A^(uCvm@_^6dJ>EY=1yonUiFZ?=D3PU z`Cg5Z^t?BY{Qeq%K&_kr1nPP;Cx?U`p=m=g{q&elB8TytcfFw4Wwt#U9k&lQUOG3} zm}qdUhdx_XrMG-?m@H-fNimy`iNWQ5*E`A^r%+C=kD(Sue?Glu!|wSyO^>b5gKR*+ zGA9J2cryflyzt#Ml0|7H$r&zItlJ{u!vNx;!%2Ln)_rpzr0KzFam3a_1JdRVA5Y)5 zu*qap#VR!X9?#h2ci&{hF6d4@XL(42?vc6F%S4}na7fOYfmz7%-B)iUY;oJ_g@=im zb3}LU)gQ3%Nl!fKPlk^x+@v=Eo!@%nJxO)XwKx~0KUaUh{r!4p6ZX;GT7=(gys?ItX5Z;LK#pnwg}4Fca844>on&0|ub1w9SUZ?Ez#Hh$ zk$4@G(;I8$UaXcO%oL&%qCKa$R<~YwBpCvB#js^U#*XBDNG0S|I5m5S zpEJJ23T25YT@?W(;BBJ3nZfThgM9?s=?m;kLcZ~Z;K)gHj6DU&MX*f0~&Z+iQmteide!x zp6=ezsE*{=PV#Epg6@#`<-%@mY;W~F+p4@IGBAkTA-L-~NELq9q%Bvs#m9SNdOo?N zymQ=`40t^CIcG(>zN2!WKj+4G_k;+e1oOF(_YvCF5E6csX9C19=fC%7>~(q%7LM_g zYHHjp;x0(yO==(OoFgJI$!z+!#+uF?)!4G~{ms=rizcM|32@?;_UPuxXj z*(AgYTQ0^l`@CzwN|`7TGzn_uDfT&O`Z;{Lq_G*i}UZSEQo zrN0!Wo1-cpaWz>+?zQcoV^@X2wm-Oa0t$}4;$T_Trr8^?8P-=Pxve%yfJbQupesl& zz|8)y2*PhK(3v4LShy1(%c(s~9XwHAUp%hCT*K~#*!wnazKINA5Kw6+kQ6W<<5O+! z(xFJcBi^+Og1x<8+n~jSnSsG6RJyS~2A(YBP)+}(``rPGTYg1+kmC4s$FC_TgBdVx|fiXQytx%aL|3-^@~LWYiGKV&t0S6f$|~i z6Y1O(izwf14^+~Zxb`V5hilnd5=E3OK6^Faash)6NKD+fgl+&=2~o|StgHGT*c1NQ z#HV{9&RZDMM{s0K66ML64!N6!9QkC-zj)t-P z;=5yn{%qF*C3X`GFbBd5pKx~N@f{3FW+=E$oapx2*KWxZ|ZF9=ITdq{Tf?i7;;TV1?14Z3g$?{2i!FJnq5tO?TdsiUGU!f7g$4O;h{TU6WTGt5n#SE3YmWSC;jOqpXd<#CBGP)VV4rcyr0rQ>4Ek8>X64tkl@L%qyuPYf(IK+ zrb0g6DT4Rfv@n$(9}+@BebU%FR^ePSV{{IUc@G~m*LqCuBk9(58Z~3D>-_O~!9^!? zi5pqJPDNn8+AzPL0RbA4CvkG2Q^J zT28H-K6&v476+o$wOV)MvzXt|VdH7tZnVGKUj4z8?9<=%jd^}39^o+FZ5TG=MmnXr z9976Y*Oiekc$>XdUkR3WyERnBO`7;9xb>fSiXjZ#)+Vp5 zJ-BV1&;y#87_<^?j^%FE%VolV8pA!ixfjXR6VJ70#7( z-`RY5;K&K?HE8f5uo9d%8SL9gW$cq%?)Kackn>bSCH0+H(BbEhZXe=yn9ESV#|lca z!O?5yFoyJmQP2Bah8O4uQ3o@OhcAU*REa8pW1XC{xbwKLuVf&j)NEBdKb1%Ux!MCl zND=m%(;G8KCV=YFX{0Se=%ut2i&WMtzv}G+-$|&vNJl&R`!i5ZPz2m(COaflzNLi7 zQR-`}*g`d({h)FPrdaEr5A0GiJ9KR>SNYRmJxm6Hmrn zS2F#sEh;yUUD{4YWJ1^Rp!z}8b-Rfl9alFzJ}%!~TDyxvHq)+sH4vXYVJ0GvxAKqs ztXCB*ayx7Y!pZn0w;5UkX52;Qn<-_}U=HO#-)SoeNnn|KW=-%B%Lk~O{H zF>4!(u4DY-dgG14f-6*Z4HOC(ihDm+h&uKeQ%TI6WHG8HkE`dKb1hF5 z6;YRR+_*#SzkEdN6RFMh6in~E@LYc$(3+y{&8xFS;f2K58DrFUy$!qr_L=56!WZyZ-5X3P_ppVn!C}dNQoXMpo7w9tQKLpTAoa4fn4YQ+9JEu+FmD!*ku^B-qHXL16z<2S4>EDz*dr{2p) z5jHS^ImBVn2c9$97-!n(61N!byN7h^v~wS!vaU#S0L%i^EJP2y~^)EUMce<3LeTH-d0RV6vHAiMoN07*aW-N;;&3BENd#m24;vcT349N#S5w!J@@ z74S}MXUj)uvjgQE%b2>&Fk&b{coH*<@>K};2?Tc!jgTP4#g2UWX0#>#h?aoZ_hR!i z9oyJ8;_SAn&gU!=zRhmf==C*im35aLo8-9#hFDr9slk`x?b^wo25 z_vD+!!DLfY8Qau0mES0$TaF@SAjI;1otE)%1AKVaw!0zOS^1;oye@9)&YdfC624g2 zFdTf+zxhw@)%{Nj9Dri_U%n0c58tCt#Uj6j_g}yFKfKidMj&Bu6dwKGUIDl`3H;kw zxB-6u`mNAEU%y0*FYGa*F_ZcK;pXT_!9{#|_BXfxk8kxcr(z9O@K{~?&(?zem1W+5 zi*UU0&sX-ZFCX9K(rql)HN~g@PgeUE28RA|jsJYh|7#Zh=iB(t28RB#LH@}e{~H$m zrw{z=9{*ur=)YaW|5FS9y@8?sg*E*57XEt!L;nkF`0p+J_XdW*!u|hi;lDTVzx$uR z^%DOR3;(@=|H=RSmtNw3V&T6x@W1ds|H4cB{Tlvz3;&zf{?`W9{g)s8pS{H2uVI*b YZ5)nS8QrKk7WgACqas}>Y5eN{0OjZb-T(jq diff --git a/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json index 7e405d79..2813d895 100644 --- a/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json index 1649df19..0cb3fac8 100644 --- a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json index c33742ef..681a2f26 100644 --- a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska/execute-results/html.json b/_freeze/2024-potus/Nebraska/execute-results/html.json index 6184f509..fa179768 100644 --- a/_freeze/2024-potus/Nebraska/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nevada/execute-results/html.json b/_freeze/2024-potus/Nevada/execute-results/html.json index add8667c..03bdd157 100644 --- a/_freeze/2024-potus/Nevada/execute-results/html.json +++ b/_freeze/2024-potus/Nevada/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Hampshire/execute-results/html.json b/_freeze/2024-potus/New Hampshire/execute-results/html.json index 05398aba..bab0b2d5 100644 --- a/_freeze/2024-potus/New Hampshire/execute-results/html.json +++ b/_freeze/2024-potus/New Hampshire/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Jersey/execute-results/html.json b/_freeze/2024-potus/New Jersey/execute-results/html.json index d67f1d86..d1a6258b 100644 --- a/_freeze/2024-potus/New Jersey/execute-results/html.json +++ b/_freeze/2024-potus/New Jersey/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Mexico/execute-results/html.json b/_freeze/2024-potus/New Mexico/execute-results/html.json index e80287d9..2be2bf93 100644 --- a/_freeze/2024-potus/New Mexico/execute-results/html.json +++ b/_freeze/2024-potus/New Mexico/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New York/execute-results/html.json b/_freeze/2024-potus/New York/execute-results/html.json index d55b8597..81d8ef19 100644 --- a/_freeze/2024-potus/New York/execute-results/html.json +++ b/_freeze/2024-potus/New York/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Carolina/execute-results/html.json b/_freeze/2024-potus/North Carolina/execute-results/html.json index 0a06ec4a..241513dc 100644 --- a/_freeze/2024-potus/North Carolina/execute-results/html.json +++ b/_freeze/2024-potus/North Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Dakota/execute-results/html.json b/_freeze/2024-potus/North Dakota/execute-results/html.json index 01484a25..f7b5e62b 100644 --- a/_freeze/2024-potus/North Dakota/execute-results/html.json +++ b/_freeze/2024-potus/North Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in North Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in North Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Ohio/execute-results/html.json b/_freeze/2024-potus/Ohio/execute-results/html.json index 75f17b2e..775b3e23 100644 --- a/_freeze/2024-potus/Ohio/execute-results/html.json +++ b/_freeze/2024-potus/Ohio/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oklahoma/execute-results/html.json b/_freeze/2024-potus/Oklahoma/execute-results/html.json index 33752fbc..3e791c66 100644 --- a/_freeze/2024-potus/Oklahoma/execute-results/html.json +++ b/_freeze/2024-potus/Oklahoma/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Oklahoma. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Oklahoma. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oregon/execute-results/html.json b/_freeze/2024-potus/Oregon/execute-results/html.json index 7ae96e9f..4802fda4 100644 --- a/_freeze/2024-potus/Oregon/execute-results/html.json +++ b/_freeze/2024-potus/Oregon/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Pennsylvania/execute-results/html.json b/_freeze/2024-potus/Pennsylvania/execute-results/html.json index c250a5de..c156d3c6 100644 --- a/_freeze/2024-potus/Pennsylvania/execute-results/html.json +++ b/_freeze/2024-potus/Pennsylvania/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Rhode Island/execute-results/html.json b/_freeze/2024-potus/Rhode Island/execute-results/html.json index c1f4b437..9cd70507 100644 --- a/_freeze/2024-potus/Rhode Island/execute-results/html.json +++ b/_freeze/2024-potus/Rhode Island/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Rhode Island. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Rhode Island. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Carolina/execute-results/html.json b/_freeze/2024-potus/South Carolina/execute-results/html.json index d220f2e5..399bad94 100644 --- a/_freeze/2024-potus/South Carolina/execute-results/html.json +++ b/_freeze/2024-potus/South Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Carolina. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Carolina. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Dakota/execute-results/html.json b/_freeze/2024-potus/South Dakota/execute-results/html.json index 3baa04bf..7b1b6886 100644 --- a/_freeze/2024-potus/South Dakota/execute-results/html.json +++ b/_freeze/2024-potus/South Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Tennessee/execute-results/html.json b/_freeze/2024-potus/Tennessee/execute-results/html.json index 8d296348..d00a5333 100644 --- a/_freeze/2024-potus/Tennessee/execute-results/html.json +++ b/_freeze/2024-potus/Tennessee/execute-results/html.json @@ -2,14 +2,14 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Tennessee. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], "includes": { "include-in-header": [ - "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" + "\n\n\n\n\n\n\n\n\n" ] }, "engineDependencies": {}, diff --git a/_freeze/2024-potus/Texas/execute-results/html.json b/_freeze/2024-potus/Texas/execute-results/html.json index ccfe52d6..0db88a2c 100644 --- a/_freeze/2024-potus/Texas/execute-results/html.json +++ b/_freeze/2024-potus/Texas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Utah/execute-results/html.json b/_freeze/2024-potus/Utah/execute-results/html.json index f0765ff7..77d4ded3 100644 --- a/_freeze/2024-potus/Utah/execute-results/html.json +++ b/_freeze/2024-potus/Utah/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Vermont/execute-results/html.json b/_freeze/2024-potus/Vermont/execute-results/html.json index 16ce83db..0091fe14 100644 --- a/_freeze/2024-potus/Vermont/execute-results/html.json +++ b/_freeze/2024-potus/Vermont/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Virginia/execute-results/html.json b/_freeze/2024-potus/Virginia/execute-results/html.json index 304f72fb..983b7684 100644 --- a/_freeze/2024-potus/Virginia/execute-results/html.json +++ b/_freeze/2024-potus/Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Washington/execute-results/html.json b/_freeze/2024-potus/Washington/execute-results/html.json index be8fc4a3..fe4f7de8 100644 --- a/_freeze/2024-potus/Washington/execute-results/html.json +++ b/_freeze/2024-potus/Washington/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/West Virginia/execute-results/html.json b/_freeze/2024-potus/West Virginia/execute-results/html.json index 65d9cbee..680d40c8 100644 --- a/_freeze/2024-potus/West Virginia/execute-results/html.json +++ b/_freeze/2024-potus/West Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wisconsin/execute-results/html.json b/_freeze/2024-potus/Wisconsin/execute-results/html.json index a890d65a..211ba7d3 100644 --- a/_freeze/2024-potus/Wisconsin/execute-results/html.json +++ b/_freeze/2024-potus/Wisconsin/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wyoming/execute-results/html.json b/_freeze/2024-potus/Wyoming/execute-results/html.json index cf40adee..9fad56cb 100644 --- a/_freeze/2024-potus/Wyoming/execute-results/html.json +++ b/_freeze/2024-potus/Wyoming/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 2nd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)
[Colorado](Colorado.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of September 3rd, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Georgia](Georgia.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Virginia](Virginia.qmd)
[New Hampshire](New Hampshire.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua"