From 33919122d79ea9b665f6fd56efea7a5a39a7ca04 Mon Sep 17 00:00:00 2001 From: markjrieke Date: Wed, 2 Oct 2024 09:18:29 -0500 Subject: [PATCH] deploy 10/2 --- .../Alabama/execute-results/html.json | 2 +- .../Alaska/execute-results/html.json | 2 +- .../Arizona/execute-results/html.json | 2 +- .../Arkansas/execute-results/html.json | 2 +- .../California/execute-results/html.json | 2 +- .../Colorado/execute-results/html.json | 2 +- .../Connecticut/execute-results/html.json | 2 +- .../Delaware/execute-results/html.json | 2 +- .../execute-results/html.json | 2 +- .../Florida/execute-results/html.json | 2 +- .../Georgia/execute-results/html.json | 2 +- .../Hawaii/execute-results/html.json | 2 +- .../Idaho/execute-results/html.json | 2 +- .../Illinois/execute-results/html.json | 2 +- .../Indiana/execute-results/html.json | 2 +- .../2024-potus/Iowa/execute-results/html.json | 2 +- .../Kansas/execute-results/html.json | 2 +- .../Kentucky/execute-results/html.json | 2 +- .../Louisiana/execute-results/html.json | 2 +- .../Maine CD-1/execute-results/html.json | 2 +- .../Maine CD-2/execute-results/html.json | 2 +- .../Maine/execute-results/html.json | 2 +- .../Maryland/execute-results/html.json | 2 +- .../Massachusetts/execute-results/html.json | 2 +- .../Michigan/execute-results/html.json | 2 +- .../Minnesota/execute-results/html.json | 2 +- .../Mississippi/execute-results/html.json | 2 +- .../Missouri/execute-results/html.json | 2 +- .../Montana/execute-results/html.json | 2 +- .../National/execute-results/html.json | 2 +- .../figure-html/plot-conditionals-1.png | Bin 213611 -> 206854 bytes .../Nebraska CD-1/execute-results/html.json | 2 +- .../Nebraska CD-2/execute-results/html.json | 2 +- .../Nebraska CD-3/execute-results/html.json | 2 +- .../Nebraska/execute-results/html.json | 2 +- .../Nevada/execute-results/html.json | 2 +- .../New Hampshire/execute-results/html.json | 2 +- .../New Jersey/execute-results/html.json | 2 +- .../New Mexico/execute-results/html.json | 2 +- .../New York/execute-results/html.json | 2 +- .../North Carolina/execute-results/html.json | 2 +- .../North Dakota/execute-results/html.json | 4 ++-- .../2024-potus/Ohio/execute-results/html.json | 2 +- .../Oklahoma/execute-results/html.json | 2 +- .../Oregon/execute-results/html.json | 2 +- .../Pennsylvania/execute-results/html.json | 2 +- .../Rhode Island/execute-results/html.json | 2 +- .../South Carolina/execute-results/html.json | 4 ++-- .../South Dakota/execute-results/html.json | 2 +- .../Tennessee/execute-results/html.json | 2 +- .../Texas/execute-results/html.json | 2 +- .../2024-potus/Utah/execute-results/html.json | 2 +- .../Vermont/execute-results/html.json | 2 +- .../Virginia/execute-results/html.json | 2 +- .../Washington/execute-results/html.json | 2 +- .../West Virginia/execute-results/html.json | 2 +- .../Wisconsin/execute-results/html.json | 2 +- .../Wyoming/execute-results/html.json | 2 +- 58 files changed, 59 insertions(+), 59 deletions(-) diff --git a/_freeze/2024-potus/Alabama/execute-results/html.json b/_freeze/2024-potus/Alabama/execute-results/html.json index 92b244d7..9e6d1a86 100644 --- a/_freeze/2024-potus/Alabama/execute-results/html.json +++ b/_freeze/2024-potus/Alabama/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Alaska/execute-results/html.json b/_freeze/2024-potus/Alaska/execute-results/html.json index 9771a0c4..48903493 100644 --- a/_freeze/2024-potus/Alaska/execute-results/html.json +++ b/_freeze/2024-potus/Alaska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 93% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arizona/execute-results/html.json b/_freeze/2024-potus/Arizona/execute-results/html.json index 509e3258..c5527c20 100644 --- a/_freeze/2024-potus/Arizona/execute-results/html.json +++ b/_freeze/2024-potus/Arizona/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 61% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 62% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arkansas/execute-results/html.json b/_freeze/2024-potus/Arkansas/execute-results/html.json index 212148ae..a0807204 100644 --- a/_freeze/2024-potus/Arkansas/execute-results/html.json +++ b/_freeze/2024-potus/Arkansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/California/execute-results/html.json b/_freeze/2024-potus/California/execute-results/html.json index 86949a5a..bc12ab07 100644 --- a/_freeze/2024-potus/California/execute-results/html.json +++ b/_freeze/2024-potus/California/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Colorado/execute-results/html.json b/_freeze/2024-potus/Colorado/execute-results/html.json index bae9c6fe..5b6d2666 100644 --- a/_freeze/2024-potus/Colorado/execute-results/html.json +++ b/_freeze/2024-potus/Colorado/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 95% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 95% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Connecticut/execute-results/html.json b/_freeze/2024-potus/Connecticut/execute-results/html.json index 6c548a76..f9f1d413 100644 --- a/_freeze/2024-potus/Connecticut/execute-results/html.json +++ b/_freeze/2024-potus/Connecticut/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Delaware/execute-results/html.json b/_freeze/2024-potus/Delaware/execute-results/html.json index 3cb4181e..d031ec09 100644 --- a/_freeze/2024-potus/Delaware/execute-results/html.json +++ b/_freeze/2024-potus/Delaware/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/District of Columbia/execute-results/html.json b/_freeze/2024-potus/District of Columbia/execute-results/html.json index 8abf852b..2ebae456 100644 --- a/_freeze/2024-potus/District of Columbia/execute-results/html.json +++ b/_freeze/2024-potus/District of Columbia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Florida/execute-results/html.json b/_freeze/2024-potus/Florida/execute-results/html.json index ebdcbd32..533784b1 100644 --- a/_freeze/2024-potus/Florida/execute-results/html.json +++ b/_freeze/2024-potus/Florida/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 81% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 82% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Georgia/execute-results/html.json b/_freeze/2024-potus/Georgia/execute-results/html.json index 35fc755f..4ce7f311 100644 --- a/_freeze/2024-potus/Georgia/execute-results/html.json +++ b/_freeze/2024-potus/Georgia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 61% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 63% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Hawaii/execute-results/html.json b/_freeze/2024-potus/Hawaii/execute-results/html.json index 3a7c6d5a..7c18b14b 100644 --- a/_freeze/2024-potus/Hawaii/execute-results/html.json +++ b/_freeze/2024-potus/Hawaii/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Idaho/execute-results/html.json b/_freeze/2024-potus/Idaho/execute-results/html.json index f6eaae0a..bd9ab5e4 100644 --- a/_freeze/2024-potus/Idaho/execute-results/html.json +++ b/_freeze/2024-potus/Idaho/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Illinois/execute-results/html.json b/_freeze/2024-potus/Illinois/execute-results/html.json index cabfbe32..be44b827 100644 --- a/_freeze/2024-potus/Illinois/execute-results/html.json +++ b/_freeze/2024-potus/Illinois/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 99% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 99% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Indiana/execute-results/html.json b/_freeze/2024-potus/Indiana/execute-results/html.json index 7dcbd487..227dae6f 100644 --- a/_freeze/2024-potus/Indiana/execute-results/html.json +++ b/_freeze/2024-potus/Indiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Iowa/execute-results/html.json b/_freeze/2024-potus/Iowa/execute-results/html.json index f51a8f26..0f29542c 100644 --- a/_freeze/2024-potus/Iowa/execute-results/html.json +++ b/_freeze/2024-potus/Iowa/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 81% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 85% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kansas/execute-results/html.json b/_freeze/2024-potus/Kansas/execute-results/html.json index db69d767..238a4c5b 100644 --- a/_freeze/2024-potus/Kansas/execute-results/html.json +++ b/_freeze/2024-potus/Kansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 95% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kentucky/execute-results/html.json b/_freeze/2024-potus/Kentucky/execute-results/html.json index 946b7c10..37e45d31 100644 --- a/_freeze/2024-potus/Kentucky/execute-results/html.json +++ b/_freeze/2024-potus/Kentucky/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Louisiana/execute-results/html.json b/_freeze/2024-potus/Louisiana/execute-results/html.json index 9640dca0..a9867922 100644 --- a/_freeze/2024-potus/Louisiana/execute-results/html.json +++ b/_freeze/2024-potus/Louisiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 95% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-1/execute-results/html.json b/_freeze/2024-potus/Maine CD-1/execute-results/html.json index 431c97df..e0c8c793 100644 --- a/_freeze/2024-potus/Maine CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-2/execute-results/html.json b/_freeze/2024-potus/Maine CD-2/execute-results/html.json index 0e2064e1..f55b14e2 100644 --- a/_freeze/2024-potus/Maine CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 73% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 73% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine/execute-results/html.json b/_freeze/2024-potus/Maine/execute-results/html.json index 63e6abdc..d929a92a 100644 --- a/_freeze/2024-potus/Maine/execute-results/html.json +++ b/_freeze/2024-potus/Maine/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 94% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 95% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maryland/execute-results/html.json b/_freeze/2024-potus/Maryland/execute-results/html.json index 0100c80b..5b5f07fc 100644 --- a/_freeze/2024-potus/Maryland/execute-results/html.json +++ b/_freeze/2024-potus/Maryland/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Massachusetts/execute-results/html.json b/_freeze/2024-potus/Massachusetts/execute-results/html.json index d11cfab7..a384a548 100644 --- a/_freeze/2024-potus/Massachusetts/execute-results/html.json +++ b/_freeze/2024-potus/Massachusetts/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Michigan/execute-results/html.json b/_freeze/2024-potus/Michigan/execute-results/html.json index 5b876a45..db0cba78 100644 --- a/_freeze/2024-potus/Michigan/execute-results/html.json +++ b/_freeze/2024-potus/Michigan/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 59% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 59% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Minnesota/execute-results/html.json b/_freeze/2024-potus/Minnesota/execute-results/html.json index d02d717b..c63b2093 100644 --- a/_freeze/2024-potus/Minnesota/execute-results/html.json +++ b/_freeze/2024-potus/Minnesota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 83% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 83% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Mississippi/execute-results/html.json b/_freeze/2024-potus/Mississippi/execute-results/html.json index c35b0100..32ab7fbf 100644 --- a/_freeze/2024-potus/Mississippi/execute-results/html.json +++ b/_freeze/2024-potus/Mississippi/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 93% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Missouri/execute-results/html.json b/_freeze/2024-potus/Missouri/execute-results/html.json index 76e992c5..b4739a0d 100644 --- a/_freeze/2024-potus/Missouri/execute-results/html.json +++ b/_freeze/2024-potus/Missouri/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Montana/execute-results/html.json b/_freeze/2024-potus/Montana/execute-results/html.json index da0822cd..af943efb 100644 --- a/_freeze/2024-potus/Montana/execute-results/html.json +++ b/_freeze/2024-potus/Montana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/National/execute-results/html.json b/_freeze/2024-potus/National/execute-results/html.json index e793f20a..1566318e 100644 --- a/_freeze/2024-potus/National/execute-results/html.json +++ b/_freeze/2024-potus/National/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "30f18cb853999354865df51e58333e90", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 52% chance of beating Donald Trump** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **52%** chance of being elected America's next president.\nShe's projected to win between **169** and **426** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **48%** chance of re-taking the white house.\nHe's projected to win between **112** and **369** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 51% chance of beating Donald Trump** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **51%** chance of being elected America's next president.\nShe's projected to win between **168** and **425** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **49%** chance of re-taking the white house.\nHe's projected to win between **113** and **370** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", "supporting": [ "National_files" ], diff --git a/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png b/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png index 6bfc560d23f6e46e4bfd90429ecaedb7fa87cda3..b479702f45651832fd2b7a69634746dde4acbdee 100644 GIT binary patch delta 158680 zcmd?Q1y__|+Xae*AShrUA`*gtw35=ONOw0X;Lu1n4`I_eG)OaacZuW>(lHDm&A`k^ z!%*iz-}gJ;cmBdz%f(_A}C@pVu1!7leIRRvc*%>f$G3eIbNGf%8bNRNaH%Fw8qb&WMn0gJ&j5z~Rxp zPU~g_N9{iCxlm0p!DO!ApR{`Vcmf(ft|VQxYq@;m<|pm^&LR&remJiQgx&I!OU%M! zlo-Vtk>`=(RX`Q;t;ZkliZ% z8(XWbXDu3{DSOAUxz)H}Ga0qproH7yzkax%in@3~3_&Sd;#}l~GkLWx2;whlz3Jvo zX9524-o2FRLC!hce69G^%6CIgiSafT)XofI(-sTeAfH^4ga^6PaI5O+FGbb$iPz3N zW_O(@QzzJWI)3~Zt8a}N%hxbzDC9AAD=U;_*!Yb0`7tWGei&Cf*O7aeFRZMxi5ns~ zga^JPwuHw6*`~;bf>7n%?NB^?62<^Le4rOU5p9UrscV=CUmC#j&9%&ppDdwmd6k&e zK5>^aH&1^uH==g*6CSi`eJnQZIS6yFmZ2(2*D@(h{^sE0bO$ecO{B=7tNg~LfqM|s zz+TNEuPKMf?n+Dr%;c$=Ypk)ZFdydFA@Gq&_+-q$D+uX~h;8^7y+E5d&jt$6nQq;a z+qE5){%K#G(?@WqXyy4_r1s2Aq+lk3g7?D20j50E5NkD~Z>Zv@>}@EdNA!W!Xr3ycD!qCi$v8{lWDZRY>E!{_BnT)SetLKRk~*K!ia>-z!3v z-fLG4XTAyv>#cWQi54o>!nfU%PaQG5cweeiY$%xHnBE=w#s_ePzBZSO5K>Dj;uG3n zxCkz=J6~gPaZ9yS9l?J7xVuJUz~4{yjAlJ6sDTSSE@ZrWueUvTAgjg!@s7Uc!JqE( zFJHMBbC`CFbUT0^n@Xn$H{sW!9fKPo6KCT_JbT?zpSjHLcO39t^J+ZdZT?QmLe@)B zI>*d=nwPkT)>rD9o0pNKpLwX`xA*0&yBPZo;q<2n)x{~2-(4jgzBO&(JCDdw>ev}E zCX(OR*i7LoEAGEHuG4pi^YIOixJdTk8AYCCF0=4Sik8?YAW=@bBGRpFH z%S$K50T%u18nP2LUzg@1CyKFUGaqWD4vTb4Of7PEze$}R+Dn`ri}I(8`nowdt<-6k zXe;Cb=LN_G2Kb7(A~YU@)C_X>nCrW4B@&U>(c($rGg@U>4cpn@hHC_Vy+F{+YZgoP7w?RvIzJi3*Lpt<3SGLBzpGc&HiW4lbTM0 z#WplVuWF#F=vwm2-apaG z-Yufh%&?Ce5bwLbpnrTxT=K+nPULbZ#RwSVk0j6^yVmN1l8U>qxPyy zZ8PzhF&#NC{!l~hF|X4fahc?i<3tt2VgZ$Hw9Sq;?vDv$-#&MvZak0bGq9e@2n4)# zzIRNtKV7{hL=dKP5M1?*oCl^UA`(}EiMAa`5>%xgPJH8>&s$_2x54qHTN`({X>Kw0 zw7KT6h_{Eq@93eqW+pD^biY5b;9X_Eaix`$bATEwaqLU=<^+vF*q%VDfdT}-j4R%a z_E`o15fVwOYk`A=RSS*vvclfe6_)(Gg~VL*Lvy&<%2{bc)^=CZ z@~S@4^p5!MVSxu*YXWAeM#_@b5}OVxK8FpQ#nX>;i5@2Rl^`2cf;apRI(??7b44kW zg8ox^t;sBMZS4U>vs(^b_s&e0(Y$4oTXW%IcZI(J`sAe{c0k&}ryLr$_5l@ysCaOU z6m4UJ_Jx`osGc<|l+09FPM5rdz}a&f2oBr}PPWv0spuW5XTHn`=0v7qa(D|J8oA&( z%yO5REDDcku^z6uqm!uAIFQb5pWDp&(4h)GUD6!`OwM@%^%cn1Hefl8i4Q47n1OMX z9w#NHf`z}9qCU<{ZL?VFjVKmb_|JAr|7kj`*8)! zI_Qo^uRrdVYDITp%Petgvno%w@>~!ViX~m0U zAeLdipBa69ed~U11!RbRG~>8F5#?PZ9k}c_ayBnY`tEox^Mn_PZL*(kbWHb(Wk2c_ z|Isd8?`%1sb$~`V(vyF>Lf2-&p*80>IlG@|osu_X-Q2zJt)%Z7=rN_b^tmtnA(yd>woRXW%`O(z`G{>JmRnr@T~Nta+R z;*W_Q&#&k#rY%*zeWG&yT+*Pypk_;qWsNtFP-vx>iU}7r+)0b&)kFC%v_0RoE2lCa z=oq|eM*t}A;uc+osvOQz;uW5x>YaiOYGVWY`?XZwF=}=Zy`-5f-?z4sqcj1ef8Lmm z=bh_lf15-v9RKRCX&Kdt_(rR1ipx3C&svUnmWnq`nx$Im4l3M8$0n_th25G7s?jVB zUX|KKHPb$JjTf-v4-Fc;K8lrPU`F-zId4nZsfT&)Xh@X z^+ye7oksRJgX7B4y_V|-E*fQ3w|^bH_3r*3ATdbDcRu+JQoY??^*&k5aAZcN9iQE! zZJnp1$$+cz<1^o9`*a)_2c`Leii@@@yKi$8UnPG|y#f6EnQifWrWOET1}}ALHPJIQ zanmlVikT?0lkRjN-qd5xT5!JFc5?YM1Hjj{@%sC!P}q$Ihg{xN96S~?xcMcu?M`7F zj5^+|X={AI{ao4`S@4oLaeH4_b|Hd1e5TGRW^a8?1vOD@ZXx?vJ3n#=W+abfcUze7 z`8_jk3+N)Y*UEpH7_Rh3ncOO!e=?~+++wWMz$0oqwDQ6BErLbAvBA=EqrtDj+EMZ4 zD1#BX!ijfp`E*j$5AiT3m%R%2>P){lAzwe`6P+5eJ{Paec55psWVoihvN{kucHj+4guflub9VA+!=~XnUM<`GFRI zp1qf_Hf>r#%3Rf}lENCX)M~cvkri!|pty}+ss|vF%hN{06|6h7^|{(PHdPIrXUXBf zglslNT0)znM+a{}C+%l!I>uGPMKjnozPU~AP>-v8+?-FaGPO_pk|}$TxyYgAJIzDK zqSqdKV79C5PyhE}Z4!&oudpsaM#}A!>W!0KU_S2fmF&Rnt+h;P2eu3}OV(Vc9r0zM z!3*qXj@%#!n3d3ur(xszj5LX8KHk-zee;%ADWuslC2SOFVN$X8oKubp}S+oN>nqWbb?%SJ%_5}WE5_5cnZ z9@QCl`P7F!&i+0f@$D)Hxx_PdhSfHG`8PXOR`g5-VY!WwJ`hyns*S9Sj6C!BP#xx7 ziTURP9tPfB(v<7^&3g84bx*yxz}X`f!Eq->@PeLy(vhEst zOBmEi_E}-nMnm_CG{9M#N7z4o_4uWo9wPZl^78UYCRCzEdAw4GDfYq=qg-cPpGPZI zM=RpfPioevfOBjziu&S>ehD(*e4Ak zhFZKSh=U4hi}e})0cHc8wjJDz^As)pAQ(&rt-P)9>_cxoY(!~Evv@h_m}SwN`IWJQ zXnrnbrp;N_?h8Zn+|hO^NR0!u2Vv8@Eol1+a`ZF~-x4mb|8+65k-YLco@fJ8&e`Jf zr?6aLdSFOHNcbX=?Z}Byu0*{+c*np%0`n@bx-PS&V?BWF?C1o|u8B?jehY!Xy_3u1 z>O3Cs|nAY{jhf68=W-G-Y6E%eM^z`DXkiJp})IYCsJ%bZ9Vs2V+U{p9o@! zjNTMK-s-1CrG==uu+RvZo zX7Xa};WWv|_IZsvIGZ33{wMVn1ABum^UW7*W@;CjsPV#N8y#G?W-5(U|L#(@ZG@O* zXJ726IBk9(rw^?WADbQ8gy#A%mELlSlcwHKS{;SK>!WorH|e3TF54A{`hauaYM75E zAHjwt6X|N)RQ?a|CkuTNwR%xLMmkRQrfWPbJySy$v5xVM9$tyB6SlYN$I_psO(3A@ zK4}x|>hYBlrAH@#l)AC2M9^8v>W~XO2urQFS%bDb>e1l9TZc>+X|6L=lc082oDNoe zrqXj;1k90tXFn3g1zO+=!q#4`W)Y6%+i1STyl`7ywWc6@8sOwrwLJ31R6%P@uxEI& zp?#-8rULVlTW@YyaaT8k)WfyIEy1qTrs^W=PvTKGHG4WSO)7AUF_)DSOjO_D{N~PT z3C#T$RaSRjcxj8%<=LY^uZSqttPubgSV+HVV@=#^DS-O8@~^v2ihovn@Vh(&XHpVI z%2|91yq(eQ%B_y6Q4Sd+*W(-lFJtcb-Bs;GAEt4rCnB?PW7xn(@?uem`Nm#_nSYcI z24ml!+qjE!=_EC;(=V4_`mBRk$;#5gfA;MzI}?9v;u|rgq*9lHBH4ERJvst2U)!aO+k>@csETlJRQu#mYrQ{T95uB^Jy&(DOVh<;98R*&0~(SWkTNX zhHXi1TAr0GMZf1>DG`&~r{P#fBp-CPwVvF?V_Hn99F!&NY@T(e+ zs{BtMaq`jq)Ka03&f+X42v8KVf7?&}eWuiTm5jfEgr7UV5^qIEm@sX=8X?f<8E!K% zhH}ejw%Yq~kA1!}`BcK|+d2jg_78Yf-^^r}l564JXkI#GY+iL(Xo@OAsmltHMsa%9 zn*P)WJ)_IlQQyOWCah}yVgW2WvXnF@CzAck(}lb8$1ALLhs=*{0F1Bm)!Qc1`T2Xq z+#d?hVI3VED@}%unW(g-(~o4C-8nj{FlB++r+3eF1B(!QN1IhdV*eRZlNBv+^jV-t(0^ox-)% zYrRn__jOgt@ko24Op@}sq^0bq91VYx+~v??G8Rdaqag^S$IIp{AV`w*g#|w{X?=(w zPm3x(QR|K3hgtxWzbh*giJlv{2j{L$K7V1WQ)`V(J`#GS?8wQic$11SLC-DlUTFi@ zmk&v9y_a@M0{RD7dM)~Bw`EgOAe0=lE$Y`c5roVrS$_0A19 z;o_zE(-&FcZV?&q#hgcpe!sPm}QlL1jOV?Y(_ke^j@|ZAOVm` z0Fp1Z1NXm%gz$d?&b<=1i-3!%&2zXwxw0~i`5&;FJOBChaCDvPr068AM6WhHltyC4 zuFMPmZnun=_!Q(BbwX-pnq$_MEa$$Z>Mo(QAM+gVWLx;zXmofdwz@xvaTAL$;?9!K zaf;g`9yKT)gY!Df*0IZ}vRz=;+gRzYyE+!ac9cu6?gWyO;(m`e0xTX@;o3$>>zfba zY~E6aKQ?Kos-GYx&-J~UDA(}x^>O_QdPqVT_IuQz+0AtO@S;U6YS!56oy6rJ;Vfeb z<9E~2P$#06I{g*w@XZI}4m5rCvqaI|ocQmYxk2@3qPm7{|Idm?;-2Xx3hV|Q9S)+v z*0ancz{rE(ZfVe-$50xiQ%AX4>Eo(euh0Wz#mDhIbKs1nd$OeRJ{xR1$Kv)T=0_3a z&qZOfu!H>UZ)Vw7uCHUrufk5-nl&AN@{b(EP-IV*O38=M)@$kP&9+Y1YZbgBskm9y zT<6i&K~~nf*s=wYPxzbLukpe|YtjR~j#pI=sEb?_|_CWYD|Z zX_R%>mx?1+m?967VKdIL+9_=B%$@MFf<7LetY`7`SG|_pQrw_!2zEsaT_iK*U+qX)nJd6aw7;ISN8Y)UMU%NvZJ;k=}^LD z(m3g$qIhSJEr*#jJ1JgDZBTnD$V=u`NC{@5bbeu^WWD4nZ^8AqHJv*yaO!lQ8pLk5 zts^)Jp0#2r#2|?N{xt!|bR)nWqijtQ@s+)J=2YirPK@*MjwPFxMEdg3VOgz;gx+g~ zf3~6glN(SA;;(|3QV@TwUE(jP(q{4P>s6MgXb7*;P&|cX#oKQ-)3dm0lxTkiNVY=h z%m&LIu)G?(5mZk`U2&gUp4Sxt?|Zsr;h%@8aNO2x)FIOXOk$|j=WXqjtj96jp@BCZH4=cDQN2yI>!ugf4$*?N)^XLdn$*^PWb%zFB(}+GS2T5=_V$?{ zm#c?qO)FiuN&UNOTW*`!3U4|Zde%54s+#){pfR+$jj536^yr1Kbn~AT(!`TB)p}=c zg-?D*g`p>lYR7)?hxPZ;eNWx?@19r7ZCRcan6xA?*kaFAqz=|QR`G%krB2m(@@^jG zRubNz->GudyU-FPNVMGEUrSr5IThS0-u>2kad@_}X4Tm4sk%E^&%(zv((k#I;C3Lm z3lN3`>J;i3HSNr0fGohAP_yTD=6XP9D9QSM8kg;he|*3uspqC4;`Vbh0ID#wUoyvF zX6)m&c&7+{gi!NXvqT&@qjiNGW32bk6EwgM%)Q`;4o5O8?NAL|hUopFSp(W~Jb~I` zvZx;HYqS^kJx>gdXP=2QoqE&*u#!;~OKi|b7-v~*@&n~1=FKso8}GhBW=vYzt(;|! zkb%2&Ddrpm#CyUwa!=~@%ipd#i16g|)^w!N@pMO|mo=KE0w$34%As$Avf1#3KsEUm zUv_H%&8=Ni)VJfp36DH?+H52u>#uafY>DGNhFK^a51k#->~1#PxF<06M(=flYH*sb zA~~I;ovWab2gYL+P1w;EA$9iX3`Y@(Z1jK!Q%EqiUTo)e*bJRGv{+G?z_i^{p7;JH z6;A+r`pq6_@$GFZ?-M%fU^J-X- zzr+HXA!j>sW8~dWVNKu{HQ!>^itg?@_3vY6g#qXAW=(ENLgu$RS2Idd#b^a3Tvm&& z(>bO7+`_|?##4}au6+>Nks<9zJYnv~K#lavAWsno`PbNSdK}JW$j02?`!^UXrRRsE zeOF`Xh0IDC?WPw*^Nts17h#UaJ1hOqeezUOqs{zHFn`Jh)5P@R&vptsHfnAg7YCaT zBCu~9lX(nq!2*uciY5f&4+q9}ld5g)J)o2SLHm@i@#h*Q4lHVY&rEXd42DXTiW!~4N6)|zUsLv)5) zYav+PYzVW|4H4pNcK18>n<6Rn+6ytBQ9@=XCX!y(5EZb7`0lr22R$H%2gco`qC-2I z7#!CcuaQvQ;Hxy zF|63eTybG6kBQ=o7tVb=RM#^bTMQd{a;` z7lzCx4Tq79K8MkYaU6=hw^&wweSaydn*@?eNx=Y2uaLDF(=eI?pf{AI5HEcBNu# z((IK7)n0cxXZA^Ib2cOblc}Y>`RPv#n_3U)eqwH!`-|$Y?d5X2(_}f;Vn9R}Ge}ysa%P zec@_vtktaifq$#~t?|R#J}W!r<_EHXlF&HoBr3HxnxCM;8BrWSAvbccC|V*sMBH*T z?{U~zx#`2R2zT4`CLFErL7)k}FHH7x(4E!uidH_uSPs&EBuNPwCEjvFT!+a1tHr1+ zxs^g1GkA8dqex1reX`IF>cZ6d8FKX68x$N>lxPNbG4JXtg#-Kz8ApJ!o5*VZ?098f zD81kd=jEQ?R(A`x>BOp_+qc;aET8f1uhqBT}dOE>}uSgZ~PRx6|L^tisZ1OE_Ixge(H!E!R&AK`?R?@+tz-GL^ zPWBGK5b|z3Yo+-kEgEnZ&>P)~Gvpvs4Q%=jgBL9q>BR2}6luP2{zT|-tMXvKPcd%f zmBl)7YtKP2gsTwqUY}SntiH5-tW^8QZ}E2VhoYi}tNlsrYK2=;h+1qUNUXrCA|&1G zl(@A!a>zN#^nB0iA&$v3B7@0mRA#5xT3f^fiTF5c4b2d}7jX35l?d+`6u(;9T~&8G z>pSV@qnOhK`DWI)d_|cjhv4xv6lg00jFnrXtJS=!Yi@h(d?M3l3WlfjPji$IH}IVE z$i2npd?|bo0_?q_J^UNGPa< zl-!{k8?&0d$3FMOEXD&ed1(CeGD}EuU7~6c*Y?gEmy{48 zcW*l#Tz1V~+0%b4f16HV+ZnJwJ1#*Id7MTos3|Lc68hou=RBCk)A96!NH${lvcm00 zr4bmeYrOjExh=ajp%0$UI=rJ#b+2gZtK03eExkYOwzJ$D14|2+UGIOekD3rvn>ed* z-}=>lDq0-)<0Bcoieir6pD^^>w+b;I8JQ2)z264-o(x>iN^^&h{)w6aEJ3ApX9O^d zRHWh*Ewb;pdSf}6W^_f0VixBjXBxD-rL zofh$^chfQbL9R8_$b=T9!!Wh_-RC(hsr!l)SRUcl3)(uKNOUeo$F;WfECc%j-C$7y?gQ*3$C z@yI9~7Aj3dx-87sv`#h`%H!nZBwK4nOhM0w(#>(U%#+H7Se)?~*IA9B1N!c$Yr9cs zR#+$$=s%rUzs1SC`FqnIjcgoR_Xp5Fdt+|hzt4dqPZ`O{q`N9{)F62C4z(`U-AWm>vikinFvk`!RWwK;WM_a8Mk=k&az zeXA$kr{n=5RJ`<0E4J^ZlYLrf&E91FN@fGCzQ?f}sFYNpAXY==nSO zEC^mHscx3-{dOr$WZYfwr5yVl(f5y>xO_t$W2B&#Y8_q&7gU1`pPiI281IU7`}^2@ zW@vlr6?PJGLJ~Y@ybi0F?I?EApyvU28Lyuyj@^X*&c|mbAqJ-^k$^V>f8T1_&PaLd zdffG&qLO>*#NZ6&B0Ek>&2#6APPXdbP&L`_(zh7#9!JKg z#BdX-T)_{RjR9h~uHq|z=ah~qkKrZ}CIZiYJ9HYlJ$U6Y870Xh@J;v|R_fH34@5G1 zhY_zw<;go}`4sr;){Ae4(7ql6ReDRU=xc;sk{bj7TG2q)y6h(dbKnU0+*)#nOxqm+b zlJRfeys4R^NF@w?dmv2-x`{Fz-wnh@wM1YSU|xYkJ$yv&{>4hq{~;#4D;Ffo1Id$8 zwC@W4MvOo8m#<%=va=txP6m_yub>W)p25d?=qtV_wP-9*e6O2o2)*fm&rTR1?N0L7 zb=N7S89hPIlg^pT4g7WeRZ2?y0MFYoH@hE`F;e~n1D9yKJqz_W=m{zDe)>SKIO4Mt z2QuCT5BeqMPaH2aH1!H631K;y56^x7KwH6AgoJq8^w94Gm$CBY^5YkS<;MShJQ4VO zUk+oU;y6g3b4lZ=Q!``|ocp?ya8NZ*`}1 z4sQOnzifalJuRi_JDV#dUVQt%E!XS_L5?}h_LNrGVM_To3x1;70tl}+o zd_Dw(0c``x!eNJv=P7xF>6hv5(VzbmpX70%O0rOIZwyQdRayrpimV>xd znb+94=F5c##>?F!5YEJ-5w(!7ewJ)EpShu8?Plw4l3X%Bfn1N<1l8_}uN!zm_XQ&y zYO@(5sR+Ts{@QqHm%vH)+052b9H$;r=-~lD4FJd%e*vNYLKsQ+?z8nZ=in-FuMrt7oT9I!_!!rF}epZBnhc{SNugro*T?6wq zQ3Fi-eoyUbHqgp!WPx1FpeN!*#gK{!iTwHwg@Zs|p zFJ5G;e}6$=`kCneEm!}^6UNPJ*|jE2n_tVj{{!s)Coe1{ukhhnwwNbv9Oj#RRvp<1 z7vl4n^YEY7Ljr9R^+q1nQ`w2W!a!j6K8=)9bh#SARq_K*I<7B&>-+!yVW75vFsRJ& z&te@}Dlv_Yjg8&Mn=-%j!hd?uzu%q^_Tc@befW~720Qf-q%trQLYI*Hr*8hj1Rssy zE(YmiG2e35wdxOCEKzI>Hyg>?C!zm$uKoQ|X-bl*nvbELt2EZr6(5xZTb)5AN8aUX-%=!X5B&b^IWS}-71oZl`VIys2?KgSKMA_4_P?vEUL@v|R)jHV@u zRAgU<-A);Cm#Wmxua}twRwEo5!y48Di?tgf;C>v%oX?~q0`gx_|Ihc*-h}>hWoEJf zuJKZrX%KkKYeK6R*_ZPz8xqGAf`@MnkZjFW%H8#CeKNrHV~y81GD7lLAguapmHlX! zXSN74f40)X(e_e>-88RevEjID@#l~KH}cd7qi@|>hO(u_W`8KWg{-KL)e{bmwQ*}) z?x8~UqV!o~NI|13P}n`$((U+kBl}~+QrLfacal0Lpv-YzGEvwu?R0NctwQeX{apqI zULvx)u^c)u`L)5+9HUwX&1@1W!^XG0;-E_c6kfNZkX;KKWO~b$>E}=B%QZe`8)cD> z)W7j!*L~bCz&QkJwnSG_ze7qJaufOXO*X~~vcQ#rjrYY2etYFVJ3AGWl|vthy2^v9 z!|(TiDeM1)T^ebMxR>VYP&)4=OGhW>-qRUE&BDc{%%Ppn2-Y4by@a>?#z>BYi3I$w z2njz;t(b;1b0Q}iU3xY|nqBx@5Hsx#Vrkkn+b#E8pFCUUmFv~Un z*LHziOc}r*Z+T0AeC&oAXqT8AC1@Yd_&_JPlwkpqEqsu{2VQ%_a$#NhPtCh}z`s^} zx!(8{Op9!_g`f5CoyqX50^N$u9+AXnkm4%(?XbPXDw(@QGb{~-Pr!*g+ic-08%}93 zl2XKbE5Vn4*XT2+xc}(~<@D|9r+$Aj*w!0MC35?7Hkjx&Nukkyr2=Y=?h$ ze5P&hI>YVrJ2cF+_%#mCfvKfx(BxTuorX^agxG9;CkJunDBQ=to?MU$l$ht1uimyr z7mtmdEa(X-0kD58+|sYHOWeaCjRsT2*rKAMM)K4cKtG3wO6kS^ z`SV`nvfIp5DXb2ra+>*We>}wk7yO^7x%6KXUMHHI(=-C>AEP-@yrbkJVMo!q+_V~- z6OE-PHrJf07H-*w0-hiDb=Vc21epuvGA?LmSZv>NhT3TTYL{a0eFmstP}3cC9dqvA z3$QJ0lO-lGq$_Zx&+cf8vHUeV$kWydG!^amzIw?oW9K}>bo+Aq+GlRKsv`Yz&GRFd zkGSh~Z;bWa&?5$!it$w@W2ZB;n@@_jK$))M?FvU$@w<})I!$S0xgmJ3pr8<=TdY}M zVJ-A|i1z&4$Y0mQ380hol>vKqPJ_)_LCK6PYF5{1r_fD=)BBu?Q?E~VT&PmztgWDu zR=ZSJ#b&aEMbLIkzB-?r>%xDSss8=%%>Fd~$pnAQmdLU9s`74As;H~-c$W-qc;e^3 z9U%~p>X)$ghH{^1hx1&Mm*qlRplojXeUz_$m6b*ooh$$$z@499SF$1``RE&pU)8n> z*v|+^AAYmB49G-1X~?-qi+9*4T~l@ovwhM|+V+=x6RkcEEUTrcM=V$yQ+c|7_OpO3 zcU3fPE9_(2nwc+q%v=iBSC02x+ULgQKkki5F{*klxfSHyhi=8`nfjQx29K>rF^@%r z-Q@EGdbBG1JLbEJympq$!5a`MlXti*>IXUXN_rB?mn?cIr1Zmu?w`0yycm&QiSOuHr!kbtbw0*}qO0q$v%-ZOl{`t~02od8639wmYe{ z&hoXIJe{cYjb`N)iYqU~&ySX5`%pkv7%eAD?83dOZ(6X{|pMa$0sUy=Kggcvau5sn1JOdNx$NT+eWyKh#io~ z>SMn5MSUKAE zgZ8$jwQ^NcIam~9%U}iM_%;(oiQD%CZDKJ$!MsK9e)By&2OQjdhti#;Ng*-nR6bf`}mB`~>2SwKt zX#&ZEvnTL5%bS5Wvt;3iC<1k;_dZIo1GgVmbmc^+uhO#hl!;hJkBLGGmvD+*q0VW< zy&2Z1|L)*LC+S=zawI3*u+qPQYaQ6%oE&$@^~3|wQXdMn3%J5)g<_*oC8DW3fYyBZ z!Psa=wswJLIPA5n`N-P#x$GacD5j5LTd!`=3O%{MDdafKAGv}!v~na`oaaqGp26!Q^erpj7&HNEOUAzh6c#t@O_xp*y0Ly?%G*rZX{^$*Wq z{h+NydY|uRCPN3-;V~yrLoXB*=#O+&FJU#UZ4J2ZgZn{syp;!p%Gqf@+$gEQcXQA; zW$Ng7z|%oUNGX5wmq8%56>B=&E|m`JZocq{xWkijOIi3B?GcJS9oK%B>~4?9=1Lg+ zKFYB>R23l=wTkK%PvvIQD>0V!338CC_dTu%eQ=i27o=s9nVAVZaA23%oT{>}6raF4 zeT|5KzU^dMafn+fS6oqqAz!-5<>S}7smGGb%#<&gB_6c<6rle60L=J;fEO=c=2*vc zb@{KqPTi*!>QSU3blW;|@>=-*c_sKT_r3v?TQ7tEe7%h=byyB^4K-Vk^%I7%TpCv~ zGSZR$MIm+mNE8kXuYy~>o24xR#8);pdxVOOXbVRY<6Wt%yuDJ#r?q!h;E?;-H@dmn z{~^*0QsXAi;hxj1VBixu9mj1}Sl0@8~kt~N5k`X%5S!Qi;)&%M*E`Np=o)fHWxA+xd zfLR}0!NW}21Ie>37kFpUC$~e(Mi1=MhNs7im1;!|*Bdtn(?-7g`FIsMN-^heY&yPE zWN@o}@K1>fd`*2%$S%Q&EvcnL+2drzX1KipH(1^5b9mn)yZLxEna_LAN{<>MdD$W1 zq@V=D!)+TcL=P=7j$xQU#}E|)9`J_L?$o3$QD;@wepAldYejLgaZ2}1K2#TI$?mN7 zZMcfCGJzK~=&=Yrfx0gw%4&$thytK=xHsmdO% zMo`?dB0OF%lA)Wa!IkqNSGJO&|CCu0f1zV}vQT3?g?AnKQ53SmPx!+E!TF z`i5|AtVBm?E=gR0Nn4iyo{2n>dMba8tk;s%qRBZq+_Y8ZF|7L1RJ=O5@{!ss8q|Ar zk>yan2!2-m)9*LB@q>Zqmn|bO;EpG{dU6bVqcO+l5W_=sp^y16I9SwpJ(z$T9g{D6l)|WZ- zail%XVp|uR?UEEWRD2}|Ki*wiIituGnU(qd;^XqDnq;&thkU+#6qAEs(?&zn#qZBu z4aqRqBm#OYgzECYGO&M!F=p_oO6u>MSmFk2Bcy!iIgYxuH@d>^DZRliw^Bj`hn=uP+VM* zylS8r)D-P|ZU;HusP?gtk7&>=@qC`g#Nh=in(^0`_1kHzx+nTl*0;)7*Fh|^A|e0U z9k6t0gofa2c zJ|)NC$CamD^GJ=<{#jan`SnWzURw5AiiFPu$;@z~k1J(_n6Owf>IhX>3RCv)wCD<@ zsj!{o8MXSS{GC3^kb;K@7xAi?c`0BF&Kj$HZ8K$RZP=%^Y3nPUH-5dD7Fdx;MC8VB zq5Mj>63(k16`<1U9c7ZwyPLkr~b}&Q-lM& zODV{TmMWVc<_eYjx1(W2=zsK^II9FV$VXSVsZfy7;0pX=FL1N59mRP8fPV5uFyaXwZYGzwZ;pvbe ztjG+&TvhhCnU;|7SSz=M6F5E2Td%q0SNV(oW%_}r!ir+tgOW58@#PEpj zMpn|6dBc=RL|(oKb!hiLL3<#^>rM@c9fm(G@lo^tB_k~|0x&{n-%#f}fyDHYR&K#n zY_B~0M67->))!##5~P3@w!+smf3YIKaP32W&0Ym8q*REZh4ZjTpXWwbcr+6%d9A9i zAS~H(A25q|OrGOuy?&327&tX>oqQ9!aEIjDppDjMKjSZ4xUTF=Xrs+Dyidabr_hb4Ac16s70Z?`EcC})wUlg1a}L+I>fQLO zFz1{SuWD;U>BMwb3yZv}Ywe)vyVUB>>!wF472{ulw1R8oDT`aG??bNi4Auw-ol*GxLS@>}$4Su|kk-C2tztu+(MP4? z43a6g@GQLYlJYnwH`=JVj^^qJFk=Oy&Ihvw^VKmtdrPkB{r7M~1yj zhvbC&b)=M8-)6QkkoO$Kdop~0-i{LjPQF79*wlrn%N%4u{s-V zbqqnAY#RbURm?4RsO9KIjXi=#E`shhlBFA5K=SnAw=Nk%bv=S;_^D1TThTRamJkqA z+*d+j79hT7VI9@8O^LGu(6r~oi}LVg12;n-Wb>rCAMXBh>D#O=?6~g)0UY4=><#V1 z4Ubu1j!#F3z#KswT}$^J|H}wRL$SQ02e!q}dI04rYX3~tE8#B-xxf~fTI;R$q#EjJ z7zQ#Bw8+nNq8_TZ+%fTlYI;ANNeI8=VGkL_t+c0^1Cu%Kt+#=jToUKss#3(;v)sxe z0Z?Swi4Zf|k7}#mt;Mlw-*}0M-KA~<=JVbdr+8@2Zg#=SmrNs%!A>r{R25`J#I43QUVW?X-Uen>~y`vHq1m5XmK8pH_m>BAhozc zH?^}>_I;V5?nh~ZHypY_H)t}Mvi}JX&HS5p>&RaB|q>mDhh~N^$H6#0#M_{ z%w(%WF_$C&T!-2OM{Y+aki*b=+F;D8>aBHE;;A(5z^lJ0VeX*X$fM52RxczEEmQTo zj-%iAFH?C=`Q+@~8ynv3D)NV@t6QL4()+P;P27a&Uq}#sZQC|Vv6V?61nOa3VK(C3V{qypN&w5?&46%WYr#mO;vJsW-a;p0adsat7U2KZ?Y z1k^F$s1b4aRMu^2|5C~qmPgMu%eiBxxk2a`#R5hzA3^i+1VXdKSY#MExS3gNQuqFi zh|fWh2xZT7mx}$X90@zN%p2W_Jfna4)l=?BUNdKEo`&Y10$U2HdyW7vt|<-b&?^4h z{IVc3<`Xj6Op?NIng*b7Lt()e2rf(C^U226iRNPPLc+t{>pp)bXAsKW!2AFS7uRR$ zdABpOG&N@!G?0Ng<1C5I=vi&+TF6kUt+Mxe`$bPoF!6M9nA1Np*@7c5A>rP1B_smm zA0L}MZ$Q)nj>5)FS&B;42~~~0J=$Nkl+{U$o0Aw76ehzM*n%^EXx|Dn!pHe2g8Q~2 zzy=Jw&dVxnyv6fa-0{oxO{9F%=v9v6GA>aEOm#z zX`D*m`%nXN69($qp021VaCR9juob3~@z-4i$pU~JZv??^#M(uICu%XQ)0l;3Xc^bl zUe!H`&N|)-%e&E?M!NLZbodI4LPEOd=O>QC;KfRG=jaZ$_2Qc(_7&B2=r6t;7BhXx zrK|7MCcD903~mdfom_GDZCW0PnY7*sd_6^tO4uhXDJ;s@13BixwLy585sl`kb`KEs zGE=Mun#&ui;G+AEgbNfZh$gl(gf{NvtG5J2DH;;v+0U1ESmXVwF_I$H{ZhOT6H^VY zLXIkJlKoam7FMdZ(V@d2d$sbmRK>ja@{OAkX5;h+?h9@WX33d0dyoGX_z%HLX@?Ig zO@jCVmjrL{RWJHe7<6(42#bnP!p^qQ;$bY@6!Aq12F#XAgQcbsLRc+U-nvkEK%{DeW0xqbh(W}sxQrpY`I^` z$fQHP)fRwS&8qjgqq*eBR-qh%wu(G+*pg|YU&hk}`8?W0fv#kCxD9164V8K2X}ylE z%##lLPaPWtqnSHKmV+~G}vIroO={k_k3&L3x-GtM{8KYPd!_FC(X>%Oje%{dnbNkPlLk@mtSd`Y%q zX{n`@Hn#sZqBWYj8i}$_k@aXrD%L1A3HGRFN64I5g^l`;P=c&qd*-kAL(VFf$#To; zj=F=C@3m>jfa*FmsEsUnp`2E}=S#3#l#!q|D<`u)c{zPMT{deu+`r@WAO&BTrYd$6 z++h3pR^4#QdL%eyN#~d}vS~oZSjZn#5>op2dH-9ot8ASL(|%)Y5Od&Ux1DVP^h_SA zt$>4y-Kg!Jfo84H6V5i*tr3gyc36 zb0nshC(X+Fl02;nZ%k&$U-JNxb8zgNj!g(A;Iex^q9^N6AyFuWeO{+Ddte53gSJ2> zy4HHy(EE&$oO~HNkfWgifFaA6^@Alu&=E&5%F4Zgqp3?u z>i7yM|5H{jVvTL3VD-VBw{_Zg<4?!!hsQG#Ay#d~Nps5+LoI|)RnA6MhPN*sci%$Q z>dTk0IzQLPCV!+KY+qZXh)`h-s5%kbtLpLs5v-oe0#QXydUqM0U2s?MQ3pr2&rj;O z>qbFU{oo%O&0@!b+sj)F0}fU^_wtFHW`OrMB>>N2eb(7q+PZG z)Yz2BFu$744d};;KlHvcNVwCG_^enqmgj>x6|;5Jv+z_QYKL(@Ph>?V@WAr9G4{>t zu&A2!zBifOdHc=W(WghEU!7Ikml7ep{jIwI1&IWqz_}EU_==;xonLPn@pq{Jt{-6? zTOOKth8OJN2Sv6VaJmMyrg+BYpSFnhIUp=nikA7adXJP^wVC^>i3}_~?*Q^iU13S@ zK4$69l!)HMGi}C(AkT@Z;DQHl!dSd-b>0^hLS$#nZ9x9{etIWg7E`{A2gW-}kQK zr6_HjJnJ6SrKG;@b79_u0o1mY5;}i$d9ekFA1Oi89<9P-scKFX=N$ISuQW@c_aV!h z55M9*h#Yz>cU307LOb2Fo9vonhX$=qY%YW<;5`r}$ z4+DhT)@KoxZ$^vt=Q}H=xIemr4VUBj*&i^+BeU!`2b4|)PJLF=cFuqA83b&OJKUu5 z_!RCL&aA1NJYWDwwu|{t@7jc8>;xe2tGBO`DBfOXYYwD<(+Zzc6$B+xAsY$LjM{v< z-X%eQ254z$#1cqPOF1oi>YXjmG91>_n;b6z*keEL#|nsM@IfX7XSWRKeSG{+@8iCp zYiYad|!06{tH! ze0M1^-kproM7FZAaB+#^VJ2sR6aY>Bg@z%Pk&u8`SdtJ8NpWyCKfkfcT4G9B!v>vN z@#xN~Ek36Bky3IG_aR8RF6!LktYoGu4-wTWNP=OM;ARHR)^!YP(j0Vfimr7%xI5|a z+S&PsdqI_R3!E*nL_F#%z<)3eU0}7%UG4KOYpEM8(YxE98`-TJyEs2V$fLGeJG*=3 zj;`SflT&-WmBZ(mMCMC%G!z&o#_!+1=i^(g$#`VMB_!Ga#2#Q(DfbJMhJRY1Wa^cTc<5FZhVr#d&@boJaYsGQ1R%OCc@O%*VprqIn;bU3 zA2jiOBVnTRWo+-+oU9I*Nn9T-$+>+qVu5K;VSfgCSU8b8xNTWx-rkdu$Zld*9^<@* zVfp+}^}aU}9wv}NtKxxSWb-Rb>H&<1&Ckk?*KX0jpKYg$BrSs)BdIwoaR`t2^DK&PKnbIBf8u}y^$u+N71ID}TAPeyg3_P4_o74%zn>sOB zu@q-fApXY&SuSNtOksk2(gP~qoqYIw==6LvaI{nq>aZU4`~ZA zAmhuO0{^qew02)g#ukCWM9lCL+DX7sAm);-oGcrDd!TDvu$oXQ?nm6k-M|TKh+cw1 zEYEVhB4@L_IO{=ave+#YBb9)D(+I#l%AAQ8lrUcS^GA#!ZOla`;v2CFe8-ffAY+Y^ z@1Xo3C^3Rb&DLB~V@UBqVA4vZBij#l%R< z@p5U9d(nc1#|!JfCi{X7(X; z5wVgH8@@Iq{`(t=oza~=fzyfuKw6TaJmsYYvIg zQ8nNR-P6z&S(X!y=W__<->OlOiDV|-KWoQB!abz4uZpFFvh<67keeBK3FJq#Xj10scjwiCtYqt|z6};X61GUd4e{yvotx3v)Fe~w zxZ!_D9FOtwI>ph4?Fv?!{`7qgQgb!5&)#iRC`hP9} zd5LJD4Q8tmUi6T9UQgfDo#i2#Axsp;U>;Sz0VXEh2hB3^*r`s3fvo1&JltzEbsGaT zooPkC-hTEFrmt;=JVgw3VNs5jhH6tap{Z8>EWMeq-bM|%vvS}(!Mv7SxReD@5E=2` zSG2in!j|cE9$x%aq#7h#P{J!y&64oXU*}uM_&fFf&8+-qG+xjVgwh8AROJP>Mi%qi zMu0uF;OT!=gQFzfPB9k!@339}3q4Xqi0Hgu9RpP<>_zasyJ*@;syUG`-4|v{POx>) z0#u@FVj~J_5MVa$Mg?MA5gV}yw(9^wh7i6vfMiHAV*da1zfcfH@uX_wT$&~U7_RNG zde97^b=sV0YEV>rQ-Wz2RgYu{fwW*35Le%h8;W8c%g*$r$u_0$EwnEcFc#{fv&&Hl z3F(D~hNgg?h3uQ&V}AXr*o1ysL}IKY&!41cg9mWhLxmyFlsut1^LpYtEze;f z3buUNC%VJ_A3+@s2@Rkyfo3U(Rf9z<6H=1;B_sk#NyVm`p+tRYdokCg{-06*21Z@) zts(6dLlx^-5-^c3f0U>p`J-4hkAe1Be?=+Psq+;4z$hkvmDvCDQU6_JbE1+~Kw#ppJso;J z61R1;$RtI>e169VbgSd}o%o_ZNnfw_D=_&g4FHT~!1@fv!*oFISoT+M!1)4*62UNS zLzRE;k(n$JF)?&hk%ZY3mr4sBwH-T(5djbzX3D(~%T=H&H{M?K&(6F4vtvmrx5M>N z7H#fJi@3b&g`*}?@weyp#;_=5ebc`l^n<2I#q_cxxy&{I{O-9o`;#I0%8WOOsVv&% zej!=Iw|>zhyFV20dMq?1GcQdr+Z-4-{(XPjm+O>)#Yh~bMG4`n``-~K* zCn=c8Uawzep?%wyR!YV684(dfR}Ci4{wM?2OZz(Ic57ui?pJ{H$RthdZ>!zF?&9i- zj`*|cXQT0Mi?`u#-=k7sxq+p4GR2kBc(vFt(UEs4_6rBO*09|b!M#jZ8<*a{V%%fF zsE}0VC(f|z)wKnFciwH-A5H)s2$O&YJOu#;+Z8_-hhSR}{I2^}Oz%77S7Clc((99F zFs@cDJjfRHCb}+%mOps@Czv9^U_M{mt3d`KMyw+wMqFzy;diwgAOg(0NLKbo5-=UI zXfPPe7IE&PZ^mvZUT*;VbPK;NOC>{KDv{#OHZ2UCrM^N>F#lk{fVRsI5tuw`YNkHlo#9Y?LNL{2hI-La;*5ztbkTBLLJkR@yCno=d0) zK+Q%sKdSXlmklhG-Oe?MoU3uWMNkMPcIOiyPd~x&^1?^T{u)Sv(yz$!7$PVH!Z-ej zE`?z5h1_@E!|UTw8Ide^j{m#AVL2`oc}Z!-FON_AVR2nE(Jl68x+Z%b5ZmR>-(Pb@S zCrKCdK*JaZ&D;E=O9V#7_jJM5rv|k!!N#9TYqa2Z+F0!eOQ!v4awp&VQZ?t9AE3xeVCa zA{{vE6J@eh2g{`PGfve`a7H!8TeVI{vw(=!S3b#PdoZR}Jt}KC)?&vJ<2}+Cd&Y}) z`!P|Z;m2U?7U z!;RGidDXj|6Pwtlu_@VviG!9!sgO=k4?-r^Y*3x8;9)cZq;*FOdRCy7V8)MsS|ux7-0izYnd#Y6^RGt*`AX#HY-t=E|pY!6q!1@Obkl9y2wrahAC;Fpa&X9ehq>%8UQew)YH0UXSv zOmV7oT72uiO0gIgKxw^ns_aJ{9|xQrYL8a)yh=wLhrJi+@w!~QY#FDB$IVnLNngHZ z2!f>a8TE(RKUkv`)`{TE(uI^`*#waCS5DKuKOMh#k-M6}4_zUyj!_s<*`LtcV``rE z?yp5(rn_F25_<-XGS*p*_r0A8>T&*p;Kqk5@nLEL+hCk^Joh-oh=eORZ43$0X0RB$p1UGj|{nfrw~-l5)QA9Y-s2vr2z6T>d`f@osqK zv()$pK*`~`EGkzhU%Q!Bl2!gtoSG}8d!b!p{kvq)Ij7jR;`SkpT-2+txD=1GI#tb2 zT??Wg`dw8r$oj{baeLGx(YLOy&i(kWH}`Qy64t!cKxRm(X}?6mGXU(!RrM1wsY5Lf ztZUwupt5L{w)Be@AzkqZGSJb~Z}ACEukl#7cc{57Ed0euRWC@K@7Euap4q`ss4#kj zhAE&08`j^V@s*oyw+VZ+)12t(I2r}i_pSIU>0<}+)9$)=|Lm@e>As92V$rUpx^WXX zvIrox?2kRxtW<`sDeD9|07U3cu-w|SU+EK9FVJHFF^~tf@gNmc;(dj0MXRmaBU$Fl?x&fc@~a4h`8F*(-5>3Ou_Fo7VaaCO%i#R z_M2=`vbgS0t=%x|_|3XMp1T(PbdLP-LgwR#mdOZshbV=!2sMsv*ha(XU7p4 z24eCkY~3*i!q!^SandL@>|#!l2qfsl4j-NukJ+m+w4Pc3yehJ& zJLaPuC)JF9cbML%qhaadJ>;WV8_I*%IjskSri~QB-6btJT74r6n`n~nYd-zHo5=>& z&(6}7x|aBAr&QHe`cAGE`UE{VNC;Z2{opN(d(aCVNa6hauAi&v2krQ=GK<4cGtCQJ zU>Sf#^piCSI^#^~{^Lt%`DzDXo~&aGX$+a4NGRgV9XGT{pMOZ|i02=6R0m|&4yy<5 z{CZb9(R2Ew7ebXB8IcVptnC~8`6XU)H6P@gSSHLU73Za_Gca?m(NqWIuD0!v|2;Oua zr~4uFiSE1KsW;e;b7=PO~?Mo$F>Kk6uJ5d7xwf1 z5akqCE@`9U0cYjFhk}f{)konQ-_w(#_^p5D<%{nb_nl29g#I}Xx?h#6Q>G;mHD~^n z92cbzCGnA{x36Q|d*CJFH;}E=Z_J4OvmkJ>Z(Tf4xk{A*4r3x)?#uV^CRm9hVLerA zimjXyUZ3uU9Gjl6Vs-B|$;UQ^_-4A4r2iciZ;ND@v#n-Ofx=%>X+=9N`D)1G_+9I%nxl>(~drfk3PvbH;AazY#A`$x6biQ`n!4v3bTO4sFl5bL2x_?ws%6M8PzF9sT`h)lIQ(AC6m( z&m=Z?4y2UG^?YF18*SF~C1FblXVOqWLqnUVCuE+?*X2jj^ivfRr;M>|%kkU6#KC^B zCiS}qxYnlYR5_{;=L=Jz<{Y)9dt^)&uM4;<>_4*~({joFz-?-nj+vwP7Gi)j!*7w}_^t1k-@l?V8Buu3Yp+jndpOO_ ziPv?1L{!Z~c;%MqKoZRTyf?{v2t$9ybXslOlbGT?QPr|n$&p<8M?i1>`kD*+^*iav z+R0O;FIAdwe`@D(@dewj@$^rVkig0f+tM%pa4?c(-vAlqE|QJh7S6EXP1!MR8D=!9 z*2~;6?Y(R_OtK|mz4d_AS?4#-^J%0YWz@6n~&oB;h?!~&&1X=50i*O zz9!S6M0Gp0?(GTs2VXrHAAAi8XI^L@dy^DL_gyUc9zOnk8%+p{$z7SM>!7dJ=;w?% zmH*8WcjHA#sKBWJQ~&wKd=J|;keilK+ONj?bDeZZ?XLlqs3`;S#cAxaPhy^SMe9Io zSlmriUc9PbVzQUhUNGBXu}#xnhLXE~6sbT5DI$i;Y{ZCfcXb5#k-T1Li!5v3PrS#V zj9!a}n9XfHhxR&;t<(DY72CsTWuxStc{yYtI zPUMD5si@4QaRKLx>X-vofiys)+#N9plAf$`NCQ=-@{qe@U)Qy#ikBU1p!FivC<6L; zX!FPLMvOr^M(mkJQtR#gH>V~hZj&4oa_tqAW%#%>*(!{1PR?HYm2+8EN*YZeNzQx9G4B0p#PCJFZce&EQFFH}oHeXsYUSN6 z&6TD67_RJChL^kFZcgPsjn2Gr`MWGWhFrpUv-sUFUFHs<5igXthcdFIo zuEX-&m~U9IwWHTM4?gapjiwxBm+zqYx`9I-YG{f&F5&HgSH(hVN}Pp0chAsgbx?xS zA6xaGVvq{|<&Qp{123x>O~1>hE%zFJlJY2VWG3-$qu;n`K6@12ml>n>p}fA810JKJ z1VP8KT;P>~u1~SAbp!f(8inT#R5P*{CJ7;cyzm*5n9MT0r?2m_0d;q;bY-zg!_kHr zC;LyUA0?e)NVhz_#P*vmNG zY-RY!!v%zF0<|*JNv$!bbsF>Gys+;Ll2UeIO?)sveWAA}rch&!`X$l5a}MVj6w|)v zhBRl|@zaIBr1+GrTId^6T?ezddlVB+U33dm??a|EgJi? z3Sby?_0CYb0TGa0g2Ublz1T#G)|%6`Pl$Vq-{=#JIDecCofW>HNx!U$a`@qz|~y%_&9~pD@s+S;q6#qo&F{!|Nug`dh-V6JLJuBVmA~le}>e>Ia zHW9bBI(SM!9Y5`?y9>>?QanCx9zFc4t3IB(g-vmuau&(HSFtLvr3J)8W{C}F-8*ym z>?kYYrmmYI41B-M_A{s-Vk3I_xNazCXi%cd>4Gv6k5XuM_to2zl>-VsiyxEv8Cp2t zo0vG;YPZ}xXsTBTs(|sH`^g{=YY@pO5eRa%k<;!6U;Hnj({=(dN{6aX^t*J%Lk~B) z;;YI1T&_wNV6cG^85OGvd{@GOC4k?}J!j=A`<2HaNv}}xrg;9LK8$e$X=3ivk4AgW z(RwQ{F;v)Fm@P%W;1QSXVz?OAgwvycQa{Fkv(8}R8z!x(jpGXw3lD6@Lc%1e($OL1 z39M(3El?`kO~6B|UkFOS*@RUy@yMP34#b+46`5OP&(Sj&Jv?x( zbleTE)_uK1jb_7oBUq0l{&AK`kX2u8b2WFAiGqk1rz1zR>9#p9WQ{;OQGN?1n5|VVfYcZ+Hj;rDex~cRx2z^ z#0h!u?LQ8hHm6sT5BoT()*8m|)RX~P$L3bh(6=>5nqe@HPPca|oKhiUI z<9sfa@j15Q4GgOdS|xkup<3(P;lN;?&SIxw`+#F(UYYHxyhauP+tty@DzZQ+ASgt1 z5x4ythpnZV5@Mdd*bb}NU0r)P+!%-{2Cw(U;gL)K8f$yJzp%`Qe(;!p7VV@sEzGL3 zU8ebz)^K!)y4Y~<(WuMFfe*Xja-ita`dkRI2f=I<|Jtxt3)Acji84S&LnJ&iz*8f z?mARz`Ekm-@mTkUy2jVQG z8=o7s@cs=Dym+fc6Cr|?a4jX>iNR=w{!e%W@`LURt7;jfMsa2IMs49;#FFjo!gVw+ z4$K&3G-#QHJIQCB@J^zeuW$$U>XR+ocb?xFrYg#0?X}S*w;YI#)0%MMEr%BVLCCC0 zMt<0v-H7c!6vnA%x}oxHl?C3N8!BPSg93%Su@QFo4QoI1$8Q>eBv(E-PTZS63w zH0Yiu7L8gtp>nxMq-4)sJYSJ@k{(ort(rki*TYp7JG8|%fDmp-o2$>)AP`DuAC{-( zIyY}NepwRf9h6jte!O}#YR*^CT`BFh_4???N`>EhEbB{I`*?k^@%F>3lL-@@SY zN{^fi+7O1o3wT#Ny+g%DBy~uZzsH^JXQ-Z29_t@_Cw#D?sJ?T=a*s>8bL81pd3w-< zh0)O8$qCOh(4y+PiNdgdwsjDh-l-L(0NZmkRNd0ssycv%8PY%@XHj9peW0-%&mj=` z>n6&^QL-uhOT%*;!WEKJonk|mo)>Na+3CpKg?tF#XRB7AXd7 zkEV2kR&UpaQExMbM5{B)uMT|I@OCa3Zd1aG@yh#6r=}$rxvfJYKP_mY;6?tdw-I2L(fJGW49dlg^9Qr9ub#J;{=>ApP_NfSa|b!_uc8kcfRUrtR}|>_s0yxM z@%9L~&@`;4B7)NMBcm@UyMiBZNhT4a6J+Xdk)CXxZ5cHO#@n9%!IC!PvvgQJ$$T=# zmQI>hmWr2>NXy=gqe$tSbIPQiNd?}=28HAqe+w%y>5lFWUlFyaf-X^QZg2K8k9Nt} zAJvI1p2wBJjjm_mv&KwjWkphBum0Vsi-IjUKuJwW)U&ww=+3j_7QG9SwCusl357L>hV!K9)1wh=p&DY&m+B6Wlp3EG_rc;klYkyq*aXCHR-7?gQxO$Kf!XNJO zvFIU$hSum45YBr@EyzkYZIX#%{VQ9UB{eDgInQ$I#nk5Tm?{2*p_yZyQ%A1H=}N}B ze5a^4o^-6^M(W#7HlEN;ex0Ksz0od#V! zaf&bbFg7xjIZSlh$|6l009aM?Ngl3ma_{*%1l|@I8%Z%Pg=e6O@SW!FjqA=QV|BUA z`hIM>HVD+NIXf8sziPl)`0KWD@y&tBJ&ty+&75~5%L zKvTKOcR(yB?P zF7Vd=1jeqrXx*jpt;~{ZFe6+8Elf~@_oSAaWygx`{0AprZTCRo!omN}pFn{*U5Uq{5gmT_U`rsDgk(d0f1&jVGfqBwx1WH2bzqXx z;#2az+vGA1OO+07LLQj!Lh6CocW%ABZo!|F+@@h)^lQc+j=FA$lH(KIUG+SglUQ!N zZdQvqBeZjIZW6J&<4aDu;diwMgvXN}m zw!KH{$7-G{5Yawt-IjcC%dkryR&2AC^&uWIaOc2P`tnjU?d?g8a)}`;uhU}c`gEPJ z&ROvtG)yr)D*dUNs0;#5{8=;dw% z6TPRWXM$>@5azLey&4BmUs}KeTE(5&&@sdKRH~Ugv zhAhrwN!hjAY#BAw+}(wzBHbV>43nd1hZNzUsl3q;7vOA&h@Pg{di zc5YZ7V)4eK*j*-H?1(l%2<1m4)0w~3Yk+M0uqw-1JafE-~-UwjOGyLaum;&}F%EQU6ynfIKOqqpf=0BX&8Y~3c8!)|tF5-61*Z0I2_Ex*vg>}| zMo7mG>nE%qmY2RRf4!=JP}nVVR==Aj^{_E7r7DV;3PM@d-*G?L9nIxFJ)CD4rY0*f zYNuoSxm`24)`0rSFuC=s9slb$zJW6y1zWd(^_Y8gXSHDUcoOMZQv(!A@3t*G7C-JZ zzdmYrXah(V_~v`=6*|0jZFZfpR>a z5&|w?RT{+@ldY|yY99U6CK)*D3yRGQ6hQ{f^YN^c>)w`=i<|M)xlGrNWYahj|ubHJ}*TdIb73p{cE*GH*G!q~szE=)#I4^*y5>eG)o-O?UBh zR3R_FKWEJV@%u|Lc$vhw)7=`~{W|pFnJXY&#Db{DwCX1QLkqnY0F8)nGW zE;BQ_Tm|xy7B+=9Gt3o3S>pwI z%gZ>UPD(g+pGtmnSbfskDJK#>LS6r~=FRYK=dga*$sP&1{3MZunh(67Zb(`o?l}Vv zF$;K=vUe+HJaD52`3^^mr~?D12TG#Lgc zPv@qTrCIKfeawP(-?g9=T512u)Xd|r3!K|I056px)-|^uQ-IF``(w_(IQ&$RkZ+kw%wU+e0pSX<0^H_B>Dj`k#+ni zlZ@l4A12m67!}{7n?fB{v$)_{EFuy@kLdzocik{rP(TwVT`J_a`_2}bh3_6bM#=cN zP%-uLmItj}x|}iRJO$S6+oivR`NW3^74L<&hSAByl4$c6P<@n@jp0?Tc66bCLMVss z6x7#Q_9^wEeZ%ngv5oR-YbbYh;KP~F)^Br|h*ooDDNoM#UXVX2mok7^?#>=pU1l_R z%Oa60#-16j)BROA%$>6(#xrbnTMEy0ieAQEb__V@eQ*WjkgD=QfmNgnVY-tb)>w za9gzs0z$uhPH)VBR-`U+OI!Z_Q9#YmiW>iGSz+&u$p`oE zovUQ_5bmCsq@;@Z&OWnB(hMIjwX(dmXeunTESWAxN*l7WK9t*oBgYL4?p?L5Caa9b zr7vau^;z+*q%qq*=%7VPKbWHd@1(O!Jgjiv>*R6#dQ+n_TF9dcI0Zt0-L3f;WRrv* z1)pXZt_rkg)JZDt7+rBJeq%o$_cIO$<0jsQZ=+utvT92tkO_!rB<7c=?LcUVXe6I&Msill=e17Oh5et$L z#FjlA$RElwTwCQxP62o}LPe#UWH)I3H4&*Njo~zfEF@}Jw9BPLM7*Ng{^sI79a4G^ zc;O-FSa<(8vUYVhW7reG0+R>oxvD#TSNh-c_Qr4?w32Q9^3S0;8At!|DLTXqkD%`=LaObp0nLf#kjJVoQViT+vzlb(4(> zi3sQbZm`fAN*iyLi7Ffuaaz*dJa#~qn|dRc{0oA_TWmmZFPeUpIji*yW1l0)xT-)k zEA)sblDNqf6?evCDc%VPVt*FGilRH-904iVx5MV;S~3csn)chNLx@OFFKgxies%k2 zEW-8Lr@BcOPx&3!gFzJX#hXv2B8bI+_DdGQ3Q2R`nU#Y`V%bVb635xN5<-}~@x4cX z4f|{`>eu{B^|gg?(p7!6&eP^rjopP{Tp;luUtJ}eknnF@+UeHT;v z#2JO)f~{z`IUEYR5*T9ACS5#9gb^B3Fxc>jK z&URNy0_R9FK81W%yz-fxMBUnO!T22>=nFPcD0mU*v(qLLHfBo+0CY1ZX?lFTg+jY0 z`-Cg8gEpXJ*A}CMy=<7emXDkq75y<|A$VC|wV$yEUd}Q~(J>u?vMeym{5=+TaJ73e z|7fAcqgeonGxuD#b=`$=2}0+myJjf8BCAU$GxpdtX!S(Cc0 z!yEPjqXMPQn-_*T`}b7bPTIcs!yNCT+`G|2es%0zpPFXq_NQHNJy!-Z#uR{fiBJXN z-0O^gabA)h(qS4l&hXPLvV&Gyo`3*3%iH3p@r>&2#vFp{#S2WSwzNy5Rn`+f9vKK- z{zi|aEa`8KgqSsdlPJQuuZSyD1Zik1a)&+ugpe?eSG_6_2prHD>pY3L}= zKXE&r`Sp)i<(AV{l;24?sWO!s7{B(_jFu>m`6s3QFT7B+pHw2-L2No{lG74sUJoz0 zk}%*edQnNFrC}gNkxtaxYO5BkY6s}#0(e~^cw3BkCA5{0Dx0Wa?-~ZIMx|!Od>^~e zI9}TaU5&}rNBtR+sr}RZr5_NLkkE_5K%hfvN+cNkj1aK&Cqdz$jfPSb{6EMiJhOH)4ceI{)&o#9v$SA%vglG^!y4s77EJ9 zYW8SrS`rQR{83Wf_<@rE2J8n_QsU$Rhro5YxQVqLO~0wT_rtx(ebKjFLwGaZ?fiJ> z#Gmqr)h$kN4urhXL?@4QB;ULgUlQt8aaW{Dz^?rDn}T?{+UlA=&v27TWQ154^ZzyP z8teG~IamAt%fA5yHa-r`{@?O`d(bFsKm&A=i2C~a=gjq4*Lx00R-~HIMnfPFq3lL7 z(`KA`S3%3?E)4183-Yk!R941+Z!p+0kyIF608)nIivMz>7l>P4l@=;90Jx+=q{eyY zPj@$46~5@jRXBQa9h9gD#L;%;`>dL)2NFo#g!_rDwFQ~wOR6@Et^`4I;koG= z7mha8we*+hHS#mS`Sx(>0%)+NhB(JQiG<^TOs*MGlgQ`5*tVAbdzl1iI!*(4;co{~ z8L@ilkh9*a{4DHy3oYr_AK0D$QB5J^STE8WZU2ECI&v(qlI4NV`}>r%D^&?rvOf4} znP(9bUL<&f5i=GHVy}d3lk>CDNS^0P(f1Zw_Mou0? zMPLa=Rr~=95jDXx7|>UUTim(|_Wxc}AdJlZs0SM71wh#WFvzHsbPpRLgOKBOkNtnb z-8LF>re_}iS)@av7>8TJZ}{JCPS;V!Dsm|=9Rezfa=N>?X-R8iOU4IvQfM2rzZJS znKClvWK~j^m4(CI=0vCsI3T#s8NSPmfLL|ufVw3TRCsOQ8@vscGs%(r=RaW@LZ3~p zKVjmToi(-V>ZR&A`h-v}cuRd2ML|H2Pwh{35k2{{f6e-{xtspz`=xx{7sP8r)|eV4 z2WNE+)}y;bf5*H7k|n)7qnB;c)c^anAXM!MiX@=u}e( zVVL<`HZ~WP74T`Gk|1F7(*jI^!4RkhrN&P=_N2>`wI7ebT-5@KpDYRsc^PSere3pvs_RJ%<5yh`~a5J^+&nJSH z0N`>=Jl=UX9962#V~wE+USaT)ihl#*w>bvr3QIa0Wit+)NS)l%+y9I9(n|xo!)+5o zI{10WaqL-}3mI4Nye7Mw5x?m`3K12`a_?z#Ov>86-lSU%6F^Lgm%@2f=v;~paFl<1 zc+?8#DFD&}X~*ae5v1M$IMWor5Xl>_p$Vgx4+kXtCNk)jqGGCgXH4>cP-)B`#68^) zKynAyhc46(H^%8*?N}UE2X_AuDoOzvJ8i*9$BV1s_`p`UyOm;#XcImx+S}$O<+IFF zWsd8-c|(mYL?!gJSAIq>xGeul3Y8-CfZAhvZO)7^l6s~LZNJ@lBklWJWMqZVp3xMx z8*;<}XT0S-pa}pTA%>xB`a)T{)#U;w^I^{hu<@=?${CrN{q#=Tg=tMg?%QXo+_xzi zG~3{1zeIS=heO2}LaWCj7Hs6a5^A42{z_T1C%HJ)ezmPQ$yb&J3V%`mQ`uPVJP`6_ z?I$mB?>`Z~5Rgaf45)^X5K}$=C0kX@g4%%|NHiBa^{JM+65%wSo_&Z2cx|=^=RXV9 zn&^kyQ9ja!hyBBh2=Ds4><*_X7fGZP_tQ<>P(FuM=e4XJR);^cvs44`#h?Y|etp2E2&p?i2_&d4e$FRoN{lS{^_~=355)!N zv0w1gs}~dn4PM-o3e@6~d-_VW^;A{dH<9W^i=_)m1~R!#Js~N|SM0JOQd%IFP2atn_C9IwK3{_fOBg@(!)CVIlT3c{<$og@~`l zF@-gweN_|QM3|XghZxJ#E5PHu)eH8?vRvQk0xk1e7J$qMfV==G>wu;8&nG3uoyE8e z>bX(CUR?ECRJQ{uyCFg6X6C3Dr^tKgV0Eys+*14GbgjS$7;A7((OW$|3mLBbM}u$9H<2&4zCyOyI0ouPuM(Xbd``$eML@ zuJ%&Ty5g5`l~S^pui?DU-(rgsY}39UN>Srm(~!te^okH-sz_8Jo)0pzJ|<#Oew~p0 zS}BwspFe&Syludeet!BNU4h59d#uc~GWX!`#Qm!5$4rGLthjmZUEDouEs>8M*#KI9 z=J9gtFaV`R%&S6zU05Y zk>?3%*NCY{+m33#3NTFGxwqGII136_W=FYy-)_u(hE}9sQ3^-u;VM1RYlSO?NNhZpjSlPt?51f(jL+^zFa6Ci|1K{{Ub2gk3e-F}=7pbE*$@&Di`M~QwaNx2Zrm+vSWoWMK7+D7AauiTl_=!cW}1!DM2 zBHUCe0NE)^HHF6fTS=|34yxzg%;f(T_m5&|WcAwI&VE9v@f14li+XMTb&>T0K6e^% z=9Al3=b-YP1lAvUv2Cn(o;{Ijy!Um`_mS;0BaFX2QNRDzx`eI_KUN~x7~_OQd$GIe z(u<}%+lr=YrESG6HuO)yv4i;N3sgAYEx zYf1CKXRG1;%3sfND+K2gIP@cu5sp}ohxI-~iocohbXy)V@I~4=2A!C9B{E7VCorYU z`C12hJTBmK2%we2epZjD4QJQivkB^EQciw#>iEl>Ut#Cu^uvqAH@k>GEj#Df$aNQ| zFtd{aB)6_EvN&`7C$8_*`X}QHOS-ZA;`*1^s>rH0nM%n#n&t_O<&kdWqmVB>IGpMY&AZqAN~H7>*3cfv+W>c< z%%q)sAkGg&ci@8c7Q|=YZ*?2n5}fy+!vLB>4ONDl!Jc`4W%Jw5Ow{W=<5Q==c>3LE zKb}e-`rd|xd9AIzVzt>@$Hikd*#Fe@XCHCt%dzapOmCfpTPzkyx{)kYxcvHB9XE<8 zj*7FJR}&O4>osS;;d=M~aro;W+Cfq`xD2{4U2PXTk*v>UdD9>`bxGEs6>{@zzXrhav4T9U3_l^yAN(4dN%*g4lA1jWp^ zM+(JXNphoMh_h`qVbhLj41$Cs)^YCFJCVVptXx7IoQDuw=Xm+h1b6210JX~#|M86s zg}=-k`DEqc^cI|ojYg+k^v?)W8mOFp8gFjER5EWN!YAZ-;7`=EH8`y-1N=M4+elJ3 z1)K8b&DcrbbYd-7&bC4*jd4&k?(nMjk~zY!vK@a=?BcBnY!2;D(UN&#=gBND8ojIF zOg1A$UyRJVqPJ&M9;T4GbqW~y5T~8rU`kM)ZSW}_F->+PN6Wx;2ThdDWHGOW@3?$D z)}_mDIaj;Rb<1i0sKt!`xvlW|ho6@HZrWolo z0y>nEU8u|nTKzv*5YH1Nu`JdN&KfO*L z0~$Wyf%)U$phDMD&?{%PHRtSGhX3g3S%h+gL1f2cHNYUE_!Fhp2Aq;U*C7uOVZ)-A z^_Aub$uzQdMx$Me_5T;UqU$h@G=Frgbp=I7ExZ$1WkuhvUJ}r(x;2Bek3B8>k&X4( zS9(7;Yw(2wQ6F9OTx-~P79jD8bi`-mX1O-Q+%lG2pqGzqG;V^nx~#-#T6NvNind6a zqTI{wxPvkVoPE5N{}M4eb3lp~h}(s0$VcsxJvtLT#ZUn&M*Vl*a&neQ3@ zV`7MsvGWawv<=cFnwk%dM$3~fY`4ylcG9|&%@kSFoIyjipiZ>$DuD#|y<+OLZcP>cUC|B5@s z^=Hfwo5A4GcnC#L%H1CsNH#8n9~D6t<>^9fGy*1o=2->X6;>H zv#cakxb5V(jrZYG%!$~+8 z{U-1v0LcAYQ78@wBAl0gs3%d(#^}Sj++xvYe|>_B@0=?rqaR9xbOXdg32XMC0!Ki6 zHkXqRdf<_~7KEp6QOiLgPy53jQ4b3O!B5&1$wAL@>C&MnMmy*Wz=(W$I&2FZ;XoJ& z$_?xOZ3^$bM5NLc=+p70H~QFETR;BZH!`Qh^tEMYxKD&3J<^7V*RNY%W8+I&*vO! zevQz8Pf$AeI+NA$Pb{=|oOdMC(4Pu7%3+F%vc{+8wAR-D@D@A~*Qb`|#R)%mX+{l7 z{j}feo;7xDe&ylTZ~CIVl1{JvHRAh6auiweQP8jJKbKYkIPWPhuaEZDEUiJ&LWQ=- z_5F9CN{MWGOmRU-BiLv)BSYzISL5cwl;uy9rzj?nny;|CAKOuc?QJzucALSkOZgItx5Q%@Ct=3lr_n?GImO9^$>Fy0L&< z&wOXd^tvPC6QL@wb%Q>_xO{5{mD$9Q(d8Z`u6@D;Oa0MPy1Mbir$wL4$5~$uXxIZZ zk=Dh2?2_ni7!QhXqArIoyjtgEJ6i5&Lix}*B8gl{F6vrJ*;GkrR%L-8_Jbdo^Bx~tBKBnd($RVTsc>Z(lCm-S0z31oR6Iy9sL;7oF*|DQ{qoY@tf`Ulgv0QXllErG|4{0_h z{DqvmLZMV(P4W)Uxao(CTkV4{YyhiL1UDMZH9)8=`*fKyh&%0B_8t0)xjFJal!MdS zRK^3DhHKQ?fdMYo-+-_&0$p7AOI*V!YhHkAX1)1(;4&PAAH%+NO_Ru;!9m>h7NT0y2n0ox!q1WqhH)l01t_s1)&)x|@7HFQHxj_S2QS(eN`TeH)i0l35A!fDc7iA`&YAV^gKsouDZtW|1?+dPz_c& zrV(yzQ`6Sivk+SOb4ASXUm|*qwFY*-&Nyxp(_aE}j2GL_OU=4HA-O1R$N zV!7t>?T<$k*~``r_}Wl)cqs?fUH>hd48ED)H!AHJV-IK}@M;e`9+9H06zTIFE(+jN zzogCGJqb42f8aD@>YaXsay4jh@2<;h34a%_)u}lb1~YmPpN!DKoyv9J>I*c!v%chH z+U;1G!rA$SEt>#M`1O`?kTMmt={)}?!j-wX!`OjO%&oGuY`ifM6Z`SV@3F4la{7W? zxf>J@OnHfuoTJpcOEw&x>vA~nWMs&QwEq)4JgRA=;T6lCo@Le9k$Nwp+MBIk?c_G< zx+>7I9HJ*$_#R0Vsfh!~(s5W{ivM3xH4m<)~RjdbaLH9Pc2Iyp{1c0?{W4$^<4 z#h7Mm?5#aCysJy@iV=&UoJP1i=CcrQdcGBylOGrV>IrCp+67;H%tnl(8R zJy@jhk)$PaH^JfUi^AP3BbNck`K5>bxm9_?1=O!n`W#&5W5~M;=2+sLj{8!v)2n&j z(n~_}A|);tNNhsEyr3=TmK(QBN7jT&T@n01$v;u_;6+={I+CeofH<1W8|&2*!VD=5 z=PnHk;hOC(SXtK3mAXl|h3Bxc5M_^&60r~s;tKY(#e%i>ceui4bS*l*DO+PJg9FBE zQCT}x@6jDKHI8B&O45D8GB27m!GQc8JW;dLm}A2LD&KnX{5JOhX)l&LCHz)We7ix( z%)&)?SK4z+Wsrh*b_2mvit?TVYznIG+tAl~8OKGk|L8-vQhh1oNc7u^KkN{;Uf7>!NXrTl(QYMJ0 ztTuRU+Q0aK<6QrfxqyI_!F$&7uM3{d^Qu+X32qL#a2mW41MoTXH>0jO!C+bIqch|P zIdxtFJy6xjh{nCa<&Y&&te>miw~t@qEI1?Bv+v8$+cf<9J|bly&oJg6KtU4&kYlPe zg-#Sj3$-y{J%_SYIJCKp4$5yFNTVutTj>7j!gGW`o$GbxWB$)*Un6Mhg1`Fp2&FJ8 znj;+Na9%rV$!x!BQM$8nq3*EC@4VRUdo6U{DW}|eCcC^ur(RGiHfNA=7dw$n)zepBM`u>X#B|CDKWmWqyCb*q%7Yg81pt1IsqAK^V7jeOZ~)1sQk$4!eXEod&%89B5ws*AKf~IoE&8Ge?-6e( zp}j(ixIxfz?iykEYzo0$0R`nI8>yDYg7FT6b8 ztybxI>_JM|t1emN=rz70=HT{+ZzfF}1`}Aq)czzVj`~Aor;G}eJiIB)t|d1wV@(Ud z@q{wJ93~5lLmT34(m(Gpo|S1yxe?@vwzBn3FP#y=HB{o!&Uf})?!sHG}bGvDysHu`pxfHC(JSI|ZQQM`dTy=2*@KB~^l?nJk6Gng592~dors_w;@75Pba+jn)wcRf+xjeH! zF@RQmZrRNG#!m|(_XHKRXOr~@YHoigN-C}Qt;elo&8)KHdlqT5s?F1WO7|Xaj4@{) z6Xh*LF0b_yzf69Tw%GG!@H!eb?ick5$B@}xx$bCPU4WD`OA$jd1Kpv43^n@k8rOtw zHy7kDSNRw|*wJD;Jp@#{znttRe|#o;-|mC#fNBc&PySrH1d4^i9tY0}(W_knFuAdS zpa^|g_tGYCXpXZ*Po6p(j2cE(;IB<+3A@?a813G~m}UTu&c0shwLmFjdWd}@KoZ9v z$;{btR&lyMH~((S%tG-Cd&v+d@c4`AWy{=^_}&gddo1XZ_l)P-?h>plkJl&cy{U># z8n6Ot3--PGrdwNV$q&(Y;BcFmCAYZyw|mtA(~R#(X3#)8Uw3%i+zob} z%Is14Aqler*{cMA5>4ERSIMG1@nd+s;bGt`CIMmF z67$LI;vlwtWvuHqoR`Avq~`Qe*1-IVqjtmhi6_wMa?Dn#WmcJ)?5X+3ja z_qe`By##L7`Jn5e@IC>*DpQI4rM67jR)Im4ik896W=F_1F^po3hj-NVM`+m}oLQX; z>k4YGK71bCI|5-aj%>#$*-=bC^3Et#QTtZnz3(SXTMUJukvaN{moKMTb4&HjcZ<+# ziM*X3mz?POdCBG6McvloEY0aT{G~G2onKv4pB5GEd~C0zqNKE9il*LbL!)yKv0xkt zyt3ATh@OT?W&>ZCZh@KT&4yEzX^%x}u&XLY=J)r$H1gU1B32v-BU-m;NZ1x=lAy#z zQz&I*26A-pcF&gHTK6elBU`&T`Jxhw38T`v@OF|KbGtMgo;alfnY;WEJV}o;OoRVM z_Mh1Y1qDS+DHb8AlX4UU+tRVlMDrf;{bGZzxfm~wXQx!!8GSQOP5Qj>LaS5f14=%u ze&(WaoU^ttLPz!6^H!o$&#@1*^52g$R|+goHn3@ZH8yH5q!KzrPPoG*PJ&E%XhkoO z?jMxmc^FTMZWn(byy$CyS3JH3x}J_9KJp&CW-BRfl;z|c8!mcV;f507@^Tw2!q1?; z1v$Mt3v7w&ukK!@z=o`SV`nNwrZEe^zQ$iE?%_QhpCtrfFAvP6exNCB`q7^EHVRdM zrX|7QRph%c3-GOhcB=Tib}cCPI!m8iyU@UUz_2OSC;68EZY1v0@UFZ-Eq<1k_M}?g zR(oc3c#v~ELrOAuj`GQntr!%)En8Nn6fZh%w*RyHh16n^d*{;TFF`RT7M5o>C^#9i zm9<_L+8lqnm8RpB4|cbZxy_uJ#_M>iO4Egi%JE*pOeHN712>UE#fG|LThhnjA8HaM zD_-~iDYrKdS+#lH69PBjS|~CR)pbgs9JE7}e{|gVz76j{-V|qV4L5=kGH#hg0Tn3*H;7g zpZ2`K%K^cfWG14d;qF#jE#~e>%(?si(naf@KYpHPrO4n-*J?>L>*n8Ha zc?+fMT=iRZq2e?3Ug4Bzo=+n|pt zuG)?%^8%cgtP5Lvmg95FOdQDD9y!vzF(BN6$UWv)KwEwOIeNKe;v z+DP+a;2dpRT&UwOLA70y$ipi{Era>eMbxD0ro>bKv*Y!@fPg=~?YCrdJ#6mzs!$p1 z_+ou&({!yD{&Y{NMVNf&m!4SKFJrzw#a0n2GazuY1AqC`?tqzE6*_4(4Gj~gRDx%$ z0V=$hC;*qF85w$7%P+r)$vy~nyM$C^(E3XSULUvh5q7jz5RJ-C+JEy7H_vyYdU4I2 zHO%p@MQh0=_ICC!9u=>YxZ>&F7e|8lj>$#CNFS&-l8rOcT2MEtTgfeVrz>i}>ckWm z#wTU(wRf)_@WGhBZ(*_0eD>C5Ld?R_LhV7eHBR78jG> zlnxMS+svA&!Jkmw-eU`dm5gM$+IYl0oHj z!W6++mH_>6j11*MN!%hM73*k@#2jZq9RDQ@F40i~V8uaGf$zTO({BVn`-A6((GT!v zw(nmW9LV#Y0IZdi3(QuoKeHtn@;>8kMF{p1tc=EfjAH667%y9I041>&Az1-F?#_Va zx778?G1vE3#uv-avt9FJfbIyj&Oxse<^H;5!g`L=fi$G2-6 zc^`kN1C3(4owQ@;_3xkzA`y&>c4xc)b@itI2h$*(`wcm;#7xD2WoTzLY@oo3)Z?fL zo62F`*@{e`b6>wsk#w z^Ct#R<(m^BI7A@e6BgYF>|o3mGgwQV|BwmYUEj<&Qt64NuZ`xJVT@fSW0&cgi4(S0 zk)OdZMN^nL6wvg_UTry8J#APrRs#MFPb_?``fd5bW>Z7}>5e;H4#?Kwa#al%SUo>R zjyk55ZMwuHo3D?5w~7K?>BA=KiOynp2uj#aa6KF1ROa^{yO>8#Z^{#sK64rGBAhHS z`OvK}zqrVJi)|X9S{};M_%2ChFEX2@n=hlr$xiZf7G5~AZ)gst^zE}Rx6qU+rswa> z*mNb58eqkyu-o}L1tGjY2E3cv(prMe;4t)TSwM+2c@DeDi~d}=vHjvZDT$c`>b!;g zsΜrt~}y)>uIp5(!dYdGI9HOO3-8XsM8WI!Jgzh*!MtNyVsPS;}4ClVxU9HF}Qd zs*@7Zn7jMZN%caWWb#zt*mI%=D-hy2K9%1^D7FV}xOaG$HEXAQxI=RGQ&qk6nhS1` zfFYb;jio`sg`_{5UOX}x5}PJ5P?v``S9hkt2m0Y@>*|TOVqUIWSC-M$!FU(4vP*gb6eVDNYT-&2@c|`=jZ!zpnHs5+HUW zVsfUz4WFmJwPm3N$oXB=2*$y4KRvQ%36;3>U@C?);(g$0C&%AYw+88kc7YD*yk27r zl0Uuc>-PvUDW{pg(h|C_PuN|zIhYu?VC=>}nPn<+*73YDCesSAIx`Rh|mc! zU|93Ex5%K@R!hKQ)buV!5f&e2$T`R6VyqO%y_oKx&D#XV0BfGlz_oC!;Ai|T=4unR zqLAk`$h*8FsXDRFP=aH8W-x`UW;SUYzwH+{85gI_ zr#BXVxj|ee|!qIyt#)cagUI8t$1`x0M1h%#WECOdJB1ZrdZKpwBPF6L{S?!hPz09 z2y3ZI(N$bKuRHa{HK^sB?)+O@nAW~WdSB|^`t$PgSl?E-X*)@-af9k8dp6l7$=1{o z`eu!);kYh=3ae2=qEALSX8g8XZ2f?olcI0g`m!5Wx)$eHAv^%fNv$1caS@w=IFk zllj4E2MY$l4MJSp&t9AL+QM#YOU_0&WTgNK9qg!YC7;%p?rb+}I)f$oJ z7#SGyOl<5E6r_`G7KX9k{RtyqtFY9B17$A+x=U>}t^y7EBVTE{+Y07*Zi?+i02M%( zSgIx}XFs9nYoxJ2mmL2@_L+xTBu?(zJgYW8Qo8Ra7N9yPLvA$O5UD>g8+qb3wa zGLo&Y3F}x8!_UbKFM_`U!>&&?w6tqUp@?s==NBN#u`G|X&=5QiYwU;884Gx9x2RFS|nmsuOc*=Ti%Uf zuGPjuV@wDmCH~IzHJ7WR;L+!8JaSGaAznb34&E7GG>YS5zZpNY;HzGLvOfA?*66Ad zMf5b%uP1{LA75!ei0V=Z>NTYN)$%-X$EDWVNiP>;AVUEcw{8CBzi#B^(TYQ746kBQ zOT!|${4WhlgpevtHL_)qL2mn%dg($^B)1~@OyrY?6cvKt6p6i8qyo{D1Uu4^P8gE)Cp+N1YJkBVtgNfjyzT9*R$VV@g02g?>bRq zO0=coA1gAt)AN4NI+i#Uom4{ZTAmv;A?Kx16@{YgsFw?pqcdZm2#6>>OWDwKl`PPu z1gPbH@mI8Y=u-EZnw+#pIo0#cL&s`8!Y@4`pd?9I2x>Qt5gla@y`pCR&+mLH0`6g; zCz&mq-v7rtJjLQFuczSxGZFN1VQn7)S8cxixzlg~EP)FWZwEGZz?G*jW7OgyJN1-X z&3~oSuP`Ehe!Y02Cv89fH?kh}d)lip%_s!@GON|z;X#-m9Ja4j@PhmFsf9thNNhhp zIulMRhA+(oXZ$;qQw#1#BEVZAeoA#^uX7{&2B7fdy1#e3hawi?M&N)eCh>2+cSY&R z1D~7hX<J!MmB7))=R~{>_=z8y@wuywws!utbN6;8At)QzPy<{Ko2-OEVx%b zDfavZC>tV{8&4s?w8?~fDTH4!bG)AddJ}EUxXZ1mrq9fHbVvYZjXvLC6?^=j4+lmv zOXhq`@TmXz`EyV$ zeCeNR(A9wI(b3UKo*|Kg?##>7s5s8=xj)Fk+d+XYX~Tpb^_xpP2l(+O#xHDUNszGR ziaF^e8%!+Ohy%P#wE#6M9C#c2kC%Rw{PF;dQd|* z_T_a9;4p)RQ3CeyPaHqIt|)7$XUbKh!*}UR#e(ZU2A+8f`ERj*oHYi(S)-U@kH38P z4L?a+uyS4nZ_!*5+;F)_K*crKo?IC;V&#C%NIjLTlc|b)Ge9!YhV$5zxR4=j9UmgKMN(OdrU`-cLuBm!7%}InUt=1-$>vO zq(a(3&DFtn_7=wSi&+5Rb^?^pe}6?suK5Cm+Pin(08xB!T=D|$+%`;4SuPYU#p8$@ zcom__G`&ZkKYwl*vO8Hx$B5;Ej4CBIfB*h1{y?(IM}8J8ctD{8he*TFy33$8*bBQ0 zGw5-SVj2MxXaO)D8-}esSIaPfj>=y=-jw>&hS6$%+`s>WqDGO{N1u+Jz3aS= zl<4=I1djNC4-lp2reezSS|ngbYZKYLTPTa-OA$^3cJ=T-oJl;Ad6W47Agt7Jn{bfV;~gGgkS^yC9Y;B`p&;71a%~$ zUNFfV(eI;~*&7e2-Vci5$69qs08tSOI>3?O>9rde)I7~ng8dOoPQqy>j}w6WQS5n8 zrPDsxKv+P@uV{Z>YAu3K8+0IRza%|EPoy;d``tuahW@dJ9?EWOllNLakw+E7Pwr2L z?JbQf^4m^YhA;2C-L!hsO3fKA0X&99r;tLm7w;BRqTK8z#zsRPeP>WSAXJJ{ZvFT_ z_La-=q62FJqwV+0-=!A4(^z37I&j~>Gj7Mo5L!@1&2F+-{hRfzcJ1vEhQyZC1{QDwBpW9t;iC6}YJ9l!dvjYD_ngCcg;x~{ zyk?5Oau0qXtiogdR)CQFZsLt{+y2LUS5!IBnr_AgxD=Va&Jv);!nA=EhB{@vHH^}wT-=1u>JgIdbCha z?v8-<(q0gS@}~t{IFb`I2PAs}*AS9vJ;VXQ08b#3{2( z8pN$pOb>h4MZNy&Pd761a;^lVzop2`l0R>X2IHIEtLqcO?bQnFa~`{i?y+!fw>uZiY}gKZ-8Ms2JM;eWsUFKE<@1(tMyzo^)%e zwZOo_*7gdIdZ}R?a+hmSj9|(8_z@e6}ZZys=4epjPz4aM>~j$Hu5CgskId z7sPFJ221S~Fp`W#AM~R(z)&iq{B^E(4#EqRFkG!cc%eaU%+kQ_1-sF2m*uTt8+&i! zY*>DJY;(vX1~YGF&#AD{geu$5kFp3(yyutHSoL!vCbde^j(JL=OnYOx9peTUK?SA* zMQs~vPnG_V>0Mpwq?d`94?7`H`UU|+Tq8lAifhl30)x7S}*GmlCytr z=nFfl_t1)yY|7l{G>kTg%9@ZH3Ao0MR^vumupA5T%k+5#=~qwQ)1Jf@>#}nDey{34JdOYi5WhqaNTp-+wvH!?4ndn4rk>l`Cq=nzp#5ZR9lf_aKAt%bRd$$nW?J$g94GHEDi7U_xut(W&sPn9|R9{X552Dr}DAj?L4Rqp);CpOH){ zmym^8?islmTO(DzIogy^Dpp`(@Fi&rB40!+d)aj;F;)`YX`hVkM%iw-d@0l; z`jKxNqo|{$Z?4p8$o=5+sJBCb;@fN2s$y;5;Z+O2TVGb9vyYY+UNyFMXXfJ@GAwn; z9dP8V?1bs^#dI&S)iweC?29S=~ph08^`e|Y9&Ci9V3m&x>NrFM}J5l98F&81v6i|QBC{;Rv7 zQj)Mw(oOO4LpW88MAyYr_xJ*gi^Fb~1mYZon0u?Bz(E2R{6wNZL@qquFZBhtg#rZ)LNUr<+JD_iXP>~nh9nGS_Z+`~LM{1VpG z6xR96L#4Z

@2^SlS5@BU!O_r87d;f&rSRs3>V-mNv;YQzw@60SKRV0B;`A%VALC z@)^h&PhuTw#oU+q#NhJas(3m{H)}!iA=+}JS^P(Da+KJhMVksJQZ6|yD$0m(dN?86 zbUQuCB+5Kor_S`FC4UNkp`MUi>zniK>=Gb7nDTV$MWBd5txL=Y zTAxYZ*Qd7g6#Vo`A*AW`^7hov&lAl90SXPT(g>oo!FIQ;;3(DCI>x((wuxJ9(O@;}K?(B(}=)3cyFBLGaXpqNvdaMojO5 zyX_=Z6|=)`<2zcBkCORxRfqJe!mB%3$tR(qvB&fzAw46lhdb2o#~4(df1ve^I7gm# zf`4!O2o!_#5<*Y8#S$;^L3HZe?R3mC20Nk7<%5!5gQ7}u?fk&}t2b{6ZV!A-4X7>~ zUufdHo%4A6EwkBIe}j1p%+EkQ+f8VDOfi#7&y52uXL_HTmLR0RU9|>3 z&K&!bxK>6~naeTXoT%a^KE7M_~kc()i8ja@`dTsR6#oCP$#en)_ zH&x1g$VkX7A*8)CEdaWHuxY`|D!0zZW$3x>AtJBH+)i*j^U!L#Jh%HT8S-}P>JSaW zNne1wx7|+f)ym)7SLc-a{l08f+I~sR?$X4#*_5Tx8@RY7bL>EjrW_Uroo%-+)q)%W zWnvp~0|Q;i`RTD&%|vUp^oO-lBN1kmn88}N+J+j~vg?~|_0tz4wZ#M&1IBa&H#%k) z7f(bF-ejV=^Wj#l&*w&gb=NO=lYnp;;ov8FI*C_VIcfee`va}#L)q@Z^Al9^%rahT z{>A@qaLy8N%)xa16@5Ld$I$+pcxqcV1hj7o?Vv{g{}*^jyGeq ztL4K_FAQbp2$CVmc&@)IF~h+-EwNk@rZsX=i-z{b}M`?<79s& z-pgpJVVI8XUyTqL@P)&U8^+jy$&&Rj!%bPC6LFWNXQ!}N89Kg?C7>(GtXDTQI1Qe8 zPH7wcg$Qa@#i7*9@}gTT=;j|6jue)b@ph(W?q+miLr)hEq1b-jk zNn=U*@PzB?t2Kg0M!%NlGnLHQ(`wp})>y)9TT4I;ThK^68rzrmJiBsk>xme%yEpSB zJ92;7f`0wc1_0#U2IG&n*qxyLo{-Wu&}$l)c*>HSQj<~w?;|m#Scy@yArp#jC*-t9 zea2hLS|Qh!XyAP`T5|KFXUc?$o*IQpbMSm62eGCz&Qa~Df|+!=488m^9!lD>wSe2Vo)!{JuI~-cF*+a)N-T=7eCK9YcuCHJhF#n{VNmQ&o2^bybkx*M|rl(?Z*d} zJT1}#*(9FWduD-0_Y}~W0w`#t&tEB8OPkJ<~{hEb13ESuU34xHbuHG ze1J!w|G@lQZnXgG+BMm0O6$C32a&qv(1fZs$Ih&Mx=W#%gg}~_eW#e`wiy`=z zGh+=)(VN??Qi`5KGd_p%aXL4TRe2SYF1NK=eY$jb3SXg?y0~{%HT&6?@ABzu>0C|m z-x}wLo5|5HNwrWZ^5<;vlTLHo8X~vxW0^5fN$1A09<8bLKHiw}>UuE%%kc?Aqoqdl zZ!^j{hIpJoWv{ADqI}%gn=+etWE`p)e>J?FW^nhmNYDv5i-4KswQzsz9CpO=Vhu+! zv%Bwpb+kP~_pEzHYx_%Z>tnOQoJ~`w*A%d!)H2&M^K$)%2$pG%MiOKD8YsS@T46z9 zXM&BZwf$jw?3m36_o#Z2x6tX@3JO^vvp!K~5gyIyI#+M&#jODCn z15!DesY`EHobk011m zYfc$Y469dmgqecN*~h*6#4&hI+Uu3sI#%6>i3!-#z_fGr*JXkPf2p|$9Rt|YL{

inuBDB!qO0r-$wehAE=5h6++o6?+6pUhI{oAWp^;V^GvTaB&Z* zLM8MN56BtSz1nXGMYA>*3`9i6IC5enbG;ru+x8ka{V8f0Fnf07e|UCR7Ozl}sZ2l4 z=*9OZ?+qf^V(I^A3RT zombkql$I`qZXD?i)Ep+zIpe`SwawyqE;K60Ec`mbBgZ<$$+99ijiw6&KP6*>u*>_A z$>UwKrhs=lhg~`csbvEgn2L(sE5n(|xYw;Gb3PMPe)L%;cb{hUDI@%bE)1SJg+WcH z+IjqTRjBAFrAWjAW56Wd?=NbhvE*D|m5(*q|X zK=KUo%YKac9Sg&r7$^MuePCic!637{81X?@!%ZR8!lKV!QU7 zuq!bwqNnAJDrG}C4ZqD#lrz*HUPz zj{PmchZf1EgKx=QSH4#mK2W3vJ*CLmLwi}k zi=xTpsI}>TsO#QZyyUMjNX;6RiQWeCg?}heRdGuAk>UspjgI3Eeg3rBG%JinXDHX^Gzt>ja9-Kl z-~Cf4wk;BcIBYiZr@!jDY$>55Ipu;)>KLjEhh{QQlDc$SHxK5unmsNLbQ(4y->r#( zUK)htoxkd!>l4ejfdE(|xAp{q;zYjBPAIIj=<5rgjeJo8>w(6o+8URV@aN{Ua)A&Z zk!AlM#=j*m`0bzx+gR+o0teZGFh9PBa)58Zp=&!@-J2v5yR=razbY`6{1ywFxmIo+ zQ31-ZHC=J^VteXk1!LEu9tb=C?HWk)*cEhLRX68qILk}qq19m1s?$u~{9n|)WmJ^y z9ycmONQj82h@>=1NJyt59RecK(%qdmh>AtW&>)RSmo!K_bT>$M_YmhAaPN1Y^Zl%K z&KK76$S`xymH+s~r1lTh9Q~nMCye1ZZo)OtJow^ZZEkh6l|s1F(kRXSWCZ~KLl5Ys zpcRm`>9-e?^16OHHGP-&k6PC;I+l*Y0zn;(8po8#G6-MWA@F%=Dlf0M!7T|8Qn z=5bp%l;+l!w(qDh$rJo*8nt>U@oTfK=PDV_IlKl;KT_2Lpa;kz-bfrxP?&G(YZr}q z$jC>>H!A={4T|703eK|-;5!UEJRR1g474LQv2u}1?en6OYo>L9&+Sc2Sp9Pj!cf+% zBRoo(rK>1>VgL0!VQ{n3UP3p7x;(;;0(EoxNa7miy>6lzdy#S*)ne77DI@#7n!I{F z*=q<6bC6A=c=2UUE(omf1XX`-#-k1 z%kZ0-l3Rsq9V`)O)PO7A;pNM>-)6&h($)LuLpzuyo$JL50QgvHwAh*s7@-xYE(zl| ze$jTU#kw%$TF#L4I)iZ1lLEcYJG}GI&567(CUh1;{3%1>I-Y-xbwf|C7MPTSFV!ye zVi1U&8?6rJ*stc4(N_wAQhv!|WS(tyaVAmtnmaF{Z!Ded!J0Y_L9L|-<$ z!cU*7s3jE>;C?M#ZQGomb)OYH+xFaf*7BhD^gy|-oOzLIS_Kw3-_?~U!d5}nVjngl zDZ4gbOUC%%ernOW6G;y0W_vm$vIx;KAcImmm%2WaPuXG2ii?X!(e($tFe(VtfoBf^ zVB45>Ow&<*bg*ibtDTzv=zNz`1}pLFpQcLimU070edI=+RI zz>W97R#4hmg^c6|Iv#Pznv=OS0IN3zy-hOouupcuURs<25Y^%L1Q5S($UC15yd{@* zc>7e~;!U#PUCF>ds+>49>~yler^?HpTjs>0dq4BV83?`vSKF%!CeVT_vna}|5Ppsr zFxnSs)~<9JE1A$HpKTj^nzR_!C0xc?ev?e_7Q;0ulQ+v6`xUQ-r#MYUt|giET@-5L zE_XkCq1|VR#lp((J3#lLnkfl+_3GVpjrb@^BWt7iXOvDFy! z$i6K#j7L_q$aIC)7qDMz91$JnMEfVXbwKZOJ~781GTbR7=WtmUF27F^!uYL@x}5Hp zj`}Vm&5K6NYqJ=3Dh*o4IFR|H5MVM}uh^eyy_QOp5qCE}O?SC;%&?(3pwM$3 zSG{^cBgvt1 z>BFj_S-fkbo?cbymgR-p#<=#*6XDhl1Bc;*h~vv+4m-6(RA5&K#gr9qk*$bQr3lp| zn`O~%|AP4;_GwrJy~_98-=bnvLU>C%l|Xhe(tKezhbH#5`v#lWu8waQy;w`<=P;wi zxh(tbH#3E6CY^A#ckQ@bM*NtvXhq6_5LOk7dSRmnp=Z^+xA5e}tJU+AAVJHb_9c7u zFnUF2w~4=$-n8+RlPoEYX#bbzqcd*`KwpyBmsc=0pdHLlf2mrTAjNSAHY3; zfl2)6l~jy?Iu;k7ll@Jw4}vK$ODTCDHqbM}7i`X`6}|W1puqTE>oKNd5hN`~I6zYlj2HYImpg zg)EhfwtBzo>#K8EA@nYuk}d9zI}wpxlHPi7wjvw-Gft}$pkel1a&DU;@m@=68qAp9 zY=|{}J%mR1_?4qzgZfCh1za0f`_KtGF*ET`HPy67CM17_>^ZJBF9lUM(84735d?kG zks2?LLXA|Cmo-N-ct|fbTU*=0m1)|`y2>H0))QZ0Qptcw>3VHLW&h5??bse1tc#=T z7*flnIrE)tB4O5F7o{gAt1Y*JJTxV&%pQX7`J*h0kI^2L69##Mm0j1Jvwi|}MP~Nq z81#R*F9>`Ys))$j)70d;5zwQEb@mve#Rfu3L{?u$%8!20^ejjrj9ujPt;(B~z#NX?Pbj!R3WhErUM-R*{u2fpEU9)}C zzk5&nUSBJ`omX>W9$IM!n(%HbSs81@%0M64_?|{6CLa*z>V+yrm$L9UPB!s-=lw)d zi`>2?6o@@j)csU8hDLIh=F}m2y!IiI!)DlPr}GRyRpxEIYnL7a5F=!peuHJ%Gh;y% zv=Yl6a3mwdS*e4lI^JF1&AI#NSG%z#f$g@UOpA+-_cA8w&uSp6;I^}D0+PE2`F`zwTBZ{b#%HL+VRb4N!eIY@HiahjJ4$2q7~MrzS_@Dxo@UdC{S6H zTD-YoiRW|$YYiTS#VBp9mra${nmCQm6@Gm?el)sYb*$|Tj6(!AlzTllUtGrJQl!2J zV%FA9X_dLnmV{7U(x>nUKmWG2oUz-Ma(|)Gr)l**1gT?%n7w;p1Zj=&9gSVg)pF7z zumr=PVSJ#I}^09D#|OUjCYy_1FoZadp8WHv$z<$&G3 zgW`{<@1iM=A%}?+rF}l%{HYIf=VCP8tnpH^A{VsvK_rn1Nfll5GLOXVtEXmp2$7GD znW$ZGSq%1L?A-twRwik7MGFV{IJ4fLiyGfZ?22R#=4kw3n{7q_>cF}kx!fNPwHHAH zjw6V3bykp0S#h$N`Gg)=l&ODNA1~kC*;N!7rfaG>+Ij3&=0d4C09Y_|x-}Lfep&x$IT?_fno_y5PgeYg* z8(?2go56^Gvm(}>dKi6CpRrh8cP;fz0u3rk4OM zdtY)ej~Kf4GGL`_Y#X=bePKnL*7@VKS%C^q^{GRoR4p3%x~t6B*H)=->)!#&r-s*+cZtHqnB+wDkV>7bTsl7ETs#5!e zYWMPexhvn!L^j)mV)8V_!a<~d?ARy?^%k{gI`iRnJlWl>6#&&{uE(AKSSVH}jjt>< zlG#+VdaZU4iXt*$%>nBV*7%oF(YXVsDan&agjOuf*7Vz0T0Xo>!JN;ObtqD>^qdC) zb?Vgh&Dggo79<`s0^II(ihqB9NLDr%5Rg={hPXU`jl0;CWjZYlU z_=zi1SGQR4ABwU{JIS;sc?Wc3K6xuF^<@MB2Rd-!By?$BwIu%)S5TIvl8t0W=@+6Do=-u4uD9Kjr^u`? z-IXmbEJwg;g%$`hM*y4%0$^a$M15h~2@O}m42L*z4QE|cHq(dv~R7P*#yzMp&m^1$xPK+>Kh z!QOL?$_96`TQq#aSUvyZ9NEPz7NIB;5c)gq-mu%&`~;-Ehol8)He~fz_^IaAG>p{%KEC(L1vPlru@zsEtr_>4L>&AoJce!fha|D}H7a7m(J zR(asn*7a%~oA^0Z1O^b7WB~CeH`>;~+8eJ&+K~t?FaLnf!;I}rz^W}2qEoJy(_qr#-JUvQ=odc72=v*MAV>|gsZ#4HZox77^SSID z*JPILTRIn#pDG!Ok{vhja5jRQh02|e!OD^@`JpP5%+mSb@8%|3n!LHZ*FRH`t-EMv zDegctKUwyj7icyCBc1z5+d=5eK)eWZng5`MjCQsCqZKy5pT@%Qv+uyQj7M@giGRn# zFbwzL#se}k`RX&-dTBGEOf=H(;-3`|`Z}@(hi;Rn0j8T%XsB?g#vW&^@v~k@jc{;+ zvW&Jry~-+W{e6tDX;{8~aG%dUb#HS@mtG;xloAx}zkL8*iqfj>W>WS-Vt#>0tIPNv z+PK@Q&vAUmYFPAUr|weW%(D`6sgX|dG{>>Q+iydqUU~w!Gu2ehh1npIg!BAf00pyt zO=cfm?!Q6-$h{w<$+HQWc2g~n6lKW8a?2Zc#xV(W$ZdbEkb6Ip!PzxhVqwzvdX@O) z(>7oL`)HOvxlqcxV@-w*<=MY z=TZY!AiW8YNuey7+&z|aIT|IQ+*YHvj%Ec!?(N+{!w`I#B$pA)izZqQlO2;25u+bd z?3`&5%pc%l$^kfSna6IFRU3e-HTPbcG|OlwJnNtwGLXtwWAQL1?GU-jcc_BtVZaA1 z6i}OngnLubw7~n`+Ir^uwkQ>jbuHpi90KbMBepJ4A2SMn;X_#{{r_0e*s5SS9<#>3 zNxR}t`7GjuTlQ#i%(t?71LLE&NN44AmHazD7s|6oT@#XQNa$;{62Te-HE@aPh|7Or_HNZ%|pvt4FGJ)pu1$!$P8opgMWt)+oBK z#pKB9IVR0!EVPL|JbSb}low34O`^-w$u2fOLynNoG5j2iPhO&0s7!Bs#7s9Uz82s6 z4;B!0^;XIIOjFua8Wa=%@4sH&$^e`moHvuhGr5K9>k0<)%XNS4jk~6U#aTZ!v8sEk zBa}(u5Ak3O*t0N@!$B2SzGONPh4Z$}w` z0^u{_ZaIOPr{@`i&-vvixuWn~I$lUq!LXiIMko)@@R#|QJeqERwcZl;&Ch?beRv25 zgf@5GSu=K+^c`#h0yxTd3Sg&0UFrR4ro8|!Gvcl7A!x6zK@-y3K!Vgji7|g;nn!4HVM?TOS)p zzx(;|Tyl=E;ouo2ooY?tb|UDHu-H*+qaN;q2YZZLB@5aEj5`(H) z6uoSk4o1wT6Ap+~uF@7}ml`{loigwP=x~VxD?MBcR8s0gfD7!bbpcl1Gk?+XO4IOa zZEg~^CJ0sDdGx9k`9R_8hig>c*x-74jEMsF0&4#LpVB_ltAO%y{dy`<@#)rhVq80( z3CKW6iTM!ndY}G!|KWok0O9taOC=Ec8ESr}K{0b6@gHZUJVBNS6&Y zi#Qz32Kb4ofgvjo)f4zfF987eVB&Gw7?dRvoJtsm3!lw|G2pU+k!;1YzAb;{`xF5N zE7x#1@E@%N4CEXp&u997zE3h>ywo@>uV^KBs2O_~D^B!p#%xh5<1tC;KUxVUYR2m2 zlRsb0*e}$|h`2F!`C`0V|LlP1d&DniObfL#WInE6vBZ2)d&4%&l=||~p0%opYMF7`LG#4BcR2oRl11@&vb+n*+!_^*TYojHIlrgEn#< zEjNAyx}*LW&K94A8)-W?}XGv5b=^!6g}Gxsh_vYcmi9WX%3Elu2R zXlR(wf;a~rPP?I&L$SyvxczslntP}*#+h#c$sA}>F^>1|LQEFxQ}B>7_(r*4vaE@_ zMOc6T{ynb4c9(kkGt8tb;qDo_-#Z^RY!q}2fbQ#vG4?LjPcB?hOq2gHRjWJ1IBK8u zI2?z2w3|@q)*x$!4iT(ywy~}wz`otD?(73Cf^Hw|v)I>(OxUR|XlEA{=T)m0i%gS% z0Tz5X!Kv{LwJotl!@&?L-Km0q&jJLX|5B^|v$w!pFn)PQd^OrAV%nrjmnr+@Xk#mZ zd3&L>1-snPxSK>^+K?M0EGT*lBNi1{0ZEK-c1$$p+g_*%o)SuF+QxqG@841c*ADv| zeFx&vq}n^O!@(zL5UQ3CBx5DrlUMGj~Z}keNru18N zzob`)StAcf|0lP4l~G>ZEu#E)Ob62Axy&Y?d0!alSFBDP=`u*IyW^*-3{}#C{Wq~6 zbQ4S}3M})V+X&k=PgG*lil621o-e@Ev^ucW+!+{m@i+*_!e5cBc4_$vEZF{lrn{vo z;HQQwkUt++VsZLEfBx^ke28(XhLB$BCB`L)dr0K5ETFNbSw>SWch^*daCLINU`@0x zx~}RNZ*FHELKJ!-YYSbbgqeu$%&k2sy(&fg_mQYTf()pB{NwuSc1xpZ7!OpL9)j|VR~B;bE*c-u zf&IpgZ9*#mxvYmCtkykRAW{Jj4 zHl0U^c9&&3%?TzW0jF^4{namt$HH;%M4y2fq@!&-zk_2rS=H28)yFpXk${|9dt-y1 z7?RuS0)1%`E!hxehO4*>xc|j+TZN*bW3>Vv$UF!R?f4-COPN%e^~4;gPDTFya2zUd z^A;%>F9wWA8v#Qn>!DV2$CNoG9qvN-w7b!Iis5&yz~`&!9brR8AEzrT zoI`dOyJX9d6i=exyC5!rpBEJA5)&QaSsq~xQ7oZ6NKq?~mzdXeE9nLq?@M~QC@RoH z{pt{`P_;5#kW#hVDWF^t2l*60y}V75RRsbow*;JLB*?M>!jyb?QSr!TG%LpmyY`~T^2~NPfvHd zZiAqtzP=s>&6KV6K3l7ymya11`$0$}F+5^MBN=+P8eSkH|eUPKtQ<-~E3STDSGLVf~PsKhPdP z(99;Q%BxOy5WTe!*rD@izplHPNJxbq+%>+^zqtf>twy7|LolDw63D`W zG^q=Zm?iQ9{Xi+OZH;(*9-UFEa3oJnO_OT8|A4-tDlW(1tF&0TM;Ar8EhrNH6q2-a z{<#s$>5@PuqVsALEmrw~5E}4sQWpVSd78D#9eet$CRv`TO_p93Xi* z29q~`yqE|NAmzdJ6`l0DFavhIwAxATBfksJrlm&;H)~xXMV+GEs3n8$E^zV>+;;w) zFQFB#W1>P} zA754N4-WfFRu2_?{U6o}(rBb&f7K|2gs7)tZ}WI%z$S=Cpip4NmdkWM<|zkoWa5Kt zr<0cMOU}!bMSH)Be2|XMC!d%M7ok@O1+0nG7@WGA9Q`H~-RAsK6Y!5dUftIB50f55 z&o-<5us=D%K7IN^tu4;zd_T>17LX z+BSH)ig+rKWzmO=F&%5s4j|Kmm^I66!d@|{NCR&-%3+F~05eYGVUFAvc*F&P56c8< zbt)XA$@rXK?JTrCHu_fP@U@*x+HleA*(C9zH(!EeIuz)zMRa*0`)1zmw%4^9Ee-*- zMp=Lve6=Zlr5elkm*4BS&GokK+K8d>6tJzO>o1SK4&7Y9zYO*LZ%f6C zBpNcSNd)F;Q!dzV4W^ZjYANX9L4|Sw$Wtka^2vTx zrH<_Xm`ySWT2m7cH3r!zn++9vWtvg9itO!%0S;Dc6)1g1XI$V-sPjO>e;|14n&VRU zL$}?WgqE;mAml$^87F6`k#&b&FoTxA&R6_cDYuqinPBX79d=GC;C^rahAU0*~}m1z5sG zb6drrT)5`DdovW-P)_84KK2?6D0PZNz-<=1!Ach!cuPLYl4Oh9*H{(rldv#-9atq0@+@2q01WkSs@#?nh1*H0@Nd3Grt#$w^)lkm$a$9zx>AjNEboL6H^ zymwkQB@_K*n_-v41T6BQA&l;2hTU~<$EXD)Z;!Y=SVSh*Yd_R9L=x|KR$amC>-u2T?)!!HB4EhN zc3FVMwWAwON6c`MiK5xy&uHz`r$8fxR4`RN1~R+6auV*gZuf^J2gynX4j1ZHW+=dS zJq{{rK1ny*InJ9SKV69Fw<%?(vk<0>iP=e!{T=NO06MkhT4Uk4I0AMGx%1&f?Vky~F2PAPL~hw9vGcCBA-1sPXL2iH|YH5HH8e#$}5 z0VAU{`)E&t@62H(C@Gx;;(9B|5a;+p%PXv&(I!FAzNug9bO-~ZBc4asaejEALvtJGJfy@!qN&BL$2Y;gXOyD!G!2)Hn(%xnjGNFzBm3Se4j%fev-sn1@ zsQE#?>GCvyQ5lM|U!zI}Cv+<`$E33ER#CH^4ho*M(lU-2g*}%`QNO&dHH60Kqx!=H zkie<`vi+V4&fy$F)y$V-3tfq9cOSnFClEP(iJ~p_9GaqH5jLE;&N!J#Q;pXZLfR68 z8@!J=<;?QkNDtcPfjJ9DT&;aWBqq{m+1ZWR%ihcs=KJ7vE5tI==O14(Fpo3hBg%Y> z*GxH6K%jwBa$graVCY&Z+OFsnx@dJEoT4MjfLiJIFaEXZEgxb%Edb zp(JMm_ebvDXUx&DW{Po=;v{C}8u^0W;SodUHoQf+({o+#I*a5U8Rgj~5$Wly$vp$r z+*duF(n~TIwGg*uuqwUO@=}2TP;JVY%U05j+F74p8-6NVfOReBd{>dr>!i4&@&1j) zb3FXu-f2oJGe^f^SuzF#zHo1W){XFOVAe9Ayr3n?2R*GGh{(Vjp?S%En;|&ejPs=m~ z(mz77^}I-Lgg2j(%kHwE9a1xTBHs77i;DJ1TiAZ%#*eYH-d`CkKogCLkYuQKZ1RR& z*ZnCOq_B#nh!Y9Q=*qb68pZM2{T67q-aOS{fFsSO<%<>*%Ep}b)sdxE?|_}+#WjJy zuaaHuNQ5mvr7FT%hn?l8CJOpi3k?<(jyI5$sRsTB^`!!}M|Qu(kM-w1CE+}6DNR@8 z35m=Z9lkS8Q%h#VdCXh7tSFC9asL;jxf4~F0u*Pshku9)l`5={_Lh2G=d%SZ>b+gI z-p-$*ssBbT7IW__;D8-BMwZ2KnT3u4)H%Ba-&Y_=DGRjz)*qD^9jg5jDBVR}MyOJ8 zY?h}l^TD?FSDC_YLuB;1Nz%_r_czv4<*T88>)O8VH0=TEW-nxj-upI*-{_RisP{c< zkRCd$K8`L$?5w0O)0H`AE18ZSz080OEc{X}_Lk2Swryy^ZEC zvA`6V+@7gof^yRu7rWwFym4;xPDZNft}{+dF0snWW%W&YCo<<~Rx|U-spofVhYp7w4k>KLZqL%mhGUPuZepF2VTx&b(=s^o!DE+ROkfT&?ij2hri+baZ1cMgxQ9I5J6ZId!;kEvrrki~rZSpSH_x+*m z1P0_HFN4Tc9eXRhPFvg5s_@v9RLH&f7uX8FY9McTN;KryGjN^K^R1r`+1SygPRXsO zu;njz?|OxMm1U6Wl>Wv*mxue|5hJWrtXfnn-Dgry1r7v|-G%z)u^3T4Nm!wc7+5`3 zy3@5dI7e`g~eRD;O${ixr>@UW!UV>P_lEN?T82HLX|G;a!Y$^(J zP%V1gHI9F7=Oo;M+}uAG1=1Kce!*A-WK>``I9P@rr;Cq#3?P+H|BkT(5O#vMPE!Q# zvAve7s2%B`*zMpkm``onnf)>FW4|9A5G-uWR0dNOay*DWK(Ti}K8($+>kA(2)M$X&d%fgN?km0{EFd}Z55061C2U}O_|BD^e-g$ z$1{6hW)3lN9-A|@Ufyw{d~{fllqfMhNZ?O>{aF*DkNUcHLfhPnAYf%WCZK&IHQJcW zYA}wEyGZ`Fiu-Aiu-7}x3*LhsDiTTco%;0tA+YnvV=0bC5aCZ<0IP+3Z(q}~#?+J9$tFh?dWzG(K&iLnt+@qn!{ z%k6Su_=u)rg7le&RPG+|mXRI1y+X+M-B^9FcNN8F<6Gb)x|A-Za>tm7>Fpb_cok+& z^HFM71TLGVC=&T?{?B`l?IKXcIPvzI8)~s=g{lVEt+>C(8na_}cwn|(o2x!N2nk#Z z0>YX5Pv5q<-Ikx~k8n~16rMhL^&k=Bj>t&1>igEZiD0dxhZ+5)xYK!aR=$~nC}Zku^ae8 z46)G{$*+&oEIcn#c))+1dYOIxPo$Gmrk8G?&3TC)N@kzUqYx6nl0^CQuaM!k8ZWXQ>CWaE@bhTCB+cMJ2qO1ITW z^=pyM?QP)~HVq)!i=p}4F4%z{Z|~lqa^}EKr}*#8`BVpr23guIV`Xvv*S&G_CQ)vlOFhe>l71t;ef zhY8BZwibvCwe}2H%zaVEnEf&F6i+em=NltRyQ$r<8)>pKAbI#q=(Pf znVg#9jsN0|p!8j)+}mH^TDP3@t4BW7d>tz-#gMD@^o+V!)uF#?2#59THlymF@LXs7 zeJ}qm76-x0m4D55m^Hu2^LuJ7PonG0XDR%&k2t)8*OC%5I>J=dw6D)dtWcAE^I^a+ z-rR3g=Y_7rdgyJBN9EP4mXo{$)pC;dxaXTpfio(ac4jz&In}H;HAL`mt%xA}{*(;| zrUfFF%_geBo|Uw;tNr2oQddTu`wnRCJ8~qPGD*?bc^wXZA}n6)k@2-N=e|UflxvB{t8Ae;NGoC+9?ae$r|V^MTC0 zg=A*l@0M9CnaoT?p;TeysvZ|qDSnkdJ9$ixEroE57jhZIIBEBMEB+ueIgB@EU4nD{ zeVmm0^fiJSyOn-3w-gTo4=Z_rGke7KB0SSCYiG#KoEljhdc<#w<-Rl^vF~vpv4)6! zOQey`rD3|h6+*+|b#g=C*m-A;3F72)mDrdpFUwPixe9!5p>i;CPoO5)GyP^!`3@lo zuohNd*DK47``Y@K?8-g;V_lbQsq`3s6Rqs1q4in^E4Fx|Xgv%QG@5BBecdjZQF5ShPt?4L2;H2*o+!H)Jrp}75{wE2*5WO zt;R~q#6Z(7loR{1G z^|~seLceeGI^KzVy3EUmS!`WLaQRBDs|~sD+L=y* zK3A~Ic+35#xbamz>0xS=o=3H|$aJKDBJBqcQCjD2=^qIe;;Hmf?V>ds!-?U z>wgs1b{1C101LVEiBhB{Rq_ zcv8%?(*#d3{LG}8JKr2gCS*aQX7^a4Ap@j4L)>!ZT9XIT5I(8x6^?X_ZnT9IF_JtL(0J=!y|)Nl+*vFe~2+W=Zb~Y1}*i zus8PD!fSWrK+R z_NSGHYa#29fV0$_k|FJcxraPANQIvb=IFAaJkI_;_m=|p@6Uz&YVsb#o}&BG++yq} z->hAZBD;|nuKs4xw#2HnTaUwNg^To4f5CH)EF1c14wFBIG;8E7o`ZQn&s#5fmhNBV z2LhZEy4drZ!frdMXXIqj%%TUsd50PCoNsFOM zv`M>YAV-NTN~cwW59x;8V-uu&q4uSwZ{bN=$MwBc3*x(&SR0Xb6TXFJyZ6GHOmelU zp7ys#06?&8!cQfkHyOpL>IKO!jEb1LPFg67{9rx+$6$1rt&|f(D|@ft;=C=Q8p^m(sLU7}H>YWjFEnbhwp-4P;PPm3!QhBx_89}R2Jvjtpt$({x;M}} z14Y~~sX>WUzZa)PFV||+!{D3~qR=eM=%^kN_rHXo%PRQ0RhkU8OUxP^n_dMs?ug#& zd!H0x8@S#n0_X-*L6C^j#73S`T{8bQQ{Y<1U0r&#&RxQBtu z)%&exD-W6O6Tmd%oJ*Ig9+WzrqE{?k>{d3?=C7s5+O>OfRlP0{OL|kFUkEg1k(nTj zd|z1wJYqf8@Z`-A2=W#2BSErHqOWks_&ndR#>m}3IrawqkhRsp_@5(MTn zH>RU(nAFM(4b9Kvm{>GKPjBD4aYygv&2M*MF-(qXZJ72<`h4w-^Qbfb{MYt1O#(GPgU>v|O{ovM8}yboXiEClN3lhiK(Ae{7cw*fc+ zh@<-yuPruyJ}jJdGMiGyCH}L*BKWQ0D+cT=H-;^0R!aTc%e_ZCfc!b1+xeH%0^_pw zBhHtll!CLbGtOpO!pxhBWE*hZ=C-Lv=)_KcS(CRYU^hzmo-WuRYk90fYq_m&6d@mM zeJ8Qpll2*fhJnx)D+o%$HlZV>o6$-A-5Q`0n>OX+Yd1<@jd&Z&mgV8Mpqt!rBh-q8Cge=Ad_ldz`{NaAcHyL!j z!CXy~JngbTkL)!kYU$X)#Hpjhse|&2i$#D~>fI0ES!Y|ky+G{HRaQ~y^qD(HClbP- zH}@LK6^-UL_=qsTx=Ep5wu~_V(#48#HfmDk=;GNx=Na)OrC1*8$?y`3&2oW*d4SbM z&02xFsGm2ei`t;Oa!0dGQTH|nkec*qs6DNX1+84N5S1&ut}0N1o(heoUs{aNb4Zm4 zN;I0zvzWj=XNurS@!W%yjnui1FiA$YrL&Z%uh)y{?6djRzo+kBnUB0J;_Zo&c#(@0 z7D9#4e*QNi=;dSEer+~ajxQ=%ce}+9YnFye*PbsFlDce+7mO8};0e7MJY};5x|+48S5=OqQc+ZA3c#)l z^%}5%xS1~X`vUWUN5BsK2dD$fulza|dikEUQS5R6>M=H=HvI^qYNPMDct7{fdZYTf z_98^HUc?OdUT|TxyHwHLuc?E-*h3#Dq1B7j8&+>(lK50@CI}Z2nytHPpQSUUSwKRn zeL3EyUTz{HBIS0oA5BT}mFZ+FoW>j0_G%SRT07$_EoEvBr`G8fyL4^cTmfZ?ZvQMP z7KN#jWzh+?=@6f6N%VZQ*qIPUoB(xVVJ_ovksncUj_~XTsULXS9C{)GC+6E|@*kRo z(mD^s=6)pQ@vaJIR)6*-ijBPlYK$puF#a%^;e{L%wunp_E3-y`ONY*GMm&}3n-7ow zWkay>2AX^d5?HBA0YF0<0BZw4OH9&K*T$YLNZfmKG zKn0SzPwo1jQ+(vy7aW*<#(ZnkGniaDWye9-Q*C>fn|hQOP?e0RtdG#psroUhUNzlt z(FU&H7YO^+(+{QS*9l_kl1Q9uM0Is}93HS21UwmW;*MgLI2o?J@ToF)59`9wG)v|DpoKp@DJ^T>pndRbT$hKIJ6rmx=Jxz!wKc&H ziMp^@9DZm{Ok>3YA#yS7O~$PrTr!YNe}RE<M3Wq!?y(T=> z))i#+&o>YQ`89Lay;91H9kZPe*JfY9AOMQ!>G14--gAw@3Z%Xv#lWk2fc)&;=5|YV z>ocMPUYAKv(BSBj%A<0q$&b9~mgchpP_9T5Iib;fjYwv7!}@WL+3qv`>d_tr>kjTP zEnq(hTIK%Ifk4&X!pnRsfLr_S(O|5NlpB!{<=vb^XBX2AnM!(8d>Px4{)2RL!pLsfcc9@(j5cjXgWJ>4?+M(@>ejl7w)dL

i-JTh_AzG0sMajPzG9bupGop{~Slm!?Ulx&8Y5r8sZIIU3w--Q<*ICcc z`O>69@;RAT-sMd(D2Du{5iScdR}_4x8%VZYN5{qK2&q8&Yt!GKJ8MRBr1`xIrx+fo zBJ5j~(s#dj#yKx^8KO_!?&gcssdks1s_|-KpGsEu{cTa%;X;UphGt*KEN!X&`bRsRk>-e|gxe(#(DdSa6vM_XX zE6~BO(0;NhEQ{=9O00dY z5_!W@Y!dn&dh2wyA()FZRxbG;kDA$GG&~~0e z?4IT&Uw2Wm^H=MQ+ANKp?zErtX)Q)Z6Ol zBt@_$fn&pvzeLANFV$&EqL)7@6@fp6IgWMo^cd*uwk{?@*0rvEY)OtEV$w4eA|6F_ zd@3{Rqwi@K0oP&3+=9zooiF-)gqqH_>a%9@uNYkUT8KZ9_$g~L%nxpA2cW?=p#V*K z6}5HTGKRDr!*HK3ZmG^BkaP&G-Y=wwzW?(Dn`oi*VmknY5whd&^c5|}GcC7@C-_9l z6WEp%rpk4#RVhJWRDj4AZ)GvHu5Q8}R4vNgcGH1OqC8N>T{x&}KE=dKT_v4Zk64Ut zZ;N@cq*VIvbe%X1>=J}}SUUG9(twciNTo|&oBPF4${N;?L>-H-9u~C|tetY!1|75dfE9Ic@t617|L$Z1OffMQ>BjC>MG#7N*(3{Ck{~#ZBBY ztY!slao;)=-lyRsK9IG4?`tn5oK1dG0_e3y(h^+mvR+ zcDAj0dU)?@yGn#n`Q59;@Z@o)a-LvtCw-1lTs$(n@O&%9^aM>XqYaiy00LOl{a8bt zRG*6?X51v_Z$$}=avHY>gIjXMzeo(!F6PS@6T-@-yfqz@zo4X-kCH_}fU1Rc4cv#& zGe?hx9XDFdlewDKhA6^M;i46eW@$f|^e8lAy_LX8uY>&5dY}8ex{cy>x?`3k#c2xp z=d09!@R+9#RTT#TG($JIgHfQBj;-C*yxKpYG`!y6mWoOriFI7-jnzBD7=m``6Rw~e zZ>ZE#KC+_wgc`O(RONDYiW~F+v?a%5fgb_#9plTau4>XaOfica;>CO&|Sj5hZ=i8CgGQhCyNNMT!Aq4+@*?$mnnhv_R$4m-RaEBUx{oPB{^bODi{Q+i$94rF?m=l}b5S|qpdhC2Ht<}xB4EIbA@n^Ck;FV5 zFAt1eg34`YE|k}9=6)X~|2xrFxU}*yT#ppH$_YOy!A_WktYyuJYmcxy5wxFmk!5Ys)FPk--+qC(K+p~?IXFdE(8ig5dvFQjRH-)^ZJZm%# z%VRhF&<8JaSIGhs6B7vng%1e$I<@=sFP_{-yZpYmHB6#7Po}CizdZo(eX8 z^=)7b>%n5K*(5h(^A({0I}f{YKf;$o;S&E|r37ZgrYidz&ZP;43F;xDH9JI6pl2qW z|8M^i`tQ>cZn63TeT_Dt`CVo4@*5T!F${>d!ee=CDu(}zVY|ZXz)>nr$%Wx5CVDZJ zdl8WFa2gMGGNLWg(04h!o{GTDq{gMo%dHVmJmxDmJq&8Skfmqepu-LADN;e213q5? zmyKa)^CavekYQYchMaCfk{1GsUr~terWy~4Ae05iPu*IbKnkHRm@wgo`9_F)BV{&; zir*r{sPln7_(*}l^;_6S@9Th4qY=m$h1p+YeXawzd_%B0L@y7fqa;fb}&o@5bk)d^D;5162xqq)KBaa3A^hk;~P+tc3s~_ zVzFed1@lbEH@~|g+&F;eJ052-skOg?*H4kGX+oJoZPx`)_gn7C@%{O2a9lJ>bFI_bzG#1#q38T3Yv zUxhZyCx(EK)NSb}`z#mW1VjKx`X7Mk(wFe3?#7EZ9IbRo1dhg>Fi8jaLuc3>NK_nC zAs#gT`ZLWaEe3M~mdto>{_kyrn(iRHV6@iR)W3Q?TgS?+ioI*|hu1$HcpOn&pveJ^8CuV}}DuZ@?>9#Ha9l{?J4FF7=(qNmHn z(|?U*4#~N&h9W=)hv~#3yU;$EdtB5d1GKE)O}cpZBK?Bq@&ZWXrf}U8xXhH>64?^H z?yzb}$wV-d6nFF~!dx~Zzc+kDe8eZ6KmCArum|9aaIzpF`mU$Y>jWsbyfHvlFfn6- zkMciv*ncjl$w$+IA`#s34@i*vQIKuXNE}x^8(W#Rf%N3^h{_LPohD7U`^5jxzba4w zH<6?*!dk2LA@X3Ipkikl_-ER2>dh!zYY8Hv|08m7PU^S@yi4CDcmNI3X0$?wAy%T{ zP&NBwq{m8ek9Pv9h$~46QTL^HVegLuqtpmJ8c3Mpd-lzyak7=amyQO z=`&k<5`L(w2%j%Khu4b-o>3fR9OMCEV0-Z4Z~e`k(CJ$!pZ8m^z}(<&$EU;`2n& ze&f{bcwx*=Z)5gzz=PK0py6>=ohnAFQI}hiJ_=2^^J!vdC(6a9gwpYkBFF??rHngc z=zwzqR2j!XSE5mBPD2FzPIu-y$yf4=j1Z6VTvqN_j?F)Y8x3`ejug8UE&V7*F%AHN z*KjFVOc?-t-y$XUn)JiUGi@%=?7^`UyPn~&IFxGompYWuj(WuEeB#>!AqiA#M)Ukw z66?kT+C=XiJ8`xqyZ^aWAgWs(uB^fWc)+6~i9=e{(^Zq_f@aHHscMeepSwwqVZurLH}XH6y^_?B|McJixeh3+6+y zEduMvFEZKGAvtb>E9dEGZ{yL-?8MqMf59r9YlT7@F!IU5!C5IdGubkZxZvH+NSaP` zwi=TvV~zJSdLt9dofFQeG@kmyTZ`Y>U7l6Dg7$)QER3K63U?}YOI zo|8V1>WAt?d%lSYO>NL|W++Br=#9&&E!uhOa-QxT7w3VbxGpu3;ha%Alon@{&a1)^ zQm)bBGn*)_M!A6(_m6x9)xmd|xESjVL{}@RN?MeYvXcX?3Wc@t&DVJF^u?Du%78ze zWdrlF=+AtJLqxxq{*dz?z;D_6E@z{!V;_}#7!E*t$PUmE!$66Xz{x0Z}0K0#vz=GhSh8RdpD_f7CIgS z5!Fy|ypJBkO_y-tAkb#KGt6U>JI+0zvRAO~k8=?6TONH$ z*S8*uoSK%I(x>oLI^hEVlIN$vA2w$@h=Ux^kwWzu<9I61ssJFvsBufr`NGftX4__1 z#xJj*+2lO2md}8NXkqNdVbAsYcMusMp7&;x3-Id1+z`LO5L(2!I#(vCQBqcbC=6v7 za%cBw7MnhtZ3%({cxJ0EbVdj0E|F|CN53(Yhr$4p0|79d^Pq7$$>G=xLVg`)+vOGf z|BJV;42yDY+odE#1p!5*Tco5r6cA|%>F!2a@*z|tq+w`~Mv(4CMY@}zl#T(Un|+V2 z^?u*}_P>1`d#@ks4>&W-bH{a^*BM#|$575EatXbL#r%US`#Lp*sPf#y3e9*sfk)bp z!;tG#GRH6LU?Siht{E`zQ}$r$|2GPRLvo=W2kn9In^Fh~Py;!qDF{s}|E@+qcp47| zMm?bKWF8PXPDzbepKYkQeJg}oFOL+I(Ww4_!zlcE^j*`r>EhtsJ)NpNQ@2nU2#%d! zevg9&@NiJmQK1jgHoI$an#JcTq*u3z8GJm|PU5v<0hzEq86X!|K-PYy)<{lmjN|SE z)a2Q8+$u^vKgg+}nyVPsbbi$3p(-lh!tJ$H){*Vs#U0CIGalK1)imy;4mnKI;an1Q zkK~F`C!06axt_StiU-yj@+0JdT-FlsgelXmzhp(P6JYdfJ zqSAh|+9fF-jr4HrfzB|ia;D^6kyH>Xq7u)dO@$mzN7KvJ3M+{czT2@Baz{7`|2yc= zrv_QOm{z0tQDmH`)%9mZ3dy{~rA89x9<*^xn;t+e0vPo*5U72n%zG240V^;bVA#_W zfRuW06CD#g=Q*a**NeV&zWdcZZR^!jn@5wHRHo1||iW zkArA_qMH*2E(EKy?sL`tyg&|sryg$GKjXo91b5u~Elnv4Mtl-Y@0;s@#id7u7v5B} ziFBz??m&u_L52(KKuS++OE1=HH?Uo*^RcxQ%2iC&P7{w@9#pTL@El-qN>%n*=bV4-^{B-W~uz`iPIQRMhSaj#?SC z+mDyxE13v-4#pZxKXqZaAl`2pW^fUgbm8G%RYlAsLaI{)Mz`g~U#@U>84pLU;Q~h` zCx5;MH=e>PShp{i!Tv0$6C}>v?oudAu6VmRPW6hJ%S>^anO@YEv6XyrRuP$7H|wdx zBjJ8B=_^=s~V zIq}X7$PRlsnDGq1+sXs?Z|xF+1ImNJ{$w(qI3|#gWX%O^LmvotzFO7c9+XB84E|tuWTf>$sL^vs&3P-&s62)o!>w8Hx3eQ4( zDpseZzj7DQgE;x<1{uF>X6^6G9JYW->Ysp&*Sl3q3nPz$yiOdVFN5K zoQ=yAwHx0RPoy=?{|CGI$uTC0zx%BMPj5Wwu}y${2K zM=!y2&iKAlEyd<`)~e~`(&3RZ8)Qy;ORd30Q6{N#;P9y}Qj|A?zk57jMNF-5cF1?S zvFRW`-i{e9pvu4(eydqda@BhyIlA~EO66QEIV1q|=RM-vfP_B)AXi(rPHQE#+x4~0 z6Wej&Ag;o0np>sLn0|lRTtFx<*KC|oDbafM%YT#)*5z{VZR_)k;K{QH4#9y}aMPcF zQV}u3k@JAZ`EYH>KnC21!1hFvQa3gE_#blP+g2c@v#VpjePuNTfjBBaNB-HLY}s`P z>XM#@on~g>R#K4|2%;e!S_1bZ)A@m|qhy4*bqx2XEg_L?`GIXGm$CG6uML+eF$ez{ z&TGBbW5wwL%y8cXLrNy+Q+N^Z-FWz-yy&NfzoV<-oHUAmJ`#1a_L&tuXGXx2gFi4i z{roB=)HS>bA<~XC6?lpcC#nwDu5xuK^UV`F73?UFeCIL7g-z0huJUqDpB3o^g#%TS zAPF!h6*lRPu=4EqP)W%sAIttcJaTWj`-YG%*LbDv*mL{2MkZQ?bxu94d*xR5srC8{ z+T_3ABIVRnNwAd&A8(b6ww7Jd(D&(!#nPcqQqEU|5Zd8=MpvUmJ&fDZU#w@R*X-97 ztb0wnqNjo%DSRR!NAT^p=_H%Kzv;oAxp=0F{%4c==i|RQN7N{Ey*J^_iVy;%e$h2z z9rf_q z0=cN2$!pRp#rIO9=1OX|KhvW3ZLBq-=y(n)!qzxH^Rz3IaodK{!fQW&xBeev&Bb#O zYbg=&>JtPdV5%IWRk8YFQ=L7?GnnLxuYkgit5yzQFIibSTP=VZRb`Zg5@=zeU2^3!MATS7W2T1%+O@*e6Zp>v>Hq zuh7D=R&9Qh{rg8hF!!Cf1g0b^U$l8hgxreY_a3;kd4Lfg0thy62(#UH=6JbYsvSf* z)A#{w`a8!wqj`Z!m+0e!9cv!!7lHoaU-W6+`z(w#5RC4E$VqRgk_)4o?`(ZK(WJ+v?K(>H|It3pvWF!-$+ z_;#MouJE$|!zT#}Y!GK%nWEmIv8^YK{u&q-JeXV8wJ$LXaCwHy&!qP`c9erTyYkYG z^YX1NAQnZjUSH5cG6anA1HB=>s|%DJ%^-WLx=rTHvy@5N?Yw%^s|!3(Oh z)y`v)?LU`1++Siqc>$-6siXRwEU1_)`c40NV0O7h#8pOKJ_YUSAB198#2>h8>1gQp zxZkD_KKX>ojcwVRz`@IZ1cu>dIdYU|bY#eOT$l#(4=ad~1(ZzF>Fc!kc~8Fhcph9i zLDk1BMQ)cXc8OJP5iVpLO4bJ_GG~{2dA76A<06SkWO4iUaRzR(ev3hp@7%?W^6uDR zDB*sh0A=5FKJM4bz7!tj(VjFRNI#z4z^I1D_9gqIsGxL?R(3}?2|3G2N0}4DL!|wcO2iNneRO#l@z|LMI$Ss|+la|Mq z?_3~HeK~aWwt%&8c|ey(p`u7Z&X3H6E4lwSA){_8+w{Dcc|a7D0;eD(DO{e?6`|lY z8N3^lxnDKW@WEU}){65{(@<6D{_-1;PJm6NY<|xDuVB+pyy#wnkbCj%HN^Or|_xxGRCs&zm(xSD0w zT509i4@m7>&a2mnCM&V_NgnvDzh8aw_E=Ros$)x&OBcOF-w~SIZ4qO6=@D(%{lu5GVyCsyn(yWAE0BmvXzC<&}$B3gx6tCc+LItn?7w7 z)4QnxRmStC@3;1Su)yPKl%|q-f1r}BXJf_f9D>oC!14}W9sPZ!sdO4a%4a&iRaagr z!FZbE#G|#}W#MGqBW6VY6=a2dF!n!D_V!i0#z%WtJMu-&V*ON+JyFyow@9aE4x+ep ziTM%D=)N7quR7TPl=F`)v2IfYTaL8SX((uH*^I~}hUQ{6I8QHM9&4yB_rWH{ejZ(> z2smTd%>%Gh&+Oj8`%uO%lb1<#E>4?vVJLieDfX`yn?Y?zTpCafp z9siCL%=AtBlE%ggJShJhYLLGseW~}U6MP;}pCv!fdm>XLb0+*sOxxP7MXx0{vH|TK z3;31I-sVz{HvcAtmlmh$(ICG3bxN}5ExCY?On-u5dg=6k$^p=otk2}f3hQ%wX$F-d z?|{-N6wem8oWA|YIOfl=>nkj)iRzC!oKdO!L$^er#NL!>w$H;X;;9CkL|gS-=5x$m zCCiO8D#LTioGg{6Pox-N9-??wa$Hg$f-)%(+GGWo;f4gz8zX)()voB0qg^A2QIc87N2TDNf z1S?E_ISJW(%szQstt;lNUhN~+CQ6Xpn<*t&85h9bMCGX9`ViFPlIbYd5uu_sHN|Qz z`g%Y$w*zJxc9|sl1j(FQ)Qmzi0#W9(TD6u@T~r4!pvN07_HA)P%q{IAgtp^GoK^*k zk8pT#oLlH%+l7at$CUhrc%%^Em?LFH#fnDiSJxUA!?}jOUzdxYl9rqHlO0@4AC@wH z3v@f!jVU}%&3a5FJ>t@Qrfs1*Av)-re^oTVs8Xjwj~5Xz@^@gjyN2PmGsk+?{^IIM z`R)3VhF|SFUuN#i)JfQXncoE5p}^LxyOYjWL%OiSv)I;_TskNr9-H*soV?&=WIMX3 z>plq!+FkrdI@MuoWMh;S<~{i(KVAf$9e(TmRRr7po&si?j$5uBfB5P)LIc58D@z}t zYdh(Y1>f9^!S`;H-U1x6v2qi(!=S~9=CT;*oCQsBF?9ux5G8an*rc*u&R*nVwH zHP3X`;!+BVU;kPEw%E(UgdGF_%>yt6qgP6 zFiW$g2i&);nN|^P0Zu7=l8gJmAP+MqeEilk$jIz2K`=83r)g;uu2;)7W+VWcWq_f& zZtZL3JG1Gvrw%rwVk6oIpxCG&?oMOXDa9Qx)X|WQYt*n2oqT`JUT%ih3|XG1a4J_L z4AvhBxouZ6?{V9_L^g}?xZ}TY?1wlsZR1~OhnvyB(3eY%UsQUg&XHbSdl0e$$0XHb z41n55qP$dVbyCD=d?~(~cb{GBu|~0Olo72c%s2fI$2m4FX}`b%Edp>zi6ht1>cAv@ zdb1x;+pk7X?@OuLS27qrCClrK%$kGZFbocp&`H6@{Q(WKc@D-E2bRD%e>Z*qkk_SDtw2{GGjEaqFH~rp?WahyZgF2)+|E>RonJcT1c%o7VK~zN zr%{&5pqg8shXNDGK9m_V4DK`^SxX~p=iUSXRqbRcYbMoP7mue(eWyea%S-XfTN4yq z9h^{GKn6<2DK7D}jg5Kc;54YSOuI*|s?|I@?jUl2Z48$NcyKU% zDuX1`fpVZNASk7#VPCl1=k@Bttv`AbKQLP%Yau*5PXy(()B*RA`|=G!{!NSfmB=BQ ze<_9vaVJDMZVudg#EFno@f-PR{AR~|^3H$^ z34{5JfPvap%wk!G?O!gru+K*j&Nq2WAeq-89`wd_hfk0441A+JT{n_~i-@8&!n5u- zDSF;xcP!a@k*)aVdI4ZfGD0z@tFbb15R3r~LN421FsWphGAi~7{Igyi(ULALKw;|y zve;FvX;j~y*Nm9OaGnRg|ewXplrct5)%+4>DlTkI;FN#@t;s!-LUi2PbbUW4m- zxNd`^T=873-SzD{^eBEKZ>vMKyH;u(5x_ec54pN-=zEsElTYJ(O*u8Ty%t z`bar+Kbj=vX+j_DnwTx*aRTTkbQn&{-SkL99ALpB^>}}eV!v(yXjG$_tT=;Vf^nzG z;{%ur&ogZxvJmkw;=$;0z*NT9Yh1G*i+&*Xh)?Lvgy}@1DKX2A&1?i5h1rBxiPB?6NT+Os#4)pl@RuMdi~wKuN-C->}I+IZIa>Oi{E z6)z>{^>i&q@BYU3;NqihJJDECd89)_YRWJtWH|409oRUxKK2Cf+GmgGG<(1TDS=r| z=E%wszxp7RWe;!GW4Js^ZcENSm%KXyB->Z@5*KeAvz>n0GORI{sIgxqoX~$*9e3P9@;&%5T>Phi z>bE>+16HERWHbK7)%NCLUfzl~cTWT+iq*mpD9}s+*6#3@`&Mm7Cq0s@0w6D$gvhO)yO_(Zn$#IMSiH8AhO$HV@wk}H ziynlLrZ)O4z9-YJ*L71$WC)69aTeNTwEOuC7?Jy(@D(va!6VNbABT|YnG$2*zoy2Y zXg_Zxm%A~X-3;r$1d(=`sNA1;QcFEzzr@Lqd?9?H-QhERu+G-N`KI%w)o^8E*tvaU zkIyrBMjHoEnAapXlU_F!XJVvtu!0$tB@GvNmB^e^Ne&p2n7=?oESU7~@>hBOiuhH|CSP7yT~7n{_wKO&4(Y z%vQBk8p6cd#3J^dJK13v*ZIYNF44&ghsfJ^f2IcsJOqcKusP?m`+)7PZ{yE&nUm;O z$z!=|ctq(V7RSW5W67wP@>=-zk!qmlc(ESwmdGmcfXI1KpZ@E;C7IJXmPgKGV5E0% zgF)$ldX#YgA2UM=0&HyT()m6Ra6iZPJh;=!A!$Aj2s$c*z+-wsleYkYHsM1X8YAx& zYoXYMrf-3o!hQD*8mtxeTYM*sRx7DG%OI|W*1}cRvey@IAlIw4H(fyKoX`tvejjJ>5mQ9TZ@S3Df$n)ES z9$?N~y>f;{d8OpC48`VJjB`g#gP06Uv_SLDnqzdRIQh{?kR5p+dy*8;%@7zO6xNH5 z7zmo&5ZckeS*#&o6Y$i>jYl<1mO!ffk;IO4lUGBS%7jn##lBLhJ<^KGZTluS6Bl2y zb6**pfKic!^3eDClU&UWq2HIp+DDs*Y`H+_jG?LvYYEAhGvGayK^i(Q2 zK3^LP>#qdN_>;K6KD{b%I5q`TPdAkUaJ=J*gw)J=${o179&gXmSB(%q!}FoJgKT3c z{9E6*E^?Y2vL#mdmgv_0nwyu<8fJ*WTy~c8WBR?E&NN25#sdS2J%{^ir{l@xF6%0g zfZN5Jgl`8+08=>|u1i3g9t0`8r?k^<7O9NqmLW(cdBKJGk;}ju+;h)Dh}g)uCtOc< zjZP~ap!2%dEle`d`M8}BWjwzl%@F7IwA1n)445mx1=5g}3$8iGI5YV)R^RUwA!v?G z#kp#*7i?}j+y88C2m@%YXzbwCaeyK(JLj=Ve!g!sAo6-ae5%Q-W|X6?4Vb$>!EM@! zTl1dWFBJpuG?_o{IbLU)6_;s^hpzDJ!7t(TFXGjl){cumlFH`pEeD9YH@H3#0+(v+ zO>n8^G!8*~(^YBFH&?_ep<*p&lNNFdMurd~Cfh)pBPhv98^)#=pU!YW1@vsO%2_SZ z$6~b_4LNr9S@EN!oUx?@^0J;r!)N+93r+o ziL^l%XFW>8h>zPyOAV6!KF#wNhMaixoKFRllskq9=w<1?y}uPN8~0dn&U3*c<5V1e zae5yQYTUVaZ@xw%oYArrW_X`^)p>m%l+C~!&8L{~mEE-KVBXJaq>zJM_*%F2yzHN8 z3x}5B+TbVPV`WC#8Z#g3nQzw|=2&xxfNOvb(h%Kp-UlW)vRz*W$PdEW{+AsCJ-1Zn zY<{FSEDsi3U+Lo%YIG4WMr!9=LJGkp!YYCe3=A`0zZ!!i7fD$vlOJJw8-?Uj6+A%` z!aS?0HHvoYVul%H!Y-Zq5+ig8+b2{yXgl@(SE4+EM(J}9C7&j&1uSJ~rR1xd05hh+2Zxn%9L|!h zXpH87b^GDck>eK7`*SFP$)^20pG`Q1Vj>%(!Z@Y7cFLRIbaHXB)!!#fcx+yH?_WMf zVl-*s`sUby(j-4iJO26}^(hc5*)J(-uP58UZYr!Vxn|ONW$zev?0HD=1(wz&KQr^h zbs%rx;+x`I$&Jjr{F)jXKBBhy7rToXBtqLlF*nxUZgEbzkg;0ylMSCO!*alUnA}0+ zKuOQ_X#YE<8IXOJyG%JHYpvyWC?kb_F_B1I&;u6X9GRHoX@!v5Bz(7FhCQ&E* zJKTHGfY(x6gm+!KY7YG^c)j&9z^std^8oNib3Za24vN3OMM6{3bd>b{<7R!p7xRnt zp{$^=hdi>}%=6%|%j9XDn%E&(1n6@RF~9qIQm=lEbS^M#?(+Hoyc_HXka*dx&*90qe+aS6-8Ge>6qu%w>Ixre+K(E`x#GrGq_# z@a9-%9rfqX>AM4jnE27oJUa;3i@L|GG0o0Ys8Ps32_1a84CA*ngks{(7_}}}1L+re z2Ccs0EiNyLrgx{*?JogwnbR6HXp}5aZyNk-cr_-1-tmEf%bQHR@ZbM2C&LFHBjz@W z=Ux}16c?M#!e(B&@8kNH)2~K02m!l9 z%0*x0as&4K^N4YtU;Mi+BTkX^4WWl)KEaO!^IojWH`Cy+gwE0vr3sn}unax`}rVS}r@{PcQc z*FsrG>`DR1qL<&e@ADMJ-xB{rxB%s<5wr%2P2ySeV={=O@o%(dr-iA=&!NmoBHii7S}(*?Jze3ZD#>r z2ecv(iyr;N=xfH}n*cw)n;>Le1{4TXK(|`sd{|}|rlFV;TX6WW>vqg(M=IDVxGVOf zt(aHY-7)Y~iOG&o4Ew~l4-3`55cKu#2;=QYNgQl^DpeZ{b#MTDvg|iy#%0ED0eLj; zbA(3laP!8^N=`8SU+3W$_}9txjXE;bh<8_-F_ZhG0z8W&G|&-60x%5D5&&#*t9Gmy zz60fiKIW|lhG;$&9@VrdNN{VnRGj1bmeZ!3JtsJU!BwJ)M=e$gl1TS~ z!hbDc-;qK_ST#vp?%O6Ur^0}0sklFO>Q_~t4}(y<0GM1Nn=U>KYrv+dUwg^L1hNx$ zsxiF4{f@}A(vvSvJYbtE$<4?cxvbLlD%0FcjUmO@3h-0Hq3ep&Ke(%o@-o0whCYZX zIk~}6qD!qgrGt>?gor;-YT+)p0S~Z$*Ks4eqQ9-t37YmD+ta<}a^P|*#02qxK=@>- zXBB5wA=Y|PdM&;_4QL9R6Ms6?NvcRD1r;WkSSWBmq0@Aap;x4;l0651pxK_8@mJP_ zJM4ek#lLK^R#h})8amver3;8U&43V|)9c7Kd0kr0>PG~n!OaBmNwDYTMsgLpte2Tw z`U6{OiJ;C|e(|e^{B)XlzY;QzSzbM!k{62@E294W?Ge_4EpdIMmH;_C`!V-W@V~fM z3oJ24bHTtI#FiKKu7%8#9^h%l`K7cL2VK z?<%NznmG~8kk9$_-6!(|at?H}&#B1#by06Gl{}S@+MbK!1_(<=y6){wnO`pJUj?H3 z0QCU)CcO$%a1Z@s;Q9CEFmUiM2qoJ9UFt&)no?Xh6RdbH(sS8K25>b@)*r3${^zR) zZ~G<&WuFx=Hc4>Nu5sx4VwDXZ`|f=*WqGBdvfQ^nkC{ddWROUk>Q^-}ZT~#6KaUOh zk?;Fw2NQILD%}rfodr6f|M6og{LmYFd=B?Ry_6;ZwU*q!c6;l)DC~D0+GAXNF5oI3 zl6d@1pBiR_fy#s(4=z7@jxxf(9CQvqGtWryFj%|ymxFJQ`~>$2g{WgtyB__&{KpW7 zDix9rZ$7bh4}47v+6y3{1RyK~GJuP{nK~KZ2g61tJYQT~&;h=_J}1q4e?J?4=hgnH zkATnb)I_L*ze|9e$aDk3G97TS{P$OoG%hetrUM2O#qP#{)$m7O3dsA+4$Og0)U6g2 z#7`O#5^;Zc&%oXm-eR@b9=aN5V)_#Fx5zOn(oj3KVzkZ^9ONvoSNqA4eBn#Q$Dml4 z6ILrBBL(*19y%mMNNfF@CD<>~dNsDW7bRgvL#U5%WC3Q@xL3{j2$04f-82B{)t&$U ze+vEA`~J%q{;%zNH8AJnC;iF=^?|5MCo$a~??fk0USg zjbc8AW8Z9LM+O@7^vGuYl{BD9fwd-HH(W{hhd}?o{}e)#qB6_ij&-B)^Mi1J;dc+< z(_R!RSN``j3^Cw4&5?!lHH^@Cfjp-GoQZ>6CB=FTEA~7+|DC|v8j7Kkr^pKK(A~_3 z%J-CzpG7SM@ke(A%+mq+jaB~@>zif z*F@OEKfd?a3q*!%sWAa~e_Zcxo*+xvX7|4Qzvk*#ieT}j5PAQ#Wj{tL6q;|z1DkiEPtQ7~18QTvjHDSC#`H!?_R|LF>_fC?s3GAm3+G9*W ziWguy`Ewrl0Ts;u_%vX7%d}zr5l8@K0FbOSn2$dA2R@tPO;KdR0uB|hqX6Xk zIUbl2NJfD8!P9V3*#$nR-ZE5lbdo^7u_*T{w;21o*1|$tAaGO;=HD3z#|AFT06~&8 zAi_Wcas;~xXc6dS0{rG0u)u%MRIO-{yIY(Nb=!l+e|N0p#zC6&IV8(;*trvyiiONCfU7%g7F?HL0DQF%JLu5)F##^VaJ>e+4p`0<-`~+x5#5|H^-=l)t^mpG}d12GC6yND+xL?V_^?C+lDK z{*dmMSB%t|gSx3>$8_sozUjZq-w%cZlmtC&*kd^I{_a1*;xLbS=rz?0ZRKWK<-0`XG@Bm+KC#;7e721$#f+xP;MyhP2)P| zop}H4?~wj)rGvaTBWsZG?H5>~9_QgMEZ z40iRG~1oI6#>0 zJc$qsF~+@L&{{O*Y}yVi;O#bf1zb)_3F&uI-DNwlggPb2g=B#bO-j$@p~TBU`>6)L zN!}g6Ly51p(>}L>RIUDp=0F_fW+dt(6!tTO?cTB+jGmwWd$aGkPlfmI<)sHo?uXs4 zRz-O)UBkReQIQ+q-!kDOrZq(Dndz@gvE{)o=(0eo5=2ECGrd0PylZjY3f~Ef0?Ycx zo41P{N|QcFlE`9pa8;WPR1y(8$9@p^g<+DRpa*Oe)4>I5&Npj?<=&?u*ll9kHG>jC zrYSg?)?>L}wkGSi3JSg80|vm=yg;KSd6m>}+{gDEXDHC$P_%kgQOjM|P@1ijELiaQy9a3f zf^WDaeLfaFdHMd1FMY5L!TCsuUW4KhVxFCRn*QoQzqm@oeLKa)>vIqnet~-5!{Kr% zT!_h_ImNUuTIy&=3?M;lu~s7%oq#Ek-Lp8m1b1kT{?#5*NAaUXG!NL?h+Zz4v{(~< z{CnL|eZnZ#Z?ZnuIiR5NIXggFP|5(v?iqR7B2}azT1Sm-93rNrtb|*u;>A!rYqlm_ zJv!^zDTWX@y};$={mPG#z8Ugd_Rg3C9a80fR}0SuIb}ZUtAD+<9PZZw>5@0-fro1y zP2f1MG9_^e0Q(W>VJ0zAMNSq1IZb}tssm>SA75ZSa+-vebO_?LE7z{SZn~32QyW~d z9G>|wqcar6rq_@~7ETmPl`)2bThQP}rP$M+V=;L`DAhWJfY0Bd`LdtnV&t;Rp7ZC( z@8M!QQqqMO5D{3QR*-qi!z|K!caGmH0J^@^xH_K3-p>2=qfh_ulRL?7<=L+pN74sU zadi7Z+fKx)J$h6_#ICQ46z~K3a~#kLe7N%?lWKt#t-)fzRegE5V5IzVlZmtC68gqj zA%lCmzo@jFLTrZR3Ve#e>x$EWt0wlvp#PgBeUY^CKK*L%x+37PB2Je9%JDyIJ`x2@ z>|!_2vUPxKK-eU=SkoTe7uiW2&qFP0#ky0X*-4^6=&&~U^z*Ai2H+|#?^of3je-Ay z#s75EUE1Tb+)oX&w)c?8@Mcr{@NWB#>F9Aw_mNLW)=d06P?H(}2c@_efN6$`Mn3#~ zMk;zQGSgMm^~@#O0KYHxWNc!7(sRZFE&se}u*2@h_p`%|ZbH3=X}f_G5k`QS%kQ13 z{(GR*UZUBI7jdAr#btxT4A~rcmAuT6y$7Gqyo8vOZdd|~rr|7Uyt>We2Gi}C>i{-; z2*Hnzri`oG;3Rd_uk&EJyTU8bY`|>(H^0` zSo5T-aGH7`+Jl4zc;SDa=)y;|q&|yHx#>}+rC-a1QR5fK zhu`Z$_u>*6)6lN*l$=~Uv(s)6lWrn=gz9w3m$cre_uF`%c&j^PZD8^GLxk3@D z5{IY@-v?SEf&AvhLGFlhCHnJFx9lb%x5`*v<+WldA*&U3%|~OO)#JKiMBVl7{oDuF z)KZRrpyY^N1o@@nTi1DCzE{tiPt{{-?}%NQf}G3=DgCv5@3%g>Er8GQ6iM|DmCtUp zNj$s6i)PkfOFX)CFAmMR@ZK1OnAXp}#}HHsZ43<&GQ>yoNjJ0Q$i{^^LHGX{b5SjX zqD>cMw~2wiplUroncIrMj0@PQFar&3bqP3Z48T%k)T?(XD=5^dvc9)0$^wq>ox5*7 z>Amv!taU?cPp7o^oTpO}D_7OOj=4cXsi%R9ud7xoIoq?Kakw5*cdRRsrItxQY6-V? zKQ9NIQ*UYU>*fjZP>+2OZ0Ft~ljTJ^J&$m-Yg;O5jxSr`|7rgEV-|n;z0LWRta%F8 z9z&`QH-|rtw2xF%OZ$;cX3jGi8#?XcQ?r-ApLpMVQxoY5ZO7qPV-maQ9}}?vzsc3Sk!_d znrigTJ_Kneb!o@ICuDf19n~CVOnsug8j>a!p8V8w%hSVeO~g<)#KwmVRWE$8ws-{P zGh@A&8JDua_;u}@VDGDTIuE;(CsyMJz8$}?cYYs+ynX^T|K0qrNikfy+50xK+CZ(1K|qsSWh4xEyj* zrcWa<`jTk9R@sSe-*f_juIrlt#H`gN+*9RXEZmp#_x8OA=$=iDSVmqkDj=ONb`;WR z9T+gkeqm&FEiQCwH0^Tg@>SAm>~qdcBBN4~&TP$fXu0V+XM+J3*Q_+4|I&jjf^y*g zJ)~?0^q^heB7`5Of4rVFA9qa2klJ6V4zwI`U>Ke-z15v6RAch$?eQyMGmm+VOeS_x z3Ows~O?tX^$Tt@Ys3F1T+{63OeJ$bXQ zqmKKjSI_;1e3$ix?D)iTx)Ks5H;`>Hbf=E^>fh@w9lciQoJ)?-mKN0q`UKJ zu>k74`mwVdL{U!SSDi55CK!+gZkRdNj5Z;}Mr>utH^y(KS7%g-HUa+JlO1|PRG$uo zo*`_$#}W`&R|L}m2jEts7qbL%jS|qp3rpHE=v@qCZ;!rf3U;QL`vU|^B zSIKGLLE*C+U;TJ@lKivPK9md~UF}j5D=9lH(ku&D>Wv!lEynLdfB!q(m!Tmb0H}0Z zA3@FDNG^+3vr`;KqM6{X)r{9p&#p$$^x~Vd^g)SFklVA4wL6rMx5-hNBT3<_B^OhL6pqBzTy1|1E|McwK?1wKXTD~doCimSB$V%ywa0_ z_SwCdU?yNDQN1IDK8(Z|7MKHbo}D_?n7&hd!S3#ABJj6b|9yATDvcfl6Dx4nT8tM# zTEjEK62G(8S_{E#FkRG>#F`JL|0=oiBuZ{(q!{+0;_6&f&C{*0>MH|&epTPC?59%5V5(LFBmw|qUT;UdIZDhk1B9aL zK+{q9PG@bIiSaA=nAoK)C>0?Sg=0J0+u20$XBPmbFpa($o(Hgo+KS^wPkij>-hzSvM zP15XBrH)yRT;@gOzw`L|ilqkDv9H!IXDWtAOvQ)Y_+{sb&pK<5A+bmq2BGMN%#qX^ zHxRr9wV^#42EKQVM$<7hcz95il|;wBxoP_H9eSMX57TD}h!r^UG$o zOpNfID@X2aU^y47VBY<*kAmB@6aRFhu!OAe4Irjd;tyIi)$0k$jC2_!^p$90W$idf4)rAqAXkqWMIbL0o#BgFUAH7@-Hys+y$k;TeYHDy&&)e}i z_Brp?Yx<0XVa@t3nI~$L0Xr2!7O*Gftxyzp^UTeS?J=}zt^E`nwBbxGZ$LO%b@bus z=}RcvnMMe?d-6ZqjaZ~gs}tA0 zc)!gUr*Y+ZM{dRHrF+L5!9^Apn4{(#Y|u!55S(UZO98*m1ce zJwJ?ccrGAP(-6Ndx)avSfxYhUX6Jx&HFU{c(KFaq@&c9cQC48k4@j_W_9tC(V!X>R zF=5W9I%xo+G;p1CAns5UKQPU`FK2hgtsCkKL1hL84KLtjWkym>f^T< zUNDK$Q=iir@9EUrCSEjqR3LghOqM?A1VEMK_n6fpuP*gV6_PADIc-|U5RVk(4Wg?> zoa!26?^$^|Yfp<^T`=!iH{kj3*OZq2L7`jaFx(K+W))X!VHoU92P!Gnhm$4|iBMR` zD?}@E-=zH0)?^Ho#MO6#O&T#WgiCGd8ZX9R21I>CM5+SiMlnU?7oWWiDw>Nto71-p z%4Cb{fHXzLL zT({QToXLmO`{i$!pGJt8LbD|;A#Pg&A&Tg^BX6x<_v#Z4>40*e5bg6GB2xw%fzTD1xJ-?P7&s`RUT`==Z*V{j}kRwNm!bA~KDz=rC}Kh@e(6Ar(( zDqBj6#(`})o+S5kV(B7h_d&I3)y)|_&Iq5|Ynl@37k6oJ<<&Fh0}rTcyeLzj*=~h> z+}rN`s8S_KK`K6)`P@+^o%dIu+p)AENSdXq@>6scS;)EC`z6N?Ux=(T|Gdp>e)FbM z$W`i>MB_?Own0sBy#ogbTpJ@{tWQQFn-7dz9@R7r9NiSQ*$1MfV)NX$%&Y7#oc4vHz^E7}yE{@}R%9>ICzW&H;c*g)SOD?W zBjWHnJgOGY({c=UZCeAYa`UKX3dt{igP;LeB0>D0lO_a-nLFipH>M@ATC6b#LfJMo zjCL=3O=EKF&SPecZC|~9@nQD4(4uitP4nxY&v;QR9bUhFyJ+o}B3$R(W5k7~Sb=ir zdz6U1NnX(E`uIy{D(_w1uwQZj+)tI`X|J|%?Bjj;-DO%z!`N%CvqLud=(z~Z1ofVq z_aBLrcq=gmZ_+wX6}Qbei~iUcbjgFVHs%nyJA}uiVHo^4C zfYHzdT+BAI8Br*+>eV9-Mi!zpgN;_Ir$2+%-EM9VG05#U-6pM1&F!g@X=A%Yf0xUA@Qgug!XlH@4^%Gy$a>X6-i$S4)_8Kb#l z?e|f}pOgK1vt*Y7H%t;XkTr(_pUYR!S zN)gy&81i-J|Gsn&@l^Al#1S$K^)K3H$Fd);?u!f(a7oz&RwdI-Qp8;&Ar+WnYCP0@ z-qu_WW2GIN_x;uaJ$wOXEv*j72@PCs)8{sr=6|lVoRfEvoL~fX9IH-cq_Bs*OHys& z7h04@!os=_dF_AMb2aEnf43UCLp70kcinStfYHZlC0mb(8f6XiCcKs}Y8|Z39=AG8aU1#Z15Z_Be3pV@XbOm##yv71zn2b$#30`t26hkxXkVE zkbk?^rOMcMk;C_1$mTU6KvI$DCWJq@{un8!)#@W6O*A=uLhp1A%!_S_-(7og?mY(L zS#cCx-CA#{xfA=;8P!jIOFdDwcwOiTskyZH4*t}ESTYSqc-=tmzbp|`Af4A2Qos+D z@8xm^MjPK8?o6c3+kf50knEr}(zSEDox`w`BL~Ll+U>QP+TX{fUq1x>)Wz?>t7%Yr zmM4IVQx~=TA}>0kVC``DDqY0u_(!ExK#999p_d__)tY^cMgU(3`kxjSTUt9e~pUpkCPV zY1OVtpX;~EQ|B_J(8A_@ul4jFJ{dH}bJ8RJRMFx3u4ffMH+9~j(77}MgH+JAwwD9s zs!S>CZZ6c%l%=`S7OQToc51XWi!N6?goB z!156|hatj=HW|kP2jfE-Bvinb%tTzdCeEf5TBBF^eQ$3x2n-F8_t)!tuP=(5XhY5M;91I*kWmxP$IU0U8v z=r%@3A9_aTM^RH>n2k&nuf)4yFN|g1GpLS0SgyHS zZaOxbndBH6Z!&Bn^||@bu!y~5eoq;Zoft%()7saJ-QjNF-NH4H%8SzJ>bX~2Nn3VC zcW?#x=eACOK5Rkt(giwn)n%7%QFehdtki$slkMeoWc%~%ukRuw&h5gEU~62k+WV>0 zKY^EjH2sZ;2aDF7zRip;Ywc`)d#mWr+fecVJH_j}3pEwjx^n4O!Qqq10yfoKa~0A* z!busgNqKwiW^rdzj`bWE29hlIPG(}Q7kaTMed&7QOCllBf#Y}ybI+(R40h@F^@!`% z+yEyVk47wgS1WA&EA39Yn1SeOW}vxXX~OVFAwIX$3_Q_1;Qat|LF^?6&z}pxs=WUK z_N`(!0L_!WC7H$htp0qvVR5GOaB~9gW206`gV0tF*>{}0>kp>~#Azn3s;wJC2kWtu zIFK&aaTiuZdQ2*oV%MBR-g0+efuo6_Z2T>&rC^5T<)2=%a@|B-Ceta0V9A@IJ*4AY zXusMU?m;)}8aCToHGrgazR~dIp^p`@oMkY#bX{#0uerdrUFu7{eRp@90OQAWRqR@m zHkDIE;(Y>oX3P1Nm(^TlB1yjMqCeLfG(G;WywlM5ScZs6w-XZu;hv~6J9{|HG+RZ~ z?D28d4wleE2xsPi|ET-38!jX=fQdl4{jA{76#>F4*v9doX2y(@+ni%SeJ|01`i$%y zxTA63CMU`$URTH|B2J{)$i%jlU&YWXu?aA1M0fk7#f7b0oyD$0h1o~|XpXJb!PKGU znXjf;(_J#oH<7}>msI!mlMGBRf84g$(Q16dA+%>8r0gPC{Qh`m(G3(c_~*NHRf%4_ zpELhB?4w5nGO(G6{P zL@e--2s0UjSa+oR*4p!BEiLoO%knlK$Fft7F}O|T$Zc=_bYoQi2b#`7yZw;6v`q|< zm_jvBB0&g+=6qhZ?`16(fd>=e*dDrnMg|pRV<0aN=G<{b$myUL**jmV6P{kT zFl0Z)nHy(579zW;-JYXsRDSj5?T_c!Z^|IQE4%BaQ}Pz85eLp6roF6c85!_t5Sgay zBItMhs)S|fVWhXAB$a{GuS_f^#oQ7#sLO+wu`2_|$q)XR~rhqDa97@=y7 zOuk6MKNrPGqd2&IO)pMtzP;hNCEj5Y6ibjN$|< z^J7*WYB0}<8|1NBt`DkkU8-*gA+mwX-sE$5Y-MlWGo0ZGdKW5SA$ZH<;9cQTkZX~0 zQ$4rM^l0@~)3NAl__I__sK_pP-0gC$Y^U1{7CTccWF@;P-5|`CO5ve4lT$NZIS9ru z6%DLhs*u%tN>)~#xui>Jm_<*L!u-(gS%Q#J1pnDuR>YQ?p`+Dz z5Fls0!%6v+}}2pW_! z;fs3oaU`Qve|lfO0XrX8Z4cIm*`pc0J~eRqqmb`MvRg-vqJIw2d16aoMASFV1=xQ3 z@@F%z54|tyU z|E{(7$G!Hkzi@cSWXw57+;Ls!`8%b8#oY@QlH8wxI=MyhzQFe4%k2=Eo`r{eL*JbC z_uS@rG$bKX>jV55s|a-IE}m8jmnG7KLj$& zD8PVgoz1V0CgWM?08Ly2pgtFWYxqT9(0!O$1hm^C6%!~U0EmL)`>}ySc87kK5EBSu zw0RBKgl|xZZmrz_G+jhm?;}Rz)Bs|u$&&e|m z9MUhI7T-ehT3kmUg?;KuE~pFT@)MOtvg$kImu@94kI4P5J*ew=J9|$ztuGOR>t@?O zBkURjg9igUe)!#T44zh66~amonl0=Md7eH5Nd`u?(Ald17|WxMI3CdWFB6vJadT}5 zP_*#N-RD5|WKomvyIB#W(3EK!m3*|n91ssQ=Sz1+`1yR<%{rN9eg}s!YZX-p>K3OTv}Kl0g`M#%_z!i~ z3b@)yRi2$GtOJrlc3b`m57fM1ARjIRno+dlv%G#SBUr` z>!z#YC&A9R0VZ0VGSU%WhgXH7Y`CH2?Ysw{JSkki1+2NWgGD;`rVOR!E%Hj zlf18kQtaa&`{gCp6WSobYRMz2(De7M znIf~vr~JQ$WOh!wBf1qm78&YPsC5ymBir540vgOy`p_ zW6YPl?LP6U3;Q{=085{ zL}L!LIHKaXELx2t1eKs9HSic#qo4EIs!qn1HJTnTJ+>}vH>l_TJ)LAp+$Rf463qv` zI&C$#$y22QWYI2M4ouRWFlj2huaDNiNexZ8n&m*I^;ltfAot}pe=fNVAjq=ZR5G>i z+Hx6U-G(}bA|xh(AbOe3De3KgR3PzL*-gkXbN2DI?t9JF+f9dA1h6uXJ={Ytg z&_&FCxWI8%M5UaQEPwsN$bI5>x~=);^e9Z&4NYZ$IX()^`D2EOujY?_)R?DFs=o(q zun{z@p=jW_k$FMzi66LoWSlux5|h|_nAwObjM$aeV#`IMg+|o8GW(Rd>mJJrV4b%( zIumB?jpl53S0$zX@ta9CoN>oG-}<{EKLE`B>mU@mYG&p2RD$4bX%Ezn!{RoF^S2Pi z&8W|ncK)3T`M6j%W?<6#hUSMB;DjH|qvicKZdBFRxy*9Hbbh2`<@0D;pW8~w%eYGO zsk*aphL@7@LDEvS=&wL)Ita&~(YE*+hcdajvmvJCXo(DGTdbm^h-kwUdfE8rb)e?j zF3bAz<;ylGO+NvBpC4IpYHpD+Bon`<#BqKKLaf|Wq@B3r5w+&K0g4)cT%E0*V zuGNvLn2fdPpv?Dhq5F%NDoCJiNfItlJzbGLTjO^cWf0zuXDHuZ=rV&a9{$?34^{WX z=PLyOhq1K=dh)k(Ot_>GtxV}FpVU_>7i1V+JLB&l+`3XmW*qTupaUCYw>zR^F=fQN zB$8_c57?c}68R&GyM%Xb2FU3QwK2@Bh6@_4Qx3NI4qLZ8W-D6iihxNQNK)Qwq6v-3 zZd2CZ#pL%8PaojvgZAAvUHD&qd87JGf$606`KII}4_zMz$&e}NLXYv;H}jL_88@^hz#vK66V0cituw02T|ED$m0yrWV#Pm>W>AMXR(E(ByTo*vshB}G{ z+NFe$nBVDea)=7&(rV86 zt62Yd3Qy5VaN%wtM{evt@;_m`Zj6T$RgT4Mi=YrsZ@8~ z-69yu^@>1kHhxbk1A73;%e9#S7^B=XGT#%z9^A)+e2lDgq%cur6ZxWM>oa^7w-E>Z zX0P%O3GC6pDR=?bw+{cRI9?tXcG*#Nqh+gSQ6GN=>%R-kROv)r?PqLs_JinfQ&55f z5ykYm57a5;{__p@I!`i(*eq9?Jf7@l8L2u4IlK4_}_)B0LOPDm0fMv@p-9w zuW85M3BoidSiFD_xDkK|Eu3Z-3W$jRePKu zOvmFH9F8ocTmh3w)o(B zM36L5-UKIV75x)}dEa!^CngLB!GJXc&h;!;%o~4L%#KZk=MHWlBb(n8F{pM3M$914 zP|&w$$b_-#4{rc7(p|72`v3hOLqQ_4`B_+muo}eZJ{}Pf-TnLb3x|Cb{@X=C#ej}Y z$Owa5m0B5Xt>K%@hXx-L8yjYZ)Ax+&NJPnyckzEc3e#Dz zVqb6~a;-+5D%SOb*F@X0xZ{iU3a>Cg;S zOTWu&iG3HgLA<;Bj`1HuR2H~;iL!;{R|Y73kZ2rwSN~3SOyLybA-1=727D~WUrv{Y z!ukSVY8RDE{Hs?d!pF+GGj??-tp8*03;pMPffER-q0r=;~SSlMm@oF zV$%jI1CGC>$c8H*Us84ueS6vfp#jqaa$}1P*jR*vps%!;6}K^O+$a{_09!rBV)TI9 zo0LAlYBij60QMe7N-2m;T83+xxtxTkXs6QC+jDJjHh}P}+X|u$wIVJq6^l4`(S1bl zx&c6EDF4d4v9B))@+GM7FcEGWc?X-YWCg{ifuMT|b$kbH(h;|x$i9mpQ&Z^C7^COf zDA)SdwVhrJhC(+D4}lCE*KZtFe;c0->yW062+&%~`@1 ztKmSWl?u2nGJ3R~A>fN%CbNRCBO-#Od#j!ih`}*4x%-}jkI|rm4y2jUu*f!7KkWOv zxfI+oUEu30m*@e>Y8hqw_;7lMYT@&0<7vN&Rx^=5i zXZa)~AVwN&>YFOefXk=mpwSP`%BY5{vLnmSrGflj6>KyfxXa@yuRLRUDPU@3)17B! zabz~c%Ais7_700GO`%fP(SOb4nC3nNW^B^MjeWC;*yyPmx%jHp^7=AipN&gV&%{J$ zfUf}Xle70?0Tm6z(OQz1gh*q^5i&l1)VMsmb|#KBsC?@!%D;YMD$wV%2bhY_&(>0v zBTiC3xh6WBbu5Pm3i-NJ+o6Evhk=hy3fF0QZV59HVk15|@q~mYJW>U1w}N6mfQ_Et z7t)QX_EH4?FOTDvro4cf;>IInTzXlR&{l+W$_=+|Q2@V0A_9TBX^AW|3WfKtTIkj2G|fW)`BcJw1F4rsj{U z!-Zn78y(CJF@JwS0b}RUV2^R6ESH&GkF}a8sG0XRA!ed@et3wy(q5)#kj3he@-vQt zq|43xp^$OG=W$p-KEd^Jp4l~X#@AXw5#(n@&_gCe7W1D$TeE6na7q)_ zpM29f$kFA&8L*TB@{`R2y1uItCmOzn;baZux;<)<-;%Bn|5YIWIty65pRt40brvX} zMUE8!A##nHVP{n`CL#ap^{=qT#*?ruUSjmqHxZWXyAc8-y;8%$Y?qHC7F$6B+KD;R z4I%(;jwp|_jypXjSi~rio2By~{&`^WG=0E8)&{Sj0iOkobpw#jtq72vn59*meiJmD z_N&K>P;cN>bReo1+5>Fg???r=Mq?QaYnHJ)%M^0wrb*|_+evkPzFjs0dsOi<;RV-n zlyl!Y0v%gAVYJj_8CSTuX$It#_&FCPnRb+2Gs9XygAVl8r}B=9+gQ$nXb6q!J7+FN8I*W=uAXurFtaRVNwBP#R1v-3Nh>W8_ib=c=EWD0>t&e}--FbrWc4!!Kioi+U)pP!}*0B2S zpRrJ%9*=^8wbuP08ZfE*2U%<;YkIRan1BbTW|q_E4uA)ifK6S!3D`dLmLS!TLwO0r zcZ9UqP1_e8*Swm_}o+2O*M+Z~ZMX+Y><%?l{!3-h>r>0@(z*p`6gR&F^{ zWjMM^Y&W+|SXpgHxYN+-DO+a+(gWu^pbvGFLU!VI3$3&!vN7B|(N?r)COuxG668L4bmGJG+Uj+&jCuwLF#54N#1LnIT#h){(fBLev09UgpSTkoS4q zW}ZcXqQfICY%Mre{d4_k(K9b@s~RBl_k>VJvrTTam|1r-T-~FG5h9?YHE!P}SY$E8 zTG=LG+nbySB){S#;%9pNAg~vBV?P9v@^m_>b|ml*303&pVF1Ouw*C$1Nm*i}q zT9<}3zLnOhR(VsmUl}||PYsof!j@r*AkK7(tqG@&b4NNiUFlk(hFk=I6cN;Bv_|lk zt3M_tbo>c{ssf0V^rh=|dl85#5_ZD2dvkQ5i08@k&Uhp#UkTLU+M8K65XJN?4}_71 zJSh)Y7XuSSnrRS;iZwnNJ~c4y6nTn$`Qn$Fy7YtL<+1H@f3{V6Xvdv7p{hrAwSPx3 z2$H<0%A;PQ|6?P=qOonfxoQpiIp6eawe8}kPHbwn-aCNhL#vPaXcK#z0Gr!VTFh$o ze$O}EN>#gA!>W0-Dl#%U5}%t#JF;m)T`d%V=wfO6VT>i;pqdT?(tl~d&{6#J>A{p) z24*#|2Fpk$`RMR~wxBlzFaMH;xb$;d!EjZ+7I|d7e89dHz?M4WOHLEf@@hs~=y37D z7(=Rk!z=AYECOL?J&Q${LM7wtPbN>c=QEb>D4wR$KnGln& zAH~@;^S-TQVCPWF4y*?f2OWqXWQdO~KNM!wr%r+%%jlB|$;WZkP8ELoS2v(N4T{pe zWmY<*r+rn97P0J*iNA4kXrooU19kz3za6=ajJpp2Qi40}9PBT?qm`c&AYkz$mBsIp zZS`XR{Zf|Migqp^ksCuBLD>oT8cL zd9q(*IZ|YP@PZaJ|C0OMG~CvaCw%)&21V{5oZTWlqt>DI4CO1+LRZ_mmi_9=t(}@; z^Oa}-N6*2+%=oWG&)k!eLd`CUuRc6r$;}}u5|KJ}!}GJ$NTGekVu_~q@%|FI)k27U zhPjaWBRL)dsQ>TcoooPhQ_oZH5t`Mhf8qOWs-S0Z=IHKm>n>%wY?Hx|+x8rjzXWx4`A&=C~3U<`N}O^o7%D3RqmE!7}cqhe?6@Lj%^|@s2~sTf|p2 z4I4tZ9!6YRtFjz7b2M88eNIrI{uyear_tbC&&0Q)Y(YE`S37wC$7J)_Zvdv~usxj)4@#^QeP z8*mfvpU7WdX{r`vcwhi2jDA8Yjz?AOH_{jjhgMe={zIHU#FS6q)7VWrqvvyx%{bXk z1=IJhnR^sLeC;&y|S1SU0v zfPX6C`YLD+KCwZYB0or+P~ul5i9_=K)tP5`Zpi;m6^LV{UMxjE58fV5NwB(};6%!|fdbMy83u5?6UdY{L3-8ZT<&A-r?5Dm; z@-haVM-p#uiofS#6F?ZRuS_#%k%l%8{t70WbA6wRr$`!iwqDk|I3sbe)|-4wy2@& z*CsU6fHC=GY6@fhz!V5^sqlsoaeo%7j-<+zzdUt{v-gt(0q~Yd?{DR4n@j4r^O< zqY3pE+PEih_?sgb>=$^Gj$GVaIu;Ms%BN&UicID}L~>EAx4=Zq8lLn+pV@h0!^YnS zqeHYimXBQigwWkHPb52AJ1|#zZ8vtSXDD4Ih1Mnk8l_`WW@2zLcp!uH%7fP+-ojWk z2N}P+qu&xPnj*aIjJsI*(3_fOY|thaPnY5pq}t@pPJW%djZx@s1!64AkQB9`%IgD7nt`@^V;<8?JxF-VgIJK9V-38hw~gTNR3wp zbBh4nYe>Tb)Uhb>rIWZz1(Y*Vua{vQ<|*nS07aeBTakU`91Yc!eLI zWi+=DXtu<$V9aK>aaQ$Ect?SE0!IIK1D6MV#VH{_q8bWUn`q@$9X9h;z8-(>*qxC- zHu_4=89lMfAyp+s(k=w+ zZIB#n3U*lP{dLZ&XL#LN4NqFuhclL4Cd-dsb|=d~?u0NPO*LtO=H-{g2oznOgCMXt zdLX<9X{8Tlvspm;6wH3|RF$lkbJ#f*pmahN{^eOX&f~BB1k5D$ad?PrIo%b9SVLMq zy`EVeaS(DzxXx5(k`a5($jRAH@!OI0u(>JMvjtNId<`pJt|RPZ^wUkW29P>@mVG`eVRv^9q-WB6GbiIKYUZV@qS~E z6`gYwu)!bbc&B7iHkrC;39qzNUD&Ljc7IIrI`S*|s0J!j@Ar$CMKW@H2H` zzjTjiZ*jeXBK{0d8WS}^U)*=XDKSVd)a~i#G0l)LR!7;T;b~T04|e%7G|GtF`}DKW zDeb{h9h-g~6MJbY9p-vDz*4oo|ROPD|C-SLhI0e5qylrqjUf@p7Zp){?JGrWe(a+s@Tg>hl&4 zj%^T>f4W=lvGwaN`^*kos`(g(u~|2TOl){l5Z3FUCz7XVs%EVZ)2bb!AzZS^8OSCq zLZ`ef>c-u1ie1@ZSFAYRu{zb*_Rx15^-7EaeQNAP%^OaXmjby-R_IE;C!;Hzpbvak z^|x^>mwHx^yoO%Lbaoy)&y!un&^VC9KIQs(SiWO!d}$sdfsU#Q1Rz*rv7?I6D<$|_ z7wZg0F{u5nTm=P)@Toxj09}VTe5oE4<3bj`+K)sE^~8EI6bhvF@%ueqp`Fc zxSU^$je)xY)Sp17#B!=`!ifxdJ?Su#&vAKpLi4ml(J3RJI7zIK4NHz^Wkm4k7La$iBf^N1M5ITmTO6iQp0eN?-co|Q@P8#17@wzV_)i$hc zZPoYn;m>~DJC%z67yzj15cTm>S=wZ0w66vA0rYPzPp8}_g5YjmGo&Q_*G+t1jA{w} zd&f=6>h!KiLHh-{;*Gj+GQw7R&$LV!`GJQ48W4ZIiKMH|`R0HPC)CXS04fAc@_oew ziePp;I#$+`{VCA@GD%SG;%lqtfR7A+Ms=gIW75$J$vEf})NK$CsnL*J=u;Zvpha$NK z%uHb&6t#Ga3A7VoY+sO_&$66nt=-d*hx z{2iuV=+kT?d0_F;$~1BK^MkrEC$H29bMcd$9~Th)&OBQI+tAD9%yOaHq=@T#E0wHe zNlkV9il!Zj4_f3g)c;kZD{_48ox^KP3612jW#0oG&#fYuIu<>cN+A;)$Tio7@ z8Il4XhaWo5iw*yL7so;&IhZ^tdfi7S6T_NNbFe;azH#FQ5wqdg7g4ceJAvsySsDOT zsH_n2AwA)}`*Y{onaCEJ@#P-ZXN)nq{s5@U=uX-LF-8yYhrW7p!`pU&EY+qxyj4H% zA#7td1I1QH_i>9Asb3IWbNd7wxBfC8_MRnsRN8GDm($PoNKwcr-_0Gb_eI0OX3=k4+DTUJ;17! z2&L8Qd)O zLZh$FgV4!@dJnVUgaS&xeV5P!1_g{TdRk6Sbx_GRV91#;Un z>9y=O6RaaOW5u^>?zBY67I(Gc+&9u8O6F*vf;)0v~gATljw*e;X66Cd%+_V5- zg!6l2{ojyk0M9_|5d8^*agFkWd$N-Q{f)<3So*|v5AMknv-8*tGFNr1RRP0GfFf-U zst8}M7F=taST6>lP^2f34=JqDsmd{Ii{E%r@jPO_?6_`{_;6c|HiH~VdM-J50rnZLZvCp_BU@*G0;EAEWb0`POr$iitjrX9dnF$(f+Yy}E+R&l zksKU?oXFmvrn=`qbDpY{BvdH0_6?M$0pmCv*pfc%Pl4!kj=?5F3^e?w)BeP|kl`;z ztT;iSMm^WgzFaXkO{y3ejR0RedkSoj#`tV zT6B9L-C($YmR(;_nGlqU(ZVuO%?ktQYEK;PLxUYkg@K$^aE+>htG#U zAbQ`R8+E5~BHDWOEcXF-;c`B5VBAl# zR*V_V?D4h6cv)$W?5zm%5I9oPGP%xyOj2O&qYn=?=??u;^b%@P9AoR<2pZ~8k2Mpd z5R&kpEmQhc*tjF;-ijdTzk^>SRpsQaef`#=&54Oatzy^S3E(AxD0%TQ{akGg5SZQyN*53L=S0j@>oV z!{WYa4x!d&@RvE&w(N2!JtaD)(Uk9Yv6TJ&20c|AR2Mht?R%&TN8VY%S0M>tb(_uD z5-!wreT}cUm~AW>mGPaC9w-;R-W?$gLPVleX5a znI;oW+XC~Zk>=YrZM6qHkrVgtt6tQdtQ{R6xN~gZ^Z3v7&*!xIu-0ua9H#25KSr&v z2fp9ob|qoQW%Z@e(j0T5dH{TQ3QE<4A3REk!Fp*JI{nseKy0aB4H-{8?!t9XAdMDM zU_`2yW|nZOc?>W|u(5Yfx{_Y83@YwEuQN&m5o*8l0y}mMf>Rbb4M|W^)vV5T`?|L4 zSwr}q{W{Uxn40g5w+XTT^BsL@Q+dHWBvu&m(%Q8bCwefUT#OP#&LMkTxBq@|*A!@d zqsVxR4%6B> zAJ-4npC7M0SE#Q8P26}Btqn?j=*$rbIv2#<9@JUc9j*vns(v&Vi|(%V%AL8>MzO+P z=>))5vl<;%+={AxMRsHSldEoWb#+a-+$=$z)J$K_MfX|m2EnXhp|dv5D! zgQ_%rh`_kkB=Pw^`4RfWS!{;YdrF0mda2U4V`9?lIzRJ9(ilif_`RK>MX=TuK^Hn^1N4S{L+ z;UlNj=ln&hu;4R8k$h>gwtB3;m+#mNc+kprWH_$tJyx>}rWDq%a#;Es)bUjje0Z9I zm2Tt`yHOpd>&y4@pUZ`Su6VX3TxJ3r-Nd-ueJg?ajO*kU~(gZ zm+HYR#sYFHgF9HA;(OB|x!5f2fYGiS?VN^_&z57EuiKk;f?D%N82AEhEnq4G#4M02 zD>vW1{c|RyB{IK05<%zk@Gl6lZ;0A!( zUF~wTEYfkc=l`o#&av<#wUG%@n_DhjykKV0dE!^X9_tksi>$LVRlJ*|R>KD$k()oID#fLjuJ|grGaCj`L*u1&3jdv2rMg5qs2vxrkwxHlNru;A?Zvl6)X= zpRUgxj0dOHUrIXJ(B`|6Y_7S1FekGywPX?0oz<^z626FHaMR$x1XHXHC5}SP&H~e#hcK-EcYLS0TA6wMjg{=#^ zO+XX7Y3=h3Xzy$N-x;?E-zM+uEbV|ISZYf$iD`0QVaO<-TXyCgUdfL{0uc-yn49eB zKeP>G^uQYY)$7j7fF-=UKG7^XvMG{5vml!_4CvfP{AvNG#DP~Gh-gwlrgU$ynGy%- zQ_~nn4^gT@bg(+4ceNM{eUS5P$}T$){f6|`GZxEfrD!7w8?7z~0Y8|^Kn#rC&!klS z^3Jfu*GXKm4;3Q=J-{kT803`HkEBMtb-3lWFr8%XY(#st!p8h5O9kA(z4Z`u0*3!j zXz@McV4GExpcIGmK{50BProm)CiE3EB+?A#{M{;I+N zpHb+lX9Uj84b+bDls>nm6<`;3Y8U|1(Au|~qIABArsrR%Z0XTuOOV7s%`w_upi+W- zNxB3AV>B#_{^+uUC z_`p$HGgHMY*&4Zjok(F&+@=0UFoGF}?jqFKAM-;O{b7zJb& zGMgQ)wy;>!(_o1}S&@_I-_ryuL@-koqn`fWbD=)#dl_X&{%`7Le4<{EL zI^cuT-K!t~?=^wt*trye0D~8irwmroH=!t)UrdWBOenpcvG!H#3WJUI7RWMDU&kV8 zE|Ki@a9ciKGujEJ*wbVGzxP|H9y@h+=zR~cr*GQ$)VS`*f*_XD>adbqKJf^k#R~_; z^FKZ!B0xZqsAoN1aU0JnEezAR^Rt#}`m7SW7d}EvWMg7yuI=u7Ur+*EYnLt*NI+J@bq=^Izc0d=(CwKjTe zuL3R)g%JQQ0V|nDgmMHURyoWa%UzMMx+ITd;n~6z{CB==m!A*o5RM?IbF9sbc`ba6 z5t9{M=1SX5^vlnOHH8meTAp{eH0DbRDkCI8mDa{{$p;joww?KnQ|Yu87t$a73ih2| zo%f7sd}<^DD%ctSvUfDzCq z|9dPLt)g6LB+(Mh5)a-7x_Tp;)CREdrU5R|`?xKI|NZzXd-2OpnSU3wBhg|% z*Pb(~h+che;>(v)!?y%Hf&2WxfCs0>0LiF-&n)Jn*YRR+oUg96GPu^1HRkHXR{(ZD zaGq~rODv46zq3urUZTz`XKl#u%2r5nM?SQO{0|6h8 zy=(bvfByX0r?>##B%dJ{Z8BQ~ob4jK0iss1Dxk8yX&^kl$hV;E1W`=a^0&OYjS$|a z)6~6aXb2TU5EftuJnftXYor88fPZ;sp*{qk21S1t#ky#6$8xfU*Bjm3jS35h8wV$62=H#xOKS?+j%A}J z9`od0=LRKeXE@k6>43wm^Uz)GtjH6v^XE*`RIbbzKHxD`PS!<^evAlL33Q#s@4`QDD zA<0Z2?a(QWj&odwW1#TY8&JJcmpJNTmP?nV*(VhQ#P_9C{MWz+8J`1?2 zK7G0mv?9X^*>8rDV!X&eu}S@ZMYdx;_lZOuvlBKyT;{Sco}Rv6Mw?%^?ayhhJoPe% z+j9J2e*H*S9-D4Ofya|A&ycZYe`m>{Xh14cD>7?iRjWJxZe4AmS+IuI%LbkA#grhS ziB{Hyq(iLJ^QI)=4kjEae3`L2QLZF=hmE5CS`p8G4IKY`X}lXgz?{^=qgEfKk)zoL z^nfsTD9nAXHL7j@OyJnotOeXZv)dvUBEpKv7iisH|I57F;EvvmGFv-D_d71?CU!Uk zu+5`G{u()7C%l$=O~S@N+`NGu9Vh4L8l+b;Y@NiU+1b1Xa&u|-mM0&eW8VpV#-bz6 zx*&Fn2GE4GfDssTvTg;^ln4W+8iz^$XYNO3yYs|u`ORr1vR=2=Y2t>3R1_F%d>ZaN z@tFM}aBi$g{Mas%`3O40jhUt-1YY|J5B4K9WPeHJ>0w`&&&S#Hf!&!3(HFP>Jp-ZA z2#j`)j$-!%+TI>sX7JzB5W*N``;SE&2!z67RC(%zj?pGe$}K(?9;JeKI|%ala7cxw zoss}%7=D~qt4O%ArK}^UC9sbcePzO?jzS+HAY5+Chp;Q_KST6%KB72!E%f8gpxnMZ zGEFN8zqiUMG?Hn1%J3Rw#j^(Y1Zp%4&!!-`E`2uX#gXDN|6J{oP`ABhSpZ9>wV#)_ zo1PZcDmmnd<@S94Ss2nkJ~c4lg|YCdEu{i8B&c_(Xf}JX|i-t zd;dj-qRcvDRGN5vv}%bKflLIgoOfHd2e^a{#bC5ewDK@gD9zTeLg_98AZ&oD0^49u zxmq^;nuny^*5N?JBl81;BGlk6OSp#V@gpTvkrjFR(3JjcmAO8J+K1B7fW!`4jlQ$zC+m*9N?_%f z+NMq@!NxdPM;IH{W>b#Y-1;H^3%?E9t6@3m(RX1Og!T^((O&d$!Jw zs|V=TG+-GV1KOG+C-K)XZZ)&jpHjp4P#9D1cCgNp(Vj^KzLZNy!~5x%MH|n>-(xL6 z+G|4ij5DUO?Wy^S5%f}QcRKJL&Q&XR=wS5+IH71hfJ@Pwr+3>Y7N8X>X%Cx@BEjc~ zQrQSB@NIQ493jH>RO&oA{INhu#2g76$@d9_50&X+ha@=)g0Gqk-t}1KQ?elPD-D)t zgWNfQx+x^%)I!;F?S*c0Xe@#P4y?!t2c{Z1KsBMIq4_z5X&w@D1Fb98Sq>-PppyE; zON&M>(Ooospi=YMO)~1H^I)&&NS#~X;Z0dX2t20D+%4CRVhm&HMmDV1RjbZAH~9hF z>{v)#hm_PSByj!4z)3m|B!!v3ZlkF8A&=RbxH+J@BnHiVy{PP{9O*1oTJiwBNyoR5 z=^uq`r;~Lb*MDG&WTPi!R1am0+K2`yuu4nPJ=h{)9P65y(I`I#!U9xdnz%)QSX?J9?#14X#tB@8D z19IeRWo|%Quu7e|_NtcsyuVPUfTeY4>AIV>Cs6#GQZMg~rpY8oj+R;x%zdE7(kR!t z)ee7aaCtmLfG@yxdoks9N++PSF$=owhJr2cXeUF5N9MsT()NuWusLj#qV%L8ppy>; zqh-K)#sMYRpjYf5+R7*b3nBcR3qj^%lH(4$%8PaC-d6eB&oXpTWn$kvW_tX$5bnj> zk|O@3Z_J*3q#PC`>Cb1wA?Xi!y#czPEtz2tQp1=6D5ahYxY==wQyMVD;|=MmRFlxj-PKRAt(h{___U$rMo_?>=C%?HT7mMi8ms!;c( zLqqty+&ZBIdK`Q1U>GGt?*>5eYtu|?ay_fU$NXmoJAslXnnH)u*J8P?;!aO@y7p^< zj7UaXQ<3Nsf@IO&IBLQ8dNw`<3FC#=PJ*Wi`++u}#Pg4XEVOEWp89;0%z-EQ2cfI) z8Ke)(L?TRCjHk}e=&F^(h=rZnS%Q#LTldHQZ2f^!KdMf(FHDxW%8gXpBn6Ulj5_f> z*+@oZ=343J5@q8tZcg^;t<%$47*MU$#&MrH_-&Cd8zV*eTI()wGh$oA!zE_jmX5_DvCrEvt+tWOe z9W8;76M4?onn;4x9pmy02{j}ByEqR?1Z=%=B<=Lq55KA9?5zlQr#Cq;+j~J3J7Q(G z7}TnMPbi$P+PgZhK4~#Zf238o%C?}ly6`r0j0I!Q7oG1o8Du-DX5#VKdD-$JpWZ}( z^#T|9gqCH4*vaBBuG z&BQ)_`Toqt6s#=ht{JUTaJmXSWWtjcNA0Lf7Ci!PNu{5~E=^y`*Z3LuaE9LuG}=+` zs(xdP5>(ShTBl=JXtW6&vV?OyJ1Gb|z+UuyH&N{@=Sg4-@ZdiD^aVZgS))f`5NjDC zVls*9fZIIOFsi2^A?D;XiM)GmJy|cwP1Q|!O781^z!RI3IZcBxA^Z*p@>28q-o>yD zX)Xf!*}NwQNr2@Ax$Qtq$t*z&n8{Y zqBS1x%`9&0HzlnyR<}o%uFJ+ky=f+g1z%LF92lH)&g`_PCUy?z&{I{)X+d!?jy4Sl z&C5$ENgsqpA}&sMLi%%chHhoMtrj*Jk5|05#t7hFcG&tWLHx+jJCH(98wgkL-;n1P zO(0o)ODtVGfVK)EjyOioNt#}}NKHGT=fy1qpLppp$6+mY7ZKXcjFv*r$*G;ATDk9K znitcB|K81^7w=ifSm_940wuDdvtX>(^1(hJd419QddGKz(bKhXdL;^*T)Mq&s%ess z(=Q$nxtEIoN{1y%sAdHu3_K+H4h)j1(e8F+Htz*Xw?v;C|Wiic-|ZMM2`Y`Ds*i4wf~#S4_D125W+e4 z?ydp;+H^}SM+T?Iv={&KtBdn%Mg7KqdxGD%3ZGKZ%HD~|sCIN5(Y)rzX($C9y?Xy; zz9UXnhJz>9Y1;BJs;KbAc239Fl%=@(vw4dUQ4u%g+81ZDeO-_xuw{h_8TZSJ??BHD zZQdKW&nQH6WPE3NFzK{D&X8Yso^Fm8c|C31Lb6+fd*qV?+K6`FIcQb2l}{-UScQ}s z^qEdsf3%peJ`k{kZGxaf$%AQ*(R*=zAgmJwya=P}eUAs^GS~)gBl)V_0J#OW1D*J} zf+oYuQ78&9??RgqCN~!FJolEA^`dPAX?8SMBY$12Mitn0B{;)No}qxUVa<;oT4`x5 z*!|zp(B|4Yp}vnEl}`i!H@VPzU+#&&Vp5#4$&dFzy?e1{5|nuJEfG3=j;rSE=aJl= zTz4%m`r5UM=hQe*UY+a%AyWu7JD!B#K~6qY|Kh~J!L{_2Mp`;n=s+@{Z0@)Io$@O7 zG*A*4(0GqS&YY_tDXlbDMchAlP|8E?3vrGqW~=AvB@3UO1_a*YZKe1M?9FybSZ{k* z1xEdfhmA`Ih05Sv4^c;4Wk=cC()cLPz}m<iC1XOa1e7}K8h3Sbor?0Xp zM`r9B5hLtWPT%8za!YH27{$cMi5;S0!(_F`@^bF&Xg(_z1KodA7wg;=9s%j@aB?Dz zQWWFkoVG%Ebk4`KJ%d(;n6kxbtu>RiOBvbw0z-#XHvDc;MxP#SOHddMEPvQ_8U6TY zQ9bhopK@IiZ(F)r@c8CDM$@jrQAfW9U`zy7jm|i)O&`7Z^R&87XDB0e$X<}T+^VlC zY7J$12g)CfY>L{bVEkBc8Vl0A!?_q%}(^B(15_4FlcPoGcCm9w8fa1=a1k? zwr*unn|c19jlhydVdwbFv8|cOC|x@5=1R-q3Y9A1A-Qv|K0D7BlHrcfJaS=xH7Ub` zLxV2vwynywNKS&@mr4RA8JzA=FNRZU^iD8{{RYQzdmu1VorQmtyw&(2m$M=3BDt}5 zFN^-~ozoO42;8}!S6a;eSx-nz&&3#&C8+pf;09{|xwsyQaZZ9NA9;o%dU_HZMg6=3 zD2T^j_}rPlZ&{0tzP9ponDEH)j3Tz&C?@uNC6xHXbfsORUsrR5mc?2Qs9`(#7r+JW z_a#|^8$U_lxADEWLFej=J{7XJ|kaEU1Gf6(PEuvh!1uP(4 z`-@17VC1Gk#P2*cKW2kMcJ{-CwJ&1gC*hylZgd?)ezC#5i$mjPHfvsaG3hR-$Z@e3 zX+u+vbu;O3(uJQEh^I&Nj*UtvUxC1{{Y|*Jdv;Pw?3yhbwH}_QBy?Xe34%nUPtX0< z+G2U!O=pik2`!eGfR2V-DDkKLfxAgE&oXW=jF$KRG?rUD-sRx_B!l7a$e|VX&mx>A ztpRw|jgyF}CPA9xbM%WRL%CqGE2}q|Z4T=#w=p={{DGUGxkKzDPADDoz%LToetg1L zY#+1AuI0l?wfI#A68gWG`pST)w(o69%0LA~TBSo!xmkU?>z6AlfW zo|d0xQu36ma#j3!YW!-HC(mYB9n)|k@ks~vzUik2^QiovVT&G#<*hgA;Z6JpO;BMx z?9^~f9qN#uM=ch5?C_k!Rwam7-y%p#j-4ZSuIZfXdoYB+l zC@l#(9jlyIS&tN~J1mZaN&D}Wn&JdUy&&K@VLxaxOTnh6=}Jz796c;Ekjba_2dgAK zUcS0SHGzErdAq+wyoNq?9E396FV_>l2_*8h`gNG!*-vC2^qY(W5g{=04@9V-h0 zkC+m7&6oox7g^cM3)r3=7XNnr*MCkG=tzbKVW!&~YgRTvCC~>N8M~9JeQ1mZ6q&^aO<&Er3iuT! zlTKw)UP#HCP3Bw00v~us24vUCK&*}QLrzVFVm;`fn*lC9xs@QS!*h62+yYL$yRC1i zh$N9eYCK&0KO_iS?Dw+vtOXcW!cyzvJ!Do@du~W2dY^og1FrrQr562MUhyj1~-7z3zYE-54M0~@`%ZOfmIEVlXRn}aT*|FCB4w^+50Q+#XPSSMcoK9Ki@BM zJaGu+I$Ki3Gar1R0`nIs{x{3{ZEKx(vgLdbMucAMeNHo1=W#bn{bS(ZVgzf0piUO(9FCs`(2 z{mod6m-Rav&$_9;Txb(~a4Cc#cdl2Dy(Z*)&vuH1$LhGynlA94J&X58yL2`aLLE7} zBD{6{-Jm&ubd;_M{!HC&txr9xrb!b!tqNoPB)0G1 zvEL#}NZ;Cy6Vv>o<2)Ryk7bLt!S z{EL)I?qWCu4+{`jjp`7s8%%Z6Er#WBS@irWdksR=_U4r8$E>j*cr{1$%GWymFdB5T zN&Xxo40WV)J14-~3414E@04|4+i)G>HR`0Q&fY-!&?}9ab-na`cWtF+^Wnog#}%Uk zdOl%>f=xF!i3z71z;juP`%~#&YF@MfYG5MEf*r_9eFR}CDUi)l_e>P-u7H+DGsM>2#}Lg9p~0OO187u6MiO8c3gzv!-*ZckUxR zx1;BQF+oqd;zJYmPi>WQf4dd$IB)5G^{h1w^dfGF*V4DtP#{wea%~{t-Fglh1FCjTjy|P@IYZ`|c8msR|U@ zzkJF7)Y5W|ld{&Z%46OOj4+l@cB48$w-Tu93=EKCe?PEqL=rG4okc&@DZWK#WY^c( zi&peOh@=UH;Q`n}Yl;C1FIAGW;CwA0B6+OCWw<@2L@zh%L_QmVKz~#S?`2Y=|U>!nbw4^{0Z7er!ylJ15nq#iAM(Ro>SHjXLpgUBcVOc#2uP~v87uKuePK|$mH6}c`!zAnoR%547Jc+$JIXp-30XH#FCIDYCd z{b#rNw+EML=CfZKO=6FcV=F>K%=U&E1S93sj2`W11zWS{*XQh5gBNSX&Q5qZ%Wi$q zsWJM@#~~uPz8|ZVpO!=_9|hti=hX|3JU6-?B6w};kdBTg2YCEWM-gKc-apqoXrmyl zuWy|m@my|*DITny{mLl7j~x4>Uv90Pt;R&Y;jl2Kg*OR_omCrFIO#+^m}0@;ZRczX zp}yBDNoYE;6U*+EHqu83)~o`RKdmF}>EMfvX4bvJrBh}d$xOdsRNAtZlBO81y*GYH zE%gadjQH*TrM66jiw{iRfY9u79VSG05_8n^9&OKcM12ky37JH4>C7uc#fke7j1Jn! zc}G88hezsnB6hmRt6os8C6nf*Il<*B0jE2qQ{4+Nr}(%62SiH zfau0I1a_y)jl`R!Mi7>#^6TCNLNNXL_c5gdG)kEmAMquPio4O0fCKN4ug;p{&~6KZ z?mc!cQp~YyXl9ds6ZK}@b)gGV=M2FVwsSS(W=#=qVYb7o5eGZ#j&3`5NO?RzcE5Of7%Q{+VTxc@nm~ao(0cI{(=oo zn+BkBnXGvKdEmB}2}(mfE~iZ}DHywf1_d;)sa6l}=jf=VuJPj*_n29ZurG<~u*F7@G3+8jDz5qd`9)gA$lgS*{%5snodIxlNrNuP^}{ z2}Ugrlc<-R<#XH_@X(<+15V5Z##~?kDT$3CS)Q08o^2~sjOQxgH?iYvItX>tb$s|V z(m;I^OS{Ul((Q5hW1X@9MFJkHCEm|bc+INg7e0KT3N650*g+ii9Dh2v*Yq?jBfy)? z{~*Ed6c9>|u~cZ4=+)nExf=Y=L=6>e{jLQN1$=!jms9AmZyk&-rkvxp8*tpHGr|jg zJr6%fSE%XA$q+hf{s}3&1Z{f!{c%T&+DTj9iyx;=Vtlx}Jf)3t_)D@iVeGoLQl7`T z?|aJ^R>_nu&HH*-@yu&w$>^17#YhO4uT+M-8s1fQcw*A z;w^T7@&!oyY+K8P?Xomt#&9s5nU&oSm_# zapRnmgN_9fV`rPazV*}1*qMq--(JVo5xf*%ku_Nmk_RRrWZ_Ji&kwhFT&2r%lxt(E zkv0|x_zbi0ocEwcak_%lTq5944m-5RaSL*wNfTsK@_f@NYkn9`b?7YjloP4}CiJ4v z?WaMSj>pt|whj4g+9jqJx)%j4y$t8a$L=eT-b{E);>Z*O5_f04UNBX+(w|A@?u-!y z*2NKtE(*M)`eUL50AMbkp~c#fHwu8Y@$%Q9|5Q>O>-ebsDDOzKqQ`RoT_SFYV{&*K z|05&VV_ZJc{>bxd9G{2Gb9P7dW(Sl0ui<50c$}IsXZDhX~He3)ax+m(^ zh;{qwac$81_RMK@gITuZvE0AyI3vJRbY|}U0rPPl;Ygz`CY^~FB5f3#aLmK3Wz$e7 zYm=MfH~We}pB$xFjG4MkE zTs;S-00nPXE?2SFowUjmm%UiacZ?QRYYBU17c)9mNwp?oVFZYT$o3sg)tQE8gRkT7 z(gn1^2+>O1w(q%AzhD!D&5idR&c_SBbIc!hT0V~gRw|O#^J_l=BY5^#OSrQ-q9<+4 zDlD^2z}b|Ya3axEs)&-$6&%wN{c}^GNdcs)I<}Vu`oiRBT)=1LEX!F-d zj4ZQ?{e8%{;xG0V&$LY1>$Nr@3jPxK*h#5Dosd6lCoz{dL|31CJ@opUJH4&H`a*tG za>xW~KkLbM4k2ol6jPVi2gy;s4a8mYT%BLDhNXhs24UH5%~(}q>V z-I&u9M1dh~-m&1L;*yNjo%79V1s@l@aMF=VtVrAk!*sU>5yOXi`-AZZ3W5LxGf5AH+~7}?V8^~ zcyJ9FuZ_9wsR29F9oJTK^_-zw@Q@H;dWWt@)p~h+isxzbD_cW^5D1>zr|O*lI;|_E z%1=T`oFi-lFdyo2h zvYwG5w#=^|Zmuf!6sr@zgTgjq?10_nhMq49Wdf4!hS=*IwcA{eK`LCyF(#4~>yfn4gx2PVayr^f9f>Q(u zrNLGYtyqvo3*w>xz=NX_=3-UQZP!yS(aVvFvhW344M$Z(bpfgvp< zjABD*dX28f_(~N^EZZfnpC-#gaXY^42j1!Nb#fUSC_wn+a8LzBLJ>BwR0?U_DdsOC z_d1)6E^3i4NS?Qicu!BW7s$RFYRQZFF<-A1h7+b&ar<;#r0MLcG`nqpeoC2&h;sU_ zuC!e}c(|`-8GH)l+5y;AA|U@lXxaZU*(hB_!&6Sq=76*JkY!hASVFDwWI-Uv_jq96 z)WQi!z{H7O+9M}i2HG8nhqF}ckIWp5Typ0CckA{Bx$nVz`7SyBq>VI3xN*8{WNW%A z?W3<6neT^in;B-IJfbh^SnX&c=% zdtj{X}UV%v^C)4%i+54gh{)^pF+SG-J&cSt2#c}1VQVj9(AO!6tgJga z;as$~{>nYR9j=!c1xS{1zwu|Sq~Ol!{H^}wevpiL@2xAQ1Fi)76Zaj{!*QVnR0aeQ zZ?A;V@k(*`x~)SV&4CG!^Qv^qn{6pFX{yN-tX!TE)Fu(Fu8DtXE_GC?fzK4as9TPEDX%7q@J!X>^r@K`eZ{U-Qu)Yn6 zG@Kmu8br4v`_45Rn^gqaP17H5Io?=(-{YMDWInDVzl;xcPA5Vb5|-$tf~ms&sJzvR zOghKL zI40XOlN!YUOi8(TEQ^P;az`l?cQ1UoD4>o{@EDwZB`?X=X_Sk5D?C`Fo{`}r= zw)g7UUr1A>!(TWD6x48MHyxP>H!>rAQ7y3`aEt7s6jN$fUE+ETM@w2LI_Fz@+18E} zSbR^gI#^`fHl#?^R5j{0=r+iWD=j79wK=O%)+_b?%}yE}h*Ll*fJPLlT(+|9{_j2l2$-=>x9ZfqVLr)VIu%x;p6@H8V=TnxrR5gK4U0 zVb?t@PZcq#$oz3o@Z?_xo}?-Qg)Th!4iv^SRbGZIG45z#R4m_wLU>B&!2tDUV#MZIf2 zeE2YwL=|t;v(z$j3 zVe7tVp@0#`b`1wKE^xQ6tdz*yRaDjEw`@?*Z84}J5oFqmt{C#p^dxF4=-gGGs#;_m zE@jc=x-FG4&1__ib)A^mRfk{-9^+MRbFRU)tOW2qiDJ^(T7vTC{92maN~re z0oU8B?4}xp?-0IeQt(8A`5qOp1Yr#YF25s_IUp<`0;q8UI1!SKCmeF*x0fh4iyMdsJV9WN%#IrSd+pi@;0ivRqQN-Y9|EK-g|MKW_e6Yp3(-ARjbpbsnpk{1|8S zU72Q_{D6qX`juA$5c9~awqc&4sz7vPiIaI+Y<;u$g+$J*n{m?Ew(Gsu3J(C+pGaC` zbbr)+Z$(QmG8%?a<>*kQ;F8z#;1y*Ew`tddXq-mC#qWKq^&J0X7b+NC5rq=qh(`HA z?Hcv#ga^GUMc9!WC0g%T8PFJ?-RJiYMv=B@NLt0Y5g6^5Hv<1ZakoZXtoP-zX)!t` zb~BJ$&Y%)SUUNP=LDf*d6i{HL+8cnRlxX?Zqzv={V?YXw*?^gdyN5-x8-F?Bl6$o( zn`1l+8PMmJgK%!l6iGeX%Xp>`MhuVr)nYKUwMDY2Zee)0gU@G@9=qAX`M7Qr0 z9WDGB3R|6Wzi7r#gh1FxhuBSP&lLL(dNsf{Z}sQrDg zNNB!%xT&&{vI)y)xix~;HM#o5FQ_bg>vJ2)+=s1rG{?Qz7r(`B85&iM&z?_U-&)oP7Gu$H?h~pPYIFJ4Dhx^)r{Gd zN(cHbh7^=G$3EuH8~_w|J<$gK?>eEr-2XR^2d3Kh7(yzp#7Cch2@^^BSCeF zN)<#|9AF8u;XH33zgB|st=Qf}sDb>An!l)o>CjO-)0STsCeQc|JVWOM2 za{f~{IfD>XVw3`9z()#u{NeGbHDOn9Rx z5zZcq#OYQ1fd31CSee>te!LV_m80|ys~Y}CDES#9-fdJoMEBHp{0lJ+WJ4moxJsPr zje5TYeZl;$4UD$O^4^mEZ)1a9==x0zrQ`!8slFy>Hp-#mLC6pWXwE}HT|l>I#wYTB zf11`u4Ctw80i6TSmiAU?ANcBYrFfcCRynx_8v~^;j z1jj>@^@Mexjy2b`hB~ifpmAzvS$>iB--~^5ma0Dh6*)Lp!VcQYjdG?WZ)sgd{MQF+RON0nHmt9GSB(*TRFD}3=ed zD*{`ubZDr=h8 |DF^R_+if_du6SQPt^s>Z@)W5ez`$J=)lh^>9H|i>dQ6%J=|ii!Z<6K?L|&5vR)NMs5ri+8R_mhb8Dej8Xi3IjK(hJtJ0xjkxZ zZ1f&~LFVU!lKYigjm{mkqNa|(?hntllTeH#HhttwcC|beB^m-qVCnt=N`(Z%m;a!V zT!t(_B<%V(Z1G~KaWO#B4G{Z*+$P^H-FgcebTMxi8ME6Mz7K7I#OUt}mM8h#c|@q( z(Ku0v3LgvOx!8H;6hWX*MIToW?!x)#?)fGW7RIwFz#_lUFqtx2U4+&8KLVO0qT6*x zrD*#?-d=8Ixn4 z8{P;ff8N@@F5UK%XEio;~B<^x~qAjLEgp%tM>D<40)Da2csKLXC=5da|tEnwv6 zc;xE;uXQdzv%<DdVf#>Glu;r7op&HR|8Bl3zocf6ep6)s)z5-3slnfpZfheloy9}Y^$SK z1q<++3ZoQskzG`wO9Ng~&>GJhEezaTt!l-(7!J@LG1C_8xbdUIn;%|1<%Z~MpA_`i zNPE(vqDtSTO4Q}njS(%OXhYy^HNgE~a4UEP>c$Qt6;uSuGV&ZWIMbwjBvPkLLV)k+ z?IRM}20!pp$kbNtH(LX&3gq?S+5QrA@JAiW4ULev(OS)+HH+=S#v2s*P`Ni)^r!)Q zQ)2wdQfWYyKIbM1i>u}Xei9r;8xPD58cvmY0|#C5CQ--}z}0o(DZ{1j!CCR_uY6B{BKlww5^1bE(lodv3|R{NRBAquTJhr$V3I-T}*k z7F8ut8Xfro>c@b_6>$$4D+gpSv;f5|g3i%V^iRa*sXYIi^gj2M&lyHb5e2lF5_rM= z?pvEp3T25Zq02U76>K=SC?Y^OTytw=jwJ+3Akp`fp<3!wKC0cU$~5$ByBl6<3J`)> zpey1T?c4?o$ADQD=@Cb>)!JoXAj@hokRPcK%iGr6onkx`(zq#1cR}$2muC{jal7U1 zQH4G6)A6{6;@Eij_(cU+!k?+BS9aS$yAaRl#_Ls<5i~$+rs};7@-?TEf;n3l%hI1)wcbM|-KQq;+ z%RxA*K%%on86#OyMYP9o%aw>Tn`fzIg#i+uRswY9HY!8xRLkypZf50w^USW#scnKV zxgfMxqeXZYx<2wc>6n=~swAuOqs#rx%Y7}Tg3ouPGLgt90|FXRAuC(1M}T-(O3(>Z z&~Gs`_u4=#g|IdG0!zC5DG$d%2H@Pz{3c0oY5AV2>NE~Ijx2+M1V<=816&vS*a*vK z240($3w`=)vI^S`d37y)Gx-aBZ%-$dAa)k{2VEtLoT+a=;`iiRk-NnHaYw)oNChk_ z0J*Utbv<1%6daOLYl$o-idkAIpM-{Y&9rJ^K?`aodQ@H#tx-&bl{c@tAE4$pK{`fG zHw8xnqY1=h)44I5V_%x<=D(ggFAtC)5)AIwCSWhmi_z#XSIH_|1eupESj;wjQ>plS zN`F5ya;88>Dy->A$mHyUDl{ zEnwNbA=gA(lQTS;cRbd@)y4hVT4E6d<7*AiFI&NX4;wcAx=y*Z<#!5=E5JGu9ybM3 zmpgo0HqFYE?4?rzY%0C6l;h&Pzgm4(arHKwW>n`-33_@`6&>0bGc%VR^|x=5^8z3J zHlsFZAWx;j_Dz=Vp|#mS>gVl;dLj(Jp2iVWfJ<2+C3jxbeJ3-5S-thk6f^ri=yVM4 zp;7Ylw0)@=dDA1d%=jGxraw^4{Hmlt1@P1o|E$iVi%G$1h~C|gXgU^A>C6@FS}S_l}{Ka9KtP^$g1 z0RfdfyA&K@=Ma8)%SCaAhEYdvJM0)@>K6_>y|9}E)ZLzH7n>Ffsu79DU_u`bRIaV4 z;V!uDBYZJ&MsDS1j=C-HTcoFCsx_|MwLkdsL4W52Z3&RZ5v7o$pVw?#!ZYnY{IFMZ z>OuyuY^=z3uc&c0SX=W*lNSx;012V?I{93}t7Yiu{sl<)UM6FHkKr;mdKWSIrK;ue z^9ed4k*l9u#kfqZOw*Mo0~|KzVn1%l^sBI1wZBm_oI*`)sKSsxJ3{*Kngy*1F1B`R0_5NSHD z0-R{(%}A~eSz8?pyK}k2GR2>NJ~M^z+E6XN7D%c)wT?j;oN+Gp6}|@s9K*8_>k4s< zBZyRoGM=Z~LEdjwl%+JH9veJdhf^|Wwc919KXca4aF`GsP06?^d${h}2F;Lj_E>=- z`BsPj-!N{usPk9jClR-sy2Q<1`LrZ@(*wQ&BbomUBZPQO`}m{6r_{oA_}*8Q!$HZw zRD*M0p2y{e23{^$b3$W>58Y1t>!@sC^(RXf%Z|T?1X_EH?|?R4u>1?vAzUp-`*&e$ z9Y~UV@#%)ws4)Ug<*5G(LP`vnv}{ds3jsb5N|8NGOtDgwINin&ex6u+j24`|fbqoh z!EM=vZ~JhrG?$R{opgVdRNgd39-?c?FU3-s1Cq})#n7*zqemvIDc_b@q}`eDU_Xy* z3^I$gYz-Sn@^%&*?MGE|uInL@ASQ+={Ep2{0?ztcLrPKb3{ieM8?Ss(Q65v&USw9F zO-J#lGW5EgKoUbSx;Pov&e3uKz@oKgvN96vtAZKwx&ZIbC6lc{NLe!K+^fL|6F)4H zez`M9rz7J!zx`2|ycP&zm7Qy|%)qtK%}O$ojcpCDdZBZ595eYQj3dQ0VffCcf?nAW z0#@7E`=)?<2R)77VSYqpxhj>-==}5Y5EL>)0CM%X>vvD8NZWzeJQn${U(0dx7x9}mRsKEY^*DaU6i|CYDs_Cekyog zVivdd6aVtOOeO?1vcN-jt;uQ)rNarVu{d6)5YfXGh{w1HN?9CrSphso))H!*uMBB% z$l$dh5qeREShL^G*RILTD^k*xSKjVpm5@XBDn5fDu>XEZe4_m67Ab{sq+OO_!!~)Ug;EZxFn)2_}5 zFriy4GA=rAKwlgyjjiE6Q84Sy)oT96{r=f0#Gbh;BNUXR1a70RducM;lh+bpH-(HX$Rk3n=ol`uN8q`H0mE-;km8i~B8W_7WbEZu)W5`bB`W6V$+`~x zDtgiUQLFd9JgXv9#w2Acf=oy5CUfg5DQecS#F>hyEF=EtW91)(mvO4T_wk_xaZONC zls1ZY6 zLm9umXj@5KkyDbXN%|C)mN($s)^nT+o?e9~- z7;vQ{lk=RCdp~8T)Oo?SMW;TW$h`l#{i_0Indy+tC*6O0-&|}qmIg|6>cdAyEpb{^ zj%&2ko_xcKn0rRY&U;xds}mKQgqG~w(rLibZ_mr~#9{3OavL^JAJshReY8oii`A>D zv>RoDBg9_MW?;>^Xj;96Fl&6o0`}QqKqSwBRAM^0sPh-R>@0G7|Cl*gBJBCn`HBON zV5rDVUXKC!&F$^$!>~HMfSxJp+OGIrq$3_)mD|D^eOq)v$U~bNrtvCg`0bP8x$@G7 zjiNRL)bueB9+TtZWI^x^$m4?-vu&T?x~$%G{xcD64wG9EpQoEf_QfYDU>PtF5}?$~ zQT?b-6qw+?eEA(YvGcpH^M{dI4?`PSOhbmXu=|J)%}vdviBh@DTDMC9h0i|T!utH6 zz6X-$B-W#VU(#$;KQE@-|ocEF6h^bcsLz2^!n{jI)leZV8sy>(_+ zqD-B7w$;X-=3B||t+&KN?Dp?UF&{h%_VMCaulSKFq|vn)c8@vs5Ecd{f$_ztmZb`l z#z)7pr1u%G#d7l?d}HL2@YtY>90vf12Z*U?@Vq5ozrA3NVZ{-99i!H4uW=^WGG#DN z$A)ur0f*8vV0|kUXFf8?L^WajVFzn_=tuJ7^`W`drAA1LHCDv{B(Nj?vCg$|R*B zZ_i@)4-nV^njDqpDGeMMDo!6KFvdchbVpQ2{`qGhd=?Qb5}_oTKtX@dq^z#aSzrmA z*;kt`r9>$DH%ie++{MtvB|d>FcY!`SSX~t5t9q^dCM6O(RqMQ_cBU;x@u-ZEU9@ie z1yn~dq&CvWOuwjdEH#`br(x5)qAr-WU44D_TeL~*0spe`erU1s+E3Zbv;4NdzF5Y} zz=H>mC)>X=`Q4gCzU6ct8^`$${H>WH<)dC}wAP-)ihlcJ5XTRaLfaKr^OrHjjg{@o zY6YYGs0i%iq+BSZmQPH!=RyjzKEWXOU?I1=^b0L|rz!duAJIuN1Uwm0v1PImj1Tpy zorBchQv>(F?&uDTLeNQR_J`hg!Dm(0WxnYyL#0zHzXSQ*B}}Za>&8 z^9v&5iRej_{cU066hf=f5f?h3_5C$ExmrqA?tZLUMO@_2z&CW^XN`?zBTb_vcCTvV zc~SvYv}m)Sex|(CLK4%Ng3j>MjlETBD3{P{iB*d>i%7f^xi-Y^x^Iojv^qV|T$Z8? zq&eBy-!E@`whk#AiQW4e8_ZsJ`xq^E0sGc2_Ix5a55UPhXiDB+1!=p+HUJxsx3Obs zax29ni|ZQzscqZ%`*U_Wt2fP}pl;&NR7q{tNw`cbPM};4+3%Uocq!vUQ5>V`{1p3M zqjS4g@VGig)qB=O1<(08n#E_g<&LZ9XjQfMMWETWTw&JBiBH4mHAk}VW(E+ApTb7x z@!a~^pCB@n8Hp8)q)A*ke{WO&1eq8z&E7!)rwn!vP&GNOw5Y_UC1z7&Og;K2ddA3W zJ%)QoaikFA!=+MS9p4q0>T2KU+p}08_~q} zTZzcGk5b}Q;y8;XKnXHY2cr2R-YJmDbvIFm&zNESSAzKd0sw1BaJ)>(m@^YW<iAII%>z6 z>9n|IjQ8Z3_8KG8c@WW{82uH|YJx3EDU}YA36lV@9Z5#M&`y^)2;xdHn{4|rE%au! z;RcVE&pYTq?rgtTlp|MF!A#|_o?H)Zb@2IWx}ki1!Sz@1>2Zr3dp(eCoIi;1)e01G zB@*zbUDDRoA*Y768DSeal)5P-=T|e&IT6L2&uJquBO}D+k5N8p;I=|yK`uYdb}tP z@rdQ&oXTJsWLilm*;h3FAOMQ%{|ji@424U55MKZpt>J6RFMA6O?X z_E<>$+_brgcZE2EhJD}Tpi*Dyzb}=H9q!AVr_4c2+*i+|?m?2ORRWj8HxrOScBT)P zOWgWO&Z%v!D?$=&?&&;f!E4>(Z!>TgZKl}dD;(v=k6WRWBs2YjV>gf;rB6{(tWpndd^w=We4z(fo8Hq zPFJ{?WRUM2Q3XMNj(T;p-i+pDE%*UdGMU+h)aE4UzldJJtsO| z*n=naRKVx1x{Qem3$)CV<<`pV*nLW`5cj}Aexwb=AHZ-7^K~oV;;cDtthJf-S~YYm zDAUkEnew706iv4@3>K**TWsu3BSiwmW5_t%XSC`TW`H{gp!X`3_1u+5Ee| z1DlS%<0$OSfr@gNwIfRbmbp3oM;bU~8|qODUOv^^)EFqC5&(Go;nASQd^(_R{z)+Y zAIB4|EzQA3_~wJx@4DsoSMCuID_@WzeArO~FF6xVH3QjbW;##?hu&Hp`KY}l2-$4U zA}s_RIOYqmmC=LR){`Iy<&I~W=aER;rkMd%ZQ9S`CPnDznW%BUx;VUoL0wP8b`~~d5 z{?vh5g?L#cSF`ZP8ZEm|@-Z-zXjb1hJ_`dTvLM+f}sSL(*;mm2-pS6E&yj{N3e<)+ptBOE|6fdsVuLk|v z&~kllv+R1l`-QZp;tdTU7ghNKn|Nm{V9`-F60>aWipOGhlgn%l{ zkesLa^G&EFNG@78`;prSS6CZXQuN|+gb|}|bD9?_z5;MLHc@P*pYz%{NuH%dJR}fz zjJXa@+Zh*$l)x&YIC;B&o~x1fti{k7{RmVl#{Z7PEu#|O``!A4g$C|@0i7Q>enz|KOcI$J%HUJ>Y*r6rEu`E51RWtj^l_446;%MT72o}v9;@*EZq3vpq6G>|QSmAjO!M&&8I8IydRg!Eu z7+>M%usj&$SbX2I)zTC`Tle;N@|Z|=SURH@zl|v zyB*ifem)8e!Cq24Q)AQk@#*p;u8>J`+n(b9#_!#mQ5gvVM=sWC3btR$g?cKBQ@IIJ zNHTS`fFAfxKU?l~I@=Z@%{q?>47?-ngt+VYw@UvU>eNRt(XET`roL>0g%!JV%b0VR zs)Egg!k_%*AD9_k*ZSm>aose#6)=HDVReGeak}+(G(Ged_=~qF1?5JaDQP_g7D+ix zWU6mbA_=uJ9*qx5+y|hQ9%A&y2%qd+yYJQlP2NfqXx<&%SEk0RSNrs;{;CRl2sj6K zci#BcW4olr7)rbfhOxPUmc(tBI~m%L^#!JJLo42iUVDi67*3w}ulx?_mSYvlAo*3|Xh*}MYCf$1Q_@vNOA(@Oo&$x#r|xBkZL0Syf{|d*m2M7;)5Sw zz_4q+VnJlw?dzHUip=|&wE&);3qL4t8OcBw1CdryV35|74gXcq8x$CAH0a_m)5K8S znu|jn1};yC#A_qCQYx}m);LSVzCx(b`J)iu9%YLa$NBA(@cZ@8c2K-HTRqS=wOu$rII_g1uju((@Iv+#8A5QwOt zOlseg#`TNuo>qBQQp#7kZKtaNC$*))0uuX`E*lJ$NvmEYIj=ZIXc)c1TUCi==NJ*) z<^I>n=U!)(W`?9p#wrfxdo+*9`gR8Vm7VLr;C;U>FSguL7}%@d=ryQ*dXBo~Akg~K zVH{PvOf~p!0fj^>Fj}(iRn34mMvzq_*O4HqWn|B}FSDBWb4}{4*;vEfKJtg)J&E6E9&U7YB48yKk3P8@ew-E)l0LR%sd^=Er7!9-6 z4>2{kf6Xd(|LPNm4c(+F>-}uXGhb}dIkK5ZAbKpqOU~v5 zb=Ted_wV=9=U$1DCa_NA2fp5+c_9tVZqszitszv(<*`RwKPGBYI8tV1VIp-OB!*XT zIA!EG9shGKw;2!nnKK~$y=A8u+El4@LY8KYa(*SH!!I?ZzZT0I=|eH>75Yi!vLI9j zv=82YDy1IR01cns@I`P~G)^r&_?+;l;IcB`Czb7v27=CO5#;BvYqEe8`30gDe6a&d zPMPUUG^jh6H0c?|+A?ijWgB<*udlC<;BhFjc=6z7x?M!5O+E45`!ky9T0Vb*NFTG; z3N>SqSw+AeYa`HOA1)$LVXY({S-Lcn*j1nJOtPrExDuyZN-=g<W5WN7!+aDB50ilL%Sf?XN zkVdNBD8pM1&AqD~@(1HF@KL1_c5en_#P;`XyT)K7aEHnVp4$T?95Okt^4e>^=JjMM z(<~aUKerFM-YkA#CvpQsXwe9UhzU1DK}KfVUGEq8(Lg_0n@J$1bXfgk_1!MzKDels}fG z%2k)++5#=uGSAnhJ0~fPg6GGM0e#t8G%7(c^m=pqlgO|b?(EU2Z$RbUR<=57wGrGw zJz1$Lb-2{lDTx^t7g=Q7+U$UtaI=MqXxKTD`Bg*2+ZX~xt1su zs`G4jSYRii(zie|B+Y0aP4qa2QW|vH_R37~Z336~st%%Ns=yRPhaA#{j_l8e7S=97 ztpQJ0XON2AY0tYUbg#S4kftkN-nbHMQ;#p6KHXM=pI)}AuNUVji(8SGU`s4Ru%6pb zqu%btl9GkeH_KAgq5Lq4Kf`=M<4*#ht*?vY%dt}%-d+h&qy|diYxKP@ds1%%y?FKq zNF)J1Mos*c%Ph>x)x5egQ5otUgYI*}zUVrH#m_~xyiHLpS*~cesXwI`SldGKPHqTt zjk!#NsmE5QRATdfP)yrNRG#tjd0oiDJLp9IwSzA(-Z*0jpDk2xOYKSW#XA4sFiUfB z`L$mQ`;>+7T0tqNF?X?T=;I(67##`T4D#*zX}zID-#xsxF=tH4b;&x zjxQNK_AK*P%*(rpI%9(7n?q?-e#w(Wjjm8nO0t)5OYWYX;?Tw;V(TJWUZpDK(hVeU z6Ir}eOMq~&33D({6)7-c;2OmUVkUc+n4iD8E!+{B*LZ9uSl!*Us~pYbl6-}M|6%!d z+cJh1MlHxhhCw5p$voAQsPG~%?}9P=C9ag*ad%kwf82dlP?b^pFC~IVC51EUYr z7MdS4(%%2+{%jQ0&joJF7icT&J&!|DY7D!g&_6i(`*?I9@$je0)#PH!uiAZ`mhS5m z0M>Z`)m1opJIG;U^a*e}d|pHuQ+#N@+Ak__zS9_J!ev)sh|-^s0Q#uquI4(EJHsXG zEJ>ye6_-{!g#!YVl26CF@RC2nsSoFd_TKPTk!Aaxp8MsFyNTwb`NEGKXAyaow*j7r z9jz(PV;ZJiWax)Sr`+k^(qgqaxMblS zUv1(~;uC5o->^vsrT!i!xKZi%YM)1mCOTJEh=gauw~-t zrGgH4rmv`GBYx@Zahj6x8o8g%{Cc&`g2$-;(LGAKVM&&PO#JATnd8ksLFgO~a;%FR z{PMR21+oWJL^o$^KnpxVXN$d0KdL`nWxe>#Z7#JO{nBlx;Wh=3t=;HKFve_y_P27HUyq+Yx7deg!75i31;3 z@nQ(SYm9cGkDIj7O83~sl0uASUo`UL|A-pOV0PdoJ*zuZ`UvA{`&*0$HOYT(f2+tuT8ub51 z--YM{JH5}uMnE0teG90BGqi<8_-(Xbu;|iQU-!rb)eAr~CV3@~&>M{r#emW69uW zlCH67Ek1H&0J(B>mMchu_6+qtB1vQ4I^j1M`ZH!u)$+zUx8(?IOQh$BzJHOp1n_p* zZ>oUQYa}j;5CYE3H8dInrCJr_a!dkFY&ZT8C`ca1Sbu@Pzror%?Y1SYUL&lLaS)m! z8my4$ZZqKnxUjE$#0N{@cv6dejn79b09_<)*FEEi`dCC-6u_?`iTIfT+$enE&C$6K z@qug9_AMO1q}m2sM|(#bzE=eCd{O@3OB!TEA=ik8Aw)Xpou|I`q?p0l;Jk?1_=$fzwW??tpg#SSa6(Vg*9pHc_MfYwZ1B zz9#hVHG9yGfo;)5*&_V-_TpB02pu4ux{VOP4{tq;pE<_hbOmSjY%6fq=p9b4nM1D8 z{l>`D0I+^SFA;N{o<`+2Iov8=+MTkI?sIj+=w! zJf;~qFkgyZ5&;_4$NDIC$ZTP@!RuZ)U?1t=0aHmYz<@Y=H?o3@bPolHEzyEP(=pLxF&ruraTdEQNhOh!nboyEk*wCcEaf-FKsecsjuCPnBX)DU!yRA z8#kk8aDL4Fu8h>A>z_uir3M?y6!+#dqF@Gz8Y2)+fstZMi}HU8o?|NLI8lg2X9Lge z1z9c7T$+r~kA#{bAb|Na-?fZ(8L zIAbXISrC0BtIJEyIUZ%3vm*<5HM1!Vs3ebIyI+f>$p8JBn_p!>Q3Cw|S8SZGFK7RJ z@mp*FmD5qoHn|$n#ZwX))BftuO1a7+weh@6rzE3D5r{|t_s;COI@6gyPuHbUy!SP( zE9NjqDO*8SU0__@a=Q9a7Dp@_w%_WHpj!8<`2f|S2H+tGg8YB|Q!Y}U#DZWkQL7aP z?NUti)XPLJ4A78@pW*o#nywC}WKAtEMra4CvzwJS(g?2+1GS0siVt3JPt#_g0RyFQ zRP$Sh0yPTty`?tt5Wyb{{Q~BAS4hIb4S?yctpWNibSVbDOS=$`>CNQyKbUv;5>8Uj zK8&_L#DSL)KSfZhDo^-lwni4|7C^HF1SZC@GN=v^19sxdJdtmj#{cv7XBiO#pgRba z?wgexQ&l}jZyW3+N(D1ulsg0tXMo z{%X^ECh8S|=%`ZjOGyg+@V?9Sg5WrK0+f&BOj^8uX(AXHh*inHu-tidahiDJHwpIK zv9^9wqfB3Ty>u?(>1R9^;p)%oY$3KM{Jf*1`)^FH2O1#nb~HzL1!$Lx;AUU}O{hpN z_w2m*+o#ticsDQQR}aLofP4F5q2n&}4jl_C92|G}p}qzvCrjee0D=x1`?HNT3ZkR- zuysy@o<19vx82TXnW}76=%}>x*bz)*U<^rRj?B&T?=a53B-8uyU7ySTUE{l(rLNYR z1(C4Oa*9W-*f_|1rdF#vUXTgQZ{SE*!0+$`;9E%K;ODZ7mVfq%Y;Fvf33k=$1-7V; zTKlBcM^AN$%VtapgXX)iN=ah4RR%b40R%gv2xPIRW(PkC3iVeN;AZiI>Dp8C%qC?2 z-ie3MIR>1~2lsj;7yBLjBJ;cZ4f%X%j^jcX45z1V$7pSeRpDKCL#vLwD5Y_*--y<~L%iO9 zp+r3Jp%Oq@E>YubX8@dU_CTwS#i83_j7rFA?dam!3s6% z>_lC}mqa^2m}b<1)u8hk=3{s2bJMdE0Iy~N_};Tx(IUfZlvo*DiZF)HPO6=6#{;i! zyH=vCLIvY+_2jp7IMg0B;~oM`X(aF1yba~F(x%bM4Ba&9Pwuwj>N-8*t#DdT4Q0~k zK7J6?62PAOtqu~*OZk!sw)D_*KY;%z+A8nEv zpDGJQkI(!D^$=c7_o%*m8n8vzaOWJk1DeeR>vjkoLo@rZj|<0R(uMYCZ_~Uh?dQYk z)ypPoSyE(a{OBGOHV9Gd8`xK3)BWdw=-h`R1=8y&nmZ%Ei*3MAML+eDyugJFWv!s3WhA!szLZDyO<_m2kYfJ7BG3RSUj#Ef#*sb3B;hf?eTu zW-q}m2n2yQ8>2;ZBE&F>KG9=eP}-8RsnXi2StzLZlW=PHM`I{rBAgyojj@;>R2}gq zPSot2dpt)JD!9P%7NFd|xeInUJb?;;M2>pNMuH;f;2F#{`9SuSc{>-qwu4MH2f^sX zIngfpWzf&g8qSn<>68G$DPw^OAlLe4k?Pt3gZSDW4JX`dTya=HD?0vu>R1w885_%N1?0nsze^ReEnN z!bGVD(f=v4Bc?m(VXw;xTh?)W-5t3qPrOLLDv%-CQuz1+Cd}AUxg$8wbA(?j@K=c! zX9g)sORYr~SR$ApyR)rZ0}X$2;#3g%>|++KaB(Jp);Vvt0x%X-GuZN7J<#2vZ|iJ4 z!gga(`?%a4Qse6$PPFva)o8KuBo?aKkB&SFqm+jOQ(yU}1~cji7*)Z=kl{~M{DYkp zgao8pdmTvu#lew9wP65I_!PWc81Yz9%d!4l$IDwEP`Utg{la4$#B(9BSfxB&J)g`O0I5`|-v9{t%b|8xL0l?Xm`QRwQFd^5xJB)Po2 z$IB^L7`JyZC@p`MC0ZbWd=}y*1&E%^7$@5 zL}MgFr<^^j^kRJt)>*`1_KMwR8VMQMf`qUsNzMDfKTUZuTKmRh{0Q`_Rf`H`jqx#mU&8r6*Wa7=oewv)mu;g zG$w54A$=BF3SiuMr$*!Zw3!QAVEero2msnycBR({QvFBWy&IK&{iV-TO9;gm4|fV4 zsn_!vaJZj4`p`=Mw3oe|%7)RK6d+*gJU;k}|+j=Qnpp8=gQo`1?L(QkBfYYc&m-{9&_;9b6-j2sIu|Y7(0B*SP z*3kAVl)ZJ<)i~YJxxE0?p*p~r%d`a$>$Hf*Qg=&bNKd=9D-zw_xL>ey=N}ND$FZtl z<**g8eRA#gpy1z*+hIFOGkXJYdi36BTEuRmS97m`1wuF4IdBB zoV=*+$7$qdd=dkp@lY>{xZQf+09N)&sMb`K{fBJ-9UFgi{C;z>pYgT*IS@N?@7LGc zt$>!Fd^j)vgNHOcLdTi8^D;JWgDjxbNwYh?j%+)!b&o0alBx5wmsEf`@*`V^TnB!a z2vhiSoLe(WS2e}H%xT-UEQ+JJqR|RX5u;8my&%1&F>G}@C+mQHhFrX_()MDX39EP@ z{M~Cr^O?Sy6^Ul2IdIRdtus$$B|2Esjh@N``uo9P zdWSX>RPO4nWpR7rdb~z9Yl6g6c5cb)wxSonPYK+tzOqf|=v&BH<<2bqSe49D%6KYx zd7R`5fWrMi1+kSwHs1h|CPdoTRCHr~G*Wu6al3(owKrG92ud^`Am#P{3X(q!a=VU& zBE?T{=z^q!Pq^c2+1u}^{lnOyJeSxomAF_ zb2n|HR8*Q(6W4P6SN+(9mrsiT0G`t90OgGJ02tV4z#iAUV7jv}AkZ@XOX(j=Z4Q#u z1=(WZFFsu@0Huc;%K?p&_LQi@hQ$EEOI0|(9;2%!;%(!Xwt7!wt#Qs=A_`XFid%%7 z#d%p^z_Ue)FSP^PUl?3sc&+UAi?290PjH%$rh+uv#LLrq#Oc*}r^x(Y4{p~t_4CLc zh5Fs*UYxeh&oCGIIvJoL84d!KZme^$}X*mw=l4p)$7Ard^y=%JclB5m5K+)77Dr!cZoaVg1%I<9JhR z`hbn)Mr=VmfNCy~ouGOg(UU3{2F7h2AkAK^KJ4I(5G=r{`WZ>K8b zlg|8k$oY-rCe@SB^+aA8Uxs^$-(6azC;4G*A3K{J3Fw|BXDV6BvcN0(DG84)4oUi6 zQ!s;`hpm}ootwo3)Q*b8a7?Z$7gse`Trpw^O$Lju+fS&Z7Sp7BNO{r!OCOash^c76 zP4z!My-lL^VFelHhMBnpaZvYS3rNPBN{-p24-eyfzLe~qZJU$*DW0104)73HRq9-Lp zD|VU2wqD)2mu69JvDLVt^RDnt6g;_1eB^nj#GFyB>*D!8TqWh~g8+;&s}T-;fxa>^ z|6(;2P40UTVJ|Kou{r0E2d)v^wM-#XU$W}7?7azw-8c;c5vL`dtlz`RY}JZ(_iXK& zsKHD-2lqjpE;iktzH;lumpz#FL2~@~(bij&+|jorS)Yi)c$_y>L%q}W`>Ejo&Q%Uz z6Pmw%v^BAAOQdy=XF_fT^KeOh_w3t*C~&~Tg{~IbMDnnlbWU})f!fHJx$qOZUo{n1 zm;Haj&tb1`d#VfWebvf;wd~zb%I*jMeYjiQVX}iYC;Ehdk zC$hGK@hiAo?q!1XR}S_yU^{=HUF~KcJ-qK2FFmf=S~E($1PQWYwz?XySu)Xu3W-dg z_wBtOF)GO1dAy;-XO&Prm|95hvW$MR5{U{2Q%J6o+N<~Obp1>B_&8j1*+}o# z0iOGzJL}*329!A;?!PxMmtuX`l8h2<9&m~f5#FLMxMr&oJ3e)fxLCLEY1)J+XY-tG z3#7u;d;n(3&=Z5s&?nteN_uZ9+qr2bp5>HOa2op8!prsLo(}&!qxN4d zysZw0gze2fAq&-QJK{H`M!gCO-~Q{B_fRFF5{qLmU4L6AtOoR(PR@OqMAPiPBydMMZrQN94m@H zJR{;xrN$uLz;ho+FI>`ZvxcqO)PV|E^)uEB9-F1?*a`k~=7S>C)t7JJJSP=1vc5K; zk;p1$(q8}&*ZME#3?GAp(qa>ZMm2TevnMPX4O(vqBw3h%so?O<9SKfD zA9^_pN6JJ~@&+b5YT7*4>jy36(;rwb?c2T=-TKkl{YTms(gOtm_SH#(Q@ylw14QbN zQ8&HIt;VMJ#(y*B!q#r1YwYqbhKH;aX@9w=tg6|rS`3 zvwkzNB-I;rQKWRMH2cgk1 zL;Dj^-1?utgVsjepI;g81j@mRm&#`JV@v(oOb!!RxRU z+-QiUB%a^{+z%9fOT9*Q9`%bk4{3x@a;jN&D5%UD83hbk5KPpU(%YY~YK;NAdyBON zV5QW)%9^&=y;(&d+-HFEEmOOta^<7FZB_5YF$uktc{kJa1Y@ z9mJ)}w)o9)daLxBeQFP?CmnQ{GxSqMvNXQ4z0sPh%^CUIpMCTONeRo54 zo3J$LXbyeS7NV9xt@SI+rM|^1NJCF$>yOXsL^b$nVwiGQ1}-JOILmT_);gTe@vr;JEW4?HUo^hJEM79P<+|L zfe6^>8^V~9jR+lsg>;8x$^CGa#SnRs?YR%z^Xt4DA4rmfZ@R5qpb+@voRb!L#0DjB zGKvl;m{r(qT5D$RuDKDM7ffVL$j|?4-#Xmt=4#%2=h)={fbR2dyBWCdnlv1CXQ!hY z<}#zV;dN@g4GP@qkZArPlaEEm!Q0~lN=H~>#qxrg0Sp_%El2v``p3wE&>dw_$@rNF z69$$urdgajRU@yUM(q9+MRAv)KN~TNT_G*G{j+g85sdbwYQ-IJ7Y@BnWsu6?U5IES z`w$BYl$Z|R9n+b~V`~tkQ^^bG2q@u@e7p6-?Xqwk*l*o0)Ou0#=r5AICUW>1Nsgpv z{ewu4P-&4GP9)Zmjovz5*%h>!seRDj9K#K5O)p@m=}s?nM5|0c;{Fv^mXM$e&|kr_ z&=t9_`+1uoDk10F#1*!8hik*=HPJ2A0eRc`Ew*33{Ow!&dB|O4j;I3%jIV|rD=NHe z5_8LMBC7iw=utHmx(J!e`BAHi{-e-0%i&pVn2E_yW;s=u_dGJZ5h8h0!_lU4Xb6;s(jY=%o5wO z!nxX|B3AC!-^Zao`c^e9a^MTWv7a?~EQmzTp3L^=$JCqb$0ELlCETQpyfUG@Uo@O_ z3f=`XLwaH^uZ#7T`)#QC(64yu1;oJ)?Titg6_jWW&s2?I2RnbXeSH7O+ z?8fU-no|piVkuBv?J%?LPC%9aX16m?Ss+$$1O3ex)80@L=Y7D?edzZ zf@)Y8?Z)XMcihFlWaH}Q&7Ug5c0GfI5D*Da4wifk8+ZX)6hnh|<{1~)Xs%2UM-f0H z%#|<++WfX;GfV4?dgukm7YEcME?&?|5xgLxyDZ@y&_7wRd$^HNvb7-Jb}5%=KP~&CA9R z0{+X!K~3lGN68TtPOxnusZOL&7SOKE#DvI8={Igh2p-~Sj#Kl!r%K0warRWJ@-TnQ z-dzXgt=I}C4rAt=r?-#e4QX?EO3Zkt?DL#{iCb};0GrUaM6vFPQYlh}D{1jB(-5mb zrEZ+rbO(CS?(GxY9YR%xM;)kRi?v^OIsQyN4Zj8N-H`~=h0XEKTU-=7nB*xOPd@$) zq-fk)5jb@I@m%*7-*N(rJFR#Ijp65!-xDX>vIkd=z}3+~pyN()8+$5tp1;!V{yR6Y z+_;IG#5b%+AS|nttEq++70n0mLV;9JyemuT(CCHTavu{c5X?uLE8{+mf6(h?jx6Jl zaMvu;=+>#-Qed^#mm-(V!VAWKgCXs?@kn#r8|dZUOu{@r;ZSR)=Xaf_BMMEFTEW@c zycW&F784tlzeMj$+}?|^eCYk))}4ijA+zDHkJl@m@|g;mU*udK@3yu;nbme1vS%-^ zBe?`IlHK}n7|2UIz*?plrjIea8+Ree>+3I;Hli6V%~|2{C$D-Xv;M7TQ{G~XR@i2# zJ?;c!G1C`2ETugdupcd+!of`S_kYh9aSwjJZhH%TMEhanQg?d)RFHF&rq(tZ*nWJ=&mhO> z{q`nHrngV5Y8p57s$G`_SbhS`7>QNm`Cx+|C|C&$)m}iVr5gl*-DH~Fg~lR(*b}#3 zqcyVSL-ott<`)XqDt9dR`o!}N5vUiDk^%7UczcNPoX$@*ZlfSUOfwn-Mjft&34FXK1hOaM!oLy>%OX4))ss=OXm9pc0KbZV zPj^kOWKX$EhDhY}J1tDb+3ElOVGn0XW~kD8leF5D0txJYPTf}VrAW%R}*Pj@m? zEKAet(?e)gkCkV=TnnUZFTLD|MOmG%_SW%-iT{DRDOVVgEvm?OV3At`gUf%(c$?1h-vxbRn?cT#qO*F z;{KUoDb49+3qB=u$-_Th2X{=)OJ@#z{^yJH1Tilfsq-y}fE-S1Afss3Kk~_3vH#!U z=E96TI>&%XxA>*aIf()c7+Bml9<~KO*~_?Z3!MRZ>-O4eOf zwJgPc>a@_M=W)gxKx5r?Bzm+ro`v40>Cy@ElyEI!U`BJOcT{b_68Zfo`ow@_Sr)kz z67zS|unnZJeZ-@m?>48yieOS7QfvE-lRp58_El_AGFt5H`hE20qxXxEdGzZ%4&Ci1 z=1m?~{xo4A5Aea1K}AXh&?>=zA|*)?g4jQ_x0)6|z9HRj~%{Yb|JA@b{adaE(&vm*cajFbaJUvwnb57ZA_HOGwM{li`D{Nj7Ph}@5>y7 zNx3Gg9P(m=H$vnEaorXC4aP(-(? zISh|Q-H3IVF2DwK|KoW^m>s}6?19#d6!=X8K(=GtCLkr6=0I%nR=J{VF#MJW277J5 zaaJ>v!z)st_*KUe$Gp7IkvZdLBk*T{&p;iEJVp!=6b}4J#-#z!A@MLz5vnTfjAIwc zRL(GGlChQg+NDuCN_M~Im5JdJECvWy(CFl9hT3r#BCLv)m`-&a;JV+AC9MYRnkT*@ z+qi|#J*SORqXB+A7$~WX;m2^;B;*1p2^KLQwdui9?+Ar#6x&`d`j1S*r)7sr(Nv)g zd04^93>vLD8l0OUx`gLYlEpwnyj3b>kowNok?~w+uoM-s22^Byx(p0F1ZQCI4FK$h zpV#_oqFuRG`6a_U_vdHlKst}U9Kvyvg96P43mXd-(?RNrcb2Csp}N2>^}9W1*ZpH4 z!Xy#!n15p%26&2+pqZLDwXJQL&%E-ZdUwdwY3F1W+UxX|HUJZ~KGds)Ry;DmpCsF# zaaA&`9e%+xNGG||Q^RLMjBzuLLU{)w2utJiL)sMSFl%*j*%0B`vu#7kF2bSTGc!7J zu{;*Y@7a#Uiv%3D24B~n?%ABZiWrcZGx;p=iM@+B3&3bNlFF4`c4nV&8?ppOFzkCk zk5pV{1YWLeya%_-Qnuhtt-Zq!TE`fHa*??()$tNDDnhj60cTMa0Zwc+&gYSPwqHJj zetq+baL&q_zv)E=gT`V&nOJ)#p`C#wY`V~>ArV|P3I^Tu6hM90(55ad9AjB(HE!zD zY>PZWPnA=1F+PFK}bvQsA3<A89mx24fCBI@l9h?X8XF=XbtWX|S%$%Mgi0%pIM}a9%NZ@$uuwP1_I7 zm-`Fd7ICBP3>lZQA|&oE@>iV>$6JroOH9Ks4F}S;0sOAA-WeCFPLEszkk7ewtrQ5Y zbqPwNVF2Blp@+b8r22F%%l^3(vM1`@hq|fm>7>>oVx0Z6TY!M)V_5|Tvyx`HR)Bm! z2?m1u5Bv0t7$wvCFc#{4($kKt*|^9ItewhT5#d}UCF-atJ)|O%&3U79G?d6X>4P(k zzQ(jX)ltt=M22c)qmzHn^Xvm*Eup<#W&6h%Ticf>-B7P}fn?{O;*&iJ|${OkLeAUZ=g}NGH84 zc#;a|5$1j6=^DWfC<(J!n)avr-NSbf3;XG;Q2xfI?R5^VqD#fcW)9~6#;bcizlv>2 zzt167FO71rUC3@WJlc7F8i?|{3WZM)C=Obu_M4NRW-@Sc;Q;y*iQ? zZ~R`~8;fMaYmR3+cuc>y&-=~M_KX$j;4qeHV4&e;-}f$9;xl<%vbIE*uM_&r?XOdU zW9R5}ynuA8P<@RtVarWAP@i84>AM#sV}NYwa^kEIk$Wo$$LUQ95_6)AzegBNp#E@2KgS6k0*)z63_zGU41<6X zuA)xy{P}ZX7ma*LJvG=7uXT&Qo18)6{RhUws(|Xo=t+UQeU}v7`2`o(HK;}fj=z17 z<|Fn$=)O<*0M9Uur@Ut*&*Y{N8nP!^DE&KeOtc8;b%<~vu8jP>-qqp5MRW=ST}qm( zIfTCNg4|guA<0XB{>=)|UNQj8{-8j%EEysMK@}E>m4_zK-$4T48qguhvooyIY5gR< zM!=J6+>)|epBp~S_=_9R!37xRk?!<>gJl?dmTNMVEpkXh5GC6CJRt>`vi#(svL)9Q5%JhihZM0bzm`KqMXyF%o)t@S*@K7Q-yr zpr@aCGt=Zy_@rh*wr>qUvXYT3DdHu*&1AD!o}jbX?nlJ=>`kW9R(c%IbuP}Q3Sh?A z0^Dp2(*W-5U)fQU)j zcb4xgFSY$!p;{Vj);5n$@wLJ_^=;4RNS~;`{E5itM54Ph4OdBbh-Fgu1+Z^wG@*xJ zpMSmIiD-C$Omhcu`##v%s&0auYij~DGC1=5E!VXq_gxR*bqLP0*0S#~98pY-h69Hu zKPPs*!RlAR71ne2Ma}*ytY0hTKg9Yc1g-_=1B{#`mcS1b?QOWm{@vR*YTg()JB;96 zRIj`Csl%1Qp?TwD8yyjlU{bR~D%wF{^fHyz z_<h*8L^k;+ybrAA;UQqQ5vfODV8+`;98fdJ1a5%_)~|wSsnzlR3~86RaU5O`?O|cZh4ss zoSNEU(Niy>uk}DHdf{jjnmDonwf!^EZ=p}t9lbpA&^7DawJfJ94XVPP`A7iGaMv8) zgWH}so?r&p3h=5T0%pT=YR3YrN91VwoStyX<%Ct81(x&-))>%Y zwdZ~5e;YBr94R#TO46ciL(2fp9zzrKzqk!88?w9_()jR#<_hw-}{>CbpA zwpv#UfxKBC0CWYsE#yXA0T%v9mi42M{r!hv@MF65)ie%fs|`3v026_TIDVJY)JJWnNNAtt4KHk(9{+vH z;DY*rZ1mUEkUM1SfQ%D**mKV%5e`V`C2+Zb zs4l%u?PN<(aPU*0biaT75pj<}@d$jG$(Qm04v`Yz#=0%NTX)H3aaC)aONjX#du0fy zUkL%g*_uW(8q%1oF2M2?0&im*Re&`K2N|wGnaF}8&JH?gX@~*_##;37x>lZs3o0Db z=DERC&nkZ;*h2gV9Wl;HPW5^C#VycSc>?qz_ej!*{}^jwAtQ~w)&*Vg;HaoIUbdX1 zkxFM&l)|KX0JSgxZ?jfpU`F?_O!dnGJi<72KX8FFE2!^y2=O3RB1nt>x_iAC!Qx<1 z7r0e6Xl@)qR^eQU|C4V*|MQzjV{)@Q@sO0MY3BLihz>K!1juC#rcMt561m{Vun`4{ zIr>UTwV`b03cC}_?e?a&L8FNRG`QAdq1)M!sxmvoTRgcrQzw{usD|#Tf4|p=A{VC5 zqc`TFGhg9w*3lG#ZSYGc_ybrPvVD|t2ctN44M-~6!yS8Qd0jB}G$w?7htH;PVazfc zX?JkZrluvc+qsQah~KR+u41EXW_Pmcf_<*bo8?bl)e!DaOE~CM)UT)`;S;pmmt~P_@t%4QsmdSg%OnTte(SF%V=pw+zRpRg!>m z&D?VM&U?LrnY`={eJ|=Nr|5_{Ekdids}<8p^QPJbK@KIKt9CTZoR#0b3z&%t;yuL_$vGDaPixBLo4E; zt*q=E=V3K4G}oiV?g=|L?7m!3e8g|~Jyep0yvH9BJFvn*MxyOa)jCT@Za=6b;joq9 z5z<)vvd&M!!1@kn6tp7_R)#b{>ba~@Ws~M_-Do#*lFCZx1DoDlBDE3-h0s-k;j%OT z*$}Dh`pluMMIUB8gTBOVxEO$;9&i}Dms4fppr>Invn9s87}~onz5hLabYEoa2&H(7 z*UrN9jtkJYY~38 zeENaDJEQ4PBmAvw75TYR^@eN{6B0FX~v){_DjN+d%JHpff411jd>>p4%w zM|b+U#=XYbdMJ#6Z{Rtu=XVtNQ%F)Z`2+&pQ>h3g@<_px1J;wdj=W@@nd!HXCXhB@ zkfT#I8(93qKELyJyR4rYS6jWah(>pw#}2mK7$6Y-nBOJE>;$gslXz9U!N+g^JqB`T zbqMq55%I=q^V_rxJ_PDKf_ded-MlbOssx*m>eKOO6(u56xX(t?-!^*Kol})U788sC z0vxaGH^(XXT@J{OTS&b>EOWn$1^p!^T6E0r148pqqFe_iwIxxygdTc_NxOjagZ&=F ztgZ19UR|Eam(?&!&TYs2pEBjauJF7(lB&LjcRzbf;oYs`>Gw^ouWKX9CUaIhw6dU! zq3Rg+`I<5lhXTRQvRXy6`eP3;N!dGXM+_UG1 za>V5cBoVXDtd5&H{%LaAwug;~3524nu_yby@H@Top;hYY$Wp^DVcam!S463ez= z{Nv<2>A26)ot0Pp3?w%!CYI(CV&gNeS?J}e`MN(rTEaC|$s?i>{p0u?Lm^*R_>q8l zIv|ivu#&LeL!(NNC9$vDM#Mc&vih=mn8qNvN~8xeO*^E{r4GfO@3?;ck6CPgu$lJ0 z>gG!NW)yxZD(VdZM-b^2|1zi44@UTms;wl4ZVHsHc;BDBBAZ?xoGJ-0>IwID=6ebp zLBooAaw!~aSK+fhwgw?W1Rl#@C<7>G{8N>@VY%}QnrUy!XNBw7jCXoUa@5=BMNrT1 zNAgruD(&m!<6PGsIW49TxbAz2pJG1L{RkCLYP(Vr?t9o{%h8TGQbonUnuIfYK4I0r=+7&gV*F(J#Gz^DZ8vM@#p?yKZdT`W znB`Og{26*3%X1%IGk(B$zwI9#c(?Fty%FGXXXk$U;GSb+iq>EnNwE)a)SQ~zamAhAUy-r1520UH zNEahz0MD4cY+O~Ra9l^yO7(JSyeMC zCAlC8rDfhs^@GQ6y+orF>RaFN>1ZR^tRCCvq{YdtvnRf8M2%xw8>i+R9PsA9Mc*k@ zuT0|a=Tf$n2|s<0Vh&K4u%|f}Jr?mJ-?tsC%*OPqLWJ+QU|q zDl0F&UFSNV3i%lpf(gWBQ9uu!l>jHVR)ZrZ`4y}BaE=ZW0XKs{v4xG7%KfD$I6?JP z0I%K8Zf36y{?t`FVREi};T!_O(;3N^!b(f1`3%~HgV5{x@`+_va5Ez>iSr0YepUKr zyNlN361!Gf;?fdE2QgRm?FV@ye}pF8269QZZ7L!A!9USfb?jO$6&;iEn_JS}cZ8wa z#Re67i~W}z=HoG!+aA+bB^3@9C1y?eEy%R4Q`ILg$rL;#L#U#Yjp9ChS^d&&#!m#U z+$rgBryw+A2c0smsi(l4bXwzTy*Ng#OfFVJ8B;=UecFN!JO}lwZ{Zqg66pxAtxtQw zkQ3z{dbLWWQi}=0Qm&l>asE1tHCUU=R_#EU3b5l5VLsTvWF&|Z>1zl=;<3?tA9JgaoTsER5@N%m4^1GjDmYtFggzOCzT}BYOYPcoIz97tZdsb#*&Ayic6*qW+*OLX#z@*U6TY`E846Fs;a4SAG1 z-yvZVu?2F+cS9UGL1ydoKfkQCtiQKCY1ir3)<&1>V0F(&8&G>)kEt|JU;0kex4GE& zI`Reh#D(1_dv3C~PC0^?_PY!^zu1n`$bW5_o(6)VAqrCI+I#cKDmw>@MUlv_vkO$u z(Gi8vn<&iSCCKrm_qHhHF(j-ZhR(@m5ml-gO$%vV4)h>O`VwFDCu+5#V2cN&bkV6l z+wt{7)joi1JtPH;>yuKW3uf&i#mEQ|FOa61Rx_!SI9KZg7rsZV{KH+Be}#<`-l%i)8J6%@qZJfr0f>!lV8U3PD?`t59DOI)lPx>-&Q(-Z4Pk$S{MQjZ`!4h# z?D^HRtLPZ4y%+O)_}IDxG*VkziUgTEN>tFUTxzbQt`GcW;&*X!-7Kt@<{Ayy^?^6e zMLILlb3w|lBV7QVqhqQ<jBe11Pr z-hq0Tm>vK-I0gH)>?0jMl|_fkqnO{x*1pJU+Zt4q5BueQ(Q#(g=vGBGj6eo+PLny# zVzJZ!xq=d`<$^a*frp}T3V4l$O3rf(Y}I{q>8gUcUKv<&r@#97(W=y5Yp1h(m-4+t z)#aT-(U~$Na)?`9NW(GopR?qylYaqh^6lUe&e>O6-Zo4yE$ETzvUP+0iz(3e9o0v%}*70}+?f|>)42x+^)oT5W^Htkh^U#&Z zmctAK%UC&s_{yhC3E1w&n8Ht2r`3t7h%3W~;$%OOKvT%J^6N>n`MlLKCq_k1jmuG# z0Yxm+;@Qz=h-6;f6AS`(D(MIYJNIHba&}WC&IU6A?f0HWk3-Qx7Nd^;6~=S1o>!+2 zTuBV`q|%aa!9Goh!Z2EaURFN^G~jX`#h#G}bG-=O#){^!3J2o{X|NJ6tE&6{0CAqw zb*3rz0Pn}4McsS@vfWfj%;+*8*)dkJ=J~XKDIL+GVabM_>+nXGOAV=XYpQhbHM}ye zBphW#LR(-1H#7IlD3{tVVUS`+zuz*c_5yeGH>BGFp9bei0gBAXe;)>x{tN%xVd z!X|V}o7)$21*aoAi(Xe<_bvKug|6IJkyap3_Tk6-;DJq=+HzoG3cPCK7Z?;+7QA#2 z>hN$^>scQ8JWZm-6Mc5^$p<&3Qqg26{Vj4|9rO55l0EiVhTd(R(>}fCD3-yEYMaII zXe*ZJfjz)`W7^yQ79Y#vtYkWz{T9jRodrJcAoFvd%Ko6|jfFzhBdfVu z1s9mTjiV)ID)mG>r{Su&J8#y;r7FV}Xn2*zVj zAI#__H2)|J9d@{G*Iq0Xaofl`!|DvXxXsbIq zACi5*wG(xFq>A==3_YR-%u?ed9ob+`UklTm01?GH3S2TV_RTg&yK5Mqw5q1e*6@9K z|5tlg`PX#xwgEv21p_e9fzlF_kO2ZBCDI1rNQ06d10=tIVo}nL8VZ8aQUh_55(Gvg zlN?A(OXr?5`2AizZ=OHk+3W9TbEY`1EIMfrvgONzSF z^@AooAw-!I^vEJL+w61ErrtH%d9%B1pTrifFB-66B%HGC70Hz2j{8ej(Dc-X<(tf= zM{y&NpMXC&yvBJ*qoU)Ofj)OUCWMKz&|{%2E)phgeW_YdQD=>wCZzho2|C8#Cxj+; zXtb(EV8J^p5Y+~Mcva9<4y6a49pmg4Yr^&^h21fe1-KL7Mm8Jg-kNa zRLpKh2|a5Ir&kayk}Fo z=fAC4fwFFS3KzU`Pvk2A%fivKt~q0#iJsVw2Tzdrr3J|6bTLMs#rg zEM=Iy&3p5weOAguMU29zZ_yPg7UpD6B*R_XA{UAhX1L@H1l&Cc_-^?hoRn`W;$Ih4 zraOug&da)1+24TPDJ*x#5Txb*7z%Q~<*9p4@=^Hyvg)BHq{6@nxA?O{_hrB_eK#Co zQ!d6eu7OZd^ncOKrH>NlJpMn*-dCy50|GV=@h2ov4MadoV}=$RMV~tL^64 zn`X*`dJ!WiS12nvTAPXy)ayPqvXCFTW8j*q!+ZR7)e*ho4?y87acidMGp~NQe@%%2 z#}o5oYiHNd!>4D5OMsJnJOS_9*n;ys?$rBt8BWkVO_MQWAP_wMu8bexRJy|EeYk5; zI~QELsJ7AQN2$tOYF_$e{l58^pKqJFr(#6uKQL)sP zFf(ZRY>9aCAQ&iacLjE?o}rGJm<3=&nTuA$eSKxi^A%YRUR_&7J)iBgi?^a7qfbG$ zI|h=(wkLGPWp)?0-~+AzrF;Ch#9k8GBmEmsu*7f{mc;pcxz3CYZk_cakZk#=;FNEp z1U!naKsVK~2oA&(YKqsvX*$0IuqmxYOz*)}>=ucY9MO6_KPilO9<2<#XNJJ}=*r0LR{ibt3h_Y`&k^pL6;BprTqU*yf zpH`EJNht(|)}QL9&8!4U)h`~V|3)u>PwjCm@suM?Y|VU&u9JqFRlMd?&0p7y)jX9G zxStMQl4EUBhlf(WoDhySwdyaMLzy7jW5b;?wfI{&(}!k}uZT8@h8 zkolC=ruk}oiFyCd5=aNqK`UiKh*!o(o25TyQ`H|N{>?v zrb)}|@7e>Sl>WI?fkfYWIIVg@2*xd`sl^VTzxDwnco?^JmN1tfsXvFIbLysqon32n-~v?X5Ru?tejj1Qtl`CB$6wOTFiw*5mkZDZS?WG({RTclFn_=>~~F>XcNn z`!W_3)D!&X5QiOEe02W%hbU%aXUV3QK3ieWO<)BF3o0oOYf{rtSrQYZ5mLI|11fh$ z`X^ZT2>35BN78T9f>%4?qZkP{>u|4NKCaF^l~B68!varyH9r!`CSiW5g2_u3^eNf7 z<1JKEN0$fD7WVI6Di;PG-T^#?S*j;p8@e2-w&(cMD50+zM8^;uQ?H1BbQ9TZ()ZXo z18m+q!kxV*8NE_Kk9@zQK>BxDfKEn@H*8NSH7vN?baE z18%nkYNiX1f}{VHMWCYhF2VdL&e=yMuO(gW)DNrZy{P$Ec-mhG`nKlGW;*8f_@ zN4C&eT4m4kjlh4ghS9EFWmMys?whjEVn8X>m)T-VQUBw+Go1vSMp z^7C2uQ@d<*^k}qDOmxq`I!nEn%yT6t6v}tcZr?0Bob})wEkujA@mZS(qad?9SlrtN zy&BUR4nIFCxok;-c0l?2GdP62*`|dcK=#Wv9fWC*Pr#e)>$rs!U>PnGLk+=Y+_%*i zZ?gCkPjDm-~x z&~)^P>iS5@4SjeE^CWeu}){nZM zJ;8qd(*MP#haEr_++#fvDQc#$g0XHcJs(inn{U^#ghtI?ZQFhH%g8XA-SUV?AQ>srk6~|Cv zrV@l-$zI=yew0I9o!xuY|-c3pIazMmk$A_Mbg?rs0{tSsUhHS2P252q09MMTIm#&&)GSF)pS;4`!0ZRu!d&yp9_TzIok#h7 z8DX(#wg8r1JN6*-zeU7Ij(n_9pe{=Q72oBGR_!^l0YI9M%@@2d2|3b*P-hM$u1mx? z;>i*3`p7q-b%M8sfser3%K7QbyRZv9>DV(|DEP{F?z#=ZB_8~kkW{#|K(;t`a{X;q z2m>d*MUp}Fg^26@ZH ztM4~zu0|I1T^xZC;A6M}zZhVM-Q|cFfMQ>R01q{) z>hVYvF&3Zh9+4^bcKSRS^b!^yr?))QSM!Eoot{TGO@8qsG~u0e3K(T#2N_>2EH=gl ze6Z|UAS|$OW9Cb1^@k<9$v1j8IZu|EzhqkZyFL#sKl82w%)BtyTTWNTwsRZEQ;g4Inr z{p{`A<=ZIl$}%S%MJv9|eo;hqe|oBt$@6IgI+?$atF+609YxO#x4vY;=hjt`%&pY9 z{xYU~E=meO7*;_ot!&3q09EQh%9CP7zR$>;-zl>W)mJ}sJ{2o_Ln~fqyXcSUu*3)d zCpbrc{M2NZe#BKV8gD+S;-1`FaYiI_IN*zrwpwtV| zqn;zNn~ddjIL|2|ve?#8O4w8}plT!+LMx^_11hb82D~WGGC3}LJphKo<5hdR|FTZ~ z9%k*cU5a_6krbah;BA48WrA}|{1CBPmiM3EJWcc`4GJF1-DqZd+P`47EI&mKX@Jea zot(>ubWg6iCwDz;?;5R7s^WI4F^3kG-XA{3o;ZS*>do!-M)kKKw8aH^rox3?nvyHr z)t{+h&s`Jf&L*}6(QV~+{>gSAMtS{hzu}{>V|9;Nra8RwLB5x9aGNH*c;$x>$G#Hb z=nR51l@}l;OSB;7A`TXR5Z?4$q*@Rx{aaZO&9963Cy6K8jecH($N{$9Tr;FB9K9EJ ztyDmFSgz|ydRA^FQU9&g1hzdyGj0|1Cnw7P04Cns6CC1ZCNEfFLJ5>nZi06;Z`ll> z5d zX_sqtguu-g!Q$w#)d!QcD`ZMrq;%f?iWau-%lLeBicCWHaxlH~tX%;i(6|cptHU=U zt;?IhNg016c|N|(QLcj_%-L(~)d*^+V$!BuiRrijZ4#|=A{mHo^D(wFb_7Yfu#gsxRoAed|R4GqMb&Te$#->kx0ceg@Mm?#)N_% z=&gS!AjmY*e{AuAGVLg&4py1wVs)O-Vv#@K2rn>tml z6g9W7lp@;@j#F>n6_pt}qer{D8qmzBS*@}e*L_S$74vgPJBcQZh_DT1Ui1Ex#C1x$9%Sd+62m8nQNTPr>pj>AHG zy-Z5-0#{Sg(gDV6U2oH?!OB^9-}!?zH0Bd&6t;5q;J_D5-#uobhhgLdDGW%)%s?_W zW|TqPqf;2QrMM?wh%mTD`CZ~&%w*PI>4mim#R9>UB>ce-l%HTa^-Aq^S(>$o|PfZ6n$Tz7;BZKUjXqZ>5n8DlcYqJxkKhg0p1!bI+<^Q}E5B!4D zX@!|+f@pvY4CrR|HDWA06;w4-{_>BZ|0u|KfGUjU$f|y9vk*(r7!ZI8RkWV={f|5}5IhWy(*slIw`M@Z$xqsR=<;8UCvapI3Vg;y zeJ7@9AUjPPlee5raJvq~XSCp12G=V=RGBHWG73mXW6dT*@&6H)DuZW%j$&VZ#&TSf zs{f3h@%w_?|Bj6GKse1_RZYJy&SGu^l2rp#3ViKA&&v4!zxMyOwrA+*_t+jLWNCWm SHe96vuUqPRYWXTw!T$rR4L)uF delta 166638 zcmdqJhf|YZ)HO;6L9n9IQ3Rwb2na|MMWsrw0YQqiASEDRcql3=y#}O8@0}o_ix40b zsR2SjrI*k{FZTg|-}k=vKe%&e9EUL^Ip;iUuf6u#`}pzK`K9;trLXOPy1ab)-@9}% zqMdg#x`p5bOGQTA2%l1YEg|Osf=J;w+Gumm4P%?`_R5{Q}*XjSt)_S;{;JRX2 zj^~NeL#EgP&{%&-hyxpNPwI)U5u-EQnJL%2=KVNKNr;a%_UW-+v$}&PdsHj`i^cw# z!HFA*SV6AU+~R)sYgvVNj-?wP<}KYIo-}DE9m)TiBNi>LKBBf=RI}bciGV&fPdlb^ zJb@CW5BGpxZGac!;89z=yW~8%eM2olx|^9KGf*q6^F z{{VY40hoJhc~97<-je6%SAiVVKEtD6nL&#`^r&kWmm-f{9`e2`3Y053gfW=(XaVuY z!?4Nvo%UkcTI-gNK&Dp9$Au8V&Gj!NWHg+9BxHGHz$n2CxBcCFENrT`SM<1Ha_C@c z)knmH%lxC$D%a8I$0@_>09>NSzOh`Re4SN?VBf)SC|`{-ufB@k{>xADthd5IHe~7s z$+Tc}L}SItyc6%?15MZKcQ{@0A!Q1VMp6arR^#g}g3qOVG&GUdlKEaQ#n@>BzZ90f z#{^&J1}r8-hIiup;~kb%yM0!p+UI|`zT0eceOAS>3i)nWoU7K0ih+)rLT{Xe%?qj+ zX&u6Ry|fJ~D(mOr=eEV0Q=RsY_i@!nsn?60ME1wm5IJTD-c}9*MFYFcn3?Et@q6TT z%^u5HMG{hqiwd0ToI)zMos#lC?#qqfgm=+MVB=nEFovxfZ^H)Dg5P#5NPQ2U!&^-}%R0uZ(kqc6e<}M|wC7kU4BUOYS!YTuM~yy|K?ueBq%MwvFzH zmn}i`6&lP1q7n-tC*8WkC!66_s1;G(g-wf|E+*yS^Gjq<2cFO(j$6q zul7Ks{u{sbm-gP0$(vj&4%|mF*yukyl@Yxk-Bk=YWN-cPJJNA6@!-(Gzs;f|8eVIU z6$=Vk2I|KLE6XeONwtp#rO~ouW<0W3b^bU(LG^q@oJ-)CDtnNidE5;7`eHb+iHY_; zYIyVQQdh=Ykx5P%?u2^ZdHRDzFOv~YIrN?C7_z<(dgb`I(YD%^$Rh(W2w1OPooDLW z8U6G1TCPJdFFH$^xVX`6VE%yqxD3+pXm6uG!^im7%5Xsfsngs#?7_vkQh9X;Y%%ww zub86#QN3xy;h|2R;kSU2+D=#CEDmVie^Bs1VLcwcOsSmOJ*WtgU-cv&Q~aI4^zrFV z9!yoZ+&!etJLnCVA#j-0rHj60H?AKJGq&B80>o8O`1b|Q+rs-?_}8`x?~^E5vrK+r zF7@RLA+f9Ss=)?N+r`QERW~oSWKAJbr63r-Si5l~E3WcM@dNiMAePHOxCYwwEN}3L z=d<1grD6E@)XJkbN$$y_&uLrrVzkv0Z>)0Zn%L+w0!ij6gF|XgBHlm%Tz$<`747MMBrk+($JH3Cf+K3lU7i*c;<}eiF zpUmZCS7lmzA-yzt+fSQ|)FZJ`Xi4bIpnz zdZsy$5bMrEg0nQKeoD>o4ErIRQ0Hwp*}kwc>fV;Nq&t`PJx z7L`V`6m+pjw?qi@Y9!q)he#F67@~g|y$E}?og#l+b|N#7;Npluu?0;J)&wIntcH-} z9;+~9lJbzsXy_(7@un=x^GYRnah~p@eDpQ->ix&DZ0*Qp8Sk;}qI-oEhq>Qt+_N-V zZzM<`+5ld_8|n@grbwta=hNM(!;MVeN%aK#NR#iWL)X~oUiy(4rKX760Bsp%ge;J#uPjJ1IB+b3JXbxI~bP|6?LB#X#MBK{6EXZHhxuIa!G3HjixBUHc1h^Z z>POvoOR_oeMTaF1SL^ZTz=1s*wgoE%TWo0zn~aAcRZ&TiF80+2+N_o6m6Kt;yBNpB zl}7i*%`j`*cXhBB?%fXQAFT>mDlWr(>+9!+EyT{xlkliA?HnHr7xxNIy@PkpvtpNo zoCYW-%y>gNnx(H5CApK&#@D0E4oXNNOR5@)eizv8S2*g7P5w=3$pNN+eRlImqA!R$ z|LnIKam3OCS60`D_m_$zNB53|ei5*qd~2Ps`)ee1X47lQTItY2%0)t`l+Qecrcd4o zatNND_8g?v!^F10xF{bsg7&W%>!sK*E7%iKk~O7tE3m;R6-d_ry>kIex$N7p*$T&<3%YI51*Dq?72{Y_7- zVC(3;ndiyfgWKslyj%!{>c-syb@`+dPvaid3iIHuehmd&@Jz@Q<7rX_(L8?6>ZrPV z#r}$)T_1yHrB&tUA0PTt{Q4jt_bNs_=*m2u_jz^e@NvFhxh=55OO`X8t;RukdfnUz zAdZqx?&eK=VPw8Z9s>b~8MGVVHX@cBVGj5DmxfIUv#Kg8QK`V*(2bnH55_Y0CFW5^ za_);4bWk!Sa1An@W&Qk#5#KdeeM$75(gGZzk!;mp9Ua=l!NywUL6EMgdFp95QtBVc z^zB*XEz$z$C1U1aalzc9{?^;I1d2_-a9+5`b*_`I10ig(lu2$Lr7irqXUuK;QPcyE zbHm>(lDbToM3y|V#qS@LS%kYg#xS$a#w$K6`JNT6z_mmrb}y}V*;Su*7LyF!YMmbR zoff*nj|hu<$Di1{mw6R)XG;9f@8?Y7P9I>V>p%7~wT86&4UJ$>)90*WoJO|ifxmvW zU<$N{=r5pm%#RMRkgIV*I&IOdNj+C`Pkb~aXDu_0iUpbvah{6TWBN{MW^*j6kF++k z;dW_^fI7pe++HzPfmHZm=F9qW=vQ zQrp|syd^MH_<35_$qS(eu%u+M8dWO_=OJa1t9bXiM%^I+ddq`~mwl6XgYa2@0b1nZc6#*k8&bQKn_uVMxOy_T=AX)K^CdM!_BWnjyi_d@gSe8?Ek3t025bfHRj+n_QA7(cZ<#CV9Z|k7O4N$pGQu(IuR@uWpC4nEd)Ek_n z-mIk=0%W-wsd7RDnXKN6Rx*th7P#L$wgXB|rl8{Dl=NpX?3_VKY~pRo_yVTBh~E6ZFG!h#JZE;lap+T)uMUiKkSq>f^_cKSCH$Cbpa>t2H>N zP4?*iD1)s{a-6l($*PQ*LBL+MbDnu_-PgUZ*SZ{nXLc7}zGT}vSURM1UHhdd<+=-e zVwHP0vhV4X&^uY;FCC=RJUFRec;PIr{ogQ_);A*Awu6FdeVojPIof+g6Y5XdDAz~C zyzmi>sn$*K{g|2S(R%Gm#fTgHcFy3S$o~t!da!F7GU!^SHsv;0ds^hJ&Vfc%iJNvlX}Y! ztWvInP!l)Z7ZF+Wi9Tr8K?`5>LP}lZ+vY~5_=lr5Hgh!x#WFKEXP##n%Jc(8Du7YG z7e6huCs#rmW?J#`_2ZOKUvgFsC!d^#>88+ zy+RM1gs)dk_#ZaTIV3-_mO_Kc1)HT2ekMg-HCHXdX;B00-r<3chh2%SXi%sR|Q5dw;Ew)&T?q zr20OziJ{~<{om)N$nmfW_h6g015u$wT&TR~@3f?mvVj|(^NZziOdGMEB5$#K%sCnH z6qq@T!-EFD&k2W1dTLb#3NuNVBGrw9E9L6puIYJFlQ9?TdupI57TTm?+%n&KaK5>M=3S@1}WYcONK!}Jc%+qFRxCAj}Kz?(3by9?!gH3RtAyrVXK%agd zN_Aj3PmG8J1AEM#shZcj56JOdN;XHX zR$t)h8x43=Q}@P`ZegM>zjLKRMc+w=^LkW&3d&7yHB#p|N&<#?o?uC73UpiMuUo4i zwoTyVpda8Id%ph*Yl%SfG48_Uz=3X?AP3{S#X_nG;pn-b#@Fsnc@|690$w(mN<{yn z-Je^1Pj27x9CMm>C04HcOtr}ncVJd&y?9P#FnsN={NM1M2gA3k zt5U7>$Q>a0l^>ZwXm`J;>ExxbEmC!Xgnyv?!#(p5`^HWPXXpH_uJW`VvKVvOi*GG) z9$-GJax94RSXCmZS6mW#He-Uqd@Y-L>}l@tyb5BYt6z6d+tT?p7o}*Qx|cGpy>kJi z^HAgzk#ht%Fsi_&IC0CE1_$(=>W63gz6O7R|NY=O35hIjt3iDBz~N(iswAS*Pj4+$K|@$+1^&E zP*T)CuzY{}_HxwKA@2Tmtyj}i7Y0!0=qQv*!=DgG(zWZ}$n`-WMqhgVx@`@5jUq*a z;(2cwFxVM$iId#9WuRgAt(@ctCEZ;9>5`yso_nQhWtb?{BUzGX2HMp3;fJXjQLYQ+ zj$?3L2_Dus_|x8YWIfsnNT3ZUCs3*PmIS`n&xHTH#9d)Ma%xvLm235%vB@-3q7*K$K8&;H0e(4#xUsCMob^N{6*x9i^c5zu#E)MKt~@v%S=}T-1TtMiJ!(k0V4U@+uS|kmw%)Fvse@F z_xr_wm#+Mn*+a_>J08z7ayY0|A~n5JYZ_c$p6myb#!>NYza063f274}MUnK>_q`gi zODj^q^5olyUeT0in+b30{!Nl+C4$A4PnM)T31il59+IUFSm=@!Zl;Kzx$YxIT-6{DTzeV5xuIUB~#L zmq#Co!+#VQC=LuO^VuA#eS$QSqM1~YW1$W&vSO~bBjSj8>W~BLr7zP9`_gnMsp}%(1Z`b5dXJz{J{O&+3Q+-E3)9 zNyZO)Z(LTXS9Y|=)EBz*O@JSDHMWkAb`kX%K8#`tV4?ZrQ zK4{!n14}93#{UdB7-aG=<<_g!wQ8<(Y$?N5l_jR^V$EG&wyM;+q%)g$R+g>`clmz& z-B|0oSDrLc+nf7|!Lh$tL42iNm05N(v-0GSYk_#s8zta8;m#;~Tmr}GqL|bq0+82N z8R8p@sX?UfKugGFJU!~KQRbgM*x&CAE{`;l0mETuUZlbrB@M|&%e_zGn(c3dq?cO9 zU`vIYdU@KT(n$&a##Q#l*UhVYDqdd3d5;J?Ln6Bsu)@iqp3)}WKb{1K7K+nd7ZGi1 z1^p6Z@d2cBNadcjjCxM_R_5(oP9FGFVzO#Qw)$-zo+_Mp^38?u8aL8O{7VixTO+_* z?x^GVol_Btwn7NCbQgE(0;}yiMHBAi={0=6$`{{2iiT!$HuM>#ntff%*?Mb->M|)C zuv1sLF2p(WiZ&}z|E~Fp`&8G%^snj$o(1|v+pi7W4FYX-sqUdI4*-FSCp)aw*F$!W zQNvn98L@i7&)y{Lr6gUpvHEyof>h(Gr~ zF|W{+N_LFGZf9xu9}7k&oSFp9bvqlaVuNw#kf{}dvMh4@gJF5gup+`_L2-+tYUik1 zx%H3RI4x~8Stu&sIwEj5STKzv~vc#_utmH18-?B~UI;-S22RlXCkgCNDkEO>m~qpIk67!B@zr zJhRFqEP64J@GB=Jj+~l78dB0zEH<47bG9Y2!G~JW@iT^3thdQQ+{aLEt=Ul zzHc!sxa0__MS-HkBs*l>vlriXh=P(+(|e3E#upEyp^v$IwpYYa%!zVG)Jq;+ch@i_ zjh#y5RGr%d+{`gGdrT{ExKKVO<{Qs9riAz^Zfg6&wT6s?2c+}I*V_eP{6MyitgHS} z|C5YNmC-HD=qe8yT36HIGKYKUh30oB8$Yu|iQxbtKW*~DyPfNH$GejKD+wL_Z+~Go zx^n0UvwhC#bkmUz{59Ju)qdxcb@iD1P%wi1;MRQKD^aWYXyHJckPT`Q5(Sdyj}>*v zh*u2Z2l9fb0|mARUh}^!Y602vTPL!$p_B`ujl}}~`?%gaENV6*WHl?_AGkpV$iVK; zV72Rv%5YkJOV9<3bEAm6mtl@ZsxY1J0e;3EeJ*8KQDkoQ6g~3Y2S&!`o`ERpw~vkU zu#Er_^NhLi?&v~=FtG<7LbDHK<5v-lTjh>NzWETwt%JQI>dtEVL`;kXVLEX?)O!7w z?J{@_8?Qx(5jGzDmGy5u?;pWrX$B`7BvX^?ac*n^^KzJy>ZOWgdEp*Y>@A@B%4<4J zxSh|X_32vR@|f9{(UX7enI<=XnqFIL4FfXG!#NkPC4!bHyzK&L=S%XLHzYlNJRRr6 zf8((yyvowrcycsU*Bn=5jC8N!Pi@=LGxD?PO%OQPCPdEwM?#Xs??%wZB7|;NZ=?*q=lc&G|JYdM~%a57ne*T4Jm$P04r=cMoF%XXyp zsqo{PuF7)^@ONvR4w69)Bb2Uql$;GJoAU42-@K9@;kQfOl9);+v5=Nr@(`11`z&8$ zl__OM4RTUY9(t7!Fe{Y%6>2ssrwHDh zz+C635V_(g&sOMWg{R610eR5##5&=*E#=tSAKtiXkCIDTd)(Q+^Hd!%&jF*+xejYkzBBo^?AN3C*Ib=>0~o9=zz@mg(^ zE+4M%rhK9E@FbI%v6;`5dcqdLs>XdGO3>sOu|Ac*p-Inni&)%&QjU4a5v&ihoC%b2 zNOlD(^#_t-z4_@hz8yy9V+scg^^lwQi;Rq2pT37)t_TbLn`yIWDLS1oX|=hMfzH0*S5JO}`*5x4CO)uv=u^4_kSEZR&`zUZ@NRc?x}R08ER(jWUY+f) zGb%P0LQFTW3*Pmu%y6n%|G1Q;gJwtVOnCrU>8SLK*9bW)tyEdgg=y`#sRrg!Run&V?Hs!Gc8Y1r^7ZxgE!gX76LXGsUjVg-s3H z8h45x9&`<8h;7bSM#t*4C09?p#kUtniBbXNds4ovws-l1 zReuHEN&&mCjr_i}vc2&{`B`chYz8X{MX(Fy8(-^Sd@}0??l#ebc&CjXn z&jY^kK#0!{TlI+;Xnu%XT?46SeP_}a$Ko9EN924oEhGO8IP73RAYy5lcpoR;J&C>M z{4OIsJtVDu;=*_dneYHQWX@pcGF-O_JJOdCqVwAq1{q+YA&TQ6>)8x(#NAES?VJU5 zgIb9};^2-kMA{Rnn_%!yxLl;MAO(O4hlBD&|3ks((NkT0e5$L_%NUA*l3j6F=u7se zElH6zPi!$R`mXuZ6qri;KaNrFU3bjmXs_qLFhlvuKVOuUR-pYU?X1+lshry@0^8q- zG;2KJ*Mlxt7(Fy;=->XkXF;4JHcbKt4eva*-FwMFY*1H#*cb(|0i1#3-<$$mU+bUi zy=KaZX4HF_nk*$mhId}z!|7c&M|CCa1?uKswLQPYJ8e*8#&w{loCeYYGn3gCy|X@I zAV-r0?@O4dN9US!GmDS=MyA9PWxO_Gw5lQeItngBvdTZ&JJ@u zZ!>^{s=y$I=T=sk^Sp055y3E~t&8*f4@`jXtaP>q>>)0=9S%f&kS3;VV2*pQpOKG4 z=Y@O3i@bEL^uXjFWvsH^gS$Yf^Q7;Tv(iqYS(QCwYJke4y^|DPw1hy3z#+lM_3^_* z-U6XOn3Ggi3e_;gmoQd^n_tXVOX$~bGy`P$UNphpWY`8YbkAt+bbVbEi~wt>xYiGC5yf9^aP1xdo6J6cbp*CY98OldBXOp|@=LzF!r z<)e*P^dsREW944_gz$er%1i6#M@LHLXWDd^8S!U^ln)|C^Em!n)Hg#k^-8Tl7>7Jm zx9D}>t#5`;7T=!|+{;^}#R5FihPwZ!5eKeEmu%c2aq*4TX*ZGcCAc^;Wz3iVGAMYG zj~<_5>rtk#F8SG4&{EW0O{2Rj(j3o*h~y;aqk3_fljKfJw0g7G$N;k`sI+(==B5sbKKx>JX(1D;`-U%>P`<(^{x%#o&vZx&KL?B656Z` zMF_$_o0RX|nl`xC|Nndsu%^xV1GAUF2KGv5&iRA2yUL?SkDd*FQ28ec&cNfR&_>3{ zuNy%|No)0x%kAtHD;a+$9P+ugwl)$c;z9FY3l)T*|MHy|-``k#4h`)NtBoVd@UjD!K3UInM@D%T6HJJlP++YbHW{uCgPc}hY2&vWgSQ%d+ zSayZ`@lhfjM{j`=MdH6#f1=Ttui_4MkdVDg;Cqjc4y-}LIlE9M_RMT-Pa@fQn6UZE z&h6a1Ps$7ikyy|_c#V{UGK^i;etgQj?rk4hyz~ayEO6<8&vv0pL#i~a^I>duHqGvx zh^Q#bq}8Ac9NRARg4fjiKfQz|Ih|Hw4Yap;c`@LJ!68XA7w^XUHH@M_jg|)v2VPp! zQ%GGkC^lV(xx^`fVZ0C2%FXf7ybtti@Wk${oehrouU+|_!h0Cz^e3o;i5cfFA_$VKdT;wG^`|%vl zH850vQitawBIii?C=^I8&YhtEJWMj4YoG4A;PbrWX<6l5A5V8Oe*W?$>Tqu}==~#Y z?Wo7f%KN6L=?3$G?)vRpw;p}D%J+BE+wkK50QtY4erR%55HA1WZDaqh2>rjHj5wlb zCy6-3R#Tzc{XsZXgVmN;$3ksD1<}d%)9e1Q?bnf z|BHnGMcGAPvPsPZ{?Np#h(w?5sF;|THS(9?|3i2Gm|daiA}9Gp-bZn?juYiiKFSd* z4RG&lyI$uRXMHiiSPgaIs#ha+cPU=E0l_D`O3;-)*#e2~|9a484fTJ2HBpd-Io<4i zxR+__31JDh_dP!J^7`G};5xg^^y+wGXHukkau@?0{SbUj)z!7!5sy;$AWR6w3h0$5 z_OSdXJO1bMXfA;C`D5xqP?s4GL@nz5dx#k@^iYhw`lD(=B*j z|KCpjB}392GTt7u7|MbxnMy4W_~IvbprOgdNs(Z@(>y?a2w@h}H?D?qOS#!3#UCVo zj-E~pWhsgR$EivgOsK$Wu+|ZeRL?gk;E(XRNB+{_mqSr&Rj?0N_`DN@TaeS*mR=ub@*n{MP55vAqk~Ku8!QSu<7l%8@%>8ns;WPxA9G_uxuH;)}u}HqnM~t zHU$Ig15UbYhdfmd*v>(3!y9Ld_kVFYjg31dj0$#YF^tpQPL|_R{aAkoA#4_tUS+Rh zO}zUo3ktbyzW#URx|O{laPA_>RsA5DN)M#n08hWN?7H$lZvuSxyGy?ymR<4plx%vE z_`sH2?9ZQ%`{)h0RbnFALRnP9*<~{gO3buD3OCp96+Jaw3~9QI8}K8&nK7yxo1Jf` za-R9u^=Ccj2D^e^2J>!QxyG=3o6LwiO>Ap9Bpl%~HHiR(A=0W=E91hFM+-Tr9SZ|F zS)j-(x9w%GdAC=N@j5+>e?jo}R;d!@E#Ty6N7S~5bu_p9e2Ok9`gC&i0W7>9>10wv z95$J0V{zWH((4L5eOE*)S?%nRCB?~nH#@F!bk}IF?HS(yD(ljD-3EN<+OzIjTyAAqz*CvK4OsIVsV>c9O^~NuSEk(F+kc z2v5b9-sK=w#ecK7SEuGVU6 z!A)ha(1+#h`T=LBp>UTXj8*CuIo0_HW^w!WQj3-l>b#y5S%EB7L>vvw87zLTG0FSZ zU7{FFe?n&jwps4xcSxL(#5m3Ju7y4-&tNd{*1@%-n?P{tTNNHj2O&W2AmFy}iR#u{ zmAAAJq<0>M`;08ZeiTE>En8JazuQGGPo~}((gi+M>E_SIb(`dhoTIC8j~9h~%`{bs z{D_r!VJ@sMK8q`a`b}NAJUu?@)?YAJG;E#R?U4LhtQ54ajcPrL4l7)uWBB#7!CA~( z(sbIDL4eUYP#8>O_vow^%B|B`$Tp`x$85}CRPoZV%vV9%QPFJ*EKXEsYcDTodJ;QP z37i~@TKu4Rb)6V(cOe)0gs5Y$rKQ#OK(_a9Yp`{H=JU39N<=DvGR8V*)u%1N!U zR|1bfRh>$q?<{{uO0W7eLT~%N0rzp!b1z^nNUu#Z!#*oS_=oiUkm!ItE{M>Nw-guO zaJ|UZwOhy=yXwBy`;-H?CF@)>>V4r=?a1zqd_-pE?L6(8a`(kwiYY!TUbqgA7F4|@ z0R@ZV6%8NHAD%O0#R)MKh>#!zjrdPpDQnF-M+!a9+Ps1oaNNm7Ysm*FY$+Fo10_hS z1<{Nmo6T7v?cA4&c{(}B`;H?D_W2^*V*CZz!pOaRfnpGS&q012)FM2D>EfORg2UsA zRl=T6dK({GhmGfs*+@7|IF4ZRASR305?<_JQ6jWY%(ka}xyDV;@J6l7XP21nzm7n0EbzgGs(Lr- z16CHbZ7KT|6)=OI7mG})<8~%|dTE$xKfu!%PNV)i-R)E<0d%#K8zv&Xp=CnO>En8I zqb^_G_!JLuKs|kEXDVjx5~#A@g~3J$3kK$z5q+=PRLW_S%3=U{gy20Y7?#tyk(hm7 zJ5;r&)4{op52a{7Qqh|WeQas9HgyuISAe}yF^fU;3X`;Zn5mXV5Ts!{w?)na&wcmz zY;k?cuTqQAF{|3C^A(BnYqPuSQyWczaO+x?-i5+<8+I_SBcMcuxHy!gZo~SIPDURo zc&@_GY=Gwth%d;|8a$dQg8O;*(djw{)y|U>yIva|yrI^<`q)2VY%-ncPl7`Rhr=*y z>>$h1JoQgB(T$C(>g-HvL}Ci9an?%>Q&1*-s4VCH+$pWM?azb?|1cg7i~VGJ`??1m z`Y{D71-rHpZH{{C&HajFggIO&Tu$^CGz>_VnX>-4_*eJ3Z1+ZM5?)Qh+5K)P^yH3d zZo~iyC(eTo-;EAD+Q-3oC06Imrz?6JBM?vPZiBu4N+Y+iH2L9g*ldnLX3;Ia(T&wc zI{^cwioxq)s4c=~+C#aw5s{ypZdhzC{rEta51&29<%hPZ6x8;gM9oXYxvYkW2LPWP zb4)(M+S+ew$`!G9jlE{FuIouS$XGv}>D?F?(^NG}jM+nnr$!iZGLr0trNb#6{#t= z_n6&h`5x1QH)-=}`fPU}E0O@G=UJ?gjYHn7f1#7LT?sf{^lIeY*Wa@pr=9$Btzwx6rasX7QNpP!<+? z#dGIst(u)1J62?UGCflpHX04giDZ%7zefe_-TNN#Z&GIOqPskJ6d*bNs$yI-_ z6-|F~_^PndrklCH&Q6CfBPCx|mtJ}QbJfYid%9bQ_~I|VV}+9~*q;Hp~^k6>&PdE zRnDu2TT#1{JE2;1VwX>wv&7v_yMu-*U*}%ijHnv;#`~nnjJqkdtD*rw!wXUcPrO$U zXo?L=w~TmBipgza^+PM!#;PmAdYAoH_NStIrpm^_vgI_JKE8|iy4ueO~MuJ4_dJZZ{OSAl#xHGBzB8K7dSow_k z-gL%={vnH>fcd=u;1(BGmUZxKoA3O~WW54|0;pQt^K|>)4Lkl58-3JMp@kTvz%M2M zaQ__*ebr|afbv)XCy;a_-4?$Uh4ORG&zbu&CeOS++Na+j{5&_z$$50qP$t$+`+BmS z-DCs2Z9}@CBJ1j%7fqtC3sWUn1*pl-vbW;3Ul({ibtZxN->Em1KDOs-Wr!9=9y3h; z3F44I(GEEAX+B(kKUiSU+fEbn=SSD6{s*)63;(1VH`Nc@PNAv6i+{p)Yc@k(rnNW> zqwp(QM6YKjg>PSF#@G%0prPWQTv7g9>b2WUppAdcPuk1Hq*i63E0IL$ZeSAkI~8jN ze*(&BeArZ3b9iS#Nj>zwVEx`O&UK22tyQ}u`zP_U_AMS|(A*4*q&1do2WDRIZO97A zAK&j~J`{WVD`Vr$iLZy|itKtS`ibN+e0|11*dVV~1lIr$($%8ZF$eZ)AP5Ut=lUno zd5LQcM;xL7UmKDSlecs{L zA=0q>GEjF_D|Dhh3Bj zyEvXH-eO&gjNsD5uX>T9t^ExbJxxFE&~S3*!_ykQ(`-K`NyCig_NR5YHbXp&a!~W} zjW7Kbw+4URG^?F$_Zl=j1HZdJ&gaFmt#IDC)&>A5Cz@o zTVmTE6jSzGz~=kNp*Qvuotc`Yh(p)oS3}r@?lEZA+wYKupN|6c;@*qsDKC&-AWG_M z)xEvvWdL-SU_K$tBUf|O^zdbfiZC&rk;8O)G*zJDS!PV53t*qP?fywa}oy>#&V0mIbX){3k$=dZ8?x9Ljz zr=EJnxjz{}$z^f)`0)(l3qQFd$Y;+1J|a_h;%XzLD0ThY%?Ppk`HDh6v=rorh=XFi zsG~mmyAxNF8EvO=d0NY;NgwoYj(Xvv_qesWpyxFshFlv*E#Y!5HJ{V-<;O+jPIRF! z6d!>ib#pN_wHOn`0XP=cW-X>z{cgE1N_jGWPWr3wCt9+6@GcNWdOoLfE7}=Ig&%%{ ztc6?q&w?F*7Ah>Wv!wHcB~!P+e|b{ncTx4kWjrC!*Rsf)xM;ST*mG^GQ=sJ2in3ax z_8EFi>8869l-#jq&fB$S*TNf2%vJ}KzhVV5E%yHGQ9tp1rf@%vXm+RHEbk{nlKy$Hgk9 zrb+ksEDQn)jBcD=lk)Skqjdk(vjr>+aDyI!(|F0`+e9LGo~@pk+Q_l<5uvd5_+ zO02$v!~PdF$WSbI@lW1@!Zn2Dq~UOVE;SveveoiPlfmo9>Q(V^3N35_;2Bz0f0Q3A zfNNqwtL&n}QfH4G3l~umPLDnPXY<|bm_KFKj*V4#mcWp=`uc_~@OVT;`YK~p@~b{4 zP1Jms(h7SMD(mTm4z^1c?sUl4eU|8I1ae-)br{M1vS|5aA!`EDpwH-RtC zJ3I5cMt5ogu|n`)05)IUol6C7-@B&;4ux^IvY{N-vdu0n(y=9PdxN!3|Gpw|%QKd0 zLa?WfW*5RKCH2Hw?E7u6?A5IUl+jHx|7&+HC2RIT)FR!k4|)}ni9=$8I}lbAU~$e1 zSZR0x)0UUKN?+Nh`4?E<2v_({GanRvygBmHYkzdkYIs@dwEBC6g(*+*#|j)IHygbP zvF4ICNf++Ohy2+}5YrI5xU|qv{L0{maQ%1PBK@JaFk*paYvuV4R4Dp#X$J1?7X0_6 z*n~M*MnTwqmtBVHmS~o0t#K^u-Qf^2ePaf|SKnJeCX|<1b1M!FZ73jM+`g=7^yu*T zLfTV9qbbYJclS90ibvHXp`*{C*q)ek*{Y`q>Ui>w38e>qgmG>v4lR*E&?9|oJS?=P z`WGs1b3ILfU?-q@Wi1Ra}- zEzy>OGX$hmfDO?|;LYLB&x7>&A8$H$evURkY}$M~KPwC0cc*fDD`6z5PY>9=@6v6S zk2_u=Mj`1PkW;cI0&f3xtJwYB78fWWU#@n1$0USocb10<@U5h}x4)KEdwROgHONcM zN(KeVUJp8IR84^z`B2>b)5DSK#xmP_j_;Fz(~g$S_|fKEFUu&YJDxbuzmgi?!v}g? zcRdDN8o;{}?S%8kWq)z&p-^ox8k5mjlA9H-PZ=A4&j4qb@ zv#4%EW{&#|R!03||AeI#DNvmS4%FXf%uRgiO6Ao%a@IFf(5Gd^)o}|*0%+tR=jm|a zMWZM4G%+IPJ-HzovUz}GpcSh_o{o;ON{wqC#%SVTO7Cf_Nhdes&nX8cS)0PHU5o6< zM{Z3@M_CS7;nQ)54(9>u(bL*_QY~qEiO2Atndu*K?GAYDOiLc`WNQ;_%_haQY3-pW zc$Ncx2m1K}`Wa6M<#K`@w`i=){j>RfKyVdVPql^i&oxhsLZ6;CpA}Z7(BYU@f$Xt9 zD-D=Acwri9-Fqn%8%mvtbe_D4^K?YOmL$P@;Jy-~%$2fSLU+H zcyuw-Ohc#Qz<`%SUIB?&17UZTO^x_~m$*3X4CPQYr~S1*Eo~cK$yO&FgI|o!+)OZF zI`g4TcV;hx=DjI8c+7_LqCr{uy&&Je{93Z4v+?_*9_zCFmXPash~cQHwIlDI^#i1% zamKdX5SyVgBuWZ5&lqdww79jxE{H?&sLaNXR`|i`&E-6gduTCyuBUZ|DiCmn?T1d zV%G4QoylX8*k5YT7mlz{rugyX<@}YCNYIsi9@E_-H)=Nt`yIwWG6t^_DD7HF>|xL? zGS-{QQJw2io=p`7@F+}Q2HI+Di)omIvp)Iz7se2hG+7BqRqa?q4>V1+wSb^nJnJTr zBEf3Q|8M0qaeh$M1Sz-dd5;JQr?Fkr&{I#+pPV|=z4?)L4P2&{XsT@Jr(4<=9@6;5xuy9WfWDx(jD^=cnOXtmGh(rE`<*6YzuO zYeo7+Uki=vm8-5~A<0M8E4?x*SXiaJ2XE*o4PkMQSi-8oe%o0Y`OLoEvH~=4+#_9x@j7?7*n|xQ?0K43$$XbOM-T4tkevhSFGTKpD`JJ5Cn@>Ck zl3Cq{?NCa}AMod{ikPW+Pk0C4!+;fk^zB4wgChc0=9be}6vr;P_ALku5huf^^_~mk z9fp(C9B{zu@edi3JyJ%e8v7x8+vwZIMJ?KbkT}B$6EmXR@zD+~#^k?wwDveM&vBQa zGV_yz$&+^zjeQwUG2q~FmThke#mR1Ad%&6deX=6U!%?pTY+%yy}Ntb z2ypEUt(vZ#tHmrEcy}m)SCc>gaIXh$K<5|^g8hmVoQYW$?>n37>;`NSq#WW1w`>1s zWuV)IWSyf$8V)<5bqqZbC7D z+iAxnWnX!(;Un$C#-1RxbCrJ{SXZy8qQ_jQc|f`m$nh@^CPNTY%@ zNK1(z-Q945Saf$vN_VG9cXue=U7I{>0u>3%akp_r32}YpyxR9Am6< zlc&onG0{y|Ckaeil|4|l=2{^;XwaB4xvwTUpO<4ky5(PV@FOOzug+UHMUd@Qt7lbg zQ<=|`r0DG_1Z&rbIUkN19ckIMm$nXV1gU4L4AZ;{56I8s(>lloi`w;wfsO`6s6r<3 z@G<~kbD`68hL?Txb=#O;M~abx~PJeq5D`$*{O}2$rphRbG4Y!rI$rb2Hv^Wva+__bam=U=hFux(*(Mn z)I`^?_6|COIMWoj+-(ts``k(v8@4ej7%wdCPPR0=*vh9E_nE^&zQ_KdTa96hL(Op$=Tf&WPlw*< za!egAVVDd*kAK9z?^O5Cs@-rsXYLq&{P#1=Ke+&$M~OI#GLhswW3{y(z?}CEaDd3P~Bo%w^@{sNlSN8M@N-JUZEtWChg|&<;lg1 zIDY1ed&e}GamQV`EK|F6t5)v;atcfFI6g*BzbD^~;V^E{j|C~hsjQEWdxjOBOlC3< zGZ!hs(gS})EY`i?^e#Lwj!X#cBcD_sbDlio2@gE--Vl>}MLuBJ9^_gfDQ%$)n*38Ucsv_-xCj%^vQ zn3EJws;FAWsIT>|oSK2_G}wS+f=5i1Yr;Bk(nb_`Ju|OJ=ylY8Jg!5#8{$6BAJK=z zWi%q`3Y|~tz4BkR60%a%ef%g2mz~;RyimtZUIAi9`1dwN#HUjXp*vfKOpv}Uo;J;P)$ zO-bf>J}<>jzQ{7z038X_o3ie; z1@p-j&y62<`kgWqE0l(G9QQMQA&jMfBa5diFTk*R=mNO4Qi3+3kC@Kn+MxQw!nM?7 z>8OPfp((z>Sz`?ldy_JCQ&5?$gT`@KF?nmP#|gcU?kJsS%f@jisa@r(`^-fb4iW(u zr5XEE9jERM-jMsmb9#GV6b3%ylgX#Yzf^12?u&zp^99`gquv=* z9orAuoNi`oRUM`SSUy1*_>s#p*X4cEM8Q!X;Ex=^2OD1F_+nCPROF?fXOvwGT>%q7#D{F{LXR(X>Qo>N0tG!Zb%?E?qL=^H~N7<>{ z6?Q#e&kmvm%^fRdGOx35prhHj?X})kK(ir}`0*oh%_d7!nEnJ?)gdPixJhWVfMiqD zF(h}fG}-@1D&c8Fp!$_?`tOu#rBBNx2}E5*)-x=+LZhl~m4)(q3eS?BZ80JVV~B~1 zce=lCe~cv^MW^_)I%Ig(4$}AlF{tH}-*~Qz6T()AUa)ceCd2%6mCo?+{L=fD^Nl(Vdm(+Hugi=c z#C@Og+iBW;D^xdZXL)tbvE+C2hLc+$!S8>hQH^boTpWjZu37Sw=rrW@3q-vh|Mm{kSEDd5R zUO9G~y+iw({Y#athnasO6tFKN#M>F)By@hOr99ZHX?&*|woMVrhnU2#i8=%HS<=ub zgDMpd505=#PsDzoVIe<%nISg%j~9 zKm?vVSF9y_kAXC)^DfhDWNcF5=!+x#)$f$NS)H*0t?}i;;3wQ&Xvnpok3NXzxZ7}= z%OW&Q=sCT~`sIj#@1AN*N(7A@RLW!VfP{Z!4M~>QOA#9lAMvU+-AdbXYd}@%`$&kJ z0p!zpkGGoU2fbV`Iv^=$xrc*|C2nOO7a{vRxK5+^o@r~TkG!#cgSO)pdFOu<7Z$LR=<6xwvrIq0u?Nct)&Tl7taC8?6CY775^s3GW zrbcg>6ZB9<@0b6XV6^Rjzx$(Zi#c`I6(oh?BIPfhldIe|y&K$)!^Hz05sps*OhBqX zSt#?l?_DJ&l(u9*M?wo6eg0zJ<1h%`hVmz1Wl_$SkJ?nhx?kx3b~j5dA;WYyE1Xt= zRK1Ly)W_m!s{0Z2ropWO-VQLy>whHBDjzFN4(ri?Rhr7wBt|CcHQ0aW+2bhCl!W)5 zU?-LhJ5w@HRineYQcj^Tk03e(xHY_m01 zF2-CY(ep3=^zEPBTYE=3i;!7{cy)cTd$16|3Oy0&lXc+Lvu=cCm0M1aO&YYp3tK(r zfyU?JuG`awc2b5&c4`!qcAXE7yNPr>Dsu4{aca=g99CMMf$COH)cMbj43Qt^TA^A& z?*8I*w74U_uB>6uNr7iugyqoZML*ob+o*03<&C)#CjvEkfX?Q@{LQtxQE$84B8q}L4v1_W@DCU49&2uzapIJ@MqBcXlt^X^*%K5dar zDpGK-shqSdarFXR8r-cc0l?vzS!a6ykM_`QB|@HoVm4mL{Lgdxo#4GQB!h~e%A_%Y zcD_EAUm8iTHc%B+^6)Pt_ji^2Snj=(n+IqyZ3>d=kzKcNL}5)06(-;a_?Vebhn3j1pbP~qR)JPY30fLQ&OMmNk-R;0)DI#m=A2tK4A-z(nyLzQ|{r3+Xy ziB55z58nF-x*hap+cr?0@7$8;Ea zETRPO^t_OYFK%C>ufPd`GwmT$a6%v*#z(lM<^R#qH+-=XuD%GZo{i25&~Tm*Y7 z@&DCRf>r>@(fK$>2+WMU=FSLOIL7m*_G0TFamMY5W#N5S&5IV3kVq(;Q~8U)93thZ z7exbkl7W|aKH_bD^v@q8me=(zwmE7An$1KBCEjt{EU((RnL#(b+QvWAr z-xrA4b3*+G)uFuV8r?3;3}{W^=Om?l4p_=^@%b~bFq=c3{+l3H)* z{67rQfBk@jD=p>BG&_5>Q^U5n#Zksb#Cce^%h}V@1nr(S^(P70@6@0nfAIEl8t>l& z)f))=&3L~#6@JeiitezdxFW%JP~Xm5&()iXEP}qfz#hLs$Q}9LAj3FW)q!?Q(a!3; zubq>2^*m2mA`q79PJ z!V#8edBd$@N(cZ8961XCUDU^Qew{n!DG3rCdJ0D19k0oy^}yv4}>8q$9!ytn9Y43Jn$vAnIP3n%w6=!>N9 z!ftU&lWhN>lk@{m3o{z+@KyE=EA1Pq0(*(%m|=W-G_(0@q3@c$ucdB=7` zr%?A;LEqVMmulXP7ET*u(9>u7Y5_NzxNXt-{-%if0_@B^`+pfT|NgrE%jVr|1OdCF z@5rdT716$5?ng{uc zb6P*P_<+xGV?-!>*se3+5o=|LQ%FVBoOKg5I$j%AyF1I6%stHt3zli;tx$?j_oS{p zVD%0vnExZ|Kx@fw?$xSV+O~cql~n4Q=`<-A&g3`$1x^1E7edGm7CV9UY^Aw+5#ORh z46APNfFAefg|CptBz-ITuX?cBzk4dxVVmBofdfn!kfSa6>6-E19r>IT)cAU(+5Lj;dc*e0S{3?4xciy#c`8ar{IMW8gNkISK_^9$fO9lZEw~>i65j{k*rWA{gLWO9R(~#Uau{|xx$1WiyRH@Z z9SoMMmR{@;uDZP?$Bsr|k12L|b4&BSr4_YcA(C)$Tg^N(9m?>_kcp9(j$)wZHX8{A z|4Oa&#AW6aZo%t-Zm=9LwxihN-;NQr-@kQbEDu6F-{1X3`t~}6$+fKNQoG_a)5e@K zCeyWyRonsz7qSZZJ6vz+C?$w{BXLGn!|pzK0z48>41nYFP?4_4#d&&&FopxiIUH(lA@b1~Hm+@mPRNR% zPS$AZxXiBW%Ghu;Xl=$?URq&>tf~z4exo6eJbX8+>nEUin@G=gtC#}tL4;j@8MMCY#p&8c38^ZW-yys@ms z!P1@K)Kuzyi5#0Tx?AO%5!td8(}_HW4PNnVKU^o;9uP?ZMnU54%cf_L*TP38om$yz z&C(Gn!P)SipYBa#2=Uo3p*5IR?^X~mIlqUBr%g4MD8w~frPL>(Rz%%6GwjiqP^``7cI8ABd{xfCndvgt?cFPQKKae$n_)R1sQmSru=em{`7(uBVoL%m(u)tgpYV>Co5^lQ!}|(Ojzc>#kOOEui}!oGpgT zD`%YpPZ$G9C+3KODPh|AXpZA>Ec5D9` z^n+H6%$N3>a#Us|{E_NCsRE7~YK?Gj4BBVUTrgiYPqW8>Y%@N#+wOw*GMZV7Iw)r= ze?Rxdk4M#ePw5$fSzi+rl_3>TYt?3c zo6x;^B$-I@iHc*G+w5mZw$tPiiUld>nD7uj)4Oc6?)mzhjIQL~VHT!SWgl<<2~%&$ z?Cz;>Q@j zcCf^$W6?_4&hC|Tn&5G`{n+(p)@$gy-ktUZG@&AxbHOtP9Dt-Sytq)weKWY|vSK#C{j^{PmHqV^P&yxu3jZ4J$v^E}nugvw-t9hNsKL_2!`X5_CrxjhDT9 zyN^li78_`mK<3KHR!o0YI_VL1IPemy6FK5>lCY;+m3mRiezMm&oR8Yzus+lpT|I_l z`K12f=u;{*eWwI25ZhDs@t7RyRIuiaX=v~3>@gHDI1#B^YW5Sr*PV5QtrSd`np}BZ zNG4JEanYqH#H%yYE#EVYKt{){p8jNrNb|clHURVY`t>8J<#@|01$!COlOk>iZ| zq3uj;UCs5>$3fg{^Swp&GjhqB2Z5V~edA>JiRmEs6Xa=w@O5Pxftb3+Sk6;*LLQHg zNppgQc;5B+B02B%-z6oxaENK^f#kxXN-F`w|LVN)y^yYZ!xzwc@leN%7>B zyKr6bquoMSfV0crx~)@(d|}bQ3#maTlg2#3LqPvRBr}No8{lhgi^BQ0dF5AEpABE( z(5~Hj<{wRc5nv(d48vz^_2}H$Z!vb-2_Jna(XpXNN$nmb%|l3M?fZoa{SJ;`JZu=F zA7Z~yX4N@AC`HFM#eNZ?Aq=yKJo36=j;X+L&%uYd{9Z~>uXkk9Kw0`h!O^u2uu=;S z^yi0O7dj3G1Lwy?OWC#})pAI7iKc*ec<}ZHD-jX#fj*UVtR$Dq>mnTcM+Ia zeEmSu^mcXgdwnd#ZXWHywg>S@YWMZfYXO-$eW*wi;iTh4;6TdLI;Y*}qF2y+Mx+YQ zqcApwKb`%Kv=0PL=POjdzkbV*&_X45j*dCUc<=h`<;nIuYf_4v=3S4y#&VOf9!K?} z#^4RllHo+b@zJ~M97a9w7$2z?YIo8&7x0c^abahlo<@yBwcU}Oc+^q!vr>P_7R_WR zKq$kPaG5S8TGq4bC+3IyX*Mbsrs)YgtB^6?6A= z`v!@G!PvZj;aske-Odnq2r>bSZVbIl<+Q}f{hUmVC?p<2$q0WFALiddvE8+fo6GCQ zDNqC`38et_c}bCzS-d1oT=xD-+GUykC-{~Vm{wD@jtL%D%d1bD^Wx2T;t|S!QeD={ zAPh!#DC3wAvS@vOpcm5FE6w_HE8 zt&1i8;=5`Y_oU<^Ye>Z|-6HhZU4fe{N%*?A$~{1heyCcxAf8(mNsVx_!n`V*pBALWI-eRHU6M>#P=t0$PQP0Ln(&a0c!82%o#Luf2r#R;*LMljb!yF z`DbF0r#9_QSC|_&$vg%^vLHW~39gof(iQiFWh0so{wsA43lK6?eUkx}j6J<~7oJp; zJE4SU$Wwos60{&AfUwBIbU2MVtquna$U=HAuk2i4A}1yFx=`ogYaRND+!})-HC5bK zSyK!z2gS|;&&87EUeOLG(pD=2y#Um^VqLetn?tDR(Kwn>8V=b-r!dhKaP*Qce|VUkE?fm#*xS2SlX{0_xRy^Q z21FGdrkFShzEyg8&awN{^E|~I?d%b`=qb~&EVk+>{^NukmCbtk^KkeMtJZZDC(QUa z>J?n{@U#y)wW}hqw;>;z{4E#H61@9VZw~uKWD2!ww#u^mQIpSw%tq)m471+7 zF=Idg5QoN8IXaB6W!Q@ej+`P%iRQu9(#N6qs)m2gJvoM{?p#&qHN_209DXnTmCe$j zZa+3Dk&`Mr)FX>CR;}+P1?e7$rll7-qtxTr4@xt}Un;lW_aNl+c=NTZS1y68Qu&?v zCxWB}9aI-?i`Vn(x&>ycgVLP*SCR7R1-|*((+f@4rPhE1uVxCUMPcREr?HzfPTtU1 z?x^_|ha8=M_e#N8r-ril{s%(rlg-4*r?Sbe=ky6*)BO0-8_!-SWj88hDI_sHXSvhF z6(*ghW^QPh)F&O`BS>Aa=KAPzKfC9~^X=D(PfyG;H-KzP&LKgeXSGy8miy^APq)g* z*iuTQ(d*%il=cMk8iBR#ZvtA(9DY)e=e+y83be7s4wDEe=zP`GpTH;;L1jyN4O^|d zm1Sf*4x7DDaPsWGS+X7H!dVR>Et07s&!j30uw^1Pd0w2j3#z(!xj|pXc)W3?4-gd|c?+EGClX*FjtXB=U*6pgvH1?Me0@2wgQ3rh%d#@{19*Y?|db#CBA2N^M zC(d5SsH8UXRT;x|b@C-D-}F(4)Can_H5>RGhL`SJ^2ffKPN6}ha~MX(4U$;nHu)f- z5-;C$-Iiee>0-dN?WftCf65x)+y?B`*CjHYXckC^KjD6QQGb#EYk}NW3pY$6#@zk7 z#yE*R?*S3doW|N8T@sIFEB^xjl{p7!TRvYl5788bW<1L`rF<0nJ_mJ*un>)K;rpy4 zw2&%vN(9Tz^9&c&(cG-rdCsR_m^Q|Ooni}?BgrG&lCy?4-CUefZGhOB;(oGj)fyHx$i>+Mj7Ec*Q)D^q- zoO0xe6UEI{f3i5+AgXa$GI;~l759BXeu4Sv;M={BzRZn>QbO}CI&Ss*S#m3JrdgpT zgMtQzj}_W)4Ewa}q$Sd7?)g7EF*jV1*q(>HlOD-R(AV^#>`c%A=twEsiMd^?Na%~| z;CE1ZaX8Nj@)=}3946NgljtV{>>l&+7%o$#9QC5Y_QmD?nEo0T7i*|^sheQQWA~gw zP$WrOHjmBJJp=5Cqw}(UY;$mlJPCIvrp8`QN$nJSv*DPA|1>k4zJgG#+qlPJ$MyIh zWaPIs5~z2hYF3;b7&s+tfzL+z4Cp>@NWFd?8uwy>Y_ixf#vsT@^%tEkngE53`tK!J zp54iUBcIa>1w@0^V(#O1x{B{f{LJgEmlhsVQxRq~Wwy}Gj9F{yr_Ix8iQFZr45Rg# z1JOSY;co@ias9^;w6!yk)9~!$E;a?-3*))XBr7d6gp#X#2xl^si#8qBFR+Mh+Ki88 zfPr=?L}p&`B*^DkJPpeF$h&jb7pVHC)bBitlvQfvGoh<~e}Q3W{o#Tl2}0)T$*V)P zOR>Cl6GxDx0lGwAE5Bh(U6${Ua)t_;ZIcRe1vyJc?}Y3uKXuLHS0dA<+*tsz;Nz9E z4i76YV7uPQPI_N> zg*dfR5zapIe8m#C8)8NC;G%owdveMZHV6VSa^iAVu1ywMv2u3HW*#+6g?D_gkqG_q z@jW9wm#O*oRw>Z0k9qm7cc-wYKYH1>L6;v4yoY=v{%87UC+QF)mERC9WUmYw}pL zjEHN&V@BWFel*5jX4HTuT4yD#m%{rT%Q?MtMyDT0fmW?-1DRx^x0;mppB(K&BR>!C zHM$o$KuIFP`O&<)Nf$YO^51+Ry={UxM|N9X;?;2jI!irQzRG37+qj3Qi+47zqC3KB z{v?iGnWX73ZR*Qiqm3TG(^GoV@JwuI1xw%uPwwhF5o8KxHY=G7XFXJ85Aoj%QJWmb ztyYKFopCHV4_O?aml{iMGeR-_j;|ESbJ=4WXg;SEgv#iDt&>5+IN!DQxSF1K^i~73 zlSFh;{?@4U^$}ITIEz3f%V&w}eJCIA{cZGfG^-Y=e&~>N#KR1^5WG>fDtSxJ-nxsA zMC0$1h3wUg;#pVIrYN3>NIiVDMQ^_%+c!+hRl=meY@gM`gSb|nlMHR;P-DJ_W+fIW z+=?8E#}Fgxm!}xizLVRpTr+%;{p3R`G|wf)USQF>xEJoF9fG4K;#g-vLsL2IktOJO zUcPA+=0-ARJovl8*~^RDwj0Ozz`^ET`k@ue1M zI;Yu-odi+(c*`Lu?K-T?^pY5@Vxc;y>KZ=aoSL5 zr9F80=x|G@oWIzskUz5_H$Vziv%0p21}QWwvP>@k$aoU=Q}$Oht8Qo{tGaw{?0Ubs z;Mu#6j2d+URp~`l>656=?PG?)$mB_-jZO{c$vkD<+%-B0SFnnrGt|E`V;94PF*H8cF*NZVS3w(c{yf+g7nsMYRORYBeRg*{={QJ{;oy&eGBp6I&@L9 zRQq-#kaBdXSG)B-aZO*>pwqoAMd+YR7BD{ z+U;2LUg)2t6*>#>PXDR%hO&@yO1+(3yXjfrTBF5nYXIBRM|qW1;)a~~2Q6|MuKi#O zx}_#PO+G`d(LDgf2H0y|EbNGYO(TnkJ#@Gby8$PU5B2P_!XamN!3Q;W(pYYQ@EAsL zFdi<@?f6YCtHvM;xf__Yd|l7k!nEB}uxM3SNQKOSTDt~2d-URJvYo6G7?v7rVJ#YD zO9c--9$D$t+FJZ#ySUvzeDEig?Y;9;%qQK}ebp)w7#FMRV%e(05kJB7n`v1`=R>QvVoN6mo7Iod){x0tp?z54L3d(JB@)!z z5h5HN_UnslJuQDs4Nap7QXnNx$6}k&CrX1 z)e~X;4A}(XUo=UMo|OSyrbBN^jk_TldgUyK6aC+*Sj!T4_tXFOI(~;B#c|BW#V-`Y zh;e3Dp1n$2k`=+zkvX}&B*xTVCZu_)Or>=t4OsWYcvivz$j4`yW$XsaB*=Vu;iR}x z6RcFEos$Nnj4zZOU83Zk40bW0$}zo+2)CO{ikHbo7(O%=UjS}rP(s(rC&S*^4G~oa z_28kJh8ksyHidfE**_%RipP`OeM=J(i!Urmy(WbF5{1n1ATAt}&LP8<5)~lmu*gPD zVDr*0XF%lZTirI6xKzM%f5dV&JN;$V(t@P7l$4_3sz=&4T1T&Q4+v@s@ zbbF5zaX4xTeT9&6^3X5~?PROF^UeE6_c#(JX+w9x|R@{GMq+&(cwnbM!8lM1FQI|nHxGJ!WjpXF+T zt3JqS@7T?IT&Y$o+w(aG{tWPNo;{8~?rsE~KUYZ5Up_BWF8iK6@*N>7;sC~SrsJg? z0wWI3#neEIsf&$sMM0-(kFSJN{YjiP9<{@5^1@X&}-~7xm zY9@p0%|?C6mbnPbH6Z9&A7$V8&qTS+@$)RwCKvs@FvlbjG{B1QmZip38_t=@Q!UUZ zOCsH+(+#@zEXJpd_3`-a}yLq)*-}dL!+a4bL;^= zEH;wxg$)rojX71>LxqQOpBqt<3~WRbG{k<~EjFtwf>(c`KTSvCn}ofW<*mj&AWeYJ z_&G&;xA)MF37LX1RZ7HOeJ47u+j(j!a?b5QzCH{95HRtNJi`o4~^)}^m)KSajztp z7ws&e8Mx9deSih3cidNz-TZSQ2W@g*?L$I7T1J}Nz5y{Eg@k1WDfC^on^Q@qmA^Kn z?sA$d_(b6X!ibJ!aVno?oSl1LKGHRgvvNSYNPM#$$!ZqqbgCb$DbY+k7;8o3iX~E-s)wf1HiRAh(8zVWH+LNVEE1^^~ZlcvQ=WWeFhBkgE7VHdC?=-cIP1N=yVInZa zCC{Dz>b!nlP{EUXWQN!B{F4-L(RrEZ^s_~3sPR25pY1~5yIO3<;~+x6-1hNDV+gEu z&xxSR9C)YPd&oQAt&*$KDf_KP z$_pS|bjQ$12H}#hehbTc{+wl?Atn))5tJL0%>mQn% z3@(T>#$!dwbidodRM_5M?qFnzEPnT1D1yT&=_3Y}4!)+#uyhHbxyi&VvHeAosp;e0 zQ!?`T1hZ%3I=C_p$kw~Uo`xr^_FFvGCtG@uuM{cPV;}q+r8)W%$6v_rxUti)l0Gw4 zYK5YI5Sq#g658H9T$P!2A~6^Q^r0C8S94|52l)+CSB`POQcOoJM_*hEv7?dw2DpU{ zHIC%+{F3mZ;?J&2Hzk*tZM^w|+8N27uH$iii88HAB7`3`w%tmw-N7mM%I!RkC9M+@ z4$f-7wEy$Mb!BqZf(C4`xhzNDQyV8e?`f$k&mo1qNXurQg&~`QR_ltNOiC10n0fiq3Y+gJCpOu z#nLCEWrH1W34_b&-lY=FRw^BaR|u#-`(?#09uLL_sNM6*-%dX%_Uvt@OgdSgs<;7M zhbpMa<6x2wHb!;5_O&ICW%Gq@Ksv@ijBZHfF!P3k5`SuUMW$Q=^r|Z!r`|2UU-;%{ zVXkIo=_ZZs34bLBU2ETiFK?WBoH?$uQ(7yOO4^j%jy#458HdGKgPfmf+SnA|C*|)^ zgWU38O2CX;{joba`A2_VT!|DXWCIEd#v`V+3GO)|pdJed7j(4~peyujZ#M)jlRoo$ zed)c;)L(_H^#;(QTYE4WUJ^~n-}x#ki+-O}aDw!FIY#%=2(&?Pk33|U;>Sm)GpVlDC7ohhvuxv?r2EOqfw zaVh(f!KzKyS)zXTs$ zd(N#>^VzM0h8fK{%4NA;XIh;+HtnrnS(SqcT)kd1(bRNbD*pCVT88KQO{hwaw$$~t z@h1-m^s)ssiwrt(!vQvhM?6VMz@iGZ+27yo4Cf2j;$DtsjmzmOk781Man1W%o{j#B<|WdXBy&g!E0cnW^rxrNi7)gS? zTDFYCt(&gYe#W?vjX|@Rh&F!1n}PNGg80N`OM>_X|2^zes%_w`tGK zX}ESo$Z2@}0maES2=%4>&GJNLmY+^OyK?Y4tX#EDz%%x}r?ybL(`5_Mm8=!6_p9K? zG~4`wEM%CZ`U?_#me8?DLH?3Sh52ZtJc+=wxv5ohJY^z*6|Hr%ySD2>UI*(eJn|}C zEdgAvCPi^=ql0%J5Mvi*_jbi|=iMhd_*OrGaG@vHWIUCb{6FoPmPk>#L!CCpqIwE4&`9Mn84xw2hL+kny@YCfggORSq&9hvNF_st^NCXhN5lvK8>_OuJ7u9%{7q2)ZtMoxSB3+DQuk zs+m>`U6>c~GybS<%AL@NZ;sR+Lzs@WekB9D=;m8>950;;UP=METC73*^})IX<@R^l zamL{*iTj*CQbG5=OR}~f^s2?O-^wJ=6v+J?G#xJQ8X8t`itc$!$9?kdc!R^Ui^{e5 z{0@(|!@&~$WGUFv>w2(-n#A=ay+-#*pzSyWCnFT-XNZv54wm~55u^*38Fn0BYF?Rk z4rP|k2YL^~mgb?V6lO!=5#(5|=A5>F$a$BFscEpJ?^2@i_cPM_`5o5CFSHx6F=mag zN~I)f06yJCV`e_N0l=P5bAiBm%3D+vBeBjw70xpwy?XbVYg0hHF}Vz4nORDq^23z| zj7`I(Lr24~xP`p=#Zjqi^p2F|?~eRwAQk+2(Aj}=aFQS-o~<%u_JjXH9VLvGj;^SF zyr}3t%qA2d^y_B1DwrCbt3Ocl>Sjl{*(KleM=_{6)ah8T1_qq@@t(gShrD1WEjIM; z^k4Gtbph=C&SdiLIh5#ezAv%xy?o295trJ(yMNIuGM;8qOJsAMAS7@6a#Qwt&`0Zi zBTUoGr8=ar-G6iZNnRYk=?4>T`U3vU(Vx8W>*`!EiFsc0DKVNW!MT>vosdnL<;&Zt zib&4Z<3ToDYAB-|WmTublM*6)vBhcpBDZem=6GBe*p@=vM9?51yHUKU2Dfe0Z4AbC zM!L9pLw8SihXpTpB-F6sLYxjp>)WaReNPR`)u5A13F=W-N)_h}hZc4owQa=V#p2HE zjUNP$cJKE_tP6fmsIn-LdK_QBz!Lf=LFnF1?s2<>jLq&$O?Plse-vZ3oWH*$ZWo}T zQo-?elNZ6k8wamS6Hw=EknUJ!?dKaqMVkb#G{bBM)5M_zK!TcVAuBjLoOPa`6eABoHAF$OB~SH5 zJCb=WXO;dGdm70-Bq^e;fmVF2-0;AdJ<1D1`ja6&~xleL9W^!=E1zQHMZr zQ_LKva;MYpv*-t1w9bzRshkV7!pATm-p=pmn%S@^!$#gg ze-ZQX!U~}Qs#L%ul{wj(6gpXh0NpcdVb&<&O@^}15cZz2&po3@k=*8El7yU}*raT) zJ+c>#=Z&gdW##jyv3FWCd*a0pc+K^*VbZ!8Hr3PaQ=&}@x<*;7EcyqeN2kcWRme!Z z?#%(G^zYjOvuXn`!VKOD%GC=--km*&7Y!Dsm>$ZKqXcb<;4Q1cskeBL5tozxEz zz24M%*X>{9g-M&Yz=UXX0@4%7(J*tkMJpgxO^T7pouJPib>lN@T=fa;wn(Sht{oo2 z#n)f^0S6?usa;mTzjn5L=B-ho?5R{414>3*+=5J1=2L8SB>svjRuxY_sg&xkDK6r_Mg5Oh($ULdxuh_Q-jFf$yaZvs>kQKZ-J z<{`IR*9W)+>nx+$GwaEm`)&g*=!ybcCnGailCV_#YX_BtVCeyW22DabzycPY6k&M+ zzqAL41sjX;2$3{~N~Uj~rpTSwG?7!*>o1bpVE!$LZ>wT`8BxZVo_KDV@~Jr>s}jp& zOX0JB1q6&Nu!H5Y(I{@juYad@6Y>GK6&2%M54tKjLsHB5B`Bgn6Q8p{-M&+~sgR0Y zN|Xzk7>NpjkILoWT0QJNKE#61?BPzf%)tIxeioqjS@7|eU+1AA&NAOI{e*)`7h-A_a=C}NnPo98vaZi zgKP&ehExkl7KuP>DDfXy_}@3m$Aw1pKtZtXsWv8(FkR?`ih(Rs__Go!sqhxmqGXx> zTrnJJSZG4%6xqKaZH-|xh}HF|!P7>KPz=GR6s8$~`N{u>Apf6JZ7D#&_g)xFDZ7;t zp<^>6;(DjGw)g#&9f5bzMQu0xCxK*-9{p=Hcs022-uQM;fdw^h}n*BlrC@bxS@!jI&W=I;K zsWuh7^~oCx!=NMdIUs7U`>OX*Q)0XN0LWAF_3PJ5&IVYwwGlWz-Xmxt9r zPd(Gt;@aq5g+GFZ5Ca80Ib0T(2lH?9i!ncp|BQDU-(P7V>S9p7^3|3RaKV5CN?0*#q z9j^3>uCaLDw}C&j>6BBja-&p3$g^0;KEQebXxPBsC8#f)uL?uJ9iC;*e2Iqqxf#$1 zmqv1weFin$2=|bF{P=+!f^?ltZi9eHDo6)t+5eKx0aXTQMA8E3oX2l86T4NwNxzf* z>*#h&G}AX5lhUHFB8htU3nJP?tfwje1}***&g&o|2HwPO7awn6Lf_yvdR-rZ{inz| z)~g1?1Sz!5=5g#!?t(y(6v9E0du!BR1*A;~c(A9T#Sw}Tboapm0H%M3^A5hc|E-)7 z!@F4s43OEEKat>35W_>l8<~8*MqQi!Htsz<1&TWdEcAQWUx|Fc^|$u=@iE2>+92XV z6xhn_{)@Eo9s7&z%V75x7UO`+?%3MK4qbHj|DHf_2oM`WmPGIuIsM66v;-t^rS7Ms zg9!cG(^XfcA#-aZEm9Gg`cY;>rH(|3oc|I%{ns(D36R(c)4$IbmyF~qD`d$hkY*NI zm@X(ptT1QTRe%Dgt>+eXz8#JK`Ln0)({eqq1gQ5hDKxU7y$Mwvm00d_jHGaW_^9g{CESfgiLz6|j{vGe;OiqO0xnu%%UCZj@*1n`VgZ|`q?hOGq z=Q5g=CZr2fuK!c6c9!n_XbSW-eMFpsgk3ejy=V2kd;Z5OnN9KT15%0|X?Amp0skn* z?Q|um)&F3><4-t^T)Zf4*_HKZX^q8v$xHu-EL5<=PN%>U*hl}3dX-Xf=#ei-ut(v5_4Dbguj8%ZPoNLZ8#;<@In2Zp|vue=WB9O-({*oJBtvp&`QX{zsbRlOQPalSLUaSasw#+Yr zo=74`+>0#NcVj?pX@dnc(o!SST}~3E)Ree2UTn%g={VtW zAsmW{M;n0g4KWWBf?TfzQ&ufhSPy}k2LasL?+(&SS(mVw0A&T-XdDW<18DmPnKhESQ#LKuEiNqcCrWYa?SAipi3g% znNHX$D72_JmPqk5$5PKVlp^FZw2h7PtDkgNMyMD;%g$Ka>3;#TJ<)!}*jtS`h1Q=P zYG!kqZBin)Y76@iUl*n1(`bm$C9Bc0u&xB|u?9e^&{>U>b_c!(xFq=A+tV*J%S^-a zb?dd<57+5aAkW=^b0D_^4STsyY1&V4+56-*+2p-nXfIDF3`{I4(ru)7P+PAExpzbz zLu2gzOb&w~nLEOP2ry1X&hcDlJ{ImCj@2)O=6v`zP~yV=Cw8J7SR}NE%t0l2HTC=N zCL|bXG4v^g@cdms5DcPI@dQRcT;ld8yGByR5C$E$`Jm)xBI z`&D8E)h;(N8rx2rAbv4_4`0CMcCYgf{PdvX^tIloL{@*MEW08{+fYU^RgZ`mcZjKX z!#gx`;l}3TzIrnth?=Z-5f5t^INNv@0qwho$M%_0e!_}qftZUIa`31mu@{XtC!u-? zwL&fGgw7aGi4f8#a39I!gj3HW?@{Xleb$e0b#>iFZ&-A^*$aS*GbMCA@~csh;-HoU z5OIcMjuPq76qr2a!z$&&spV*}D$UI*`8^I3Er+XKaN4T%>xcr7YI6i?CWG2RyC?TC zePU6Eexn+M%UDN1qe7?t5Y@9QnPdt#|BLY?#$OnVK{Q$yLXa;LM<(yVIe^%rfa>mX zV0eG(rD*uGr<9JO2|G8gU{`3D=X(lfBPE&3tyUyaT&~-1_$Oj&ldYdOc6b2W*nup$ z2=F62hKmg{0UKbG%ZLzhWnrVB+h@ekMD2En&YjRAcGtpWjwPbTIIuvoPw+632k@2_ML zA?1yO#XouW`V)T7AO&~*3yePaXW#eKCPAx8y|OsbdGgFsmbk)ZzLcQHo*rL&ytZ#c_K;C) zuy{3j2_$bz9+3(f0b%shzg?F`!CqHD6^NMmO{kG;K{b}u_sH0k`m>}A@O)?#;>@#| z29RPZNQ)W?D3DFBE>Zhy705Kp-Gg9T$0pt5dL*n1QPx1Q_lD$Dr<-K60bxTRuroj4 zJX+Sfwtq2{9@u(?;Ylv``Jr=V{69VK@y90cK@kQ!K*xX>4giigcjvFUv_%f+2Po^T zLe~H&5-p#^CuO~N;wvrUy)!353&?GEP%`(7qMKpn9W9JQ3rEkJ*&R;gIWC5t?q$|4 zz2D&T6c?9=8IeT=8pjxCF(_W_z6fVhy?7au|?42mF4}aORy~cl=}T zX?GE7URGD^+ZaIR#K8Xe2ukloT_MjKa^DXH56X`xrh)M6X9yztf^feP`6%B3_8rJe z-FD+xo@P;;IZfK^c2ye8U$~r&yrLM|ASt>9)O3aM)0Jwm&M`<2la6H_=U5Aevi>|w z>lc;~cDrf3n}|>lhLM&!uOeKt6jE3~*vg@+#>JQ3LKwu)QDADo?_&<88_w9#YMOs@ zUtG@=e5-KiMrYXi;MLRhB^IZ$BhL+@b!_)4W9L?_6Vh;RU22$;0gZUHXAse-*^d&H zD&bDo8UrZVOB+#YHb6VGt4DFa9$BI9E*-5N)E&BGogkQKu|ZEbLvvO0V(lX}4P$ch zA&$4RRNAkXiVsN^@>s>C7Nny#c`Gr}IeYD!JKujZVn~QxZ$(rT)XKB=5mL9~kH)sr zC`o}15gm_PaY${ zAvlq9EJ|!=DEg>!O0$%j$Lh~ozd;JZ!Gn;_!D)(HA()`I#j?E@P%Mu>3Ds@GX#Hz5 zOsU3g$fgl92Rl*7p2Hmv}hDGUB%E7+Zg4vi7!5 z;>xZg!@9c8`SW*kYWw)cpl{+&Xowkc{NMUoj+97$I^3|_?Rgx5G`Lw@fza76X-asX z2LwHhql%lTGqFZ_DF=ri7<$4U}_+K?kq2j2IldFHmRIFI&!SCl-+nD{a zFQCVj;}Tc-VsFqU`uZLtpO$|UbfTN?vNc)3H(k_t$pDn&c9kQ79bk&W$RWG?T}@fn z+L)^Mac7e+>efgw`gKcR%os{TR}|?{p5R3cgUUy#P`kpXc^liy_m%{8Tb=d<_YMOh zHYlCCiNhPkI1=tfa_NP_y)*F`?;Wms>xZxlXe4PZZDkK+QdZmZ<}c z)f}v4-iVpxrfZ9ZC5KFEs|uYP{(ktXOJlb*!qOv&$H8hHOgyr6(!ZUZ;$0!dgYbRW z5%y$7glBK+0cLJrPUC3B7CErD;2Lo4;zq9gl(_cOjAo|c>B*bB`RgFJ8}dGN1G@jgh~Pg0|2$M~6u`8KR5h0F1uNI;gZwsx#%0J% z4&`*Ca%$bQ5+Smjbe+5Jl2DBBMYzr5o4=ym#u3y$43GArwNy>zWpwTcaEKAq(y8}W zb|msLtYfX_-Y@t0W;?BZW zB>vl>yDc#@n#)mqjrW`j${H0r;#DY-0;T0J) zYM6?;c;-}aIhOrpW>l-iCKodmm=C_~h{I(kF&NJDbTQ*vrHS<3u zf`?N>bd{ed8^MX>B0l@wCwq(a=j((4^fVkIhAWumj@OMHkst;&z#0dzY!VkVj8dMr z8Fw{ajUJ%h+Ha&ik>Kt>S=QUS%$@MwU$%L*WaKhbn6N5j6N{wwkC&quZkM{=2cZ3d)^*CIjp!kW_sqE? zx*)ja-(8@NqUUuGwGk4`bJu3{jsnS0$J@Xch2>Bu!0xF0{ z%h*_gF!2_qzlt6nY~zrPEIoNn8Yzv>I6BmKVgl^2OI)^e5fiC<$Egqy)xhn_R~6RO z3Jj-jZOK%ZY%<;-EV}9yYy%NaH@c;@G0_58<)mHfZD9#op}DSO8QBBYAJ~@u*VBS+ z6pzF8u#-iP@N?ruKNc5Z%2xzpP~)2GPRpZ(5<;qrpIE}LoLwpqOi*lpbl+EP;nIrf z7)nPS3Yi!v`pnQ_I}lLjy*_Piqf zZH5IBQ=fd@>q%)8p^=SWcOJWyCrl1_g3CJDn1Y}~EZG_pI{oJ0whTQwohda8_@7o{ zVMdKPDdC*mq|mD%z3<)bq7w_&MVe|LL4V^F5Ax=65Ne}yrd*~Oc;QqdoJ zMIT${zihHV;k!S~qx|(aRO<3%zw~u~)oW2rGX{vxeAf}sFx(adfYkUWY4$1VA1aRu zOY4w0;4rgtby;gY#7jWHtn_PVH+hNONV;R(ZO^i01$3j6$~z~?Bsv7IxP|5l5KG;Y znOAos*e91oPWmA;mcGaz{VO2-(ya~@UF?p_igDW$F1w~Vp#k+vJxLLFjs5(g`s|+3 z=Ha)x*o-*acD|swYekRHaG4&)XE7QpLq z_(8zWpww`Y??)b|Vw$U+cEB>25(H0dx;f`}7y)u{G@#&kNHVv`{iCv;Li-y(b#TgG zSQCfASvS=-b5IY)2|$x^@fwc`HgoI8SmMF$U%^f9yow!2yP^PR?B}f1p?X2^CDD%$noC2|}E?0tX2TH)rk#0*z|>Ojw3p=rU(g z_nr{P8T8Z7YHYqIrdH-<#4=G0$=!ONqua;DK(68K>97(%Ugs(HfJIlI%#7&Iqm>H+ z1|d2yTF06!J9cd2EitL2EOvYaG(<51x>}mbyVYYdtbQ6-KSSm~8WG3S=oKOflu-G4 z)!O8f5Shmt?=aEK2HN?8vy}ZeCOnp8B0F&;A;tDY`qBxgvTZ!bJWs7WS2l%B8BuqE z;MhpuU+2d&xH;jGC?&-g&deYe@y$3sr~8nMha4V~aBprPd;YM1f6gZ4)puNFmF|vz z(nEih`=rml=}zoZNOK~d`@P^`H^JPEzzNYlh-~+j?yltuDltQ=KFh30uORY5^mtBd zs;M9nMzE*DfQDZNjK|g^7bmM&f+~sG)6WrPuD?W|96j!lY0DGeH8cDob1sN)8NC;P3f;_xi6OJRW|VhH*gEhSt2^&E)@e0xq~!$1tEH{*P=$t&D;OvsTB1RTa>UR;}S(6Wv0aQK|{425ehEFx0cUe(Y68Gpuq zN&g~`jmDU}R!sL7&$AVH@$R|I1aK@m*lhz0;7@CZ@#h@-KVO8!*XkaT-3S##IsJzY zMp!_0j{(${%$$(n7-!&!&?&&}=3ol&YsVI3v~zKCU`k)XdUiAwXHUUL;y_F()gDV! zPMWl4poggEr_dM(x@qn+%tzqCgO9a`ma$NF)Kcv;rIpfuzefZNxUIHz>(+LI4pT-8 zFOSz_GjZIJFm=8hOpQc9IgJhN{DAIHV_(0UJK_jE0T^A;>BZ2rl5*lBMZ|B>Ds79| zMv{ym44=2DebKT;wf!VWqhA41N&FT9*7Z1InuOUcNaGugfFWi}WX#`{S_*cob1@F{ z^`?oEzOVd|+zO<%%K((H??#K_#Gxx;)>G6?Kq{M3p}A8;@(fZoH@kc1PD#(}3klS> z%n95v2W#BJ<`OY1df}1uO47dPCz-%8G|i}rQaMbrXs&|ZNziRo#Y0NL(OpM(^H52J zHRPWe<+dhrl8q3Mi&*LL(jlDDWs;8U6A8|?UlVe~pfj*q zq*tqhs<2Dt2vjf8 zXu8mbDu}X8%CILCm=983;(A}v9ses$)Hr_kcr*<+<>@7^-WJW!$Lq2~)fY@9+kkTx z>yuk%z>Y!%i?XB3MOX{{yL*dtKeWGABuc#08CQx3Jf_zyc~z$W{ON;sBDC2YpKhTN zr!_8m5Z;m@pTv-?OC9sEiNtq|#%*u@x19Z(K0W*SEqwcdP7S=U==OWRx?q(R57*AC z^6yUKg~5htNC7JM5X28Zjir?5rd`2~Bc%Hz8h=56> ziKg9j+Xz^a7&8=TZ2}1v=ZqxBNQB=h#dq78AI4LV5s(Rx9{s_Ghmge}bOKhN3FwIz zE8Z3i>YX!_S~IJ&=!I1`c79d^viv<$5zu+;Ilo>}%G6Q+=vts0^sfR`9l2l=a9IQq zPEoQcLJ*A9Z9a_7=^zEVWP`rhMD-hM_5Xg(@M`7p`Uf9wbfrlF#%zVD$o`W$j^}~g zML`DW6-^_7>I*}v9)^E+Np`mi4RC%)Mn3aZVNO=oQemcZYF~_+r@=(fBJ5}tL7r~k zr%G*KloO+LDWp-;cWrOW0ULTGx3k*5#Txewq%z0xOYcWbLjLvjxh;k)cM5p6d9sN- z04sSyMX!|Muf)w6AUT#E;u6_u9E~~@J^c%lH*vbckV#c3oLXkF=JU|)<0J$LpX#JM zFZ`>aos@+!`q!t}Wa#oXV=M@oAB@AKW5EDU=@`()o)P1j;6 z%^W{=Ao?jJ)WRiu`A+@&=%n@GoYFFjslMn`N7$9h60PO$6M!2U{m$1c%zIf!%5GWZ zrB^12lcSj~?(Y=l#$j>D>I^+81A1n6<`apY6c#V{B_q@APMC5E*cmn2E$lbf%DH$d zKqf0#x9awSUs3O<;st_2+AL&ew}bU8=q?E&EWD1|cH_64=C;lEI(GAhK~Jx`x~sYV z+tgPNJ0f0BdX|-(^JXM@o=Bsb>Er)@0i^GRF;; z51ZVb;UcZXtPiQ2lz1*AdfuY#;xl(MJACAekXa(DfO9bnVFj>K;>g#>X7F3meNRvf zXfVS#fiu^TwWoY_L=C}X#@>O<{~rPjW5 z)=s+KD`E)cwz3er#;A*@4#wdYE7%t$W4d6ssbM_X zpTXwuQh$d=p+(qKzQRkk)eB7~uU%ZC&UdbG^fycxbhAfhE2I#}vBY0=5Z8_+2zp5V zFzwXy*tT9-19CQL3Jz9%Qe|9zvGyzW)#p+S+JEzn-ALOa>C@LT{Z6!GoYo%dBdmSc zXa;}?t3;{f73PwPemvUqX^3nTYue*zBO-yu6q*ItXjjTPX#|+R{*t~~<=JWxz)}z+ zL&Ty8SO^*Lh^LC}mz?dd7-VBJ0-Ih(ko}rgTTFsL!j4eZWIv_=Kg7stM(4H>nIVe7 zDa#dQ1R|IbmvgB63=X{~peW-Ydg|k&aCaFg_jk~f_QdMOcJ2DfV%0z=?3mv#9V3_h zf`}jxXC?vSHngb?e&192@#~p>sTg9>skydrmu{Al*%uiVqZQ12=P!H=I$F+#NekMS?Izgj@$^=cv~n>dZmJjHnn7!s!RHMnrl*wp(RPZX55A zTvWWp&?Z_$M11~_7pOv^Wbmu`Vn$85lFsi>$wuGw11)6+UUti&_7V7v%>0xv+yn|VV2Q@=`Af2m=phv!t{k2TREEH<+#Mk~2K8LWp35-J z-a1X?IP=qjfz+V8>3W#56-tQIOZZxm6tD=SaQrN^wIANCAV>+|l8A~8K1q<~lHppc z?|fR4RO=i!_a~nR;Qxo+fkP3mZzE7|%jpV^() zAq|f<(CDjHQD@o2342d^pIH$KxPE8u;RnusXXsHy`*CZCo=X4ao2wlM_O&gT^XDQj z_?9d$@uZs)jSR&>$1N#`h<)W8N#~{158HWq&6+>_XU*^XzBA_Qy()EiWUHj6hYH6k zXPUTQA|vAxQ`W>{w8r@D@i+g+--eMt-y!h7#81EuV=-H?UeVx--dwC-`oUCM%8^jo z(cQguN=TEuRNdp%Q2Jv%$)V>2SZ!{+{MOs6cmnoPCcqFOwq*B8P0Rc<8!p1DvPcb( zCSV}oM{T5zi%B7)zcyT$bPbLa7esfB(Eq=i3|02XD#99;Kqi zhBW%NnH~H3`tHu$+G+y?KuIxW%HG#|s|{G1%qPeIH>9T zz+)jyfkrY9_?M*aFj8ktr*P&dOI_@KTo@<}GMe=Hl+j~wKT|F4-Ff#6w=f%|Lx-}7 z&RM$CBYa6dk?c0gqSW7`uk~&M=UlmBJ&Aoep(q2?f1CW0ztr*Ag@2yQP&BYP1|cdd z+c7jgmrW*cXhk?I2I_Y$?=_)fwF2(#c<>V7zV7b8$r83)7yzH&0ulNE`u|=uRRvoQ z3f=1=fqz8P=Sw}PUGIKEdl?JN3Q1A6S$M_4For!ufXYhzeoXKHja24RGR`|__SNP9 ze>OWZ=8)IvoyVRf_`QQY{Lbr?u<#>joHa+wklBFF)mE)drg;!Wx2k;tr0uOtA^OzcXo zcNY(eUjZsLH!kgD>ml+~plN!4_37dJ=zKIz9@zWw=cV}feKW9+O-|(9R?alpl2^O= z?WIgNaQjCiPui3I@HcXA0K9YkS!U3|mIdJ0WB_13YyJ%6Y;5Qkyaaa2ef*nM%#W4} zP6!wE>aGrV;^1dl`>~$r`y4&;5t;Qbp!XPUE}>sKS+0V84!r_k22Gnll5!uTU#us26cj_2&t3!6oPywk$7swD&bAZsMLr^3 z01-Wy6u5t|_V&Di`q^BYb%{&&xaqB=-zwAe{rfBl8`+9KPs2ygVWd-8Q_v2pPL-l` z!q&jS6lS~)rt4+QSY_e+J{nQvi#Hm%DpDRY%iH^?+0pg=+Me3Lf-B?2#p#aV_?#Vw zNl!GQG?*yRa=Ulg_r838Bm$Na+9(kccCjd0Q5YO3gB0rhmC&%{?n=;&1js2Yf=xs55d=bp{9mP|kT_W&Sat2)QrHT>_>uK^}^w^fmeSX-e5rRxY3|QFN>=x#nXaE(mOddUaW@ zLk_`hKxF=Doys)&5DN7vz9;z6%m(M#hpshFIg(WvQkaDk>^9 z56^J)rF7Ei@1sWnw(d1I?{>CGn6VrcY*E%8M7fNK{!LBeTF%y}#ctCt`QDFhiwJ(u zd=J02HOklv6jvtI;#~BFo;bdOJ%ETILtXizc4iat5u}|FBX{ zq~qJ#&0YvSNAJ&4V9kWcsuT)!s!UO!msARwpWC3`FWVKE&jwt^mU-=@ah7{oRKycX zbUkFfmQ0epMMx~U3tm_ox=U%!NS$1}vX8NT~W7|(-I=I~}>3RV#DoTqTVU5+v~JbxqZF$VGw zYOMAXc`|RC!p5h(Po(_L&jW#ZqUzrQJsX?Cp={(AU!Oj;SI7=ls@GB->Jo@y6G46m z`DcTL+xal}?53=|UOn)K??XxvB*o8ejMbrI^q~MaTe+yoNjh6)1R-TFc%9Fya*{k= z7V6c~fVpQR80Sa>6CNsZSj`x(Z1?qXk6^C+|G!g)26(he>)IV3|I3pF|Ag?@OCO|E z4f5i6*2T zZHo_fi0X%>Yr5;5<4_PJA+&GIrh@p}+d3ei+a7<0_a+)bhzdkdVAX5hyN;-Ukkx%v zhU6T)!VsH7#QqVF+ipgNLW(X5Dr&@;A|V+HCINyn0K9p{fpKQ+bi*=|?>r008P)6y z$p+Fz`AtzH&)ZZQ)4-e!LD4~6BJa-9P|?C`n_2=Ni9w5{AZ>B{Q~UAtldWR{q)yiN z{jd@Oz&I`O7V~(V7=yllq?rWon=(_*rkV1Iaa&=D!vw@mRmWuAB_=>jN$3=Z+hT7Q z`gHfK9eqDdQV|jHapBLdeD#PNiLNhz7y0Hl3!oK|w4NR5zagt*2C#qy1lCm7luk@s z1@M@Em1f@1+;L&xt5>v(Xg4%>s$}rM0!(CX=)#y(HHa_eJ27K?vjBBmQUDw)xINJb z0wnm#5%E=0EZ$8x19_+`2kobupl3ybc>wh!=JG!#OgG!Mjv*ARg;a`Az4}=O$IZKeeH#la1|S5-zuyp2|7ZJn zvxEXLye(Oqy_A$OjAnoGAyB;-OCX*io? zvqx-eRI29~|FXMl!81SE^nkY_RtSY0HKO@~8M6eW*Lj{y7+gyk=rFwzaW7L>w~?-& zJm7YBAiin07CsEVi4OBz*9VEb@d^hCJa&4_7_dsa3oaqWh()EtJgx^D!uyI6>EG}b zR`f-hKvw9Y=_tbP$_(BrV97YFiA%4~w88Q-x#_|Q$Iqk&;a8HNrFHd}V?tJ+8u?-9kW?diF zQcfqJ0I^R5IOR_lrwN~<*gfoR9CO(mCxoXDlORt$?CsgquCUzcYUa2eulu55ZpYES z@FZS00D&Ys#oS+JXe6h>MGgqmASVEC5bGA@^j(xk5R1-t;jN|aq`i+b?BZy+RJI4J zs%LxNyYp>m2S1xDCBU09HrEZ}6~ML1=jI61T4;wqW^Nz*HG!H2!SZfk(-033K|v2D z6J~Kwe>#nY!l#)F!3VInZy_g92?B3mVI78{Yfy8V0=)i@u#>Y)fzIP6Md8B>0v-oD zdBnCZOW6TYB#ZkDSU8e#C?G4TSa=JqF0=C}Chs$oElBG)+bi_7;he$)&-Q4NL;U7_ z!SoUN0M-WQ;s2tdj==l2TYvNg=lXrTjr|my0%+)1*ROH}`PnTT0syVPo3)!iam^_H|DKnd$xOI!d$L9!bccFuk!??R_PZnspabb#!g)k5> zbQ#A5BhJiP>`EZBLh9YcXQWo;w#ebf&3aUSY=_~Z=Ht=#_aGngf}b%%O%+mteF ziG$y$L*Uk=d$4tGki;*u(w~_|{FPAq^28*5eYjeg%VtEM9iyHm{pwV?KkFm+9Rk)W zeACJNxaEI}a-?+ageVC)$>stOStHkSZbD;AYvjXl0j|-{p&i{Uk#nlUn#n7AZO{OXCSod|64!* z%qBbK7sfgXhvC`wV)TId)&wrDzn?cL%FKTKrz2{=)XzRviq%3 zqJw{{o)uxY-*|bcOG5*5QiiH2YtPuc0#oV^m$pF-8{8#P~IOZz4_TO-6?u0=;ylz)~96WHVkIUY7* z*Fp1?PSyI8i!%qSH!gr9rM3jd3||1&zcmN4S@kwx>Ohi*>zlN$>V;ZHM@5?H#;>jf z{`ZRtV1l||jYd9^?&{(w<>Cv@kiVz%gg-^SDh*zn}3VT?{xlYjH zc(pvOlG;lsj3S6g+D`dxmhGH)IE`16)noi@*+Ovgy6q%YXDdq(ZZD`Gq7LjrMvUNq zNMnZmuMq1-sg=X{T{-D41DbIfFzk1lG$g|!WPb&mxoH3wHVQ!@YL8|nG9uGOd{m{9 zrg`cytL>1z=bI0NnNi^dWtF+qyHb)#xcwzs-wiu{p*5C*W=E3A7m(EBScl#jE_FZC ztalHB4>0LMC4<&?@0&3ua9I&_3DjGj*jL8A4In-&9 zNtIzmME|f$+Qnx7D=NZ5_X{b%d_`=y3GfptTgun?`fgbczBpbH|3wn&P|pu7GwW}! zKXSC6e7LZKzxOEGSgFSP(n7H)`5_Cj7xPb$YaFjKEJN*-J7_;ueTw&tTztI zz>;Jo;V-Myds)ba1MTm1ouzFRAHL3%HUbH@s*wgHtW}3It`jG^R#`o<^dO5P9Hi67 z?c5q}Uz@^6Rd5B1j0LS6A|{Bwvq;nr2tw~U3WYiNdNZ(bQgi#=%D{*om@Os%2;BoB*CpeAZd_% zqF(ni`nHAQSN{x|jxGGKRM&StG3aIYVlj}+Fuz+EQw$xroD5_ubhwv3(bF69vKahk zjp`H41Y6`nGF{01gF`vk`KOzi%i+FV+?3ts*p4f3hbd|Q@?r~%l#l9UcQLBOWs;r* z>O7asdfdQyZ>(Gf%(1PP=VAArM8HWsWD#8QG2kv0^&P~OrX9tLoq#%^qU577dOuSKaNMXsXav~3&t2)& z3lq8hM98kcedi(1cULGUk>7E6t}mu@YDQc9OIc;7*qsF2w@STk%qh#ZAX+( z9a}c>gJzZ?k63hV$4cd`>-Kl^O3d~aCCA_iSZbrmuIFqkeHU(030$k%14j|wY0aYb zdQca}H-WzgQv90p%ciTs1BR^%!X3A^>KR=s%~xD``|G(+VR z&!+=fsS}`p@0K>JEJ70-yhIre7E9=e>w%CP{DNom25r_9%di9ovL~u zz~iOXx}*m>E-v#NU!tUk)kKbM)LmCoJ|faM$E$fomgFHAr*$Wb35a=v6ak*>#(3Ge zx(D9+7ziOEvZ$X%>j+M^B^&KEms(~ObB9Rke?pF)Lu{M}x94W1+2#pkSa63iYwSIa}+7Ml#At&>P{A9EIRTYFr1|)v-%rf56}@fd7O+z!+3rPL!Tm;}|A zasl5%wWu>}lUseGN%`L(wmKcioh$eEQcG~77y=c{Vh68Pu%*y*8y3fY^cV3XJfJzj zfv>#>mHo()-Gx4j&>nv<-kRsHIpf!(pA(h}ZP=}a{0AKn_FgpoooPd)d2%kE;@C33ZUDRoqO6Bj zsp>T<(LI&pLQq1HlaI~~FP~jkP=bRc3R(|jv9seZ=#<8S#B2-9#gv9+Bm!-CkX>dE`bX+xq9J;Xp7pv#;1*h2};Pg^HyTw zS)*appB-vfe2Lww068OWuWE!2zA(WmWQEp*MK)Ik`!WY8BP ztlE5pZv)DVwE2`~@8qQ0{O3-Mav7S~H>n?q4m--%h6Hifg*>G(g0;YWL!=>N7 zlc}TNE*gW~S^w#j1~M;G4tfboPAuK!%S2d4X5jp(*J(AU**K4Mg#`RkO0aT)$HsDV zj=y4fzw2Lmq1v0yShn3EJxJ<%PI4+l-488x}7P)cmU!OEytXvWIih%#OLS$)HMoG4F*RT8Q$!`g?Vzqq&hSB5o*InnVr=B-x^ zfe+8;hKuAkv=-|dcVhN`2PF`*I^5X3hf2}-8Bw64>o{Vq2p>rirmNq~qc-~ds+(qZlTY26pK9x>LF7q; zfULVWx3Y1;B()ab7XTLR;Mqo2^dpfk5m>Vet<7dS8ndK*ZaZE#4Yq_A8Z~h;Zbv0h zmjQTZW*8DwJK9N_sy3tvX(T)@5QKXjP2$lX!|i4Pce~Z(La4Y|aI4;n@oq_Xfajqb zRGSbjJjA|QD96FmaA9miufJ$5pUCrc%IoU=8VgQOgu6B4?5|>1?5X0GGz(`$uL^#T zzbFVuYuo+9C>H?PIgOfr5<1$T^L-M3BCZWQGpQl(9>#9%$$Qg%tX0tA`ox;E zqmi^k7t8!`-)miqM&3zfq_9n*DIxpue4K9)^1)Ix@M@ByP4?}1HZy9ApdT@OKpir&G)IcMU{id}oMyX04i(QAgmtuiq?`bEPkAVY zGWiil-%c<=1!L#Vv-Wxn76^Yg6r(iuL`I|1V$4cyqosW1V8zMZ{7G{WbIpz$U-Zz; zL}nY^7r?7OA0XVQf{tvRW@Uu4mvhUPg=kyO(1;QB=W(dWWUjclTf?& z_gQ8==TC(&ib{gFW&sCX+7-hSFb*=_qpy3M!PBWyS!ns$(Sr`!$-ied4~~PoV0v{o zkfw+ygjQxbM59djHTpz1D>H`zJ0&ZMT-R*@zuKDp(*qJdP9d1>z3ZNu;;w12y}%m>*!uzz|XVyvEtMM^|&NtCGD&(<07sOSHsn`F6D_!P{O>Js;dR zy6#wa@foP_+hZbPbk}jHe||~UkI6A8EHH#}!Vf10$X>h{BVW|oCUVv;g5hspvDVUKQNZDTp%SiaF&Y8h$)0cboc z%UM2ZW0-Wn>vX^J_X_>8)R`n6=!wVn5|k*%Iz8+=GkzR8J7|b=3)!SZT;9x~BpG}K zJr0MXj5Fo19l>;9&Pz+qX`;%`AWq1u#_?=hf?g~4W!>4V2wL4!+aFBiRjxZ}vSaQe zL=%0t0ET3$wDJJaW2_56j!K6gQb1O#pvejEzm-^tku)nzOC|JELS&Sz?+UKK13nS* z%)2Vw&1}J03-d%=-)vIM{miVK%!ewDf`!c|n6@&JMFFiYYP{OUa8s+?ynLdic%m3W z+&ztRiG-Rm5iOZ30x{|MP8?GU!&yfljC1)6Trl>~Uqi$0dCs1>;VtJ*E8cFB0WVKD zfpVkewT?!FyaFL7E2}l9S@^&ys4L?Wbbj(^C6-=0qmV_1$0kpRDTNL0eT8dAsemo{ z7Q}qebW+ZIGU^iMpdu&tx>L)?LYs+c$QAhNvx_Nhwyft5dS!<7cR9Uyu)BKo;`aaS3qs zzBnzw{QK3` z`)z>xC@u3B;P(XZ82;$Os)_e)RSwebLV4!!mr1k2^CPhku{Ek+8LO3g5iDq#@hKKD z%@by_l!~7G??l4h@4D{clY0L`!zGDW8?xSa+V1@da=tGmcvbd`DK|NXcF(fgD$ zUl7OxiP-01rp6i#sSY1r6rbq0sMAp$R3FYf`yKt3R~*Ysum)MJN^@$yp?SKei&}ny zTz9~gGh&5OTD}6ke74l0Ud)?~@yu)h*JPwr>=LEV+V+%EVN+W(^k=6Xkmxy$KG_q6 z6MvZ)Fe0UC7$V)%G^mttGzf%YtzVO*eMC9|qcBI&3NuNj`X}1CxzoFeMTd^lsZY{c z5oSNiC)!PxYd$XB&JaNMo>ZRn0M6%_u~Qsa%-T;sL3}Pz=Yq+20a*-T1Fr>SjZr+; za6WNUCB!BA7v77=E<}KEPY846)RDw0@3gKz1q6to;UOVOacFt?me)np7ea1%Zw|6U zP>0gEdx0GKvdXDX4@x80wbmw{dxRDKH6NX4QO>d`sh0cv5Q%ff_@t=9N-HpnA<&`& zc!ffo&lnetyOJrjth;cKKnN&xoRC4*MxoW%U+Y>Jm`B%*t~uG=PYd9DI(OKb;r5#L zVAA_YkkI5Ev|pUg8`5*)1b6L8}{?LuPjylNT~qA z7(+@0L)Q+%2qO*cu6XYDv@zP^b4pOH(#jpy99PT*JMP*g9`V}s*P1QQd2H;|TL<4r ziKd-zyLzyQ3Fjqp2WFOL%viLH?ReYEBkF-1^lql-cU3kwA_t-D1y5b9rO@ZfVU<7U=QZ5DoVn-gk&>7Y%1by3+Iee29& zxR)-@hx3^Ps?TDN-kY^?la6Rr$AjU~a_+P~QPG#PUK>_gl@-V$TE?AWr0!w#jLzK| zpFv7`J*P!K6(l{S)t>JWl5GD&_T_||387n|Hg}Fn@jC?VM1LKTjqC5J9088=S7`xP#qH3J&e_2I0P=5xtkxB;*|%mx7ovYdXU zG@9mEM+5_*>b7CmV{)wrh$4;c?%*?{CWsTsbff0Lxj2OKOrh(^AIe3_M327w-=d%H zKaz<19+jsy(iKlA$${3A-D2XMZTt1*p~_C1wI`fJY`r-Cqoz&w-2@%@mWE_@(IYm( zh`NbchmA>6)Qg*OdT1;PU=>z)zy%~nU9U7Umf|MZ_i<$%;ptYDfS{*tCl1D zltFob`j>T2U7pu{KbD@13&y#z`zs(~T`0c0TBCSc@(jMv1`8sR5?2mhPi&Lqw3+lY z`&04}+>#y6U&lDHJD~Cv=lhpZ7X1oXCo>RRR;sh0P;tuIhtY3+=^JKz!l%&g%cCW{ zv&j8_YUdKX+YcIcPTm0U6_Yd}J)|kWn%XM9%7jFA8)+E{nbwyGU#bw!h?=F$E%2&o z4dv9sUyaB)CmwIZ?apF56PbXP9!fu7RA%tuZ7z!GDF`KacL|K+@Gm?|1`QAU7PT%r zzGnEoh_4p!FeTx&S5Yg_wc>7}Jqt-!SUMZ--r{*@2Y6ii(%;B}TlF`_W3u7RFJ3rD z7_$kzAuz;e(HR~ntT?Z>9<+b^@eaX$RSGxPufx%LJC@TMScN*e`i<&SZX#bkf~P5sL(ro|Ovr|vA73`PUgeP>EFj`Z3IUM*etTFLTxSCpH>)dPQ> zkIEG6yC4WvA+h4Z7eHa3w+L_!8>_NQ_tHcy6Zn(T=(v(rD;hChesOlxk)zCALZXtd z*gVI}s$1t}u+KyH4{$O~?F&2skI?rqJ|_w}djn4R)kkG|s>*7Tj;IDK|5<>$q<7y`0W!n%o{>f7`}I*l3ynI&TIw7Q%t-2!cQF zs4|=}b2MvwFy-Iia;n(^$p=nvr(nF7#v|$i-BLATLLbMO$XdX&BcNBW$VW7n(JXp2 zjOr7&k#b>-mwL<9{7}f;bA>(rmLvk}0`035`UCIuFZFXgOCI-?axI16ywdeCbhr;PJALMdyylu z_GnK~+El0GPxw8i>d;HP)?G(9fPY23BfXkv*IRwU&y`qF`d_W6$xR-B%*?m>!3Np$ zv?3bTxc?tH{;gB z6QHC18Q~JU`UI-;5MOeaz8oGqft$C9zCk9jMJ}4nM7Eq=5_Ba4Ia)?n;>}-mjc1QJ z5+mCmto^vu!prpK3O#rg>}!$K`iq%koG2^J98! z0@9dPfK)h=t+gk$b@Kz$Lps6 zB%9sj4Inik81iuy^i&I$A?GW+N}BuR44|L)nf;Ki=qN7NvrMcf*X(T+@6>~(otIBD zJdB>agOq#lum(e@5%&pIsx-OXa+Wv^N7{se`dH}H6eTLULIjBW8tBD8w#nD=%T@S8 zB7T4Jh%9cUyFq;f%R^uYieM{H&_0V4H1HQZf#T-2auodDb}O%sfs;_d3F7upM}&>`5>bk7xfLO1v7^8P|zCWdQ#jH`Pg3%emMip?ArdtbpG zc`9IEx@G0;j+%Z9zs~y?(c?EQGHgdba!)jJ^V-~(HE^LALGIsE3D?uw)XN$xBp2Uz z_gMb9$1u6a-YmJ4`^zIaB+&`s6@sRr@Rit*y!2eyt=MV8V=|(phb@oP;vimVyFJlr zj_&qha(Ca|xMIHjvhjo0uU~I3Eu31=CS#L(ii4KaeUp5{jftx5I$w(6*UOB>1T@m6 zWB?vEM@{p@!4q3)s)Lx-wj zxU{&@8pgWD9+Nj-S5JWp3`Dnn?(l?mrnSeUuBa%qda87^cK?*4MPo6TKxI3v%J6Ue ziN#Mu*>y@i=N$Z++7`cfoMQYVFnP(naTVS!`4^If+hrY%tcu_3R`528>HXa!(nLWm zI@Rr99XM?9LEU`ehlN{)?5IMM-W2`j5Zl~lH1UfJN>UeLBQg`*Qb(rdpb?JUos|4Z8q9LE#pKX1^q=FN4ejO|hRbe9irz zw@);(og>br7f%8r*igWRaIRk1W6fQ<;7&G>m` z%*9V<2~xR(Zms^|nbavd*aei#>9g&jgB>%m0?@>|dbKv+QEBIwXNJN2l2f7Yb=?pO zozs8gDx;Rfs`3GJvIWd^`9a4t;~}tqw9V?QnFu5E*zJ~B1DKM75+c?&9*+brK;G2R zwKPy@)|A6$A;v~m+mGeKm!WP0~u7Va{rU6L$yGJjCF5i5Qb|> zjh8zZ0EiB|Zd$~NsbxMoC~YdWgfURnM1OXL-%_iGvHu|Be4Bu2A{#mT)Sb z!S5PWe{8fVAZmNh^tZnI9JYswfO?P=N73_4I=WvXCW6Feu?{eG%ntUQ7ca%Iy?+sO zN#6hv)$rO{QJ1-J_0@JDTRhI^aP!%Mo_w@FE@V};7s1j>K7M9?x#?(oo6$a9jvqd6 zi6v)iO(-I1dN*MuWBv}xM=~<>yH=TVo)(_WNicK^hfO8?^2iK%wvi$0I=<5UhT8Kn zPJ490>zU`bokLn=O$iBZplzp4-MAq>Y|`=$eCfWh#1@8UvSfz&$ECkUwq~1E2#RHL7b4qDQ-D&EN^gk%{oMkf&DtDI^T{~vVY~BeuEp8O z5fA-$$>4`)(zOn#;9Ahur2$||p79(C9UkOzI->litVq1tH^sW_THuy8Ta8)|UFuCA zW&0fOGEclTR#xyL`@Re2DeVpo6p~|&0^JU|=QW&;s8XAmlpjZxVoxc{aExz_0u|ZR z54eYE52h@<7qI1!!{!Pq87}9FD!b43!25bdNW5e;he!0@v2Xt_MBuj7|@<4|>~L z0o0~geQ!R-s>PSWb8*Wp69_IW0Nhkc1cS=5_I59}$@c4WK<5jdm#Qm?PXl zW(`^dgpUi~q_%lN#lG5)Am7F`gQid||9=X@|B#8z=#0of3R?Htl5KV;RB%}Gd=(O*(Pl^R zVi0iDBnvGru;`?ul$7%545dT`?K%o*isha@a4LA`O6?;@Tu9-U~f`3Df?Vez37xl--$<`5j z-Zp%1&UJgPiQdBW4zEGAwDJg(|4p|40jGiFnFEvSn}m!T%gZ04AOs94%(?<63Jus* zvF*uI!4|MR<%1_(Zoi~Vi=htJ%?=|)T?-(}V(Xa?`EJK;O;o(YvDf-CXd2`+a+6qM zR7RNc1N20w(3)~5&r+%muia&BVpsViI(mqEd(ESw>sH_r)!NMyZ}3SMU&8rT6L>D{ zF88-iaQ%2JC^!~@*BU2KqT{zd{YV#9@;ebrRNktzm6*uNM{P1R8%w)#=iZ0(3r_o( zb-E(H?q9=TCHQZ6=tEqPkt*!+7ap=foV`E|Yccflm3NS*_y|9iRBfP+-Wa8uL z?^_)H`DmNA6P@$>D5EG^m&M#cZYbN!QpxfIXZAlyoRRkWctX3ce%X=#&v)U43U=T4)Tk?56cR^I2=DIJ!95vTs|&%`jUwzBJ#ulebVvhx!(>(tB9 z`kS4kU?H;QGT82i1~(E?Z(L2m#R)Ra-Q69(_G(rN+=ya`E$W~dJilHJWNEKY;%EyY zp9rJVVH8=N^!zgMdTwH)ymliXZ|L3oGwpR%ZVK1gXg()ixSA*Weg@Fe=>0&UJ z9%mFr5NL&+{UuX~fx1t~tr!(#9SMRF#{&GXl0_Q2K=MP>UqxZc!1U2$A~45OMCgrr zIvL8T+tQHzJ5k#^Qwu_TH3Fa8M-eBLZr~F`3V`lT^U?Tg^9k^`@zJDRcvueu(9W?A zJKP#1Z?o2Ry8XPdROf_2Dzd@qp6tRK`@s9+ZqP|{ez~E-Ztp4Za9#cM{B~K}?iyFScNz$OKE&PQDea|9T1vEebQpibz5xpEb#1OZM? zwaIm2Avdw3BzAejT2Idfpk^cxT%yAYGq{(dh)X%8g~;$Q zEB%ao;t0YC9U~SDo$bIB``^K$1%nk>_4@kVi^0M%0wEO3?R+^S*8y7u5Nc-MTHULE z28SQE2ACkD8{`+Gj{6qO$k7nVZ)c=Gl?uxnqirv4vY6#Dm~Aig;f zOln!Mj_F~WGci2^7yo66WgMV<(4<@ocvfq4A2>q+cSDl+P%DDQt0!+Ts;W{dd)4^Ttd6lx{fU;{FAt-NX3eg^Tnas>m2Y;8qX)} zpz1fmJBK?J8_*y??lG&Ph!b2$&)qgoxBT}Ow4wAWK=~2T6&_smMI7(sK%Kqr3SQSm zs}JJY-&{<@LlE=+iBlIOFSaXHMxTLG10yyLnDvMB&KG1JWIzA{_r?Y>RlxHppuyj5 zZg3mRC=+6$R{|ZC6O8N$@MtUqt9@Gaf`N~3E z3%a7^0c76HZ`AL^|HYj8yNZGkn3{#AEHLGx`|a<7Gz~fw zci*G^2Wk&5rKt*piHFnT=P`ARpFe-j4zII`Uq8s^od^Obb8*3g-#&2Dqa*Hhac0@h zycEju>%?M&@MZ7yvXFa$Y^e3cnDAT>(#SJSZNyKPihF+bE-N#Q|J~4HixEk{VGvwz z#R3jCZAZYnsTy+E00K#ju)xNj2LH0rFN6R0=SkYayK(H;x%^|3Z9?2@qeM2-ZyN&- zT+xE$hq%A#DL4WVfv%up{DnX0aG3qw6TsaBB0`atNPed~A*33J)2;0?LymVskb7hsb|=;yA;*F4YZ^N}5L|Erg@0et#MaM)%h^%m&Q)ptDNgE>owK9t2Ef znhtzw_B0`TF!u15h5ml!!|$~@PwD3RDdr_dfM3XyqlW~_74OGXmu})pB7dv1`Poq2 zGV%sZmXqh!)_nqLcSFDZdgKN3zsN_=WU-!!~Sb;wjx+MmM&qswJAAiMkgvgvd& zE8s`vgCF}96x8P1FPhCg16eHZkP=!!cOPo__`4>X9dAAb<9xCyr_drZ@#A%}jtdfI zzn*J|EIDtS0;Q?*wzC60+QE?RFH_o=!<-^|A?_z~enJHwrhr^R^S=xYUMt-Uje@j7 zvqAZh$R6^E>-_TGpS1}XVF!bY zaJwbp4J+mVrhE!mA=@*7A|q0noJJi(%s$`*77W{(u2&uCqK@7IX;hv^^a1IwoZy2q z9VQoa%l2mo0K#?LwLU(fIWk)}blL5d>d8NlJThFpiYwsU<8qgrYDyhgtQ&-2Q^S{x9tj$nKpDh~H4Sl6jybb1hvWC9^EcNK_E%i?j7`-uCZylBNX4TM)fuetMb*Vm0q7=`vMkNg$R#+>} zqFB}0o{x9#J&vam#iI1YB9IfMi>Fhl!bj^X-y7c-bQQ5WLqr)VTdZJrWN8#UcRQS znQCDkta{bV*Y2=#>9JY{-5}xhmnV$i)#F#==|&PUz4(}4vvVzH<|;2m+Fj3BgvE8!{3@CJUr$i57}g-`E( zUjnHa44c+Y6mmoSKWj`fF%Mr@FpAeRk!aa>q4B zz#;&9#i=SxG5#Z4N(oP(#w(QfZQI2|jRjrpp zYw1zj2n2&hB4|_MBhz=TYhG6K7+;Rvv{nX~BW9#8T^?n?vjknmWPmtTj~62C+v^ zWZ+YzYfb2`DKhsZ0{}ur*qii5zZhv>EsNncdANav(L{5*`LV_C>t&58p`Ua1PE!&V z^|dwz^*HAQw}E0kTMMWlu0GK0sOLj#a?z9c5ws2+j&49rJqE2w0&>5K6+@rZa-$i; zZGj%9D*Y-c-=#5H`DpWm2{#2gn1R6~m$u{B_;$f2PS8b}eC0SryTY+OPb2M&Q|`mb zZh`yeLLUkaJlMi1c-@Z9ICX}bXR0fttr7ZwUY&3I%1i4K~$x= zuk6c0)q#J={PvXx*RJ2K+9N4@dH)6d8y{~#)p?5ON%h-*%<~Y`dzI76ih|~oaGh-| zURO9a%dpij#_)hP8)Q<+5cPG+4N1H(K7A@#))}SoUSKZu$08r>P=UwV) zSZ`EUpL>QhF`hj0a3o5IXQF>Bx$!U>GCb+_B8#)`A+oWM#YzT?t*LBh!6G9VN|U>* z!&mIM#!oD~>lFAzbmXfc)#2+Vg`PxDkBXnH02t>;U;}*4ZGp~#OVvRPZH%G|!)zf! zDX`bh$>W%qI}Ge%vCu}1lW5H(rvBHz>T{)5p+X#wW@N5 z)mZUYuM(s5G#IYQ1@(CQV9y12=**((d}NRIqxTD;=+u{YnOHO{hp-eET7Vwqv<*+-{cf-m!LkiVbgi5ULQ9o=Ju@O7ZiYU&QWFrVXlK6Km**om zGG`NGXg5{jV?j&N$Wt}gHw9VmD|gzxgU7|JyN&B_xP6LC`TCOwu98lIU0ikMPo(G|lJSLZsI9~4PT8pjbRbLsV6 zry&=34P8M9Q$Dgd{^D{?C-F8RA>WUe1;30lzKZ0$rv%1w!AAd0|41Z zk*)bZSviK)Ge<@h&+KzG{OnP!xz&a;pVc$8A-*?S9u+}MF~)b^Ru%hFl(SnAhLJxc~Wr&>-vwmpN0BENzk)T zvAmbGQA&J_p6E$AA2~m^DxJr!vW~K`%%hC~$mA6&^$Z&!hr?y=q>@y?V*dH%{?Mz$ zpHAE%T!s&D+Rrg8=lJ()%ohA_D~YNHFNp`s_l)(IDy498n+_>*-R^P-?Kf)agC1J! z>{1&AkZ$iNh(uT4|K#bH-W>!@7+Y1J1^`xm{u9Yl5!4G{6CXbBSY>Gk%qS=|7Ze^=7_5}&{Q|dAOqpd#8LSu58Ly3cI!{yatQ=7L*)YVxB+V&s3?1SW5QyD7TrRZEPL;`}|14fZd&AAa(^6C3Oz(G8+rvFB1%0 zWCjhpP@pLM$MrD^eyK29V$D-kHdRsK#WB(OeMk~Za9sSpI`c!5Uh(sa{%R_t*$S!5 z)IF`_*}A~S*3Ds(*K74}$sLnDE^eRFM;?*q9_?x5i23Y&!=OZ%-^V}3kar_6}`B|ustWs@jN zurJ^$H@xm|(Oaz*eS~ijFhxE1Rw42z#f5h=1_EScDvSNg_<4AvY0i(gaiND>;j;Pw z1l@oVc#73z^}Yb!jWa(5zFp86)MbpJoNl0HntHKwbXgA$vPXEQG0F~i1WGnV2KRU_ zV`OZ$g@$Cj@;1h{Za*Qfbo#qS)f55ZXW_ z7tPTS@brpfEM52RGaZe=LaEyo9zC-psA0P9lkQ55Uiwgj?p5+kInZ|$()5@0@x*dJ z%b4vT<4Y}iYhFIWMjuT;MJ9W{4J3sl`LE8S3H#$UiB+Bss${-cdVc5KDQdqgjw{Qg z$Lu+hfdNQdIg$aw0o2RjOm=y=Pq=fB+cZokV;^+B8d3aQ<3$meapr12SNxseY7uDC zEcK>_NA&v`C?4G5SSawF{eo>ObClRLEI&S+HIC0pq5PXx=3j#84K3;~y2P}dc+srA zvb0}ikV5Inj)T~_4}xAGK;{)e+pZ-JoY$doHQ{BHjkuppJJ!j28CspjH#9o6VInms z0##Qs7Aw~IVIxoEWPwxes7z}tUjY!s=vpfVXZ>e@8d2p|GU~D0aJU~_&#+g)+Gjgx zFaJx2#|u!=*48z*-2U~mito!#Hv^J z=8o4K7jdL1pH+Tf6}Lo4kV`bZkF9H+){Nb9i0|bY_m>7xU*{_hGXhWJ+4JEFyiIz4 z9Au^Fy@EX4Rh>Hm)FiMWy|bAtanObm=^6>;>uuM`h^l$NTTuCwe; zh~ZH`n2sSXwFWjMNJR7a8MNTiF*+I-7k9MQtTR6mm7!Qy6?ObZR~+x*y~oyx!>6c? znnuC43;k|yZ0evYecTN8DF+wRVKI}f9YTgZpj(aP3vJEx%@{U5IOCU_7ul&i=`Q@o zoD3DNtbUVUE4=~q2ruy_ro_B zhZPQ1851fRcQp^FYVKL&ui!hm-ieP~>YA=MR9B)?u^!!C>BtuYRhX#vqz>A{+kDH4 z1!M);F1Z4wIp4Y03yfL~1!e~d+7}}D6D}(}UM08~-{&3$W^7yoXKtcVBSW!~ZxY2N z#@%9Raxt_};NG$9HZtJ!C?Uv}58M0w)%PDhL{C{wV&*|F<&2|ZeMR43_-D@j%+baR zXL|6OfE<6R@S7HXiNR8F@_cX|-4}av?FnYi`Ox)=&)?-0=Ft!gqM~>&7{6lm6k1KH z@jEWwGK-j|GEI9GCyiuS%P-z<{XnMXffIm*mns!E0vQm)urSJgyj$*DNxkm4EXk4g z+rqS13_Nw))dbfwb5)^w)q>B?b%-2^FU$TfvNgdz$!d;>*_9PyJ8)&tJT-5Hme3fT zS_(uoI^SfCdK|YAb6!(yOC4QktKwV<(%l~OOfy7rXj@c_O4y2^OhS@8b6TeEU6w8& z8{8qoRa_jLk4%}ZGyGnXkYPtGzv@VQ1tClBnb04goI;RQtyOlc{l$@h?bfCuy3kDe z+3C)^Xd12ulS)E`!!HCduj#YCko?&<8S>f`tAEpMP-kFwx%+Lt$JpR}aJr^y#?b&; zv${{U4bqt0JqV2wuiAy7Xj!KJc<;e7^i)y8SFh4u3G=w^i>m5rgCZolj3+D9E8iB7 z@{*2vI$&pkt%>By1lQm|ue{UJiC9+89^tS=z!}%!AYzXG>fZ#T-~(^J2@R~8l0)Yuj)g3 z)O=ZQ)v$IV4nhm3tCkwfbjXb0SVA$F8ve$7LxEIY`DljRDJ#!xm=u*&^wN=Xd&079-r_BJkBep|Mu^^N{GUjC(yOgt=zaN!>ZPgFq4 zV+BcZtZ^yssrDynGnvjdB1g_2XO5TXb*rA|$d|uu8Mj}u-NkWs>a+`2a1yQ-IeZ$G z3fKb05X-RB^WlvWvW34|Wmfp5o~Io+Sn47JWut0Z#KF^F*W<;6FUr5X7`xlAs4uJQFAUU6Z!Zc#b$V%!g-}5jW%j6T6;}!=>D+`Wn$e4$dV(dW z&x3&HwVt-s-wIScau74p)a@_}Wi)_>? zw2doN%csZKKc}XqzKK$*Bl8_@{w@lO%H)V8L%rF(cVsuueEVY`DmA`G)1j8ADM4@e z_<7v+(vRuw9X6F@U8vx)SMJ4&3vhl7ToP=0!9)5?R7DCOe%)y}y0|4rghNY1RZ5VK zBM-i09->?XHgT|3VrkyfoK#Qgwd+h9DlgZ{dt+*{)9LGBh(&~nNfwlN?LZltTEKDrMFE7y^6@HKw187}^Wbc-1T{czba&Vs z{1g9Gimg7)=hGclO+q5HLhG$JD(~YTG$~0hc~CP{c?QT1!+l)JsW`+zG8@fP#&=NV z&bU}6s0o@Pgf$AJ18fbl2FzOvk!X~yW6RjRUH^Q#D^;pFA=4Snxi+Ym^!z7Z`7wZ> zKq;?hB;-7+t`D8wMAIyE_KVWh95h&z@JW5q91`%Is3^BokNq~9{pz9LH;)dUUBZ6; zqobp!g_PsK_-7`^pNZ2RSG^cE%iWjzp2TobN<%{r#HZIP&dONH(WxNNG14Md1y(xm z3=Z@7yAuh6=)Hr2NNiWsO7&GC`_NmEBrZbT>V5N3D=+n-zpK@Rj^*PVSA)I1;JY#E zA?qxRjp5-lIL@EFZbo*ai%M*;V$QP@1turC@+1T2pcskF2$uFXk?fNzZRWyI+aaeK zS`ceTjhxwSG_LbpOpe6!6@vTs89%LKEm7+qv7s23(dB2(P~nVLe!FgKs(cR6ap6g3 z#GP&_ice9>7m=(dtDt+4qdS*)dFV+44F!U+mqJ0yg~y*eGT)_q>dU>G9lN>tsLWGH zJU^qxM1}9=eP&HVUCOCxgzG=Sz;Heq%~@!a9@l&J&c_!ujgytuPb^~v*rrX>)SXnO zB}ioU&Q5VGCnSf!{L7@zYcQ=~El)d{OY&HvlLawF1R1eedW$ zW#=oWe~QK;SnJ1A(!)Ftst)8Fg>I*iBwS31dHA@SV?~=Q=wlTCE(wb;Ob(hz7V4a5NU^OSBKbvBZB0+=od}bGinJkH>Vua%a z)v6*f`j}{nTJOA&p)RX2&)2$3c^lEptf+QsQDcE}9IkZ8Y>i&@!V~h5liCw%xE&f# zoag{$s%_5z2A@q)mTz)je!~pM>JGl`e4EB_nH^GtpIO`^y{CXysR= ziq~#i7hHT*%~X%E+e2fQNMoo9q)r{|TqAk<{9>QXy=9!?d4-t$&HJ`kJ{3@ai<{zU zkK&Zrb&99cb$+7xnSvsll#G-RNM}Jnx9DpiP4soPN+nUY)Jzm@CctQdw(-ty+8$cG zTOV<*h0e69w|GYt%pLa35x6)VEth_eS79mB&e!n@!!c$dwwv>35@;0C_BuKiJi$s! zSzZy11kHnJ#v=3XpV{A+0;uD5k9V|6EbLZd4-Ly*cG7m;l4~>;s=ptrLO?`JnYg)3I;C1?IRT2|98DmNI}6Q)Kbn?WW3ksnw8m zqtFQYzs`}*5M=!JkI3Zfeeo2mGl6q@`tvj$q?Z>Oe;PqnlONb9ZXndf#O4l&+-Coo zwwv2>N^gdYEc`ejfZ~syE2?|?kG^xDgnq-fh1p)qFR7MCVi@Pn^(60jei1n5$ryDf zyI#5C)S5M1@RqD(?cQF4vB~*t@AhdJg?WW?U%`61OZCntjZvdB)2B5-rQF^k%pr8~Z!R{yG{7at1po<5}(Azk%-W6 zpeU^y{VT1g!^6l*SK=S2VB!16d8?x(dK?)HjFWB$WM%G0{+csq@9KTy|BOZejZbPe zd)JOiQjXo*N7Ic7)MKn6$_uBRD2gUM5IkE`}jnj_3BH;5ZE=PWxV@ z)AsysVg!2cQf|$81Q8>SWV#oRMO#6^xqe$@H)%OJ!JA`-U5?Fw5Q_{poxpY{DAv3` zDK$AOqz5Ib?0QO?lz$r?g4m@;v_J zPV)uKFUZr^GQpOMDJvdmb44 z#?vzid8@k)q=aleS5P$%00TQfRabe{`5XYu8!Uy|>_fFwy{99G9F3%SJd$!`y2jMT!$AtGW8W!G0XX)DLueM#@HR;u3hmKqGl6*|0!{~DiZ(j$Qb|}k|L6)oiim6*v zQoP8?lm`$M{1SyOiO1N3H@=}HDdf01M!fg*)t+g;I2&@EnOjNZ_~<*jv@ae7yN3VW zgHV4W3fqYB)xj&(XOUa!?tG51E`mL!dG4o^d3hb(oKNx8Wj>P$c#e@~Y7~5khO#O3 zvfPWw{%+y(O|XcsmlrpN>+a$Mk#C*n;Ls`s#7Ad=O)5twd1>!4+yk9}&OJDPxULQj zB}}h}Jt2p8eeXlu_utP}>UYkSW!&3?3$(P^q%4^D!jEHer|S3G2=ty&m@%4g>i;17 zGn|BIL(}gjN$6{b29hUtSGoAhDo&8uH;WBw-}(5!QlG`+41YA7tiRkpDqEBiKu9!H&-3^Rf6eBJM`kYhKL_oDdQy3B8rrxEd%yQ*$}J2f2MRuX zDon}@jz$r|R3BtcUH7QNqoe;lmGfSOL7AU5Apt&wKPYcG1*ImmPodS1CxG63p|%BcjkiEQpfo1B55j z<1M?Dot}BZ4+@z^i*;(4eY+d{OUG7Yh0Pe}`if-rLT>iRExj*x!&q^ho@qwsj}6be z2bcN_d<9SYLepx*Y8)fLA(X{oWsF3zKP`M_uEu;JeOEXnOjjg^>e6j>;8vFp@*F7Q z!RAXR8_;r<6Qj44vB$!gwA9R1H0hR}#S*3oknBMpOOs7oN`RhYWVhq-wMx}q zU~eL;7tK3NgD%sUmiGHzt*P%FR^DBkBbB~&kZ93ToD zEM@#w&b)w_UYzyIL`xn`hnqa49{4 za?s>!G@nN2!?0L})PvxZ-D9Cew??OUY!;|vFGNKYS^zFCLD75FuWi+Q%&2b3i5`T) z*cp3@)COY`CZG zZo)Im{(AKrtMvF?n$ktrf>u*y${ggyIF?d#2D3D%4En96kL}*gY9I!_kZ)$8#4S`l zdg*$myarYi$|ORzoeJ%U6bkB#NTEMSwir_38F!sS+h?}^(719>Ie2P@whzWcD`?#+wL*Z7c*t{8 zTss9h*E=&8XAZHE9}c6AcA9`09x8Mwp-z1{q%^ZawR{%`#&{;hZ;B5zfG;MnIC>7l zz9SI5t=@dn<&zhf@1^tv>8(EvWCpJ(F7Q{P1Xl^&vZ7ki5(}f;8#cD)P5s!Q=3GMs zxzw{_ss~fB9H}}#>3`5vlEH{TU^Z($^yA4ujt*0SVLJyE!7dKBP`OT^bQkCMLW@x~ za-~*-Wr|ml@OB!Gf#_4#eQRVHFfdy=?2-EA>S1@I^xYQXHRv82{P0jm9HaVAFrg@B z^s}>^d|TKC8pfL`fAiAqQDIx_PgkIb;@7+2$&08)5iLclcO0xyl_<#h|~R}8GHe+>;C4^|oVu_9N6;n@tKeyb3!97j&qVI zz}ySvjr0)%#q~vKbgyQM8Y7D`v8G~WWAk#=uHbIQHM$;*wXnTV;BE5Jm2`rTUp#rD~y$+(sWroMfz)I-GUqyQ?5Hgk1tUXv4pVSI)=KBAyFA8m9 zc^6J};f#O?7`R<(JLeCgztQzZdc%Lsv-3Am@XUhASLB**-!Ggtg6?^*jh4t58ymmz zpVI#C5O)?u0G@xCa;mgYVx~=03c!)lGjKCpL&qSG6a~Z-YM|tZx9X~WDH1OHcV8f& zORT96y@>HFh9D}5o49y*C5AI5+;Ci81ScAToHhu6ukbS2`-^Z>%Cke(F#mc-P)=ze zGK4bA`~C&5uLAIT{@^Q;3$XfCyxU+(>Mif}UxL$N(*d^|#W2zz_Yu5ES3fA}T%ex+ zKfVq6&zD5=7C->_Gyy(7IyNHW*3_w`->59r#?`TM2bo=;_g+L8yH3QXR)V(#aGZm^JQG%gNl&Zk z9!#wvDkp_dH-Qhu@Il}R)hkHD8_*+Ln?vbXMm_IavcR+33P7mY{l=PR8n6si698ZS z{TuK^YX$(htjoWFG^-griQ&J&2462Vyfy^Ys!;=G6=xj@+_87Glqo@j(!CMy z+O-0Glu2O`1^_!+PHX@Ic#&GYNjA+LOncFS^?E+1^;nwGjioQNXidEvlzSHo1LsE} zyojn#kzO`{)X@u*I(7vlPr(d=HN*neP^y*4m%nQWb_x+Zy{QbrYY0c?T1t`qiisdH zxD0WRElpHkKLy6k&vrzx#2g+Tmb%amU&P#h{V1&gxx78(!9W%YB;24%aoA<0r&Nk_ z=Vi@nA7r7w;r|5WWoSD4pmCzP)a#_&=*GZ;xWoZzlh7jJ^b_ziY}T^6Svc9i^It*y zH=JKFc#nfI_2R{j;#p{kQla%Yu!t=fj#a4xPeVt}g-RjgATHCPT1eTD3pgG9*Y^Vl zlQ3Xrp(tG~(8uxw0eIiR^}d0Rg-YDZ?BoM&{_g&N-vNrD_@;hQf$2Hnjo(pHroOQ~bDmd?3G<5~efm-`^*Ha?> zu3CYDvqdF~zvp)dPhKU&$*5!<0+YOpsO&;I4ul>x(raCW&-0{I zyWC!iL%)d|aP>&Ccq) zz6mNgu$o4nr|RH_v3juObE(YBLbSjELL*hJ{eF)8%-e2)v@@XW)> z5kGz?Gyoaa!- z!i$QlaZ2LIhZ_deitq!^c5hjgn8*G7XR@7V2$^X>Mh0*KI5}8CfUa9O7_k-*jB|i$ zqSP-3j?scAoAo`_9&Wuz085?!_SPH@%^Zw}R^!SA=WT&41f-=ByKj3pgOxX@kCpR1 zya+7@#Cr_e?uGl_z_?WkAu=}fy2JkZzQ92W%r`*0w#5tm3S8&qa6g2sZ=a~ZjfSz( zJOK8GCHa|vt7JIfT}$_WS4}k=%rO+#>KS}b0FzfxRMw}4k<1gz&KffwbgV5+lf06l zPimw(yP;-MB6>oC`<@V^SO&-$h|x!T^nhL`Ty)h+8|NatjB!wN7%S_=I6OoFL{ZHd z<7?>k>$J`kAjhR#VyV*{&Vi09Mrc@p)^$L$G;}-%o`v`8c!Iq_7BWe#<3QiUyz>{rv08UHsofDrdF4pD- z;bU-6j~X^QJ>E-__+A54gu$8cE`x5Rb0OBsT&=zDz>nAUvQT=z=H3yXQ3q*W0>h&b z+)6kel!I#hb_P>k<+Rx@?pEQKv1dA=ikqTqZ_fvJ(`9pIt{X+*WUAyO!j8~}ju*`b zR?P1iiA&&&-1MgbsM&UYXw4Eizm;IWq#b{I@CjLAm210ZuTefs!Tw%dp_+9V1faS? zY6*}pt69Wx&K&}RhvDSkjkn7fp`&dg+wENj2A%JPeJ|#Q(^D2j_}uohvb2jdi#LWI z+``>b{dhz}9VrW)b&_+;=v=0lVKqEdfaqyUvH(q(czy@X51uC(!;`b!64Y@%H}i=y)uIH;rv%F&TbTkwxn!NE zH6K5I404)8)w<&*9Im}LZUh2I^kAz-CSJi#S}UnKw0xs+v>F=N{~6oByuuk?{GbrI zg0YJyR_DmR3{QBv>&1#xd$WDW z4`3c75@n}jIh>$HmHeG9KF<2ilN;D`e~Mz{nVhLsBbw8VuC#=@tFrYig__6xJ zMeb6jt{OcNz&|PjvaaHoiszJUd#lsy8F|}eY6iO$n`x`V6}%&P!=}Udapg`cjHkM5 zOeVb(E78FC>&v2Wq$amn3*MxHzhnIAHL{nx^P?LdA#(G*h9>-dUuuS9g@JEM%~!Ch z8IZZ!evEDzw%tqp)wxZfYopKBoC<@%G{0a)T~4#)$68>UF$>P6JT)Tj+s$;_`=eHw z=vVTvZ>LL#O9QnY7QnJ8*j*pjig#URAQthgJgS;$Wvh{GO63DxKjw#u%YKf^KWm^O zQoU;Bn{BZyjS;M&O^+5hiG06F-E{O2Xch$ZnskKs$oCyBso!H|EDxV^;)93x!C6an z&EQvi4CO+v_^oua!1%Ns$xhm?a#a~_|E#e0W2IjWuN4Fa@?xW z{mu)V2Uw06Ud2h_jQ1xeyGd*=O-dpS+ z#W=4cNuuI=t>#5^S*X}ag?o^SaK6>q|l{cQG;S14iu6OOhtE3S?6&jX?z`T_my|z^T04j?o3It0Y85|18e4 z7;g4JMIuSa`Am=To^e3zcx6MXr1cbecc5JTbICfaz4k28^4LOR&T_#(AJDVX2C4r7 z4{2Udtx>%QZ=8hdQZ`$o`vaFZ;!(>C32p~VOtAYkgUA_mmEJOOYN*aB^y6E)*T55T z*rO#9U6fzZ2oR8HB_$P-%iJ5JdxHr%TReUE)#=DiLc!_u+xFh}nj|*&Lis+Ey@njep>WE#VKjfr;12G)9%%K-L`$Se(+{$<4?1;^ zBPgtFF;+e4pmJ_v13d^7qi6c2j2?DX=93@ZGHU<4fKF5pKCo>=9(#!Z}BtzLsxZs{rjb1 zjU!O`tAm9G5rt10)GVkLxILa)`(#40(l1=Cg{+P)%Q8O(THi?xFM#In+PSe1HXIQody=DYG?gS$6$*yJiWF5&jk zXoAVYQNbWaMgl(-_YUJz3ydnRWQ7X5q=1U|{C%Z$6wTDTN7DRVp*(s+DwAR*9zl{% z9Dn9@ROk>;EHB?%AAN7?T4TO47rvUo0Z7`T5^k-oV4WgO(G|_BSFhSdu8I%MqO>f( zDU12E>u{Ph);dgA=#Vi%qHCOVZGSJdEd^}Jh(#@F=cW)*zv5;$?kV>jXWe{B|%3!ya3@pD3=TrdIe0O#3xpuix$G}EmU_{X)?VAqF zf0OfK6+#X1ZM2DuA;*1w4QCeURtewP4CL_g59TR?DM=cE z+|M5DiGjr?W$9^W0*?c?h(INu#5J{g$)Nf9%Z>^4w=UxDd!=ZcY(%kE(TqJ(j{04} zYcdiNje!IG`FEt$IeQHa&kO~WiJ1P7o&X9K#%(%DVXPZ5I#o~PfVA=-3n77Pl-1Pn zD`V-n(r@;x#oVfL%pLg6F_PjI@kuHVh-^cbw+9xz)&^;BX#?|+G z^$W0r9m|5&kNfa;p%t#c95B|hA+ck?7hZmB`!mA`1E<&ftRR-89#(3E_()P)9_U-X zVg`@-+gRXJu)KE|7jUoNAW~Ge8_bIUI7ji9j85r~76ipDqhuHJq#O8iA7Dap{2w??bi+3Q!>l|OT2zHM)rs4f!wSl+-|JV$L%V=T{ z=ozV9htBX}=UXDTSXj+h4v1#IYv_<+RbRg;)mzp#&VJKyJZ*td*&f-P^s(__s(wmj|!A$JjSDP##y}g5Bm+&Ah)ssbqOVY4CTo=UmKezD^NHgakF!Af7YGmQhOK5fQu=Lo2TOD)8uo5=1`L_WXD{ zpGZWMZq}n9c37k9!}spd6(^kjtJKPQL^?W!>eHD5K)|_Jr!e!w}n#IR|ZbAI##A8wkj;GB0WNoX6vNx|MYkqk$ru_j9I9yJ<$B*?TELmnh z06g7ytt|Ja;?3+7=xRrrU;#c6kvsuj9p~sCqRuAn)`tp|9E#65 zOEG&a=z`W)U41ReRasyDc~~ZF+0rGRVu42}s<7TF7V7`=f5KO3Atd;EO|CD^khWd<_uEyinDQR47=2 zd8Ut|Lbew=(=2Ou*SY{s5J`$-Q0wzSRHg6A{2jLH^E|W9p?1k=mH|Rj(fa6;Kq#Ut ztfWHp-yjA2wPQ_A?ZPW?E%OCQgsxzJ)Y{!+HSQZ;0J;$%$?JZ6*MpkhNDOAN6H252UlmA z4F^BVzypMpN6HMH<)H5jplk(dT8B_S2m9&C?UmVVV7{7~Vl39ejBJ`1^?Ggn_rv98 zQ3rZ!O5z4!n*X@Q7ntnjzgfade{Gr;8NnNacSYfijLVj6o$t;oG!wldG3(1uD7t4A z=LfRm{6HWLbQN3;sbAzkytv zf!WWzbf%>?8bC<8yP;{uE7)+qkVyLN@upsd&2Nh3{fQE{Cj_DA0ND|J1caFJIp=xr z4W=Ix;V^jTLU$H1nAN<(uw1vln%7{Nhxk|{MPSdO*Yc6jvRZw`HDem3NeKlE_M_NR#b?)UT2^#g-cf4hY!u2dY4cbBb;atMfuZ(rmwwA_bH z@srE?m$kIRT3kM_ap_ene>6XWUYa~Cby}aOnB8pY5ipCp8kav*V%2j4u!G5kCtz{` zxQv_*r`Lr8N5gfur=Gmac_~+-(o|s*AO+A!sDVqbm}l^ zPO`sCk>bvkD_59-ZALQ*o*ziwp?n$%*49vWU7yG5ZPbx0Q+B}FiEjk)rNmCp6@{bS zWy*lds*gWW;sb&4?RSRN3cl1vOLn@-YBoxc+sN;Uhy*vY5qi@7!MFS3pdP{kpCfEB|aDdj~oQL19nR_jZU*9w)J6NQeb;|k0Vwq5-D&Kgy+L8F|n$P}>kAT&eRqWww)fTd_md_rd7_*`xvmoyJQ#L({j=g6!! zi`g0_#6WP-_E}<*6Tx{RZ{njPX?>;SfN2dN?BQ@+O}Tx*&h|rnC0K@(rZAUK94jv! z#?Fe>m99tGrQKz?M|B;lH3Yc@>-RPb`Q((2+2P5X1t+t2V@&*-G{1>g3h`~zuVySCi0uW(X_eMTv3B4oS+f_wV;v?!6!zKCzj}z zaT@BVZ-989v|x(ImsOi@<;uN{A6{wOQ_T`%E4-u%77qRwsN5tea45ekbV;mhSDrDU zEVu1D?Mdz*ApqZH`AZ4WtGWuUajo6Id^rAn?U8Wne=AW#_Va~Gd8sV`r1v9MX3tf3R297L~&F6DO<8}5a zX_^zszX61?4Ro2^gXVswU(1MxdI8iqS+VsOXAjmR#wN*XK74xxjtp{1yYKqEaq^?t zXS_oIk+J#jtzn_Ew&Q@mEg=*tGaI+FJ?^|ZKOh1nrL>)~Toh(Z?B60z(do+K$@TCp z%~6J0vbs;UNS3E_D&~7&9SfrL*tqEDq?c}tnFa`2B@S8lewCnFuQI_a{UylI-Tbd! z)2|NSaIh;o<{z=92VA9airmZJ55@jXHt2-=lf4F%5~Ra?5@^h;PEWmr%f|6 zTxqRVm#r)7^ZOeOBH(cQw`A4{Xa=8!C}51w$Kow3)~e37Tk79h^gx7NX>T*2UsN3$ z<)y;`{@D^uZV~s+&%}jRV_Ncbpm6M#3&c&vai59IWW043z3y%C4NPI$HP{YW*#h}v zrCN*uozQcikG}#AjfG~h? z677LgowAGdFM})}yR-vI0oOr`ojXRgu{YkZ70;j(sWb#B-!e!(nUMOO2nL5_8R)Nd zVS*fYh`DDOUAG$HERIlLFLr$S|4DR5j>unP~as%Z_XHnDE8e z-myZBN8yJUv2D!Cls>Pr^?PadMUpCeRJ?QZ*^@|Wh|7wMfQYCItHC7tUkxT_VNp<% zAGa+9W$fsm&(nmZUxDYd=(8{QlI0mm3`CN zvVsYmg+5pCMx9@Ey+Ix4t+pQyu9cm4q|#=vme0bqiyp5ea@~P@K#r_ja-Q*Xl8kYL z)E6mFc9@;6kIHtlD z-Awu<_cO5^@h-V?*>KDQ5MwFCQZbaLXpZLt>==2$%oM-i_A-;R$1J42)SH!++<}W9 z|44=?b5)!kOmCPO%sb5$_u8h`lj1W<e<2CU^aZI08CobPehjX@0YmsTKJs)a*DW^c(UYzZYPUS%A=_E&-Y0F*m^dP%y z%%{wM=S9sdaU~rwK^XJyHsDVW(!UaCpz|q-=jmw6Rv;3(1r}snj$MT6pK*p+4m`_? zONjz6-P)TeqYHpzpHS{cU0i9u2;{ab10UNOha&<8*4gP_ZRKSqBPJzH3>@v&nZlKl zO_!+csnGvT^e+}0avg7ZI1>L?TTBY5GddbJo4LT8U}78#!}(KFfaE1CAyP~#c5&vf zzi0%vC`5zjcUZ0hkD;h^Dh~_r(?`ayAgQ&|4uxsR5|LVJR4)E$z}2XT3r!8=&YEu)uh0ez zDhw5W``Th+TV(oR~Xp#Dr_y;@gl;XnXrZeOIG6fY7O%Ow@Q8F15Y?j?`-fHH0;8uPeHAkJYYQ6I4 z(4^sw{O=bx&7z*CaCLdAp=STy>txW6R$N5Oz}*e26+bNYDEG&htbj}m*@rkGM0~)z zH%w$H^8eo0-+$FowI@vJCC3D)R#^AW3NR4?WWeD+j}=@d*y3@X>dth0d?b=Sd4#8RLactm)4SN{C_>=@X@x-J#}wTWeo z0FP7gi$co#`#_|`8Uw!S_|>ZeL`ocx0!7G2MNQI|*e6Z?G+X`MLu~&>6rjT!4(5*L zyHeDES|wJ3W~rE1!Yt%RoqHFcKA5(2>ge%0SYjppy%gb6f!juzCAYSM39tsmU{wWu z(p&f|-{g1z6jvN`yz1dZY}qY4=pZEuJl!kpsrq6BB|3?Jsp)1L1uF_*N_cm_lW;U6*;k*$0TtT@xPi!O+cL? z8_VvI{_{I6$ z|5GIc^hw{^+S*Dc6@LABsq_~CTowiEVNCm~g+%W$QjxJGYUn@eKPl@do%gkG@bI>=z^ws^IgFX|UAB8o?6#1Bh;_((K|N zeI-c@CHVM%Inh#M4UsuWW?|TKg?sFe6E(>%tm3uSQ0^smBM{fJgS{_#vHFiMHR=DK zKM4Kj4+4QP1=hdq#fuj{>TioU@knT}k(j{Jj%SX*_z{kH(|d2aaMkyfegS; z_QfxFO75J3-DW*4V)yos7@Iga7-0IZMezQdY^01pMi@&pBT@WUs-1wB%163ohFt>( ziyEHTkNq+@StV!HnE~-L7vz-^;)6>Kft&lNr!-*SR{VdC)mS&M&7aim-yXLU24kC= zB~F31`}10Et0QF=C2gm*TUZnnI0w0b`u|wt%_(@nchbq36_Ue=>UeD$w`;-;M-#7*b~9*iZr?PBGSG9dpUYU48gn4Ix<~ z7+95U@~U$E_5JelU{!-rLr{-}{|9&L<*i+x#i9X51_KEv2iJu zU5WfL;f%%1s1lthvE*U82SjA;Xns>5lrvn|PU6Zx0Lasm4>__3(0b30NB1eL41e8W zs}f)MTL}H%y*1l|2bjohz))D8zPd~SN?y=T3K!S;ZqLVo8a;2Qk^#6eK#dy5WzBPr zr&hWx@Q>Io;{VR5t=r(ki=T6P_3{-6SCG#sm$2KtZaelq#1NNW`dmQA>-5-pxDE`z zMNX&|zujBMvzR$M<$RC$n0UuTq9`(Ob^$B?3xD*gvvk~@-sBjNHrOb{f&3ZO>wH+O zIB9biN)sH|(CNN(UYvc)&=0h&wA*uL1)m>R2mB5k!O(&J8m%gNoM&w<=CYL?uswb^ zP13qN;JD|2wWazL^G6irApiS;=G)w&LrWnr~YDz#uuni6_L~u0*E?#yCe-C3lOb&7V(@Z%0UQ73cJh@(A9y#M zI8SW4txpIECRAs))p?z~pf_yP4ydrW+A_kUb2qkSzRW}gbYu(P$_oBm zyu_elI^pdXT%(upP&hkAjSd#;DE(GU>9u`(yI4c7z7p~D!*hr;cp>$%oSayXJ?4UR z$#RL~XKBfL?}SlPf1!y>O2D!>9w68XAORfV4cAk)9+9`J&SokI*xYKBmfxeNn4S5~ zQ9{Og-u0Z+3*XD#TOsp(81y{{Xv zKdQ1<8r_hzgj&D9%}EjSZys{jY&NPZl=!2$1tmrq-cihTP*0a0)Y5nT<<(V3fJS(25Of>)c|(B|gGwbRX(FS(YqyL=$Rb%P39 zlqwQcUQ+bP8xf(`Qnj>pnd{>#wj> z@&y>V?0!+~m957il>nEXWip&<9o{TH4$81%OhcJLl3eN?)o1Z2WGWAI5j%hxtVfc! zS3KflW)9GEp5i33o<#B z;NlY+jPKdB|7OSR=P>LDtY)z`2N-6FBEbQaPduo^dJIKvXaJ-9`qQ@(5zB>gb259n ztGkMdJa3N~18T$3>ZDhH&i<#5W5>h?dxLzUMxO2IIW}!hvn4WrZTXAZ4$~8!MVxJ z`HsDHRxnTX!488O{l$h=b!eb+eBFJQvd+JDQo4tmEUxqckuDHhxaspS>1KmjEfBW# zQA6-DH7BHf$7-)|)K9d;5zPPi!FRV`6svXTSvS;CyDHgfm+)G4CMLUcDp+Dxgeu%n zcBlsoMSDqC&xOknu}A#8%mjM$Kd{^XGWmn`6MM;tlIhftkChF*|{w_+@@hYx~j)7$>Pg2a$jAd6IKSJtMwkBJ6{nW60fl6 zps)p6!xI3zFB&;}yi)-r?>4~~mRs`?;a%;f8Dt$vv3Coon}Y<6tV$;!YeoV$t9W7H z?I|g!9)UNW1#87#!k>&o-fy`GUBvh#G`Z%=4FVDKeKp4)h40=R1f*(fJV2EnC3rkg z9O!dDXumpM>zc64CFZ-Gn8;!Lgi}KM0ail_6cZ~SoB5ARJmjX@5XavhmWQ`%6`%81 ziRD_k!D`Gx46IJGp-f4C)h8wPI@+U0$8abQh^#g1p0l|}Zk$&jYL9w6q$EprzQ{&d zzD+OEBwta2Pq*!M=oCNIU<4Ykp%A-j`+s-{8BJ1j^VKOR2RipTTuAA`;gn3}v>Jr} z0xN?*tmL*Dtdx*`Gm&7$U9<0!!oyEm_}kiL+%%AO|Iy3)gx&DT>PNfgr|hkHAX!MW zIM9&eM8RA!x4Gsot^o%9?hyQFO7YvhEBM{0(MKcyWGlCEaB0D&O3Y^~_C(Y^dAuM7 z;bp!DFKRiv4fy8nxz`$!ZbkMfy_{PMRW_p^n)-1?v84TYg_Y-ZoV)ScEnvI7FEHQwc@S8=R6jSDTqVmoyD*(7>Ax>0F6_Tyv{Ub2Q$7fg z@82dBkB}NjElU)?PPGGV<@$=WUs3tq`b2%_&%F;zus}J_E$(>0u60-mt$u3djFjT% z0Jcoq^OWnx*PgWur;<(F0^1hb)q%5Ke%PA`cqUMu3?WUWX@SimZPsFGQx!@xEsEwG z-gF#{{Oxz){u%M}w&@4YN2iPBY*CCtPjpgL){kmr-|DVwXqP-$&MDKWlDF^6xgc9Y z@tlC4BIEkGJDEs)yNXkM#(eb5VSvg0v^Q)gaAa3e47vV#E00ai}7r@EkQTIC$ay-UAHeDWH%%z>RVrc?8Yk)9rY)JN_-t+)Ys|YpNDk$+6nO~ zWU>`jlYwsr#sPzlNBnGYcxj~fU}2>50;Xwa{^+gMZ|y$Wz#Bs9LobAqGIg8X4aCV; z0lOWOMxuyQu653JY3zQq}xY1L@2o(G_odY z$GCe#^Id?bP&!8v$)bMqbA(Y#kTD@ykSW1jVx*e~5Mv)Bv__qB3RXMQ1j9dSnBIbO znke^hK*m8@xfl$Uf!J#_ph}bUAyWzZv};;{+>?FyFn;HYRPE0CNj6A=q)J4lW)VJR zE?UDb`RD4Yxo;QO--4KzeQTuzna*sOmE#A@orG%u9WgD43xpxZ<)Al_BP;3-o4a7+ zD0NjFt7-DOvZWknWKuY5o;X>4S=KG3%_o&7oIIMD+edZ=AyG>(5tFU`oj zsw3A%$*$I!!64pI7{`)VM@m|wyCLnvyh%n+f9)ifXb|yc_xy>ZkK@__$s$$#Olfar zUu17@rQYR5$N)*0yxctoQWZ4yKhh}z%}JT@N(2Twn$tT~pD_yunGLC>vN|QY{HK0? z#ryE&6NjVTqdmy*8lM64@?d`8Px{ioOYM^h9uYZXBACR;uoeM?G`4b_@UUa>C_ek4JV3L%l)=EJU67=!m9ng%5*Njogb0IRx>?LxQZQB% z&f*cx^m|SggEzfb2eeeks~>q3D2E+kxHEDCQ5?yhomR$;O-;E|A~%Jt`jS-!3)GN! zY2_V7S~21%ik}9_?!3^^GW(9Mw~cHwO>&@*?4NG@(>OtLvBPUIe>E^eWdXG7ADp6L zeI{xI)qogC1IgH6&O>};X%+|j9H#No1`+XIo=;NQW>2W~n|Gx3o4eFhjce^Nn)@5l zcWGY;Z%T7459KBLQ3tBrRY&C1IUM;9tVE21#p!et!YW<|KKD-#D3dc8zB$<2SsSb4 z;y$q6ZI9{xxH7leU*N4KIHp2=olYbuM?$Zm+CqJ(U0$a-LtG7nu<*iFGVCfIt-c`w z1NIjub@mwo@Bd`kIb5iAv>1!sZ>*rMqGK(Uu7x|sEWd^Q zJVQeo(n6?!XNP;MqVXK&-`_v-fb_uwL};ay-%ec)XIfISPC88w{nL!fJR|{G9O@fI zMX%dpn4E#@F@o1tCw3)AHfp}804C7py*ko^zi3ds6B%4djNS~XE7lcOLd`u=&Sz?Y zr*tgyOwNZKZMGWJ<>M{w2OibwSCl}(E}O3~3nu0CBVN{$*vsfH9wV6+r3mshtksAJ zcX|8Q34z;DcPqCrlN!u!1f{uCrl-LIcikPfR`rpUGwW;k;}gCG;+yFa)w?0^0JPDl&Zb)stKibm`Ee87A(-VKe0HtXbOcZ`>t1T{-z$=XSj* zn(_oBmObf054U2Z+D%o6uI9*juMUDBgq<6QOkGF0@-dw#sAMEefQ6~xxWnW2>NpVT z5}$oo(_3FI*8K3Lb=iiT>8!0HUGGn4jK9X44J{$Tz@nsJJG)qdn^9!%wZaR~ZtxN~ zdwF>aX0PMZKVg1(q`F*^e^4y$UjK2bS+V#MEvvp#(wh&_51{n~>9#j1!8J1p#=uq- z*B*-VhrBnw`hbLMuo)C@$`EGfsn@uvNM0UmWC}_YdRLG%`etSBLC4M16cVX6wlvnrVN#lkn!>y;LV=M*T59~}Pkt}6tfLVr(; z4$-PkoIXA3D$A(J`QiDcmOq|DEC0RY@AahtE!4UH{AW6AoLu@*&0_x;c|=FK}%KWo1!+Ge01BX&RJWuqCSRUaD-wA zN6Hk%w|~q8MQ$YI{$260>Ud%a6}(^yg8EeaUiktx*a(XigaUK6>Liw4LRYr=$RGDz zANIbOwk*cf;<+2ellmN9i`_o;@4|elq$m{7giTc$IvGQa7EP)vzSgt(JXVVDDl8U? zHT63iQ95pkeAcJetFeDB0y`dlD@@*7^pvgC6h3VS+kQ~ta7YS*r;y{uF+rS0h3X#R z-|Y-R2i&?h`kBR*$FGyap3S;9oPq7#%E{3?xr4+uT)Pb~<47u==j$$&(``$?GtJ||v>O~P+3+RG&{Y;`Sj}}+uY&}M6!Mno?Vum21Hu4$eto>*jETQU!advyZIiB^nvV?TcUuk|9X)yHf_W=qD?pPHSV<)BYs#TG?pi{rZ zhUw-&@h?ZC&f00`OoT^SfwBYfUI%^iOzgy zgG*P(R3yHrl-P=H>UYtZTy+7`#FYj#hmd8dNo3=&W^v3}`&$DwEdV^m0d(B$eM7F+ zC8+FH5jlexw^*yv4IvfXO_=ky`ed=y-lNNO+Jx_B7ETVCNk~cK4Qm*qf7E-=R4;#g z9ys7a^w{VAzReTfCP=@)lT7{UTzxleCn*3az^Knf&iI3T(!+@8vLxN!z)FThoqM=r zgQxgPoZT~V*8Yr)m`qAeX88ix#z19Fy4G1?2bqxHyu9XVnl(is@MgevuQ(xjH23}Y zp6O|7lUqMG6z>w17T$ug8AA*BjHRk*ER&6IagZy z)A#!rG3Zsy|1yKU&wB2YAfm>|5i8xY3^!XH&=X$Tv3xbr%CLRcPCRmEm$8gi=ys zQ_DGTi__Sh)luiW1%41n+f}pO8^Q(RCx}@|XDcSinPcvF{tL3kVTt;$?L){5ihkS{ zs=rs+6&EJJEzob7=#^>8s<>)skugf#VPNsB{iphpB}{|K&NaxZDTE;D z^CY|HDJ1YW7yJaL0w}f#1oD0-mcQ*33y>^g2J$eNOh^EELI0rM?*4ww4IHXEIqyfg zu!qx(rxJ%d(%nz;D)m>t4MNm)WJi^j>S<7rbB7g(Wv@n`-7(&O#uRX;ORw~v(t$hL zw*F{ugRQUltZpnZhFvX=O`1*w2Gvzsq*Pg3nUwFMMs#z#AbVY!&Ac9baw$lo+~&Wpaq6 z^1H~;Giql?_NIyMY4YA{NV^xB?{A1ADqFi@LW19iI|j12-c>K(>k`93f6XoWv=*2J zTm;fCi5~B5rT}jSMF7v5H-07GSyIX+yv$}UhrGW3)`@7!HZN-9F{dH#hG{X2>96*< z^SsK=6Zg3<1POkA->uFO3aKu zh!VVWeQ3i$p7{YmZ(%T|WaZcnm=;p(ie>)rC3v_wof3GqWH~w~xV`_Ixo+R)C^gk! zK0z?|9snUs0-N(Jlv6nKr^bP8j1#N+N1Lmt{Wy(>+JwJQkp0Mn#Cvpm9E)xeDC2&u z{xa_^6a0l=9O9VFVVGN=4bxPjku*+)b#h4o8L68U>4#6BDi@88yxpXP7WCr2yhNyE zq&Sd8R}4RpW;Wg(Qd|5*hithWsEuets^S0ueOG9x*aJlF*L^*6peA=a zJ@PDqibG%D2oRI};`^}tg@Vi{65z{F>yxic`;3n1ip%W~`+`1&*Rwy*v4dRm-evSoWPY7;xbv!FDlPE4_qGU#sb*0>t!MR$I(%C~%`%U9=z zDNfUMSfqhx)UD)>CF%UVh->p?UR|OE9uZ;{Uh4+>Rdz}D94GFnuAeBKszQ=3v%wOW zVXeXHXKQlqZOftbFJvy^$xAvHe>$+xtb06teb1s&oCMtxc6P7{Vs$*VM>ZsH>p4$< zC_415M5Nr-xu{fGa4|}){EaX}t12k#gYd*CRYrTWEWYH$sN|Tlrlz5QzV375y7)Xgxo|3HTF84_ZmihOmi;+WSFlKI6=VNp)DCnf$hS+g@rpb zxNXnJH&}UcOy^hmNE>R!m*7TWPsUFJ`0b-hHr}i-Oh>$El<1@Wm&^kUZ5l~slhyK7 zVgn=C>m=WNq5oa0o$9WoE>e8?SI1xuN@*K4I`edjz4)@&K~YEU>pf)4p{`fqYh(Kb zko1|~3duXGWeC50Dwm}{IWuu2>A&}6Q|h$)WCPICaib^&KL128`;=ze;;|J28+4rZ zo}oA~Cx6=e$9sO(1JAh$lU%d|D367WsltNn*F_pw4eB@o7(Vl_cY1+W&OAU64Zj>` zD}Bz3A>@f2WiL&XH9UXIe;}{+8&wZk@gMGGeXsEHpj+N~E*lC_oc6jtz|T~hP4eQy zLV?QPX6Wue<$fSEVj!?S)Hi$&Gr|=4wFWM)mNH#zdC~ol1FoDP{_dTI?l(0R{rrN_ zL4^EhxyFWh*AvN}u@n#_5mdRiZu&uKE2i1$w$MToB2yZg-WL8+;xxH2H3Eed-CFA= z`g?T#yqSH$E(6$Mva7)oLDl?iSs9RB0`7~-0~aby{ClMOBz|gNC42Zu70=swisGEQ zWIm;L%JKn5tipfzX+|hiQPLf^K-9uca62ZUfIT`1k558vD<*4$q~HM#?(xM~-1f74 zML#*o(j$iE$z{Ko`tZ?CQ zvLEStUb~f2-Yl^v!2Bf-sKIViBVe~x3={_ zc39yn^Ob=0#$L~1~KII;Q z8TOj{R>@1NIa6mh0m?|!YYnRPSot9^o8=?pY_;u<6)nG8;xY>sNE|LZZd};@ z5QL)j@qnjFId3+f=2>A@ZZmVH$qTsi##k_7rOO>jf(2CEXnXfyb+Lu~%BQO`2xRl2 z+%A4x!&aP!Peoop7qD*#|H|tJX5Fd$ zw-dHwZ$8SaKMK?A?bE2Qb_~S2Ty?pyzDqiNK(E+$=EJgi#pM?6Y1U>b>8Fvj zAiR;%gns)`$KpUj40oma&TUQfH>>!Ykkn2i|9p(JgIF^5p@sbQ$HP$0PGDA>nAP;k zZZ!l=@<5eK0hSd@iJUrv_@ne%L$=0REn`8c`&lR3tA2+8-)RIa#$2?b95X~BdyNvF zB9Q4sl3RZy0b$CpqlkbUxrAlaBv9+UR!wu@cuOaAZ#k6*?ih&SP?x#Zd;Z`E!^C`E z?7QL_o@BC1|GP*hHoCXaoCEN}$s9~-@zxOR!`Z@qVWfxiWO>s<>>X3jS1`q2Z4rIB zb*s5QIIeN=88=fU&&haGc&<52qN{I)5k)Ze$b;>KJrq&+9uv!*NnBmPtF`Ce)dY66 z>gAAbF#RvzR8 zF?q)mPYRc%7Ty+xIh)T`w=P1WGK9D zrF31!NDLX>c!vo-;KATcX|11vN&m&uC6j&MK-{y;B#mR6wJ`fe*x->5i3( zN-}GcvxAZWwSx9X8x2q_r6y{d<^h1`dBw$VdlG-zNbGZ{CYjf3L1H!bz;-iE4dtDM z^%(@LIMxPZSgz zt7Yfwza+$P_qQl}+wClDOmbdu=WZgOX>(o)zMdR&9RA+M6c;TDeL>O_RN8tp2Zkzj zMJ+H8ygFg0g}JlkwLa0&n(XAV;$-WZjg6CI{v_9Vtd_xNj7ASIHxQ>cBnn{(u-KtwV z^VaxMb@xaRF6P;J0_m$QDS$JnjjF#T0R&pH0>7;k&~iq^Ak{L%96@7|d%@k~JN@aW z3NX7~Oup0+p6IG$^ua9&N>eQbo__)WCwZndC@%$XIp<#s>7H3qvfGkR(h#HU2genQk-oRp^70pKia0hVB;>(Wuh|P& zD!LtzI|a$f2_49rYN_eW)M?4np3MtbOWiy@9|@NgnzCs7x~rvO#H-LnHaq z0W2PnBSX7mCKvOh5NL3ohJ&;yXJSp4(0yzc z^lUp&If`yiy>t3o^^^{vUOJ{Z>`fu7Sd^q*0Mjq>(N`k&s3O zX^?JE>F$n2sDLOXuxOBOl#~udy1To(8_t;EyZ8I;@B9Pj7cMRZ=3H}*c*gzQ0aZ3( zYDtdK=L-CZt)3bhMrVvHHRbHIHeY}7L%**Bg9FMN7Y>irLeCc3y6z8abjy}?e|syR{F(xjN) zx+wrsX3)N-+GmA@ahj>@h%Y`mq8LYngxtf#c>c)q@^Uc>2r8N@uSmQo|K|^TeZvS} z=^2nPmE?qO^b8wl4B(2L{@>n3J`laj&<%!FOCCG&W3^x6hnJU?<|7r4TQwfAsYu6g znXu$(mW1CXVizgLVTOMB<{)xY6I#;e{}Yy%*B$VDN4);9Uh7e? zo@axyAjs7ylkl4Djll(JENlNJ&{hyg~@5;wq(MjWJ+@D4=Wop3B9>MSbk!LC{@_k^hJ@F@Ali1B(w0 z2Zs`nr>wJEBtODX!~X@&GULB&UKJX4m|74HUWZ`)%0!xS(Nf(1+ndXPdfbUmi_NU9 zG!5cNlCLNd85QXy68OslOT!EwZNHfYj>CAsc(S4kcqD}Xpq%c79c@h^AOsQekp>fk zbwWkeoD^9&-&xfJAMuC`7;cYYJVA{b8#g8XjCl7M#(?=58g#STX)=hNabVpI#5^JY zANyZ8bx4DShU6>IMMy*0951JS^ym@m03EUK|IQ&VW^53VBM&e-?ec(PC_`Gf?lY8h zJ3m?Nrczo+{NDqZR00a+2Bq?XxN1PYUoy$QrSN*FVSFyvzY zj-cw>n{Q0$CqRi}TjPe1p9h{y82Eso_Qi+$-(30s`;#b0ALX~vZuBin;AfjpHi-_vANfJFf7<6 zr8VGj?~z@BIknlXHM+bA1HRx~LR;KcllFFS%$TjaFtEWr6M`(c9sCw6v`8?KY|Awz zeeYT0ct11h^uN62>jSW0$N+_(!_Kd?_caPDK*>&#k)fOE#zEh|ngaqKU$4te&(nPq zCrHHtEu8)|bxsN5lKv45*eIO*w6wwNe$;XJk@ZZ!~sl;1w2%Z-2gigxFqQ_+aqPf8hSgga}@V^vPfdL+cAZ8-E7 zel_Rra#&u`o9hzzJkhDXK~&*n#b~}!B@aMwl{SJn=#YGd04~B75^^EZqZ^&~KNIZV z^!Zf^25Y_t+`@9A`yGXNN_t0oZ(ft;?sWaF*x>lux9^63c4!p4&i+afyOCB7_4uajw1 z4NJp=&W{oam^DPOPEY9$7s???!~YZmB9HF59@TJ=m8$LP%dmAMu(Ev3CJ4*bF-ac& zb^}@;;&m(LT@}w80hsI^Qu-!!uWuUGe3w;$lz++*{z%^UxSLo3XuSgnC)dFy+mLKx z`ke6ZnSJddjztd*18hL?;P@(@_d)3J;{9*}aCDl+|;COdK-Hu_D- zh-@=m{t?POYgcdJJqd_x-~c4CJ5O%AGfNB5`I7zR$qq{kyM0fpO3rZn8}-n15)5?Z z5kTMF3e5VURU-^Y6nB(;Q$Ua1#pQG*qw%+I%PZ3TLHWFgDEa7U@Yazj$JpvaKqgwI zbt`9QdYD;$%wbBI^~~t=%x!bXwm44Li(GN3*3Z%6g`kxcWbI5eQF5F?+j~uEgzwCX z0%p2ZhhscX)79|PoU@A4PePaHiUQ8#w63!p@f(@u(d_w?`lHu*qF%ybSSYBdE&jOF z`iJWy@8Hz^)T#_%JMS&E&?MrqO(kHcGfr$4bbnpfgBrQTOZ@#aAc2KEMwgAD)m{x( zC`c~AM9bFVK+ph3jE0&U0*QZYo#g%X6e+;F5`iO5EjRgl*4BxT2+Cq?2>y+yKdNs* zw~F1kn-UoOiiKwobD2lYcgByw*ZZp7oc6RSTglV|ynL|$f$vhJ!{>68&Gp1${$Y!1 zWn|0kdF?ZGiGfj_<#b^CSt?!wu3oa5tdOZmgPY0gyI$M%hR*BUV zs2X2FAO~G@Mtz;<6~J@fM9e6K4Fq%Is5+%^JYLKNIz zwsWNbGHX~ZFPOrLpdAa2qIHV2?@cv*WTKJhPte+7ESO_#4qfT}Jq(qpyi$uP%R|%L zQx`Z3a5AnNnt@-2W_%_L{`bnEdlDnSxN|2WLBOpQ5GbV&J`*rfJ=Q1=0Re^noyqP% zHwg(9Td=^vln!z#0YR93`#A(GYTdZ8BJub973#K@=x=$k@Cp8MQSL`P zF#G_xq2N!sS&G6lygo#YNTrr3b*D8kq8u7oG2m=Kg7$jY>4AoMiz3*9TQ6_|O?=H6J<*h=;yz6*E z0~GteiNI?rCaVUL2Z4-D1dtaB^we-qI=_NEsPO5eL!RpW6$d*1j-&emF;FWuh%Myr zvoz^-1+mC17Gcf9#PDvnqdXPf?OuoI64zRFNrGmk4rR(WzX4d9qe`69^aDgZ05<{& zZ(Yw5W&0~p)&t5PFM)eIU1dy}lMZwsb*22p^cN|q`GW8itDqY=nvtXO)fO>_j12H@ojz{+Md>60Wsm2yN))mOrd^qg z@2ivfUl)AQD)@C+|0jc@*>qv}W^ETHg$h@_bnz+pk9WQ;o4{&U!~`&Q!_}3hJkKmf z3K9zT*M{V{EXToNQVG{Xi^!1Q-4j$go3uYs-m0WYTVh0kCs+5LS-fPNTC zBz6G?GE;w5fOF`JabhAs=B^8XO1$LQ2sP!72IYU_C1Ay-8q;21YvEOX%UJud$n;G+bd! zwe%~~Of-4*bQSaQAK%@du1SFyg}mF&mGI%y%({jn-TCHFZP%j>`r50Vj1f+7pu`20 z?-q$CWyB^NK2mKYr<4JIuU$kZlYATL6u8Vw3&~|-85R;q8K#h$CXM{rnM)0e2%Vf+ zyFVltb$obBeYO1`m;LbG@?c&p<}5I`i-VFNb{9KHHcT9Tbg|W*Q}I4r{w60F3Y;*q zl12r>K-1JXSdSVOL>ZD}YS07mYUk(Sr(b8w^t0k7v(fr;=8*?mIU}~;P8F{hw&>*N zVxnC`X$Dlke{enn$5k&q>~8GU;UoGM)1hij)gEtd&>mENA*|anc5(V?U?CBHbzfj3 zg7xC;FsO8oem%)}a`|m!5L0GjFQZb5s{>T@$Pr9P&syUCMl2;GC#@N62Oqa6}p<}6CMRUol z5-`=(Ha|Oso{|UG?bbaLVXGATdVkBv3@8M)c)KKR<+`p%DmYk+!+=V9L!2|6HGnEa zTPCe%rh{Ambm>_;$J>GuI4w(q+irMP`rQiZv>?}{2UCUa3zB_|skKV0@@lSwQVq2kqZv^@I_~B7Gupn9&P!N0n08Tz&w*#8L12gl4SKy9?xG!K2|3! z)voR73n3F&rRP=bEz|7^2=UHTZhOGwrr@#CpO&-Y)k}onby~kSbG%KlZ*QLHaT=hc zY{CuyP3Vy@H06FQyx+Hy7;FA=rfd%k7^nbIy?6Z50LJgQ9>pO~UCn3z zs@%1I%sxWddVTn(q3IK|vqETusZzr4vaO8d`lw&>yLL+BmZ}(_W0l)9nWp{!R7CSD z4ZYHjQSF|^bTJW=fb&n?28#WsM06(W46m3&VL3ZXMqan%&Ax75p#RXY;Is=efM1+W zjJt%rGQd1GA64RflT}RAY|z3$;8~kFd9-<=qLkCYD{#D$hM+LC&DF{Zvk%}fxCn}` zZ191<4n7yxF`r~NqG$q2OoX>0j zkQBtw4tGtVz)sjS9}Nv~{2Xlc;6&Q_Q^4e`^*F)w@LoJFgVQe~#9)x#wL|~|MjrGA zb9Fij1}9TSdc(!ZdpVe=$?oy@cM^#JyrMHbr40}ugPa<-GIf*t1mi6`Q!1Ae5Yuek@Du;!!yX?bf(QdSF-_n0Skctfj)%2+^+;(Mk&cu@} z#h@R8O2pm0?=vxbvC1EKs14?+mvsUkaK(+nOwYK2MRyaluPeEMrD#`w>?e=>?mmll z-zT8?M)!q#YK^67Suhb3pFTR+)%B>kUdYwAGnIe;qCTu^OcM(H{YzNH;wQ92e6yAa z$TOH9o?s&I@^Qq!s)Fxz#ioOqMAm>&=U- z=Shjhlly@jQD-FtmJ=@((&Y#(%r-NPK3rY?5ax1NrlLo?8}VBgG)Q5vWPwj#!C@Nc zIzx~d7!SzKM*&wRLdSG|0G;VpP-nv4-?f4kcq*f!bl!pcHYi#@J7Hfc_vyy-*!_*m zaL9>N=~7iUAn6S(NzTA-i=~$fkHvnl&)FBS!qHAI8|QCJVa9w*mj9AAK{4%1P&U}) zpP84`wo1QI=?EpMQIcOtPhqa9siC{oyW=(2vq9Gwc)zGZ+lX4D+A%MV$3tT?t6cg3 z{#yppEP}EypXwe+bafjDC-{hUpPfwA#sX}v<*8uzE(Avmq9-$&jBir)wd5LYFos2^ z!O50x*t03iPceUZA=T17tigpnz^Qb9mf|6cn5=H(UOjj6!1IUJFZS6TFIiof;3_UT zCa778gNNqddlKTH2jhj0NvaCRc>Cs6<@dg>7+ZXB-uzdnh z0HLSC%nf&Kj<-9?rdld=JvlGPDC9`lMhZpaItRL@bT0*L|HPf74d&(Q)GNwNCHeZM zdvIy1WShuOp6K@bj?MO=>lJuX=6rn%VWr@sa$&IO){L(MoWKlDa#&gunBe09f@BNd zcB=L=nf)=M;kFzPmm>7hpR#hJMeU-=r7moIhuWK6xBGr$wDmrx_WA+{IL%PcC=<5F7nxwf=hl#FGF3rHGH?VB7LaTFr%J{&HPp z{)AgI*so~e2A>IfYptv*IadB)9<=St2XypnMe4B>v<$fK_C#p$*tN>vN3xd?&<~Ko zOzhoFj-l_@{E8Q-1+cz{rINu^fff?+yd^v$a@-HJcl^`8@+hC#V=6EG${vjda;Rn5 zMy~6{93@UtI9RPOO)}Nw$y~2L;2gyuB~c)(;34geDOVFDh&{X8FdMw%J@>e~bChQo z%Qe-nkO|XR3g&!eEpFx4$HBw5nxi)w}5t)Zp*tYij(|VYjDj)X2l0x0CT{MJ~yc=2uLZO@N)eki*V7cEPA!*F~Bx)O!hhTvA? zA@-(7TJvEc9#0-5MxA<74F%jpN@M(aEo_9;D|+PnCu6x@jW;E6YDD-%@02hM=*#J4 z3D5r!t58m#!iM_yddaqM5Orjg^COJ-+O_q?ASf^HH2@bg%9SM)<>Ms`>&7lpjkap& zj>U$OwJQ-Rw?70(-H}^1)_^N3WG}15+c13pOiK+!a)Ml#Pa6jUZonhPeXs0RTv8CH6^_%O=*kK7^hyY9N|`0AU6325ar>*!ja}eFOlvEp@V9}5f-^p zyML4l+;BujF4uVqV-EmF{B7Zox{q4&_(%{l8z8A)pjYV?lC7D{IXJFnwu0cd4pRZ+ z$LTNRM~Vc@0|lpl@#X^w{i2%Y)z35>y6zv*Fa6Tb_wFn_g9j)oS}8l+ zywHZS{3a?LN;FYlzI?gvnE!#dCuc)9R9^3IYg|DMup3Yla|>rxR)G3==N0c#a&>F# zwN5=E(4N`$*mdKOU3#-91FA}O+6RyXj#WEZ82?Y91q38Xw>~;ES}Q*?U{j z-qcV9VBbLD&h`}+D;G%NIR0{aTjSf2GHZFn2 z6ECO92#^ZyUr-SIg>>ipz@E-s&u}-&&$%cnI0_^_uhwIWygZYZ;l(32W*kv4*HI~L zmJ7d?a3k711JH5)%EGiFs z^URhWiYYWMx=y<6#Z2hMM$>Z*`ES*1=$g<2zR9=$qN}gUTY0!0g&CO*+^z)?LC(8y z0`=WJ1&Q>UhfZ6gqQu;mH01;S726|0uY<|x?Up>Q{`|~^U?Zq3@qpn>JV+BTFuzcD#99D)dR}rT90}L8aBkB+358DN%B0o>@D0;a~<0CgkBzTwuu64dx}tCgJH^ss`3pFNrq)z2{J&7eF|uI&NDbQ)UU}`C^4?||MaaoZDn?Z=Vhg(h<3TJ3oa`D~V|xSc zs3n~7oB2e=z!$AP?{XW)Q>VREU>5s!v(w5?@^C#k1Mc5;@*K_k80+}tqz%5%hL9=k zI8F$h6FtA>Yp`GmS1%cp>(s7!haaG-A(y4vBNij5t;TfUW0$X5hW;HrcolULsQXSS z$~i+(qqW0T(e6*ojf)>gKVQ*{-aFtfG+5&*2Mq5PJhBbso#Er0)>3{=gZG0ADL8&o z0F7*SGrKxIJ&uy$y(RbdE&Oe<;?Ua4h(k}`#}z?xxBI8w>$EK(QVRklAH4xOtY{v) z^c8eaI>^MymA{a=asj;(lgZrZs*1NSKI~~Jsh`?&)iW{GHGjL!fNOp{O$y`gw`-YW z9`e81jlgrC7m8)tn2A={9msl&8p|2#-Zk(5=O8}pnyD6s1iwnvdjjQk>OSqi&G>RR$_I^~QI3ep>Y)$-jdkSm_fz!oPzigNdCwXHc^%B_+UhL)+n~qTZ)tfDRRTqHI z?%e$QElqqxx%}@>PZQFuzc^?T`qeU*erp_0E+cQHywXC@D#uv0o19Xt+70H91e-yD&MkXyjQ;rJ+P?Vu zB+vrlHCG)?!rd01w3(TA)n9_`=OL_YbDZ;qkbs~%y~E_mi@)c;+R~>JZGq40kHfC! zMTvrDdaHqmiu>*umo{HCB_D&PP5=sYPRoybY^IW>m8I~dgh9RV!#teBAaXN9!XMbp zJzg2RvM5hyXIp#mcI(p0O9lbLILy?9d&A|@12*AS0olh{j0Oiv8x{M@qnz2=vsFQ! zNzeOiD4|+S7={5g(g9W5vhc9_>hjE{q5;Yw1-%4(0ZumnCePX51x#~X6!J{Uoo8c? z&4X8W!cXLe!t%Cmb0h*_q$M-#VffaRn16OgHoFJb)^V#7FEeV%pIAEKq@;YtMQ40~{a;2$+xYm`qv^^l=G5uol3M}X}%Bc){ zAI#(Ka#dLGBx542PLw6~=ju#ID@L|cN0;Y{vEx8_Bl93e7%Q6%HdAyfO)6Fe>plxZ zh22VyRSmAdSGBA#+TZLCS6twBVqb~qqm`3F$R`}PHU$oZ_mX4A1RaX^M(Oq4c(`v0 z)*z-gDgsEW-QRuN69hChvgD0`jbG6TpEo(?CFuRM3Yl^oW3yGgEyUz8<;w!?Es@7b zw|0+6d6*&Z5r4UIg3uV8(rhy7O4A5>t_8&jM}RM zZuKY{V?I4eo&pdl{6yxCVXp_*h;pL8K${=M*KlgF%V!rSjy|R{3%DN3D-N)ysi6irq3!)qiU^tT?3()9%pKTbggC@_y6qKj&ZR&O&%4( zuaJw>Dyi-IwhNLw2M3&Fx~$@_zTLA{N3N}Vt6sB~nfpd+I&F=sYed`+y5fooh!-$?j;*#^c!8i|nE&KqECC z2Zc)a!Yek~dJ+`jIOh%sV2$2l zv^c=hsr1qG8yL4zQt;I-{65pRQMr~1vT$kmylF+1d)JWs3!x4gt32Y_P@kry(qBJu zK({tsc)xamtf;fU6&2OKyWNLkQ37x(+t1f{h5zE6gM=7jm$ZpCcFXqVAL~2;65Z8i zgx_YwGX4x^vHoV`Jt#q_qAA7$Rxm`L+Sj^KUO&V7EC*3SAuzI zv&<*G0Lr8X-ukPE(_5O3`V=U5QqzD)OE*yz^tvlrN+vJu_1YR+h6G$*C0EO!_tj9g z`YV9eHQSSmD&qj)syD@m4S#sAU$N0($L9psu`gxVzPl>`pT3d#6&lEz*8i~504b7U zQ2^!H5SFu>MahB%%V+)Jw58Lt=Saw?@aKlSQhRkdCf)Of;&H`m zhk!}1*gpK4@7%_Cz^96ix>8Vnx)%$~3xLO4^i>d5Vqg~rO}YX7vDe`42IxjJvrOI>X5^+hMF!hLrogAT7INEY?s&C{8b;8yZf!hf(5#veIhCxw-DL06j5_ULB@VE;_! zD-5C#B6pniG5rkhS?q|F0%VOe5H2>5b%RQyoiUD|ei z&&PaS7T@azcz*w#MrFSe9lXkJobcgUEga~CL`mlzW{M>(P%>m1Q4d1ETIp%6s!`sF}VTKn}6E}({@IdKC_-j_dEL~LlUs{ zPP0IKr?&XygaFoi*0Udo(_BZjRD&Pv9UMH}%Db40UVY~klHe=oz8ze0p?=ewfg2u)FotM!9-|dq|y?j!l8a74D z1Wt0-C#>r)vP|7S-o5Gx?2O4hlLr_kL_DU;v9CyT)HaXb zMbM(1VN;B9eJ=ga7x9`2zijmWDb;_8lg*r~1j4YqYXEVN{jblY0<2WdwCi-`H}fnw5Z_vaMQbVu_% zhOSNuUA@U8IZ}e=|DARmvwSii`ybY^2!WW%A4$M1rsWWS2+9e(zY#?hA;NR7?})NJ zdZbFT{4zvK1(-DcUy^aUG;9C+7@u!5EwqH4G=OFCY~t~1Oe&1%nQMSf>YFeX-#~~a zM~{Y!!cXNsi+Dl_W5ULG9s$TLvJRD*EH`XQTwql3dAXkchQKHZfm#*XN{APZ$V?di z;B$!XPvc+zBwUs@WZj!dR#}e;qHQvORIaVhetv%HNH6LJQ1`psfUzPC5P9TJDvkPi z0Xjw(!}eY$jxQg^a-!44k{TeGjDIgL?&(0?oT|0Dq(}s>g&UD{0v+DZFoEax#b!BQ zS=1K)CeUaXY(#=z;?CQwOr@M|g;iX=J|gSe+uLk)iY`@0VG-J@2-Xn_OnZ(1AEwix zHuLfIErL&qG4i<%QMZK5j2R~dkugCq#r0=F!+<`^G=dG#L@_&Q!PByvU^7M3@4=W* zQNTl|LTvBBSkRa70QgeAiFhFcxSf;`4+!`9F+%yZgKr>Sy@Iv~Di!To;5UkC<70pl|qR?)W%=ti>Y zPE7yNeL$Dv!_x0c;Futbm5IG(u7?YQ1ibMI2kd`oWH-yBHOw1?kMO*Bob_G_;*{eJ zpba7(O&~J@O8OkO^K;MpS&yz?2PU9|gU1dri>AFayt0{o6Z%>mS9E1y4Ez zf1D=U|36GyPH>^zmLCXj8)OD-BxHIBQNy&vQ;w(ygE|IWXi#4*_4tgGK{Wgeb7WuGaW8R8v&gM&JbJ3b&3rL|2do{I(EXB( z)5P4|FWk$E8QiZ{%MU=5PA-NdR`XyZldt&7ao5`)Z@AK_fK}CUuWzR7ga zHCCR-(5i7C@ocKKTaumE^3s6g`oDw$R&a6c7N7$JzsyT!#1ILpt9CnD-#P=i6I4sE ze&Q_HPpT3}CP=qJB_Uj^zvCxLGoxS;jt>fiPk%l)3XRBb{_Rc@$NlB77Rm2^{6t|j zT>&LI#tXzvEMGM#-t)f;0|CMjz@kFbFTYpp8gE1bHusoFLJeZU;J*3!Ne`DbrI+GR z_K|;jHW`sNVSX$lXWj;E*t0WFVCxmUK~46mPF?uwO8W|)FzX4^N3yMTdmRYI785!& z&Vm8E+j|Gbgb9(mH=VkS|MA5=!Du=854jtDgzvxLDU;ra;hX>|80LWz0gqXQMIw?V zddVS#{DuPXUmK-YVjUpoEdc5;)zkOlt%N$;W1X?vm>>ENK)Hzr`efVMUyA;Z&f}i{ zdvJH3-*bOh6p{1p@(T_@FsVe|CF2v7gCn{A*NnTKq{19{$2O<8`R=~Su)N5aTmwhb z7NERY7fH?V+!3#NYn@MgtXL$g&8VK9+aAv?6sGy=;J=pw=w|t~k=c<1w5@_`M<+eb z=6!K0$2`-;6SU~y0#ApDl$Saa5oH>sg-iSJ^+|1zlC!oWYY&!qj_rOf zp?l)C_Mr0T#F#}I$f3N%!I1uxR&(iXf`RrD}6LiCi>V&$wx+?>f!TXoT_`rV=2VO5UTKX+RwuJ#-M7h#ZVC1MvsH>tp)bj#5 zC6yPlNdkYBG}#S}P)`BY|Gk@gQ(_l_Wa5txX!w$n zpS40T^|hVs%`XbSfdz6?gn0_(M)bGfiRXn)0)kALbB5f5e#Ujskifa$ZIJys_~NDD z=0)h(f%Qbif$jeAQxmnT6}GK~FAjj-Z!&ObQ7fF1t=kEphl|h#x~J>ayzZGS5+H&eD@d|i{)LE>ik(e# z;@^0@cL$YR(47Iy@(AGH-wFVLg?Wh%;$2~d4B5vZ5CTyFcUY4ITya_zmYUtyzjbjc z*3)6wgIi^fh3r<+rF9B_*Vr0KzPsgZ8s1LFMiaD^E|3D!0qzkaH#s+ai7rZg=c`KV zl&|%jCti;N`+R#&&a+;~LZd8`Qp3@L{@v@eHw-kOL%|9+3YdwN^WX%A$EL%-v%4Dxr0i0_(Vhm_0h15gRm=y# zfa^=-9JA_JzBYt@l(=-ikaJ zxlwxf$Dj?-M!aVo1R>%#`RXF!b+&sK$spHUp_Bgyv7q~}T+OmhmMa^zAaVgFkR}od z=xqwwATbllf&k2Jo@7=j0q__CU`?Ic!0WeD(B@;c7+Z5lG)daavc%Mh<%`;6r~inv zrsjvfqR&TeRnrIQfsV9ukT8g=oo{3}Fn?U#A zvGR@l?Q5fHMYYouONS9`swx^a2ayx@3#**v)-%a_mXp_dE>I?*V}P1K3hfRt4Y2-WWOu?&b+V@MwI{W1}J~qzHs91zdG=R-j zY}SrL$}h6maUweVCx~np3&sP~60ZtR3TpL_fRhj4}BMZt6Q7F{Ml!&1T2z+*KRpYdkz@lBMH5h#xJwq-r z6l{jWT+4OF1FG4-NSpU`u@i5WI%_Lr52WD?ISM{wc$z?uw2)Oax(fI_VSx7YnRU&2 z7Njqf+ooMZcE@u#E*m97sesN0G0Y@@;%A)1Ymj=n9tJn(Bi7#{kGi@j7;zY{!Ta;| zaREUGRY?clJ6hXx&Z&3}0L3cteM}>Wm zBJ6^Qyg-;)pBl_Cu)5CN>!zgW2&*z^dk|oe&{J&O^OBgu_-&0DK`C54yg;Yg)Yr@N z;y^W;!z2vw+7%zL>6kYun-1lZ1u@$(!9tm>?N2CP=zvT9T;sWjRJCoj2&`@r@2ntylAq zo|j>fffp%76ulSzI_Tk{h=w&;s`~L76=cQf&Sy|KS4{7DdV1RGC*U?>KSce>W7Fy? zSV#tNGlj4@c#qo({>G}?c611jxLtPITqcDccnDr5vRrO(FLeM?m$XC#Q$%~r&bQhP zZx4tGP&H6ka!mUC-mv9~tAZ>MzqQwVyM$?{u=lY4b-vv6Qy7qOhhXB`1!$x;$wKrXNSm}fofYN!d-#Ej48UdUhILDAcLyq zafSJa%v2@2(}d@lWIT&^KkLfl5-GPprwV=6u6O7_M}hESJxlX`fc@Z->9<%=nB;wC zaro??d|!K?wTZGR4>oFP0jG|6Vlf+i=E2$yzdK~RfAlGvY~$xsZ%E$4}U&STbg`_P0F6T+$>B5XizYoSE8wL5>Z>VsK zoLwkFcTUW${poRdI&}|^-}$4pebCPprhubWU=?C*MTv-?lWq(qo`w{fm2Dcr1}v94 z9NopZs|J5~@2~buu&T~(dEN80whX3DYO~4S6TFjTI+C8(A+j)BJ6|?su*MeTPqY ze`pFm=I03rM2_pbM|K}uE>p}V=*2^Xbv(1GrUW}EIo@`^1-t1dSSXN9XP^hQU&KW)@RpRcI8 z^6pTZcIrX0D%Q3bEh(!PVr(bGjgQWZ_O0KoM}m#Bzm!ZE1+j4MK z<(QrYv9;`uiNLM54PR!~0W&dJcPg73(%5Jw`!p#_P zHeb3*CN+u9M~S@g3<@;+OL3>7XN^uWT--FKy=|nrI&Z@g|K9%CmK0pHXdm!u6+L4P zJ)(TQNQdkW_NrRW_e!GuRr1Z%8Q-%%ZTw0y6jW_2JPJ1N)FrX%G%pwH@X2wuCA?6b z&V$_>_OAC24CB`opuiiO29bj?Q4*ty7HCOHtGz}v#7IgYL8QmdULhi=cG(DwY#B`a_g&k=0(y;K_+?P_I zm3$LY%vVmm;5LRgIq^0Z1U?u;4tw-U2q91X$uE0=Sv9Y;UWoTc`jQG)+h?B7cmHs> z=6$akO3R67%y?E}*cD@fxa!txjq-|5mH5_bum_<3nA!@&Osf8Z|e&VFRlbP^$O<7epi`T4z^hAIl7G$yA-(#x_^k@$!H6DPFS5zeVox( zNtPDh;+1+~9ez}49|cEDEBOMy1UOz7&Nii^%yt+n+wfYD z>w_DK$ErNmR&Inm*+AJnt|Cm)u)jXicUP%{v(5Gs&2dwY`kgB6w?3|c(Ood2LTUHdT6ZUttJX z^{X)y{R#Y?So5OcC%!iWQ&JlXr`4bmoK7y9>GUZ7@=hEx3UXcNM9;!6PUBZ?Nyryz zIupE|l?&CfWE+1Hbq%{hAHDLEXhi6idedLtbv>Usqez#?4reqNAMT+$rmkH!cZq+J zx**dh>#-6h&!(KIUshr@rlMmTqp#16cHDKpX#NwcP04;)<7K4GR`>Vn_$S2;EO4{a zJ+`6^=hucsENbGP1=sliaY%pzG)*4yG%h^F<)On3PfS7f^}AhCFZ2=XL3mHf>nNmb zLek20Ic>VU3%;#Zp{q+~MH!WhL#wibGNEL_^Cuf(L`RJe;osVeEicH-CzB(V@eFj` zPa-=0uDf^m@7v}hj&6$n52En5vws2#dsq}TKrRp{UnPIk3v~{4e`y29)G(lFXmQ)B zHllyev$Z4ujoW;e2T?gAB!> z;EZ!>K^XopYH!As1NKHQfCFdP;Rg8~jtKx3f)m8zmX^ht^B$^ZTcAO!xSyld8TMt* z2J!9w0Tg7oK}(#v5SoT$OmVEP+_5B`9O)L@ag&YpiUMt#acINg++_6`Y3xbBH8kNR zhG{$xsRpL zs_Dqq2tuW^e00#ni==Z$96&a=>&Ni5)0F*ac%dZMCLhsqVNF-QkrwD%zNG2~4$iT8 zVpo63pIBRGUOMG2fe`f`npD-bAvfS%Ur-RO4IP2?IlS3Ptuc$yV9-828>8s=18VkTp0p<~Bxe|L;b4Hp z0exAUe%oN4Ba2aY-6eR2#zI&z>$fQEH{MrrwCL*(dgU}T6h!@`*>I~F=fIs{Cz zz0wW2PL^Qt0}elL-H&Jd!T>O`9lQ`#`IMCL% zqjHymXZ=WL${5S0=^!Th5?$Fx5;cD*;>k*jVvPEy{Le#kjwt57IdhO}E0{%q0RTxs z1@+f})kIY6Bv9MBOtvpV&0Qd=<7+>#rULsdpZ6C={5HN4?6z6&f|lZh67#oj!alsn z07joHZmNs9V{Cb!*dkj644a#ExdOXdq`LC)uSWxIQk$03)%Gp7AT+;rZuN_o8ulZW z9Rw*0C78m+05$d^PBDf(!X?rM10? zZx96QKV>Th%Egtne0ns;p9xeB&CVu@gRnAms_7>aBlwv2A>nw% z0U&}z0;AEE@4x*vc!I8s9pgB%6x&Sp3{;Dd99EBm^bi*-;;8vjCa78sZByRf?*1f4 zwF?a#$&=-APj0;knl(U!Z}>2MuePkKAZ?38HGfq%cYM<>0N6j!91C%66tm9UPcUGa zZ3<>9h$0#*GU|#PjsGN3K^n}yT%Lkyad_KXbFn_n6E0Ou^`4^N^^U5f1y7)U`MKV*GOi&{m!=q)my=^2TfCx$Yp*@cG4LJ4YzW{ znx470o6iR#UXuTcVvtX+%l=$!aThWDmxi>d+|*x>pI-5aRQ$?A$g`?5OaP+mXC~m9qaDxDRfuE<|wYN^ZgbDDSfz4yN$4>INApFJV zD)>EUZhK?kf%cCNWfq;YH>fHBL^dF5 zWbeWGF1bHjU9mUSg~NDu)m#iI#4|Ma&58VH1Jx!SZeLand(fOR{w!6!InStQ5L#Yp zht$0@*JRNhLaw`JlTNv0cTnBAsA1WwX?eK@Df#0d_YO9*x(jr<&VAcB`1vs$4nh~( zM^k1V)5|7s5Me)Pe%iMPLa<`%YXf(;>r*mFh{r{4K*2giR1PF@smZ31%Z5I=yjQop z95+Uo>1i#TvuCwXsAQ*=x_xDEogSImK6viD`q}={wA_6vC6Zw0?&%iZ(jFuw?0TIf zx22;{TW@AN(;#~CejEW$ZZkwxB~^Ff)ReYec?38fA$BwbP1t-oKb%X?|J-QA}fS#Kj}PNF@I zXgLXmit#!ahPsH8(ugkZU3n;NV3sZuyw^ zF0@^x^<$eJMyP}h=T2o6EJ@eN)hW!`Aa&z@V|NR7nMTmdS-LfYT64YYiy`JyF)X7c zyQ|4UQMlmxWS=39?c}D_k0uwtzB7Q8@_1mKX_BFw9m72g5-=}&j)G>#(UvxXF3ztF zRfItl8|jN0whz77e?>~`C z4T|@dsHP8LHH2&}5x#yjjdM$1ETZZ2LI=rcib`VxF60K_k#?@wRWsE z*PPFMe)Sb(k4v}R-dZ|<{!p7V|9C&RpT8VQ6R6e^$8J_eHrSMWuM75}+6g2o0s9XF zSF_(>g}y-Xi)A&m+Zev}9Jx#S;C+Sa%CUGrxZ_H%>BRJNocrx;((>FClDk0qt(oaO z?ue{do-)MWQ&qb|R7JSj{M?2VILLO#3G`)++rV9QbF@o8WN<-ujgO({R}$k;`ZM&N&0My&*?s?{j5v^~v9M5#)n@K?5yvgB^9X6NPS8W^ zY_F`9=I^-ygzy(h(++CBgGHp~MRwfv%#LWdSkY;AXx}s5XI|%e0B&|IDlrLdf0Ba>V4FZCP#aK1M|HlSO652*>x*N;yiFc`Ctac=8-AYB zHN-AraC`~6*k*I<-+Oi!_UDXTE#|s^v$b|WB}y__EaWR+eYmt!U_x{N81$c9vL|ZqID=F@OC=8LaZ= zSrfzeC*^be9STfuc&5l)hyNrA)n;@gQcWEyBcuGevs=GqO(8`u^@UP!MC{z@5E3{D znLJ+X#51h+9MbG=BZw*MAe31-`;{Tq3yhLf2U_(G&slE z%obC(SGb#Yygs(pxSv#>+-w4OQFpGkWvS8AI&)srBU|R4JXq_6Nxp22b;te*c`g68r5!Y3pjc|J zhq%0=O_ykiZ7K%dd%vE#&4GrA9 z7&P+uM*QtB=AjL+!uIJ$j}2pm3MJ?rNBcP zY)S{dAYJk0)>{tMj?2-&r&`z{bOHG*#^Y+78DOb&{ON%7k#pA9to+f64L@DLQX;KQ zKJggsHn^1s(u1MF-rqw$==&@9n*_BzV`DA?ddWX;|J#d-Q35q;WXFY99Z=*6tY%pE zeau{Kgf(6sCHxGdF!ZIE9lE+DE0h=@Du#V>auRqu3v^Be)4qS!INTI*P`+=&ONq;K z)*dIz^K$q&qpvMy{a2|>lFE#VU$@9(_614+2t$5Xwj#!(%%>ZLjiyx{UlRC?>0t7I zdzV>i600zfwx%oD+L2O)!car%OT94T7~7YArTq>a&DWXe(5$)j8-&=w+-BDZOmLw% zA;~lRhcpWfq-;@ip%2KIJSL3qo~7>Zu;}*G5DiNx%hy^{X(&t10}x4gj} zhH`ZEKoSVJ#q#I~fQ4G(bNDGpO90ljKc<2Wq013p*!QurPs7Qa9fm?6ARY$Lbtymz zqP5dwXE|^A^D>&y-H82dvO%M=cX!YuNyw1(xchF|V@Bx`(-<2UYuWhDd#1BFQIW%F z$jV@g@BfWiw4vdfx0_&XavUU!_k*(aRQyEKZ#|aR;{fV(n7k z89Ay0J48CJ?;`69nuK(L#y!)1Z7IS&5?5DVvQ0flPAaM&(?O2t=-wzatH?E8W?9;3 zdt3pn=icbh|z&|LV8#6%RRn3{^m??wmaodUDsGG`|S&c zHv}Z<*v9YJ>?&?*^-0H2X`5^c#F+kCk4uPENLu+`+1B0;O!pbAA%EGS_K- z*kS$d3mimuvKE4X6%}h6k#kx&YkhuZ%cT8e%JvmSQnwmt`3$fhPVSgYpW(6AI-l&m z8p!-rP9sHNNE#QFeDp;u_rATf4M&bO+?OH_;5uDL>m~a-oKkC<`%C)d$7ODUwuRZ# zA_doy1Yl{2uv>j#;QstRi;juLi{E5ft=0tP#t`W;;4|W?k|n-tD!pG-wL>v}F}}i{ zt0#V1Z>r13YyS!~1opZI%c>K2VsuK)r7mf4GekdD(mtOkl9%!xy<9m1INT**rv&*P z3wHhmsqF=kP2Ei*KFf09ww^oFp$HH$p*&ld5|gmGXq!CIh2t!`!!t*}ivl zA*s{?1JNLH3gif$3K#|?frcyOZ&4Hxdw#q<$vuT7-uVK0u=r233i=f-_#$QSR%q|n zgXP&F+pl&@fSHQF zb_%$hZ7CHTjaqcEEYp*f~+U z3)RVfMBmWUK1IRI#hMay(r}fJr#i42ft{8c#!N?Lcjh~-Kmj(s-MkJovWMSQEPwD?mK`ZFp6*HR zzwk5Nd7I~#1Qu0MqB};|MGTJAX~rA~+?_&tkUaY!|4$mU8z9Gr)RUdYGqunoYwq z(5%Dho~;?Sy&qS-{M<<)iYH;xzs=clXrd{5W2~^NtzM)A^$mi&v4VEd*XAP}c|U)m zo%rB==H4TD+i8z(6^8izi4~{`IY;C09`V^YrAPH^Q?HQydrvwyLLPO{`*>pJ1^rXz zR^=m*BV<7e?_K}l992mKAs%dgv6UfC+VW(lX6AbX)lTLe6hBMiAAb)I02TWnI$(h? zBwX>C#-8j)%)*74d3@krNTkERII%7OdZhiK^2TmEPt(A8f?smT}t!Hk!& zZyiU-03hRdvNBk|BI)XpGvTr!8${GWtKO;R_>-B|_rPHt?(K2VIp>e6r%pJ()h7b4 zi)L2V8@2zB1yV2=_}GQ5Q&m70>(R>H ztBLOvPt@GCF>aCAoM$ai>-Z)=(+5SQ?X2Vxlw6@{a{TcOfdrvV>CPp&%|zJu{G0~` zvCR3=mMLg;Dx&q(tp7oY3MmA{;ngO|nN9g!BUkkNMskBUUg5mZraL3_f0hjSf9MbDA1#g+>B8f0kgTz$s3p zMol{5wvM^a7P}=AFmR?Gw+7ktrCD$W@n9nCl7eWurA&-NUYUFne>QmLxiR!J@D&F3 z$F4_(JQapPT+>TH(Ic+LN&de(On3&*0-n$YJ%H^QhDLRp%_(#NW{GLfL^*e$wEo%QWlGWjPdA!$%(IA- z3A=wR@nnYna%)YGgC2-y3AoRzOkJFR+vvyC1YJxv+U}OeNyPv*rqzsL1$14QEYkEgf|z^@(Jg8VR?%`trk+{iRM}hx}|Iy06B- zKnyRYA;p{7visdr+uX3QFubdQZW+M1iL_ic;DSoW32jI4Eam&%;fm*HEXWkA&m*e# zEWN~EYkq^Stznx`(VW>2fcJzLy|!Yq;5h52ZLDuDBlQAq+wCAkCKEKmxvj%7@a{2b zbdUV8k(`Ue5#;RKQYg@-&#gU-CeG~aTF3Y5%qiapz`K%;9FYxj-eShnWQ|!LYKS2X zA;D@E>HDkU=m2&qqW%x*rXAW}P*U%vsl6A4+|f8!%^Qg?_&nw_GUQ@ZoNdp3nl-Vq zcY#5>v>VYv=hP(55g0vYTBP{Kwtp@OLA?N^tBcqpoNdxJUwv0Ojt68yo^p5TWlT!% ztmRd%>Wt=T8waGZ3zIi}F1Y;-kOUg|Ul(@B70VJ>;z=w!M8~B6*!$QWp@Vyd(!CXxJflZw?B#M%=~Xl8w9;S0<5aRHe4GQfu{ z#YMHsm-9jY5}UJ1FK9y0)K+#t_hTQwEW0~E+j6{p-p1_atIqy~wvydM%ATG9{o`(4 zD-CDBLUO&=)=&DRcT23ZOUW^sZ;to0w^juDN+VZl`d)}O9#|Zm07|b=aF>%j8p=Ih zqlR+}vqey+{)S}1Q_g}%!Wm9w_M%)^7YMxW2}#iFgiwgg_}Y&_PK^*i_B}2S$58WC zd8}GZ^GgAhSD9*e-1O!6pJEi*$ubxrljg^7kV6!GR34YLRK=OgkFqjY!D=xeQ!r{3 zrIO|14~X+&A@khpZ%i1=*QMv{nKdF2lW}14UwtGrXK?&!lplL_lT#l>)=)7QEJ|89 z_ZbMbyVeGc{CmFPLejs0(H)WeY(Cq+M{_`36fOi9u4Q;92-XmA`TEf?{PK9M`%T+^ zYK=U_`r*#3q0Se|$KZG|TmKS|00_(Qr$G5I>lVvMkcad}ben6$q)zK%V5P1-#E0RU%n zr{Jr2TnS};yxH*s3_ucRwR_zPY-C`PuHg!g0qu{oT@uv~F*}X~o0mTqK`+e=`f%47 z5#NGXn{Ivty8Ej^pb-QTKQ@`>t+OT2k_$xZz(VU&{b1=NNImj5Q*h7UsC+wH4`H90 z>`8(Ggmr@0W6+ebZmuZC9MkA^u=lkE3sd6)! zdmM8A+LsyDREvU+@&Nh9O`8WnlM1mXmq#$_8PNf|-WOOSgA0Q5#u(h$sgvaaXT&7{ zH)P%|N;wL_*#H0i9O#X)zn0yUYdiqG2DIjYNO*sz5iVhjTyukhU5_q5FKnQf&<7;& zO@olE^6QazhpNbWj1|ngA>lRO{xAI!l_n)%a{?Rod({uV9!UY~Y6cap93nud*QGS; z{<06?7s(^jZxq*0%gcYy43!k62J;6>s=!Dq#4}V$C>2iW52%lmTNCmD*Ja~cYX#nLX^RPGoTCC&$k6MT#u1Z5Jedpn z*?l*MlOxRb+oojr-@=sdp)g>QA*4m2ZZLvolqdhYZw>wTTVuKVHG%bZ5e#+me!?0* z(Or~_22A^(cao`7;j_K)Mz7w>4EpD|t2;GUkRZDMDrM7-mvdFu_0Y%C^Mg=P++O9H z83xp$Y2y&AKTzw*2kW27fWfJN8mU3O}Fb&;fXv1Y`u}YT!5I zz)TQ$A4Rvq<_-l#ip78?|EDI<2Q>v7bx}$J7PQ->yp$09(ya^#8O7#)ej)_H2qcu( zcMOo;XFU+4_g4MU9YFvBgtVeK3-M!v26Xd{Hp6+H+b1Lo1r&!xjR=!=@ONhcer#Z@ zKYMkzAw|fGo8M*9_)O-1>yktNx!Wz{E1(X1SBjy4&){b%dPn#l@Ap45Dwunv&>w1I z&eovTI+pzZpQ-Q+bRl^%YVOp~}0KtR2~Dio>F;B^}9Q>jxU&KXPn3iM%Y zHSGQN|Ghr^b4n(_%JicT8_}zAmIlUMG++U~ohdWScLCNc1Oc_$>)3ACl8EKMc#Z z!K)I-ktfp0%+(jW(`sIMP*@+bfW=n|jeG-^!}ZbP$y3D>G=z8<^X=88TO%o-r&@_= z4@mFF}xIaU+wtZCJm1Ots-C)wbVJ1TQLJjaMETRVw!2Z2*S$B5X7k$R zo*~nTG!C!VW_MJ9NyzJ_mLG@Oli5-0Kxw#BNZxbeJvaB9nD>MuuF>eL94S1eOOy_x z-@o=t2A?%8u_;6~8(NyxZj`F1DW`E*?p7}F;k+pTv@|+MQ-Q zS&2Cwg-0jaUVTx1%9f*79eF_4cnoadidn$=knWfIO z|CGB}@AO4sjUanF56GmHRI=n4_vU}$dYL9dfN~Q-1tif1aiw;Rx8NS7(Y;X$Rx%_mps*i5NrPjztCn2B*{105iav18TMIX5`-5cYuLtIVBU$+u$_&arrQXM z{eM%1@W@(m*$>G0Ui=Xdpj*aoS$o-43C*yN`(7msAMO4@<@3FGw|RbSI9~KBy{G%Y z0Ct?|kUo~tCs{8>)}njG85fL!Pi)l~W>t{_xUMn?e!ankyJOSEj5n8Wn$6V)+jzA# z>=qff9LCYkgBe*z;hRDD=Wf;OhC&O!lF+XiGBGlo#^ki_{s9LMI**DCp$W~-7wEJJ zaf@5(rSU(xW_7OxGk{ED4VIbYLo%$D!{B=?R;YeQ+v7}Ub4&_}yo$r_Ae|c|OJ-m0 zYgDVyYS-Ar*>HA!tj0k)^V-m8{0ApzM;6!B)51ahYau3g!t)VS&YsA=kbmQ3k}gET;F9Ae;1%Wq?eCpCixvX-i;#y zj7|mJcbizwPMAqfTf#(6(cxv5(=s)6V;zPcX!W7*x#1pF8V!1UmT(105N==NJyF=` z&Epc(g&9LD8~d~khF2y~Q>K*?CK7Q-M_|#~tsOb*ZSP&~TQ3@hwM#p_5l zjlVeCD5T>(sxnLhtivu*kG_P{(`v&0-yd}Y_T*XTm?z0?V)cqT6<|n>~1}xE#!n~L|TB$eSg3|5F~lW z%W;I2T&)@f> zB&ezkqe*V$m6Hj$O2Mx#dyZ4|08IB_z|R7l4cJE_6=V?!4Q?qGP4cr|>`;AJ8F{hT zlfy4|C8)NMm-MW{4y3>w7JxI9yS)Niw61wtX;7E4e9E&S(q~DS zjuzPWn($b1Ln(KE1&<$}AD_1a?)qj+iC>!lik}QW3w()JVu)q77E%nl&q~GTXyRsb zbnFz|L0M*VO2J*euYZsU)Ea`W_kBSOH;r5-@?Qu!=X!m84ZxTlUHzlZ3k=^d~@37%L;*J)%I(a$Y8e$#brBi0{7#;Tvemetxf8%pS1hr)6>Hw5(3IZe% z>60B_o~75iCb?42jiS)A>A`r5Uw0;X9qS)0Y%V42_t*<;F=@6gf_%_;+EVFG8n~&_ z8xM8?#Bj={3}=<+%$^x8EJ&a!#;>c})p^MMEoJvesnIO8xWmablBu+;p z?|a|l)up)SRjk{mxNIa>?@qRhE>*F z4P-je?;Z7;wOPE5Gs-KvkJkz!zF?d-e{0AZa>T7APw_?PZ}4+a#tr#?}@md zuNBCIZo)${FKeO3+?L-r`ySDEILsWmFF^KQyD;HkhZ<1HMS@6!PiEszL_Q5AKbXyd z`cP{?G!>}Bq(Hd3DX=|d<=E!y4N(v&Bp0SCPJs-zI z59PIO@GnY+l5;VBgqH+J^e5Z?<8#1)fDJ^IW--bAm7^o(e zr^x^5?B)tkYNjk%4t$J~uun$(D3U^Af#14lZ90BBr>qjteJ_D7Crku>F~kh%jGN)g zbjEM`#~0u6Zzr-)txx6jWvm1!dusRW95o1!z}|N}57m$MY2%LjESiw%ob0TU?d+PP z21w#OvL6sYHRNy3xa*q0z2CLTcZ57KY~L6ay5qb%Mv506XBf61^7%mz4_b$SlXcrsJ`n6{Z0-jtNsdkA1_f zQ=1}CS1vZ{E9{WRFFm4{zmjP6e%5P0u0EYlm|eCC{T^<=)AFJ|BSwL8D2*^%@34=2 z_e7+)r^NbjW5i{KX!*EW&J{H&?`UjR*JLk}_74uypoE1)Cr05Yeu>b8ujIfdqkrCj zRJx+2bQ@Yh!eeVQ^|iMiJ{3)b3pwf;R;mMmNCO}(FeBn<`-IQCePP7BPj^??L!F@X zA;rS@5nAJ=AjfW#^MTAJg*@)4c6q<@T*u4b4&%Z{vgb0Ebh{gOUm0+Hm(gp@(u*j* z&Nib=MERWjf$-^*M1wl5XOECFi2YDvLEkO7_b3RoQMB(aC|9J;)8U3=AlXipt$jjD z1tiY#!_M;LCUzwByxCKyS;g~7XfB19&blwyR7SSC#MHJag!OqvFIu&QM538}c{sLV zNa;qhKuRre-SjBzI!}|0t2Y`IFVxFPGwIuAY3qiibI}ooWn}}!?^o@0>fAEhp@~zq zggr@AS59|nj$0#n%K9ZbgvFke(ReZV!ry|AZGHAZTa z*%YP?REt3g4ET0jm*dTltY+$}d(en>dBNsWbP<;|OCOx|BB{yj=0y@D=lPRQQneqPe(@_TGJyJs)c*8_n=hJyWfATG$}`*DFf*x9 z+QFA9&N)TE(x5Y#t-*o=X^mHIy5s5~{d zeQL@qFLg>ChRn_lR3!v3KFJWVvBt-km3ANz74gQxWz1s>IzfVZ(=@BdM*J4;1EJ1} zp)40BkFjn?C!(ZRS?3}rMIYr~kv+Xvl2v`RdGLz+BpZtEP~m+2du3jbqtUAp-(-F) zN(^)0uln!20fSA4r%?vRyWwBKap4_kPd$gRq%Bbb6N9rV?BKn%+@%8uVh|97xXf(r zT;dP;MmrdO_IO<+WBvxQ&*8*deqd(np5(EjcmIprOQ0HSy7jXs{wiJ2UPW|5WoZB( z@68#sIOGeWaDtzr!!1}|*-ob4-!;7HPE6?c^^)jfVYS$7c4(>T zufV&k;?d!;c)UQ+wC_`(yu|&K;gkR4sC;2g`w>=|`@!>S@98nqbi1>eD31-FO(qcV zuF}PfpVcfnJ_J9Wn_lVwtZ2{#RDx3VCoAZlnuqGud&<*&*~97K%@c2ynp^j^|=Mj~C}R%KKLM0)OmqMklR z5-+V!r!>iIm^B`V5Kz&l@r61Zsd9?y4HO{lKCE?aVixu7f?^o9-Q=*Nkfpl( z12E-V6L5Ve4|{-5)kGgjAYpu3*N3%DP8R>n*P~F=7q-^VCCx(dkK3ye4Vq9=KB^j@ zIlrr`w-9NY;jQmmdpN~mKYyq>t zSSPx!u-yGlCUq1tKSrI5KsB$WdtMV2TLQ_v`k0$#tDC}LCy!PpXAWT>1+WM^rl&yqUOOcQM2xigszpvx0vT}OjV9QA{l;VjIwYAYI;sY;u!*(z zJP3&=i%aTMID>zN-us*K-JESU+TM4P@$jrS0^@SIy;9b#qne2)T_M{7gax~oiAK_V z5)bezlS_G~s*osXIUDwnZ{mvC5Nb$VUCa$9BBMV6k$CJL^X|Y6Bh*P2_JmQKLgdy& zty_w*(-+?(_O5CHOt=N@S+(xiv8@k(K`B#Hx63rQ_fM(X#1oTV=lu$BA9$>?D!O3Qpd7ezvERfXphV=N^Ted%%)4lpo?S;*Ebsuqd zvs1sY}CZ)~q~fq2Z@QN!{*I;J zdS0VgI=MMj-9>(X(Eo{KQb*z_)5uZ-3RBIkxZXE7TCoYVf@RS@#h(%S+c~>)ZCLmE zY+>PWzG~YnbBW;tmWp#OBgSBD&o1>G`$5%K?ozmm_EV^*b>aK!*-n8>^IP=If+%{0 z6WtvH9{#h&4imjWVjKUMrqL0+OlPwmo;uoVsVFL| ze;$Al+3G!ph_2DAbAQIH{^mC58m0MRT&gigYfDrV(&T>NiDEqR7GLPLz^Aks=HNeJ$H4iO%4p9aR+=!QF*Dt zLgS~5s#(q+RbvaxTpzY0mTvp1-{j-EbfORnk}3Woeo=Wvp!=DNya4C48(0&urY*&A+>R2x|`cpWcm?SagIM&VY(Bqkb44Zyp+2Fl;wpnva3v9`3 zvbpY+74D=*pMUK^iXKOstuu<9;kPf@_{@cBI96a-YWY10M(srF_0v0N;I0}{SgsR3 znXrwUDNcAY|J)u#;vFsg(v#2oB#@N>6ebQF!l zX5{>@pbj7{5W{q?aoKrX7;huaFUwZ^+Rji~2%|05jCeZs>l2n(U{gz5Iplq5@}UDOMR?u5vLB^BY-Z!9Mn<<5L8y5B3#~lKp9^sD7I8_-jXl0fj zR>!{~iVXgB%j8Aufd_waciU$dy*lR(k5W?Z1sR>P#yF01Lz3=U|K*p!bICOKbY}Ts zE_Rg&G`F(rU5KltDdw#JV$B+@&U`0kS^0MC7Z&h=N+24z2cT7Ke6o%Ae-6tUGj08Q zzFO4xF;HPS{lAtPNHE!5ztpVfjlKj-X>5fw*t{07RjInu%!dR zWhy^1$_h^QW$(U`cax{hCw3{LalrY8-BErxMIEO4IE%AcvNx@FvQ*!-vY9?#l9FOc?tiKYYl(qMyr>HX+#?6GTo9}>WVpl)wdTGV7U{jO;V+L ze!oE^09}XFmvlD)>=)luwkWqHS+Dd&688k0&W;O#Lq+%N6pm3R7^dAyGj@3^RUpHVIOO zc4iI(oDA6T0%xeF<6bK5v27qY-3RJz`?%;+oF;B^ zRmaD^-BoDvUfWC-)0dMvv;ol)(dW3DcH@_t{O4NZGaV^~Q07n5@McihcT`0wxi!PL(*-KeO* zW0|ocUsN&h=Tf8R@wsShVDAGeU@u7rw8d3(gltH0W5qPvl>TjJeBPF{O>D*BnA2m@ zbm=cozw!x3Agaqy3W$?$)AF#(flRW3Dk(avD}xUP<;==OVjjb5>3h%TTMtDBdOcDW z>O(8b0k!t(^w{u|X>2A1yL&k3;f)k0q}(i>V&6qgK4(th5-^bFkfl08C}W{y$H#F9 z^Fpw&R)O6^d(7tq+vELCDn=C=7zoUWH*KmAxsBu*J)P~G0|G=re(e*4kiiFnUr;Ap zP1wMYCu?kTw_K#7^6B$vOSOZnSIq;q=Ar>SSE^7K29zMcujRDI41#?{oo$-3FFnw|xs5NYeiiJ?gc?B?8EJv zZwSDsLUdnjFGGzyR_oJ*+o#dTb3oz!L8ZZ)?|=txXE{27 zpydzH<`y>Uh!SvXl7D>VJ!Rr(HC>U^vl`uG@_~fQu`1eU?-xNzpZ~u)MzhI-nbwW> zN`A<7RVzrLneJTCeMjbZZXt)1SXy~sftF^%2Y^1}Ztg1C4r#vvJ>behl9AkCv#T8C z+R*w|HnV&!pjOm~A3$5wdxmOCFJH6Kf1j;U!`CHjByRPOT*wXGAljDX$JG;=y!c$Y5#r6`CQ)wFy|xt87=5(dWN8-3g2X*N%Av|10G<4 zu=8QDEZg(5!rwv1UvkbhR&@53luBZ;fFL-2i*M3xvnVbD)$9-UrjAI@msfNp>O8U? z9}8J(HYZ|P!suFJf}7?NA^0?#t=w|Tftig0MMEgX@%zQDw&UKWZQ4o1V~<9qNC{nC z?02y>28ITxLEn@fcRv`+Z2UW0#>}WHeRbddEO+H7f70>KJi4^;TUb)*gEN6Ze2ux@ z@(stOx#!i6bKz55vhO}*2%58FnSDEnB=X(SmyVqlpviu7>!t*FffSB;d6yT(j}x_j zxedQvCWhJ4JOX`GewqhJExJ`+C1ff!qa1~AF3UpisM!UJoPN~E!zRCJr+?5U-@xP} zH`36ou+cV!VIu(!j9d5!;2n&zp2j?WiP5;=xY+&}N@$L+KR-IN#og=y1k}Zg_qeWL z$>T#2pi!x;2W~o_PhTfa@obcni#Q}ArAm!tIo`~9g#FMt?!6}_bRV|8)yV*2-ESyZ$GR+}^^FJ3yuw^4W%M(8KeO6oW&BR= z)~ttSK^&$RagW>YPlOG3B?;8OJ()MU8Qeb@m2x#eenn;B#l->CxBurO#fNHcAwyZ} zsI?-K6oaev0f$(G{z&;CkI_z#&hVt=8HKm}?%zMZ8aw>?4wg1&by2o&|8=^>Q7t?j zY)YeBKM|QDL;J~;9b4skh!J3gAf=~$9SE9lyU%vS;1q^Y3(`_%D=L6X6sxX&p2eM7 zj8i~ulwVGTOpmHmUg=%Q7LMn6-~t<=0a$Yr>$+B{u(4lRCx4fGFso#R^LV-|njjo- z8wUSOE2!*@fHXi$Qw)pO3I3Uv=RPJgZ_$wz56&-6ckdk4vw9t=obLNhQm^+Qtox)( zm+9_aDTfab9<~O)3V@tzosfnI+lv3e@DQM~T8!q!O&0`czG6YeyiKHk_iqT#4CM)Z zUSQ%!Q5x*2zx7PG+$U0#5waPtkJs33MzaXe;Y3{#5@%d&Ou3Sr5qGwpbatV0+_@l> zJ`S|HBT6}s9vPq46Pgy4jKbvB?FN%iAZOVl|9#ay6Z=H{NseY^Xnl9l9cuAOLM>>3 zw$52^HH5B*hO^7V@{Js@RJ4uZm$n6ZB!6}LN-|+@EoVMX7VNt}9~3?{b02+{<%^1O z7Q$9;H!b5lujAhJeZ+dR#1M3s1l(BTjxOEM;O`#999*v@KbVz<^B#Vcg@7rxG}y0@ zW_j98RXs-7yEHe+CvfAbl0gGo8JNqpg9A%YdrHy_j5xEa>rB`OG@GKPyxkaPa%(wt z&a>4{&EA^is|L@dtR8i}gusg6rWaC6hIS_O#K)I~fwHIyC{sf7v}+Z7uS}29tx z$$QSn^<6VcJQya`7k2hr+mOF1gOPe?x|UwRZ7UMnP%#pa+NBXPi9+pyZsoyjMK*hG zTdG;0C^g-m-3~{!x9bW)H zwC?I`=a;lA;kdPvfyIj}7L#nB?!~*s@;^ zv&P5|W@5onC)?M^$`Ms&Gwy2StML*uCf2uUtFa@~@8Iyyi<+A((^$ zGUSe*xd~!ebR~SxFYTU&9i?@?`d|>spbj))7+b5)JbgiK1r`6)QiHG0`ENfmGGwVo z`OX8cQV!3cgdBd-7Ihex|1&st_N%3Qp4sRHGor698>6x*@WWD}Vvr^ zCM7}<_W*(>c;^!heAmSJ92dVapRLgov)fdCCgsxEU+l4d^q#c7x6I+2`LUe}V-T`J z?-*`v@|d3W#4zK2n#Z%87B`Wx;?k4zb6IST#@bM!bU}+iqT#8#MxJVIawn9!hrq5qiY|fd7HyO&Xw_5b#g>sL&JO)A)E=tlvA}!%?7jNAH_X0{;(QtbkM_$6UQ!e0?&3{SKJch zGVLTfPnMKKrkZAZ^JnhyxPZMs-US~;8T<R0Xo+(xK4z^%AY0iA~ls6iuhzeM%d$OcM5)P}o@FEwC7%8aym# zRjF}iY|9E)BpntPNUUeZ9o>#NH7iRYqXTx8 zi#sqWtC(IE`5p_Ak)Rb5D>k=&ULc4TRDe>`h-p1Q^zXhuw$`}4ME<}LfvskLMW_y! zb?5oz6@7;sLH8R%KaR_;LeoQ%F;x?x?oMlMGf3d&*^!qbuu3(O)EiZXaan$3!Bbn` z@9a`eKGG8?_Bj}Fp3JdcD_L>`EWGMh67L)K?03Tq(zS=^1_#QR){2#-!3K~MvK4!u zA@%2lO6hX?a_Jkjl0T$3Rg$2L(fV+XW0SKAkR_F?J?$f#P)M_VQV`joyEajt%dA(` zUs34|zdVj)k;}HxTsix3WNn5Knkp_bo|>|-!Cj?pinrfk_7;Y!%Na8jHuB1ft#X+6 zhTZoa1zV10C+S;qw+Dpvjy|>J3AmhX81qw450b1^D=B0Z zcNismNh7SL_*~YbZ6+J0752Uk1zWz5ctA94f&jG58dXJk4yu`QE@<*$F? zbQpVLFL%atP3Fp65$&o8aF#3f?z!$2`$EBYmOnG=>x+YNDM77SL-`Z8@zR>A;! zJZZ4cqEi+Q(vBt?u}Pxy>I+;tL4J$bxRJ@$A0fv@DUfs$oXb2ODw>F8(ek}Pa704O zUh$<_UW8?EWsQ1|BYKI<&=Y@^Mm@g_neClXK2jn$y0g_{y;*!Z376GR_z#sAX!D|T zpq6vh`HqSS-IiHb%gLxBR@X{-HE%pvk*vRLueJNfs3V#$3hhfoMEb^e zNp59R=8i(o+Pb&mRKvmsaY@b2x!paX`Zed2Mh`;lr$gSfZpMp1Mzxg6OIYQ;muB<3 z=($YH6Vu7{g*-~VhyGdwRhIn5c{=5tuBrWvgfxA315;SAlTD>8Td-EY383TN$BKjS zg}d!48`dGYv@;5#BmpqitnBnxUXex%`*@zS@4s44D9uqD)Aie zS%?_>y3^$U8)z{YDt=Xy-%N|(>xh=2JEQTEwdzPhM+4+m{L$qKLf_LdO?wlypJ?PU z0Gh-nM^T3|Tqz77cacez+Ws6V;-xcA=*?~7RTC|psr<`(@Tc6KIu)gAyQ{`cQE=0Q z1RLDf2B~1SN&`-7x~2fsI8v3&91%_N^Fsn+xX|J6>Rr9v1P7YOp`=k@nSuDMg`Qyg z8jz|y7U7V2mF($)s0t$U9mNM28>Mcp{7*!9i34q)%fAH`(Tib86&fnTOkhPUnX@Q8 z--*J*8fPiXWtL*;%*0aHe>nviQjth39P6h$|GRyN))eKOEr1E{5$a1R6SmLR<&f$@ z7r7?6I=>Y5GMhzw=>mgph|{9ph@cMPDfG_kv;OOcd$nkSB(CfR$$MILM~JPEaRgYl z-^^Dx7hzY!UysYWJ&MUUW-;zz$Efbkv%?qQ5J7FwdQoifioT|f{MR|V1RVa+9atB8 z;kx3_{`=cqzm^^rja=fFIf@6|HrM>>KriH0-LP{nQS2LGQD6zUD#}?4Vh9-x_PhZQ zZB#X4MkBN|IH1!32+TyL{0boaf)R&u8==Yg|8y#ZIQ2yQR89fmLNu>L2|OVpsl_ky%7HeuZ~N?) zBI3&v>d#j#Tec@+vf%$<(Crhl+jtz+1cYK ziXlDh)=81V}&a{|Sxo5#po(dvfvr7AK)14tj!J1g~)q19vB?t%%E_^oD~cTz5W%3A9$4uj2pSr zt`Xod3!W@1U(21K3lIYWhJ!L9w#@PT$X1b=-}Hab=bPx!!7hUV`!3CHM~$i_7+OtZ z=w*14laBwMg`1*)0FGXEDKY6Fm5dQ}j&FK-w;d$i0>Q!J<0XX(d{s*SHIL_G z!5gC?raE)^J)+^R>ww< zeq(Ay@^9!zfW4l~M49E+T~Wm4+09ZmxfaBcqR34xhlA{)KTAM6hYy5G?Wp!7;;=hP zC{K|U5r^OiDj{xpoh1?R^+B*?B@_%~VMHDX_W$)-nAdqsG$)Ao7i?6-&1*`Kh(O#t ztTzZn)Bn!9K>ywae7&%{2!224w2!2B%DuW1_`L~i$q*55%0fv81iK9W!4KGiz=Y-f zTogW801u&mJco;Nw&@G}>kYp>ak;)gSkz4%iVq1IJj?xr4=ieFv5^f4ssJh6r?nBV z7}?Zd{AX2&WRk5NeGzFa_gX*b%1wXr&ELiYnm$5su@1J0X~A%!E&{q;K8Ja<`&cLM zn!r#4j(9D?%9>9;i7F|DZ%$U?W1)G!pycJ%a^3v>htMT65(~Hlsc_rR+(JX#R6l&2 z-R_0|!`xfNRkelfqcn&T3W^{l-6$Z)B2|zM0YO@%Te_JbDkKO#``|+6J9)%-nku|L3q=y6nWM5M!kk-4|pt&-fmJC|F#tn%0Hg} zLY6QQf{X7wK`96=Arn3(GD^YKt9Eg5QD9#}7Pb?3S2YR+Xhb3bBcP6>vCwoV#m zn?4pU!=QFr0EQ9eEx-li>jn$ACHe5xx%1zZ1gx_>ZhKJ8?@T6eHk`{cDHSk*o`)9X z-|T5(nFNOEL=r&ww4R0aF%N@=3YcZ$%6$5cAG;|?mpUZyJM|4otnD|Cl|9xJ+5LZ< z_rS~%B>)_>)s+H8a?|d`?sFLGJ{r6>Z6B?4WejuBEbf~8?yy{dv)6xXJ~^h1bh0s+ zbeP(bifRQm%X)wcUVPbz+?vEb?S|U?4LRy|E;1qHf*wDfG?A_U3;Ql`8yDOpC82Nb znYv5A4$^=B_gy1Q8Htdy(k@5Wcl7Eu(=Zq{bSevh(YYZ=EWSWxPiNdxnUg({NAY{?*Uv zd7q$CXUgXMYyuuyq2qSLXhJ^Ju#HgHDGa1gB95CxHhlLz@66#g%yyyQX#4!i6@f=p zSkSUnu=MddJa~qpxqMrYB3FHQUWKPt)6D;wXR26GTPSUVB*?7PeWX%+y~vFfXlz=w z3=g=?f@fyl0ysJlsM|$>l%E>Z%5ZES^$N@Oj`YixR=A4ZkY7S5tDB^;8m)Y+QWrb2 zYQM86S@zXCkEqQoJ>z*Ho0eP<#L@WNpf&W^v-#%&a;d|wbiv{4OIQvCbaJlCnKT_GswuXThwmz66>E53$;4nG%CyGV2a_QTZ z@)ikM8|Xk=nzl-1FVmmVz+{H=Ms3n$*61~dmItyS#ognj{&jb^Ic1{+P(y0`Pf3Oy*ko`HbK zqFBnemN?y)_-@v#Pp+YCuN9gfx?b0qUG1+$sMjK|Wf0v06-IvB=rP+YUE`@!M<-WZ`?Qy-~W^His#N&hvTy}LGq6Pp8TAn-8 z-OuvX%U61JherCoH7STw15d#^@Bv{3-dYp|z7z$${6gXvNFw5=?g?ga&F09JuB$;qb|2%7Ua>6cs#l!pG6)e=)jJDX7z|3B^7rG%|@S0sYFFKr6eJC)+_2SG4j14Qy zrGSOBA0oG-+IEEsIOw>|x>l_EJw2F;CU%JM#N!PI`%@|QdP+<@ z^4hKYOE}|~$70;)`%yGIa#XD9Tn+*M@6?Z@iqX&wl!&OXmpK&&%WbjW)y=~2Zk8%PyTV-b2?-<7CdUx5Cvv2ZMQjN z6#~~sAw=GZJurP}bZhpW#4m*!&W@KRO))VkLOv|&6lcZst%WeXrUl$u9Xz7CDKPp$ z&;oWR^G5A2WBLu}*N8cv2bvEg&$=xE8#+aI)mjlCt~4j_3j)Q##Za}#&L4$_Dc#Uu zqXT@Q>)xSOWyTWT(VO*(`oX*+1d?uvpT1AtNVsQDGBBQjIf97hwrn^rKju5nRLW73 zFz8NXEi)P1eHxF#+bd)5h4j&>rKHu`Pmxy608ek`)>;x45Q502v=RNAE zy9WQZkz<0e-na@WlFoRvZB2QV*;Mgpc@iPd#*0rk?-qM|J3x8V6ieN6%|Y$f{axuB zny?gmkZYN)@X1f1)adq7lSV=R=ef|&WLIyt73Cwx?YHBCDNz;x^4!}PSHV6%t>~?K zN`l1&Fumg$FFd`0tXIWWb1#np%Ne9?o=)35O(Ke0<0;faz!D)Z8rUPohb=2>_w?bo z`tY9;kiCTEh5H(z&T%YPsGdPM^zI)l|7xol?uzFvxkUjJ zX^VSFwPd^4p}HdUHW*HKgPWT8sU@>^fkqZmGBE0HDe1NgpL99+2g@cysZ$nJ7lf8G14cY z16adQi~3a_{-K))n0u?c^f^6E(JQoAXZUeUg+awxsYQ}TrS+t~1e;dX!xH87QmKPm zjOh{!!p0_%wW`n-L}wFo1EK7>zQ*1V`beJor8;(*OOJg{H;29Wj6;;LD5BU+KKUHQ z;|KX#OVhE<;OdjU)TIa3UA1U-Y1182FJ&~f+(Z+x`d@Wf0cQwqQg5_t^2E+F1g_Or z<6tQf!;wx#rkZ(V9l_PJ)CsU^AbL}ag`Swwfq3B>oclmPp;f!$5l=^1I6!{-Rf7}C z^t#6uDqyqJzJv2X^L49*P@Q?ra4&)Tw6$}Tvduo{ zb+EV`tVa-YHbk6b;5Giw`t=-Mz+2GyUr@-%% zkQVcWq{Dm8m+F5>xknUCx{Po~fu<_@cGOzTs|?fyKny5$I~6ie`sf=vB`vhZ)cbi( z^7F>^S@bY@OBlG9ijIGGx;Q&l0G2ZqeqR;yOt<9#Xr=!(rt|H5OGsadpcPE40K_ZmHrvHF&*DNb(cZPzrQ5C%|t%kg2p5>q+`rBUVgdgaW@H;WaXjQ zp3vz{lpim*1k)llnv2EsSn9gHK7YhW;n;0OVSG)pJ)&9q<~=PxS#l{TiWNk{oV>H# zYq?FAm0{mPo1>CzAokoj-_(H*)|>qOh2B90=Zm`aILi+yTu1a(H=>UZ;tI{sYCC6& zYDQUrk^V{jVZH5o&qe(V#RkqI)&((Fa>KH?c-Kl9TVadGGl~{aZ|Sx4%qommng$1D zfIP02=w9j#=Z3@6@oZ=m+@g1jJ2&5-M9JosyBw19Iro=#XM7}iwc;De+TkO+pRT*K zWZoDOh%%VnWFu=>g3xD!rpW>8Y_DGq!R#1$m}57e)RN(Te$ra3-)@E)*=0BlD$^E& z+m?Zca`ED;QF!0lNBvb6yvtlRT7=^c6MVh}#Cgg3vAuu{3PJ#WH5%e+647R!I5ztZ@pC*4hHtgtXP%(L43RQRIRP5eRr&G z)VykmD@7r5ST3e4_ zsJ?g^w0UwnHTzJ#?m5t4ERsOC21;CbT*%D%M~n4MKMn^-lE-fOgru6)UxI5!9 zjo->O)NhTEUjk2|$gQPLhxOv5F^1IaDP6lQ^ve-ehs*se;@d_=H!QIEtb?^&MgT8? zl1vR|wjH$DqxH^h%1PaNp@Y$|J2B!0flytXG2uo2@TKh^$C$I$j}YP!c{xf2Gz)E! zMcQRNB-b!1vL)dWsJzX}FmOqit;Y&|R`aQsZ;`KmU`@W>vEi{Y;d?xOt)mz$H;v%0DUdjd#_ z@q>r+KFKKF(3cWTUv1Gpvcj3KhLIA@MvEm5H($B%q$y^Z&IHxZfjPSK z#A~`cDqR{GrAkhPg{7)xN+w?(P*<%DMtp=W4q@NCqXrjJ#SrBPN5w17nBlw#vjmt- zK|DY4)K|0X9+-0K<|7pO+6K{0B6(CTttVedVL1U^4j1d3ml3x!mO?W=12L%YpI?*R z9bc&JVsl7GOT1muxJ#Ga$xe`O9?{-W-k?EX(5Wn2z6Bgpt1#yaK7ovGG0gSP-u z!2NVNwP;RnHbpe!Hj@e7XsnJXXWbhSMoLQIp*SZCuLDd`+xvfK*xTZs07(E)rW8&7 z@p!&XkJyvfk080S9mu34=DE#xOH*3IP5xJ%OjC&}sUotR)pEF_R?DS%Bi3&&j_BX8 zY1gb2*Af+IL~TWGeUr-IYE66TtI=2VOrkZ6_Dj3Xl>`mZ`_$9F-<;r8J!(q9Vg@0F z^;llIKN3m7!otSnfVjCy>-WYMEVL}+-7h~$V@}c9Tu2F6UaHir+mF4cn%AL6oGijD zH^6kH+kVg3d@6|s5bD}g23JOej^_!EhtQA&Ue~?Ma_x#~OwK+1Fs~Py7CKUk=WEFr z6Z7S(W9Cv?k7E9UPt4%6%u86w+-41#ioU>qWy71Ck1 zVa4Ehw9GC#&1{IVUbu}tE>{3C@hW06>2qMy{-y5p-c!N=8$x+u~aOY6VRjVzqm z9d8w*qXh4H2*!cIGKu`Na_ozhMxYBYL+YtdrfjA=RsHJfbga`GbjOTp)}?;59SyS# zpG=0nHko3Hz$<!|`KIGVHv6qU z=Af^ee^`WmFkfAzJdROX+x1dWg5V7=Ox0tEE52lkdz*|PYNp-_gdfEC*vpW-iQty`SvSY2-=PQ67|~v0po|su zYv;r*cwLea&aN#BW=rg#(hDWhcAVnGCihiXjV}q@OPybG&kO$+r_Y4Jr6K?*%a^cl;|2KJ3ao}%B!Q1LQCM>a;<2=mqK|w8u`Z& za}H`}Wvl>^-06JH`qw>(Pa;51dg1;Rh7G-`HKk4`Lc2fU3FJ>DWoq+9(9qixn4>0h zJp~%rk7++pQ%|L{BdeF08Ap{E2)f{$0agB8W|bIyfDcr6%Hna)<+8tciPDyEx>;s9 zSxsC0u~z)nk^<~`2=&5AMMvP)CgdIndd9_$^C{f?<3I3(g`MUH5+Lkv<6B%HKL!pt zRliK*oqv0gu;pFG-9g)AA8ThkUfbzep_h-F&m}CCqn6h%o%AV!+n%*m$Lrqw)K%E z|B}s}`r6~EAg@&$p~7C3;anx5#guVum~s9`kh|qD~z&rpH(Ed!i5)W)iZh{nVnOwA4Dy z#(544fHHKMLbeME`|XVTR(@DVe@<(m14-94qa_>0-GXp!r~LNZkj@Wt*WE~zRp9h`18jQ5|^os`bwVg*RvBe&|x2I%8tK`P?f=QSRhlmO!Y zP!3Pk`SjoE>8{_+HsgOhzN+G}AaLG?qrWS0`<3u~u_L4j1BvX!f$5P$mzCgWZc;;> zp{ob~QA-9l1|logx7>@%sE4xc*J!0xDligz)^?APs!S{ZJEGgEi0M3e!tji)3dd!sin18#F)jJjMk2UA5%5p8y zLCs^Y+;PbS3GW~gMhnUB{YnKY_{*gvEL4wj^Jxn>E(`wsS@CDH_ZrP^;o@>5%Mz_` zhTaxg(XO$FI$z%dAvlPlsBsP*u!5L@2TT@=YO#p>@d8mcFeVRQEuB2m9Qw>`9=&=t zuluTvS}@6Wv+v2V)udodgL9PGgv~^L3Y}!Ma1LSTLm6gF$pj83nrxv+9yt?^g>f&bNkH+mCa%YG#9A-B22)QK11FS&Jzu1oy4(rhBky zW_P7szFrKcME&m|sf&9uv~IJ{EfSiZU9bC3de4tL*^j~@bYur~VCBiu8TX_Ncy;l% zad&)lD8Q8&-HbWdwH>!VlzG6RyI9dzKFMjlJD6rC`{-D-kqL#J6VuD?>nLR|z#hrFbPJ2apTP|dR7-Y3c?yh~y z)c>=#zpx{DeB)y0GXmH|jMEc9^s)g8jKBqs0Z=@{z?Uios{E92F|#DwUfY}tmml;T zneMu(J;h(lk`5M7y`ZyD+A!Bnl6GB1!H^*!{l%`E2JGQ-OVZ)1Le=Lnm@vKz2n~3r zK2xTmjhH;fVvbM}fTZTpDjOB?+aNLC#KpYsXgAmTWY3rva{p5ai~y+gATTPsMJD(h z0lM<!&AI(&1+exo}Qi$msTaCRJ4ll>YO(M6JY)rr%yuzCHLZp zl}q~J>@6~!;dro(#O{`iLP-G*V z;ENK8{7&(P(#gQuw90I8qk%B0zoW5qPlpDAAaN}u~=Kl3I&JJ5URr0YzJl%%e(S6A+Y)aLAj<1{W2O})U}vk@*e9H_cve<67+J>|M)&WS$y(zq}0linknMuV>K(JmqgwBRo8 zJMVr0xY7aD_c@2H8mK=ajot=DR=ms~vzG%%pI&F%-G^fPPKV~k(_h0tWPrvP|2c(3 zl3*R-6ZnQnP$_^tqkm^RbJ%WEW~p~Qo8fv|Vpct0@h3YV!RjXZf~*K_VIs}byEYTxc! zLi*HwDnXIPDfFj8p@x?6yNn|c6dGrIBsDX1Etj~eOMiY8&R2T^={F|h%>(1bha2S6 zokw(fvHQ^`+P=QUCghd}>uh7j(wVMFTuy$PAb4E|rt3?}Yb^qNscCgzehD^URsZB7 z@qgRf;cS{}h|qW#m9-ZJjvfGnfwffxX5=C;vqBK6+G3xWuI~Vt!D)uK$gR(!QMyBt)<=C50!`AgKM$&7QI0&l5Z(Ds;;s4|F-7HWU zc3jwhR?60Bt;gcGSqv~6tscaEh`7Qy=9K#39LOSr-pY@JG9;sAYY zh(?3^BnJHH2Z+njaCKfT9eTNMa+r|&0H98EHimAdf)qvHUu4QAl;em1l0TiDiSgw+ zC&#&ewtMv_al1!6%m8;YDz6{zpgjU!Cq{Df4IE+E7xA3^HRzP0D>3 z;jc%3L_am9gMC$3d3YRR>$S(eK4}>4wyk8^EDn9#TmOdxF232*WuP5fPMTn^C6+K` z3%a|0h;c1CoKdr_wAJlABb8#cIH85IIDw<91u^x73_1xka2_UJcZn? zi{2AE;+i+^lcm}!)Y6}9^n){AqaZHFm@($(*+(Td6;AepNC((-GjWKgEpxTIbPlvW zk;c4*=)GqoDY=0oqJ}2ly1ltK!cEbfnMpAtV3|;RlWy$&bE%yUf-x`4Dc0m}{?iVI zjlo=%!%aU0z9548LhiL7P*{;I4#cs;ZGmH4THeaj{O^Sz%!ugRavx+~blkc@Z$4>z zQrH?sKi<_`z?9o;vcyc5&s+ZCW7pO+d&wHN_3N}?Xv5urq;Fz>RotCmATHlTU&3h2 zUmQzBYz8cCu}%}l1Io+<0zf_~@wk9S5zTN-%|!yGQ>4e%OFYLRx0F%~tmPNEvR~4H z|EFwjx|C8F#vej%b_zSEHxk-Li%-}e***Mwe7B=~x=93*`I6iYVqEun#de3aA*dCE zLu^tbT<2@If85;li`nHYCrR047P)0+WbnaR106|UB1(fq1v@;$z^|~8bmiTQiQa#d zr=JPJW~GId>U`$jjPDZpQbUcJeEmq4t`0bUY0oGvX9+M@u@F-NBkj*XfYohpRi9C> z3+l@HT6h=V4mae(TIM7a+8WU2@UCCGOSGZJ;-yHJa(d{z<&@IyKrXYdVp`?p{i|Rv zuwn}cmf0~*hVykH1z=zv>}9D4@EOKvTLS)60FT8RxVZPoCKOy~mwlK>80K-ZU$$z5 z!m1kL8(b%q>Hj;FKe#j9Yx_L_X-&Nk%SJ_%Mt>WptN+4Nr38+{yF1Mk?cNmbMwv>} z)pogvbSGICVto9!VrzRJLu9xbn|YBK%)g^>FVjQ)zoj?!gP|9C2CtuF+mJ?Z9Se+-{QF z2NM|?x7Ra(cNF^6>YYRatgP^kyd}jI32b@J7*GRTvxbxgRnXZqDk%{jtzgV>!i2nk z@bC(F1QJ_j zWV+D=dga}34_;bbQ{WI3NL4SpYf7Cof>KwbLr8Q*slzk`74!c;{y*sby=|L|9|#7> z3?sr7I~a_d9VM+8uW-@7Z;c>(Fp%|0#6Kdz}i zE5=7Gnp>*6|DpnjZtx@Y-9a__gkjIxn6O;HU!E*^i*rq-3_`paa~8zt2r4DxjTr=_ zbjb4N1>!xqF^70HD%D?lUcDNX^ukCz0yl^LlJ=e=2%4LbuiheF6|7B=k!lO1Nr+$k zA9^74?}4D<_quXVU+PMLC*M(2LQ7%8CnaS8#h0HmM!c^F<_%IIcMWi~E#JHM+OC~Sa(7@))Mlm`&r@{GPy3D}nBb=ts32mGC+H-LxAaIdI} z5FAbM9vDa~m-1ow+vvz3m=Qzq4oW>`GO}=WFyeR4Eo&}#52>M3Wikig*)%C0oLwknPk zJUpqu^zquLUkWVgao=P{0b>0bu(iNK{eS;sMky5cdL`9WKaUy|kOE9tWh17LCjJl< z0}h9!r-3zqWeWDjbVUMA)XqaxdS>YxV7wzO5gMd&1B8x=ljm!y073MFbZ6t4?m3w_ ziS(R7z0E^-N;oEc)Wb<+dT0~tXYOr}@=JKop5vU1`sS^b{`Pq}A*Y#TMwmi7V0e66 zs@-3VQ%H4w;;_1LyLoSATyDs6g7Opgz3^AmpKD$(KJ)T!@rz)lbtur_(3yBs(KVYK zO*8_G8rH{&^f5Y`R}2fD5*<%Vbd35>X2fUT&5f6e+HRl*dsEp z<6|K}r!2fwbKhN|dB7hcpw2DlkZ~qR7Yt697$fH_pbWdh)MjR}Cjc!gGOqVPxloJs z`}gk%8ajf~4>Hc5frgbD)a_1{=#E%b)3tW$?r&S*S3<1Z6d3d(s`X?UCQI;mLfZ{d8pcMrbb;B8$3FtPw)%eSPWWV>+ z*kI@glrs9j$sWN^l>ll0G&D4EuqD!grTtFIA_6p1A1-LE|Kz_OI?zE9TDUUDeV^e) zQOZtA03piN$kg+Q0pAkU19Tm3w>ba z2d>YR_fjFi5XK3xJP<;jP+ptG_d&iv4^+(g%)FrZ_JhMIf|T|dVpA~Co9HW*Oy*ak ziaMf~op-&z_ID*g6wZybNBz!94BB0h$3TttP@i1`stg8g6KtOEFXxdG-^~+{eB1c8 zYN>%=Yso~l9rMJkoA+3Zf{cd?5&%7thf@YH_Qejm)bVp%Rb{!q)rh2$w?8Ea-S8Gf8iKq=>_Oj4K9am&3pFlYsmykLA8a)IzP( zTHsl=af7A;{b3Zw0&1E>1d0OpBak-r-zf9nrw2n#=Hyh`L%;=n8F2q0iAGo_S|?EQ zjVZN7vYLv$8j@A6aoCCkrG4AU{+hXA4hSh}1?@g9AO{uUI+$(1st8?wF4%R)tbFGV zxNjbn7r_+!HkmH8;+dO7JjbX19_dkt^>ZAFa$`X;Q`TIycwUA0=sW(gdlyT86R%b2 zX8Tm#>3p}{n%-Kux%E0U^0-%g5x7~mQoqiX^dmeJx_?&ZR3gCbR=tNH9L{Q;f(C|T znxD|vWGKy-hDRXkhg1WL77HR_pbyw>10U-qKANHO6(wTu+f=z7O2lG8h>mn|6$7l39dk*4pzXg>_9AW`p{p=y&lY$B$4S3k|5b<3mrTO(J8pofR| zO`zI-adA3*Io7ap!ux(kxVJIs+X{$E4O3hk&4n&6c6-GrTEpZ7jUQA4!N|RX9>>Ev zKye6V@l86bbx+c$wQkZs?$WMjZGot@Dp_NjW2f^6d1m zJqemJU%Sc8jt!)D;VBuDOV>=&()9kBPee>QIL$@nw+D;|744e~b`RpT^T~ zgaa&qVGf%t?(T;T>@)=k$MuAII@l^ZE zqT1U>t;s6HuJj5Gjp@rYAcvk7!R+;t*MpQoKF$uXD}0)H`xlZ^nz?A$-pQhx)P^+O zp-Z>yb)HMk%TdFmc6b7xXtpg$FTe3FAu)VsM81i{PIdB=0@yv zP!(A0(w+F8{d^_u`R?~dWQ8pG@9&{QJQ9A9f*2>2Y4=<(11Xi5S`(t2uZ&pyzU{xF zJ?7m~MB&DeE*Z&%%&I;gb3nGv8;Baks?HXcDILL9SWm@XS(({2+?$+W-(8Lu(cIm@ zQa-wJTxjR?`VNiwOpD+=927`>3;Px+3)ZqyQLH7}c1*!RLZs)7lvL*8&QO7(Ved;S zv6G$5By+NQf>D)dr)e?ecm?N*Ndb`gp=hwVi$i|_V@%S zW49%}AnX|2X4nroz|5oWD9>4W)bOMB(0TR~QHM)acbf0YQNhMzkht(=yEb|vrlWKz z+_64YQ`UUk0@d@N^YU3ibl_M)A1i#yWcmXIxDn%%3MHr?+zS7Wh7opsvqRgoo{nTl zg!sWKiAJM84mx6vR%qbKy>AftH7lq6fUaqU7VsZe^9kT;c0BUrG;n7=#Ul;Q94il# zqYDTFetVziwOenIWqHz)h!^Xx4ZU9?*DkkpYT0Rs(Gr?PM=}TUXAJvg!n?3lX$@Mk z{40{>%fMR@U|CMdtBK*5_4WoL!s##9M;;bBtg)5U$1%e2YI4&IU_WFgVRmUs*`c95 zPt7Oxq7sTXN@M)@%L?d%VmRl&@JxsDJ6Vs<^<_#KI?HWD0csb*JgmiAS1`2LAdOx{ zARB1wRicJ##$I{l#GYob?{eYc{OP^zw&!34bp$-(G7`Q#^&8u&yWl<&o21BA6U~WB z)I_*1fMI1c!@*#RKpEFJqd!MQUpH%PUeb4>E@aX9(o)@20?y~0e*@iin)NentE^4?S;T# zDCPOWy5El0Szm^RJP^L-xUG4>BSj3bZoT#Mlmw`>j57WqxTZK@0C5^+ppHDRy(*&qIKR1 zccQa)0}azWaabliTooZ@1EbKl-75n{UbQCfVu5K+D;MOJd&T`ppXv$&=k{z)qO@B_ zf|@6YDATlH#UX*Rdpngo_5(Ca@CnTZvkXob!2Yzi&24_b%>`dEfNHjQfK~aonuVFC z*Gu`QrV*Ha>UrN#Dp0Q|uwCh+?fZpDK;=K2ut_<-^?qz3fnl8rZM( z;;m)X<0&*0);A?$f${ar#Y#LDlabmy8x>Nk^A~-|t{yiqm?-r-mY@Hn0fUxZ5go`o z2=1IgsboKXloQttE!-u3w2T__#3k?+F-*fGZpLznaVA$en@T(SAWvw(Ol&PZi4# zUbw7TlTUB4&b)W%psi2$bgl3Fldb$anbNbnr1pRN!d8?Ub1t)hCUyT#?N?8Jn6-b6 zgqM{qgO<$YMG)e4DD%$jXf3f`0Xt zZ}oR&*i(TLaLj1AGp=I7AwE@1enIk(1Z|U#;RDW?>B<)^%c`=o^FxCu-j(H-NwTEu zVL~zZOh?UDAGqIyGpql0pR7NpXkL6Tv^MC%qO=_}mz_54# zo~@dL0sAzMB{XW{mHFKMv#Jv~2nov{is4BBr`6iS2EkCyrOB$XX1ODpffx`>b1SAe zR}_Al3FJQ)JJG!y)<=(ejqFt<)>inL!sjZj_1h)AocGsT&u3diRHibmh4f%HPIBUid)**ZvkXE!36{hSEtm149qaX>ByQ0}jdGE;{dGFyn`kdx1^RJqZ96H7 zck>+<;@SrFjVpNOgJWi)x$+yUw0{R1GAKLlXq3M$4Njmtk!!B_^2__{Dn3bUy``QHzk3+1sS-*K=?lDuyzGu%;|2U82i?I+b@ zQr*>}mK-@BOYYCnmm)ULxYIwSdO{`VVrUGAxaKXhBwPo2x%AKL`IJei1$gVd4_Eke zJksxa*lep`{Ou`-j-lcc)>bnZAB*WC;7YOCQd$J1!u!HYz?4>i-mXkLZjg3n2g#&?9 zJc~wYi*5bt=7@e~ExZ0$Tz$uLn~ zRfC&)C;rLS?{dp?u{$viFRUUvj6{#sxx(5rSTd#GZyEQ0KVM95XY;pduZ;L%blYV4<_K2B-_isTBDOhn856|S2!iiKud+}v1Ayo zVN7pc63|g|A81rMewVenHx<8efJSubmzAhmJdq$c_qnM0{m#3}RHmvHZatej@bQ3U zlE*s_aI5bB1ydZe8nvNweN?yH=oONbIIbX&QQnftNhDGIydbmNZ_|z+c!tj?5-pss zFza8eYVL{_{_Zs)+zW>({yR~&H9RRZ?Q1Y)^#2&$9C*9?4VfSIr-B-(rRvL0P?_lh zfGQN~oS*cTGjBY~qV_1{PH0~p$|pcsy1z00*xIoLmq&TR+{K2P8Ta}WX-xO9HyH+{ ze)#iG*b-{}(5&!VC$zOxz1{ z<-30V*W2Olwhs~|t1&t!|JK|WlChBYzva$ENQ5pb^*Wt-keUYTY|-SFxunWgrxFTU z2aAYgki0XJlWU&62%O_`6wh=~D|0Sexmzkog9I(lw<;o-FXQ*+0h0INZJOtEkmwmY zLoN36w$YzxSl+u&ez!54pB4~J8J3%kra2VyG>zL$bCdasXWsH>Aj8Ft1T3QV?=QSN zmig!x_G0?2mkuV49|gw3Q{%`9OH+^eC~U-11kt?(9btX5FT7s>gV7Yt%)`}@>=GOl zh(z#R_;Si&`g`E!)GO_+T(g*JfL#+7`S3%CoM#FHd1ZMrkULSoeG_pBoO2n2*K3uk?`uu>K#+0dVH&;me; zGwVcZvSyf|eA?Xnl~|1%$>a6o;EWUDKWXy$dCMGNmC7zTFnzQNOshBhkdo8skg^oL zp#$!AQ6ZM{q~W;D2CkKHzA~BMzQdbDF%@k@67BaoH})3VqsF@dj5E?*dM0-&0Xg@S zaI^yx>2G22lDK4tiJKikk=;$u<%Z%w?30}KbybRX=8Wft^~S^!UbS3Lr7qpz8?H_| z9sYfDvle~F-(>~YMEiVzA05pGf&Me-3SOqnMv<++9;1Cx+1g62=o5+EH2IRNpfIQr z-MaauZZ9L}b(C+Zu_=+B8jmUhWmn2h;T(0(IIQMLO3+6`MkL8nrl7}HhlB84 zo^@-O9b?QdCGxbn@YF}_qUm!@?FERJj`$^I4vGg`^)l7URDN!Nvrd5P?n-9g*Gbe+ z_MhXxrYfQsQ^Ct+vHKJ@in*^wfVB5P)uqaq<5fe8>7x*gW1}4H!o+ji&rguVnQw9- zEdvDCAVGWM>@8%8=A4J%kGtI<{jFjMp|N2xz^T@xA}@VzY7cFuFL={OR(T7Mrl zm*4_?TPKpf!e8su=FOch`TYfKkQPk+RQU;`kc25SK@+hppw< z6qM9)O8H6K=2&`QiP&XZmu#7^&=NvD`s)H{{x+a$ZRvIM>M)!J;&nZupTF+P#lxum z-N)IqS;uLF3MXj|yBs!Rd*})tO}b4gm*jC3LNUPPU*PMnm@9$?0+UUv5+3EyHzVFd zuhY!y$(2*4mI@1qO>Z2&D(SS=RJJ8Zs8wrSmxP(y6BjAA6;!8lE zHk)73R;QS8G!Ljz$PXxU_qj()nvXi9HbT7CE`vL@U1`-DVwo>vt!e4>c^XbNt=Bpg z>QxmPo$bng=KbKfe!C!%THyh7q?HFSRLs3F+yvP8q64J1Ya>68eYb6V$YSs25l8>s z;V(EOXqw8?yNo(ho4&1)tWz8@(j`BJ2MSoVqcLeWFxJ;&O1ST50q69CW(LDgV7Ma* zbbunK)R+6icT=29`q+N-xVclZ;6I)r(mrE(t*~JbBO4f!JYeRMcN< zzCZL;mYr?lg^%MBnM2F?RxR_m%${=^9byAb3bkDiPK4i~y?ggA?dy%1bA(jiFWby{ z`#UB z9i6o=pl!3Lmrs=csq49clmmS&v((JIz}fG@L}Cra3IN4i~`B~?tq9^iWMdI=`2!r|Rg zt{Lh3Ej-h%%->J4Ccjywn&U{ek7T@NPD(N9?{JnDioW>TZM$_lpQTSJM{hgQt2Ro` zUx%lAwv<6={I3uPV!a|K<|VovsE+@5rvMjl+D+r%A5gR}qfc_>$j%k(*o8J>G;@Ml zOqVOCo~0D$RUL0CweDbFw8nA1R2yngnp&}ma^43})M0O8} z`5oUE+ne>Kh;n;~YbOG!j$QHYdzW-Y;DGZv$gnjE&o+Ez-!f7^^*0UanXc9@JEWXh zuEFE#Q+l%FQl+zQ#5kHP_+7|?g7n(6$Op?a>lTtiRc4~=bL-em3j3{5f;+n*Gl5k)we%Oo+5MiqU?~pHG(Q~kt{lvLv-bTg6<>Re z#9KpEdL;2E)r)p(zGD*j+mIoM5il=-iQz=tre*zpWS&~xSpDRDxRh5ixl3&nJ@#40 z3TLt9v^%c}c}5?Hv0^*k;j(dDh;7?fx7zLmKDjXmS9uV^%X%z5Y+*ijBepJXZ#qx@SP2BbV<~_?le-}!rq|y z)OPh$%WcDMd~m%i<8_jmd%o8aC+h>HnpLK_X=VcYQT|meMS3l*UbVw}mSWLYBfDS= zv_0A!kQCfnX*D-rcQ_^0=WfoUXp?hu+W?Wn9 z;D4ST8jdWKkNx!o$gjGMBSSs2JA(^=A+{nM_+dhg!WtRNgJ`E`cBSPNE2 zj#LRw4)deBQH_=71^yACZ8NO^@!z^*|G{}-(Nq=)8O09)+42`^9`$|Z-km%9`5Nz* zhwjbK)zjyY5ACl|P8i>Aoi!RMqIB8tOta}<)(1|3V$<|}&%*B57panK(MFDIa#k_P z?XR+q4{q7f3g^9jZy+QANb^Qf0lqis^M(C!mfFr#uaS*ubuHv zim=lo**W`I+hbVO}-7W+zhVByiopA~zMKD3mZgzPL4vFUts zk-{G4l9RtBnxuYep`SZ4>umGA6Ha;&i%S-2Q3hJ_EXcd)m61m#lRiY>6=H&-dH;1E zBYDZCizr`~#C%-R+c;X`L@#Vd!@S<5JtC zQg88iQ;XD_0*pZ%o)`CMLm|C6-EY)j#ei}s30=E&N~_ky%1`P?2eWkQFI3Bwlhb9q zG-ATT)QmA!x)%Dkqhn&l(?2UJm{vK()z7~!@8l+vb{KAderb6*r2?L%jcp8^Jv&B@ zwzvaa&|$Z1@bfBb13n`Pqlyo^6wqE%5Rw5E4gA2Z(#e`OHEt{gglRb8|-sQ#gaC@SEUhOc{T zJN!$&_z7|J@ubzG?JQt_==qOUWGE&5d%^fNiWFAM1 z;scCu3=nV}KcY$KtyL-Z@4G=#zM|D&y5s6 z$wop^(kYi?-e#TB`9LRhjJ`;JynJUst#cxX+1#J2;1~Wh8IHG8?s+Tl_Jc1hH26!# zuqG=3i~7+bl>Ojk*9S@|dJ8z{hF*x=k{=3-NdEa~B%r#;^S;QXJ~1i4(Xlwn}01KXFp;A2&;^ES*<(--3tZfPzrxnT+e7myTiri}sAm-@bj*1Kl{W%K$gQJDKy12S_zP zR^%ODq@X<*cwf?Rl6~c0GAz#DOo2+}FEAJf=KG)ntHWyOpzfj}OhPH-yZ^-AtSZz@ zFaFu9j~fv=KmV=z&oc+y|CCCCy~c8d43(er4Qz^!oem)MO8V0E{v0`QmDz7a{gpnx zfKN)k$te1SBk?a@@NZYgfQTvCsrkP&X#ajJOoi@EN1W+$lQ6po$GY_KU$8ao5kRWG z`qkFS%SA;?%VCR1qh1qDf0^`v9{(nd8Bi*o6927!FC>#eNVBE5%s%Nh4*?H}AEAh< z&I4ZFbAUf7$pKCgROpA~U%dYVPN3yacl}ma*tx_mX>f28Kro-NN8t2AdC91h!51p` zeg9B!4vqf5_00gI*90@fl1AX_E6_{;Iy=A|&RL8uL4=*E5(Z=qK{hVF8qj_r#E$Bw zUd|ifE-lCurg4>;#54;Qf#A?7TxqD2`8x9fkd0!r2Aaw zoQl_MOecQwZ^~OIKVmx<9Vz}o$Eyez@qY`bZ!0Fn1OQRq%K$8{LEs_&_IxAAf`d)L z(${dQ%b%}2X-){(7yIBIZXA}J)a5>SXsb9oh?8Pi33y4xaI)H$d&fA>HK=F(wgi;}ejlA(#P($PXe`{)o>~INZSt4tU~6V@I_HLj>Hh|#;=Uk&5EO@Nq8Wx9;8PQ1 z$CX*h2)7pyLO9`rg4hgTDSmdkZ>f`9`mCD|bU!c=qQNjf+Fpz~!e0x>oyEL=|9+=3 ze3cUaMhGnrq}>j-bIoV|cQU8{-XnzUMJhFCd>);Qc%ZB|iUOnrPH}Nnzj5U~V!Wtk zK$DvVBhHMi(a}d8IXv>big=AHoN7No((hscTTx{%rce!U6{XC#Q=tK{b&l)sJ%h}R z-864KAlty@KL5MtW+q7vKVETDpDh!Q{q=@nXef?KEehX6;mhuhcE2C#X^Eo7qpZgv zp`=3bWcRH_6!=!1hZBoUGXfAe3XEYLg0VH(G-{{}}0Oy4J$yluzI zE(!GlK|UP1tnEqWQpy+I?7QbbN(Y~oTQhncRp;+z4U zgYzTB?8i!TZPV}w`{SCW2V{QRB$>~TLA9Ro$&Wc&NvD*`GO znMTW{bMg(lC3v*k6;$G>&d&%*7B~b%xljJ(ImHNpxHrqfq4DP5;|9|O=OVOUnBeb; zYG(u|YCDRW3n%nW$_ji6VT$(eL;iCxX34FkZS`guF%j9;+N$x2j9wOV1;*My>NsAh zg+mm3^Mmxn?QkwBzslSiqS_<@C|}jRb=1n$5%8><`r|l_!LTD7|KXIyYHt(A!eG30 zMFWdZOmQt5$V~cqJzQ}q7kvE^=0_*#Hv7gAWHn_DCaPaNcR30BKQ;q)f(9Ig&yK8A6Kd!$^KigDda7I_EIGjO_XF$YND<@ZeTssmspyWE<-_Ys#wCDWV!W&?RwT6#Azl4dA zE|$?O_={ctwqri*vW`NFOwYF5nHJ~}2CEb8hd)uLkAPAHaz6(LQ4TGv=;z7v6w@F? z?YR(Mar{);=JE^vZbQaGCPW4KQNtWbXPwu38pcgICIYIt>+k3XNjh{ohYH}b3`W98 z76n0CZtd9IuB5J%J5A$4NL+ex*vX#*3c79G1!6A1A!IZp5f)njPN%a#nA8?w>E+au z21(6jI(V3VpgcKXA zgx7&GqP659kQXTo^1S0OZvl*O+9MbQENgk| z@g~YUqZ3Is*VPrhkWt}FXx8EIXTo=~{rxwqT(xQT?d6|FO4y4rRJtJy#U?ybS(=FP z>3f+`#EZk8Er&Ov5=lF#4nTOw@dg6jK)D%#ybgp;=JzLNuIkvaPWV^FLDkTqizP#58j09aoHdFe z4tV_o+EH?N#mDG+8}|<)0e`-=%_gQglhry_dmhR*5$D>dyvG-{?N03Y(v&f4rtPIK8nX(yxFUpxHh(?sdu2kVWb7PCcX6O||Y!a5!9a-NI>Y!Sg{if=t0r2WJJw}!tb^3V# zl5hGus)jaAnIK3zZRgV>%(8nh~oI$Rm{5AO>nf{rhw)@c$7c!|alR}d7OH6`jLQ*GvJK%6=q`yvQ(np{P zKG}G0C(}YkD2kbX#KLsM_}2pF=UZAg=OXb^__0^bX{G5LfNp8R7PNgAP`v$>=ETgL zMj!n=Gd-bt)xEWGA%v{VBZ}+NoPmD(+y`yUub*J9eKP=H@K{dL%RQIkC#sz!CkZ-4 z1Pbwwe)k_{J8d5$E98rANPCRh$_}bk?>q5qxL~GJTsY6wne=pm{k@ls%W~uCd;MBs zKC1Xzpxr9-guLNk#&qm9ys9Ig&=JS2(HP(hrH{#H%FZ0S2-AGWcjzu_!u&9}`|Hx~ zb;*g^fQ(7ne%l~Pd?*#x^K-b!-+7_>P=HU@ZKgImLq7V}KrH)|%5`nM8@g5oH2437qvTI_z^i_G|m*UISk4mizfs2YLx>j1z zH1++-5pyhuD#g{?0R=$zoNLMr>}h9vv!KXI;&D^R&ywS8K0O)6ax!87vmb!Z439m&3| zXV~8EL=6yd)yMI5YW{?E<+|r<>jBSb=1VzvS+v|*rCMLTSNaAX)@nyf=NU+1b1a#} z4i?tA-`R{}?#Y%FnHw0??gu=yV8Vt08W?lN(is5(@#WI*3VtZGF4UBPb!?^niVxxq z&ZCidNYZ`&^Um6cWn}Vk0O*So2rjhZPIGkPTXm|@3jZpP<%wU0Ve?{$CJxn05(wca zE;i!Zh{fs2I?orlU5Eh=(?4*x&nO76E!>$aOynDcyyQydiM!wJhV;S=kw4>nBeM$s`w^?>m|2S{KH$-G9`8 z9Ku_udys^{_`^)NYj5d-Uc}OPzIVIX?yHuoEQsn9sKGdc?67s3Iq$~P49XuP;BWd4r^!2im%P{EBHa-0OsPCdg`Nl!k;=M@7>y8+@ z+>Yj^y?bOzXOa+)7SkQFay^_e-&`>V-o62qVq?C_l=^lhUr)cO7wo=ud+T zV*uaTO^o!87sv}wQUB7&AbeplPDi0^>`ue66OZZf*wjDFN?#O;%ZI8&!s){&`MQV) z6yi4;kI`tXf2tsdItd{y@Q;JSNc9@oMjglX5&-D;dEZG!a952h%B7Jw$L1+J5iq83 z425pc6vH}`B)-%?$LH@#Z9dN7mH;S7Es5>v6t(3(D__tSV3oyNM@=7o^RgzfBUdi$y-7SKQaUbx)4t0{C*V}R9cb#7Pic~GxXWGh3BBnG~4QU z4~$EsWbEfZS3`3R3mc;~Es?+_^tb=^q5ZG51?>TP%`CCySGP+&$HfbsO#y;UOy)@iL{Ln z>*T~Mcx&q`K?4FGz`{4|!Ux=*4e=S!lzl>oIHBrLo#1L)*c8Tr7jg+&U5V#FJS8w$+e&fWM}*xgs%Z)Nmfdt5G1m~>}l@3 zyj|Gx;JzM`?3QWc#2zd=*A7){(EOv?6{V}g0;0rQDwiS(Rf)OQhVf#MDbcuY>bp>b zE0rqgGuR95$CHhxdHyA@yp-xR$P&_^L-+XrUgYyAZ={upXD=Ny^NO65lgZxdo~SOi zm0UBNazOsQlj&=ppv@_t6%o9U91_idIUC;<$hrNaoc~KREmQpd9C|HK+mKa%9^iC7 z3pm8@(XnG6QM!BgxA#5P3CzPTVXJvf)A*;#;Tpv$A$9hHL{5$_FJ^nv#|4X^Vz@8Q zT9D4M;&8m2KUnjz7bn+22#kQ^tykNB%k6rRKFc>?euXq-mdsJuoN$r(Rtl1^P_o~5 z+5)WnCpC?d=IW%@@#9?aSMqaf*f=n5;pFGXosTEy=VO@7nhSS6#y~WT(`pN&=GHx3 zF0wh3aECk0B99=SuMd|3u1EG*VpS))_|LkwBQ}J7_;8X*hCF8)O_b2du%_>Ohr0^n zlo1-dtim?S{^BD)@_toeCj#7?1^#>4+ur$CF^v45mVGM85~4oEGmNW@py3-Txh`Ru z%4d!_Hi0sg-7~TMAI#ei^2-+fAeCp_@%HVECmVPRYxrxmH>KV>uuDDv9QQE91)-11@aoQ0|8l+IpHQyL ze+s>Z47~Ob_x}vLCce8p5>GqpzJ4M%nVg@=ct!#JB%+eSSYRhpOP~JI7{6m#RYEBh zcc{dg5qweO_rWH?K&a_EA50pletx4famDzBwIH!aWc#(#0hHWbJ3mQIynnjXe4Jj} zUYBuJSEnV6pO|fJFs)iskvF65kPG{a)7Rp}r6b!DkN8E1%7^Bj?TcMDmfVm|TfIF- zAP9Ad2EiD(Ro(}?XUyM0U2x!U?@)IdoWq=CT=N}P4}*QITQB#N1k?zUT4aWt|LjT) zW;I}q{>QP!Mnfz!?xsP1xWuE}Tr7PJY`Te46)q@t8c&^-cKGAFG+mnoDvV2yU>qvx z536IhD$cCVkOjwTeCdm9&*>{tI$yf{grm87a!?1Zj)rO zZ2zj0r$J)g zjG#xPM>eR=jZ1H|1H4{A&ts?~F3_;PJAbavL(!~eK3o&|LB^Xm5-ank32i(wN~ z&d;7?VbXE&%TV3fQLwLz7NPZ%4_)}v8Tr7uD-qXY(WB?P#yCOy=}iw~bl~y+FUVAL zV+&W&HY}_p1@Np*RNVJkpWp&58M?J?l>q<}avZU&Jw=21aC@#(DjZw^rG(D{WcADW zrL?kZvHgc24y6z;)bU04Ycv=8SD79b5R539q+fPq#3K|*0kJ;9>*tsy{eesCCGu>6 zyum_q8CEjH0iN;uD^Ktt$bab0^S+>iEuLh|Tv90jIO$8cs|glARR3gH%$_b?&Uo4< zrR!ECn7ObItJSYIuM0>L<|83120g(s01@LAfAV9*pTBriE| zV$WBlmWhtNLcBZ&3-7(o8k2HnwC+ezz7bGR^jYjXT)SWB1~c|VUmp83(k?FVMaGRQ zLcvfZsQLbgauI>6dfy+_WmRTb-A2sszK4N`cbIyGR&HCEFM6&I_Mta;v@&ibXyzKc zTQ&+md)HTTqr$(PVr|?vkww%it>GU48c;}4)89Yd8+W2Fb|8)SX{F5hQLaYo(xVTDp9~=6lNwKnM~`Uo z({PE!ViPXO%D#8;epV6%>QmRkA?g8uIS@9!7gbG5R5hu3PG3smWClqL4!q`k_Kc6D z+H=E;A7oDtB^TMm6))(LTzkeA94v#+SJyixr@n1tIk%Ig~F$qT4=zz*oJKKo<$5ru!y8`K?9l5Bzpfr*iK-oG zFQ9ILuPFA2$y0AK9-JM&!qw0+hoBqHAL)^e+pQNEb9y!Ve;@Y25C`_+o{N)^Baqu?GYx)StI48{D~IU1DMMTujQ(^fzp}Ybf3hs~GeF-Celq5m zokvwWc@TizvwrrBjQsEJq0CF((#bEfm4aawAw?M=iCqt=pC=xj&4I1h?+bp>2{K>^ z*iZj#jH$aOc5W0;w+3-?d$d)s%|o!{x;fiMmvdSsK@o4uHQ} zJYQBKYZE$NYTfb2*vwR*CVvUlUt-1MU!rr{(u8T!GwGptF=Xh=Q$p%|`5zR6%ZzMy zoP;k#;9)5i+@^5H$s>t0zKA;`BCe@!l2^QLe~k9bl^B8mW3Pn`@tZbrr`B; z2mE^#ABtQ*s`NLSn|3@+@yZ0fvc9wCivE>iiJ1~}?AqqgLAK0%%~IBSrMI!A5qD#kyOQ+8M2yv#hfr@oOrlWc>!!Y7YK{ z6EMWuo&?|0jDUrN3kg11(Tuz%#~!CybYNr_RFfZXl0Uk+H=YyJ;0O9MmQr4;@9h<# z>UxngE`*3QRe?6zHiVTUWO(LKj)Vb<(|`E*S6D(G%6+$w63N0@BE>CN*cN)6Z zvLj(D8I^TZfPJ^E?uz0?F7r@5ZzZG}ER0#NhM%WDD(l z{%qkUb^Aos-gV9zkuf}3LXjRT=z+?{&z^ipsQ+_g4*jjI2o}wMmSVVFR9pV}fW4b5 zvtf5r6ljgI1RXqJ5HzzkZSFVROP?L=kl7XO*@0!gEd&8oF8bPlp57FyP#?YrI@H<^ z5tN`D>p9ca*-+a|M&h3rUTtGg38^Z(r-Eqy`ur#pK8dvwUjFuCfqn4;Xwk7jq!g

Z!2b=2Aj40`qKN7zdqPt+P zsTomo(CH((*)Fah3aG7@;SgqNXpx;dlcRgK;q8IzEa6a5W4 zUHMY=5&40NGz5mPj}CVbH>pc==v&Qzg>yQX6s&OHzUtP}!mjCZ5qA6nm)$fC+ zS8+wp6Oa{>GJjL@AO}^Z}=Va^RyS}GFTiqf?@20X>T5wi)FJw71$>{^nwA|LnO8)1qhG=$5*TjzrFYv zSk*x2vc>N&i039DY=t7-;r8K08@tEKKq~;g!so9UPR&Ue%P0Kg59fG7T4k@h)eB}# zM$b4U({)#V`NNSz>d{NTOysACyj&bJT& z7|rm%$Yg%H|8x|CPzN=ttbaLpVq{jKfRL@bgywG9BXV4hqe4L?us1xuD#CR}?we}}pUsy@^?eq0-YrmtHFW-A@nE3IBMxe+yII=_Mt+IluCK6_ z>}~!uMr_D91#E6yhf6_2PZd-ZEH9mbo%q!;>gx_2*X7$bDN6Uoaj z4Nz?|_69?l*)6K=UEG_R`tAdKKkr*v#)J7NR=MSdf(vVj%`Lcy#5Yh{e$%_PkO(Wl zlmo$AFHzFd%eWH#v(%*Oeu4!gL!;k{r$ZSF7&P#viDL;=Nk~>osm~qzwb`W;xTMeK zU2=~eS$XOMpZQz3X#C1<;8Vg1Yj#PhE;BR}K$+VjTSYig>s^Rv`46p?vmUxC489 zqznd#>bJ$1f$x49d{JQV^8=LN?c+F|d$)K+R^oJ4Pk@~7Xrk|3!GNIo2bdPK$uj~+ zet7_{#Tv2T{g&~r`KkJGwbVdE}SUHN8 z-CxbhQhbJ9@uP&WhYQ@sr5?%qIX*2i-fJ{#sTTSm4VdYs6a$G(G}!<+*sZ?Eo%L2P z3@&>f{(LBB_W%?Osyg>w_a{)Ci*9G4Xkf|6AZTLUIBLnRBfnLRb#y(Wklgp*AWE}8 zxx8uk;g4bzA&p(f2w26cRW!XQ?D7l&F8Z-B__^f!UYe0BXsQ|w7c`&`u%$4-{+jP z5;CLxZatB%eIdFoV-_Hi6bVz%fmP|4(;u(4K@*tBY#G#tHglZ@UK#phbS{cbZ#h)X zj4GWc*(6Y-uoTq5pmT{DFkXRo!I&=0mg7&~@&F!_<4<2!UU;zcAv~=kfSu|g4xP{s z#ssqi2uQw4KiE3R8Y{>1elv zvNmo1()pd%LhZ65J0xG4Ub5Pn;*KP(-4aZ#EZq)U($g8BH!{mu46ee>Q49L4950~T zr&~B*+qa?==!GmMw2xN4G@aOXWMBp~(jZH2G`?p0SNw1WAy8CRj-KjhtSC5{ON2~G zO%fCe3*`QLGO|u*!Sv~e817^Q;Cj8xvG-<40`^buE)5>C9lIr5+|%)0fY;=BEOF9D z+n#W`esf_WJpqW_ZQZJMkG+h#&+P-=;Zn7wY#4y8h@MZ@vv78z*D)smu}7Z6EN&jK7%*RRViUabqt z!a6~XODZylps5q^OlC%6kn+T)&Gv~3l`uYmmc%_1-<(4IHVSdjPbneab?)BSGL@|v z4WRDZD*({Y$0=D(4wF5uwaI-eN|U$z|8$@;gl6|AM^prxRz>Pix>#4Om;FyH^oS;; zbwq7CIjd~7EFtR%1Ur7qO{2^5V3enk&ae~kilcT?!#T0Wm3G0c_=`=>J@d!eiNnh1_ z8^&y}QMFDd5tK^yUA2q2BM`HQ>OJ{sKh+CX1-ZbTTsMX`xuR8Gwso**b1f zuUU%$&_3(OA?EY1|A|bO?n*2+EeDr7633$+g70c+C@YG8$u1N5 zE>)cNG~h7TwUQ|7Lim_EXtX49?~BEO?oub{9>33e2l3BFDV#+!wl#1fKXegqXjOz< z`#x+djUNdc_gVv58J1~%N`do;OiKo+i4|R{AY{xQCBOF){;D%MS;$ge%4??}O(f*9 zcE5bMC6i2RrS+U9`A)|jYPDDPAT{yLXxuwu-fLWmS0~`tP7SX5IG;9>12JX<&fDAf z)hCxhYV8QpykA*KJfJV9fP7hpo_WD_nJxuhoBY{ypUHQs@t8A?l*A805{p3J0d%cz z3xK;#6PB*(!ZHn*&|~fEzOTL3a`xkNIMu&*ue6Q{FVt~-w|z?JR8yP{q!>kShx;W0 zRQTrrY5zRiiK~Clk#xK+-kN#i5Qe8I?+)7OgNc%K%#ZspUe zBf`O-6M}<-pf>vm2CI%Z1rHonvFbhRghYdY9sYq+ny9X#Z` zaMLqwj0~S7jd9fB2zldVf{Gb7eVY4GH#=0X&JcceXXnDWjnUKQa^^hTtQ@!)C$J&p zQm6O;x$f=_36#Lvn0q$)71Vk`496^(c+;3=5>e^mNe~2!H33#-drrrfF$tHGI%Ph< z43+IKs}qClCmu0s3A<|HkXRjbE*RPLz3(1(m`CO(96L(2& z!cY+uH@sg(U)-K@J1_;vyl~H=my!;tIaE82SpufY%;H+#%_fHs;Co%4FJtAns`0pb z$zmtnJAX8*Tq-k=4~g~Ei%SJfRe!x*V{|vv$uR_~5fIwUXwz_H0oXFB%Z9d`L*;B^ za4H_mL^@*&rJyqVUgR9dfNeO0N}tTAWM2OH^XD6{<2zZFEW9S=1&DeWhtm+~THjDh zvUei2D}qa)+=>FT4Ob5Tp$wEaHm>tTEw&cs>kPBCf90<+e?9YWqYl!;4su_(x!XO) ze!lGWHsPSMQs+w%Y|=>7Jfd{y2pKF%5Qn1yRn9S?f4;50bY5#gS3rf+mihAwm>Xf_ z4H<4zt#DdE>ZF6;R{IhTNHW|!MV!T863kh0sp)I#Lg9P`QVfyGb>FZsV2=KS)_R_b zv^Cntw9c!T6q1+bNlMQ87)nH**ZOQsblVdWSl;#x z(&>qLn(jh4(dZPb$FRH<_u*IRTl&8Tf%>gLm0;VQ7&?JT8`2BgyN@sZ1%nmPv|lsG z&HefpTgf`b0f3K`#2n`@$&``+z^Tu({-(fRSeZOPjvcxPhn|DK$b(@X0A5LF-WJ}U p6yk%&NBsZa`~UP>F>-8T?cO}BEJAs of October 1st, the forecast gives **Donald Trump a 93% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n

\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json index 617fff21..9b3da081 100644 --- a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 86% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 86% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json index de80e3ce..944fb902 100644 --- a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska/execute-results/html.json b/_freeze/2024-potus/Nebraska/execute-results/html.json index 3d255a3e..985b5cf7 100644 --- a/_freeze/2024-potus/Nebraska/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nevada/execute-results/html.json b/_freeze/2024-potus/Nevada/execute-results/html.json index 94622859..8101a31f 100644 --- a/_freeze/2024-potus/Nevada/execute-results/html.json +++ b/_freeze/2024-potus/Nevada/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 55% chance of beating Donald Trump** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 53% chance of beating Donald Trump** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Hampshire/execute-results/html.json b/_freeze/2024-potus/New Hampshire/execute-results/html.json index cbe89721..d382adb9 100644 --- a/_freeze/2024-potus/New Hampshire/execute-results/html.json +++ b/_freeze/2024-potus/New Hampshire/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 84% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 84% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Jersey/execute-results/html.json b/_freeze/2024-potus/New Jersey/execute-results/html.json index ce68823a..50c7a107 100644 --- a/_freeze/2024-potus/New Jersey/execute-results/html.json +++ b/_freeze/2024-potus/New Jersey/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 97% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Mexico/execute-results/html.json b/_freeze/2024-potus/New Mexico/execute-results/html.json index 91edc690..9d3e7dd8 100644 --- a/_freeze/2024-potus/New Mexico/execute-results/html.json +++ b/_freeze/2024-potus/New Mexico/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 89% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 90% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New York/execute-results/html.json b/_freeze/2024-potus/New York/execute-results/html.json index 7772fd3a..05235ad7 100644 --- a/_freeze/2024-potus/New York/execute-results/html.json +++ b/_freeze/2024-potus/New York/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Carolina/execute-results/html.json b/_freeze/2024-potus/North Carolina/execute-results/html.json index 16d29ecc..efa40290 100644 --- a/_freeze/2024-potus/North Carolina/execute-results/html.json +++ b/_freeze/2024-potus/North Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 62% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 62% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Dakota/execute-results/html.json b/_freeze/2024-potus/North Dakota/execute-results/html.json index 0c617b43..3850728a 100644 --- a/_freeze/2024-potus/North Dakota/execute-results/html.json +++ b/_freeze/2024-potus/North Dakota/execute-results/html.json @@ -2,14 +2,14 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in North Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], "includes": { "include-in-header": [ - "\n\n\n\n\n\n\n\n\n" + "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" ] }, "engineDependencies": {}, diff --git a/_freeze/2024-potus/Ohio/execute-results/html.json b/_freeze/2024-potus/Ohio/execute-results/html.json index d80b477f..8e904717 100644 --- a/_freeze/2024-potus/Ohio/execute-results/html.json +++ b/_freeze/2024-potus/Ohio/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oklahoma/execute-results/html.json b/_freeze/2024-potus/Oklahoma/execute-results/html.json index 647d15cd..f0dd33d3 100644 --- a/_freeze/2024-potus/Oklahoma/execute-results/html.json +++ b/_freeze/2024-potus/Oklahoma/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oregon/execute-results/html.json b/_freeze/2024-potus/Oregon/execute-results/html.json index 122f6447..6f0c355e 100644 --- a/_freeze/2024-potus/Oregon/execute-results/html.json +++ b/_freeze/2024-potus/Oregon/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 94% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 94% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Pennsylvania/execute-results/html.json b/_freeze/2024-potus/Pennsylvania/execute-results/html.json index 5583377d..a569a0a0 100644 --- a/_freeze/2024-potus/Pennsylvania/execute-results/html.json +++ b/_freeze/2024-potus/Pennsylvania/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 52% chance of beating Donald Trump** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 51% chance of beating Donald Trump** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Rhode Island/execute-results/html.json b/_freeze/2024-potus/Rhode Island/execute-results/html.json index 26b140a7..3cb2774c 100644 --- a/_freeze/2024-potus/Rhode Island/execute-results/html.json +++ b/_freeze/2024-potus/Rhode Island/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Carolina/execute-results/html.json b/_freeze/2024-potus/South Carolina/execute-results/html.json index 454c11ed..6f74f2ee 100644 --- a/_freeze/2024-potus/South Carolina/execute-results/html.json +++ b/_freeze/2024-potus/South Carolina/execute-results/html.json @@ -2,14 +2,14 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 90% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Carolina. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], "includes": { "include-in-header": [ - "\n\n\n\n\n\n\n\n\n" + "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" ] }, "engineDependencies": {}, diff --git a/_freeze/2024-potus/South Dakota/execute-results/html.json b/_freeze/2024-potus/South Dakota/execute-results/html.json index b3b2b999..26a0bbdb 100644 --- a/_freeze/2024-potus/South Dakota/execute-results/html.json +++ b/_freeze/2024-potus/South Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Tennessee/execute-results/html.json b/_freeze/2024-potus/Tennessee/execute-results/html.json index 9f01ced0..d1d2a103 100644 --- a/_freeze/2024-potus/Tennessee/execute-results/html.json +++ b/_freeze/2024-potus/Tennessee/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Tennessee. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Tennessee. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Texas/execute-results/html.json b/_freeze/2024-potus/Texas/execute-results/html.json index af94df34..4bff20c6 100644 --- a/_freeze/2024-potus/Texas/execute-results/html.json +++ b/_freeze/2024-potus/Texas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a 89% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a 90% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Utah/execute-results/html.json b/_freeze/2024-potus/Utah/execute-results/html.json index c4574ba0..838a2274 100644 --- a/_freeze/2024-potus/Utah/execute-results/html.json +++ b/_freeze/2024-potus/Utah/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Vermont/execute-results/html.json b/_freeze/2024-potus/Vermont/execute-results/html.json index 61e659bf..11d47628 100644 --- a/_freeze/2024-potus/Vermont/execute-results/html.json +++ b/_freeze/2024-potus/Vermont/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Virginia/execute-results/html.json b/_freeze/2024-potus/Virginia/execute-results/html.json index bef3628d..295aac20 100644 --- a/_freeze/2024-potus/Virginia/execute-results/html.json +++ b/_freeze/2024-potus/Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 87% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 87% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Washington/execute-results/html.json b/_freeze/2024-potus/Washington/execute-results/html.json index 18b12c5c..f3bdff6b 100644 --- a/_freeze/2024-potus/Washington/execute-results/html.json +++ b/_freeze/2024-potus/Washington/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/West Virginia/execute-results/html.json b/_freeze/2024-potus/West Virginia/execute-results/html.json index 75e6929a..de56c1d9 100644 --- a/_freeze/2024-potus/West Virginia/execute-results/html.json +++ b/_freeze/2024-potus/West Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wisconsin/execute-results/html.json b/_freeze/2024-potus/Wisconsin/execute-results/html.json index f426fab7..cc8f50e5 100644 --- a/_freeze/2024-potus/Wisconsin/execute-results/html.json +++ b/_freeze/2024-potus/Wisconsin/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Kamala Harris a 60% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Kamala Harris a 59% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wyoming/execute-results/html.json b/_freeze/2024-potus/Wyoming/execute-results/html.json index 5fdc64a9..32db9fd4 100644 --- a/_freeze/2024-potus/Wyoming/execute-results/html.json +++ b/_freeze/2024-potus/Wyoming/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Iowa](Iowa.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 2nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Pennsylvania](Pennsylvania.qmd)
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Florida](Florida.qmd)
[Minnesota](Minnesota.qmd)
[New Hampshire](New Hampshire.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua"