From 1f499dba7f75b8affbfdf3d4151a248304f8adf8 Mon Sep 17 00:00:00 2001 From: markjrieke Date: Wed, 30 Oct 2024 09:53:23 -0500 Subject: [PATCH] deploy 10/30 --- .../Alabama/execute-results/html.json | 2 +- .../Alaska/execute-results/html.json | 2 +- .../Arizona/execute-results/html.json | 2 +- .../Arkansas/execute-results/html.json | 2 +- .../California/execute-results/html.json | 2 +- .../Colorado/execute-results/html.json | 2 +- .../Connecticut/execute-results/html.json | 2 +- .../Delaware/execute-results/html.json | 2 +- .../execute-results/html.json | 2 +- .../Florida/execute-results/html.json | 2 +- .../Georgia/execute-results/html.json | 2 +- .../Hawaii/execute-results/html.json | 2 +- .../Idaho/execute-results/html.json | 2 +- .../Illinois/execute-results/html.json | 2 +- .../Indiana/execute-results/html.json | 2 +- .../2024-potus/Iowa/execute-results/html.json | 2 +- .../Kansas/execute-results/html.json | 2 +- .../Kentucky/execute-results/html.json | 2 +- .../Louisiana/execute-results/html.json | 2 +- .../Maine CD-1/execute-results/html.json | 2 +- .../Maine CD-2/execute-results/html.json | 2 +- .../Maine/execute-results/html.json | 2 +- .../Maryland/execute-results/html.json | 2 +- .../Massachusetts/execute-results/html.json | 2 +- .../Michigan/execute-results/html.json | 2 +- .../Minnesota/execute-results/html.json | 2 +- .../Mississippi/execute-results/html.json | 2 +- .../Missouri/execute-results/html.json | 2 +- .../Montana/execute-results/html.json | 2 +- .../National/execute-results/html.json | 2 +- .../figure-html/plot-conditionals-1.png | Bin 167197 -> 167262 bytes .../Nebraska CD-1/execute-results/html.json | 4 ++-- .../Nebraska CD-2/execute-results/html.json | 2 +- .../Nebraska CD-3/execute-results/html.json | 4 ++-- .../Nebraska/execute-results/html.json | 2 +- .../Nevada/execute-results/html.json | 2 +- .../New Hampshire/execute-results/html.json | 2 +- .../New Jersey/execute-results/html.json | 2 +- .../New Mexico/execute-results/html.json | 2 +- .../New York/execute-results/html.json | 2 +- .../North Carolina/execute-results/html.json | 2 +- .../North Dakota/execute-results/html.json | 2 +- .../2024-potus/Ohio/execute-results/html.json | 2 +- .../Oklahoma/execute-results/html.json | 2 +- .../Oregon/execute-results/html.json | 2 +- .../Pennsylvania/execute-results/html.json | 2 +- .../Rhode Island/execute-results/html.json | 2 +- .../South Carolina/execute-results/html.json | 2 +- .../South Dakota/execute-results/html.json | 2 +- .../Tennessee/execute-results/html.json | 2 +- .../Texas/execute-results/html.json | 2 +- .../2024-potus/Utah/execute-results/html.json | 2 +- .../Vermont/execute-results/html.json | 2 +- .../Virginia/execute-results/html.json | 2 +- .../Washington/execute-results/html.json | 2 +- .../West Virginia/execute-results/html.json | 2 +- .../Wisconsin/execute-results/html.json | 2 +- .../Wyoming/execute-results/html.json | 2 +- 58 files changed, 59 insertions(+), 59 deletions(-) diff --git a/_freeze/2024-potus/Alabama/execute-results/html.json b/_freeze/2024-potus/Alabama/execute-results/html.json index 34f417ce..a1d45752 100644 --- a/_freeze/2024-potus/Alabama/execute-results/html.json +++ b/_freeze/2024-potus/Alabama/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Alaska/execute-results/html.json b/_freeze/2024-potus/Alaska/execute-results/html.json index f7eb33e2..d538bb3e 100644 --- a/_freeze/2024-potus/Alaska/execute-results/html.json +++ b/_freeze/2024-potus/Alaska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arizona/execute-results/html.json b/_freeze/2024-potus/Arizona/execute-results/html.json index 121edf91..89d2cf5a 100644 --- a/_freeze/2024-potus/Arizona/execute-results/html.json +++ b/_freeze/2024-potus/Arizona/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 67% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 67% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arkansas/execute-results/html.json b/_freeze/2024-potus/Arkansas/execute-results/html.json index 26162dcc..39ec2832 100644 --- a/_freeze/2024-potus/Arkansas/execute-results/html.json +++ b/_freeze/2024-potus/Arkansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/California/execute-results/html.json b/_freeze/2024-potus/California/execute-results/html.json index 6caaff1d..e6207bd3 100644 --- a/_freeze/2024-potus/California/execute-results/html.json +++ b/_freeze/2024-potus/California/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Colorado/execute-results/html.json b/_freeze/2024-potus/Colorado/execute-results/html.json index 2205c914..3cf9375e 100644 --- a/_freeze/2024-potus/Colorado/execute-results/html.json +++ b/_freeze/2024-potus/Colorado/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 97% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 97% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Connecticut/execute-results/html.json b/_freeze/2024-potus/Connecticut/execute-results/html.json index d745a49d..8e9f369e 100644 --- a/_freeze/2024-potus/Connecticut/execute-results/html.json +++ b/_freeze/2024-potus/Connecticut/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Delaware/execute-results/html.json b/_freeze/2024-potus/Delaware/execute-results/html.json index 721c7194..4a825a1f 100644 --- a/_freeze/2024-potus/Delaware/execute-results/html.json +++ b/_freeze/2024-potus/Delaware/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/District of Columbia/execute-results/html.json b/_freeze/2024-potus/District of Columbia/execute-results/html.json index 146638ec..72dbf95a 100644 --- a/_freeze/2024-potus/District of Columbia/execute-results/html.json +++ b/_freeze/2024-potus/District of Columbia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Florida/execute-results/html.json b/_freeze/2024-potus/Florida/execute-results/html.json index b86a851e..dcc43dc7 100644 --- a/_freeze/2024-potus/Florida/execute-results/html.json +++ b/_freeze/2024-potus/Florida/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 89% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 91% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Georgia/execute-results/html.json b/_freeze/2024-potus/Georgia/execute-results/html.json index f9e25bb1..0c416503 100644 --- a/_freeze/2024-potus/Georgia/execute-results/html.json +++ b/_freeze/2024-potus/Georgia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 67% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 68% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Hawaii/execute-results/html.json b/_freeze/2024-potus/Hawaii/execute-results/html.json index 70c05dbe..a6e10433 100644 --- a/_freeze/2024-potus/Hawaii/execute-results/html.json +++ b/_freeze/2024-potus/Hawaii/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Idaho/execute-results/html.json b/_freeze/2024-potus/Idaho/execute-results/html.json index 38206b74..a8699687 100644 --- a/_freeze/2024-potus/Idaho/execute-results/html.json +++ b/_freeze/2024-potus/Idaho/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Illinois/execute-results/html.json b/_freeze/2024-potus/Illinois/execute-results/html.json index 5a36c32c..233ce3bd 100644 --- a/_freeze/2024-potus/Illinois/execute-results/html.json +++ b/_freeze/2024-potus/Illinois/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 99% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 98% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Indiana/execute-results/html.json b/_freeze/2024-potus/Indiana/execute-results/html.json index a00b2d91..b1595dc8 100644 --- a/_freeze/2024-potus/Indiana/execute-results/html.json +++ b/_freeze/2024-potus/Indiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Iowa/execute-results/html.json b/_freeze/2024-potus/Iowa/execute-results/html.json index 2c24c564..db8d46b9 100644 --- a/_freeze/2024-potus/Iowa/execute-results/html.json +++ b/_freeze/2024-potus/Iowa/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 90% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 91% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kansas/execute-results/html.json b/_freeze/2024-potus/Kansas/execute-results/html.json index fcec16e6..215681c7 100644 --- a/_freeze/2024-potus/Kansas/execute-results/html.json +++ b/_freeze/2024-potus/Kansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 92% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 93% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kentucky/execute-results/html.json b/_freeze/2024-potus/Kentucky/execute-results/html.json index 3770e9cf..28ed217e 100644 --- a/_freeze/2024-potus/Kentucky/execute-results/html.json +++ b/_freeze/2024-potus/Kentucky/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Louisiana/execute-results/html.json b/_freeze/2024-potus/Louisiana/execute-results/html.json index 1e3edc4f..92e43219 100644 --- a/_freeze/2024-potus/Louisiana/execute-results/html.json +++ b/_freeze/2024-potus/Louisiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 99% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-1/execute-results/html.json b/_freeze/2024-potus/Maine CD-1/execute-results/html.json index 40095aac..cb046962 100644 --- a/_freeze/2024-potus/Maine CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-2/execute-results/html.json b/_freeze/2024-potus/Maine CD-2/execute-results/html.json index ebb107a2..66570880 100644 --- a/_freeze/2024-potus/Maine CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 85% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 86% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine/execute-results/html.json b/_freeze/2024-potus/Maine/execute-results/html.json index 4f2c60ab..df6e8e90 100644 --- a/_freeze/2024-potus/Maine/execute-results/html.json +++ b/_freeze/2024-potus/Maine/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 97% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 97% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maryland/execute-results/html.json b/_freeze/2024-potus/Maryland/execute-results/html.json index ffbab214..fc225f17 100644 --- a/_freeze/2024-potus/Maryland/execute-results/html.json +++ b/_freeze/2024-potus/Maryland/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Massachusetts/execute-results/html.json b/_freeze/2024-potus/Massachusetts/execute-results/html.json index fb33b361..9c95a7d0 100644 --- a/_freeze/2024-potus/Massachusetts/execute-results/html.json +++ b/_freeze/2024-potus/Massachusetts/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Michigan/execute-results/html.json b/_freeze/2024-potus/Michigan/execute-results/html.json index 957cada0..b0da8242 100644 --- a/_freeze/2024-potus/Michigan/execute-results/html.json +++ b/_freeze/2024-potus/Michigan/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 55% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 58% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Minnesota/execute-results/html.json b/_freeze/2024-potus/Minnesota/execute-results/html.json index 0344cc60..e9cb4d8a 100644 --- a/_freeze/2024-potus/Minnesota/execute-results/html.json +++ b/_freeze/2024-potus/Minnesota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 86% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 88% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Mississippi/execute-results/html.json b/_freeze/2024-potus/Mississippi/execute-results/html.json index aebcef82..3c270a22 100644 --- a/_freeze/2024-potus/Mississippi/execute-results/html.json +++ b/_freeze/2024-potus/Mississippi/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 95% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Missouri/execute-results/html.json b/_freeze/2024-potus/Missouri/execute-results/html.json index b69c151a..63c9fab5 100644 --- a/_freeze/2024-potus/Missouri/execute-results/html.json +++ b/_freeze/2024-potus/Missouri/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Montana/execute-results/html.json b/_freeze/2024-potus/Montana/execute-results/html.json index 789e80c6..a2c42770 100644 --- a/_freeze/2024-potus/Montana/execute-results/html.json +++ b/_freeze/2024-potus/Montana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/National/execute-results/html.json b/_freeze/2024-potus/National/execute-results/html.json index 72944540..1555d6ae 100644 --- a/_freeze/2024-potus/National/execute-results/html.json +++ b/_freeze/2024-potus/National/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "30f18cb853999354865df51e58333e90", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 53% chance of beating Kamala Harris** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **47%** chance of being elected America's next president.\nShe's projected to win between **180** and **404** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **53%** chance of re-taking the white house.\nHe's projected to win between **134** and **358** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 52% chance of beating Kamala Harris** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **48%** chance of being elected America's next president.\nShe's projected to win between **181** and **404** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **52%** chance of re-taking the white house.\nHe's projected to win between **134** and **357** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", "supporting": [ "National_files" ], diff --git a/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png b/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png index f2de4af4c5059b68a157d118e6db26e3854dd94e..95b30418ecb44a9f9c2987b2376e44172d789a7a 100644 GIT binary patch delta 114055 zcmdRW_cz;b_`X_gDOIz!*50iewRPIms2#NSh)wKQ(N;_C5u2(}MO17Ns%pk4u?aO| zhuS5^H`@2-bH3;MAAEn{949%iJWrnczV7S3?(31AK{1m-@zu)-pw`^V+Y^f-9(w#3 zXb*pPCI7a`gJ&DJ86W=$2VK%@B-6X`STI~*s8Aev*jRm@W16T9SC{VQ%d|a2C}{E- zY&9j>^2s>#`#OFH6B&=Ox^sGKLoUsn>ugzF!i+#`0WJ*_5~{ zRcblZ+;2^F@@I^(JB2&C+WncO24jzC5OsEPdbD&;N!4d7gal+J4L=`ByhW~7A6*81Mdd->Ya|3LL_EMH9+-gKUr;(oOu^T(a$sN^)zB= z%f_JMz9HzOMrVG&3D-nhcG$dd_mBM!eGpMRIk4uSr=jtAG@G&Csr7yx=~`xYFtty_{(#H#xyYtsqyCns>jR68CR;Qj~gjQUB(YssNR-< zL6GU0NAtDrNh!j{>ZgJGi8m*f7H(W3rBNZeL`q9KG+9%dWbMKYfLjvX;M;5xIOk=p zuc3_INH^ihgLy$BwdIKyZXKRfL|#yJf$<5zXUZJ-qX%E?;jJtJ-8C*r^ctG(s&_ip zk_C2>b!wUV=&R2%1@#ZZLJvHb2Xa!%mCtMeH&%h*C!i8Pe0idjm8ERcf%1gIWE`Y7 zQyi*QrapE7} z^C<6z>6hp~aY+unYw0dg_D5gxbGy`^PET1XF_x3Xg#$g#&_AAVkTS@r`ExA$E>JtR zzeZtPW+7M=dNODRX^&#Cd)57N;pU0W>}TemZlB4Ok6zQ?op@dSfm8WGt^4c?s;M)y z{IR)}Z_2(QNwFkrWO4q}S>QZEO4hvAb!aK$$2S)C62bEQ$RJVQwc*sDpjjI#1YQ?G z$|`O9E@Vg`sZt#{i7SG?91#lgMFMs@Lt|}_dqt+E_ckc~nODH!jcgGBo5P6B@z03s zld9#GRUJwj_i18n^lH^O1VQ)fY^2J{q){@m5RxKhKWaAb&59Y%kF&;LNU$>%0>wkW zvDxDDh(U7^Iw3xLyKT!+?69_iyDd;MC62sCQ=gN)(l>4wG6j~ks9A16rl0LFeu5+)&i0|4a4>oEk}$tNY_+@x`d*wpHlCdti!?`B+q{AU8;kpBx8k$zuNLnWGZ=fy~q|o71@hUZT`1pHh`Cr)!(rJEvGTH3yftNY)@%&R*lQXv(BdJ(>e= z&R3>1hXk54`??Nb6xYZCDsmvEN&V^KU3C1~8WNd+%~Hk|pmycAxsrm(MC z9DWfWLVnA2=SX=cu6|^@@qvJ@`D{ivf=`gdAS0>X?;z3s}{Kdl4 zDeEZCiy(YcLjKU;FND&la0P@_`;_Av>zb<^21^+ z6T~#&AVaL49o2u-e@SUV%bu+hex3_p%QVeX*X1P5b@b5e9$z()o#g7Z!AI&@M&|Wy z;O?!Wpw*+)n1aVryziqUHP$}=R9Uyn}{ZD;W3Vq-LpY@kHHr0>x!29aaq_O z=!YY0$3uR7O$&`$+b`dPG8%NegPWbu_IPv@11%6-73Xs=Z$iq|4qc>O`v7m_jovrO zQMigPIGqious<68h!@8}W@=n#;O$C1j3>67b1(9Ok4*5%qUN=eK;)+vDkN#HcD>`3 z2e1Lx1>z8`O)1#A=;lwd8ETmr&N(^8K8z2^QU!4AW}9ZDf7O z`P~V~VltfrQsc=Z+WQ8Dh7XEy<2jBHYna`@9G%Xmm(j8^mJ@sj%u?n`XP$4$rr}nx zSz6azdlE#eR;-+%z~5~1wwRX2yQT;k!>Ns5 zQ7K-d(;^PS>DuI8r(4tudU6Lpz>ykQ;%m9-b21QLSM9s#9|(9j3?|-GXQmkkSf=h=qhoeMjt`^*Savc z9bFX{c%o6NyUbL(PJav(RIZgH@w`9%tOhv7GBvDrux2ks$HhS>luun_(AFOr#bT(; zWTv1xrxJyj0Gtm%mo{Imzx!i58j5Ia=;u@)sBj2CPyJo%-$)pZdGS{a8Tlggfxpjcx`@v5|l0ZoA>O5Y_Lp`f8a;7 z3)FgSBszujeDe0Wn~tmFaR}DW$z1u?{a&evcvyXUrV2NJCpWm02l8tWZt%8MmpI;N zcpbV3rW2wc;Fr~s&P8u8gFlsZmIuZ4tQ(|Gb~5y2K3X#t;-mWT98ZpImm*0F>9|Af z9~5$=UmneO`Ui&E0&w|XZQs*2i!Ax&JPX-uz@$Yc40>5!T@IQh0hv6#z>uuv)J5uX zvR&@5a=@Z7`H!qSD|D#y8S*Xngk+(;NZh|-RZaOARpZCi|M6Ii?!(_00tJ!1WGF%T zeQN|iO zSyz+OXn#JK@Nwl#bFB1Y$EMTM9zZ~AVYzf}L$@ADV1KUPrrB9qLy5;kX~mRr<|mI^ z!a;g>lLVD&ZGyT}Whzg{lnl}?Hz5i2$;`|pXfPx;**mwuY0ek|;K*AzE@juu;-33Vt#X1t+f zO6@4h^~Bl3LJ+lp5~nzxqUqXwq!H+)(f0rm0{2f47Gg}{J;&9KSw;Y(9qh?+3{hP} z=LhfX|5T=UJ=xW$B)&UT_Ef!?DDRC69m$df$y=X^CHpfqVbdzx#Lh;U}x#Ti*ZP~(d^LhYp)>er5>22)Yi~*-Pg}U+BTyheZpIZYhy$MMCK~LD}W!v+! z(}TkraI>}Y+chb+t3|D~FGK#(-~!`Io$D^0bJqU;h*4_W(~l=&Nkjj4ECKhC9k)N@ zcr~>?&^PQ*OzbYx%4d_GvsoaGqAc`O4@69bGUhssc7CKLrOmfLMo@cSBbuz?syux; zJBtEWO>t^APMoNLH>v!GT7ai<3CD5Ni5i$}cfY;H zaKp3}+&&hygbtdDW|3u)1E}%y%U}-oWfCQMI&A)t1^rbVX*IGS)UWo3vG}9^b|D(} z!=l2;rR8?0J2j_l*1R0YeGjho^`8iOYIY4X=<)uVdcy4|W&7f$jfT{0_gAXRx3r$c zm#?%VU1V1zTGoB6a&i^vrmtx=yWT6@o%UNlw={A;4^5?Ab%!%B}as_`AvL7yUiJE&T`w@#?DqW4HM)XA{K;dMVg661B<2o;CnTI?tnugS zSLP>>j+Jx{+eI}+22hXNJ`j$jU(ZXC^EDosD;I>DGRi--pzr^i?pt-VvzC3m zZ~iUIhcf<>fL7-~<@E)X(q}y%QQ}mK+co$5Guv%91z$G*KrrHpRI7%A5001sBbF7} zmNTKc>1j-cHe&bKrj^*G-f{5u==D+<3M!Ox^PAph>j&w3Bcx-di6J?Cwo*|Y`H*YD zXWgCfSyIQ-(?jLaxWdWoi56j_t~pc~4Z;tX7<$T?ENBJrrU*T!Sao}gH*qBT$x02f zT8>^z*I7bgLeZ{Gn}+zFgk?@no9PjJK`& z_SmjQ{Ve{)OAo|EwTBL6XM^3`_a{5UUyI9Oq71ce*>Xb%jV^`t4d%dop!p@z&iAOM`+0CXF{35r&w;bO*gwr6-<)e3nz=F)_xbbb9QRdbt!g;0W|4y9t=!cL zIjiPiuODTHS*tkT6_SDxuAJ%*-Co@Vrct#y_|?E`v8^ogD6i~%jOmN zB`2p@SoRdQ#xh`MF_q9gptkAw3qCt3{H|tqdE)fDh0xQRDkrbS6`D!@c22)~B{1-h z2Z4>~^k<4CJZ(NJ3jS^RQs%`+YeFu6*8lQ~o>0E4ONGq`MU*bbWv5cf(*Y3y5)M6F zF<vp|mkF-s=8t%10uDv|Q^|7#Ms#;9@5i48KltzsHPtr?Ek|3@e2@s<*G-A^C zqs_4`utu{spa`tdUfm6puK)lnUh3A&zyqQ~^h>x%iB@}FqEf0V?um)@D{X+e#N0AN;0rqk3DC>V!=J@ixC*cX zyqb%DwiiZ!i?{Sva_lQZFu(*~s<3%Ki$c&rnd?+DMp_P|!|>Ey2>>=F3Y5<-RDZaY!Z)JN zp|xB+#HHNezn!?D5dV8-@Eac$d1H;QZ@^yB+nwgC6d9*GeTj-LMLg!9EgH5I+n4mQ z0tQ7NkfWYcw8{}1+^07^PNpdimUB2quB?`|650sDQS0+48|N4eTxc2_lId%%0LE}p zsKRs2M{7azeNjK=jqCu;nFCbJGI>GX z&y3;ke!c*K_;UU8_o~>*xLIiCQh%z}L=}I@%G`O@R8e9tjU6{ZRoi++wtkWP%|H1L^+ zIpt2LjGiGVe1!Dw>Kk`6u^3jVcu+Q6i1r`WUogJ?aqlTkGW8ypQqUj z!rItS1Rd7)dxZ;|s`|df8y;Y@fa<=^y*JzM?Lz{WqLm9!_YAO|g_)Sq0{<`zK)=W% zhX?Jo+?8l+AsP31TXR3u?ajRRfN#*8KS$YLSfBg4TiaJ1 ztV4OwV0U`_Gxud9d-4^-+aS zP%c7PnACNvadvY*9c(-HLAI#t%8lh_A67FI;*KmA%-~D?I60v&x#)xW**VJ5Bd+PK zkn;n%J?~lU3y@68}LQ#YVn)&YmeL+tOlA7Uxf<<|HE_MLX)u9i=G4`32`H6PNn5sI36t((~){&+@QX2z%Lin0D0;D% z4%5gfS$sxFc-y!9_GtDTGWR?56?4{^9P)lzlGb;nhyx?|Q5pYrIW2$l^zohHSv!3% zWGS95%B4ajE8jQW1MdW}gvE$&L#qO&v@}83tZn{cC#cY~@-JZc{z{`(_m#~v%_&Pp zDt0l}=5(QDZOB3kH9MY z0G7DQzAsT%>9p4;4%aOFwW1|mgeA*H_!PfiLsj&r(s3~Vz)dzbL%cRl;h=tFqG}8m zD23?H>*S#8ds={PJv-EdS-f`wFrxIVF7OkJeu)BQH|<vX-|X4AS``Z=DH zqf`-md`<7V=*XAA{=7v`vP)WoI@|>nMhuHU&>vTWZc-5qQXUkwTfI?#Zt z(0}-BD?#MD_OtcNYHLKK?N9Ewz-tu4@?SR_4wVL*{rQK9h*XHwA3reMB$4v)nr%MS z3A#xr!o@LfR@J}u3x5pU;)hc4@w$GrfVjH)WTPK?x^0itJ$$oskcT|QAEGL}mje{a zl8SXwWLx_8?_+$!D|~-q!%tZlsB2ftI2|;jjmrC^zMT$DD~Opk4kulD!vwsvA!)hD z^Me{F?4DwZ2i|TVSC?W0wwhp3^=q-h@NT!ySeXj!UcH~_lAL1J0F&}=R@r$V+<;;4 zNc`|1>HU62myGCC7u1)v>qIrjBSSUU)b+8w0s#Ki<=+386TwbhP|bP&Pf!*7ag4KsQV&gTZn7`g_pw#L`%2 z)&x9_EB(hchFJ9N7xkVav^&V|P4Asv*}9R5kggDjZ2CRBc)gH{%7X!1xSqmJ*x9LV z|8zq>i0t&NlX%r@L3?QbtysR`mzrC_v&~5OHz3%4ZMnC>`>GpZ^q8Q-PDdQc22mW& z4T_zj==8WVApFsPi%Br?X5PVICnxG!LGhA*_O`2DF z6#~~nj+q5bzUEzH`~55t8dl-^RrF@>n8#P`nvZK)t9;K<>GvFZgXYY=&)ls`<>LNz z+FUeY#H~#PrQq=4DTt4E4AH3E+H^qigMSiwwJw)@o$U{#(7Z$6SQc__m#JPwTpsM6 zg)2eZETv`X*Sjr}chkEMnMeb8WEOC5R(Coj2?0T{iZW|uTCCTps;3%u_26oWZ?UOQ zMQ_!&DsaA@M{aFF9A*zKc#_vg10SOs1jccsjpxnBLkIIy?!48=mC~s2zr^v?7BMN& zksH=i2dOsQ-~#=Sdq;2P=6-7D5e$reY8kp65Qiqorm<-*3%%!*uOJ2Zr1fSWW{!}x z7Z;)K>K2-h!6a;d( zb}s*k5zQdeLN=ZjVxbigHN$+*EQ(2Z>Au{2y^VnUUvMvVlS-A{Z=&m{OVd+Da9NkqomnbF5AhJu@(IgUBcz8DIo@AUC7JHpS) zKnNXz#KEm*j}B#fLp$dzf3AOTkK?C_BT4QtaqlG)U~R<&<`$At?GlvjSkyY`9+$vQAc=q- zD%q2jXi=BlN4_hjdyNx(AKz%Dc*j4kBm(|_7=SQqV;C4x{H#Q4A5W~s&);36O| zf!k=*x{96028@Y*D%Mhdvp$+oR&**h^ARO7MG+a#hLf=x~fq z9)2rM94s!xH;=m*iqU@f!wLK&URGqc568T%4!IsK1v&pt+WBD>|JX7gFp2POJt-BL>G5wbH9xnoZorMBB`^I!-fsNUM-&Mb$ ze%^|}9yvs6ru3vJj@Ih6z14xTj?V3Tq`UQ-ndIA&Fr)9j)%yxb zcfn?uQy0EO#5o+Nm3}+G_IpxxfqP`5K0JPT^T5ltPXswRnwV?VVA?2IZfmZft>hd( z`$N1X9hh&cDIsQF*bY3y6SzPTH7q1O*>Y>` zjC6NWm?qcJiZ3hljq?~hJivnLo_*i#4AD+dx1$@4$Y4_mLY=mo(ANoN6}vL8{@y1o zLAO*a3Spb6)R+5Qn_GsP>Y&q-hYls)WeWy{K)l@CGZq2CN`FVwML9zX5EQg}~h-kkpg@A42WkJ3C z*M=~Q?loFrKx+NQ8W=p&)V>x9-f9j>lyWf|l=tXK7Q^0Mxi!4+S$DSQB{Gc*y59kw z_BHX_P!@}f%}w=Y5>rqA-tZ*ibri$98&rN8aoAt25u?kk{n?1J!?y>SmL>Y_ufjEM zA9)WzZ89^K8D{X!Y&T|?)WIl^Z1dQ3L|6@~qP`vs7#SP$YS2R)eb>}r7C8~DA#~SV zVb+bs!-iEVV&(^Rl6RFq(~B7jd}V(r_)oo|xl*FyZ0T|t&Yf@u;!7h4On)BZCH@p{ z-cW$Q_{28b{HUKzfrm-Eqknpd@6$A&nn02N-9hW(Jrlgj80YG?lUFvl>%@WLH6k;)T*I_q%SF)z@I<&#Nbn_sS{XfY1JEl{l{L#@t zOO%{rMYKWaVILQMD={dx#WecrnL>pAsTF@8O+*}a)pj5!n<($w%56vcl8d#bO+LFp zN~4A*zCizICh?-x5ZmSdTK2!F_{~&hivyLGz|occ-2W}%Ige{!Ni*jv14?jVb=?2` zPOi_y%o4Woz3JVz=nRJqEtxN=lw9jyN(xI5prpA{L{#^S%pl447Ie_^lHk=ILJ=&K zxS#n5`tdoj;MFw3pZ}k|3jFVyU%gTdTj-2Kb;Ph@zrUg6SbjlF>||<9$S=72Y;$!} z^ad+22boTef>Sn0f42OxCkG!_d@7mW#`vwEgAH{QqO1AVFTG#GB?hCizX+Yp-v?Z% z;)_>ZC#%(|IhEJ~7(P9{QV{+vfm^j~9cnmEpQ!?H-6pGbow$AZI>(2uMm<5&hoT-E z<9FBDJhtcCpSefvbJHXcdwP1pf%CI>WvnSX+OLSXX0y^LFOljCcpUFJP1LwRJqD8> zsxiiyU7|W0BDwF=@ulIWSAnh&@XDOR*a0;%hL zR`mm?Lk^fPO&}l@1V&8%J}EFyqN*gDgoNie8_s9_=pM?JkMthe<%S^0dr^ z$7&EW@N7A7U?K?pw3s>@q4ue$&+hm`x_Z$);-tAeI)E|kS*C4^rPJ>*jh|Ntq(cQ&` zI878|-=kuNc9$8XLtOBm!A^K!AIs5J%f8pahN+9YB&AMLM@*sd0HWYQ#Iarz5ZU}Z zWT8Wwpwt+-EFHC+i^=$`ZcK&$H?jCH&;MKuF{x22p{6Dq{J6%*3Q^Sb{R zI)g9dG$#04R=4yuwD_CH0s+N}2QNVClAMme_!qYjQL528ozabBJECNA9?v=-~{>du@q&2Z{UG=HpRvS zVr<5*5C>B3KU1HqbIB}wTkDP7Ke$Q2+jmm#slDp66$vx_gZpp$;h}BhCHf7C$#F5- ze!1!YB&Gk|?>Ez5Sx0X5o|D(!Bb$-7;_|sfAu0%&^?-38C8Z zl^Ru~URORdk#-#ypwq6iWue(SscMS=#k@1MD$+_{JcV>V)e8B1ik`-dvBbAL1Uf;w-DsiK&PG3lHy1OER-tXdoKF(P@!W7B1+O;W2BcJT>oBhW?l50A-1_TeSe@Sg1Q$)Fo;Z_1(#U>!ks5u|M0Kke%EWA8w{gV+~$Z z?CDe*TZW8KoDI^W={kX1r(0Y6+L_V`#6{6HA?!kGI5ixi*% zYd&`F&Q)$1ffdN4qzD>3b!$2GOIHYhk4QP*EbS_~p+Xe)nSNX{r0DsU=8`=I=e^X^ zbop{m0iP&A^PGc^?P(R@j_FBViEpqH*{&b2LuI`euLrQ#wR4i}oImWGN5HM>UKb)y^3*N1+ zh0LC-=wvI2G6);S$1W|E@0nfbA`PegIXnG`t!|Uux|i)edm62w|E9b&m4D&=)}yy- zWZoDFk6$Y3@(@_oeb0v)sUl8f#NgRxP)8i6I0gZMu8owUs-0#?K63l1mfR$q0S$Rr z65_CH6KK~=bd^2(<7ukA%9`%Go-Ki0tKAv+T!&3t^~wlW`Qdk|2xAEH?i(>OHWP1F zcxbPcdE2y)eML~vd|}@90($l{q~I=NZY35a`GztWA1Rk1!=0tR1JHXP5JdfB1%CLZ-!eL}*>7eDIShs@`*9u{bw0 zkx(8qaFaE--8+9ND$NlpLQGGxcvPfxmAj2;Frwpn& z1mCCa%AhU(%r_kjlPxu_;Hz=rt0rrxU06A;Mos1d>D-h|qVUO8c)H}DNz3P@_S#NC zm>Q!o?ws0n=ek+a262k)gkJL^C7S46SZ=jT3}nc(u^Z<{$(l_o{9_(k!pDZiVNU)944z>?}G2`!@oaOEBJq}1vGTf!&s6fg+TpL3S;ntW$ENn$fnY|>5 z)JTG#ehAjCjusV-Q<8WFLl(s-oPXEUL2XH_QnPoCR2UC{iGH?6Ghv%UPs`s%{a_G@ z-=^d1`M`Y7?uW3rW^+>j9skjty*j6#m3FrqOU#WqQ)!$W#kv$yuF|z6GFgSTgDHT! zNRstU#Ab5jWramQPpcC)l2?1-oI=R4^)9D@B4~<``FN#;#Ps(d6W>$^Tr6RLpGXk^e zEnqwyyrXey=S?*9VsbKSrF9_U1wxvvP8Z}$ezxevHGId&-6VW;KQY1fo|4&!5y+@H zYKv1&%|y)d1ZV{%*#zLTA!T`txWpRJ)Vl3-B&V#7j>HB~p8d#SG_!0b*rhr+utD=~ zCxey@PRFJrHs$&(Fx%ML=b5qKkq0)8#fj8ruCa}kw&eobg&#tLKBR1SNo%`PRHaP0 zo#tLR#t(*9w|~#Id5vKXyPhT?hd|7SFBk%j+L;t)ZZ10(%OEfqyyaj>O$w*OIS*&Z z$$JHv6M&guBq#?<{*TOQO&`sOEVg6rHcWi6(BzYb&N zH{)ey{2%FLx<=ac`CcKr0E2H;Dh&tVLX%H#;YWxqJM^AA_E*pI90zHG197Vtr=kI# zualie9tutWG}WkU){sbN?zfcpwB#Xp^3ZJF}$2Bwe2%20e^t?m1=4xK0Zw0@^e&_OwHY zZ%e(|{H%TVkqeH=P6foBA`V`OE7V` z{rO(i3dS^JCt&^$AWlq83>*ulIy9Q^cSw|48uf<_J&NLmz#x-<~P^R!)B%YFqug(K9aBA z_GcT(hBpkqrCf<2lJfW#AxK?|wobJy%C`G^N62xeEZyP-T-b$mBv&&vt)_wX`FPXLnwm>StxS#drKOC9WpVVGv_pS|(Nnj+x5ETq z3s7G6Ggf%8_S4MaeoZ()!6;&F_s7karNcM(;wFhfu{P5_+Z~U1t@M+cF%i{CB(6SA z>4M3lQuw$bgnqTmu0~PMohaC=%YcvDSG!KxS#I?Gi+|tYP|~+PnORq|b4QQ3S_ZrA zk4$j{y~7;SDLY#%yuvShh=?5F?H#X)fG)~%@Z9fdf{uy@o%`lDxuhe=yN znq9~Q#|swH3t`Y|l29{hFP}HmLbPGhdOa-u^Dsx6 zp7`Rors?nG(xQ`Td86dX@;*p|9G#fYrgx2g>ZeN-woCV8j(w&FZ92<_QOW~3*x`25 zme3IFTv%LJ(`;y!1T_Y;D<Ozqt?WVIzhifZ&&}25KbpTmNvB|A}e3qK{xUGvQ39QE{wHqhis!Sb?>Pq0Yi&-_= z@8ksNaSu1T`Ez};dhcAkT_yR7gea@lFnkV)*wMeEOFd>95KBbtMp|9|XevPR6Wou)Pc?3;z+>+FXqJ0yAS!T} zb=)jd`b#n+4n{DiR+m4mvT}i%)OvN|6d&JP@jW@xGv!XI6^rKw(z;l8>wqbcQXXv~&(iYZDeYRIM(B11~uz~iqu4!Pz z)O#j578MLApNbkV}K0L5=aFiI~5X~-#M3k_fxjpB6_tkM?UBP z4i|`F#=}yyyF6vz5-2?ZG6|wa51_1(#XKI=-^F`}@`e!Y7^KTD9+}tE_`t{BOf~ZQ~E?{2?}{ zSfS@bJrsr?HTk;@#O%}`D}dv+=NP(f&h+uO_=4#JzL8#XI$B+}vi-Okivq^-l^tV( zMQ>TFp|2sx&sPHXVsl>TQY8!(YIGCSp+)3jXMhE=NGo(>P<8QQDju-AL{UvCG)8qz z8l-3E`~Jh|avU{_W8W8irSpjMSbLMwY>n`(d0n&`p4Jx!wzJVD=~|JQRii!mgmNS= zXg=g6oy(H*)u;teZF)Wjx{ppzP~tmvtNcdm_@U^5Xcxj2#d;mwp|ak7!|=G~XCe{=@*v&H2Vbb`_okQ7Io=@X`>!Y%L<9(KdLr&m*F%9myRb?b4Q2wwy9C zqp?qbDz~_xa}ZtiUXH=98-c${>PxD1 z%_?Y4k~!l5)W{tvM({Ew0@s%6g50q`VzYO)(jazgHDjnljC+c&l}_@#$T)xV*G_tT zG~1U{)+QEe&C3x1K7ZPcEh{%02j>=}{Immt83^Ypihc}Ntlz>CAU_} ztu$oZmrGW;Z?B-RQhm&#U$f2*gz!laS!&a~M{#;E6+G5QiVYz2AYYrp;oN2a2}#$9 zS%?bketmoW%I11i06VBepLcb<@)N`3a!ANO8ExpTN^_d)PD|;R?$@o^wxiJ)?3s?S z+UoaBf=^`f;LrDVO$h+&7qA!6F!b^#Df98_7JRP-$0s2Ev z=l$M5RXf1ZRk~tkKSI8}AULvdyMJ%}xUvF{<9T66dt`Lb{a4dIeS1sAYFoJKW>9rr?S$sDCN|F;P8RGpJtMZfMR^ew ztA<=v>i)DYjeneXTTL45S{0n`yMCpY1l{B}CXlgP(YYZH_@uzR-p5K@fM*qu8ol(C zR>OzV|N5oq_z<+ny|%a4QW1d|n`1hRP;SWCo4w{@V|dL}qi<5RFy`^z% z=v#UcUy}BR%y(EQX_;{<7+YMyw&&t}y0;=p#Zn@9V zGC@M!N8pCwrXC*jNP1B@AZGfdz!k&dfaFjBi}Nl#^0lbeX$~wbI1`EftCgsD5i1jJ zWI6tHHb+Z6)X*R(y0*uAt3wVeQ~ImMhY$)!=|_E}Y5P;z`4GNmG-~d|+spI35l2v7 zRLd%OY+_cD?->`wPd4PBDeEqCXjA+C#YN^KQ4{x5hW^Y)fZS*g_x@Vp-D`fA!?>-Vn*c!9ndoO`9+*1@P{;ria_jPY=FpOdV^WK(RWbYpP9uGzrR^$Vg*6t*Yydv`$D z903DA6a)lowBxQH2mKr>)Wjz7iSqJ!rzV%h+TFMk^^MS4X~{1IOeBexnsVaO9z3w) zeL>gd7HB5tPU~!O2Y_m^B8$DcgU2TRl9EAEy6nc1QbT`x0q{}Ix7)$NhNMI#FCxhI z%YD9O@GfBvmE&XC<u?q-KR3wrZ1*M$FX@jt$CKXC8!N}OPzst=bFkilLk zWDIjvRBQr@H)Ml{JoSg>401@`B=z^+Bpu2p0$~f=KlLaDFpUFy)xkTRP7Sb$8zrE- z9r#|YCtTTA9jC(myl2i^FB$!g+dL~L81KMbT3nJ-weEF{XxOMhVBazr-(8d7Z)SAw zrHi$GR(GJH!=^>0-K1yMx$!-~Qd7{I+a!#bjE#RH60$kTd(RTBXeD&UDRl8O9x;XibL)4e)Uy%!Og`Qts4QJJ-0#Kr ztqu-ncg7cVqg+0{Hz0W@F1#ZVH+oM=Y3}k3K!W7)e5D4JxOlSG!+*8V^pfJ1b2n7n z3ckxH69HxipknbXlCr`@7y87isWp1@6CcrM+dw|+*&80hKaanZ7BsJhuZw%PrPzCK z23c{|?UG68M>KOIr)L(V1Gcfoiwn9+DM&sORYm8KvRit;SPJ8*k+w=gbK3`tTpi^bd)k0fvt?v&y+f3T0e=iJ% zi+T8Cj`J##7>Z(549SQX?w*DnZjBie?CWoX@fe8LAqb*jDeeS8B@2QDouwI1yanCf$rz7QvUMwuR_kbPClpHBH>1`j^3rq&th< zHhuY^+@k97(S*B{5U0Z7MC^rBTP+kX>P_B||1hDtF=&H{Sdj52>x^4NP2}`gF$B(B zb~<5Fl6dt2Ie=ex_di0f*lsp?bN7fOv* zrc#@R=4{;na_D2*{)OIG?5Zk`lz7<8rrhe8a_xU^y-<+3wxFDJZwQLk`Yv{*-7PGA z8SoczxG0icQ}*OdXp9HGJQSdLPN?S|1Y&HvRt>Deop$X5Y=#8_4$>VI2-lf}9kkJi z5Wh?nMo7r}DaKLBRSYngl71y0RE}ib;1K(?1U%Xj+=C08}$U-2Pt)Q_vM{LqB#o!A@OXTX*gLhe_Mg zDdWyOn%t-{Qt0GA#`f}MBD9U=PpN-gVjf3C87qxUR-pbdy8^+Ix$ zayFC!LxRer8y5I=)SS>*{2EoS`<}dgOU2|v@={X`k7!YdBh>{;356LDovxt z9!Aid%~|0!SIHWmBRv6ZPfFqh>AB>cu%?OLt!MP4-$gx^dYJ)P&y#w35yLJD$?K4i zaV6p~3Jb|u5?vgIpI;l=?Lf`36CgFwx3!PmYBtc21aIt0^xiZj)`Lios3d>XrAkF? zH5iAU+k~Ao_`FvgjA9U)jIbVsnJ-HbITCc;(Lf=iFKK+CX+s?ZtDU@wQ@rx&3FV;t z7gq=#L4t;<02~1uo)d7p(hC}QwJdNl1B|m{!X+u@M!ITlZ~q_m-ZQL;b!{641f+Q9A#`b>hYlfxe0NxT?`J>% z-{W|{AMZbgOfoZfxypH+=QVbdh5Z<}v5{3G>!W=2(#O}?j7#(}XU}t#@fsHDq6VCv zu%soLKSAA*`apEopKQtHJeIfsGa-gW-1Y%xs_x8GvBN-?ap%XNBT|RKoX_KX>=Nkp zp?pJPi9rPe&1P|Znj()CwGaV!AU2Yol4(LDCWdio}JnU+0bDwyJD4%F-{ zMg_@9=H6IeY3s;z&$aR`Wg0)CjzeqY_6Wz>eX1d6;W@6!EeJ*%?RE_A?lAyeSrmU5E1 z%yFdWXkBYO`hFybGu_#jx1f`N)vV3cq8jb7I-D0*z9kF!OOYRTNDh#N*GV`I3uzsj zvwLtET2Y(%yGf7|BfWnuamjMcS);kxlZ*`MvkjVkfIFR;imegFm!G zeps{^=0tyxu-nF>HNWe|kSn*AVAnD%nqNcXU=>D5u+Mdq^@G2qofl1~M-Uo=wxVyF zoGE$v$ZxM!17ZF9I-8VJG|My;wCWZ!Mv)wwr=J&px%WNlgM!GX4-C2kf{fl_TBk+9 zj5{F&JO&yzkGLZCmy?;}QBBg=!yRIg2)n&dIKu(O*#(_inRbR=Odt@8@Z42O5EZ7> z`qb9i9W`yZ{y^$5Tl3Gv3n*J~zAdi0Gfv0r3*1CMrdAAf9dbRJdy#DUfwK6M%Bn?H z$H-}rCELf^djqCwX-3;sZ?)p7z#EchYArH>&1*GdVBRsBb z|6<(Pva8R3f5|NRPDBY#D{TCidkbC~S_GEc>(HeI9XT{Q`u};&Twvo`w>KO-^6Ta4 zN!Q;(!+1WTuFInGr%6yX&KxB%H*OsYArhSMLmNxiu4V`DfaSX06H!<_#5 zBNmd3vm0BgXVrSxWv!7@b>@+Cp?DlT5ORFpsaV%dJ4KEg{UGJklOnC-cTlAxarFhz zQ)Xx-y?S$TTp>iEbw0d=Ngmp$WtVy03mwUOv>yzbgg6aM-d@lg;gFv8h>`@^c~Hqw z6k)v*%NvglmehvU;H9>O3JOaX6K+fX*}%V{V>Mz4c3REX&(D&~@z$>sTM?Fhv76)k z#r|$LsH1VE1#Z2*EMU~j3LPI(J3@*Sv?yjT@rV7pTF_gE&A#o49nlUuUiZ(?9Q~KK z^qjHTZxo%KAESL|w^S$Z$D(f)(+czHq##zlnSIPKP}3?N9OJ79J>B6_6eeZ%*PO>I zVj|e2J4%tT)dTHk!EOLgFIY$gFos?Od;&vLdO8ikh9MC(=R1=g$Eqjs@v0S%*!?bh z%{D)XayO6rog|*mxCDux{Qh`*H8Uv_LJMYk{82EEdvYDHn~EBP-*WsI(=HqLb|#FK z`&ZVHjlnV|?dez&KT(*BOGsFmJ!7Pk>OY4Zd$T(e{8lA2x;{anB`<2&aiwheHsL_2 z>*^?5ftP%nUrW4*vtT@zhj3cJenNq1dB<{VIViw%G@ar6d&?}gUKppQhtS=g`0KZY7%u|*n2_vJ;Pj+^1O*4-1><~&oL3ns%Gxps51yWeBZS+ zs&DI6{m1~?%}t)FoX*$CDlpD8#Z|oM#$nopX&2SLXTN>$b*#Krq^Ws{;a#;zqf@g= z7!xF^B)1ncGVL=U)v^BFmeg-&?=z8TTdP>S8$G*6vv3;4BF{w$p7ccM2>ow+56vo2{2h$3_~@ZLbnJj5m${x?d+bMiaDh z&=@-WVQ29-_gHrI+@uBQF!AY8al_&+bjEyqwJ4@Fg0*8-DXv|W6S|%jaFhT#O5H^y z(!T@ewZCWJvza{LJc~_%O%!cw}!mo;tO%~kYjDyC^?@W^# zoZ?%bipV9jO1(PwX2V3)mjT109=EaMK+uVIe77-KlcYQ=X>j49_cLsBt0r;mo2l6q zyi9_O5NfudNaHwrsoGe(=!@}fn`nb_4Gki3L8Y+&i==zjJkt|7GOAaPltZmk*-pY0 z2tIFQv;HM~fb?cH492ySR>#!-{Qa88u;_|EuYF-^MJACQo;NI!O+9-G493mz#TStQ zXgyUR-E7h^sV~CJ^#}5sv$>-GUTj^~A6zWl-)Q~ekd}ASnCEe;R#FD2^2`qznt#bJ za^X(WVvDWlTi#FQIEoIudhRsj0Z(8_HU`nvPF>jttOR0WI}fnZ=%+0ouw@9)TItTw z{<o+&8EA>K=iQpDS8s-na6_?t!^K8MVrwwy|1GEJ6lnB>_@%cQa_63 z=)gdQV&}M?4xMc`Q<;zjx^pq%r7YPZGn>6 z{WDLh6I(;yYH_O?4B+){bufCac5n@Nd;~pUjPN-lxn}VD4fu)z zN&dz%!5`nx8@mY@X2l?2AMX z{ZQ*Nd!~gVX^+o$=;^6CCCvax-XXe}b-TOkYE);{wWBY~h_&`U?r+AqlJ1|UJhImB zvyOgODK%=4-iNOG`ZnheYXv0+;s9x*z}EzH!(u$lz#Ra725-ClHzAYSQIn5^f0Mvu z$bbWj{XJM|zSxz(P1oh?JMq)4zsO8JQgDQ=u3XTs`$nO3w&SLbp!*r=e--9}gG9&b zo|iZ!!XD2C9r2)w>YN-q;4lLahgd^oker%Gl+dd$LFBjNC2H!+_cJdtI6v&I3HC~Q z6ROTA_+kHTYU&4$4d?O7qz#yq8VAF%UY?$sppWVq!!LrWksMKlZt%hxerK6}`PRS8 z&L`^iIt~{}dS@*l$ReC3{a^dl{4#=MYF|FWJS?=Dt`9`GOv*X*XS}zj*8O1y<*ao0 zU8H*5XaV7E0ymyDQc#3EV2D?O>OEG6yFJ35D{n7!@>NcHC3!6M-VuoBdQxXT>R4@R zR^gPOnQ&XhwmZ>ApD^ZF42nlilL9{De2Qts=5=EoQqiDV>{@!8E<}R=M*#LkzDCS5 zUO`fdkmt0u5^kTv37!!;LpL8oGL;?@ca##>`Fe}$0Ga(M!mr?yA84DPsri>T3g(=g z0Q%P4AaWHA;!FU$^7FTr4<^#yuUG4GCp(l5{toL$sJQzszeX224QzP%0q$RaG2sj% zuFPyn0jlB$D&&T8gf>ti+)T#n3^a-77m>|M2{b8;LmNU-j>*E;?{9=2QpW6SRT zq{P8FJ5U7K34XHZ@cwBI3bXt(MRmKBGh`Gr4^$Xb@4VLz@i=fcVk42Tia5z^`xXKN zqKA@`<4HoT@6J2hOX}UA+s~c8bJ~4IfB#{O&>mzVCdXXIWMes1fcfFOkFqPQDR2FF zRqzO16fI=jpIB^%Obwv+I@>HmJn?Uev7~blY>F&+d$H@84Yn^mt(x(}{llq;isTnI z4QB{zlV_9lTdGJl=`WBzdMK3hPWQ6EYU7kV7wdQa)*G=38sTEkR>Z|(n@6AOJk<#2 z@lq*JTdO-bPxXQB)6|^+yYp-H6cxXUo+GCShc(YJiq4BlhWi`IuJvjf)!CVo16FEr z(U7y8jSEZ)4!bdwpVcp%ROQ$F=WPoHaqhmuU+}~U1JCR5YOw(xT0J%T*CeE5DZv_&bi|5T1dnp?>175Vr(0Dd z+tD1U-BAvur0W=vhCT_GCfdHpEKp{%>2w8kOlhx<*vFrK7pCTTaVrNaQ`0!rd$kEA zAzy6u<-Ct6cSL>jUHhSi4tQU@d(f|uuwe9lj+&IrBCK(fUMc({H>?Mlg7AR6*T;Au z^8rqc%0vdPvZIxJB*XFJfs-k|e{O`SxG|XY%s0UK-O{X>Uo`WcWOPWtMmxwwT=U$R zkVWRi#HL$_C#4r%-~#u6r-(IoK`qsei-@gF;n1=g_aslcv9&o>qq_P+lLec$OG3 zBtS;4u4}pHr1q&y!pVebep|5kL$}npM69uG!n4(*#U$63*UaY0uB%lGOhX%UTExlX zQnvg}E8#k&U~wcUOvpUF$vNtbH5flhj@gKaZ!e^CfIn(Mq!_r?(#kxJx^#hLFr)gh z74e(@OvLF|*2$*F9PkhBC_5JQ7wunl2D8*Sa^n+%l-+%h(2Qj^y@FIE1gzDMz)IXI zgp5sS>U~QW#c=s3v7qC_E3o6HE4MxD&BN%VC%A%w`rlhTj!2IEX9%Ewu9L~%>wt6q zj&YW5RZnsHj_Tuo0L9(+)7%KJh(r^>Kpa%K@TPg$r9`h$jt27id0QvVco{L;U1KSb+g}j0VF`(~2*Ort zTgjhpi2oU>Pt;T-+hS3ldoJ@>zNap8ofhfmt`;p3_<8GppLnxYdFSs+GSV(!OZ`KEsq|Y9FWs2)#CcW|hKKlQ|Xh1jXl}n2ey2rNmq@-k-BDb8! z%C0B{1r*e7cl6a(jW+3GME4v6LPYBiubWgju>gLb<8hQccgQ8?cvzrcIGePHfr&#V z5L~OgA2HaYlBjQt7qi+%27w|18)3fZL3%TVZCCt702)Ow8k&m5nmo(BR9v`nk!Vp~ zH@2I7=Kc=SP3-qsMTp@ha|r+AtY$!g`3}xs=(k?KaVxSh=h63Xz$2EdAv$|@>Y2$q z?pUr2=88S}oBROL@wK$P#3Tf;5LH3F_-WNbY`#~Gw1$N;$;0J?&#X~j2ZczTqW%o= z&^$aMBMVkjxwZ*r03+-GI`XK8QtQj%l1C2z!CWFx&n_3%5GPF9EiQx}84#eV2T zz@3QW#7(Q2D8Ubgv9I0EQ|=$rcWN`#jnj!VX$~6V7QC!#3BpD(x7p@dJtHmZ|1om* zKa@eN@huRyPX~)+5RxS&Ro3X4ilL59X?%B)`{{i9XPXfhI^O@-#D_g(W>Ae+1mIQ0 ziHB4$0Mq>(uo-kd0$$kn=X(ZE{_75y%+ftqhx-7VQbj3*JMJfOF(H~Azk*YuUn_T< z>@37t#Hzq0zxBz)S z^?<*KxKs91664(BNpFx}c(-`&bOvZH-27jkP+a&#+HMyW(sP40Sot%BHHp9rOs;%X zNZ$==6fG5r04|b*B<@Z$m}BD6|Ei4i^}QpyHG0oe8XA$3nGA&wA$!7eDB z0qdj0M`THW=u&!bl7S@i35Xc$AN4HUApgL7>&f4*j&T}&D^OuQIjaVcRKPyC&9zDn zFDJiM{z?uAXwigo@gS`Jx>ATBo&aLlk78D>65s?oYAPxc6S5@{wRCn00kYr#2Z6S! zk;NNaB<<+*WQr{96akW)WF?X@4t^5*-KD-8RMDBrDkQx?9n^`yvjQzq$Tyk{lJv{u zUoYGgR}BH60}Y8l+sBbb^^l9)_rZP}+{~CD2fthoVw4w-)%%y)Dac6}387%W9R}u5 zL|q)d5!En7c}Cu1;B+f~5dD9j{9hXb2+RT-?=7p=@HZ)qeg8Xx0aGnN*2%*8_DeSrv8SlOgy72ve?r%#+KcBE9)8H`zs8A2W%JQH)XF?C#kZ9IInahW#L4q;;UQ`(l?5rtZM%@GYm*N>xhuzm45L@n3Xeqi&|b zwLRlnGSDx^J=t?#_K}&~yoB->%G&<#BL?sm73O44;D8}`Eu+w{{K6WS$kCu0XDfRq z^1%j+=}QG)1&D6--@lsf7m_<**V0scKGIAIE@&d^{2<+r2XpD2k==T^)##5uvMmEh z7@PdY&$|&qItp9X3-!zKZgXvI+w0>aKMBwY&XQ<~N?am2VsKafc?ul;5+??#BLvyj zX?v`Wl|MqRTmSbA8?lo$5q2yK%C_$Jc@2FGn|o38=sD^4KnhHwN@0-6)M`c)bn!rO zQ#t5^zPwjB=IZw3=<_DJ?K?$VD9a&vW83uAqK0ece%J*Cs+--KH78?^M5hiP?38*x z2cYST5U$e(()uRMdgnjS8LaF}eSEO+WUDiuBch@Z-pT>@iojQx%lqvcNdgyQV1B_w zBmH~`qk+-2;f*OpN_v({#kEJz3jLL$D5&&>MHL8ttyPQ{=}+eo)9*C&FQw%O^SX+> zfN7(x!5E+)sUdQ8tr@J)&h%C9iHr2G zL(7W!g|pZ%ah;+K0ZwIo_xmbcr)6e>&wR6Dk|{V%al|Mn6~$$W59b}k=RWdHcXH-? z+Oq}X3a;W2ss}@{qP9(giH##%z3!dDJ0+hgr~TxS$+f%v8lumEW+|&Vzql^-Y~Omt zYSC62;Y1or?XK4ux=gbBRO)x$x83ETn%UfjfA7=R%nukk&z@($;yvkUSeqP(W>NI> zD04#Hmh;|VmtXsF_uQ3RTwY@id{Oi?(*vv^*P6Y2#S4QM^Kb1s{*ngU)68faD1^6} z_-`;x9;|ZaI}h+B+Wi*1OvVUyw7`vyB@AR-Y74SKi!YTvb8EI!zUXALRpufK!Zx#* z&*qHJR%V=4d+%2<5Xsu7;G6mfJAX}|xGWrPu8#@xk>uoh|J(=LB)yBm+<(1XW;r8j zR*8Vs$-LJ=*$2c>hd@8D(^hvd#m1NF^OPMr-r8EVAXKlFk{SHv`xh`kFR7q#R%xEp zpw%dfXSn6~-)=2+#fy=2BPRSucE%z5Q+e=$(V}iLoL{K2EcNchv(BGei%C|tQXjVs zn8?dewn-wr$IKRf{QWYWN2|qgHi-!gB+;?D#ksZ75rr9u?G8cJks>pM-M=kb`Y4&W zT~9czXzi_&&9_R;qfm*JAY0T1w^pixZ2jSEn9o9t;q13Ckq^S9B&+U7MQM8Syoo*r z;(E<_WZ9k)$~3xf<5e8A)L65lniOOB!3BSG|9}+#?e4yR?q48OW(lI)_~~wWjuWQf ziY1&Z8kSQMGE#J3?NgxBn1Kzvcdq?9wW9`|QsB|9&vq`9J=a}1^`UY)h;PiM^R;tX z-y2k1weVB?-pWB_&yNBZq}?)NKo*9bA6P2s87sL{A%UuZyE3egSLTlM z+*(pvgtN3MH$CN;O{wH}eT}BG)vy5=?>+RF#cahwaPUAP(MAZ^lD@Q@|aknuqw2sIVSJiNS_;8h$EIf1)2q(r2Zb+_q! z`OVAbYPv4Q=-M+~^vGB$m@h3rfCHNSeYld3Lj6>aTpID7t`%Wy(>w4!()RP0%Gv`J zik9rOz*tOLQ3{7-M7N$aWT3Y<5usn1hu%#-bvDsa${pM8Ga+YNfiq-vP#d^QuPAXI zb~rO?o8)}mCi(Vn?q)^N|as{=<%T8m~OpYjn!Y^qB}_6N%eUg{_56CcpHvxP6902Ai;a2W$;D~45P2o}t@#I`4~Alz=y6Zjp@~SV+{|YjGWCmTBdu7do-55v znjmXnY!f4Mu%@Jf6pGKOez7nFAtRlqi_8@8^K)*i&XuYr2qC)XnJ@a^^EE$FI=pkD zfd5S95#$ba@NfMcCaPaAO^C|ofFuZCyWv`Z8mPzkKx`3uEN5~DY=G(iRke>XYxD-A5g{K&SV;x zsrV~Bn!KobB~NDd9rtz`5;~saoXb|iI}|GAD?ulRa{&ZUqgS$^5u%&O(CaCWkr-G7 zB;j!LI=>hdre9-1PJ%ii5(6dr6&Y*5$XKM3n3(C3aehp`;K1@@_t1W@*>9-Oc{R4g z4q4Qv1ixNj7pd=M@-mqU!>D6g{nj5akXMvWPhsC0`_$YiB4hj-zdQ;;Ic_#r^cP)A{moUaF6HM&aNpT z_s3dUb)^>PJ}Olo{K-tgzUA>{dlssd4l-TOmpPXT*8oZ zhwB)AEhDXs4Ruhp(jiTMeE)cbS*dsn@;4vyDonz|cAL0AhNDXDknVZAm?nqp6A}9R ziFQpB%nlCa1pIognA_7mf=eI{eirQ+4|O@5lzhV?C$D%W5t6kQ_84>&E;<&L8>CF{ zC8_(Dhbrrb?D}IqUAw!@6P8zxkqvoq(dTG6dxyH)tlA^D{P!~Y1uI6!3I>O)Lk31H zpuhsd&U>344L8=KcvCZRQVquoqTCTG{N(CtGo?bk3KYq%HR~0=58?bnT4o)OEnAz_ z#Ews(wi&0}&1huZL#0ww69)_&&5A+buMQtQK?VpZAf% zy`8NX$Gpo&kfeA|`AQcZj$7n8cZdeCQ&eq9;-@&k=qPbVis)c6Nz<9S2@t-C1=Up!&FLH(a}<>Is|zkT zRC`Z3v$F7sDfTYC0%B+lZH zi&rz@krn7dmBdo1v}Jx`1VkoFNfcz6mgz3}!WMI4QWxw6$l!Zx36ZK9=ahHiF3-fi zg!-KhqOmeDg$N<#rqYGS14iw~q{^apq+b~sUPF1EBoYK{em!jOAR9!B8g|D16_d8B zAQ)fY4o;Fd+0u)BFKg2*JC9R(*MMK>UrM1cGXy%zBctQ_Y`*!Z!u~7mE;SpMRtrkK zU}7upg&1^9_VGn)I5W^8W44|9e6gQ>>J}fxTEd_iyN!&7W+@|zHbUyZN*pd3v(k3BlARn$8%w1{FtsNh z1GZfoSOG}^YDbqpAqGCmH!m75e!XVQi)KdbE8*7Mw~E;%Z>AnvL zy^P!=&A$6rbm-8~JWIu&VzxI+e6pt|6?!eEtU%Q&22x7i%T_qd*1?!# zUp!ey2q`dTf+TM~)STeHTY|M5!qXqi6NBv!-PmazMZBiXCX%y9M$zI~!OD3h*^NW!(h+8Z*2Tav6;7{5uCXfM;;kDQ_# zF=ucrD7n9o>jh2PpdW z`-+Mi=MM7FQ;4(CkU`h(%r&~QbG`K8xF&j9zHpWg8qVT|vWXiKJk0*) zvdlX&eX?KqK-!7}#Gi*C{$vGYDbp5P2w-u+%FrG13ZojUjJD$XI!}e8F;%ybfzY|F z5v30a7ClJ`-=Dd|u8PYR{X7^tF8O03xS;WBeIOt1VN|3wG^xPXYfbLAKXKiq)5Si5 zRZ;+k-5oGegiqCcQ@~B^Ufd47)d)cqL}OzMiheJMM$8!gJ%2^FRa*XVn)KRv-O zLQo1Xd@>MIhaFdC4>CGFjQ=j^t)@|)z0Q|<943@*yDW6ewzR`}8N3~%bhbc9e!FW8 zBVp@)Qibk{T0TVcrCf=#aI-Oe-q(WVo_v*`=!=bnxW_Q0<$FhDOYwyQYa+h(sl2ew)AKcF(?D&`30UfwGv5 zv`ZC3x`l33Nz?B~+NF#??)w5emyK%fA+!m1X7VN0@S={sag^-1J%4yA>{uLo;a~ ztSUNn7cwp5^m;mD57k%e4WQ`D(H=cj?)~x2aU_Cv0$UOVc)ij)} zfB4YEd?;V20lkn4_M9kbyI1LA#!PjhcDDAgzZ2`0l-EA*7UHGfD^J`N)89n@0W523F22`DVJcNe=TdztTPxa=mOW~9u4SptB8uo zMSr)G%2&)ZHy`~Hlx60(oY@Bo$N`i49`0(_h`6>-huQIPJazCsajkLnzM=>^sF_|U zl*iQW5OI0h$^K}`r6iR4r8H}lkVwPv_G{P_DREhPhr}S(a_e-kp6t8xO(m-faVl|8 z-9b3h4jv}c&^P$#`&@Va$wluyc`nNRNu{Zu+ZeHhozFX%MbBSE2(|VMbHx!*!28yn z$6_GPaBc#6=@}=XcE8%U$88!cBmKzTGF`^ zA;(mZT$7TuFdNl7=N}GhueQ-OtS}#>V!LIkF}5YG>O*!Gh4$-lr41dBI8}-dwyC7) zy>v7Ghyn+)0q3xwtICMOCMjQ}=-c$NA)HdQ@SCv7T5OG6`}xO_30 zS_N5mi|_8kv3Op=y43DoO&%L+lX%2mG3hB~6Na8VHujn!sGYd73_pQ!=Nheoij}+_ z*B*=P1sQFn^}*3%h~Nt$E>F8-l1t(){}|+f`{idLpo$w#okB7SHrCoGpJxKAh47to zz-&z3P!h5!ERu5&sx$68K_kL7Bq>s|xia5Gs}#cT7A+f{u7-ztA(u^$|E3ka2SkqF zpnd$4N1Z@Wo6PA4+HZ)g@UyFeZG>R9PsNK2`=YN}WkX>-k)dh63Kg3PDH_NQr)e4t>!D&^Thu}`T+9D!2^yhhDvVdjya`J;Z5jq;ce1q#de=jPWqzkawp zt{>?TLooyCNiXSprqM}{a=|OCp9gHU)Ru1LZ9Fb z1=gyi^V4c}yS&Rv$}faB3`8g8I%^qOqNIc&t8V?+FzP6~=2!gUPrWL_t+j0W2NT?I z448#T#_{s^7!1Ot;IaSlL#^y>Sjd-)qXL~P;!7L;i@&v_V#zh68+2P|v2l|tDHL7j z2%Aj-EI$GfmdkomezhCFKVxJ*d9p&#YG~D*q+<`AeV#+Z<$ytcHhGrV2>QUyUq2GP@;wW(<|erEqs#q3 z@0XH*7)>&`4T~VA4s#MfT@e*@5+=jdX;9|LH_VD!k1C@PzgvgjsBmWX?YC~J zI@YpOqbakf@$b5#1j~v{yHIM^l~W~vx`NEsfu$&=9u4vLx!|0?O_tC$JXP*y{$b+= zN@6Axvl@qf4uwY&x1wwxXY%Ac6G*b*Pm9EDmFzgx?^mzxEL7&zC+I>Cv+oq@6;&T$ z+?pC(PF=D^pk&RqC+p=8SJAZvSJ>4{Tk_6t>TQ@V{O%AeG{rtMlFBLj^M*~Y-aMXf z+^No!i0=EW?~Uw4PY4#4%__X5zj|~>@0^Ez*I!9?Z{^HyOiOfbV42Ok5ZA*$NZgVE zSl)4ts2zc@ZReQ`wc4I;oXv77&14xdU4ups@!aZ6dFI7$tHljL^*B53H>#bHpsAzG zw1bmygS}9f%DP7S4>C!JAmS9Im#i#IW}z9+ik`-*vsX3cJ+fiUH2L`By|M#MhE1a` zNiQ(VQPbxh+)+Z>l}on|cSTjhQs+(JcyF{Q7(1L+r2LM~YC}~YM=*FhM=I4L6 zd+d&U-xMixo1RSWpjJuMFGDPKZx}8O*k+71Yh`m}8p+vWNzsq^VqTjia&ux>V0N{3 z3x1ls8gr5k1$IkkIfXO_1P-*U^kZ!5xtgMdk3i1deOnvGK{!D|0Jf8I{^mF$QUb&& zXow}=YcvSwi(uAI&A*sBXi#}yrta}+?IYxG>RRy1DBqM3xN9Bdh+>3bAV^`irjlG+ z6ZLs@qz{|5mD5AW?u)TeEp7fq)78Uk9qxZva^*`m&II$J;WC0w;OaG!oGuuJhRq$R z{KAT7;a9fYY=SjB$sOnpc5_TN>d~nX1zB*v)8b{iB=tmL{qgWzr^t>wMR~Z0tI{q# zHVD$f*Zgy>NJWHA5K z=481B38VD{kggxU_6b&Wt`r*!PqJ&Y|Jq}3_m9W?Ni0D3=!}9kaFkHm&sp|TJ8b#S zU-8<+7=u^fmeX$X?+aRGzKQyjWc(yIW1>?Qi5R6YB0UP7n#Mp<)-4stbRnmGGm2Ls zf&;G-TW8ne-9zIkzV%KNskLqmg z4uM?>#tZMjziSeNkkPzBnR24)YIBO>i#?aLNFVG8)3M~|F0(qETka1N374ll9}b!O z2cF|lkkQ3Y`K_)WyRGj@&oealUh(<{@urGceb33x3YlGUPKabTOji zV<|)giQE4nD;Y!S!msFAz(^2qnHGN0J+fA7%RvH3fbi$FTw6f`?RnPnZrz!}AAi$` zfew*}YO!KVHPhJrzf#24YZnt!cC2)VlXr83A7))2y?M2_YA1PaJCu1lG8()SVFWM! z@np+wYbC$9r6tZZQ7JE#mx7R-M8`2?kd}wbMmx-`|D4llKa)9Z0oBRuFMTgn&Wo_Z zF2q5_3dlpDp|Rm{XC=Z{b7D?H64Ju^0}wP8N7OqXNR;U%fA{Sirc;cWBR*vMdzxJ% z&jjAF+uZ`pAwc_XE&Wr@y7OJ+?^sfQPZyHjCHr2I~Xvq^J68RgGJX5-?t`N(RKS@nEP25CX`id%%_aL(4J$ot{#m6;2F%N5r9 zMc{_)?y^#`^)^6IZ7f}ErjzR9EbaF;V?qp*rN0nUb^a~&xV5_8RsR!!83U+1+F?0Q zP^8#ht@LPc0QQeRDWT{`HfpEHwE*1r3*ns3ui7w^DWAEB<6aT7nzq>0B7=2@e!8#G zo;QW14J2tT%jNx}lo>8RDCJI)bY*gma~LOwXG3ZWT$}n8?8w9416Cdt86%@=15fLR ze4pJ|s@;C!HtMq4lBXf;w?E9P<8mgXMd%ZPL~#>Cu#S3X9{I@lf~U!bK;T>T5ZF)* zaJFbtWu#rgOCrRt;B#|*#4$g0XubX+CKK~m(XSv%X&>c}QP@Gk@JHy8pX>Yb0%wAu zezk%5+%41>)@A?czhjHchC9v#!#WTTM)dD@T`gX|?H!(7gl9u2YORdfuEMZ$y_l<) z3{8FYGiI_cU*2_*dh8iWwz{F9^1znFSC#+H*+)6i5`y_G~p#QGQrks8? zJnN`l-EX&RtUKIJMmY_weQAjKsN?u6n%zbO_NT)b9kKH5_oX#Lu=yK{r!of%=8=yE`75EF)Ke$SO3V<3O^Vww4pJvb~?*s zFcV{F{vLGHf?AGNYpxlOY6}f~Xpjx?I2W*j|9MdL)ptfG@QQ&;gXY?JK74oDHpR$0 z;yjl8JwQ%K^f={l(G`Fc^00$s_n6i_masBV;~l~9w!Z>0-9b9#{yd=*2dxs1KV~NxS5jxN^b%Q=@?*+ImCnm&lp3 zJuJ9Uztt(p)KYXTeBO$ONV(`_-<=LQao@bRHJc%hr z%3_X>eLLQi&7GImtDiQ~ajC|}9`;;&YulOJO?}&BrWQrle)%{`eTXEBVtR1 zsQB|eXg(ftC2a-*L{oHI7Adz{a6B4H4}*L@BmXE9mr#vz$F8{bO#0ygJ#@L!sX?Rm z`Eb=9h-ZEd#g=p@G!WA?A+PGCV+E=lU#|uW{`z2Zp&(8XU0MLwpW)7Yt$jwBU;l-P zs3OHsLBok3R;xC;5M7G2yEAO|@0YhIArWK~42E{3@`a@j8YD*b#h}i@6_v*oNv>A| z9-4aN>9)qF@vyK_4n~Jyhh?Fsw_<>n@+R#$*61|8y42K6WKsjW_gaY?vhKjf;>z2W zKdS63*(V#7F$phq%{V|4J(=}zaVtPC>jP8qnarD27nYiIbW}0!g5>sjOqnj#S(d9{ zL-WO?+^S7T#=iRjM5?|g%;u_Kr`1f&z}re>NWbOWZ|cxgcDS`tkK=sjSX3uvVB*#i z;5E_wK5Cn^fYEU6NBg7gJy5hErZvH!)H3Nkt%w}m0aA%J(4vbCl;Dy1E=4<7(Dh_C z-sK0B>SosTj6$O8vI8rUmk+5KzCC@491c7h98Hxd`tiG!txdzYVqPNavwFvy zpEr4ID%H?xk$;+$PRS@lAOxG+e~Cgz0joEW7~z`H@0ee>-5_}K;EpWtu7(r-(|BmB z(}LidvGsuzw})(~$rOtnDP1rnc(ufA?T=&bu_le)f)^Eh%SiH{#%*|SZzT_CD~Y#8 zTxAB4S><+mdYO*N`I8AJ1Zd?qk;J(jmXQEGc%w%Fe^7#5 zOls?QkE2r4h|JuI(<3sojr`Z4@*VUEG3Wy0Qg0qIpe-*9FwQs`?0nQt12F9iud8R) zE2lX^5hQb19#}dpnvP4BQsYs6)h~1&N0*nmh^N;)Lf06JBjsv5+!SNBht?Xa#h6y5B(+ zP5D_@EkwaC#rM9ccT>am$PnJ`*iGr9PHCABV5dAxeRPvf8<0dLd3926Bjt8*8>Qat zpD9|pEObA0ry=F}f=)Uu(94;)^-2h~S=P~!ZygG6D&3RHUVQ5mO?MA3malPFgAf!r zw_h-65g^736%}Wi@kcC}`){!DrTF|s#ArOty^xAtkuVSii6ddmhGzH!h4H@oY|im) zS@wsZoZr?^)F74g=)m%Lp%@AS)j`a*J8WyI$wGs5Q%=z7EHTZv=@_lR0aN`%o_`QWSpOwPM9iDoQ zpuMJen7j6Vc=fY#?QBM%ai|ZhZWHLNEOhi9rX)-?pcn-;EG8b8_<5~+;780MMLXf=A{l;$a4A-Psk9E%*`gKh-v^m0|0A+!vl}fedeub)%=%^-}8I2!^GJ1rd>!0rata0 z{@hg$9ZhV2b=^&q!XE)1liq1duyl(81#jOKzpM7ye}h~I5^x%kteq`{SAHDOk(aC( z%d?w!J{Pg&vLAV$RU+@ov6|ti6ubv8**LBexe$e<%KY|Av$QAdBj(w_Xt@?^?rS;j)H8ry@h$b%V799AYO=aP;reI0#YqS-O^| z3gPU2?a(zhfC(+IL@pK&fPP$7nqKP(D5syejRvJRbev3t>WwkEhId({bxLX8<`w(L zJfC&-vM)~**X{cS9l4m*w7MeL3LN&$Iz%M6OX~$Ye?;s0o+f>k}=+;Yfy-T?J!U!F)qK+Oe`7trV^IubpRudesp{z zK-AF*K^uWC55f~<3eC&mxq(Sb!FLZVr!u9M_ctSK>S z5o0ma{kVoj(Z{U|UZ~O5Z_&GEf)u2gCE>*AEP%{_=8amUUjLzX2Te3DWSVK2jMYf= z*gFs`e%Fb3|G=T(X;-`$7GchabN=z`Xlo#iojJ+5!l4Bo17%}gqf`97c6)f`@q4au zXwB5N7o^Q0v*gcOPc>Ky9^X0&6Rk7# zeJx?U)|`glb);6#t9{1@5tkX*dSqmVrfw?xDYN*1@Eo03maRmghgIJD`0T7N2>O!+ zQRqFunfVF6sj(#EpdqB=*d&hl%}>;tzc;v{PZY=Js@xxj|Gr&0oL$!b#ouGf6Rj|= zlYO-!Y!UT}J~Mzk(WX-{P#@Mk)IUbvA6NYKu2Q?L4jmFI?aQz!VUlvTYQYW&6;w_I z$%oCj#CAVejh^H(b^IFpQ{9tA!TNzz=h}b~pT_h=yyH(DK;Zu~HCNCqwNe!88RK}z6I^oxcMlvk3F5y^J!Unp9&0Up-xwB1Cnq`(=x406JgD!c-m zX%__a;Q$embOEa?K&_|jRSO^nu;h13Yt&XR1_8D?ps2YncA96f>CuF|U?4KezJVS( zs24S>al|V$lW%|^|FCW_@HI1hFue}Qdy@hD#oCS@ zAELW+>Ujc-HRcpMMQWU2zZ{+v!KWPuD=cWtkGSAWLPJ)s8Rh2Ji;d1hg%xv7aGwxB z(7Qft;#j!0Gvxb+-itisC2htzySs>z<*Qz!UuT3L1(JpFZtf1~pyw1FW)01FB6u=E zj3QgCceJ<4e3modxl@#uh>q2L2Wo6t2KtP#)GyF9SPl@L>J%)oL_!^)GgTK2jB8t# z&<4a7dVPUq^RHH^L6Ko8(-dfi_*mhlfB`A_RzpzdJBrr#bNOs@w9ILCfD!~sxvC>} zL?aBTcwoxGXX(2@VNbKu`f}hU&0|kSXQvPejRMt3&u!Ja$Q0YS^&fbzuz*CpxM+Sp zMb;Vxz(L${+K(IoWG;QHO`U36lcP1j3WywcY2b$aCWAif-v9m@$htre^i5fP*p#UwqIr){Z2~&81NoWSvK2<5NrU%fk(lFkj+bo)tZfJc@@zmF8gZ?>sTpVeQ$i2>_DTGZzwOBLU%aj&BsZPF2tqmwr|lu!~==x zQlfeEfnLm#dXMKdruv_&vxY1n*t#5E8g<;lk58XS0Tv<^WuEQ9sON~;T(W!5`)z1|BHIsI$!`jNB{1cT4^@9b@< z?6to{51 z=0wx-57fi;FkhMGp>}6Wwx%-SF;pesROSoa%2}<)S)+oES~`+kZevKzW9op81wo*S=2SN6xdD>tKuHe& zMo%A$GuTfZHWpsI!+pDB0V{#J7I@r)RIr9DKVrU{&cy+Ju z-9@)Sv9{J$Hs{Mk3IrrHkfjwgU$#83T|N(p?|VQy*^N**v`cj}DM&3e%>S<;R8DUv zlXtDQJzhUlv|6Pzh-5dt?{FHn=|d1fb;6r~-#TJ*osYy8r;xoovirPpHfSz*3CKftT=x_I zHG!uy`I^C~+9qt&<+~(}p)2G6$ejK)&C%Z*0ehRj&DL?}ItVUI?#aAmgr@`j8Q}e% zTn}>FRwE|FE%7B*R%@ef#z$o+#=a*l=lcK>Z3LL1Ru0PpA13>r=>Xjk*Od-sBAwO) z!8x7&C8a#m^GNa^`I;w? zY36CPdz~Ip^9X@!ypmTPIu%Tv{ePFFdiZ~2U?Co%-r2!|=;wI72vC2x-V3NM_Fz{C zf%^8TY?8OXFtOwUnXpOOJ0RI#0Cm;oCtf_gH^>EoC^HCWkI&g(GRwP2%l`=+Vw9I_ zKK+$GLEeuH9xjBVr$hS*wEsx@?po$%#(n^LaH72N!=oqVH+tWZ{eSGeWmpx_+dfLC zfP^5D(jcLvG>X8c6{Jfk>Fyd36@%^uX$-ns5owTS(@1ycCeGU6`~H9L`F5_8AI=vp zh1oNEW?A;#6CuP*B0jcuB(IbKwsl;P4e1*xS6MDSGfJ`IKvtYs|-A(uX}0~ z!0#9J+wp(lHqbCSd`Cn_3ubaThgS0`uJf2H z_W+(Kn8nY8oR@lxniEp4P>c=S0m$)iYY@-7rc8NWw{fmM!}cfute+g9s8A>}|MJ`@ z06C}JAUck$y%G?^_*%_-lHuX%|5bEG`oDnJxFFA4`HZ|5DMt)7taLEZNtXN5>bfR} z+_e0q0&ii0KbXZCRQydo>G7|QP3(m*P0{;3TE{z(M z4d)$LL#wLKe8}Zt!7&C49ecYT|7vycZdz1<)p|!If_`-xtp6832mROg1dB#=g#ZRr zIn=idSMtp@XM^O-9RSjUqS z=LI$GuMF&^p#s#zx7I1Qt1%=s;$yIb8UyvQY&Dt#`XX&iB;pZ*biPrzLJ!cGnYKZ& z^!p7isY0IYm&Y%5aFqbK;*#<{U>(ZyY;mi{h1OkN?Vh?D*HXa*ZYMMj?X8ysU+V;=_QN#+oG zW*U6X$;nQ%X-}dqky=r{r1hTlv);WMe9m(d&XBu{d9QD;H&8jG1X7KE`J#5x*lzgy z6X63_*-R0Z!-)I^h7`)pw73VesO?N9*EP$aRfU9>cC#=pVedawD3Kr7Mh_s1L$%n8 z<=Wl-TIgBl0tWfx)B*z3ij6T>20sU8DaQ4HirG0C(-tda>{8f(jGLYgWN4qN%GN4cy^>(fogM2gzG3Z{9BK1jr{-tpB?plDwxx6OKa z!R4^LJ$oDB=(aw=j!(`VZRCeY6C2u)_uPcPI-?3H4U3XOxcw-xMYyr+Eehh^z1>P>s0)ufG*m6t$l-v6v6rxwda*!6Y>XBNK@FrWsKve zO8Jw&o=jDmmX@ws?CnY7>iyKone;cY13*|C-vp(;%G~%o;J{;8@`RjQmlG%=MHV)m zXriH`XK8fC_Engnq7`5y3fOX-rqloT$&vqRU?@5Z^m8&@uwvIPeHYCect@ekhI^&d z>>y@wpvRO9)J8|HLVP zasm&UsM~rtXhpP5R6BP^$JMTfRDd;3$XCCo@bqaoviKOur6&l@&WIu3g*5UiA7*{? z?_*}YFZWXCGQu92Xu?wPWU_2G`unRCaNFZ0WZdzO_Yd|ee=l_;blS#F0(R9lp#GTM zc}_I;L!XZ54#e4=$p2Eo9YTaVH2kxhnISYly&Nm-yx5i{9|c4w1)PAyCc;}e*V*<@ zdH^6CRRIYqVW9-}9i)trM_?1&7h$^{ROiM}*J_Zh+V9*eOZwfr zcVnSR(|!nL{@bw1HF#;RDcGU<-RiD%;I_E~8izL{oGA*QSPcs7T^_ek9m3@nZ>(g= zlt=de#y|(mSunL+m0Om2Q}i>+XgVdP5s0ld2D$?}dbv>Q2%uX5hm@qI24%;tMasd= z9B29;GM=C9_3rkFZnXiatqfutK0e2;Bq7x)-y;J{tCC%UJN&RO&+|!aMai!$V&dkg zu%i?I$FD4+cFSdyhY@$(xp8k;F=vle#?;-q_hdX4^MY$;1Xapw3r@S$^cQ^!TEF zMN%;Ap4RusGRyvs`VPKDf%U5r+RAO{RrpM*g zvYn=X_?#U(CYWWkl)K!InC%gwJg6#N>Wazkj717qcGv8y)pKp)78aB$!9kLu(R$3F3Paw9 z-_9G50z%oKv!Vu+(%VzTYtPS1JI(};2TYX)Q9c8DR1Lt-WzC0qi&Oi)&REx@tBt^z zJicCJa88zj+bCj3v2tAQhrSL|n-WpZ52(~{UiMvA9;=>;)BXKp2ANPvCyRfYf^h)%~Er)szxWEI6#=c2dql z*XP(F>24k%ncD^B(Y66q$&E16WIpg(-OOy-)DhYYs~z9o{SZ}hGBUlv7<5uw^&Ig6 z_Xc6)H(FzeaAK%sH=1?k2vy2bEw@-pLsTJyJVf`xaa0wlVG0kWYxN?S=|j?apSZNK z+KGmr65M7R+u2{FDjY`%Z%tii0f~k4b4EV%p2(My1aU`*hP8?T<_D|swy!Nt>jp-q z20uNl^8BoxZrMldQf~w)_fIL^%6TMA=QG+{0NryQw^geyK|}{D#+`F*LB|o3l`Ru+ zH#*hJEcqmsjLjy0l>BFzHRIi_A!+n!euvf3csGKhQNqkzP$D(rni#xISN+18T& z%S@tdfX^<_R5Xqk86g(%S0EDk8y4aAJj3r@Ml8~+gI(pN=jV~VXIeY7*Bt2(69tI3 zgC{^)U2shmFhPSEYl%qU`d}MuKn;936NIz7hvW92uyDBe9#xfFkHp@(rwIcZ^bEGW zR9AcV*3H}7Poyn1_@1(G;YVPu9d*QPUtZ9LjQx~m?d=TX8-~k)9cZ2G<Vuw!W!m1HJ#?0q3re&Gu}*F6p6LE;e!YVrMy zmQS{HQH0MCv$gga<(-}Zhp)a(7d@i&+D5JPebzI+CRG81t04K1)uDyB+2&*|8L#i> zMuiQ1<5)ZdC#FxcTya+zT1&GrSD zAcX<4Ifj&m!v_mJDdQMw)0WuLzUK!cht=Lkn}-c>kYbWsdQV-s%l8v|t%W7ti#G5F zFC(cT{R(}hrFy;C0hW{Bt3T4;B4(%k& znFcFBln+oUHW0sbSN%l3$fCu?{*=CPeY99zHiVWD1Va%B+GUPu2vI&^#t=JsD`jaP zn-uoE(NH|!O7@c_3)Mz2Qpqx<`65IJn&wUL;PC3gBb^ojnv~pyM}D2MI%^@d?+7+y zMZZ3;SSoTlu-a?3d3*N2DOx$@d{W2=9xRsKZE*=GA3uafC-K@QwxXoB3yJoXMae_I zTAnM!6FVctK?$gY#%jbdQS!rLK{74#{A=I5s>I|Z)+Ml9z186YMi3ngKv{e#_!3mu&gJF-MA*aW+%IkaPoW%ObwCE($J(?Mr1PY+>(e$?GIdw^(g+(ux`ec)uu zyW9VJ2@Cx~9j6d#ClpF$kNwgXULx?DKEb{bVaPAK3uT&bhnmy$H)K{r-ElWdm9XCu z2n5EQHte}Q(bKPguS&DC(%ffa?Pf`1TCu*>C{xP5)E?EU5%mN;i~m?o(IH8YyYfR# zk?U7YK@=FDjJ4)EV1|4$`Kuw#zU0y(Eo5qbpn+9RzDpwVI9_CIc2oEPB4L6iaN#=E z$%38-fKf~M3|;pjA5gRcO7*#|>O+r~0V``AP%PE}RAKBQH@{~j41JC{seg18cO0wI zr<~M&DNC4Aq@y6Di=c_h8GVtiK3;KI8SzOgNb`*G^cYc3l&u{l>vs9`U=_BSBrm1E z{xgG&ZDyq2J+VV4x4B=f#|2L~4imzs02fbDuv!lP(O)J%_kQS3Tjqe4IFPV(9n*|S;i>X2e{|#rSR7vG5f9anY{;CXZH;;~$eQAx| z6(7OKWIdeJ=htmVEj7T`xHp9`C!5HO$eF_<#4ACS8hF(eEoA6Dv`}pc;VpaSpeupr zNROaSf?g|0g<+w9h)?gd4z35(UMOsZlzZ3Pwlmeug+Jy@65_(|W-G?U8bKHA{qIE& zY%I~rQb->g5s94N7eUs1YEV!Oit$8h0uV0TW#2R^26A*y=H^jjwn^vxLcQJ zjDc80NS^7^5Kp)~4$8l>PA%XeD^yLNXXYA+$)ulJ&h{MMk+P8Z+g!dnWX*b{v6(cq3S@zeLq z^sHLU4X(c`iE>jDBE^H+VOaxV*7Sb@i6*wb=m>_(X)V)d>)MshQlH?y zItZ~R2>QNT_N?UyMKxAV;*SWXGoJMXd#QGXJM{Asojl`ybuboT}CuaR-cW+TPy3~qE zc+~Lw`bOWNISPA2{V<`7V9A1AR|;FMdbPO^RYK$~G$R$GCH~T`#lq183)ly+Gc}FZ;ru0cIN3POLUq;eM zj`CAzp7`toT#kfJU2DVDFgE^Nspnw#&UI`Q&7H3P%lZUNwlPB&XO0q+p){fj;gs(i z0Dj{HR2l!)Ns1z$*achoc-M@2=FwNDtqjlp_1rC{`wwCLiH(8cF^Y?Zmy1Rhtm?@XM!4J^A#2)=o#i>zj<&wcjkY|cMahpxQ@)~V z_dj6mKP>5WS($)uFb_A8rSvF#%F%Jt>WB$RHfZw{C2;6-dU5F&mZG}zopGc)`qMq7 zn!@dEhb3vbI=7erR->sp^T7!Nw$3jf7s$u7O2rHUR1t}?igIhJCgOe<7p1^uEtu(E&yg+Yc!j9ad)VJo5 zlC6s#?!D_u2`n8+?`T6HGE#$e{yTS&KcHH_3&6aSEHkHzPtAjhVhpThoHuUZ7Vg9VS)*sflfVhUIaO9)xMk?JO`*wY$LJ&685 zVw3gl>L5u}K(h&RuKRlQP@rT~F+pN`Fg9JxhDodZDBPL$=wJP=WnOK}wfE*`T%oR&$GK7<00uIZ2`RduRT{@4||E@Tyus@v%Z8{T7 zUm8uociQ}WE9_O3<&k4wtN*jkY`^S`{;vkE>_%c?t-jhHr1UY%dZn-j0M)JLCLek^ z|JNdCIE_~(-BJZFR4L38dN}4ec0Z*9M4oK}?^g&djd6mxwbT9I#9t(lvQEBg`e;vs zyV9JmmR&-|hd#t#B+qvswzsby(F1jKuS&$#;4CrJg$|cgc>m zM6~GSnyH$IWX!1xe zPCKANh0{3WnLd0sO6&=p;(7_tEV%q z%sXSbAhr97g9o7~^z}MJd6s*5Um5EqUy1mZy_s6K`B=tFZqMKv98agT!=AcYRjDp_ z(%Gfj=rGHWAmAP9YcZVZ?;okQ(Ic82i;GoL>*pIs!!KfwKqN?%7`Z^*MmHl=bjS0Y zJFIJLHu%37)+cg*RJWWe%lCPa^Rm`uC35+>G1Rk?OSAWTEw5P2Q{SC>ONe+es;kU; ztk`w1%hBWSJZ`n$#=A5(7;~8iZ;0}w6`%W**vYE}4q>PHJOYb;=OL$qLimD+Hh^X|$Fbzfm@ z6id1m7w1eBMIS6j%O(wLK8>>?XjZb5KdKlm41)JZt4$BN3Q8WX?Pe`AI==eS8m3%5 zbgoovi9UY4G0)sX)2py4RvxlkAXRe-uNZzXje&ArYno5yen%`N+zU<-@ayKo=-V+* zvC$;x9VX9|>z(__gw0FZE7F8puyvJ4O-NvUs8Yg8f;6h?GS$t(uF&f9UmU7B#x9xb z@X~R)RkqAt1`gOF#n?rm#HG@2)nvBDi^JMCZ{D;4okO#MobJP&@h!$KqHp77f0|JH zWE;#LFs>)^+cAkKDCHuYx>yTy=i}8S@?5`q$as9!^NmWhnKIf_W*zK$kCJ|$R7cdi zNB=81nc0+wK^~2_eIqok#gaHf=exlc8cN$L7`o8DQ)hKx<#|vpwBGh`X->4V&r`VY z`dxup1ptbmG3iACbw8G}hpSa?3$p3fkJn6~t2)Fq`JdoNNk`Oix(k#7i{o0nD|%^y zwqqU#vletggfsmazVxXGM>WNZvlGUOa-O>7v^V>+(6XfkT?iJ+#zeUyQXL$WvFv+Q za=%N0>AjSOdYL`*9g#UrA#{KKQ3XV_UE{gzWTLC?Cv!R{CFd<46#Fg4owt50uT%}M z)!k+Y&_eyPk0+o{V}5cpamkxUPbS|TUAg{B!bPAkv0>ju}*K|G1Od8oOKQfwb64iJ8;IPs~35Ofz%c zV*EwdcQ+`rEa!gr1qbn8Ple~gL$agWUS9P38(WkOTVJe$an zZm%KFN34h#9wQYmvAy8u4VjVifC~1fCXMyT*EH(xx%lhcMLU2~r(|>q#H>u(zn;kf zX&+L3id$DUd)y%Pd*5=tf&sUadkKM;{74ONdFxKMg-5?q`@xyBI5htQdsDTenf0`o zq(3NAJ#i8gZola@PMM-6(h{Tan|1Jy_xvWHQUI`qxgqoJKUo7smJWUE!p;n6{^m*f zFUl?6rRTL!oWknr)7Za&%F{8#e0eCei3;KAG@YDF+ycD=!aeQHoA-zZDF zQH2YLEdwS zx3JF1Ub#I=T-`?S6%_`FvJ}D*l<30%!ah<#AK|b+;YuHeg`%AFz`)RN1+&`cq-4dq znmCIzZKW|;-1X)#C`Oqf?7YOM)d^`uOtE8D1Z%jhb`B*-jFw-0wCeD_?(fw-N_Sc5 zub>RgZzAbu`7SLDbxasO;?0E=@OQEP^Cn6zk#+^hWgv?MDbQE6k(`e6dN0}+T_E~ zF33C;23V9$`=i<2#tO}qliI}iM!u4F6Oxq!4X`E*)5-XfCvs)g_fA`q^;;ZCpNrB> zVqU&^%WQ;*?0h@Nfb5QWq#+r)=K-l$4B&E>2i>&4lTBdA1n%4D*_g}!V0x|KW9Z^o zm18E*Zc^Vzq(QI!8*#rG)DD|haYD`<ckERvSxwHw3fM(8cYRzTYze8J64H z{sy`PEfdfVi#S*ldT&147ob(`yc7!}UZ&+i{?0H6xW3V9b+-+?a-Hn*pH60-HT(zH zi>L4h)8y6l>e)s3AF^BaNqi2Iym&aZj*7YWU!W#AopP&~wx`jsTt6^(D2f2(_ErZUNSdw3n!SYrUa6QKr4?)lLGjNA1p2n!1oexh-SBVnp@} zRC`I~F$!$dcQ0z2`cG!Y%Lyv1B`A0E-%KVeO04D}j<(_oh$K0VB>xPBriax`QB8&2 z5tpT1J}sgaU1YhH`N42#hK@_7+h?OdAt@<9;_{omrCfyNs|11@Ku6?j_gtCMQus)T zLmvYOTb)FWdAtv8)EXhbdW(a3e)f8r1wdaC8W)jzp!;2WM>We#{)EN7fGU9~lvb2u zta$kgC+|T1wNUj#Gc}krzPv>2W7`}(f-jfv@lAUq2sBmxERcmqw^d! z|2tV`S*lb=nY_MwhMgpldPuVsGb?%d*UGhoM=@A}dPyn`GpEq(cbCp#oo<2zb+=}6 zII>5P|GYTk`{PnP;gW~gm@;&~vZ*}1=|1r6^D)nR75@`uuT)4kZI48%Bf|j&=2xXu z>dU5-M}b&y7Ln6DI}L9zI0ba?KcKY=*~Q*E$Ld(F2{G*(~er z=d@)Bj&U1cQOM3sV>)KV^m~Yd;^h3yb;^V0a{*%_SeWn+hZD5L3!q+R+TNete-2-o z2Z{hr^UDzy0~#_m$-z92r6K8sIaRFjXAVc=qZ%N)AZCxZ1nNV(7ua-TQ(@a~+wIKe03yP!#nRx$eP*ugCJz{Cn z61CP$M41NMW!ybM{aXiMp1%#WO0qyN1-Icd*%DR}Ix_o_s>4)CY2;*FvX8|+RgKlO z4~c;6bH2s+w%VEMxoTP7;R`Vc6#dvflY6KA=MSPb?6ASOJ7)Os_3F*Tm%?cB%;`EF zTWkGr+RYUA>C%A|Yr1zJY^&93I9|0rX~(!&wvX>rS)(3jI&wBXm|gb7NV04y>xvg1 zAgt;iNiBKUT0tbY=BRWaaMM%%Gs$sP>&+6v@P7ff{FMKj6~Qi_-sS)hbe-U|77;d-pvKRJ;+ z!2dB!yid75SJhtDTBGO@E9iWDu-NtYqpQAA<7ktv*ZSX1uIG&Cu}T_*_VI0WJg>cYUWkM=D-HJFgqpt0($@KNG&r zk5$m}mB^bw`F+BC(-W{*GyhR~3z)c^bGarO2h-C)%d_+6Tl{Q=7>>ho#CM%QWQ`L< zoiEM(f4z3~HtR3BsZ-`xsQ+N^XKT)Lwg|1)-TQ{$t*{g}ZG^DAewj;FJfhFX^g8fS zAxv~RcV2>eqEsaj6Dsbsw{O3|qBbbN*r_XV@dUz9B=lKQ*q_ zxP*iiAa)tt1u0axexR&4y?OL64g6ryQ$)h|qznk&9f z_`4QfeQ8r-@=NLE=>>iwVkmp8JR)*&%CqL1j`36wms&6irN5Ydhb#eAN7aMOEVu8q zOn~Ln&Fc%Y{R9$=>EFS5cley%JpZaYB+b=c`{nW5akKfY%P1`OY1`ZlsGr#3t7ajw z+_q{9-YwJPBD#4y3Uxc-%DNEsrz)|WI!{ES#9}~f+=0Dy5CS9Eu+&@fPea4pRXng7 zny@o0l_fYiTr13a@`1#Ss=KMoqn%`YCu?NwykQF&vM!L4)@kIrZ7|V=d=XNYq!H8J zY%KhgrIIpcE~8y(SKkg56e&2F_TD|0Jbl^`!*!2H{McV?XEf8TgRGLZ6Yt;lTP$U} zXK*s4WdxrV9COS};V$4k6c&;W{3zi4r|4z#6Z9Nbm1GNagOtiy0pwHnKf?KjE6lld zUZH)bPVBMav3Wt4UajcwnY72%r3#grF=o368Z(!)ihihE9`Mf9Ek*W|2%(K>?X>(+ z%|2Qy{GhT?pyN?#PxJxjqOa@sRy`v0#+`>v)_fE!nslM&Wp-2FEZ;<%SRK8`1g)2B zBGxo{%0l!sYUaF{wUtJfdY=6V55UUaobWGzsCzae#5eu}fLXcul!t!+*v>fn4`ZvP z_Yg5-7HB{n`i%p|A3!o;JQj3-yn#kseLkpnQ?Cj}UbmkZ{LQzL)9;*1c>iekb|B;w z%gsDw==p5Z;J%#h#bMOMaIyFg$&16;2TMsEPey+;D0LB;Wh9rFpTTL3MM4kh!hKHm zIP%?R{|BN# zP`<=$EFw3v`*0n84_<0k$_OVBiSsoUy4YXgBdO7=R~`L^)Yny9mp*>(i=3$ef++8& zY=%)p@X#(;(g!$Kj${*f&CWIkg^lQL9v_St$qaBAHTdXsBuZ&?Z)T!Gk5Exj53v$d za*=9mCxE?R0VyvDYVV_jsUUEa2URCyG3oP-;y#RLBj0oeREqD+5!(1m;gM?Bx_t-Z zK#w|-x?;#MBGqO>UgDeXPTwsSF&$P~$?_~m!7b3x{SwCx(mZzL%#p~?%0$ZL&!~66 z(F#(z4AW(vr4Sf6R`^K9&2R@L3zfY=jbto{&%1|u#VkjD1ljB{dHPUCb#fd5^ZA^{ zp3gJ$x8>6YN*z$YWIp&TOpDgeT?AeF!C#hiPupS*fk;m-z^pS?{`2FvU0b=44^l6R zOhEl_`cWK-`toJM^u6-9V8j<8#(ena*9RS9@m0)5=UJq#64?n}# z`F%@4_V6*3ZG>1Csr6_Ih9j<3#kX$dIeWhh1LGu0FP==|$!w4rg?uH8yRov&us!uv zzVk0fxR8D7?NXZ7@}8^-NaC*V!?7L#>&x=)@4!))U|(8D|J#k%F&F6mWlu`g!!;nw5P^VOuUo@PMcEB$i@U_E0c{Cdc-AKg5^jY^=-Ujl+ z7N`X4I!6cY5xsq;Wn30HCfq{>A<;H{$@%pRYui2YVC0tdhM_F^A1XgqmDDnPR^?RV zv~jG;*;XA>mZ__XJwzX#f#H(K?Yo@Eg?HsT?eR_9<5dzTbROq$PTzg&^eTd$uRcy? z=ax2Gu6^3=?_kn44o$9GSuo|N9}q{+7;vy&{0-uV>WSF5S9gMZ^v3w0P@+!jIZup$ zt=HreA;)A{1E^7%nYU-+=hk;=`X6Yj?vQ4M z&E%bDs&PF>yk^#Kuz0TPqW^V*Y2v&-goeEJX7^IQL+uvCpBU=}U|dp$j+Aw!#QEyE zB+8R{du3Qy7;Ssv-Y^NiGyosIw!(iWY7)ZeAnV?sBFK&bLboph0MP@O&Z>4^h?E8T z#GiQf6&zBYBa`8Oc7*&__&yru7cIrpK&M}1cLB2MV^whFBGVlK8(g-_0z*%0j$F;C z2N7gUPe^ZzJ3Yx5l9Bn(PhXvE#v3i)x3InJ_SFD24hA(E28u9~M;z*HG&X#xCTvWg zYWL%lY*gH5O;iqS959F-K0|qREG``x5IDl-xubk_Fs@V+_zL0DuU`R(3>rJ0&r{@R zcAW+P_0iZt;As%zrbhLJvg2((0#pA!+ZlbPSI1)i{}=tg^YKE|XqGfQ9>`w5UA7d+ z{<1xG{zi%jI0jYrC)Ctyr9b`rIP$JE)|M?jm-Gxdo@qyPyB{{#8y3lF-+m$9HUyaj z9tlJ37`9<(9$-x(CER=lp?@DvX zD;;BIom_vB3uO5dGJ<+&k(a`4MP6zLAGU}59?+Q{{dXu$;uV;Xl4rk3PR^oLXsFyF z?Zo+?9sy<^0BU>kV`VOqOnYWC+einPi~;E3Sil%{=zzrk9D8rzLO#s)_y?KxX>Zah zQ)wScUZOah;xJ`5fgT^S3M20c3w?X#KcIhJq@DBT&71UK(@|X1bnrl4JD>_DS=d?2b{OU(Em%a1TyBz7=@tAlZwfU>GoyKHX&(#PP! zkgJI+l!bNmS=>mVvX*X|xzzOUSYQe1Z>ZGJ!BVs1wzB}|S<>hH;`&$;U_?)U66B*s zJxgcDH6^7-VS_IV-$x#bgA44BZT8(D5{Uw2^h$7VqD0&5Q{P4&it`3oOtgcvRh;83 zr1zwU0~Cvbpci3qRBCLe*UXu#TJz@?V-)9*+)pyF$1zlt2}lX zj!Gg!lNdceH-VUP9(1b=M|l&;^uU8PzSrUgwitR;0-w?w@{2=|Y*ex~9a7d3%gdZ8%*UBU;8pC;fKf0=;)obbKgkV5Jxb*SV9?KR(Kv7=IKitm)P)cZodT2(C7GXpUag|{hz}#{eR^yNctc9OF7}bdHYuWbblpkZJU}R z>TVL*lehTE;@+A_n+Emy7%)Say1IGg8#n2F$W$hBh+J1vNUf}CkxP%^)QZ+?{#jpF$Ag&6)=-)C zQis03@q(|A#gYFRSN+%G+i48ssw8oL{#?sQOUk0GurFP1Pr>;XpCT62MPM(aq%uZS z|2sIn@~Qrk_%@U7kGbDQ*bb#hq9=QIkmA%r)Z~3yrC_w?WM#?7Sgif)tQO;;Fm&M) zJYI_WpBK-v2{2g`YAgS$rG6;yF`fW>5nOszW_SH4NQfF<}lH{c4#?kK|)G zH2%`Q9|JPvI+zWYvvRn0q)cz|Zz&ABIXL{MYX-YGeo$Cjbm)-Nke^z7z(gZbCE7bn&~&@6{avM(Vihn(w2 ze4O9(fKT}sm{c|cZU04~M|t`n@o`${UTt$f?$O~;qY~x)XKe1|pkbps7B83oSlD-7$$|w9r;4;KmMaNqfmk=FnbL@8{@U@y zUU!bc!pcJ|4(F$?$fJ&YZd~Z>s)7iv&aN^8fz7u+Q;vw;R5n}^XcO%MX`)UrC2BhKMT7TM z4>hHTOCG-f9D&v~m?C+;9|hKptA*0xF>)0Zh~xL&VP)#V9)Ii3?r#|3`YoxhoXtKt znVtx7I_qk&7%v84osV=nLVeOkdMQ4Aqh(Qu>c3M9m8^XtI^13kcg!oz3Y z6&`a>t796vrxcTwq2_VNId9Q5iJH^TW0!PED-5HGU=u z2iihlvc5#W+QH=Mv$7B!aBGGm3Q7j?K!@oUupIrv~sKg&I* z16{^gUb7Au^FW+>r3%e>AxZh}2NvsjOlOmHwYMKDdRbS!mX7erIit~o2s>=E?W0zQ zzK9e?{#usQsadzzsfFCW+uT2w!o(-Pk3MeIVcdm#08`mK8br0pse<1eJb0bCBXvPs%w_FrO?vB_^a|M-&0(*lXvN8u;P-q(31#7$6DDl`Y4r zitCaj>cP&_&dGP$s2)UUmsABZddl6Er|mCazX8ql^|U#_HK{s(cCzP|re)~&fB}VV zwIWmjl6K#UAd*;L@}Qb?t`~95#6$s7d#Z+B3jzZxr4RZq08en~*4D=0Gq1*rL{q@j z)$ipyH&Nhb8@RCY%4@VI?NU(xKS43>;}QG-0hEJo=ii>;e%@$c-*9@GWWP`>M;lAw zB~E8cgMYpC!K_eeB5py{)HZ>y(!5sLS4Ilcfb(Nj<11^_kO0!3NaPOt$(;?Wo)i#$0u({0e=MwG`dwMBy*^WV8=> zF=cY!g7T8TJAU2Z*SM~<#-^#~h?6Cw`FuOo-(P<~W9~b^mCf(*G?LKZEU<~tD=9ki z*|z3NOGNB0bO>w0mzWg+i$?iio}qysr37cc$dZtk$@Y+tS0@M-P1{%lleOd@BUJZu zjMFNoV^&yTlhwi00=m0Py*wte=d*RA3u}OWyn``J{O(=565_LM6P=aIz96+>r4Xq{ zDA4umb&0|6ubKO4q^nP4`2@JYI6#$qUiqV2OJw|wd5quX`H|U7Q^4+Q5ZxI4XZ2i_ z4~H_KF-&iX;WVkK`}%^~lJ9Jtzj2Ny?cvH{)9j-AVd#gb4Mz0~A2p7LFtqWCh=~O| zCNGCtMld@|4@bt@hl(@e1o0x!hOEC5=%h2tg;FK>@jI(DW4U*JgFBn94zAFm`zQCB z#9iMnk@Z$Z@Nd}yvKKK8%-{*|sk*9i;+n5*+xFV+<{Ug)NJE+*Vgau_jiZ|CLX z)#byoycrJV*rl5LNjqddlob&~7OWzb(mgKL`x&dg_0UrALx4Sx1V@YbE+{EObnAhJhqKeogxDE;LkB=4_LoLtd{g?UT(Qx@_endiLi< zFOu~R{&p6Q`q549q>^*lNXiDFopkS0i<%8CKPZ8`dugk;0t$A|D~-mxL_*Qa1ci>l z`_wAO!Y98$>+yJ<>5K)Dm2P_o{O6yFsftVgHKV$af>2x!FOr0&y~abutbKdMbLO(cTcxO$Ok%h-6eQ?GetAC28X3#a-Wy+2{{09Y@d@kX zVcZ3}WJQXC28UK`uafx5?xL%qZSLOc#kzCJ(8Tr`0A*%@n1JECdmSWfnGb8pN zss@(G{{UN7=F1zQ>rjp<(%)@xnLoz9;l%vgYlu2%Xhq0Xq)4~i3QpDom}1HX-U$z1 zqiUcTaWoA@ikrUs4UH9?+Lc-?Tzu$vl!nvpX%$x6&i^1?S_rbd9Fu!X;<-Wg^17>< zFtOPT+H^450NP#&M)h3fN_ZT$pBU^NAtiP0J5KGYw!@QUGOZeWb-wTMnS(-b+H#{g zAc#={k3aw*>D=$&(B;-V6D+Zn8BU0%UefmTMxO+Umf0?tLMkRacIx?^{O5vHJcsc( zcgb0N-ZBcc-SbNUh0!vzwB+UEcS-B8&5tVX*fa71NIirOJcFD@XcK*33vONPj_3bdeP!-Y3Zb)c)lzp+*eT$n) z=|0bqeDYh5kf!exFk2EKGV6&y57}W#B5uAAu*t!gF>p!nq5IbXPuwWplFX`C8w16E+X?g6`0gdSu;?7teQqF zoL%x&z5hjqmXW897j)=>BpzUJ-K-jusOaRc4O97=y&ydBBis3pXdIlS-{&AvAhM^+ zb9yV2C9mul{)IcD&vaJUYdzliR)pb^-`oKJz|`>8=Obd`49mt>EQ*lu zkTJPwpYw&K-IH8tsF0-O2_Ot1 zdpiO+TBTTkAuKnn(~@USpZyB>fiuAyux~j4EB(T}@QGI0>|zFcegk_Aw$OC;fYyF) z)1)7opYGp|k(`I~n70Q*ZXFBvW*=;}Vu5M}Kbpw4JOWl`acI6V{lT`+FXV?bBvGCu z>2c{B0nF5O83uaD`^COoDN zW96HXRvKGn_Coekf3>?HBxV}K%YHoRzK?W45We+bJXJIgG$i%!2-$Ih+2aVnMbJHI z&MAiyz;qL4f9l!kvdMH5e5@hToyO(fa9n3f#I~~2HqyPdgZ?S5BSULC{8>3w{L+-u zi+0|=1rRa73_(^LIWlb>D&czSGLB48$D+G>2s*>>215J~B!87H=as~N#3B~38@!*> z{kP0eG}xiHUF5cl)WC_CxNY>$P^Cjr)d_QGtIwp72!S_fb%VMex zu8}FY1~7Mmfqy!uFPYsN#U4*xm_?kG9?+wvKl|(vCdG>*cHDF>n5Rc{-sg{6vBf0V z{l`BwoJMp#$3Vp0tyZxwLnhn!EuI^6Ueb6OT9$$Yo&=g8XYvYDE)!m2MH=7|QKT4t zjZH}HtY*r(e8RW;Fmz-nxiQx%DB*9DIugO-(cwnpP)ZjhL9P1nn>5%vkqsx{-r4{? z>l27kZ1?@z4gcaD2Ml6Mb4y_79zjyW3~#e{OH~zvbkv!bdn42epf&VJK;94*f-i(i z_kXzRo9Q>AVSW%{lS9!&u%^jn z)<54aSYF~*LUwc?^1>oTnM-zpYxp|qmcFOXdwJ5pB~v5D_8t8>)PYi%`&(aSeT`fw8y=MSL>tW;??a)MJ{iZ)8JzH>t{4q zx_V~TgGQcGF0uF$)#%ba%K$v)J%w2@orR_k&Q4I95-R!T%a28XQlqV^Wqh4cZ*hOu zVc_Gg_MSo{JG#LQiSxVZI}-QO;qRvXN-M>7k4Y=i<|z0UPNG!BXy;DeY);u$_DLm^ zFf*vy)4DE!+_^2W+`6Uj=&yDm+_5a|e(#$PaO5L!WyIY#f~?eI))JTo0^3)yWtjys!Qg(7Jflokw1_!Pp# zZI8PjbiNL8BgYvlcSs?l>)QyhHz#qL(l%}>$Go1d#o)blTIjf0Iwo2-?QkjS#e@EY z4Iw)zul?AY+pfPSMk;!j(tf?TD3J)R9;=uD;@n|Kn#yvWkfS&JNS9M9mmQ!yBB@y| zD`NX+fYCtX5On!o?c23ip@C3hq`@2#p9nTOzSSD#yab<(2!qe7FHBtB<^m8zwqO7m28|;7R8vh7-Pt6e4ypCd5-E|x0sE7Zn;;lUb!W?Ni~%v ziurPuB{X|gY369R=M>bulCOKXHGi4T$*B24g$W|~Dm(MJwK)yTcO;goP7Afs=4Gwm z(5&Z$9%5{25&U4~HErxI)+pvlA7oa9zSU!VBH~>|Bx=i3yRiyhZZM?)IzOBRlY70buOM+d}yM}!% zPzxmcD}V~EHrgSS(*Ie`*@ZF7bHnRkPDdc&qO14C1268ui679L`ju#aRGV7F9~Aoc8LL9hstd{T6RAyLeY$FWYy2$-Sj6 zH}23qXQb1@z5C2Eg6+Hik|4U1Y}Wd&JbI}J3SSaxPO6s+g9H=zZ-I8hP3c$PlfGg* zZt1RTT56dlkNTyfAAU#s;a_UQ_%TuLB-36zX~$J>=e+xRA@JQ&$TO@M65M1H1D<{6-@kAwX6^w1>;vD6jLW$wk-882`WHZ5t6*JF!&KrdK4t|FxS z)*gnV8cW>cxdYd>We#CnN|JK$6eFwRt?!U8z?Jb%>XWG&SLj!@;m|Ek_f^h?7CVwG z#uJA+G{x7Uk6VVy+R-{K-x)8uyR%%WBJXzRTkit&clq5$1_qIxECEEvPn``Wv*^$0W%h#RssFz~K%N@#3srVqhCl4}U zZ*&uJM{oBMx&)2Aah?{GJ-PCOkF7W7Xq2QNryZ{7G@6 zig*YpVlsD#d+?K2TDSkWK;P}U zLw$W1Z1UvbD^S!zuJ_;m3i2=H_mFRq9O`mfc}8~=%54uT7JAd<7e;pG+!CAuZ@E@_ z?uD4yu*Fw(WfT^+Gmf`_*7|vw{y0?^VgA5r{#o2Z=O2J(DK+&m@eDfL#P7(SwZ++% zr^fwtiSv_&cLScahG}qL<2#liOVg0}#%nLui$rW+LVNT=KSmTAA*1_r;==dJbRJzL zglA=@{)QH3cKHg)D%LkAPrLREjy5@*&8K9Ywz_~ymiK0BH)>iSEXWVFm@=8*gBvY+mC2^1wpkXtCnP$$Az4dQ|U@ zE6tgDM4w$#Sxxhw<1Fuh`kh(z)Y^z<2wBrW` zYxK*JtA+zR5t>>nf*BhHp|^BbzV592zFzE@8q@{^DU0i&j8VnFJYbwg&G6MBL26P| z87}H}E*z>rlFkp;*z9~jp6uN9kkoEFW&LK)^18SjkSLv9>X!Q1b08WnbDI!|ijS(l z83!8hQWmhV$3wRNkH;x7b!r#5MRvWYH5vbgfV6P-!rdQMm4=-VL zefR;#A0ni+te(jbP5X8^T_*M~U-cLF3}Eypw5nBCD?Z->*XS&GP4R$6{^!!v=`65N z?95SK8+2bSaSGwx+r#&Z?##BQ0Y z;%;gN9^>01i^mCbUlf^wyi=fpv6&QDj5Xz{EkbL;sV}u+sbg~X3$7#~X5d$ivjW~A zvF%qv!&M*Cb0~t8AvLLOhHY?YDCvF0)5lw(h{H^Vsy@t80>6BaLwnJ=a-+hOF1FIoKKF9Y@HKs9{HMSmiuwg3%Kzug+g zysn}<0P~-+(8bP#rIsJCdJ@Aa&!b6E)MtS`>!T6Kx7>Eya`Jc`5g1k5*8O`m77k50 zq}1#=cZ=?=SNsKjD-P{sMlXP(s7JRgD7xaAFW+lj_sP)!L#s=pz{871 zy;yJz#sVi(8m|5800l1~VA^WP*5LRlR`Sz@aOBsu>rzQqfv!__No_H_*1m48 zOCn8GtPq+G5_m#mdNyAuOVNtJd66i}aX4mCcY}X+@F%O8>3u8W;&ro(!)Hw&Qtt z9gT@bpWbGMS6+fc{>eP$6L*4F{kR#uj>C^p#4YmA`3y6^M$>Se7JIDOmCJi+YIZ$b z>v)J5>~pM>I4e9po>Q6iw|y9~$5+kHTRY#kJONiUvY@L_U@1MSFbfS8yqn(x`?vvJ zOR(<~Pj3HiR#3BfQi0|ZX#_4@NklJzy)MxX?C_Omzcd=636l`xMlY>OH??LYM~nQ; zVnb86^NNdmt9~0#mpXT)Q4Ng10*@=V@bRtWknk(54^A~S`y6F?C8Yh_XIpog=^dK80^Hm2jl|5`eNiI% zC#klkn&Y-_Fnz%v=i`{Ta`<2&QkZw7W*s9%$lG97zXXP$B-D&XpLQZjN_6OA#Q3Tf zPe)_hr%pG3!&z!FIagjJk(4iR<8*9;6xhrao9d|346BjKR zoz9yH*uWIse&mjB)gBq`Prf>>n5lL)&9N(MFX**cvzyKE-lWV(_ECF(F#7B*c0WCT zYH~E`9+p==C5ApIfSS;!TTCL8F6tpE)HN}_%|8OI1P}|KfV0H}R`NWn5L#jL_hQ*T zXbjx>C3&=@=<~t{6+%~<=U8^Fy-ok1HRkxabi&ye!S8Zx;-7H*^(fhGPa^cJii4>h z&ouCx?Z&;x$}cYI5y~sKy;%sr>o9-b?&19sy@$MH`&WK0zY|3bsGBy~UR@jCsttBW zpJem{YSe5!ezC5lc^7Xq{Wmr2-pCBE2VQ6NODT|_53t%nUNeG_?Z(-X4sDSf zMcq=TjbGOHczIB+DrM`7Uq{!S&g0N(SUpf!osAQb3YvxtPoL~RTx>o@xne>srgNo^ zGuDFa=7z-`sKOG#sK%--V@jVIzMnGELQ$zZ8)b3Mmine7d ztjNAqj(}a8g1TfPOgenX{gx=ReHF5K#Ik`bCpX7XI6(SE5GNP@sdn|5_LyDo}<+;{G0tMUnU(dAXyC+onK11vuL-W%XLE;qbh)eKk{$tw5hMeGeqCn4~- znMJ%1Zhhy_((>&iBOMWgi)!hTC=eX~O$_sG%wM4VM0Tf~SBGY0YQhbdD?j2`L zUXnEHmrkVfmO6c6>pZy7>v_6CfT7wf%M6rxL`Vl~7a4eiHhxr)^8l~(&VBx1Bj34B zkv$+~r)6BD#iXj7bmIA$PLflNbJZ2WEdys<7XW9Z2Umh?xvsED^rfrRcyQM3Styuq z5uvMAM)h9C_xdxN{EW|1RzKUObU#$z4U>3q>B^1!+HRG@h>tSv6OQu9LhO<^6etun z0U$sJhn%^mhd}Q0jc~q*a`WhyGPesW2+e&?efOo2Wyc}pP3=f@N+m`goY4S2?3^7WBvqRrMa)*tlTWT}S zu{YnhYB?UJX*7Y@B^C1fTANlI-D$8nQq+(Lud&XKt0l_lc*^7_$~wkfs*&9J^UKWw zo3YRnmkHqU6a_794YWQWKUk@?RNT0n-kQ!KtB@k)YrXU?|8Z(EvBc>*0xD9Aep#S+ zD4AOMfHlEZ%CaZbmZOW(6K4}RztMPa{};#FQ*e3n+f_4I8iVw{-sw*;~)3R%$2WSy>@?%16E{(@mGz zCFnpk2dndAycfduG*6hxD$|J&D;6j3Qq)8;zCJihCz7(#8p2Aq+gX{gc6Ny^B|1Ns zst_XDVFHiofPg<>WIhQaZ`ZhqGf-_6F;cn2iM(d4pNoK;1nurTd?Q&E5-*$DMbP(8 zQVD^U*Ps^1z_Eg!UX4nbE$VmVK0~=8%}lbPnN9>8 zsydv8ZX3_$pgz!3%@(hMoHH88un#_{Xs2X8f1(Ih(`4dDV;^Y3ZQg?~DlzcWUa+aho_S-!U%ZY_R+z6I6Nk~pgTe#Lao3k=4 zH%vVa?ipWXgOMRx-`deYISG5D{?Dy{0-%^i{+3%2b=TzS)Sv4f(pfwr0t<5hU_M;| ziv&2OYd`%M_xoLCrgiSL6BGdBn)?L6m*(?nChfoPgY|lP%lu24&_eSz1kNm)Dw*KL z7jq>j;jk`XiBoAf&U3i-6MLHd=emp3Usf!PDC@3+ybh+NFC_f%pmBM`qTRCJGpf?z z3k}#5Z$LkYkWKUUfBzdeAoTtH6I=?$FI9;BpMPLh-69y8aJZV{HOxwOM<(?R-tH!K zm)eU9pA2h5@D1igR570$EL{E#j9EAn;qm8AEW`tq0H3SJ=Kkoyr{(?it2i2>ib9kT ze+TaoXS#y>C{^Bk_pjjwFnq{-6K#Fx+_HmMbqx>it##4_VFdroJ(9~*%HT48xd)#B z2MCtSL)gtH_LDT`RSGWaG5kH?H{b@5?dn8(@87o(1s8db(71knd&GLQ z;11U2d7quX%^PqD5{oR>i@Pi31vfC%YWM{pJ#kqs{{?IDfBDCReiIAw7-(AGk$Ee# zfTsv51efKW+jJr{?m9oeN|NcOg7F_1&jf#%cbC9x?<7#>$%iCPJuI7$h>NVv@H<`2Lm3)99l zr|%8k%1BZR=r}e}n*nc_?2NpAZoFXaRKTA@TF8JDkY?-sfO2XwNxFqDu$57(#tSir z!95ZR7ORX=JJ5Hzx$LY8>>>Rs&PVw;r~X3 z%iNc+mh^HN%1JbkY-jeli`RwE%nhIxH4F5o{_Dj9vi?AjXq5d7G;|=g%wA2NtkKuO?%l zM6gC~4X!aU;VHQHh+lyyW36+f?f@L8?vXrK0eyU zYKs`SpGOe7Xb>enxJn;ArwQ%SC6h^A*9G)y1f7h7i+?>hLb`Ffi)kkEq>^sqWJ*nv+1>7WOQ^QpfE8Y5 zL<`R(OM+}j4Udp2R@BiHEnSu^?oUOKg#I8DSEKrUl|$ISeA-W33ZQ9CZORU#vBv{>gZ@Q0ZUPoRnIoIAfD#0P zJQ4PExb>m@;_(i80amG1H119qi}FHZ@8?)BiJ)woT1<7{FW{+ zVE0VJcJ%rC5Eo&Ox-#(}HQ0M1CTPR{`tk3@#w9kzeimDICGU${iv0i2M}thSTk6@8 z4H@CN^4tfz9J|_6p8H}*09rP*F6B3#DC_-kT5~sP&^7;G# zw=wwd{7J9zjb596rY6v}2!4I;PW9in9!2^GN8{%Uh4qIE1O0PwZKJMJujShiQH!$p zrjA`5U)5RIPS4%2M$RO$ra^5(U2I+TzcKp!TcAsR%m2Q~Sw$K>A91`_I^4A8P)&(J zZH@B-+nTe-9QZrt3HEf-(lZvlIm6AtOS1>LLoF%C?mnP@gSFXiT&9rzyg6Aph@i11 zzxY<6|G7k_G~NT8!4&V8Y&^)q!7b4BCma)Z z{VakmCi=J6>@+4c1$73|IxdbbJ<ua2UNtZVmkt}*?ED=lT!f}1 z1(hFe>>qT$qa=*HQ3uC+uER~hWHy25GW=~S@cQ;5 zv*GJ%@GG8l3;&;@2_!o!Bpn?O9#4sTbX$%U!(6)Y8mqQS%t|&`MXOyP%+uwExOkf2 zanF99@y{Vo>3|xrmNjnVDW9ULBAXH#GB69dwpx>a?P4>)@W9~3RpKkp!9&}T!ee09 zu&cYI$XDZ%i|7*Le=}1*ViG{sMt%?hz5}6aH-t@He1uTr$E*DgbJ^ZTt;Uj7 znS01ZtyW{enjrIZIkP)PNvO1M#bLAgE6l@c=-h8}4> z?kc75LnQ=oi&OQ$Cf*`EZFIw(jH^PxwI$haF-~+Z*ZI7ig{ff|PwTySc<(`9Bz z`Ks^p0=MjA;N!X^jv3N-2mze|A*}VSD5#N5Gm_lmw{Fm1hQND=*GqQS3QR9jZoT-l zFLt!J^u60FY1brmAK}^0y2oIH52`HV)Yuj(V1K5;_qPA5F*stMPDKMW-0S?AlwC3< zieBEz?XwZr?M?oToPuIonJo~#Dds^|hP@|MHax71PvV>3#5+odpR>L@ftHy(!n|{K zCIF)7YKhU(dG$Vs91$Y(9&ZcfyzDbB-5%ZkqTuh6!BvJ+TT02|4jC>7gr=b3?|W&; zLR(NTr(@5KfsOo1M9VGIngotzV@`qGbMcz?uHZux2QZ)2_3duPMh5`J)GBE$zLJON z8Y=?c?pm?0mQhF2pO%boFow_zg#uB$>AW_a^uX(E%?)8v@$QzxN$#O6ZN8}xHrD+~ zYnY9*NC{Dqx|yO9iG1_N{Vl|oW zk4%2C(2vcc7Dj%P`nSu#iWww2tj%FeOnf!_Y7>qv3_HI``5L=MEgZxaL7os6t-ET7 zZ7oI-`y3*NcRJ|jIL8^L{iFpx)I1P_O6^7^PRwumU$Psz>*XeL!+;~6fnYUD=35I@ zZD-$EhQjlLItVRS4Sbw?vo&*cEH+BhEV>WOYFvl&H2!v$PX!6)7d_cyF&#E^>k3nB zw?HkGV&=^VtPD&S)*W`eH>>!Jwbl;BH#@@OB&?h!T-te@S2w21jfG`vb{9ybJIzY~ zbw>a>@+((Yz^rsoE0}?Z{8K1{SVvac53n$c3CHb_F(#TRIl4;E_h2wv!WB-f{kfgD zMpR8Jm2vc_G^p)&sKP*_L&%_Z%GTF3xv;KUw%XV*+z|RB$J{dOFdZ&^ExWx=KMnYt z4|ONv+xNpr>G`tptxsFE7+&EqlZJK1Tsl&3V-o&ojatL0^ZeRhjq;gd3?p>5;|Kx` zv}9;>SKrVS+q`B%Ez2VX!uKUDG!8${gN|hoh;0J-AOKW=Zv0&Iy7w@!Co$$!I{A4S zuOG2wW5xu1@1rw^brZBm9eSXxhbmoNHl{_4S#wd%^jgToqCS!h5VmB(vA&qQ^g4eQ zGhlUnCWDekQ?#R?mq49 z&{ekUkdNG3bp$41nh#?SI}qJXMJ*`dAAV?LqB`cFAtpF2RN@YF33LCgsD%ZggMIbN zqUh^?o_cm%)q5M#Ms0=z=9IlH8sHF4Yl3GUCcO?&4HOc9@nU+tw1>ctaFprzF zFkWPT_{FYj{gp<1>p?v}MI)vBElQ5NU~IgH2D|w>fd*r{Hy**_H68mb8pn+yl8E=N@?KG@ro|Cvd+)fQJ13CZ*l`iz@j4VY< z>98S_MWUZxt? z`TXE`{)pL^_WAWjHIr_qcAglEs3}0iTOzF-c^&b>w0r%ba+`$jm{mp-@PLlvBRUL& z&hAbdk!YP%Y~ytzwhqM47RH|GzLk^QR_*vx9ILHW+gTi6=exFn%yDfY@3jNc$0n&| zhE*DFK^tH#EwSAix(Oc0u!J1NN!q3mpk+0)5~giL&4xm|lN$WZDG2>+e9OtwCkp=E z=+*l}UE!2T#AoRoi}paJ;H8fg-NTtG0j5BYX1Zcg1tXAw?$V7;7EItH+n)5spfoSx zz?tD1mtNa=M@N+yv_AUCNW*b#@pB=%(<08USYgXY#(o|`U*~`<*$MBVPL|DPL&qIL zw5VTmd$^34?If6mc6KZ1zIXd`r$<{qPrjqWoHc`6PTLrjq2m^pJ$$X^G}(JL*SV{+ zZr;8JVPRV~`olA|uO-Fj7U-9{S0ABIcj};8;V{2x=dj84_${{cqbSoAbl5GnXMQ2^ zi$K1>r7Q-mq+5^ofDYx2WZz^8Izjg2&f*OQj~RbtZl1M@3y7^O9ABbuZq}SUN3PBL z`cZ|2++dJR@fB$&*?;LH?Tj`-K1k>jqp(P(wleqPv_j^xh9oq8Rph-nZdYYj%L9u=f~oDUja^@rdo2$t!&TV3;`^>{ zG;%54rXU#f&+iCNq*^3P@`nheI|fmyqN=W|v^}88L&(HIExu=%xIQuWO@m&TO*NGF z#q3%XGRmQYxK5gX%X_R0ggV%0g!faDlbb@E?VHhrL6E4q5||DeH;!5)QHpO=m?70k zPyAkODc)}WN-{6i0zjI9#IUlh%lfpRaUK;r~Ltpq+Rrc3+|KwN9293D%znFWA zPyWZ4<8;57UR&yBHJBc8k@*V(QL@JcA-lt@8Oc;;jHlW(S6oy+qmClNi!mBnwP%(F zpFvuLv_T#Wg=|(`X)DG*2&QS*LVYeMKCxv3p|uEr4>+U6H5E6Mva*k+-BT(KPwJlN zL4Mo$RgKjGRoOPr<9(yvLBgHy9C&Ly{ut=~bIBZ6-0Eh&EQRzPl?5p2UC7DiHpYsv zA5Dd`|3)~~eK)YKd-$KEBQL8r`P>aEddfMu>F{P?NmujCSQv8>vu3(dX4mevfLg9< zAm0fNplBsZQJW@jE4~`V$DxOsRpjdofGXWKu4x;%>87VFD7M+U^!)l5JuNtW>b)7q zkmxeT!M3Cr7bR_i;f797sj}q3e@AyYXvu$yy3tqLfYD0&+3kN1E4}NYC(CJjFg|s; zlz0M6q>wG>Y=n6iza2Ij#ZQhTw%n>Y>WaC_HGaOsIj>pvR$J|FO-e#9I-)OCLC4MVbkhZ~r zwCCYp66Jz7{Q&*{)j>ruI%A=R22N$I^j)lOpgHoLOWiO{d7MV(su3;tTp3>vA%G>5g^t2%1_@db1jiKh$RUBuRF?39+fX1~wTxU9t5 z^_TR5cx*9&@5xGrV+TLf()f#r=@y^Gqj8QuvbR-}WFlDN2rZj@Tab^Z`%YrogSs@N&wFlxHjxd+w9lt}UjX$fEFLrsC= z0!dp_a;BwQxm;4?!$EJL2d0gt3sKt12rjZ(_~*yN=&eC#LQEt>;pmTqMmc)>FPQjZ zWQRVZ$M!d$4|-#Mhc_)cXwM?b+*{3O8Qj@*TeO#}P+ z$g+ATyXeoTGJW7q=ecylt9eE=bIYr!uQ)IJ2~xPd4Y|yfHm9vk7MvGa!{2p$+OKQU zbIjRY6oKPEMynIa|6ZQaSJ23BAdj)Dg?SEpZdrY&N<^O;Ybxbkx%r58nhHF& z$ZDBjSahh+(WLmLDM#n^-EH5ZDL#sjAujjaJ{H)O=Qsah#0>H~wwwFT#ziOx@9Z#WO`S2F$qGo;lpV{M+aiOnfxelZdvk)BQkdZG&%p z{e69US?Pk~X3e2V&VUKOv6yQHZTV7kj2a!X`hKh4LXVCU9bzyGb!~@7T@NVJ#W=YP ztK2%>L+B)}Yh@Xs*+8H1F`EKvN$-5=X>>8!8Y~MhhqE(5Bn;Xp8!zjVtwi;FaFKbs zk-7gw{Gw@&OK4xc(_CE!I4geNm_ET5>cM1Cq?p^M;Pv!PtUo&UXPKj@=+HExqagXN zae;jCGUN5#G|e>4;B2P1D*tA4Mctl9a&^}oLbyKG-ZGOy`Ml!Y0$?)|?m~7m5*W0V z0e${$g{KUI#U!}}nU4}AM8X#X+0cf6U-9Ube6lN>%Kq&eTwIjR-D>q+jdQNJD0DX> zDZ6S4R9)HP>CLC4LaZ;7jP<4@V6UFTjwUZ@kJSz&7tf@gGR8uQ8GYAj-?V(6h4bzU7rOe9QSTs#Skv`*KwYKN9dwhRg4O${mo>PsL)($< zW#guq7RDey5wwujxLLVnG7p=9W*n#-b`JB(TkyTNnA~jO)!y@ro1b&QaN@$+05%@+-=WN$x@WV#1D37UQ@g~ce~(}1s&<)i(pGSv)$ zTdC1Tv^-D0h*ar+YEWzw$YNf8TT}m~_~Oq*<8zz&dQ-}ZqbcvbTyHGc@6MpK$M(## z(SJfEPuq@nx*#Ggo#B0l+CYGzX-V6n2xE<2&+7Tp{DJ2_f4g#cZ5=PFFa5)0FWy1E zE`qhFq1n)EqLI&R;5duludgIl^XVj$-^o)0*KRIkPCJR+>=(4;9_)Aemjb*_Uc6vk zlUFTNQh%C>)O2A{n!71cC^i&i-D2yum1%orHsJZC6)5Hpo=V?Wz4yGDgK>=S;JbFh zi`xM9tQDJ7@%@lnv$G*Es7rUmPKY5Qvx_feAu_5spU(cxtz}b|V9{S3z1yyK z0=buno{nWI%q>qioW>sZR>a1mI`7*}w1mTvS^Hm&Ls9HTHM^^4rLW6e-sEhQhv+8Q z(TtiX!^2o4nX3fr ze<2)Lvj6PqLK?U0Vb8at`MCE|sC`7Npr=|#{KL}#RK!jcALaJTL)?_-dI-0dit#HV z>qRZI*d`?Lb*avPXf;R;=?AQd^lJ7lcEcUw^zL-9ANbmb%1vFCp`KUat7DdFA-j9V zUdX{4bscAlwq2S?arLE>K|X@#Dyh3$-{BTT9$pgGXG@N=2bj<>Hs6~c$r5YMwq}2R z)dR2Y0`+1)c@N_DDBRoE~6dc7H2h>{ODFwUa|r!X(zYgTg^e&kBAv z38p$rlclP4!_BeK6Wtljw#E{d@iNUafytcW2b`oM&*Nfj5CikI-0M1Oc83k67ZJ&q z(qp4^c=tzS2r-XsRbO8Qka6{s06FK*z_i2X&;?c%KHH?OyM>u}#umRG8)Fu>cAg^^ zd)JQ5XiLSGK<%G;G3fT(F({Nj+ANx`J#93G?2m0GJob2shK;0?xYWC=C6Qu^HAzFC zR9HHzv#k#`-JSrDxnEZiGJy#lF;qPbYO~oQNRrV?p{N)q^`?M%<6VF+38ND&gplgH zM;tgSk^RbHRfw6C{o33}re%)08e3?zJ1d3Oy!CC2k>5i<@3Sq_DU-C_4fd)ZDbPh- z%}ek@Deh~5ouROz@5?b&t(GH!TD?f?L`AU2-jPUb|0V*nboez#XGX(wmFhd8>MOa`X5DTSt#ts|Bq~WbE=Bj%;4Ge5J|U zBWFGDcauF~4&j2U3A2_!?30{1b2(1kE;MkdrEBbw^~*$zG&maUN(Ue%%mGJ~byU?c zuUq5ak4?Tu(qAkJf9@Bz&jARc1|X&6=`}rQ=e`bj(xJu-o=?^hM@CVM`jer!sM94} znQj0yO5E=Oa5#h7dn4Brxhco(5S>1n20pED$6@KME+P^NNPK?g#{E<%HxeeyUiZ() z!=)r92-6a>my{r!e&sUI=1S)B$o!3;Ga|Y<7dDq^%*3!lx(y)qpu^zj0TPEwPpxlY zA+pq^!#c}Gii7ml!F(MAdNAI$y&1q)T$)c?8addTsepKz*M--;1JF$Y|=ZrY}e<>9G zH9g-@iQ5JTfI_811uB zZkl^(Px0^SWNxNork`;kS?idz_VZp!Cgc{WB~}cZ3yBRq0(pXwKOuwq@)+Ei5l8UH zB`79ii$4p9__1JgJ21MCO`g!+mcj~VE7|WPPRC)=HD{wsAA@rEjCl=wv0Ho>Z|NtP zT{DEyQb9%)<>xdlnTr-NCCgqPVVIOwqJumdxwXg&F z#TP2=?R?f8IcD#*^3oIz4IkZBedfRK%SW#fE4d?ms@vZOnGP}*t*m4W?7wLNb!@5; z@v&f@c6pkgu(=Gz&#~REyeXKkmP)pmTRcfzlkuSPWHqPhleTe4jFBh2tt*{k@<{ra zxzc@2>#rk+z%Mrd3YFce5iveoV;i@l50gZD_}R9R3p(5ckVqOkDe>S(n)tAl+ZHf5 zm?rG(1L5gLdWYJZ0>$u-c#E}eEe%$s4$TAUxv$}%6s$#iaLS4#{w1BzB)CbS7 z1M%~Zr(=LOZk~d`ViP4md8j*7jZ5kqcM2M^(nsAE4AcRa$g&HQu{~`NBN>7DdT8;w zEH$I$UH?nxEES0!`%a-@+f+$z$e_G$nwYOh+!RK`8y?mk)WujC2(g-!q(!&&>r;$Te+Nk%dYpLT=W6mf!)~U!F2k z?&(W#sL=$ZE;-uiF1E2 z@KL~?@mNr~hL;kCdz(E9l19Fk08o5S^KZg-(Ln&!Zd&Uc-4)Hq#dV!kiQQX#xSMJ~ zz~`9M*^Ud-u5vVTHzg|R(ltyxS%s$7CIp12+uWLp+qo0APWKTidrCyqKx9f?MZ08F z_@WTW!K+#?R`jdk%C7)Sql5=&vQDWj{c?K-X=JMkO(i267>&&YsQhSL!1!>KVNiKH z2-2-E@no+mKv@yyNod*h)e5U)lxAiWa}N`>UJ4<=9A`WMXrBQWrN7V;(HVC z{U$3wQ;l<@^Svx@*HK>4$?DFW6ea~1q|repE#F4f7CH1y^^6W8`_W(c{Ec)G{kw|* zRUK72tjC3kL#u=u1vWe9%q ziqb2$-eaR7&;h{~hJc!Jmtw+i1@3V;YC&6x3!Tj|?K!tMXVO&OVY~K+K#B?Vs@e$| z<=9f@JBOA$3c*ad*p&W~?$j#}VyxP@CVqxG8QIv8H%*)KyPhYmolJl$2p*K6M*zsc zKLPjZX$C+^p%nk)e zL>FV=<_U5@XXmocQ}apJ;Z_m2?UR)=7iC=}7{Ja=oosE~{7)NXoMWYL+^O~Tcp8J6woJ%Ne={F0KeR8{LK&-QauUh0GZa$Z=ZAxzqH~Y*Ea7%9u{b>Kd2BAe*1h%G07HXO(7}rDSR@yT0+_jlIXnBpm!V*9iN5SbK zF0{{vE7E3xyVF>hJgUHI8lbHz&c5C*>d!|IEi5J;HzW*9y+H7hbW2K0>HGoR_fy;G%e ztBer`s17xom606eIuyt7M=wG+(f4rF5x_NCICZzTc3PN>Bh+t!!McBJvZM)gHpoAE z&3LO(y&x=PtG2t=ayT`2ywvc@ScyF7dGbWtPkz5-A^Hy}%UD(W`QIBe`so}V9kK1y z%ThD}9ULm!4EUcam%x&B&G?Ck=X89co3T)uS%j@;?^B*}`zqJ;z$X~r(~W0y1X=0p z4c(Hcf$v&1^-CF!A><6=jquU=G%6+M<8b)}*OJa?{L|TXKJ3KEd3C+tqP@c9&r@f~ z%*+k`z(~U7ueWKNck0CXjVtY1lH39pqV7nCT*D8ZlDOW z$^U7dzr~^{gaS>Pu9h^lnI5Z*q-b9#R`OM4w)6U3Rn~3aXdRRFIZPLpPh%0Ca9`C; z>8W&#zIWbo?Ov*FTmgjJd*`$Zw0~t%zmfdG8BpC?H(l1&o0_XI3(G27#Af(l_7-yF#s>CPoYcQ7OR5EH#4f)+PeD$9C9L3-^Wu;nT$$$Fm z_ec>F?9tOXvw-9^iv#0u`E>1}Phf|_0*qx%3sN@Yx*sbAINy~=v-R~^*^QTU5>=}O z?Fy#t&=N6T1p*y8xt!zw_C9ED2wJKpy7VdV3$^Q%H__-1uwPegJ9Zv;Dc=NK3=*O4 zV?gSt!op(p*6m!ehlVyY%->^WLuIz44kX*4j~R;WH`_V>!#{Wl<6=`*6?aZir4epSX2nwE}Co+U=P7epzoS4 zSTZ@Z`ziW#L;va^7ES}1g`ztXbAJANHRYXzJCgQaID>^myP4!g1S zdBx$FjTsP23*pcej$Um8J|Rps2X zZybr!q5V#WYNR>M)qZyR?UfrGIP7H4dGf#Fg{t**f7Fey6CTBHjr3>hBsb{!y6SnF zsleWk2zsUs+S|< z>p=n^+j-AEq9DxB+IM*Rgy%~wNwQNLNBD!2bf~Y~VOpZz0w|S+ute*aD$n(==L!}& z13RRaSX+f|s>XOf6@S^msD0fNfVfz~mw@4x4JMgM`+vB1&i95?Y|KYF6!Uz<4su3L zC%m%_$8tJgSu6=HJjKq?})B z<-u^&uZL15m^dlwZHCJMF z5{zgP(1Fqv$_!#3rw$OPnV0WlmL!YoRw8Gqbha};&8}x?4S$n)4iQgUw68Le(_{y( z;Qv$BG zI?(sN2rl1Aa>FHM6?A?3cDI2Iqi?d67%V|KM>c(3h9hEs#P;_gfbZ-o!ZmMz{$7VD zxLMkRzAipWf0nVb5c5GLR;x%!sC%ujDQq`2MYC+2H6C5~TR!mW3M&Xhi`TB=2-5yb z=LU5Toa2kR&B59*pMA~2kOZO|croqX3{$u(>9Y!y>95=py$@37l;tR%sx0gi{R1zc zxIS5W3bpI=u>hQr>Aom$cSOmskC-s{^S?+n@H$A8AX?Wvu3|CXX0~E3G`J41H~9fC z!DB8&SqX4y@!^4EAtEN zkQC6yA#X435@r(#*Jo(R^Vt;VuD)fpbywAg*Vg%5we_Eo{KGc^)D!qul zpEo{K<>gDWTsimFW9RHPzs+KY<gp*JVEyxeS<=<_Sz`Aw_NQ?mnb{4a3~$d|_aWx!=2&b$u# zPp-c=zhB_2N$!HXydP>E@j1aq8Qj7kaaHgI zPv|qa$Zyf?_ZRT(B&-O)bvN1z95}J+4J=;KQG@jS{)ok}x4^c}`~3WU?t^QP%w^JC zAk$s%fICngF^s&xlmFlNIU%r~sa8n_gHMUCvOn|(=g^(8QX5(@65{+>yLR9IULiJ} z2k;N#02u`mL5C>`%oWQCopnzIG=9&D4hVH=KosTP<;Zj_X$Vbj2`Cc^hsGJ$ZIpY? z8v;1-Vx5G7Ndg)L=8)<1Ek3|Qpw_Yfx$s>xM+?q6=8NKW#IjU8qBUnRm!8+0uIOq3 zwy$E+x6IRNOD(OSN+LQH?BWsqL#Wii`!^xtO%E$k6CYT*6Kt0Y!FIS-i>!?C z|9{x~%Al&-w_6%P0Z9dmN=84&nXYM&Zz zdtUQKY7YhtxPdhIrB%M$KjdP>9({uJue1mINfhffIx0sb=LtZAyWG5vs(*On*GK4q z)bln5c(8Gu=ij%nmd(xBw~+Lo2`}MO7dE0G2w(tHzVh#JMgeCA;)O&JXU#9R-b}TG zS=-uJL`6aly}uDU+MG}+J*oy~9REBpg%3SmfLKCf-MzjqHX!RcDuk*BOIZi(>vgaqiNXFXt}t%75%;_Sa~a@p@4)}&mCV3#8MB@@)NOMYE-%> z2;v%ntHC^Qq5GJtqlM{TLpOa&?f{~T8fV$fYg?DQOei7&gd`*+OhdD@w~pieE;rY% zFqm%%X-@<7ywl09Ig}-k>?Ug1c)-5)JA@n;o^tY-xVHgWtYdd$k_oA`;w)^GZkiVb z5cmDJ9=%L0ipfMgR^lguRao6~;&=X{R3`EKWwZxVo*lIpnER z8^QXUpKf}KFSv_^9C+)2r0@78&U2m`S&=U=1^nS^*PQjK2FZ3ef#XnMWl%q$`v>0i z9EBMZ$)6bo4M`qOJ%`MWT~7!6J+}6V`Q_nXwNY3wL26d&sp9aB1B~Am!V^o>M_vuM z&ah(Af~7}9AP_~9$P7F?M8S)kJT`f%36?as; z>{)L2T>3J)L&#)c-AzX}YS4!DpZ`sppaj1^)`j}X{%Ia2h3M`Heq0d(Q<$q$zFK+7 z3o*THtpb+3(Q-s*#sK>zwRLot!W_NlD&KWV%2g8u#1HSys{XgXb&3uB~b1FG2tH zk)>wu-9K1+rB^5*7q5Lgym9qcy35z~j}85Q?t=Mn2){m=hFCNg!0A-}S7b3gsu7!* z{k{cu@cW;n4EJRInKiTrY!6E=Oe6W^u^|>%k`W1x4d=@4yjw0h4zLzPo7Dv8{PCX< zmyPxq*0!HpOe1;Zg0{P4e@g5wPPeD2#9#l)){e+0+L;55MK=NfgitQ>^V?3uq4ZST zm;Wg053If0DvOeTPM}v2+$^Dws?)%5wb*8aN6+$2?9n=K5#uz91T79B#gSt341iKJ zzCHOWr(+5bGRh9aUAKeyPQ5aNZo^wq_V;Xx3jD<4GUP*E_K%~XEwsf;)Z2BrUR$ZX zWZpib`eeJU4)Sdbpqrl)XjBu&Z(Z)Pa^7&?cxEt=o5abQF7%(}>Yspuu#t-6wP*+K z^YcJ!5eYS;c@r@|kpjUI8;GLdp!J;0f|NgKIom$co4^*6OUkW0SSzXTq?^O~OCMAD zYXAY7}7~4-i4N~@;Xt( zRoUfXi>97+y`t53{fz7^;6C#2Oh9%lDRG!Bp%iSO*+LBX=OK3a{+@9-z>?N(oLA^ZI)5QiYD4BixEF_Et8H(N@{d+33}u_eZ@(AeunRHAJngV z6Mv{fxZ70JZ14hmaz^S+k2%9OE97`j;6KSt_cwQ}sVG?TpJj%UWzCz|B@V zG(ecG4du-q#IOH*oS@ZWp`oKIb;NR*1C$vFH0~atS&VIYGE$V@6F9p#xVjLQGyrzd zs>HHK0O^z>@XlBOeMn02;%klI8{m=~Lm7ah%a8fRh~fs-V>~`Lpv-;N%89R&<|3hF z$MfXLb-Tb>lj%Pz1I1=5kcL+pOfBIZCent0-h&F;Db9?|DyB=eCW`CF0eA5o6yT|z z53I;_`L>ztCu{q&wb{Pwm1F{MiWXQbE-+RSc3x}+7rQxdWZ>~Ve=Yi3D^H)lWlR`( z`ZR{E*kX~rK&{U0q(IY+GQo(CXPqrtBi*i zWY6@-ZU{KboBjA5vgkjrG4hhqkc4k-TsQZbbi9Dw`Ub(w7{6EloA;m0t}ani4_FK` zOO0mdC7kOkZtW*CUD4_m7{w?PZ$-5#IO8k3+j6gT01i1LA=Be%0IA!ul6_g5nws2T@JwfflgAZS?cHZjcP-SpN^~}3 zO)WS*ZKoI5hSs?~4a@I*&-kuK$zJHm&0@q{Gvqvc?e*%ggtE896%MW`WoXl|YQ8>* zm_aF$K2j2r5dFgF`ViOh`a`uiGTt&35daZvQ}0wR7JV)H*{K_#^Do zrdmYv`;6*9OrIhOs(vr|{Gq2Me_H!9pbisQ@bd4FHQ0FOyHd-^&QNW6T|w6`4bQ)x z+r~DFyDS%`E64PQa!pvrHbH;yOhmM7rPh#~-7GkVNGWg{n1gg>q=b(rDW7FH;6(hI z<1wlB0UL7{ur=F&+hjTzh+R;_R|ZY95`QkVmNRmb`m6@uXN*U;+d}PTd+t815qEq+ z4~nhTcgRKLcoIq@BRUxN(C0GXUc*TAM?Rmf&If#f;ZTkg>mifrKQhE%NZ=6sL5!JQKL z{202yIvce*tVZq`FX7#2CTq`vr9xE1I;VC+$zN!Q|BUtIR9sD^1Y%S(8(*3;Km1bF zzZXL}GbTRK&Ez~YO_@aV7psrHRPC8H-!p0V^W7S5dzHVjDan8L^1DS+6gBVTrSIMn z_33v=#T1oe*=MW-p|O9KU9R6_qJimT;0H8@^>V?Eo5hgH9s*fjjXF=)mC3pqvE5d> zV($|t7NhD?Q=G)!ZF)w0nM+UC^|kh@J%X3@$>{2FoPqmQS$f!=2ExQd?A8Hc(fo7@ zN=d8QT?8-uHCoYNS>sV=OiZjB)oNN)nxD%121hzdeTSy@}UFK*&=Rzu1CjFOF)8 zPqg?+{Ysaqe>xJL#CN4PICEKFQGEWc&;Rm}>c~{AZmP^0UJGo51TJ0zpYL?vx@wI+ zvq>!6Nsb(~CwlQPRm`mLIicKbzj>Rhu zw!l@3QSDqu3>~?O^LVAQ#|&OIG@vfdaK%Q>2gqx`}PmdiE>R)^4i44mhq*|6X#YM!9tyE5*b6OgGEM_Y8=a zf;vseX$RCEhI3vKcRfo)qY`6C^EKi~%gT+-X4q4_9Yy@@MMiTZrz@m9g_2T^fHJg1 zLQeA^mYsI=T?~I|#|v25fNRK5_N@o2Zgo#t$6C+Y;#J&{$3_T1fL(4;wDO$+ci7_A z)*_20+x;QjRuG$RY&OedKN4c+YzYjF>y%7ZKW+})vea49`mQme`j^)?fhE4~v`lc4 zZzQurS%TMX-q;1Q$)39s8FQ>apvXKje)*PpKI;nD)}?E^mRBO&tCqGw^-`%nLv77h zWa}F8-F3+I%V*sI)zOg{3ee?)rULuYF%aOlgfBvlG6>tYc-Q7D?g&bBu*6pQneTmBt&u|OM;Mx4#X@aNWQKCr7_!m_ zxog|`$GPOQ#6Q~AF5kCrTV}4jghj?Y4hFV%Ztr$JZ@;CjJ2@2HOMLhUmvpZW(@p6R z0S8HM2e~L8x4?~;$u1>!$#H5uKrMb_ku`=*g^3qq&Up5fw_?G`#Lq4B&K4@=c_l+o z8jfX3_8sIryM%U_Ol=vdjzpFVojoE2^#vv1%4E)X&1u#+y}>50Iv6xJ($0@jL+7ew5P z3+5Od{W$TAI+I?F! zza%&GAHejFrg_3O(Wz@cs+qk?yRTEnDTeh5h8$FT=X1AQKi4z;Y@NJW5itcxS3g;m z9~gKS_s-|sVB%5umi}0|AH^I}16AWh)MR93H$?K^V&VkfJ)f(72fMHut1hb*we;(P z*yl&{J3{k}D!M!ARcN+wDer?-8OCPcFL&sjQ6p{+0;*Kb$@VoEDd!Og{T@pm@mS@T zEeGdyB~%O_?5!MEU@Og;~$F%uy75WRz$S<7_>*>#YC)= z4#<6SIBDmPD|4!FxpYVxpR$g;bLLoOGq!ed=39EtlnLDB)6bEIeli}dOLF24l?(4J zz7Hd>I`lY=<5wX$+5NQR1YMj8?3G#zbE~&Zc9#pD)pO9$e2x5pcCQYSJQr756p$6o zZwVxeU!WEXd7)jsC1Ewby=W%V^^>A%SvWb2oQ+W8j8A4eY^{>)Z;n#N8S7|RzN$jL z&$--n9M||A#iDcG24}R7n9bPtWZ@aNPXt8?=1isLC>l!tP?%IHsx|>Sm!34`XB2IijBZZNI zwhT)=-~+w|BPC37z=nVh^z>JaS;yXHF{%HutiP78@t3`T`vh)c{wq5sU+pl<+UO7k z=JU7KV^?n2JqJ(kvTHc)=nr-3JmWI6Qy(>jy7^41yqhy*8)dA{OXk5U@{G?xs)4!2 zaBaYPF{K$68(+~sD(8jwKxmlrcILUpGma8( ztE(K%A9JZHXx01dQgfCP?OQ)VFjhUW=_7QrWBiA)L3M8;=@jr&S`G;g#k!D6`^>hy zY@y|69^bkKC<|Qs*!Mj4m$~&^U)Qy4J)l&7Nr&P~?{K{R;_QOw>~PQbPxd!8r9_^p z(rj%*+y|m;HMn1*!)3D;R$ZemTU3O74V)mCPXGiw)AC5YAcktn*VI4a(c~jyHDxP_np(R~OqPmydBb5b4H6-Spk6I>D z*+A@D)RFf7U4WeX{eK~SaHHX#J3l+SYP_I5Ctyy6y4ED{S-phcO*nwY?2BjXjyC3x zpP2*`UMN$`HlaB65Qep{OnA-DhZ;FuCIe5UsqaS8#js<=vvxyvsrI_w5e)oa+Rwd8 z1uYP(KfDz!Rl$e882i-Jl~p&NXp-G%vz`Ag@P%ZpsZ%&uojE%Q$rsO;M-2cS94RF% zi|r;nYbMI3d_T-cLS*mwtPdZYEKN(V{9V$vGA%w>&SkWhmfVEnOw{!F26OtgT)aLy z@{*BRZ+QdLD_IW0n4a%Q?&&5PaPwlV(C4If&o?A6L-Bk3CAji|e`ZU!od)Xa={8l! ziClM*sI{iZl-=E!ERm}6U*&fBdnY#uI4N&z!+PM2lLs9dF4|{Y8r4Q=fS}py6f{(i zp7?Ix9eU_l*M)z@=p`OXaqBp*5xK#3BvD}f9TtY?6%i`0CnOeR2qH!6=$8vWBz3=D z#8g=&bL_#xK4)23d)Qo`z(n?ZYtj!4q>agvC7nRe@vZh*=Q)L+dM#u-qL9;12akMH zCUP{s*^8&CTsTP8OG%M1;j-*qsSD4@DKnj*g4sN~9aqWxPuF=!zZ$=8jG=}O4?Ets zDQEnKTh3PrINPJpDx;!Iuf`x|^-`JY=xRU(Kp+5i#w?0XIG zlQwwddWU`yUOz->x8>d7mJX+? z@*TU)R??{N!cl5`<7AMY7`}1h0Jc=5AlX9jEr(S%8=@~+>crPgFU3Gzsa~#j`BQfk z8=}F6)7poW0!pA`NGa5WP1zj=AaTcks`cwBCrn_u^BXsnFSTZ;NFL}>@$}7`H*)YL zP##I}@e$qeVlf>Ye;{FF`7WcH)3EZng{nvOVqW>m0Y682?3hxG`|AF81EbUOBi($L zWYuH=NdC7skIv;omEi9gFxmd0)TyiRqb}95do^wmk13LCHmsddZi3a1MvXB$TjwXD zc%zO+bV?faI*fdXS|jdx3A)Cpc(m1Q zRv76+9Hh}os}c%D2lFeC@^p&M71jT>3iAm0IHgW7#Pb5AuS)obI;FUww#>QjaU!4l z^3}-CL|jixanAdsfQ!(TKtYC^xQ7wtddn75z>pGZG>>^Fb5_rn2x~i3x}Lj$3LT?X;8kvgul`_C z#cPeqFEn9phJ}qetD!;H;V*%z)D@*gYq<1b0%`Z@(ID|%q6F-X6G2UrpnW}4XOSgD zEo25|WgtCVcT6`5fRcCib2x~3k&^QVn0*B2beaQ{-|^iQP60{gMZ$%}Vy>P$1CnJa z>7%|Kj;@CnP2VC?=cJO9Uy@Og3BM`@sI2R;*4jDb&15y0`+c4}E~Y>8g6sal#MdA5 zqP$N-|6S37=!P9_*Q5T+HDtX_bG*%5=$`*A6w=PU2K_DE4}~FkH<%H4xTYlK+o1TB zTDmwpI22;7@6?{db3DoJr|Wqgu48dGv9ut}R@`)Limxj3S1vV&Bn$MQv}zym6G**v zX^!awMx&)d3Wcbf@=AY3GalD-6sO1bBeYka_ggCrf`~ZHQ2h=!8mfYyxh$>8Dsg}+ zXu0Iv8kH-@)6_~Ie%t<^uuH2^+9#n@k~9tHBJV*B;muMt_;5%lSgcPPe0}1$O#{vW zceg)9`t7qJ^TYL#!*Ph)-aS^pcFeOj^ipl2+%`um-|!c^WRvG6WyJ9E5DK|~O*A5W zT!39veYN0v*H&9b!{aPpn2RStke12FUm}(RZ>Q_ZCXV_Y^GR_v`kd)i@U+k^fSOoR zRKE1Yi?@{5X?IAi9Jx(dQYh3)YSbUETA%C{FgP8q>yaZ-LK|4_h0aaQ@;oyg1?$8Z zhtQ)SbTm1yvY!tn(vzZ~i@$@KaMrcM{!e{_af#Po2KdiuO0`6nE`NS9Ro@3u6=8aw zSXAg8yaahWC-t_-e%BuuT#t%IKB8D0ZNSAFx*{hAEZVDl&R)uekE1!m z^XLZ70Nfpz%@Bbq)?# zk7H})K6}b{yB7k#Hc!;claXx6T>czQlK3QcTs8iykim4Z-gkPlLqn`29;49DTXozl zN}b9~9@c-u{dD{Vj+v@R)6x-3`|&-+RTsZ^uOI^6fikCz1U;@x`*X0}ZL!WubMf`}9tDZh@wDglhXNkI`Ih=H)j7>2!E*EvO-GNs{?URD

#XS z*o&gk{3dyIv6IsC{XMgSrJ6x^u5iiZA=8_bx1S%^ZLz~)(^S0+U;dILL}u?9|H1*_ zIaZ9^0i6R_t5unS1Me5QLdPR~(*27mje?=0-Tu$$Joaj>9B&~fb0xMOfok2%18cg5 z+6m>PS5IQ6sg};$dx7Ea2ULH(5<8f2XA(z()_22`SY39_%+ktO?c@Xd!QTc+E(w@` zOQB@ExfAq7)crAQG#8hT=Rt5EF~JY$_{k!>Uh`UZ)Ua60Lqf4Krv+B^n&E&OtdWLp z>~o;qXX9B=yBk!Qlr@gq3gmn9fNNabVOM`lt9NYI(w!VyXIF2%VN|H-3l-IzKPyRM zUmKHDXp+?H%4X1>e62morALp$7#x+#5swA<#`_7<26v^VAEVtuswRZ$M8$^6?hHp} zsBFZ%`pi(7%Jw&B;ttZO>CQ{9&loMs{YDiAGBPsrb@*EeowDTf5iQB##B91jxR#Yc zoOS%qr>W1LmJk7-&d#!q%RgrVw*ABP&_+nbI*(rd^REbx!i6@^{Z-r8(_v1l{>%vA zPX8`Bnaf1tq@jhXBpJfI^MKt1+RIy3<sf|?@ZeUBd73A^>-qTL0!i89y~3!uGwZJx96ec(6lt@-?_uY~8Y!nJ=tFL|Ml zhS#irYixf1WVwVkT`fjNKVDUm(AbLoc7Oz}_?ULg%acp5>D2^+KV)EoR-U1VO!8Pv zih0d}8qLqwxuA)Bz~L8S#t#e2MW&9%JD0F?%cX9kNFWUGSPL0i*k9pwD~{tdp*qPh zmB{afDu=xP)d5A`{~g#LXHLr}TM^6Ea5)N_7{rXrPmS6_B(U@@afqrxS=e^qWN*nR zaGUVoOpMFwAEowK4r_Sq)tv%$6=;uA2LK zr*q=E>lTN>Z(K9WRhTa6>E?5#INJAXrpG-)r~46fj8WaIf34G@Ezt|J#*`+FN(UO} zy0-#^ew3e^zZ~@~_eBc!!z=QQL^_(@2AUm?SMk^!-y#Lbfr!VoKUX@xQvrB*!;K5} z!(VC7`Fo(88dn!5mm0CsjGRD>EG5x?m_{) zKb{ldJDULo=mofdQPKcsfMr6CbOS0TZZt9~#_$$iyfia_SA9u89s|T|X@S(}k zCFXnt?#9AK#VtQw$!jBJKF)yzHp@^CO`0`q*TpKM@I->7H~am(K#yD$Jwt)K zi}7`CM$7L?J@PR}XhYYieUL zepoJ&8>vhZpKA`9ZJanYFKIv(p-X{&pe7N;)dGP%a@B(yYDq$6G}ys^JG)e=L2xk* zFJ0#S?#zK}osu=|S)Jspc%Re*qr>%}xL+hhL}qWH$au-g4CM(r!iEd|r1J(Q!>pex z>b3=wX9v1xij;)hx$>xAK|#+JcpKBnWQF#$4Rcd{^!=D|&F_Jzr+ZL9r+2VFt3L-) z24>{zx$OarR$*NUqW{6eWN|MY(B6}Np{pPF;_L{1hm>d7KM6ROpYY<@$~N|)$U=sk zu3o-e7xhMDY17GG*k&;j8#!&MGhwZjn;{tp_Q&|SNl`xp^<$e@5po7pD)Pa)k2iWSQMX~9WNkjde<)cuF z8gg#$&wu!k_mot_*}#o;y{PT5msjzfyX5R~b}xX%SGwFs0v^!XowrZy)nJnvY}d8I zZXzAfbOeqc@giM-929r=s}EIM*oJkGw;oLV6x!`T4KcgGq?+P6e)QIR_irAD>!W(6 zF!n2zS9s*?9-Y{%KpeZdg~ShBr)${4e~OKta8+zf)Csz)(4&Y{7PYY7b~`_Ij2aZm zA!d4}D%1lQqlf7|Hc9Z#iRTokr;i{L;{+*3F{%ak)IkHNuC}8o zDbIz?Rtuz6M-NfZcc=b}j9Za=FPsBv>F2444S^r;V1cRB(|rDa8Cwy}-VY_;B@Vic zu92gd_#DKj)#O40WoCjbE}!BV@b`~ELl9ZUUU%Ksv9+EDs~N+W)>d%Pr^95iSSrxV)XTo7Ek-rcnEK0U zxf^7++W=EB132-zeWVWL>9qm3zQ2@AD4vx79nR@UjeD{gpZ})0TC7c$I<`Tv*+-mU z)+Z@acRa&n?{0G;cWF@B6#K2vlVYPhChE26t7g}IQQ{=48U#Hq1oB?ET#1}@pVIKJ zPxmVPrK@*kEiJz#zRNpvk%{AEDCh`SdFK$siw1LjEfe~g9<47XH)AWpFVRF^b38&U8g!0Nb#~ia%+~;}Xy!VL{ z5QdZAoj)xoyo8)5K7UCwd8iW2Y-hqPoMig%A?Xij2Ktn~$1ma@zIa1X2%KRrK-1n+ zqpzT<Tm38C}r9HQo35=6a{QBd~(Bx4Q5*X@H7*rhJ;CR=kSs}uH;CkXmATRg?>t<7c zTJsEge};<10JpXBVh5x6mM`z^Q}7E$+2M_OLpEqN(m?RQ{#uP~H8elNZ0NQlhXHgj7xR8TO~cUdOmM zLz1PNn0dUkDEGdQTz*1~P-K=0+k0|;K50n~diSzy_Kk&cliT{CfZ;_C@?c_3PI~{u z-+*QVM|Y`8_47kAu|shMn@s5L>&%(D-JTui{#<>(`PQF)whzLc{`1Xl((YU6PK%u^ zr>WE_DBl5j37g9`X8&YYxd{VLd6&=1?}nKKy8ighV#R{W{WYfi=SMwfZ=nXhi9IXI z!F4(M->-%kI)5}0=AnfXw0z_W#NWQqg#RJ!N{@jf)1$CpA7=rk)8$A(DR$IMBr_Hb zV66(Lr&%#ZNq=U-_Jgni!8Q3pIVZ|Lf*I=pV7P|Mip0a$AP?tbDO$oB zCmxsZN8>STr9N#yMVxnvNn%ytkL-FpOajRQh+MSs5j6_)Emg2XzWo35eCS+`x+=N!EezCj@NTV-mZ>0&ss3T`{%4Qh)kQ(S zO%m;Wvis}rLM1LDSJ!BCSIFnI)MldkfOGt#!8QK*=ZDlwe8ohOGLRJDF47A0{3!z% zu+LH)0fzkfm>N(GBWdM>h7&vW5D6ej#A_kmXF3XG1hbCXJT^dFQ(rh!)r+7l!M7v`zB?B6w5or4w~as^9Qi&9^KGd{NyLnW`KA-! z%or{)n6a-E>LoWbCJSclYWb1=&5U6^0WTC(@sa+d(|gsH$%B;@3~LcZsfx%y>6O?1i29IT{NCTOt$CZ3Ta@2jd zzlgZDU*b^T;_P!LCJtuuw*_=Z2L}f+qr?u{@Je)GB5!?#v3-}r@rbYtQH-U%ooigD zk4q_b--9<9-{D>3%#Xm0qkE5p_+k}kr=_1yRJ%G&HzMPC4Zridy8Qq&TLKyi+O(@9 zevW)UPq!&O^X1|J%h}0 zs|P&T!|eqdxSUw9{^u?K?+h&CKLe}Tti{95&fabBJ=2UX3~GB1#NF0I^C_rYYtpbC zd7^gUggR2GM9&|vJaxMrgGl-QH&pe(6aiE2|Doc{dQ01dVxU|WUuM2qy5cyRz6BjW zT@?omrg9sKwY5u--TSUlms$F1>@nCHWNT{aJ~=2qc~VFr)*k|09>7aqk=}m+$w0^dO?3eQ*##T2{3k}2n9Bbg zk>C{ks6VYStgVz7d3CPxCsA$z0kH1h0^Lg07=0y`baD+@3@U7+eguZSOOBy?gew}b zcbpcc2y#?EDnu`E<`f@a;iO#rbCibnqUfp>dhY)DPFPJgP6bBL;T;lPqr`C63pn(H zo}Qksc5y3=jKg*HPi(r9ePZuQ&Bv*ZMGk}J9&y)Itz)mDgh&Pz1pm&gB2JoQIJL^! zIrU_uT03QZyi7$omYGxj6Oj_%K`QM(Z-_X>>2>_SN^-*gisFIv^lX1EfTLZp5=A;O zp4a4-*Z4xOm&5lrp}qKAz@nMMubw{z#gx{eDQ`Ae47^B?xCRMcD{|6DPWoX3#{W#Z zqAJP@i=Or#SE^_+Kq&$2+{gxBBc)g#^OxDQt_b9Mu8g>)m%CG@pT|keRT#ilg+X~N z_-eMppj=3=*o?<+ovA{M^DD09cCTzI7dG_Iee*M{(Jji>q3I1eO69IT=M6r2? zGKg5{fsxRTvt~X}l%El+IdM_T2Fi+ zM?{H4%TrhHRi0qF6D{|rde>i?>RzS8%o_?#eT(`Ua4@PyGO2T-V-tk~DTXpg3i#Bz zYDo&9(3C8-$2c#U0~YgP43DV-OMh+=+UK@Q;jNte2`Wz47r7K4IM?Lg&fTuzL+#!a z_nM#MPF92f6`I~Wh{zcD6?LKvG$qTt$8H0yN#;SAYaDiPL?Pl(4qTC{UXW#vgto)k zmbTO~5s4}=!*Xm6bH8!ogd9_W3;Z)aq*l#7=>*U(xD6DlY^1`oOcD9$kLuH5AzrrI zVP0K2aW+z?WI~Q{Vo$!N;9z8HGd9qxLvCxishdMH;)r>WI={Vqtk!`1)@C~l!xWFK z*MzdN!S@}xMMrE`sBNj$Uu6-o!%7?!PryzF_0eJ?PD7#QqRZo%V65PHVe9e-l8!PO zS;`C)$zFq02}%h!Cxv1u3Q+&W0Q0#=zUMoSs$TD;wsHxLtjA%!xexd1Y+KTk*V%mh&js!>r;j#zcAaEE(jDJKSL*uQ|BthW{qb{Xt5Zf^|nq6x2~}Mz_h46Cx3HH<4dY zEGG6j2vec{a$5tvdhaS*pZD0rHYw^wFMrVk9f=bt6zSEtwcm zsF=!;^hyty6{7IBIs8{T-qh*{t!KC4mU@O=vv}fla0;8G%(2anJaI*DK68F!a2ziK z^YY>q7Zs0X%AXwFA!~F{Wnupjhy%ssbJd$QWZ8~Xci|&TQBe9A%5=Sb#1W7G5s6x* zN%Cf@0a{m=ywCz(tekKz69FiYR~fMNGC&iVNI`pJ@;gLiWUOG9a7Puxl>jAt9yC^r z0E`_(MRZH~qEe|D>x<}i*aPFT-`42B9F&V(;`C>|lNPf*9JxNiX z6$I2s%Q`Y2y`jl*k51GY0fA$Saf@V?vB5lgqiUC@uf!LliU1^H{Dp#&?)W1>0ExL> z+K${e>HL#notrkRcC9)n*KL+F&5nVjQ5)DM@(?8t9;Wj`Cri9&fDnv{-=kk_+w8xcLs5orffy}}; zA}(Xq_E;7UAXnoxVOLSADn1(36fd(+KI!NF<&8XH8Y>}e8~eB;iYYA5z&Xks5YD_O z?N}n#ND>Y`>V$4)=I#ef$Ujlky&YIBa*?5>fB*a_gp2{GL=ImwU2t-{tv?e@Q{hG5 z06xXt>&o%b!8DXj!ykao_VsL2KcFFF>s4}UaRwM2=;shxaJ9MLt{B$s8;?tu|IdLt zxh8xg6Z&A{U&yAbI=EDH$av7%PuhomRryMzzz(7yy_|f)0&Ugxg}zwcsd3+mK(K1K zNhuz&JWYK!ZcrZlCtGh|?l^LdGCx^Y^&L`|8;Y~?S!;yHJpGM_pJw;?l)*XbRq2osq7_5@d~^;U+d0NMG#*NY#KKhI5| zRle_ZUzS#k@o^tgft#6i?;d+}L)TlSIw)IB7Z>_yb@Xewz3+e=k~3k$#ECdRSR3t>I^`uDNli61r2>c1U3sw6nd$2* zW==vWK>a7H6;uuuatazE?p3>e?7cCJY1`XoA~OHB}f?=VcUSR#xAhG8}(0m{f!bX2a-wz-;7z4m)DvX z*mxkd52_}V^larxOh4sG<-8wD3oP5fl7`w;38oV@+s`*`PmUmK*7zYC8`$;f!_kHYh6{uYaCk9fY( zQ{T-Seaj<(gg}o?d0sASk4hs0kBh$&ks_`?{T@s#N%*FkiXtR70XS4NOFhX$6a6_B zVW5gH@^npY?}_6|l)v72{60 zfbD225MgA1Bt~CS%i}3xMJt|9aNkv|GZAx?%C}jn@QDE^Y7eGOXunYHaarkpDRZW5 zm4r%SH8_lcx=>q?TA?`{3SEc9j38Da4=AVy>lQ9{Ih-bNe@TT9X@8lH0>Rap=_0+D zd6e2DV6J+Y5P(C8Jw-Vt=$U6B>K4gwJv5^7N5Ev2H9pP=gw=53#g5USn4EcFz0;rP zg%@`|fQP?2>)WH=;=@>@ioKSlCZ*;ZrM(2q!i%?$ByAvlYYGQ4Ta@6_x{0BS==*ia zyzWVNeC#X5%N0UaouE2T*rC3jo^33rUZq1s7qEoxiOTR8$aGVPKa5)Z+?|si7m`;}258x=bPB=Ypix>|9)^cqmhl6?pWC4e7tqGG(krR-p%8X8 z_BEiidF$^+Aw;@?qq`wSe@eE0!Q+u4LqmQ?s|3gulY-Yx`kIRnrOpqi$T;4PF{v@9k=Bj@d?I$G__bf$}cuCkRPZEEIRawU4w?25H#d@&Hd34~d zha0!_p-D4KW%&!_;j}Q`h2)^F_+s(M>>Bm}E-gWC@p~fvg5dYqo+4jtueSu~%1kYJ z!hf8661l$?%_6W30|Km#J8ZV`oCO)EH2R)L-V5az((6i;mwjbR{KrfPusvJ%LV&n< zt?JYKf;vt@3G$^;ic3vQ2<9?Uc;alK(oV$ET;cxTbQcy7LU*Cj z%6^+p(r8B4GnZzyA0|Y&LvHSE>5zT=cr@@>MY(` zAV?ro!IUh*s?S5c`gXo`8<|8?EQ&7ag0LwOaCPfN&+9Pm)V)A)PulwPG@jpz)?;t+ zBLO>Ko7tEu$Y{??-@Uk*S9z>~ZJbiN8m1#*48?x=UZlnf&+K!@!byxqR2@J#FI z!$e0{;U=uz@6t7qYn7WQSF^UVd6Sm3wqI*0sd_r|Xa#6HDyr$vZtfP4(*b%8TiuA> zWNsXwEb8l&j>ob5>fy@|2!2+>gN^EAwrJEh%MHCBjh#fWvijhyamnor+E*grARcxa>Gl((sc9uVsfU?5L) zSLFj+yK~1XQ0gplS?3!)OGnV{-Bv#;;)J6wCC#YjjoIivX}-~67RCr7)ZT>Lw;P$8Bt4&;I4z_@ zOKcMxJ991S;b|?QBS#TeeGH3UN2@Gcb-mg_Bpd_?S&O@Q3a9SoO{bNuVUYEw8=LbUZ(0gIA(b^Vr!{1B06ndGq&A_4!akD>O2k82aE9sZhuJg^q-wIXjB&zKi$(51T*afDl}T)K7hmO_2cfAb0<=2&{|LluS)PV>@~p!-jdx$KZ@-YG-)rDa<4<8? z78<4;`s(8q*0QG1RjgUAN(z+ZzIE&d^@gLRcErBxoq8o3XREM5w;7rD%@vP)2dd3g z_QV|vjYw>EW+lZ#=`tQC>LWt(c}+TRw~&L%uq8R6M(CSsG@#5V{ zW2Rq746$FD#;l~*f7`^*Hlbi0~}e%e29s3kM;Jnl+&IO3x^(ov=UIB~C5b z5s&GBa|PPtV$}&dDz}6i>Nz*ND|l)G))Q!Hz(h~qOgXglrs7$#5nQbYE}4we33N`g z{D${b%~!ulFZ9Lmz;YjjX{okG;Zx&W`JW^{{~?$VdSW;gwT4K>F-`96QKV!NVPKr8=5x(G=}4jrF7NSXMlG?8@m ze&z>sd96Zk>|6D;FJPu{dx1CDl)g12>DmB|bG0 zv%Wr073FB%-?2=Uu)jGFd_&Ytk#j(@I`b*6w&RwUv3hs6PTwaveUSc)`l@EBLxZC_ zYQ}@{hxi~bVbZzcf1t1pw_DoSiI^KK;D!jY;5)X2~!`neU{}>Zb`#=yT_WRDeIAKu!FU1AZ{rU}~J}msFzrLaM|tOOcK4{~rnOJO9V%hvN$)k=KCKa5 zK|A&`RcKo!mJ>AiXo#_|kF&0rC{R!4J1g9Wo1`yk)-fFXqF{Q?)P-_A$UsRzje=g9 z?8@Ou$1*&dOQ)jK&xdKCN7J+n|dx??W3vB>{1!Ll@k5F%hWoKV5dLlDN3+FF(~yiKuu^KZG%kf&1XxzQ!)? zf~*#}UZ|F*Ix%irMnPh|`H6fr3nb2YSrL}7Gys>z*oVpfS9@>$7UdVc3&Ri+A|NV) z5`wgVG)NnC3DRZI-8I0&h$4!T(%n5s=MW;&-Hp;UAln>&kep%Q!SK3>dk7Pe2{`RG5^Qq%Y)czL%UhB@;7-)ZT z7M%?=)nB8fMkElve_YBig3%#7O#y8s@-d6m&7I8sb;afY?RGF1IKwB8SZb9ser9iA znJH5p>aj3O+8epkv0Au=k_ELlqbe!&gJkcM*z@IjU*+kkLTgG(lh0E@W=d-ln}q#A zuZEQ`Q$i%pz8UD$M%{Rzqn1D{305NDqrfv%{tagw=5vJrdOJ(^3Yc!)Bx?{{tote$EZ!kaTAHlR#+a$lgR(h`sO zMriKVd9v74X8r^H3WJ}hvrp&C5)Js5pQ*$pmMZ(}LEfR;8RW&*9Rn}Pypt}j*Y3GF$N%s)B&!4TZNxDKp zLZaC<^PWBx4@nkgBG$H#D1ydWgD%Hj@iN?ZML^**J=)y*I&lW-(r6ox`Ws!%?&9Ly zS(s(KAOMy)&xm5yDdNJ8gT{?JBDD>E^}ars>Kyz$VOw*{a5nYH2b%yo)!k!i?No0O za3`3q3mTV>Tk0!E>*;kwbK4u^oO5H`chWqa0m%H`QzyUT%z2NlJ&~jGMV`)cE)-N& zKjp2VQ8bj9l`=N#PU(}!vt(R&JAlXzZRsPu|LF=U_2a(7- zuXw(_Kp8ZdoUHFPA6{_%^nT9e@WZ9M=D1U&q}|0FZZhfCU=`1)&BZodmHNV}-$225 znzecPy|3-NSnyU61enPF7@}rRugyhpop29js<#j!HIX{i3P{vXI96X#!#T4nSKW33 zokg~ikMZ7WLGb3Je6%cGF}64|@qlOhbgN-9*Ndl1f4le3{N;%bPQ-t!br)m4Ifj)Y zG~>ZIhehwRa|+V0ufVIYQ{26RUw3!M1GmlXBxa*0Q5pJlvx_tCW5`>n0>X{9JKWS~ zT6LkzTXJUGeeo%ZBj~TXlE{dns0$|9U}jSrIs4g;8{I6G272;w0yzwepB7c^-Ttl> zfr*+_si521m~@hlT|xH?=St6nA z>Fs+uP>0xyoAy2XQ;NfRn%yN09b4An$n+{zXS$hE^NP8#AS7=98xh_{~pQ9 zvrA^PmlnY8+YKG%K6TGi;YM#`co#Kf3%iV)+xued&9*KX$5h+xnI*}jXpr!=CJjMy z!UjJt5C38veDRG30D3?Cq(*M%Flt^+^~-XrLr++5QX5lUT7A0cpBCCZrZkpYKb@32 z4NkO4-arrbEPXpTmT(-1KX?qhPY+LM&eBi6ssmmk)_=c~L{%!v7*E zgUTGRj*kEqY@I+dXY%KF3-;zE=p=0n&VxVjo1qzg+4WnGu@K*gY{nd=jLs}R8qC6L z%4l}0yL7$@P6H2?>iI=v!0^JfQDxf(xx0L{J~#6bOF?1VPr#v_z(b?5BRO!Ki)MUG zU3YMlX4VP~O$znOp^15u?uDt}BTH@*F~z-|e-^lE)O!mITV@WW^sAR=PHifS(Swtf zwr_A6FVCD4z0cZN&=Klat^2~GcJnp)roXY663OxSC)=074-1(m`&>s2@085ZO}jKb zes2Iz(M5{i+}EuebAA|^eN6QMgZBAJJs_}n=m>mDZ7X*maj!jsoDK}fbU6v$Bk^D` zlUVl%_W1MmdzJXzf^O%fj!Hw?Xv=7!a60^}2OLK%zuvB?7uj=HTQ?b0`wm#E7ms)2 zUOqiCM@$0(U>{K^HfvcDPjQ7^h-+B&tS^W4#nF>TZeDT$Bs9O*)UA7GP`sD5TP9=M zVIygPjtCv#q79l>G;~i~VkO!~$|vWYBIUmnQdX9jbia1LXB}0bo*_rh_R7vfi+}uc zSuJ<=O1)KocEiv5?KGE%RPPd$q^NZ=aw}#%4-MJWtG-SD1eEi?S&D)1uLN@ur-Ru4 zu1eU=KD!$MSE(3C#rHy|UL}iXq$PO9eYNbS)<>_IhIF!PkFaxA0&T??tLU&J8%JNxR;9mDs)^X*R&}+(B5KQ%lHI@1rR zTa6*xukfu}W0|Wo>=VN=QNXTayh|!wM$)?WnD_ATK5!MK+UOD8604pSbJ<^-+-eI= zZC-2yW?j+>aW~b2+%EH)o+bMpRQt@X=h6aXcCMG+jxW}$%=_rq)sK9tUeTNyGER#< zrmd@x9)#)v^_Q-5H?^jLE3v{1685es3ijo~L zhEx8SzLsbo-rN<#hU<1&qcj4EDGK@?yg!4_r5Hn}UndPp3&zgOa&2mk*e!Y>w!g1) z2Ja%scUyu~gG}yT3Z-noRch8JA3{RuAiW2p(+=r3IQ3ra0M~A>KW%KIM$YA8{hK_? zng#lL_G_j!(!x8HN{MGkZ}H_jp03}m2QF7L;uDFNAPz!8`Ema`+n_&xe;a{` z3<8YRZGVeLykJN%H<2QZgYownQpi>$ENoTeMwuk<4cvLS)o|(C@}VN|e}pmtun)ZH zIH&Kx@jHY6&hS2+G@ERJM&Cy2FAjlXQM1;qC2ioWq+_7Wmx(Qg<%4nOLyEu0bp_AP zYT^Yjn`Bp&81BSP-H0SCLfKueQXBystx}gNu~4vTL%llPRIvzKDh_X_+FVv~tNz?{ ze{D9iWz&6(K6+P4n-(fC zr=_Jtx6w=lpWa?-KJ9dJsG_pay{4~A-F9JAbUyb#emphV`I>8_oq0=0(2_ws$@{Uw z3DuZH3S?|KS)UGgefsG7>~d7Sv-JL2+H`cGe#1<`7QUz15P_w4w`)n0!5u4)eSw3T z!NK!W&uLPK8IwE#?f|~NreU6WV%e+OaNq*&1iT*~m12sc*cUH1K1gL_U++|J-rU+H%VcN-QBlIWG1Suqd`*J(~~#u3u+5?|0LR%NE#+n{e!Y=Q0uC{ z1!)Z0x)sH1#DA)`=Cm>PeBAu4ze>#RFt=H6)R%a{jv?r9rkvCzGf8Ow^kjdn{oS9U zwzmG>Hb6PB8A%6?iiv{9RvDy?tFA~M=9g=zc8$dkbdVB?=&xxe*fyoG6S8rZEYUuI z{u=)LOvMN+->R=t^UDD@^jq*Vmk<3|zrf_YiDUj<)hC1ED*&4}pu(MAHWl{5y%xKh z58j|(cPp?ZDnq8lQ9QNkKst(*JEl$lyE_tBSl)@vLG9t z{-xpkWNtc@5mlXzTs06wruj(XH;Y)(}jW6 zDptkJ>=7t&OF(_0!rpW@ti=^|SqUvH#mCajd(rM|=N^0K5rAkag#uh&12gMqI3Lzd zkNMrxR+F4TKIi63ayN~h%o^5keh|NTtFoq@l`NR|^%^O!C)z4Gz9(7K2*M=(aq%h1 zLF|-=BHR?@ZGnw|)L*H2-~F}BL9{1%;C*b8Fo9N11~S`??LH<|487d)n7^Qx}|MwQBLD|H9I*hu0CpY`8)XILwKk3$Rj zb(H0EbkN$!ew7|dFmoJA5RjAWx;$i5@)!iu|z!i1ZvU)8l_O) zwan@RHo@|sR-(p3=uq@Yz29dhj=^VDBMW?npz}QfHz4hej(BGn^a&r^9qcneudz2D zmHJh)6jQj~hkho|=9VcEwZ190>6i+J?eTgaIlP6=n!ap9o+>funJfW|`z+o0Md1!j z$LgyiOBL}&2G2en#qAfU4#E?ym9@ISxITvI&syd_=3@W|Ak(SyDDM8OSIs-U`5qy8 zKmIi9s{LtXT z63LW8oH;?M)z$KUB@a^cTDVExJMzGa>dWUlLMjrxh7SsKiXUH`?W$_;3zY9F3r*iI z)US*JJL03nxUw`BqK(XACZ(hmE5*i9cOg&D)P~adi*>Ys(3g3J^v4@an9IZOChLow zPyJkSE1P+U5T$$#}3)@?xO3atxGP3x$<4;p5DVvyUU5_o80# zQ=RLTS-dJ$IlZH^P%qXT#uhq_>mOPB>(S)C_8RrV$U9iKeet+2k>@Bj0FQzR2QdQh}qq^jcC4k)plle~FHtlmkpT zUhw95_BfsZN8bzzZW~3nsXnA%nbu?*mdPkBRlBPv=^QmZY~$&q=s7rS^Y<27RnV$E zOZ$7pz0(4Ojy|uFiibpBc~|e3>ys<99iKoyoKLV4^f$ zu)Ov2FH@18Y!KG+=_bWFu-ihckXblC;T#Y1_~G(LQ@7(LHyKT2+O5CW%5&}%!vU*f zTObidpW;c6Ebh?>M;=RLh>NcrCjWkLaco|F z@iRUnYBfq}P|dtMTvH`kgcG1a{O8?vK(;HW6G|<>6`JiOMs+Uy*X;T~Tr&#~U6rS& zG@9H2{l$x(W;NPY3Pw|9=@)V8S1K&a(h7`vT1{MqRY%z0r8zx}xzEhpQL@PK)ZdT4 zc^9-4p3+@U|Cc!Y#f*%lO3(PIPnC|`--%-$@fv6)Qf^zW=;WHUUfayfsBYss_rGip z2XgVjS4nHWzU5W}8&UC#!IOmg3iaN{V%^_`qf?*5Zdwpo$aGx7PnBc$MkaS!HpWX{ zFDjgJ?{is7sqLC|Z@AL(if51fV+;PRrT!IE1(@uDgOldTe%*0aR@xd=&*C( zWtrOiK{-X$NM24Zl!2L14KO_4$i2(M(84J+!`Rg7JRDaiYoqtp#-F&Mr`S#pwxZ8Z zN!wxvvzbyI-l9e{$}FCL6pBs#mlpp^ApZX4KS}_+S3Gs{+~^Rf4}&fuGSI)%>ndK5 zM*K>lU@<~eRSAo1)$MLHtQ0Z{U`X))z={7>zyVQ!;O+?jOF$>4C$j@Q=I_%m8@h<+ zDd0(q5B`4j6^vkmep~17 zL;_+ggae?(-$37bdHV0maRJ+2jm+c0r@s%b!UPC+;&0JpV9)^JTQcxP1Y)=T4J;s> z0>A2gE#8;}hBHqfjad#{+91qJW+VE)_K$=9*UCwKCiv0PA`ki#pp)=`NBvFSM=1rw zT@fca(0tGcUZ8>TFf{Ve%TUKzdEE>Q384hRhW-|wF#eC%`5NYc$AXWI3W(s;udv7= za+RWQhIw6tb7&*4a<>AQIS8xO&%#oEjXV$wYQ|6d$=iQFr4=#^y5Y59-Ke!y?Z(Js2-Bp%>a$ur&BJUD!dkF`Eq0R{&Jj%sEJO%a%=!{hhp}UH zH$*>>n7uxEFmyMXM-2?GAOaio(_5KnX&tZ?iZRIRMuoTl<{_*^fnY$3Us?)zE-Zp4 znU!z@X#4(;cqUZL5z6V7uhLB(D1ksu(}vV5JZJph548;5$^I%MlfsRV{s|3R+%)}{ zJwncl^SY&Jwc$hm6Zrpyfk1MEA~4QB)tkL@FmWC0#sTxoD`W&;8i6g+LVWdXfSGB* z{|H|HiyILA1}wxK{$S&@@fwi%jFXR5SyGHT_FUt%e)hjbm!4{=nL5wjV?lA-P~bkz z{`m>$u#}jzGh`}6c6^2V?kvcQIR1WTJ?pg4c2Bo-04J6B9U_NP*li=mA~Y!q#I272 zv_5&HA&q+%I~Y3{x2TwXyGR7WPf(G-UpWp*y7HVX@Fs>z*bcg+hQq_o^x~9hN8F*} zaJNfyGvIp=$cpe@`t4v=7n}~&uFZZ^X^-NJ-_~ES*rq0id68&b2D@VHG@cdJs$;$h z*#Fk##c}E-sjDl<3Qr10N{CpEh-G|2YAj5A3uJqhy!ie2;B_N zkOSsyUptt6-JbwJkZKn&>rZ?8&{k z>oJ0mZ5&7tI`)0Rkp;CN1?B^oV9uM|*yMjD^JUXpBn=!GH7y=5C%dD}LF(^tUplZ8j7m-uGP1$LNas{hly6$8nvT0t5AK1LVC zN)V`kIf5m+(d0(peExSiDvSRW#igl(Q=em_#r{4TTMx!c$bmWc3W^%4m~&5z$N`#1 zR`&Qvg?k_>un_&gOrj|s7#O1Xd+;H4ypjYSCU$F?Owd3YB*3HvKt^bAs*$O1vmNxn z*Tr!Np4K)3=h+27hO3AJ07*2EQOLj}bLn7Q2;ha#2`o$vwm3BN?gIjz)4%tm1BmXJ z!8uxds!3wNFaNzo5%2z!Mka^tIcY$L3tIO9K158Qj{zYMul~J!O(YON_T9NQoNp+q zg#jo5SNXqZgDT#nH%T06rB!5P`1|+o|Mr0v(qJ|3_2b8Hzp`s~>?dL4rWr~>m;1tV zUqRul;O$+v8>Nk#W+Ziat*_xq8D_Xe$5%Freb?ZhMBsRSDO5-Vs~vst62?UITE>s7 z@pV>iE-NO&UE#+>xG#m#e_q1aG5?2^5@Tt_{^{TA{Q_R^vp4zbEdRple|cQor@z`} z=xI85z5Qc(LxhM@R)@16gySHIP7w3tZPxEMy*RN>KLgBgDx)YoGT}+s$@oa`^2PaS z??IL~(zvq0v-1|1q42r)I3`fa?B<+sn67@n`6pcLo=Aq&$k*<4{>MJ<+Qe?+2^`hd zycqt}(XBb5(MnPcMtyo7o_?cN5$F|i`CY!l1ud6n#T|C+V2adm6Y*kJa1-6q7cW_> z1C6u(-OQIntsh_ReXq2s*tU)1Wb~8DAh;{;_2Os4Bk8EKouC4v^V$`<5%5#K#(`uL z=ter9kh)>IE%3q~g#VSrRfNCkh5PKdsq0V7WR$*p{tMqH%28a)N>I#hw*l4ZcVhK2 zx#ymn!`d4aiI#N?WS{+#GE_aGxH?JOIKVa61Yn=3wl?s#sLrvYS^Z<;&Zb>a(5w8w zpiC|x(w~}HWE(8$MhJp)z$IZ5Sy90@$!m;&4~^gPW_sh zY$39Zt=iHHwSo`MOtKLe5WKMxtD(ByCx&_)wmwo64QA_jJO}hAZ4sb^DpUe8n~m~# zE%#Zb!?GIv60`k_F23chu<489y2I3yjl6rUA9XJ7KQo#(_Z3qFAU034=*33PbM@w_ z1}E;+6Iw@-R>R0&YDC@=@Cs0Lc#N_;|5y$Mo#Mv*nPkMXAm30@i8Hk*PJJ#>_sx=^ zuUtM!5Q=j0Bnh6Ol1MygNYeVz6n@_EMTKI?vVNQkEvkYgeHnY2uB^O4SKB4>d4$Guq7X#N=2A&<3`E z2;k!Uh4V63#7%3BI9Cs9$Fr*C>;Z|R*$=!9+hlBdWjSIOI@;~=LPcE{YaE{T zJ2%G5EF%cLPq#992fd6Fx8qjm9)b>{nq7TvZnp024^q?!0qc>f3j#Slp5Z`7StvMz zdUsYonBr3R;SDN`$n} zVr1FjTf>H)u(PF;gI882#47^f{k_4C;&qEdGIVIYhFAVR!qy`! z$sOwyMvkkQ$-zWRji`0sqe~K&csMZSaTI@?zs0dXXK_hTjq#mv2 z9a0q#p%;0WdOhZ%>C$Ao?-iR@0KoNS1GFv|wT%^fjZlMob0x0pg8h(J@A@L8acC#E z{hTZ6E=%3O(;-}#A46XCm@aNlp`Y1J%h}?H0-b7gOfHZ}w|4&vbVs0U96oaP=fhvf z{WS41!gF_da)Xh=I62hp%KmE<{$*KJdG+VpflFRJ2w z(45qrGv`A?cZKu-?aZVuI4Fk_0E?3P#o%ZOf z1Gbu|^5JUI$l)Y?Mlxi?u)k*bTkofj6l1k9=;#1=iYZ;@S~SRB4%@FX&S^FtZ%CXt zn6nvXm5m;|e1GP;=9SRn_??lMk@0DYbM}=?O!Ld=@L(u+aG+Mz__*~hF`x&D^(=db zz{K%a6hyRly|$GfEQh8bnvqoYfdA zQ1j~e%}(96JG-58Qn|a-4p7vw_}5;WS=OVnnOa}s!uhmSbnQ!Es7JqCk3HM3!%22y zA)YrTM}7BbHHD$Ww(o5OWCShdn61FiU%R520*ng>YPD6123_Cc3w0e?WF=;Q`>-yY zdW1RZ<`fTkq!1tN>zUppLrq*hh3(&s>vVWxdH2t+7H+PKI4`s(skVb`Veu_-UZ+3J zqc(tPnD`_3!DQre_N!?eiptqT=otatg(L?X&pIU{r`KV&4EmY9JgBx`zV?Fpi9eBY5Es1y7-~ghKqxE!|8ALAb(rGI4~Z| z05s@YlJ1w=&OYDEig1$_>Uk;yXP-a?M1eG@qp&;9Gp=R13iO_A{Dap<^OuP(`tkTf zmq(VmO&0SsdDp=l34E+`pr#w>oJtsps4)_UXXwl<%f#N^g`K?1z!$LSFL=J#8C}^- zbsjSRRHh|Hl873>Y_ST`+cf0 zL$N71%?6lU#X`jsu@8EKpbK4zxZ~of(G#Ow-wWut=K)f?XV&n>)u%C1tP-_%Sr`iX z$ER<=j(3(L@&O3R!?hpp$jxHf-*A*xLrb?r(sCGREu1^-NmtOQGg!X*L*9O3*n$BM zMR{uA^iWM^zCI&MS9ecJQGPoa!RDT%j5s}Qt%Du^{y_pct@ zPFY_tXpeX>4|cp+&E4k=F*p&dgU-(O*!9L*XC3a6$j)EHO3N%43HWU zz@^MHy1=9HYmq~%4FfFtTp{(Em=}25ZE)eRtOBkd4y~Gi=_|sJ`{+yIaNNg##utUj z%~Fg3w~ov2m19WUZuPC>@j@l6jyX=$~J zE(}MI=Y!~HMcG~%;2pa`%0(2e@Pd4w)4|^@$n~%u7oSDpUr6%tW{@mH*s2qeuW{Y{?OYy5C>La8@d$F5^K11?97+YGt!-g( zR9LMN{sT@C=dAPK1ts*nz`py_wkD0cAE6#6JS7ym1pF#GDfNF)K z=gRtb8T261Wd&>jM&f&ZQlAO8<;uVK6EUgL7y`6#ZJ+D~Fh; zaTUe6m$!1CdC;-Jnta_vRGum*mL?-GyI`10?}y3z+KUNmaU}ED7Wt@ySP3t$6gG+0 z2-jkni|4|t)xmYPc;S1Y!`(3=gIro^9*(*0?GTfZwxjF33`WE%Y6x$4;J(W;CBOj1 zV5PL#Ke6&_)FnUKuQax$4@MgBr5>>Z<(KlP9k149{Z9dF?}LrsxW@@1&JzMNRKkg3 zT*f=ttyD$lhFtm;Q*KRr4$B`BKpT*Z7n{T@$6TE@>+prQ+b)%x!oiV;`NNj{2>EAF z?KR?z1?6k?eSup;iw#?H9atnJGSu69Qlh7!2-QjCkvexL9M_vrIC=6c3x2!1?3Uaw zVe&xgP7{1=lFu=J8djM*CtHl%%{#tk_*Rr#V{Zoc>pRvfB4}}hwRf01kEC#us07sQ zti00e4$-3O6S&xTdXN8{A}6m6dkJepL}g660GD_z53Vj9tIe^3d^5v()S|5f$CfV% zi>&vxkX@$>blCeaa(c3je^(Q4?aK3%aZaI0YvDICAv?l`vS?n?7zniNMGZ?AYUxO) zD2Wc>KLqZ&D+l=B?E7)WAOBitJqq5=Na}vg%2kqE_jU9r+{kOIQ@V`$PQw*5MH&j|Ra|M32@1{t@pC0>q>qWCh5kUv! z0`mJeA#9ShySrT$Y*tAgSF_%&9g4qLcdTdZIc!4N^&I|;g<4~OR);e-aey%N34|d` zp*rA|m@D0Ng`mtWF){ku#<_Elme)xWC0tvtvCOa`kOr~_f zy68G6k|S!-RnzO?b8# z!o_|H^!+`>#-l{EW+I6&@Qg$sdMB=;!HY&sQ@GWWqB})q?<~U?l;){}8Odu#ZBq4b zS_1}_#r3g>sY*AbLABUH;il2(cRTFIxun$8$|s}7cT86Yj5j{Ul};Vdh?<-p&;ZvM z`Uz!36tK<(f>l?5J*@&Zaqf%aG(OQHh#!k=`d*0^h7x9A z<|-*Aoz!FW*}(7Om0jb_NUPzz38}<wD{=tNH)Zg+$SpQq(1a{ za~ss8zm`XoA@wpOo(PGo@l8JL= zPnAMV8<@LRgC5Kd7&zGejht~2*dkDp)D6J5pzk8XY}QMyVb*8nix{m9(uC(f?0I;yv(C`r2*Jo z0`r1vw^XrhK+xbcN|%@FRnCf$QsJDyvszS$^w#P<=EC#3+861JT!@JI_==2Rcnh90 z(p;^6TLRbSI&dUX0U-|xwB~ga{s9AR@v>1hmvSM&YU#bRCXHWb(-B1T4ATEjot%Z~ z0S_4hP$t|=RqL}gIg;}U4&WIa%hbWDubBg+>H9a6Y*{#!{VrL>U*6O##N3Jn{s> z2xZA1wUDi!DguUQlZ?#O9?3T+y>t5z;i)HmX<4KGWs2){&Gv24CEYvx8Pf7TCkK_f z0Tbnxj1$TEQ6gE;d_7K5#eCwv6;^*r_LZ>|M)SKx1XaYs&^D5vQocN7u6C7o)`|9bjJ7*eUSet4G?HVZX0`d%rMDBRlj`6ahZ z*uvxI%oLen!i-Qmum4~rZUxrO?Bv}yZXi~n!aM5j{#^K7B9Q~zM`x{{D`b3~6;BC& zlBGs`$#pQH0iOBlF*7B>L20KWLxj-7TFP&YaE+`9(|oN$hJCK;v1PBf=d`OG)dBMn z5N2lxJJ5fFSJ&iYM4!x zUNfoSoljY>>b|+zjuMUoE2~WV25dKHoRj^?>r9^}f6XwDN!vdbvL8{JsHisntwc1- zwxvq3IjCtb*RVU1A>|fkO190m{p&Lnvhd}jd~%^zw83k>9S?n}(_8hw0sU%sse7p$ zA!Z8m#Nd~u)`Iy_mF1y=o1$%N!wsD#yI16Q_3gsqn4g5e`;pts^%rqnmuOMZ*|3I7 z!B}M8L;=Sm9KIg~T^zTX zBvG>!eTKISgk1ADL8FMc7CU)J zNvsu?-Rw?0HiRsip4&Ys(rn6 zCP&%-c_FUJv#T_Hv2M3#w+ar{*yNQ7F2TFsrR%GQGs$^yz2NzGl1^RDT(|(=vMc#r zR1sgZjIQ;u;{_SHIgUZI<9(0rtDvg7;>N9gXh^{;+%mX@;)A+J^RpL)RgSKU3Jnrq zJre4%!9xU6^mQ@nsU!%8q3h|~<6CvP_8-T29in;NvuJH+tt({#d={Ri9M{GvG;7jY zcyaE2=S&08GO0ww*cd}q`nbMg#xdgDi+XVWjH~*HK~(bc9vKm$SGl9F>B)z2&0(ab z;!o63UH8v<$ab1~gYRPTt2BA;ayPIF*;^mf*PES{;ScI{pM{c{vE-ur?KY8iQ)3s3 zs9;HD=G0|l?{>33YH_D`9Gvr@lHVxs@e*fJwyT=C24+Kpl@Ah|D31sJ3UPIj32dzU zk38unVL}47>?gh2{m50bt^_v8v+eW;I^X&vl%d@5+=Sm}GtLPPPd&c4Ab@)~D={T! z$#B&vvQ{0}#Vb#rH3YlH7vNxQd|Y?`yZ!Fs0L+UJgLxs!0Opk?@JeZqcm?M@spQ14 zneoUjZnqSY)Y6j!EK|fQZ!^k&poW>f=>azx;xJ38I0*P`3r#B>r9wxv)mx0C4pRcR zuVqVtJkK!xaQP96PZd2?{R|%N0PbU1hDS!FGO_|WctDz>*C=9fX3HCP2AKa6+6~-} z$<|(=ePh^sakUG8zLVXbxrAOyNscl|o*hNd)US1LY*2_H3C&V|MQTq}#yt;wE0u$r z6}O=-p1fx3f0ql&)7NH3{fS!;%1wXroPS;uw01W0_+wZYpW$qH?W3*z|J1m74w>NR zE$MlO5q9-CY3{gxk9AnQsXf-zB6+!?O_p2=;$FtB9OI%SnoL6>yQwm^7L#BKHenA6 zJXl0FbLN*3w8B;$%CybuMi-Bi`&;MCPysxS9S!;y4O>vEo~l=EceT3LV2L^V>+Idw9FQ$O-}NC9M;GC(`~er4?STtOK0M0B2mPZenpss(4q3$Bx!kL z5(>W9SyW$VEquYsqsod0z}jw~f(#{zIC37;@2Os8A8r6M zc{xF00*Rp1vEn|sg>Yt`dkSB}9~8CN5Ma?)VN+jdu+T71s2mlCAGFQgd$PGe-W(v; z1j92Z1tT=4uZdov8O7zByBkwsKl@7}?iDWV*6qtR+)3Lgvz6)^N5(<$-~C*|D$v>6@`e=gleOwWS zL2so}V42hE+1VExP6-4rA{Tkn{qV(l&pe{0%bAt!LciOo_TttyG~ETY4v|*!A`bb# zOFqJgMp#=xHE{JWtMzQ@=VJ~HS=pDMtH#{9gOf$PR~|koR*j5}Er;%`tKICGeZti4 z)l>fOjXFVX?^7*t2r*j}op#n1 zZjw%@6yO$ zNC?j-j@q=(CmtvKsbdHwNBmgmE#%S=9LAJ#GWTO4p;BUR{@pjAV+n28%}nNLwz&(1 zzVSojE-T!#C(>H^AeG}g`=p%KxVEc0oSP;KMCk{ZLS3k02F2(gNxY$hh z@3&3bt6XOxc49RZhDbA+*B?d0W-y3Wk15Bu!cxu@!`sS2*iw32_I*+qWzvTy`^iw{ z)^o4*Woi|$|0VTd0Glt%SJ^T`13iGre%`R#47J^%pDS)FVdr&$OLD9m0?P8w$Ou3I z#Ae|1=b2k(sl@Tna);!_0);5b5llE)5A2PNU{OgFRKE4Vz(S>`Lp}tpnxUIv5tb3C znJuYsNR{A-CeK9=Qpq&ZVV~cH_SXirnN{W2b{2p2khX_P0p)Ehtowf8DU zoh1022GgYZ3|eC*ko0;ceuU!h^aBfrQeE$pJud}?Xca2q1#elEIAkn;D4Xjqc(~rX zLo_T~H8~1XLx`^)YF<1X&n~lI?*}6+GGZd{WX9A4`P!FgS7#77)7NVUOIixqmga@S-ZK841n__9174kMYI>>O~Qfd+uyWM|bpd9vUUC?BGcArj#|>Xt0M=Wa<; z!)vswGwB~d|4(4^YWo`_Z_5Olfg5QgMKuHK-e?M$FTOGrcGJwG2Gcrr_MY*l_eB#V zA>Vi^IUK))&$>NImlvl+-N?))rIw(Z&N927{BHIk=V`r;p08f+Nl~4i1sQ2Vd!zvv z_*%u@V_1{ce_mL{WAV*nTtZA^5!m~f911gzLp@6%8_gs*!Fsle4ES5Z|M>w<1ItZ7 z50rX93{FF5A>Fy_B_RC`{A&8J(X2^bCV4!48R2BwX_oUlp}{;bD3&iwDhG2Ic%P@2 za7Yu@37LK}tbYOJst;5>f6_2=GjA&_`wM{eLD|uh2}a26KW!k@GkSQKmhho@`cRrL zxnXAwS9A?v`EYNwM1Z*In2-W5x$(``8Ab;!ytpX`ltt(lvp|oG&Nn;b%f@Z@22G=H zkq95nL3AAv;_&f9z=}BFSVZD;fJ(}E58q{3g;W75To`h3V**l!kMa15UGYMaElq2m zJryqFtDQF!wBs8Ihya$mCp6u=+QP_5Gf_z){;MCk;eD=u4xeaS-R+W(T$+(rnle{c zo3-c56E4<#blPFm&xI*eZv0i}Dj3gdF z`w8~yUGsJJLw(MDGM{2SDV$*wEryRD-_zf!obhbE2)?YgOXP_7YL-9HWp6v_{>{e{ z*d^+p9H^WWs(xv4WGE-tVthV_YL}-BCW>k7h_|;|bHCX$f~g-G;{B+^2>>Buf`6G$ z#mhX=2Yl2rt4P4mGK1@19S^B*(JdY#H3so

!krnD@tRD!PSC0O8dEZu?94m)z3}>sy0ImZu~i&%B=F;F1x9HC}U$ zNb&h_#dL6~+wF@Neg9_$kefQ$O5;#7*Gotf-BhSa-H4le^|J2cLm$txe8Fv5jeRrV zrPypBpU$sl5e2OpVKDjy#7H4i5FvpVG~p5}1l3#2HCIs@Z`VAaAlqhgfZ{7kfOOlZ zJKRhUkS9(14|fMY8w2mcfz3Z?!TDgmVkrb{r*{_WB&670y0IB@lu7w>qCmVyShZ-P z)nRwij?%~HIFr&ApI&u$wF;ACR#wza`-arGLYuE)v0R}*m!**e{bA~VAUl|?Qrx6G z6J_qbL4*NIP7dhklOdkT_ZV`~>9N?#!Ih^;VxFLD)&!(PqqR$l;*I}y0YCuk<7TG1 z&`!02wi)IjXsU^GH98!Zc}#}defRJ8rF_u{BHoB12ij~7`V)JFaS1#ZG~L@Zrz$><7S%@mkl&8Tc| z6K+;4#H>;R9R?&2o_w2^-%UB0T{4Qig=!F8S;cl*rl}My&F};PJm5ZqEC|41-9J?r z9qjN9Vk`!mo&-$z5gy)YeoxFI2O@>(oS$#nGS16fA zT!E{0Pu)Ia3Wjgb~;?7%FSj}=kduhX~rR8JL7wm9NBG4 zs7Bu#pd1IJbK}WA>=U!DGK!$y01Nga`B;Pa9WR#LC{5n%p<1Er;YVjC%@hpvX9m>& z`*zJ=+inn;Vuca`@=9zn&cP#>WW!(z?>GkF+g5AnJWXyxwN4-r{l$25iS^#|L3y5va;Pm45NlJ{+&4Ij+YJaLblny2|tjUCDj- z?wyoYGcQ4cE22SJGA~|P@FPGtgUqfDY{?^Ft5;g_YTryuj~U+)>d1nW<1-7YJq?@0 z+P64rwZ2WhIbONmXA(N;zVVGxnv_n0A&xK&%p5u(^_Q~haAY78i28_+aG=2%3U=A CY(=gB delta 113697 zcmd42^;?sF{6C5yZKI;JN=Pdm5{gQPbPYs02GSDa7O-gsj7I53YA{BKGzbWzM@Wns zquCgFhQ2?a^F8M}f57>L>*8Y9xbOS3|J#@{qT0#jY~H zqSU`~m6Dkzq~YFOAB@pe0Wr!KFBBD%Ir2H4`CIyzsUL16agB4P*g#z>RDGIyDs4pe z`eaq@JUkc8^C&|$vm>P0;37dk&j*m{ROV{tJdap~s|G0unO1c+hEttN`LHL9PsSUR zxq`4|@w6eUhkuj?fd=%&SpChYQXORQ;Y5AAy3~0dM@Fz_ide#j+?hR#c5qvFQ!&{2 z&qN1%qg&a>c||q$up(#9^Lpc}<*prfq`mR=tv0h34I9ltHrH3$@SJ zibr9>-jE(B(uoHsz|~(XCN$1JOce9`B1fhYs<2miUz$rFt95ay>Sd}K`Cji!`Hx~c z#-TgutXtt;O#{-;f;2S3r3se8;?5({rMdJ*7k!3zVonf^+~g&pjin)bOz?*1p;k_2 zqiMdoaX4Au&eh>lwa|k-hTG$d^HR&23I;GC8; zzXx%9Hn{Rn;OBVBRF=kVUEAF+l6k;X?~jcGUTAdCk%S%uHcT8M#(l>Z zh51>4k{P!U)BF8FRWG|w>3D5kC{>mR9dy!mGAW_+-IcY#U-@!ZDo+iI2_a)m64!xT z6pZfSMpY(c8cEW|7;ZEQCO_llf?jaB4LDZgo>?+CZx4ABbwdWUt}K^l;kZ_2)Eok~ zFb2OK(Qv#aBd6h{;e7g;Gd!&D+caT%{`%3pF)@UauCqjP#)aLxFOWBIZmT0T1XyF} zRWyTwa$dF3jod$eRo`r5yp`ji6Xv`bHSfV>F1Ap>vz8@Kv@wqbDGZBR>d!DA0+FM8 zt8_*s7J>@LN0rs*9qLF<_Gz$$ZX64Ap1KhE>r zt#KM3^e+t7OO9yKdy$nS3RH31cf~%NsM4Y-9*9XEGzDr$b&)=Th%#+A=dmeZf@^H^ zn-UKCJSAN7U>*>QH#j|UE-S48eyJY#@6R4O8jf5zB)6bCNc<|)@rS*`WG_+v(aX1x zq2y|3TuUUytklgMdQ5CArKgNxOSjVw!EVX*hgeHr^L*d&u&mJTVUsLthH1;X2rVV@ zP<=3dK(OXU^t2I7J9VBKD|RtgP%DIL|_3mx*ZpzR2l85T|L*K3g$ z)L*)38L1xM9gpehKV1SO_B-5(gE?xdqe8Tgk<6twR9>k(zh`yoKZH7(Hu#GZS9`W9 zUXAM#T_$;SbG=p+ed95IJNk+W19`!UDSGcMaWIl$Z9}BFetP(rwyhdgq?av!x!rgE z^*%;qG(%cldZzx(xXtEd)3zIrQ}3qdqFRDi9<5ROTJmWCkU2nlW(ayIwW_Zf_qG$^ zV<|x?T$+}*c&iVlc{HD2g85`XR(%9JG;`fMJl^2^5o?1HMs*i%FC^Dkz&t=Qs zHoepbD%i{IY8|Q!Tt?#}x(kKRM|Q$<1x0hz9#~j54v8mESa<4Q?@JVA~BKz5iNi(nG3+IZ#a$%s5r z!IYQ}=f^;{`#^oo5An1@6q*|N(CjZ%j0PpwGSrNa3#M?Fq|s+$q8d~?@5KwYb7<$v z;~NQta*@@sbY#E~{k8>R609lX*2n?u^-6xW13Z73i|%ynlVv;=O}g51dW7nB%0`J* z#@dm;7Krr5&Xl=j3I(z(4O=xtqt?f(9CA6qx59E`??8TT$pjtMjutv6a9OJBmTi6D z-uYm6YtUnN`2{~Z9$VMqEig%mskPf69$PLElI+^u1x{V2g*&t}JXyH-CDy(DOUFH! z0DZnWF`--9RNihJe&(xsMdo)3%>t2|Z z>Phjuyi=5yoA7LNA^nBqpXhyCkP+2EmC48@pD4_ z{qiWv8td_fAJRW~!n(rejV~STMWuQ=_IQ9k+V$|d)KOgWDLCEd=!)f0i$Xckj}&nE zO?e4Jy1mdCW3BaR-2M>Lh=77WD$|+wr3lQ27*tV3+?VTGRz{{`{mK2D)tyto?3Tord3rtBbx9)v)8a0B)PMvS!H25O5YuymgpPp@3le_e5B^A?( zdSbwOFzC};KVPRYaF-U8jL`B7Z1mf?d5EIJFa!lwMtO;T9T#`8-C68~KR&b;MeP}v znr|IuAJ6#H*(J^XK8E3CH%NUp<-~4FA5;;w`9P=C+~hE>#H?l<_?Ts-NRjAbyB4r9 zj+C#Apx=F1Fj`w$ldr`1201Af^bTt*=83wP=!|C@U2i(@DZaPDN-i(vVAnPAjxg6p z(P4W!fYM6c( z>OXm@2N$^g>{Pc7IDdvsX*F&$Rv9I)a=zfL+$c(e72tkKTL^oz8hLKpYnn^(uNw%g zaxHQ!xTPwcG_w$h`Sz0be*GiALE_E>X*6A%vy`a@biTdfU(ufyDmvAT_=w|kSb46` z*oJsF6df{raTYepQ-P!pIqP9r3&6r$$&%`=tI0q^NA+Qu>E&eRy+Ix^dgtF7Ynfd5 zz0|RCJ*||K9TxR(ANG{4NkRKHzec%A=B-@%Rh|09yYY@djgoBUe0>wX&e9Ngq;;v( zRB-86uLnGKz=mVADNg8bmoGUu1q>Xkc5@BkgqxjE+C3R*@KM{UjIhj{w6}0ZG=HQr z@Ne2*+2oGiZjuNn(xl17xFfQ-3N#n`;$KsT``o_yYi>-iwG{MuLubp^%wMtxjzinvs8@+G+%x}sr52+2wSYLF3JF$a!rkpfTaE5QNuq`RLaN4 z1O*SJQ6b%?AUS@~C)4$QN`_PQi&_OZBMW->rMXl%L!b3Gkg08Vv_+p~y-gXEs<9PR zdq25)X=q%^9d~W5?!Xqaq)^kXV0MiuImog>Z$kXjt=~e( z$@tW95iTakdSIZ!Hk=j{wix5WozkCFOAmiBG7pDzEcEjB;O6NT`nWIh-HiFrUZ~XK zF_(Oyofip9jy4OSm3&SFG%}<579N#D8~d>f{_S0EvwA45^Vge%(lb z_<^#A9t{KueOd4!pRmwfHTdQ8-`JHSFOVneoKeCgy8m<^o7t;PQAlZFQSdZ6xJAS0^#?_09<=%H}nP&>-_YBFRCV0!@ z20YVIrR(9H0#IYLz^PlA!v}UVUOlOr>s^fZjEscWuai~10X_MV>ii>G2>t69yCaup z?uG6B-iQSRZCHaL?oYX>;SVU4T*Prujzf*Lq(sr0cT!yXGL8f}pjXz`&yXy@Q0znN zc1|SUF1$}CXx$I(>X9pbAbp9)J`HZmsz3ns^UnrupjR1rqXq)C=$8;}K1X7=j6;Kf zG&yBFZia{YGD{o<^`)_yQ8+Q=_*UWQYtBR}^q0LmXEc~2+K`f^tc>+z=$JG@RSnsJKJa%&!b<-DHCrh7oq1V-bJN`*w@4Pb*fklpM{gdCV}B#BUt-rX zhf(ce)xSM?U%V%5)@Xi-?a@M23A=_)bjfmCgR}I4NE6n}GCf0U*V=6BUKK4hF+Z{;bk| zh97`NoyPQ-w(3ZhlXpY$r&P!4GRV?hzvZq2Nve_j5F`2o(?Nd>j91B)y$`!-((<03u_DOW8`Svp^E55`kw9%_xZBi-?Ui9&*tuia^}DVK8T`6p}RmC6Tu z>>PTH$EJLS#kU5hE)dFplYM=031qR-=X5gzi5`j0!KPBYO*Ra>OjZaOz`r`+zv|gD z3>pbrAkFA7T|y~%DQc(#{Huyki>n(SC|O@@9Aen{B_aUhV*V54o4$H{kgbsYtT$Fy z0Jx-G`E+>y)w3|FlE!aGlk}!sEme0%chqWU4y|6jMvf1?)}rq~*lx{nZSQW{7ncg& zfNS9<2G{H0xbBbZA(HSFhrmLfV#MeW3J4qcRl_y_c#T!Y_Px@HC_ zWM<-(BirpC40PWVPCxqk{!wnz>Lb7H&KH%_JGlXoSsjs|Bh?GnB$FImfE=%t!A!=b zb+tTfSq=GHuZcBj+H;EZn$~Zr&N;69Zfrnfsx1&6n7H{4?at3oo}BNFk2b4Vou3tK zHjyN~u|nKxRF0|Grqg>`8h^V5m2o&2Y5o9ox8Y>bYlI%$OJu?Sl6Oi1iBLMq?sFV$&=l;{;)eZWOMGo8zX_fYxrFUk?9wn1&I^C zvT{z*RQ006!Ey}VV|I?q1UVmFJnp0D!!E>%K*J5?cX5+*z!mnbL{vLd?;NP@wkRz9DioTr) zK~u4ysf@TfJYB00Qvz*`Wg}lamsvA;CI~eC#g0tIb2*x2>id9%+F+6^B21#O+dqB! zg7bslc$21yybeIfl+Uj_9`#({P>S{U`p>%!4vHx6(?b=ZBs^Tnd8GT>u=B#g`jp2) zQv^4S(`P+NhdN;<&MHC_M)#Z9sLG6Z#;P(pOk3kz?*cCH3JJ>;Wv~ByuiJyT&xNLS z2v8lLQG2q#Z9n`UH4cA!*ctVyz`{#^p+XAa#RK}-5;OP&Pdv>Nvgp!cmn0Fqx9d#f z6p35DJjAo&yCQqg$`-ftEgF&?-bN=VBnUzoc(jaLD((Br+4dBCr+{(p1YS@((<9&Y z)U`1LN*;4p%2m z_T;Z$O@wFenuyw~R1IIe)coQz_w(6Lx;bj&&J7UdpZ3v^Y<7ys4728w$(<~wJ89y^ zBoWa>Q2Mg4)UAg-^E48sxb@OXQh+a$+_n4Z$c=5iM^cp^=fzq0P=7vszxf|6S1DEe zURq62pnSinhm+uMMBrf=wFs7azA7?{=bxTLFn>pJs{p74M=kUBnn?Y{RNCgK4Q zj{a-xK<6|DkcnVG?duj7c=}rPiM~4>$Ed>=T1%%4pNV}}4Gk`w1O}9t9uX6(SP9=I zchLe}(c;dTU)YHK2r%Ekg%=VbaK_V1#^3wSK>x62^jn&2b$Zy7VbbAOe-p${i$lJx zzW0}CTnRcy{x;x zevezrZy?mzB*3mHNfHQ-ueO^GA&%5m*!HMY7t*3@p3599Nonet9O%N6IJg@&HG6Zm z3?i~$Ht)NRiYX1Qpz@R&k!KUSVmELbx`VAotnmFRcNn#b#Oxw=MBLX+J6`CP=%4FK z5p}1CL}^$BW}0L?54XGzQr3vifVsJwK{JUSDg{6Y;+keplAvCu`@o~jSS2H0e#7Ej zN298uW+-=PqO<$aBwgE5Iu`$P>(Rd&wpcBJQwoTwH`hFSK3t@|IGdvm69J!a&kd?e zd#}d93WBximYk)=a)bH5bN*)ooY&(pCQa%g-XYSY_B@-^eIx*XbPt>aygo$q3|1br zXs0HAu|!Q05i2sk%FU&`O-G_KmZj9TQ<%?JF7{x>gksYj&^>cj_ZAMZ$nFt#z{jlm z7E0VtXs4mQ+NLiF<*l!;kcVq)YGEw?i`6GM@8u<}-lfc!H4MM;cdxmiemDIbC;xXv zF~W*uI#(iNe1NEUed5fLrOMj${u;x{RqY~DVhX77%9=#^S(S&)=WFAz+3-Nu-VX zVZA7RiW8gb4Sd}Q^_bVJ>5Ni9p8i}12h66!-*o8$D}yD-Vo*(=vq2Sql@#=bs`~8D z_nZOvHH)Ro?X9ob>2ZBMdo}Y6_H(H|C8U|F)lZN49K*-8BOT!hY6rcHL6MVcdr{|J zhj45Gy<{gzu!-zv&DgXu(%Uw#rgoFVCpK|^OB`BrK3U_6FaTRq;K#I(s z?4eJl)gPE85Px`xhiaxsbb)+l`00Zzm&+$mjfWOPO6tRW>7w`j%pa36{DcT>FLd&W zcemQhc^DmM5?^IM*=qHLiu=;id4NW$oga>_%m$uJzH1X95>8VKzxE$S5T7MqIMSVX zM64DIT&DNihWcskEJGhjSE!T#9_bC&1g}uu<4eAvm?rB}<>bHo+v>L1{==xp!T!{S z8;5LHaPm478u=nAWMqnDs!t#5^AI)^{#1SZb~5QXVVszL9$SB{kPxIh{xY`ZX16y? zkQqdBcv8&*_XI5)Q{@~segsp95NiC`E@Kx8^lbYkXC7(!ru}hd^+LRC0zQO-4^aJ; z*+lV@U*bPP2Y)>hGHaal_VtTAlU^iPyvlv0*cqqj!%sT)-3b?u&hUF|)S|AhO8+Mg zCho?@t5ftr*`qfETJ!4tQxvF@9MSh@qB;?~`&!;oW=?v16K9jhx4bh>*n^g>O2()P zPISV&nYu%owPkv<0PTu=7(!K4{KkaEk!*6a4Ewv)hK+t-`%}ERHD!Z6anBbLx%2m) z&M+YVeOY5w!>9f2GvD~2F!OIt!tn>G_Q2iq_7YpM&=&=< zeYedfOV&;f4>~m%II8=1WgDG_omNJU?GP*Nu7)}ucb{1EV?Wia20qQJ5&eMqvyJW6S8+L*YNmr*kMd0pi> ziib!+AgGo@=m_Nwh7GmF)2l3hGs>rvr=Vzw~Rstkcy9u2VM4(L7vAA1&_8!Ek0Quk`}=L+8=2#rlHrmQ)ZaqY<3cg0Xj0 z3)7I;8lHRbyT^;Dou@nRu5qb##;MK#omt$6{dL}0%%A4a?Jb@R|H+)2xwE>Vbd&Kq zz&ZkLrxr=S=*M+^;}|;uuO`L~@$8 zs7G(QXvcw`a)$@FC}FU1$~!ZOs-s@i&<8gGK8_bM=mwKTD|r9Lo!=1$SX@x_jH#iI zgw1KGJa(;a{j1FRyXyaX#^nE_XZWWxla563kecvxk>l&ddS)Uic%;-vp-LD2`xE1Oe$U(=R{S znkEpCl^X#<*GT6?E_22F`kD{<6aWM|2E2H9)vYQ1H~yMi>*+uFvCnq}(Ug8zM}1Xf z2Bnl9%fk+6Y%g>{^Pj)h1STlh**LP48}5uNdD*L`Pa-f=zU`fQ+VZm!qEWeN0&XJf z_4w`{L!UI4@d~cOJRt9Ca#Ggg;{$xxgs}5RJPy|nW$J_pX9OP29*#u4Z3|=cl?`YP zp~QTnKJ2Qo)UH}x@yVrOFAyRHpD{}rti1932HVEyA|~ka|n=OV9 z7J)R0d+}!3&ZsZ&Ha$!h6%n$Bd4o7CmF=B+ur4a)`1{9Z-pB5-hi(DKzb;^wEI9vA z@6=ygBLrcc&AK+Nl+MJsq2*NbE*++>I(@)Liyn_?W1mS(yv6UZK@uq<=U|_$+bdI? zKU;AB0i1X9B}-sGK#TRcw`ulL*Gu;GsL}o*M5ar*j(PkbW+%BlQ|!SdRu_ZC|HTvI zf4yP%zk23>@nn}@rzrQvuX(3Lc~9;E7wL61f6vgD<#w7=nz1VDCq0I<<~i!B9d0~o zxDyDMGA#iBtH`)L-#N}{hcqnY&IHBNP1Q}@)Q*p;YS<4lKEo4yfI>70PuBfNaN_+5 z?)l=u8Jrw%<@~oW@PER|AV{K(FrI|s{+(myJ8o0AKe*jOm{CP|*p^r|CArn@ZnY$IG$IOW>sM zA}^&zxA63J62o9Q`pv1CkDol-Zu>+fo73j8{QC}e=OtlX&SoS)=}@!GxcrIYW3HGZ z#8OYWX4ekg2E;P*liN;qm2GXGU`OxNj|t2u9w%E|TKeS%KcBbLXabA$BWlS5?ptH# z&0gB21$M#a<*#zY9xCKt7trDO&iab?Kk-RZpr{6Ij$ja9yZWfk9hy3ZQ14@t5rAp5 z_oXg!XQgth+|PBmI`A^D%9tedrB-?Uc}Yl+PI*AFAgdUDR5KK78SLt5|rm_RUtNd7T%p z!Nxt=kN+{hzi`t>?oTj2*xglJFa9Y?`ZA6R%BrsYpYQ2oK&npvk54|np+btDZGNd- zO8T0ayV*@cre^h8;v;k*{XU)I1Ik)T;l$)(dg$XgUfSz7Imqt6ZyslXK2G7KZN5(W z?f?IO1OE3q&z*lnmn!A{L;^g)$tY~GD|MOSib^lJtj}8X@gX5^5o9xSW%K^))gfLi z%j=UPzo?xD=Yod>zB`W!jU#>CoTi`QFP@7c&(qF;_nlknOWQg7g0l+U)qY9JpFI{j zV>*j&i9g|>JRiv>=LBlX{*gO&9w5KU``sIBDDAbZ^K>La?amdavz{_rdP|D@-}~zo zvj=~=KGq09vPiw=xQl(B6Ue|p)+x!e_=GIjhAvgw^ErNP{GPcO7ej1YmZ4%OP<8He zh@$CrsQ`Sj_azP*F+ny6-h`4AJ#=1nsJ}i~tY~hY>V2v9_3V>m@s}M}6&1;X9jZpSkRF>zEE^~HQ@OJ(*r}ztylKbbT&c` z&v>s&rA)dvd1Y}L1qHM??WGvUz4NnIr631YsWRSboFExq>)cj1MrDESf|SKd=ZZCx_4NvwG!yREa86-g$nOE z5we`PsvaNipyLR0PcZY!V0B7Q+;4@3*Rvs{$!8#@vsghJrwYc@;YZEjdU+6-!)Vn& zfiZP0UyVQKFmz2eeun_R#`4Hzcg7}ZlP1p_kmj&m~Neos-Mf|*SPU~ zSc!n;N#3J_v3ZaE&Dp1(D`~HG7zMtc_)q#2J(64CRn3s!Im$Ww`R>ANLPu-M|Hdxa(()u>9qQU4_=PsPLe!5asDBf^8< zAV^N}sx&Olx4nBHOS!~P)K=ptC}P(q(pAzc<|4DC8b<9#j`?_n>bj`t|Lazz=*^`9 z3?%|(O}f47Eh-lKmmbB~(*U(JoUYQZlkTKyD;(@I@T+7Q4`j|3f0#i}J6GU-C5ajp z8kH>)Dw-`6kq9RFSJ`KDy28GPn~T!ADiz*S07?~qVI$T?wxM z8q8K5thCqWbriX^dRg@#RG+jx0pxgNN4D{3w=gOxy}u74(~_glX5iS5c+*)~D@{&V zkI^+cV0!<>g#2Dacsf4MB{HI4?AmcaHyg(lKk^BQER(=0egQDBWq65IhBE^=c`vSR z+MimvUDmWPMVN+_FK%QQ6xEkMy!hXlx~ur-OrMbUf>n_|0FDzlIWlC1!o_b0TbR2d zFgHnSk|BGCmgn{3`OaGC#hvd&_sP(!DI^{O;tp2Teo?^|Y+s6s|#l{0*@m=ahNejTh zW2xH~^a%iq6(sTg69XL466d+K(_KU;49l5ba%-jDNBZC@$lq7LSR_dT5#M!lzl9j( z>_FnSh|AamY0pKCiMLk5B)kmP=i59aS&M64=9vv)r0rk%lP&g@?O)dsnD-l)9%<)= z-|q4|438g@2iwp%eDx+UyH$;BPE)h{9|N=4fT1h&$iD8Lpnj!C)+rPfLYoX}&AYiMFu|y*KtxqBzl?IS-dYhnds*>=_WTD+v(s;*_U{Z7n0FvMWvY_zeoPSY1$CcJv&nTIG;1@%Cgam&eY>hQ8lfd<__**y zReD;1}NVDf1#5toJ58J%9y(jJib8QuNy{0Be*R)okwN)izbvQ>WZ9=!mPBYK% z7$V}heI4<7D`cq5tl!*5hWZ&|L|nRqOGg+Wd?fyxjxD^T|9*V1 zyK-+7T*BP1OFzm8UT#$A|-Nj~UH*H=X^CxQ#R1a?}is+|mS z3?ug89HTxgpczsr7DmTCZMI^$3}rzH0!h!%MNT96cW|Z7&fd~u9UYK``gXJI#c zHgX~B+ZgqcC}^@Al4KaC8#cfB4-p@bC-3D25Y{VRHj{VR1odFiH9*fpczW#Rw-*oN z(q5mWg$CX-b!75#N&4ivI^Fw`>nW4C%d&gpXG@5naN`m11%3UMKlMn1?+jPeg}^b~ zcH_P@>HjVUKaP^Sb6RRLUnSpwRqyGQ^oE_SE|D6^J9!-oJ#&}((qws*GW;a+2wM_DiT`MeO5|IK*1+v9o)K2#WPcM1z&s4!Kb@`0fOXsa(`?9S)pU9S zAgf%)brS^5?7Xio)?MiT+uwK1{=_gdcSrQ{^@Qi76gQ<&&sDb9745aD!)#9q(?%@+ zXF|RT31-sgySp-&<5@#9PZBh=!FQk0o%y=gdnb-Q6SuGlDQ>amxeZ2vyCi}6kSkk0n4}XierUrWz$-m!MB^x0Q@(O$v(y&J*sm=8p z&fnp46Rqi8ir#;91QS_ID>rPvhZbw#{blI7;hu7VS*8^~w6fJ1bI*g&&|r&N?A4kF zYs;TxSJWTP(X+XQdsd+?P!jM6Z7)kOX33T+ zdT=$Gwgjn*$ zPk-s$6$p6_9VYe!v}ywIOX8rn)g`+70oV9>*E*_7+*Cp3lI`lxizAi;fe#0}&XYSn zINRiKsoeZTMlKJ~?Lz(p4g6rn!H*dj%te-Cg7I9Vr-Y0#*SG#8%iV?=?f5`l7}Zzt z3S&7Uk(`9w#3rwGPdwlINV|MuJ?>G&c3ELNU*iPt%r9EiAaaQ!7#<^4{1f+;YOH>H z0y`oGc60LX6*pW=SI|5}lWI{CKAC*60JS%2X7Y{I2*?C0L)ey`DNh$9ec?_YHi}A} zY$!L2O&d&ewGOq0JpW{c+H^0tHP}fH7E`hVGFr)!&fI$%&({TV-OXXc_@~D&b_%{} zr-ToQcZRIIA-na@&iM1?M+0G+^tBFGeqY!Lh&{1L(081!N34`vBg90Prd6TbCc#SD z@&M6BH|!xRiJGZE$xXHwV)%S_zn?^=wDP7jrC5ao+jXi!tLD~!*G%7LL0vI z#EQbK{oW`7{I#~-Lyp_4&TgI6i;;lO#YgT&Vl=kPsFo6qr>vTix7)tl@TOC|ZC&?! zP-GjiRPr^4v_|m-oQm9AskJ6)^a2==wg=T?v_C%Bi&ti26(B8u)`(o13h1BGoyZo( zSGTsWSKAHC5-4bsJtq6YZ*Mj0-TQF4a$UnS)d#jxRNa3Ju}wng1d#mw5dh?JTg2vd zYMXp&Tt?sic2Sv0vjWKzgV%BLI~=_C7MRd9ouOurJ(Y0zUMGbOIE6$)LnTsE=dTHr zeZ^hi|ECmxJpQvhkR?Jg6Zns}#ZbrZgqs!MZQ}1M?dY8xLJF$ceQ|VaADHKm%GJFs ze+QYO7wu4yj`1$wrV_<%n47Vp{wv~sk#9FKjP~{ebHaW6CNFWn11N4Hy|G{ndIy@x zPhIFq@=|KT*1d@&84bVTm%vK{;oTD#$I|57U?G(Brq|sfg3$g$%wwiW5`_ylaita{ zTcYH7rKK~>81AveD)&ru*$cUHb3mw>4RHDtcrfr0-UZ-07OG;#jOOeVk?Z~=Ro@&D zxDm63Br9$7QXvSLu-iyrTT%F9MeMbq1{TMcY!0e;@hdXl?Qo`^JCk+;8mg9o5`DY@ z@M)c~Mv&|ZWafAz0!Vf*&@Llw&iDpqcFazdTc^4%pjPVAk?SkAwlA0trwz*ob;-S1EU4gk1WYdY!>OsNmRbd4eKRsbeQ2Z`V~&=9bhm0E1CZ0JU=QGg?9YR zeE%qo%rxHMx812)sler#T(f_5=~4X7;^Jo#r!@v1ayNbp9PKlFptJ6wI&*8yF)cjG zJa{+8ta?A$F{@LFn?{91oBI;la%BM_%dlz8?g8`GIi+N~G4Xxn(JbHH3xI!qoWP4G zyVT{E<&VbZSH*3&=c6wEO~^eKFJ5(E)GuYe^{Otj+a*ZHQ{dpJ{Be|NmY2fGv2Vou z0_R7<+UI_*2$PB2M~&zbhsBbpA=&kBW=ox3j?wBHLQ05+WPDXxlgaxw=K> zfr=qDa!0=C$9_Zrn=`mwUbfKe8x%v@f{F25VyK(O!v#=RRC>r8G{|&9hom>o(A^}u#$VQS@MYLe!lQO+4Ml>& zG5Gwtdrv~iNQAqLrl=y4AHJ2$Wrn177fAL#oWDE+NIq6)m!do!TXY=U=ObmbrF&je zb$jpuSN1Z|;1`i5^81d)+Ds{TPNrC0h8;*Bh5^NaSG z#GN{oF3Z_)o%>!bnZu=kzi|d@k&3eid)X`W_ek7&CkG?zW&(obh&D|H@aN%MyMaQ2 zLaZZBrYoG;Exy_^kk|e)D;`dR%GBVPqj)=1xrCD|M*4Z}Kl8l$Ets?MIxbmFw9NrQ z%w1<=JhSZOq#PEt75q}QDS}GD!-Mm?irfy}m^tq5anJzAJ+m4sl9BmZGOWY>kg!3J z>YbroMdfNbM}@_EE=$;;@nC>$NxfTJRL;@SWl$WpH3&ATDFtysiJODrPj;4sH)|Uf zG*tS|O7F4S|KIB*Z>}ZEco&MV3@Fc2M9B3nfddcmxE!^3zKTJw-ZNLzty1K#*yf<4 z+-|jrL7N)JmwoVxVYjR|Iq)vL$3<7$ALop22!jck0k_{#0lO(xw;sLt0GuENPK8PD zA2hn8yjMPd<@J@$bUEZB8`lRY5x;Kzal66VCTahwz4}nZNTFlU1$9?qzn7IQ^6^^k zx}?83NC^s7skDQUUIf8C>TAZqKmyTe{n z#TpTYNwF)j!BZTUXgq<<1%|Z%n{bQV_eMVgXpG-r?Pluil5Wd;eVUvqsv*WWrUag} zy;(saVUW7KU@%Ei@;Dwmb|YnC`|H(WuNULGY#6MWUYV=kWT43cIZ;;HsJwzaqhn0a zi)u&6uJ29Be;dMMNaJUss_rCQ5bk(4hN%M8`vI! zg{9|}yv?h$8vVKQP6WdK8dYy)&w&$(JvL~5%f@>B64T)+0r@EGB%-p|vdKbb7oz%Q z6wh+Mn19IS1JjQ*zjoIHM!ZSlZ9S;sBvDG${=~L>SKDbq5YKgyjx;_D`cjb`_L?8q z-Q4AP`cq+~^(ep?p!Bqd_KAC{A0Ieg2?ssrpgo7PSPk2<{6YnvoTfE^9^@paP7IgGXj4X;e+8AG^q3==vLZP>K`8MZ6Qkzhc#nmvU9C$a zb}d=9|3KY-?v9oZ_AVxa`OZr0C+kmkDMRLjd>XPrir?R@DEL{w+kN&sZHdZ;BEH_& z1vqDgIDDy9L*G|9z!S3@QyB%KqbCAWOiKOt-aV&r=CV4_4h2>12aINyWDI#O^-<<5 z`hP^Rcs{H->c3F|oSu_@{pW3buBlPbKLPJ681#Wwz@_VWFy*iJ zidFQj&kir?0OyZxO1)kS4>x=Bd_r87TfDntzu^%*M|3h}75Fhynxx&olAOWAiL4H= zD}@!g`&hYWUUj0+#j@KUpBThC-P@`H^?oV|Rz+)$V5OUmx#1eJkvsk3^VLAy1IZ9l zywL9+3wc9GmlJ^;To^|}p}F{a^}0#)6)gnxU- z9BPyyQ+?SlP+HuTse}mh9S}eN2JOZ6U$DX6sY z5%BbX?bK!Z_gcxXN>v0YafFp?oTqteK&EpC#s20r2!h#@RPG9A4~h=hXjJzIP(_** z>Z^tsSC%hlSW~<$YVc9F;^$It7q$;zi->|>P&6fga-%%7eO0-t-2z@&+y3~WjLE0X zEi|qEvbDie?L1r+Bvs|dChKFKEanWP4;9vHMScEUzM9{x23O>8qaTYjDxi@y4 zHqQ6d`kcVn&II{Jqws~|Fx$T$h!xh!v<+J*dnf+x8Al=cTm9ueS$~rBnCV&+G_x66 z9@t*{bQNHm?M~pe)I3s!hn;&l&O|GfjJ8>L8+IVGM4!0K>O2{IeSlSSe}C&Z2rN1d7k{Q}E&ev;$h z?s2s5&ajp;>Z}MKjel@8`2Nk`*p=PftD;7wsW0jo_2o+FQ)Ph{uP$fAjVa|Vv?fVq zNQoh^!vI*%Sf$uPm5YU?TSe8=sff{}dWMx7p;#N#K| z|1?OTc8w;D&oVpF!*m{?k}* z?0nSwyc?v@SMd_tm(#C>x`^1k@t-2{Tn#@fLS3$(4K9vCN>ZqNN6@q?8sWM0f3f$T zQB7{$zbI8i6jYj0ZS9`e8iYN%7gCM<0?>wU0Mkp%1qx2f-o#58cdxro)T7b|A zz2vUo`~L4f<9@kkoUiALgE35=vesO4&G{=UZPO@tCIIC~S0b$SlI~c(^X$aW;ofio zQp0rEy(Ot~xWM2h@ZVpqhbIDNmwxYX4aub*Bgma@Jy=$OTZUYsXp*G8@6Dgon`DVh z+=34;$EeR!d7G(CY`)D!TYB&*FOvucRpnm0-LwKY2y{5j;^vq72$}+Ib=)3#WF0PDM zPn8+?=AMg${$$CArDTPM@KDBPGq z8>UBjXob4Y=6b4Rlg4%Chn$;2f18uT;yEK^pfVSi!u^#>%tqB)GRjT$UDjHIe$@zH z)oHexeK+HWrPOw9=0eA-bf#vwaP-;cb#m_G;>l6yp9gugoErs6JDc3YO-!I=(mqxj zsG!BRCu(udHvS;z&{1)?rgvKn;lCQA5ii=>6qY#azm@(i`6d%y$spV?GrDl@i5%d6|} z1c%*t1!`IAe}E~de4EIQRYIalHKjx~Y6dphTOFaWtFCsY!}iHOPilDSSfbxf-2`@u zbKCo1C#$7-By${(l2E2U2q;(OT+!$o>SSU^Zn)D1D41@syY z4Oug;hv=VH#_43L9WFSiK|zh%q+i8)V$euZ>rkO}Disp+-Fg_EBA+pnftYPFgQ8^U zwj-0c=>@nBD8Gr4JRD8+as2c`ikTVI09$?xXYgw-+sB1Jgz68+Z9Lhnjg+EXGd#

VWTA5u!LDBN(-G!S-5IWY8# zIC#`xRQL38s`{S7yz@-8Wl4*ZP=4D3`t_}TxK#U_WSrW^*B+kOt`OI=f2*5AQ$Ohp zoOs4oYAc|Xk74C7W%T0XUCmatiHkD7*dbi(uTU+nhlr+<&M0z}p(SdMDN7N`v5zI?XFr<#U7 z?Q}m+-+ff$+TY&eKDeR62dtbYVtmtvWi>+yM9G~&jqTSNM?O)xfRQJBdUbK3LH?nP zM+0kLNr${ZQsx@VKH!Qx*P&-vW-FYI3HZr3;a-ayQ=7?WY1NJtUha1#L=pmbst0nQ zrzU`0auhw|L{#Fm!swgY5vACcL(TwRAdr4u==}Q#bIYt@Z~0!u_TlDUnsn9}_E2kH zwH0Ot-6xVrYO#Db$CTqGCvAJ3r#M*gIkw!q-kICwg$1v&Dm90AjvahEB{nBV8q>Qc zoPPFKMeS@pqigyz{!@>XpwgAV^&eDyMJBSX*mHsOQ+ThA}%I@@BDa0Y!q%D@!>u5&*>wkda)5>?oVm22V-|Kj&mLy(FK|4zr z{N&aUH=!)5IFZv;s;wE8OlPf~Fi%xR*R3uN0+Tt~WdfhI@?=oMJ8{hOD62CulSt{5 z!%V-#3|D*>%DSMAUhwemKJP!)KzruT2BUP%mn>RS>%#r_w9(iU|Hm@ktAfargM29J z4svl%n@QN1*L&Rcy#%gyt-)cUW3An-;|*9}8M?tV^ShhurPze?iv3pI-%#I7g7&q~ z4I*r6c9#ULid;ktG(t(ZJZT;P9WqBu?dk$wf5(K<0oSCF-DE+0fRxo2Ik8QH{ht{p z@*WG{x3k-AuW3m2`>cPkn{9Cnx(Lyz=VLmf-4cnrH z1hnX`T6m&#e^IrURXgseGO*iw%*p! z0C`C%Jm5Oowz}l+HCd|Y4@ygmm0OfYiYQm+Q*aP!&ImBTJQq>T~<(S z9Fb;2{_&3Oj?(T{B%!Ey z%t`#A3f%hXDzGtJ#kVMBv;L!PKTIsrJ0zu|?W|Yh*rbyr^TS3}BiJS4leP5Y;rJ{u zC#k+h4xt3p!JFO5=vcGB&YD)OQWp{9vX+Ew&}`{JQ<19}Rs_=ib!fvEF7;TM!c?9= zJ;$|+Y^0rJW!9Z6@uF5C;^J5=kqLIL>63k1EA$J6YL%Ve<-fqz_q_9V;Li)x_Zn7X zp0g1fYduQ5f3Im|j^&oO*b8)l*(^A0OyTLQph+8e!Oxo}vg%!5xB?8{#cRJ;l7S+v zciomo7%@A4u`=L=)AS=ZtG+Fs{B?L=OI?|6HyjAB`m;K}v{NWX-wxcjTMs`|bW0Z~ ze1*{!E~T%t%YHu;JM(u9n`my@aFG#@w8qURjP#G3agzcA=nG8;KYufZ`n|Vj2jE|& z_A5!dz6aum6qLbb-0Rp>$S}1wnjg|tbExe)QTg5oD8)?gwMnAwqPGa>2$$`w$oZXW zE_EhI9%E9W z#cBi0YiB>cI%&x=v0nlDxpT~XjuYdIMY~yE0)%lI5j7yLo6TfSsVvc~MK1~&Rj46P z=vqPY&afZk7o9`9Bw6@W5PgMyPMxo(Zy6^g3x(N^?utKsu3K0 zb-wQTor_2NTl2>CKie*fKmUgUIJ*Cb>*{ikI=eJTmT%hPJkq5xBy3IBLJsBJC{;Q|z-iz#H!&3ZM2@+m!4JJEG zTEQR+f;mNQzXzLauDa5js&WVKV;b*X$Nq%sY6uy`0SKJ%xwhzNg?j(ivynd@y4dz7 zqS;(t^mAIb#VIi!r~elq^`XEA6pUs`^y4G76!-*SMP(;)gDTj5uPhc*KmYYI!5PpJ z2bbM?vN;w5P6Ya^{^eNUd@3HCI`^nmPpHsQk*ml~c=6FcpJGfooOdNUDM_kz&Hrmw zz4l3k5*(etOR!l}Xe{9GIzs}bo#lOfL!bBDYZJ@#QHdQgeM^hbV(vRJw}u`NZZ&wLDRc z32;B&9%e>!pT8=4i^Ff>s}GMAO@~0GjOP*qt8>-!^DN@LXU<=_-OMax)s~5-ID3)T zH#p1>anVG!9PZtG>{2_c2d@k*9KvzDkz8aq%1BigbdI)cr7NSoXgf`IQ|HX9-gJzR zVSK5_?(%4Qm03R&V=E5{9KHbPVgPp`b?X+m<~5}>>a&i>4aYNP?Fr8@9L0Eq6Qh;H$}n7xPV9N-55Ymnr2(#hkoX+zU$b z{;@XQnw=7|;yuPSq>lbFS2$%KsDSlF6-sogTi5U31F-e=BsQO|NY6c7i}*FKVCs+`E6-l zS9;a>js7nF(;LgoDC&h&LXAR7(0shl!f(|)r;Y@Nf=lGyXo;Okhi-kp#ms#9rpW*I zj^H{)WI~1&3`hOORF$L$TqHT9Pjnwe29Gf)t&r8OmblNN|E8w5T&^nK*w~A(oX&W} z*OP4mcGf#GnW0MUf~6WO(LT|qv-sb)03k?0LE?Ke@<$f~*Y_3*84p{|eWrRQ1A61Q z|Mi1WbxQ4D)`DqcH?EU%Q(KY(@rT@A&Ev>>Lww}W`R&-}S4nT3OADo>Ac@|X!pTIs zj@^oE96CdOXMjBR>kZOd)S^rmNuD*mLEvJ4Fp=JhEE+sR-u#3v@=n(+>Nb5~-M&iK zP!xM7o|Nls!z+@sKF<5{v6nuBYx4fzd;RZ^A=ID*7t!H6c3vPQCDSyS+Uiz}pr+@3 z0PF?nR_ev?H3RF)Tz=C8fOXuPr<-q!X*m7|VH`%0P}K-J?@Orxn~ywzVS&lWv6y?( zu=D2kb;_m)z`pIuf)aFH0CqE&Tllu;(!k!{OoV0iTnrq=Y*zQNQg7=t|NLcc-Vt}F zctBg7u`&dEbnA&QSt>9SXe5a9>FGaz>$X@DbUE(6`SM6{FMuU%hl?iIy8V^X*eJ3z z;xB`S!^#G zDc8CG?*&Pogo&G;Mjp+z9y|zViQ_wcf5jF@lX69_4pEWPoL>4|0x?Ll6jcl#o<=@( znhLnOM4wM^Buo4B$Bic)??*RKhc`x-@5<`!jB8{|V3Y7>BcFU$vzSLT^e+*XFn|CR8VjMIP_z87JJq(n5v!;RBWvAKeqdbZ$8 zR@Xn362Oe73m)YCJ7INPwjIpV6>O;5R-L2+iHw&kSPr@gcjpU>tGN81JbISlVh&OX z&Lnh$ij*%?01T8z^W*l@aU*}Ae&)|;pN%Ra<^**6mrXZ7yA}L9TLw$=nsswyZn*&IEuJ>@A^(Q7R0u#w;xSYH8qz%l2 znlHXAwwD=vHf@=hyN-=WPG^u0L=yj8Z@<@{T}vzas7Sf;d#J!VCNq32}}7YxT^Wf%vEN4$<=$ZP|jm6%Gsb*l!0O;G3$` z@-Nz2kZ}gA-wS1zt@v23=6+T@yb%=Mrbo1ZK)0VU?$ISKIP=uGP_lMcw*O-eY+RH8peK5Jj!MiWjqqc~&bC)A-M2 zpWO*>%cH#wntYjUK{7BZo)jWs*;Hnsav#4wAs|_;N;-Hb(L3fPva#1;^b| zk%X~Ig;NBVFaUNEX!#An5p&tp7q30ZBauT90V%at2WoEZQqJUATpvP z=^T2QJx;+-_6p!q?QXc5lgq?iDEfr;9?6r%h}hy`Ql3a;HzheofXV5^5m#=e;yb_p zPFxe1xHg}4&(n!Jn?_uv(I;18e~f^g=_+yJW_}EN{+YNw;=~;P8zivN%1{f6OC;f0MS7e=y1NP@)!~8ccR~x3>9rNs&T0kz&yY_!dRL>Ypc=V?N z{h!)JT$dDbzi>fJlyEe>-Rs?$ReWgbubQ%@{Xa$8pQmsKmB&DmYGrt!|M9lebd-)3 z+$F#rIZ}mrHR80sT0AI;ZaTxd8%9p2AifGs1;rlDk(P^%vZBk%C^}A69n(Z!fyX7p+L?)NI4eL-g3Hz@@g`)rK(De*ZFuB-Y=u2s0tlFu8 zn&NGe*#|T4chTSS{YLJ%oS7a=5x5u8-Jr}XB`>JWud z&ZB=1cbv{tr+0JnFRkn*mHfhspmUAeQjR!#F;3mQe6rs1*N4xjtq8&{vUpI>sLN9W zMIRxzxv*@xC7r4fcd;F)0yj2|71tWDlRj(pyB1-Cu+-xO;>$qbZ8&P_LZl`G#0(Hj z`8&(iPjGry|2;-5_ooVtoZ&@Aj!cEI23dE6u`FD|AbtL#dU-D~wQ^Txb&q}~ympm8 zPv7+|&>J6rQC);fX% zvS^n|li9?-h|viBXOM%n8TRg4i3Kji(SNhb*Xwn{38jOkB^|A2^vgnB@M*|I@4U*z z@09vCuSucQ$G1~!ZKw##Wizy{{YXT_8`>l1&x<@-ZrcmJH#fInrYE~2yR3%{CM}Vs z(wd&tQ6K4fnk0rznW3r$E!RaWNGR4B$8#EgQD2p4&o}H&`p+z+M}%LH9Jxm9Hrq1> zDe85etScNY)5A=Ct!6Rs(^e`ft1(I>t69D~oR@`gve)X`3K}+NMdbAc-=~l5#;^TQlwL5s$WYn44`(xz?Fs6m$#DZaMx%Tsx%H*aWI4bq*Ihzt=sB~yJM+R zx`+rT)-Bg5-(l`%^2=M%E=U=J#aopvDr;=*c6u*_59iglrKp5dxP_} zN`Y0D16jLHr_2c93TvH{{C5n>vtB7KX7enZ_7~<=F!{3 zW@Z`#Nnqo29eApWnuZ^ql~!yD2PIeIH>N6V^(AP-;2c?=p()!P;mwr-Na0c1B zjG<74Dbl~pc@6`PMdFCfR!VJPZ7wGq*=VS5@gg#=rCpHJhlD@aqy$QC%C#Fh6vm5o zIVMISOcME%Rwdvj3kPL{chJbzU&8Gke~ij z!%Alpilb0YMFmrksH*m+;g$fv2?w34fY*fQaLCWo-aVL~%q$CnZS9!pwhxp=cH>}X zu<;nvYJWV7+-*J0%ANcIK;8^iIi$jO!N&W5wCm?kL)Nsdog5?8WidSWDztjW@pHV=B*=1FsKEha8ve?w3 z*)Zl}zl}yjnAAA0@^^$JEP4N<_vBS}sYwr=I(dr+#hHdh?sL(w@CmO`=^C#U!xib2 zKe$F1*Qe5xB(E_$RE9m%FLAPsfRvlV*;(^*i|!MX!Zw4?a&1SbeF1vxO_=1S;4&0xEO-IAbG`D!v8Mk;wXB}{bFm&$I zax=^3Ft{pbpdd%kZ13J?d%UvstKixd!?MhZ5a26hBRqCD1iO|>9pMKRYGZ$FAJXd| z*YI>#jz$!JAJeOTynC7il%&rQd%cF^6_;kA%5m+Z3!lZ*u;-OPu2wG25u~E3C!8F* zf{L>lbFx$Ev+(u3MdgH-08{4iP9;)k{%c#WW-76YOl;hPnMLr;DCDhtiW6T-_Br_n z9%6*Wdp}1^P$_qtc!xkk>@ov>Da?roB{=?VcWh^+zn@-m<1QWH`JL91oiPX0_OOZ3 z#C00HG3~hY{KyRaQN|Mg-Px%()2gcM1`b27AmbqAB<~YS)KX2Jry%lZ)3wV08K%G& zms8`mXhzUWLVpcB^f~H%KXbr(V&Z5J!&BuZy*iTm>jxEw{y5Z4XeE{5Ask^h@M7Iv zK}Ac+%^X4BA8HwF?_W5?!`YUjN^h#tFM^q`FjryRY^( zBEnN}b@NBRKt7xOpk{Qc}Qr*Uk-YV%_ynC`YGn3@r z#n-@FGy6q-8ZyEh=oNPQaZv*0cp`IOteLdcR(ga2%gR`J{&rFbv*N)*I^L?co!GaP zwA|3|by1{#c6Qc$t8Uu0uzV=br%j72jQy8C zCJXfC=LalNl!E(5F-DFYvTHKm^`Cg0RAYaI%Q`AHZ%Dt&BxEHryHjQ#FGYZu=W2xrs*3d)vcSOU% z(nyZ>HBZlIA{Dzla@Uuli~0j( zI(_2@=*n@9pM84fGyN9fHBm8(wF}N@M_meXPqaN;Ur^{I$H5nP;@~J`J>rbRhXuI|+aCBom2UI<)HE6o~D>a#+a$H6r%pg^PRh7^XcvH(f?8+U{RZVo{ zEOjL)l5ch0Js!9s_tL!F6M7~Wuk(_yRMu~^b~BOZ6_dk0(riGdzpb3}csA~aey&dT zW95WZr;15_%59A>Dh{99g;}*y+!{$&6lM3ZuDzT=ie~wy?=#Ns_Cv>s(@7VkMy^rT zo#!pU5T=f+?i|k~RX#lgpfMw7n)|!!Z%=n@@d~As53N5GrQzKW*e3J~SW;oEZuawR zcrn|av=;O`_PE#fTSMljC69PuFq4qsucmy2{`ljQA#PU!P5N{U!+HF=`dUUumb-{y z&O)z0r)IdivwuTX;c&W6vGPb)AS}!(Hbv~dJ!&K9vTZn7;31xG{-)cRv^*}Vs=2Au zBa~8CK$1EJilVfg&3TG4emF>yhSgTGMg8@4Nt8sl5V<*{6Xa=l>8SKULe+$0zorGe zQ%Z!)dGn~*l8@fK>q9BQn=VxS1mC=n`npIUmI~1I;U^nfAt*gx+84D>NRIr%p<4Yb z+Yj4*MOFqPrLBCI2OS3QF8AE$Pc?jT)JiHV?PIqHMa}sRM-BRvi(fh#jp9>&wQEAC zu5DQt^H_kpcIv_gu24h?u*ZT9X|4pxp>Lu_2zV8YKn(j+kEM&u|Xsz zV5{@)h7Aw1Q6KhIRAJ?qsH8^x`*+zIU0T^EpfAuOmY*;@53ochN+GT8p(T;Su5y3s zUobqXY_1P39YvO^W5Dij$MfD-gyV{w&&vb$6HH66SFEX@onzJScN;%BPrgfUF3^L@ zb&0FTt9s62g&e6fu5eXS?j6R%z0TA9fR*1$H$S&S1M?>0pj#g0^bzmk)^#>Yj9e)7 zgjOd33GkeG#U^+BZNzs!kwSB*CDW!m#l221l?th_RjIt*{p#d6WaS^X7{ba1@6;0 zBNr1(dz>7#r}nw={mJL=n~G%D*i32)#D^&cB>3)YrMxgKaY9!egg^|CQSvim7c|0! zUi!8T=D2~KE=xShH+qy7?P9jEDF;n%4w{A{kM;?fN;&n|yC<)XcO&j2ci;GI=4MYX zyLZFucgJ)nHrW2+AQsO`_i1KDV4HfT`|!_o(XdI;Z$(^)j;?zk(tlo%8h?`EG#R82 zq&l=M6Mhqv+QIMWA^mTI7R8pSDX5jm*3{+|tp-LZ#S`ngyB5ZU%$*1<+J&(Hz_HkQ z_l8)HBo4t=t?*XKooS)pCcWx+6RRaaU^h$?%vZit>=yA70ylG~SN#^Z0B$R6FuoSc zBsLfN%hzEmFVo@>A#8^(tedkpQ8#t;#H~~^zvuL8`QZx9($S>`+E3=mBZHPVc(Pt4 zaA})&B+=LOXKO`>fzB5+PwtY~WcMAm_;9Vet0Q|`X2M}KLC|y8cC!ZEuDYW{Oo}cA z!SVaa!A31j7rcw_RgRnQb*sIDA9N9+!~Oh=$n1hH#l6Yr(Pk+#C&X3|(tsD_o#CC+ zcu2(t`MfO79OV=~&^ek9?Z@6-i$Ob!yoO>lng}&JO9ZR0NA`K#RCkZ3VcAXBsW_{Y zekkr+(2P|`vn&B%98}c2_k-DfxsO_vGRa{)`ZYbzo#dLgjdE>DCuTR!M?RL}+nMmj zSk!(G89pXfiow#9F^dxdk_xLl#l6Lf;SgQlUmt!;OU$yAiHzsbUrl`62u!x;yI-X0&# zMt<{8xYjPPEZmSW@A1jk>|my!V(6*r(QQ4Ga;)(W#p(voXb2M?8pRdBRx;2vxT45D zHiR+T*7%k?VpG60=eMG?WzSl-qD#?KYJgAI1N@t{?u7I0^d9Ld^*Z;3Qn*k1x(heg zvlWl|6pq$^TF4?0&@pZ+5c+HtYa-bN`poG%vy;u(t-uC)BIuH~cvi5#NOO62yL@IW zlB(G$dxaf?@qDu|mTOXYq2uZsw=-WYg{ws>bPx(k@pT?Den9&RickIW#(}@0W6W~* zhkJ4Yx#h|FAx+3sO49Wlx9W|o>vu$*MpIH1ZwgfzTE|=QBaO$q4WOMd%ZNSCwyGpC z+_R{i!~qyTuyYu(jM#T|ZOi0CZ;V9EWoMP#AG=&=zpka=HB+YC z@>sURkas7b?Y0S2UYAtyt<&oLO68&1x>n|!3bm`jtJS!0dt8x+exWyWnbT>ZPlO4c zoFPLV3?f2IQ&JjO4P8-;*xF{_+P$B&vVz`SY-fzm< z5%xm9@Srwd=n4B`_7c=m3fctFZq+N{vi33sXZQ9GB#nmm{DPj(=6pus+C|LV{b761 zQhAcLUyzzJ)(h=qG{cv#*H$NPG5difVvFo_ec7H3PTJ;)1>I9na6Sf<8QPy#@-}|a zYdturFFMV6i!^xs;`?m%hfS`-2;`+$PNc(fJ&L8+11(KXowwuG7nSRJ{1eekYJ*{t zO~H3pt!LR-{G#Fx&y(>rhQ`QDYQ4f3VQ~`P>wiU4{-u?{7+Zb*Aw7bT%f+fe%}_VK zJyNT??PAm#7NrInR_z8>Y4x6?C@TTVmD!bsJON+Uk{BUu%6z*~9=2rPIJRW@)*C2!b*F7{|q5H!%Rvo>6`9dP?L_1fqR&Qy&vC@ z8NmVNAno8er);_38gil-FDg72sxlbOmhmjLB+V(mTOwKg6v0$8xh68yz(aZ7dv#p8 z;c#M2_@y`he2$|8vhnZ7x0C>h%H-0|tvBHmJ91K@KFu02$r-36b4RAAen?KaDdWY} z2*UJ0m2+g_bOUrVhyfh3B4w?SEYrQk1_&!h(jk1a?bnLiYul!=o2&k7jA&0?Z^yxF zsh@9JQ}!2B9M})CD;!pH$e&0Vh+F*nFdC`4AEeysUp=hHU$Pl`Rg7Cf^Qs5Gwj)d- z+w)vwu5(}h<{ex?y;t4-{P(?ubZOX(u0qyyIcSXaf}onoU8728vD)wi?jmc>DcaLX z*Z)Aq2_3nPg-_?|O9%3m2aPp-Rj_(;@Ot4jjqrzisz=;@j?dhu92%PNi(-8h7j!II z51TSEy+TXw2H4BIkAnFYX?l<5>=Pvs(Ju}qY62+r44rfJ{n{?y+2|Ls*u?hRzxDAR zpRL-1DzI?0pS*0dtN(78LO#JIKf_RK=LTRWd!($ktLKK$-`ubUf~3L?drU=v>X z(7Cv)@p^jmPK{opcG=&&5p@UlM0^)@yx&O@g;m=O=&Fh`!TzIY$`Hw|rDl}BcDLE< zg~X-sBmS+IPNZ@Y$%i|zEs6b7OD8U>3y`O#JI~F&qaL(NM9xOf*u1^o9)AnJO<{_- zubW{1*PqLN2Rn=Ol^9o>VoJ0tPtq0tEJx+UjI{iNGshhbKsgNp!}$FnF+V7!jZ>_u z2RBK#_!7@yx%t5-h}{pr@Y%~@&+xpa5&XoeHre7WS8M`?pH0jBEA{NI#|bnZgws|R zTHh(5DZImf;|X0btzB$V(uB>@-yiRkzI)41eGtDWuehYR%TS3zSA@}`o#@*G);{?e zkLJP+l}LKNaRjS01Wo2EXm!jEKJ%r?OK3a8H@EdvmE%rxJIvTuxA<6Zj>rAnl3Z?d zyA^b7WE|L8e!3OMnsp@|LwB{#q4Y{Q^fYMa1}&m_e5^T*7awCEC)+5peCCcO0=c6R zSZr5TqT^+$3)Rx^8ulzcf2q~Uo}0gWTv$079`dm$MAz1x?REs!s1%~ae`(Riq9d;O zGtU{24!5QYu8I*Vk4NS5HbnnKRu0+EcNYXIYz-U=eGw#a(C}M(ljYD>DUcTlECy= z)52Rf12j``zMy`>X&)OmKkJfTos^yx+M5=kgaT z=*z=cnJ%s;Fw)XE&uBMe_sel9Om~7j+E+HZ`qZ13kO#`{ONIv9C}U%T3*Nt``C6K-nEGIa1wZ>8|1bHQuAJH8pOqg$ z^oCnH3i0cMzFY2nux96mee2IW6Pxz+UjpX@)(aHmSk9Lj2#n%P zzMeZ>CI-|2cbrt}r2PU4ph48qgtf$XtFd@Ck|_1A$6K2Mh+isv3$v|J6Fjk+QtVHT z3XW1k&MW%<=&y3+%v_dlN0pjUlIYgy?eEo$uayF0?bavOnF!`%K8}ZIN6p6uZj=6m z<7qFP{N%&4BI!L?04Ml2H=_9dry1c!bHl$2VgL z!p>}>w}g??c`f%=ssj;qoA$1?(|P%DN(*p)dB^BzmP20qABEPd#((H-Klo`bV8Rc2wL+9~%ZCib!tWlfGdwIe6)f!# zEycxu(k^r=*=N$#+WsR660d6P<8xDttqXh*2&pTx!^;maLowTh{rki$))PPxW8cp| zWGHQAn5-Z`Z@;w|p8|N~?i6{8>N%M#r(ez4PK~B}{3Nz|Ua6XAI@m$hB^ffd4D$ha z!s4d4e36lE{wRCvKUh6{`%suRYR zy4}V6*Q#w?4{v1_cLONl;=*TDPW4LFnYmcAk9G1Ro-i{B|C7v$gF2NztRqmNU7wF1 z%V;z^1tFLUmEI!?Yav_Ksip19fMXVE=#vAA$A*oOnTY0myOI|V+Ft3z22Lqz<~ON8 z(ULXxh%Jg|v?MIsgL>w=W~sw7De`^{?`NqCc6CTJE1f6o<>r!m)8WILUe8TxJ#sgy zYU)1m{Nu$b&YKw>P~75$AC2m^Xsu9JL5Ld+AtB_5XKXSS@`t+pSL+d=&5Dl^K5S3L zR%aTRj4fU{Z`_5h zN5S5fYndtOc9Gp}zQ=LVwuwwy{XRTK$Rd}^>My&dpW}kHl7USfR}>ewu1IZ^#>rXf z%@5ajKpv%@HBAw_3-s+}4v{Acmr0&6i!}qxC5dvOh%lbabgBM|rOs{7$yI)l4{gB; zgVChq2h5~OTA3R6a7Cq$FUdtk-~ig~`M!JDeSd3UDIcLX?ltO*y|L9TOisl(T=g3x z)kRCv7Cn#Bq3^Rn0;bEQq3AQ+>ZoP(4Uz>YIZD~j)Cv!FWch}KnfT$2ZC`njr7@34 zQq;<;HSmiu)%cQ@A6nA93){n(59Px}1h2|%yHxi-ICb^ef{j6Jnq2oYjP{-GGSe}& z@=|0nu6^;y@9eB#-2UM|b#I;Fc*VC$x#u*J#rd)_Ld#Mi{L_H=%P$8q%S^qX_=WE? zJH1Y+@;J9D%Y+;NPjJiJzA##ll!*nINRazommF@nYA*tc!_K7u9%&l>&k`*N_CYw~ z%WgR-2MHt3=2>imhJO{de#-ro<{a=i7Kq$*C+W#Y)ayBr^a$7yhK>CYL$#&?HEwwe zKm1o2Q?>TxR;yNG^z{Xx0n_8WKxtlnt%tg>tjFcLYM#O=f3N}O7O2X(W-)7{QdPx!+K=JmH(J`$XJVS)qXI=jHP8^%pb#a2WkRN@QPZ#4`Pg3> zORFv^#yD~P;?qkcQDP+W(F&?_qSpfN>FOwX2Cb|Ss^pv)cb++Z5bQgiSqL0KawS$_ZLY*R;imoaDFVEvV~tJH^~2W!rHRB2NfigNa)>Hylteq~92NSb zohp@0kAN;IpR&YfCQRxER9UiGgKP3WIqs&+`}v3{mjP(p#eMl|0Lu>I{9E1*a%^9W z;|%_I6No~uSN<|ul(ZX=^^_^st%WizqLaNom;wr%QRnjK>^{tQp%<3 zN-ZdML!5dl(9Y<$Oh=IjwCiX%YOXn))yT4O0Azo|SZ>Sj?qcY|m!j zDkk)em$3-sEMpb1w=1&y;f))~)tf8}badZ18XN4r%t4Eva3L z9}JhKeMq-?BezcZVAX$BzWELn=ibCLyiN+k#&jQYuFhPtE9FcLT=hjACta}1$M3&< z9*aBKM~t`-$onL1N?(W0=OLBhH}-fG&7@!170t-q`;*ZHp9Qo1UFY7W66gJ)3XmyG zRjXp%a;0}GExPQ31>A0c5omid1=mveI9${q?0nc%IfFs3u!$J^^vb<~3^RmcYMr2Z zD@V^C(#31^bj|ZfX?Z=h+L?i}#?12u>NV}6B+>YFA)lGuQJb|EyRTamPaa1n?W%X* zlW-_3xAp)O%~{iZ;GUZqV&L5xX7~=yRl&7HnlR>%^P5TAG$-E}`LD;Rc7MJB^FaVn zBNMdIZiWI>(M_$}LdCx>L#XHJeawH~cW%hc;ZfXBR!fDIvw8lyB<%vPA2Kxms`Uj9VF&rT+h=B#{ivVq0F z$BBZ)lQ{P&FO0P&V#{ zTB-s^axv5Ew+jvTD&~1Ad$AE0-hlel_n)-z(ryJ==emui8}RP5GWPkSD7t>^o75A0 zHi|Dh*=y`5X-S{BWdXU{T6iKu<%ze?cv8u6=-$h}k_{_g;82#eVSc~TNbA!H2`1W- zclmm86xg&c%uvgyzf8u81`pWp8EO0_uij2;3YznMizuu#l}jw)!b*o3yGj0{5x*<+w(%_IDGNNRSKOhvwaA)cg<{3rR`m^s1@(=tBUfAgd5$k zWd)xncbLCm^-VRiv0#!#BD$3nD87@_BuOpaogXBqFX`db><)Ix<4><8i}w z=V<=nR%{?P17%t{>E-X*_K}CJvZvCY{f@9Ya_EST~fbq3!mk zN{;p|k!oVa^|`X{RMZEm!Y2B=b5S}W`BcI=HXtm;>qWR_lpdW z;z4i3JkFSk9<-0fl-3zYa#h9kC+C4`Y8uvk-?s%Olr!@zd|1w{GAeX z5WlxCqQ%Fgzr9ebmVoe8>_i6`vZYimSFOLM`PL4p33R$1(9sd@)e%mpT$@e2Q9y6T z(*T6}y}M zo#qnL1c%nE!7AY_5{IE;P+-$?W7?=z&8egTm?v@?fq9D)hyy%~KPjlrlB5BjV=dG* z`pxX2Q9d}?UE#CX)fDeZ-(CeuBLQM3@T9a6NOvNBOVNI;bU_MaJ@yVwh z6Y^WR!yEI+=z&0|S!0387Uv9$e;krTZe>8{n+rz4b-R4H35P&F)nL)pIGLrFLVNVz z-Td&=@)!|VI7E`hChqZ@65GrOgG?D?k5|_CXnNvW_`V6KrRd8n)MCQwMEo_a;CQZS zO{t^&5$9#3mVzz?c9taBc$2?YerH5J=qNp%x$VVcgf1+Mye~F|`DEkUjhUx|l7T1t zQCCun*%t7w!H`Tq`%gV+`BdXy9w9bLY9txK%NUd%=#HHkX!GLzbjh|L`-Ss34^H$IQ$w+Ht2yCDuEmwL}Tt((Vd z5OU8VH_J;7aQd!|q*T9vcF7`AQ}QERq@gP7zWiwbYHFAtgvM{ItAnD80q+jTON%A^ zRZsihr!^M?gfBHhn)XUN?Pgx&^$t$DS`DNk70Zf@kI4^qBj6|EI5C~Bs=72Yd!d-V zQtY)fx!8?e$kLIPt%};xU&Sm zyIiQ|dY6sPc)B+5=&Nq+X-URga$GQiK$zGrWef$-+J6q}4H^xoN$1(V)RLQu0bM-!?<1GgWwDd$~;lTKYnwAFu2D$XuiS#mhi@M$+gI)C)jW#8)w54B(`h zv^TUN>^k$cNk!7o=P2YeKk>j;w+T->y5DGL0lzO|R3@J*pwf;XNKYZ6fc(y-sLJ}5 z?b9poV^brB3XQT?yoUKJi*PRVm+qd3>=Nlg-RvR3RI)&?6-@rfw8J(7$urF6qcM08 zkaZMqG_iIMuZ16&4)0SWB)EroYIf)*`t7$hfj-IA^7btq$)s#w1v2Icg=#bc`6GEv(q8 zlO&JS-5S;Ej4}S8w`dXasl)N#Fea z^*sj*QOM}p26zVM!<9-i$6^$d@;vm=|o6kzmeJSK^c z2gBr5Ew#dTh`~n;cge0ivs~9|u%0|v{(hhCBkM_^WnC=UXE&AfeQJ`Wp09zQrR|}k_YBtY-r^@E@)OJQ6>aYhNc~bPp^YRt7j<5yyFq&77=Xr7}Yii_FPm_tj zr^=N)Arjlxvdm$qVll1`HT+7VmVri^rSff&$}1%kO1GipgRY5!PbHVJ=+{wmF-F2} zXRyk;GG5EJG~3E=*J@60o5mDex4{a35As|G#Px`dO(sOGNGoB|zr z%nNZPaugHf-ax{yWdP>DxZ z(|_{_QGpsvd3nSe6KL5jzbnX;Z~=&K-1P8uvPzSE;!yJ!@}SKj{Bgft?jLWV@F(W! zA{ig^^Ysf~q-l-$t?Z0Edz|^!ZOjGxYlqnozTkIGKJ6-vQsb8-aGd{uqqDDb`0agW z5o6Sh7v(yE)|(YGMebpQcFI8weW9&O?L84$NDH8l)G)G`|05Fa)JpTrM*(S_f76AC zx=Rk=Jj*j#8j7{sIL73DFSFAJ0be@pN|>^g^7RTW-m`o0I@6SzdIDc#8XKh>C_qRC z@+P#4+rniT?kNiFtnsKr(hXOkr4buaCC|Uz^tUdJSgxn-d5;a@lA|W3s1)UH3>kS( zEPym12yDi^t=-7Ix)F6CP8U(3CF9@uDt|n%@Z}pHF}=OgpCjCvpVBZK@bl6;O_H-1oY{@Mc?%?QPlTMbFl zVlu+RcR;{j0q5z5b7|+Py#=!h{F(US%Vq7SrY~ySvw)Yq@HOxMVec)Ys@&dwVORo^l7ci!w{(YrbVy38bW2FX z4F)RROBzWD>23uDq`SMjyUtv&_c{OPIpchK$9O-y@A<;mxF>7fG3Pa}d0oFyx)~fq z2L^{F>-$}kjh>(b+8VmX+iO-E9fmm_7#oDL!F^4B!XSGLcq&i6XGdI*r3IueOFDD- z{eQ?X-FTp0O!inK;h({>U@+~YYV2!n8HOJoxC6ZGRl0vi%OFN$jGEj~;y!>o@Ke!X zyczue@!N%XKQz3~OzXwFn-c-Djwn0S{(ZFXSMXtXkXZoGD1Q}&_s^G*$ zGO@Y!=q_x5L1jl@GqLTtoEm~(7irp88jF~WXh_Hwf;G3nTVuFg0A3mam1qP_H$7m& zA+>m1PdNC)VPy1MKl_}nCm0IM=l|W&5KVy~46It-Xaqm(HPGM*dMh+^lm6c9HW=t7 zwiCk9FJ6CP=q3Q%a}cPjFy~L=L_<>lW2vi%!w|`2dbCcqr|>wo2Mf}7(mUB4_~zL# zpn((!#G!Zx7A;8rBS7HLbOYyf2xKQ7xB7GC5Rt>2$rq8Rb$@$8p6!0{KbeN0Ie~&Y zT4F&6WVfx}vG=7_VU`?oM^#a+3xdDum!`?5hyxrpuk1G*|MB_s452(o3pbHGofiDJ z*WrlS|3KykQY!+F(XSitTRwoJF@P9=fWWEYUsH?#XHYR+X!KF?b5sC4*YotY=ntrZ?)fs%ZC{>k zH3O-UIF$h2kCJm3o~J9BH(W;kNh$p=l7s{;Qzl*jAFKFXDwew*-1wqa`wj{^Td3q^ zqZ=@pnt9R(+Y!nlMF%7lk+6CsO?1$nx&!N|zXfQ7bIWUv#4V4yPeRN-0vP)|P4~IT z%hmp@g<&r*24!%4t(Y}HzL()r-g%$5rVa+g0+__>`^%}82$?i|@oAsEXj097pE+?r z+=ASFVmA!DZHgw}X8A}mV+K+PasLS-*YZ~!TFghJOst5P!+`z@ymop~*I4*VQe-CN ze|fD02)g{Q_n9l#FXB4G`oF`k8NdIhC-dr`2YJ;s>D3^u;e@wv~FfZSRYDk z*^Nwi01D38c#SEK$0D}AG#vQ_G82jq5{-8RR}u@f{n}UEVBDoD@dGMQoMuCqamj`~ zc35bS`QSlzmiO_)2box2i`P>~($|uEG}m@%|Ni*G)^Jbh!4#5G$h8RD|N0>*iV=#; zlt^R2P}8sl1%}-w=Z#E`{?WK4gSN%Ho$00`pJlLy93yA}IdE4z;6T1sQ~J*zo*Fbl zAv4Qjlp>qTSvslFB>=Yc!O!n>)n>8kAKlS^&EY&HX+}(tMu8hr&B&ZhNI3`a)l+4o zk^BqiWV9J83G2^N^T_Q|LWxIp-kPL6J478*41lwRX|lhMciDr;{_|U}MY2+uw`ZiO z+p6k^s(&Q(a;6h8sYv>hV1+g;cBHFkh1;$b-9pxaVUe&$14GKT&V*{?E8knr3f&rF zW%vJmF#l*LO>e+jIgpssKf7)ILmE|c_ln%HkdoY;A51uK3v&njO{M{Cxo0f zOO@X0jv1Lj^CKFQzmdBaE{(I@uuuQ>3oux_?b_wEtM|T-8*+!B3@~v71mi${9`b1M&v?U=(48D)B5X;DR)#Sp8gs5 zvF9Vd#gSk40J`Ke5I?ObUk7!7KNkmZs03Q)g1;RBCL}lSjLyXuFlJjoY&Q9#J-G{N zssv z!Z%x&4jt+LnK_|>C{79%z@(VlZP!@4+W7~Cgty+g0&xJ4UXlk*mvoIBP1RD%0b{4% zdWgw_2f;iTlnR6N#oZP7L+)8nkF-Tczh-}*W*%S~J{dTohPO>O-AC&!>=VgnrMXt@ z+##&2wEhI?+ISE=&hYex(}T5z`+KOdXs7#|6S|9CNu1T~1Q=%u8BGH@T5Uk}i?bt6 z0FE%ZzPdb;s00G{MNZQx2>Ic8x`!qUi863P0{17Tc@vEJo;=d4K$Pz^*x-KLd*!Fu z&1fj$*^)pAD(zyfoY8g#E^`}~N-kSJ-4OccetmqpFo8aRCfICg0UbZuuKq$(Gf$7% zqr)Lj7$53Mk?JkCGejtzZM~V@W8BQpc5bM{=;cd!!*aJ6rNz(S`39yl`hqkKSu5Obl6e3&Q0BfkjXXukP+@| zLv25Kcct{1gB3$Mq`L^cRhW17g`qweu%Aqh&Kb-lt|#)|HLorU2PRHS6Eg;&z9VPa zm0(p~%7s63d3pKj?4ZVRu`^-;NM1iDL|)lSdWLzI#duTR&7!vglml^dC}yNQzdp03 z{l&blOBopdlAC$CYY>zO>Fg$J%0hfQsLH}N^MYTI!_Xl_gmF=O2})cmhs~ph~+L8w{f2U0Icz!K+@e@ZG*QUx8cWY=`%~NcEgFsx>n#S zY8bD7PiyBi>aaMgLCOc^coB6({N}(Xev$fhzAdaZi=(h!ijq)W{xZG?9Y`zYtr$DBBn_X_UD743R+=eN|DwmF&so zNX7H$SS|`m+}%HK?q?dm@@(ik3?rzm;{f*@u7mb20N0@ZW z?ILoui~cq$#<^x&9x29hOCh$qyU^dL^5DcfFG|b{DTGe*Bbf{yZwgFy(w7<0?Ytr@ z#98tdGH5o5Z|yO{xwW^*|-?UFvr!An(u-4|JCxTe13~%0CKCXPbXF7cLnG&QPI+vTY{t=Tn zG9S%r#ThBfuKqHG+If1PfPxg!JoDF4p#_C`H_Smq}x?(ddR24tT z4G}AAtr5!0{xBBJt?{>@?3O<BOwmUgOWO<)8;95axdY9ICP4;vgalN*Cz1u63|P84oO!A z4-N{%cVO51vTrqe@+~$okHZq=GK3hNQi8DT-^g+a5}{Mo+!tIu&7j$Bbla2{$sEXj zFdQF#?;x6|h+h-*GrQJBZz4G^m3EA&7JtEzKg`ZrPR#|uE4KRTQkUk}zO1dMTDC%> z&R+`tX!y(hak3bvZlXdVkZtI)SgEq&_+$U>XbUbdxqg4lWgUH}u~jW|^oUYKlvBUD zhM50yMo;#=ADS26iz4GrwjTz(wz${j7e|6ey(T8SfrT1ub({$)t{g4 z$t>y57_1#@g}6)=|CE1UM}cQ+sP{)^wz0nw2WQj&#jJ2AQK8u6KRTvXFfzd(ZOs6s zHl{>y1wdfdNGeZ3g?-L|uwcB_!-X8BKV6>04X7W?@2~Xjf+PM@D7VuCJgSBz6gja$ zrJ|UpbRO+f2|xQxTS|+U#>qYyRIybzE0=`qyE({9sw88eVTN1N`&WzkQP$m`-b0pT zRA6Ce2WA_EU7c4>&>nk?*pf3^?58;1uvk7Tna%Md;9cTj(mrfoH1(8K;<8DN`}Og| zEL&CLDpp3t#UyG-f#!L_ZK}|-c5AMSB8A(j843xeLj};$1+D@^;x1M3uck5_{atp)l`?u*1>HddggR%4yK#-d~^$Os#%%H0YmAJ6Xij$Olg_zzHo`nph zq)jd)^S=p?cqxtl0uL3DcLf_CI|3_#WH&;5-g+z%2Kn?$%LBulU%^A#Z#ZklThXq7 zcci}MP%iy|qIxQtrpxcmFa=kwzKgOwju7bQ(E9MUk=?yLW!To6%EW;caz6577KCH>h{+PhO>vM2Y6 zFlaOUd|d7HQ3;dWnt{~|P>5f7*&jUMw`nrPmhSp7lFo-@{!#n&lVav2V7aLQe|js8 z_gGq9C4iV??dkY%jW!QCQd&$3AFDI4B&F3X+#-oxmk>6Mm<()O9*#(Df|l;dS}Raq zyg8ysnp4>9{ONq7XCGcI8A2tteyoaGJo~})*#5}v=ghQOk-8`VR69(09mxXQPvZt3 zWd4WCS(%9r>foS{g14>h>%pQ$kNN#koTa(OL zi$Pf+4hp7uk3#Q4JG63m&za5;Iq42kuX<+{MRatpsY**Fn@&v=+ST&yu%GYIFr7-rfba_88le~Wv6?0(q04^$R?I*D$1?-jj{Hww0_ z2g#bb@RN+j{t)rV%fE-5kW9y^>&G}xt;d3FlOFZ)K>cTgE5p!C<(oEpR8+K4q-0Va zv({?6qc?6gu`u_#6Wriv(A_u`623x-^`XK+iWTz+-uJu`lLdmrX^p&M#k7qf95D+_ zvChEDQ%tqS)&69PQ{rQseP*JfVzOp4iDCGy+qk0*86@rN;x6=M8JnYy)=94i_4|9* z8WRtfnhN!kk{~YXmxiuc5xEA%&(N?b=xnGh=6VND?it*K6uczZX{Dsu3yX}#Detom zl2@GV|}AMh~4{brS`CJuG=D}#uKif zUn{MY=vc4mDYJ|dQ|X-KW!x31NtH)N!)^sdg*tpB6_l%T85MBnAM^Z{CdH_EmswSC zTxxANFj%esVZ;X~3dZ8r`8g)xJKx$qT4^Skm{wxoL|a&@rdP8pbtb`q%WP}BHV<7; zpQ{vDI%&E`0wyylQqIi#OGzG@PT>(b1Y`WKMf~=Bw8O;$T4mDOLe@&fPM&&bO%y@C zqE$~AnL!dUXp-=m+$yH^jj-+&aN6Sb`lHaZ=BzL)N1AFmUUbl%%9{TLfUA0KT~PhDU}YUdm;V zsNQzST(Fg7M>F+7$xl{L*Nc{o$P{#za<{cci_tSd&wiZ}2gUK%iA|UMY**h?e?8`R z$JpFr{QC^_Q$mT+y}SKytQA`6gTwq7jH;e#M#b9iJS}=rZhIsx;CWeBi|d>I=xgI#l^1#FHr?>(EcPE)gbH1l#N~0SzGE#o z^z;H3%6m!t%88=A`Gyi6;{eM+G&d)7eIlgUL6N)L!XZZWg9EG1oRhYSFRWqpH=RCN z*WNoN!wQzvMY||zi8wlT@pH9j3Rlv>@m0`QSCXGG5kDFZ)`n<dd2O_sUEeu2>loi!c{6#?X{K3WK#jME zmDdyS_8BCrWdb>Md5~6m_o`kuhTebj+Ees4BB`&VnYLr7h_t-=%1gc%C&~>)tGi!l zw5ksud?5PN%)aNc1`a%z{-=A1y zBAZTGXqjoGx}EfT>={3ZfNiS-R&>0){dK{|AvxHhl?rkNWCJ;4P_~-l({DN42c5~P zgoFt{inmg99Txu54`geW4(ONuxCP3pQ{raHvV4?<%Y~zU)v6`t&#PHop@M1_XAf&d zF@8(u4B3chWc;2jHl;oy7k!w|4|;59*KcYBG|@1y&lXCrlC2f8D~q3`5wX2cA&w#4 zt|CIYb~1z-s!`6*RX=lV3|xJ5FLLcB>^(ZEQcYD5=Xu_^_jX;(U8ydyK$EOiKn8}6YXS$OHADFi5$jFxi_*EwIBW$e`3{)uPd2y%oZuuwLjCDnq z+a=l-9pH2`D6Y*uH^n)^Txe@0pQ!R{dzdQnR?&%FSmwE)|FV#x(8ZA-P7$ZzFxA{D zbw}DakkiNXonsh&-1P8oQ^JogKM-up5V<}RO z)lDPgZhP(Auf-bE-wg6C!1F5-NSPSgAfe8lnv=#N%L7a8f;ZnfKBSUHQJ5@b4>-&= zVN~-*S4WNqSLG#AW@SvEiV6jP`H?kuJS={8b_K^2$rk@}NI`Ke1P#gu5VAh;>q_mz z2T3QYIjadT^|TIBMl_cbtd^!EV((ys%X z)r55k_h3)AJ-;!M0rHNL+##=i6mP3BeFHE0@%zDSomFfeecZ5ZOFz(s2zF z5f}!?8+N)TZ#$u-PlhS+bP>}DGr&DdjYc;s+@XVQ%yXehw$gnuw*{!Eh17WNf44rp zls;>*W`HWkhkgVQxmA1_J6+!v_cf+O>c85nbKW@mTu!f+p)m7K`@yCQ3epN(<-xk1l^q=O6{$9_2i_V zt{kd46U?rk+!qq?J}jWS6>sv9Y@pHsxPQ{C`0|N zc8tjq$_7k<*L=0RrTD|VW3D7J=0hhq^@`+4vu{uX&b>fu~NffBc}7p5@QR$D9#>;PgNZlW;+6- zxtC33&+AK{$t|wI-XcdJO1t2#64Pjv+Si1CD~>BjOBgM2)iy;yT&!# ziTL?Ez$lQ3<6?*(NaHe)Yvn~2t?>LwXAYL4F+d6aBhSkFPO_I+u-*k2-*{f&Se&$RTpNhyj<+%DbC*Za%@w-i6=O#0i6VW3w0E0 zt!sQjgORw_lWdxXG}+ovf-r8&IVx5MO@D3yQZgQ)wusrLXdCgpR}-!i-*0(PAD+Ho zh?%DL+F%OyrIMy>K5TL|DEF@2cRkY=;psd%@APt-?6kT$v}{HYA7eO=2_dY32_of)p zBsSZh&nJ3pV&qsE(tU$wx&2b%-;8+4kV;&p#78XaBw4LYd#!p*)|3;3ZQyoxpyD?{ z+y})@U?BCrWTjMN(LHn?i+!sTU`p-4=D0QPtV&J0<7dxcrurqqTkb5@Fr_ zJQHpZxoG-^)h%8`MoSuV`ZlM zZP!4ufmrKTF6T$?vEKkxV4v|hqel8>LuSUH zYZ6q8Wr{XZlp9hu#Dfs!^9P~DuRqQ^FzbE72T+LLA&+Jre_S7QWO%U%s{QK zm0-v8SI;rUIdffH$(;X0E&W%^5V!ErBVcTcP2OOyrw45DI=J;lHWUg+92Y-lq$Uc# zjh*-r^B&ed>Ql&muqMW|(&1nX@35`~CJ=Ic3_&KFH78||(8SX5_OiKQpVgI+ca7KC zI*)SOn!bVKx*T`cC(Ow&7*@lj9RSXO7g39Ff2v6!kTDX1R3jDF-+Ji#z(& zoIDdi>`0_mm6U0OaSQeFVs8ls1*Yzl8VTqdZaui760>BCvY?zGDWp5#BCxw>=5PKN zQQ-oQKRjIW3jw{g3x&~B`<1xVpm2s|K}h!$+up+82>)}0%8}~QmFLg3a_wmnv8~qrUPo|8c&h-@vQf0;3?|`XG2Zh@( zUJd&T_XEBDs#<1X8QBWwOiGhY7_~`At9f$E-S6v9a{Z8t?wKcHFdwHy?cxkYDL8}~ zCuWw1gXECrat9MTurEDbF;0_Ad_PnnQFwskY~cIM6K-hc@mPlGZT}a+z%~e0WXq|a z!ZSL4_u_Z_i{Crcaj>vP*RdRLM;(CScfM04gK8hXA10rH9K*xk}tL2?)jD!>zSd$(_@5}^$+oOYHw!ldp12y-aH za3RjjPcJAqoGV=TTrQf888oWy#xV$@`MMGcTD}_x3KbUOB13m{M`$O>GVi0zYERdE zQ5)v5$X<_u1hqM+M2UV3s>S6Ne2n7{fBoYfopNb`Sn<-oyrpdCUvEn8q=gTmAG;|k zZ@rd&D|QT;$Lpl^6#G#h#E3>ebmoYfl?iEnh8oyD2#!%=G=zJ1rS6W6T6vBlZ8M4%t zd}V$Z^D);_E*$U71;b|&4-9@7)G~~hRi7|;l#P+%DaDK47cN-NX5(thdVXW?B*W$l zHr!D)+C`=1 zLAO@m?{pGHOz+=5oVM1AM0OL0E$R7>pI8ab9kn)z8NbL)SDGai8j7!kF9AsjXI-yk z(m9I@8Ih9{xZ%X0Y&+!+m){)4a&b#wX?r~1n1Lz}k6)@`_wRHfmKQ24k(_pM-MNoJ z+Ue^X#%OPmo+kcm7H3Yu9;!5?xbaw)e2it>5vxJQZ_UK06d!5`1zjxV0OU!pb16_q z!I&@^MTF2AgXvi9FQ#W(M#ehTjK-dgrn_ANjVaidvaevgSp7MyxOXm9sdOt}P#vH1 zwCdK9{gg1c>YF}=p(8nLydDY~B3%_uUHOuk$lsG#{maq-s&&_hW;f&jRTM=a;mqEw zOc7F|r}1Lpspq%neTJSw-JS0|&Ra8$qhdC;DB6ME=lzrUzAkIrgZDZ+v%mEZ%RE85 zFiqwa1_nl0hzDf3wwwz(Ne&gc`Q&dcIN1dh@dDAPS7>>89WdSWgW2LR)+?P>!aWDe zlf*LYQ=dT`JS-*;+x!GgS1zo@6>LXqg!Dp#&|bY=yUegrCa=PGZ%ou0tJ6(?{Bi8o ztJo~_?&lZx* zUFk1&)z|KuDvS=Mb9n48zrtMsrgRE-(jg8+Y9jdni$csx_F3mR)1%tU@UkSO@T-oA z2bmmt2g5lf77CifmdM=a2Y-sD+YWa(jrh{6XX2?sUNOR4bR~LT|Q{J$anIo*Tm;C+peRK5^-UChy>UE{fVtIGvE6}A5{-UHb4JajXKMJ&|IBAVYGD+Q0RN>w5@vUh$!LF;A&VIe*s;+ z_NLV**$d|jB~6+O6>isV$sVNGG);dZ<_A}2CyXomt2rqaK}lQ3DQU71f7%CG%-$;< zQVZe@E_i#LRbW@yt9P?W#xA;@1yedl7(Hw)l$dpd0E|yTvTMm<<`-&~ZoTis#nM-a z2kcxK#a*$ywscS+DeD<%R3l1b_dvNOS-LQWzP3VQ%8Yg zl`KF+q?kC4&zVcf6ZSe;`x!r!-YS+$vj(Ljz z)=(kkMV1bCKFR}Zqt@<8-<9EFqmVE z3t#%ki8O~qSai!Z&Ny+-5j*qI#cBAYLJH;`kcEJf5PnY~h6{Za=&;pra1BneaXEJ@ zu=F`xU1-oLCypP!ZGviE1=3}O@JR74h~3hXE7g9gl_rl^ywFIpI`KYta zy>3Wuc9R7hR?fLr1rP53tEHnnAy0wyWDdbDPIi9r_)v+bL!@LlhZt{|Q>p zPda6KkQDD)Y=tzcKJmz2qu7oRITCY#qF8Kmv~qMb{BX%xz(E9<0N?8CHECOKh?vY* z7T+|fA3pCzu>&r_dwH20@~@u#t>=aev&*1!uARNTh&Tbe*itKj*3r^6I{8JmUALsJ zG$#NC0A5xy%}YrUdX)~9wVKZVK$28oh;kZ`Q;Kr{oQEt6Z^K}qy7X5KV39lWyu`ZL zj#R!q{wSF49K36+eqD_F9MOQY=h711@o9d8npkE6*lFLEfHI$5vy z)|qx5FcBbd9FWz1Ib86{Ip!EtwMUl#`seA$1hZO(41m|Ho0S3|wZA#04@9oZg_85< zm$!;uwWyq|eaqm!D9ki&UM_r&c9quo^^t$M4ZEWEnf540EUm`m>a*<-+^dJ_59M*C zj4qRKu_h{=f+QzP$FM0V#UE5|w$e)l5QVivF+3i31JT;ndD`Bsz`aI_OyKWOF)I?% z7gm4il({wCNi4M;P(AfL{gT7tViR{~e#N@@*6llTiwZI83S|{}Ce%|25-yuHC|g=v zef(?T`M1vyNFmV6v#mEDL=wh?)iD$Rk?1pzRO8n0I_DKVJA%92AwIxIJ}T3x^U<}S78zB6Iy*1Yur{6CX=nH;-!KFvYoB&pikrz1uI7%79k zloyZv-}&TYEKg_F%jWC;G0sb)c_V<5cejfI|*Fj+rh91f7QI|eozzP))w*=^;V)dG%$+S_i(~k&18aTn8qQ1yCs9mQn z2J*ak3F+y$>}2XWNnUw+l>`}SNwkyDmDdWm$nXR{>OpM-#Nrg^P$^ar4?&i^%u_bixq*;%<|id+8JsOwRSs(+pH6s;;=pa=*&ZchDH*^O14Lj9wE9w=J_*; zqQ(`N;0qf(P~R!M?Ao>n>)X^~jndNj>ZO=X^vZ&BtG0HZ!j}ovNoaS4$8^;F5xdS) z?Ig^bQWXg4o)Ee@{|X@GNhJbjfEZD?A{=xeMW3*|id4l3%)^}@=l~{Dn*H1#W34Z^ zPNN`uHl`2#X>8c0RvSy9Un)HQcID6~S(5O$?{N_^C$TNH9o}aqfO&t4Kluqm4yX%YZpdaHBsOfGhk)`ze6pjd6}Tm3c+{2^t?XyM42#fl3Y@tZF}> z<0>8Z8bT`Bj>6j_ealDHtepm&Zpucychz(L9_?`%?XQfYAf4<(8%LfyZPEFm9QxHC zHROQbs&-=(uJtRLnwtj7bt(ydgnw_)waJmK;>|+jezGN>oB-x)R(E9PEKONfGvYnEgbfm=<Vst3H&Dwj2QzZ9!y||U(@svkK&jyCm8^-u6%;) zG$5iUkqN^GP;w-d?$ta+V62%jfH@-4Zkfn4DB@cjGx{3>P}{+H50Ai4WX5!j10yG$ zo0mBepL1IYhJqyYY8%c)4P(KyBLoA-Ht$_XU4INZaEzg0#5Q;kVIRzdIc)=mx{Xn$ z)+0U#T@V8gY5v1cdH9S5G7}a`jUpIpS8cR^bG7KeUc)E;q3ajK)nWORBL>^J1YTZ$ z6#6tBxOhS|PQ=w=Zu5hoH5u?O_W))<6UwZ{aCY(=t4dCg1YZUZU_UWs z0IrfS&4x^hCJW2BCG_Xz9htBPQmR`l7f)y&q3kZSF$yOt?-=+Jl`HH_ZuU9;^TIuK zebg!Hysj$Uum1s)lLXA2HanUL=?MHtCJYqHITQA1|JEJp>icjK&UfEG+VMoiaAFk=n8Z>@-f z8Ow;}V}}JM)7Vi`&doPDAg0ebTCdm5bxaY1>nPun(E8`A77(-c1SjnbaUmFW?BGJ| zrl36dPd%_s+7REgOD=PSxDLoumnO>2P+SX83S87^=;)pT`#gIA<<`poT$(gtsH&Mt z>{+T@=b4@v%BvhlJCBr~~%&zW~>#@Da||%kOVo z-Nj%-`G#;T5)N18Pb+lH{~7n1v>Up*l#77-@{+STfH!~&y{JcLAYwhEOU9#~&yK@z z;P#X-CTuXzQo#C-G~bWE7x5^P8NC9$AR?D1IuZ7XEEqkAzvOjSy8cTH$#L++{j2Y@ zU;im4O{h6|J@jN^jM0d&MY9Qh`#lj#48N}qf(o7tFL<{EL5YNjiNK8R0)CsdmBB*9 z9}K!!Fe|=1>-vHSA{d{m!Eg2gX{a}o0EGaAqvWTlOHJ2foAkkN7394zM99PV0z#)s zN{{2~>#-2ZESQ`s<2V+83X*dF4QRfB23o~d4I;uUZ{%S%@q$aNcyPFZd{bj z?1qIl_{I{v+Fex%@{=SW5VW8DpjYF{g>mpXkLJx03dpg3xoEqD#PQHS@&&f^f5Dk5 z{AJg&suSYzq^v(0*^sCkL+?~%8nB}4Tu=0PU_~xl210-)OkltU78c2r zXjKGqJR9sB`}+N2(MH;%}1>^q?|9|vk2-4mm`8E-tgUTPT zMK9gpiV$Z+VKAYTBsWRLo0)fr>`ygajvk!pf?E`$v9gYLV1*_ z{^Pm4j##he<0nrD3mN0dBEsNA%9WVd_XK6Ath-f&>qqG;4IT_#9}5r}(aka3$LB5$ z(r4-qGO(XNfA;1|sSF#P?A{GqZF<}IODbRiBu7P#OB^H6w4`3#oNGi+C?TYcWj$6W zW}UmZVwObMkxQWgSPjO*T!0c4lr4Pr-?&vE{|P`u=h-;8ihdHmmmlCU;d&^;{3LfZ%(FC+s9kCYm4{x0ZVHZ5lmbGFb795 zj;ql?VdwSl^}X{Gta-r8*>U#`BIA#&EH-WFw)2w#6}j0`8?qY=%)epUQ{(04)X!e1 z>IlVcJ_2L6ZC%k}cHP7-7&@JZuX^jIe?_t&hV?{MM<;e)ay%#-%Evi}w3-l}7r*RzU@=%? z5kI>4@}GN?fvRA)+r#6*X*(RCN7}wU`2JE$T%s^5i2?Z5Z7L*;(M-{8eLlO}) z<`pbLYrQPLoLZE93^y;@7s?BZHQAF5Ap4#EYT-e6XVNR5hinFjB@SR2;b0SyslU8s z+%o;hz?0sI@}E}$pekT0YzX#My@l51K|f)3X^9bVVc_88C=ZOG(uWf;mRom5D;ZD- ziy7?vCC7q0fzsTO#PF%JsMVD|r@_0Cdb)EpAzgrSd1AwRp^d{8D3F9*Ns zRjt+0V1AzRp+8&uNi>^2Ltlq8NC#%_^h)2{_G^X$k0V>RtBWHO2!w17+;}0!jQx!< zE%5FbK?O9Tp+ORUFnmqI3O$C!ZkR2U(as1v>E zJaR26^lO~Off>+sucVWhG&DToc9|5_uCk61eOafF`p@D(f_-6s*yYLZ2DDbBZu#g% z0oE?m7H3yy(F}Krmu-#%$1Xe4=jp)O-}4 z(_1^Ux`PIeKya|TwXS*pS+TT@@ts-WvAd1LXLVR$BcB97(5>O=4wvU{t?@#|V~${j z>GPlOg&b$@!1;gZj<^F@DqJy6ptUCzYEDCR464+bt0y${C+q=WDMkdU`$3oh>G0Zd zkn)%YsvjWMt@Vimh#WcA6J?6r#w|1p9k*NMqFDac-eq~3y)}$iXeeMi9t!c>MyCIH z**5q?^}EXbEWJwAl6T+kP>IqJGAKoQ{ru_BnKsfECy*~D-u=}w4N=2FU@Co^i0_HH zmw;x*qdbFJmXqCu2*xB&RlxIn0Jb<{2!c+A*q963J-_jqw%^k(wTvn;?|BS_D42k5 zbp#^TIUfm0T<5kZzA;uu{%GeFtnmDg{-)@?&0^Yp@-Giw^Yf^*!bT=2e*r+ZObQI( zu5iyd(Bq$9X2;bl0leSA-~%a*uyvGWhgD?#V=uaRupsw`g%<3~#^N9?0M z6Gdbwgtfsr~iSkw= z{fm&HSf@9@aSh&|r7D~HiEMO_*ScHMJ%;lbWG=>shGm`~u}>`vjJX~? zCPUg^GMr1l^5I+n1j56w<&*1F#7IPid8s`w2@_6N%)BV=Qa!zsH8*6CC9AAk$?a-w z(7eh%h`-0D72j$GK+egpJ&a9Lh*1S1z3iYy z6$(yBA4MR*T-@k21U;tmTRaH*IN*)eBWLx+4b=;^h}YwneBHyjBrjksMzq&|rK5$d4+E(p)^SML@=7fl<>_n!~17A%jSz zfY(`0&HgM_;c9ZQ{<+{TBkAsj%Gp9fDt-c9MtbOp!tp>dXS%{lZ?OKM+epzu3S`6% zP@0C`7jDKCUY&Lzjbsp;^it*k)IC72nFiBI*xTVZo9@(JqXBoLr|+`f690Ky+1a<| zqx)mX+*N2+(QM^B7v_uc?zn?d01xuF#DYf@4N2(86H1WX8b0gm`h^y(8k3w7>CK#w zQ{kDwuB&Nr-2H^(NQj?9yGq?@n+Y`67V*6q;HKwpz*ux6Srz!2r&YF=sinBuS6ZWe zDEsP@tX;g+QXz2_4jMnL%g?WtxY1ke6KAGELiJ6xBbO8kl#n9|rHctWbPH6RvWO^A z$j=WTyp!WpT*`sQ#J6Y&>I|HSS@m;gOO8eKb5>$Jnyc6tTOdaeF6MFc_cOKhXrN?> z7}?2_H!q(2Q;?$ZMOloq_5hT-Vr_4RSnIcdp%}EQP_;h<2uId_Gzs6*S7IrPt5QV2 z-jw-Vq-fr#+j-{W! z-=`!D`C*IxDkSuMO3b8F@>#SuqcjktXr6$`#-MAIJl_$)_@{RDa#7cLTpHJN*!X?F zec*WIRv73^{{31whv0+n9uq3Jex7NxHl=LFh!wChz2$@8e=A^ zpTuC(_&o%s6-TMnU{TC_+gMHoe%n#HIYx!Z4H0LVp-sCMLnt^3dy(v>tOzza14+hc zi|r7!V{^zaDMc#4FCT9v0U#`_9}RSDZI~|ZJq75&bN~|W%^ui@qJN;i#12D$`h+G* z)*TOz$edbBDKWA(BD0k$qJ4UQaDysD+&28lve5veSK7<>rwlwQSj;Nr!NosErtGln-$|%Z0_8E>dd%UC+9;(=9X|g0~Uow0gn;Z58 zi3{WQDrxUlRN9&-)fi zwH8bwkY)25pI5o8vAqA}Nh=YzF0<*+aa8AVM8#~&5OT2vPx@uzJ~*A7!9bHe7r@zy zTx{IBEb*rWi!#w=h-mEQz_2aro3L0N4WM?zTb54kOxe@aW@*60w*~OH834XH8VCex zkO|mY--7%S*0w=9|C%GT(^Ehvud(>h-gL-z#3-C_oo`CtKz!BPp}Qk=tq5AQKHC;( zCGqFCGlgTcX{=0sb@8DE(e63wZ#D;=F_GQ4YVH@;nZRQxQ* z6xPcd%wy`OoJEm0n;>xd`*le9WF&(9kBlq@HR5bmWK&Pr#7;=V2YPp7NvC`HmJ`}2 zil2_0)?Y>UGq9A}B`MRQUYSq$A5F5_)%A2x9j3Paa{Tr5XBF#K?U_;qpn1Umlw1sw zPi)*5Cb!;OWDmPTeYk-~x;v08^HW0SInVvK?kCROJ)pp_(BS(%EZFQ8VhSO_Fqolj zAPM>xY&+}8{%G4xB_RAg1Z`$4J^tt4i-EI-+>$+r)$r?|XdGqv93nZNGk;Qi=z0DeAe)QYJl!5z>=HF|RR55jdv0_^TszNj zFSXolJeq24!EbCty%JpQ&wZ|+J+3uUH&NEHw{FqQC5ouhf%@9CJgh1nuEgE9Py^`x zgmdzCBSq=@9P2G%wA|Li1^1}Ckij5r8r?6m4p(D#a@A6f={xzf9S(-<^crYg+U)r^ z8CJB##%SB|vySf z*y2L4mE5B5{+)}KD)k2H1FuUAZwFS@?PQq0c|IYG`;{gZ{(y38SvP2PK=jUL2|qQH zTAURY!TWTr8=O9b#8!j6_X!6~)HQ?V$Itsm1C|!R>&c@s?v72dW z!Iy&5w5Q6n|4Fb3$g}y+y1-<4`*b3m^~5RKeJgqn)-o^w(m% zW#S|tU$G>PqlIiNbfB`fB<MO?uX7gtD3r8Su09)3tE?PnRH#??f=$8mA&{Hhu!lq}@k5KtR9fim zS9w#R#d%Y86P20jdHg^gQuB8QU(0_HEJ<8DAWUJ;u`f%v7TLAonPh$5Ze%nN2_v#B zZ}q-E+nMg<<}e4mv)#bPQyyWp(%a5HZ0y`J0ZZ`?j9i_kmd&#s)z&_$63)z=6cyz| zv}gf}BHMtz4kWIF)_XVa&yAcmMuv$dzZLsSOIAW!@9F6QJTMLlD>7TjMBeQsdiCn1JS%FCu|8(;2ZsUP(>))d>7GB_ z7p)6N^knLMYUga4RckX}m}tz@xmjEbOz1&C=bmr^;N&G4H-3TW)2sv-Nzz$Ws$fjA zf(-@Ct*CS5w-);pApZiKeW-j|qI_eNzY)cGB~+uzf&IhYaK3G-gnI0Q?14TEk-+(F zMB>0(|GH6^x#Tg2)jF7tfp;ZN)GwpqVc~n(&Lkx(z_#RVjZFOjgwSt;9ezEBCTGqX zg?u~vw}Lsz^eYp!>05O!ze&Ql!n*lA66HML{^1}Pf%2lR{&v9BXt_ag97oS(6YD-k zmXe*f21fd8ZzLAsW* zvfJGI=zI?fMHU0N#l*IRD)yn)G40LiuL;@|aTjy{O#Lc^c9Vk~4)4fRJufdqNEnFS zTlZCc{{3m;@#F5~24&KUA;p#fl|z}sO|)ulfT}-Z0aQWpf=rRbog;Q_=VT{zg1Iav zaRX!ICc8N!emK;TR|{T7h&dl`7N@#(K$ z44(cc5hWKHt9TKySTkH1MaGc9 zSOtDC&ME9EdUab&Oe5o6jvXO7W`9+w@(`Jqqs%=s%W?82+nPmfsk<*ODQ zSEfqoQ4U!STf5V%?aZf}@fH?Q1kH3Mxf7ECMSyv?@pK$Irg^Z^f$HymkEel7o;*2p z7fd5y?!C+1?_2g!Tr0ROWf>*%;HtqbR=2V5j!H^^zA1|>N?Bgm!@jBCI)5q1P0>AD zvoqCd|JF4NxHcZQ0C4STr=Mpl=k0PP-_~N{h0AMx=YIkd7^EkJ$G8EXmRkOxFG?)< z$Gz@0vsb6+V#jI&DwiJuT?e$Jm{MB=Ht%WrkuPv@T#%f;mwCqGqQyO4Z&z$dzhpM? zYAh%Q>3^mw<+nB3vHk3SzW#*acg?RyLr?^#J3*1y(Yp~4H~72n>3^^9_lq|S^W#UC zE^|LO;H?^AbEOx%T{qwB&td=GEvfG=mn22iJ=d?hV|_~DD2N&TPJ?#Lx8tn1oA=}b z1GU6Eu1AJ%94wTp0-ryO;c$Pj-9w!uc-1uJ^F@l&|6F=}QkE@bwKhR=d3(dkU?p!! zbVt?Ji|Z?xyHVn>Zk_O?M;g^#;QSKyZm@{NRN~Rg(-zGa6?D+gwN8*iIi%kJYLjU1 zMN+KmNQHmC{{+-TE#tosU7%N`|1i?qrmDAirr_L{O4cA6>Pp65yPUt1bI)H=n3Sp>d(&M13vIGIq>@!Mj3+IPLR8=No3Y2nBXeI+^w86Punr$$Wn6lH zHn8ZOg40En;<&HHHiL7V>V5G;)(scKuQM)<4qZ^uzxRR1nsOJzRx?FWaU4CpGU|)4 z_w*$si`&nzPmIbDJEcVDcIhTZ|MVW-&n?se$YR)8qos=n11rpngax+w@;fh-M=v~} z{RC+$&i}Ksb)2fX_f_gUCd+{0o|dg8EO+YQL-aMASBJcGB z&0qRuY1=8nl$m(}DX(@$%CX6xNU1g@n zMeLW{7jpjn#ouc*sC2FvhMN1no!G71Qpi#%^G?~7Ha;iMbzRmAMSmJUp)N8F2@RLH z<5S&PWkg;|g-!F5Z0;beV9t zk@-}GDNBDSC*$GQvwNF4bI~%vMV(h&H=I==30YFTnU0Dhh34O3t$6jvz>uZg9R@5Z zFdmmU0_Hv+4dje5Fobd>ckCnFC+?7Etj6JcoZ5G>#A&7TkP6tDAJP?9>LF6i>XE18T1Xsd*iW-B*)&;kWFU73-96}~aa zWa;IR;nKkn0|Ynn+he|@Asb9Bw?fg^jOC_)f^T<%=ek{>#iHmxyfLoG1PP*60OU5S z#c1;MD!PJkt>w+j@-Le6{m0TXsx+rFY3_<6aNnJrP1=LSyzt3V3IXG+xVNQbVd$YnrDB zj230$O?mG0n^ga5SElu>G>9}kcevhbmDRmYX1Lrn z38mmMA?1(j2{Ahw_I|qWP5lK`whQyLQJ^|eB#KQoW9z0tO#cFr4tF8%Y(&6*V1Ue$^yv+j|{oK zvQ4+eFO-%J1k;UvJO)poJjLb-Sa|nKFYns+=lMgvO@I8~v_zNNV`>R)hH`WXmi=II z9w$bg=)$%)!o48`4XTE7FbJ8J#Rmt?@YRy^E%N+>wNOu_HzpRYYwoHhDMq}ytK8ej=|Mx((mb~xAyy(L8`x8^>!5+IxTbuAp5#bi6lsJ+s zAPuk83XNM`hjrRuA&C^oV|hfITNqPg#`@A3mORxFD+=A*YLmn{6Q$72AVH$-`WlM! z9ds#z^*mp#*Jrh1(OHgB?=)Y7VTzlryl^QC#x3S-?APC*yMlvQM8ek z119)N10zq}{mIy*Nnnc@s$>PzNDf+n9Q`kyQrb;*=(RK5PP`Pyoz(d3T?uGUVb_>R2;jvj(YFbgNqe1`2PglJK4MqFkh zC=j0fPPN@kl}`M%A43AIZlKJ1skBi4CytUH4&1)@KlFGhbg#SqmPAqa!3qkkXF?zlr=pN^KLK0Zz3I3XXZ4!aO zNa;rJ)YD=jd$kmCZwK69xf7foW$?kv+pI-NI)R>al>w#cI+1<>)Bft6Kz~153 zIqC5i@+$a56XhlDNO|4<`Q2hniO6%wQLowDsjpib!a?0St#cgI_6vy<6eL;Tt&qcv}iRbIp%G-R$ygUzHhA-59j6?nivsX zSU;5A$jx^tHE14zGACarDq-c4tai~7Myi9t78@hMpat$fu9?UQ$%>)fqG#-L`JD@k z@0-K=W4eL8#eUhXK?!Nv4_db$wM~chYK6XLG`%6*@iJpzepJrg*I-NLuY;(X4wr4h z3YZ5fzc-h@8~d2-*;0PS@%AtacJ+_fN|)R!8!$^SFCUbKAA{#o@&s@D*LY0#dklh? z@Pypz1u$@PBN8kEOLl%dptj9OSu$12?>giwa-m=F?PNPSs8aWNz)xWZ?rwABPQJ?U z_Y}Tq*AeeGJL-#XOSFwM$!hsH>lxfivXFW5V^DM{>d8l49YTA_v6z5wn6EnN6SXe= z7OO5l1U0z$PpWB*gBf@cK%w5!qb_3MWHE@7<%d2Xv*Z`Prf=Lr=e#qswfe>8Hx4fb zG8Qe|@D<9EI^Zkn{|zHCXdY$XXXaYoKQR`#8eX<#r=h+FOV*Xmewh z_JZHR)}RfXlJV!u?zlWDSkK2QzGs8ugvqibM2?ShQOQ8jC)*t?lAzn|yXE##jMNb- z1_kf$xac$`eGG>5%e{Zqe6NtDJ|7Q*({Dy0?K#(X-#Xwv!@SU9Dp@F-8C$--{f9JT zz-!sJ1e24J<-Tmt>ywRX;hVGH0X~J(KWJyM$+QXURawhl)o0Ig$V=0OEdV&&!YLMc z{wo8#EZ)l@mNH)}Rk8fJlGGLL!IKCG7^KLvYH5hy&)&{n@|RmK)002g?A?tx?f3@^ z<_;u4oWHz_;*(>B5JMozTgSf&TGX?o8v{6BQNmrS~mtlGzv`sW$ zUXL}t+9kV~KLi>db|kw(F!G)e?o(?RKV6%EbBJ301ohYuUDM5wokpH=(H$L=67T?S zFpz%iOlHJ?4gz*oT+6+6qdp_eqrSKl_th9fr|`?7S5rSY0zr3vNjv{;F!|)Ht{t*Z z9b_P9F$Qo%3gf%!sko9 z_6g5+zU+I$0f)eBGxYYWQ!4H65hYHUB}3Ms(h*2&0tInZJEin z;LCDuZ)lQ4hObl+MtErV=b1tUYx~Z$f=o0mm?28ELiMRV7Wu^T$rX1p3WuiI2sfxd!_9WIdk2qk~TrGvW7@i~*S(xOWNOj<~ zRBKo_Jy=tjXG(qkYbcnXzcBID;SxB&Ao3+2E7HVACq(YJ0Ztjbl71+lfTLKsw}re* zyK|cp)biRL2BNHzpJywFnwP|@kOFm)a`+5)WhKCss-+EA>ux=9KS~O6PO_|>>i8biU)u3zrW-E@mfKd zLchM3fjkY^ZNw^<+I4;bWdH7OpT9Q_i}|KjT?cccLX4j^P%av#m%ULIqRxPb^S;V} zG~_fN;dVF8jhf5^VUgO-HX3DND990lXK5tOpib;VX~?G05b(;qzAy(o;|0rp-Fcn! zNa*DIM`?hGzB?Ot)fqW+@kYFOy>+M%BdtiyvxWt|3vla;4r4X`hjJhZJJsCh;(A^C zCVbPva8EFUzDW61jtSq`jI+#NZ=4>+5AW0eKl38pfNlvduPiDYrzq#U2}aDv%X&Mx zj`h_3FS{%rLjmNPVSgiZn%~KueT~Fco&V(nH`w8)&a&JCi?5d5xb-a?#DPC)3m4&4 z{5OHh;A@qEx?$wZy#xt4o$Xf<=M zZI8HXw2~tw7Gq~n9rShAX zUSBlODy9xvYoG$Kl@+~NX?aC5;5o)^Q$Rjtf!z?|=Qjy$;X~ zNq9^1z~klXH&K+q;2D!2&{!D2v{itA^{j8y@6`Xf%a0E1_z;S8)E>X}LZ1WhBDm!~ z7Q``@Q+`I^Zpe>;fxzs&Ey$ki-R7@8hAV)s`C>#xLO(|{}UToTyTV`v!^Dp4@-<3}CGkrMz^?A}K>F4b^*{uRa zwTXnS56~;R_shspV9}(tURINA` zJe%T2I-r{f;SB!i9xZmBU>Uf)(|Jg2W^v9}ba%6Cb%IT_WlxYtSkoz9zLwb?Y+^LYU!XIJ@)6`aU2@V%SaYdz?qCJl&a=GDn4 z!`@4p+jZLqC19&gD;p~aMk(M3cNECyO%33OmWqjP9zE2ps*P{90^RIFmWj<&ci%LL zsf#d-R(mHkH-U@(`*^2lb#*AiA)i!Qo_Qu z`|o>}YAk`3_5b*d0u)7On3>HGUaCvpD=?3dORG@J&cj|Yv%dDu(SJZz$)la`NyA<0 zA{VK!?N_tbqmJ*$%3{EIuBPpD-lm#uQ0h#Q2yLX3yH!{_vv7HT3Yvi5Cbam^CbO#x z^@|s+aAF5cvJck75)CcNW?hlO^|h57m}w+co}zdrzsw*KuyWG}{R%C$U43(Hj- zNdLPtZdk(so4)lGc)(h=dF@KXrP6qL|L5e~#?ZpMp9}+SF3BvTv#zdu$pX-#>d8|8 zA{+ZO7!vV*6Ox`Cm`%sLPqC>UQ?NO(Oi6c~yziZnnRxq!vIb=bU!Q*N2A)SFk$x5d z1wR5Fm9iqm_sl)8*G;}*bbCb{z$W!tL_T%F`i2gz4pKEa0~QLYW^o0;=t8Bg4Fie6 z2;P4m8@!6^CYe+O7NQ1}iK1W_l0zT#RYwrW{fk$s7F#4oTrPp36$P}NeQ&N_h~FRe zU2kiQytgN_iMYL+ZW6NHosN_2=0;zx{3)i+^ib;-83)5#0;94TDdG2Wo2E}*2VL(M z$0)MeBfvEH=lF0#Lx$#`j@SOi4LNw(0;sRGBFR{EFgP(x_^YR(STiyhT@1M9&E#rw zF~77+a2AlFk5fo6?EJ}YTVE64#5~*6(hH7gwIp7H%ACe-?G<(_?AbOb3lNOG-r&g< z*9r|iKKYJ{nQJHAe02BhViE65McvY;Pt1cv}vdh2VZWG1;-A^X{a{!v93d zGe(tS>ZZ}Y>GxaB2FE@q4GUJdFrF@R^%}8TbU;v^;sfh_!xo%Rneuz$TL*LL!JK@@ z=C-89-bVWbge+Gi&4*zFcY(Ls(=7!i$Q^~(1iov5-C}65vL7_4_x*-u~mtX!%*6jr7Con!6~kAFjnO708RCiy#lAmX#5yHAFj?!OZL3?+pe6op86?LYNL@3 zWPKlbu2l>Ll{yT4+e=y1y|+j1uStysiTBj%CJma}bQ%L|<}6%x6>n-Vv}f`ghEZ7e zV4PQc^5Y+Jx;+-*iX0Y;^eS2jXgvxt^)-w;gQ!CWvf27!V6OM#K=EXRTnnR_%LUMG z2?r?9&HG`OFJSCa0ikd*;1DROM zfcYUw;*TfmnkiX>I=#GLWE5q!UIUky4m#)11iTUEGXq*SP^O9l%e9&@5vBUKdRZCDv-kOYfA3;| z1MYJuAK9LZy)4M!DJ%RsUY#E&j5%6!U@({LJz(Mi1`V}U%Qpp_Cy z@fr-tsu<)azwwjXV>ZRNC0uGO9wU{RDz{qW$@hF7?{fM~?Q9)Ch9e0^mB1mADs@w~ zuvd=m)B*sXx-2F#918vaW$Q+bb1`*`ajj7~2!x5WvHm91*+))a5Lsp>ihW#yJ zxm9{zHYqMTW5l0-mQ+mNdg(}Jck?GjwH> z891E!ral>ahD-1(xVz0wTCKP)@Voq1m}X1ndC!O973hB#*NK9PGw4~yk|M28nYKA7={?5b zR9$NaS{ugP#Ql<9O}Xh-3?T0YMetElTli1Mc!0K13`@dc*Bj+kajhie)?h86d61JX zZ?ioID?j_z#RCes)%6mBs@&=v>r{+e$DCDOv0S72T4qfJvJCBe6r|9)8(;1_FVtMx zv0#jj;wk89>YX;SWZ+GCw(o*l0NO6Dlx%(jj_3`B!UFDwDNLkrK|Jmj4FE4-MR5=6X51)CF_7kHG96~## zFoqwt!ct3JsdX9C^NQ+thC4Q==QdC6Z%mC5S3*m>6nROyUNJF75o5K3T_>Q&2W1- zgY6L!++m(OuFeB=G3*=4&`r$t$vV^C=Rl7A*bYvaBpFdKu=G)>CFsCHerMv>cPZLa z0lqu&30f(CwifTIsstqCBWJHtUdR;sF|gV%lL*;`o(4v@3lYj!X6SWWQt6vM9=2FX zqp#I?$Ex_|AQUD?KxeY#cr7~}iTLq>iPcyT9XB`n&DVf=!iH9a{zA)Gc;8)*@+<%0++ukHCmHEN*V$5!gJI;eQIi8?U zTd}v0XN!#*d`rJ6?qZBApPYTY3w=x zK_DN?ci^GIRX6Ak=c8@!1kHU8`2ra+U|IACJ@z%x76GH)gPo8QEU9XLDnS5B5>G$#@cuh=QR>04Ue6SFqxXCs$G-j= z^pN?yaMjc&`JHUDitCfmdv%e{9(`fvY4vs&ukqU<(U5cOEMZhiNP50ZPqV8+OaS^( zhpj_WaRfQk?DVL6G}MP$&!+fv5UPcsh}pj{tR+nb&X0U{r<&pBF z&nF!7R_;Q9_i9KDRJ%x%5RRZq~ zQyl6F8(IA>K2lQc8C`2+sH&nw@bkL-kma76S z_NMYdOIA=)Xek0#DN4x8- zCS5{-lOrOk&1O)gB2;GLh7Ah+<_22Kog)<@NBPz1K34dftt?(yNcSeWt9#9=Af}E> zeo<>y|9iNBtyJL6(3QhgGj|odi^M1v8(hTTdIf3uexZxPO822zcuYZ)dQrtvwF*Lp z*A-udU)wI$g6g5o$+$_%J)O|4j&o znCo*f%75wkH0B)1mOL!`_6_lcWsG{IZGn-K06C zDfTK!bfKIq`lp`GL%4J+N3T+Z{C-7uZD0lSONd_{x*3tu-WaT`uV$;Q+w3R1ypNhZN2T_bHkT`FDsobOd&tJ7+=aFuD->uS znx)6}tCbUCBM~5yR5kEu`-hUnjv6{C>t3Sc;^`|eD58t_j73^Ul{TLM&8CwJp#Y8B6Z=HDq&m#vTwi>EXX$MkNpn%pON^zz z7u9|Ww%24GYEVZbh>c^U~@;w2rh;eNO(;w^5(&Yi5t5O8Vq?r}P*QNHQYc z!s=@Lr?}F;G*__A@v|;JcS&W$MrcZIH4gNabLF7SmR4E`UY!)H;W2sJCu+8FDZaU7 zup9;3hTC-e&IA4kHId}b6Q1J2p5k%0k~+O)j}Ef0MihK&vw&m}HiPw5Yi0B7U?UW` zMC7`3IYkIOf6_*Cs}mVxW>;Zhod^A9lRKEj6}NLngvF{G9un@oOiYB~q^;M)*EdC> z*46@N!nIrErAv-X(%yp;Z zT}#{D*$sVas!|;(1Y&?64CeWQJ%l}J!9RV%%T9(bFda+*W~jB8B!Jr1l(mPFp*+2X zLFOZQtDo-3Qf^lyfYyL2@N~CMU-Bg;$Cf3^6?E+_T9H_&Qi4qOoeIM9@)tr@QIW+q zt+T>j`bXFjByhCnVu(w$SH#rGQ(TaB{{=^UtJ9FjtJQMb(s& z05NqF*Vi0pERUHWuD3Sw%e%q_*RHwd7|iJ!q=X8~x?bti!X`I1x!2{~l=DzoHjyU& z_<~f^m?fVYo{)@frZYo>>3njbMRvG7jaOncj6>tL^=o0gwR!unalg4PRwnoeL51tm z`+;)MdZOuFF-Qal=ZNX;VTM+)t$jQWq*$R?%W-GfK8iomD^!CmUsT*fwjjuyh-GwSpF>4d*y8 z2xFI$3>`{IOcete1Ugl=5&Whk#$$aT8ZeKgMlm^N;%u-?`69LZYGEuAvUH|u2M=xA zF?ur@YJk*94)K+YNaY;;rpL>q0+}`5%?m}l}BkODQ6rsuO!85Wx~$# z43AVer&1k*MY}TT7^%@bO0+B?o$4?1T9RHyX*n{$uBf?oJdCEa%zX5yz^pvC1nZdJ z-u_MSv4E{*VW)1CM?!C9#_&=|;8BkaUd6KpHp?`mkr-8gvRhHlwej0N=+Ubfeb zI(Dlxai!;u3ou&()GqO-3kj7nINO|xUXJygj2I(>g1Yvux98YpA1O&e8)#C7!s?(ERO`17 zDQVpUlRE{E-GDvW{R!Mq?OjVd4W~ugQnQa`=xNF+taQGFdhjK>!C$iXiMFliV9lMq z#gc5#EqsiTRk#fm8>cuGYm9rV`DlIf-(>I{CBWO_tW1!yuyc6{pCkB`9wjC@nX7{* z5d!FO}il;k5{j=OloBL_VAm@`gRng#| zA>Dwaxp>F33=Upv2}Zypu*vO_UteoH7f!{oZ-i)=`J^rq3aJaT81vl=6%?Ah8Y*~k z{w{7cLRx-%*fUZMQ?OD$VCEV_bqoL$p1r+yl?cD_fa&Ep@=-$y;hpy}RJiWiO5N;O z(3iDepp8&aF~%<|j5MwzxnK{-<@65Vdx!+eG-80tu^EgN5xcwg>kMz-c=KD4y0_dA zq#uUifqulI73tZ6hn^Joysy1#%fL^2Eb-=_#ktzCJ&CWKWGoRJHQy*~N0>4;J3P(W z7aWGZw*5Ao4j>0bPk3RdVM>ZMLaP4k>FBTZOI>^!u4;P69+_}y8@SlgeyH+VG4FR& z@yHiEq3z@{jF6YxRaRzw=|3VRg{G~6H zfx*Rd#QdTaql1*A_KuLbx~=?X={JhAr9!XGyvkDio*484&X6mpaB|O1U#(N6Szvzl zh$OxJeR2{PDbM0wvuhVqJ3pMM&T%YSSE5S;dt=0^)W6hj-4(gFJfBUaiW8EABFWWs zkr=!BGQU-pU0%Ry&0^tx!NK+@Z?Nywg=xCMx!sGQA_%bWw$X-XZKgXYkG+b6j?Qgk6DL6NN^*tFO-O&Uu1YfPM=5 zx0kfFDrtz*8A}v=NzKsG)3UF;79tK(JrJ<^L~f^iB1vW18Av$|arv0K&kvPHG6YIo z@??bnpy^mizEg3%dgi!t>cIHw2EaQ6-CeM=Nk5P^KF($UQ{BKkoF_B`BVJa4?F9qZ z6Jvp-gPrG7am5X%U|FeVNuC!+gLlmnhWAyFmz~~SkBuLTfD%%J_Rz+e%Rd+~j8^?I zx^F8ps(P4~|29qVchiF55V4(Ux$jEAIzO3F&ql2bxVHHL9xLDl24q9H3zGMEpJxywnF4Y(rA+j1Hc;03Z z!KN-!>lM=<2Egwzz}+o*}e5Prm)1&Znz zSL>vf-51-3Zv|}5?eG(WKDL)&$$g) zN*s*UOEr4?>t%X)J!enNFZPj$-dC|>u+>@sG4;r+^DD$HnAm2e?Pr+or{3wf-f!(W z`u-@R0sXn~(iDiL=T00MTPqxnRUD}WoXg$WcgOFJCFE6^KjNYeih|kibf*z*<`f7j z!|i!InI5sxX=uBormL`l(BcBd2;s$%wsao1F2J2yq5hd^L}KGI|qXEdA zO`e)2u5??4cfCsH&z+oa!02xx|BWRDr8>Sed4`L9ZpY6fx+F*xSdNgOyh3qlV&73C@r1uhAC*Mga6#%8mJ0IHC&t^qzbcc>{JFV0Q z){)_{O#6Bzr1xGmh17i@DFZ4QCXJG2=_8fQn6Fjl==aCtD!aviEXyM~hew@}j5=km!a2E}@r{rfA|5=@PJ*Vx(epeXA4%c(*<^LB7N5efk~dLm=B-h) z(JoNxQl!)hn&VcZIT4q>>W{a+!!>=7TX`R{J*>3y8+u&o=RKa;Pepoq+=YG6L~cNi zv^2E5oBah-kNU{6jl4m7gQ^2hm)~vo+vsaqB5p>msVv3a2E7-xVi5XL{t;519 zEbx=rc9#sH%IzvLizGW$X}?!%azmi#{bFf-D#*55>82wzl;-1j7dI{C7~3cU$z4Tz zCTvEwW2QZoTP}J>fZ!XDFxX!Xs59BGp%eWhCVew})0=Qcb45QhMuNN6hKL_rha4 zlUjsfvG0;jxvuQ&&}_+4WNSrWsO;SMhp^~Inv(vBzw%HPPDjq zbZKF&5hY@Pe@)4<b-qjEN_auxizd zPFCe&+L0mt-oakdYL0@WdE6F9c_D<%dh}%zm8&nrkOQF8pLceSvs&@M&&6ZXyW2Bl z`OCxYN<+Y;P==lVMrjPY+-$ngcmbs#s6M?@H1CKMs9s);l)qYcSw@T_aA{rs@l1(8 zVaF?H9*sRo-GJ$mPdzUyq>uG;$kVlA`L&TsVMzv5(7lz!TZFfk_Ta(;3QcO+~fm zzCGT`#ttU2p?ktnOoNubutQ_(cg>~8QhpN3Rss9l+-JRh$gR~e>Upoo{`5nq)nVs? z1Y5xX(ZcG(H}Z|$Gy>2*f1;#oqQ+Yo8!kwk@6ZF?xr?-e>h=<)cl&xb1gL;O=D{*K z=LS8V8b)vk-zDpZKJwTBvT(JZBzma=s96T)kd6`q4cPW&FhKqKfQfy|kSE5`>R11q zH7`i_(bkNqo2zJ{N zXk~~TVXMxUYjF9n>bY3g>Jc(;+*JtJM?JJk2KXtEiu^pL@6a7!j=MuEMBloZikv{@ zx*;99uL`54CZzv-KmM`q>7xX9-My8P@zm>aONpymP=o)hA@Mf!EvO#zCDi9_zmZu% zk6Ct%yOEW*tyiaEXXYovrL(~^2|Jsm80+-2QeonnN>=5&RYI&3NU;DoGR$JgBe zf+W)YVc7x$G-SB@kCB=V!tfTy+TuYvjJVxfwDr&51R=Iww3Y1=SznZ4VCZaTm0SyG z8~tOl8tobS9a45yA2R!Q!J%&d8l|3B@RJ%Sl4|PdOk%@BtPZ8mq4sgbe~O{VQqsD4 z_)93j+nJMhxmylV^9=KSVy)8}-(N+2$hQkY8pqy0Ow015;Y;uMpBkdW`=DRgPy7?Y zIRivCq50FXW|E|87!I~A{D5F&;y*3D_f_c;hTr^y+U&Pax3WJls*OGyEhlSmrm)_+ z2AAp%0|M5xKzqET^0oLRXfh-yy6gB|Ml)m5V512lXtJ_i!T>aolAotLNpbz~X3AE1?X?Ig=nKL2F}{fl=M zNU{mK(kT2&wTbehS1v#7*FhJTff7fb`3 zGJ?{?pO=4;PhxW^n)*^*#FNxB=t9mUji(1t?$j$-Pskymq(jY7YaE=(9p^GVsrzW* z^pCs6l8#vg%x5mDKwe*VDC+=H%w;@IFF7_c!PIwxLV}4b*1>ztplz{ykb15B z0ZwZ&9<`r6Tu|Gd%;;XB?NV)snH#LO_p&J4P~I=WALIv8Otwa17*%SR^K3(9daN(J z2Auv3%mqiyE0pImDJ43Cv0_d>i+nBk-e`+qwSz{wkQqol<4iN(ja(j2e!Pw5RoBrN zv769Gm`thu_Vw|L>Vi7AmR=`9>imi42Gc&jqN3|!!e+V*(ZF>tJz$=FV@FZ|rbAje z-WCw`6a_|sVD7avBuW&vZ(|8P!>K5bnZdWPx=)#5KnDPY5m${P$w|YI{(!+a`G(c) zEtz9vC66f4BQ3i_Xr;ye9Xm}y8F&M4G8^ZZj4SJJCplc&ZLcM$)-ZNH+X^VQdmY4* zppb|TAL(5#^f_5Pn`1e_n*ttib&agjsUFCv2byt8J0<=v(!`v8ybf39KP#n&0p$ZP zH#4V?)G_f%pB6x`#dh}ld$8|Y)C3BpTL-JjL<>-=tHbHvM)4RApbcG9eTE&$B!t<> z&1uMGuY`wP3rp-VOw7r6Jbd?@%(X5B!f%Jss;wHA#44cKXr)jW8sp)Ck@R8|%)guT z&Q;&981ezNj1wji)@@{k`zXkELnY|GvE(}zKh)rg7S&#DoTVd$V8?w_6v^T$ z*t~(%{aTq}y;!mR7f!rG?bW6TmC8pg|9rO5#@lLOWWivc;%#{NAaz=oXP!(nRzx$p zX(daGqNV{j@+md2Pe--?#`j9?WqmCV8o}rT*4)A}%YdA@;!&i3ODbcikm=}r1UWq$ zBP(Dk?&jGX)#V^WFHoLS*!(3=1oHhV!dM`8!6ppMz{S%-y-ZgG>>BbNmA1*W}od#?_dXW7)OjWLNQ4}I5pWemOU^8baoFW_BVK6pmf@(A-g${NAvlwRy%mO=y zq4H4B7)!AwVh08+OXmRb46e%nu%cYgWjo}rbr`L+_1M*Y_@j~+|EndTY`S!{MX{HTs_WB3+{D* zOmSr?XN^1m@%VM>8#Mr>_>q+RG3t2#b?O3Y@Wx0uNnJhqG!2)wA7IeEmNMY}E7&l- z1RjcWpWD5-C(J+yl(q)$j>bLreq3?Pah}sWKo&Icb@VOyN~iyjRX$_-;c;M*u2VZ{ z0N#IrPW6SjCs9BgKnvROH90JCx9P$E^(BHkFirR2jw}8Ju0qxt`RPdXU;a+$Mve01 z52Kv>qLt)7DR9&vj)9UMZX9GmCh7tfQqs(>4ke=;C9^rRhw1MtZMTAe3%{}1-w z`m3t8e-{M=DM3;MDWzNK4(S$9kOt}QjtQb7qBJZPEfS)1cc^qpNSD&xxrlQw^nK6w z4>)6-y~p0aIG#sW%r)m7pZoe;QLSKvXm1ZTT^wACg)D`Z z@Q?%Ta~;~|L`C>gZ}RB$O{i*OGZaUN*_juLqhRU#3U5iO7(mqX5{m zKUX)E8W5{>`9Q<_d6@iN?G;{*W%g&kj9nNZ3_R55&Ds zrUxQwg64HcfDG*1;N=$LYtSYBoNj{GYydFtMqCc~qSwpK^}u;b1223{=Vt93$?-mz z25(MQbzfc}%ue!C@KLu31iiLWE~uJspl??jmvb*+0M98FkW%{Ll-NxUy(UKAI|0fGX z3=L#~^fzQ?BeOuTs*%=akH6jgm)KG-4_>@oqf-vs1t~{ZsARyc+(2OrW@>`Uf*S-- zO_T+(<97-F0;C>*v=LnFd;fA`cBqlo=F3I{n%5t86WstAl?98QL1o98p#v{Ho?_E` zcO6|56b{V4IO**{HVq37umuAN6KQ_3%E%BIOlRcfzkUT9FhXU;@s0#9oN+6%Ww|Lg=yk+ii6pQZ*m6Zkmjsv z$PlGmr$|JbA=Kn)2-2d+O83LLFclZO;^~d*-x3R7h#rxRmwMQBlvwqr;rVQPYkhtq zm1mHbxxvrVfwun3!#;vX;vPR%Txy-C;>VX5^u{ywE;)w0=+}mHfB%3;tGyR%pRVsE zizcx(46_+a+KQ*?Xfmm96j2_4z&nC!E;M;4f;!%7cAa&7q{z!J(9rb)K}fgQ{zyV` zR=gowyO+Xo{d7{UE&6;jV#xU4v)_>mmPq1-CBupoB)^}Z~agsW?M?gZ!K4jJN{-IX?xZAS%kIys@>P^m1b}h!LW@VmpRkDg|6(m6`;eYK> zLDCjehH?<6LG=@0g$QBdQxt{HA9V_3XiR64r+WhQY@}hCZ;wED%Ll}29 z4NTN$@70&}aGC?Zjr?)9h2hnq7PDxWjTYB z$rNdIJr|1HWlmL{rfcKf*N=iJ#a(3rFC6OYkJi{6{oD^$9-WTo6BcD}P8MuFx}-qi zbsMqwDYB~~$OUN_geWALE%&a+Fhq2M*lt>^Sx$?EK3NK3r}{i=3Jl28`1A(v&Padg zZJIj;JRWOL;Q-9;NfFXIJ6NSNtaaaIVmy0?f<}l%Dej@6y)C*{GE&n$x>zMEvcaa) z7UvmO?7N6YZ`Jk``0ZXNXEsAFsjK(d?+CiQ$U2;K zScE=?QpXfbRw86keui^3JwP07S5YJphM{CUgdPDmOXQN&e1qU*DcLCt0Gh7zZFtFw zdhKvzVrkN;eAT8v)7RzRWGkKM*<#pAG&!E;vGlQ@ z_wjIr1 zEv%ic1Pl9kvCAiVwYcYLe51QhBj86pNj&l|L%fnnVwtiegU>ayc0TPPXn;F8Mx;W? z1Ft5^>h)RBnX!21Gge~-0?Vut)Vh=SzB=d|##$&g<@>UlPTq;X^br>LyDSjARSX7c zI0`_!zi}L*V+;j612{UHkn4hT&8sa0pi5aG!&kuUQ5-Eaw215!KLKcH&9DU+e%@7wzgr(8?DOInvzQdD zvpa6V>r1BNQ6FdZUVnM^<<-6O`HU}m*`>Em^3x#_E6xnggIX6Z01T}g{A(Hl0V!@n@X5df*(|w3tBq0y)5zcd@dQ0*%7|@68p|u% zbMGE*P3sH0uh4c*iPG5uv-OKUK+yFf7x%9o{_;#Y@O)R^W~zD@Vwz8duoE*5l>+>f zcZOF>oo3K#d`?T-FO5aqw4ur?-jPPl#a^>AG>qXQCYDmGec(fmEHEHqP_kied3P`M zS`03*WZHd+xO916ZgZji*=W_IkA%n0IDBi!Li7P^65|<&oZ1T<<#fCe!l2l}&p&p^L<8?M0&D=|; z(WdQ$iw1+6fkFzrZjret8IL3`*o_0kWH^m$h+OOO6@--LVa74HXRo+$qs;0q&n>2k z26LSxYTVinTUrHX1DRBfAk~Scp}y0osN+5dyC)J4l`e3F$esQcOx5aWAP&9q2HP3J z;D#UajJ^fMyYJ)x@$lZTmO2Qn^)OF7r83TtL|p|!wd(c~ka=+~P3!UvT{G7{C?HiB zlC>#W z^FO#B9!wwZFlw(Vy7!p<=+M~v74cRm|7;{PJrsaA zNC4rewbT8`(g+yApBtJibVT!?$iwJU#RF=eJ`DcxJ06^hCQCpV4yz&nJ~r8m8~rsw zj^Yl!S$ZUn^+=a}JnNW_5Qs**io_tYPa~v0^?PmYNvpnip4L!$*-knYA^_nDpr~7uJ1y#$)ppZCTo;uAeh5Kwe1>8lyKu#Bi&1hqY3gwmE=So52 z^E%V-7BEHAi#OPxJ55X1z`5)3o%2(es$IbiwGfpcjmRw;AsUD%@7N8xl0FOIZyw<= zZcGu?t@r|O(3Tm=*Jr}L!(Kif(x#rs>|qDW;=vSk;a+p;l?xl=WX3x4Frv(M%tWp< z`3UN07E8Rrx#>EKlef|QbWwfmxJ6S%m#@84kN$1K(Lv%HHY53P5JWl9*YS?|r2W*N zp=Vo;3hEd*=moJivB1zoA*hp60T~!ciMFc65I>s6^1@guw7=v1q7?TKIy#k@+i`H= zr?mb4dsU9z=ZA<5WggUDtf}f~-HWh4jM4-r zC3{4hnBV|GvoBMo>@-oX+xFq2(}5srJ_~p=s`eW-NTWp)(JRpI&R>w-`l1^(v-(rR z6U3td3l^!gyrXguWAKc}WwZADaP$GZ$s{;M1Tv}(*opS%Szr^%nHThuk*K(UdS~q| zLZHE1btckoohSgsjJcGnGFk`j#pNB<`d%m!x689mddQ5LUni5Hpf%EGbayrF_ld+j zG<^)ByKJBA=sY5QTt&Z2)NW`C8*!7^jx8LOh`enSkhC_YI>x$0l0^E&Un z!_kxRgXEq!&jy0f^G&>`Dr|Hxn1Ey3bIn^lg!YJ509u*Yr#Sy){6qXIze)A=#^<9Z z9pe)CTMB;P7EbIV$5BUa*OQ0sTT$u44?lIk=|u!Y&~qE#qFRIss`L~Q_^As;vf&#W zMT}1MoHf0rCea*8r8Ub;4fcmHBY&w{=tQdHBM26ZwN#yn;&+(rOt%dB?ANbueio;A zA92|G9vUUT00B&kua~9!^Zk0+g9qy^*mNs=D{h^<$l&ExF7i3!_H8;N`%>bMoa3O_ z#6c6jTQ+eHak4%85?2q}amW5Q#kPR(KMHueJmEFm2kPnVQ%Xv3_5!z0LSJun$H2zs zYGc0CwVe=dnt+8c+cc{2-+Ut<NHbZFp$82P9^EL%DxvEKo+rTa`sGd!LJh$Qo%mQPyIrIg$@qLQm$+H5%A{_d> zFkwsVC=hp4i;nw&2cE=t!lXNxwb!jK@kX!mXf-#jTp4N@J0aCA_b$v=5?K0kqfPWP+)ILzCk(W_TZ(r|k|@Ip07z=3FhW&E#?b&xUk z!P>8G%N-C>Q}*;xcl?YU2w(evN2yos{P8`t*o2y1-Kg7>Spkd~i!Nr_B!LnxJQN)6 z*aNR*D{mbYlc-$R^)rugk!3Fgq?E#0u<%uD@+Pqb^OBE^p8E0&5oD=dfJRt^u~;Cs zU*?&sma4>yrO;i}^Z_OvdVBKtMiZqyr2S~U3C3bL(HPlBBfP%0et&jMYb7YEFoe1i zcxG$gJlJNcMc2L^n>MbsYMDUhh7SO)Gq6+Q9})EOmRoddtB2N27ed{sHaj2gqy{V% z3RYsmH>3e7hxJU>>RrI$q9hDN;$-ps)NAk=Jt@t(KLvRaa1LXqh)+dc3ZN2`W%A43xq9Pqf@m&i15;C-;zPc&8@htUN)>3m5v(x-j zV$D1S{4lG^P#x$fy_!}!wTT>4$Rqoi|D)_&O}7&kjAWaszy8(66ks z|FphS%#GM|xFDpH>jKcqCZZTxi7DUq+@g1wEQb>OPxorU>jLC&uDw`lQ3YV!x3q7Z z66qqx)177@_G1u&6TxC!m>=hxpLJ0kfWU9J41DkxBMBn> zi9HUo>%vzCcQxSVOOhMoWw`FpE^wZrfA;06=Jy`U2-|_s#}&Pr zNx~gNg`-uP`5VN))7IX>#{>TSP}B{u55fD4SH&$txFZz|imve3>`+vsLDW*wCy zjJh}8XwO`Yp(V7xt5Di%Vd0eR_lPl#zrn#TyNy}R2gZyx#LoxONn2GI-#c^lfZ#<* z+60UPF9mZY{jyt#Uu-(l+EhQAituJeQYn5ClTg~PH=KOKbzEPU!z*XetS-)Xi?>WhiEIlmdmvD+$BPJBI0Hn9Abv1gIbOp4-F*1ROhySctGC+a4hF$}IC zsS6}ZMy&kU`JC{Mluc<)t1XbF?6}bRl9RK3G7c z_?b1-Q3){Tx>Rz{wc)%dVWH_BO5E|)B~|da9#`7B*X6o4oh`5WURP`2c5|cEd2SNn zwXv943a@j6715$Qp#oKs2V`ZD<~|VWC|jHfERxR+pbVFsB6)a2GtL@&sxd%*1cNHp z^2V}KkpOFV87Z#Zxo$B)t@0m!U)eGMrydKV*sH z^>J5gFTr}n<~-xiWq9T&AY_VG-wo}#RC|nvfvffYghZ{qN59#WaXRr$uy2+)OnM6W zFTADaW7*;T;HpBpT(RtNbalZhtdO;+CP-MfRal_=n)jhidM9Q1T)#xN_wEbMUw4u= z_1vE@13-fl;WQ1^GT`?3mVF(~kDs^X7(nLPSgQPVT|eSLK0tzBm$Hj`l-IGEK|#`U zAXf0Gpzq5&M=-j=#aavO%z48K8QMWK#V~pf`=lbuli?LX98~mr1zM}Vl*$TW&W~pF zXF)xNHiwqVHK480!HIXChCtBVPp5LC1ZkoN&`9jBFCzSP7kO}ag|#J>`~bs`qs_YH z0wFW{m$BTI9oCVfw|X=$UtlHT<=k34`v%&a1$B_Q`S3ZbOev zMzdJZQN*yU3qe5MZ3EE7##9T0xIW*I0_7F6YEnfpneY7JD7{(R`$wJwZp(eGV>Mf& zVMYPjB?qgM>T(wk^?08h#j1CMIl=Y?1Rv957f z&tr|b2nFH&-M74>gXq@#p={-W+Y>G+^B=vvLOdJZ2Io8o3W~%sSMAP!LQ@m(eghT# z8({~WCv^HNswAlNrnu10>W~kxEAV83J{GDrZ^QVA4y;w%gB1c0WkZZvUl?@m}9HqL&9^9~- zSHpaO^rAcvloKhwb$>`@C$iCtWZ8vwc{AeTT;{rNLqR3%W&YgyNREVxxLt@yFkt&_ z->Kl8;J4^8R$-Uuoo@?U0+H(?Kj^-^!#hOy_m(m~dlAnXZvl+Z2YGu?p15zyAkod zj_-p@1yxzzC7CgdsuV7_&Qm~ePL~c&K+3)l=;F*D!BawRugj&HzWd;y;N%@_CnpO` zap|Y6&%S?5F}6SY(#Q06_)b|wl{LRbFZ(JMI?gt2FK%k<8g?*xp|!(ENYQRKi($e4xF#&sz;Vg^jbM;W$<{t3j6yWYr_foj6>OOBhWe$ zOigdUB$}}q`?p3I;|R9FDa~XCq?}Xe0$#3g=+dO}JLg|vWp$*fvIdN_L&7TRgp$og z$PU-Q$C%I#+xRjHx+asY)3PStM6G?QT*m|6f3Y4LX` z?&*u;%;8)JKP3Uq7GklLH0`=}KE3EkC#+E$rKV9O)^ksQ90^3HkaD|aTcLB5kGr2R3wiMjlOu2vDchc)PFsgD(sH<1sw_1fHbTgI3Jzf_^T8y z&yyWfVswudN1XnrFp5wAx`RPqgVgSFfsmnVC@W&=|Z9ZDSt3iDj%d zh(xZ{l9U9r^^fqU(4A}_gX%nMqRIFVfWsX=9}c7<9!;8KcrQXl%0o*Wn@Jmeh^=M6 zix|Nd3(Nz-`8q~6l&frbN15wU?|nmctZ8qUHTuGCEShItJi z*sYH^IC|MJF5f)70c|$+V+OK}UKwVx*)IY!qt35I4fnYO0-qf;xY?Ywt;hUC$Jj)k zZY+D8XGqr?ZgSZ8R6n_2cFQmR31Vw8gmXLar}@1v+MBC)aW4nfa}|^Mv&fScCk!>x zpG5~WFKnUPOJDCC&FvVJX3~KB5HY-$VJZ}nsKN;v8c;>QD@b%D@f1kEFqo^<{jkuS z9==fICEV$>$l6_cEb;E?jygrGY}v41>cVRV-0Zd$!kAff6vFfQWeC0^juuGYOkyul zJO1d`FRzIP4qT9pjRb*solbKOwhk3LV)U3m%CKxWnew)Hz~ypU z9MIh+vQE%=UTF_E)P7L9jEwGNH>`!8zDs6@kZIE!ro-SyNf1?AaI3S=dOpudR*}Hv z--!J>>LmN+7*%&jL9DD^r=j$eLAiDzTKJ6;7@9#6SS#Ey+a6oY+wi&c088>wn938i zeM{AB+r=(RpV9M7-Isv6VjmLtCh{&z_vNMj+OGmS3c>lpa=*F{RP$qIP=d1c`P$Wj z)_%hi7{!q5;o7rg^3TRssGe{xye^eA(Ss|d_0rNSp4dXU50@I^tH0#?(uCM3va+P4 z^xVmB<8dYl*;QUlEjIKG=ylCUbq;^B7|iM~*Pq^?YY*dhdIr1oVzmrpGYgKXM-?W3XFAJ)*|*UmL1w%Hj)tycW2=#36zo zH_T2$I6}`o`sv>?*T}qczTdA5FyW2o8r=yTi@-J%>(r1!13E;6TYeGuJIY^qRq>e7 z8U$$Kr0}vup{v6g{Ve;UzvimT<1pB?-HItPGQ@_g?=r7Ge<`ME`SdXgh-5tBI%^R? z$QNye1mQ>c56+vd{#w@3Epd&1`qfAa8Pv+6Nl!*4>Kd1u?yD(WKh(Fo8+<-2m5zkT z0;v(stFyX9qO<-KcVTk-O=sw|L}fdN;X!VevX_8gRIXhK)%AuPTur|N#AwOzp05kQ zlNh$Q*xe191ijMfJ1~o%*<^YZwhW*~EomtSmd7QxP5x*$S>u8;PGR%WMXq_&PAeC*!_xmPtL8Bdt94H8yCAbUHtp# zFe>aPXqv}^T8r~lwtr3O;L5m_*i94*{uY2Bu5cO7UOfRkAx^wBJM$2O(&WX)%kdg5 z$Ma-TW>DsEThEb!Vl64kO=M=py9=Z{SVWwPkAt=W_fEG|j0mJoJ+S>g;=Ppc>KA|w zX;!L`x0`C5ky}$QsPNBlOjr%Kfk#9MT?|_4MpN^sU`f;A zz;>GW5c@8lbRWic1c@A4?4qd7VJ<_ndG&C1;~%(*3l8!|Zi6=UDPlH=`N%lL@?Fwg z;+B|1GzTM*4yN2ewk(X)W-O!8-Tq1~i>?9sGVgl+0G z&uMdtBuC3Zp)<<02mb+DBXC!GR)IHm2hje~ms#~E0E_T0eWwNnkQNp74YC|5a~qiT z00+M~WX^V|P?D52Xn4nro;zkCH&<5YogWxBJmzWWRN}-eQ9rQfyN4Lulp9=6vtRt) zVBaKV;bTQM8D3E5i*af(M!@>TuO0)Sfejp1D#)X#0M`2Pq?ODlN3{T{i9C;tioS6b~U$gq0s0< zb_4VvSB?W9Ds;i2J(`MM=bxM055=)SMP~?zeGKxw&00(BmNp#wk`F62@7wvVs{0;C zv&OS^<~I2GoDWumrm@f0-bq(*<^@h`p%#NDvyVH$Or62MySl-R=RSB#K5hk@QX!s&s0t3gl;3_&`60*)8}M1$`g))b%-!$24&ROV)-^j2-<>QnmZ%#!15m$%*TF|6 zkZ-?9lvayhhu>o@#_@rIFQ%yJa>8P#ZR^%@q?V;mAE3r6k@Fx#6l3Ur51W&rHL?_g zelucrn2zyN5LZGnXcQ5rws*qAb-r&Jfl_6Y$e2%QF?vCf=(Rp9wUI6ZT0IwVn4kyC z_`3>-=`4a#Op3NV=;ns~bfu~z{EBAey?_sZpkx@mmyN_}85!RN$~z#`FvsgH!f#z|-Sf#eSFFnYRl?G{lrQyI z?@gfC*v*~lf(^@0oEL?VnGDGLje5#x7Hs*-(};hj_r7?OBJAQ9M7GcaA6iBzVG?4o zWx#u0s@^FE!I7_~TdhFb(ByP)F;hy+r^oB19}9)TWMhCIxrk>zmGYqCC^8@0p0PV4 za8}THF6h*-ZZ=J`iEV{@KPfwD8RIx}BiZ8$G#Nu-msF0+&|o5i-3P_luXAIGJ@}xNRQLeEZ6$2o%Xx2Y})Gq%IDV~c(6Ba>S z9M8faKmqUG`Tc!U(P|F!4T$8EmME|lLZ`*6C_`r>}Gkw{kc7V z^TYPh%~j1p0@so(8cTCGxb14#1+r> z?A_XL>PY>a<@D0QTau$+bcf7#BB}GuAW4oSfmp@Z+_#qgGZkzrX=p(QztyOTH!``9 zODPi9mQj_Yxw}5N3rfcXuzz%w+YH&$zP_m?sPt%mDjS@221_lJtKb)uhbODXXcS}f zoG8r5?Y*BJ^WM*lv@D+3QeN(lMtWlYk;C?&jiq8th!OZEOMrB)fN`@8~KS+9S4%ZXY4E zpuudF7icfh=#gjH6cOnjqqk+(o!682=28nUtC#D7>N2uCM?ZL^^7N)SNbd~nZXo;5 z1i&*kIFaxtZF)-x<|ND#d-xZsJ5iE&xS|dBrUn5PThux{mmyg9<>As|cTBT+=wLs^ zL2SiipZ$vnc2U!Y6C{fHiU|HeL|b`&Dg9{r(o&<(Deb+A{N#{_pC1J@o38GuFcw>%X>? z-$CA1+CE&~d>ZE1-cln>eCjyug2_aevVd&y>FBsc&Q*_6M?*Q!fc0X@Eb*FOu`LT+d8Q<|Jx z(9g1>+*bz`Z^jY=bdooa{;>|==n`vhlXRpAmDSHyguDAxl~IcMJ_R^C9e`ouMXH>X zh09c4MI4&Pw@8}!H+)I1w06-5g|Tv3~I`-#)U1{UGW+H+ECbl87eVT zp(NmKGWZ>B94*#0WLf>4mw!jc^$aznH5$IXsBq2Dz6I6`2hbmQfxveTxc(b#^vwHU zi1O|TBKhB}IAciCaOF12s5}hyIVv+YEd{8TWN$=DBbnMb|M$(z|I6GkXzY#x!6e?? z87OLL(87oqV!-0t1w1YnXsB{vSg!~bz`=lCIf1=LTl@id1t>Gin{NDRr8}CE*b;2G z#TLbFp)_!X&y02QN%AE+_QrM)kj@~?j#rU{vbhR0o58H;A7R9P4hS1Tv;o4OO$gx# zMX6?E49#3M4#gM-`rXm3AtwnkXVLCGx0|)w?PzE0Y~W3S>~j}}&`Jc$%q*VoKOF&t z^AK-RVq2s^E|xHk8JiG{LH`B0LA<{rgewxjCi~y|Um?O^bn(I4wV+L5L|Y6J5rlm9 zvdGHg82@#D|Ki^&*vN?MQmcMyt=xIh>zR66at_FsN`a^q)0u%2y#4>3zb>-0pmftL zHSeq*q?{lG`lg`Fptk#9#p4SGk6P*5E9_6659P0yc8PxzK1c@#AgkZlCRINn+py3b zg%rUO^WLOi>DVhs>Hu;@K>iWP)a+&eXtuYfAGIRtq;6jeI&cVf)Pub*#~pk>AT=8} zK~6~Z$GzidBczgq1v?M)xB`9WSNVZ5gXw>de}(>g&1kpv=0*ziUBTuE_N=~;M&40r zS~V<#I#1O?<0fjRiN|yV-apYIW>Kr0W&?l1mVB{(V50_N{s^0tqck--fw|q z(OcsfH26MqoT(@8Eprw`n_&ThA`i;gmqAT9E89W$1RPK7j#sPFaRmc0cOdre{;LNk zF2|=-bHJ`2C~cZT4^U8x2n0RW;_{6el3M7Bs`YvI0i5T!H4ND+n{1lU1-VBAgB6_fr|;1m&nsmkU^{6Pk}Kd@jmfHARU zICd@a!41+u4j9s^Fu7~F5cZrA*tw25?f=S>u-TBC=etQ6I^1&yaP_ZuogHAB6IB0)f8g&XhK)W2ip7PQ*9FLz;&_7yXh|cN zWNZ3s!O#|{23)tlY5!eW(CZ(AODL*V<%K<>L1Vpn48Ent3ua1##)k8M$`6J9{m`7x z0()nN>lzY?bYeJjYth#ftpB;-fK@*P?fvVMIaQFZ_1~r9`oF{(z{66X?)#aFEUn@= zb)+anM-`BBz?UgKlRhKF&;xB}xzmthoslFudX>4$-n(lbvL}e{oLFRC!cf4q9}7D}Z+9TB2&pmizGX5Tlu` zNSgh4jT>xZvPr^R#3_@LfP{n{lt1xyqlKNI2F?t85b>XWC@2`4L(vP3te|hfx2M%= z0dvoY@n^16Qt zC%nN!vsf-Pgfu^!paQ~7kr|J~r~6O-D;ScJ3_e_wn^&O(;)Va*mY{7cck0VrN}&Kn zwC-itgvFj>+i<6UuG;}pLG<=J8d3|^sg=_e&!%I~=Fy|b6uj6M&(@~b`&{9@hU zR^Gu6(W-j7?h${{j)iW?hARa56vDqwXvKhSLm|xNCbK0jD2|Lu!Ti_5&V(0>LFKn-}!X|0FfT zadj*@6K=Tfk5G-f%*FYOo5nw7PBBE1R&$jW60*Wht*i{{tjaM_(f#G;`kU^I&!zL) z3@U(%cVRehh}-Xo(&y{1gEK{ga-nCe|uf(xv3`j)Mij5C&&HpBr zhGc7_pnb%+8-};(Vk{BwyHOIg?=)83X@>F>&~_XeD1N1vz=PbeivWE04u7ed4XCxM zlDp$L=N$zm|K1biMjVMIOv~fG@`PN_IfGKzy~ClwyfdZ~3HynGSX@dW*Xn}rfMmU6 z94z$JYjTbz6d*oNs@=P#5K0MxAD?o?%df#rGPqxtCP^9H+@e&wZu!4>Y?6R|G@w}~ z=b@PR@ZU65 z6y1P+2rlC`dJfm@VhIdZG#!-(ZI>4H*u*MMm!1NO?)mtT?_X{y3R*O=px;&sJKyZD z@?j{?kc}S2`Z!Ij6zEud7Ji4)c|EZG?;`bxb_W=#D23nQu%C;(d9;$K1vnY>fG3Px zY=i(()RQa#Vt+1ozTXB`wT%E1VN`^3t2joY1{R67{^GG(%;-Fy&odDBeae3uG1E9m z7C6jFm{4WppqM1ykSjd~MS%Hzg1mpXPl|##Z{z@e4f+_^(+vkHjjElcD($CjtL&x+ zvuUbOB>`vM^BzjMNt*jXUZ}7NA|!PgosIr{hFTEfBHerL_JMd6)7;5@8KHU zSPFk$k}13S6{+-jHr?3dz8b@hKsb$8I@E2PEYm1LiOkVr@*J^gML?zI80lg^%;oR9 zF;Xyz6idbcrZkcQhr}d|W;M7r`in1+-sJXE<%$WMhK#@&E7rg=6#=HO!e$cRcj~o0 z-7==QM8&*LQ_U5 zAO4QWA5qO98ImP9IN0+^j_2mY9*Ab|25xwNT#vy2b)N1oXM>QK7+}F5mrYvpU7wD`3e*-Z36BFW`IKGI^I+7craCV zU&l*F$BXlPpG(N|{JBEI&dfq@tbA8I$GRrNmw9R5%;HU9m%S`(lPmp%#7CJTUXIBw z$u9wEhe||y(bY5;ul9Ts*)Q5&>|R_MFk`$c9!+HovD&u1<(01D)PMXR9HSpi*m1bR zPN$6C#vj>mM5aK-a2g83Zj?u;$*d1%hvQx5=~aADNqi`^Hd3&z3BzmTBAE4GX5BXx z7+{xVN=fsoT|Z^nXV)wl zQkxUJgsb1w81QYYH2pR;B+5)B(qt8qn!?t@d*i8In$tl_gC~(dQ*|ohS4Ln)JyQ82 zxj*ZZaINA6$D3@ZsWFDpW9`cG0WVVIC(u@VaSfk zhNQ3`GG!))%UGNn_4U^_HS}}&xxAPf;PS?094qwoxZ_qVp>@E{t~079r69u@#l!0z zYT6RRcOr#O@xk%c5!SK!2D08bf7)DfuEW8DsuTj159d8oeiI<^cnL6MggrJ0pwelo z==~G992N3jK}A2^x~(nleXxq)k)kXZjQViLMO@|UZ3gzRZt!`eFxvwrR$J)7dEch6 z754)^o0)GBUxfW*hget7Z ze%3VT3fA1RVpAuwh}z<-AUt%OG=444joIyzDlb4mm1eYyY9z{0;HbAduA6y z=jSN|=q~IJ%lZ$_geUEO&J|_JdyR%BiTNItwn&7jv}L{{?NVL@?QIX!R+xU zqks#%$>UND6$$cRl|pB2|DhPbka^Jy5MXBxj-&6%k(|#@-Bg_vwdf+r(=JG|wxp%{ z*%?h2>P9+47ZgN;o28WS+$jI7IDksjrNt5>$&~xXrbOV(r>;#AFZ0!ekfV5Zm&bWV ztdZzRJ(AhDmVD!Pw#0jmydPf6@+9sEf^uiYbyv^bpjE?m^otG9+!;uR_&`W>*$md6 zesy5eYGhCmS55yxg}U1trc!VCZ(!m(HoW<9W^UsPxl4%$6czxFH~&ZBb8}i;I*r= z+)fj<_#)O1)`YICuz3ck#z#T+-^v$!g?>;I&xyzmCYx{j5dQFFxrt78#%Gxdk)i;* z;Rih1EK+^MrBOo5qM!zKI9qO<^=MmTMDlh?5~+3n#_VD(_TJG`;2JS zU~FQDl*|q;+}?4=x)zhBlf9j4S_(+}-Qw}kE`c5LEdC8FEj@iWd)?;^wDYU)p*-E1 z%^>cT`2-I*f?MnK;y*2uJB(VRsQ;vFWy3;dd0G^uL_O2<5bk;4Z5ZnDt*A-i9SO_U zi2u^oZM>b;nSElLkpny!mqF5STJmkc(PpnDe5_^a1vh?XNS3({^@ce%~JT!7moL%hUI_`{9cU z2zU4jJL)wNAwG_0z%dHMl)sk{WN0*jBdwMtpbh#x7*RQiZqA{jjz&gB6ZET zBpJL&o!NXbBnD&Gcwj!;P#{{hNfj3mQ8^dTc;!x z=vl$iNf@8yBdNJx{CMjpj)@7#E8DmW9f_KHqiiu`#()r^r_)nd%iDGGmZ6t`!|?X}U9MLVMwZXv2$4ZE#X~b(`Q?5v|fQ=K2uD!@~*hNA<$z9$Q*Y&JJ=#+ zJ!yBr={?&|(S5KmG?PBo^EhI&c4MseaJ^Th^wpkCx)EoKgkDj#;{I5knV(MiMymH~rdaD4u6cR`A+CnJp1o$h|3xcWN7jXFn(| zS0R(_pwV!r{cn{_pc}05NpAcLIIfhhm&zXrF8kIR)!n>(1!{Btj4>Y?!6G)gvIAfZT4g5y_@rZF}#^y*4|;FA?+=i8d(tjqS;Y>lEkZp)cFLOz#DV_N&j zHp`AaYWoky%!c zS)4m*E|cq~|DCluE0xIG&x$VJPd>`mj1*(!`#PJdk_)f?euwJ#ED##20wO!Fk1rw0 z!!8&bTXxTPCXNUdxrl&&-09|73`cl&B2pNQsLurw4vnQ1ko+!o1gJ}I_k;w03Sj(6 zwsNoesuP>rc&cP%(5TRLxWP%@Ys*L&uVu*)^Q-~Ub@EQV>->&WXPU0tLXP4)N#ufe zE){f3vIKI5d5jE|ukx7pr!@f7tv*XFK;T&^U2`tr{b$-0hydMdwgY2w{8t?z{_*q( zk8!u8Y=Khvu;;Pn;AL`&d{Lg147SQojj>EA;jONhuW>h*lt|g$TJpN;xEFsOWfC*+ z6dK7L?UC~7VdqoNHoZ6-{HjA!$DU|OXA6p2i1XQDi`kL=xIyLmo2x1>rXBA10F?Ht z+5|gn-O_FS%2FrNY}vK!!5rDJ@_G%HQW=HEGJ08=Mx?UI92%^8%vp~W%#9rllpoX` zpGu6vm-;_Y{`Qb!d_X{lHd)CqzQ5V3ul_^f!^^L74Xmx% zay1W1EtN~pYh9}Bl`kiqg1-tdLE)ETh|AlW*~3DvS9~50I;J0Mr8d15dyth|X-2c$ z{*wgH^z2pJA%?G3gEnR=UwZ%?8v8oD5w=8TyZ~qTbwUa=PFVW=|$3#8~6xV$D|(`KJLtFj*-OkpF5J~a+tkf;|`+pC$T z!L5FB=e=(5UV*;iF5?IKanbYide?Z$N6Yn%gDh@axg40Qv$~9lpJj&HG;=4R?9W0H z^vHQz!WzZDMyG8DCB0tzl_3={I%4gm)Au^DRXJg7RW+H{rFRr{)6XFG=B>?{)Qwu} zy&-jp$<;o8k(d^U;uSAqNT_t0H*9o%*J!Y>eB_fl-zm0k*h6^)v!yPCFk%cfk-9&;8N4Y?ORPBI?5(AUMKL3-+@~H|7q{7!lDkl zw^3RF5flUk38kc!?ohfzKtMo{?r!*jilQhT0z*g)%^)!d!vF@-Il|DObW2Nr&*=Mp z`?|hsAMAs@kM`dK4xDS4AM?ao>t6SLFCC7(Z@aCjZJiO#lp`FOLJW$@CAzWk@^w9V z*OmV%$1WDPY&M^}p?)@k(V*=2?%gY@$`En3BMj#VJ*f{tay_>_T|yZ)=ZLOC6?vTK|DMn;ODD&h3vt6rXr54DA<)J%7vLaY-VaNVxS-knQ z&Ll2Z)b?OXUM<7j#fC(CS$pY`o%@A17x&t1yFiXT;P=qXVb~}@+Tad?(s9)OuwHp? zB2L=}6`!hcG)R;1 zhIe0=d|WaI^-^nk@t8yT?{}MtnJ*h^n4u4y zJ`(_(#C?t0!lbrr(*KFjy?Ks^e5g}FZHqi;!Yg0#jbxm|8!HKY8c zzUl(k`1F5};GKT7dJtrS?)68WCQWg9XdLDLE{bQ(-;ptQq3Um6RE|D##On`SG!&XF z7D-4+t%)0i+ZK4RTaMFK?CJ6U!!EgVJ|oiAZK~$wQE_c@g>R`vw9mM9oo>ix6fu$=azZ01NF&OISn}-AMEFM=vUiO z+_)F=sHCC+kjdGOzCC17>%vy32;0Kz&q9ww#ir@n{gwnNRc{LFGvCQYx@cTKmb1SDX#kUic$J4XE*0#J$D=049hEaQ~B6- zYJ$t#f@IyE_wqcvBcKC>v(EJ<%SUk}tb5FNb>SH^%#3~sJ2NRUC>{TWo&SQ@)~E)f z3s{j{7G0R&)o#KGHliM}mkeQvu1d^hs~b0wlCL zZ_HX>Twel1FDetOwJ= z;#zADAY2Y{c9XE9LwhNnxM2t;IB8jX4!ATKBh6A$6Sokt*(~&Ud3*%GX5185F*Wd@ zvVN?e?-`G}rK|M1l;}3WDDcLrL<$)0L0#@5J^aqxmQ9VJ6j(Xma?{#3r>F+V*Li%q zZ^(5_-D{ia@ONG;DIOV}^!(ox0OlD{#qp>1alKbn$f4J$l_}ag-T1Q21CV1l(**}R zh)JA3lMIU)O+rI2->54U?qUu8Y7Zqn%Un)jHC z9j^#dn^m^hxgfO#XK;_Bvj`g9A8qm-AAX204}k8ZG|@veC+ zhe{0R+ic}JRzyn8F^v=ssSc>b#Pu?e;_RicyI_7CrI#W^&GXQ#W_1P3MKnl?4^MD$ z5MZt>9$><72k^VM0UU)vgk^I$G+a3diwyx**trUyjURhiHQ3t71wK0KPBic3d#`ep zni|uiLqcS&^+cr!Ciq>8&@+_+FWr+aLLM~>20dJrv2?^B%jX0P1#<)+-9Zw^oQCR(_MU1E>tt|A zL63NEgeDXzCMrYv%MD2VilJ)>UsYC#(!V;4Y=#oRvY|Rnk&>7aT`-Wa{0!AE)hoJ@R=Dk!5Gz zVTAY*T$=|dBfCot3Jo<);WNxod-nsph)-AE%N!e+VQ)v0YkVc47%cY(U+uSLqtN|A zt}ZxAmqX~LY{(;~jkBT?z=+jfd`3RE#dJeTuA2<|iY(oT1eQDI&IyE4p zRrucyq`FHW6SP}-`DkUrpz~69mJAeZ1G>n_3vV|jQTBFv+uuL6sCmbFtv++NQ8>uj zwn&VgM@^mDEFQ?^Gn^Pys@oP%=b6rsm(v~J=O90Pl(A~L@8nhDo}zMHFCrDDzf&bOh-y%&~(_VlgfaP zOT-kMj#x7timTipUt275-DINg z=750_!h*GaXD%gO#JM2_r>FDzbP9$7{g}BWxK&=~YEze}fVvo%d!8t`>XW^XX4X zhTz{Ld`q{(r>!5fCw6LfEWH3G7frHm$AR;)!#Rv$eC-SaXCf{LR^JH(8aQpDgngzY zQtyoeYV*{8WB^XjZS7Ky5W*c@_ffwbsiTwKEM6CU>oGEJGzr#7JXaidpyEc8E z8akqhLL8i6oMp8;!A{s-=wKbYUk4ZC)UGLabFM@s?*2rnG{|u*!Y>KGSh${r5H1HenqG#OP zb(<|pY60dXhgW1V2}vdh*=sZ8=aP$Ft~^HI^g(9sO}7r@{^W#ipKtV6APYVC3-Vx>XJ32Blik+zf_MPLmdLyY^mlsl@2wU0fC@{9xA;qVb?vkUAB7 zWvr8`eikNC7g)p61UK|C3t5!`IMQkxp+E$2J`dUx;EWZc>5k$RiAi}Y`cLT$#ttya3(w0j$?Vf_RX&5ZZwY$EE^g{2~Vf;{ap@BNf&a8_@*5!x3z!k@L`<# zGN>*7LJ?*BL(cKHBjlIWmK-!OqOu?Rd=8jxqhiO_I(0!I#hEB&tb&q%sX&<>t!-07|E;alD67jg{W z0P?JS(83k{Q&_p|^$Rc#;^{@40_<#W;uAr?9?o>Uo>tvy<4~IxYfjlTE@VD2C{|Pm z%r_@Y6FZ>|tZo|`-1t%g^s&pqubhBu#dl)ZM)R9%QpURx1#jUX_BJ$RoU>_8hTHm> zN$)5f9mToDB2T2<*1CY*oCGRxjN&!&2fDQ;CUluSwcUX5!icj!tIDNRkj1JaA(v6< z($C`m{s>P2-4FMP4}ZYylkQSJ*Li>U^Tcd1zkBm3l7eLW+rV&GjaiVZiRp6)v>ojc zLXOVQ^8Zka+dQjW^jTutto!sh?52d|=?t?szfq&w(|U(LRF2I{&W`t1Ot>abte-)@ zHp?Hp10Dde@}iiU^=8-cqYkLOY~)&hGy{WX-II=v4!FteeSNr(BUe@jd@CU#0WdVD z70ph$3>%V?c+5n_J$OJEx=Rv8!n8T^@j;m2q#YBWq!{G_<-H)#-FZ_N--mM-v>jPOr$e$7@CYOu z(J!r;#cT+f&4s>5AH6(a+?-UeA@---^g}iE{EBjNe!1g%A%}VJVeOmRG#qj^-<7Iy zdbHm zs8j5GetNcjLCAfvHxnK`Uc3KUEi@ZEfEfO|guIz@IjBh*4Q1?BGUUPrBWAZGtL^bRz=>F}TWm@QA zhG`aXOhi-V(LIIbPlis0?DPy48*n-fl_U$L8G}gJ!rqTmvqj*`*L$(4c1g~=^y^g9 z7q9`6S${+S^}jioDl1jT>VqKf!bZ|(Sh@ck$%{lBIg_DIr2}JCeSpN`Mi_w`p!6^@ zS(MVsGI+gq5CrjY=(cZ3+S_lLEhccf7&6z2lp*SAHG>01@6AfL|4t0x9QP0a8=jiU;CD8Y=BbUZtI~I2QArT;Qct@ zWhT7&7|9qR#Nwe>KIo<0q&RwfV1+`yG>q05w}TAlI)mofEjM8HPskq;|M$1zJ_^Jc zqbm*rxsglR$jZWUN5@UPqq|5X(VPz|%@CQq9@Q9*T$?4rV}GCWwaa2^5V>!#oonZ_ ze(iAbD=m044VWE36DjphOZjh_imN}^b9AhinQ>WZdl7gurq~d2l>n}RHIDjf>NK6H z14^%N{Jnjco9>Lfb3sCW_TfQ}lcZ!tHiCPY--KM~5e0;fA5K_v+uF}+a>rV1* zTru$H8i4A;4rE0B$%Ovx2l84@1szL$@?**Du)>~Au1UCtPc_IveW;Ti#AN?{BbnzY)k@?EAU5sV8z6r|1`?W+ zjbNuleAu0fRD@tpwzg=e-ZLZMCf(uz+xLH7`#--IXp1LKCahGu=Sq}Jgd3&Y)!^h@ z<^Nt0|87DUne;$mERBE#ueP&J?Ug9k2pr@Docg2I)%B(RQ{4Wi9@i$K7jt6sp9nMi z=B$CI`^_JpAza>p2n=Cow+uNnbRf(7Kcr+(L=?I7_U{K*rb$F`mk?{ECx)Y9_Qk6d z{ePX8f4>+nLWn<3z_LlGN!uNeCfhT}FjP_ZBY=0N8o)BE=Tew~WErRn7RHbuK6aSc z4-kGJe-ZJXPCVpKr9)g6{KX5R4nW`R#-@?op1BD2B3r;a;|SIT=(@-D?mhWFXjd9| zJvHK{o!pOMl36LK$Rb>>r{bC=0P=8 zywA?k7nejdPZ?M9zkO32Sgio5iP8*!tvn4yg7=BMFU?58|31u&q+R!>HTV0NmY-kG z-v^s;rG0`@lP{;Fjz;!!&DpM`WheEV6iJ~O`c67cSi#j9wj zT3B(yi{BdL<8LdmNl1(uRRhM5;B&jFr=h6^a$*r!OUQf!ePDr2iX^8~2j0i#vzJ(? zR&jAMiGo3N#0d=MyuZ+w&Ae&|54-q@2o7nc-3F9T|95~Gs{$+`=IQPK#txQM(zWSk zOEOyCrLjsCra(nt6~7K%1M?b|CQ)@@3gCocPkug|#KDC3-_PhG;MB>|yjD3~?`?kr zxOwmzr#0M)Q-1;`4FI%F4qM~9I;;j{+mHV}(AcvcQ2n}!TyqB%ZknX8Q<<>@$EphT z&3pA`#WacWusdXpK)6985S$)#J9WU6;0|d%h)4gQyb9&ZBMmrOZF-7mK&RzK#N3?C z=*Oq8oP$dq7T*T2uGc#uP7g|P{aZNz8#rT zbSG~ez(fH}#?_%NNQUg`Yd$6BNsC)P;z2?=8uaRHl zW@Fb#@%i_ZO9#zN7hn%-oeaT#FBIzJA-E@y(@eN~5Dq6GCR0rlw6$*P{rE@$2rfMl z`kc7qn^>E`M*8VW4teFL(V>Sp&E*|37FwKwwH2+N`B#QT`b!xkU;j^EhW@X2Q(eq! z0e%cNfK}xM81kA3rBs~v*iGqxyO^#jJc6IJ{RhYKh7H3*K1*zKU>7ZL2}_y| z=~iSZCG&u_mju6De?x-bo1AMU(7Gu~vU9poLF*y`5X%vivQ zuxOL8gDMskxjoOAxB`b6xbb7CKP2SC0%&HgQ^f|$G_0I}qTx-J0CA$YHc=j3y=}FM z+fW%`d*uE-v+*AhZxai;QaZpgC_#@nIXKkI(?#+D&&10zH5dn1%9d8UpN9o{wXm4{ z-oyHt^gIHf`;C(y^7S((JE8oG-S44;)>Ofj!^HxJ_}uLk9)WRRsht2Nmh1R3YS|}K zG=c7&G$2ft;wCH6`u9pKs-hcw^V^=rs@GT9o>u%qMUvaL_gjVShzmt$nrTkKem4lE zulV*(^x6E0x{{EzTbP*zEXy4IPksFuyp9e-9PLgu&+1kmRJk6D)}K!WLj|rG=lR?j zSBM%(mxAp;bAQUNAZ;JmowUz`0!L^vt;O?8{EP@ak((3b41XTK7h<~pPn5Yt$g+6Wvf`9V@-v(6P#7IS^vot#5N%M5(_5;1ki|R2P2oNg5A^axq z)8o5h4aCFcmI8U%%n)l=$|)OYe03Rd;6%VPb{wdQ+E-VD`*ZPNpm;x$Gc~3n}N+={ie8_}jjMH**7FFIQ0fYzMna2uNIo@n+ zn!^m~mRxFT&ZR{!CaOR-KELkIq4o;3f&5Ihw>qRz4HL3D*suxonqe8ObI;yg8BLsF zzVH&80}+GyM68Tb{_)__E8x<|<~{$_g_z55Z%z!;+1(1xa{-+<4EHcx*ft=;W4Gv_ zaB%8;=E04-OI%#0HAT|fx?&xv0@>Y%YeIqcgEpfzj)|lp#|Qa+X7z}-!G^mRG&9Nh z(PYcBltgzXIxbbo7VXvGT_m7CcMH;ri4th84~pizmZ zPd6+B;kqF)pI*)ucLo#@!JEz_F43R(lw{ok5}4%TUyEV;^}B0BQd*S!z=VMM6ccPA z@Gj5-z{@Muk7KB19dn&X@a6StQ6rCtddtF*+=I(m!M3fP$q9UBVCy#p&nM9KxI(Kk z&SA$|ve^fbC+@$@1fkCa<45g(u-^+t<CBrMw_@_!U z#QT|Z!=ijMKB3F+K0dK&HokPrHHi#QB7&>^cH}6TiAj?4r9`Wvvq2;8n%ZnYh)8>q zuC$%|x@K5)vGCQUKWosx9$Z3n;`&_kL@v-w}UafyL2^G@e?1 z)G0#CY-w?s!QW;Uj{B^xGrCX>0_>^)n4whIPFxU9IIi8IW&^4vL6;>eHC0uQ?4G*> zvc#|h;CMbEP|%gMpQdB~qtpPq8WKZoVeonwRcBY3t1#tnWha-*#m34!avNqU$}iqY78Q)OvubxJxtd zQIS+^t^yoTqn?7JJsYstrZCi;E@%1jGBi9zgK-v{Y>>HA>pYzBZQ^y+R1Mi~=O?U9 z$6&!e{X#V`+=zod>jWD9JelMnr_PgSq1iN#q1LO+8&%9Ez|s1r&_PEqgply3pLwx` zqtcP+$8Dsoi&4(vVgC3+gf!RBzh?+K?e6$3cWLsRwD!svb2J}Yz}1gKrlbSQ7H7S- z=hSfhUZ3R&6F`Tse;!eD>($5E@1qq4%u8cEL>jTl(08~$UEep)F9vKuZKQZ_rb63N zSgHIXh{>Cfaxh<|=NBkyCa*~Fl$!ywV@rTs+Rl0B+5XH`LMpMyJDn+~R}rS<;a^cZm)@DpnAc z@8N>Xrc;5z^hZuLMyW~GAdDI+CwM?nIap&1{Spp70YobpDqU0*P$hb+)3vfc^XdJS)X8R%0Y6c(sNds z`oufifl4>x3xTlVLsj)o<2wFj>^wZc?t#(g*eKj+)jw}$bW?Z$wPtA_z&KJ~Nvv{%tx9f%=;UM*OghQA_SUF2Kk4< zP5kh)+=i{Ad<=E}e%JQ3jcR=gsnFhR?_P;wxV;aMF1d<2L!_~NQQEwExi2#7PInjE zV?LcSY)#x5=u`K`NDlXiO)iPPQXo1Z7nchVG5(A(w*8-?KjBAvxayp7>fMnrgUcDE)WTH7j`#c#$^v4*V z8DRK;G^Ab+Tb>G*>>`Gv?p`JMKoc-OpK9}qfqL$zoB1hiDIdP$Ah{Mmd3VyWj*w&x zP`X+y7K+{Ls0lCNx_58go^8vA8IhHJrKh>2CPu_|qd9kay-}W+*!U zuuoR%YgfJfocPa*&mLu@WkQn|9ZFf#-F7^GsxA@-gV3pVP3^pNef_b1FUl(Tn- z&-2yiJMphEzS;CQ_blrC`IswbvK_h)&^vpAkj3w#mt(6}hD*(i7a)l~*(-?h_+xcL z9m}r+ht7~rJ?TPP>W;t8mG5~gv-+tMmd&Cj;GyvB(!ptZB8xo|Baj?|(5!2`^kRgg~W;@wRv&iVE< z%ni-Gm74rq^H;c{qS|Ocdk^S!Iu&lsL|pH}&f%1S%kwswpJ2w4VNMTJ@e%8xe3^N{w@F(QTriOA zCb^WQS%<$I(>sp-UPQ%6`lFi@!_BYgFBDjp%W zMl*&QccD-aj5Ul04wckr1#C^&p;?4O7c`|z%p`!S6k$(`4X6b9Li=Hif76b6WCs4? zNK1VJitK9>k#LdsT=mz2qQGDG-qVz99_S{|hA6}Oo(E6D`rakBrM1;3utJ}C0C*9N zH(kF~RajgI7Mnh1p;-4r<6*X_=ULY93$B4%RBOShvx+`z_DI3rTp6W z*QN47pDuTj#zE3+E^7T~71+}Z?tE0i(O|XxEUt*p0`|8nBsAH4@&p@fRSlQLLNf?L zzbOfhxL<%loT9eb#Ho>bb_b}??uyO4Q3rLpYff(~o%vkt+c6R6QQAjgCQbKa(%g0? zo=@$1=XJd99JWGpogOv@>Q^a}2IlIxXDZ$Y5GhoTcK7|MG=0wEz0jLnAa`~L2m}(H z3`;u?7a?p)ufIPH`okKZC+s);OU)yyKTETYxs!2D+t}08UdsLJIkp}Z`DFQJY*c^O z5CndsApc4}(ET<9k-rC5b4w-?Fo*2Mn`a`u#y{z?B1#wjo6-HftL}_+xLC^*0Etd= zaUn{t;iM`hmvZ|^{c~6hRP(sv=bu5_pnRg;u$3uv@cIflof_%JRvn-A@7|5M$>J(c zm}={lJyzi3bjqI(dOIpDug82Ees9;M00<51;+p(T#&>x_4Gf9kngz32OVSxSLCJNE z&kQ9n$RE405s*43Jy|7+aO~5;Ld>OGc7Xk?pN4g?lhqrAevsg{DbWfgq@o|U1 zJt0<>|GjWTQ$%G~0eqnyzBy4eZtLO^1rZySJ$6KVaQJ9k+n~RD^4aXy$s~YGa~1v* zW=6VPp0W@CBJr$~%;E6<`YG*|wMA8Oa7-<&?UdzNM%S}ktSg|+p`)>+$Az1VD`*~y z9Pf=jFW7H(+Dr^cse4bq8-bJ>pW@C%Hi>w6Z`GLatdI_6N`wwY3JTiTV3W`kdfTR{ zSORCLXtt1qxlL)CnFbzbs^NHx85up#UBjPe#q9;=W`~GC5eBeOU|aUcTep(QYWSsJULRT{<hXBSC7~z zUQd;6XJ<;eneEv#;(eLY@&;e1tg!q2e!Q!1C;AdD++Kp(-n58Khd9d-nr4r???69Q zcV7Iu4sKBOgsKGjqNeEwhB0HH$V#5NVq*`L_R<${*7&cvE;J(?P!Z&v($eAr4&=ou0lxnVwQnGG=7# zlLde6j&>y!0kAADrQDApZHyrE%2|=?y8W&>(Hbpw{SX-o#|1 z#D8A3I7a9fsE=*VH&dSR&1yR9i%L;dZ(eHr%(S+rA(kv371M_D(YH=8S&v0-Up zDlymj0VKZN5D04ywzaaRx%lE2dUgF+meue8d9&^H+xGZH&5I`>`@(RaaidDi-0NF6 zxgTsvcp0^b+*EmnEo1TUJ8RjPUqL!QzofmrAG+DSbFktHNyJc}ee3O(CJ66+E99)e zvO-ide?<#0%{BbTV;kl@Q+6J!W=x?Ay0x+r*FX6M*9dW`nbtY6pVu!qNx2TK3<16j z=%WbwsH#WHOFls90$zM1#fwKrvx1Jg%~?HtazyuU-5nRcA?ffNgDl!{#-`AN|L5iX$aJRI}1$NLOH5A z?7pXSAvgW{N_N&M#dGbGr>JwbMXW|C52ErbK=VXxZ4+?-&C@nCw|kZwS9`VQ_gS+U z;69*qe!{+8no=vxO_&XL&fi`GLFb9stGSXK=GuRe4(c-At+B-7rVs5;@0PLGqI7rt#;)pPTjWtPs{? zLgac(zC6hD%uD;)eS<)6L^@D0IKks;8>z}|QH#De@0@gTP4?Pw?|yLy)7zlS6gB

(8*O~l0jGGV8Ye(k{u;2k!Wj&NMRsmgLsu?LU zrhP$QAG#5=l*z{0h*}DueTI5CfBS8PG}Jnfj=1c7##D5(OUbll8kZ5~A6#CgtZk_P z!znlHv&XFw&B$_xyASRpH23K#cP`RvD<`#6t49E!HvRY!7vG^nbks8YVpzo@8sLM= z9ZJ{`f^aC;8Twdz5q1xsbIic_{glGfI*Cy){rKDG${CWF5cI}atp1Np#_QbczV<5MzFP4M@bz*3PdawjBf^QlHwpIoWfbu3g0hMn!-y3hND025ysK6N z(7Lf-g2zpvfonWf3t&R|^90Gs$$?rmkcL6YU%}YBmRtg2{R`ZVm3n{^?;8C;4erZ# zl^}vF$=o+SUy&<6gE$w=A3FTN0fab`_tSnN$;O7z~9u+iYvRxN${|obp z7L4M?>N-(}ps=LG6_#Hu;4v{Rz&uWir^`Q`zaOj4v@_R$>@J&p^okn-y$^1+P6-Ub z*%ay~XYcORlhB{EIEwZ$3!-9ic>fG_-r0@(b9}SF_%haGklH%z6VV$Q?d1V>2||2% zRD!|ABJJL%RPcz8gEHpX5^CLKI#e=M z6_B~Fc#dCnj%Z#Zh0^V*(ex8JT%XHPHwvj-EA%i^=yRm>T=(oXAWm^;>5KdDb&j3d zCU038^Xn^lUo6P_zID?ierOEd&u_G>4eWo*5t`t7@vb9h-BZu8i&bz}??%R*VA=D0bwVmrwF^#@J$5jP2a zSjCOW4l8n6E?s=FaxC+3{?E8gZ}Q3VU7&gVr3NymfU)r{b8M|Mlsc|Sw`!(I1@ipJ zImlg;s_@#JZl}i?le$(XNQs;Nexq|1Ps~B||wjCbTizswSHDJ8{aXo!xgeOt zK0R2mOxYWlCxx}$+K)V^C$1#k# zp%~{9{em~sjlJE^7nFT)xu{Xd(QeRV^;B&}@wpJ?n2d@v;kXW=Er~4}s|oX&xsJr` zfi{ey&e3VXwC1WodJWeAusY7~?DV{S?EueP*ABSHX^O)APUm+`J;%#$Kv6s+eeuof^Yk%t zj0=%wGe@gq(3oM_`7EVLty68^5Z}>RFxI{hs6XJHZQxl|e#C;l@*XOVjD<=zVikev zr9JDZo9;Z2JDKrS%I?eH>`Fyc?!cbE#lCf;7IT}p!>Sxp6+sIE6l=YfH#(~rOk(gG z1nvE035^789iBi*o%BnZ@+^!I(Al9%gUm@3)O}=wbTzb>KMxyR|9lRwemFLY)5y8G zL8a1Td9MI%LB#bX#^8J7?_9<~4#f=1kodlk4WXA5kP*^tl7mkGt?1_9k3Qy=f`MN1 zxL_O!o&=wrL>jovt)G5#&#e}qGM%*( zpb=gZ5eNB;j;x(xe2YIh9d5AE8m&EiFWZ9&tje2QG2ORrPXE$TF}vR6#^Sp`hWE<^ zcN(USKUy9jnh%X6{p;y2!BSzP>r_O~K*(E#7I`HC!U4O9 zPCtq^_7r?U-fTS}17IqjO*te}L?u~G!#3Ff3xn&eU(M#s2|9KVHey?C4WpSGW(*+%WjD1UewU*t-y=q!UoXBLzXFMuqQS{I=R9HS3vkb24z!mCHz_ zYlY-DPA8TOh-3GcmdSEI{Rib9-8(uy7&R?}eOE6T-+GLLzXTh}+n1DP>ZXU`64{>VU?L=r zB_#xvFROnQiu`-61-LOUszX_~-{M4;w?h`U`J)W+WsH}P`oHd*S_6l`{KcoSoiUkG zgD^~h1x8IPpXA2o?GHlstlXfpwyyuMa z8RzI@3NOy4UFknA%UTqWtSD!68ZPkJ^5U|H)}vITdqJz|GimMyH|p9{$-W(%hZUE9A9<|J|ae1m|aW60BUUERiHU2 z|KSEa_#@clP&qtwrLUJauJvPeUq3|Pv-j4eDPd9oMr+DLJbu$p|IyQwASyW94p z|0KIiuylHH59QuHdE?%CeYhWfnhX)Y`;aNH$Jw|ybnehfcFkt^t)rtLZW}-k=fxS? z0T747;aK8~z=5ve(0m<+@0#3*kvXtyxP5xGf2FU&N*wAFW+k_|@}H9&&)8{4#M_VR zqZWKR%!}iXgotcbUz$wxGNLW%i#Nz>@&euX=Rdp2G&5wsTIBVudG);uFfz3q;_k5q zg3KqI6cR$aR&CJig2LYO1&d@3bh8vFrM)ok#KcVo8@*tv53VLt17b<%UB7&_=s)Ft&;uqUl?>ra>dXPw5-1 zTj829NLd=I<)t-T(b4p0o2UNg(W>ol14465D8&izRvVo3QAkPJb@vZE8ohZhBG$DfX=xkXV+PHOnSPokb11HD@hhG(Z<6#VM=q3IJ3ez6XHn11RUAOcAm%Dq9^(?n z4evq>76?I!ym1u63u|Bo%hSt7g>%y0aoj-Y$I@DPiNK0Z+~G)X(#14!1i1D&L@OLg zaOtv~&U|_zrio%0uk_4w0dv-4-_h^k;a$9}rl|0+Gd%-)4eCxjIWxtQ`GxW_n-Pp% zpWA1YT2tyLyl_VAN}3Cd6!%{#u!ziy1FM9tZ_niOWAL5Y>h*aWpI3!3{!0=BS-*o; zWKDZCpgFODii~$%YvrmFe(&@HKJ`F*b(SRDO=a(d_?T73LDku(XSe!Y1lIi~UXBVs zG#0@mJo%cP%_h}U#97ta+M1>HV%zKRk=spFK%_cN>;lN5+!rIrVb}iT^5P7Ixyj;j z4)cS-;d`u!o-tgh9C`%z{^$Sx-~SG-$J73i<9{i%j861G;emf@O4^DQ_n$obU;lE} AY5)KL diff --git a/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json index 55815843..87d64759 100644 --- a/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json @@ -2,14 +2,14 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 91% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n

\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], "includes": { "include-in-header": [ - "\n\n\n\n\n\n\n\n\n" + "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" ] }, "engineDependencies": {}, diff --git a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json index ee04f1f9..84b1c2d1 100644 --- a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 93% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 93% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json index bcaddad0..93ac48cd 100644 --- a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json @@ -2,14 +2,14 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], "includes": { "include-in-header": [ - "\n\n\n\n\n\n\n\n\n" + "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" ] }, "engineDependencies": {}, diff --git a/_freeze/2024-potus/Nebraska/execute-results/html.json b/_freeze/2024-potus/Nebraska/execute-results/html.json index 55d92d52..2acb27e4 100644 --- a/_freeze/2024-potus/Nebraska/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nevada/execute-results/html.json b/_freeze/2024-potus/Nevada/execute-results/html.json index 2efc8e8b..c91f4f5d 100644 --- a/_freeze/2024-potus/Nevada/execute-results/html.json +++ b/_freeze/2024-potus/Nevada/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 52% chance of beating Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 50% chance of beating Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Hampshire/execute-results/html.json b/_freeze/2024-potus/New Hampshire/execute-results/html.json index 1e2aea64..489efabe 100644 --- a/_freeze/2024-potus/New Hampshire/execute-results/html.json +++ b/_freeze/2024-potus/New Hampshire/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Jersey/execute-results/html.json b/_freeze/2024-potus/New Jersey/execute-results/html.json index e03d0ad7..13636fe1 100644 --- a/_freeze/2024-potus/New Jersey/execute-results/html.json +++ b/_freeze/2024-potus/New Jersey/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 98% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Mexico/execute-results/html.json b/_freeze/2024-potus/New Mexico/execute-results/html.json index 0bdb6471..a6c3267e 100644 --- a/_freeze/2024-potus/New Mexico/execute-results/html.json +++ b/_freeze/2024-potus/New Mexico/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 93% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New York/execute-results/html.json b/_freeze/2024-potus/New York/execute-results/html.json index 53186d42..f73af865 100644 --- a/_freeze/2024-potus/New York/execute-results/html.json +++ b/_freeze/2024-potus/New York/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Carolina/execute-results/html.json b/_freeze/2024-potus/North Carolina/execute-results/html.json index 41cdd288..19cc8afa 100644 --- a/_freeze/2024-potus/North Carolina/execute-results/html.json +++ b/_freeze/2024-potus/North Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 66% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 66% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Dakota/execute-results/html.json b/_freeze/2024-potus/North Dakota/execute-results/html.json index aee338d2..722e0fce 100644 --- a/_freeze/2024-potus/North Dakota/execute-results/html.json +++ b/_freeze/2024-potus/North Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Ohio/execute-results/html.json b/_freeze/2024-potus/Ohio/execute-results/html.json index 8e513538..dbde0ddf 100644 --- a/_freeze/2024-potus/Ohio/execute-results/html.json +++ b/_freeze/2024-potus/Ohio/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oklahoma/execute-results/html.json b/_freeze/2024-potus/Oklahoma/execute-results/html.json index 21ad298c..3302f664 100644 --- a/_freeze/2024-potus/Oklahoma/execute-results/html.json +++ b/_freeze/2024-potus/Oklahoma/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oregon/execute-results/html.json b/_freeze/2024-potus/Oregon/execute-results/html.json index 607f8b92..eb28ca4e 100644 --- a/_freeze/2024-potus/Oregon/execute-results/html.json +++ b/_freeze/2024-potus/Oregon/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Pennsylvania/execute-results/html.json b/_freeze/2024-potus/Pennsylvania/execute-results/html.json index c485a5f2..a709e2ec 100644 --- a/_freeze/2024-potus/Pennsylvania/execute-results/html.json +++ b/_freeze/2024-potus/Pennsylvania/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 52% chance of beating Kamala Harris** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 52% chance of beating Kamala Harris** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Rhode Island/execute-results/html.json b/_freeze/2024-potus/Rhode Island/execute-results/html.json index dc3fbd50..c737e00b 100644 --- a/_freeze/2024-potus/Rhode Island/execute-results/html.json +++ b/_freeze/2024-potus/Rhode Island/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Carolina/execute-results/html.json b/_freeze/2024-potus/South Carolina/execute-results/html.json index 9b909968..9118ba26 100644 --- a/_freeze/2024-potus/South Carolina/execute-results/html.json +++ b/_freeze/2024-potus/South Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Dakota/execute-results/html.json b/_freeze/2024-potus/South Dakota/execute-results/html.json index c60936d3..35da8c6e 100644 --- a/_freeze/2024-potus/South Dakota/execute-results/html.json +++ b/_freeze/2024-potus/South Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Tennessee/execute-results/html.json b/_freeze/2024-potus/Tennessee/execute-results/html.json index 7cd9757d..f4fcc0a0 100644 --- a/_freeze/2024-potus/Tennessee/execute-results/html.json +++ b/_freeze/2024-potus/Tennessee/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Texas/execute-results/html.json b/_freeze/2024-potus/Texas/execute-results/html.json index 03a1f5f2..c8bfcd8f 100644 --- a/_freeze/2024-potus/Texas/execute-results/html.json +++ b/_freeze/2024-potus/Texas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a 95% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Utah/execute-results/html.json b/_freeze/2024-potus/Utah/execute-results/html.json index 5367c3d3..5202c855 100644 --- a/_freeze/2024-potus/Utah/execute-results/html.json +++ b/_freeze/2024-potus/Utah/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Vermont/execute-results/html.json b/_freeze/2024-potus/Vermont/execute-results/html.json index 275b2577..5b4ff89a 100644 --- a/_freeze/2024-potus/Vermont/execute-results/html.json +++ b/_freeze/2024-potus/Vermont/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Virginia/execute-results/html.json b/_freeze/2024-potus/Virginia/execute-results/html.json index 8f6a91c8..57607273 100644 --- a/_freeze/2024-potus/Virginia/execute-results/html.json +++ b/_freeze/2024-potus/Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 91% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 91% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Washington/execute-results/html.json b/_freeze/2024-potus/Washington/execute-results/html.json index cbcf7c81..6573188e 100644 --- a/_freeze/2024-potus/Washington/execute-results/html.json +++ b/_freeze/2024-potus/Washington/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/West Virginia/execute-results/html.json b/_freeze/2024-potus/West Virginia/execute-results/html.json index 934c9adb..16a31c4d 100644 --- a/_freeze/2024-potus/West Virginia/execute-results/html.json +++ b/_freeze/2024-potus/West Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wisconsin/execute-results/html.json b/_freeze/2024-potus/Wisconsin/execute-results/html.json index ddbc53b5..259e9ffc 100644 --- a/_freeze/2024-potus/Wisconsin/execute-results/html.json +++ b/_freeze/2024-potus/Wisconsin/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Kamala Harris a 55% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Kamala Harris a 56% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wyoming/execute-results/html.json b/_freeze/2024-potus/Wyoming/execute-results/html.json index d9793622..15c31d12 100644 --- a/_freeze/2024-potus/Wyoming/execute-results/html.json +++ b/_freeze/2024-potus/Wyoming/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 29th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 30th, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua"