From accce610d75ff966d86a8074ca30faa239683a47 Mon Sep 17 00:00:00 2001 From: markjrieke Date: Sat, 17 Aug 2024 08:14:06 -0500 Subject: [PATCH] deploy 8/17 --- .../Alabama/execute-results/html.json | 2 +- .../Alaska/execute-results/html.json | 2 +- .../Arizona/execute-results/html.json | 2 +- .../Arkansas/execute-results/html.json | 2 +- .../California/execute-results/html.json | 2 +- .../Colorado/execute-results/html.json | 2 +- .../Connecticut/execute-results/html.json | 2 +- .../Delaware/execute-results/html.json | 2 +- .../execute-results/html.json | 2 +- .../Florida/execute-results/html.json | 2 +- .../Georgia/execute-results/html.json | 2 +- .../Hawaii/execute-results/html.json | 2 +- .../Idaho/execute-results/html.json | 2 +- .../Illinois/execute-results/html.json | 2 +- .../Indiana/execute-results/html.json | 2 +- .../2024-potus/Iowa/execute-results/html.json | 2 +- .../Kansas/execute-results/html.json | 2 +- .../Kentucky/execute-results/html.json | 2 +- .../Louisiana/execute-results/html.json | 2 +- .../Maine CD-1/execute-results/html.json | 2 +- .../Maine CD-2/execute-results/html.json | 2 +- .../Maine/execute-results/html.json | 2 +- .../Maryland/execute-results/html.json | 2 +- .../Massachusetts/execute-results/html.json | 2 +- .../Michigan/execute-results/html.json | 2 +- .../Minnesota/execute-results/html.json | 2 +- .../Mississippi/execute-results/html.json | 2 +- .../Missouri/execute-results/html.json | 2 +- .../Montana/execute-results/html.json | 2 +- .../National/execute-results/html.json | 2 +- .../figure-html/plot-conditionals-1.png | Bin 256178 -> 256892 bytes .../Nebraska CD-1/execute-results/html.json | 2 +- .../Nebraska CD-2/execute-results/html.json | 2 +- .../Nebraska CD-3/execute-results/html.json | 2 +- .../Nebraska/execute-results/html.json | 2 +- .../Nevada/execute-results/html.json | 2 +- .../New Hampshire/execute-results/html.json | 2 +- .../New Jersey/execute-results/html.json | 2 +- .../New Mexico/execute-results/html.json | 2 +- .../New York/execute-results/html.json | 2 +- .../North Carolina/execute-results/html.json | 2 +- .../North Dakota/execute-results/html.json | 2 +- .../2024-potus/Ohio/execute-results/html.json | 2 +- .../Oklahoma/execute-results/html.json | 2 +- .../Oregon/execute-results/html.json | 2 +- .../Pennsylvania/execute-results/html.json | 2 +- .../Rhode Island/execute-results/html.json | 2 +- .../South Carolina/execute-results/html.json | 2 +- .../South Dakota/execute-results/html.json | 2 +- .../Tennessee/execute-results/html.json | 2 +- .../Texas/execute-results/html.json | 2 +- .../2024-potus/Utah/execute-results/html.json | 2 +- .../Vermont/execute-results/html.json | 2 +- .../Virginia/execute-results/html.json | 2 +- .../Washington/execute-results/html.json | 2 +- .../West Virginia/execute-results/html.json | 2 +- .../Wisconsin/execute-results/html.json | 2 +- .../Wyoming/execute-results/html.json | 2 +- 58 files changed, 57 insertions(+), 57 deletions(-) diff --git a/_freeze/2024-potus/Alabama/execute-results/html.json b/_freeze/2024-potus/Alabama/execute-results/html.json index bc0c58d2..d82d7f9f 100644 --- a/_freeze/2024-potus/Alabama/execute-results/html.json +++ b/_freeze/2024-potus/Alabama/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Alaska/execute-results/html.json b/_freeze/2024-potus/Alaska/execute-results/html.json index 5487337e..c2511a54 100644 --- a/_freeze/2024-potus/Alaska/execute-results/html.json +++ b/_freeze/2024-potus/Alaska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alaska. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alaska. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arizona/execute-results/html.json b/_freeze/2024-potus/Arizona/execute-results/html.json index 6f41d937..42171c9e 100644 --- a/_freeze/2024-potus/Arizona/execute-results/html.json +++ b/_freeze/2024-potus/Arizona/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arkansas/execute-results/html.json b/_freeze/2024-potus/Arkansas/execute-results/html.json index 691648d2..85b22ee5 100644 --- a/_freeze/2024-potus/Arkansas/execute-results/html.json +++ b/_freeze/2024-potus/Arkansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Arkansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Arkansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/California/execute-results/html.json b/_freeze/2024-potus/California/execute-results/html.json index 0aafd19b..5d093bbd 100644 --- a/_freeze/2024-potus/California/execute-results/html.json +++ b/_freeze/2024-potus/California/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Colorado/execute-results/html.json b/_freeze/2024-potus/Colorado/execute-results/html.json index e1bcf7ec..d376c2c1 100644 --- a/_freeze/2024-potus/Colorado/execute-results/html.json +++ b/_freeze/2024-potus/Colorado/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Colorado. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Colorado. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Connecticut/execute-results/html.json b/_freeze/2024-potus/Connecticut/execute-results/html.json index 851fa8bc..2167167b 100644 --- a/_freeze/2024-potus/Connecticut/execute-results/html.json +++ b/_freeze/2024-potus/Connecticut/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Connecticut. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Connecticut. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Delaware/execute-results/html.json b/_freeze/2024-potus/Delaware/execute-results/html.json index c7f1bc03..bc857c44 100644 --- a/_freeze/2024-potus/Delaware/execute-results/html.json +++ b/_freeze/2024-potus/Delaware/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Delaware. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Delaware. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/District of Columbia/execute-results/html.json b/_freeze/2024-potus/District of Columbia/execute-results/html.json index aebaaa70..413359a7 100644 --- a/_freeze/2024-potus/District of Columbia/execute-results/html.json +++ b/_freeze/2024-potus/District of Columbia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Florida/execute-results/html.json b/_freeze/2024-potus/Florida/execute-results/html.json index 28fec14a..89032272 100644 --- a/_freeze/2024-potus/Florida/execute-results/html.json +++ b/_freeze/2024-potus/Florida/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Georgia/execute-results/html.json b/_freeze/2024-potus/Georgia/execute-results/html.json index 2030246d..25661d86 100644 --- a/_freeze/2024-potus/Georgia/execute-results/html.json +++ b/_freeze/2024-potus/Georgia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Hawaii/execute-results/html.json b/_freeze/2024-potus/Hawaii/execute-results/html.json index bdddced5..0f1684ff 100644 --- a/_freeze/2024-potus/Hawaii/execute-results/html.json +++ b/_freeze/2024-potus/Hawaii/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Idaho/execute-results/html.json b/_freeze/2024-potus/Idaho/execute-results/html.json index 3d7d22ef..9fdff1fc 100644 --- a/_freeze/2024-potus/Idaho/execute-results/html.json +++ b/_freeze/2024-potus/Idaho/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Illinois/execute-results/html.json b/_freeze/2024-potus/Illinois/execute-results/html.json index 19af10e8..60637eeb 100644 --- a/_freeze/2024-potus/Illinois/execute-results/html.json +++ b/_freeze/2024-potus/Illinois/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Indiana/execute-results/html.json b/_freeze/2024-potus/Indiana/execute-results/html.json index 078a27da..6fd4c1db 100644 --- a/_freeze/2024-potus/Indiana/execute-results/html.json +++ b/_freeze/2024-potus/Indiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Indiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Indiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Iowa/execute-results/html.json b/_freeze/2024-potus/Iowa/execute-results/html.json index b2605e37..e21a4085 100644 --- a/_freeze/2024-potus/Iowa/execute-results/html.json +++ b/_freeze/2024-potus/Iowa/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Iowa. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Iowa. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kansas/execute-results/html.json b/_freeze/2024-potus/Kansas/execute-results/html.json index aa216960..23566372 100644 --- a/_freeze/2024-potus/Kansas/execute-results/html.json +++ b/_freeze/2024-potus/Kansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kentucky/execute-results/html.json b/_freeze/2024-potus/Kentucky/execute-results/html.json index 8ea15e17..53911e95 100644 --- a/_freeze/2024-potus/Kentucky/execute-results/html.json +++ b/_freeze/2024-potus/Kentucky/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Louisiana/execute-results/html.json b/_freeze/2024-potus/Louisiana/execute-results/html.json index b86718a4..52327b6b 100644 --- a/_freeze/2024-potus/Louisiana/execute-results/html.json +++ b/_freeze/2024-potus/Louisiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-1/execute-results/html.json b/_freeze/2024-potus/Maine CD-1/execute-results/html.json index 74d38444..dbdd2a68 100644 --- a/_freeze/2024-potus/Maine CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-2/execute-results/html.json b/_freeze/2024-potus/Maine CD-2/execute-results/html.json index b2e91d24..392888f4 100644 --- a/_freeze/2024-potus/Maine CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine/execute-results/html.json b/_freeze/2024-potus/Maine/execute-results/html.json index 2b8e0449..2bdd3acc 100644 --- a/_freeze/2024-potus/Maine/execute-results/html.json +++ b/_freeze/2024-potus/Maine/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maryland/execute-results/html.json b/_freeze/2024-potus/Maryland/execute-results/html.json index 9f48456d..742359d7 100644 --- a/_freeze/2024-potus/Maryland/execute-results/html.json +++ b/_freeze/2024-potus/Maryland/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Maryland. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Maryland. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Massachusetts/execute-results/html.json b/_freeze/2024-potus/Massachusetts/execute-results/html.json index 049aab51..059de9cb 100644 --- a/_freeze/2024-potus/Massachusetts/execute-results/html.json +++ b/_freeze/2024-potus/Massachusetts/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Massachusetts. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Massachusetts. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Michigan/execute-results/html.json b/_freeze/2024-potus/Michigan/execute-results/html.json index 9502b021..ead95454 100644 --- a/_freeze/2024-potus/Michigan/execute-results/html.json +++ b/_freeze/2024-potus/Michigan/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Minnesota/execute-results/html.json b/_freeze/2024-potus/Minnesota/execute-results/html.json index 3234a701..4c3d402b 100644 --- a/_freeze/2024-potus/Minnesota/execute-results/html.json +++ b/_freeze/2024-potus/Minnesota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Mississippi/execute-results/html.json b/_freeze/2024-potus/Mississippi/execute-results/html.json index 90120b67..3a30a051 100644 --- a/_freeze/2024-potus/Mississippi/execute-results/html.json +++ b/_freeze/2024-potus/Mississippi/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Missouri/execute-results/html.json b/_freeze/2024-potus/Missouri/execute-results/html.json index 5eb2d91d..73657277 100644 --- a/_freeze/2024-potus/Missouri/execute-results/html.json +++ b/_freeze/2024-potus/Missouri/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Missouri. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Missouri. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Montana/execute-results/html.json b/_freeze/2024-potus/Montana/execute-results/html.json index 0695b395..b229a3c0 100644 --- a/_freeze/2024-potus/Montana/execute-results/html.json +++ b/_freeze/2024-potus/Montana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/National/execute-results/html.json b/_freeze/2024-potus/National/execute-results/html.json index 4904704d..1f813dab 100644 --- a/_freeze/2024-potus/National/execute-results/html.json +++ b/_freeze/2024-potus/National/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "7954565330d8d2e3cfd7405c9090876a", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of August 16th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** the presidency.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **44%** chance of being elected America's next president.\nShe's projected to win between **130** and **422** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **56%** chance of re-taking the white house.\nHe's projected to win between **116** and **408** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of August 17th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** the presidency.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **41%** chance of being elected America's next president.\nShe's projected to win between **125** and **419** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **58%** chance of re-taking the white house.\nHe's projected to win between **119** and **413** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", "supporting": [ "National_files" ], diff --git a/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png b/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png index 391ffa55bf85ae7610c8d5faa30fe3415b9f39e7..836396457834f3ef21bcc62c3f4a6892dc0f6849 100644 GIT binary patch delta 215094 zcmeFY^AsO3|_PS)kP~b>>mC zccDf?{w;iHK0zcoea6T9Ns2cgC+Yav_37x&ZW0x$KU0j{YulSy1KXQFtzr=j^6k!;Xn9F^Gug@Xc8hg84?S{)akUu+A3X)^KmUv=3t;YpQ>o<(sm!XEOcrkD}7vD$SAC~EtCB|FP+C{9# zGT<$Ml73Ml=&Gwk^a$HQv)og{s_H1|q9V1n^_tCI!12gq+fK^sJb#oMl;I-xjNT<# z)veNz4LJY9bu=64ibX)enQX~>vj?k^vP?w!0q(|?+=^>9ZDh&K!CVlDZjzMzMT=2` z47;Zqu{2)}z(PJDJ;AJ#kx)2ch}Epqxsa&jGm(^)<#_RYxcCKO>_tO!tYYZK)T&L8 zj^i?rqIk9`!y2KUR5D2zCVKcxAu3V-P5nmlYaNOoO+T$>y_dYy2;YfGZvJG*0fQQ( zOM2lMVr5bX4M|@O%G6Xx-<6R-SC7=#DmTf1wY<$T#nun5o5PA}$O)fKIX_seg^cZB z22kW%VY(gdvb!CPM?lIRhDT6Mz>6_OZ8rkP$XMFmP2upinej8Sy?Ss#g2MM$L_)aB zcaI9qytX?$4OTZLru<{meCwmQjTQRMt5A`UR)2E5kpSP!Ob>IyuxVQwa&Igf8jH0G zP5I(7RhaB(G+Crb9b23b`NIh2J@4dx%4)LtX7$LU4@#3 zKFjkE)o3f|U7W<`29(xgRA%pl?~M5z=@Sg={NAiCz;MmYYB&UKFIo)9Uagn(2iXsm zPd{R!zI`$qGvcfPQ z!~H!{NF~D5JOW?_kN(cLC!wy1J6^A?Ci6Y>ZavCB?o2yqsWdWb3>;)iKU%ArXojT< z^6RDvh{tv+U}G}yG4EH?J9RbjleE=fjUMy1h)VRtH%#2j@NA2T$XXFVqT?t|rK=JX zdVa*Idh0=%X)w)c!!s07&7YWY| zFHWjjn`eZ1R!-(h*osX|MAj+%8UH%IX=cWKTl;bAWB=JU>{Dk%MJ=@q)!RSD$@k-x zA{XHs#+3YJg9>I@Q2bHgy37Y1$pfR!#$UM?8=k?Alu#Jwt-l-X-b%IwUNHBnS- zvaMO2x#n}5R5a)ZczyV9r9KQXReu5&u!1Z`Y%_nvos<1z>kV^&KTUPH!n7z70Vh0T z3vlZdF`R(h{63pVFX-ltRL)a4$TD=ZEG*pBxPN|NA*XaC&6PF!#>Z`YvGIAi-lMj& zRf>jAg;*H)zNNXe??(zG+Fwv4Z(jDC>e{>visY$ykRDkwpyCzP8@GkMF; z$b<@?=!PO*`189!d}3w21$CMbMl$>yMBBS&fzEwl9@HfLZf#95Sc2-E6_wXndTZnE zV3d(I37nAs!Xtm;x`KU`t-4>vYs}A$0HFI029y*J4J+`c;PzAojnbp`<7Nxz_`esL zZd#7KnAB@pfx*$0i*NfxH;iM;QS3$*&D$DDpls0)`$iyn<8|#VF$pEZkj9d_LxSB@(XbeFg;E=Q~A}31is&6WUd;$9c#-rS0}j*vZ|dC3Ujpd_@Q? z=R`IH{1)KaK^DsDz@5idqFdiQteM0e6Jo;hI#}V_su$dYkStw!B;e;T zpI9)J467>Ybz$yhGFBgP?vv23vxfD!scP8 z5LwD&sx#xwDX7Hfsfv}US{Zw(?K(ZK4{dc8BAbn%XN`L1V7tmuW-Irpn(^}*m-I%q z*>w)|bq8Ncz-+3L(Ur$J4x@0qO&1rY6S{1r8@N{cb!A_ zdNRnOU)~l4!C>dqZvVpLHe=lFyoRlWyUd@4==_zdToYXXMLgps5ySRbnm%UQn{X+k zwWt21Y6j!1X8IwFnli(r1+)QpAUbJ1e@`;<44EzhyElm5{W*+|fGHbJ5Rc1Q~iSS(aHh=MKDSAbPtqiuGu_D^Q{& zlRw{5%NndU5iD&;RbdHmEDsKPLK0_e*b%CpV8xd9;8HKn`qsbaoC`GTSg>OKO34yj z2X!Jm0#`{G(NRQ2VOV-Z{*ee$e_FM3tIXDMZqiZDrs?6tU)-KcAEAU#pw}sEJl5%7 z9c&!>ec|*q3zUFiS!C9u==crCsGFtI`&9K5|C%M#fc(3ZL zeHH*$Hq5Mw&c35ySZKHytm$_Are_WACaK88XqJSgk8HGH8_BdhOiKgi4u8Td(B{k3 zB?t_%E@7Ltt(E`~m0ZmQ4Ao0wSqcp+)+z=_o4l5(OntmEWr}>wgM`c_flf!6&$9H$ zB7^76K%M9I4qZ^T=+&^5-{;n-^s)Ku#0@;c3# zyVFyE=gN*g#co%`NVRP|XeiaVJ%OH(-0Mc!V>ye6h5r(sh8#8E6z z8wUf6)Q*9S)K+hoL3}i#oJlxOqVFw7GX2e0I@XkQ$54Dc^gT}1? zYML6u$7E+$AS+_ug8K#n+N{vojNR$sGY4;D(UQrb?^Y2hb;W|4k&fSMQwW9mFBlZS5w#}kBcbA^c&XQ!Ts)DW7%wXF`Ur(_goWEX5rh!|J2Q`v1NV4 zFcUVt@C9EEJS6QW2y{(9Z~Rkn6FY7egjBGV}uB!8KV8W&`7BedZ!TXxTqYG%1iEoP#NeykfO+IYw zL+`!5W7HZb7O=GPXs6$~%FJLCv@jENK^P>qy9^iF*H)NE4w|FHC60ny*7>)DfA3lP zd@>fXvI&!oZU1|O1LFF49KNqBG=?jgy$RwuZ2*t8jVl{Xckb34p^ z%XNA=W-dLt5#eHg{U$bRZ7;&lJpcZ_E9JkHcLrP_#jWykBlcOTu8k_1Rm)%UB77qK zvatF6`uW%FvMmtKJ7p-9*L6H3^g-p>pN@XOr52SN)i`}>pL?SV z2=`_bQNwf++V)Wh1yuYr*=2b`n6tNi@b{s9kfH)FV(`dLwTfTu{im53t2P(;`i9mo z2?d|$zX^rTEN%PB|E?9$0VTp!=6>OzNpr{EJ}T%y`0Z7(RqUtv2;0x7!Sb&kEd8x6 zP_LZ-tn?wVg{oC^t~cS(r_`b>^%ihnufz0W#1^*j>+^RV)NvmX@l>ScG&J=)Xcww; zu(*HZ6+YOp025D=hFkc}+@)b38c(=+9X(^D;p@O|mP)vW7hPT|24eywnra#yr!Z1+XGW=c&Rk8_S^(GB z#mU^C{QZyra6w_{P~EhyS)GJ3w3`U;3{<8~e%4C$D5O(%s56-Q!-!~_UHP3WfWRku z!|^+?0s}XEb7a8{lwLtZ3l1XqM^ee^trEDmq4+X~el9n32mWyBWWBpH(O{`M`>Vt8 zG(F^GaWb`HqLC1hT0a=yq!`+VvG$vR*e0$u{jq4!{0ZIM3-DUjmigOtSIPE!<7TiW zH;r8(hASX8aqWm5_l5gv5pAwqxJvTbg(nZgbri}EY-7*^=Kl(yG6at??6LPL^T`8j z1Gx%I^XZ5pt5wu|%TsPIUHo0HnR*8axs0Nvva0s#5k+{8h^kwAMW$G$?{fW%xyR0p zFFFY(sLLv041!Dy9SK72mg$FRe}oB5aQ3i`Smcjw_Kq342K0$?wl>#*ZRbCH1*-?-$?@U`z7AZw|azo+dmozmCdczNq zT@py0y9X96HPy=Bwc8cdRE~)QnFEq9_9>T^Ej#!a^XZy$j2@r0v)vRo9& zy}*b6$mVCd*R2!S67kMcP}10yvat#}vZhyuy+!I0h8bRGTTupzAIYW^LDwx7nDK6f zC@DF&ofe<*@tGNxMLj^h$soQT)pU1jvUm{kbiym)iG*Y;RRhER2RR;FX}|b()tH+Y zoQvWJ)%qe3WZihnbw;^{>vQJLTS!9IsAG^it1Dvn(U*&ZBpgtqG&Cd`-sNY9K^PJi zPAh&i_=$Mk4Z{O)NPlCBz@vRy85^psjEQ578hnwTBB;-~@`$2I3m9+mTuijKYh}7pMD86p~lticCef0H=3kq=BK652o5eK9~zz+@oaM zjt$;d`?Vvwz0!B(SIrjOwN$`qv!G=s3 z0*bYUZViI3h$&J)SujbYstMs7D_&vBSXi-cjtd7EWR>89v#5}mYqs#YXElxoH%(mL z83(PH>$uLXXGLwa9}ziIMP4}D0n%a*TJ zX{dGsWvbpD0}9N+%xm%bLymm`Zj7hvUfAEc;b$j(ga>|poIXqwAVC6)#5K9Btm1I- zS0Vq-7yAuae0K!$+(m41);7@-r#h0%0fgoGq)M0YXDsYl^&6X^T-~dcURSiIW=plc zBQfR5))zG)v`}Yd&8T~xctS&KiM>P-1mpb6# zVsBfdky=;f)f3Bted$hkNy>G7&1d9ykcx}_h)*P>jz`Wb`ceTqg<_{Co3$18XY-XO zLZ}~!TpFekz%o1+oDKDzdQyV4#{@O|R;(>H-BnsADMOS)sIPgkkM-m~UCh^k`r!ma zI^=c1XyY1;KG7w8zD8cGbhTx`>dq^hqwWwL*lm4BJ>Hd0ZykQhttft@%KjXs>I)gB z$-+)WKk;@Q67LFrw#>Y|S<7~9VOuo@_p&=IZwmeZ+R+_1e?~DhAOd@a8sY3Gy~@`m zL*0mvy@YO#ldhJBOJ4>1i`pmi01dek;My5yH$Xt}w1{`Lpdelw}aE7SZkXva8F?wQtB_FJV}bQr19$@@R29ozX<(z$r-!<+I*(%-iL5325DL)YBo3>uv<|s=Cus3?M~q{(621J)ez!b_?@lCF{6J3 zT!SWhxbn_j1GK+3o^pC*4Ye4(u5Le+MRvUL{@Az?HnKaVwS3?VSdSW{Sr1o!XNINk zGT5GG`NS41H2*o`^ur!fO6rKb+j?gg5;&JhJhJ_+bZ4!m!p&J z=N*PVj(!<$pN3aIHFAAbpiHv1!XKOHd*Br>f;XDngl<(4`dE_Tw&DJIi>nA%?kGWs z+f?Jj%DXMfpZ*jN0<+5IfxIQUxme-x3-!;z)Yp(>0CB4FRodf)E0Pnfnxb;0iBF(f z`jvh@z~cbSVw`=WAgz;vpGn|E@M${jvxMT9Y^%)6B@~U?+kBUpXHiwR^on>V&41vxcsFk!svEPCh>Ik8`aLH+hUDDo(z)vZa_oXSmx>SI;S+4VZU<$o!w0 zg-Xky8n?5+Dudz5U!b&dHB)kW0d|ubn{8=;of{Wo2S3Zoc9vY(piW0b#&f}?y=KMA za{X#!))J3OSR;jirz!hep*jHHX;Om1cJ)n+C$@`g<)V*mrwc)0bDm-0`A2Jg8?kz} zhoJWWV@jT+zqwl;@>>Eu-+6+;Ct?fP`IM!@zNKADv>)<^cg5knM3gYynhd*~GY@$z z#{2~*|1S=d7MC5N3H~}1<4r}1=LEjpX}6cxov~z8gi&At4}ZGGPT)n$2SV4tKR?KZ z!+tK1{-w+kaDMy`^Y*V|&(`?@0IT<3a_R99Yoog)}?!O z=L!^C@aYysLi#3Z*MwEN8c&39Q9qr2FeU2v)m#`I0}sk?7YM`>Ps#bUWl11bAT|3v zxmrdq01pYN$!>xVrsf zsEVD_;>FTH`p!?VRr*FX+K(7}R@j%{DFxZV*?z7O>Y*UxZ+Wd|vGYq&t{34EHnVMK zZiuoepJPhq`x!B6nzKL;Yl_R%pON!svoFtilNOgvQ}3R6I3LF;Anl!JXM*tb68<_g z9c)0$kLumx_Ey%a`5#m~%k9Zcwt)JXS;S~(OQYMe)ovfomYeM8ZK~SrE)9BG9bB_H z&!vzx3_|X)Da+M8|N2)dBC&_=@ZsIDo_j_RE&U=JmkAEPaiJ`Lrz}~J=EAL}8}#T= zC9K(3a7kJ&xyp*EL5=(3DEArN-abdc1rKG;p`oe#S@zh-@HUKT6;2 zF^~J;volsI95lqnS_0MCs;6o;&zt=oE}ng~=04Ks=;cMZ^+i+|t_c?OLR(mJT!ko1 zF^%jBLD1w_zjXbg)As+`Je4A1DS9Wi{Xn+njzQU<1oPV83m_x$8E-_nVx>sqf7<|V z*-CUd4XwG{hRs&i1hRUj-a>A{MHG{dP3T2Q_R=r|<2Y=(Fg=mnRp^sUMz}QFZ1MQ~L*5Wcpmu%^L5>7rB~W*R3P#Vf`8+0sYT|wsceaQ;M9yW+BKN zyJM3Ex7I8%zY*YcZ&zqSIHU86|HI{I!3{&KURBOcEm=I${g}n7H893|V??`o202B} z$7j)8$E*-KZF=xylV?hV(^g`|&nnb04Lbe~)5sljM|0OsyMj#-e!HaSSRUlFHkN9N zuo9{tc!-$4Q7iN$H2tV-Uw)WH-TjyoIQ*Q`2hsg3PY=ZKF(ingvIwPIWHxz!sn!yN z9BY~*0w72GQkvcOX*p@ZpSwIvC9fl@ZVM`8uFIFeExgUL(>OMuF!fweO!O+c3#rgR z@nox4K2Gjl?Zu%|U0I$2gFtd@gKx@Ewsd6imx=dVgx9dJ$GhpJxgrcg-OXYyzZBh? zq{LtMdH{%sv!><73cc&sc3NnnFU|;v{}7DHv&k5Sz9yv#$#-W9lK5~wN$iC-%~g{w zA)cT9Q&wfi&{F@5CtcVz!{@eGN25oOcu~G||H{8z@;yMdTD%MI^gc$=x@ zm35gk{C`;MdxG$m39S9Wn==b;-b=X}ekoUZM!;nCxg=}MruE%|*28u~Xkf~2q+HQi z{&);KvLY2SA&}VqX48 z9|?7>hp~5hcON}CKcGE9PaViHkS#UWvnF_7kBXX7(km%2EXv_l>NulIU47lR@yfIxSCcEu1n%VQHwgIqz`9 zTWYD)du7_>y)3X>SEvad8Wqr)M?sp@-^blvNuKMS09TDhyIC&uCMXpLD?BBkWW5(f zF9dn>v5j$g8r(Slis|{@dD^gkqu$+~;g<^K3~QThBKnp=^V*CGb23fAM>PVLJK+7T z=SMhApuX?ahxkadYCZf#2{7#`Dn2@$vdT@N6AK71YJp9vP0E;;ON~muDHl=C za@t9ZgSb*6ms3L7;0d_Sx{M)u{u_yyoSzY4>9fz@dIIhRJRZ(hvF$JXw3FO-UK@Hw zBIW%zKKOWQnboiKlVjsp9)Ta%WNy#~Bt2`MAi$EW`yv!)@s@Wy6Z07K$99~dlWyVN z8t`!r;Q&^$=%c+fUj<)Nko(o|P%w2Q%7NIdwKt>o@fMH}cjtC>a}vyOe7zTBZF8_8 zH&LLx{l|?kjON)jv<~|v`n7uZN%iiI)W2X?WqW_~(!08$$lgLk5P)+ya{iY#5nR$H z-9jN+r}lf=OnqM;vNhZ8C9m)RK+I}lXWgvD>%YP<$eXVHHFe~d`zYAAAkY++yU$t} z3=e6^Wqv3jbgVD>rSzNvuKqcYSLAgrgu!ZtxO$gpC-?^L(EJGX!-l|B-ZZ&YsB&gs z5~sYA+}l=2%ja4@Q0`oHtv{Hy8UDF1R>WNg2rsJxcCDo#YEb>eyI!n>Ca{W_qyw$f$^vT*$m&B=)T6?i91zhQ$E7>L(EkUJFmcHJD=os}LoQw0KgUi}}K^`qTouzZ~Sy;(qF=4%Nmy(_q| zSyp0!G2rOuOMT#Ta6nvrg;7Igu*A7p(?JeYZiu#=3}=rUX#OPGZQRHt*&eI9g^@-E zW)G!_w+x*Hac4m{>lCyix0cgG_+WsMehB_mx>M4h+v3vN*K!CQ$ zja4bMnYtE>%Np52kYs$Zgw+~SZ>9ah_)8l`8^V+9HaU zK}YknE3mgCLRR%(4Ijjny+mGrnm^?^ol>_%()srZC0aZ2^~O2OaE_TPQuAc9M{~a? zP!p2Bfr|H@*;_i%OtGZaKq%NJ|u*oTMvsR=;JMWU*PI+$^E#mt6nkyqkFkt%`6{0c`Q4LGu!vuKc5wY`Hd#3@)BR4 zPwy^HaxVwGy9lw0{ph~S*(^nIAqjFa|08F+}4_1&*XuBTT7eo~2 ziWK1S!=!qBi0h?GsuqDZ_1%Y((e#@(#yfm_<|KeSb1eG{vTR%JY|E@4KQHWQImv{# zpWxVsy%f??7WIJm>J88EjqnM=%vFMeF)Oe)aZw_7{ltxbJB1DQtTjV zoS?eR#eYf9@0o_}K2m0r=ZpK_2YyE=u4+lm5nitacXAT)lHVXBAi`7WdYT^#_J|?i zCH23-j@L_gy&&l>n3wz`5$>(`=I%dL1y{G>^ODMv-oRVHe?NTnsHO57#bdQEHj)$7 zC#?s)!v(4pUl;q5WSGm;vaj6vdun038bmAtUnBqb?Khqhm^-VE&E;P<6BU0ENwN{e zq|*II0&!2h{iK*tR{U1o;tL7*?jr8%k#g#XfjVf&y4SDXN&YqoSIp+TMZZv7eNOu6 z7CYYkgck$gM+pSH{qcgg$`X1wZ;k z$V;l|Ks@r^ch?1s&qK&ZMwEC@5l>Hl&lsE#htEfHg94Waf09_ig2a)ygi%k@0}GHm z7Qj97F=;zRkdzmf^js=&wpUqBT8(?;t~{O#E7;>NAum}WF3Xc|$)&1*=Zx@q$$sFT zeRqiWE#Ti7`2T(p@K_*T{s+o_7yp)||KIrD@v=lQXT!ckE=@c{R1Y2-`g*ffW3uSKbR!%Gn_h!4ydY&?fOo=pBURPo%s7^fZtxw4yxQlzs30B(cg#z z+AIaJp&PaCxxv^YV-u)b_UXaw6F>?$Z~2*L@|tO^3Rh}pEmp@$v-upBhBAd1ge;R| z?nv~-X3G?5t&EhuYM)a7zwy4>2sPsuXYVOTfZyyV(Yn;P*|jsptJ|^Sud(YUE9Z*T zQa;DYVyLqNG*5%i+G-sshDL|E<^S#=aJ7hW^1{RGiYM4jFb3sk9M|wZE}oW0htvNX zHH);%V0+L(4$-o9EMuym)!mTXV2v5phr&|g;NRk@f@UDJTl+KaV2P)ORhHJ&=flKe zi+e3cyG17vatn(_R!KM>#M#)UmiyVOgo=iRMQ|`vEM=rfL*;lwS?lcL2v}yDvL_h6 zPg+P4?!!IlSwi-pkUgG>NZfr!;5hH{CtnPb%NbFrO$qInf3Nnt%;cg!O!qwg$l15A z2=@8R4Kf=nVbvszUCO%Q@y&$jG571aQ{o_0GUREDzkMs^KG+GMr$ zHa5cdlRxJp#+z;!uSZirAA3cza}IlF4f5NqU(Px07w0kpYfp-9kk*A+g8z!Oor9Dg zu@_NfNqKb#w&zOI-AT(GIRKwg=!VZWAH=6{%%)hIK}hP~Am?L3+t}oTCBL9vE_U8j z+hz=7o{D9anKq*0!U?gN9-8mWQpUf4;>dWYXvy#%qfHMkKZn1SS-v zgD-au|IG6y9bF2Ouh=-IAZNb*<<{@ch(wTuG_QW)$FWKavl?4i>Z*W?Oz_5Z)2*qZ zFRmBL_Ois`FUYiV+8;qSWI!Td*A&?)5p`&@ZJ~8Uji<$@;7(*=&;Dw? z3}q2(Kw5l1E;3X1E?bk*KI^}I;BhPppxl_Vt~FWd1m90Yp9qANBUohgk|7{Go+Bgt`*deRee29Qhr{Ng~m zhSRZ#D8TH;-WqX|d4bpcVoq(a{Kt9)m_5O!kwVAI5g)Ylf`d=-~`jRDdJIV?- z{m!yVlyelnlHuVX8k!{=pwAtupx*4;WWZ-oemg*w|A&}-$Z=iE_Jr9)Uxo2-zOdci zeO{x=ETGjeU}qsgAJ^5!jR2UelwOE4nigwibK@AM82Zh4ExhNyf?R5%*v=Wc{gYwm zXgL>V1)R}UC2(4IM~~#IPz0=&mK1W~7ndGYbhTYpXmuK6=zKigskK>OLelaAYRb7n zb>*>Ckk=+o$Xsyqx}yu^@owq|>Y6lr&;i|FBWKm9zU@KhPt!`B~a7;!AH=RkRl`G%cB6q6Y zm(KCw?^dyPCNq!7ze!}puXMj$6b#A?Q!HBpFOj^^fBTQ;0oo7N5l*<+$CI0E=H6;h zW7Bu9{d5P2s&g9eKfOOT)K8V{)H&&Kg>db}q2}vNGAe`QqE4%xjz@dS0lzU;HmhAR zo~r_mCuiMukBDgQZv8E2CqQ*f`v8A^B9kwU<00y6lsfT`?G34 zmb+_?Tz-t{!2Z*cYJvoJ#9iV|>z(@K4uEM6;QXlMmVmL|M$4`aZJP5x$Z8Tk*bWu04y84b zTnLzI@D5P^`M44N@X4`Yypu3qsa|_YPW(IW#|OCvWy;W+)#=iL+1Jf^#k*ts6@Ud) zXQIMN$fVXTg)fC)GlprrDC5Wj{>;Q3#8gMcC}NXrCgWFQH@Z7ha-~(yu?} zjW0aEoLk{m&#jy8H0ZV0`!xN5M}9~>Ze&V~fkA4$%HkSThWA?v22di-I1;^BFe(f_ z+VO-9Vv5wf>((?gwW?CQWw`Hk^ zxHlU>KR;5cirqF`5bm-FVYW{f4Tv;v4pw&>Z<%3^@cgssF)Zp_8=5N^1>ii886HLv zyKkYA6TcyurVWX8q9oEaSGn{yyMtQcl-&>Q10F}m%`omEovYL%NGSh|KU3H&(az+? z9h35bEU9O>qRG*Ieq6TVmbCtE``hg+j{o~8rvk+*wxEG3#CIhD()FF$du36(VFrDvgn8m0s!Q)!}o39TWRmFU`Fwf0tbLS z%};d!=vSkvoR;(BwR}tfavy9xtTh|RF&lqZ$>#j@$WUfRSK-Wtm`ZA>=fNdQycHf* z49=mEs87X+07(=)I{xP4D!XU4qlLT^9M0Y^c}KVDd98&B7X>W(=Y_S@0tia^@YJAZ zzzAL%qr#a0#|$HvpqmRwN-LEKhDBy-dZ%aUXzC?vgS(0Dl`a)#r_@eQ+q&zv&fa|4mi zA?Ao}I955EuD4`{+aAP4Fp z`bWo@iE$mor+d|*%P-TbZE8C6 zqpYQQVggc5i{HTK9Jvb6=sxruY!xCHCwKgDR0D@T+@o4sjr7^6zbF;@hCw$!LMYK} ztx{!H7vVK??H7ARt)~v5_eV$OJFhK#Y6~fk9>IP>knAnhwdu;*qNA53U2~4AwWA=L z(E)zRbXp6NXz_Jjvzg(7o-E`aZws<|`0#sc+GR$3BH(gnzW0`~z1zLb>89G1oAYmd zB4%Jh?aV@3JrH}GPmyHi)}(^0bL7B*Ykf2MsJNVK55H;M7gzBd9G-@AlGzNTXfm}4 zYpqhU+=HH{@tYN&-G?q;@EWm%9{8d=9FwkJR&C?B;PI~+ig{**&rf_4d3D_oCIQ)9 zM1Z~lUOX$bN1NjfNteR|SWt2MzI`rZ)?cNsjDYAzrA>knnJ8ptwAf;QYKn+GJi|rN zc@Z~3O4BOhw7)7Q{Bl~tEh5b2jzzU+QOn^DKQ>fpU$x!aaa0}G!@}LWpr3FF*u{m9@xdD6wKC~S7 zYmN+?e<3bA3^Lyfnb@71$?sGM*j=g?rpH|sL6C2lw%WyLWs9SwanT*uE!H}>tjVaf zzJHasa~ydJ&m9!w{xD12Cz+FJie=&^x$qa74;}ln=wA5!1Z$*(w!GH==jsH^`kprG9WEi*eAnh9{HZ~qOXJv z_}ggW>^~VLWY(#GGqd9FFo}Odw(fPyxZW|faf3unHRx`vgtiBt&Yk?33@xTOL8XEx zu~Nv_e^|ty{Il?Jwn@gYDr#Hwa2ZF`zzkNw!zIV6Dk^=dY#}!2y>lD^F-E^1%$7lv z*rtYptG_UsjwVw=o~iTSK1lSfcul<=9VRGm`{!hl)$A;q!rG15%GP@RL1j9UnK~uJ1INaXfl((_@kM=g;rkibhh^xq)+H6??1e*btj!{`?_6gdwkrIrW|P4*&-K`p2*|R~?`)@={m>qSd)77_EZ^A3i)OH`%Wg z!OZaU+IC0hR{XTOeVpaEzOq{P^+e0+s~p>^pr*F>-quZyqB8ZUiko8_8jnMP<^f#i zeZ5nms&%Kvdv&tY(ID<1WPtq1$dh7;*+4TlQC?R@^3aXj9A4M z*eaA4INJx03r;>xY6Ujl-*NkxcqDz(Gp6iTJu9v&mTbb`0E>%~$lPeh zW;}6%mrc=lX+6=laFbg#yf46_^+0dUlnZx3@OlozE1YQOyubCj%5v#_j^k2KQPR$K zNv?@Wq0e2{XU8E}7w5~qNk9uqwv)0ky>r%=tjB=MmL&sF`HL&K`m@txqD~8>CFRo+ znKDo7gLXf#1q_hy3}+r7({3F=@?mE-&4^zkwLK9dJ$IcGA^U&#&IxnrF(38(Wuwr6w1@c^KU_HvQR}xGQtueaV-JmJaN{QrYZ!c}ERuO7a;aeBtTNa`{^M3HlhMvBg`u zFCig{?LmP^`S~POcGn#j?iR=h^x(T8Ng7UU_wrY@Z9wku>5Ap-pKRub#5jv?I#;y` zRN}5-n(sS}7Xs}(6$Zg}!c)wmi~-XC9mX&Cci8#JLA7d8-AWMr;UR7)yDiq)l}XEd z(|g3$*#c-CcWh;I{XPv>Yv6H#UFkaUd zT)e?O+FT1IJ${EMj`GF&GBLz&w(PvA1e^+1j!b_ZjhpI9ijzMdo5v@X*c>rFXX|GZW$3iEGEu#Aa^$v9zBa zmz5tKSoOWCF>k~6^W#(yWM4u!d?Sz}E%j#c9lut>S;IYU8Q10Ek)~&=D2J0;OOZH6 zIgKZ6a^|8+@z!KEW;yeLXv)#|^E&T5{<%xaKx|kA22;^6v$NLodadC*!m`%a7)8X3 z`&iMFbm6|qV<-73qvnAlZKTejY5(kmfpD5-bW2K9@wJSYS>4ohKQzy?jE2;d&FEBI zyD`Y@t>evm@vFjkD;~q3L=wt%A;N*|M@$2|1uKbPt*6f;l|L4bP_^q1yg4;% zjfM+2DOXu=8d^d5P|&Q~*L}&2t4K4YCT^z98k)>!FmjIcV85$?(a^f{vCex9`P1WR z$;*m3l539O*9!0~$2T>{QrgsGQH9I^_$||!24gK9{{{X2zb5S4xDJg`mQK*vPNs>iusX`5JdamsS@y(p7vm_+@ zlA$1H7Ci%2K&|0$ojUC>=$C8?PQ|3+ZvXbOj=I%5AGigf%r?xM)}tK!tTvDVvh^Os zHG*(UG9kjcIe(z@CC$GKekt%Rf?7X+S}M$V3DfQ;_1N#CjBP-Zs(Nbpvw9TCMb!S4CUy0X#+)i!Ga zkBpPC{ZVl*{JbKZbf2g#Q9%CHD|EOy<)-iEx_d(qJWQ11@FYx;!F^4@_yHtgF<*V# zXG9q*<;$~J!P>b>4?~NK*bUgQh4hV$K2z`26`F7z_aT&F~P=`JM= zg*O?{?NL2GoGRC!33j!-B$POTt@{G!8ccMX)@?E4W=mZ6V(lpJWyttdPK)h%^(8l? z2}P+K%C2#=oIhs^S0){pO#GOhP8YsKBk8g9<`fc~x!>68s1k6_+Whr8ZjG*8CW`KA zfjhV^tizVb(o$Wn%~Z{zp^sRU2TtY!1eW`Xb()9JSeD`tEzPE##g+{tb+6^G6%No? z%#w^Nq7N*T%PedH*(a&Q4IP_W*^?+>_WwG5onw*lHQjAoJBInp z;ijI=@DmDTWQ!_~w@gDw&_cJtWuDIrmpSzZVfva^T)tYFPPYqsuM(Kg~1HjYNy zeHOuvV6`tgITJ7IOEA%{x+lTw48k)uay!o}Eo0UU_1wQE6<2!|t0#4@&XlRbEe&t{ zLUGL83~|8I`x!}B4&8HinRp(V0h(da{DRzZ`0gP~e*It5>;@yj!zEL#sI~pK3iS>3 z^DNNyBY@ivn1Bgi!7Z7&oS&t5h_oReEnc$u0zOLTD;3@dv~;6&+3jejtjhM(k9KiL zX7k&u$%4+|`c$pwTo(SR%BK+1;i?x%5L z3R5iqj&Oa*_75P=$<5o=Phz;w-69rmsHqbm+eE(s3ITblLe32vo1wW2a5ldreT_*Y zSIuVs?fiQFK<%}&X7P$!xce~jRrBYFN}tx#!|$R27ZKF98!bnk{Wg#ZAdfd>;K;f% z`T=9xiR|&mz16AjZN{Dri#UN;V*jtt5&n_3F%VN6u!-Pn!=z#)l-pR2mVV-Hc-+V# zm}#b@fHOVgr&AlpS0vxUjR>lo5FoCL7R;~+7CedlHSDH&+2-$HpbV=fCTPmuMyi?3 zKiS5c-rsbU>3cW`q~fbJ)T8#k=kVyVwu_g=2#4hQYs9Ai&eBNXW4cf+46Of}2-{n9 zqi~Q4J$)9uzO6Mjf*(S5u;5Q`#UZcBtZa#{mm61vZyMf4emVeDClS~RNaP`(=G!~JQ2M6YFahq8bqcpO6AW4Jyx4hdL)YWvE5;Fbm{JQ=ZyIPB}Vv&~XfyGeTZ%tO~8TwgGiUP8P9k}&NG1k}wP zhB%nqxZ=Oz@f5d&+o2BC^_^TrkAns_9ZWqlHaafpw4yS38oWyQV3sz)Ko^suvyZQc zyz#(65nw#rdvP>dKC4~O=~T7(NxxXglM)YEFN0mcxZ0sq9^rbaK+(X_21?ZHQ$69pD1h~ZMMZ-aOI zcifCYa_Q(gfUnq`z2F2ZpyVl4OiR>rPwVIW7YPNsW; z@Lpaz7tWyJJI<^+hiE-wpC;Zr>8sYxw4JrmT_t8`}@xRu5+F9M}cdux#m+N?s4B^ zHZ1O)?(@il?jvq8gOgI$^$HkNqlI3QT`y#vP*Ts}h`FDP&z!Z2gzKH|Jz!|ogH)-c zb1U0Z%~XGDMKq%wXm?X7dTuTnNe~y zUF-;L(H%N`Jqjv+W98;GAjlHbaGP^BojzRGohqH9RD64khfb%qvw5pyzO6vwnQD42 zw~;ZZ6>8k_99GX!9JA4{Ge8xEjN-f!>w!{=-TGH*nTjR9;woS7688|`c!W`SeN@sVzt92JeJG%K3&**HLh5r8n=_f=01L>L%M*nQVWmt@L-*>5 zqmLyL_$iVQTRS7$cK1_v9h)<7&z9dGX9z^Q(#4;C;lc8lQf7pzQU98w7#&aOF@xTqBAYV!%&J>Ybc(^<*X&f=H-2nc zl~eNeej?q_76sMMEFYLoQmxuf1W39f9-qpz@?=Qdb-nAE@Q7mpk7h@}$Md0!vjDFX zKnY6(Eb0uNV6GVXE+MjZw0pUsP!&x6oW8?=N=Is9S8B8mbfojCdqP)gNBM&~EjvZKhA2AqC5wCWuw)zY)$=51 zij_yNmv;QYVo4v*x}tgM#E<1K!5FEVQ#BQu>sn9$LOAKvSsYXIr>QP^5=kY_f}@uk zG-hRYB%OcOjd-DNSb{Jlc$HFDqAYQXIGk{7EArj0f8L_O`uMfw?b$J}H&3p*m z7G9>CS_q_Xu!$A2EUj6tht6RTM?xECeSghn*?pR|_)pKPe!K0*f4S`#g!1x=CLiSU zvRf|P40;{drpgo57b8@gAdY=9vPm@fGQk3Mab9YXx|me(G^emTOSBsSYqj>tBP|PKX^;iq3$4M<23#Zt?UxM6m^%wciFQ?k;$x|WZjz99* zEY`<|#y6hhG`XE8IL0yg?k~+pj6%dFJAEe*vJFl27aq zWU!FwxH!5yUoJ8noU(Q_#5yBfU+bK=3wA>Bk>WPoe#U|O#>-Bf0YlRlGQo*;uYKIj z1V>KWC#webll}69+kiI`0Tmdt@Xfv$M#FMn$+&K`H3+B=&P%nhjMgkC)GamL4kKZy zYepm0rqEGm#+lfbsn@G$diC-($O)7TwG=-c-h@ae&t7OX!chT&|3`e*xAhl$Vnopa zahpGch?u?F<5Iy&E^!SpSRnkNw2;Zn&TJwtmZ1cujd`N%t+7XVxD7m5+Z3a3Q_)bsedwkm7mXCDtPhFwJ@ z&~0_PZbQVn60^b6<}TCPvAv8g-RH#vdRUK-2D%t7Hbaa1?AR@7suS6v?#NErbd{7+ z+V4e(*|hY@Fd*>B5Z)i~g#n4lD5JFVHJj~{I37F0(VOem4gcGic}hjEm}s1U4Zm0N zY#)Nf?f&;F?Y830&YjaQrq}PDUimH+9}KZB?2Ox^ zcA-Xihg(K8pO->;-1F=gn5MiEm{zyV99364V4+CnUCTfN-a=T$8FqHK_Wj<^nb~FC zhQh6tY?-uTy%$8!C&UAmWi#G(y|bR_$el5~(eU(fUwfCWcsoPFi4a%On2*`|-lB2| zTpgoMCHiBo*0t)*sGtOL%V{ndVhBEmCW>+CvvHP8RWYn;Vxc(Jd|;b-+1_AUd}lR9 z`Dgl`*J=fGRY2^_wU*>q!?ouFyEM#^7^Vo9g90i9$37)ImjE~#pK-lW|&@Y%W(diY>^@VK?ei42B z2}zUwXZV{i30~2w&QG#aGToJa^OxyFeI@=2wPjnk1a<)zW9{nnpLF$)<*0QmO#IK^ zF0&EA+yS2sV&ck#kd8R&*;vVP2WPsvh>weCG#xnvbXs>edAbzFD@lLy~5L2g=rmX{-FP20tt!i>bmqRs@bKmZ(|On}O``^YKEaM==`O z<>J@U4i{&8segkwSwP23kBW#=C1tCnMBDGoevXP5=z4F=bgi;GKj$2 zJyQMp3G00~!6j}FmK_K*%e|q}z+4bDf3LKx4?EwgYuDbq!Wzz%7C7TROy$P;cx@_r z7Ut6Q_0tPYx2u>z26wpZ_fgP11x*m`NrqVr1I6bheZ2jxXPpsL;XmKlpE|zz7{a+- zIraTxYFDmC-J8<&vUqkI6@IpH^H>ArwcWju%LD_zXT<2puA0{-JQyqh1u-1=QssN(ya$O##?Ot6D#adiCQd1GM+*@Y`;{wNy@E$2NDa zF9r3sd8ffg|FBG;-vI4=dvNqe2#-t2#V?Ar5od_h_u<7DSYHkDkR$mPTGU^xZ0U-YZ4)ffyFLsUB?AN{mZfC{%Y} z$(!(8J!<0he;?d``t!5!%j+|RfPMnZH)U9+4KC{=s{D^0*Xpb@P(zO(6&@8I@qLML2E%<9Iug~HY{Lv!CN)kQP9-VzM7bXt)C4kPG#= z;mC-c9;-M;16qj$ZB4gFx( zS2NrJ)rMHn?D%K7v6tJh?To@t@{(y0F&K$Yj;}^}mC&56ciTGOIiA}ovKZ+gR)}%R^aUJ}R|K8aO8-+J zJW8;~iM!pETKZMpdCKE_v-sOZdTLtns>s)vDk{~9-2)fB=u>lX%U?hDhKX!7dSCR8wGo|{$fo!%r zK4_#BDlJn1IH_6ZCnd+f1ApR>ZiI2}rX+r!TtA0f>5e!ATu%Ka#QoiN82Bs^uSTkw zg_p96*l*A&=suZLi5Wjt6mQK2htt4#PB-3wSYRx9t{Ly4greqZH`WTM6TnX1KmO@M zkfw-xGgI%L=VySRQf?NrF;UU?UF8u0f%#Oc5Is`jk_mueF64jgI)=__|^h_8_nUVRgayA(%WwM<;cWI z2=B~yd7}B7;i*uGy^-#~1!ZS2Dgu5^f4PO|{$}jF4#xg1&B8-*XgdCh5t*wGUMZ^b(z5P#X09%cs znzwj=sW8Lu2IHduFA0})hsR0ohUScj;OT_*hqvDZrL5gNI3hM&t1FDJ3?9zw z&O<q5S>JNcaQLZGYQbE~yMsU<&ZxCfqK2OAh$B8#x075vBN--!waVpDp zdCc^G??^-vabjv}>ShyhdvgTi{8$~=CdM1eKiZwwQE(MAg2TIC%WuYX2S)l|Xl+8f znQs&lF)(8t92$c#CO8!eJSA8Tm_*`c6RDp^ncduIc&|=oupN7 z?tvT+R?X(uY;+MdJT*!vIT(^20li7|t~B7Cd%_e5fN}h1ixh)P19ImD&7*%%+@eOl z2hg zmKdo$vP=V~(rz`(Y^quUlaPZBfnMiaAy!5M#2I%(8qaKJT{S1%zk!kK_pG~!HFCNuwJ*-Pvn<+Eh zY~odM#6VQ3HjCjJK1Okd3YP_Jezp1wkEZEm=`Oz|AmiXriDfmV24y_aDDyXGZyr8Z zA_gM=fP<-|t2-xTg#bVsD>V+6+-JZ+2&LQE22ANMbv2&BYopC@S990_IPutbwg|mz zI1e7s-xp2h`+@LHbuv$CoCFC~FaXKBriK&#-V^Vd{Uz~HyYLOjf~CIGW8Y&U($w~v zHP~z^ksUeXZ9>3WM$?sSBQ?CFq~sHsnc%T!*bfn0dnfr$iEwpVdC#rZvL%%^7{rgQ z=i4wgCaW05k2@2jJrT+&t(Ldcot&N5+w-Sf3q4xi%Zzg~)E4UM{}^E}!EhvBT{@*?gBE?sw^}@nSR~h_eCxz6q?!2ZrC3Enh3`TCs=1{5Y8R7 zr%~sz;bV`_vT~IslJJ;Tl}RX(t16V%RH1{ub)TBCe+KO#^lPO^mjgRfFlSil1w?m` zTvRW7`F?0ZwoDbnLem>~R4Gq{BhsCtO;xj*dIC^VXsUBP#->qto+|l;5CF(;fLb#z zk;or;4ckL-g${L2lEG?V8OApOKT`ke>0uqrMh{ufn5ia!1A@9As@J zZ%GzkbFj4)04;iyc1ct;>=W-Jk!a429pYEIu6)?)s3R4!)>^rvmn%g`M_u&V*G3;( zR(?i1g^v%u3vx$Ri`%BsdZX3SCgIV zs{K)|8(vC#P)nhv$B`;MM?=U*AwtuUxuzDs4+S!1Wv1s6c0B5d_&3k^`EE$&Dd_*D zQ%`NFMTeh=h+w}t{s6?}{1+#?JsbW+vS41oc-)XQYCQt;+UqW@oo3tvsAz&$grHC} zW2q5Zn(POiA75iyU*@&5!Y*wV;QJ0uRoMzfvul>SA=RJFL>pl3&o+S~I;SLkbZ&=Y zz6Ns*9WHFfZ)VEt!+ocNmAh{~KJo%FE5AmZN!HN26L2^PfqeZnAPh?6HTS_L^quhR zUiQ#c`T5BaK`pBpG!X1065d#)fT5SCi4}yjf36yAxuNO_&v)d0*|M-fzNb9EB-Rzp zO5YYtp!?F4zoFipI137X!tL9om_K{CKH^|)yPuQZbJ!To26}pZfagQF**1;6hyad! zXW4N1FpPnP-y1Pgv4HS<1XYS5y2zU(Af(U+#pAV6O75Fy;@R{!AFyTIHU8eh@N< zoU(2~zp_N8m`#UY1EkjO_BPmyzs?TVM?wEkx^PCP9WB6?xdnRH3TDZqk<_en@gP0J zmO#u0ZiIm+k2UzqY_qrES?IIy@LtpfnF7pv`rTT!k2NQf;cj_u?0oe*q$*IVLY134X#EBr3#W-0TExOqSt;J~9|Kmw+_$tADPA&GsnwZQf^YSBD2i5kgpG z$~Y32TT`4H(yRciVGk@>?p?jJQR}>y8JC3=!mG(s@?^R9OZzSkB{sbU7ZYe{UU0n7 zDI3q>F50706Ih###csQBr}PqZJGHtvv5uTu3E+sjwV(u;KtoNu4A4BS@0sQW;#CRz zXAXr%0FWGY2cMf6~3Dp4bX;G=R;0m1WzEs$wS6a$W`(J_~LDqXrezG^>vcf@Su?_EfE){ zT3cN^eGl}t*8LhDA5(KEI90P%AnzAlW{S7hp1uQ94aUvxzLUjwZaJYHb4Iv6Kc6Dj z9QXa5n|fNQX7Pch`-dQc`k$-=x$KE%6*`NeYKMCR`pf#0f^EVkIdCMM>Bjj;%vZ$+ zGx|=~bKC*kvQgPh(BxpbR% z^`(3P+vV#F^QRrg@m!Mlw8h>8G2|4bpYT<4V|;03C4&orL*2?HFBeCQPj==S#&Q`} zNP0v-n|wCyCpL@S#ty8k7L$Cz8g}}Dzu7k1Fx8PHGvM5 zo>o7ow!eHjOLEDRxf^{q<;{Fg9BatN5YW2w$2rWrGC08>Kf}O(X?pbJf@x&(nrJ7iKjDv8DQ*Wn3#iaxi{f1tA$#39IIq-m+~5)fqb)Eu?G-VX;_YA%hRxN za;6yl_!`AB&j5S!he$e5>qr0R_NMFYG|VsO0&0-y3T)b2N|tFY93`hRqT0QZNkfWW zIae}e2BPbC5vPmxHyIEipu-ghuRqB*be2G>7q$h3Rq^1Tb%yk2lcmbrC2z`1tZZq# z2D4=6iofTUICaV-NN0$YJUr2Dv#WeaPq;D~wkveoB(*zW(kd?vGVs!uy(Jo^aP|@P z&Um3Uj-J6tXL!a=pZ6(+k0&}Ox6Q#b4?>P^dTc6(jnNMe7^AdbPG>(CP_H>|JVnC| zVbB+q%Thym@I6}A=Z$5N`#Gj?$Y6Me_m!kx&wL z(W=OIIi}X!aG>W574%%QNQOu;s9|GHk=iYurie(PgA}79rs~&9LnJYw9Z&PCBu*f9*uKp{Bm1EQTt8)yzv*Y)`fYJjk)jI^~ta4%I^p zd*1!je2?Htl9?(G=p>)1WfG@u_#HSNKE~>3Ev&x;w7mgm2?Ko8O(zB6^X^TUHxYAdqPgT1h#enbm)@qA|Mu8+bAG~cXSz^?_ZPW@cXye|8iO|Q>2VY9z6jyK zUoH7l;4&1y6)@nRs& zLt4%1*U@sjsv>od*j+x>8>CPByv^(Mnl zI32d+^lMpCOd_d0&au|sNAT<))aDwt^qiZrgi(n6st`%>#TZ1dGBG+gcU6-;G|*R2 zudy6Ip0&t|d=#ruE4$f)3r$X7@~~ei7tbk-c&7 zMY`WgD+z9F)eCZB-IwMn5JqSB{;~Iaqp@1NCj{ zDf7EB+i8S%G3#)8udwz;wdRPxYN!9{M*?1cL!y8O>kXZ%P}} zEw@w$Q+L>HmsUi)nx;`$VNszLKe2Lo?z1yptoy5D7!}7vgH3$X)T`glahE`g2KD zI9HAs@;KP|AyL39+k+Wiy_Ft|zIHL1Ls<>koe=^U0`vX_>BJLu7jes2UI@H7fYdGLOX2k+b(3hz-pb4X2 zrOrWIhuwB%;+Uv#Zb#nk%pT|a@fkAd)tH~GqPw@NQNAQNu5dG%a7hu__b=8*3SNRR zQw7%B_eF%$b&(-fP9#~*UW7jm0@8H{rk=06-?kg2W1ZXSJ&@T|xHP~k=Bkv5Ce0El zX9&+VXKIvXYh0fAL*Z8}Xkd*Y&ISCN=LhRXqQ>X#@Ui{Zs{#1V1=>&ZPEUW#vj87i zh9E=oT)p$&Ge!f%*o_JQ;&~xb_n3i@KH4(F=@Bcpy#ghLqQ}E5#{Ou5(Z4>$Hg-RB zNBj)`>`bjom>tLeU3t3sbS+X~^p&a25JQ?+vV7M=52%YQseOM>|MDv5`m%3(-;+Lj`vm9TK^~OX45eEL?vFbP7O^(azchr%K@l@e6%kY{^nTnEAas>HZ-kYOEvVE9n zm2W|+BVF|B)RXAkb=$p1wLvnHx~!q^(@d&DS8Z*rJqqJ|U!Jo%ke~KwGUn?qz$&j&#cm`u2bjAdM0iWzO3IU)Sk$0$-_*}Jw{fn~D?I#Oadts!x z#Z0}AWVU#ZziZUBR8izrG12`ypFD$ugRcl(=2m0+H+&~#h({5O!zo`+teq04HN175 zYJb0uwY$|KRC4ZoaKZf0j5~*@6X%;yiwrbok1fq`7z;}a_@odR{BufT<(Lp1ond+-P8E~3P=-1X%hrqsH0A`(>Egc%GSSSqr=_1P|UXgfH2 zA)FRjwA@a(d*0%Q<$;&gqQlj-!C&={EX@j+Ei3yCzz3R!hUDG-?l?o=0zs(M*x8A4 zKIER0Ae;U)O2F^XK=f(5R*PysbDf9mT!+@1)Wz-VPE(otuj( zsf6~JG;UiHT~CLmgtT8Z353c-veETdkuqeu7Ydrg--Z+1T*qCllf+BPjjF<&sSX$Z7nGA)9jr)Cfu3-p z@3UnY;*@V=4Hswz-(^&M>ZRL({PfjO=$)w(m3M@nkW(PORMd^S2U&j0O;p%Vy!`q! zbeGP;mFkyCt_YNfvck#HdzaLr0jwYkPnE!Ic{NjMb4Wezxbgv?)q*7GENG(6H2TE@ zf86bc#@7Cip-PXDMH9vypNKK&@VZ`2(yPMawD(lE9seBsBmi0mWo6$Rc*PlHINDxj z3XK$+3_e;AJ9$4%e~rV9*gb>vk#M=aq)^gJ(nQB6I9scvN*#H@c;fMU7yAmy4@Ne_ z=x_lyZj@AgywoK6@B)P+cARtM{dmcD60w<+s?J*Y0o4K%Nm)vL_Qm zpcH%(=c)0%*Nge03F-~jw|IDtcXxgWxSgGdY_Gk=z8n9Pov zvGLG$S3gS&&vb*!!*O+M*WZSPFB6Fj+h{YHrn*!q)3J>Jc#|I*5Fdq>2;R|K_3E`* zBKEoT?2Q^dM@)#gxWGY%b`jUry?vb)4y&aR2QgbuPA{ByK<~i z@WXfYkdKHE$U}elu=>K`$}YtC&BcNyQHH>d-_ zKC0zR{m^!rLQdJ{Zg^vp@UVrdO61F~RMAh)IU9m`%n~GpW{<&hh#~{v$Ic?(!8OCvSd6gHarNjQ0o2TIo#k+xv3;Ph~Aas9o;2O z|AFDxzZEg@2fTUpG=xdJR?4hLf{G8`6(>`wo-5!Xt#=Ex6{Ymo*DE{f=UO;Vr14mw zjVWAs%2#;7p@^;-+NJzP?Iq2b_>&kn=@FRnr}yu4S=WvfXs&CtdLJG`nXg98EnvHo zSRCmWg~-Q8{Bmt5KX2I>YST5sCB2|5Yarmzw;O=xi!M+@8SZR=3_143sC3`d5ut32 z)$7X^9#PRyihsuL45w@dHs=z->-pwu1`H9#CnE#ZOHt(V%xc%Cu7n&8Ti&3RhR#~S z&w~~xca$qUR+k7(b0=tCKT1RLGaCwxLcTX5qrK5JEvO6nml_W=HZ?U_mca6%Z6vhI z>3yW%37)T~_L~yK55BNDqSP+#-wOE04ADvzX;BPPZ{1tFv_gjEbSM|2CCK$A<4USWD=bsQMz&lSl=Icte`M(jLCj;%iNYu()>w!40BlhiNvFF>*J8)rQYj-0 zX0DWR67R2>YkCM~j*IG=oYr}Rt!WGSCd9#3Mz9{LI}H=?dp$hoJo)0D7M#>0{_%Ya zwLsjKY4>xhtqped`YvVtW|ZtYsl{fC$y#HZGV!->&-MYHI=c$}%;0DV?tDP&_IZpw z922fO-{d>;kVR&g%0PTV!lAA3_5L?p%_NVhYBuM+h+c<-y&*9+GAmE9sOMJpv_UG& zrYppWvm4jpqU4v`dy6jN1*&DOSn3?ehPL^?QLNDCQsrjKQ$C>Pr!|-<{dDV7HwBN? zEL>QIu-9e-bm^JIu<-tbkEL)9beMVCaBZ{Ht$nLb8}}J@J%UV|LjAsI5*t1eiOTH7 zA@Zo(ApXQ#wU(dJ^>}hVYXSkSC{jg9I9G}+ls1N_)sr?-=kqqGQjJ%Lz*_~D&y?~9 z8uWO(@5NP^!N49)X!r|+$m#iP6d8T#w)V@!2i=f>js0J7N3&Ft-Ri&@VQ zEU6;%2^O*sU*M+7E#G(}qP!~OwJ^g+px3BvT>Y65%IQcK*~3s|ZWmCO1ZoJ5Ys&|1 zLF$#|);MlKU(gE&yHz7SN#y6et@4!##vZf2eiG^V>(ce72v_%p7tzFL0Ct#dctfwh zZ82F6-`~Hw!p9=yYR!D9`%-tjfIqPf5bX|oxMgV!de*)+=ymq+iflfo`r5;sRX|rJ zH{Z5PB$xm&va-#W@tjcaWcrzH)~d^O)2&Mm!=R0aBW0yh--CusNADD9*0pg24<&!6 z&~u9i?RK(=GY!vDfMNlUe(!i(3VPT!tpyAMwG33Xms zJQDYcJN}~G;{}q6Wt4&%$=vbrry6E*bQ>S5$%~tr4LKgX`+omOp~)H|2g{Yq*S9s* zO;=JnJIOxtk`SddRJ=QVe4-+mzRuL7Vc6~A!+GW5Cw}X&Oa~U%WAh*w%Pk@)Dk{Q& zlsFdiSD;JvE4w7n?0X(0kVgGU@K1&=>B@~rlJbq?IV2B5gf zHE~opY`Yv%1QPK6w#LXe_3;N@|k}Scq61gmyWRJS)v%^XhoZTZ^|9nsUNjbcC zDnPxO-lM{&fnQ;%0)1kmezr0|E}5%RH|`YLFrwQIN%n8sX2+E*@)#QLRCq^PDirMY z>-SSD=HEAH;2};|Nme<9V-aURoFy;EjIepJf0+ zk=+S|DdSNsy}Lax_u_1I~~de9-CE?hS?(=rV2XV4A^o#_Bzk#n{6x%Rg%d@ zV1Xv?YM73IEI+*QB{{U`_Vcm*RCIEEyXeCC5&rG#cS|IrE9KpAdMUUR+4k#Q^!U1C zdk@&4IfSctcC?z~4St~q_sN*Yer8A(ARBB=)&(+COBoz#+TP{$;JPoXjE$LPb|-xt zD}hsc>I|dOWeBZDrL^@!vOuW1Ac?5!FflgP_tsbuetILcs6s+TBkk9lmE!m{|D zTFT2FwVY#BLf4R&C>0)Wh(B}tJjd_7eS`owNZ$Z_RixXFd2#Sl@)5U7=@4?L=QuD+ zIncy*ih7Mhhv8HF_#w{4fZw0lM4GO<{xD@|p;h+%fRwy`I=cZU*O;AwOo*T&H&cBQ zDM*AMckJEG0s8R53ou^RbVbq^P{Jvobr~IBaX!#6sefJ=G<+8lm1j{b=H_)hQVR}E z6%L)Wd_rE!i9f!ZyR$`f3`+rFXV6n09?y?PKKuSrrmI>4hkY{um*}d;WPBy0j@-;zu-?2I5vr?hr%R&C}FpCd( zG*R*s)@hkE!0TtaZklB;%Xpj4&FsH$Ykl@ywFm(qi|trb?u>-ORzZ`E5!D$3zuG

X93J_LHxZXr=zq3z|*NLMKvL{F02jX6m6oh9oxrS4G6ap#L zt*%XhxjfLPk$W9paOKB;>rA!8HUGEGh31}Pi@7Ij)Vr|<g21;uJbv04&x_u9#S^5cT85U!tp zhJq#HDrPJ28gv_zn$F}Lwnx+3Wk`P2!cIBKS*Pw_CRa;?Pt@swJkIF##l9r>Q+038 zU+uw`9=FOCfGac_&c);6;u_RD+W5?D8ujh4Dg?Gk$`CAvT5oS-;9EPt=iE|Kz58Y= z`0e^qwwRlKwhEp#0@*;}5j3hsZ-QEgs5Dq>!7^rgiokRb{qzyD4%^;xpC2f|ta^O^ z^j2U;GAoSyrDN~&2pUC}4qI688AY#-UU4sIQX&jaOFZkkvBXkNEW2--Jf|Rwq=LiPj-@f3+*o3Fh2aC z7q~qiNMGN`_TYv5Ko4!RK^fAJB^}J_@p)Y%0@%&B%yi_{cLeb`77S-OmI`n>R+9#= zhxgpcy?8+d5E8(YPn7Y7P;+K%O^0*6E;Mvu7$;c2&-X_2i!TNr@6gA7v}y;%WFPb^ z>kqj2_VVdpcxx2fqkc&A=U7|6IBAb~&I>+cCc;M{FY$zzP$JGPt%R-X`8jw8*WAt= zsc;w@%A4#?1DRjy46iE8e?ATh3JM*#><=;&6wQE~rTz+kE)Y|jTV3plC{wZzUTEs$ zcBfJ3T_28UQjeZg&2aeQ+RTWyosq2wc|&?rfPo$pUurSx+Xvf_xuDi_H9htth4o=g z&&CcC?tPMQWD|>d0j{C3_psret`=mj>~;ZpC9pg~BHz zQZFhiF`W*Kq?tN`V&7w^`*Tn;wU|#91-}%7fcaYKs>^O^R=7P}aF)G`W{{q}I8S)+;NWe}Ovc_}#A5H)<{=#- z0UF|_RR$#`aU{1AX<{aX^S-Iq6DaGnTO{e#)*2*=90Vt_SyB{iP-~#B^<|-klfWgd ztzaYzohr*pC$YA>*;X(>bv+P373O_(MRad#yre!n>Z+5hQ`ft1P6|%PFG-I2wz=*m zck7M@c)Bfz=IZHxk0^?yD*|W`D|}3=!_kIvWp(wL#2u^(AHn9J?diI}qs@tysVQ|L zb&9$!wnW4`oug9_s9;+Iw4$T#1&W--bZr&pZPcy09AP$QLIy+x8+xgHM=u1V110x6 z4owozu+6*183D*bEp(76CDwIcT zwZw9w>|607jn(>*xmxuCUM?JQ)!mKUVzf@5-_`4{>7L=?I4tJlsYHy1y@QP2pf};- zwjSA|Owj3UWgsmuk$J)LAGIm*JNNrSF=f85PtQktMJ-9`*R5rm@sT!N#+L$ERE8+T=j|en1ourw-Z`~2`nja)0LIH9Zao&%M~IK$^g?DCkzPG3 zGz{Lxt)HOIq|Bt?hooQXo+?a-KeJ}JIfnpup_b3)BXoJQlO|T_xSiO0LfU{2T2go0 z1Rb5~HkG8qo=L~+^Gn^N@*Fe+OSZJ*xzDZeWrOD~)H{A@b+5X=W84IYe_?L$s7a-< zN_1GAAD$|2k}-zpU4)9b0m%7Bnn>qscnCz2T!`_23Uc+dWoPctG!t?P8Sarsx*P-< zll46c^k4y-FF*JIA>zj@$=-bu#l~;n1RZBj{BcIBOj*B2QJEJD6ll~n7yR^S0bMc= zahqSgM~zhrCQ_j!#!G0<{upO3w4ieT1D6*l9KRA3EE42}=O$%yv{+EUV$p<$M8dmK z%Px!yalPJM2ux|v*}sc7?g$hc33qvI)N-)|u6h_Z2; z>&UTZ^Yr6sLVIFC{bfRp95>($z0^H>>k_nuz|h1Av~g#5r}`q7ah3S8?K=8uE}j%h z6Mseg0dy=f4=*je2`sw)3hB@Y4OhjRHPETrjwAzL#RiDLft|M{|idCWor7|7OJrX~3=kMS?pB|(25Ft!=^98%mz{C~af z@0b0{yfiw%PB-U>H}?$+`S%h2_XFfBM0y0l-8W;f_?P?r_aC`=jETEia3Py&Xh-k< z!`%IS5KRvOHdNSI3IEUg2>K861L6uHumI(@w4*rxd6EC=3;&1f2L01VU_btk7w+#1 z@_)TVvk$-B7a-N*V%la77@y1JRrPz3+p#MCY03bWJkN! z@@^88F0}mlftWoRK0nqIi6~ET* z|84&Po^LBa&Wka7=6_d($k1Rc!|j=d;02AHoxdFbPi6#6Ow8fjHhVKE;x@`5vqH^{ zd;h$!|8ZTPX}#wYr-6p&sQ-53e~jV3`>W?CR4|-3^yoE$f19I!S;&7o)TXdA^6B2l z-;c+XZ@ty@&|1UlbxDqLax6qU?HGaVj~t$0>`S*DcCLA|fYaF+&c7Ks~*lYjE1OI7#UJJqsn%{CBemmPJav%V8idOwUZ7>L?!K@6XBK-@oz@T9jF$m)1appwD>mfLgu{0_91}rn5|t9_kz~FIT&IhZ zqN|`j{8s5JnLP+G7dzxUc8_%vyaYQ>DK19}ypU64sv%gu41abeV93hsI}_L85oR0# zauF_yUHF${pkTdSM1ec;mCsCd^44W+1MK)0= zAas8lVfZKHx|81MEKi{`lr4W2SQ;FRrPKD&A05JDfE7J5Wiv1VG=|g7{ihuA;X48$ zGM#`#VYB@g!_P||a=fTjsjmns%rZ5Y7{kau;zmjay9X};$u@a2cp*a}pxH553}RQ= zEPY%u?Ed*rd$*9%3ox74t!oARFz0#`I9;C51Bs0lAhFlE93DWQ6So{D+=%P2C6(Go zFpMS4g1pf5m@rrV3nSdKHFe3O-{#{LeW76=;lb7vK0v3Lt4ctliBPi z=4m=|ej9EmS6P5aHjy08Xe56MGz*}*NBP#Qh+gbk-S?PiIz>3Sxg(J~PUATK`)8}6 zE;M@0+CfG%49*v2`Ohb+%{jNGOY-I93=9n;tn8UL2DX)Dl)m#V#V|sK)<=`wWC zc+n8}n76{|>R{sH}F|1k`FzJ2sw9yPtgMX|Fvb z^%qbZe75DyL9Qm%PhK`=UI|EHwEZcrikFW2fCXMCgCWC`sYx%V4(#-&@fn_Y=|!u) z1kT`A>Mkh|#7U(JYlq|cF4PQ%rCt9Dht4#WBc)%upB+#HH&|Z7J2|^PHGPPCpGIMD zfumw5cWaZ{);fOF`r;GkXEk;Np4xl^*L?!jp!QkfQjWwc8^>2{pu+#_|f#_sKO^ zQy96A?cJ)l9(*wAj46l#y>6NKUcicsB8O#sUKh_&@&ok(iw9FvoA)AffPWBlcf+Fz zwZ?UR)b{?lIeizI`lWw3Ws&M9-p;;Yr3W%4dbAR+(VQ^hgYR0I2}Q->e_=3lUHmTp zgu_kgm|qm3^F)&8kWnpL4-(pN1V$` zv3gfge=!tv&?@1sLiV-^AtB*s7W2pTmq)4-Tu+Yz09Yl15KQmLJ{=(+u1t^P74eEIO-q|d~{l)rX z1cTvnX^Wu2Ap>kyo;fi>R~MOi9=M%wK8UCoL_ANzP*&lP?D(YNXsu1lg$BJSI|kI4F}841d%EKp9FskltXsCHQWIBHVc)Snu^ z)(kydZHTM6>PMP!pXe>@nAtD9OKNqP9gRt$T(zMIb)iF+!}+SgyEqhIrJB62+6d6Q zNcWU`jZZqH&)Q@g=igqN-yV0HLY=Ck87ve2N}(w)H&h9|kX9nZ1m`l4AQgttRf)F1co@Np0<+fDz zXcl6>#bf*hjbw#~%1`kz4zXlee}(t)U9qug>$+AiS8FgIU!dW>(s7&mG!j0-FukYV z{?=u05b8S8YHEh$#xNZ}5;ETt8Jcx!e7N%jfsU1M0>#8l)Z$)mJTtzmM?$(!DEfIA ziuFLN_OEx=6t~9E*Y{%n*lDkh2O-v#;C!t^NmD?=mJCX2S73*4?`3z6F`EqbE&GxiIa;y0#r5({t?O0u278_S@fZ4w zlGnWV*!ACu)p2xuCG=-xkD2mC`&!Tlk&^#7e&TEpN;X?G%*vMzip9cVt&T5L7@*|{ zdPM~+3TLNWGzPei{=;CCom9se51`LtD8!`lT~QpBLH^}5W-&SpYeJpp~au0VlV117Na%o2zGs`mCAv@ ziMoRk8Pu`Oj2Y=}!U3;m)YznN&?}e3Gl*`*MYleT+-!FTU2u;Q>avRM+!$OHM%)s$ zW6z~8pDl!mBHxmykHr(Y7u!3a?I3h>3QqWu7KLYFET5P5<8}wvS(b&zZogVZO3kkc zKnmdxqx?gf9$5(FHkl1wnzM~fK1$_o?-O6!UR@wvoSs`=9c`xq*qyu$yXd=(&^$c2cyzYBkjS9=V;j64xV8?VT0*D6c{%xXOCyn zV`yKp&L8tyb^gT3lh=~F9f|b4y&YLq&cI0WFa~k79kjPOGrpacXvs*bR!_$-Df`P`;WcfJ@(mS>~p?2_#n(@t!J$n_kCTz z>t!4t@^cjIQWu=)d+HnlMkJ6(rA)T)U-oUKRCP{|nI#joKBK+x^j&2&!EXy8gx?p` zYb(=RZ2zG|3ZtMMZp7rroi$3+xHWXNGnsPK z0aLcW3YSs{?8=eKGq}-WA1DzWGsw|Vs>|G11)!|luRkYC%*SlqVLLv>lT=!!SFjDA ztn^Fc5?uHVst21bJ|=|z2;tjmJ_czL1A(?VYN^#YaN+Pz3E$f~I6T(2*gv{#xK9zK zZXFlLK=(Qc^u4T{3hC!@svXV+=EXdBXm@{h(@7s)=rbN2RaiFcY0$BX29u@wLKxW) zt4jpEw3k6w@LPHCiuI#G3j!ZnFsnE&nQONIpg@u?9Xcs-| z2Ml!Yk##zmS51O#{4r`Gpm_lePxu(348Bonqhv8ZBf|fsboVx;zXha5!*-5?A*ixC zO^c02q*xBylZXK;uABS(9R^EZJRT&?p*u<$zKC@vR1zKibgyFZ8OGamuSj#VkuOh; zd(Wg$%{%6DpDIyE*u)vChs`J9nT6U9z1_Q}I~>keQiy4c#$uJv(13h`vQ=`{D=xyV ztU_OM$a_k5nWFaGDX|}8smsSolZ=iAGQwoF?{uD1-IxsIw1h$F5<+r@C*9Oi|LsS{FDxt>UIwOk;+(FVPkNLL$mIJZeY|^+^EzzHEdU)pp6isjCe(wJ z$ALi5VFO3aB)d9=OUVeI-6}^Z+K55!XEGhgP-a9LP2Y;$FHJy3~^d2ql2JADRzt#^l{K`CpR&c7wLrhi4q*zP# zfdYAzGhPz%!xzeY<~hB-*pZW-sR`Q?`qkD+x%)mZT+%R0OF>YZ-^D8@XKcMk2v?B` zQwr)`8Mp0NoG%RPcva7=Ni_T%=GhH6Az&_gab`q<9=IPfz$L3&Aj$D?IiF^~>e-py zHIEu#@_pu#Lzx=Qo13?et>OkMotA_Nj*?2|RIuHyLUl}*LU`LA{3mLsw}jf|JF(*BP*@1vsi70BOIgI{onM#^;W zEzq!JcE5LwttVV|eb_pH>}LB68Knr;vH=W6nW$Zv^pa5=Vu2yUHAZ_6wH#yBB+&Q8 z$zD2nuh(*kd_z#qkXMYwZMCE!qbV6A(HNX^_o1>PYNhy3qRv&~LJ1rH$LKG^%cYS) zO&d>$3SN8&HP#Ed6HaGT4{d(u?sykTSTdZEBO#(dCxZs_V~E=*z&s3;5>P>wT4J>N z+^pa^=5?53`r|yL7IC-pLqejgeXX`8L09i{+4h~u3nM-O$Mw<$gNS}=e{9aDPI51` z;>l(_+GS~oLk)G=t=P{b)JGVjq-P&6eJz%-R`%xq3HgLzU7Slqg>nM{L;tcz0olwE zqde8-;Tnhki0_rfYj??G%gT&iCEZxt-H-(#y!po>Q5q3Nbe-9yT^?n6x0C)VK^4No zEI=DOK7yCKh?0?Lo?PODE#@f*Wjix9?|_YQqLHu&6P!IA@Wqq2BUS)*%~6@<1$5=O z-SPFB<)tZAN#5QYNbv)2zU8Ek<=l~US%UY1^=j}3wwP;p~TE!qgWSWr|#7(dAv~sPC2e68r(`Bq0}a+mimwPnT**Kra3&y4)2r>79J8|^R6tuVvLCYwsEOtr&u$2<(W=~RBf6GpB~Pl-tceE?#;tIcrLUC&xWuj zK4ERpUL*uxC-28>N@v6&^{Sdh_bHqkee#B+qvkPQmpm4rh3A*|k(pGvxk#FLZrBkD z4^H-j-6vaf)=vB^f0gAa^pTfldwzU_0*;&;>pd>~Pv?Pqd3ef>gthhUH0XU7%2T{n zzJF(J1Utyt;#t{QNm!X2V(VG+err($qj$TXUqI0@)LWD*k4=)q4vyS`56{tnjOVZ_ zn#-P!J+oXX-94Iax&CFDI%m#?uu$v-y|0)Ip$BUC%RHte3A&U*3o*s3Q(Gv>WU`a_ zQD-xLp%$<&lRtg>6j^g=rw-{>dVi?430}49h%+(7 zpYYJcO5<#L-oPrfXQ=#7&0&GQ&~Zb#W9J*7SyOq(y&xM>)->{!N)q5d&X&K=|21FO zhZXOgg9=x}Olo_GVg>|9ake1FHKzjl{V8`{&NmrAjUYhjtB#+O%JeJ_vVNw0zUBaW z1zG)oFuybT1+G4txZT#Q!b^L>Y;v_Bx)<-%ksV`;yf%P0y!lzO@zJ_!@sbXyE;Zz) zlKToCl*cga#%39x7nE8|l&EQr0g?5b9qUm=&0ZQQH>bh{)G=sKtr-j+>b zKxar@wlEA1i!fsRD?0%(>I8|ru<($fAf+XE)r5FB;JMo_-1kq>r^j;Ht{fJ+wT3o3WhK+PN1J*>dp5=wqP^kZLU;_d9*zRQa z)X9npLIt}~F<&%|U`u;2`8&PM&O%&)zoekI-XH+Bd83EYa!NJ^7m%*JdCwdEP=jkp zA(lq=GmjrFDG#OAkRj#leeP0HZ)Zl|E<{Mlb?yE6MCgv2#hpSW??5xW&H#-HrC0r& zwY53y&$@MMV(B(Wl6bTP@p2^ak?U`8SdP{|sl}6v-G$9aQA~IJ&Z{ijaXw><8GrAT z<~tejMlCVal|(S1`J!&zD#5e%-VBtkg-#L$*9}w@jH>FbM%V{ZXe~=BDs}=NwL_6N z*#5}sdk3iOx9HMa^E3CEDPLc&*TtW`JN=obVWX0jV&s$>((l2kdvq&F;QTt(V`Y0L zlq7oUS6yD{2}q<|)X+{Y{2=swo=p9ivSd2OdK&xP<7n%T$j)=+RrP1Zape;_phA*z ztCC=!I4tD}BX^mBH&X?9>PgQQ;C}97$0>JMw&U>~?cO06xS@Y+dYDc`1HISzD*Z0f zxOn(*ZXt=IL>xWO?}nMZ<{X&zucABWemqz?xko!Qy}NNZ=Wr`D@F~Id>}=I{?kO2U zrDreWkPsx`297`TULklHdZ3eq-vdZkR$^{ZwX&P!Nm|){3Pi6oSq;Tk&{;~0m?8r@ zIVah?FU*yp1)ZK!W_&WmlSJ6wij zlrp4?IlG@Dta6w*iH1G%Q$)v6F;Z{aaqSZDnZjCOq+M%CB}DLA`uWPQOX(rmk17n2 z@C?ZFVScCIU%e?vB+^Tdq#*Qs`}QQ=q6;2eso2bShR8>&LZ<^{AyZ-rUON?)?|I2W zM7-bQxwtMfIvuSCa5FxCb!;q6wO+_4^8_?kACSD-@`y1Pj5!L2j}rEUaKfLDhGYUq z|C5a~18dT6pP!a+_+RN)L*aSC#wd~zLUiU+i}XKDn$>Ec5U-6+iq*!Z=MDf{V`=K| z&Gg3lvP$pi?{yWZtjVB6%FjTP^UAp`^x<}khA{>@C!O=}Vvf4*cR6bmxIGifX{6%n z%4DN}pQq;Ae9W4q1R$(%FD8qA-g|k+20bB^E>@q}Xi&+#arcUG-W3$02aW1Mf5sa+ zSYf4*C7YwD&~iIo^@w3qk{6Wn>N}h>)*Z8&>tBA}`I4GeQvsaIH-!x;hj`IfZp4p& zkh`6{Xp|6aTZCVj_OqF~`u_F0`*xRO0+$iHa<01Hn}hp}3dmxe{jC79d1!F$<980o z`21Zz`sFGe$3K!1*I#sJ!$T~HRxFUw$kJ^N0s|TNlctluzLd9lUJK4udRQ!v-MHOV zJkqx%ieRFa_mT)>To%S~uN13w>CU_0DDWR#K3IZD)V}5Sb8aqU2K)M++0g^X!Kkk) zO#Tcr$a9DVhmwzXJ*1aT{PNwao4L3XpMF(XSRr0=##LhP6xv;Q-XKJwut6xmfhCWk z)YVhyX_H9*GU4rACY3dzG@Px57kTQOVO-KgMjP`L@i0G*H7CI@T`|B7(ds_9eQOs* zOx*QM;{U`7TxsmUeRlA}atZtmb5WbDie zy`z_cqOn30-(-;UI6pfumhR0re=WQ@UIY%j1m#v!`8U@wa1@nkfn`kw1UTIWYBFEL0X8JKPJ%#< zHTK&>NrgP`Db3|Tgd5_Pd|wWzZ=Ua|LLMhk^W^AAlXWHquA5Du73KJ*@Ehj+Q$nOk z2^vpb0{rmC#4Qc37y7a;rhj!gpHb-&v~vVD`5BV?TVfe_+cHP$bLMvcvT>EugwmMb z(^$v3z(W8tq#s;R{HOclrA8dHS^L`IoF<)un3u*&v6Ij0;i4E+grNdfqsC@lIMajZ zyic4ftTRz5g1DoIP{z5@DRW77I}5zfnDwcwl%=ZGrTg=!w@7g*5;PG zkG9hkCxG4O-AH~F`LB=n9?qLt&AoxSJ178V!3+N?`R){Fu%fTja3jLFvgoclx0Nis z#yvprNM&rfLWhd5jg%~^N;czrF*^DOc#ldBx39$9Pc^BYWcEo0f6sowk!tSyML4f( z`3_o?7t+z;_6WY<@mh`)&*vv^hJIYLKYh9emu#LS<*lYU(fo{Ijuu`B)Ru)e3N-XW zFet)|HKV22OU0i)I^i@|yq7#v4=>dIOy|1$S%puTc-te0=2Q$J&iLvKHJt7P8N6GC z)$9-s;n3HLRmv5Op}e=AKqZU-^(FXyV0{15$A?Cj3BdI4RfGik?H@2nTM>1Aia|p7 z^>)A>xm%7%&2}U^!190I`aNrYs}e^?gcRv`IM?fP>)~QFyD?!x7p1Xt2l5>>G5E7L zSDEb4X4hgwS!~B}-POyH>|~pMtA%lnZ5}FEo9lL$lLHoRh~v3Mz#SGtwo@_XaPLr% z{?gUG7kaoxzgUIRR$@4yFVQ)eBoUV}a>LDZnj+rNE6m|+HN=1z zmTwC!Vvn?qDtjXbxy74@gK07QK|9B0$(|xO%W;W=u%{L{Uo{0#HBdEW5xmk!pV}!F zFcBK2MLpaQ)Q|xfeF0RsE#aE-xm7kewSH;jL=h)m=RRlVXFifW$Tzhf<{Ad@{Yn#@ z3@OG5MdRapAjK%OM-&=jH?bY1XhjE<*3y1RxS zu#+Vw8m3ErEtdNh)Uugq90uA>zfZJH2tar%3_9aQpcK|16cXwnjNt8@19xzTK|XnB zZ82f#9-avC^iN<+Vl-Hl18`h8i7yg1_1NqsQYp8fP~D_>Ugt%?r26ed@-QEn4PWko zk2!Y?O}Daq@`PvIayG}1+(J%;!gzR#$IZ$dA)M<15Y4MKII~qMvfaSH-#0qp2G|@8 zIQS-kF@Lbk4Yz}J#b^C~NsmBjhR64F^Hw=TwiuQ-`XlQj#@vLwo<7=ign?aA56vN` zx=?2E?4dB?IIPH6GwTt-RaD&b>Uj0OU$iV>GeRW8(d!B$p?2LDz^T4mhF}gFO&VM9{kUtmE4yxpbDE(pkV`als~d$=Xe0ZK z;L@N$@L8DCPsEF>G;4S9TLVyHU47G&3?AwUSDM8j!#8Tn+g4_GuO?2>@duL!V?G^> zX+~@qc7_vXDSU0lcRYA;Olxpg$9)eO<1X{6^%W>qQ^tB3@;#G`=&lq6#ZiX|ONdFd zIew`#d?WRI`ebkpQQA>&Y@0trAh@*OQ1sA0=%>)O{rk$k41>^u-p$9X5j`r@AdqSsxFtHEV`zvhw5db-;EzSyyj8Z*yZ?Z zMyAphqRZ%(j+q0WlO=?Wmc;?V$R<4o^#{h;bT9IPM>_H(I3RAM*fai{r=2C4L48mfh2h-J}1lX_idKv#a)V`lxR+u4& zpAg>w2OK`-m9H(TRx}H6vir{Pb+)H{zIeD&svTS0s{rH;hDJPHxr6En!vbu0KEPkN zJCcQ+x0Z&q433^e8j6-~v9!kuNwenxVVqOyCBax9^XyJ~XQ{chh@p|zAI9NXdI$bD z2x0X*)dSB=C5ukbFmG$z*%edMm$eB;@+}3 z+2(g2DTOJIgQu(P)?z;Zj}(*&f`te;%#gZNa&r}uWAa|f;eNs)ns;k?n%2JT^m~fs zLI5TjQO77k*&);l00RQ%<3Yloxf3;pP>x0g%aUU!N+7u_)rtQ9dr>$qaZzqay7pYYg9@4;Dz4Q>vRlGz89i`$eq_0zA@l&-baaLYOH+CE+!=05ENevmnBS;^@miw*ZDr*shesn_S;e|y zN}X(kF`>%)_Ggb2Hbj?9MzWQK(Z_zkqG61C6H`k_0n$ZG_DlF?cz;quBk0c=eE$hO zJhg1wA$Vk3xIMc~I(1knEOImuG&O+1--yT!8FLKy^dvw3cs9&T|9 znIvV;WfmotMrj9eYgM`oTI7?&h`6-=i<3sY{vF&+rLTY-6rGFAK_wC911R_ zmC9^Ps+FVl`r9I6Nn~$L(gbZ7p>;qZ7T$!2DT}@Zs z4hZPt-3h)a*{lJW=c@)!kHd{I)(*=`gkM@(5iM`$9YOu659X_E225SYn(rwOPE>)p ziNnC|^3=%If^-TAa>&U?^dh*#cZ6`h*!QO+fw*vfAHEl{4<3UoK7L_wNyg4rGKOAD zv};?ZzPCxJxXt5(^&C09TZL~KTOhM(!~L)f^fHTNF!B%$i9LR1a^JfJqU=8SFYWr^}_ypYZUAx{yng4$w;7dzttIo`r>F_xSi2 z^I9U|$!#8|Q=A5w*gzz7Jfz9TvWe5GrSsNW>ihsoSZ&c3mfC*l1MUBWI(?s(T#Kl2 zjIj;iQ12lU=BU*>u+hXv8h#GP8v5FwFxVuxUk{W&s@0~HAMdb`e5hMW`K#poh<>-7 z97;}RB&`8Xc|ga%7oPVh(@FFy-&tu+FeGQF_%5SjOOv zythLq3rzYye~0I0A22o>V61&$IH2I;nXgq7-1-4e*!WuFn9|J>C@4pTs_wfPmz71rJM8_=i__pk@>9oo5u|JeVDh5UP(p` z!vn^vLu`S?S_H8``I^ZYzsqvhU4AdC@1#a67BWKYjU96ffGaI@?yyD)=%QSEFC=5# z-au{(O}_6!bDxysZ5o{F#b&YJk!V|@`G9XQm#F0*a)gutLPJ_4qMR`M93wu+s*D72 z5&B9*Ge2cF?(lm2TK-~-o3Sobem`b-=R$+=MS}sOn4$7SFdh@VoB3s*fwjtXeZNZm zfp|tayD@wJLn#thE;tra%cY92Mu2zY% z%fW7#(mToI>sgyD4Pus~4Jx(Z0V9fti#z)}8aR%un!l}K7eQq2)yF>6l|i??Vf*Bl zufLa|wA2K!BlbO2pu0lbF|fV)J@+3Y5Do_g0DXpDM=0ed9>?rNbea-xLm?Qa+f}r% z#{vQ}FM&$;qHB;cy*J}L=jUNkDfVk$R>%OqGAuzsTg%Lesx*{ir)L5qr{+KXzNU*N zwP8<){3SpL0!Y>`BBL?8hce+bY#1QBFYz5(jE5BZ0hnn}+~$fu^L=?95hy6%rbYI9 z=K~&N5mI>c%GocHoxucbu#E2(V9q^yUaXX%kj_s#F2?Q-NG*~{ip7SVuoxeQjZtY6 z>p&ipu0$Z~FJ}x@mG%TK)aY;9-;^gHB@U&$Twl+$;h4xvfVV^RI_3CXTY_CamAH_k zR4^e23V`VXZ60PJh^7FnI4m$x4D*LhGy?3wP^?edY-MDZ?(g=;D(fv?<(I<`qLDGn z6OWvW@$M`|^L}R8P^t>$P@U{1$NdMf@%JbYa0_|^Z0Gt1caSUAItSh4weQg=T!7i| zkj-d1AKZmZAiwIvi3H{cn+;570J|Aa5_%a$KxO|q?g_6+Vnaj>1v&b$ZI;S?86~Eo z(ilO~`rDxLu($G0VYx`5S0pRI^A~uESI+}At}uHY+dRDwD-tdw222Ev{z&W9Mn{-% zU15|@*E3IkdGn$!e$oE^c{4ykr{i`g^9%s`4u{Al2`m8p4o^33xBH8}qj@<7U0DRY zB?C0L@M3NGS*8HSgXQEdk0QCo1aMD#I(O~CFd4`R2?-Rj?7zg%;mTaqBZE-+yA9*5 zr)`S2FLH^mK&G8y7KJYZs70f~Ggwo_HjO`^KzQ?+bTCg(F0wo3_Jk7LD+lxa8U6^y z*FFEW744FrX>QL*KEAG$fKiI6eQ$Hw>_Sks6OC4Ihve(YPP6j@Qz(@z3+S#uq-)(# z!uttNn@@B_-D2GC?H{lh;ZA%>6vA@!^>bGJGV5p%^4EO(SM%ntqvsj|)cg6}hX}fj zcs!8EyLd0Kh&A;9>csJM)qE7owBKP0;L;l_W@Gs^Mq0(FL2_N?P&;!%Tzev#k zyB~RBgMHR^N#y#Q!T$4S!}#t05jwmDyh(?Z!F>NCQ`!G?u-_&7e;W(>)6xI$FY2v9>;L9_A`OodUk#!M@8B5-X>sT|MRuO3-+q3 z;|~X}VjG!HCX&CNE@1>uPfwSNW6J@z`hUF1zn?#56`?k3Ly~vB=P;9$$5xcdkJ{L7NE-d?IHf_k2mfk1BR1arHx+q z&I30BQHnv{k!JTUT-fJSt!xC9qPI!~;)Mdh zAT9?SZSqF1Li#_ai9#!QUS8fb$*8VsSt{@2M0g?e!{&q1|6;=W=l%J|tpff_i{}(Y zmI)~Re~D}U?W6q5r~3CF(G`Fx1pT1;Aou@%Fff(~%td5J`G)AvT=ZYOfB$+nz_|ZQ zgZ+oU3i}9uuhK5$yX}=`#H%4&Xcm%v# z-#b##85Q$Cf)3X=XhWjym_W*6M^Jmu#pXX=S)rMCn)1xWlhw8#b41j2$(69oX3YEzbJ)H|NfK25)#o z)P=)X4jTu^q18w5M(B&k2ddHya?b=WQeI~&$LwL%CpWTS_Cf;aZtt&OV`e?awr5Ny zTdAL2d<=@xcMGH~KOrZko2LJdUmpz?tm$O``AX-krF%pDi8(w>i@blAsmNtd@KkS_ zV5vWbbsBcQ#zN?gbDf8Nq)R znVOiOqCYW8^~%HK^So3|(g$5M%PYk-(hb1*}NRmyzkbsRz@O5qL*dtOaG}Ur_)dNZM;oKxLh$KczXx3su?KLVbMDJ?D#m4(qr-|OXLa5i z$Hu?v;a>lKi!FM57IL5bHd=J{nZDexN=NEW=nh}vx&XXy;={f5LRq$l6!6#3eHKjs z^H6y8%H}1x??tLtI$A9_Jl(jl%6&mX^kQEAGVUUXpcuN`=ZSc0xA}f-cg%C`sFzeR z8vNtw5~Ld@ph3BRP^a7E12&Mk_U)(e1SxpvLl}3vV1-4|iq)9|=+tD59gFz-v!t6l zp;R=>izzP4!2Ist7&X}YFFuaIE>!G#WR|O0g$E*D1_uxAzS988SEhOyV;q;|M;^vU zk8SmhW5vgB$%jogcc%srugWUwxM)Vn|yVbC+wYj zU+Cq2!mM1H$%0t^=HQ#Z0AbiMAN~zH*j4?er03V2<4Rpu}m$l~1vxFk)&d zRbz~$$nn88V7~rZ$GwqQC}M+0^R;r?_i(axO|xVu(iKXKdq09kT?&x(fzz1)sMkd| zrn>-%rO-&IUzri8*CUG>|&`q`&$);e72y3OO>fH>07h-c^&?q+z z2K?o(^8lUs#C;VF(Mx|Iy5`S(H}2yl($^1CKfsBQ-|${;3axA+2|PSJPtYdl#2oT~ zW?u{F3oiWpX{;Lb+dXs(7eW4fqw6!hUht-4KdOQX$zVt^GJDH&BjjuqI^3Z&L&n`l zs+Zut6smfkGY0gpahTXZ7k#7&0v;&f?{QA3oYhwwO>xy-`c9VV-Vfofnk=<0)$bE(-#{tRXBlXSku6$m!4AdA0wE!vqJgqe4KbB^kh$ zgg5qJ;7;#VG)=W4#-5+nmsbmAR=%F&U!^ebpNR561P^>;8y1^4-;$5lf|H{DDV~V} z=P3|2j}ZbvLsI&ZhgR~ z72QyN=s4{7DQXtl1?mZl$>J9c=K1VQ<2i)-O;douQsn*(!(%JW$}*Z+4Muc)Y&9-q zVu)66wLA7FDn-}YB;;pr+>hRPi2I4{KFx9F2GyAAv0S#I#N)^Ih}?$)K09-}>K0tq z6CXV;P8PRk+_G<+T<7xFQEabV9b;*m;lBM+8{A{0D2W7u)91N54ca$7R;ldB<(5|V^D2zi8ImDMi7_W^vr>bO}Pb zDSbVI@nQHT9QrCwrq5x}j#2+?)l<~T{bB7@chM7ne9eSkKp*fHkJ9h%FH5;!?zID_ zV$pW3;n{1DgkmDvk#}6-wr#s}))`4x)3jb%CBw3HY5zXk1p~y>&L=WBO*Q zH{$*LuPnwZ(e0rt>^a<IISJ7Y(*ix>j6EXdM$gK6C5omM!HsJPK_7qp9ygJ>o?>DZ68EG&A(91m41(Nfz2M|38iSwHb;d+D$}d^_o63*Qy^#+o$o z>81TseG%ih_8Pw?9SsZf+~n2XKe!JuE3Q$h=uMBa+1NQ;S`S{RG@Vcii=@O42X7Bo zpaIziAmyR~ufn?&3iBy@s8`>F-vL{-ja*EPr0^sWdg z=tR6gt!-*+NjwkZa7yn###{X0LhlTfxa+eHBNy3cy(S-*br;yoNiY#OJ_>MPEaP1E;_xf%_Wt95}% zFqvx|cP*L+#N4vtzcPOn>6OtDT;Nv$1uqb!o&6z77s|k+FF86pk2UeX8TOzjY|l|; zTXF`WoV3E7cz0+*q}Sc#-{FutC|jSg6oRb24Zb(WabS8y^EPBq_;NJ6Rhc3ANQy3* z_X1aFrj=`go19bc$Ld>#^RO!Sr=RaW0E;LDR#8iEd4*bF-}Y^{?CAJ-)UD?;lk+G3 zq$jp`T7qYH>KV;g6*2-D4WyZ(_P!=}WgH-&4r4c^cSmo)B?9@H?r|=mUOBh>u8`4n zEdPm$VvhRVbR}cLPD5(=7dd0OBZ%~f4TQPudv`eE%jmK%VCMUJvd08=)Ep}LkY=V@ zDvx9ovp3T^YWG5_7)Uh{X4X99HcU1i4NP(rO>}>A@C95O&(vU?<3ahKf7hd8YkPR1AJlnrss5Bs6?R8vfh7E*CuNGA;n~LKFGy(|R<=o* zb?WgzZrC?g`=9Hq_Utu1n(@uZ}GyC~nBgt>(PD*Eu?eAFCl#V3TtV zPqQ>LM_5SB2yCVJLPK9=-!VopratrA=Q-U-W5lQSmbSaP@Z6(~zAhoi8fHcQL-Atv zmKD5GM7>dzo7fu7np44HG<{q<3SujxC<_U)RSNP^al!iSw><;ZysIFL`6ZwgVn(~u zk%)7p5hd1eZ+Um;YzlC?y~|0Cnx$^wBE;M-r*RJ|K97X(#gaNIC%4@_pfW#yO!p@Q zXpd6&0iqMort{b9GUJCB^3E2Iyt>Ze3V)G$Id+@V^Kj;U7>{ppLP1X`_sh(PlWQRL zWWyocfIw9paeed*uFP!oRm6`=03DSX3CY`)o8UynCi}Q1D9ssMj&>lcEX<5dbV+#8p+^y2gK zBJq*8YuwK;K$7n}LC+gb5fsX*pW#k5<|ncgh>m#fBhp4;e+uT^x5sOoS+7qQaY;Wh zsd-T0T^g*`MV>@j(x8c>V5?`%>lu_JU~l}=8i4wXz6yoy50Okwnt0FC@`7AnFB*c? z#xq_Qb7Q*b6)p0YYPKSRUH3Y2eZAMCI(;8AZ0T3DO!LBKU^KMh0uB01tWSY?1ekE) zL)+}}T5(x>*=Qsf_1Ot++>ACW5!*8Z;!!odah#ap^tfux<|$o6%uRv}3Tcf#f-8Ox zAlw__E%oX{mH3cJy_I~eY{m0?!wRunsY73QxQw?|Nm|&xw){ms?Y{rSA0(zl6;Pv0|Kp0W0vE|>v2h=zV}nbf*-pc6l8Z{P{7j-(Pf6q zv)6Q~=6pr)dj{SOR}e$$AODd(+DX%hn0@R^H7;RCsIn|J4l?o$62$uoJL_`RFD$m(r*6{Ta18s*-bdv6aUyFN=)zd&!CNVO^^GWXvU zl=pnum4jr>u3@pB_Ce1FG9-=l8(sX~Xn~1W>v(k@G#~H(hF?6&1e5HNnyKTWp#Jh% z!38*Sf-N^)kJC?qTaZ*I8s|w&EG3APnNrMF71p|tKi_(K^!!iHoLNd2NHwdUgPy5q zTOc9zOjQ>nlXeV?)*&{CF3u2fb^8M^E20h^5{PBoi6XbJxA3wQbbnu<9{t?g;&luE z_(Fg)+hz!V=Bzb*eL@*FudKFMV|>MeRr}os5U2^ZMtcQD+za_NaN zbOzc{&!QS1ReOKHH5yXCDL7AY?!RgJMl1Vio_t~x*d|;zetgqv30&y#(Kl=4QOR%o zpwu3mG_WDMEGS1x%;C)ZZ&TGWW*`CEGZh`!nSmymzPNW}tMTx2d--Cf8Aw&L3s@n&lEo zA#UZ$(2DQ~n6*lV#4n7ySYUW(XvCr494y6Yh5QLh|(2l1)kQ&|P+ z^#MtaF+qi?eb6w29bx&s0dPhiJTtSk*k^w zPoiMb*GKmb!|K z&?7R(k?#sI&v5I*19QYD9=>)I$jqacLe?RR9Sh&0ua(dl%h&l{)AMQY@Ki11q&tnq zLs3Jqy{(y-tlg#={|CVRgO3S_)EFH|Mm-{#erBP??i!)AU~z&+EBWS37vvP zByQs`Fy;gA*6c}{ax*14kLD+(&_n~i5=0Qh9L4m^sQ1yvV(PU&504&3v|@oT_7?Br zkYM-x&1MzAj0{vGsUk4@=c|-kOw4B+Q+S-c(Mc_d$bW;3qrJo$I=6Y-ex>hj>2!BD zW|jTb$!wtz``Rb7SaxKb;9BLTr~Qe7xcKi4$62y39;lQv1LvmK6eHs?>)x}YASkheRt&-X$l(qUR?^tgth3oFZ9dL4j8QX!Y{2dD| z9c>rZ)*PtiZEfXAIlrKlE~~qOvNENS`8$ikKUJ|5^OaO{#f)&iITSD|cfY658_F`J zd85CsI*kh+cF@SygoM`LN(osRC}Dh`-kIG!eqcla0%zT=JpKkSjkIohu527(=6!j+O^FkG1q4E zV-AAkf+sDPmLLY#&HwRf?Hjen4_5SD5m{gexLYjtl=x*(Y!0t&c ztPkNTQN5>O-1P}Uh-RFR978Tp93g>{zJ{{v{+!fu#ML6Z@W&d9ecOe-8M3t2+;3%R zm85y^21F2kY~>{2HZJYbR}kpAhlg!(y2#)2?8v((viewHqkCEhYC%xyo>l}N;fCQI zZM?^dEyHnbg1CE9?bB!_d%Z_re;yBJ8$p;Bb5-~t-`PLSFZ!J!e^&%OH>fB0ePkra zbS(pXhO?2gc|`Xl{m5&CGLLo{@ims`Q-!t>^=Dz6Qul!5rft{uZPLa_mhWw9(Wd@> zTzSc!I@{D_OO>4WmaoITA9%Pfa=%=@e*%udHmke0ryF+i5d95xhGuIywLeO;LV>Li zR=!-&X}#k`c{X{Cx{3e3GAAiHzvo+LYs4L@={jdtJpP63U&W|fDhOcaA9@!)|9O>b zq8;Qy*c?wIr*)}6sIDpT+49Is4%wta))$}Gn?LCzm?U;KSVrI`=W9`Eun;Rh%#xd? z-A|{^yF8rm0Myw;B$$N)qI!X`2*j2ECVRiyaVySWsp~Ho0p2h^A!_)~wBlzmtmL1( zpPK41*JkEgeaZt_vh=c9jj5=(0LI!;l#rvszmP@OE5TvdJZi1KE9lQgQrG<;u)r3J z9)%Uf`44yQJ+=2Ivi1nLi_yvmr4n_1pH! z(AT7|GEMtYOndD~2exPXMx=X;h$8!^_SXnn+@6<}MS8{e)8*CP2xMwWMZsx&B{P4H z1eXVS>Rjgl#w#O7?AfqkTOUy1!jCA%l~|fZ$3<#zAiaCy?v6f2k1zNd|It<$&wJ$j7e{hu6TfQ7~FFvRE14!_V%yQh36HGMgJNp*ggk zy}u?A(RTd`1`i9BGHR`N+9CppI=O8wM5)TXM4>%zcolV&^R!dx!z6Y?isX0p-bjNY zO42#s9~l6JD?$-l@Cx~6qRgRddmgN1*IM7`yGRci+)(g6%f)QH*4ZlZ#E6Ex02_r8 zXnS08B?XVxM)0=;%*@X|bA5k~&i8tvw#t)FF3gMl35~Z9$njDLsmtc;RMR5c+(ABQ zF+>P&BteIpEHSYj&>cD==B8LnOMg>Y6aTdM>_rd}*D$=0yz!=A0V~bCX#*qE&m8Tk zsVN9httR!HDAIdePp)8ACb@JajFc6Vq!bZb75<#wTe{S~+ELlcm?f5)9uy3fF$Jnw zh^embL!?29p^DKxvA1h`CRU3UcVjT>|Jr`zg)(~&k@30Q+6pE-4tp{Ir8A_~DQv@* zDL71nxtvb!8_Uj-AcVkD&``e(N!PO)72MQqn z@@jQFh2OY8Hb6olV?8+;EC%a`gH61YuMTDLh{|J$sLTF_j@J& zJ>{-nuVZ+W)=$^qLL|MP+;PdOuc*gy0hY^`sATUpZJjbJvNd-WS3F%#4`~x?AL-ch zyL`o177yuKq)ngr1S1qaj(^1s1G7}dbpGcR_+{j-5N)@P|AxC!&GLl##@k# zt_lF{T~G!YnQOD^hacZYR6`1g4kSK+YFFl~6h0zOi(BbfL!!9%o|D^Q(fd z;zK8B+XE;w{4Fx@!^f;0*;vxgU+M(6DXx)cGw~$AR>0R?Ryyu&#n>Wr^RW;$0|{Z+ zWl@Tg@+_V4>!q?%*9UQ_FLRV zLdaaXzLtghxF_E<1(P<}Bs(sawgJt0wwjO*PTbg-)4~3GdNY^h>=#5Yu-{1TZ+o8Z z5G*5=$oF*JeHUIiPc5|@@{}-Jx8!wN1=e#4gRSW*`*Q>I0rtC>i#z0dO|Ay*@B2(( zHC&Jjd&u&!raEpqDy_-*m(~ov8y|)Z1kDHkvg~0aAt9kiDY^uHH|73X77z_`eO+I- z{Mi)iSR6%s=^`{IcFv8><;nI(ggr(Iwa2tlrd4(cTKG`GeJT`O7Qu#K&FTQ93s!^0 z+p>HRp(+MX?Q_HaP?YVv2hDZzo=aUFUWL20l?kvNDLexr9lTJ@a4RE&N!is^r6m7R z9anzwmbjNi#LtKGCquX!WBL9_bZXBR34%E_X^+GHYz@?tLD40YStx#F$uTzB*h0Q) z4a&RGpqfJmX|rikah}DlXAtITS2l8@AQTLaJfJO#m#vs@M2lZ&rs^ahili;zj@Hk) zVQch_k&lnGh@!1^z5c~9(MV{88optH8mYwQrhXdhw8SOmqZ3UME#DAc$6@ZPG|ka2 zrJR>!jv#;9bo9$z&kK*lPRAeiO>+TI%zWxGsS-oPySADX`4OqzkW!#QCDsx%tB~S# zIDI6O$ditk=%D)wkvnxm>}QL=8Oov^ z^aE!zkn-*dm?9ctZ^&VG6);=r%QhZt_!wK_<<}N z-gZOHkI?JKs=9=KEbdfko6f;~-SLXKg=-IMaS4e2>>1_Oc@QzS5PZ!$JLt|CR%gsaNsOx|3AY^MVIrT9gancnL-|lU!`Dg!fjwztPhE3o zGqj&)- zxK`vLGc5=^;J&5X1tM9!nQBLn3j2Tv$_{jRO7+xN&6u<|Nst_+zQ1?XnASlYPFH!;- zby>t8E2BN!aHi6Nq~(K@C0W4lclH)90*JeA`SK#*k<+H?W9wNG|6<+S{FCsUAbvKG zkSF5R&Gi*^HQ^X+O1eb}-^u5(Gq0zqR)wLx!Tsat;QsAN7U@0`o7X>rYu6V-nM~f6 zFG!BULWZ8yI(fLAK+T_PoQoVcxL(GwE5&r#*>K>SmJHD( z^O5W<1lP7qxCE0-?VNJ$m86FIehh5UK(;+xpmIOpT00QrZ|1KZ5plC?UrXKVs=lkV zbqe8*xRwI6DTdp;>lB z{Zh?PC?jdt;WP&0b2|+5CvtG#-u$=B}R@)en>6SXS=!ZJNps=6^0dqPXp`m`X#?|?0_T2rB@TVo6M?dV~+iiZx z$G89KMz_{_y|f^Q^$i0FQrh>*t!B)MCts|lCaKIN#c`VZk7b+r1}?sExCC97(?oD# zLZ;sID*5aC+A1pfO#!^l&se$6XZxDqtB9*9bvSShnYFrBc`gUIkf9&j1teSNXnC?bIl#&!Al#~WhX^;l# z?(SS5N*J^tEh!}}T>{eG4bt76-#qxb_q)&D=X~e<@m=3PUS7JMwPwwlxo76SfAPqB za`aJ*6_wK$HO&gsJ}NbiYu3TcJac$D2?Xd<)(Xf*iTFJYPgp9eD3+gk*2XM4GUO0o^4}u-S-GSTwjo;ODo5@oj)?7bwt(OC0QC-~%P{fZE2|~Irn*mk_x>18= zLT-DvaB^;q1mgq)Rum0jIR@fv3O*g_rfBIPE(JLry`_UBry4b$pTNsOuV=cZJeiGU zC|jKnRQptB@UHAGo+#xhF+AW4<)QvdcCVc1Gw_o#&zf-pwtiwfhYrBQF2R_OvMwae zPz?e*dM6b=5?9lS(r+Nk@mJUv6E;>Qt93%nn=hC z+CpnXDJIed-_q~z9-YuTv)~^CkYiJUPcqhLy)ptr!f59F_n5q;Hu){hpjepRBKlgW zLrsp26JFX|Fn^{1zUJ&;XkO873=&gpnY$CrK;r#d^7U2$Iegm^b9z0Cc6DaUF7VBz zuwJIMcnKn`o!Hdp>xBrp1H*b-?l}zD=k!xE6-`6TAqF-yVTTw3`c?96~iU-7n;G9`JBRMApAB;X>8oJjMuG= zUf51vg)u``9YLO7S-l`2n?q&1WHpr9!`ZMqo}r=2roZ|vj*mGohhwBa@_JMD{u_~( zXJW&8Y)f-Ubl5bCVTSyYnLtHXz#Z>VQMw~RHgV5H zB{B|$AQmv+Sm;TDW-8@qe2=vyO@W6E5hgK8w|*WV5aFz4seHRzWZac)^GZ{7?0`nJ zcf0O77;M4UX9oeaLATxq9{q(}w?=JZWo0GZX9r+yuX&@hOeutpWmv4~OJWiH>+2^m z>cJlz3>&j5EVz@(LHTT_%+&Xuzu_fEeJIhkl9OFx2RU)Zyn)f9d>CLTsZ^I4AcO2h ze_^!b7^#xJ{E;&TNLR#vz2w(oy>c7BB_Pp0TDiMR(qj8Gd!J8E9JjXE3jVa4I%aXv z#)}JMw6fk071tJ64=H87ga=e4E~m=ypI<=|9p(!r$a>0`0hk<_S#(Aw9Z}e9Zrecr z_g?l~iwdZ&QeWmG6)`|0wWu61Q6y%$E%&1KE4hICEn3OQUW3Cz*9RbMxo)n% ze@>MB>tmA68;*FXDB?2uO{PE^VNd*jdpdnj{rBA2q9n)2bL|}d3gRDuP zrAV%wL5jJO(Z(Wg|rsgZo~!m z;P)CS8hw(j&i|G1Z9L5tZwEE3%vWIV`)#6Z9;EP0XP1oGpc64!dC4+BSt62(W^S?K z9MER7l!`KxG9zs)jC}ax21f)&dJ0{rv{Bz@kUO3nbO{G23O(Seex_$`1Be>K^R9p& z$@LxMx7(r~tolo3@kz40(5b4;N@2M*xLRgXc{YTP)OC9_P4THFSpD9(4l&Qhb6Z1` zNI~SCxhW{L0&Mqga)K`@lhHg6`ov6!vOgu>FM%;mcJaq&m2`0A&NdLiW>GVgSB2?TbS+a4Gvt9gRStEzcud)y<$xNW9a2p9~}%rO&HzBE88HK z&fsxyQn}fFm5B<95uw5Tt7z*9&#>xr)huGz5qfuv zXzxd=g5W~?g6S!l$qiOaEe2)+;uI2+^u$-I>iBbKJoBOxbmoQv_JipiOHqJ})7~99 z^#>gd&fGM`Nrp#y&J-3E`Wy5xoU_=s*ifG&xWh6zaAt4}%HQ}7nNtR}`?tSyS*I(h(4=zX0+n| z9}!BKD3xVAJv}K6qSz`TJ|fuNw>_@EpT_(dqByeScRm3nDSj0RfrZ4#ni?<7c*YQX zKUj)YM0%^ey8eiaZ|5{x=YD#&#tJARo*irjVJvpU%>+up@<=!7f3VT`=U)jv_(TqU zKA+fDtJCwtI6_zV?(?C97jaq}6zRC#B_EZwjm_iu9hN%c|UAT*W`4x33*>2Z4WXHI<5}f2kb0cXJ>yh6K#!gT7!RsbWO(!m zJ^?qrfdA6ue?I?T{`uymgdLFx#7qpVfBPuICeq(t^1uIUQ$E14&5b09{rl7Yy|4b+ zSm6?w<_NQ(^&dO)|JCCF3I_l$FV6N?{@3lhneS1cjVV7{K0^Qb6aF`EhgSz16*>@k z!tc|;Kfn2Z^Ml_P^bvqImYkG7{`U_2pZGs>sv!BhyWW%fN8jv!^*G8`ur}VN;Qnib z{d=GPy{)kN=kJew0c>?1cwf3X{)Z9$_h0<^!SB!WObWEIZ*IQ%|JMCFFtks;P>Aeb z@%Mi>wtP*|X+91Q-dm?m9Y>NBzt92+W1~^KEQwP*stP{2qn(@LE8#6 zE+Il*ULLqG=wVv~>}GgwzQ9DXzNd$E@1Fg?a>yvVVJsLDxLeC>j~(itZ7aQx(XwNO zb=REi>?Sl(2H^UERfv1y|I&kCHUL-lcTGX+LHw@*Z{FDF69x=lPwHRV|GvfgZ)1Yy z2|P(%m>ntCIw7D29BQ%uWk2!Xf3<&(i5vcj2tvF&@v|Sq|I&j0x9L|P2)>~@u#64) zd(Zsq==kSz{xPWVXh4*s#Q4KN`k&&@-&){vhz?Aj&hkh+{%_HN60{Lneg_7@{rC6= zyZ?V2f4OpCP!GFwjT-!;+5gSY|K+Agpp6d#U$g#q&-#~(|LPj(fvy*ruSK;M&E$Xk zr2nDg{!0re#X%cIZh8LS=#l?6LjL3X|N9GwfHq>J%>L`h{#{V`_ly4wBef)9h4pnd z@X00!U5_?ME-o%YLGB?Zg;+~8B^R&Nr86^%z>F3Ok8b~}hK6<9kbiPc>p9uys{ z_UmnJ=;#7qt)o_B09)W-mILvn^Q;eiruMh&ziHk6Gk(CHKBra>vYVZ8$EY|IJg-46 zfBr{fKqYE04$cG3ay*ce zxo`xKMEzma&9W@?28oJNXae{wB?@;B7s)xC2d$rYwD9n|?Y0;3ng6Wu*jqr))2z_{ zX;Kg6DN_DI1L{$Po4k%qX$*>m9zD|_?|{GKc6RHU{7InBQs?vcDps~<2QhCD8`(b= z!PV_QiwVB>DjDYbYA3~oL4yQ4xvg)X0C+z7FGsgvbWIp1@oeTC`0fyvBgqM|Am!PN z`D0>UH$S9EDu1H+*`V5O|HZWjbhH7fe>S=RL_x4;J{@Vz_BiR-;3@xRy#QpFGmsaS z3NCzqyzqTPX$u_aTj2=etbj-xo1B~+84}pw*~HP41Qoky8b@~kV^(yLda+AHM9A2j0HdAeJ*ONfIw^KW~c|q?dU&;W`UBGXU>P2S zMapN*pCOxQ%6Vxl_E*3yWVYR!~$%J*ST#94@WsKZ6Rqh)G~XPoy!TUNTw-38CPS27)oEpIaHT2V9DgwqL-(rf4BU!CAdgYSr=XVap6(PwLbtr|r4% zV{dJzTO->-oRus$P;gyLgz&bOfdQ$c_R+r72Bd2wp%#!Z);%l9;w9__m8(a`Wix)P zrK2NOoys+u~yOU{apf0NY9hY+laPi<)lK&jN$%KYeOu&ppeLo+DmjZKxck&|5{tw)Gr$ zC;536+sN?Zc+z#sC=8 zM2jU^*cZW;S>+Z`(|!R22^uy$7T1PC4-E63zfb=Bsz-AIz*DVfYW#qLU#ewH|9zDj zyLq~(d^LEvPvi3aw@u{Pr-AommT@(wFaRq(&9zwTs=d6P1ALt)-}+5~FD^RKV007U zNHt18&n;i1Nsvu-X_V?GRX+9v8cm}U6RU#dw;%e$gwIU(12+QJZ(_Uf1)65HEB@Bj zR_HP)&!$4xS0_7-xM5)9g-6Egym7}{nVZ_UEA}lcI{^;wKt3p0xib^Tj_Ri5R4<7{ zF6b2mq)mQxP1LK$H&=Rz8lgk6wP&BbBRk{pVdaF{cASOC_UX~Jix04r)DZefPMork zTvGBmGl{ohJZ*Ipuy$~?oWZHP62yhNbbN3&$Fs1aRz)qHw=UdZh0!DDBh%^JEbXQF z{aasUlll$rv8gC#>i)o+XpL(PzJ4?P0{~$T?{qFcR2_1am%If%e5Dk!s9EJrX7#G< zDb-=!0z-JfG}B5=bgYxd%FEf40pNe|k`fZUB`+eU%&6?2nz|}2CUvF$&W9WRfnqiX z#;sP|ZB$%Xf@5R4Sk(yAHAnCv+;Q{A(2pbtuXF!c2IvMMa9dCM1Ox1LnF0>e7VbZFMRId?zunX7bkHC znNH#W^)LClUWB*nu!*7tRp$*dCUF*AMxlrqnICH;i2-0KHZ6OdBV9jfS_f27{nlQa zLht!zyd>5$kH>7roq@CvE7opBAva7k>T9=_oqBpK$FOk^L*V1o7b&_w5TNGU`@dE6 z0!@5D`6BDfD6Z}Pl8k^WB_g7%tn3R9+AKe#-Y=jXro*`;pg0+DoB5S4s0oD<==~OC z!7D}(70mw7b2qx7(oeNuZKmUi$7b>vB59pH#onFb6`jEciK5YHIiO_aEOE*{&O}NK z5*+-JR-K7$sK=FhbxC*Pq&;o%C6V>}W8Zp+Cx6?Iqs+X2vf z6zfCmxZOWmaPXJ}p;*%(ebEx($_=UqTba@#9ntwsuo`Da ze1-e%m`+N}DH^rad6ucc&e8#Qc@U>xW<5ntpxX<+t2U8RMC}Do^Wvw(iZW+In*-#$ zC-h!tj_#!~hB)EjkLcwR8epdKz%A?Ga!!ir(&Vv1mIL%#HwV6h0G98>xmxW_M)bbE zJVrCJdYEbaREnoyZ79b8kh<=$8KQxLqk%eo^E50R7U26H;4t(i%Ras=w_iqA*{pi= zosn{-JGK7aV6*K0VO-g${YI?!lZ+C-xOTJ!c?Jr}CC)4EfI_d|s*zDtV3>dV0_Bxw z+Jyvik@Sd1aWK%Ry)bT%vk(g=|LH>g0!3y+GP_hN{E6X?p;8O9P#*qMy!nOU2O3d- ztW1q%L?E0hio5_qq%Ggjolcb#ey?{TegXPta*Bs)aw}Kf0xS1&wTo3C%~DGer3b3A za?^WzmHyu*N`F=IwuDqU{>%)Ufl`Cox6HByUKTr>!Eot1yP)c|9^0i>&xYPO}TuV7cv%y{ydf3`bw^o(Yj@(>R&|#^QlKNxO z2;a!zZ?95%mUY%*jM)av$HIS#kPtBD_>i>~P~uOpP2}viBw)q)yK2|a6(s7DeM-3R zs&uqA1o`?2&ft)xgb;eB25(NJPS6Y3?)2XOkn{+jZJpWC7=fLD{KOL_BjND< zMHzy9L>MAoJhVQ&JWUSAgN^~vQ39&IB{dAkhqGpEg~Ao4e_%2#Y0*Zao? z^GVCX z9WrOCmgVUcdPntd`p+iyQHy=ay32$+4KlP@^g+y8rKI!TC-~njhM&c9n7z&?ICv$Q za+&-3L)wMM4&D3{GNG;4&RX5gJ|b=3QV4l3MK1VR4hT@58rMSPbkqx+XBHJwtH07Wh(x@XbHEo$2mQ!^ncQ zj==7Zx2Nw9sAclv8Sz@Rg!&ga5<(jmy36a=kgnc8g9YogB7Zt>GXRbJ!eBJOaFayP5)B4-l48WLU(6oze|}bcc8GxLIGjnq z*gQ^1LE&WJ9HPB2U9K0XZ1`eyP=c@#>AF>tP4QdH*Qvv^+S=N3Z-E7A?$z^79q+!5 z93>Sa2wCuwrc*`-9py{`8Gcd4&nP1n>vmTnC!zxsLqc`ZQsABbj_Bo!A(u$!tx31W zmcJ6$nD~zjH)9^@y-qy6H)btS-=nJIg$zLu8Pct>%^NBMn0Ye7MLsGIB8jN^R9o`U zDfB##V>4Bls@he;S~qa=J%kz$hM<<&qb`CH0Q^NoKCN~&a=ym`V^`wMAoyVKCIl zVy>DzQEsGSoq+Sjn_mW(Of3}G2D5KC8I*4WsQ{I5CP7hD$d8nWb&&YZ822 zm-V$d1;&=yV@sE6{H85Xvj)_k{cIXW{)8MgA7B(9mnegL7Q3FIlzb<y&$l|YlK{{wbA}@UPhymtR*0H+Dnyh zp)HcX__i~Voix9O7jlq6`P%t?k8!c2xVX4Yc@L`I7F!YgJn4gZb6%p9MFMJu{st|< zurt7kuu;r=^Yy;efLi=w{h#kLw_Z=&OcG%Zr0@ya=Z$-AkBe=*EGcGg>y+jBH1G@r zRJ9nWZq1+99i_aeLtf$Y!Yn12E`fKRh|;r zgojt~x<=`*Z?U;Qj5QFL;Egp#2K0Mg6fI(18sqV1@vaiwV&4uC>I3?%w&&~V*71@N z@V6V8m=*5<_zot_s^n|5YM?R=pRDoW+s(YYo#9NvY!ghb5PO2>r z^92zK)J*r|9}~=+p$4XIgBx59%tbBOHLRjzMZI2VHRLllX+q&i49l5XEs6s9)E9lc z1z7xGAA=I0G}d3g)g2Yc=4rq=gi!i;>cXHMbkL>^POvkS80LWSeJn6AECtw z<3DHwI#s{^NGl=1?$Gr}&_B8fRNUg#HGLx-2EQ zIOi4`-OlheXP(t$F2&Jme@a8B2=A8%ql}(rKVfOpx%VbkTCA#hOaKk*0}N#hnsaq} z)uynz;>Rwqr5oWw)86GN(?5D%l(p}jha!{a=7x-dO)?x2X=*=NQFj^a1g(w!K=gqj z>iql-r<%9fkx5F~`Rm;FQ8db|8i6;7?R70TKq&rNUj9m4=Vsx4wAB@NjSQFWWY4z2 z(%w^MJ)`p7M0MVOt+?zMk>C9SZF{LPmtbT_YhDCk1r zzL-YXp~6Nh6QnQ;L_F^7owF#hgk!IgJ;AdKBMwSP5k|Nb+S%T(UGvVf?P*=KuK|s} z*R!{*bj=VTe8apcel27vy6(*02iroDLC3>vlisw)qPNLKb+Ad|BeKvfWrKtLLp}=f znVhhS7DvY}r~s&R>UzxCqb8aH7vFi_jNwJtZtA!GQB#7C;a=2j#d+7FeAN6)5;z(> zaJKRJiBau-aL1#T{6nrXBXtD^ihi*-Ea`vES(44ZGP5mZIa5ejYwka|kTvkg`9Qq* zGCFq6-`M&nGIxG<_6tRja=qNj@QxQ;FPPtUM;kmqYEv!0$odlHlId_l6!)t2H3a;0 zQ?7k{c|Ah4cQ2u*Si?vHzHn zAf_-`lf z!rj@hI8{v)0Lxk$*5`alt{-re6DMWBhvr@|@@HuD>6}ECMeK+*pUsBe6u1CpP(9daJgHLq#$h z-eP8XL;eImwSJ`)o!)tERP$dv0q0p+EcNiz2>1tJ=+Zd! z{8t(Qgnw~YYNsb;z8U4?`kko7PLextwCZ0L_3j)$X2QKT<84@a%&g2a{_8YmAlN36q{99f4DgY*IB>hBQ$d)@>uYDWQ(2)#nMk&caDR6ysa- zZ{vdcr^uRGT24J_j;fBa7lKcKh&lnS?1zxJp%?Fze2W89ishuHj($LXsFfBZY=#Ac zEJZrE0w2Sl<}q-~u;Ht6qa|hL7;$Ezp<3}6D%!nl`${6l$PwB(qu0tSQS>g>mtlr#wW+UTJCWHX%$&^> zSeP`1bI&;cp@8Fah}kswBvJfMGlE6dxn4|ynnKIjwG&*vGEdq0@pj|b7>Tpx9*?EUkj6`=WKf{9{@nS^?@%CvsHHHghp1&>d%}pQBi&!@$YGyp#bse=QO+@ziCCAcImtDj{mG)vmbxw;MS%_% zUQeC1S!=SbU6Y7q-zNNW1#AF#F2k^%#$ZhE9z#U##b1s=EehpR+BUsxB8LXyRc)C| zFXa3~XR_8y1Gl!##`!PlPf=Pkuo8EE)u=`y`$WlmuTE?O^ z`0N{l+Fp-BiS-!U1COGtZr7apO`uz}`m-yR!}oq*%i!6PU`Ws|1%u9Tnj7Xx%|YYY z_Z(%3qWWCHrCE1GX97Ah?4QxjJ)?d{nL)a^; zknSC;@hBq?=m2|(NM7%yPLg=l8TxlQx`rVX&CkpzCR_KAZioqMg6S4P1jY~J)UfP@8ub4A;jC8YK?RlyK5wS zx^dV#3@o!7wL=^c%e1tOK$fMq1B!owenm%h+h(fr?Gc&Ki;0kNQSEycY&-L>azAUA zJpXhRjwRH8mm4SUQcO@Tn(Gm5-7%t#7qx;QNXz)NDM`g~G2i7v<8L7;HeS6~*F0R~ zaZC=9=H{08@q>a`GF0zBaz5s9edHcP`(ZOW=_b5E!UxD3o11;v$`4`LccH5jgGd)J zS#4{qfU-$SHLf*SIzYZf9_%SQVfq(815#B|c6-x5e?M{sa8!v1ny25wc^+qpS#4bG zQe$nu{PaUeetua6B=ku!O3pKxX)sfz4evg(4NVj_THBd6r&5H~8jmLp&8dd3ub`2} z!EF39eh?j1^3~tRF(Nu7@KQWuJQ3sld|%YP#B^Hv*lBOjjIJfgP$4GLEc$4SK550| zD&P;`VFE7{eTu^CAdCf-7Z4gBB;9J+O_6Q^RAV5Ia3bLOrWm>a=+p__zoAnPxix^w zh5Y*0HdCk=qGt>_iTWXgUr;)%400adRJ&2m1ZHzsmG3UyD$ilN``N+8ghNu0C+04Gv|Va!?9V$4-OA|`i*!~Lvu%ZzxnnJX=x$) zy`{PQ-s$6!(jH0@JLsna61+>7r}S)Ta`{5uN6-cjV5;4rQp;@lnzX_sj5~xoU%JUV zd$LP-KkC|J77m7bS3tST>JZLoq#J9_Q*X1s^lR`u7tP;WykKBi=fDr?o`eVC&WmFa zYmVPXcpoFQR*Fjkw1Y-mA*A%{kJ3HHou7TJCQ6fECO=&PoDM^-#mbwr0^W1TS2Z88 zV7GwYU3TJ4>?N`8LBr*fMIyD7-bog%{U-*t6Oz0u%U=_nBmSu2-1^-^Cnfgf^$K z)%Cx`8#%T>)>%yL{ZZMElOTD6=DD7_rS+mUg;!eS>s*%gAUS(b9;E$v5OUAijfpfT zeNptnWph~I8C)dNbE}y`#3{kkTcFljIT?d=_aD|zx*7<6DA)={@??)3mZU9}3EQYA zK&JW)bag6bLb#DttMR*DgzoF3nm=1%jacfrCv>3&rPBeVw_m_l*?=mGHu1g-K3JLL7-;^tFRCfncCh5PBffj)@z%NVatPIa4x6T3SnU3h?Y zg(IU;G6>JAU~<{;^SwKsWT}gzW79$q;q1bKp}h+2+JXeUtEdJh2Axl znVHa9BlyacOIK(204s?cXi{dIdyHrOpad+eD+J8t>mXQV$Y0V;z;LwetlY!dTCCF1 zcg!!XWb{ius%|cC23DfiU~($CbbBoAdmPX3NMCTcPaTl*$cp{YJl=bMW)`GtmD=0R zO$SO7rd`5-S8MSmjF?b%cDU0x3iV~GR|N~cIDGYeS1)e(4wqp;;neP56#)a^`0U69 zpiaI6wA~vU8xetItyo()E%hKK3CGI7*O03zc3{U9btf?N?r*XICwxVP$3ee9?%6RL z7isOgWmakxRsjwFLEHRLT=GwQ_f_dyGRfjKV6mqF5B?b7k3-czHhLZ&3JYve5~eKN zSNBd!tBM?B$==_zs%~p3NeqFKvM%tW37s{+Inu}z zh1z9%1O#Ui=sf)O-J4K5$DFdxaX)(ax9TJg-=Jqak zY{Gb*%r7!ur-8Fo+PRfA^p}~d9cyoyjSkVl83_z?iHZ$s2M8d?6+z|(uw=kk>20ai z#9F7F!&0ZnV*4kVydLD=QN;;9ze@0PdmhVuS}I-`9V;MH+nfO*u?1}fP4JhgKnn=1yse>B+4AiHtS&h5K_p?=|-ix)*&mX{c+ zgB8(v&E^vVMd=H_=TORG>Bk2{WyHXCYvNkAGeL{$P;8se;h`-FGLwujN&<^kE%afc z%({^$m3?oa`_$S59X)+~P{f_*pMTW70(XlRJ*8h&N#XJcHv)vW`RNMUus6y2piRmdv4Tl~+Ddi)FVsHgxt%*@AcEj@q3 zp|rY?w~@0#>&5c*!^mK9{gTZU|NJcmk* zCnpOZPEOG)90wMUWM;5ky29Y);`$U0=`{;BH&vJ~l5g${U61BUQT}>?t2W}KZ{vq9 z-b}&ZOB+&d9vqDGK)xDsEy1PtGaSlM{@CwLV`XT~=_m7-(S>dT0wM~Qu;?c*Sz}~? zSik`|^P!Ml6KX#?1$xiX0=-a@;lC=d9tZ@z1}t!`oFVM|gS^-sRrL%`d!y@U$1t=Y zIEnRVN{ELOJ;>8AY=(fsS}-CiZi;WLl?~$wBzDGXG*#uY{toEL&6i?qR5-2{wE@vQ zN7|UA#UK9wXEYE3Q5RIfm+H8*_j&HnHiMATG%Dk?Dx+!B zqS9+USUP#DI+@}gv7gt?aCdh`9G?oD7Ztm73$)ZJcZehU6al{zNzd=07c%#x+CPw_ zczHVSc)=t1cwUn`yhWq*fkQx}oE1Sxm;4kCtUSkKnqG-{UY;Ei+`47B?zfJW@+xD) zCj)(WFPH-fPZ-Ykgc$0z6nxdc-tg&Kl6|Q=TqRbO*|7L>p(jl6ith&rxCS0cpSD2% zr({)~@p^^oKz$-$PfT~mwo!)^iou%-V(GDa``S+`}&k>6%>{JTBSjF*Uf5Vp`6 zqX@L-SOA5Omihyqa1^zVa0&7r|5+f7R9ti9W#z3>8)%&0n{MT6g;!dKTuR`hJKE*9 zDB)UZF){IP?hR`rQLo5rVr|#^-f|6nH~+fD5X!GkV5U^z)2Uvib615?xA;=&LHrcX z%Cv(C*Uj&C(BMI!o&Y+@+#UT!9aF|Swf2keK9F*bM{Yb}3?ihD0y<`H&#qS?B+z59 zZgVXa9?n&_ilXQ`5ETWlHK$0Km4y>pXD7<@#3XUSroT1v#GGa9q4I|wMSDvMLUG3q z4vH!|7F2j70-t&?)vZdg5-P+*>qn5Eii&PVhsMfA`TOK!nrb;&T~wc+B`lpO39p;Y zRJ#pCQHw16z=*HGqcT%~=m@bIhGlpq5ae3F#Rq z7bx`)SvgiXBeM*r`S7XY?Orbt5}e!0$7GG@AFA-g0-W&7Esu>ip2P^41fw7E%-hpr zqh$kwmJ+LhSB%QJv-bCHQ{9ZhfBrH14FTL@Jt1}G<`#mo!o~RUPwbv{#|u0J6paWC z<5K60&KMdXke#x~7apO`8Bc8UduaVN2H=rA#eCo>XDXsK(W47B;U8dt(~r0wLiMU9 zTlDS`!UK$LG(5NkzT@zRBGJE8;ps8NeZVtm>*Km$|Li#*;RZYa$O!=c28?=| zOsYY!>5V5lyYs8j9?WXn4p%?ezx??@B10&h%-yyq<~S4QVD0CO;0@FGbDzP%%Mq13 zZ^nY8PrqW7Slvz6ivHEXl&^)st_BV6oo<5$n9qQFg@lSKB`z-hv_dnF@Xr(n-y#2Y zYdjA-ys)-AD&Z7cm(;mzS;YNlM${dIAi`=mxM;hN2n^`1g`k_YJ@;3l;oA|I;n|}_ zf)E+ei7~;)`NIAxHjR|O>|GrI zk&p(I%!7$^Jr7w`67)^}3S$2lY2*dq6>v{bT<2Elr7sj2Rdeo#l$kvQ*5t=cEY0O| zV8ng`2m@FbeF)k8;(~>P6Loox+X@(PTf`$JS*GJ@;Z$f;fs zmfW~r`=D8o?XLb;~1M;wGpOVmB0ZAq5m@7eNpLz;d&9j z;MUw_M8zS+;@e+t^p^q)OUkYK-H!Zuqlu$Uz4Jsq7nTht%^K4~SIn_umwa?f1}0?8 zTY))^)5r6gHSWrSYZG!AGD*MoCLvINi~dDjdyDh(D6UT-*R-#yln-Qt%RPwf{5I(_ zTl>g!bac+V50WQzsal--yoRr^$@gLaDw=vSFE)X}c1Cbj$Tn0u>9Jz%rMqK%65k}c zz(yAUgV6#UML4qt7w$UAlnCV(vh(&dkU>~kUM4<9T@FNZ{ak-_dA5JLq% zeA;r&tOxRNiy&LCkgN6>cQe_>#bWRP+y0kiW=W=sxa2~|+ywDDyy{n4D42|o4q!hI zeWrVnk*YQR>cUJw09U9|kr^{#qb@U@?yRygL|79@awF*NT2iozX`DBntN@1sQ_9(W z1OUwDo=Jj8LxGE^6iDHCUAb4(zhVA@eisZ7>Z_}(a9HK-nadk<+twAKT&EG!SA*w4#LEwRkJ-V5m=uQtv?vM^uYytbiLv=5tR12ZX9*p zE<`C>X^e~W4(rca$DBj!%>tNt4vTRm$!Lg$mW16fv@sy0wNt&=a4sogp@bo8=vRd- z+f{T@TIlJ|&Fs_D#i%XTI#TPQ^p0r5?L@dS;BL9HQRTM3{2nD8>)u&R9Bqg-2#7NPao3Ah|p&D{`LV9W%eezd9)HNrUQYf1Ry#*gyv% z@3EG&`|-rl5YBAws@Hn%%U)X)Ra!l+6FZRV0|#7jpq|mSo!yV_-n#&HcSpyGHq&-_ z7`{6Qysl~2%>!F?^+3>RvFthD;>J(BQ@1PU-JTecSXEY{#(e<|PyPS<;eX>PRk?p-F1{CReZ|%T@2$+u{;}wK-r4uaYny0U*SSlXjh` zRG*si8mG^@(swoO0?ii*Sw*9#ewPZM&+%A2lMT!2I zJV5Gm?%?dn=p}?t3Ab|fq)Onu z@#vU|ab*bU;U{3HrWQ^wwd6dpT}NS1N7)+9nuM;)!^GWnePWh}>`ij5p|&Fz-JP)T zUDe~w`5r$w>eFrg&NwAzyM>=U&d<-pvGG_=BTy3nlrD7vH^_}kQf;Bgh zp}t(=N5-9U|Ic!|g#^-u_jRDl?@Ve1!W^wV6=uUn{@C{< z0k(KCOpM%4`=jptpRP)BS*T?{8Jg&{9u>IOHFTQnkkO*KX>w101V6YBxxIsF~_ zwB<-%LT4OzPo%XpEAy+8Q0u8m2_V#vUVB=T4lh!7eO0BDuRUcgR*KY96>@+Ek5sLr zdzKAXMqKDVV&`Tv$(A+cQC+<|MWtSPSYX;rc^7<;*&u`u51(H{c_kLt9}d=qglq3! zes3$e6g|MLC;w~X5=x0wQmqcg!p7(nlcN07x>U2_+?eW?bVk__XmpZ6St>q<+o9AuC=!x3q?h&bC*v>y+sR! zUxB~IT7cTa6k&!feo*b{5ue$>nq6PuuRyCo)l^yzj=`u*^T98^)t5(A_}mriHBl9@ zY);u5+!P829ilQ~pGP9Y%#GQw&4TbyPMC^>ld>ADq=i4B*#wZgZO1JabT z!WF=I`;JM`sX@atj~e%)=&Bmm5ulvm`VDZtm0D+xc(Tx&-WTe->fcC#J zuilOu3?XWdj{b?c+|ls-eY$6by>*pxn(eOwCy>>`_UOXASx|cjdVP{Wis~KI{RGf` ziaht)==WAqL&p1cx&?-WRj}dC0D9M`;SGAx*oEw{h(B<6TuYa{0yw(Jw;UJ}WfYF^EA_f~;!g;$Zcmf%iS{RMRkL zP%cU%yT|9c5?bQ1hc01wB`1|DW*HmiHhqCyw3h@uqhCmWRBYkI{|%%_`U`#-SkuR> z+EE=b(~S@p3RR22j-sI5=d3#+r=(vZjvT|C8TLuO0G0q3WZ=@Y9eTi*2U1vV=i7Cx z(B)w?+5UiCb@-A4>dk>GxE`AjH8kB(qQZ3{QOwHk3 zJX$EJN=q%V9!Z~kGqnE8+`hfeqp*h9$4da5$hOszwD2if2g9WjY!5pk%?38uw4$G2 zj6u!U&{5R^#go>k5Db?``!7tM2+S1vRS)kE1?FscV7HR+T9&7A(~4^%!(rdy7|r1E zT!w7MgyWX09I;h{ExTtNj5=`*(znGZ-r<~;TcF~QM^5M0>7fS2m&FJ=WOz+f4D9z8 zi@5}y__n)gsOB%Ts+kf;Gibefcbj?6Ji@l41X5DXY0>c4xIMrvSH?|3CJp!U<;&3A znF0~>;Y|Di(XmSam45(WX73K}bf-6Sn7#*#7?{0o2(Kurm2*^5bi%8Tr#<>XGBlc& z{`)d-91vcU-D@J0Yh~}@r;ar)2YOjWK&c__aqE6wFgYxQPSfwa%8~3(H9}UefaX7U zo|xn_jXJ)3`qZYpCUh3_{@(t@=FzVtcE6HLZSmMxpD*z-{gqPzL?9~EUlIha+ogMa z#9Vczs9L%21Ed_&m1jhjJ8B&Nz7vw%iiZ&5`jf>5lrZnlcFIra5&Q zzP*1$?L54}qZha4s_2hJ(lE`Z4Xuo7wk-3-eMuH>NwMvj@zPO3Il6Azbd7MBab(k$ z&I4!=w?9XzV=c;FPn=$9Art9}UVv&;_QxS}A3+in`>OESJ_X3?my}pfjT;{W4qi3( ztyfjf-#}urtB|Az)^Y*l@XzQ(oTvv8*%Y<(0mMw<^;rXp&`STJ{ks48Zua{no1`vk zu?ewZdn2o$f(x0u673&cuD?0-;1u}wzz(tSWo%->8+)Atn^rqLYJ_luS6R;CKSTTf19`$+`X2uv~$8~aC(OJ~*61Et%N173o+a!6O zU*6$cmoS0&f0mdn?7J9vhmLaE2^a}(KI_4QKcHUQ7{LUAjrv!nMecw1M z3zu_u_pCV{6H7P#?j2uay0}!L2ca{&;jjZ11P70c-;3o9WHk%x?m3nA@@-cWrY8y* z7R||U#$3EAwPawIvE7hjt)bx!6ozGA@B;6_Gv{blMJ9P^VpP!WbCHIw(%mub+L||} zdVB7GL@q?%NS7b+OL17@QwmRdMH|N87kzJu2)2sz1U1-~Y)Tc@40$+}lLNfkKS8QG z>$D@%8SzZ&MdFuY>k6H34;$weQAn}g+e zTU9WZ@6Bk+SH%3;KZJs1*XlO!9snHhV~yLnF5A$w0x-L3F;BcnAI^zW%CsBqxqfUo zvfJCBjVWZT=SQHO9aS$g>7`5_stTSEtJ6_!PhH#}BhcfNT)K_TamOcP|F}s_$_^auPOrw8V0kV17rLv8EJ#@oH){gN=4uq+7_SK6}QkUA69Qh#ev+ z{7$OArj%uP(IfP3f3!FCki0OxZd~B<1Cx5?ps}s>&ZvQ2m4(}xkB_h-U2W(E#};Z^ zsG!#UOHs45{WVzcAR{1ru=jbu7O@7bl&O6lfI{#<=w2~jTE?_Cu?)}sZBBwjRv9Z%jZ z^|}n{1Ugh1iQ@%20k3Phv$vR6b{k*Sq4CdqWe}p^>cd5uyY8yY83vMh!HdQC&#{NTyTFi@9<}P80wOJqN~eN?v=T#i=M7>Z-7u7rA|>4=!q6!>l+xWp!*`8)Ki~Vj z-yiV(;&E)<=*)dz*BR?v=UM|lrPw;2Ift~slGHAIjwfwtE6xD5^>q>BelR8MR!8*) ze`KOwrMIr{xqGKpT6PB#Ww&E?8DxaYWHay*t9bLEddERzPFn0 zq8g#b=R%L_z$^s%NJWP_Zt?s$4fwELmYcK=56y3P1xxUiY<8Y$gF_FmRudSvbBd@T-KMKv(QMVz~Y z+GzCVxQNaN%z*_3Rx#y6o078vqsD1CZayf|LdZrs@gC<0C*mz7U6UppEsQR+Jkop6 zmcUR3&BbzR&wo?==5XKaUbSEN=c{C^LIyj}0!+!WVvYMGx!B=DfGWr zb?S=Ybs4>ni0VmdJnNL?qvmElrWK6%(^nBsMZ;HxdbeN*z~uPIMvsJaXLx4%9v&~n5f#RSWbH$3^!J!_Y?V09syx2avJp(Cp zsu2C2IcvA3l{%_bCL{m&B%s54Zu=EoXEYuup+Q92qHXlf)yl3l+iwaVkj4zxRuxBO zjmV{&`0+Q9RfEl9iJ2LEiky5|;C;!usTgRN$PkU!3QND~@d&D2de_-p*rAkfn0s18#D)SgGgXt*g0A-p)~Lu537~Row7Zi*#)xP@9T-Gy-vMas3&u7YHvP7YD@RN zyLxjzOWP}=#zFQ!PA{_HbqOAqnO%0--2@;FJo063Unh$D=?!GkU+#?>JxK z%@r)Cj;6;Dcsos;_=Pi7tWVeqVui|sl@Ku z1l>)Po{1QRt`3{6maUYSt!at)ioPr{C6W?RF6G}6j_xkAL|bWZeC_BiNE8;l?fSIe zQp6b@lBnqIZNq6?VXl2TW36LTxMhfhOMnjuVIZBK`qFvM7S18ft!E0Cq4=qxtt@9_ z$!WgeMFo7lqTlGFGlFKrV!x*~T}FZ}&EQrkpt^gz=rC?c%)MN~yU>KN11No#c~$$h z5O~h@Tq^#26y$(=Z9vp`(l(!C7i`VI$-b6;VNRl8je1#P)#z_|9Ek@yA>%CzJ9}5%$6%qimGLzfyA1ZaDE+*(Q7f}AMsL=3 zY)W|B9N+Ar1+DWF?WB@xm_y!#i?^?Q-L@mD^`gr#MIv(}PV-fPK@;@1461uPI}w_c zPKJSAfLEL&Z{d6)6yGxoeTRFY=e6>*R6ER-+8MI|E9yr+2yZYEuI z3cH(*zci{0KgB_jIQYwD;eKj%3+8vPyfId&RG!9uo6}B_x`s)HYa{f6fw0{PLdc z6wI@zS>iHl-TihM8Mt&yQN6p z_4kh_`U%(PC{YFz?1D`7c(vZk)1t{L%4LReG?{Tq+~-R`Bc0FMlrY^}sHc;+?9gjFP#Vr*rX0qHEsIbybFdIEz^4# z`~-t^`p7d$w(T$|Mg4U5uey#$zO5L*$1|;_^e6gey!77)P`^`j=%ork6E4eS0-E%} z;p3~+6SIt=PZ@wpY&tGu>d0>5br>y{%d#5B_o_`J;5}pWKDh_dt7vZxz9~!ib#vJ7 zbdJn&@N2Q+>y%ByB)J;Dw(iDtFA|q~dWANbC^_>5K!V8%?l^Nk*|+S7;fVH;u*!_N z_kvIK!z;{y5G#O?=_x3ty+;59+qSy?<;xdLtZ<~c)@)W-u+(tVF$YH-uE_&Ewg zfW4-UMvfBq#p0nY*x!)p%CyX8S<2QCx=a=yhwiVA{l1(ZW|&IR-lP5ZXOEboac{NVzy&_U_d5RA)-9TgTfVXks`eb!~ZMX6j-y&VI5?v8H~~04TsP>1wT` z?B#-|jW995-+$>U2DF9ZO7%-jgDeQrCMilGRi3vQ^v z_hWqKS<3R4&Jo&%4^q_naj>zCapyR-7ni0qA@ck0-gZtN5SpGyVVA%Uci3Gu8#N0x z1mZF94MSdp(O_nXFHJjpO2Xd`l`SA4j8laE$AU6+`KAQw!NUUd+o=UF76nwIa@Xz`xKw>fIv^&umbAQ9_CO50xUpxTZj~Oa< z!@4S}`}!}15L<P*Flu89otum}zlSgq)?OT_tZ_izPRCUGb~YT(9XgMn+ZAPWn)4(HTLY%M+cpqMA5 z-ah6iRWsE#OiU7HIZ~EuAP6u)(*>zKNZ%G7Z&_BDZ9ftx>UxhOLaNc1e(EycpjOSR z?gUXlQAFba)t6xbAbU-+VW+GNVL z9R2>lE4l`(cIN}hB)^}!Z77NM-nvsliMcK$*xc5oHfygv=W1m&Y7adCG!K=q<6lyB z#y<0^%;maDAjK+GH~o^K=vl&SnnhJ92POym!;u3O)`xb9!caq(nl*V?+^koft6n9l zYLb_f+6umSS3XSX{3KjXUY4~xGK{PPEs?lxb`zMBxZ&P3+$50r6 zCxde^Xk)A4v~UUMVNrd44W> zhj4H+ja6eSk0Pq*k?)-&Hk`undRE+s@TsTVP?oAWHwpd4I}0H?c^K0d;I<(tEqMGC7*e(i}uOfQThN@O3s9Yr8SfdZU06(tv-)f#?sgoi+ulq zlu;<)5&!%Lu>dLUo{-|@3cGAW@YBIIMBfXuU9?7fQ!-z-5d7KN;^|O*I|q!0@>`ef z8*b1i4Ekq=PeVo;34`|v5q71ns0xR?GX0j+dhCkqvvm>Y^_u4}vkCdF#+w_1w!cYz zmO|ssSD_0l_0z0kc!b=RliY{jr)CC>H+^f1|~HS`8FK82QiuHcsEhdJM3&L<#7FIXpUP?A&NzD z{pej-iqGEEVTtq7eX)_}CG+RpMt;9ccL#(l2Tf6IJyS^!=R|4cersor*Rlo7*Yq^6YEAg1)rQmF3&mrz-blHH|0rmWHN{5?ISt{i(W z%Yw$^Z%_iK`RKiLID^D|7f&NtHOX!lp7FWM({N;5c0b>KrlAC=5pYO!!X z7;9@uZi~Z)RV4OaM|R_#WC}bIMLa_efaxtq%Ll*vf>zLTcdnW>5vB)EC(6Um zS`hH%{4Z<$l~yT|$6wpHTSq&0Ky^T5*dfWHF0cm2Y^scZf0db10fbq{OdkZquG(h4<;_x-@-#oocl>E?H z5nf38ofT@p2~P_i?B$4Ni&Rc|>@6*tnCNq`u>CtdI%d<{dY~?m$f7Hu;|zaS<-L1%U7$O-sLY|A9{p4|J&=p zw&O%J{8uUEq@>3dnhUCAGr`B)1aLq+LjC=W1c0`+Cs2aU0=hiuIHI>6>n$kC$Md;hAT=uhY2|%Rv?49Shha5$-d7dM*`ly>7&Uu3b4v zzuHA392=8*!%m!z9vlM^V6*NqN7&VVj&bXfm4^sYItlv*7Ti$4ktj z?mQt#6m|V}tijrtr>gT8?;^(ySh-w}&E-6t7&L_Q4ND{)^FzwtsCvx!&&9RwNM+S; zaS!6^JnPyxcNfYGov85 zX4u%{$A#@QlysSMPY^xFP0hHwC>|+PkTZ}8iz{lRWd*#9dq7yKY_uF0z-#hJmW%Ih zw+tR;kU_HiQV`gz=&(9ZIxFq;?Ku9pwD9-aVqSH)bb)TU>H1jl?xb^H$5oy>roF|U zXkhfH@a6G4eZ!w|+luYM`GZ3oVpOQ^2<}?L=zzq5FBNmP!tHV$X-L&8ZS<(iZ z2MW!8AW?i=h}!xsDzq%0#<6jORVZzS9g0+>zwz$3TAKTI$5pUbVk8#vr8HG3iA!3i z6n-$a_KVL{%xzPEVjzgcy>JrDJbYeT#?5^j61{4>R5%5bIB5K1P7rW*=7f5bTqP=r ztZu{s(uVOqu%YN$p1v)6`-iu2b~wM=O^FV0@qt!3Y=+Wt-{WR~QyTE~NpQl3a%>gf zfbQ`V>AmH6$}idT3wJctUIEHU#eBS5w#&+3woh{=p6ga+VhP2`&hw%a3~>|>53hZ^ z)I6)?_(!B0gkM9NbeGeeu6{}J+}SLGdYD+T^xHcYd6-h&BqdiA3E+A#pQ>1bG5V@Z z$&EbFDBi|bOBLs+?e+*(gUUK>+jNcjI_}*sJOxakLC}8b{WwPzHAWFH81#7!_e~)L z^#b3Pg`VtQy*)d(+=3}Bz8?#(^?zxJ>g}E#?VivTO{I3mmfZU}875J$E-kfZ0lSze zxArz#TH(bRpz7Z#pcivf0Hrsp>?f*$Nz|V3XprXys}ziR2buY(@)>A%T({^X1R9Alen-Cvb!uF4ePt%) z&53}CbXTu{5=f3ehyNKYf6S5&UVS%7fMuo_uY`EcVNrTc)tAH?XKw5cf^E|wzKir2 zCBeI!T)HfIs<586P}*uRAE=EK_jFpB$bw2$5aP07i7qFINL~K3hX}umk-^=Q&;L?Q zq<`G#mu>)5mUaitk^Ln5hR7GN(=oxH4;XScRE(-SAU)R zj5(e~F?kGiKj;EO@Fg;Q)%q!RWVVWE6|llXB!i+SFDj>B z@29v=L&boIE!06vX_G%rb`X4`U+ts_o^h7P&L1M&z&shO0B~8b7?-d<&o9=##SBHi zXmPXX;g8a&&DCorH?84a!P>3Sllwp+Esekair%PuyCp&z@5uA8=XL=uzApO1pw#cJ zB7(=yz6jM3ZTV<36(4gwQH&&XhBR{&U?kAJ#du0{9z|!(Kgvcqiiu~)*tA1D zr;KV9JciHyjg5^Gr`bJ8W-BENcKoVF)lRZ z+fpBKOBvc-hk|Mgk@g^5AW8|oe^iQ)B9Kk`?`$kDa~a{YYwcqxEwLlTcHLy7!JUHo)U{f01iH}0^l7{&X+q6fIpFbd=pp`R=$1z9_B(&$oMY~ zfw?P1WG zHw3zlY!{9O*(EL-7-U!eWmbb9C0AJYXy%WLtU^P#>_bv1O{f#TH0X_cR zvu&Js?7O%e@x4E=ui!|?VV)}op^87&=Lf`w@y#rNy6uah?$1bMApiMW-x7gOCf9s5 zzL^#09+5hD;9Irk`?um9mvK4pAAmRYBR)V6o0Hi85d4qxzK0c115jpDf9!pRpN|U+2B#`M9rOL6{^eUI^n`tQ$py?K?%Fyh|L?0 zK%&ZG!S)xv)L5^BTQqMJB@~B4LMs?qbFkVq&!K7J$PW#H+8C^5Fau^lszDmi4mdsIA)g@xab40oHD-?$GvWSK`9mhwJOJT0#=J@UuwM*P=VXwdHKMN(A56F z{_VQwvu!;|Q7pWB&+GQl1GaeLk7v)xB%=U3wQ2)!2Ni$z^{Epd-;9B)CMgZ1%TC&L z5rZM%gRnWJcV_=}I+@6C2k607RIan~U8b=MeRyqz_cjuG!EDX!`7n7ll5Q*uvcCPbo6 z8`LhCIgvMyf9hRwl7QLSSEn?WKxJ`Y3<_4I*j5V&zR5F@cDQ$VhFQ_eHC^*MPxTT2IPqbRb$6K}0R8{qNA3Lb`Y zV@7zFLSvnC^by zS?zy;>g}tIpON8NYe+M)TY)ZiyW9_SyOMZ>aT9?ZP<%uL`LWghD5m=bnDKxCsssyL z8z*G0N+ZaJCe4%i@O6Pb(RL!Ta+6J)vReA_iRY;GFmD}bQ9k;8$fgl>F?Pq~c~Id- zJ}DkC$2&?IF}KT-H&mGYwc@nX{%l;_sm#}uTU+kz);hH`7K9~@r6}|0xvF65zYA`g z-f0I*2A3Ndp8p209|u($t)GOjESADj(gR-t`v%ehZ5izxz*UmZrOsEat8TSQ1=7=Byl-ppaCj%;MR~a9%v*vN@>} z1zVUyaNdo(16na6l}k3JNm+cOE0K&#wxwj3`ZSql2R{bOJ~hs_$G|4t>K=h;qfcbo z9Wh{w{!?MA+XZ0pOoLN%)0vC&-Ia*G1zvu`C@vj7?GMKP6V9Y@ZuIws0K2Hrif~Ktg<#dtZM7qLX)Ieoe04^D!|m5f^*3Oo)#w51XvJvCyQtTNo97R)m$7P z0p4LWsP$1aPiWh{m;3J|in$ls2qm5aumE;fE+hibDp{99qz72w&R}Yx5fH5X*z7m# za3vHsJSF-|^hoFT4(lwX0sX;ruREUkj{#3Bif65UKW@ktkD*E$XftM>Yi?v-HbIYs zZqNO0k+*?;CY9hd&)%UU#SKI|W-=p* z2rz4XyY`{V4#&J+O?m287=+|taH^fYV zB~^N$XO>c28O&@m@(u4FSNs%7TdUiJF=k!b3Hxy2o^tBQ#U8{&!&@=Sx5B!(E4gt1@O_N`rO0)-cN;Z;RAqF4G$&DE12 zp;8d&F#rpyDeYqlMhny|kZ5`XC>?O=mMH*1Oc+1B`+LA+ipsz3`>Zk!k01{ZzZU*S zg3~H%gr~YGRheIu7PtLy~FP*DH6(Phi*{0Vzf1r$m>gV)E(HTg38ULo!D?dHoI5Xbs?iQkmt zxyZIshee12UfM;!SF2| zwZxChOsM)kK+t-0{1L^Hgn++UC6VEPR=LuRr5ES}|3`tcgpJe3GkWg$WpCfURR~Y5 zw;>PP3sa7}Uv7UedAIS_rklS!F68c&$Rj4`z;1lHvSgGgTMFm1cy$R_%BKMRSJ;xY z@2uEBwG^Zsk8+(}1XbA1Z&Xgl00j5F-j>IlkHL~Eq8yNxZ-maem5D%ovAj|tu?>vA z%Wl%j%6avN&GJsaf8ZnS(8qm>(Ho_`T)!k`xE9iJgD`;EKFn(91%&lff1g|b!#`_{ z4m0=y{_=qk@V>hv>feum;{f6w@c&N7Wjr|l@|auZx80FHx7K^GPP0h z*pL1)NhL`Lu)U1aL?(F`hm?)ej`+t=+<)GXGHe9VciT)S2| zxwBZi72Mf$k){C3I=bK=5=gh?*5igMT4a#z4mnD4ae`mmwO+p8*Wh$jWIiWf0KWID1SF1`iVw7*-zXfaOw%NQue0Ai2KOtwWv;t#q<0wCdd^#%wp-o9vkdx9jfYh=njFi~&{g-T2+NAN<@8)-7IbpZ^-HyFC z#gk-#{bRu{sz|C9^vr>&LWxkr?Y+Pas20vO$YUi)IS`Tv1;N=)X2iA-Hj-I3pX8U+ z)~9NElyF7B6gM$Iey^Y%9iHCtlhm;3j7>8o%z~Hk? z16O*uaOziP&I-oZl}o&_-B;R0)r|WO&$n(IJ5CFovd3^{a8rzQftBt!rcfPwM5VvnU+~t%Pc-&mW@bot&>U-c_bZO_*w`F&i1 z-vcCR9)qTsqd|FvZJKdm=Qt7q;%RD0Y`LFv_=zlcPF@Z{5l6!Xwt)d>47r?&-R@|p z>@C~hW4s3zuG@hb&N>#L#3EU>dy`*lmwWZ-p6Y5ci4jNuOLi_qEWDrtoO6**Xn`*) z4|p3f7rLDq4hi=qyNaRIz~WryX&28s+dTd$m-99IIx|hacpmNhHYpALW$l6Qec*x6 zx5P)cQ^sSPIYf8<5{PFYU!E3uA4|rCu6VNe6VKUM^^MO@t4qulf`30@%_CxRvO^fx zqPnJR;TeDh#x-TQyjmwZxn|@?&yyh+R>diutGcE&2-w%?Co}Cua;QYpUa{T>f!efZ z8MvC15F-y*)2OdMDMqQ&&h9rOeS6lMmW-*+GUS6SXY3CBFQLDy`{L{Y0l0({B}u?4 zwcdP@QQP-d)GNSNiUq5v;~KAeGL9BL<(U*?=t$czZ0?m8IW7#RRaDpSK}Awb{3;Ln z5mU&!^&$Qy=4Q*8<$N}~y1BYs@nsKm0#>!#c`P+x!7fr-V1ergWrCP}YQ06uS+o>% z6tjY0h2)TYF3HA6{e7${9TRI7JqV#<%5MUB;c?8PuM*`*Za>ue;4NvdQD&XE>k0M6 z&39a!x-VzN*K}Cd8^(j?d5jmaq^e}zGq(P%6`WZ5yxbS1*_pyLK>|-o3{m{*mF~mb zx7#x~&s5_&qq5JupX&mS*?K}aK}R1#LVh2rF({{TFX0-7_6Hm&tIK?JrKLYp@liJV z(H=gj>Q)qW8~XbC$;#vbzSuK0He=V7dA~M4pODg@W|#Wa-~aNnFyMpstDhe!vXxpX z#NOxV_@|?$y|*NeLC#VgA6;-`{;Wovi2;6jDHJSW;xWrd`M$|Bl}0$(D$$Vdka=g8 z$tJSZ&af8tVUedSe16e>>7Nst#jLzQ77Y?$nU5Dt)NTCLzOA3oHRmm*)|*h0yU%5*%8* zXIjcGUm!#1nAFr=vYr3H2c*r4p?oP@mE&mawEgl#SGun9^|+B@bvVHQz!lxKx5MqU zM}DdL)E`>A#cwq--hBk?3a=e$`W58<;v_$vqjm6W^G0)>DxCV&&um=r30iTj%f?y8 zoX}N7i1c31tF$~5Ff)i?(jXTA9uG=S zSG(_GQhNkB{$Qrc{Q_(1$YNha`&skGeECT1Pbu?xj!@M{m)42(YsJ4vBn^xglt&$*ywtw*ZBiCHq0UwS!n=QcIuBCJkOP6P zGbVLVtLK{kL$H`LzMjv=javbqn)trq>R_`rg33)2RDSBBE0+@@p}V;Ts=&<&gT^M8 zVQMaYi<_gs62fV*{kIiml3ge7*83g5pZZN_SSN@W-197aZ7JdfoxHIj6=&5$6Lw@pSlf|N zg31vL(96Qha-+ucA5S4-8_mfhQMe@lSr<2y?(!VGE)+RV_BErrEtx}5DLTJhaopuOJf>LtU*Gs@Q*zRsa2)^8JZFH1POvmAyCe*H z>88Avu_he~dT+dImP%IV_}SbwH2%AZvq@ap`*9=cmrlR5oqqqpPjVZtrc0Fg9(+kB z?lN}YRq*Me@t#94Xf0pOEV)L*P{qXrYxC$XZlE7g7N{JyK#_Jg54rkPxhU}I&F)!! zf@o6IfJ@U;O>JwU3Q7A0)&kWE<`l@48ughGxpN?r?dvQ_Q1o|FxLMQ$*xMUKYY9Bz z#zXsun8}qb$9MO}WcJ*W`S70Kb*3}thJ)%gK>%6e61h%D_?!IMjVg}?L^r_P7W1cg z((1QA3gka$`c_*)54bNM{o$t^7H?!g|H7dzaXfF3RYQg-#l^ z6rQ*FCA*JYlL!m4@mgmns#~v{2(w?o;a*x0KfX697g?v6xa;=4PObk_zQk9@xUXoQ zl7`a%3={qszJdUPg8od~M41!^43-Cqn`WR(16af5ml&lKA)yZ@Mr4%zxxoT>bvmO95>EqI7#zTbDou*B`J{%mO_Gmd!U($T)Qy z?ir7Br#upT{U@yizA^EAZMw=a+P45#2EocMsw&kFT|2k==mJ#N2(W$8#}5WRkmB6n z)O!9cfvV?#p^(!LzTIAJiLmbZnxVSZC7-j>Ku9*7Y8y9<$2gT|))O^MfVF{QEajnU zArZBdz|P6038&`PVa8zB)q9Jm4{}&H*&~eZ0Zm-~2gAIKv@P^4mX~7<*W4$s_y%tj zk28Y$8ziJf5Fb)X#MbiD#)Oc(g+|rns3*mLbzS@^sw^di!&7Qw!K8_neEV4dSdQ!% zH43d;TixGU0&}jZ^2y?+Fu}s-pPOuL`lo994`_^jaN z8TZyEra*DrukqZ2?+z~)$twFoB7|6$)urRvDu@bdc+#@ahV~FF6hk@T>oRq7BgGOm z#t9R$tC5f#?lvWM8VzF*g8_TF@7PL@9_6TF4bxP+?xA0X!rQ}aof9VJe$Gz+biXwA z_FezGIgV0nE$b98qi!5YjSx2#AKcy~jkzk@bb%Nf2j32 zF4=G%dt*^oiNh372j5ZyS@x&d;U|ZFS~5oDn!C4Qf54hCD=|e*l)xA2$229pY?Xz}m}+Tof!eigYh zg$vE^eR&@fQ**J0k9b2rQy;I5

|B_hE?c4zyK4oyS87P>jpSG?0_~ffK-t>e~t6 zv`-a}w56VN6&?Fk;c9*Q5U5MiHw{XEUf|S1Ac@Btd_QoLp^-;MbKI0qL&W;R{wC}l z<_Ix&JMYOS?(j(DB1@PFi)sq*-@y~6M;61;8O(yB3=24aW9Y7LDf^4xgJDXij%L)_ z@McjvsNKmbr*F^5xaYSyhUyOHtE>!S7DJ-(E!-(huEP!({9d}~v%ysP1uSWV zNbVzqAwTeEb@*4;e+xW`$P;oIb4cWKMR21=Hr^Eu{=(x}=#G3+mYQ$@lry? z3^IHB7ZO(}d;dyp`TJL1`H6gJNI)5*hG8L#KWoAa@&PkdeVx|#Qx;aEr!mp8Vy!jx z=fa(JYbm^iYcinV3bVz|2^Jy`FJ8#2Vrp0 zpRxIAvF5Kdp<}zkdtZjmA(Dixt#JL}J&D{!hkiYADQOU!0vl|hkq$X*PBMM$G|!&c z`0C5PPx%K32vhw~OLfY3p4Kw5PArpRQ?CdXb32mqESEq0m?YkR2<{Exr@3|1ZLSPrJ^?g+?hlMaMvQ-BWZm_7l-j85-}{H(KPT*_teJ4yX7l zCEW0^ED1iBui3?4e$y)dcHZ;{Y+MQhez!{Q_i~L*HC>FL(|EpUVMTaP$%k&9mh5b| zQxLD1<-^{SjqDuqu%lG4`hgh7U5Qq(|7DZSC>2dGF#tB?nAe1DVgRdOl)4)78JQ@^ z3ABeep5|Ln#G`&L{a~A@h@^l&U3;H<=rzAgf#d&&GU@NjWng*w?Kwx%u^niYFzZGf znv0u!1kYB0hSHg_^0P9VfybW~Lj5>`zb3b6R#bZlm7hE1IBcq<4zivENY@du)HuoY z!bom_3Rul&<3tss+5)K<-FSrqktRC*xQvB@*4bNkP2;GCuPP3GyGT!jEWkaMHpP+c zsR{@y$e-~L(=4gA6`Xy-KX#O)f}9>>zMbc&uRbS7V%DGYWPZLwv&3~xNN@4Hgd;ke zCJ{Kh{vP9!>q9KaOnCRxh@*V@;Yzc=Xq?fo$39APdX}3B#3B*ps7NoYqX5ksZPl^qGOO?}Sk!`r3>&b4<8|Qq1Xxb6 z=4#|bMP=(JW?0IgFD3TMd{LD~(D6=An(cc$q?hXW`Q|BOdv~MVXb!a2Bbm-oG*?3Z zfMZ1ReBBum6Wh);PmKjI`A5=+B8WJKHPja6sZb!tl*ZSmcaZn~5ikIoOO83pVFg$~Z0e)enId?Xt(*XW? zjELD;R(q*vrdp(mE<#1h#7j8tI50J88nV5o{6+uL_x1WPlM4ej-e!`29G3UDsc5th zqt8(>_gaC;?J&3H?bpYk4ciSQIva2d&Qn{XLwWpgwrR7vNUN{)k1p}ReR%QI-Nl`8 zY6?f=lgp>{iyM!~W$+%!0`qcmJPurP@>T*Ce3{2J$}+plahvZi#c{p$HwAG}V0Bany>$&;r_)^p5zyd#AVgL*}OgSqx`9Mut3*K+7qCr+2Qs z*3Yj16;0?{!UGkvG(N**BM+NaQ7rJhiZbGq;^3U|G*V0OzO0#gp|}#Qr{uoI%pK1i z8A2XHFI$6=}R0gYTx`FmAFJcGo>!0E(U_VW&aly`H+qQ`nyKfCm{!U zvcbKsc+Rz54|B28!}F)tSrlIJW34cSNR}Y1*A6N#_reYC8uoE()|Ay9JzirPuCq_i zz2w( zhSw=(zB5HnU{Dt#gvuz137DQ28b$CO-(DH3F16eu@+>#--r-yM z_30+36(Is>)BbU9i)aq~*|i_|=I_IE$J;-Q&%P)Cw1fQ(l(tL#GH_#lcPrwXup*d3 zdFp(B6`&(p^3msbA>NTNG!?+W$v3Ke&g0ICS3Y+`25X#pK8))39PqEtoY8A$DQH~xobj( zt!<55>s<4eK86iH6x9TNF$0RGz|Ny0$;Zb@nU{a@_qSh#FNV~%X(bk&2joN9(qf7l zZc)xdR0hU2Uv-Svzb1-jWhK+ZcLEwj#2npi;EGmRW_gM*h+3~6;hD&4|3r143$fAe ze(C3#y*UJk9?cpVTJ*KzdIyMdn+Mu6WG4^5eH=7*w>OG$OYQuZag2}Sm1YA_DvfCs zQ%18*d0=M-_FIW~_r6SrTMf14M?t)<-{w1Gl^f2{sF$A~-2_cp4gUT0DYjGdUZF0Z zp6E3=&0;^*mOySRQYF6~RTgQ=uEQ*l5zU{nlVltXTO=&ruN z^Yj?t`JO25_{L@RsD{3-+JtX;xx_GRHjP=9xGO#_JWiuIKmJ?b(=?LHUxrf7*(z`j z|5~9Rx`B`YDjdCr+-i)DzdY2isHI$-10qz+jb}%J28JrY&UAK>Td$SkOtagR8zFA_ z=6R8pV7IF?4!CxhT}6nBU-@=7FqjjdoQ$~hq&qa!iO+soT+Bq=VXF{vkckXuRoWS1B9EP5e(Z0%u9GqXWs z`I48XS!(m>_aF>U{5g|Oi7EX0pn_O$B(I5FQtnG6hfDqwC|FJRhjWc zvXH(9S@p%)$P_8a5IBa};(i2!%{#a!hoz%*k~UwT^I{))QSyie*H-d~a#vAfzC92m zyf+KY&6yxK_Qhra9G(SaAa_yrjpL`10jHS(Qa~NKIQmfFNWO2l!w0l_SA5vFFy|@< zN51=Kv`DC4`#OQD8S-bx9WYCM5X9~@n#Wm=^u5zpUdxu+$ytM&>pm2U-TM_ro z*h+4$q54mM3Mr)N_7Q&0FzXkjD;%gP?nh~A>Gn(IL zOlV9z6-s>73HUGLW|_u{@qcWD(VJ78nB|syy~5K%>PweyuQ6y6g%tL(u}20LP6U8E1R@EsJWni=hm1 zMIf&ah)J69?k>_pIRVqGO6_Ck-FX8|UYkmghWl)s!e<6Pw#W@5Fca zjB4NPKge}w_WY)D-%?*B?KykG@U#z^6ZvgSXU|UE-`$#;JS?1UBB)n+Zu_n)mYZ^} zS!#m3$1VoNRrH0-oojPi(p?}!75b+TtV)tr7zb@dqAr zrPZ*~w9lR@&LvL!HV`BD!5q=T^<~}6FLkoPiM8F5Llvz5*1&~H=ygfP211zDnYvWZg{EJ;(Z~K5Stob6 z8vxuvf+St4dFYWtH@E~SP2;$9RH%O#|1pdE^96I;DJT?XZR7U&bbQelqCHx3DX{V* z0qCne4n$jArY-YoZn+wWgA9TN)^H6J5Rev0DM2ZbQo30nodVLSv~)KU!~p5;kQC|e5|!=_0qO3}`z>^z zbH@D#?)}99+dURI=NIq$yib^h>c{H2odHbbx69@Knk4+s|BO5>3#M4xM{fP3ktLCY z&)?|4Ot~#aQ_IZ1mpK3b%fE#bQ1JMEx8i_*Uvn@D++zVG zcsni-4c?|a{P%!&Szl&K-ItDj8hs;QfBW41sgVHBI69Hr=2!U4p#1;72xI|mDzEdy z2(bP8w#CS;1QB6&hkiLzXs)$BRaI3+ze(pL{~p`F7xNfo8>F?{WfBo1@jV+% zv%}BT$okfu0BB_4uV;^jSerT{E7qkJ=z6|;?`N=QD%z^d-Rb? zt@zOP<7QXMMF=lWqLG2~{}sU?mI9t*xaryer`LE@)3D9(xRBn?;YR`2U8>=$GpBWq zCI>QZi~EZL`mi^|0TXF=MOik&Rg=<%QcREGh* zr-|F^C9eM#5-E&C*xM5%lqgy5JiU4WBbR;Z>gM*v7nV=lPjv{=D+9qAZ#z0#Jj;vV zm1heeW=(0UNJec7@-fjKk(~b#V3>`lLx{+Y+aAS`!K7FEBcw?O0t|E@_$IN;JG{90 zE=+vp#i~_fAN|T}KENP!Bsh`FW{+$LZu~H7_uoTkm0atXb^AVM*!#H)$#W&3E7f~? z;{s$BZY~0yY)ljO!psWgn0x*LH=lK`VGN&|q6ifm=*jIO5?6XH3v}3t6`0oo>=>LMf!A)G6sk|J#?ThC)~Lu#gz_~9mVM9Wn5h?D);E`xavrn*_LA@ z@j1zGS&ritj4i%F1GhV%G+iZ>|MqNiQLD6`S|+~CXv?3i9+>#zd;$7{O@~@Xb6WkG zdha&2nLm>E%~_veQ)cCOub}JO@G=%+uDYZIKf0U_*^oFCK1Kt$b&GeK3naJvSx_*8 z9u1kW8UQj^C*DAmm&QNw4#tBL!m7`pk~b0|tZ&77VcHYTzdReyPk_BU{5%O@WwkFH z%w9Y|kxITVQ9SPL3M>x9Z=?pYioFw`tE5;Q0xDzUh4ts(MezrSH|Phz?Dyl0Q@uaB;uwcv({=2Q#T!Wry2U7=bRc7B<0V zd|6w(wX>yAb`HwsnTP5pYdMy5RJx@)?5tp32~F;J-mp5#iOPQ1C%m*-zO_S#cjP`W z8uV4KGO&dw5rn-8NDNAiIvxW%xEQ#TIcP?y*JNG+!&EzIgPYBo$0q5&15_NUteF?tWA{V zFoDFa{*+HPO_%$!iCSgADrT?=f;y6T9g5pZ?!zw^247waFF&30)EB1Wl&K23^s0d- zvA+PrT%v<~KG|QG7xFVG0rl5>J`8wM{%E7GBIl6Jw3#}tQu*YxL1_X)fQDUmW(?`g ztvEDoIWOeq(%E+^gqR5#qpJEY|2Kew${raW;Q&&*B7pWf(c_R0MZf^qDkLQjpM1w; zZEyCyLklz!i1+5eB%f+dY_76{&dISu9}zm9;XL`x`9z9Rn$0AvKA3FMAdLeB6PYK3 z8?748fMYaTf&BN_7tlFQb;om&wcHcFrYWkhAQPKk9WaDT)9M;j+QycEi>XM+UeoKz z!`a2{hC1a+M-qmYb9?TG*P#Pr{4QG&AO~w=MI}d3HamzUOX|<}!F){>=@<@kXs*?- zek{reN;D<_{TK7i_OyAEWi*Sf%)0P_T$mvRnR7g=?NoP z;s|`mGsOdmlnb;tJKlPK1R-XUA#qrqP{J%Dd(X}v5DD1TCw#*Ma#%Bxr5EXR(?|d! z*M?&KyM_^yo4@bU?PTVTX64maFB-)NsT77-NmBJrdgFal=uORUo@<*=+tfbIFA#MB z_rTc^{n?em16Ki9EW!BRPLp%pL+wUSUNVGo@77-icYG@2o)bvsYCJbUP3sSGft#S2 zbSE&^Vr@vXC+fBl$q=wwQ?>-#@Dwh&hP3naJ}M(v{uP|KdD;UYwJaYJQ-(LcG*iCn z{4{EnTdNj>!dBWz>CqKuU$6z|SE8(OzFD6^K8F^-6=H&9iRSemSXW}?$L`SkWDgpah1}7im)c%7oO49UKJWcaG>9k zKjE+#SkxF1uq2V+<3Zm-_X@C53Fz)Xpj_vM-?ezKtCN1QV;<-1T>Qs+9S zg)#6-NssqPLP3x}yS|(FM~eL+FZ{ogvo3uY?d!VRKxvA&KlNH~)v{h)&x*eB;^bm> z^Thr8k9YeWX}-$+(udhl9UyFUB&5e+JIUYQ5F^S;` z3g`>503IVAXl5@%Q3K3&JG|Ky!i1q_X=O5Qt4io#hdId?DiA|+k+hm zSp42JVo~r7%Pk+r05k$TLEU${%o)HIbbrD$b;8i8UXdMf4evE6kJw+u+G63!Zp!wx zro-alubx7jXiSge&g@66#s@jnn}Y^!z-KZ^aV$pci&V;=(l^e(WPH=0mbOmo!Q5gD zN6!X7v$>w7E_FHFextRSf;@e~I_PBczV5M1*OYFZm@8co>UKG&2yyZevVfkvD3?@%PDM}JhZbFuYRs+eOu^`FuL&c%IaZcm37AV^#Y;On)_pHdz@1o z+PzQk4ThU`K6ziEZDC>;lkBfO^Kb>%dggMZ;%A&6R&0Kjz}>rI!jFSY8EQR0%8D|t zx=Fv|Uequ%fO-Q`>qmRv43W4^nkH{?8!j^`^%dH<#Li|bI>j%o=677OzaHdPE_kcT zU|34JMyx34vb}S#2viaK-aA4jAN8J-d2Kgg|7(=o5V2PW<|vby%bSfN8I{uCcS&SP zM@mS9kTa0tX5P6=3NdAhRH^ptAYgzq4>uBNZ~kXwDGJ+^Wa?-%&;f)>OR12Jag z9=jQzqolTCQr*)9ASn!;uNji1E)&zZ+IORo|NJB5g)6)@n|}`jG_R}k8gS!_Ao+|I z=-Zs|m!7?PM&eVxnwbvR*wVF*YnvWzP^AE=Z0^fPkiju!o408n=td$_8qV8$61lBR zI!P7Pstlhe9BH)ik0u(oJHClC@p&kG+=XB$e4nCi4OHnAUHz50lH&M_nIggfA&&tn z<<9$&#7qMxeTPhenAjxIHEbh!W@mnC5TP{PQ~Vb9|2Lx!yus}euEClvZD@b2bP0IfAhMY*+jw6b zePDU9yiqqhQ=YuP#f`{@TLFTaj1<2yZcVxr`)TtPA8Spi-$~lJ3HHX(_kJ$%6qR&% z$X(BRXq1KG;HSEw71yJimAzZ5LMjs!;38u*hM^ci69B47`X6(YHw9J`rCC>kUlCyd zE{%kG>>=Eip5|i+2hLgaUB%m#iGr=i9F&9xs@rs4V&AniNrP}w>?YnrILU-wo_tQp zuNY%mO;EpSvgMpTO#SqX07cyMWmx^`OgN>cNM=sU6m#eHjj#7w7it{@}u%!U@On`l*b%yrCBrJC&N} z8wae7rETlVhSwm*m)zcyf&9O;RzfqP_pe`k8W;I;P080cH`K+%x-1N!`>~T9M=0*C zlIhp2@x7vq$(MqZ&y-?FbuzO=uH0Kv7RC$XKO*Jyj2a}PFSI43W!WJD7j#0^!dFT_ z6>2rRJy|hT!aKf_BX96(ZjMs0*fO3CBt_i2i{JzuQ=!1ijphdA^OGIcsva%4p-dE* z_ti7Ul)vI206(NCka8pGV~F1phU>!zz<0DeH?U=-D-Sz#^|aVg z%~8K>FT~0mJrtI1V#qT(m{HlE^F5FgWnna;hnK#OkV3KwDzC0we27w?$3qb3kmBRA zMK$xtvoWPk;Z7t1SCVHvO!@e+<*&ZJoUwELn&R|5A|@yG+X2sM+ibid5CjDF(Bw5Q z;DS{#U>E#43CsmXoX#w;9(3?A+H#;jLOJUdNhb2#)hV(9h-rS--pUwZUm5 z5shMYxx+=F0#)wu!w*kBtSY}oudmnXoIc$N+Kl7TG~u?SDtgiJEG()e-cep|b{~_t_0un3i_KTfIM-vXyPWV+8fz{*>pO zL4Ua=q1;mo$zz(PJ68?6dwV52I21yQHWvM{A25ipYWD_+dL%NJ-p7l$f;TCt?IsGZ zF#XLDvC~JO3DI+pZ<3)8|5%5h-Zww{^NDhk{RV#5Pis=CXTRE48!9cewPlRox4vVp zS&)_~HSeA_-x)l`=C$x z-;n+HT0?zM8E*gr!F8dSDio^jhqf_takOEo_?nzG-<}+hTCY*&69XRcz8#B#NDU?0 z9X8aYqD3gBv-ck&-a>A6sD~2E2}i# zh;S5Vy=YUg-yFB&$KTp2)cvliKNkt?wAQN_m}DK!k`GtK-{FpOb|*1Jp6WF`U18-> zj3%m9@X`lhYEutL$co)G0p^sp@Cn&09fc#Ng>({6iQvx(pTvyDQBO>6&ne|CKpWpjkvnR0rI9SlysUyBTaP4hW4jm zHo4c~Qcu2W;Tu0^U?mkUEfT2iA^>pP`FQrz1X=pxW9yf>P?hFnp2$xD`^!yLUfcEb zBp#O$BcK+1_FLE+NCx|vL@Cx|BTN(*W5XH`_=~~?;hmWWm;Q-0F}h|sS^XT zbt6O9spU*QuD|Rq9~cLkCCBVfg;XJCVBC(U`;oI=e20+`n7v*g(VSclJmE;0_CsESqJZnE_* z-PgVMnj?~wd2-K`j!8$d4z-iTH`0Ds0|@uc$qLz@8Ct0@n7iW+U2>gc1u!Ffy)oK% zmkbR*C6I#m{27AO-MDmn=2u&vVv1Sl(=BJMJKsrYEZJW?SQ&ZysdyF<|}v9E}uur_<2* zOg+M5AAcrYgx zNXY$7`X`FbGlsb}-ltW*c z!quh<;y-fitznHg%3o0U!v={M!6}Jorsn5 zls5dXa}rEfy?u3nk_~c+cB{FD43KdlSaUSMHSd)nTv;Lcl$$;42g+Wn(RT1gQFvAF z*q2*QpFWdnA9HEa;Uw{?c=dJHHsIL>UDVA07N>p)3G*GHb^5b?K`fT0*Mr}8fFDBR z%^p4f{mnCC{nDv*0`<>xV`4>_*nvf(oZKoAV7c5%o14h z^N^JXet}Z4$MSg3(nsQm(O%0^3PEc#+ z6u9sHX-qUJi!cVqs4u4H;lt5xf!8$>VxeApA4cH@CTmkS)MT3rXs33=d9tofTl?7p znhgntk+TQ>;TcBDQ2s=EJQ<&}87nsFa4gd@UGa^jq~9m3Xv*$6(%Z^}>KNVC!(&Q8 zw`N{|(A3Oh>npV$Qe)$X(Vzu@gdU?UcH?@)3Iz$K;t7f%_!gr@ad-JJpDx^+xbDMA z>}d4`8!B~kxTrRxGXoaN zMe+H-B7yWkgBfHO4zb)j-cS@iuV4U26u@SSd+JTC->*@_=#pR*{j@~nw4XZS2qtI+ zyh1m*Uf$xk;Hg!|!d?X}(6Wh)5x{G!WMoJ5=Q5i_b2!SI*Phe`EUg?Do1f#2V_TWdqG!7!EJoHf zI}&JR!-hD%nx6-eIA1Wb-YCwniHO2~7HE`c;e7e2KX*)OKKc_$QUs`E$0F~wa#`@D zkA?IeP>8gU3do93Rbu|AfObNl>vb8Xd&I5Szv*=V^MzzQ+kF*h`3d~Det}FLA5)}T zM+YVw+`fV>tT#)mA*iV4%cQyz8{m8|1)cycgQe6VjKl^DBY*Y_TJfB{p`9cDQ2I{xu(jgC9*>?iJd}^^*JF z_5GtBW)!lpcEZoR)=*EIf?k{b0|${}%%Gdi*)t|(29y7n$=z{L;qTePffxb&$+72=JA^9jDV0g=T+H)ey%QK#_UBitD|imVAKy>cOB)V zLic+H4-z1BANR5YvWR{xp%2;cba57a@3_4$z!yY85kAfu^12<`nBy~}>UsxP!D zTlIe9-E+sm?Ti(pZ7uyXuU2n}*JDlMt5!Id_?ujHp-_&(B*o85y|~{Tc;MDyyEKSB z(~*2mZ)?nAeoh{rINKQ^d;@&a;@|zW6M;kwk8k33WXQOzqL{TQQ4!!qmE#N4wR;mW z%tqbB`jc{kZ6TC!Eeg8j?=SU1D{Lw+#V$yu&w9@v zPM7>ow=_=uvccWS<7VYvWR_A>k=d@3>t~jsS|ITQNMo>PHRSSjhvCDDRuaA!(s_;b zM5(w;!bMcB+^ztM?q?tbiMDyL*fkp}I(?!MgqD6A}*xU|$?^Fzfcu8B<| z3?=$ho={W6n2K4%n$V&^_ z4RRk#EC#YR;%2kH&FzWhmmJuXXo;Sp%Q^yc3BReIT(^5bgDMS?AIQ$(iQ66N;(_0P zXOtMWP0osg0Y9b-MG{;AE0)s?5f?!niyx-4%x_2r-!wCwIS+*3`a$*hv|*;5XYJ~` zDG^N{D`I8}81XOhlPO8ZM1jWrP4WMbzV!{+AlV!2h-15cc8M2U!E*{ zba*-wHl?QP_Ul@FPOG@nkM2(r%`{4`rYGGNeV_%gW=(6E00vp*d8)uRgn4=^na3`@ zA#|kpb?dX=Di|jyykOw*rocxbO0eQ}Wd8QmmrJeOTBe=J7a>;_Iu8ZTwR<$%A`^`p zWf~`>6IfGNv9qt3KIlPj<#$8b^EIlI5z;hHzqo6~);1nx2WQRz9!34=A1B_|gE0P1 zFq__D(`pc2wcrL`P;%rOfPECuX^PFo=dqpC0GvuKxCf}R%!i;dtHGrPlkOy1Mzz8S zF!KvwF8#b`5Z9o#*6-AQfohq@0+l3vQLqM8#mt5H zN5$DE7a{s+d;3cmMlp!2>d}O$4OFQOda@}@;VO7^bBZIle|W%85YTHb!5RlMW-I-t zi4bkIPP7am*geeJjnfa+z8Z)OEaiRI0?-LfD$Y%}(Zh4?6ljlDv+4B%qmICT9*ewBTCM<#UP2G^rPhWwSWZ@)$6nlpJ^-*%ZTEX83~dSGthXxAkV9j%V3x`$#an{SsGSPx31PnSFpjxGF zG{GJ>T^C|b#UWwhd^-|;=k7fjz-iq)I`{5xE5i8~8e9njTANJZQC-?S-EB5iS#Sw~ zB-t+tkMdp?AXekjGOqr_ z+Xg`Lc^q#C<-nB;nr@>gxN#UTPTZ^jgRiHlSndzr6U@!u_rxD)l-%7<3W2w2@EyyN zM&iS9=LBGHSxy_HY!;(T(gdq@VP!0d@?hI64vATTn8o4LZwP^?q{b~d3|`6z6|#5Yxq#Ou zW`yGooAub|XI>39{<0ptq%qL{UVNch4dhRN+a4^52;9aUJv^-=lI*+`B;HA1%p^d% zy39n7pu5~pjHP4>()nX>s<*QWUsHjFRgz*>wweY- zvgBsv;;|d|(ztng(g23j^TEzCQ&oaUvN z#4I#T@>iVAuTQ$Qf@*i*JX1Dt3^9AgOvMfQL)s%;Q@ILM4Fpbn#F zqyS~on&lB7w8{W3MUQ-;+?VZ_V!!MTFA7bhgv?|7`fOrIyQ~W-l4;YuLVGLS_bUYU z_(SPEhK}P1`*#HH%4eUv9r^at@JGjHl-v%W-4abYB~HVeaeeQDx@7|| zaAKIu+tvls2RH@`P;i(vp5%F)VB49qO43KHv|GRPCXKfg4o>$pXT9RLx~0|1X@MZ5 zLx_xTveTg(1J@U~>{>_g0iwKV0V3PE{~FtJAnPV1SKmvgn^D=N*%8?$sb?{!b{>x< z0r=Hh!Lm0KpMidZsz$!}v(R6=XFC-to0;nKym>TQ7URb)? zmGGbWaYT8!u<2TPi~al%^o?4^yr{NYuzcC)GV4VTI60Nic8`NUjbT}*vqIdB4#)WibqwmnBSN_hW`R^-F7QeocSija0l8z|eDEl=a( z=N`c$zrL&1;f98W2)m?)H3#^3+j(RxY_PoE8~Um;G&3{vaBQ1Ex?yo^d5OmKSCn#vhO=}WRb$(c zFREk{48Z4SUc^_MI&dP8EheJkRqq0kE64W*3jjC}FSF5;RD5+jM0PXbR8H$}Ey~52x z+Itv>m!+O&k1U{L00QUXjGT#bx3VF!h*~wTjE~rv0M|#(ay?y#xW{q_O86-Vu_p}GAvp>W!;XQfZmAAx_xc)w{bg=*$Z_njN;yz(2@UteAu-faQ63|VX4W|@a|D8VY z8`@tM2_26n>^(Xb{%n+D4ffTz~aI?5dS(wwo z_czQ4!*Z%p9^PQYt11)!+wy;hLg8=*a;EK{?@F)uMw%JaWjs{osFp_*`JFo(6|3 zycB@@p!Z#LoBj1xzY9u(E4{tH*6NtZ0)S^s6?)Nb_Utc#JQVJ!VcEj?m(u+I(ceB3 zP@wwKRx#c~=DED78GiR3ykLpoFjwZbu{uq3xjJ{Mao$Rhs&|ce2ZnMKEmHSn0l0@s(yQw`=hI?Ye9&c^uO-*-}}P#0O`R59jRMGeZ#Tz79-&#?55)O zJ=?0k6`L;KUQAR=v!A@xKr5)R1+kbswlCrD?|b-moi@-EJ`|t<%gSz6V(`C6F?c%( z))w5I#h=T!&ShtE4<|Y9xLHmvFl0X0@WuTSUJFmBX+=t)r1zIny~R8K@0)^UV!B$Q zrs>wX$cDPimQjJcm1t@FMjX4*V4QdL`){>9dM|bw=tuHYgB@Q!brklEFM|^XyNp(v z_?H%QRlKpg6KDg=A@|BGfw6DVfWSFuQ+Gp5dA!A%SY^G})Ui`x;`US{&Bu#?SxXF_ zTUW(es(-pY%StU74AN^VJF~iCt&Y&~>7qcoYA3um8|@RO-&?@%Bc9kE{x8t?zqRgD zhq3yg?T7SidlSD4oNNoHXjSGW0E!)$%?wudFe(Ecn~Rmu*6sZ7-_yB$M7~l)yWig0^m#D~FqnY`FZ2X^}ed_Saw1}3F+ zF(94We_)9cD?#Os%#sLGPp&AGefkm?EwuTgAU&;O%y5K|al~%Y!-5sS%NsFql8dC1 zFNgGE10Uhy!|l+w#-{CeGc9(+up^JX>7hdiS zeVJdVWGwv^5E~D~a=6Amn}aWY9MU%*WvIY*TEKit{Lp3+868h-C98%AX@Di|WRXR$ z-mHzuDL>^M%oTY%p(I>|j7xg-n<_-pNOm(loE3UxBi}$D&0{ye>lp3u=4G=X@H0sC z5`3M`0qmPO@-R^luLdV7z3w(4Bm;9-nO0QnOxL|P5p+&(dEF1=E`^{*xy0+lBu-x% z)+%#G;j3rj`%67!OnSgCbFqhe2CaB!^2nmprl{z$!K=+)@LRCU!UN?+k$)0!zj=fhz}5cB|<#8 z-+%FpU!Lweh=9aHSQMhfWDa=j3rep^Xoprd#%TTx0ZH43xA$&pG}Iao8fg?_74|u- zso=aeM{&$L-7!uCDX5W{qk|pjI_g5{f1uW^NV)p=;JCuzICs=u*q2tL?yvU|UG`ZN zFfMn8`n+2pVL;er{5`XdXHcolci>m?DmTJ}r26gPUT|+Zd$(0fv7t{@Fb3w;VH@_w^Gh;TGY1wicV}jfT4! z(bAn%pz-Bh{bXT-<#@G{V{Tcjo~H-~@l%3?bzaoJ?o_BKjvt3X(`*FL8h8_Q2548C zFlpe_mkFNEAn?G;1*;mXGEA0wE*>fGMv!i$Xu3RDzhWV7l^Tfja<#dtIKCw*b`rP0 zX~ajpDqM+g$Qrpld+d~8>{|EE4pqo5BLVf|>`nJq1bmdiY`uU)eyU^C zYHG2Hggwi-XRU#bPw5_qqU*yI5XxFY_e4)THNa+YT^# zf8%#O4^Y)F8@6m9k=fh#s_bE*mctM-)=rYZPa)-%E=IRRE-pk7Y+B8j?h;DhhY~fg z{8Ot%jdP1VD1sL7BG;ctE+B0)+k!hPe*fxTWq2)<`iZsf9psx+8?U3cs!Jp4dL@Z0 zx{Z%ldQs$)w{Bcbi&Cv7M1KW6GyY`{7qJ)C~Ypb+m_5X908$E=V~80*)6-)Sp1DqywZ8 z%RxyxWn5AxtmoUYJ*|?R<@6iv-(#mf?*wVuudG+Ve=Fa9j31w|UuK4m=FC@RIl!3J0tL#`d0M9^KK;+)SdIUI9 zKwio3ng;wR6jPWsdQLt8_h)5P9P%gN_6*rO9zsB#)}1>}_9#7{U0_LcJOAz!f7<4J z@g#{oS@&_i_s@E89pc48DRpkr%ctIO7Hz$rpQpbBrNvj)^Kj5r(ulhh;p79 zv)fu$?50NYOx@s;9S5#ifVAB1ZE!Ljj&27xn`~n1w)Ux=mxdSwy(s ze7R|>)xG#9(qe3?ZPJ@kwm0W(VmB<9W&>Z9#`_(zf}-JFBwv&_;s{~R-#o?&OD!kt z`8}?uY@nt{oGpFK>9Lm$WASJB^j_44ji-azD$Yrn(5Xd7JoP8wYb)@oi|Gn9+-_^p zTg^ zOBvJIs|$))v|WMMZ$!?F`e8YKqNMrzBD2u7GdkxDy~2&vN3W^#vz1KszLW3d4>Ay6 z6_tC*gR0?4R=0bcJQ??~euLN5P+wD=Pr)PSfV^h@CQ|-hqh&YES|=~Y-9p@1RxV!y zEe;=s%$8?@EaB)xU>X$A7-Z}A<;Z~xVKpdVe%kU~Du)5nV_NwHj=^*{_E=T33kvAx zRM*sA#6SK!UjJN*yUD}{V2}tTz;2dAY4j=rJRbpiSR=4iMZJA+K}) z>qbg0OAVg|IQ<_cjKgfJIHRE@<+$LQ4!iU3uAovvhWfY3+zDJn&R9=hNj zyw?>nOA$ZxN|qHfVS>vLGrYa>$-%UosFm+c6}G7xDE+Wef+VTW7{$8dO0s$2LYHO+ z1OWDJax4x6lFnOj1GinpPcppt2>9W6;TB>m58{vQdM2F)7m{6;0PEIU_qr>H`|aAk ziK+QOe(tQZI_u*>Q}v_&S#v;S?dJh(Xc++G8LH^=^a3)9{b3bFl$v5Xoc>R!80Oh& zV8qi7*cMxzI3ODm%U%E|FQ}|B0mE2ykdT=P2)@GaIIIM++*!__W{(uc=}k7Jlpf3> zPL(*?Vtc*zorj@C^U5;xH&Tg-;}j4MVMoRBS=9!mJ{w@l8+hrMt)kI2B{*|mG7M4> z#4pgEFmeKDUh|`sOz1^&Ae0FEctx5ga_)+J^S04s#=z%m)$12C)PMJ&x`ti^MRhv*hj>IYpXhXKv-0 zY-=`o`{3CkN(5!mk7|^EPjTfEOy(5+U zn#1$dmcbn9tyA`W07@lcX38ux_X%pY3x%ZAFxAqG?`(K3wa0&w%|dp`_FmDeS%~wZ zIZ~i;>ROJGfPmafw1w%*^);DJ!@mJHRVfPj0)0=MDAW&*kGV7} zQn|Q~_B*aTPK?J2f3sOnyGmQoz5Vd&abDjeNcYp#fBh{d5~b&^FZMOVtFK`_yOAUL z3HOx;d>&EM4J|d($tM`;Zy*c98OU?`RLLFX-$Lzoni%QT3QAgFl0>Y8*r#@C)=7el z{Pck~2iYE|3Lxy;GF9EOvxq~~asMt|7Qb@^Oh zZL+-#;XADHs4CnaX!A1)LHB_NLDye4#af01-58P=HQoG??1+2h=XrK!me?bq!nJ`d zA~`VJ-DslQ3|9?B*)&1n!yvWFdBWhUsT_hz-7&?cPcZ6!{phi3)7AN#Z2^2;Gw(DS zPG6BB?=xwj%DJ|^$$%{bnTQmaZArm7;5yteTHhJ7w~J$wP1Z5;7kxMq@(+a7loO7Y z@5I*7y;YKJx+h#*czx1jX>Hv&`XvKi1%LG7`feg%zq|?E2zV8AeE~VJBz3$V$D6(` zl4loKbQmfWoID%AF-6H+u%Y>ogniTLaJC>Xt=!BUix^IT#YKCZX5kk~DLjKrU<#M@ zeR^=Y(1b+6(@)##7^4JcL-2t@1n{=G`Lqit_ep4r?P1D%+$@HaQ^%>5EilMZfGW0d z7IL=#*#57YI}QiJU~{vWyF&(Po|-QjCsxXpo&RDExY9^~>{H6QHhc3Y{&2a8Bw_8> z{mYEVAx9F2o23Gl+>JyXf^>7 z8`x7PN!W!rTW90|U9bc9_F?C>5$8pr?3rU4dY7u}H#!4954^%2F?ve-$_;KL(N?r*?0cOaA18|Vz zYp)5x=F2nN=f=;an&mQ!;wo=YWWLC908<1*KHP)l>@p%WDcD zl@s%haO!ivlsDhwfb0u+WYF{jXT1xkZfzk{m`ImeApd8{uWA<7v$K`dPe+a+z*~g+ z5GqbOI>Zai-saO_>5CmSP}lN)_r1uaiKW0Sxlrqf zPNQ=>O}ViCjtXeQShY`RUp8yKwEn`w-gD_`WW!-f*U&f#H?mHsyGL3}AZvLgiCy`c zABdO%4ixXd5tH_3$eNqG6{<4kteC0A1GD$ZD~quL2X`IN8YFKIiA2TpBu-rcmdPQe z2D;~W6{oj>>gi&>+;?4zENV=jX}(J$q@<**+vxxE0usTIj^wNOUD+arzfPPmCu4Ru z%KCRLtxf&JPZr+n_|J6mr&@4}Go5JX#Ms!_;pbNlYWo6jtG4eIZuRyK8IMe7C9$X8#cH%EZCm#`ZF2%zmZrl7IGcmN+kNE-mPhTJ^y$FUkIfd+ynG z-=N*0XnfP_rs;Z$%aavc#s!4GSowE`U45Ehx7E@OkM2!pW}vkBQ_jifyZ}h?K$JVQ z@NVk<1pI;m1G?BLYXZ)-Q&}kbDTz+(CYSnxSNLz!oM3~y|KM)10H2wa!F=HathpZU zS*#OIc;E#8msGoYTYUS+NOo$l*rTTdB@G8E66nMyFBS0;X&x1RW}$TM&#y20 zy0yVp@RoVv*{KR|l|yWv$~bWs%9{~9gL6&u<}zf1oIDrg zFKi^)Utm*map-8$CRKdcy1lx?sfz&=NA`6B(5-Nr$f|4K0B4~rm@iUkkLQiqUJHSA z0-H(cbj@2sqpdpct=immUmD%r-8xO95m`tOjR)VKQaFX6Ct0CazmWj|D^c1mNqtc@ zE;qjU({|lL9DXm$zM*7Vl-Wn{#aETBPyFSOz%tRrM&sHZK?|BSa%yDiKc7ovw@8l3 z#Vi{wf7CFOG16~+-bk2W!O#CoNz!&fE`+J~nm!XnT~Rdh+pK25rVxJ}&eVVXKQIkY zOZ4EW9TW$GRx8|>u0;_)e@W~J=2-FZla>yPYG0DjlxGHc>oYZRj; zV?Ymls+Fp7a4Ph`ygmXh+YhMGqv436)dvo7_o?k_{ zvoWJCl#>6UB|=!Fil3#BwKA;lc~>~aUs62d3TsmA-R0%?G0mE0m#O(>_1A3dNox5T z=CN`^#zT$)Y?P_fK>Ti=YxK_dn|j{z{>LRRDDsWvT$-ZMUIeYTDyw#*s0@Ki3Sx)d zoM7Zf%Z|aUQV@&=&@lGwEz`y90Oeu(oyG$)){p}~kKmvzXq_1A*y#a%Pcc}pKi3B?#3@w)N?SV2UDhCBzJb{ zKn1!$sR48cExdSX$6S@HQuuy(ao(nxb1(jY9wex$IAi1{X@>9wp%tCMV zsW;#H3MYSnWT#uy2d%-!5F#&H%}|AjLMHvx6*$-k=Pnyu(n$iw{ddOaOOT#BtPB{| zn7LwM=m@^0dk#QP*Boi)i9GedmKfW$RU-drMA+xkLe0pFBIB;5+W2ISx7{mjM!T@s z%385c8D=j(xBd$T{^B-nR6$BUY}xmtwJCzbG^)5PFKsLrryLG$8l zDQarwZ>o5>VaN z%h%Xm&(q}UmSuN|eCg4yY_HpCprnCyKvP%x^yNj7@$FL}POcr)jEmzLEs6apWF&36 z^^VfyH!=3eQ0KBrlb#@hAyQsa^d=o1dnP<%8eIR9iQlx#bj?T8-1}@>8ECkV;c(=0 z+Bq~*1xmT>rsB#DrM4^n`*nZtM>p(&^sSm`ynZKYN1axP>@goCK{Qjsdt>FlEp*Yu1s7Vvff1^C!2YXu z^i^{~Q|tj>X%aT-Fc$h*oyF6Ilfhhk`@R>xqw0cM$qyndS7P2-iFDTM)RC<_uYM8kQqS2Q@;Y zg`(hP@st2H(Ww9Z9*=wP`4QlSF4Y|0f6=Nx;YXzOGblD%btRlEPd&ijbSJt+G5`0&zJy}-6pBD+_kOmk+Z{lLLD1(c?&c5ST ztw>vZ$K|~IZfBiepkVI$9G9FLK(V=GA|8B=sDjr=0n1K~C;VJi^EYc5aS5pNR(LWp z|IqKwW$d#M$H6)B=RbXtO-c~lh>toxpN(b2t^Eg=k5P(wkffHbPx?P`0L?h!F8ui+ zw~Wa8NDs7z5zcI)P_q+`x?+h{y#E3S-QE6jm;VC=SVo6JV}j>*tOTb%!KoN4bNl>(YVJJA&f)Q1V5cJQho)F`eap%mT|PZPk@=MRzzbc9I_P~6!*?l$FSk)p z`lqO-rlvergr9V5my|x$=B&9s5L#%iJDGHVT#R-S;NMP!D!b-sWvzBYU`1!smZYz$ z*H)M?7yT~I4#w{CPgK}c9@q(3*Q1w>6%J%de=#4D4}I0z4M!wCTOU3zhGu2aZjBok zAq;=?$KyLii8?30j5qOmb&iCy>rcNKYHGhZW9QgIh25QN27vzb{kxT5f&F+hqIo)d zt1_35q_{W)s~??N1y~u;e0CrFxSmbXsdLpV_}VfBzvovr@vtvVI)8pFT{F$#+3TdJ ze|ulH_i=|Qj|tS}T-ttj@^<^-hI?0JnMqGV6sZ5*c0|B}I4&P{7{A*uvqSG!d=j+m zufSUoRd(3e;<$8&80ol?DhpI!w#NqK({h6+Q^=WzS+_yDjicfvtJH1*vQZFdHyG2 z_DbTH6(QZN`b;dSN9Q3p4Jnu`yCf#p&Xl?oCZfoXSi%2nD1@*wIGyR305_!mwJo;P zf&8^HgBf6tL56H0GO}>vLgWp{0tSU`S5yf$CAjO@(T$nJPR^(Zqk_8S9l5KEGvn!A zo^Fj#_(?$bq8J1 zSDp$6CqjRbSFn```vB(1C!B4)GSe_%vW&0vB?rvt6`83 zhWH`{8vKtGSRrjAj|kW`U)-gM+EZK za))iC4hZvUk{L6j*)Ci3sQ4-l&hp0WfTKQ$X9p>`_=_WfNwCR2>_dZ}4XNaW8zVNm zHer`?evYrp%&kh=`C_A+JJAZWlgm*DiH$UO_mW&@))*1>3a64>AfA0JARiYEc%?yxWzhrJ2`r;U zZ_^yNhJR6%!dA_!N;v!_wDxvn1h-;?mP3;IEGmKk7q`cOf_T-j8^zrx}x8ctMy#1^9#wrCP_-D5Bx3x;?cW0CGvh^dk zk3O}|KayW+IWd><>*vS1n!DqFQ;j`BA@9Q9B~dH5M7_K|37q6e3r!^0+UcF8WOeOY zb&%}y(ZMDithABz`OU`01DM#15uVOc zUg!0~J(EwHNL5A7PSp;C|A;4IAJMpGvw#zmGb|8DR;qPocISR=)un>2T$K(6De%1> z#Q)*27ry!Ju(UIG<|RxsmsRi&L}a?F=onE%V+hcXxeeuh$0H8Lqp@qutH3yYh;k<_ z_z+plExm5WvnAc=6SGP8w<8hTYdyz}{xOL|^A)L28ij!hHH!=+Te;LeTzH5u@Rh|VtGl>}D<8s7BTu_wS~H*rD`Ng^ zpa*@_2>|gdzzs4u=a%O%=GwLA;7mbQw0`i__y~`Hcno1zFQ@%rjQwx9nq>xagqWCP zEh~w}wS+#_zd*m??L@&Ck}uHDc&IwAvu|O#56C5Qx62trnQ7x(3^E-A5p-K4*#qfL z@y@B#^IY14Etl|53TDgteNKa;D~4OuP8??|`kkiLCtGDES#pON3YzpxoQ ziky4B9q$z~RdXU0;^Gzv6B<^@GgXd9ZiVVy&yxxg1t&faj@t|rT*jw1i3F!!vR|`k z(`^YlmR)L!2i3AfG1aZV+Puv3w0cbudsN;dO*uZZ#E?>aPf{0IIG_ytLEUlOpVV?+ z4{b~MrIt0wWWBS+->NzPdB}>!)haiFU1;cB_UV6Hovu%a$ayPFnC!_L$a~eZY&P0z z`P&4rDcf?=02riS4gUsU`s3rjvpp#wyINq^nw+zWJ(h9R5`7b@Gg-x~6o}7G5cz=e zr1F_4LCcqDIdx{)&##P_@8PrE&byzTh2)UXphid9rETLBj!RdnC?-Ba`qc8HM{icr z7EAU>Q5be|AAk2Xr>c!9L?0AQB!8Z#OfC5l{SO~AaGVRj#K4idl=xyrE-nA(n_)|c z`$)<&4nGV}id3<%tIPAzH>rS4JcdKr#Su#HV%^s#6KDMW^$-(>08~8{8nQ_?_onJ zVB$$O@GOIRiA+2Vsy_0FW>W9p>vQN?&rUQ)CIIWmVD-KQX|LNeUFWrZ+MQrd>{as# z5!1A-^P@AR*IYJ)gHuHmHP&~5TZkN}3gW|dTm9hRfsg^9A2Wkl>e!+y_X_|HFMr-5d`bZ-3 zAv-P&sm4vcZcB;0bx$UqEuVZd-AB+S7TNT*WAd02C%2D+@CJji{54?H{IYT;Z815| zBX+BQ_*Bjf>XqcNntoiqF&qONWo6p&84><>_8oWM_lL9F=n-@6wjn)*`-EHr2N6AV z4@ji-xY#r)B6=oM{^;9t5w7DoLl@-wyV8`gX$ItC-+9j+k;dNd(2q+Zt|MG2SzXD6 zcZoS#HT6G-R%0iGEZ+llUs?SBrnaz;5S@iV2!$|$8?I90Yy~)wfva~PKVx(wSI$x( z7yPab-|PRnrp*Y-T5kvi5?GzzJpW>E+pWXDzw*4wX8Q|922JPJXC=egv}5Z-(Jz;Q z)hO~cYN}j_^M(d1Ef8H@5ucvtJwMy$aQMT;sFnJonTxTMO~0N6SoxLs2%hV$yiR)R z6jZD8qo{D}!hN8@hB8~fu%OE9q%km~V3dJXH;`Z8n*migb z*>=g5*$*-CTbG=y+IgJsU0V_+%+Y<%j;uQS4nNk~U+$t-h5DQ$%W=CvgQGN2BzTt6 zYUSPxL~q;?d0eFxst=ud*^m~cU4J~e9Y_P7;(Se2@Pmf8JUQDQ(kZK<9((D@QbuD|t2V3W4y z&6xaf{4CJFMawyog|6;-+}1*8y0)Tp=W5TD?60BLu7{7^!XIf6P`-IFgCO++-UOPP z5^%t)oG^W317s{2K$_!Y{p&X7OD7*~mz|DDZU~-n*(wS++;a_9m@2!9VPx4$r6aN( zLAb0&FI$3C3dAIQq15x3zy*Za_v9-vxcYb{H}dj~;*(2N|4mE>tL-6+ky@Y&EivZ2 zWKIIXeZeJT1($*e92v45mIL%EnTO2IO2gt2)_Q*Wz-iwvaQaUspHzD?~B|KC^~gaBR~Npo~TWB?NDg z{3`$;Dl5&lH@zq^gPIx6@;!{ta)(Gupg)~revm=z42(aHJ8WGQ3jZK`75;px=Kcj9 zT7zH{|Dq`!ANA@16I#}?R8ax?rYT{PD!rm~P$VPGr?$9=)(b_#$yDk>=dEe0teJiV z+^#FUIPt8m{^TUXmSEY`_gGdu!@g^%;jm-vdB! ziw0lmIP~Tb+S*8AlE?X4Ru9^~ga*r&PG83WxV=gazgYb7Q)>2G?0&^XO+))oyo+C1 z0HPKgr>#woc1@Qje5&eB{-lB1vC+qw0Z0NiQOM}*>*^q>t@#QPC-;-}Yi)v=Rr5&~(tl+zDD zat;IWn1D>6x@k8AY&?Nni58R@rO$r3U1pS8n0`nGZOJy!0N8W`^1FyIh+1;|*-6;# z_kK@HVmxy*=tA%iW*!;u8L={=eM~r=GlJ{)6)TGvjtqhw#J`z}p z647B5@cb(Bv!?dc;4$MXz<>L(sd1|?sFv*Aa;B}>UBR2)>PLGNEcwuF(Arz7*{P2J z0nV?yt}k8SN|<%az43QNvMhQjBLGh>2Jqv=`I&JZB5R@=)ZKp(v?4?OiHF>-+BF>2 zE?uHH&pD{jBUZPAW39~oUk!c#84Ag2npWu1oOz#*QQQ|ui}I~HxXh>YNoKYb9xZl9 zF*oDS*>yg$rXl!ObvHVofFzSJpk)%zQO|{8teAbE^fc{j*clI4DWznOsj_}3^sWey z=1!`rPZ98)l8+VEXl;47wAZ4Zm|Hq!ZflmNz{0(J1U?g1{?`)&6 z;fCkwb?GK341Gs`lf^xd4x$A5(J$2sbYk;F=Ufd&iBKpQ?z5}QNUN6oNYJYr*4)4| zlCtsjGLN?uEsq`Vh`DQ{Ljb(<)cGs^ry0`0?`32F_bE$CHjO42;3%+fd<7Uie`aMalqHF_*r3>Y5`+=`ID~COEO)Rp?*4tYlyQ@zkv-LX%V1g z@Q=kHpq^zz0clv_;KN7(o+jw!m)*K4;uBDREMw7|Ixi5S=p6j`ZI+BXM`L@kty|@G zlyfPcJ75B~flic@otc=981_%cTITw~Xkc<~&(t!~U+dBmGeyQcES@@XPgf<=10K`U z5x7C5yamhw?L4>)U`n9Qms;FtI53|x-4{+LC=&js<$0L^v^=4`1itysrL~p8zJRkxP#>L5f8|5 z=7FsIuae{uA$ZvQUM=QXATZAtYeqqT4J#cfz9ObOJ z5ybojzLCI}^?*)};i=&tM`P8Bo84g7)(5BwThk;%gf19NZ~TpJAa-zwy`Tak98UGj z_q$zD*d_xOQjigSRY zoZA^pn%yZz_y4T{#4pF7IUc_H{P3yH^tZp^u|UG=2T`wnIG#L^?D)S*rPOHe;~7&? zoZkoFd)%*ekobfcU5s7AkK30)L^p$Zhw5KOD`Q&I&3|ADf$>_6MJxOpK(Nb)P>gLy z_PzN#y5GQf9d`O^-aPmAJH)J^aB2TfCe#Do#|`%X%Y+1txgP!l{Bn7ZcF7(IbJp_ zv09~8%`8^fq(IiG2sZ}z02v=zz1?eqSN&}eT#*0Ymzotpu_iz&GuhG0R;~&5tUW#_ zeGnPO7nl9JxGMfnYzR z6@(rb|8BVcaD@Zt`Ty?>K+J{b^4^dL<4k0*2;-K+#_90H{^_3K3^VGkHNZosJ)NA^ zdGEgI`l$6XNxu0pn$9wz){j?k+ok{~@_$IIzshvDYH)b6dz`x7R%$;2!AJ z_4N6+Kr-cS2|U+v>`QwR1x+gX?dFX_E8qU^C2Ec341gjTFM|N}PhowqfZ$v(SptYY zz5^Kx0TycN`$m9gEdhmq^871)Db((`4NA{<&$UXHKC(={d$m0Utzva$e6eOozOLA4 z*uzIn_4U@Pq2#xxVIpH{SxrGXls*%&LwvR@xXTjLnZ?}W8D>7$EKdgnwsI`LRv|gH z3thXPTP7sbKDqd6@$E@-hIu7kuLZ?cWjfV;0@TBudc6fvko&+y#@6!iH=1K(gVzjz zUGaX?@?A8dQi!_IXiJ7fb-<4?Dsm>+pi`v<_TW~aPo1pz!qr*Tc&D34{36_@A^wdY zeSfAj-rkoKG)&YNR1%*b?sxqtZW{Gfhy0jrFHY?ODTJ$QPv<{1O+_Bz?(+G7(tcvc z4dAOn1zTKvw#ao~>+P3by*{CP_spXC^Q}XL=i-kOi(VZ^2Zxrw{?U+ zv1ZBE;QBPkHb?7Ury_pluzF12{e|Qm&u*HrDx6lHC&`~Ckr%lBoJkOtNbp{WqX*$yxFeXypT+pF zChI*X^cJ$7p6sI3NML5s`JY*@w%lE)r*}RB79$m6*w%(0%^E-A(W$$&jdbR6o_DQy|9y5 zz6IK0D^W1lST3^?-EeMMLTGrF`oHDScz~*qC_wuH(0EibWTb1~ z?KSs>5P{5$Y^4-mM0B5#%}MQm%qLt-P9MM06}J&jvlG3sC#K&!8FZDQE9((uoGxvu zdvd!pXg)>wwi8In3gpveEp_kO9%xmWtG^=opGOqceKwRhk}7aohI5)Itj#nuSWf;> zE-R%1upMYG0(_9>mt_-_SY_9r%5$PfrJ-23oZzewHu_*y>B zQ$#b9Wr|f3vJNE~)n^g;dz3WFqpe1`IU69%Qm{$6iYPymU(0)|QhbIlYgZWyl-6}R zSpqNmB=w)n|NHc}&>Y*dye`kjL~8DdoQeTKz9DDBVt3-i@s^oJ6R;za2B3kZ=rkZ5 zFNMXP2LLvZGB`HegV`?N{76tD;pSpcRLOkeG)K9Sme!e+pKDXi*4Cxe zRlXV2T+N7C9MWWN2MJ%sv&oM*Oon$JFvB|E4DMd!AdHx?mn9|&rfQZzWgSi}iPM(E zURZ08>U^{uKU3n_f>UGNPa~aS9@XweG;tzuGKC1a-l#6Om{^7MuQe{*_YA7uNIb7o zD@q1+az}&u&n?cxkfWX7vPR`quYlE6UUM+HEC;O9lx2TxVbClpA&R)+lI~@??|`N# zD{4g@nNy z4_TBLuHd*U9R9G6jsN8(YuoV4t8zscao|9p5+W0JQ(GU-XP)S6xQ^pFs5_aC09hQe z)3rTU(Pkub>U6uVpl7o`pa?o&Y`R9jg9vW0UAbqtBW}l=nzN&4jhtLtd>(p-PmRuB zGe(H|4YF<165NJyjg&pT&}ec0H&;N=SJ7%jKdBVx85Lj30a9wzONj0u?dljhTl#r* zj8~WUE}mBO==j*PFpRTddAwcwJ}<5QEAD0 zN&mVXMB}CNY6T@kjX5m0ZwXcc9gvzz@pIRmA(ZvfJ-xQtQQ+zXIMzcVNl!fkvsE%9 zg_bk*JqKd&W{i*^%zu}>kF?Rebo2Y!z z4k-*kWmo6t1@g*h5wHW$<+)bMWwmOVY-2XZ*O2uG9qj@mEiPzYJciL&IWjzVLj*` z*3@q05mcF?$WnkOShiuB$QVu=BLfq0Y!E*g%bJl)O}nD^fPb0!JqG}_Nyw{CUXb5* zH@N|RY5iP*n9J5XP_KJ#XTJyI9`07z`au&M5gdQESc*Kok^j2xwb%I>k)VIu*FJrj zCKNO|u?_{ZO9}0oFNVJfn6ILC=&z`BYaFA46}q!~E=_wCaz|!%)mu^n@`!BCdalMRq6xF zQ)?;&SB_|JU&o}}&-Z?+&2Dr@ZE@*43~$DqZQumKuIw}@ggjWTErnr}SPOr`&BaTl zwjSuIj50?xj6CUHpL6&(-!VmfdeaH(WHjtLPlWb-xEhZ$Y8e{Ed7xwi+}}bo4t$ zzb!;Di|e4O7@fe=DswY&w~JQ+9!UquU$q^>Cwb|D=UZ(HE|q@;;DkM6>zN zn?Cv0HMpg)2+D*M%{vYlA_Z|(3Kem(iNbYUrnnXYGdr+f+G}* z2E?Pp73i_iM_)4w5RC3Y(QRq&Cy5k`tPx0tE0r@7hyuWhN@;i;;-<0QUsR}ki;Uuf zCA6W1Y1xJO>Km;rECTkUp8VNimkVAx5Y_=X@cNs|bdy4t-?&dy>Oc&ER>}LSwP+QD z0Dd5|r|94-uSK6sJ-Mg`$Xi*~g+QXfraUn=%~+L1%qr%S24nv-%2DMjt@_CsBr0;& z^d`|_gWn}uCJ@<1z)7iIS=r8L8;AmxjUEi<>o**Xd@oR9xtupv!I|UU zF1_M4(x(#DDc|Xfc1Oz5A*IxKgD1kwBv7Z?QM&r*iIZFs-OkaK7>9AY>4PaZ}5uf=?y0B3T&yy02sOM}ltj>qs z4I&q;;En_B72zz(!!-+m_Dtuj9>(%Ah&LbF0_B9hA;i(F-#s-6gj^A8%hO*27^5F7A{0 zia9`Qn(D(2knR{Pn9_)#aJ74-`mOk7_S0YWJ7aYgp|=tci^AYM20gyXV!S2eQfr)| z;Z`S3EX(YRfRG}q_0c)`i2QToon!Rl=kT`iIG;BlWvne7q&OpIk+)w zQ-m|+b{GkAFUoJtc?_Rj1$e%Me<{O%3TM?T`%eDed9hVltHd#zjB_k(+H^tz9p_Yy zD;_j5{;v5+*<@h82sAyQ66BacwcPMbX_R5(JP1(0)kt}cre(cNV7|PgoF;)*K@2X; zR1curFL|-VIW%%iDP0P6BdG6OaW#n@EKUy05Ow36^=}KOhJ5i0kRI>PuzaHQr@gTK zj@>-p#QPrHUCqY)Ti#{A6KA|+2`~1tuqz&NIDY+1a< zTF(5hfU_77{JQ@QK_ZT<8|;d4^PR&Z{_F2&VF~caV{dq6)@Ix z=S1n!iZ%B2=ZX*O>659hfFY4^8GSc>y(%FeKc=itdFa)n$z9kmEJMO$W-ch}_j;j_2;kUjn7l`bb>G9|N-u6GDW zXDPdw(qr9nG_s-1x-$z9whkL9nE4*K8u@0&b2r6fhkD`!QL5@XnGgo=mx`G|v zJs5%LUf9F}I!q*m?_mOb2*nmc$^IjtQHFD)1$c+ifPikE14She!@xSSQ40!ZDP&H; zKMx&ta#gbwQhlBQuilTTeusoToK>C2oso>f|jLGk4w` zh0Z43NO>%alA;*&E~<>5ory`J*PUEpJae<0xiZ3Wyj~yLln{v9gxj>hZ(rHvX_vgT zbFJEqIFoe}Iro+!7&x2bJZ&kqK7h$@edO_kfW*c%%j90m;~kT(=z%h6Jh)d&w=U1S zcK4JdqA2+fj~Wtbt7RsC*eyj|AMqa4LZWT8oYohW^%WNYs@q|#Ss%&Wu!ybiJGeU1 zOfy>Ceapi+;J_?&DHbwdqQTJO#!ke>GL$2<7CB)qaZvTzGHbA=F5P0Kk`@>(_MlzA z|Kl<`R8fq`TLXO>OoT_720}&%KcW9ozT6u2!tHSNZ5A>qzrB$yugRq?MEH?_^Me{| zxcDE({Kp+1%0utPM}>OC-clT^zU*}+eq#J3(%mJeon;~M#}C-VmhfDW?U|Xq;;jIZ zW3CM)zw@Jut)Bk)kC*V{;>(ZYHau7HJGGT7peVnYywJ;9?=(uqq$3+ITUj@U!Xktd zr}^Nc7avev9EK&4e56=HpS*B$&EA;kx7|xpF+9g_8!L%zR=8l%3V;Hx{#EiU9{Ks5 z44PUz*w@bszP>}hje?Bz!xJf#ryg+Ycr3ouQpIKHJxTpNSYC5j6{oTO4HKD1;NNe0BMa|kFXD*r~E@;hTJ#H!5 zpWULvs9C62t`*9Kr}E|=xhK9--y7N%OxEk+j&Ryfm#3|L)K{#>SDhvm=S?tT2)X%*Ta21xA9wdEW_k$M!z>jD3lOfUu`glGDy!i zPfzgQAsGnM@hatZwK+WWFI^b?EpQYY4SJ*J>&c~*=zF4ZTUiGF`wAmCUv`QH+O-h- z0oDCw6#A|i%)~#;7Q=ZeX%g5mCnFiMMDcdE032W&Y5D*-uQY)0b7Za;3k_EmbYADB zIDS`F>Zg;v|KaWOhuMszd#8l7bfoxX5 z52QOgSSsy6fh(FqM^1nwfqrVL)K%{ZH~!p)S~h+6XZ-1}kP56M&;8OFq9=K(LxSivtfvP( zE71r4Hhs*OpS`C)X#>iHsl+y@s%j=b0cBm#so7@2T&w`bZ(((#n~NON9ug|7bm{Rwh*{8rx+$rw>5RrBU*j#Lq?x{Xju7PPf7C*G!&_&lW?)nKgP@Nbe~Q#xQ#H4IcPD(c78CG#ezi zeRK}zv3kvDR3Oa*Y|7E}NZE?@<%mhqA^! zVZx1`=1GxhWKS-kPIg?nqwofHyyiH=E86hMKPHS0t?f z!^9zl-Yh<}a|9X2cBpZDnK;ZEWv{$_D1tA~P7?m0=6e9v%{8I$$(U9IvQ*aHJKqzy zsAHGovb!DC#?B6i7W!lE=49eD3SIJ2e#BP1|s`HA~4qH=Tev zJy(1%lF{-bqr~H-1D@F8)0kb{yg%E2?>?C1$eQQrj&ZqZEx}{xrf=FK^|J&ZtIma% zo&tBv2DK{s-0Bxekuwq&`cj21Zc-}+Q$T#c2CPrDiq18k*A%8{4bZ_zN}~3AN|x-` z`f2w#M!HDw7iH`Yvww4q`ExBO+Xmsh9!y164%ENP7X<|^GHzC%CsD&{YF%|nxmI`kj&$ojX!+X6_aibEjjHzf`X16}EKfY?~t~NkaKy zk}=1-R;6sMtZyE?bME>RKPKXP&v9xd?D}r(7eUvw%AtiKN6+Ma8Q=Q5izlY4DIXjm z%N;KiC=PdZzMOuB@x+3h^{+!5XaS&BD$2kM$W%u$1}QT-44U6H9ZQ=vMAn~ZO%^NW z0EU`Mvz$)`ZOWSD#$d5u4;{w20L!^Rdz|uda4HxRp(PnC>4s5bNzruTNWujBrS;OQ zj#i^EKYLsBFTB2K6i`Y=R9{J_FlUr@`xRKSb5Yf7raqEC zoI3qLJJD$LV;G0cm514Zn+4YDJ-a`5i8r+dMaw#(FShoHhxkV%zvlDWj2UoP3zsB5 z4W^<@BENfnu8((du#=P>&3>Y{Rp;i+v ztw|7TS*%a}={|FxS+idLtGOzxsX0Hym;bA{7ZC|V#dMoSdY?u$1h#s|%x(~uT4OR) zdtey>vXZDXml*K!MWrH}dhBvtDcohbpgmAE#Xg^xd+ zs(m8Rs_d5!x695zLEm=*HokJv#d7LD%3MgMv&l_}7;M3I*#Y#8dhXUgPaz-?oZ9so z4*oO)>n^MDtUI#k&$o!#wSN9}b7!$lb^0jNeO!9s(kFySz?V%jc=K2}&CO|TA1LzE zoXJ7nTX-VnwC*kM=Np2Xe!ej`6Kswllou40ypj@PnlAZJOF2&Be2Lvr$phYJt(>>3 z#-od-6|$^)frDj#5j3s-eh}Ilx8ir(jw2I=zb&n(OPDmkv!McHf4 z@*f@V2_dFJQY4Q!G+=?$Tb!lpQ`IlzvK7&u#GX_JK+V_XrnsBGZgxc(vL-(09)(aSu&WvClzWy>1++=d>f}Q2 z#*LD3OvlfF70alTQ+1J}*#No|QQm*nk8c@5dvs<@$I8~mEU5~%yZeY_6RJa7kz zVDn!GCc_HGiuGO!B?&mSqdwEEtby1Akj!-AlPf@8y{hyXG26*MN@WC$U{m=Q-ms#@91dhgt? z@Gc{UW9`W*#T?BZ3a@z5^pljak*7d#Qv&!4g0?ohjmU^lq%-%u2V*5pxwY5ND9^0U z)dGRh4-`6{!ED?S_uGAnT+k)uP1 z9%}~Mg+JJWVx`GdS9eUENq8*<%(UE!@w?^kCsR4 zQo{n}G+yg!)^3hm%#YDhB^SGOr(EptKC9Nf=B_!5(GPZh{Uy_+05Dl~3&>GUrWSE-Y$`sTl?>PICPhSp~70@fNH zh$i~JB+aA#dcnM2>UD{JO(;HUA{%o>9qg)k$ur;B zLF@4nV_D7IH#N3|Kir^$0y+I+O+8W${hXuNM~2JRI9#Xn)mQ@TiR^WEt@QP-$j6?e zS1>Zu+GicrXXAGVG;aSZA{r@ul8>d=GHt$QZ*ZHMo@@(qm~87n=I;A_m;)y24Q~z4 z=31n$3KrHpRlM#om7NPjUzK*clfZqFJPm9{&CpFf^PfSYal#(WL`^m5Bgu&}h4tp~ zLaZ}Xh+MX!k8WXf9QG3!+rbs=-!&!q zKg>j+AP+(qhtv30pE_@HM}O%O=9y(J3{ z@>&A%T3}0Nee2v~l{O70=OnLy)uQ>@p)*n68eMmyD7}DW4fGqgxwJ3+O1sKFN;ktY zw!bHT9mxNkcx=WjV`3QeHmi<)!u?J`qrx?W2L866W^B*Vu`Z3Asv}V)b&-=naV5^;n9W@vc|cyj}ReL zj;A(ZA)=R^owr0)x)WTFh5HVB$E6P^b~v|qeg_dAmFL&gVdd`>)sPcyJwuSkQiB?S z#optm@*kQ&n!HYhXqOIAf?<-7Yl$g(3IHUe0sQG(%DC~N)LUV#+_6J>?WuJj0u}Pu zkEo&$+TA2+)^e~nmZGbR$B%(N@W$9wYevQWE|pGrMG^CTU~F!W|1a7Sra<-GQ$=7% zy);vPa}PRfPy`BjteH>8(tJS*Oh=ly!6G-mcgwcZ-#7o{cORhRw*8JSp^kaa4m-__EY8Hea=;5=L04wkBN^ zW=Q@w7XZ{R259HUTNXQb!4$%;HS*o;*`M&S###8*XUWAr1|gK;+fy|dCaS~Y2&l+* z;39KWKOi$%JUPO;`XY`*eWbCzPsO0s)!&ww}Ga){l z?_Sa3ddMMlrOA-cj9YHRDnqt+Pyw&O=>4-~MNz@|9KBx>Jgwp@BUe4?a|8UO<)+mY zK-D7!dh(a~3L_)I@oBJW=fnnK`Sro@sg8{*Cw;G~qRW&*Ckw#Ls_8I8Ny-&^PkFdA z(t_RvSc?jAJT{DgEM4x9Vo?E+b!DpNn-dTVoH{V-7l+FW>sCA$pHMzhZm54WS-KI= zYc?r`uq!?y<*ry^&2BSFCpQW{$VAo#x*;}_*~LhmF0WUePQ8UtI9w?d`7+sH7;9^L8~kb_-wWl>3bPtuo!a>$W7I{b|~zv^JT_y z=g7hVNM$_-p3twP-IJ%m>h2Xrti>2mPyXDSggPm$Hi;hv| zX&kdj=S~n6LBt~w`9K4}6Gv#sFj{}U~DAwlUTc}}^};oKdi zRaJ?JAZMndqmy``^JDh>@t;`q-Ob7J4)n0qj~75J-2ORRb#Y1T>Z729&YD+yH0#37 zwn6NGqDh!%}#^LplpI(OyV#Bi89_wVaJa%?R2*pkcqY{ z6kBbnnA{|~XV4PqmQm7ivZEIB+b_ON5c|`E3p}^1_i=xx8>Z&X5!jf~msVeNi6?Lr zg#S!r#6?#~2lzD}~zd;OQ5F`~}BOfK>Gb)B{=uzk_I@Uti)C zPL?W1vl~0Ps;h%>JmAenA8{1Slp4OtT^|uKzAEx2f0OBCszJ#r&}H*!xy$GyacJhH zs+VkRe}?h#4rjXDn&##eyIw7g`|&nNWR3g%I_m@cEKAxsG;YSq6}Uy*)JeGPz1gbt zpe&3}5Oh%h+;3`-V^n?uB|Bcfc9}pu1(!M{CeY_c_=RgVZj3-2tly!H17d(m>iI}6 zpG*fXUAOOl+i4qoU~Dvmap{YH5y4jzQ+r{pXjW?wsFot;=peZPJGoqIV358J|wDZUn!yaH_wa1wkJnY z1}cDY#Ecv}B%zX_V2nX+{zg+NNZ}|$t5PvO@;XjhsBSGHD9GR9+xK_FY1>aXxO?V) z1z7cp4XV$!rUiK)>u&L!SOyWXZ`+6!WC`9S<&hJ4qJ?opp$cL0uis?Hsw7=MGMOiRB zw>DwsoX|;kCsafzdv%o+`vMEH?%Q%?;_-a>;in59M}l}TI3ZF~y{AWspSHL7RB*R#^H7iblS#y4;C%HAa_{4R zVC~2I$cc}0KlD2^dzkyn9W^ytto=E=^v}=4i`CLU=kx>L!oIh? zI#b6xRMqaUSCL7Lha=sP7u(U0{CTL39^D`e;71c~ud*`0Ga9R`i9gKh@l{4RK z6zuap+?R2<-+}xc*eV9is&!P)u_&dPY7h%}<_o<$Wr>C5(Cnpa*s*7;{*vtXKIKS?eTKXA_V_A`8z&|j)CiJs`dlNSTHv|u&%0uOdCFZVn z+91>zQU#gwFCY6@D&F#b;BH(x;BK6+Dm$MgO&%B=`ohk|$23IV?nI)${yV+Wcd4gU z?k5F@XS1GWLnY#aw`M=yBKQHaNKJ!mJ(Unbmr9!%!Y-V&>=j1Lm(D)mGCTU>vtfTq zwL8D(+6S6oO3C>@beYifR8Le*1rS@i?*q^$kTk|@e)5Q{ub>z22XtM(O08G>E=7}( z`({+${U7GeDlDq7kM=YIA|eP%OE*fFgo-pMAp!yhDc#KmQ84HpT2e{rE>XI>hwhi3FndpjoAt8y2+Hnv=&IQz(C^qxriak zE=@jki_|(R{7NO~&T2nXzfUK?W=__7=xn^I`F6){Y4(m{B2R8BU0y&akVDn6We!ql zNbf5>-wJd^((;aeWGcWz`fZzCZHMoq#uyHtf`k9sDeOov9rmhP z-BWM=F;EbIZ-)^EzTJDY!G+_BCkVD#q+9WeZDhvgx)K4*6}&}7q<{SqTX(>hdM4uQ z`ThM`W#Fc$`qlFI-wOqTFW$1JGmkCe#N;I41vZVv8`RWyVoAfXI0)#_U;BUKyF$uX ze3hj)snM5>l-mvv!a;!i3!I8~)Blx&qu;M5xB%kL0W|Ui>+65VMb|(55od#o`tgzc zFJNB$cN~J7+Z`8J3)q0gAhZ_$)~C=Qj8p|L2Qfh$#*#*`8(liyT?jw9F7_u{74yO0 zM+##!I;{tIgS5<|{Lvq(cf59|2NwNJFaD$u{~45kKkOh(;)^>NZRfp_5Kqw282Kf| z&h5YN=9S6@87HJIBhQ}%B6dOyOtd>iEOO5AkI#irQU(OzkccV@lK!!yT>1avUm;1E zSzHoxCe@&ySZFiZ^P<;PA7q|au;gvH5$Y%~fpVu9zt2eJf-PN_E81&e*(u z51lhq;ZUwVTdC`vEr-0XJ}k)m!>pPh7*1)VvUpzA zODWZ0CM7*O3VZ;OSJwuW0q>S2)}5S7?-4lTmtD)AxI?qEvL~;HVnG}RMU@94K7aoM zrD2!~V6B0!Jj1;t>&AWYH~bHA6O{hVc`z`czwfda!H(r1CBE$g#xOQ@n<}TZ2pTa5 zt>vyH%EcTCp3_O2^vRnXd&NkX!;Rr^AO}(c>Lg}h>z_#pM1BDWo&s#3PyvV%Gt>}z zuZlhYT*=D2IZoh~asXhXyE#d3N$vRjKz-K9LB_2p%fNXBeXPBpglOz*9@crChd9xe zJg2Z0=SFTxJJlTZGxU=8L6e7YH$tqZva|09mdAkgK}%FCq@Ugo_>$Z&x8TO_7+Ehw z+f&NCpo5*JhuhZZX^Q8aZN{WOAM)n<^96&h7(u=LA6ioJF3 zb(_dSOMr#I)Y9|j1BQoH4#dLBad%&_k19D|smult@@)!ve=uTKL0D2 z319VDs{KMkG%>YE$2G@vr&SRDvs0pOFcrCC-69mak|dzFS&adWN)}8OWv&oR)wuQo zN0`S!+dkFygD*mTYtm#Ny+G#XBxO{~i%y`gV$v#LdSQMo;eClO-lJ99iK|juZvq_2 z9(cRTQ=DOhnK(<651PuF){4)@}0UmbS$)jRGNl~2w>s1$)$42W3dL3PFoVu-$^J=k&`+aHna z9B?>4x(}j@K_n|e%m5MDUIQwQN?A6}zxA3_d z$D`#KENS(VVTt2x@0#*~bbTEo%w2KqQDwfHf`g6G;lPj>1H8s z35XgST46L~nmxk8?-Kf+J|)o5f25l5ik@H~JJQP8GT~*acm%s6Ybz&+;`I%@au+u) zFp*u|!t{FtOKk~MEXt3<89HjXG~BGK)Qj$zDQrglKEs6+07tAX&VIop&t3Fg#LpVq z%|Fm_ut5fg%yZ5-D|ex{Lt%jZIzdfwS`WNX1C{n~I1FnmUkIkhH=wp8KzpBBY74)p z!uZ<8vzRRJdfat$+%lM zEFZtv&?qEevh~4Q{f6MN!9qZLVwH858%(zF)6z4s5J|(r|CQ^*DRq2i#UU41us}2FoB2(VnsN91&v=Y20zV7 ze)H3cUNc(NBjh|wu}3!*kh-EhVgT&NG@KJZ`+c?l)5`wZZ%c4+HcsP!*WftZ7_AV& z1K)@##cS`=P=UeZnJ3+(j;2uAGH@=M%r^S%0TV^%V*%Ah;4auacv=5!QMHobMUA`q z9%Q1%E0KhQDMnQcG@1Ravlf<_Di>EZMpa0k^+>jUzTI3z_z%$d$ldP&UmbH{z1~wm zKH$X0Ck_`Y@ezTz-UPJCWosLloH87U9D|rVmhg7|C_W=Y_wkGZ619Mv=lONOiq>z@ zZ40mG!6jUbeJ%HSqB>EiuK~Uf0kNULpd{i)!*m%fdbwRzrDh>yd1N&SeH}bsKOmiO zeUkh5kilTz0&n4Wi+XnHz<2giqlW_W6vEyln1@ZrZ{Meg#LpX`9BklK);;pv-*qZ_ z90zsZmrnb*Sis-n(X~dk+PbcmvMinA%SsO(@v>3{O znLkebo<*ClUv^MdI9uEQGR;JpvQs0HSifPR2P7z~pB6fu)SvhAtBC8T^!{_CGrYzr zkK5ouR7kk*Wq?QJ@X>;hdEaamgAoYr0MLjIfOUWC{~qYYtWdk?EX%C9&6|D#<7P33}p%l9pgm%=!!p* z#iWCLpv;p5#HfDBXS12A?8U`c`&eA~7~-i=f!LDM^YrQ_b~ON`%5=pWdC}NPl!Dr$ zrdcdWnvfmY&F>LbSQ%f=U8Icc@#smc0;FOF#k2YSLI2~t=7!QibQwH4SsICL+T(WF z;Y#Mvk?M!-)or^C_dt``Kr?g?OI*4#3wtDi8uUJ~q)d+`T_67LFV0YmR0^eo?q`6U zEMcxb0CGf_r)!(O_c}Y?rOn-?3BkfG$&9k_-uMiBBqhtfT}GZy)Qqa&=r5F;=C>hNmQCI?tJYv$PLJtzS!(R zF%cUNXfQw*42Kr0jU|m)3CIG;FiNVpOj%8|gGKuClZaMs^ zQzP|%Z6fNkpuN@InlxdeF0*G@| zN{SF`i!*FK6HCK$S+L6E_#;iCko>joBt8+fWQU2V*5%~wU6#u+d2WGOM#tc{ApNC0 zL(m_1Y?BsC837|kCJv3bSpN0Y7M~?W4cle9i?V8UyCDhe)`h9%zw0fXU@){6Hzw1= zp1!SU@16Ceey|OctDWABeixz5 z+C4wS;P~Dy+=~lELK7yU5@>Mhw6+LnL&d*>F2r9-p+=2ys1BEO_IBmZldQM4SHwZA zbV!obj(V}N;!<=(riys`>pk?Cg?v!Jth<~xY1*@%so_%CU>+3*y_ta%o?QQP*Sx?L z^iK%6J}{dClA6Z4q+~68U2dSun;h6x2jwpE+Xgi*(ExyiXQDYmz~smMolH6OR4&7_ zF4knBUVz^ffvH=%_G7Bj8@@(YI9<&)c-cGS?JKYCL`)-nFcWTg<3S{+s>ikg?o(3S zjE}gUCm9Mip(ksE@7@tVT~qz6k>PsXjr2O!`x%KV8VzFp)FO8htWIr?q^ zE^HV?9D5UWPh!27+T+#Yb@-V^K-$5D)tbRpGvVJp>PEG1LqiI2R9{1LDW?d%MJ%QrU|9@G;^e0lzs#-1gP6|7k1AvM&<03dc0(X@8sTL8EOQ>DEGYyY0{UEqf$iOADF__kU(qK7E8uD5hSBt<~}eoca~|}fGK>; z1_4)$Mwybycf z3_5C0;u9xI<&Jujxnzl;X#M5!j9iC7$;)X8lX&mU?#M|~Ttf5l7Xzpz*D@ls^XeMz zgU5=$=KRF8e%|aGns!z>6;Y+lm*pE(k$>@AmV=5WLr&g(2~d+d7$PB`IPP&e4}}&l z;f|3^5|yNM)x##sh6|*`TCz`0u-90w*-nvCEH6uvxJ#H$bpvZdLVqCr(FUKR>gn#c zC}q~+1z=7$*)1e`n863FW!mhuBmnWG0@ovXESJqb!@Y!|nJo&{S9G^3;Te^@>~IL> z{PF4o@nRJLUgz}zZRlFUHz(Ts(eWUgj6cHzw~$5CiNiZnJ zI7y_>eyn=U$KU=2{H@_R{=shyWwr%4$=fZA>L#9*!+Zp9nIHC~JFINokHwetIQs0h z+bN9VG+;<5{r2Jsl{P!W?ZLaJlPpwRf4cu0d5v6r4G{A_C3h*zK}s0g`W!6Tj4A^L0Ih-h^Dc`gZ8~_Pz4%hz+_&FV#FDxWX8%#=Q~`Nl%6ERFrDC(bRa@KpWLpu%_btT zCFE?C3fYe5(Zv_AIB7u65DQ>CI!z!%)tM7{R5d-qO!~v2L){W7^SU?!-FiY`1f)k3&SU~+q zIK(IJJ%%3VXA-a$K1~mx_ADmA+T}}?ZV;p6u{FAhIw(cI>#JiqLTTgBi|Aa|Fdx*4 z(O9hMO~SiS!m*GwH-~_U)8D%?2KPp*!@1UWI#%!nfb8xst2#!OtV5U|1k8Hz%r-5i zzRh88FqJTrC>EV{j{<8fK;}jzJMM&zIL87Ij zm8NNJftS!0g=^Z8b%~hb_^#U6!a!z>paEe?*?Q1$PSc=2iGXI11pmJ1h(!Hpp+3@Y zmfj${iQ)Y8K)8vc3Xx?LR720cFxGp5%Ga-0oOYdw*#db1xP-^j*FoA($hlW(5Z%4A zKmW@QK5e*}W@~*H?9AjhJzHZNz~&U`e=3&8@k1lQsxc*$j-xryhco_8TT+^=Y6xW2 z&X>@nOf^gX3;=_hb9#$ZvI9n+9_bawdCnZOTMT9qOKlb{AWKMb`998xobKoNFO{0# z)tjkxe|>yK>p!~1{+o6O3*LL}Y@}*;s7Hzbtb_?0Z;C!_>l;@d;(35C8xgZ=_=B@< za-+j~8ZPyGUEa{63z_05Ziw_%WUtlaoedOm6o>ZPjscrOrM@)yVvn>4(^M#UFBweH z3F0NmLq~-&CXt`@B%V5*=KNNUQCMY2VF9vhc{X)_ygQo8@)Sirb=4#|)1ssHt2HNy&qV@-Q73xE4teD#RgEnaP8@c>4wGc zJ2ym9+Kzd?znZ;`zwPl>!k{eoaeHlAA(I(z=YaIJ_U%cM&b2R4&BP0v=_;G!s@xl-{;bGaOd=vdp|afv&eV8+av!lpl$Q^V0YBa9sJ=+ z@$L^_e9Cg)#y=evb2vkac&{RyJ9aGw&DsE4da2aQbA&$H(TtlH*o5_f$!gHG?hxG678Wl#vgQ79D56{(yRbQzpF z{PH`SeuYCG;RPMc^OuQf^`0U9Q4vZCX*D_fGHwA!%b&a-Uo{fsnBMOfNJRX# zt|T-4@Hl)s85dw$-Le`5NS_Mesyy1rg`YbrhI8mR3qi`X{Rg{GWPfpw~)#Dr=}ty@5>XZ^Ymgs7_Bnnli;QkZMrX>uj!=pnf&t5_WcD) zs)67|$J-Fk5y)8U!m8^z7_ELzx*@3pKSyzmS!Xm$_W znLyMUtRlf`ov4o8P#V-_EWdV9N7OIz%Rf9n-VXF~->;^{$namNt~<*)AMc+n`kLay zUFAr&NgKn}`S+>#Q5_TEI_S4Se33NAm}A{P3#|d#WxJ$6@aDH_;!L}op{Mzu&n2JC ze#9?tk4$jtoFbx6Z0M^mj^X7vtfy){c$w_gWUl}2Iw0Q3zIfa#`ROt72EYn|sWWU- zP(M@S_viAjr|yxkK||$qbG1tou1~XHOqT#OCxwO|<{EQxQ4_^$u$a6_B^B`ar=RI zr{}*djFb^c-M}C>xVJq6wfYJ0yRW6}DSauP@n$Uj!w<*syMn{1#crFuk=*d|tJl2? zWedRmsJ!i6DxPGhf7vq1zYA^HF1Dully5hmI&9BO&;FLB64VknPM@^p7dL^6xg0!? z153zfS%YCb2IVSfN^*Ahm3aZP9yE(hxWTOuL@f`$cSXc#JkUw3!N%-3j}4XKxU>!86i{3!u*88)xQNlBUkEe zrZUmfS;m@%{UfT{{H33WA0-6hww<0hUUIXWN0;qe+pLN(k!n;2hhy@UUthpdb@%5M zHGckUaY33v2pB7>I7KngHc^KSxQY<*#^@KaAQ#r8LwWzewo%Y^#Sc`Kf2!vN&}6Hb zV!4<&t4AP>rUbEi(u8k6klaS|NJ7{Xxn{ZYX%rbUe}#RZx2KbKB-pyy|R07b&tLYeCe0p6#7J#UsxP1O!|M}6b2ZKDX3n+0TWA=0>fM%lozWG4U*4(IsG`6i z!(x!tWukQG`=v6qn0Z_4Uh^XTeUJ-+wgTERT@2 zW71Y&N*|%Lu`c)1uwCO{Um53%w_3ZWA#&n0X19+#f+hr)sWJx74@ImSyPHWUg;r1zQM}q3f;C}G7^@L$R|{Y8 zoIySW-F9c~VNEU!PhQUY5KPgtPpVR+pifzt-{T-E9&r=hY4I|Hh=Z-+hso~i90{1Z zC`G3yQAg2&wj&3A-mi0}Nwm(k-zADUOn@=NM^Bx}-y?h2_#_iKLQGDp8k=*05BVHW zC8k)2p(VM5-(t==TKo>b?tXt(mNSVefq*ymPv7&aPR8nBAyYYmc}x906XWbxEX8ie z?w{&qM|~sx+&DKvz$GGB(eqe@2@Y8_s;nesjgK5mx$iIDYm&*e(g&gCx3aByHJ3@j z3_cF+%5>8E!DTwrUYq5g{iNyLKvs98u(eB~a9gndn$xR6vz}7@a_B+~a_`3Bc>3oq zsg+NCQRPrxBp&GI^f^RE4}{1u3pjp6t{uJ4P=IlY54#`KQ>|t+TspM=B)@9!KJRf& zzUM_aExvkZ!NZls6#ati13Md?7D0}Tr?}AC#3E^XGDq+}=geOnLs%+qvL!OFD^W-v zExK)%4~g>eK84B-Z9IsOlGoS>Kvl|NP`se+tL*)FFg@tRU_j`j<2&;8@82P!;Eg(@76#3&P?g4S z`QN*zSuA4t@2R|^Iv$uj)&d#%eVpTD{g;jyOZhu~(Vf6b* zh0S^Mmd<@Vf5)S(X|^QQK3VQWkjg3Cp z=}_e69o;l{_{#X(`a$ue2gtVY=7>qj6_sdTlxcHK+63HvX@^v-#yc=^vP^kv3bNz# zbSD&8Z7Nh`;uy~VlJRNY_w&xgZ*kz3;{d!(1rn*>KYV*E3z+r`3~EfVA*DDB8pO^3 zbqb!n;CXEF0Fc9T$FpSb6VWaW>ll{P+T8QXDbh%i!Wq^Y(^HD(Ufa9nu^@{UbX?z& z^vhY6eE^2%fcgW)0v;5;IwVax9>WWyfxHIQ#>I_7(MQ2su8$v;U$Y(eS?Q4w#`tF3 z{w=gJq}P#H++A_GfF#O&+4*cryCOb`0vfk%z#N8 zv^Knty*Bp!3mES{7PgwWwKaZ|L*se5HJn%fqLRLG?(G{y#t6jChsnwnlIw8Vbz3KQ z(*d1!bl+3hzNf{KviigX?9W}4iC;L}JagPP9l9)6kL67gv>td=pK{<&bAQ=GoQL-M z(hI@9oF%gSN7=%tAGXlR>n^jNT$b|5>Gp#`^V!%VZ!gq2Gj$tz8s=9ibGt!bKmRU4 z^9AFdu?rdI;Sk6$K3g1om3Gc?dmuYDgmxlOTw_S;qR2YI$@4@Tbnc&Naga;Le2)sn z{(IGpQZwA~7Phzf00}e(?DUmoWMrbK>Hy4%jNRc8T576o{{C+yl8wl0a-&i30aDFdHyKQ z+8_0-P6MjN+@$=s?Jl#1G#05 zM1cKi)cVWpv7424O95wz?0A~~059#mjR(GfY8)OhVxmkR2r8&OoOf1U zHOsdxol*`@-(zvi>T;<7GlH>; zPe0cC8rgJ~f(SI;BE9foAe}u|b+hzkwMGeTjXpZ*z_xZ|+NR)KSRA*?@smwW(gxv1 z9bT)Tfb5oD{rQ%sZjFui^Mr8|P$;|D#rh~DiAO`nsFU%f@N;m~JFiLaFzMDBf0{1S z%%*&V{Vh%ZS%IE)_W8gpebTb^UdA@T#V1}))ZfS1^;Rst+MRcGIvc~eI#HohC1&b1 zeCKXYS&ijMu2NJa_5|d8WPdC_#trZj5i@@qf+rhY(7t91awS1pY3D9SSXbh3B!o845tAeI1pD9T$ zOx(MI)=}m=tr6`wglpuMt~T&{98gxTVvZJv^)id+JFh=aiH|ydK$+b3>l2v?V7Uy8 zsr2^c>6R#z$xG0b!@_?>b81Jl(nFFOsABs~f+;~wkMsKTAKeEfZ&ygGyjPO-@wwJw zwc~YonN{g|z{D-f$&z09ulu+$7H7tDg-5sO^@l`BXU?g?k;ZT+JLN5tw93U(sm;M& zV|_^`@w(`1j|LpZf~u1NV9e{>cD7fVm0?o5f34Ker>v&-a;qi{_Mvq3Wf~kZ;`PSA zN}d#=UGl5c8Wohw$@ro`)4-x%MFgBK5o)aa!AxXfbe3~zMoTq{k<7X6bl<&i0og_w z1P9&A_z`B%1>_ZEB{Uv#;Jn)Rs-I)fVX@6-W9a4nu;oa{!EI#rb*S_KZq3v*AEN8! zcU;zm#Sq%d$R>J-F}mA3JAG@ld@@Pc$+PGSx4>-yXDw$+0q19wWMP9pUSUhDOSu;t z3rCioqU-+tSz6+=bxW*8%?yRP;?vZJfhtCdEwhJIkXE5LyXVCO*nyuW(1>{q6%1PR zPRK1(i(g9}^r<_Y*f=ti%l_nvL{u#PY9~8d8e`4d27AiV+Yg)dTKWH0N7p}k`ia23 zG+TmhGXbY$N%ya5a9Ah^y>@9X%@$Da$trEQC?=LGMg-4-k`25;hO~8l`iylWj|}^mQt$T@MRVz$eGJ9 zZ`C{ZIDBAz)01B4enqAywjN1k;%S3PUWVwTtF0MBtjp> zHEJNO;ACU5m1mKu`}>{CXTAoS+le~6e|s{(h9)o;@pm-jhhi<4q2!Mp8`DNYm=tU# zYXc_yuZPV08E(^#IU*+DX_{{(lt6?YB5F3I_iICidvVz&(bcF{eQ68)F=JtWD?#7Y znD)wCxoly2ez&kyhNN#X0mSQH@DhNM<0-4pd2qLaR@x(b>K{&hDo*rKn}OU`{DC9bH?tUr4F;?C|3rQ^M62F#X0oX1HseeXc~DY!IdCEA z+Od)X@uDfAN&H8F^gcgO)g|ZyBcSM3tLFI5_X_cd*A4Jj3 z+^Dh}-30H=_Z|Z#m-)v)saI5wY14NJR3lMJ3XMS-ZpV=j2vtmoYBer-M%tlUI1v27pNf2&_-EMNZICB>$whgZP zlxL6|bFe+xYJ8^1@=*GGEXWHwQyj^6P2!y->j@M_7vlBoePBI#vKXnph*r&m9d1V_ zUjsMVcGJ0b_Y#PX+((0Cj4JKEW(YM@WT~g{ejuVek`oUVU5Q*NY%h)WG@c2N5py}p z(YIEL<*X9q-nRAk>7eMKORVe7Px|ZQ!N8=abel1*fPpNtY4Mj>Z+>!}`YxA*GZ_z% zM4HTtz~i}PvQ6Oijk5-4XM4)>0<;^E`TDqgj)z&Uy>#WhFM(E4n5fVO7=Rej>Y=N2 zf_gim%wCg@Aq$sk-d2oEtc#0*eSZ>A?Jx>U?5ak#yKV99BO2-D zr>V{$;8u%gd7j-d(8xyY;D94;@iNF1cioDg$ihz9Sh>j;W9{g*&IuS1O|GPlzt^kq z_(=sOe_Q1b1;o$K7D)KLekte{ISij;a1RDLZou)cx2v$G#_+^Xb}3d{Ybni0x~l|a zGw#{-Gir1mXx@KOYOa;@ivHhoOJNqmI_$!5>0X@9*B6PzEY5c?FMV{1+~$j4;>#(wT>B%LF3CrcTzRPlDQNApgLl-@@xCi z;Jfd2H0)mTjo7$1U~N*!Wv-pZmO*BmDbl`1rliTb$A@ph2GMucY4$7fz8y51T6@ru zD@8~5CHz)`R4BcOB_fJ^Q@ z=hD723&TQ}fau{K2>FmK@hk1H#w1?sKWX3t*-ocnSwJWFXBFiK z3EPmTQzlO;b6qT{v9Xbp76XFH;dteX-3hJNt~r#ct8jzWC(|I_A-ryd&l8^5Drwaj z$yPyoKS0doeeC7f}WqrQM6(Av$T_MiR zubBZnNGnj+K^|4mi_WWUBe8f`Yv*I6k@o-qCbPKZ>e$GNh+({z`o1% zXj;$4{UPfnKeVkJkigTagknC(%#CeIUoT>ZBUo|lm+A>NoxS%t^}v=SS7 zU1Ho8W~e03)TlrCywdIt>T|bCK!HRx;+lbxTZ&MP=7~d4B1!K@=fC|G!}S_0apE{r zTaVhIr7=BMpn(yS3513u5m5rPWA%hfdVZ}##@60x(`JV_< zw}24wB{YxhBwR{9=S5X<_j>1k#(VoZ?=|iNGvQPd$MN0Yu}#_en6lL>*~c9(BUqn+ zpGX1(ne6p!JkFgaZv!!9Nw1f{>+CJP|FqY}lxdI^bg|!S!2fp0tlac5tcrjpG{OEM zZRjzLcn>agu#%K=B5D?Th`lZt0&GP^h0mqqC}|rtp%J0xUiD5_|w%y%0lsd&U!Cj&_1yH^B74f20$3UZ?1r;%Zy1S1MGERlm1i zfQ@u|E1iY>vZWs6x}DPJGb7YzhRmSw>Gu7b&>AGS*Z z(4c}mGj9&?8QDM3O!xlJ4HJkZVhaynRE+#JM=D1CZ|L+_t{-_Vj8Nvf1eUAKOcZnb zc5lcH3Hj7#z|Cw4RweU#i3`8KG@juSnSj*x;&GLddCuj0aFh&8b(xG;50l|s{_518 zPmOH~!(`>TiC(UxwMZFq*@0?G%<(Abg(xJ;YgF|b%X>fxgfg(?wqJ?5_vUfoeLkvK z*>EgY!g>%Z61HvV*+Ua+KZnhJ1@j8C8pcW^2Re|3lb{4xNKQ60SAKz*6?W+iUo}K^g#R&iBi^Ya_ z07uXNz5ff{xx%b^g{?^p#072xoui8?AmS~0vi02lUo1VdnOMMd84E}?ZWbFBe~f7| zPB>WD*h>JS*Z=*U_dki>Uqx964$y`20kO)b^mKa=i3Ii^tU}*G;_ecK zO3>l|ZM6RWiQ%_O0D5~7kDEV4(AV2{l+c|1+PSEq=ZU%Ke{TTaPy#eTsYfi@HXu2AH|KoVscKP(cfW~~3?2aIft z#DV3?3P zQ3ov27c+G(fYav&xl>#HvwTCQFFxnp`2tlgi1?t>&HY(#5?tI5Rq%z-vM?|TRz&Ct zW%@Qi;GDR7iUpX`;n0?CEyu$^;!qzGsb|2jPK~ybNx6(978DX%!Rx1;!sri%2Ulvn zRb~qtF2Eq~=+~Mq-;|S#9!VSzoNtE1jL#@^@QveLIK>rygC zoyRNlXL(obddax*wAR03t@Nf;Adf+v9vWC4W_stkBi5;x_GMNbXoI`7sYry9o;S#v z3fbI|Xz^wl?Sik7Z{BA~LT>4cMP<#RNH7@Y-wvmOpqny;zx z8}XL+?n_`u$Dv1{CR{NmPpYwGn@wamEp zaiX`kxOKV~j}6^pZC-X~x^_N}$Uw*zy6NAY%1KY&cR6{O9PrMU@5*YO1PPwkoRVY6 z3~wr?G&=qUgrmfx27fthO}T?C$*;9Th~Kv)gzC0wFMp5S$_@Q2Y2@ok*W2*8^zJgw zL2{tyS=@dGYcB;5#}uefFKna=(Z+doTKRSR!GoE>D%?F8Qy_BDf~9pxh`Nr{`0Y%efvzh;{E%;-^gk7BHK*Q441-Ch*4n$piw7X6+8?UEs35# z`SIX!a3k4Q3WHw4B`*m0#X*c+9=b$do2jdDf;Pwcuk8?7QpenxB>=A7sj!D%O{2st z__5Y3y;CqF3VjU7t{R(u{H~{aLq5#z=ijDMW(*u+9}x3G%KOXRT-vHxzA4#i(M1a_ z%AFM5Kph?Rs{HcHu2Bcvlw1ciTowZvMdl+6N@s-TpH=>rp4(Tr^~+U~J)tczi4R}# zPC*W?EIQXPTe^?*U7)JWHeiadqB{{F-+BfjnC<}o^&94=+!r5L4~$&50+Q@kw;`MM zyfV}#mwcAsK;CO#Vm!_`E=}(8k2(K2XZ(&yE8W&2@(fE_=xV>Oi8$b3tYH*Sn|>Y% z{6Z0&5@4@|^KV-!!$61QbeaIPcrI|^YZ=WAzmK@r_;gt-3Ji%Hn38e3Cy_fJ6&jj<{5XObk#*?tFIH zv;u|(4QBN_>XH}FKdL?~94yV6>?ZC30G&n9>o6PDdue2KF%4uqO}~y3gFb!|Pu!3I zRz@p+66M3=c%LGGAkhE-Y-*ZlR@GyUjRM0uPB3&12gzt11d*y76^fJ3bBrNH6z7Y| zu>Ds*z381*!>lHpF2~RjE{Lug#JbZixOH-%>o?0O{o1pcPmI=sy|t# z2Bxmuq@H}BrQU=3<>?ih-r+V|t%6PpJ)kJD_#mWU4*p8`IeS;I?kyfaMt6SYI{p)r z-IVbKVhI1KM0V)>K+~@P*i4H7?QsKnx&r7vhn&w4lI$YuvuG-% zS4Zswo&hu1%Ee5SSq4_|5RraV_d7V*{{-!4Ik@d=RK4*jH;ASNwY~vdt+?UonQFcTA)(?|M(&dtNz63@P zQ?qyMlg@xcWW;rN0g7yW}rCI1}FO!*_!`HWJ zw%K&E^;t#PoY0|ISI-yUa2OR>eblB38vda;c)jxh6enOAKx>jP4J7FH)B+xrbH z%ShFQ7AV;I$1+Hm;Q&_7&>gJ<A zg}#${Kq(5+@{&%A0ic55TuV$Er}kNDGeneRl3um4X}+Zm_g>-gq)S(U_a7IsDyTV1 zS1(q`&8dCT%Q{O>8#F#RZa`)NsO$h({~LFXNL$@U1Fd+dNAV{`Z6~+J%bPlBt*;nf z?@6FIy=${0Phv$HT~8&?(u3f9jTh^@IVI=xzQM8I&lHXFX$hth=ey>kP7kTwmD{1- za(~C+wt$W0(d*b}td?sCWQU17*{d5^W~!;1yaMbsX#{Pm;f!+c=K6erK+UoP%q)xn z@Mv$svQW;=<}@!yJw=NDWg|v=+`V-3BL>=UYKo#*;*}66;?rQMrG+yIo%xod%;x>J z#n6$YSk`zTeO?_BAq_XQUW~{ru z^MLKd{3QfgjMuvF6qOC;8ctUqm4v(p>AP_tVv+X|Y9LFMy0&gc%gLuGf%pPU(Mr0x zwffH@K+XnwkdBre98fh}EbH^XIn`2(6nEaKul>940z?D;;kDX>tP_AosQ_4)!5m<2 zY5Vpxee)rClG%$DQlnb8B8i$}RdNW2KSS}3`mo1XeMn*zx8o>o2OsOL)g9Om|M!R2 z#hu4;lH?IwsvX7ysd*`--!v3B$$NGiy&sat|Kk1Ei2KSU5+q7_PnbR%!CpTw3PJO0 zsWCEcM+(KU9Wb!9y7a)ebEdA9 zcW)o*XlMeLFDqnqk~@{z=MtFBtA-U+gvrBq{55%a3CYvyl(eyV!(B!2E*soYjmgm!UWp{F1af_GX zC+jo(HoO2GId^x7I=t+W9Je*3MB-N43|{Pnh})#Bs** z8pRmYxOUDPQ7Y{jx4+Bv{^u#^bcoz~0%cbYxGaebzWbn^rrG*AI@f9^)P*^iMyd;E zc!)siy-QyySklxUwde~=08=!5XP1Sh9DSB}ha?$!rieX|UU!wIKvA=)38%;kfO^RE z8Y^sY^7z_}O|lD4V|to10bnk1&od#CFFQh6P8)^$`Qvp4!Acev)B}`g7oY-JDLpXw zVoaC6R~xH zQDcQtTpZD@kFIe2jwz18I!liJn904 zallke6NiHLblCLO5GIgD-lv)3?tYLnp5dH23Y?hJgc$J$&BpDfrx|GbhgxAW@Ot8( zYQH17zOIVYF}zl`*bqwPw!b*oJBE9+BQ};7N-{jQ&2*alNctIw;FdlK8q^dTj9ATsNZ@I=ZF$df0y4aE_$HBHhzW@2`;GLwPX zuv$PGeC_`!ade*!Q=Lp9lBp)jtEj{~3FTNpfD_M!zrqu?!OAeBUG=8ehwjY85Ax3J ziukQYLh&*=(v;%@4ks-*G68e9U-dHcW70VCAG!P}RZ>--?bGMul?Bm?%+R?EW_1gb zh5EQ55va9~6RY+in%qrSL{vWrAFR842W>{6jNZlv$tbJXX|8t3dTgo( zUMr!#zkB?K1jsN5X>X6zn31$wX1xV4~Lbr!xKz*KPmNN zZusL77uSfde^$D`=`Z7T#T=tI{r*fWn+{*32U*J}sDw3w*`&iR!C_%aZ2Yhr$-iAR z!e3)gbOJvna6tTOw?n>S0oS$w8eIw5_Tc$Hdgp!};G2paQBq}acu65VR6A!HoHq7eT1gvm-`|>~Bz4;;Mbn^BD-HBly)^1LUs0>mZ(hvF^T>tIhZjoOR zcT)Htw0&h*RbAIEAgzR=@X*}?N=k!tBM3+%-7O6ZLcf$ z&-=aS`+d$IF1^GZbFDS!827jXI3rw96)@yoGr10$WlKZm7*DL?(?~{(-p2}Pv6h`meitvvh*ol&uD-QZCNEr5p4( zsfxB<@FJ}msYaSaU6!t85k1tSYgb8)bf5E{N5v3kPgY_q&ZLBq2d1tMj!gW59>`3) zt|!<)*KAhCYk5@5t#?0ffB1g8thx9GZVT290JQ8WY#t;g0V%F-jZ(eIJbb^cVM=<9 zF_6bB344)V6kIKO$Em91#iWwQmzhKWorG{MF*-|k{36YVq3HY93}(AM=))|i z_u`RM$nT9ERcD9K`EB5M=E66Cm8HrKF_%=l`PYz*tnA9_)kDT-Y^Cdts7S!-PQiNI z2H*ZD`K_#i>cC|tb^FicX4uICR>k|rEQ0Sh>wYNEX%s#O&lKZwS8S9#Q2a_Ct>b-I zf&@Gsb!dJJ(75|*Unus7y0OF$ixd8U!{Fhmi|IU>pr77KvQU{@IAZ18g{oA3q+bXB zeWZ|S7ZR^P%nTW)`y9thC|M|W%kTPUv|0D&$U!(&{3E{bFK-d_Yar|!H=nYy%v&C^ z9e)}3d9%prP-D{V^Xfqs9%FIQ_rFXXAzdoo^F8(?+kpG1KH3XiAHP*X+Z<|}XKpP$ zZS}PH`2Z>U!R$UmR$SZ3soLVh59-}eM22`n^8}AQE<_e21I`lT-NCP1q&t)8~8-f6t}s(B+HMrs@&@ zIQbYnG~vp|<;8|R+py;*;Lo$VDDFnIxZj82GQyU_k9=;b#9#=yeTONHgsS1kv!HOA zEXbo(tTLxmCeHhM(h2?VJ-Wb#(%8#Q6uywOY#tfg@|6`z+58DK=dsc_-zYykFd*M9 z9fr@>&HJh#{QEF$a5m@rmrI>ywH6Dh4}X1*eu)^I0p>+I2R`eiM>;fBjUVuWNY>cg z1$df?%>diA`|e{-UO9lE4=JR3t!R5z*uXHWM!s8pGhQ_U{<1YZR*wDqxuMy5Md*Xo ze!sEc4FJc&xfm471U#_n7=f!k%?_dz2)?jPm=3Czx*6D zy?MI1ee#P|x(hf_Nm8D=Z2&nTuN@74@292_<>3$msBDIR%`Obu7mb76H~jTol5hf2q7A=~r6X{da|EQ4U}n+UjT=94EiM=@6 z7Uga*ka3dAz6ndkfs&a6}P!@2Ak^CB4Fsk9G=V}4!AnEDZ9^lTrT{kH6!D) zG`m4L^~v4sLuj00k{h@oQ-m$M~%jzKzoq<#b%jAvmhE|fK*-1hKz)F=4yvhoU zb<0gV?*W@ju~=O|q~g)8vrp^XOfc}H7|{j{Y{KORA>Z~}7`PK_61PxLglY>I`winp zA&Qt$!QSfBgwn>*zUM#z@FR;qSAX`m+S#vF6)f18_$21PmX`RKGGcHtLf{Hq=K+fK zHTcUN$67*S0o%_$ms{?Y&ZE`{;%=`1`8Mw0i+a;F&ZN`cy4rWhm*=uyFt>3QE6aY4 zS`7v*%D-FwbBR2H!~oK5Cs9MmAs~ej4%izrB1G%w2c~kQ%J?p>;on-ESRF5Spp6yn zUxsSss^W4fymm7bLKNVjF^8&HdvP2M_aa#+e#ux6vmI|Cy>s1Q8Ef_3Om}W?&CftzNWHG@e3+?X0{s zB=XbzjNfb1(h*7Z3*`SgtAL6JNmktq))~`2`q6A05Tw)Q@ZTgbcW9usM^N%1D{F18 zs{tG0DaETZ7-ho7iyIF+dO=_|Hu3x1G(w$DbI)9MDVi`SuA<$6zuFdqXZE$pH-goJ^>L@ zhpVqd|5=-??U#-D8Ae;ozz(<8<9R1Srp5U;oS{t+wHi+azF%uM4K&J7S%Q2Vi&Vic z0HntNBU4#gm!0Q;mB=*uMLC_(@n~H`&Jz}I%B-QrnfL|;tA3`*Sp%2tTnV9_XXLYY z-g(~pkb$37E7reVNA~L75q;9|LxydQHcc?OS4RmkDWq8!r(#C~JR=4H0j2JNU$jek z!_Rg5ww?f-q1w9z3KSZyO4Xx}ei;c)5C z>U4acofh9U0aPRl?*#=AJ_3HOU7dAscMFLYP8ME!+#TR2aMQt21OPMmY3Qf5XgaP~ zgl)a&LEho&;J59SPpp-%%7sz(s2xv^?f4sfa*I6{$&=LT-xaS7PM0iXe0Y0XuKr{$ zp0_Ao?%NK7{FioJ;4@806lp@UKnFm60(6IFg@qa|!zctn@k^jMLnMrUveDge7t1ne z5P`-{cb9d6N%`_&(lA85@*WQxJ6h!(Zj9Y@UH5Q*Z4B@?dxyEiZ=JWjE^3rn!U2Lh z)yj>&EHoS;df2ED1}}|>*#Z}$K_g0;!IZD_N?stf(lB;lp;cEVMFuGAaI~*wdofC{|IGRe#>fn{TW3#0cfh{N;-Cd zesibB1rMj)WbNm%T89}eR;q_;F7kAdHDbe z^@I0P6p9C)^A1-Cw%d)A2h7?A5(m5fRK&m^&dpd09lT28HZS~OAS@CIU@?r71j~$& z0|l8e!Gy&1BBxR=&YiVyAs+~*X~0WjQUU%NKynkJ&3WGe&W_y9+%J^~k}=|@i~a7( z>7F~!@|DTKG)nGzw#<{uXmV-7DKcq9Vd8BGz;LWBp{yk#1GEa0W)u08-PcE}^Z?zDZ`Y}*4R}=F z>uLyX&9Wv(>xAb0Cgt}@w4{p2UJabsX+6_vND`w^8l0(6Cz4ASg6d-*KAUl4uxhZ9 zA?94o#>m4PjxwWt=gR`{GCVG{NlIW%xCo9I^Uh;cUVhU&GC2JFRiig>W;5HBIk^== zcEk^r>DJX+8b#FBNpA_bX#i~B^fGz$OUe-tcnLHOXe*})u&D?i6r1*?YQGo0CcTgKqEgL5py{P*fn-b-wcEUHvrEHoFZZuSeE7Mhik*RUPtTueS$l| z=mi4OC~wCLTd%Kl1zcCDfNC?=-yew>L_m3@RIw+c1SuQFdu|+eHXXs2SAmYmLHfDb z)bq|9aehefht}Cw{=|L(nnz=QNhAL4m{75PodLT+ljZbcAHWXZZEzbIDkoazOBq(L zYI&B9Uf< z+_KV{dwEU&1hb#cs_;2t_Q~}_%cWC0w~~(cS`!pX;O+uOjy)Ssi)QYB0?gZRDGD8(b_bx#1kvDJt7b!XxRheu%CV=t=fPl%(mP z_j_56^bur@w^?)>k#bpOp~y8~G_~*%1T1v}vvJ_I^X_mhR{{=O4w9P>L8q%{G3)WE zbZ9=4c8t#`uk{8zequhi533hdI@}TiAOUzOxKk|$Hs9(%3C{A8J3L=hHCVJ(ewn-o zzDb1ot$m}0I}odCKiZsBw@#cF7KnzJil2Wyhp&RkXJvL6!Z!m=k>N8Mh#f{6@DK?@ z_4Mf79(LOmvKn$p2JR!Zn1N6%IrN4GeQH}cx!}^IMMhkjxx5S;@Vkq* zX2^UlgKo9Z|1u`P9z-7i;jCF>i|4`0KJZLTeCVRRX<>Mp#p~r=xE8;drD%ARaCmmr z+T&dst}O&J4(GJsLnVmzW+Wv_D5m03=FaYeDCXql^s2bhp z;aOlKvDH3ZZ51QTmlpT*+HT{3@>0L-daec}^m14YTD5W?L>wPHyO-VuNXBMh5~K!( z>eE^~VHO@9Yn<9+CEjn8`k@z}BT=hu+0k^kW4NO{G)Z3muwCFmIjZgHKp&%={NE*=H>&HSm3KI#l3cD4 zqu4!+Bx8R_KOX?Sik?W4AcElDP7>+7&F!ZEt9{Axbo8*9>81{Yx3PE-^WZ%x9z{ zRpO%jMbFKxIUGI*SKmeE1LQg9TOmpSlRrQO!zxzb&VADKZjc7mSe!~JnL8SPc=abr z+_*;4=!fD@AlYiXMv#}Z7$T1R?e%V|y^t_^gU>-h0c^2bGW&AxO=oD@S9tQauTc-L z-7ZDb|8jxI7h4>2`DMU5EQlj-ds1+}l>7Q%A)WD;fo|WXIC5`o{>do`-QsO}M21N+ zhv5^gzCCed@{t13o#eH_6os}$wx#H#bisuR!synQzH-tet+9NDeJ|`9ubMWl5AN@P z)u1S!IcPB-HokH7M#EPP`2GmN)nvZy?|*^~Jkp!T!{ZZP>Yy;A0Xdr=`X86}U2}x{ z<-ut7)(zP*p=1}C@7Di|zi~lw&GmcLz-7xvYXO9$Ra*2@%%d&z{0G1RV<^r58mafP z@9q#c6_0Wg-Snvps30Mo8b}UJkrvFMIVSB7+MRuc=~kr0q3wF6IXEaGE1P=$y zaR7Ic`N1wH_{FBp*MoZf_dkOMz=HRKCUs0yGy(Me6Vj#F<1RU~|9SFn{`44B_^Nlr z)xyBS1gQ)YvgI1bS#x^#>CHYhiCzHw&VROPr+9#}JfMS^x=y(NCO=b*+;<9W;0T#=X|3-xpzd;MmHkly)OIW@YI5r!dl4*cEt40n#q z4+#uj+t;dlU%!Y8D=n;u^3gM`s_xo=Jl5Lbi8QyXM`tpVXRwSfa1bpqm^MpO185Cz zbG>Q`qXpgVtp=O4bB@gxSFs?#-V_g~6s2gEpCCo%xI0m6mqPZ$u}wiof$MH?dK(47 zMdP%P4|bWNVU0{->rwXMxp}Vbgv-nf>C9~hmoe&v3KR@HidfOB({CozGT-onSED`|$k-)UToHbx==t0N_eK5c;WP21K6Op4D%v z;Qx!f`jx-pg%H8Er}5o{LSbbfN*OCN+;Q5<636`ht_`%6Tf!phCO_Y?zw%0MtFam1 z?1uwZgHVYT^;FeHqa0_hGmiFjQCaF#(+^ys+ZD)^_>K}{fr2%7GS>__9vMjA@|t&& zp)=ReTPHgS^#^_-kB0kxC?uGE9iRW+5GQ>eer;@9Oc`|RrjMf&Lf)bSe5w|3aevIo zZtUF0VJguqNggTD)dJ}bNxRAd@A?o#nKO9Ce~os*NC=E}V_(;E{up@n>0crvzU*fd zT_vP-*0L6e0gTOS87D!8Vu3+(@_p~qmvR{*X=K7~it!Ki8PxNXV*tTtYP09OoHmb( z)jQh}h&Lq-{|$E7B@a+oNgDq8_O=<|4Ki4s$M$-}0(`RoXfL>JCsft)mA3@{NiC4M zy_q4bWuFW`ZdT8m)S42irw3vTtViO|=Gx`Hx9hYO85q}n09)4MMOii{s?6*{+{9-? z86X%H9B}bVzjDGejHEwVwLb^d=rS-Ax3|D~A2_^#f3sJJu$O~W*|o{4d|-t*oF|7H zN^3V&Jp^=NYlGQArd^U^p;d!d1Vm=zA6@zYsq?K3=gUD{I7_@}C{+FFxhjb$36=J6 zK6VB9zosW(s=F>g<~>OXYg6iYflHP;3F;%p3Xv-@Y59O`7H-;cRTG=gQMV zfa@3wJUbuRS-%i_7|IpEHSN}6##Qv*rQYi>(Uy{{uZ6-ZCl(9cn%Yl^RG~|eIE`;n z7zGp9B;+9}h!Jsp%m5-o_ZU-i_Q^$tu=RfRyau6Jpm^)VGr#g;n>F;+j`rBqOJ!Gi z{orP;u+)qI`l43+;&BqMUGgd<5eKM-9SFldh4_b2pdaY~xK0je>3JVn0u8X*XUCUk zz=D||N9wtX^<0DRukFGw;u3kbkpeqcbhFZzEVp^L6G-_Sf*SGuGfYG_yq9QEsfvz{ zKBZ0}0x9TbZ9;IDv8HLa=rTd**$yulC zhLH7_J@FiSu>?qZ zH?c_7Mot5cO+u5G*Zr;2^<*!W_U`%`-vmu8x~D6ukX8=78l*FIA$A) z5kl-|N1)#{oj%@*rt!q~{93IAgA`|4OoECHnt!?`Z&kK40T&jlp-<0(FZFz%AULK| zO_SS2Rt!g996Rs*$hD4Rd8zZcFz65T?8LEqJnhg8ya=~O3~r&{i5xeC^j+VmuI~R1 zKMZHguDKsk394`h?hP*kjG`wOM^q+YVNZrl&L`A-)#QZw* zzWDnG%x=hW?7{y2&vUVcymy-2=TZa0%3U0c;&=i41Y98nM5=y^|gM`qr*fM~e~o2}o!b>zTpW z0G!L-*_&YYwx>x76jgNBixG_iJdX2V;;!f!26v$ZBD9z$PiKXI*JwFD^^EjV@0SAF z-}>B}y7s}-g#37xg#fn13ds1JhBM3YPgisfpzB%GZCC=$ zTkL7|*L^2%Qa7+B^IO7ugw!oBEB@s}G_gLi9H2@8NQXD~EmhEZNCo;otp$RSZs2Th z3Y^P1-8NrX8C5c_qloGs%1E?LqnxEQ)A;43?#yYsEbT{SD|0~okPoAm<)ATqm#cOB zs>WKj^xYAiZ^-YS6aftr43rjHP($rBX?+;MthOC|>X*c;5BQOchQ60!AXl0pF%-Q+ zF@t~De%QAZ#hr}N+OXHafxYo$)5#Y5_@I05Y$@TD37sJ;qoMU0>)}3hV*b7d+SKzYwo>45jQ%Jg5*f>^c2URLQ3b>$ou^m? zWIl$5K^23fj$H*TSlRnSaRjUK6d1Ok^||4f@M0^{Bjz-kk zF*3DVz&*+qr|9@<7|K)1wVSSu?tZ9>w;_~}R!IADvzzthv16A{(AM}qtW&l`w z+2MqgiG>U~2Bc4&3LNsFy|@)Y!ed@sVrDo{Jmz(rWDNyOrwP~FUai(xj!vOp184K8 zQU+G_yy`8J;nwRekV3KfT?3%rO9>hI^3mTz(q27SIqq-$hp|x+xMn3cvuIbDMycm3 zcV_)iu${8QSt91~`p`68=J4s#b$d$5&#-)8yGXmaA(mB36Xbq7Xnj&jI*%cH^vcrE z>+AvX33QgPmgl;r3OAy?K|)6`SBV~ihUc!RsHmV7KA2PtJhQ&sMGS0!;$u0CZ!R*7 zp(s`GONlr0#8 zhbGqtVWxJrvD3O`T#7}&*a;k|m%2H&EvT?Pd()fe<0oDGYEm*hvT|Y{f7u~9tb(qQ zwGRPsuscBQxfQm;=`kQyU|470F?`E#o+tE^*P)l-qf;4CQASyO9|-%f?yR*t^5wTJ zet~wi8fUW!P-87uVJvkEj=K@U2TS@&avT1)|Dn1-A?cXT z>%IK33{HI9O*HT2e>II-_$t}bVLcWZ-L=mX`xdtzi4S5CFx-KmYwhVgE|7vW<>=S+=vaN`yTbjDA@6P~8Ue zlx)^U>Wdy~H$3;dGD~i{(&6fSDIbAmr*N%j9tgR9wI1oXtG2avoz=^#`H3pb(8FME zedLEZ;n1l4uwOC@kX7BDLi-bUkfmzW=8x>$Tg(D_sX9yPjNMuQ)^}E0LBpn#m1g_1 z?(?01G)FSWZhW!lmq+)a=HAt@)2}X^l)JKl0aueQL(9z$!j961k1z6Dmpf6kb6S}1 zYSvh~$t|_Zm?k)G-q?TW z={Ma6BSFQ2_B(~D8cF@P0_8ZMt28q#`1OC7bY7Y7We<9_o}rW#(Ta{2 zRUF4EzYWHsHgR3|I6h`{A54TGp*-Wj=UWeI!^FqT@E`LYr=qfp$ybb{m5G>w(TbAT zL7JRU&6+}^HjPx(@@iKV)}ja=;f0AH=QYA}IhLD;qsD6MyrX(9Px1w@XxmaSbl(`7 zbOYy+J|MR!lq;;(-lY|-oK8+285R$O$S@dqwL|8%#@m(W5SCHqeaTxBKU5HhQveeo z0(MxnroOCe0Hm9{6k+Iht>7yukOR$(j4l6TspvQR#&H+>zGV%Z4!gI9YVDmm?YrL9 zTf1-1#h9hwDbzWI=BkZT=JacIFYS=GODZ@H-5>~v7f+;fTop%B1uef&ytebULu+Si z3ZH_py7|VXc;IWa>nEEmiDDiySfzLKo}Z@)x|22960ZEB3@52@HF%Wl_HkCr|-C-M&8YE)u? zDdatT-PoIQptv0#viSEiwFx7qVVr~Na0_L_@AACfU5!cRaRd=Ic1qS;v8<7ToVKDe z*;y;~9O%~tzgmuxf?PCzOm~IV&rFF>!tUS4X{KEA&3j zY@>gamMPP$t>xOOl8onzC?&LCFjA;3F;=W^!&pX!%(LxAu34@sCg!h1+I-#S=icbE z`Wcaz0U~ZGr%FkkSMK1?mK9LrC94^Tr=TA~n{!p|_FffEiUMqTS+S^1IYx-_tpAe;4F zj&?@NRrHyHsWsf>1SbNgM!Fz1E4S5+lAqB#JS~B=?h5{uc}c2Nua$mSYqL5c2MW2@ z;qqX=lavQrq2c~rj$0)ABu)R3Hf6~#05sTMzd<6u&-rrdNHv07g^}_L&c=_7E@W1i zQ>>1A9^`n}v45n1E7m~ylsf(o4%>k1BWg>Jk^G0ZV?+7ZJ0i#1(~MG~_p!FhRqH%W z(wRqYSN&V|(9oCL&kDfP)aehB7^-4+TxROU2D7B-RnmnjUw%VR8h7wF#oVv&OgrFb z@WNhw+F#Wk(LMH{$mF?IUFy+#M;x$wo(b1?{({;y&jX#T70+^u9||(6)Zn!)bh>`f!g>zdm;8Ds22!6%T?ieR`UNOO7dh-2@h)d`|K^Ww1M&7X3S8Y zv!rQCAKLa*je;MgsQ7yZr?e!2%JJVmJJ_iw+sj#7qxJ?+6Wz5Rukvy4mB#wDfW*Bw z`}IOoxak4Z_}_r4{QWNnN5vLlrS^+B=C_rvHhB51v(zcM3i1T2ZAd@rj&T}SDXu-# z4{!rESp>l@n%havR8!%N^#bfqiToVZnmqP4t0Hry!56HvpN%dYO@HNy)k~FQcO4kQ zmw-_Po@yY=Y-2?MJ7Uc^kQABZl)+XP`;G=$gF_C{R@(~N3T|te{fPet$|qaQCg-j; z+`kBFFfs}_H>=#8fcc&7Hn*wg!*;e>`%yL5xT@?mq8F{b*Ry+^yZQ0#qPtWndv8Kw zmM~&UCbdB^V86gF=>F{NsvD40rWqlu-|cucLf#89hYbb`>e6R-(PYoZbEQCKw zw|ut(T(YN~ICPp`yeIU1(%4UF-dKz9lmn&gx7EF0v(JS44|jtnZn*EDqLer;j(pZAm=j-i5s0$@R6}4?}}8sh>{*rN6nbw@VvPnXD)3y0PsG9NrY3 z;71EhB-`{QWXnr}Kr8)n_j>E_qanm zd3!YB?NpO(+SCJL7{>*l#XZ|{`zDXvwQkPSKx$5>A+0R4!9vXfnzy$f#Ma~;wtp2R z?9P&cCJg4*W~amEt_0~C`nfLo)Y5N0ESN^h20(~o!SJ+&A&0BXBwfsy$jsklZq``_ zQxXD*eb%-2cT9cYx>4{Ct41LcLWa)wR8hJ937g}1M}&0eA)x67hUnD!s9TSh(kCg# zzxyt(Hrgy|`pM_y5-$MeaUge$!Fs@5Zqb>AHrK>Geq%4O>o4Y3Rrz8XD7dDjlva;hf(Kh->d2ezST!@-wChVjK6X}-Y4s-FjDY%_w&`y+w zZbVla2EE9)^+s7SfdYMo{1LVk88te&f5v`o{sq*)wCgFAgTcWhgA}%4KlEs)?o92Y zk7wP_X28_XZwHksIuf~$Dt6CWfU+CvDSTQuSs0ecyqC_iarsc{BYA1=bd6R0BevxS zNt#U_k9D7JPE;(`mMP>_d-1C8v#M;*41M0aZI2YKG_?WUuEx@ozwAKE%_Gi}uxWLUF|FMQxNBAV5k5c`KU2RMq9mxcN)=XmEA@~MFj(LDMU1RrR$m+K&YJG{Cs3T^F(lOAXEI7+!9fh z7Vg=P2%82%#nILj8+VEX?IQQ?iyHV+*Ad)|`RmvIc=jZ$(@s0e$zevk4aegf zZVrTKL`4`gi6eAtE!lzgx0*Q0kUN0AbVc$Io#zpZgW$tt|mV}8?&2O*u-zt z7tP+{0m(4&hhBQ60Zv=v9i*uSyA)wQ_w*TdE;O`8F(wYbQ>RMHpD;p) zCiboAnz&PjOs2|SqLm~X?}$_cs~x<*m?EKU3`3YDekA%1B1*`Wf}Lgy1i%rp)fK`R zdBw%56RGk0W1GWlTA<-#zP;XWTGPTf4SZijyz}~FZ?$s7PUq#639?D`A$4lEmM(Ed z zj~bly@hV~H$v*Ai-kULi>(G=nohNg9o;?_Zao<$&tF!~aELAWOSX9anM5Aqo@0M#X z3)xOQk~6x(GY9DKj4+!fMcv7SCovC5i66Fk-*o&-FR9kYBJqnT^F6rSVpl}ByYNPb z!wz4(+mSrx7f7^Xe>~_f7)dpT*)+36KX`_2C+ywK7M@9Bfn*|j^*z>Le%-dNX>3!2 zRICb|!oXo9et1zj(KGB_m_ekRp)Wb0cv=n1X2VFP?6QA;cqMRB(H{G7m~(q-s@m2H zl3o(kF}J;V6T-XNWHp>1eD5NAardofUa*G~g!^ZYtB`AZ95G&`#WAQT^2-iL5TcN8 zp-;S>74|yB+*u=wXrm=~QfHE1On&}RvE(%N;!5ZCB$taD_*z)%`Oz2GHY~6Fk{;r~ z`lGV!bnjjqbj(o;NVmBlM!9{_={|~7A=*bPFJAF>N}66bdRC=fIL*96A97uXW=6*< z$L#~?5Uq2Vk0%vB=Eq$hC{43;qe+8X z&iz(Ga6X57#6x@KF9_LmCl3(#&hw(V30X8t4c8^Z;Dz zWzc0HB;E)sm|5YtMSKrB6fKqX=w1Sb&Yp(;&K?0Avx8GP=U!Wv(cfohAyDu7{vnLA zJCrqEHp$OHVTz`&=+o!*P+-}G&w~=x??B44xKfDeA(`orQMX*fr;~_h%DDW4L5Ut% zl!1soKYl<(0iBnOHS`?Pe23#{SSX~?n^#c!{D@hwV6?1XkfOdtFbx>XiA&$1WNDt; zrfo7T5t6ZIw;tjBe;@yIX7#>)BdX*e80LI3<~crWQ5fQUo}^{}7P_Fg zqO9BsvJ$tFn#hS%@bL4Z&?~ZFPIq#L|wu-NhIWU14Q2gQAP&cyr{>6IW5b9fO z!dN_XJm*xxj~OJEImin0zSn`wqwq4{CmT#Id5S}|N;aOQAHC_td|sw^PBvHmo8z{9 z`(~5{*ja)ZT7V#Xb_IuaZV|l~cz6#VLkIb&Iv>q$nczKHt8mbwIeFu@P51%%1>wGKG94&I4b9hhyx zGW=-xotMfJh93$5B0!`>-i$oRO*UOIbr>)ZF4i~=FVNDcvcU!I6ARaETNn8OPumNC`@>?`|HLxglYc>DjgnDg>6pr4y z+7yzZjkQ@wFBdKOGyGiE>typ~cc@iT382nlpkJTDVUfs}@Xpro)#w_K`wip}t`sV;6|lcBB6x)_zrE{x zdC>fUl>UvCM-Kp#vEW!wkD(o#V{3>kOP-&$=D~ z-Y3SX0s{I!P#~1;rEH063dN);TZiWQ>Q#F<`7$u-uBONM{WHvl@h-QRY&RVlH~l}jN%yd( zT+N(8H<<$xaR-kbhO#~Qctx2ywLd$q7MMYoHW7#aw0>XCjbS{FAyGk<1%sO$)ZAu0 zoeC~%G`Ey~SCWYm;;)vN-vKl7;dtjB1jvIw4t1BW@OQP5FH@?4m<6m)sijyX30s^i&X^;@S_|9W>t)T~O_k0-3@I9z9uOV9?DT?MW6d9D~;hw*j ziJIupZ1~~$F4p%@B9)6?YYtz@lRRRmS}{q)@@C&{p^xOX(@EidamyP)yRI_tjZVu; z%@!dm0agWSt$w~%Kt61G+_r8m)B1QBHvGdy_V*jCrS&jK_lrF<=(^M@9C>wr7dc1S z{w5MND8Fp_!>dBD&>Yz!Su|J*R9l)h0%vB5=$pCQ7_!*>E>8D9C)th#389g#P5=KrdU2LLU!^=`!(5t$CY^nFHXRx`@3Zt5?3UL0W;0SK6BjZSgPH}t{R;h zt)->~&&7XBKk5)=*$J}&;pA{o>C`*?i26^VAcOjzh=bjvJ-h}_pY0U@bOt%FT+yBZ zNrJF*SmKl%P3x&zb51LyXjtDpXB?HfmebM+OfR1+%X|MA;Y)-6H9`dTMs$vCrZYl5 zr@>oFRkzVlPp4r(0H3hyx5kCj5u5D=hZ)-Jwzr%shB;udPUqygmk(E(7wLIhY z;Xwd8)*yZ`I|`Q4g8*BNqK<&G+nbR?qR*Z>^FhTNS3E`PQ>+b5avyFXa{$-LB{WlZ zAiPQ^>aZM&Vw8*ien37&BsH)D~nVw}yB7zGb zVm`mu_gOVZ;^%PeIzV3;H<;Z%rLPkE@a`0~t&6&UzmWY?rxzda2l|Bs9ONXZcrjP! zpI?3`qu(}BP)HM~Sq&tFqq<&6L-RE=x~}#Se712O0^lL+EtRUkDRrZ4>Ln4 z4^Pr|a7|Rg#$By1JPNM}$M~Qzn3nrGNhn zVMUmfg5h6Bz%2|jfTtcO0`rLukj^LvnnmO9mo5bVUhuy&jmKI5uuO!{Ia?%r(LyE? ze7Z1Re_*<+XZFblOwKHI``N|p5E*AZrfS;w9siLMkMq2{RNC8wS<6+kDAGr800N8ebD7)ukDG=00 ztleZWy)ylf+tdl-A-7mC+X1Y%|Ad(wL6O81MzA6+dgBm8S8V*<&)}^o7;`0VsFs+F zVD^7fTz~I|zllXb1UQ?EIj+HfsFo*y6TF|!qxJNL!HKzuc*oRO+&}M_4qj)jYDNBr zz=`Fd2RNG%F+p9@Y(m6N?R~%L?0dTbO9W^&Va}vGsxrnN1^oRqqouG4=iMW zTv(CU>1+28NCZ{GZ6KsW7<7`)2GMq&{=I59gxfYuI{8>xK&T6Oi-!OZ0v$*sr2mj) zsl|Tr2BC@~Rv3F%99%e`T_ux_zZ_WvLtA#2;19i)5?HKuV9ayB`*3ruFeJeG|9}3U z|4`l!-U&1@@4%E)2uR^`cn`>E)nufBPj5_;gPYoB8{Lsx^*vfffAs9RdFOT{QsVNx7U~IN5Fp zU6V`fL{IPvrNm)zu;qHZK-#c{S~3Prk#7VK?0( zJn&R0p8axo>!TsCyd`NpbY3_ku_c(Dy5}N_fUd#NtTP}GBYS!moX-FIgHYisQmyLs zUMDv*Bu_pmcI!fIeX`PUrB^Fd{B06^aOi*i2Lo_@R__{9iaI?#-VrsT{Pr#)GL(qp zoo5YbfhQJ$d;7hWiWb+lUQ)hWY$K-MWwIsJ85)OM;8z%vO=b!UXTT`b9mZWoF^}Iw)+Zi3z<7lel$oSmb5oEtjc)@4f9}*0-Qfie!24QCIy<0yu1AyUAsEA&T z9Y%jgy}|{KquFx9mEb=2EKUm$lPiG?fVZG8i*Hkkf*FAY}d5_xBsX%pM_nd%(IKmm+Bd z2pY~yvOU;$mi49DlG;E`1ab&```n=EtsTX4^+MNc@u{#&{gtv=AgF!jH%$MJV0KB{ zV781IC^!e*eD2&qR>8LHOogs5$7A$|h`{%MVKkGlxV&0nLa`mUjgS8ed|$K*IWf_L z)h2qJ01#SuTj!9gMN=k|8h;p#8@O)I3zMU^ZosTKiwtO!o;3zsz?UVVdglvC#r&l! zA2G38{)Z>R0u0N$$Sq8i#urSK;t&53182z+@F4-pT$O#FY#4%4*8aND%`Y^W+M?{t zcxO>XBu=Ns`n}<6RAoF0QNPzU-BGkbWCE_ivd;NxfOmtq)#-1@+dxKO26Vg#5QN`z zKL=5-RYInnG!IywN2249AiVy4*5aFZ$I^oOyKoN%YE6f!;j-s1Pzv@Wl?$|Z>tZ`% z0*v&^no0Hk^%(}`lF7Dp$G|U6^O253XWg0q&{y!S0ubD+_0b|T;E%lzNSxhR>X#Bk zuWdAfotL}hz<51?Rm;^I)$Qe#ZTj{K4+CZS4Ucn zWqz{_Kt1qVHA1)C@nfopi}d>kY$V$sq?5SJqoo-LqS3E?9&amH0rBn|-Z>SKOU3GU zw%dC3IX|oV<#*&$W>Anb`>Q90@jdAm2UQvLMd8OJE zXFRNn3%byddu7_$4fom9zE4`YHRcVDxYQ-$q3ZS${jk>T@Cnc>e({XixP>Y2&p^xp zG~5Iuf2AzCuRmLOvt*Tq~AP4E1Q1pe>A9q@upwduuU&-1l>QvmOn z?qW!otsENancKQyur?iVLBNeQ9Oj$~Rb-bU<)y-d7x%h8Mc=6NRgHpx*Wjd-AhYOzPtULxKF~dC#qw zRjHr>1%BV{kjGE9Qpx`wGP@mUhu+x$pzc~7%-*VzPhe+*I9e|%^#}5an`(r@HA`NY zzRqvGJk|vYR_*3_?;T-J82L#{x7QNi7qqPAwkyvA{qVix8ki(3M?nR8`P zMN;$)^dwnX(ef{4^IOnseISBlPYyt|0Q=8JS)!?8hjgK2XF9JBwXRk}@-@~f(=hSt z>~Wt)6;WN7^TlV5*W1o;&u&7tr39X@hLr@Q>>B#hI*End zK#sr=AYYQ|WtWlLjivG*TOIHjK!|KS1)rFJj=}1s_vl<<#PEvQSf*!B3)Jc>P23my zSci`n0CQqLM{eU(ZSiLSoO{7C$J05H8RF6Pnt zNE9{Y9XABiwY=Uu!Cu(3Due}ZYUM&;yv66&neRJjvo=)bJ{$YY0m}v?nz!2Bw@9q?aqA%bU3kF+I z7cy7f{-~CrLN}kTWFj@q0T-)g@%=Oy)6sW=eURR!TviewHS2vusQ;aJ|J$!G;lrMJ z=4E_D`fU$%;LbiGXGXhJfLiWg`G44Y>#(T0H*6FT1q1{|K)OL%S{g*8K}w{RZlqy| z4Wa@{*GQw3NOzY?cbA0H9YYOy)~N6AJLkL3e_jGJduFe_*7MxY9d%okae2>_#vNvs zzO{Y`Xy*{*ni45@v?MLPzKy*U!qP^lSY`KL4aSYL>hTI#|HeVAn%VMz`@QsmyD@Sl z)qDF>UJkJTvA7yU)&Z~eslH!_Yr}H+*Hk7vL-$}hY)Lqn3 z-7gu(yR7tB4n;vNP=bLDl|ue=UfrWgNjMko&+>^_MjTFn0QFljQ%J@%WIx^uI>X*< zZjJf>C%g9F17z1QD4pwhvA-B#+ca+#rrQ0iR!FR}GuQc$E4M&u^g#M4vggeJF|vEa zeAGYV|L{8{aL2TP$+rEQBhWc!8DF9E+P3j4fGw)nRN@}*2!KZ)2GvVW=-m))ZpAfB zIC_@T$J{+&e-==ZsH+WUQF9=o^P9*VGh(fSJa$O%HNXHQr{22lPPz5`zy{}RIgx&+ zvS0>?sY)bvs9E|Naz4r*gMf@_B`?lD*i9W2ou6D(VWMAeUHB6YqJmiqs1t!u`2jo| zt1p%{raQ_y-39=zOE`$7pc^;w?>%VFf6ZmayDH%9Wn?#zz-vwKh0Mh`a+?1ET~Da7 zsp>)6R#6K3POfduHM*#gIEq=(bW$T?)&WQ-PK2jLulDZMg}4U{-Ti-MK93YFZL=}C z`1sT8%Y!nXy(Q0F+h_MIdC}K@+22k{%LTf8d^Ei}hm>B|6gruAPq`a@^psfbMpzUS zYSd`V^VAl|=8XxSus|w_BN~lAW0*56tVNqLbxU$o(q58=qMUO5kX~OIahNs^AH|^O zYQhVTl0m1I7%JVL7&={}()qS7+iu65DD&!VXMPIXZX#WprwJb2*&?V?{#>P}&I=Iz z0^R~#sKv=(T45sB3+Uo-d`oP0SWS`>0Mk+Q*}owf#Bxj1hSMn4nMsb60UuU!fsOfD zwbxpy)suAb?Dst(O*=aDPT9_WD_pvw2Qs>%c5lpJrTM`0SkIkYlP zNmn3ET0Ze5D(2nF$^A^`P@bh6^(~ui%s*Pdc1*DYjaEgsx@W{If`}#D>P?xEQq|j@ zMnsjcP7;8O1wRE>K67leW;V|5Zv6n?{1I(YJea)}SFv1QxouciebJgcTa^8t%a++= zgxTs{7K&xc-(N6QUS?j-PsnZs<#IQ))6vv(<5M)eC_}d<$-GT-tITxZ>fE6*e>8;N zo(9jaA9F9Wq<;n(k?l*(doBacCez_jYw5rbFxL&Xg`OXYH^kRuHac&p7+MjVQ7SI?<2u7rO6EpXv7Fl4fSa4pd%vI*2v|cGMuU zb0XJjkoOY@LeW}$kQzGWc+Y_@ASHeU4`yWNmC7J<(<@I}VeM(toBTPqZx+{w?!1H- z&bTV3pZOV8ewX0QQLrh)uznB;wcSg0jWn2p}kzBVL5x;xEp9 zhm-FJ2+G1%U2d!O2DmXyB38q~#ZehgCToiQ(IDi6&%5z7=_Ct5n>~xX^rY9~5u5j3 zyS4p?Z|v4K18$2QSrIS;p75%NieE#oZxsWZcwYM{{#?C^uf6Lt#V^0Vz?}=E?sma^ zbn}EsiOq{bs5GJ*P-9Dty)F9UahZ{U!xoL*;*}ox*QWx69`dt9qPEBEv2^Pko(Dhk9@(C>EYm}4ybnBG5vC6!9$2^UA z@s|+BovExCam#by{|TH_nh{=q?NARfE>5AtGU!;~gPJEZJ|#nuVO=G^pgBtfl_+zX z-)XKXpJX7m)vj}AJ(+oP9`R!TZSL-lXKIrg#(N8`IL;&A)gn@BIE>FvBSyB*%IXg; zIgr013Y@ox4uc5HaR0+12$e8hXFpv8@@^&i!m?Pss8dN2kYt?N#ut;8o6r&}ymsBZ z-?*9V0pB-@aw&za6F>0tilp#kjs66}2p19{&&M|SP zfj=Gjoj?)~kO!a$e`0x?JBoL$hc(DA1@+gJljxDg_G}@qwbXIK)+%$!QKhEt?h~a1 zy-#2B$#@O=65roPtuJ2`tcVmJKlmnI>rtUI+8nOSOypmuat%f)&|}PRj45KPtFo*5 z35!M<&~>Rc9~c5POJGfbX+(Io1w)SJ691KP3W*St7to|@-y?88DG=*$Mofm^SSBUqk69v91 zT_d8(+iEzzF|Ak7Ft=v9(P%4Ns!BC?(@XJV5$VNVka+fMC%1SJ{ibRk$N4&qCZh(Z zIaCD}U06Guoe=06-KlH)ys44#K`urG$H#bzjDN(v0MH(G)q5crf!=iJYaAl(+sm*c zV5VFdWVPj#Xp7#2xn~zr6frHyp!BYZ!%>KpTz4&eQnqSEA!ZhwQs#90jzLs1!@RlN+P@F%6kCY&D`aoa zm6ewp=N|FYH-1C;c%aHm&%yNG#_pJdUO>fLr{8$6vJsN4uQ~c|dc6QzY8i){M|E9y6x9!4PrYbWj<`-=s?ld&Yx+#MeaF0<6r}(}n zpY7-uI?bF*4k$@kgeEamLM_47A9R+uE{us5&yy^oJEIutx)&}kTsq!Cmr=fF$5^6; zZ&OsISXO<9rSH&7nb!XNC%BHHuXZEFnaXY7j=~o%x>IKk z&kD?EOU-&sbiTe7lqMN-oA?8B?pk4zBt*y8+Q^rktiE3k7A&Ah1)64E+t+4E_=)rp zOiE;fg`Y3H;M~T%WOrnvFPuh9O;r;3qhfnvq*YU!Y-ofGFpq%l^KX@f1GdDtC&c>- zb+A?@x6*boL28lzYIMxcWl}z6&0mTVD6Eg3xKO-7RIm!oenwI_;0u=`_!2*{fTRcK zpJt|G98y$M75MHmD6vsdMKU~N(YN^8H_u=9$w-{llT+O%I7o)$`DmLjU60aEEN(IL z_Kx18ALd>GSU7}Qhf<4}C~I9(<;oTjw{>|i2V?lDTWL3$3F6?~sU3eKxD^C7f5$GL zVImRA^R<9c?Wl#ZgEo$DEzZsFg+B;PVnowk830qA_c-MTM zsCS6pZWU|j0O|$K@7t@>EB2kYpAf3Pz>-c~od}osD5VG}ev#rYB`c2I<}ZEUK09SM zBUl^CE<=~{RteJspA&qE2ZR%izI9Z=V`vd}!+@ke!>)9t$F0D-9A@Vs@v3p-3b7tW zQSEkCsBBcKQb{ewDS6bG2GI>rj4zS@Em^^fXyL}P9llxh3A13n-2C9A(T-VO*HxXr zaQNdq)Ixr2L-pf9T#vx`EfGoAliinf6Dmd8E7IAtzSO1GAxJRnp6=<-=^`#gF z_E33KV@>{iF`r7}^9@-L#`au?PzoI@#<@6z4torY6X*zq^g`)LZapfSKHrJU zKI(%$ipf&8h!@^3xA>CL8b&dGWB%b;!q3O)Aj{S$Iw)GVL%r6v02wqp_$*(~I?X15 z&AygAw;W2?9IW&~-aOO1D)YO5oz)xE@CHoNpFL*rsKv@nyVNVwG0e8T<<(%zoD_9K z*4kzH*90}UkO1nK3O zxYIG^Uz(LCKZYKLa#9{I=C;w~VEatc_>4I8c0r7>*m{Sx#`)sX5}&|LLFj+?qMUS~ zCh>_u%!seRl%D(6zRz*#LiK7a2I{s3SBaBYC1 zSV|?jJWuaJEJrimyFx^cF{m(Kh?F?|kytTkEguRzmBcuJ`3*tfyPP_Ad%fv6Ej<&P zkyRdEn?-DRj-`nrLU3IN80DnQcvm#1d z>{#K*qL(L8x)u28`(j66kNDL1wC`zW&svjw*DH&?LH;P#p0lhNd5>>MX|)}8Kqy0v z-I}Fnb&i*?Upt?tR*S^{jgFkXJ;1G8zBUJa=@68oaauT&tz_>b$nl5X-Hm2c|Dja< z7U4|!UnPV67#H18EXzd)m47qovfQy@(Gs7x*_N7^)_HZZP>Bb(cxVJb(YyB}=U^NU zmfR|=-=z;s{bQkT(SIG|oZ~n5v{hg(tM1-QFzEM!I-Vl8&uAWrLWaQSi~~f06}y;! zqMmPS>j-ZNQ+kE{?|2rYM{l>hfg*WxWz20@AzVrb#d$AWxGcr<9(x1 zjZH;C3RKu49iELY6)1U+K2PV$oNtp-%(Y{zYNV6sic**|$ZOMbyf0-j4HA4GKY!Cv zlj7p3`>r%=@op;3!O7h66&DH;NO^E-wrNFnGW#Nl{&WWY+IPI6n^O@BHDlflFEEnA z6Yq}vvPZuZwnH2Egk}B3Fr_HBxB{fGPN$t?{jt8KUBB+U(r1tL>;83;gxkWW9oD7T z67ga_=1dGOhK_083vKw`3Y@a*o$lkYzSXdWc!Nei&BD3*1^00^k`8)DA>+u72LQ_BD%D@`6z>-1d!bZY+bo zdk#ZaiYOdkaS)mqPtY*X&eL*&<;UM0j#Ki(p*AWgT*~Z93>5`!OBG0_v+g7UV@`MRje^=ZFbC67*Fa_J-{ zn*D5j>m;4~88H8{&rZu{j;qK3PIu$=;}pP9;!49v^yvCUu5PAkny{&mxC6&uUeKUS zx?Tljb96=6$HSg|==juAQRGHLV8b#lX>T-K67oZuDsQCMnfycm(>#54wGsXCP4B!) z>bOb3UH^uEHgoH|GmbS20Pp(iv7Jl_8Z2Q>Z9l=c`1f#`FZAyVIq=G`hX4ktZOQzzPc!@M)r7 z>Q~vvBxUnIvU0J3&34A*9JI^y5}A5_(fpIE4&Kav9Fr|kb}vHw=wpx2T*^$nm*)97 zeS9ZR<-~uA=eK8}$U=)OR+&VQbGrtWHf7l|S^-rK*N~6J;4vvxyWDICZwuHFhkJYN!M~1u>#BMi zLE^by(ofytk#79;IRXjft3^3?Uixy=3fEEKrNgXZ*)g<-ldv%_?rmn9fBx^UpwTU%OnD#K2;!y&~3vvPGYSAXF%L#Yj4 z9bU-z&=CRV1`IwIw;8tKIQD?2{N^lJg~dVC^T|7v3#HU`30=LgRBo5cDI$wqwM4U! z#kd^Yt`Uht^Reb9`xd>QL6UE_G5I#}Kkz&Grq$$8qJYiB1qk?ZgJ8+qyP&o?0t*(G zlr2+Dg(O{8kSJ23NOR@arev*n7AyXaRc$j{dA77Tbk)FIZsQq zgKA-ym3OuMM5fpkrh@cicWuC2ZkpmF7@N0-Zza!*U zz=mZX)HUYV7&F=5aG%d+Bu*tQEQVb!LfAd%l&=tJ#4|mtoz*oFvDm7uwA3lR1006G z-le!5oPgTy1CIrOs&eRHiP;^M?eI$YbJbK;3>c|Sj;e7t?MqJ9xaiF9f#l38^v4C$ zl~v{$s;MHZdKMhz%h<1A;+F9?3sYOO^qh+?|&lS&ZbL(dx$h6BI-caGW z82S*l_2Bf7hSnH395IwrEe!3On@S?Jm=l}RfT?0PK2ZZzDQaS3cY18BPvLhGNhg@z z;iTNZJ@fclap6ZTSOb`b7#z+E+|PN|dq!lAB5OA(Cpk!-ThEEa<6oUKKq+-@a9}dg zZ5l!o1LVj`4e-{?v`gb*_|}8+yOZM<7>d{8C{?;s8-}aWdXR^gi<G~LoTonIz%MudZco(MlJNgz^OzC9imUExwIyRoINUZr(c5?Cuohy{2+{YKuIUex}eaO&&Ry>!PD@ zNc(gZSlBq99*~LlFFa(n>_f{{Z>aSZw&{7Uxo-!R8`Qu?OZ58y{z4N*&4AL||0Fp; zjZ4ZU{{ofZQ9r(ZdbDL5=zat5-n?r-L!P?*T%+NWa7yc@_6^`Hl_xV92`HU?lS9^Nel z(B_Ad3qJyUBr+QvSiNc&%04*$std$me_5(hOmuxkewgoT+npp70SI%VOA z{LWI)nl4bV_p$5dgp+=${pv1(d1m~3J~vYV+epc@L-3X$rsxmUJ@lzrxoZ~K24k>D? zq;aeISrOZnq`oemAomr10A~!LkMEn*Kkjh*-z<2QHXWgE-*f)P;@Pb{SqndAt2s!( zRtx^=`@3#B%|gSZ_`?2=JTe0^uf=yj4+so8NSuHFQ1B{I&{P0)#=8%gTm>@vL3yYA zs=tiauH#H&Dc7b_%qQ!s+GMMl2*IKi`D!_I<)``Hw=Oj8!Jq`l^fHmOq!xAW=^-_b z;h_nOJY^1au>$88c7bsv3SC0+kNiC_!R(tE@DJkqCC-$|`K@SiNjP4eitBgWUbB1) z?CQF-iKGD9Cv{dsx5!if1Q2Kdc(eE;(XG_7jf3LcrCW>LDThg5&T{#yPJ8@`Vk$$B zXwEA<(0;!H{+O~cLJxsXVW_~CwCagwg(7jn(ePc(_j#e51X+;o3qi+8lR$_+IMX3z zY9B@EH^UjPprq3EKlmKSrj2(vrMCmRva_Xc2ma|RZ(xt^I*f2@w*RBmmmONYm*q@Z z!oD2zr@;SBCc*FNo~D_jHto+w1xuN#$TXS}`7|qQZn}8CCEIP)jkjYaUeKOAf&Wqo zh_K^QApao_2@%2G`ifa?QIJyrHWRYLJ z?Y#JyXgqo7eU!iYnj4>XsHQw%=ZG`~Ive1~_bxT4d8*`Wl@7)9m8_meSj>;P zpX}Zy(sF(DK1n#KU-DwYV%gPzZ&6Jxl+G;ef35>NH?44rz+y?fK4Y7uoWKi2{qG)N z?XILjimV9T$4zzCKtuz~!dZG;9s&+nb+JcUK8>)RU*Ue}`B-_v=II(K4*N+vx0iG0 z*>7A8L_6fTh?HDb0yEt=^E7^G04Ss*Y=3-r)}?+vX9s6O>JB2{_i9u|G?%Xk&Vz)P z(MiyWwTY&%<4k35?2q>hy1bSpWFCO>MZ{_43XrxVDnWnt54sB3lOKPglxnvdxKql9 z_Dv!Z?*1$(0k!T=)%CS?QF06(L#eC&Yzud2I68`dj(C8Z*2weMbtG_`W(1~?`%PCD zYKi>TCM{^tzP*(Z&o#O- zHtQcmeA>pX;c+W{jB@qK)!`D#YIyW}S40nc^+);*#0DcBe!xerR}((y00A;8JApDa zl$*4-3D7YgVO!;LI`;LizJ7pzD(tx%$tXmYf=kSHFTck-_?NJ6?#1TM3Z(-+7|>zK zD*4n*iwWHDC?cJSSm0B01p=frmg@(65f+Hid34mrn=jWjXmHzjM!^{K;N`b_Zgp^# zqd1`b?*a;SyMbLWZogktzyBVx%67bPcrp!!P%5(TW%nysB}KfC?CMlV_k4l)>$lt_ z)5h(X%Zw%>umQq9%YLZE!zSn#cRXKonS5ZAub=aSCr+yLS>b&k`H2Diaryc;W&$Ag zG?1S0)ih(q^BU)@MZP(i4SJkJN1Ue^Jyo+sK~M6?ApVpR39FXt{LqFfC_r92hB6l& z&~yi12IewNussV-JtkK1B)b9DJ0a)wa?BRM$&%H%-EehzhThI(?|DLock^$N@kl8z-@dD*x2ilwIAoqM+ z0f7mfYmX>7>vR{zL8K%F&BRhoL;#VD%Ls%2!E#H7=Y7TIhh}5hB=9qBXh>?fr*g&n`dm^ zYtKG!@+S6Lb`1q7eTnNz8nig|sx17NL@TP>Sao6lZOPs4IO)~8;fHAIzEZF16))VjJN4uou4@A+m5R{3T6K! zJr0nv!pKogDRs*bXyEwsP#taRdVkR4?bX$6bN#>?MamfzSUtYnxc!T`d%ND4^E z0Tp`eYf_JQC!hn{3U&^{Bou%{=^yDl3X(iYM@#eiL!Q1(GS8>>X6@l1*7ZW;CN97q zExSs4)@?jQ7~F}0qWz-y#bArrG-$}#J{Tn| zJ*U6~(uSNE8wfe^}l)fB50j%C&zP_&C$3SJF@3po8Cz z!eGTl5yZuU6?Fc+l0JAP#}6*zf32Fu?gJJ97SGzvzpvzoa#*%^Dh&Ed?Z-l0A}zDw zzgMycuT;<3cZj+~h;TPu%7@@cR_AX|3^?qZptjqaI;{R*PmcPEAFI*=1L8Z962pX1 znu~S-OKBFm4kk*B9y_y#y)Aq;|IiiGscMoS^%@h05pa4-HVaMLws;XFe6w=f7y-{& zUIF>iWVy9wex0MkJydH4+%o_Cr7`h+gX&^{7@XN3Y+mdC z_4>dsSgO`_jS;#$pRJ`F-%FQD_RjVymaIk1Ksi@cv2F_g*-3*_Z|TgZ0Tglz+?HYzT;fZP7)ezn%~(y zF?fjq`h9FW(qM{d^lIquH}8Y8x;FMZz8A9x6cC-_a8nd-UgSB!T@rO4RD{{A2wm2p)Abr-#jS=zutJh z&Et;xb(WjJ*AjT~` z0PJppe}piA$win#6-n0d@4^j$?X>pygJ__x*8fZGLbzLwqWyD1XWHX+}ZJwG>%V*ICGh0YE{l71s`|~3}I#&Ng9aba^ z=Ko03&O4K}=6N8NPwZ7@0-t#_0J6Ec1sym*A_BqBJ|g(b7IY$r2*dZRfqg?Tzsj(} z2AMrlq%YLtAO}2y5u_ZEo0FxTKm>bdd9UOUZP|Of34tPdpiE~-AufGp;5G1}py|#} zq5tnEk-`IRuut)PG#Q+gfW>>{?9M@y$LUdw?1xKilJkrUDqxKKBtfA9aPm8#BPvmP zXPiFi<_wG=0-AWRRAJ?6A~LkKHz|eC6KWOV@BF!OIc7bdK64bM2aleM7X{c&@AwW7 z2IFI#I-c<$gp=M$*%1y5wFA=Yd;F>{@h6YwPeO=Ffra4NJwcy0`d4W?2WxysC*Ol2 z9{=u26?dCYZyEZeX*p>^q65jgnKrVVh(-biGfLSCCV8^!qXk4jMM#|h_E>5%PAWMW z^oyPhL_Cmr2KvX(j`W`ZxqCQ%RkwJXGkPy$Zqv>wQY7E~MGL*~=Mu=*e}z1OqmI|K+zgf4I~%-RRqN=~w=t z)Z(>2Lf2}lER6f-m@i2kWBMbQE`~W2a>LT6*YXGc>q}Wqq(mSK0mL)*wZfiw5WZ^k zzlAn*d;)yUc2{`{=ADbaKQ!94T`mj0oIPyvxKL&T5V)YiLG|*{C*!UyK1-%T@*SvC zqblC4Kwtk3a$k9rnOxLBRSFAj4caj>GP(nLDEI~qRVg+gK!1dql5so5)J8&e*DRX=?lj7k09<|U(^eX+oXR^Bf zPofFf^fW4Lw84oMf^#{r;0fE;OA&E1n}W)%Kc^+B6AoaIR_^e(NSZ zI20+Z_cIlKu)tE2!yKrN;{OH%)z5u;x0!T%s!!rBV`|wsj@pGB;u5C=X0*j)ho$C< zO5Mx7y@eD)j-6l=EzmaokH0ZNIKXNm39_9#zm~509t_H%T9Gj9$4DJ1tbZqCbMN(oAq!v*6ba%0 zhLcxC zb`-n@eyrNkW93`-+aY7t2&(6*JvOF)u4WV4b6bSSoh#9h`}%>MNJ_jGT$O67>F3LZ z895qvV&k~%LNIt2)D)3`9ms>wNyx7BCTirKc>^`0?PQFVG?t*?403Ss?E3`g^*&!L zsaO9}469D;O@7{gU#u`bwie7y_-!U=v_MnL7BUho5gxy5P?oU*rBkC8iqsFBWJ$Dc$I^LOs1AqR+1mJDR8NJN5>ki~5pRovCYgIfr zvDBv0Cik_n+Gb96$Pn+T*lX_|tI+qFFh_kB9=e}owGEp*p!j#hexn=6I193{dwHBH zUTU@m@y6snr0h+Qxd5@hThksLO<1=&Cd*bBy#>owS0;`C-SB9nb-be$mV37j-bO&v(ub*D&S*&U*M~D znOpG8Rv+~aPX9zOgI^0bGkv>M{$acG<@_1MW!T68!X)FHMvnJ4CpC#Oi`svntP6yH ztoQGF>e@$!{X3-zb1_7!R{)zyaKV+wv@I5l1r$I-lm)DqKf~{i%5vjW0KrlMkLkOf z6j2?(4*}I0G6%W2ut1c1v1C@r@anKxx-P{ld;3hSX!?aw$?w)U`v6Z&`+x3NNIOU{F{nM1Or`!Y|nhB!|)Pc zV`+TOPbh89VdUxQ;Tq@c?5y-r(6WqYKhI|O?azD<4tA#H3c!4|*6$>0^XFm2+N0!$ zPOmZ1){^SMy7@2%4Q4#6JNX_<$?LO9nB)#a#-m@8j3Lf@c3s$SyWY5`wi>b0i&Hu? z7PM=sA-|b7K6;Oh*+5o}z@@=7H#=wsbkPi1^wWsJ*ft1^o)yJK^Oi)6ur0H@ zy+3>JIQ2s?;(z2+&s3?xWZ~Y$jHRYa=8Q%%hB&rok(fAkSZi+>ADAw4kQGdMWilh5 zqh`rH(?FluG0q^@k>q%{a`Wc?aFo*x}4A7L>qqF`5wKFS@O9n^~9F4AZG+%AQ2+|J9><9ykCcJQVq z-hL`kSu6em>~itB!+x>SX%O>ho_2-Zt$n_FBWd!5Kjk*6kEr!eP0xX!O##x&Vt<

MsKdaN!?|HF15Z zqPARIrfqn?8ap6ucM93h)9_ib^rU$2cB9g2e;#J!7T^8`yBul!7t*mYD{)$>1Qs+axf%XO1HeDPCm#{0d| zQLB;DvcNPXO7K^MM6Ws@NFYH-b*|X}bJMN&Ea^nMJ2VNTKlV4s4|+a>FfmXu)zi^H z=T7oLHJg{`x*EZLhrT)0=M_7#9MkJ88%L>H1iwr~Xm~xV9FM{a#STfhOl6I?n65_TMO%|9X znk|WH_AOhn%w1tKrG;xRr_q4a5Z?9F`r@u1cSYUp_-WRuNa`+#{>>IR&9$16F-4YqL+=7E~NqRrAt9e$qMG*`5Hvuu<-8Df~zH1 zdvN6aMM_biL<(wpkH5*1b5&(@{TgS?@Wxeij?Hyq{iSf2L$%{?g5@}VN9sr@VfU{33SA9 z$j6ApxdF6g5yY=|x(Xl)W$G%Wk3{!d5>`GQ4);gXLtf5g$1~3btYXxF_3s_VhE!FY z?G+C#POoKlz8p1N-s!@Zfu|ZOvi=|&v=8rYUxKLGRJje=;vGNZ5?o$$=ebdGZRlj5jh7P9|$%lx9WeOT#z|!(bKg~6Ub$)Rs zW=miYDYws~#)zvJ(`v4yVAISrlDLS_X8)mNZde%$bZ8$HWHv^ei*ZS~qT@Lem7V}j zE<dH!jvG)CwqDK8BHwV2tYo!>f#G!cuM;Eqxp#KB56U4;wW_c+Nlyu zfM>myJT~p&8dj1@5P$d!L^GlLfu>R{)~(CI(ZdxZ@!BMYL$^&G0yIia)FIYCA-{Y1 zZgEA?lvev|{h=aAnokuP*}Sx|$%P0E-FGH!{cc=F@HJpmb$kCq6@n=PfE?)~(b``9 zq78&q6hZG zI!b1fxK_aCzwpOj%HuBP8dJF1=M=Z{l9I7?HoSGjB+uWCXvRrIIhHdbgx9eaoWPVHsiZ1A8#i?Um#Z$+2y;^wfc6t zb*D!_jp=vo-y_76^ZJ4Fbc5u!b)lh}m|mq%&G%b!5mbD-!H4LMLN->2hui{ucPDhokK+Nu%&0q^=Z#|!nH=H5hs$;92@8GiR86hG4y#2{*4=zSY z9r9}>aBD^Gt?ceeKFi14SJd?nyV*VKeE!*_1OyWgD0vkcHR#>R>s$cP6ak_W;DaX2 z-Q2pRk5!&~lP|kJ9B{dQ=S#`&M>OtHPoTo+br(y8BM*uXI6q2|K zPR`P>u_K+ziTWghs;a6oaw>KEhu*0cQB^0a2TH|9>*7yLvQPbZ=5!=5Ekf|e0~C|~ z$qS&Iv3T+X?6u$BFfPt2{PiFcm;O|7jry6Y-zl^Qe39Qq1LVa{_7+xbU$%#mDVeke zbK&^ZFJ69U+27sEBhbO{*!WiQr!PiyC9x*p+39KQTkIR;G>`ZFTe@O~=}#(bz$(Q> zg#_&%t~zF#yuB$1U%P4d>&hhmk>fD>CG!;dF6lFZXunNB8x&6}2TvQn2^cGC*^Z+tEjoMww> z@}kKtN!MSmQ;2==so?9gDt*dF`=zi46#pH~-!KL3CTPLt^T)qHSs+S0pDC*AK;x?x z#Hw56kP^zF^_aKaWwxxk_$XxI8+W>n)?jyYs=AD0u{~}R=2*FTiRhUuvzZxN0tz7O z8rQW_a@RVxej^S(XCuxGi-Kf{3tqJQCAE{dN+Dggx0E2^KY3{L+5v#1lo$r&X^@-c z{VKEW_+Cu36iFA2-x41vx-w=;P7zY+#Roo3SLVRJE-asHFZ|8HQ%;U8$OTN_|G=P+ z0pnBcRN>;CV>f^fmd>0OWVw@wHA>8uM-zf&ZVnBY63728;yqpNjG5l&QH1oE@pa>0 zd1UhSk?-L66c&euVM<739&hvCFhQ#J2;^c(k10O())i%${#W$T`e3wc9myLW+%xd} zK#eV-;Xe z15;_VvV{ZEj)6iXZR1Z6pMZgt|2)suaT-N4`1QeR#A=W-0@mQSP}^V;xcMQ}1ylIb zX*yQg4Zour4sC$0G-P2?uj16tlp0^vgQ4eq1oRR{Lp)BI9q#;R_~5Ss;IO6I)db03 zobiIGjUAChvqxeVCm+Ulx_U(kn4HdcEzc3I?1f+ui~3j|guA_o+7g~kxyorgnil;j zEGmihwjManzAEE|P4_&oTc5v`;No8(u5HXCwhTL7-M9%311keDb3De<`bVZpkm0`# z|CKT=ecK-Oby(%%bM7y1rB<&y5ef{4@e{h<_gUZh+b5#m*w>L))wU#dIaF#kA z7y9cAA17i;_CP+WRQKzKVjj%S%eD&WH{AQnOnakC`|HCJ+JVL$)c0WG*^1++S=73R zEMsIjS*bY5u95#!)Qu~oyR_em7V~mOb^f7bXZFGHRJ!j7CoDtbrcL7R=Wh#RBOSO@)>wKPAz;DreKyP7k7ql*tQ3_33T#F!%W92|^hp~Go=@>x+l{%vslYb~ z8e(~?f}g%%`7}J*Q1bn^dWyLTZ!dVt<~1^{-C?SPOpa>bHfOX)ECEwQi=H9&XB;`l z$d)h)=d%Od8sDRQG2fDPMR}GGG8QO&@qAvqbG%VSUK`~zR1^g!Kt+Ra`z;OqDjU`h zB-}jR{wit0O0}-*Rt0*^m2W||#ys73v!5p+yyp9lI};d!CUeI5W@sk#UhZ%xc;9Ou<#emNv;V7cG0d9ZaDS!Sa`L>ZA5f&~OI0Apfik>9XDisQ z9G1>fC*mBvxT1?RE~Ma2!nj=?!CzN8>^i9|#ke2S)B1i_7aoI6d?vtbC%esk`zI?H zgvWx&@9q=o!*3(+>L|-!Zg5R{u9n&%nwaJK3|ziUmuL^Dy~QBQRK+o7jblmq5h@+6 z6g2TE~hHS^VSf8f*D@M*IcP4m@Fuu)Dg0zd4oWJjU zkXNb@ebhir7a&HeEgI}pD(pj^83Th-5n6iV$0%VrD z;wzrDE?0Iu3|d+YxziNdQOQwbGHHoKKIJqAGy(VSc3MfIyaijWB8y6ukNgS_Gcao9 zyP46auP)E8qxhq{z36ESh{S8ET@-&7WDd@%?mB=g1p{x)L07&Xr>S_&f`uy;h&Ghe z-qpM$72e$rlq&`3vNgm9d+VBb8gX8~77Ik8juvW6fl2Uq{EXQc^(}VAnsYMjOQ)!v zScku(I>IQ7YiGxN(jp?*R>RA^f@*Obx*FCK>5Y?;%hNlLuc#agKu>8=av_Uo0}dBmKC}m8Z?kAH!W!`8-njZ721%p_w|CQ|47fz_ma#9{IfZ z`qT6^@9ZV%z@RR?IF(iP^ZL}Gnb(=|PUOO0BR=K}cT zhiAQa1-!yOGxS>LrLX+frvdLzW{EPx3ZN@aDiM!(K&HMrW{u!*uMpNuRB^XG8&XqBW8KKKidVz-C7(xU`AnvpcaRfC)PLcjli#fnQRAOtTCY&ilE$hO4E;?%DQ{dNhI8G$*ntg zVVa;{A8NNQD%IzBp+6!cQ%9OCZ_eVIq2uA@{ar6t#3k`W@C!@H$Qw-*hVw$rpQ(9s ztsY`N<2CQO4?tcXbk3lwGc{mIWn%=J@pcq=b?2dXm{FTq&#Jmcsac4QtBBhsEf|-; z0Xp0nT+|ppC_?O!t;}pCkJYpKIWP!zxXRTE5=NFh8$M~Y-uw(FqsX&ZUeiH3FPWVm z&)pbtYZJyG$NkmYjDC>?;6dkK-(;j3o!lAe+&zOfXv7nA3|@`9ano&=*1u)bzl|hE9IB zfT6w4B;|Wf(N{Z3zx|ClKWAi{cu?&}#>Ofw?&wyIy*MFF=b-RUcmCC@o|XPa-@xb6 z!Q|j`*syUUNq2nW%hYgoB%}l%FVr^{k5r&%jn0WgB`F&U3@X6uz4kkHKlPV!P1$ru zZ2@+irYW^7WcGo4U}v}pYNmtv%m*GP-S7zy75eX>E#j*;r6p#Ih0}e1msG+buA0&P z+RKFrB>H^XQvA3sSE=(+q*MCevVEb6ayR95U44p5@dcsAT?E$X51!3rfy>-}xf76Pv&7c(OSJB#IC@{1-W3hKir=YP;d z`r*qQH(~|qubM7QrIP@g3CdIgIl}|&_j1)U-p!aAc&)TFVrj$bqBABe44}IVLpz5yI0F)?kPXWb5=(-%2T0UK=WX z9A+8IYN%LWU;o&0eKaA$ZCC9ZCQha-!eSqaAup0oVh)qpdaI>yti+8ANYI;+U!R;@ z?uH*fG__;oCncNZi5$rtxl>~7!-d>m#_zRGc_viakUZu@{!aoOfEEBY3V9Gf*Hc!2 zsz&fC6n|*Obxu7S%zL@&pXO}ysLn_|16VQb&wBUk^c1_{O^fTyhbzVwLykjtbu}8o zIf};RZz-n{o9wFL#re>=Y$a-Vtv~kiUP#j@hiG0yV#jINI`5?3;6Bz|3*TBH{jkgR z3Pb1afRZkinCk>bOPng_4oE@PBPzd>*l46an2&XfnqQh%*kuv>`7ArX{TnSI-oCxZ zSnsVh&dzjl*H%%q3$iCs%qPRQBpz$1p#S9=~7Y}mG16Ry1QXb z5CxNlC5?0=-6cxHqPvvtmWF*V9-sI9@4dgAamM*_zA(l!7Wm9H=RL3cy02d~;?Yb1 zkWwa|SD|U|RrC7OJ$}x@@o<>9TjFPOzPP#k0}iy2)EdzQYJfqH6`KUdK1qcOq*N98 zU-|(Q^1$Dp{Vgt0gvYF(mTVrDs?|^ny|A_;n62p4dzW`73F|55%?h7>?FS5hd19KQ zdgt&7bdvVseLjey=8eA9yj*NTN4nee0PE&r*!}1!9Wkt~^$ce>V;W3UC6d0z(U6=B zI553iUxjxbR#*8O;>jv?BTe2-_YXDZDOdID+Ilw)wcC6Wcz6jW@|;GWgk|sH7C4v= zFDEgSr1OWeV6XTj%`@xy0`DXJuYw1t0oX)Uz_E@3dg>?!AlW5?07P${_QlFUDMBQ& zIS?z}+y#&;0R$VqXYE{NSfP%E0q}a+kwOET*4=|yfhVti+^Kif1_Zx^aiR(5yQuZK zZNM-sT`U02y;P7bTUo+B8P>r3VY*Q2BYn;XqUiiXYq?Bo4eg08c4EPYdSX{V|Fv)4 z0ewx{&Qg~VW!$0zd^#ULqXS|vKmhZ(AEIwZWdP9&aau8&uk+CF^xz5fc%ruC^l&|% zRqT|0a=Pn>(N*|%%vOmPX{;Jul)z8Fj2LeN;pL*3Mi~9c-eRdvG9|X>2Ne7kp~d(G z0gAf-)Vxc#hTP$jn3{w`Enr3Z(U2RUaOKy28|K0k;zw!U`@D)Z2X?m@1#35K9|?tBpD$xn0#1_v0hX<7$ z>PwflTM%K{e;HPD*O5!jz7gJwoj!WMlJ(iDWo@B; zQ3dV>4i!q&)1=BF#yE+!sGZv-WuwC`g}!tLw|}OyG16w8J!<7}{v8oKgJ1 zQ}U_7+(?1m@5RMMC!3pslpk&gKNrg)`Ao`{>FML+^W)I*Zc)d_h7_cMz3+w*25 zbD(=PZww6$o%Y@kZz9Clnr-9|$gr=2Ja>hDIal4l*uVw0-pU7!Cm1*cV+DUv5Cq{| zQrmumT48&If5WoZ&RoEcQ0iHCx<54F$4wrRen>c1wvdj_%kqe`tgCN%j`_14LctYK24|J7F?4< zajV{s<&eDl`C|KNQ%pA93jsgF?OQ{3R@QHzca<_ zu|<;xW(2(gGeG?dCxlPmUSkyj*Bs)uP->|;QcJSGtc&XrSOVQ021N=a1*kMGEm0cD zDsjVU`1t_M_TT>osj(7RNVQBCL$sNWPI6=KO>=`LKes0KX9s{tA=&= zuzxequ9=Kt{$e1=0tW@R&#{QFKPl(8p+ROP;AK)%F)G^g{i`tjr@y^k^2T@H*?YAp zT|cm!cN|4QA(+}0OlyM&sG&1sff962teO1!Q`{*fP>GJtdRLxY(}>{?%jlTs$~!l% zxxctagrKrqG;n!edqp$ih#^_*sQ2og{X-hPKpIOoZhxXel17=}bBpLV&@dg4RN()Y z|5s22h&Yc3J&$+3p1H+Q{YA{KZ^HEte>L!CJ2NwUek(aQ0EE;_8{>Tx&kZ7rBMG4Z z5;TFGEc3(~)qGPcof6krscL=T){JzM1QZ*O$#rlT`al7W8Q?8(p0r7s|N9*NEfQM~ z?+p6Y$SO@6%zY)>0BM7n8)MaKcvM1<;KMXvR!;aR3|Je>UizM-E39i0a2N`CG^(Fo zTe2Yk2@qBF_d2O)906l&^~7o0pJjD04<5y$#XDD8&j&)-BLOp{Yg4dNp`5rUPG-K6 zd|dF+(AoKUNE`~G-&|1RWrVle`kR{DS^~zq5gB{SHEzyxv*^xS=O_M!88V3zWA%eo z#g9N_jj_)hUvpz#(;3iX(60_=L{dQf&eDp9%(@E-GJst)$E@hH?QxLp%VnOwF>x3= zRpm8UM$Tm}-|^)^VBMLb39^YJ5EgLZOuV7^;{Ui4sAyo35$wF@!xj%~0t(8Ewl?an zMr)Kd!~Vc0X$@pdfHF{wtRL;aT7v07Dd3t>{bofM9A=Zp^le8FcIN}`CEyGDL&r#{6Rdy73RkqnC8 zNZU=$92McnC?KTh5 z!=zvZg>EX76%KIrX_1J@%4CFRo>5U@6uU;J>Ba8e9_P5ft7b~F1tJ^*k~g_Q{J7X> zUx342^~l>kayUUBKK_A%rg+boOU}m(uA+J*VX+5=6ICqfNa+`VpnePVY}k_Aul*OEZh@iB`T@Thc+>M z6b87a_{SR|4hJnQns$?z@??FddRqR2SqKD=&eC%!L6xC3U4oxyV}MXJ)@Rqh^QG^; zXmqtDAWke9YFeDFPL!7}bVX{_&3ksK9B!L`|Itz6*M>J<2{nE?KLzX)Pv!fF1z4~X zVjeb2DvVbPw$}$M{2MTeRYNoZf34YhASN5H7ocjLS=-G8Nlu+_Z<2IBs^PX8_)=W= zm=`*lpsav8xvO(tk9d5hV#)bH9G-u;Cf#bS@q?woCm(n3c-Lfq+W<>k8E|z07U6LU z&4LrGJW3cj3>YX>|AH?m8jRe1ZFGz3)oTcBKC~@Cw_-Rm@FN+-V@Qv4nx%ulV)IX{H>24smky}y%)hZ}=4a#WS1mh?)ew_Dq4DR4mRVj<3CNKml-e8z?rB z>Hx<5a|U(zj~uRXS6o~Gc!Dli1pNWoi&X~YW+c(%$3rB5NIk)h2>i4UJAYW4-Qgj=;Z~u)M z<_-Yv_tLC9=1za6_+tgPN#fxiV65B!jIG9Xb3o>mxW#b~@dyAu%$D+#ySFNtwPL8K z{q8?HX4r8ONRhJm)4v!*#s{`d>$z#XMx}xn%_L5*2w)W6PQhh=j^PD%>6SLVyef}b zk!oM)q-6Z?=W_B5oXg^&(XLJRjlSMJ72sS=y_59s@|p8S^B$O~-ELr!(73aWFM4iF zze}WggkNqwtlB)sqh9gd*Bqy8yYb3!ZyCV>5N)n5-`bgIalgYp zoyo$;ZWay0ODZ9Gc9+n5her2>k>a09V&D~B&?qvxb>1QsDvqDJlFD@+#jL~m0}s5r zGI8~@>Oe5^zLd(Wsrrt%1jK}s)dc$Q3 zb&~x=oy4WEV-qWX3=Pb;1L)c7b|qg1Tj&*B>_bQz@UEaYB>%hhFdXbWU(9qBv!g-< z%v`w-A%TL@@;zxC+ljjIZcAYBmLech$Zv=+?kch;*o>YV^^v*FXg5)&b2(8Z)5GeM zd#gllQo45Z5zY|WB=nM;<5gu;TDZ9ZL|iFg)cM6Jj_9tKAFunQ3! z!^LQXKw$S@hO{`=ou46_bP(wfr>cOU!Z5SL_^l89w=t>tu&1i1IL7NOLVx`EU{^A= zBH!clXDj-%wfwWt@D-PP%<9V4*~YF?ogj0thg0)ZyZ-zwRb+cstJcAnP@a!r6GNn) z2L#^$Jk=+XzP8sNZ18iGFOL+fpRoPAuIuAoB&MC#y8WRSn_KJf1r#dvwtU4n)eR~P z7rm-f1VQbVrLi01NuegIxL1_?uS%)@S&G?jo13l8mpk0 z!s=!N$p|I+jnkS4B1ga)G#e0;o?Xai?7Dk>eA3>U3GAQA>d2z@OU(N`1pK9d4&pH4 zut^KZ(_gFK|Feiq*f-edKz;a_yV~_)=ixYj+|(FCY67sSP!^!yZw^*YiYWwqpGpgM z4JmwKFVHKG!mo9I5*z$l-E;R@5zkdeQvd|Q+zV-HA;8_6D-{t5*M-mM^81~Z9jpxN z{Q*&?VbhJ5e`-(8-P3{wij*97{{a8Dd&k~~DcW7Uc7f@5M!*b8KJic5tIhN=ugz5hQdSd?aE!O1~a1r){Ybb#XCLV^a84uxM0r* z_NDnojWbKzxOunVek*>}{7Lnz*o|?og*w*B-wb)`G0BrhRO3QxBlW?YP|M4G*?86@ z9oqZ~U3ylN&Nu&qmP|8eg|;~)Jn>!PBNFQ51hT8usT`9qxgk`}k8pOL$%BR_IUUTL z`zwL=d0t&3*3kFx0xTw$-YQ?txx>7(i+`8Bcd0Nd2Ft@9S#>5^+qjn@}O4LuEOCWEr@R?^Kl~rfTo>j>V2P%^0liu z^-;xY2!VxcOwjGM$<5HM#*CE|RwPD%JStQrHF*(H=u2Qaty>6wCgX_!{n+F!SH)P) zjDxk|u1`li_EXx|Qz?`~PeU}fD+w=l<%7ru)odR={^B)!exRC2nB1$(Cf(xovd@Nm z)(q0x;MKT<+atkcor9C`$x&!vE+&eSdhrK*pbk zJZGCjIcmIlq8fZyV9JgUoD>4Bi(g@0Fw|Qh46UXM>sO)%fJ=K=t3zYKjWp-%!{6KO zvy&CE&jcxjTvqyCp1d5`hioMRl(I|j`;FBH<50@NT5*YGP*bd@WCF^%`GD-7&8zpF^iY)6L7>U?&Glc$7VLPUmMNIO8e;x|Mq$Ohzs6^`91y%rG>QyAzP91#)(KTD~)t@9`={&PItq7P$+ zG-Rz#4G9U)_tS7utoQ8uV&?#1wpV_lzbiq@E6@2IJge>IMA^3SKfPUsY*f^%pC96Q z4@y*#P&{66jm|HSO~!Vi?MQa+V8e6)*#hDc?M+ltzqc;!i0HDcDi{k=fplT~&Fu$X}NH zK3n-YaZgNcNZ~tK3kw@&F!(0oa0e|85n|ZL`{>Amj22dhe^{Add9pw1OP2xPW-woe z3&hK}A)Ye}aP`R&Dd(3$McT#BCn_B{T$Z|VR=yTb!q1SZ1qe=+-*)U+J zULjzbKlUdpKEmuSUcE~%Qg6mU&tOxNO$~lXzF>oi_(|*EWW#WWTlaT)tuOmiT1>?T z>=|&PQGLb~!l6V2$Z#EBo}`hU3z%7;n2&(SrwX#}J)F9yH&~88e@Vj33WPr7 zHJ3g~lfryo1r=(P2FauqSTwFKR=d(CT5IHCJOGmVLQ>0pmDsoDh`0x<0~t5Rir_qh za!~!gp_)$P%Rt%Tddb^c^+ex{8c9W7rQ=)zXIKAElw7(Ic{Hg_5?Rw*eK{YIw3Jv8 zml#*eQQn;`n(e~~%X#%Mm7M@?;o5wikD36FJ2QmXsxvJxRj*q+eJNw0*)YfHh_Kdq zqmm~1HrGU8%mq+=BUrT9W4Wy&TvrEv*5PYB#M2BZcx{>25IbI1I9Jqw(Y+m4vty@0OZMSO8Du#4=u699<v52I8+bmvFzas*quIh~xFel6GCjl>~E1`Nn z{d4ClikMUej#avjEA8^<(^)@pEmJ`l@Se(1Qi-Bjy#6=G@G{$eea>97W;FOA`6Xww zsQ2$^D!m;2oL5cu!jMeP?&Rn6Nhx7@^9RCsrIwc*scr7hnZ3tL0h1@zI-pJOxj=91 zS*dBSZCtJI;)f3L0xmfzQ=OEpO}GA-<~9%7y}Gi`e`hEmIIJ466o+r>>a0meKxZxJ zDr#Y+!=aQL2sL&EUPK>F7u{pO?@c# zIs&nNgNAW`PZNR8HCp)cbwEVUq9xOH0p`F=ZS?ID#7JN8rL-oJy)cd`M1X7vsaZ2*|j8!dE?FYDM!LR=%ZEP556 zkcm2V_^YA<*y0wCk_5b7h0RfSIsKRYoeKp&{Ka%Jq`DRm2)XK=x)f1OE0hYjEM8tb zgL8~dN`8jH@F&VTYM;G^0849L1k|slPY?zFZw5IyTjfT{**?hIvtA5dmJ@xXf$x-> z`s3r#9@Xfcu%x=^!Tso;l1gH7$(M_dO5X`EZ2t9F6I;Pxo%ehw6>?Ab3B*xG_f=Q% z5ZIbL4u0!SYix;FWIBvo=wy;O^<#CoI?Sr$v5PPTLzq`VccT2R)-?E^&NG~p!%TGa z3o14epX%5*RxupiBPm4gnAmwhc>bNa&FKN|N-J zDE8asscSTI0XcURmj%?@&QzXhLm%zeuBwBNkXZ(Vn3;7%WI&u7c~6Qk>VxWoA5h0OF;w8(u-1K2 zxuFsZ)7*SY4>UXxf=ATjLdQ$f!FydnElU~b!MSzeGGsBm4|E0}mHb!21GtX_eO>++ z`6V}!HSozAsQC=7)r;sSJvJT_rm&*&gcvGGH$RWnh#?bx)^YWwF-@UCRS65KNmnot z7IcYWjg{CQ?Fvs+m-E787f5N_UQsDsO>F&)zKy$QXtC1)#F*!$K9#oPH5z0?MI@$; z<@hA*hGiA}ofWH37-#c!(0hv*VpeUtMnGcMuDC^zds%|8hoXSTD!stE3KHEt3!bJB zj`IFHwY(#PMlxLA0fFGGZqpqgIto6?2d?u;APskz71P~dnk9%XjIo=+V;?*?am1fAOnm{jp*>^`WXBmfEi|+S5GN`CfD!`pTSnXU?-hhd)^^yTlygu}YB( zVn+-N(S>&8+@j?MbiBUnZIu7o+_bAaA!KHhg4>Rljza}-rok?MY6!ZbX%_HuUM3bE zbCbw;U7^8x1_qhr>77o)G3=zTGkST+(J!R1*3&iG)@V}a+b+;IaZX1Ji8G>@lCc#YZwpBK;89T1opRj@M{K6znCK+Ad7UVXhEfgb^VxGRgjqH7}>-bb4ZT|>^8laEwHwv->pBj`qr$Oy|1~C|L`yZt2~(6O$?kG8al2cv~w5wSuHQYJ}nJ6biPsT7Lbk>!E4pu3FU_3y>`^2NZ`-@@C z<$94M$oP5I7M7nFh}6;{%RIpHfnxn$;>EXI-Pb%q60@}$*~-sgXPbN{xt2^F#BB^h zJx;ca80^3$^0eIMK$}S*rO4D_it(P58q&&f=N9sj%=@@@&g(W2%Bk1WS*iije8|4ZVf~V>_77Dp5ywGd1RK+pN&x+#?TEm< zZ4E?To=r_Lz28lkmd+WH5OH!ztg&XLJ;@!BbbP2{Z6VZ^I&Cu{G^Egm`147dK)>rR z(o6D<)hw0?Qp=Sd(D^PXlPEbz*jNy)J*y80t?X=kgxu+PvL00QOKbN z8@sdGZ9T?yV@l)v{9N8W`{j!pav-Jb;X#}w#oy}xo!+?P%}TzL(DcW=&;kp>TYC8X zohkusAi!?~5iH%B>mXxG-!0fFDGYA>9psH)_~`nxtFQE{YjqZ^KS>mVnzuOh1I~)D z;#r#oNxxT7)re%#DU|jmm~i-nNV_840#~2!c!N}BRjw({P8^>30-dfH)mlw9f&nRL zzS|Nkb7=jmi_!Q{{9k1~Y8JM337c-~91s%F1v&1Kuz4a^Wp^?TDt^W7|tCIZLH>vxT0=bHKbVDHj%gR7TmDZ-0Ihn; z7u`&#+;*IE4-BDX^J3VZ`xW-jehU977ZaE9RiMm<1;hverj6?RP()V-ZIB=TbJ(eu zd-kMzD{71rF6CIM{U&vsUs+dKuxB^NT9idB&aaYZ{BJk{Bkv4j<|EsKX zVW`H=C$hgoO5w)+{T@apgIsmXxD<9!O(0}V5ib!F|1|$IwAW-z`jQM?5uWKP^FH~P zSL$p3&vnRhYKV>s+poJ}B;?A%NE-(N6ZerhPnqN)?R9@yHP~f#LN^6f`?ha&Foi z)eqDe&c?*?RQCtyA_-&OIW5Fx2VR#uel*OR#M}%MbzUx2irJ+-7a&}a;6)F`R)1ZL zr_`^BUlv7EF@X$4?Y{=K0Li?qMH>Ep&IJKBHH~*)MS<$>X#NSM7r?Nev%^pSoOmKv~pUtq3Hag)Ll#sfflLEJ5V zFoz?mf1|y_Dm2o|V=*I?qf$@N11_Il!#L#(m-XodvpvDJR}LTnL1yXW@YdH|GRswO&(NYXT(crE_Ig!?Ke9c;rO2 zekPOIn)+j*WS|=OaGpVtlSHM_-k|sv_uIu>=Y@9m+M|u|#491{?&9GfD#&q=tHD)F zX(tuFmphsAb*j*n@5##C7f7CSt%>pT!u>LbqRlo##@DH%J6$u)sjNT_K*ChFU$NF1d z>O@Af`AZ^-p@~RWKemsCGv-?7!+WcMg?bm9ux&?h8q(bIVoEG`3FaUBEwQc+!=c2j$+o{< z!3Oy7`B!M(t89t9D){#fwm6yMwtwjEds-6} zw#U{(miv$1S4_i_STh9loTE=hQe%#|)AOma6m)0w=k4UgM9~gh>ZV^6&M8$IT`8{Z^y? zyH^_C3=p?ob(TXSr;B!B$@tX55q8kp18MbW;Ey0(UxTnvf(lxJCu2T%%SO+7bfqJY zX5f9S%NY!?;ar_TZlsG82y4zO2Sj&(1NV1*UHv^zD8(84G!bg}SKy&q7NT6N5tQg*BcrCj0%-`GOEJ zZbEUfH4T}6TV2ZTJm+>uVYfUw+m0l<=i=+WpZ)$5kS%{GMkzaU`)OI9bLx>5>O8=# zb*DXUlW0(?0m@kw7O@*C*@s8RrEMzf3D8t&@WGj>e@Dq+_HOM!wFwrJK}}Rg6(JbY z>}utlxo=ECOtYUZM$)537&j*?p4iL;V@c!F)&r)&$?Ed>-l~OB`_GSX@vNag0JQE& z5^|Hpyuk*y;s7#bz;fzbbrrBQ0PdQPYKjEVl__}IO_@ZP>pgO#n1=t{V(w$gF)KZZ z<+am2L2~FXkR19$o6*I3`t7(B8iQY8K%5F;Az&Aq9%_xDA23F{l8~l4U@6LpVQm9w z?M1`cmS9c}l|7jLF{zV01x((UdxHfl;jhg_|&4|jeim&%=FGpFJ{#C zRyx#z62%4o*t3Z0bK z^BWR=O1K1kc6zQp_`?QHQjRoD#XwJEs1+*Y%g=hQ? zuqCwb6@58i+TSb)JsB>kO3w4y0GP()qrUNX1Prk1sUTQbmM}i$r4l$PvSk^v{xsBQ z+q`Uut0SICgzUX*v*t-A%Pw@tSqN z7Ub|l%cyI`p;cOv=Y@h%shMN~@5*pmEwJ_B_ALEJ8@z)O5XG$Q3RJrTU?ysn9@C;< zW*M%Yt=#;T1=zMh4iW$e0~%zIHbb@ZxczJ33l*!Q{+skG7K?vOoaeXlP>V<6WD_41 z4ymJxdcQBq&oL6wFV=+rdmIAmX$12I-UA(;CRpl&-{p*o8RC*+KN3&)WKt=O5s z`7E@zBB7ZAW;>l<`qR1zs=lsDW_}_yyR73!4)-$aL0;Ym*iY4Yx*6+NvAx+QOn~*a zL_sGvVMKh?b@w4#u=Yhx+bdUNHPG25aFVXCmFFRCwB$pN%B%-_*SrE9DEb zU%}*mg}K%k1lbwSvJ~R!k#?i_BF9ZaZ36*fU{r(pO|R0PURtMd6w$=^43jEvZa32A zlKYvc1)qJ4g;Ekmf$_ZBhwpFI`;_cD)YIaAXdWdX*_J4%NEgfTikG2;m>=$WsS$G= zOB^_BdG{OxP~!`PO4~&fuE>J|O7ir%0)MF#W~B6bz5MhN!dhSj9l9gno=% zR}@nkl1VaSKh#&k)UG5T$1ib##>U?t3ugs2 zFl`OBm&C~T0WxMBIFZREi};D-Gi$SWCpy*x*U6JqYUl1)E~&ko*~ng2WDEE+{xZ@C zOo2P(IH+^S1f}%1wN*15>2nOe!!znPo)!Q5Qr>Y?PWj8{CoM#SG!?V+d5{*1pW}IR z=n8$)LAoL5%05E9HTmgYIc^iE!~7*?d7E@46hdZSa#tHz<3vG5_xa7}pI-0|>wGTq z^;By6Rk4i1L_rxKdH+7t(ED2mFfGh~51rnI-uF)Ax9L*V18`_LTQ94kOf$05b^2S> zL9PS;(B67A@)>q)ME@J+yy2P1G9z`B#CQ64Qc=)n-y(>Zh9 zDKh+HQxjL075K>wMFr%v3F|Yt0)E2w=I=_+oa4Owh|pmSKPg#XH$+w-tYoBsZI>(E zW8uy<%Nd(7z!IVU3@xCYxUaMlk5V9i1PXyHZ|EP~s%&Qz(D)M&h&8-XXc@t)pxcis zCg2lV?tJ#gZuRt~2a@n3pY+ramxLL(&j_glcn6@KI0OSkt$utXw+3|bd>1?S_t)j| z_=i&>seYurQ81ow{T!jvLm*!iW0poUw~7XY1b2kvdG#u6lVCYike@eAiW-!qNKcr6 zcZpOu0Jjs#f$Z_Y)1wZV^0F2%lQNsGaidq(ivwGd7soPibt9ybe! z=nMynQ0WrW4pYFZRxN%d;ZeVUy?#V(C(s^y2)!L^fRmvk^h@J(ezUyQr5cU?05h+W zqkGB-#FM0X9vKb&Bp3;7DR5r!*QK#yU%9@kPRY@{N}j8NW7dBb4>-1dEN6iUeb|Tq zia{p5%(53*26-dNS3Z-xIfeFXwwPBdK|mmqZWljN;@JNR;9vJJe@{oK7_4a5a)Ns?uxjuAanA!zvr{4! ziCOf<6UkritdrdTr5p#`!6f6gwS0YoRMB|La8TY!H)@tk6@Q-&4x9s(4n}A%UeDJZ zCzKmf#-ob$57(R3;4aGdDb+ZeJqq$(l6;1Oj8Vd_1u*Z+%6VyglCd(Y((3On%-Ia- zse=NNp?9a%2gk|&PNBxYe3w=}Q9uLP79kzaO~E#3{$BQ?PwEPfsQ^tvE}EI{)J2@Q zK0%8vx_`OSt_@8wlG#Z=Cj$+3Kw#8hMSx|yd>dKguHSOxk4U^QY^W$+4A4&&&bAx* z3TNSUUw*MR; z@Sf9Zp?l!Zgn~x(U~Yc?As8j`6lK?>Owg5dTme8g*TIzYnW%(IdPOz2x%y%FJ|OxN zL3g6jyx*6S@mPP+QvcIpfS??l)Z^61V+MYWKuus1Yb%N@Iip=)XOYER4mpMyFv3s# zC>wCu>M1y|xouCXKNH77mH0@k5QIni z$VxRUq|@HT{-1`Of|xNDPw?|O&#Cb4pWiWkFS(h)B@t_jWn&;+ql$+(i>|l4fOkZ5 zR!Tok2WrS~t_+0$-=@eMQAIcri&iIqp?X-3=~n$y1j=pX(t>VlCyPAA`)B{v*QE*S z)F)|KKOu-=pH>kFj(iYBENRaIOvff+ZmwYHHzf~v-+X7^SL_#X)8%7TPmeYq`iX4O zEhCcQd836LK;pYNKA08p$cg|-Yk#Daq+bW{>ZuSX_&4Ame1GmOl2M>0)`S{x|H&(4 zetS<>z?%9q_%AI~dR$rse;#Vu&vAr*U7~%#z%ao<_TxW()8cX9Z^I>f-bVtaI4*D( z1^?O0mmzV@NXG$xi;^Opwj_T2%h*qiz=bZy55QGEqBG-!(*xJybQKrc>)(YEIPPr5 zGWR;f5Q7&9+^Z@;@jgC2mIh9Iw133QLi}%HBRSyU!s&o2&?R7|4-@pVb0Cso35Y5l zy&EI!7eHgDLApF6*=&y#6UH#TUy$5+ryT&^yAD8&1FdlST_0NA>zSe>e*iM{1{iWw zEjv{^1gYRjyg@kz@ZxI_Tm@3#Ar~L7F3fe}mJb zUGJisL4={NCKepJvi$8dHVQbr*tka+jswX+JN<1z_=>BKK`c$Agh6AP}9|9Eum+8uCV_+w9kVeea`&;`O<)ma*>u& zpz2+P%+_G>js*E%yW9_Zpd!ZGsySJz{bCZbkHiaCX2 ziNSHD@4?A>QKRo56BAQ}6o+q+Jmzs>B-33S@MymHkA#|53Q$b*BzaYdyF{WOgsN9< zUGh(Ti$?1N0gq04Z>eWpaqqoY2tnT|xnHIeRzccmjrR=<=T!d@gpF{$pk@6V*r;*4 zev14mXDmbK>w8`a)I@_2q|yEQb1@Eh&NPMrl!ETkfFj{H4&+uZT0>8{j@3hOHftD;1xKSMAS%I!#pvuW)mir<0!lM8X)gTS_aNl5V zvrdpGo%z`z4&3;NCeAF6FS@{n8_x<5!v<1tI=f@+`daQM~FB>I ze@B6jCK8|!&)Wein%|&z{kj`M_j*eX+sE`=>Nr{c@=%Dqi3{O$v(>qwslsmZ5gS{N zM~ZH6nj8Nu>;>@vP~qgPt#h~g%0dj+*GTWQzefYTTGV0}{0vV43LKt&MH(Rm>hS`< z)&|qHLI|4_V+D;B9f#|mQYB3V?pDOIesR`6rONaUxEKGAK85c5_iwQmo(2R4+a zIS04p2_^8Cnl$T~D0c>H@ymz>9fmE=N_m~NM(zra7cExjkM~0slf~HQyKU5f{y(Cv z$pZK^sGGrd=-~^Zw^Z^U%BU1qrejlUxYLBz7ACdTG-;E-ikSl#1qsqe~kq6R~ z&G(1l4==C3Q1t74Pv)7#ud-*$ry1b6wpTr4qG3^QN|cf$qJz-yo!s`^n!Y64U3w9_ zGb(@XdHKWPH5;;Qv|)nlWB`-cFd$ZFkDzOe z7%leZ3dv}PgM2t&rhGWqlRE${wMQ0UXh=$7{Q7Q`_3(G|gPsI_PTwEx->jzI5-H}= zaMbT42$Jr|#A44Ge=qSbSRa}$0J4-$z3n<+d2z`~&S%G2ng^-#>-6SmDcM_%Dz1%+ zwkfQgRGTa-dU^I4$6hSL8#*V*vXa?f1Pi^|+tKfESn5WIz>7mg*@2b@ZqX+C@RaWz zDk_oXbcMkXs+sq6$bAu3^ppbUmcyig7}6)$;LVrwK3qk%|GNd#IVM=uyQk}ZgR!4~ z_-woHhw@QFoo`q=z-B@d=7u&^TiP4PMyF}~vom^cY+kATHKu51ujmywc^9a)meUH8 z@e|Uu6?`%?bzf)UOQfR3%fVBdIF{2MYimRAI5)hmE}X|_Ic~@D&eZrO&Au2Yp-~L5 z+OFpyOol|(^d&m9+@oy|40BaXM!*D9R(= zr92qU<^B}|jt=lb&Z}TdR6L{Fq&2Bxrx`zK_Hr}-?nJ2JW5p3?jx9l$BhSANs! z+QqLp=OdLC%4H&vp4Yvh)$>#7Ny+mJLM*3m>o572+cmT*cH~>+F*pgwD(vE2SA3zY zeC=Y|7pk94FE{o%7V?T3!+~@q=)%cvzEweyMLUmc;TO;R+_UY<0Y*YY-R@E*<9PwM zqvd%ek!ZvEGgHeGyXl(4)T^=$p^G2$&X*@WQyOR@_!LiR_{!^bMhf*9uIhd}^KVbN zB>MMqdmWa`IP0B-&`TGpv;?89A1gtim}*eLOuvDN;R_IjEwK|SiZ|cu@`G%=-p50o zfGlB^XN-|gf7`I6`=h2VUt7$Ho}xV@i8kaQost>Q0pD^<_km4Ol+m z+)Sd|h%Hkwny$lB>x28VU3yz12aAQkJi^|v*ZV4PmDB0FCzDReo7$()T%^T03Lbq) zag*xu_^jVA=F;g~N0d*mpCH$ug_jT-BoL4gK9YClV3EA97d2{}Hl?hzP1jXtiD5hR z3%QPtMkPg}aJ0DAMR8C%yeF>Svlc?<|v zNbWtCH-s%Va@s(DYzLns_6ZqG9R)mhQiO!<>%7R9hqVkN0Cg~qo3Gr8ZPUKG2SdL* zp3ewK>JnZWBz`SWkoUdBWCHObpD3Q_1HsaAY)CBj8^XR!yjr*ImjF-hd0c;4M#to5 zV!OZ8qv$`b@3j`|l-l3l5)>LHd7G>=Crk6FTeUHJ1#&d+i5vLZvYBKx6)SO*#7W98 zISPjw^C8Z?cSizl9-D))T#EsQ_#n1kY9YVWx+^hJP;OrGw!-7E8~!2jkDIxhVGg7A ziW%!q`A4mY*gg9=Zj+t6Oqa7Q_P>1L_i;U0O-ToSMuCDt|3pUonR<=uI=hm{;itO2 zftw8{%?}~;8@B<6PuHHKVdeYWPx*(&7@+hh=IB)_N`D4{4${dD7p6rn$sB5#pDYB( z7lYQPBV%G!ux-bxR0L+d;5ql$ehXcNknw-_3aS?UK=H#%GW2SufV?am-;6d_P3jf0 z*4m?PO*;`rJmbB4{Az@i^vT*RsOTzc9)ksX5J`@YJEaU$0xe6TW-ZwOopNKtN+Xy6bbh%Kq6cviJZxyI_$`+$m9u^hXsmI( zR=;mv_AipPyV!NvnC@~kwx11V`P@L+oUYaK78D&>#Yfcp2;cwKaK(FHiiRuTC}Bwg zI$vdov>gj;roYo{kOkUk=T=gSFVI{NUgFjrzxMvZpd@Eq?p?Anekn>t(F^YCKXEp7 z5pNQuVzIkgp39-_8fIMYDU1xhvkGp3Mk$5?y_Dkk9TXjMge(GQ-yufk;kLo;O(bOrna%bN45JUWz;(`N9~8R`?;eCP(Rv?zA+mW zCY)@I_ggKVoO$gpOhZ=N9R-zBwhfgxs8JEe&9w3sQmFMy)7yEvqpBdv^NahSq=5)x z`$>PPY82W}xqEQAI6nN^5jCZ(BeMSNm*@x*H@hhEwbhm+G-7jF<2<~!)_OgUVNem? z%PV@nCJEje;%z3U2j-RS254%D9DM@Z_EU^B$8APm)q?Syp;N1@Se?NcIi>AJU%v@& zE}a}ziL3FpB@NDGD@CoxhAk^spQ3qeMmr@GKjPcz&aOni@xm5=v@^b(9Pio_mq>Ew ze7>>dMou-V?M=vVp^?#eYSX0wPAi!)2qcw+pnS9F`4sGr|kY>b^=x#$Z- zZ5G{Xuo?}Sh7t=Y-Hx};wiQMVw>Xc~YR?9~I`_?@+UXRk{yb>BZAH#`N!fSS$a_>+ z;QpCx*HY|lQ9NHVwm9=+t3A`mgEBQGp6NcX0*kaM$9kU*P7VUp&8>CKEIsktm;FBL zP+|<%`fvexM=q+B?R2f(;)_`9r(gsNx)vNFP^Oh3Lr%o=fMgQ32sXWnFKl?Qg_nr! z*Qb8K$Yg78a~KGV{pK$p3eBI{JWeveoD$=iZd83T!naoAzP6Xsq9PYW$gnu@%)Fzjoao;n}dBAPB?L?JomdWki{MWL<`A%z=K=xO}I$`E%CF z2Y0sJa?c*SO>md85V5F-(SNS5wHm?zTLPpF+(FC-tZnoz1Kk_5E@;-3vz1#L(ceBl zr+n&r{LKp0K6&s}mw|_Cj7!4S_xpF=X&Ap9l<;q8PHpLVz#QVLQwM6I0TJmdBG2C) zS=|?^@z0YFX5ovU$ar3Lc7nCYXZw)4Q(QhPEE=4n1HNEZd9=y5eHfQdc^Pm^Aj3U-q)rKVK=(eJMCg=w(@GlCw?g)h+7q4O*W>P>bd*Hz5hQi0vZOr0&IFg zx7TWSlN!3JT_(0gz5>Elv7`b11^*N}1HJ1)ck*wc19ffy6L!8T)lY5g))%Al{kB4U zCdVk0DGNWZ;ij=FHZjsIyBRz8tG)lg>*q&ISaE;T#{hhM&W_+)-eay@#C7b0*y0aU zj8fvC8W5TNq4xtVt?xK7qjn$Pmgw&WgA@ajpPb6{uT)GDEisV`-e-abj;HHhcIzz} z_q#06{e1a3i;y#FQ_$;UQnL?3^qU;{dO)!-sw=@TDzOE2pUaN?s)y^Iw!*<0Z2&UPnHnGOvi`^^U0lCP$*)bE=br9#43^v=}` zeGZ9oeq*5i6d0@WSg){KcoF;VkhKIE!Eq-ZnAc&=W^shD~n5% ztE*fK`^u;ON|qPdOB#~34w9`v^6Zfc7t;p+kuZQ8GG!W zcJ-b|$Ds&2icQ5#8??Mw@WfE8s#Lls_l> z^p)uOw%<-bYylfFF`F*;)AtS&lGVSwkDNFOGW<3Fgq|ERGHuuWx{okkpRr>BD_h7S z(hb@6t$+iS)Uw3d0*T|g)EZ!M{)xW31BTWRll#hdTsgG;f;?sZ((O=y zQs|fiUju?GQ7V2T8|1~{u2Nff%+)HQ;uPE@dTu0-06l+M^=?quDp=e{XSsT!tBp@8 zZ&g`MnVq{Y$}VgvO}ahJU4+F!`EFNS@cDE8a=Sqw$^rf6YbFMLN99dhk&#h% z5X&iiHu2|(X`O`T-ub-4bm{sRJ`&=~I%zz9$e{W7D(tKU|E4^zeb-%quc8Bf0xp^A zh3Yb37&_lb+Im+yy9t=`B(lG1;F>(1Jn4CEZ!?-)+g&oy3*Q4L=dSe8*|3v+C`{rb z3BTw>G@J{OZ}obVy>1Q-A;d@s)>RoRC_ks8MoeJrYB00nIM;+acnG&|97PviJQ!4TiQIoLCXc2z zn@B$qoq+eN=4xPZH-@|?5Y(Xiic$UrK9vQ&Ljjylsf9Nxz)Y@M!QaQjUT~hG2)9ny zEjOT#SgjY(VF=$^_$m>bn{z<{q8DpqZlg=Ev&8P>W0Tmc7JS9&ZajXFG6Gz73SGCx zo*hV86g6uicVWYt?k;A4s^NFWJ2aZ`dVtdwk)I6T&~;BvEek)^n(i4@HcO?E5zMVSM-K`|&%DZ~lRq<9_D3?(;ma>pD-LRNQ7QA?J*u zf7Ge+p68JV0^ejaFavCR?yo(c&gf11t2`c8%bRs+S>&^Y1Zx}rN-u?SGPoOAP zUk-XCFYy-Gt)2DyylwE<+=I)h=)Qx4?_P+IcDnxo(l4|&o#b~|KilY;Q!m~Ua+0Tr zaMIz&6nTI79T_hSqr#uOsFIEE%xG+xY!q)O;#%{^Bw756=(1skb=Ydkl2@5WHqLEC;au8VQ*mx{k zJuY&Is1qv|f#i`(rJ7UNeSda(lE2esY6=Qk(@TxueT6xqngDyfAg7|Ug5H6)h`6|Z zy&KmoJ#ge+uy;tf6L;~BzIbkd>Va!YM#$|C7OkxKwJ8F&KU+oj8yd8T-(u27`PMUa zEzdoEferL3>KC|SLE+B`0Sm;D0dTi66Ov{Kdz|Kr6LDa@Q~TJAW7GK=$AFXYGTRH4 z0&E+-JXPj?4l!qB%t!LRorP?JR5v?(NmPc(Fq2ZG_jaRIS9ff$h-Sh-@X?QzS_QjQ z9mDPmor`GPNsMz=D7bf$m{Y>Afy8-nUDiq8Lb-nyOR*a z?{c;s6olaHg%$l|TU5`s3JmSOtJFxzmreUYUj(jwdl2R=m!&c>nQISxSctSQWuwK|qw= z0>pl;i^y7|8)8hQyxR?O{mgeQi{fY2rG)gsM5Seyr+=Z!X>=>+S4g>{0{>Fnzt^v> z+sexA8+gm=IQ8~9#z4>P2FV`8VUS6w_QdDxxOaDltPfkD8;8DNI4OcWq$}tWM5Hlf zox*~6Q_{Sm4Jog*dO%zOgF>16m4AnvQ3dNl5?s`?;Y6Nd=TsgUP9lj8!NWerB8W0~ zE$5Oj#!Ppn+M#xO#e946jC;1R{-B@SS9Ex@bhwFnkOlr8R&`Naf4$>2lP;>(P%LXi zt}7sG_5Gi`w1&n|bDQltb6B{SkFH1tJ+AfMb5`-Tw*=GEJgpkl&hVy9X!*`+;*UQs zopV&W?C(3Pv`7k3Jy14*_^;r@Vr{&*y`P_N%{Dn4LP zS{xQ1?GQktf*xJD@tPj!af=)DC7CChjX zIqK#A6NOmIvf;M){;#H=S#vlL4MdlSl=Ic&>reu;cG2*i7EsT#bSjr+aUV<9`%2=2 zg2znG14E4Rz0p>fi29sh$Lu)`FW_J3q8yu8D1*4(Tepx}FjxvnY#9j>qHUdsgE zl^0D{0uA#Grjiw0JHI0xhG8%}@AE?vaO$p0J&mXs{&}8jD!BG%jf^ylrvN`7L2M!0 zu25KJ!$h_{=B!Yd0Yz>H8^{RL$9iowTSD=jY5= zluJ=f1N8t0F0b7eGYx%z(3xDG{KO8(oczZ}+TS4b>=0mlf?1~+a#)Zjt%DbY@>zth zSLW|}%7$E^#;+O=XB4Aif93GsGi(tjn-9)nRx2A5cS$|Ty!QfPv^ybY7)#x9nQ-62 zYvpM+*A_%d^ai{hAd*vA&hG;g0Vv_7mVOD^FzEL0cf_*g00dwbW?YF&kl=rN# zR>2g{bHk0tlAx9FD3vQnlZ6@vrmbxU+vQ49;u@RGPBOl z!s;$;G>s7l6bhdGoi})AyN%pvJ)II`w1Pz18dPvOMw^HEszcu=d-YmFeY1MSM`0$0 zH0VutgDV~;f8!U?Z@(=^tkP((;*4MOw*ijA5z7kp`8hc*3w+(52i>;lCBc=*(ps59 zm$9?|5Jce#b2y1;T(hxKq1qm{EZ;30Su+wD!T(lH=YyNm1i-Tay+Dk{^esWe$__AY ziR4gkiwRWaJNxh+m<{c(X&1|BWoCqBa{mSQ51PB9hn}s@+HKY2b>~t;FPB`ie&zp_&kWyJ5Q9AEa|MT-xTd)_TYR1t zp-AF<`}S?3^EO+!W1t)~&UjWG-LOx7q%^~7y}DkuJql;?YUL*Am^AVfj3eed+mTiK z02|B|cgFugcOM0KvBD`QJ7{!r7SKse$IoZm&KHAlyqvfxB6etf${@?>aldS-N2sOU z7#}HKbXOFW@e)-hLIgL%3^QV9?cqy}i>B3WQbPal$>zFl z4K+Lf?X|54p9m>bN`oosg9?C)MWSisje^t}j90IkTa>R`!rbXLWK|anU7u?5!sgj^ zq2!fp@|_kXSkUpSV^4u2(|Q?~7nI!+p_k90uS`tCg`>(SeQIsEK5R5~D-DDO58fOZsVH#&&uL0*ko+xw#nE$UM9l|`?T_;Ui z<%DgP>v7x#-bs^Fycmv3tW&a2k6Z&1xqjzW)4&t=h$N^yWAF3(+>V)D#J#8To-_Hs z2I}WP1fY|DsTI($+<|>@BkfD&!Bw5pB8&d>r)BXpeHH2iDSE_%QvM~{6!4Ys07mJn zU>-5c3uxqz4PMr5H#1p*Rf{fUhtgv%A#~N3-N%Lcjnr)J^oDw&n2Uz=!J_R19Y_4Q z46u1-A7&ODp@tubpo9A_M+7tmn9Bh?6{{WFU;DgzJFOP`RV4TpW8!Ynf(n(gl5aV> zFSP#@!v3XCELJUZ^cLv8J`sMRqu%PSSlxpJ-u!@wg|Z*+(p}TWRBEl1$-3QFvqZ{L zWkdXUVdL`fe{(^+b;{V6z6V|KZeGg$$>uaf5N{a8v#Fj$5qFwdgEwKGJ9B?~`a-*? z@$qHb!NLoh3+Y@}fIP%y`-H~Z6CBZ?L_(lOzK)EN|Z6{4N*n-N$^brxB*HQ6sMm%@kaMq zOv#OOx^uN@lVE7zJPc*#nQF5BV-V8;1mBs&d7216lg^un#bINge#}S|(L6u{pHCTr zd7mk+s=@G^K{RcyDL(Kj-B*X>ACYb})@Jdng6`h$tk{tufO!obfeqch0?L8xK}(db z&i!Df-w(+1tw*ql}(N&o%*A*zW0jPO!d>WFowZvziv%@2xF3<^*WZhV#Ve_$%A ztV$0$WrW(5C1D0ZLD45dKEjjcvmGWvx`*GS8fQPUAu!gu4`@{KygnP76muQ3JpMzQ z`og(n!p~s_Nr;XHUy_FS$xrG&^NG=U%UEXNr#Y00ZTAeWZ$R@g+;ui1IrT#d#ZmiDN?+hm-BwD>qy zc_A+c1Mk**+T#E1ypu%l$gtkP<&VG|pDiFBKAUr*?}(S~S+yVcD9K%L7^%9_;!-a| zId#Mr*GO=I99>x0Wtw%uPawfN^u(m-y$?_(xz!id?sj{vw~6Z%F?qMYh~Sr1VmdxJ zXaB3_+M_Q(W*mDYoXiSp?{)Xdw@}w;{YJZFcHu!Kx1_K1xEr>l-f1PLZ2 z10bQOb3d3jQI_2biLF|S2D8zV7J=;Dr`S^!N&n;zzQ4kXdJSb2ECVz0ww%mkCwuf$ z&b`&iflSt3D7ZsSt9tONg1r8$2{zn?X( zwix(;eempo1QjM>@>RiGCi{~UPmnrB%SuK1?av6T&wIMei~Sfk26AmVv{C^5{4^BfI>2l# zIhnd#B{?6#K09a}R2%i1PsLWl==!mv$qs)8#&*rapA&=WstmpF~}!Zp>w)Yh|qbPxr3qEN?l)^TYLzu&xMau}R32 zBRLSHgL4(C4fvj>dv&eb9#~dHveLkkxtk7#z-thjeMQdNnnWe*+a|62Q&UHD0 zXk^*P&v+8O`%^G zmR_uN%GtfF*muQ-eMO;6>UMZ-JQo}?xlQhql7zt;>?t2Hw>_-?WNz>J=VV95tlEmH zYwN24)HJh@gDfr|DBT#ENzf}U!jS(}GIf6|;ybgs-(7+t z+rg?KcQTg0`eBn*H53{jy?{Vn>3b@6r1_YDe#=oRp;eGZ3oTec?ZN-d237I&CCNqSAbv0l`S{ fpJMpRLp>Gq>G7vfmb@A|@X=P+Q!BjnDCmCx6eQB4 delta 213025 zcmcG#XFSz!{6CJ6QB*=U3E5>PyOQh~Ic7%Yu}9|HsD!dPR!By|u@8=Ml4Q@rF^@g6 zGY^jOf2+^;`}^Ja-}&G8-*Mx(&f{Fy^;*y8^Yyw;Fw_+T)Ma+|fL!Dpbms8VovMES ztwtP`steI=c5h^8C<$fcVcUoh8DD5)SPqe{(+kC$+Se0r-z6sF+MANzl406(_o*`x zg4LUJxX5L7K~u4xPB)jlT{g!U3P?`w4K_1V8>gKOC?61H8wf(4l|aOymAa=*o-4X| z5yq4G(ZCl5yZQ!U!0~>Gp)n1y_(^ZvU;(Z=UiVK7T)RF5|1)Dgk2y4k)*#%Ly-Z$qG6+AvtnhG{DzFv&~v>yIV~##!GUipV)?`pG{S0C8sD9M!|0QSvi?C zzG-kms-g`N2RV<{PImH(h12>j8N1_rvzPb1md+oAiB{){oH7rp?y>cp2hX3Ez+1Ai z{1GB!Q=A(Ba<23|u+8e8;{mfjK`be-YO4d$&Bm~hkB9*##sT|1mU7`@+AqR(&s*ogfZJ@3_{{Ge@UP^HXFkq1+h`!i#7N-Q5V>B$9V7(ynV*(kGLI0j`v{UB)$g-m zy(dQ~xgHt{@w%+idL;4j^7Mp#NM9C=rR33Caq=Hb4wdLlnp?XuP?<(NCifm9h`^xiYe^dt-zvIF+)cD$iF5xmE@ihg4 zkS8HO@5cSKe&GN(q@CN*DzMK&Xtc&(2D5H_8i=9cu zD#xv_zu3QQP0v*ngg47aciFoRa8k=#XYCzKY~_#c>s{Ja+8-_~eQi<-ckLOk-s$=A z7K7w}{_PGf#lVR<3|MCpzchYzn3Fmt?smR7hXz~VUitcHIhql1I>2*0VHQ{|{tXDx z8)sB@SNYg(?l}Q>Sx5kCG zOgKAa)3onFdL7L9IY_DWg$pnDRYQ8pglAq_d?jCXzjEf*{jF_pQ|HTi!kH0jN^bqZ zwGUQ0h-a+4rVnbY?iU+C&!*NVuciQqGLM-Q4`4r<^0dM^eEzHWI-H9G@Hx+8`lf#y z6@YgFd`~b2BE^oTzUxbLJH5Y!R64)V%pE+Cr^Rg@JkDn-eUr^PL1ZLi8z0dEPj*Z* zNW^d}ID9o)9;$!X*%q@G>#nq`n((dFX0<&!z9%n9cw#5yHLmSwQKODd&&7}y$?B@Wx%jw)(l#=ykkN7`R$^57t~=wtslnNHdc*nV zgf864$lNDs5p)UAFWRpW0dbzC8-Cv#3fs1EJ`BLr*6JDY+*H>vuYTLQ-AL0Nu~a;<}wOSB&t{ zp9jzO3kL%+ZSe&GQoNX|2ys@MRS`7*(fmbHnbpVT;Az$!Ls6@HVcV#!o}*YZ-`lg0 zg+9N~A*9}aE}wf)d|Uo+gg>QkXWk^pBy#bbP7||tnr>}a;`Kg_>(p}?&y5H?i2l^u zeE)y}5W3W(v38l4>#EQ)UAD2z%hVrWL|N6me(~{2-=#iR+x-@E?K-OjwQrPiwC$?S$Dzu?5p3d4ac20BVls($PIUO zp1FAz<&u}sMP)XKr^Z|Lt~}Z0zGNzwMn0XwuP_hO7~%P|2dIWI=Lf@$!0)r%g&V(* z>4D)D+l4;O315cIksO5~no*|)--6B7`f1g#{@Y7Vx2gXf;Py*4f}06wsoy{MvmHhZ z5s7GGRBmFV)SeX!%F$4DtmLT9L%PO2e)7>U%kiK$)VIwmb*}YBy_mOm;t{rS=RFEVAw@wund-1OZ$Zy)2#$F~|B$1A*w0^&bLVvuGg(qZ~a=XQR zrh6k8f0O!i#;L|kYj3i{{_NDnHJWpJpLKa|d~}BUoYRXsz)pe4_FFRF?<$sw_uiM6 z(hivAX2l8v?k{)pPjpY19~(@W);`5JV}+G9xk)7!+v&KDRks#mcDvF=TqY3M%o6vc z&V!d)m*64th=!2E$;uMrX+070f;H8$GaQR-nCyQpauR4lL8pGwAmjGqX!oAr1jSD& zW}$q0z|G3&qCgQ6KYGp{zgcbiv9Yj?{3n=-u>V&o(t9XbJ^2}e)BWaEbf*|zf~)mD zf4;1_n{BrA)8XaSw6R9dxC zC69b&9k{=R3v+>0yEO7&#uO(3l}j(Bj3Y$^W7qf_6XY*SEVCw9V&!@3h>>Tl=3d7P zN0n%Avv>IFyC$pTU;WEJx&04_2<8ddJFgzovnRSIoYh4m$P2yglKGRzqN?j2z}@D| z;k~JT{6^KGCQqyKCv@VKc`*q7F0RU^iyIMIB`zeSf++^_jSDqdq&wH8vbucHr~@DQ z6ZXK;`d;4YI*;XriLIuZeETwOM_4DRVETqyK~U=8X2TqoIR8P((1!;>+wO)EBPXB5 zrb^W4k6thF7|g_wDxaR>9O@8;TK1!5A;Th%&Q6Xl8BCrmsT4vDd*6E4_DMl`QraHX zS4H;58}$O_4c5X5q)i$1t~yo2nF+SN5som6PmIa1w}5lfu<;H4v>>DU#}6e{$*4S_ ziq8xu2Q{+e0>kWY^$XQc=1ofFB&f^z%YA0^o%j&hx~oEkPU~Copm$0r#?>||+YDyV z9@xL#S&Ds{6s2NiHC*jR;szz`$h`mlQYLuUkzPQDn0(V(=Q+w-=S9U6au+&}bRO+2 ze`m?$?w_u8aN=D+o&lMyPK9%X+$$C2WhskVQYJD+21sptOi2iqY=t}we>^5u@=74) zAFivVeACs45bg~*7MhR2n_{yRu>MDuwBNd3A3HOvqbz&Up1sn8`E(4;jtzzkJ1zn_ zh4p9y|K6+zskv%p?xqh_Kon<#Dy*;I+8`}98R^A*bzGBwc>fv}Sn;dw67u04@3{n{ zH(hnuO$}!j&tCpvzYJfDNe!nk)J(B9herQ+Ta1Z{OiiBaGDknJSkx#!uePPw2`&Hw zCPxW^joS41YCll4K(h&0bMI`4RkG)(#n*Lzgd#~niSD>HiE?Q$BUzL zZ{}ScM&^Y8s&F3l$?Cy5X9g{FReCYnuxZADUORdXS7pMArcD!UZQHtWb*bEo!zMjQ z1Ltf&5E~8b4@;^L1=F3MRE}o;8L{AK?C??dKiH%-CK%qHZ_BfS0l9+2QcFIP>$fHs zoP)k<6dBh<%ZMy-_^zhfmgLyeyO*l_51V!WcuT1!itelR79FWpvn`E*1(L9mX7oOX zr6gIfMy0F|=%RFWj^)n*&iO7A9zvLiR zhlF{nlqLLhc6P;V0=9p7r(PYh<>Lhqd2KC5J^v~+?-~788>{B2{^6#*w)w%yS@} zH4A4dLzPx-?oOa0O#N4cB#ScpMbvj0dkJOzsk7n*>uJ)Q&ip+ryA+V>vkg*tfO`kg z!&~l!=flH`zYxQXLL;*@whQIdK}lM4E`R(|UE5#(b{*`yW!}Zo-Y09`b(62F&df0M z6vf6T1c`Pbnt`M{}4Y5 zVw0`vz%f;JR9EhPkRgEMiN%>Uy?#3((tN-_#%(WYfj?Izn;UC9k>u%}6HGIj=YmN1 zqy;(jnMqanMu|hGlWd?2?l*Y_jvCi{ClKm>jfVAwDE<1Qr=^lUn4vHs7JSMHet^eJ zn1+g>&|f9%%YvUQ*}-|x@p`q7F*(jr=ic97M@_3XNT&lGZ~rB(*OdK4+Og4DR&2kT z=sqVthM6LPd-j4$cdcb%^mibs11F{YKd4>EhI9BxLdWZgRa)97P^BJYP(uL`fV>2CBo z?Wc(Y?uV-EKjEhJ);~?ZSohjyJp-xVC1iTD933Np*x2VTeykC+)mEVmvNJ)tOpr|{ zeuF4@HBne#+^@ewG@{2)*qBXNX=gEU)U>zx&NxK-Zh@O*b!=u2e>x`6ptDoMf1$hX zXTfGXKklayN-cdnFYigSNrw%2(F#{2JwK!T=R(3UI{*uWO2TAIih*v73XXk z-3Q063Y)IQfwnVSFKA)e{wgM^_tQgFx7{k&vw$NmzK7cqJCeIq+x&V3b^ACk%WTln zDaQ`Y?*D)$`!y575r3$;Doy*Ah<)Sq@G1FTBTV?!Y?XT1sThIX;?E9EYsQ~|o*rpC z+@_aMfeV5t+o6@%Hyo(5EEf9VMCrhi+$Y?~S&6 z(XwrEUzC*!@)8eHlkJ=eoyID1B$qb_#j!{uLWPH0;cPUQf`i192pNfU3msuX&ae^p z#f}8yXclRqHm!`BOtQqoog-5q9A6StokR;2;1?V;M(V70YS_h!!s zF}J~}ou#!1>>H9$j?uOphe9IVyDn4%aJZ9-@wU|K^(v=Gtt(3ro$)GZ25Mvkk)82I zkQ9U9CUaU_%#2xsJTqhumz(j*UD+X*m{mT#t5%}~3icj`qtQdt zPm8Jl3Lu2UL_9MW>AZyW7)Rn%Oj|P!^d!EGnmNLTI%SLUSsDCBw z@?!fh4TMU3hi8{*gOQ%2OeF)xA{#m#;uZx=4?3E_F*#69E!)JL@jgJCH8u-|}gw5_BC3c{J zefH6FyxfL10exhmqmCbjMjIF3gi0d*vu8W}&y(ML2*$U^#PXWGzPV8G0N~Yx4;j}u zRrm2Nh7+)x8XdVWuCGlZpy`35=ZAg2Ma@&sjZ1^K}T1Z8l*I(2(r&T+yw}dd09hBQW zuS`U5Zb-YUE(u|OiR6zK{MH$@g;y8~nz@Rx%7$m*do6 zLTV==Z_Zh+It^N6GfiM(FCR<9Nvdo2*YueQk5#@>sTlr9)vTlP>fJ2xM#QFbRIL%} zKW7^oXvs&)EMIeSS_g}?Bo-?|!TFodrm64h@)@!g{w11o8fsn$XTF`ZnYoZl&T4tJ zK*i;GW~#(O;K>Wh|Dl-AznkO6n-V!=r)>uPP(^r}5B|dD%#XcNE$~TB8rDIDT++kh}z-^(rGHHQ_8Z>%Gx;bw>d|vi4gvxs#4RT2}iB9po zCzY_jr(JFAocPp=H8y&yi6f9ckl(1nR!g_Pk+gRA4(D;f~UVF`Cf{u;J$V(t4< z^pK-Y_62t!?{(n{ITg0p_-9yR^I!siU7k6t#CTrUBnsiTjawZ)2uR|4UPWDCll}DL z>Orev>48wn&vNGIt_j11d;N{ZhK}mSMMfvPH;RVSTGfIO`ANd&nhyF}lTG3SvoZ5B z(9Xg1o3^1Td%q;(^(yl>&mpFx=c|6w0^LhWqh8jY1W1LrTZusPL*kzRieyy^G zgJUN5Lsv_f>ZU=NRhwq2+&rhFK?o7a!V;5$rgXx+R{31@`c+ zT1o+T2>W|Z2;u(WULJ^lOPLn;>L}gM)1$0U!cm>^)zS;2g>U9dTk$)%o;i4RmLF{t zY5CsS^j>W9r42&jQq)m?hC0U|4P$afufD*+t`jYLO6zFe{w)9K2?|Wve?gmU?mls~ z%@I-t7gVC4FBjdM+L$~}3w+n|eP=qz7B$JUU0GaLg>qY0Z>!ouah+C8o*-qDm}v-?+=4|qV3w;W zJ7Mvp0Td9CEx$|umTbM6k&r%?=#ksN2+ivvb!^o88dQ=tZf?U!N$#I_cJI@^siF+n z?UCG>!n37pmScTL4#tYda+;+Oo+IyP5zS&KdO^t0lwh0AZtKC>Wwv-({{y6HDFQBf z+-Lw@i%%ek z>zvA56SOJG_6t~CXY?oO68JB<^MK4i>DhaKu(;{2jTYr+PEN&>5*D!nM~frYQL;W$ z0Xozg!$n-vp}H0Pe_lQRmY-I^#6X4B7i3F?0ha3&`>60|f>Z3*!`;XPrs$-9Av-cJVOB5li@P znAF+CA&>REZRMxP?0NYsOdO(25-=m^!}bq;A8k5Ltul6gKa=ZioU&ANW7TZ0`1U`t3CuJq zB;t%ZQZv2>;-)xh%u?=T^?l-L^gD_YCPs!yWFq$YXz?3 zqn7aNWA4i^(!qXa4_T^u++^(SPeMSUzv~K++yUA7lPawf8H;Q5=t@~*-x4pIk*AMf$;ypZA|d1_1NYI^=8Ot z&0unTJyzT_9?itg!!I8L9(``c&9@Ggy|}KOTmX-aqe(`0nyB*G ziASD#(90ZkG2A1@s+w0D5C$A-Ter+Yv2H7~J|Tm2D!CbvE#LPN0MZ?lhJDc*-||Im zdsEKe3U}|L%1eI#kH)A#Msc_c!d5Kho=MEE}s^R>xn z6w$+ef9;3!+T-q}IuV-cN}gw}(;yU)KRcBk$a zPTE4w$I52SrCeu%8}<*RJ2rKh^xO&+Nj7z}<#CfxQQ3l{UF41T=ck~?3kfN3m>ZuP z16j)8O@f;jPSvskTzHk5LjW7=ZuW4_M?`Odp!?~c`525E3yWSo!cYy?`{{`>W5!OW z{#c#plwXpd-Y+PDwnJz3#P+h(x(k|;J|j#<*o2(aeedP1|ESI*weMLV0$w-zAL!JU z1wyC8H~7CAM}AUq=5d`S!PCdSCnMGuFQ{@dN?k@=)Sdx^iC$q zU)*W+iAjFEG^^wiPbx0XB(E7M{;~Ue;Hp`J6y=Sb!(G2?;NgaXd=7&8l!)q_1(hF| zMxB^yW#h9L%~#Fz)qkQd8qs%dZPWkTn+wS!+=zz@j{V7w>~VXG2(Z+A`Hp#0fQqXA z&|X1cANI>aUWf3rUIJO8cwrZ_)Pv5OzOTCUkYG;GC_~nR+3FcBu_DpYdo&6!Q(|dhqjEBv5(KDU* zC(pO8+VYt8gmYZ2K2V~|H8v;#9eg5p^!nYTUsq4Z68X>vP}Ce>qzUyk!D)oOPJ1pq z`*4i0&r;oZ$Q9^)`RT#Nc&F9; zFV(RMo02Bv=?X3AAW|(GX-iud{$XWlS)APnavo7an2Oaek2L>?X6~7_ypDuoy%`A) zQ#2jfe%dB)Uj7xt{^2h3LBWc+AyQ(>Q;wbzkiUTSOQLPWHrWgBiwPM#iS=8Lm$*8R>HsW|B8K!eKvk zclR_8Q`S7_Gl0`A^bwwzyMCmJjlzWwXN_C}&bRP8*s%#&>IG!=m054W9b4IuO~4@l z1l>n}>mcwyg%GTR`CZ(;S)Vc_LO_7~taxQk4Gr5}R(VUYSn@LPQPAQylr_x$`dzKe zNdrn@zn1i=mBa0MgBtURnys=d9IHF8 zWque0={0Wf1C@*Jz*kx)+*5&Q(`r`Ae8h)YNpE(RGbP(3 zWJ~!^w){PwG;}3^DISSn7S+1s2s58RKx>dlKAoJ}p(10$i*M8pNGnde9|36DlKgRs zh0dg++`1#hJlD^Unl`Sf{R0QV3JN5H7ulbMe1A*itO2*v$}LA|mL$BtgxvD53c1err?&skF_{Cs?&P9j(4K!gGAY=GiS(t-dM@%^?y6hN7@C zR&7V3Tk&E5K;gUY^I!sY!|TFr3HXYc#X0N8|2|d;UW=r;%=w>`c0qs+HG=)2D4mMi z;J4U|NorZ&?9YDr^M4kYky&?h^E3o=P{I`1h`j=0{)3w$H@hCp zV2l_3%(fT|P~2>1i&V;0|NDzC?|k>-`anger1W>Y7k|k32{)@-R$X;oTx`&S$b_2c zX;as_T)g3aD0;v?7PRiL*hB<7UHZ$!;`;>Je9i6A7wgIIl3ydZsj3`S zk>D21OCGBVuGJ-f>izGuk5s_ZYCmL5B>C^O`V`j)5>@Y2zy`L7cqy)_f_L+Fa3EXY z@9D{Nb;0HOp>ZsKS5t&&-(V-Wn;1=M1N+=TbeBSbJqcW&cjLqQ-{ll<;t2>9K6{GY z{del zK~$iXm3(-37<-rU?f)79q<0~SB&vybIix(6)TKD3{_?%sn(RVCnnEVE*WB=}RR6jD z1%$sAK~(3y7;o7csWb;yI+43haC196h2;sm2uao8Z_q8`>O9tI|C4>#6+kz=epfs9 zSsd9Uzc=|`_ht&QYK!g|tF&$GP-Xo`-TqNbvI>QK_0&)kB8jb{i^Ow;yw?T$ya&2w zu!1Xz$Yq~hCzii{LOOUGv@;}OJ6V979fUkL7cPBY`d_age-;Jar~QDH(LbjM6#y5< zQWK3*Jq1|>xL#3?z=`!g<5rP@u0SW7tdtPfdiOGWJNONfqXbm4 z!2hQo20{g{(JpLM`V#93mYshmjO&7NadSU)U+PX>UA$EO9c(7wal{nMl^%mR6a17R zA~G`mpwFoe7})R!mjzolXmpa7RvoRj5^ODT^RMih|lm_;y0T?eh;Vh zS7S(Vpm%&S-aIJI(SKjPRHKsR|2FmCQ;}UF96`q3r$=tlahW@UAR28LRgx{n^$AsD+VUC8`KAh*Y>sS&MnA?zhcl zk3}X~_hz`aOp3}KzrdXC#suO(*ks9uxVqPbC~%srQu$_3C_vi@tI=4(_7U-)neejp zrf}G(!ICd;vTZC^D<7=ZE=R1-cTGuA{+8_nyF|G`r^mgbw;r<-k?b{DcO?tz78wY3 zfNdm4;!TeFHwro53-t;X%+c+Npo&?HJpL(lg(EhIsDPR^k?kFpm)75mbFp-VPl|$; zqWxF3&6v0&<{1ch@+_J|3CBqJuV#SJ5mIT>!%KFB@t%TMFn6AQg?>k31u--zS-@!F z)M%>(o-8-&JD3?t&c{5*ZZRpcGlYTCaURA4bJFeaFqt<#vKp6MJqYnZ09rc`)4%-L506Pcu zTY1kgAoUrb=Pe`hKUj}r15P@KH!)=E?{2$pOzu9JQM7@@)6Qh_7%{$jk{x`eP>ehL zY!*X9PtW5x0#AAzPGuCLdK~8c<>^NYotG8+WpD& zHyMIq9zfF{oVA?kuL<4`&t)p+XBF`j`S@@q=UPS9dsy{_zAX8U0Pepd2-Z#^ppM^V zh;l)2W}sYEnv5B28+U$LCpc^HJ?mRa%F{ghaUgRA9Hkv6u6he(3L4jR4%wHg);ODT z6@@FD*GvZ~N3+R0%X$?Ge*GOob?1LW6087KOv9j`bndO7OJ>+cxZIa}p_{G9j>pup zPx$lT4?b`PE3{Mm?ET~-JYhrgf$n@)7{kxUU68moXvBB0$=jMHmaLvCGPZj^b{i~j zov+(~4B4mu(pbnn`hFgbUmuxx61X)gAdk^>Ipfuiw&IFKA#(VGjfCMM!>-OG{>4<= z%(xLVe+_P}OaZX{ePvg+;P5ZDIJP9L{+qX^NXBocxZ9+v8KhllZL7D})AEyY z^=BuYcSWxg5;xG)?)J{^v~$LE!U1gkVuF@@!i00(*hVO5eQ+|fuWIQdqi;d=6+#8) z!a-;bf>8l8C$Dm~gRakL56+{|Omq6nA(A?l$*DxupT6&^UB#t~F{AttFq- zCx=%jO_|~Y?Z^#Q%qyp#zPur0k9|oJ?G%~xculevdk#()tE^`Lbr}AFqvE2`qHteR z&LciU_w=lYI6<%&S+h-FLHW2%AUYyxflm3gk@O~*j~eZ+qG5~J@MMKAC0bTB(>m}~ zPbMe5kXh`zeWnyPJ$~aOiIgVUnza1eTB+0nO@Z)A;WeSs!2Fi)6^ke%Y-KUtwy|zN zfKQ|6Y5^iNu@CS>&uI+4!Ze-FDjOjJ>g<#(5KcyUppkSZ_DUz}^pra?#(tWbZriY|x|FsaqvS?J)LZ;OG&aVkTwL3PQ`vTg#$D+P<6e5T?Q!$>>i&rdjM zcr-nGem%G-_6nr5?Q!C&5R3qC*T`198Y|Kqm_*=G8bpAkeFyEjue4W&>U4ZTc5h6Y zWL0zhk7@Rk^0_6m&4>Jl%O54DVRCYwI+$f)#leH3h4as(!tltV}O^& zsos~XJ;&UO;ICTV0bDV@L@0xjw865MmkKwP=n+L{$7(_MOx-pn8C*zOMnv{ys@1X2 z!jAW!WG&$ms~j`)x{_1zbNdxREu>vd20dxIrDmpudiCD%O4Va{;ih9%kk@cuh(&UFCJf!z3AaK6v;X*A$R2IK0kGMKGaCqBK0essKgR**wj=~~$&ZZ5 zj%UKCi;uQY=S{^%l~0?_jvaX+RbL$qet}gtB=%bWCS8}Olkmmxx!RJyhWkq53i9;^ zlZ#Pl=u&;W_jQ9NWyubmG7I;pd$K>ku!}6a)VX|@~T4>x&rUp&Qnlop%p!;-|6qnR}c6{3Bi&5xqj zhL}3sVm`uL)Q9S<26;}am@DNpUgz|=Wv+oZFWlyPHpdM|q@NpX%CG*L41P~fx7vZ$ zr!w{3U!2GR5cwsPhR86U=%G)v%PpFT2ArGX)$+hfHewE7S4q|RWzAmClB|vIf_K1O zLx%nfG(=(*PF0l_d;IHPln~e(T9}{E@t<%0nf%fEO~YTwT&vGS2)dSBjwEvgyP!{$ zw-p|dKJ*$L7NeMy^ZeR<6afG2bBdEc)ZRn_9&gZ$HBMuE9?Lvp8}MCSzZvB)`>Hd} zQgSLEdV+-)E^d3jbr{4vQ}lc+DN(1IQ@%J^-?{DW!C^6`EukYT7Nl9Awj(H>ccRWu zm#b1q%!BMdQZvXr+hh>e&B=*3Fv^tj_%+lwX-o3wfzZirJQwCGrd&Pnh>Jg^-K`0L zzFzMAByt=QZvBZo(ntM5+7%x!bz$?h?tTom9=!4EE#aW#p(Sg@HbMw(>~MpCvdJf+ z;IA!ibC$&avXUoFil}Y$WFQWUsXoE_OjobA#81?o^@;`@x~`0rX6OyF;ibO)98!|`V6y%L5bvau@{cz@RO(IJ@-#+4?q0lnI0a5O$`vm6gi#+uwkMzP z4t#s7zlv2;t#RSkp_=xUfd{9) z3LYRzxEt#hbYXTZ$N z=L&D^L&p*@(SLYtUgl~QWBsR3bL9KEVSDzKpM9>>gaQDb|DvwkbrYYo8c{Ar<918IJq&X=bzx0_Fv7AL@K#SztCkphl$EZ?P*$11Sz?mrXNFez-`9FVHR~2_d8FHwbZQT6qd4Em;}@ z&-tsTc?uy!2eLu-o%|S|v$Q4q9#B;rEhzAs2?p$smP>r5k}xF@qmsqnF~*GVzwGny zXk{jbx5+s`nhUu=Elk~8&)%qQb=c9meZ%KH!p;b68`e#o%z)a-b2M$6%F$_zd~x>O zt51$`)8`A|8zVK{cWvieD*T5$Aa@w7Q1Wn;7kgp5`0aT`H?iV|gcfp2#3H+4dt9st z7`ADnwTqHxJk0eH7+2NCIh*FW=c&4P%2ef*SO?*;xSSGZ@G*kHs~|BfD{-zomABpW z6eI~zb(4+FMX*h8BMOn|JJ*eNna*^Q z5>B5kng`BW{gjp?<0?!a8VO#absT)L=aF#Jh-gY#LW2tyBJ6z>NOWw(A>B0utVp`XaP?Y)$8IJ=n`Y_?n>UL!V@h z7U!DKv{ykpg;&J2y5j!PVl4$AabUA)?_us~fYeReYilF z0}@d_Afy057hNYxQlpE-<0azoa7O{udA%B4ia|)w3mfDkx%APBZ?d~dA)GwDoo!JP zFG?$vc3+sj*|#%LQKj3Nq>WkgyQR#|Ne*s1#W&j)&MfV1GWB{5TC~W3Js-};N3g*s z3uIrP|JEN?%w3S2{}N*}KE$gMYE|VtiwFrT0XD1h)8K7YZ)X>DA(+o4WcGiwM0d5( zY6(0>*s*bh$HhP@Zpr6EZ5PGPfI$S(bJIE4V)r9AB`+f z9H_MIlaLkAPvX_fZ*Py|?AdSn0F~IfKpE{63lh^BtJpx;{1}t0z7GeWfwge|?}_7pc!H<-YK~!TDHGU5K_l%Y4co2eo$$eX|#i z86rNnGcuDD6t{C2%X#~ucHSF&y7dVzNbylZQDLz&d03}LC5sQuGYw4n?s|d$GhSNi zNmFeh-7guq%5+w(@lW<;|3O@J+j48FaS#OnS;kuouY&Bp>E=bASVLMS%3eNxLtZZZ zANFm}kV+6M)zQsl2}lx1^{kYUT;RKy+qKr5?I?r#$8_-T8mbg1%Ox1|1n^b@M_SQY z510FLfN~+?+mF~?reu~lKEGk7*|;q;B~uNz--!}7-hz%-C3EMCTLJl+pB{3PpAGCw ziiOOXKI9^vIDtY|wi5$P+eY#!jiD@31@=12sRfzt6ldko(&t^t2SOt}sX{$f&uxqc zzcZKE4h-SP%@7?2xQu-9g+e{E_zq$9n^2B+;C|qF3w6b6DM~%6cVMR*t#$D`4PI+Q zad_ovN5KQ|$y$358WJxY@sQbk=mqJ&idRJrPDYu?o&0%>=CU>O-5XF2grp*ZUxP0} zJ3(r=xKT5GV9z4(1_T+zdfD%fN@|a2=JU=gS_i$yyL9ud{5zbQF8QkRXaFwajy+oo zyU2q?VfY5mntTce$a(jw$aa4y1k(lom|<6PxNdlIWE)wJX)={Ay20K0!BE6$s-o2o zqNZHEb+8a`Kx*&W&yO}sDs4J?${Ju%HBrnWT?H%V4S0Yw?N=Xi{)KSuuA9%urc*YBy;FtYVt<}) zF=4sPN4CL^e#x-uaQ;U-db^IiUhZou^>c%8g!lTSJz&8HGzAGUuB4^?KEcA5Gv9#*_# za*hq4!d)peZN${cp6;PV{Fl`0ij)U~=ZD}iCvjY^t9!gsjcy6dwVp=3Kks-GG8y@I zOg)KI@J4@E>QTIu>yDDESgx7oI)ml8Tk8SEZCGhLqy}ar(l!$on(t^=XsjlbHl3w1 z%L9_ILzc?-yl!}JXdc*)V8s-RT90A)mY|OkX$LjNBF^}NQyu}BVPATL8TcJcefoYB1+&(e^QM_UJ~+OH)ca}tp|{m9h#JXO^U-lB~Vcp_$_D`3?%K*x&VpHdJ{|Dq|NPP{S@ zf6!sOV;PM|Gws}CF6WRiSi-tSS?{`TEwrw--}p>a&*_N*Mg@tTh+rCBMVG5=UhEz( z;xPV;L7@B>MeqW!`!seHO$g?dV#|qenigaXP4Z6|KX@}y8Tgn?%zaF&Eo!scJRvjVVWCBy#(PCUak`U!3}3nGR-SyUDgYqj|)%zFFKxE)YOF!<~B>)Yd~BO=&DDr z_vT1=vvabXl0-P?()NFM-R{4du zR5c#D51q@0I-n}goSdf!EdAXveg+(bhD=Wl8@dyUM@ zam_WP5$oTqOz1)^Wab;&oZhgY$UaE2ceeR=wwI%&*p%hLj0FF0>G%UYC>^<RnciAmxs;w+(pPPPPt4$c+ z*9zL^N|knLdaff5qLsl$f60s4g$2*w73-M+d32YaqXICe#B6@6mK86BN zUZ;`K(Fb)4$2Sx5zcTvp#psBLI8f&A0x9(3W}Ht)k0dt5X)5tmqM+W>i%$A}us$fDM_`#9 zA^GO~(*h?L2ZrCRu!3iADQKV6e;Uc15CYrj%nv==S;-dcnGnbv5kpANUg8K=X4Q4F z@ZQybb@V$xaZ?lpv#S{P&9iab-X@ooUI2&0lZVR$F4{QPiHvp^6IN@m%-8Ypao(Yz zbnaOt`n@Sx*syn8EpSdXJ#cSmVLqB)KG?zMCD)~XpO=O4TpM%S`O;+pzPsaXjV%4` z`(s&vvkjZ;M2S1@YuuEO>fcek5Hgy6=c`S?@hUinYaNlBr?uM}MQYjj}sU|^T7Ws^aOlYd$K+4Ja!X! zaU-*Ozd;s?f;+{T4A!c9`@Yup>Bvm_M%HK9-SeIZH|s(c9u zMwqWq2$bOS33r}<(?^(Lk>1sivlYyj0%n=l&z1t@Mpy}QCwR@_#k2%fEuV`H77#A@ z*|N!`k3G&b@9{yg>J6%BBPBGOzwJ-Y4%A zO3fOJ39=bPUmY?Nk)U1;GSfG^qrg_@`$``P{eXmek`*Zs(CrdmhiK!Qb&# zFTA8vHx!suxKB>V324{pa;?!8-g;hS5Qj1>O-=$%7v1RhgS@&hCAtGua|vmQ(mu{B zQzhvE4+7tn^_+q4onMa&xnwBb%%+(W+hzz3Fu4coCLy;Hbd0n9Gv53P0B9>!B8b^x`U| zran==LM(k_hv@i|!*o{B9q-M62>g<G_j0h)Bm_+(r(+vYP^!o`H9~f5;y2^LW z*|Z*bvF5w+QF7sM`;7wY2<_HbrJ(`bWbtBZ#TN5Y4HUjBuRd&ClRMjPqbRWd@Xu74 z3aFsd;!VnYtt@9R>e((<2c=&~ueDsG%2(Wn1#saai@&8fD~yQHK+5Tupv?wTMLARyh{B@NQ3 zbV_%3ch?!3)pK2b;XML^8C1>>P|eDO^Q4r*9{|U=LhQ0W&4-MBJS!)s5hJI`+cq|gWNn< z8^2DIaml*MRgO_MGdaKSf@)np_g|hJhkj)h46F063q3myOleAdO)M&C5eq{qC|n$K zfCI9_k7Y%nnR3yDRX!Q-gOGEaY-%So;Al>mBs82v5fRt)n7CIlyyPHXVi~fIQS|H zjVHLeZTn#8=b!ct*|=;59Zj8Y;n#j2wBP+9*0BKC@^b5MZUH;e3xvJsE5{a4>cEGX zw8Pd5>IK>knbP?$hD$$lnhsFYjla8#^P;`m{U)IDMx!k}-jQ@Mntgaf=U+Wv;5(f; zcd(rqF$sD&no{z7xEXh$teUqi1>Z94<2h&OLxV}EW%nDIA(@v@BZ@KpYtDoEsj>R& zfNMdQ^-ZURiAuYp%gH*uk2NftFCmv<_$y#?avSRFbMkA9ChQDFSr-vI-BAEY&totY2<`l8xE z-NeEHAtDBDrMBfB=LD%l5OFx~);AGa)r{D!fso>N0ebU-LEj4T=wR>O|G~4!_-Jua68Rlkj3}AX|QA7{za5B@k9B zcpNE{73Y>> z#kwBZZJ2d}a)apZT>_3c=d?R{JdZ<&%l?uiC`Z4TNCxIovL}H*-w*8`ndxMegI~uN z*xN8<9yyNBPTTVpF4cZyOFPN+CJP3UbH%o74qha27oFtths7t9ZYtY&WcYB%`mekp zH}Qb5Nw=d`pq=rAsgAD+Wi4AFxh9U!MXL0iUSn-4KNpRNua(2JR`9C6C2woI41v@` zNJ@u7D(p+hQW@aK7C8h=C3$*Oo@NlnM+^q@N}xqfRv))=PJ7bz$h!+u)}MrgF{sMP z#qyAOe3J@wB-(3OIZrbQr5yUUo_GXpj;oJf0!XO03SZV`Zy{nj;>xr~>aR=WWl~(_ z*ZQL|GZyEa*OlO3P_PpSX4JxVHQrIiybM@cinZc6rV^9_BeZb3oOm1-?{X9M{X$?& z;HTpCRDV*mkN5l{L}#)1uI>RPZjQ$I+ElLlv1JG#l0#N_kL9CKKnrIS@wd;K8@wOx zg?oCOKWD_aL@&1-1eAzqihPZ-Fi?2$D{mXPfeKGw9cbM``%VY%Hcp*6dcWJB;}9Cu;A417w0&i9!?l2FVDL* z0qSk~K#-@e*g$&y=i*Ev z=<;u?9cB+9N!VuE=Km%8)lBXE43voGj$X8moF+~RXeZh(t77ZI*<@mVuNX8;D>Tbz z5^WdT+kxpwlySe}rhCw0GwDi_CoFXK<>f9N>`v8$pWt=rTd3HmhY^VV1P^D_hUlwl z1r2?daeec)EKpa>zuiSil9-UtY?9olJ5DV}wSbZYxb1Pv+9sP4xu1v7`e119@uZnm z_Nd8HIM!cd(*vvrY{p++Zl^Px+HX%yns&7~CeEtEZSowH^azByE}hji*vqS@OW~gW zu*c0grn@Orlio)NjQ;Q>f}clQz+y@qZ<=4-@v4-oX(mxK!)@V){J36st^PIo(iccK zQND$qLAx_&l`_#XPS3Oj#+R2FN_gP=B!yzF2E1ZH&${%Y6sQ|#zgR6@OpEQEiFdfp ziwvQVcFub$Rh70n)nR{{A}k1Kj9>UNsmIr zP=ttNavVK&e{ZEXRfO1bGJJ~>unmaz4AQ-j(_RWe&I6Vb53B88h727R^TAD_&}-Lf zZN;2<_>H12bTdxID2F9vlqJRpIBu5pyGM@dRvB6LXUO`ElivXw9}RZ%nc3xsdl^u5 zzRVJAen<+eP&DXUuvtDtsva5XQt4QSn)r&&+nY82=- zMK1nox`O?eDoL7|uKG#8N@-aWL~==@_02kYu;Xonnnu@ELn&jHgXt6a5S(9j5*lj5 zNGxSv6W$5AqCV2B7p_|w>nZ}cB8iT4M(VJA_<&sjfi1dHnph36WR_fJ6sW>ShI$s z=y1J(f*^Rz=W0pN^;KWC5>@omH*aMU1+)&{=z4HdUQT8K4jhYN=L3`Jy4rdA4>yVY zm;2POQmYnnH6;V1RFt)pDEFgPa%9bL4*Er;D$GDC)hk<_t0?}E3Wl1T$l?h14?jyL zl>`VtEJodra@{2JTSv^*Yk2b~wPG?M1+XP8`MuKx1%87fnATKD!u(+Qdeeh(427Y;C z5)xIZWgXbs{cLVAj0? zhwG|MPAC{p0r*gc4!hwM?v-A_E2m!*_tSQ8TJ1;EcIY@L#BWJ~FtE6!=KlLPpHX4F zpW*>}=VuIJF+ee-hwZ*4DWd#%1^8%B1)T5Saz<(3;k>wzZV8_#$a;W^`r~9q(f*d9 z2yn2uN1?qxsZoVUKLd^{%Dj(6??32?@T4%G?Ee4W2fDdW%8zdw_W?A`QrO^&L-mA% zgX0cr;rj2Xzs*J7MG7_f;ZitlP0YSDmh!(@8#DOcVC#1PwDzKyQRQDKc;2|JkxYqU zbgGPngl{%svA}?k=H=Z7J>Cpoxa|zvA{aE1IDekqVx$7M7#(0b%ftOMuUNyrD&LUnsun5X1HYw zBg+ArCb!MgTdpvQ^9}d+CaWe3o&7m^;mfAeavUTs-Bx@Vrpw zFZY#K8H9-BT>VSAy>G8*>_XS$)f)p_S;WaIG;}N zyok@I=Zp6WUPg=%RbYf_^Sh>H9q)nEcYM1(k|kZbW4%C5ni&%BEOhH3b~%rCT1-4# zU#!38xT)4KAX*?~x|A5Q0C_f(iEoM@l5X0hxuL5X^NDYgg0Jd6#aux5z?}hYt}DP#kBuALdfL}2>XQY%H`(Y84<@Z$h|*V!5a5W)nemUbh*k#aY^3j zy+zE;f_|Z-aA>*v9{e1 z#j%*4gq$We185szvauZL2DlKtzt9MBo<@Zn=$9e<=a$RGe5?8o5#ZN7PZuM1sOh0}QPKc7B$)zC*B~o5A-;fI zJsbFE>NAbLI76qN2P?f_7^&X-^LguRk&x>g)M*bvPetTN_@Wqjv-qc0md~|ujD%4H zz0nR=rU9mz-~O(Jn21nC!ZgUlV!4F`3W;GigRh;~Ut;>w(k#e`57Oc|ZrfJU{yzCj z*TXdRGAPIPV1-%jxJU4Yu^B^>qn8i!_#U$B-Ze3XYvmm^uRtQ6Pj%0KFHU&r*MQNn zS8Gyh4T3J)wE>#8Sk8ihEJYC>hqWgNDEE<7ibfc3Hlq;oT_DP*f|ozVxXh#(ayX9O z-lzsW?}$lHGuoHxE4L(QOJEmyiSZ8l6`V{BMzG;N&Om>Wh?}q9-UY$_);S447bM^U zg^A=Ed`JHJt5<+~?c_1m21h#qy(0&q&#n~EP z=E>I1SBKx!I@|D@qUPs(^A`6awTnwWelJA%tLA8(&82sd`>Aao(0n3zYW(Q}5Sdw) z_bdDI%~bmtUMaZ=ApU7x1>vrHrnDNw!aZzY1a-ZVUh5`#>H1GzM3q@VI3x9t;< zib<`bpNdNZ=U@UBN0=bwnZG_Gf-D3Bhgpd3O+;nYHbb&#Uhi=&jMP0HjDb{rqMR*+ zNPwnHEp5tDsu@(w#3us2i%i!rFV2@7APuGOk0^i|!H=&guGcc1x?08h+3r2j;Z{>s z>FOWwF}+}b4}?V)YIp#f@PyNTMM1sZli%awL~)%FbSgf(gNT*{j9f@SKoh=9uc;Tt zV;ES_dNoz0g?LR}d+`|Ceqz!|NMMf2mh?C$ye&0?Go4lwQ;!=3JE6_gGj(wfI=Id9 zLzGj+gVIR^J)^o7m$UShj5YVxK@q5!uKyy_82&ozILL}aE`iNE?h(-<8dF%l;_!E~ z+n4qdT0r2+ee)9QwFY2b6I}efg9rFn8Gs=f3IIPzR>RJuY3MrsMcQ*=uyj*_jPZ*g zVt##0tA(IIelThfrk58tia8HnTFLmffM@dI#{$LmHjTF2YpFdQr?-}TpRQyc@$kMw z0N)!$O_NVdSR2fz>(LvE6Lgqzp2s!3=8l|#PK2WQ__BaNg(0-X1x5>uFc>&p)z^J# zk}TCd;0a_M$#}&<*xoihod`^eFe)B>(sv&uB~ZUTT>*sLfecwfTFq}yC-HzuG zlr6ey3anqe-`8~o2#mr$DX6bhL;BWuN8?G z8+}9Vcl#)+pletl59(|Cso0dl4|jO|q$BW$ds4pOT5g_pNkpCJxfH_QBK|NbD}kHV zx2d_WlWr@3gub`jIK<(7FgH`)9!^X4OpA!904z`BSA`7#8NJmEnplDy6yLHEo}Qfn z{^Ve30`v9OjCa6ekq^HHvXxf-PSAg-`EX4#KfK)puOfxk{VJ(V$as0Ix6nOKkF=KC z1l@N7mn?XxNVq3Ll=5|>vrUsfhfOdicUu(RECMeM@1y#P)H2_^fy1m|ZHpp?}%HI;C~f1+yKT`vqMF(Bb}{Oo$TCMMCu9|=f6y<3yj zG?58zZf}mgk8jphiUz4s^^krABhBO_^ra5+{|2wMIq8FB@7c|F`ke7B?3JBnq|iirzZgowO?M;j}EHaX*4-gcZP{l%-@WYRZ@2PEam-i*J)bcIc=B zT_mbrmb^tkSwYjB6^b0%^o%433iB|ZE(*n?*AyiOu$MtqSkFBd0goj?HIne*e4T>8 z$FT};cHc{?qMo=R1Q2j)n^9({l`Jc)M=)eb99yb$ayBxV!~DX=s%c!(X$(+EC*pB` zRcG($n9+tqrSKiDIb8hiIEle^`~Ju-gtOA0DbHps1QD$0cRI|i&~K^o~l9Zl*fKWD4b3;13271 zATxEFV^Tj~7JqePJz?PRXcPnz33ulQtK~~K8)e7r**$?cR_>);a`-3d`!8m$+IchU|_690+mWNM`3tJTyvN<~fZP6B? z(<`6zc4=EXJEdBVr6%#+CbNSPn_|2-bu}*8uZmI@f|<$rolk@Y^d_HkT27@^>Nb32 zgS-BT%$zE?x`Whax7-7GvqEB`ud$IX;gLT6N`S7C$8{amaycwaI#+^~r6(Q* zd^Ox~m`yBkBy!i^k+;RlZX@vb1EP75Pjz>^p#1uf)tBK4w;t_M$1YmiU)Wv5TFdV) zpWT=cp-z;~1gzrvCA`8EP1`4c#Y-61)-pK>JnW8n#{0P?R3t1LAN3flw0Exx-9$9b{~D9v)C-6wUv@a>Nku;&E^$-!xpKn}*OST#G| zGE2wQP`(C@(-t&=Xwi1O0FWUurlu|jMuMSQHzyQi$UN(ndC;A;9S*wDU<$;USzx&N-1L-LT12&{_5d_rq>nVL0z#*)kgyM zniCUo3+q%yeoX;{svfw5>pK_DP2>_m*>9odKw>d~=#2oCv#;?6Py5Ck)=hpiwkd0e zDbFT-T`_Lf#%EN+dt%D5XZ|hSAO8h571hh*lNc2&A4vUAS8# zMla#jfp~Iy+O~}ncM4IZ7}WInZ3_XUG#&Ka{PKdmvtSp;WkZjIYy@{}DX{RY9URlT zr%o5=Wqy&5J%RIf{InrdFa-@&7C4dA|2q3Qyg)9?f|R4khU4Nd(aa`kZ|QRrFCC)n zM5(Q-F!+}6?|*Bx>WaxR9F*TpqJ_fIs}GM~SbX|NNcxWMsr8Hyw@FM148g;T)Vh8U z-Sh%0U;<*}feNc>>k_1FEC1o!K}?rzj&)R>J|?l|flF-2|`epli9*me2j_AEbt- zoO~Z9W%k4+gZ9z>5$05C^BoMUNC{EA{ zadL@$@$-Da*enq}8CGd~x;}HF5bRh-+ib(s_a>Q z0QKJeg|pt>prYaTMm}BVb{q^*yb|Om603SeDPoOfT~yQBb?#!P4|*`YAP`Tyegj9R z`t`}xJ$yFbaMPZN43& z-7))_6BvlmNz2qt&A zMAex901suf4jVo@fceoPo54s(_WgzWSB3Wh)<%w=^P%PJ?cT__L=rG|b&U8uLM1wH9kyvvg%` zjT!lFyx1ZZxt+y*Mp92=w#K*9frehHe8r65-Dq~d(Wly9zcV%#1P+U_C-Qlq0V9~_ zJLmxHFVbr1oAlTY9ahL|)xJbIO@ z-gycMQ7Amoc-S8Qm_n=WGK>*kFx{@c`T`#POg5Y$Z6|~S*ljoOm z(7PkT(&5Y`MKbE{5gL8d1|F}>d>2I6=hE+UUgjt;%FFwRrI^al)ZBT<`r#)8%P-7n z2`1chL}B@HpRc4b=AU1e%bq_Be%1)bSM3~~ z5MM83CC2Af*Sx+n51p*+hOud=w2zN|)TDD+9f$Ae6l$Qo<8@M{jB^JqS0z6;}dYCmILdc4^gS2d}*xZYV#qD+cgW*r6PBlFFMH7HIVY_fv7#GbWI zoo70y)wF3Bb!xs~?@K)C@gj4JO=S`Y_i|wH$3E(nOTM!k#L53%J-I`KmBu=$pEp>` z+ov(5O02~}@vQZ`!o-0K&H5a{@6c0e25|gXtSg=elLhm5V^c`AZXOf!iF4u*`47~k zIL(juR=aHw!DT$Le!@1MLE~`O!`rI}j_gC|*C`J<{^bi1b}^H}U5kzf)pX`aAPf2e z6Zur93ff?*a#_bKJ6?V6v^|x2LWXMJv!#`KK!1-&31vH}`SUFN$9JuhwqHVGpLY}# zR908F!H^onDNa`b&iL;{*UQtJHN_N()1XuOdaNoEklJJT`1n>nAg@fGw;0=E9-saq z#Z;M58^PEihKnF2MYPlYM9b<{eefmyyB`!lXmHoapltbd8LW_d(?>Mo=MHP^Nk(M( zgJ{8*1~Xn)t`H_yxYhILD_ztU>GeM><5dpGC_vnAOmO3l3{q&WX62lnDV?u<>)RIRJR^4Ce= zK`@hSv`U|SQ=M_hY>@>9tQ!UA)U3}PfFUSg$1KWBt%rjYcNSNWFf~DOI^mh zA?f!Eb<-a?|56=V|M?N);B?>U)DAR`g0pBmwd-6>cB(RR$= zEq)4?2M3#+UOy1?jnR@G)E-}3oy;xDA0unhO^pqF#YalGM77rl+y8wYfZI4 zquX^*_y{(^yE7;Yx$))ZPsEZa`eiEk+X$k84PgVjk)rzK#6vGe6{+^EP$y~_okqk> z%uEF}=|Ame+w4#Fc*l#Sq$h>76*V%G&Vo*%z1~6Ec4;NQ!13tQ!BAmB9^pzfO=QD}r*VX4&ngaaU5l}ym zVM|5d9Dg61uQn>~64=H}u^5HrqSAcL_04EHK?`g2{`zeW0em;+U090LB$g#yUoBr+ z(#MVc*P+c#)67t?O=CIm&n_s|JMz7PAIM-@`Ir)OhE=W!Kl`|z9j?lHoMR-#S3CBP z+AS+{jcMy+vR84#tORDgB-WmfwV#-noLns7z78dqaO8ILW$k(dP$AppcHFI1P2gyW z`Q1f9@~Dzu?baj6a`KV97{4=?aP~X#U?7@v@N6b8bbRWK%=e-W-gG>y!_;Qp_6_44 zVs3URNs7#PjKjLVlY03{07xBmX|+TIZ~YqS2L!1|Mp;-`*iyS?xf~D__ex9`>3y6i z@7cbWt@ZJP_%>A)M~&;@!`^>vTu@xm#6ck`%&3w(zR?f^iUmo*z}hV;FA*Z_R{+fpS?h)2ULE zcaplcGBiKpaR|RvR<(DXIGwK#7Z`jX(L3_7xP8Q%upq!$U+2zTt!hWC@mCg` zptY(mRU#sIv+!q_nsWnhEq$=BkI#pvbkTLy_{ZqWjF_?LITq`oatJYQ)+u?8vS-e zRbRtKn&b?ry4)<1LK=_9;S5cy&Q@()chE@F?qIdVXwRcOPfa;7b{&-w7E&n@cToFa zy4zX61ZNxGKhp2Sj5;$93^ z7yTCq4B(f=tYChnCtkLPafeRH2xD!E=nvOJ*L4rrT*;kMnO3AEr3pso-?-fxiKklL z0PO65NjlwMCM1G6P=qdE3jw0;62cI}ky6@*6FYHN(5W;WRw!eHGxX=PkDb~xm#Dmc z*Oxw$S5WVUjSZamUH9uNpFkZCA@7#A#>?5SU9V}_axI*B?HnARZ0km683xOQF{ZCx zTHY^8*D`@L1pVJ-qWScX4ABjjUl?fa$v~>8c%ukhKaJj=>^kJX z?YZ5SVE&#eG<0> zL<^trP7$b~nXiiAvi1>=aT40a49~*Hphvwf4IKIEFWh%qP7l|GOPQZ4EW3ufUoI4z ztChSU!16G^o9{y{*u>sBUE?Am^6^@D`|twko%9Qv9gK>b>W_8v@uqd#&JFsQ|Tb+Ql4=8Kv$#Og1QrySO&ywt4YAope#|De@ijOC9 zSR0U>DtXA~T&T!fO-31f4Tx&Cb8h;@$OI17<~IOB1F|Yw3yy9K@kC`LZ>ge9+!LJ z2?8FJB$^-SGh(Y_3EA^>bch{?w?vxIT5|F zxoPn9#kgZV4$?Vwz;UJ1w1DYwosW!xO5tnRy}g_ydKG@E`-kY2wK%Zy8$Bj*dO6&m z>fAoX)=uCtKx)sH#ax9QP>HG6dP_JdE(xd)HrF{vCFI0D{SNRVC>mf}aVTZJPz~0& z*zHzts=Sl49{#Gu2D;$qgoAD7o5cWDgLXUZ5mY+|he+yG>u`f4W!|O%uOv{*6H_Ia z4tlWtNqRoeE;(hc#@85MFJ!Qls@b&9&w|tBxVXr{EImQcb(Lv*@Xk_;r(=7ZkLIh% z{xqnItmjNxgTjyf3P5IdzfH|k1sRmX4Wc;1-rnvuuLNQxX<;-pTKc>&k_>2X@uXx?};w~zT65xN{xrN_}Ksgz@|T9 zUAdZk=|-bg{A)wFy$;P~iC##_ol3DD)<=J}Jf>{zMrQEG9BnijEWNdy zNTLm=>uucC%Qkmms-m$(-0yh~^j}RzFz3l8Q|BKQ%HP`lPY=D%$S^B3DlFM7#@J}p zil5}`)I$j~7deg}K6J>W%$uXU3t_yABI;{AZRk zqWYzF&nNbDWfjAS2RLt%y1)Mf$YA(oMHoqEqV zLuZGZ_iTci#>Zp7YS&5uMo1diiC0zF0^T&p|A`OuO;qJ*W7PPxm||eAVrk3?^Sk{1VwZHSsE0iTjto3!P~YHuqp!&3SZRhB z>XMT8#i_m{kw61oFs{VitG0#N$8Sxtmuv%FfeETWC~-U_s++P4dqKBSjC zK504gG`DWXd`jaz@<53NF$pv`m0BK3(W;ap+u+G}<9W``iJf}HO%LZO#;X({W6qnN z28{BTgGq#L{fW>=q1C?h8{}}WPWk%kGTXQ}rPSlxQ4N-CgAy=3f=4|8VVB~qBa)7qsGy8J6vN&_y~`Kw6K7!=EcRYXJ1k9D35}yiiFQuD4Nv($o2Gz9Y0Pr zzm6;O_VKiwt`iCL#p&pjj5BFhA5RwfsIQ=WcCeZs4zp|_1_y*No+LbOU!?7YNRyB| zqgf@;m3QtTSVlK)vv+U&EcwJOJpm%LRX{1RjsA$-y?E$?7nWUtD%hd52ZQzyo?gp~ z3Tx;3BdV{L6&tc>g;2eVn@Pv+b)@K!BOmbbIqKBpF8E#d7t?FE{OS!X{X#nVsDp0& z328B05p#yVOd|JukHhZy6?9d59@fWAVSq`{NR)4V#89{YV87qTqVuI!{k}EO4^Eeg zUZ+W##(er}X0<<)#W@4uANpoyJkig3;<&*^C`$$PyAHeAqGI>cJw?z5z6uD&d)wH= z&|LHJK9|z3!Z$xLFUZAqf*8FkQczH?Wk3cX5jeQ6j*%!rN(&(z9j}N~l$-ZgOOHR1 zThOkhbs5;BTy}Rk_-eNDtS-@0G>oa6c8-{RK^tn(!3x2%(}V_18}k69Q;OxVSlG}rAOLB{P55#KZ;IEE#|}g7$wx>VO2c6@PJ1M zLxb%M^6NihFGI?P!>*6$M6@J9B!UsFQB(C0lTorYM^Yo1-lN}jC?PKdzh%IAdxX>1 zKTPuExd4XITv8G(0xPD`mGGaC9tg94v3F2z?Rsa*kwJZ4!zBpJMI2FUVFhDJxZT-}Y%^EtkeHV8ZCLM?R!N zf$hMa>C_lfw(KeXO59DE0vDGtG&LoV68px34#(QjkF3?}mY9ON!+2h#{v9WG!rh7wG@Mu06peKlHz=ROhA3(_xWT0gw0TKpO5{;wYkd0_j| zJIbm$ym9_HN&m$!2sOfELNNE4ney)a5l;PgHx0!Ggic8C%Mvl9N@y=9~TVU*H=`xn7&6!CAr_qX8^l>wJw?f)42_rH8|1q6)vU%&B` z2CVkzfkh#szy03dzW2Asz+?uOiFKly-H@yP_P3jD{6GJ1LmD8;!|1<=yc2&DPyG8Y z{_XOciTnRFZ_wX<`hR+i|8e5}*QfpO=Iy5b^sn#zUryZLhV=h--XLagXDkh(+j)C> z&s()XyB9b<*;LjQgnxN3%&%UVnN$>#Ax|a_3*m16^eUmDEtF~%6mlY*bZ?TFe-7oV zBq31Tr`9Mp$8$D}fTWONiZ9GQv%d2ZLm3$x3yF=56-ywLLjgT#ySx$@>8{;W&= z>yTsC2{rhID`(W;yA0>xT($EIHGKPw{s40Sja>ZY?F}h_1bj)A=2Guyu4+N=r{L7A zH}e_FN!E%vin$!&G^*Zvc+{f#W2LD;Hoy0Hd%A00UpFiA{D>rpNvG~tnb|PS!qMgf z9$NI@SlC~F8uO|4>y<(*<@}5acXKo}He(4$DN{Cb{oH=d{MXr1aUbAiD&qkSW|pk+ zi{tt^riY(Dwy=k8drxYI_k+4l1UOx}-k3qzW*4CdkS{o(nl)uVETVHoWX9v*}&6I%# zU6RoG#cE0W90>dnwH{qvzng1;=2MyyV44k5hKZ+LQik!}I2mBwmznd|y{AMAU{qOW zuA8Z3qQ01$)2~-+9kjpMUZQT8=j5|&(~IC!2}1Oa!aOxbHAMWBdpQE*P)j zn@rl>!!4L;mxI06$?xy(I3<8ANMl58)}Ay;Yi6+{a*tO4sV-T#p$~zpHSszF%vXMT zB5iliJ9tJ$ZK+(Tu++&--roFtXnZvnx$3iTGpyCcK4>}HkK%e1h}8tw3Uj|HX{f52 zh}WqXFc%h9RRPUV9E~uCd7a6mFKuCKORi=kNHNu9F=z0;{XC*<6kD`-(8W*M5$$?U zSwN3SHJTHQa4ated{@F;E~~gFw?-Arpv2tvSed`$)`TQyk3*CfL>6TbozrlTgo5qi22Dx-Nd#VwVca(|Sb5 zYdzQKy9iHm1ymJktHSs-IOuR1R{!FlqEc=gHH|`84!_e@TupEn!O-NyM3!cyt?dLv z4_tc2h{eI(8((3w7Z4lE(T{=k+0JR(^Yl|j? zdt(WMaZfH52`vO&r1dzbn`V9``yVg-)P}!S?%bA}YGP5G%`<7*hS7gG*zhBk8h54$ zrrXf%q!sHSyDL3|PPypzH=!`%N4$ScyM!KigZ`J^25;z&FKe!u+5U1*WV(gBySp*a zU=9Nvs}{Mlw;@Fl<<829q^r}lck^z2jfcdrYC$N*M>Z2`z5Is@isP{%&iVtdFs$-! zoZyhhW$MDlu+_-($B!S|>WCm>pgDaBGDA2!Kkf7O`IuGyNdc{3VX!N1cPF|Tb zLhrawGQn}4_a!cR7?b0h9mfLG0YmwxH>6VSxSb4$cJ1@yW0a(-s;X~hCBx}nHp)&G zzIMg{uDIbXg7eOg@o^2qi&>tUfQRfUfa2Re9n5F93fe~ORW8uMy5rxRs*N2hH4y<4 z@TmYMQ~=Ep^sf*zZ+sEp>7&Qhixf;lLoPqI1wGOOBzzWra{KZR(#J?be04BZyg+ani+X4raR-Xlubzoi-X(tJJ<`aCl zA*AK16eN?(LFrQWh1^Ms!(Sv?o98asAsfI!I*0XSxzI97& zp|MiF>pwf0dshBm}yP9;%7o-X%>OmPts`)dhBz1?qs_QSe z&;b0=FLd~fno$n{vHK!U-MwIT`(cIUWJ9Gp^1(8*F!MogZVcoyqP}QAtP;z?2$p@~9PmW@WTq@2}1j zhrz^Xy+_OwCYR8cw_D>d?pP^s-Ct{l-xu+MWur)$@WLIC-cU_PtMch%@f->26FCLx z0G1z9Y}l1z!7T85^P^&Od7PEXD0QY&a3dQ7u&fyB%s8Vl?2d~DhmZ(^_M#Nf8;#Xt zI0lYU`1V~XEYMHr#TEbO-yzi!g92p*o$U64SZp9dZ=GGmDv%rJkzd*EI4*sC&VAY% zAyC+o z@@jL6Ml-r%7thNr)H~`6=9|v13nKyo?jc;%KD(Nn07ty8?YQv(F$vofOaj^XcgWc@tk?CYH0yv71VT0^c z+aoWz<{L4Cdil@;)sd2Al1lAb9tUISr0{WL0>9gFGT=CvZCFj7-75{T`f@5C{GIP1 zY7^n%{0@8$AgA^o5%IFCXq58_1JO%uZw&LIH9Pf2x_r5>-!e` z=%-@+R(p9nE7Dtsl@T?$gckxh{Ar7@P`@}<6vvwjE-AA1#Sa#5dLD1=70pvYm`Le1 zDrQE@VFP7u7;~LN6WEk8S-W=Fxbtdnf`V>aHg1x?cT5fSxpXRd)Nj2o+E~D0gk2#9 zbw4blK?4}zY7z&K2qqw65X*qJJaQ%`CiMzSqQNXh@{P4y6Go~6k8-pw)@HYqM5z0= zG4#57b@OM*KK>^XDyUiRNn{^|flAT=Zo48MQ7G5J78+`o_RKXog&{=C;*TAGw#H#{nEb^CCyNn{52MEVo_&>l&NoSlm)~w3wLaf#XOs0i<4Wt|e~2 zk5;m#Yxtp7zS;0y#AN8R$*dv&i_KRx zGoKCst$u-2%NDClE#;LB?TfUhyGcWp`^&yabIuB3LG?GJ`ob2{x+)Uw8-S+p32gTU z(2}>91413JcMyNQvbjT7Bjft$z)n>E$2`4oY?CZ2@ytw~(3xf2s}O>2gd3Ngj?x%p zB(k_)+19dtoT$%TC=|TAZ2ybAHq(8vn{}>bVX!6JIj~f@0QyfY-{k#u4vtt}d>|yktjFtCo;PPT?{u)eJ74NJ z>8f66jips-8@_bOt)X|_B+3z+M98`Ft(7m80kCf#)X&V2Sb{2S=DBXOzIt#Gr#bKA z^5y1v%%V{azmTtBr-V))b3O1q|Eb4>K`ek7P0ZO|yk@t|^o78iYre3KhP}@gY|@{nxZ=EuZc73Rr8)ebswPagzSCZojAeezQZI^Qwq4$K3{qTz(Y+2 z+p_J&0bg<_w8r)j2uRzGAPd@MH+kMc1hjar9ePjqu4_+mM?ShA@jnp%OtYSQA8n3z z%p`*5r#9xNAZw{*(L6HSny6G(&=*^1vjcHYIL@l=LTj=UFa5il{1+1kuAHnNDmM&R zoG*)dVy7oUIyq4qJvC96y1yeR`YfQ@?YKkYLe#gl)|6robI|z(E@Rfd6?HuCPq-4? zUl*u@=JI!lf*4@YpH)KJ34HG0;Np}#!Z_0yqqtomlt|S590lz%D>;J6LSc`!q14E@ z-lmemp?qyI8=$`}NcvHgnDb2vT0&ba6$a>&OARA?Dp700W1J|bwUYCkuGV>#WzXcg z`b>Aw4E@2wCvZ+<{-ZvFxhm;E-tYpO{-7c%xJ8)jNOwrJp_n3!QHy8rh;Ka@Y3?Dr z1?3B45=?^{M|NUTf<}AX{s-Yq|D&Nh10qdkjnP)x3Hn&~K z1@Tn;ghO7znX#2+h~Z5AKeWANTvhGgFGwSbfYOrEjnW-Tr?g0^v~)?cKuSWoTT(*0 zTS2c#R~~9M3Sjrx1tTkJ}$ymg|_hrZ^mf`*ojEX^ws$sgQHGP1X-`lczJ^oec8onC|P9NRvbnV4>R5i$j%>>{KHrSXU7hL zz@!CeZywIcrQJ)%U_F;~XC>x27D4h0C3p_KFdCk#vP!*tUk~dYU~M6UELxSj&DM3a zQz`}cd3$}TvdrmUv?ABp36gqd<9@<-VU2ZGDfl7a@w>(FR>}|9F6(?kLZO22i4*)B zA?9enXzn(MKy_)Au5?>Wd?}4Wp`!PDJi%ub%v+_?e#94)VlJEK??wELzgo;>YNA5n z-sTFayp*w_BePw*)p2%VGQUz=Frf$9 z?eFO5a+q-O(7juwkINhJDw#?4(N_JRy*fT~kiK5h{PJM6@4^u7%UKIz1YlW2*44XR z$cTOX;_y#XEf}dVz;hH>0CYfyIv{fnweG)gTm#wf%ESAl1F(vf&zaZ5KSkH(W8|SM zIXM!u<&5tcM6a4X6Gp1dKib+Bk4_()r8W-uQI6++pXWM!QvB(9EF~??mG#)t+ZStq zdSPi;bk6#B(~e{)VNQj8bfHC+<-7u5!-qwh0ZPyJN7otVD#}n4FJLqlx^-u@jmY}p zGpW8pskUBy(s!S@(#9Hv8$)if5@3COEr>;a!b=JK@JAE~Hck5a&FT*Rw@?&VQ|$}r zKmU?Mw(P7U75xVSHk@y~PJnKVxQH&d`Gr>4CSP@M>+Xl}2gayJgkB$m znn`tjNOt8RiU+WqERfwM&7WTs&i3!lC z{jbaon_O0+3N)-KzN6h+L_Tg;7K?AnkqBE{>9VqS>7o58W?HzZnx1e7o=giAZL9PG zk8{%>ngV>~*Li;Xk;~V$+pJ%7tVJ+$wpYi#y?gn^aMOwh>JBmPOFGN|2WBp7IxubO zJQL7=HN6mBYMcC~f)1bO{gajk=Cy z05ny5)-nf&U*j*7j@(?H#@s9f@FupRo4=d}Va0Nup-gP{NUp=3yH1U=$yll@1?53< zougXan*Q1&Y`bck$|omnqN3VQdY~UaL>2abH$U{~r_LLhZfbwo4dF7q7ExeO)-zf+ z6XFV$^*Q6Q-VdA8p^*yntQQNg(P7SbLu2H=1fL}DU&d}~RwE#&MrPN^V)3QySxs$r zY!HuDSYcbGfQ^jCQZu90^nj-rHBn@#rShZT)}8A8wQc#SCyEHesvXBzb*Z7dnC!BlnZ-YK~8ZmoOfLxHa3?8m9$cZ?aa*Hp`LsaCwXZpFpy=?3o2mH z>h7+D@$FTpB{Hg6L3+KT!^7U%jFMM7520K;>9rR>emu3`idhwk8Z{ReuEvRPj8Snb zS@uc+f!>C;yk?97F>4+XD!t7xrxf03d&}*gy@h-g8RD{4jr)elF? zYI|H`5hk^~%%rz1*nvFL1A~;3oS)1UKBtje)|2TI#Ud!?Q!YrjrxxiprppUAE#*R% z>tU-|H&h2=R$Md`S5Urf=DDx%KPrx z_h6nq`T&1UZvqdNKb-~qNB&f7C~Gn~(h(955~G(Wo>s3b0x_}_ApBde5k6#K zen*)o&y}lK6Rc|}l@1z<`g=#{C)C)z0fWWS z#$UDEAI0eXWeuai9}=!7;eG9TC#Al)z6!P1*q)Y-HG85#Y4{01H>8mNJ(L#TBxJBbjEYArVP8v|0Tx2IFVr*@`l5+1As ziyR1epSFEL^x}atnfF4>gCp0~qdy>thf70wzv^sSa<@Nql9pzT=vl4kDz@5&O{)lq zbBe7_&DfXc&pDj-rq8T?lTgg81S&c)wtd0hq@%28(bDXilH+ z+iOvO+N^Ih6ZM=`UooMK)aWtcBi5jZ;vDrt8d{r|#19ePA-~v@@w>s zEX{#vJ%lb&$8ilWkg>EbJ-!Ie!!>@df;}L`uJ?k&RJq%Whgp4=naxqC%Ly9(`oCMo&^^q6D1Tx*jXwQPf15+^&sm z43AXJd+O2Ld<#Vtv%^ofI4ja?8k^wO+lwF09=iNOWV%thfbTc>KyPvt*dS1AFqIfMAye1CZTd!ACIx{EA~SAi%_9FYUzv7L_j28~#U-?+Ze=+PL>Jt=tVgm3Rvq9UPct7njALyNW2jj~gdPdUY3TLCEica6^sK@?U&T zo`o2)cUDmZc9kHAh)DbuKr|oMTk`N9G(wF?+lYcXi|26YXOXoKp>o45uK0>JkU1Zo z9gWuT-Z7_wsps;vi`@a6&?k}8BHd2M{lPiJuM+;#cRjV?N^C4ClFh`2y=(@XI){g@ zbH&({g$2H?eJPj^pdvDWQtQCRu<>$X5FUN{9@g{HVA*#LJ98=uNnI&|L=L+XN^%8V z;z^>Cgc^Wm!->mis*6}AGnURlkzqg4wx*^RRkzYEdypLM4e?;D5B#QFw25QUt%s<( zy}zTsE@Zn`7dqiq6wF8nR$rofd&%F`x5|_jwXWJ$PhrQ>HKFy1hbw&YVWls~RNhu1 zgb>d3R_?7keFG8Sek7JDJn3tG+haN%JVbVZZ$QJX#cZ!NxVHFYF4|&7TW3Y~wzN&J z(rJMzo!PrC5go49PJ=xQDzChm!KJRK2F%88WBohnD7r_Zr>EI~4&QAqxhGstd*yQq z6M?{`SB}fm$ba%RSZoGULAJqYmTxjEhS?(nsErd$3&JRsV3rxNfLIo#*5js@?q>fr z=hAGP%3>nj%ywipg{13nzDBPhOEo=r${1(Sth^}8B`AG3<^_j(a=bO1czH@jF3XoJ=%~PYKNQs( zZeS-htNFOF!1!tG-XdHYkmOd%k6~UfzDNE$TQ??%z0aDrSU!_Si#AZZZ zDCKF?h;R>%ZQjh7O>j-qS@!NS2-Im6Kw~?dm)+QBx(Wbqx)VvJ)O(^jU)~-r>t!eH z)&k(~lzL>UO|#OQ=dP@xZoNz>K=1d_bjsIm4VJB$82o*?rkwtiPKVNfNsl%z1zAWZ z-%{}M{5Pe=^kb>60#;4GoM53`bnKAb8fVE%y1NuLJWF{@Z3X(;Evv@?! zp%r8s*;d)RNP}P1i8!T_uiivhmuND*3%Fc|{4ZDpo6gdA7ABq}y?^bAN_!#U`1OVF z`|}Q-B+mP8=f}|>Q_->kQ`8-)7jGGRm3I;I1H38T%{$WsmQm@c9Gq^0j5i|+)Q&m9CV34m_!QUULAlGVm| z&s5*uY>TA59W-nNlaOhsC*?!q5%8|AtX$qyOMy|Orj)5WB#^4V#y7#)PQ>4F2A{Am zc#))@?idPV5cAL(8_*k8lsoKxJ;xjRwf>T*QP0@@gs3WntSIdBqgSF_s z65e%7yCTI^O7Xu!Kul6;g>=5n764Ms=WWu$KMUO5l|@86uSqn4 zUGctpyY1in&uecU8Yt;LGa2}Kqgs1r`=t1-FiE2mE8s$%sVacJotG8u~Yne+6P2Bk&!~L-s41YP`}N@&=r% zrPC#|5!CWDb^FU3*iiEP4F)M6@$~Enj}YqG_C#)76o2S}^%4<{8c6;pK7#)KNV)R^ zmrD-&h?uq)9+XB4N4GV=NmM~7aY|U}d5YnOHJ{tR*?o^_8i4jM*6A@!l^KW95xNYn zvnVF>safU+{~&CjG`|NnNpe4=#?R6OqFdZUAu$$^sl`wtPRqCbRl#a9v@FG(mZ z>7(Wb-x*Ouygu2=k1TV zQp$Hi)B)e{0{Ova)W%pAyUpyFR@J9pa06BVQtU8V3&iE35dDObYdhHVLQ@536c`KV zw8bEXjrj!5XtFQFoPIG(Iue_r(gMRS`vdRFfu2>3!kvfva$4%85XIqTO2RUDw&J)Vfq;bVpwAgRX8&zb8PZ0>9V|*#5is0lZy^& z@%QeDz^eis54hK{+nm0U0Osv$A1GoAVNRa?mXoXi&eH)#3iomfHhH7{Xp315nR zf0YPGSu6X^#@Ykw2Lq``tJuanE4Io4N>UBHyu8Y~&%I;MIPFe}Yref6q}a@Fo!Zi_ z5m+hVWh_p;Q+1&?%3%D0_|8c{zq8aZio)6U;vkXRYQ+gIw5e6S47W@YpXH4l$O*_# z*HGscVp0Vp4CJ?38;CJDEP*V%7x|XVIlr_bg$v8P}6%X;AoZ2r28ZZ ze;oO{at+(b#_aF{q3=t7^mKKLsX;(2&Q*#uijo^i=?xdGONuA3U-FyKqfX%QV2Wnm zqgDZm92&Y9aTr8wJTKNfqyH&{9z)34a`6;08d2H6&0bl(Pgf&5_(yUIm&Ft2*TtSr zMu&htfj)=9_~(fCbiOCxe3DXm?fNq2yw-NDMl@LgiH)9n+Sj-zoTy)$(*#} z5RLk*$Vg*sBMm)cX(}wYHSB%`>iLbiCSOdVa-u_3>KwkC#uY ztn$amgg^GM8ZM|kkY5m24K|K%Hcfl*cQ%$`uaD$LCOvD{^n}Up-QM1!q_zM-xNksy z#r6i^kGeZIP^^M+Veh>)teHK0_7vzl)vJ4z%pPPfISp>>C4!dGrBCJpyq%Y$|9l=zPKPdXFl)r=ZGYFu{ja$}(>x$8_v zG*X?6_T?w&&{#p7(t}YH)h%%dC-uInP!Z85sAs_?(G|Z2Nh5XcE4J@(@&iSRgk51@ zl+!(0#8}?xhp}hsz!_@-}n|lbiNb@%eaew*nNmlmYeB(7CY2 z&PeIj?V^0w54Ff?j5LRFjmz#*m9RO(!H}8kFpU=VW~R~IpBS5#Cgq|XA`C95AmOu@ zLJ`lx7uGPrDz^6mN|}$11(t@;Ot9X10bJ!D#nzg@pAD*^D8uPnIi%)^U*1l|8+Oc{>`y?ww0`14Igj zUcIcK(H>e=d2Fd3RHYiS%*=LUU70#TxATkI4M2%Mr!FHv(UO5zqzd)E}(CK3M!pYn$iQh2K zmix;9!VBe_Th`68&6IUL5WEG^dXiw+al-Miwpz4Z05yOVl2}K8FsLMlz+b7w56B4U@Xx3jxi6DA{x9$t%+Hg~NA* zzk<#GZXoDh<{Od2Ijr-?DRL2Fm8uo5BnZzV`7_Gq97?bdvKhiC#BIwuE*~d*C@6$P z(K_y~3y76(CmJshMZoiI|8VB_c>N+M@PJ9yx|#QHwEA9#yb3z+vtMjQBOE9*=zI*| zVqtFkt<_+dg4pt`VD!h*A*8c_GCbSKBA{E*u8MC%3=8a0(5O0>A6f2)MoLO3&E?ZL zkK{>Xm<|z?>lGMWfUNZo+auV>3+6FTDS#y^_?r_Wur$Do5+)>oX65i_(Sn0u9S5SL z|MZ5Je*}mq!w7-pX5%cHs}bG$))#>=U?iB-xqxAx9wq)R`RWJ4KS_n6*K!D2t`i16 zpVRNcHncyel*8&SIbm=BXOzeKVa)w~z&}j}ID{CM=E=tZ4krarz*ztrJPd-(jm2L< zY>2F>5Wg`BgGM3oXs(L?=6I1JadFTe%;E@=HltdaQ_JHajqnP&hRJ}=$All$vAu)= zuq_M2dz=B_@pI|+5fIwYtbKT@?)p-)5K%EVlHxl|sf~M*aUxND& zp<*EiF187rhkkDRk{}wVx^<7FgOn)Hbr*7wU;rE3drtV>nfKwkQt5FIuDX!f!!jDa z<0c6zJc40!|G5SzO0^sYChQ*Nu+^W!&uZ0m*gN$+LsI!o=6m*6udhB778WkAuYYrY zD&*_wi*YF?3lwr}zbUwwq) z6*#pV@^w7(@S)Q*dwOg$%@%v1#l2liI%9J_d?dj?>~e2}^FD0v2_Dsg2Mhd)1$qef z#gQ>0em_zxS|*Cz zCY^x)W#O~tJ9kF_!!OZa6j7qZlAL+_gCyqLQ7e>Ept=Bp$MUy>@27yR>b+CvLNzbM zPxbZn-vF9gwHP2x{}mYj&oO{i;1m#oVwtk&Z&f-0f*WJ|sy(STr13v+*MDar6O6!z z=fG>jR>ItDN<}8*Ce^Q3k9A_8Hx#-D&C_ch8nm(}SMQo5j6{6dk@Z>nf6Jj`Qh;69 zQQGFk|1>@RW2XG?ejKBEt1nL*WCtrE0;8CJiy42{%71qy&nz@h1s^J;>qGsYC*%L_ z7XNjT<~%@PGEj>pqJ8jB5&D05h5ya{--@iu!GHU7 z(7o3Qu!i|g;G)}q`=S5MJ1T$;s=7msP3eCcBoh5->Q>WHx+IoR*KCU6Fx zgRWKje_aq<+Vkqca!qogf)ZXr4ug7N64x+5PXvKpSy%rBP-`9FcY#FNX;Zm zrGKY|qYLoZwD_Xx*iJC9L!s7A4*x-HtHH!N4)1oMNG$)bO$2P2K zh^)-+TGA(P91K%^w!56 z>SxcMJ$Ll2r2LOT0591oPDBQC3v<@yC5SgLWzSNIkSexktL7qra~euR=ofqs57gy> zuPv2%YWW%$j%0#jsvMq!8@Y4<@A`^J$9 zm^B~)XhVVz#jggmsU7`F^GSimB6}<^fJFRkRN50xiArz}sHP#!#r)F3koE5JrE*VD z6`jVu3IgcUZh-Np0{R^R4UFaUy~qmj^SIujqC951Uf!sND|u>%OFpS97nV9%l4r57 zr+|=>?w6bHFhYCttXVQKSVigL$)qi9VF+$(Xd6HH`|%d|Lye)vW0uTjfQei_TNs`5?SEvHEoPx>1NI^7{ z%YfT$Dh}NcHC;jNXr)$*2GXgtRZbT!vd`J!pK1jx9!yz3gd2k9WuqBz^Usc!DzK%` z--AE;jVUZt+vs{m%74THx;$*}CtjIOf6X{gTu7bQC^WEU77~Ih^n%Uqg#!fskK18D zx3d#4%$7aT%1_SDs^Im3G+}s*k!BDOGm`;uRzYaa3j^kbltS^$wIOvU@UB;6aQw0( znzO-4gOx^zhTxll*LKQ~+NGCB(tU&OgkD3xh0~p>KqHg&b1~XT>GLo*Hgg{i%ZXRY zS%*mlS~h{QEB|hnA{1CWzOfXeA&Xt`=-e(u6|w;!+kg#T_r*#xpJ;!+`T>LW#ihKaDI1(Gi!sYZ_qjNKW^Xg$ z(5^S(VapJcSkg2@!0RFma&)uONkFzJTmEW2wlj4aX7Z=jRh|wURqCH9f%`r2$aY zSgXbh38A}dyLf)b!kz?9Sq8CvyY82r>v&+EhtVN%?OaJ(BF~{!eRmDj32SKQ>iV3U zm}xZW#>Mz5gF&1sS(7dJ6C8pPHeHx7G=Rp}mnQ4w%aX7O?bM!>LS|={z&WhQpf5_g zE0&cOQ}8$~ie88B__yeu!}cQUkvo(8CdUxa!6eFT=gdXH%E$^wdOTwIKof)+LRi#HHSkF57SIvf^WZI*w&+IyR`Z+*8rinJE0)rcQmka z@7`^2r80{t7^;Ufhxaimu8iUd&o6Zj}H{cltvrUTdo6_&GaI65TTJ9M3XBg0G{RrA$*=R${42PH#@ z!-2fR^z$-cqcF`RlIngMPofueiOY)!4(iW>kXNMHn6K8PP8r8|fSTDhrJ>)ka;7PE zBw>f-p=uFLXSE`6p^oxY=e>8zm*q<}MKI|<0L7Eai=vlj*pWEh{PKh&>~>XFLqx=r zNw-#YD$!8-CnFgqAp_sU>1pB(l}2IG(9!6)LHC&O4m~&o0G|x!`n6|&-JJX$7Hmrv{7#)(U3ubj=yRKm1LI9n!kiaCHv&? z@;WnxI{ecaXLGKKbIxld*f>xEjTk1FWUPR~SRM-SmYvlW%>)Q^>*9QzbbI(wt(~E<4G7G%41>>zVuHKm0GGj%4-P2JGJ!t^k z$plhN>G9s6f=hC3tqc3}1BO@n&2@{TU63S3+&s1e{WIf9PvVF7IReNeXCY+V-t!E2{sicq zsBvor2Vt-b4lA$%3R+;n#ws^Ccsv-d53}RdqfxLXM9RcXVULFzZ!GIaIQ2vv{F3Ji zMnzkB?bbShKjlhq)%^2GpDx+kx9nIa0u3L>@pa382xAI_>3kS3pdOW{%0YQ#F<K`3ctS%ZQp*#M4UE3#DhCi~sZ8xUmW5>^$ z2we{p>Q-CE2A__+74`DvU#*g0{MYg!j!$5bo8xd0gtCsh)0Y%DmKNL?d@(UYVmSGSc7o161 zd^FHdFzrm{uNod!kJ}dJBTe_(;R{)&E8&%RJZtkrQY%TY-RLT5wEy48+?plrOxFHq zlF^y-c1ip4S}MeK7N*QAe15Cm(4XlgoWNXXIt*nGRaxofny`^`eHfveIRY&+gnO-7 zB83dmVq~N9&MG0_UsIzR^~EePs&^%OYO%0xS*eFi9-Q!8b?8c;O0MA+ zk#<1{4@#4AVL9gULr73~wAG9b4<1k6~7;4(Fx?FSeE@cxG*zq{b?wSb6jV(!%= zMQA5N3%p8D^rqm>uUPAzO&-f7;@r<}SyG(1;kzo(id}m_%{FKHcRGkV?8{A zeMC4aq4Db1uAssEJk*UTEFXrSx`(%Tyk?#AJ}7Qcts-@U=X3WCi!1l*ui9QR|_0>6Se z=N==JOZVwP>sT~?yH33})~R=7Sr3e=WPK_);6-`Mo+&jq2wS{~#RA2&8HlI~9Lb;% zfH8>F`#3{ZZS)zowL~cKqxbK_9lP;9(p&a!W_0_S70aJu744{4nvX)gXU@m@;6O=S$fsU*#{OD`JPkKd$Lub9?kaF7DY6 zrixk#Qn!84#0%PV@ai}}v~7dUS~^D|+1w~CnWmW+JoFDt=r_!M7Hbcovv)7lmx#MO zG;#GzruUxx+f`y-J1C1-<6&*FYv{WEQP{hPA_Zo!k~>BshknU$6>h$BUBo?S9k*HB zL1cD(37;&UjVR8SUvQfd>SOYolIA4c2%*-j^pfdyHC?NahE=I?H_dz~nenE}NS{EE z`F?2rCGj*g@4V;E3$z3tzIgI{I}%H8GbWC@tMc|D=gZ@}^9<28m?7aXRt_ZIyWz0f2@`8v_t9GPxHt~erKBZXqA`C-#Nt*GPUm|z?n>U z;O1PSd_(+0`fGoKL0hEy{GGWQRIlYTL6WFXHAs?!HkkIx>V28}*SuBcztNo!CCu`t zPNTi?xKUNLJ5o`I9vnHb!0@pPFz_>6_}XEosSQI|8xyn6WeQgN*xeK)s1wcpPbO6y)RP zL>zBv&&d-kN8%kG5^)q?t@SoJCb?txk$oZJL}!1E*Y`Vo>LjCcB11OZlVm~`ao+|%9o!e7eQp+?U6PZ4xMz50>m9L|mt1Mo(w;X`2fch|B z?fVnU?96m=C}`>kh&^l{KH2_LI+B_}040zL5~rPtaSFM2+j%*@Jq3rrUT%u%#e?0u zf{zYN(|;;&Gb-eEmmEW1bxq?3#*=&Bxn{=ra4590oFfsRkkJ zm7N1d!!@%AK<(e?-` zDFTJwI|*~CJ$65@S)lE6n;auTcB824i$mVowG}m0`=%HGK;aXV;FhQgF{c?0$ygU- zHWqIev%d%$_%%K~Z8=2UA4>9Inp-F0y5ok+Rq`pE6yvC2bNM<|HqhIh9{+Lo+JpuQ zn!S(Cf!$o1h%Ptky;oYKZx&2Nv&8Z439k7|^9t72(e+~gl+?VekpOeXyitWXVv0tj zPW}6v-^7Hsh1_#aEu;$s-Vg3fPGN~W8f94SE79DUvbu7uT9G$$@pM@!+jOR-Mrc*f zy~b~TSxup99*@`^YBfld8lKZZHRbcHGjjLcS4HNxcKk}|oqWwE8F^I;+V%lAp{LRJv$D_v!eOcL)#&9( z8r+$3V~z)2)sF@OWON}T3P6wkzI@P5`k<`!{81$RYuSJZ>Yo-O`-UwTiO-RYBmI?m z&(3@yob?D6#enqAjPo$A*YaV19ezw>k?1oYwv3Z7OAEa9 z93hKKFr_^fQI5lYZ_@$@saYDS+}jnLJIBMxsrOatvO9!qm*=+Yl8lO((j(X<6^P*M z2gKqfb9~NA7Z%A@0HLL8d(v)uVS2J`t!DvRK(29x-s++D()~FeQkaXOI}iSQO3yx} zO@77!1$uoqF0WwXSEYOv}-M+8qxNQDd&m&k{nScwBA2la0tom-r~YR2 zzVN`)^xBC~&pI@a#=mKNawQ&Tw6Ql2Vl2$E*^(b2s5AZMN3-X9JGSpa+`pzm0F{MZ zE**;>EBR?o;?h@NKqOW=)Y3-HKcsv8P*8 zx-zsP8!pH()V{H>r2XC5{$H-S>kVoL6ZUmR5efDATh;xYkQ;$NS)fyhCraODKec3A zb=+}}P0N<$LT{XEOU*w=Jyr3|fF`Kht{-JGo*^kGWYyZO_7ECkkYH9jY{dvFvbXv` zvD6Y&HOpPmjO!D0dQ7AWPUl}y4NnUQ*^IVhOMfzHdGs0(@m=%_pO##o;j;ZSklY=- zq23s)kc}I2sxp6v=xJX%yesIMxqTyYctXV0adCvd{dkYBgn=*X*9{!Gj)eJ{rHbRE ztLWwt{!F(^?xa6)cNS{V{A|0_OoRImh}rqepKgF>&OPlW%Tk@VMS`P1=_X=_8T5~= zG&CnRFn8~TT?EITy{5I^Jp&}Tnk!n|i&Id=aAph%_5uAL4Ff>`IF%wnl1&v#?k=;8 zqZZ<@>xC8E_ZrY0*LAUBGib~87gKaEU}6#dXEBLlCmF+R`33r|+M`*$vub$B!p8@9=S=6L2i@5`sP z>9PrG1+PRa_a@$z!ZF{w50}92*eF=|BO_EsBGO2RPn?}&gU$SjcDcdEP#Rnsb$86< zCdbRLvc+9}s@*vuSleUSvZ&-y*-a_=2%DjFWfq3-hh``ug_|e?EkEz+;#(+t}qbp)9$OOX6 z${o&`-n7px)o?le{5>xh6?PnvhoeO?sL8-8kf`zt1#@WumXoH+1ZMQFCS+$0{EGUf zYRzuD$+# zb zsar#AX1_aYnMJ1JvPc!)f*xJftYPgkJYP^?XjVTEFi%I;@9H~mJYNvJR zm(4zalk1AUx_h-%z^@^Wy72FjF)(wzJp`8q`erg<&eNGc{TVF=038I9a&!iT1?j)`f;wyI#FNerLn>&$wAKfpG(s@N5!x*Q=eXjM<@I zLHOOECzlESaL8>DbFk1KTTn$Lc4)TNAzw4QG6KBIU+nzSMUSIBQErm7>l840;+Q34 znIfmd>ot-p#BAutx+J0c9?F*~GXZ)199*^tos^CQl25TpJW+m{&y;tPPSk6beO7!X zxh@icrvu&gH{F5&^$PRm=jn%{xsS*bGjFk7klM0!m~bkFK8+#xpZ^%NeJB!Bz-k?oVUZDXLjNRM6;( z-R0PXpWsn)-_CrK9x&GX07+X6WlG!UEfB+^ATK059`}RVV7+RcH<)oOJ3?{v!c3Ed z@AefFROvIF)mSeMqiIUrCa@33mN@U-N-y+>ch^-lvnx8{>3niH+ZALpJ2j8}LITWe z%T32c8}FdslCkYn%NQg%7kX>P23=MvI$TSA$^0Mnejr>VlVS@D7_V%OmRb+Kchv@X z>4Na#NQxSzSf!#@jrD?W%I=%ekTcKC^?8rXx(Bz;P8-`?!0PI-)&|ZuV5V$>mnOe@ zJ5qWTe?Mcm7r3lX3=`{H59WH?!5*d>1Tsx#q2||4-{f+2^kP0bD`CV_Cs5wMm5!zK zk8-apJMT$i_`cR3ai7(m`kb~<_#09|DqI>;>sh(%*3<#tmAr}!x9JR>^6c=*3dox* zLP3JDn2t_-{Pp_g%mc_wc-LQ@YS~^K;+D1DIOkv{d+pGHc0gF^t;la&_BIX4rmHa4)1*F^} zau@afEJnS>RaSS-tADCRvS~8W3^e+RM7$rj2}>QKk>&Y zGRZOus}TF7LuCS!1fmcDRf}I}6nIIf6*5<4uwcSrs=*Ly&-ab|(l^e8m~HqwUA(jl z3EuSJ!jRkWpV5SKSpsKwVXTyzum& zr^njI@e=h$nJlb7>|z8Iw&mC+o8!B!qNbRKL|jrUUC~)U2r#7gPuOJn)cPh>rF3b_ zh7BsKDe5tu)%^(FMb1<=@qNih$(Bk~4@~I9{nF-6O)|z5`@!lg616MZ#(`&AP|B0K zSzx_IZoQBP!6{G8{WYo6f|nGhq?HhG?P?b@WQ`RMitPX`lQt(5&HV>ky?vTxdxm?1 zX>q3{WSEWoJzKytqH{?64w=FM+7Jh5fRu9ENC8g zJ&V{J&GXG=<>IP8+nqk_vD2}r-3d{&FEy>~j-jXIi|pTPhBqB64{&2!)^{!!rA&0G z*S$gcn09#MI3Mt(TLl%id3h3{p_2(|s~5a}3M(42mW{Lqu{ILqj`4niAbY$hmhUH< z`9%_&0vJFc8VO5^$7`B~vE5IQ*054@(QGnRa(UjfS&FlbQ4#MTSM!D22b{?INp=a? zW(?<5j8JsC{q!!0&+z{u?kmHh{N8S91f`^;kp>BAX;6_45k$I&?vi{!6r{UbLO?>g zK@_CB8)=Y`Za91J_xr!^d(L$}oe#$kb2--xGtcb(?7i=M-D|D8{m~1r^F*`9q4DZ3 zYrSXnobnl^22BdO2!kjV-zZ*6;G4~D zbTVpJHA-BaN6pDA3j#z;B-d<^My1J9Ain)KcIqEq>+^eOhvog-OM_CBk)?W`M62Yz z_e4fmIb8rcP`~>tfGSG(S9YfB3Fm!RTfGDvAFSIb_|Dsp;(!T|lc0){iXgy=D{{8_sEQC%jj+N`P{XH;bxSx@#i*@2@SLbTeH5Px5P?5D6 z|N409zB*qbJo-hZbWBvGbw*4vHd5vrUY6S&p8VB8LqCs%dv^Iek5Fh_2m8&6S)LKe z*So~*9sXk1c2+LIrdRKt7@jhI@`JfKti@@;VCmo=7U(c1F9kROae?^WF?~u`9DP$? z%KtQx3cbK2X16NIRJ0r`uJkiHqViG|eK4R0XRQ1Pz>3x6wcKCf=@Z3Zc>!kZzOJ~R zxA)bNx)62dq^FbJ_fabgDa&wj0UFSXBgVG*>NUKTOnEOCQ5eZ&n9*DK-{9I&`8Kxq zbwgj7A!)y+=#{g61nplh37xrZxP!$h#ZP~&XR#2 zCrTyKrKmczt4yj~B==tE9R%+xk9^V0@xvcGa5PZ9v@-`3AJQ_Ti}qJLjlPT>+fFr1 zqTOWkazCwi-lowDI}@G}UAJ%H7P)vH0bPM!T~Divhcdl{gmm$A(;bpj4|#hKDzn~J z+cjOr8#VtuiOIwMCOp&&=18O!2cSqO4YENKK%sywy6H?BAf^3yM0)RPP>L$Bq@+aW z>KAxN44@-@aK*fUZ}m?IYmB^ig_|rY3%B4fTp^?7c_Zy-J}ALs4G-nUm`zun(!DX> z=}oO_lEMQH`l-r?r;LhX%qPXdi5g|h_kS7g%wlK;h`oe?f0a$FH*jpVQdR|*7tMlrrT7#nxfj7Jj#VQY^xKrl8+YOr zM(jn(=1x9@)>N<^hnH*D((tLMs6gkeY~$XfQCQ$~m36Xwx~Pu#^_i)M-)G<)%y%l~ z_i?6ntD$)&2gdS=dSL^J^i6Sh*J~`(NkS$54Co;$k+mpYW3w)$Lsqb>xk^sNc`T;P z7ft%?*OQkv%@yPJ2lYKIe&{(sP{8iq3PYLE5|4-OkMH>aC^PY%;F%<{&;8-8KSB&& z64K`p1pqqI*rEmy6y`Ty#k1Rafmo5HB#FMGl9e+tnm1VaDbe59w(Z2U-8Jo$Xw4l1 zw9RqDrVupt!?|BZp-tv{iu(lkA8*YyY5|)8cHrV17%unXEf&S2VfqG8WH)cBhUlx8 zOa=X4_ZBWhw4*%Nt9R+W7Aw$zeuh(V2-+*|9<2Xvr^10y1MhJ3AyTqsK(19u^p=m* z3XIz~Me53(*jrG>8imBKuaBywb;OD^LfZjZrSo{0Wi0-9D5rS5NQ*J2r}57Wg9IAA zJqF$Ex^L@|z@R2S-at<8=2(6-L|rtP=piXjMD6wW6a^%ZEC%Ehw9^Jqq~6cc==udf z-%=b?7D10j(4Y%mtr{FBxD7E*2=iWvHk;}9_i9z^@ReC~3NLDv*YLRIjeGgwtlEh^Ir51WInTArB-kMN&!~!M-Jbo3Z(vI2r=JLw1_Nb z22id}Wt#*m>1u0T^S4>F40u?Y0_@o-vI)n^eq(?@U7@e8uo+W{i2B2wV4105xG5G-3_vC zI%jBegdy4pFCR`w0wfAJA+%2?(;5&c1zvRTR)?P7Myz*GJS_>T5ydCDb7EK3 z8m+3*_az-(*b&tO7~6LOB7R~ScLaw+*6$aA@?a#OMad2`gc{vE9r^h0u(kU7z`l>I zd^?nofN!^cKCr{ReQW0W<{OzZ0uF{Y&9j7nYU7S%eomfrzPdp1vijT_87(t3_(@`p z7&2@R`@ogBDU8jzY`BiRA2ub4J?nXNA6+Q&$0zoDNtS<;qgmo6qkA5Hj1YOBA zL>j*wa$q9)R_}Jy%`(Cla1@v1K2yrZT!4kYAOt~!F_&PBrOA=3r^OgNPPXq_Yytc) z%GnH(lk8Y}LD2mDO& z9C}rW0{6Q;+}nRks((V{cK?Ly09+!zCoD1_f|owbO}< zB;y}8BNFoWp;CHW%ItB=^}zVMJI6|H@*4KssbqS4!=AXV{W~oHPxyNfKUW9n=6aVs z?urncI@ z--}VoB#xlWYN$f^m;SrQ2A+BbJBq|-HX|})7`_A-`KC3S_7Q<)Mz#a_DFaep`%iFl?-{0NpCl02R9&`@fv!iGK zOAoX`0ush}Q0J=GDmTOV??d$jPZ|K?#(gQ1os@jF_2BzIH8&>l&1iu0)A6;oR-k;BUUj=*xi6z30Hjep@5{cNRGDJ3!AxL~%}9 z`LE^CfOXwc-1h;#6wEMZY8|DJkdd?8_&)!4*0s3j-E8?pl_*A2`u$UvHFxl(K0YU~1ANacjD80L7ZU1vAAa@O$Uw?v4zXxchF{h&3nj!Exx)Xu$YWE$}TR5kh8FLXI zOvs)Wtm47#3}N_E15Wk-?^mHkeCfo~B>CXzPd?4f&Dzc0I&>Obor$yoQuk3%P^5u( zwMdz*6XxIa^7a7u`*1&8Ts!n-3h+i*-qC@leA%FAKSgan+GNK65&yPW_BTVhEwI@k z1O8xbOMo~&4N(HmnYvrH1nr*nD8nM;hyM%jm3K0Wn&n8;*!Gm1zP>)q7NWv!w08Ta z|2`<;e(dH9V(8VJ*h>ZOJ}-i0ks;0Vs;JG%&5j<8@+>uU#{WKl@Y`@9AITUYXd!yG z+_mJ;Ez7n>%A_wvBgoB7=4^i@+iSWiiiJ|Gz%JaB5h)Y(b)hyr@Gg&PzM12Y3Ztxq z(w|cOh;KPY!iT62->5Z@>%~h^<`Xj~KsQ(FY2H=A+V$SOlsEEgeSpAn{IJh?jT2L> z8QEcdz+igr9|ritsXns*HfFa25>*CnZamL(M1JJuKfh@4$mz?xF0d0h9pmH^xzt2S z1m6Hs5allcavz^(848wqXC9z5!3-Kkz9nSaoak|Uf`pDk83VKilTuFtO79|u<30h2 zFVIE3c3AD%z`M%Czw@5)Prukrg4)9!*(T4k??NG7ciz7L28t1qwyi`gsvWfFOP#4T zj%&ps2~{$rYRs%^L2Jj$!181szE#7QC~%%`o8--V;G0c@>kbuKwB`+}0IzGAG~vbP z^I}RVbV9D%n4gAj_@5EGQf4s$m%0(qCICB$np%%)cR*pSF&XnuYP*8igCs&mr1RZP zaO$;o%Rk74$8W$*83+uOQ9J;0nXx_OM(rPdQ(9)q6TLVb{)CK`84R=1 zs4y!f@q9veaeX~)d~cI+7`lk%5YEheyQ`96pY`Gsj_fk3Vw$jdxwSbiE-IoD@qk`7 zkR?7vi1-W*aBiie^`;0qccI~%xqK%VaA^Gs{d_N=V~dTC5cBw0oA(+OGzefN=Fp`> zV7lJO@@xyeQ0&49cAb!FNl9$|{K9^ZFZ_EgmsD+Ww)?v|@+bC-D2U=RM;r)OVXqLI zk%F!88YjplR654>!a~2|kT2*07QB5)zu#DEk?3De(*nq(JW;zV3>NiS!b0Ku!42Rg=Pz9)XF)ft*au zR|KD->lbRU@xcIIREY~4^VpOWCa(<>^AhJD`S!J=T@PUKih&TciN223j*md_0VmV_ z$U>#RC(q%vd((_gu3|F#F3tlcZ*RzZ9~kZJKW`7~!!{xNch|;!gmfOf27+jlq_eqF z&_1`;`^sIpF^RK4GMH$;6<HrD8bx?02m5*PbraEnHsgVe+DP81gv&Nq$ ziD%@hHPTu7^GLM+fxqt~2VyTxA^uR)1MV@;6HE5|9~yDqGf>U$GUz7Y64wMHX#~CK zJ$Z+ViXB(F2or(iA%&kra40F+N2gwR?e%sR=f69$5E4)=M*wX&@aAxQ-hA;y7Hnnk zBw(n{+0tz_(Uk6)|GhAs+x!ZH1y|o&PpE3kb=tpv^`sL2%lL#;*WpHv-SAI_2OW_5 z{#YJECr#uPuY}O|Hhfj;#hGsyQw^=odw`TK3r;!fEdJy}?f-;-)Ws-3`pIb09Ty8g zy>7t9-!cKUCPsk0#@(lv{n%%94tR?>055h?HVTj-lZ6LZxF74jHS;5zbdLQ{RJ#2A zjpR&!QP8cTpUw?3*;3K42)lcyVf*k6AG}gw|8Su3A~>pxwbp)!HB0bpoSB`&9_~uy zHpJlq^;6E$OWvn^yaTxMB!`3TT*uud@-MRY*n1~#k74iufv*IBQNNb=W8z zJ!l{oa?ytMKq<`UljatS4Q>ZhD-Rla@6~~H0$q%!^*1n1@6wyDl1Umd&$dn;1MP=w zrkixe68a^@mVht1Oe{-m&WBpW-v#fBe@xn2lpAkwX;gbRYAmi)m_rs?t{?VSa?GQD zMhRo!%n2MA!q?V9Cz2l;Ruu4xpUx@csaFC-Rwx@VggJwd+BH-_)b=DZ*u1+wit^>k+p9yTT6xtDXBh29p) z^OSGFdXwO^?YKgXvdik<*IyQ#&2V3?JAlN-4KUVW1DoRD6RxV4WIGqaMPop|DmdH! z;x=08$9o{?ln2MsU9M)+y`l3?6LBTjfg=Db(_`AHAZ=j0PqW*20{X=dND#5Up#}w^ zV{%+~c*xyaDxQxtY0?=HR<^PGipyixTf?gCQoH$=JN0TAvRGBrwB0GST!r+9f-Zl4go|}{&+1`HWJZ66%|QJR@-JwT#0dr;e0bet zIc~FYbpG4n@-z^4e25=j@$zhJH0f9f|Gss%$zV9Q_x^Bc(LnS-g?H-0QP|l|y<7L# zLVPsH($N~nOZlaUb~8d(CFR@o42@>k-g>M#I$$cb^wZGp7NrT0{dDxXn} zMLh}`#y1LFZ&$*___{cvp-MkCJxJguY|+q5zOU<2f9KH(0z57W z#8}Vvx5(L_YOhbV=-h7(>)1N-F0(nosP$SamJ2m9E$Nzo1fVIY6~o%raTFxpFPkRZ zn6<)z6!6(6Km}fVY^iCU-_dS7ZIOJO3}64@j2%q(vT4T!d)FfcQvM*rZ37%V&|sut zUz4NOgo|*kBk~z3ua$mW2AfU$yRiiMQ9-m%__INT2T{P{@_o@atH7O_nBlH>*7s_h zyTiiQpFn|CMfO?#DmQ~tJ@4xfG)fI~Saqu8*^}iHZ5t2LLar9eaTBwR953mM&xs4a z{D-=yj|5h5NrlB|m!kG~;UqHJy*pLoN8M8}`XI6E(`ObVc@O8kFN$hURCMZ`?60rd zoY}VEk%*xZb!g&**5+RO)>1*Dojs(#Y9;W*GE7^*vvoysC#eU<2w1J*F{`5Xzj8x! z-jeBc8tpJL8ljTJ+oaX`fm{31*m;ss2U||g9Df48Zk?4H>pI`y+LTPh;r)7#r_>&w z1an$c;E2>{&FBa*8jnpXi2RXWPJrUQBN$@}}UP$Y!U1Y=L36@Oc zqHb>X!uG4=6^1u2f=j}yy~28^EIuQOgI0f$uJhjA=0PtM^tLK!Fw;i$&vaC{AYkWSeJTb9Sk>blx1~HrM;Rc0a;ZK{8MXEaCu?T}7)_=moY(vRK zA=c*%sZAv(k+wZYyzA0bY6Ys10liTtnQ~6;IZwy&&#yQbew4#!g3j|YTy8)zwnT%gO{x%ee&xc1!_1-C<$x>%rw4z{sz`he;YG1@|*M*Y|ZXV{il-DLty z{En{E&vDbN7ycNaT4tn@E6>c)G|)>~j3_G=PI=ecB4OM%ab@xy`pr7x`SsCU<5sEr zfy-K-jzQmDTR%;U7kRr)XF#$TzLb*0Taet}6y)_q;`Kjw8^J&hP-#rVxJE}Scm4(12nc-xnsga??BU zYh&9&WrzK=`&|sGdKkza5<|vL7)-9t#;b7ET31iyw2wHR`?>kS!5@(2 zycS1}3BaMUVGQ_PrZ>neI5(F6ictV`W(%Pb6BSgm!-ikvXC#3~>M^9qbFpET>e7B3 zV$~YnQJ)nFcX+Q9w14#3Hbp}kY?_^0ueXiIPpMY)%7<{<%Hg=|_qB_$>0MdBp97h|lZ9>YRbpSxqS(L{ov@`3|pDP`kaCCenwYY@K2Q6-J9hAzNP~ z$B%2Z2RkN<<`yu$jWSpyn}Fl$J^#x_d(o!VzpKB}f z)t+)?V?npE-esLbi4!T8dQ!89PD@J1h1_nuOxl<`tZn+_g{8#mH%e~R<&_;`(jO742a&~Mb{-G2~BapN2fFA2tUe$JEeAmVUu|GVu8 z$wv3EwcwXeff|*3@#h06Z^XG?NL<)&b(vm?EBg58!Y`TA-UcVSlRT&Ri7NF_6RX<} zs({(+4h)_^0j4y@h@peJn8zYr>0-^QkIO&0Hy;-alf01HDd|@KWE^Nm_9k2USH=~% z^Wtbe+<5FxWF|Uk$IjI5V%e<=ZmE~(+{OR6{Dh;%-j;@ zWR6B^Dj^nTDUjynso7O`^xJw9+92bfiv=YbL6=TIqv>t(Nc871bq_+;xNOM2Tn9+dcWbSGj9J zbHt|5(Z#P|!b{yHSZ=kdA6XU~7)*Z@PA7%%znW+ZQlf^XHL@73U7AxlcM(S@)rqoba6R`nd@jrvEBDaHCmC}c z<@31i2D8_^ryQ(5@li6LbrqZSbZ#X9$7|NtnqJG^Fk{mtwU@Qx;5ebFdr@0vVshgx zCe*jQ`G&%8NaY)pJsfTkxOKa_3$|C@f~f;hO4K`XtI$L>{^*HvlWvAb(2dSdLXJnw z3d-E5z5_@G&pMt_wRnJP??SOmioM|x>4miU&S$ZS3pM5or;garnR@gJb{c@d)7;0b zg4P$p6^N28TB>F|5<#g7w}mwmXW$->)Q+jwnGJM#!qr(QwNo(D=)q_mvmj4<&w$4uWF-+3fRIC7P9*L>w9xR7pp9fXlHTp)ua*kAYU8UR^v) zq8m!e7lSk8WsL0Ptyikzw81W=QDaux`yv7~S9Cl56+oU$do`2&l9t3c&Y<3Y$$wqN z5E7kZ^Xp6Hb}jZQBKhbviEk>&{cxSNN+G!#R5eVkzeSAYtQ=FU$(0IxVQjF*9QyaNTKG?!a>(Utef>=FlNu zGrZXG$$B2;g0>iBVnfaPz036fpaC<)1DxD!VVorw$yt}#hz(HP)c4oiffp(ZY@LxT z&N06iP~fo)Ck6@tpnl?@%gt%>(rE>*n<~r6dnsaC0|XQ^y$svtef7QQF9p}U8|6G# zWkgpj=i`@6vpD;M7mkxVQC-ac4c8{p2%jN%sH@Uv%b=Ng?b2DP8v9%uHnc8fEkHTemec;er(P@UvgLPZ-_ zCfR4L#M0gB94mg7r93=KZZYV6vfY=Xm^!60VLUuW=9`-CH5P*7CU+%86$z|@yD+&) z6u4le5r- zG#*C5h|u9Bmc~>af{?)!EqV3+9tqb(g)gzf$e%|dxTS@V9G(TUMvd3<=y`yYNeiU^cV1Pqn~WWd>N;!;(S!9`(Qr8=r;=}o znrzU5r=PW5sPWk*!Ewp*N5{)7xD^85$ZCN{ptS$@XXdUHuHFL4TE` ziAdl>2q=7>SaUU*Gt{o5bPE~-e+U!3T^@T9(+u}Y z3l$K`aEq49rFk4DzOgKyQ|&fn(AQ~lXfu|(wtc5ks6$P}(q+N0d$oU{w67ALR%Siz za&{Tad5qTphM&ZSp;+Lj7x~2l$X@!-Um>UX;(a^gZkG_Zw(O%Y!69@#Yg&kb(BW1O zu!^*CupB2mT2SW(+CHd)vUE_;>w95r+IbOX2m^x`a=vXDEY*T)=&vnC3k|41P@C>4 zv?BxullYj-=9`*xtR}f0PJPKwpn6MPuMvFpPD9ixa6QTpbYUoOH(RCVDEag-EWC>> zbue}=yXu&qB=B`|Y#d*m zF-^#|?{zBBVAj;39MJ#=lXDT(_|#sbclFF^jCQot%Ggk99V_~EE!|oPU`JzHaE-|7 z)@BFn`l*y#T}!9_kN}Irhuc@QQ8&8zdJ4uUB`{4jYmIuBD5jg?>w30E?uy+WB@a(oGWQksNS=3ewm= zJ-#Y5!{g=6sr{_GzlW{TH0>D0Vl?5gj+ff+eL@II!D*t&0CelpTlJrf6T7*05+t}_ z_h;at5EI^xuT9-6WOq^S@-IB8`+E?6JKU#Ys{j}QP3C-upDoBfaA~l|lI0Lrdp5lG z2M`4&fR|Txd-K|iD94q&G59jFCEf>mhInkjum&6mFY$5hIJ~mU50>1MvGYL3Q;s93 z?LyBmRcAPIacEMs>h`C<_4f(yi~`v)V629|M2JW$G0{(l)^a5LHf;jRLG2}ZrGxYB zk_%S0#GTepa4tK7(P%+WS)k+?O3~(Ok+??bc0!MCv)83qYzq~W;Lb_S#9V&& zNVUbZB4h)Mu!(w-X+Ow+Q!&O|;)r~?_~364F!So$^o-W#B+x1GN9TjWC@Z`o_WBvX zk^eoGdq~hNgirrll>P zppaRmMloxq?3mT$JN6~d6MOtO{OO008eaGckw;?$#*5>`PIbA|DoH;(Cye4T z>*;#opBsUtU+u#>xx6k)W0V@2Awj9oj}SL);q^-zu0P4 zxfoa5zYl1PlaA@`n{y|rW@@c6aDa^*6GgibVt|wq8SV;-u)U(PX4R7NCbj<)UhA4Z zj&dl3>^99n?i|4$X$}Z?MTe>Iu?A(L70Eb+dX&xx$_lj9p zx?}Iw9m5^TK#jmUJv?D$#Rh$@YFjRzy=a)e-!MyIBkW~zsBG*HLa*SGA4 zvE$|Ww0)UrzpjvrN?(XUtEqrJWL^fYVVchzSGn%+bIobWGkHUa6;0_%iLJ515{=?@6 z(lNI9m+9WH_^$nZ7MAgni-0$fkj^;Gt_9M|nIZztmm^|cV!FDXXC~8gru9zci1LK; z;^Am*W(Yx9_s&jf<0bgrLtu#KGpvNU+&?Q$-K#4At3OZg<|Y0B_XNsj92cq>{fUYdD{oaXE8-I9hV!&5n@$1WUm!-$wclBGwFGPej7a(?Bmx zc0JF%4~?Y|-b*c>#{e*@Ds$b{HJ>cYx!i?rg4YR-Z`FQJ@M_*3`S;8_DX%8bH@T3D zt}TE3nyiv5&EVWkTp=NL^oWqFnK9>%2d)-8^?y$H2R7g2@H0flYOXCvQIe9(vh`LY`lD6e3pUt?u_O5j>G1+fTU%@N4`q;NK zbTm_Kb;ZqeDpfx0c{5wB(%%-Pg>93rFCnlwl;Q2w&i=Vy@Bz2k0z$s>weC;K&*-!B z4}=#Os{_qEPcs9wDT|RsvtEQi5pct|@ehFe5C(*~Kd=o=I#VR!MpNrsRX|h2tdr*T z0#5!ZE3TP(S!AJhX0i3a{&}HZjh)0;0=;%vVu;-T$))dg56xBj4g%IbZ8Es}Y=3_( zcx8~Ep|icYFkJPI(uYq1E2)eYU0uJFx`;(c<%R=-?_Yurl``wZNHX%`+-sgVKnfQb1A|R|EE+RAK4t^EKZ* zm3H>JzPMP)k#(KQH9*?hxbSli!S@Z}173?59@{x>a4NH@^?DKNV9P_R^(=yc4M42+ zX%ga*TL6yZZQY*n8SwZNgWj$ebaK7fCrcb0(ORwAX7cb(dH@bS+47(;^+&em!q;SO zR!0u`(D@h{$_?EJ`Z~k70?hlg_IhKDA@pzrW;T{G>v5crY}X0;t6#cQsTyL=4T#4) zgK2y{fSDHpj+R^t5-QzIyzu*fCC#Aia^!W5W~H?$`p2mX8+c_#I}wu5$%dx#2u0c0#CZ6d};KGC<{Ou38mhm^zPx5IbFRl)H6O`~e4D)G4mvPbbU#fKaC`xWeYsJA9bnto z6d=MR>c>@%WW01`7wRp;J3p!bq=lUs`6++#!aE=zp3Jdy){k0*nvgug(&CT(U@r=M z&m4^j(l^`Ms$urbDME7DeKIWQ8&QMky+c2cItYYc8)p_A_4g+E^+IFOd&`dcf)ruHtOM!cB$lq0U!xSiIuQKSBfnpI(&L&o zQJ&3kLOif5oTLFY0VC9%`8S#$#qXg4LXD}P^}ob=1M5=9I(C`!Da(>T+Gr(a?v{FR zj`2}5m2}GI%@ZG<-0#KZftorC><@C+Mf}0w$q*9HQy6|W8Ht)eJ>2aB0;U`gg}W4r zmYxJ0*MI(YeofWUB-8w2=1KHD8rvdLm%tL}y8@{U3x4Z^WXT)0D>07~L@KpXRJ+rG zhx+S{(F4g911Qh&@-u@P2MDt71T`8wQ%(x{bcc_Ux>0ub4o#!q$bj5>X#dfQAX0=xPu52hLdqf;zKpXw(#vjK2is@B@9QED{oVVY+hVWkDnRM;>!0N2u zL5jYFv*uqx`);FaT+A|OOLv$O)5h?HEZEqEGnv_^Gf3hw69z5M|C$Zc+4v&CG!?P# z4YP{FH}IY`k?AJw{1~Q}-*>VQ#c!9qZ{A&k{&d6^ZkQ?+FXozbv`EAZK9LK0PGBqE zB|&(86C8gdKID137@xCc_~oKwkMVu9j=m6>w%`{ytB+HkCmAOG z%j*T_Dc%?;Tt=$vd8x%EIGnZLG8*_81C!~_ZaMa zRV~%4m?+pgHc$7Jlh)WsCkYcz90K2bKiVfud2B;9L4}@k*14DvIR9#8yfhIbd2Emq z)0N&PzpM6UQ=Ns5gi4xXzIVa%HeC93yNHW^_o&tc$6s#q{XT{_x)?a|Tlwbe=OQ@k zkQ<%)?{H$g5^ttz0Oq6^2a7cM^^ zGhFm#LgiFQoOlU2){>v^>6}-{WcXuy#78*^3^4Oikf^{P?!%TVymbom6f`+PpH3b>?-$ zd<|sphgU`E4w(@lVMr`Ylp5_{1{ay!_#z)W$i}nKyX`OIQ4QZ@uk6QmJAfV&8qEe- zX1K~xbTZlF#Oc5?Ds$(sRzl0B#S;G*7kn)C$>p^$8-TGbM=j(k;fWz{~_^LG6ZCLtu93xIqKxF+8h_GZliTem|U+Dnk zx)mTgk^Zlt1_%=I9XO5xv_Pw~O zfl0lfh9uKiP{~6S|BD8R<<3*MO?8kT4*XRXjClC`J2#uL-D)=OWCFksv#kXkuF+t@ zkb{qQon8geKWYMHFrXh67m)wzJLc$tmA~sOhi1I*Ix@>0CNO8vW}nZ8jBU6sode{j7-*NJ6_D8<}Z0kwB zYEBZ5^`HuHWZwBz6smauz*c(T=^F_)L8)zVoT-b}K>RXOr3h`HjPui!eDz-+^w0mO zOEJyF<$ru*P^q1I#$^ue$6R#bj$dio>)d#?EiM0VOG%e4V&;q1ZcgZYopo}<-l|sL zSo3UFz(|4G@R>lv2aqav1{Y0to!wpAw&7^}^RB}ElgZnF=Wf&AC4;T);IOnYFjZMp z&r^>1{U;llK{1K-fS5go4HRI26IF^rHx$eLxzeLd?U79S+<2|%^7jC$qnJ_4@%P#* z+KNEfLcpfd+9Vst`VeI6jyA#DA5!aGI(>ZSJAh(xrDw9d>KqWM<*q%?mh&04I){}+ zm}R2x_Y+U=jNG;<0MY8dzexNk;oIM-t|p+lOs*1LV+i?m0G&(}M5hvet~T!tECXm{ z;`vfTNIA8E12=<^>rR+^FHn|9+VECHz74(gV z9*=E??goKgP&6W9SMm%>iJSW)z?dt}cix-PLU8$Wi%Ox{pvN)j8*G;6LFf|D%aGUc zlJd(dDbek-(rJB~cJG&73Bj#Mo?JcF=JIaiQ zUvbFzZDK$+D+hO|FErsn_nja<-G!QOp8H`REO+8x#J-|MqGb4L+D};v^lb$D`v}H3 zMmYkMEOvhuBtR7^h2YWao@ZLp<*FGc>nl+#Zd~TtZF-lErYQ7DNG&ZbK)~^kS*yy5 z$8zB@AZ1(o0xd*WMRV@7#dyg)HIC?my&ExJvc30#_$#2mHdOQS8QEnPL`cA<`P@QS zRmUYcq|G;!tj*mEOVG)=^w0vPw2A*3YPaA|+)Q015Zv+8QI=#opda6)2E=MWEgYA(hIfm+ODMZ<$j4 z23g~9rB{+FyTbgY>uKck+X{17cdH9GlhARWoV7T6vq1~+XT z#CqWtOnTQjZP4Y&#YK&Pmh9{Yj@+m156c`zStiY{@vaMO_0AT{m7Y~{K7*QP91_IU8AL1 zzegCkz~b+i6vn^8z@By091<6o7ydV)^ z{vp4@^oPYiiRyW=C2_77RnNzozhaOHvfD8+-U)}Dg1QyQcDyN;{JG=uO>295yPMe< z$UGgyeJX6AXXFz$>7U=;5Qy_cT+RQ<_-0t`*=ft}`?Z-^k-GRzKlu3kcmR*)Ub7G#)WI`z+QfPT142P@*p*Xj`E8@J_)Fw5uhoVOpYwD zA~a2ht5W2?ye_g@YXf1>%B<^r+`!ktOUL{vc$H$U~)Uj)vN#E^_#+r^t&xV5=qxK~1x3gHjd& zLLb>?f(#9oqLsuRrF#v^c|W+!>WsURV;zwu{O3T6P(}gx1r5DyOa$=T>;mzZmH!q{ z&vbu*#RU-e9%PWh^lM?w%Yjf=#-E3YGh?UV6J4PcES!5N{`)-j7wbJuB18o>kMvJvahz} zrCU2X;D->-suWoe3OOe!qVk=7e&`}w4S+1EYC&eb;uO{tG4)l5;|=d=jE@0l|w?)M8HgqVpdf%Zqs+tu@N08govZwKe&>$A&)ev^^Bm$!l~ zz(-%n3Kx}4c&tqb)(LJm5~LpyO&` z;*e+7dIrCUEhll-?pm)N_3yEwXb==7Uvp6h>*^J#GDFts+U5rld-g_s1pN0Pn z%I7vAn16@5yp={>{kg#ec1Q5=gzG}q1{T(NGm*u>t&HEPQCUU@J@oykRoziZ+v;ZmD5G}THs3r<)!lxu83K=R1EU$Io$J`RQc-B7u9)>aC#P3tz6c5y z90hYoSC7~E3x+TGp)DU$JyssNIIp{husK>EZngkCk{Yaqyfv#WsaU)gf!x((f}^?X zvxr#S`O(fct^<_9*dedBe@ z3depQ*Pe~!*Cp{<-!H%#y!z8KtdxYER(qeEob^jD@lU|NmaJy+&<0ha9LWRNuQ5D_ z0#2-{f50UxUv*u#Hnf}5#0>rIgaJH-9ofCbHpry)BOaf=w4cA|^{G*(VQ$0--d}Lp z_YW%1^eTG4YIL=hT4Wm;00ogXE9{$rdUkl*S4vSQB9ohcLVeFOaht#ZOI}==Xr9L= z+yJf&vJ*r7u84g6;>5-#nHxB0)%T8{AP!0>8_0EB(@;DnDto_eNy_j2?(nP*D$%a7 zYuOoF3f;*BG<@Z0P={p#-pd#oq4MdR!)F>7Aza2C3zu7O?s%}bySICExNQ2={=J!w zcN-__iZC>%R-TyToumg4#d0*C3afa%&ct5+SD^I%(POW3C%7gF_~ppMq>RR9I z9q{&`m*1KX+6HQyM2Q_apoWO!n)aLz+~j7iX1x6wxRSo#*^+~s-i_Nv=tSpsQF3qZ z#YTUg8FQF5MwkLezgG_D@VhfqzWdF&zMqCayu4omawST;UB~4P_I}ZW3asn1Q4|D` ztC8r;Pa){u7pYiZfo0135wAkU_iSmx&IO)x&~LdxY|CEqSEEi{r-UqY0paApT!*o{ zc(&f8W59rqHXrncxy5{wo_KQ;mu0{==$Adz2OI}k3-a-tf#M|(;-sw90p23&yJmR zNDOLXq97&{BIfD~b6EH$(QcU1w9A#XK%S%Df)pk>cUx_~pYaW}T4EQBlA#(g6Evc@ zB2OIpYVa(P)5u?Vzk_xkptzmSR$W~|gJK#-rVDs_9;iz#xu3mnR*Q6;ljs90o}ztq zGx^ZcmE!I=>~|CXr;;XMwp@81s-+(=Ms;6qxr`E|hx`NXwgV;8M_0sDG%JuOmD%2S zPnRsQ;P(S+Z7b)(=F5Xru4Vn~Jia&R@?QIsYoDAg1_P`*qZk}tJC24-Kt&h7tJp{z zuHU3eY8J%<>i}?GR<*N{cwsHq&w9( z)Pi;cl6{#1^&(gqHp+yzNb087_g0zXy2JCI;bgSty&rY{4MbYC;b4{v!i+*R$un+) zYKu`8mDp7-ZjB!PS1A^HlkZUPE)Oe#va>WrkK*5R*_ci1#UbIJ>uCqO!TV$j<SDmf)GDY*kJKF;D)AL9v&#W zoorWIb&uIj=nL^3{zwJ}8u^N$`GR5@%>RqBw~VT4d*485FbDlw7=A!#Www6$C!e~g-wxkSt0l8w2w6}xSi=U^MqCqB)aNfBJ7IIr;?CF*SL z5`Uo&I*WP7Y5{|^VK*g!QubhQrNFfGALHJSwM87iVVpnZmU`WI|G}{t3EZ^;&F ztvsfHN_itDq}BO7koSjLR`uT<7b9&geK51bBw(qgIHHL3_ic z(S6=Y)r@>dGLY-J^%-daz`n^Nj!Dykrw}66gZ`ZN+RhHZPtV!YgM<^ui(LUk9f5c0 zoXqPmQDM1r@uXjA0(o{A1x$(Jw;5~6le}T@dMimnom=TG6}F?e4AcItce0e5Nz|7&`?*Xn6vn;V{F#?uu$a-n6@ns~P@qD& z3S^fcYE{&!54Rzsx%{YXS_L3rAg(jmu&}|h?7U%o9(Q$MRSP6i&53>$_i0<>wcCsU zLOZ;B7xQ^Vn)#7`+Rhq0rhQu17@K9QO;{QTZNw8S%P9F4TCZz-xJkd)5m!zH94eM{ zyRZ5Apq2R{A(2Z&!Dk;2iR`qX4}j;>dRQ|ZxPOae^>)9(qaghvB!B}y!iquBOS3f( zzvwFjKmDG)_)So~$l(4in=bW~#tfHUKOVACGxoqs_Oei2BevnRh+O|HY{f_6+dXRZ zaO`OVu!_DSS#)c|xVn9IiEX3SoC;Ju3OwbCVWai3b=ja`f}(}!Ma$~d+eA)WqthED zmn2P5TU!|$>lJQn=A{?PEAp9*unL;LH0AMPFpvF2!fiD^4LFKSLdb;ry_y>jNnx~s z$9;nzU*y(8@3y1P@>wQ*cV=!h4gEh%=HrdNVfIrEObegYI`4JFxQ>_Jv&|)-!lMvl zO%d|E*X=y^?I3T<( zw3QPR)1>5ULwk3HAQ8shx|Yk#Wo4{B#YjY&XL0jzzB+9jgDr7X&Twek1cj`5|1V^j z&pAjMFT1K?`CrlUDVZcorS@WPDiflkE9b~8ok}RB1d|yRiE~rnn*R`J#7Z?<*ERPL z85%Y#6$biiB4_U?441};hdsNG_T@I;eiyahZff-Kt+L-b|4^3XASvlfw@|V2TYK%f zncI1#q2@hXttaRwJk%z^$rY-I|AsZ3_v0;6rHz{W^b+}<*Z~U>LU_EMSRMg3T_jh_ zX#@F-gus{;oiHcR(yIA6&`PVM$P~@WV}w5{jxN|E4ic%f3u#hun0kf@^*EOA1gZwi#?UuxR9{M8&Y^ zjF0d-jc8sVFQDgNvH|DJV!=(Sl0h3=f=S6gXnn{} z5?{%xTcY+D3&mlqr2j~KrRvP`W7^0Zlfu7m)~dO+~j6?))c%lWI|Tu7~}jg zN%8ZG)F3)6oud9qiK$-X@3V$NX=*-9_B0Wu`Yz4qXM0ZLN|a}N`(uTvbz9{yetwGe zO4R>5*5P8c_+>boLDhRpFL|@2KZ6xe+f%kgcdMC;Q~KaOTR{(2-Iu|^4j2_9uJcPD z^R(|TBBd-ZIKQ8yw65os0@mJm@ArUHEt$j*vRfTr3_J(JR`b~N7ae=+*IgI8Rxe(h zc33RC_^}&uMJ(z6VWwVA4w=~)%MVS^2*};!SwB3rQg76+JZX5+^BM+J2znv3>aOj9 z?@PWxi01>_Se#4%Rw;jLQtu^1Km39fUSlQ5aSR&+q?#^VYcaGBt0mK%U)=l*zpI8f zSEB#WDG*g7pN0~1#CkYP3LG1hSVtK308=3hj3`y%2^UH{cWVs%q(RChQ)1 zt}0jMVj)`pse*j~yb98Z%mE%l5lE+|-MR|L$(huhZ0Np8II#JUSzRa?EsWrw^^yJN z!T4&e;hp-&((3Y@w!zbx$`!eS9T|fJQCa{l_xNu<#<-FPlYx^nG1DA%0R~X&K;&Di z+*S(*tCRSe`%CSFpDS_KM&tG@6FEHT!dC4=^Q>ES&UJ*^pvmgV=*dK05F8%=u_<&V z*;p6G67`V7};EjXYTjxbb*$2KA1Oz$Qf-n0!~}nw0E#p!Atp)}7YR(#;oH;EQS+?IqdFftreiBR*e% zl;4)NlBx*iK}EdIVN2vSz;1$Uc2qO5aQ_rN=+Dz@u7*yWRTJ!ALT=+vA0M^9HryWT z`ESd5V$!l(&&$`8D{wY*;KT*j!r{6YMM=xY(XVLcywIXw6fvS2!sF9?z4A8+zW(JE zHc0j8BDr!bckeItxR05P8{*y8#-4V>GO-CMboP&@rwC|4RG;r;`kiiO(%!dM$CnxwQ6XjN6~c`aPCnuqf}FFu`-M;P9-=YTfKNrZrk+hUGEAi9thz)9E_~pUz(hw@_!_-vHTz-g+5h#FDYM^ z2gQ0eCBNl)y+0_(%Sc>6w?MrN%%NaQL$CKwGi4QneGXGHCm)KmK;3v6xk!s@>vWBA zY%>n62{1CtN@>4v1zzSvmOL#NJ5UEoB>lsZn4fZcAd((^ zz1w*5ZGWIrarxxWACbTK60I%jCih^5zcB;=Hl+%-Bamk-)F#|aVt(m$Rh(&rk4>)> z)TzU+7@qJ(J2!D~I~y1tN=uX<1KSYBR_)@5a?czEM2Q3ay4$aZud_AlN7PH6qRX!( z^HP7K8UK0<9=7%+X^zdB9NZf&18|-1JFM}VTbH#yhYFenABT~l#B2}OM~dShFl&5c zQ0$Ss!Dmuc;mW|A4eV&RfRHH(bER7RjpDM7@EhNglN*GK<-NY`$Kn@^Qg1I9f4(Qi z^@KdhsvRfk&3+-ulO`JuG7KQk)_Q|xk7=RR9a}4SV75~6Tq=N+)dzwdFF;GKm@Xeh z4^jaZ+9Eh_qL2dC-D}9VT*EG3?ZMhC?;m}Cjk->cy7GZ+(P9T@|IMMa6AYeDFR^~< zeE!i}UpYwI2pm6e(g&^83UtrvnxVyU?g+e+#V><6At6GXJL& zBV5^v^$uk!7Bbh}A3#CJ2(1CD5t+(mGeAr7$TTpElbi7gScAIs#m+yR@H&vEFbmM5 z-m?A{L})i6*HmVq%!S&k*c2YPTFY}Ejlb9^3f;2rSCPDi#nlC-%l;bgec$PN<|vY# z-=jQgH!&f;XdbUUE z#(rN_j578+R8zTrI-s8cEm*g{$b;s~qxwmILx;Y(c$uYJX|b~bS5mRa@~L4*j})18 z+cgUivuu-P8ieK{`1wi?7)rRUPIP-9R`Y7^cgaD;V~i8Oa|Q!If+6A?8RrH5OXxXz ztPs37a1dD!e~v-U?~R&3F+fiLWc}tZ1O|Y z4MajwAP#i0_i%06n2HK_c%uUwk33q)o$@eoj>^5=G^fEc+N{+OJJ^_);*dqV&~4+_ ze;dP(mlDML1oeRHm7(X+e7clmJ?sUt7f*pnw>|Y!AR5ik!p4TTZ)Y}w2FGC5?bF&1 zMcRr>o+}T1t)L#nqmxz!Sr4Y+rjI-cVtQz~AL1e%jA?;=z0;6?QQCtypm_RmwCaAw z!e-T*TE1TeVuobt)4?>k?L$KO!tw9#bc#z|E*C#;5bC|e5l~@Kd z`SH^p@v{>`xU%BmbpbH3!{l)SPiR!GQjEzK#wBD}>oZ&w)&U7M3>X7xj%hB6ol{Pa z?QGRYYlc|hd7Y&c@l7Qvhd3A_eJE6>l&iFU`ulApvleq)ZofaD;{=gylFDd_f2)cx z74ky@_a@&*aDu%csGw_iDWO}IksqIxg>6Rl ziDkXt{YNCA&wQYt3ktZvI44kK}eW0d&QC+>6x zxxU@3SnGnXkRM5xf^>k53^_j7$PhACc+QH|K0}kQRApCA9LmsW|BvxOeTD{zCXqnZ zqXbR&yV*3&I zPo>>Te)U|%)DhXeQU5N>^L9NtiAY*H2BoaIyKO3fg%nPWwcc{0OH*SJ)1NK)qGKkTkcJyBo9F9GOuP%3(`Eq&_=_vjBD@9wVP0O+Lc zP6EGE)9sTbgHw;bWA!{W$=VmcGpswzW%~uECljc1@?z0W_dCb>GqVhi`4^fuCt+ar zDCVKJi@d{2H=ayHCXlA+V;yZX41d;gFRWVz1~f){3xmBgS5YNcKx;%FSZK660v~O7%*+r+x5D%sB2Xr!iE{%Fso>?Q+ zj&~8&xy9~_U^aO-|M+Bn008qKmJ3g({>OP8zPOjFvF%`wIkkZ0c|=9=mnXY_;NinW zwPx>amGjS@9Ns4pLLL+6iIr5P!3$z%b4V{I7KXoxbkq-S5V0GMsay@$x>`+I@jd&7 z0SZOP@>QJI>7GUZ2XVm4jCxLwQwMCT?@)fngIf>7TZV$Z+Al4;$|S{GwZDW6t@5-n z6&a$fQi5}(AhAp|hix46a_J*yaDgAvjW&}1b{xNMz_Y<}b{{S2cROBn4eU~wK z`spR+BGPj<=DBp}M1;Cdck;Z3lD@^}E9l*J22D~EnSjKbE2met&ky;dFjwLeddzdn zNic6N#Eoz?F@kCCZ^Qe;nB6=F%WYTkSE%R~5ee8&xo;V9kGmC3-?)?qvRK|5_N<9? z^2Z--cR8 zoEmUu6NhiX6Fd!^a2J6Ye8tydp^sx=;iu5)&NPM#FUcFQhwU%c3CnV1;pCzZb6m;& zWLBHI`NmvfJVk#P!bIXt)N>b9w@PIEfGDK*e&6j5^k!twxEgL*NNCe3M1DwbP8>@Vr+xjR)9iEs2p`4qC^aChACZ%+xVwFp**@}rQ*0)LYU z&yh+yoh13m>A7Q&huCJ|)JT`qwSj-yoxTTTWC~}{!73pd<|x=5029!9+~w41$a);S zwy!jN1=%^HZL=^%GPOS-Z z)Q+{USGl9ntp-(&y!aeZa$APAz#^U}o{2A1WxUdT60-EED35Ga%8y}C-C|Tuxtrwh zsR)X{wKBwimMu~&j|nEupKcZES9V`r1XZq&7RP~2Z+!I;?~4`W@oZd}*csyp)cos+qF?1c(nlZAXU2*W&j@w|f>J<= zHaOp`NN-)aU8Nx6G?i$Fb5)tK8tCpRx1#Ai$cA8!A;EuJMT78nP>A(gbZn&#TW&TL zbD7`t4~f|UYxo-uJg2B@7@1c2F1FB0mDO;=%Tuc;arF=HekIloo72mBrzhz4BH4h3 zC3Tbp9Rmq0M-#pXbz+J^ZklT0>ur&c!ybm7^%20#4{4V9NE$*ISfB!Fq5+ZI{ca&3 zEVY1b4_gh-fn|F(m~&hH3b|Ef1T&*yKViHmPPJycl`B~w5nz{;l&tE8O)B_3Lmg?X#)|b25qH)^`PX^$p6q(Z#LDeq~hpcx|*`87Ls_ z0N*RS!f90dmufsHQ>m)-vPGFt7=i6%#^B(3=zqxGE=zjw5-6!@)1b@RP4Ph`@w1zH zZYXtF?2Y?9!UMnrBs@tM7He%K1%hnl`zX;^{q*6-851llnI$RlNdjHu)5x%KL^lu8r?O{<5UR zgH;ekJJk>+!0)g|q+acZN_a5O0p=n;e%idfn%P=lSq=0J0)655$G6IAs?ZZ@?loFv zkNQF3>h=Srf2(d(405!@O{>0iNiL8lt7n@tKLwl=;IonzDi1tL0E(i{QsHg*vt)71 zclZ+kODvo)se0_lI$X8KR%?^Ug!Ce6N{IoO`v0}+cn+#XudKk$6`HzXnr+;V@BL8& zX3S=Jpijejt_jt^ZbQ;A77=UtW&*>RrS_d14lVDj#oc{3>Imw(?Rs(Nu5< zerIS={4A=mTe-FE2h0=iFiz;fJ+FvB%l_SiW}8ZX(v3`DW6yc7FO30Nn+x|a0m|r$ zBi%`SE4ilgZ~jE_+8L(yI80wO)MxLW;L3NQ#~M)1DvNkQ|od5qrQ{T!) zl>`><5g=Jo@#oD&qko_8e?RH($0dP>Eo2kn+8D(deow-yrUgt{L2pRovNyye=)P8= z9Gu4FO5eZgRG!Fl0tjn6J1ptm*Zs!-`SSxFdhf1xkH`H66lI)uT0vQ*`eZRMyO`-# zphN@geP2A4eEVN_`!QHS?;)Cx`|q(Ad~94RNb;BdT*?CY=^H-kWPcBLnZaR$i!0Y( zd;8})fYUs7n8o+^@Q)Ta^jcgpzvg7$_)!FYN$I-0!@q|G@DJ}Dn4~E9hcZL;XzgazLbkA*&L7!1U=s`UuBj)2Bv$`>BjCm1pIbz%x@v%M zd4Jv~@A|H^oMT*`Z;OMz{_`6AlU* zUQiYSbLN`GAE$PNhJE841|6DwWkUaB_G99_02hBD%k)3?I3b{xo^O$`$y~F?TbKaT zJnAJTd@VWA{+in}VdsL2rg9Uo+8Y2>T?|~KhV9h;=hxR8I~ic8f=s$Fqx_ZxIP?Es z-v|BoeHdG5Enp%*Dh>s1Z|>CWl?qE~+u?92x zh)Qsh*)g#Y=JnL0Exwqc3{;FbU$4ue%aZ zT`Hbr87(5bO{8|LG&yqQDTd&S3-$ zm&`{t1bdny>F(T))vxsV=sNrG^)2Cb$YF#>4Ni7~A!s1Bar^gNdlB0r{jT$j+eAP! z*xA**4-muP7Qlho@bp7&J%(#CQ2ESUHlzu<(tk2x9`&Tc0FxHF%!1)a3#x4k>fCL%R6Ss&-6}F~x5J3^RaUgg)46&3)H@FY;&Y^}by+&-I2yF>y;t+> z;j`^y4vF63PZl?nC7>Cn$Q0^N(<8c#sq^$nfRDXzpFRe5Ng#aFQHW-I0E!)ADylSH zQ5{2_9P#ywbIQ?-y`{*W>$TL!NvEW7X(aZ|Lo2v zgNv>}yk`23KdU7!1;m>R2v>TAkq1TQA`k_tL@E^4Q1u#LWG66L*i*&l_*B1%Vrepz+VvEq$KqLsD@I6#{b(C$y-m@jGi% zR_ulmPj6LC=rq|k!Pp_G&QY9*9u-a{6%|+jf>v+<&0xlRtnQF(3LuCkm&McDyLDmX zN?<}Vx(XblfdhQcycByOCy7)ghUQJ2+C+>0USjJ0o8&@na$=_oge0Oq6*Zk>>R&Oe zn)iDk;Q>&oK3V_qnkF#N3TGpchgVaohf08P9UHf*xDY>thTPN{wafuZ`bN%hf@6Yh5GTt=g)wt7ZSUb7- z^c;~ABN;V1rgQpj+(A3Nm4%qdBu(>QP8~ri?8yj|vS4{lp+WV`W>M#r(X(nBnMIh? z1!jZo9a;s3miu7mj{c&GpGU6N?vP^tzeN?g8`=^ke#uzed|785YfnKwTH|bX0|zG@ zL?ygC%HJF>Z#_x?zB>A;UVmlV)S#H9&c#Fm)`hQrt8ZjNbwHsLyj~6F2}^D|Vv&YX$K;^i^!>=YgP{7%*&o?0jn($y`x@nATWC>Z*lo-lrI|8V{V$JKy3D1I2pt_ zfqmn~6KVm0v5NqIO}<1M8XgO0kQJK^1lsKAzOd^C?DgI&cCI9Lb>TYxJODzFaLWMU zPOJn^&24xGI70((U1S`Y7^6nqHr(t%Zw&eqDP*NhOg@~++QxM=eC#HA#;dRxL)3nX zN6Ai3c1L2467b%XKt}b=N8NM(965P+XEoUDTh<#Nf6>g(z(qOp{HYL!Dgi?FTvMga z|9KqyWwNRrI1SRlq~-=a&|xHZo)Or8%W4P7Bp!l(3-1>Af);^Ce^v2AY3Qc#v1@gS z#k#hh-9-Aftdh9$k^OiUfN%!7k~thOH2SeNr&)lz?A^_ILAR9>BBl)vI)&KqHLU{q zvxBBB6(+ORk8$h#MT)Oo7L}XTp55RZ{0*pF*Ock3yk?v8_h7(iUHsF5&Qi*)Nc7?0 zn5}`=rX>tI!P_uYbHA@84HX@0EWe4TzIW28d6O&j5C5zm4KT5ap%nEQ>zasR)+$Q_ zqmi{Hmun{~XX@~8BD3s+yB07em@Mwqwn^fcu>9kEnXRNa+LD;E8)pIF1LpYqN|O$l z_HsO+K%q-C@Q2tB4o8inKzK>J@nHTw_^!@QXme7!;DJ!ceU2*of81aC1?-PpS99OPEPfU0J77)JT zQmGd}sjt~|@yC@(zv5lzX5nAn%RgvBPTt_u?RQi`QDpx}6|i`xjSYd))Is(Q!foKT zBq6<0IM}K?t7ik&|7C55NK?CaEbOUI4;)qQ&oT9{wp{9$Dk4(rR$}KS4wJaRUgV$s zcQfLG24CHa<-#nl6McgV?udjOD(+f8^&MQXao|JDVJP4h-VN3d2h(u8qyGG1^seuD z&hrdyHwjS|J{KC7|0?Q<5UpR}4}SGHHoNmO;u0N8!N zs-3U~4mga((y9hH9e)bopxEiI-kaQppjRS8?5cnWfQ8%%zKvXEs17a-xH7A8nB*M{ z*LN*$S%VM$eh5;0nN=cIqadwCYJ@gV_(T@@%O1xW>#q z?|8-7_eoA^f0Y{U;(rz56MczbAD$BiyOBaJ=RZ&KL3Bt>tL-c_(F|ha0Q)!Y_xHDx zN|IoR@q*+Lk)yOdd;^|S&qc8nL_FV;QrCXXb z?Ia(0-cQf2Ko827yDD*uu1@CFD{b$!r-~-6vQDyPwtlG0{GIBvBuKJ1kIz?*nC~Fv zvo=K!)K1VuByuv=uM)Uw5hrelPn<59$>fR}7Ua0z@1{QRF6MC1#_YDvT0UgaZ2RzD z*uF_ZCDy3kvorkD_b1$FqT_2fmYorpxY|DX%EIF{Hc*t2R)ZI3zJ6`liY6QIIOQA6 z?2dDso(*rH4{SH;_o(#E4#vHN9jqvBuv+D`s5M71PUVspznjOPf4qD-%dUEh%dsmB))=TM`<_o9o3B+gZwMXc z*}qKYSz!R8%dRAGlcUX9r!)15j{9j4v$7I(eZ9++`Q_>OZQ_F6K1fO(?2GgoF3gkS z8Sb#f%Z&H7e^h(kkZ3}Znak$Z#9a@6w@KnEO0j>tNQniEOYUAdo}@6mH(-pGxQQOx z6>*0AeLM^C&l>e~fHH4$=vni{o}xLP1r@yMXk)^fB0)6f2^|m+P?8Yfp`7>-J1$-+ z_W>59@=A2|6dl_Fnf~=C=I|@mpHbRAOKgP{PN^}Y(_}f&%_-3Gp9L6O=IRJ{m<(Et z^~Ax7GW7G~P<2;${vHhRuvJkSv?{SIF;27(u7$+rXso&m^Tr}75+5CH4bcxPwWz>` zI|r+STp$a>200LlkdkUtn9D+DCKCj$=BAXy|=<#-_l`6orcV4%6n?vL{xx%+L zxKOuNy=iOIM8C>9pf{S?M@4o=HLfRR;a(Ifley3K*0gaHEJqOPpYv^|)-~?r z{F-ii*S6ykZqa8ew2X-=Xxt;*X4$Zw@5{8-PoL|Wkb}7IEsp=$0Te-GDbx)BOYQ+6 zzET`n{RYRe04`R=Y8aL8MyVRU3;Fpj9I`@d8I&a-B^UFjc60r^RYB)erKHFE5~zwi zGKrogzrO5vMeo#ckMx|`L;(1h`!oQ%_Cxtauolq3TJk>0r$R9&Ah>k%zz|Fh?kGGz z-J3*}(1Nxw4y;W-SRTPCED3l0D_7BL$bNkJDlBvu8_R5&uBO?c8O5d-HX5X6c13Oz z?76WUHeDp0D}S{Tr3zR9aa*T70*A%T_B&xJECmTZZu%~=-j}sj(&hi~+l_aq+{hV^ zeT#eAUOIj-&FYDDb#QjUZDT8xD-{b|4aS3Xp?L&iKqQ^NzWBDmQvUCZ!1gBIuoN=<`(j@+Ts1*UNa zEJ09sYpK{bq`dfM6#R13fxsVmF74EQ{z5s4gt7N~C9U4)=q7csUaeq(yF877dhb!@=2T2a&fxZP8defsITiSC0!PLA z*=3+z=?MVinItn_7!(D?qmn7G;_~o$18jTVr=^)x6sbVD_ywjpDZ15;DTRFFyMO0F zTbKh`3hasfR&v!oTvzM43*8K8S-LZQdaQ;Njh3xXR|Wm@hy2X4+^(EcS#_IL-PRt# z#H%@iJl#(XMus4g$SlSmpAU65ah2iqsuQCX*MxvVwy<6x(BI_f1szJp#Rdi{Af{;! zi=g0-6+n5?Gd-6^AUnb}9S0e>$CNBUOmHvw!*SAGLla+vcsoNvz|8 ziyf(D`b~z@y6sKLXWdD>jSMHUoQZ&C&i0?F+DdS@X%o8Oc#io5718 z+-3o>e<-1#uOcXh6q z!X4KbDF;O`5*W(gx6X5aAPz+IeW#q(PAhf17L}m>aa}t5&H_iV42INBGPGoU$15h{ z+3W)v#|f-!0g1#nqCTD<`l$gz7qd)vj2bD6zl!@~As?z%AAhty_L>dYkth*dW*c|* z@NGy-B78_Ni`I&ui~#6vvU#%_T7KQ_N8}>D8QR|^G3$R7e8Fq>2Jq;i!|RKB&UwCJ2Y8R!)te_S|~#l=0IYLi{rNOc)cf-x4jl}Gbr>B2X*%1 zG|PS&;WBa|>TSO%6b0S0E}wcNp0?GY#r^a5k$CHv4l|*WW{Y_Y+h9M&9qC;sInTrL znSG2cey^MtKM#434v07m_N&k)I7FV-UrS-CEz&^gdSGGjZ z1>jVvs;T8o^9ZXTHpU&+Y`W2gvIh%3RS7SpjOJH7_P}{P0kwC()y&^gxxe&}`|_C9 zptrEX*TUkDcJ5!rgF(FDjfx*|ssvN7K7$9iBPI1DDbB*X-PC^c$mzJ;rQ^ zO$3r=zerL}$l>(U_qW-t22M#qn%!OAEV2T+EapdMDT!dd&G-aTzI?&;z%B(LmTm@| zpfRJ|1;4akl2^S-elEIEwUI+57m9Zx2w%KGv6(h{Rm)X7P<7+@B~ul~3s7!!{ChzQInbR0`>y5RMH1BCSNcx=b|pe*x-=?C*$ z(FhdklOeZ7AtL#x$1xV7fY@ zooM0nid?Dp{&FYikru~FO>f}g#RAWhNh7DJhTm%h^;<1L^{5hvehWuW#E&<@manFX zxF5f0wsC#2<1FaCmNiued3REJFRb*-4Yjae?-4W1>CK_=+(%GZv#Fqe{An$4;cywB zb}|&ZAM<_eK74JcV=)2}DuX~WPgxczMuQf$$xK5eubuW}bNXPQAX=dIjJMZ4J`}lJ z?PG5IOrGGL_gXC3l8rtd(e-9GIduk2rOh)*yog!#X+xp=9HoPm>(QIQQm0feiY1zb zK}+e8nlhmPrAJGorSM3`c#xaIQ63Sl=|F}?vc;o8`&T+;mhEd(_QY8$4qBkd8M}0|GoWJwm^<^q&JtO1=gZfjU7FbUE#|6c<+qK~-WqfQ%q(T{ zJDF&<@afsvgpNAl4q+8f4XFD8;RvAD1;7<;YAYjiy2857UKyXF3iPNlGk)t7NurDk zRca}`5BOi{ig~hoP!`&*b>NF{*+7HA>t&g*?4{Zc5u5)KuE< zZ6#n!bi>*XER@ZuT19g7PiSc0()cb?JGyQn15T0Evu#hfq3#W;@3Lb|lN?5M=I2Tk zv*su7BKTI8*2NmLCEnSK0xuC~Eu*ZF6qkeDnw9Ds#V-e~wvKRLSDTnuOCL|r7>NJJ zftR?rDFCuOHuv9Oo>I8i`1BAV^#x&nqaBeTqNn72zrA%NLZ@IiAeA?V&JTg!fNyoE z6bkm6E^b!h-7l*O*u~@?Z9IQ!BE+l`ignDI%+E04z-(L?5B4%OkL__9K$vpJLg`N6 z?;Xh}dHIc4Ie2=paw|hp4j|0jn_G+)ozbztJzhYzB?XYrKa08fGRKs(+QnkY*4}ye zqP3L0Y#WJvI~u@rli1A^#*Q3-Hvxqw3%a}_wHYn&q&iJoP0qYVg#dPnd)YtB^0s@M z9yjCTn)P}(^SRQa!dN03?pKE0T-W0p5uB`Jc_t^ZI|TSve~3W&vx*ke#bZi}Qt=Fc z_1&!zNQM@3RXoADR%Z&3VipTLokPqLOL*-@CzKOODkjyfsUywmZ|1`xT_A0xe!4Ytob7ONO^D)9fU;?I zxxw@74f*8rc~PNJO0wl_yz8|KJSzS{Q=Uy}8_iMqkLayl93)xD{hA+)7r1`xt6I=c z_vKd+9KMhTjg3(S<_RvbgAm?_qL%$$Q5Hgal`@*qGkkK!G{1||$V!S>fjYlQ;T)6z;(KK<@3a~fH)cA7y+*|I|YW{c1?G>WI zL+oxh(>vMKc)kq*BY2h0g!E&|98Eh7Zkq$+!;Vnl^>QnRfrc-75dHzcl}m{dBP}g0 z)+W2jg4O7@CjOslEBv$dD%L{^&^~$hMJN`L@UEyBa!$W4`NLYkbk>8FbPHm^$c|Cd7j( zq0equLk(&^t{~BZjpdR-Xgp>~ob;cp%t?3BFJSu-$mI@GIiiwHc`#eqo1s6TP?VQ&Xj+s6Z;fJ(eL8^bbHH99-nYuVH< z@lOh(;OIMk{WQPzwy|)lox(nTd_jg@0Eke~u(W%dfUq1?@46@(x#Rk*6IfnuGUGmW zx!>S=xE53LR#1Gsjjwww-NB^!nN-dGFjYOb?3evH;ah-A&4vHkQI$?R$8EJFDJ88q zzLxY~68H^+za(&&C=&wYBEWYAwg4dhJbg{pHhOV~2nh9Ve^%EHrdpG3%EEMZeEejyhMPnU0nat0DG#A%pN9?^<(^qW~nPonQ zi6sS_%eQmzWcwrBi{2*|>Xr@+(~n$tUJxyH(2}JO7KO8@_nx_4gO_tf(MJ7tQ&f67 zb<}CmCxE8N7U1E*oMA928u4$9AHtxyeyDqeLBWp=t#`VSRdUB3P5amIE2pbN_BjepQ9 zc9l_Kb6h5X#b(hSsi)7=oD$>$Duvq3`TigSp?h_)2#(eO{WE|C$15(t>R$M+d%X(` z3k!pDKYNl;K8AgV5}Y44EN$`4iZ@+d`oapXFDwoI*QmyixInB^a{VepSVDWDmz~49 zx{Dy^>dm3Kc?q<(5*_aA57~&jVzDycDE2d?5xj){tQSpR?E}-bt8K{)hpz^r#`mcR zWBfsR_W~EzF9EJ!Rm!tok>du~_qq0Ju`>>`SS_;{_&wa?GLR)KOzhVcAnCeAVEL7E zc(i7h&|c=j^i;Yr@{#ZKrEcB9rs;$3mO*Ha-(^Bc>Igd8!suE0j5~K?HtYHDoc-0t zdE&!PYUWROZ^}pWX49Ih-rCJj4t=b5SAE=b+|z9K*nf6rKiRo8CBe6N+-hrT_SDZ2 za$Rmt-EWMlb=`7JZS8lvyAd`Hb$CY6!{%WdOTbERGK9PPWZs%$qS;ZW4&K;}?N1}^ z$4WTm9`%E=H%ls4h5n&v=6p1@iAFqs5n|)Xtlx2p(dx3FKd#5xnFoKrDUE}t<7}ya zAJHEkcy|n{p-XSR1?*(au@9j?p&aimLvAS=)VbvYgi!Wwf|54~bH?k;hxJZ4Cm&jN z%XQ4ZC4c;L{F}$-X!rK%<@Ohsr2+S_dDTRLpdpqxonK9d6&J#VwFd#8UJ~`Jo*^4s zZVpPdCPDH6|Koj1h@0#t4tK0~>>mhTe0k zF=e4@m=xXWxN5&7aUdns-8EG;ZO5lrZkF5Q$*Nn^XRM+4AzyWK0`;p5!tCK0Z-!ae z3Q~~jZ;OMG0m-C0%{KAX{{gnQbmGVZjd;h5AStjWl}dJs`W%F_f)abx4>;h1a0i3A z`D=VJuW>h!X|fp3%Zpe5g&v|Y>gRHdS0 z!fk;Gp2eBG2%3!~5zkTI97hTgF1L6A+xB&Hbue!>qBLG!&3&R_Q*2nNPalB%=(oS= zxpy)zO$X8+EHiA=Lg$E~M)=@iG?kx)O~Wy;kxE1|Hu8QK<^ViTKj=D#?uc zvxeoU_x9Bu4sZ?tfwcn21&~$@{KyUItx`6p-RUh&D+UWhAjd7k+5knsa^c|CIq6(W zkyUQF{LZWN{5F%$%2OL_1wTPvfRTq3+-1Lg=a}F>Sq`&3%ySe3>(btZ3_yXW!(4B3Kze|CJX zCPpdH){`(4P*=oO8Np?7lWc5W;Iv(zcX5;5NwBHXg!fioF3lVH-WmU{Z-s{gB~J<4 z!yhz?M6TWuG*zfK;kDVU6g95M^W%C%jnnS^gn7cWXPO`USuvm+@roGt;vgrxAOD zKkFMu6rbv3FMfp3zCEpHF`0i8*{H7-;zWEkKtPR7Adb$-yyH?38_BPl`u6CP#@FJGEZ-Q;zB4 z)f#aM&d0{~myb<9o&g)g&WXw^IFWthNpw+_Z@$GXn{!*cYIh5R1mt|{#~4FF*NI7E z-aCn;HJL0kLP;AkKK`m-lI530J-V#hV_4!umAENZ*CcSCtKUy?gCV-x{F3T1%-R*m zBRA2bzxbn9bxS;_*#f3UsA2Ha$^|K)jg@9#G2~5Y=rbb&?A=5P$GMiEJs+azr!U-{ zuCsMYjpp_$lLlNb(DFw%WxcnPewNv`eh-HBERKChLD~^*_pMXWtnKTS846- zQ}ggn!S|o(!$B}6lX|6s1({ctUR3q=*t1}0AWMbqi;1^hK>R_<%D3V?>pKvIujWCB z9W1i}&%eYEOxVPD)^GnKQe^of|4a$0XlIudQ;*g?a!-&<`N40moxvkw3c5lvfD$nd z%)R8ky;@Ly@y{+Gqh|n$WNPEyXhCsjG;^hSH^X;Yp0DCz(M)vrun(e^SmNZmImBX; zRYxA4F!&g=7uP6?>_ed(MC)XY&sp6DWHET=dmSN2&}Sjf+=n)5fsiZf%ynemzLE2DmvCh{X%VuY4Q`~1P*NL#{>-`%1me&2VCLdV@M>EN= zIv*)f42>+J@2(3unlVd>$EJSLVxdG3nz1mJ5alTvND+v+gplWxEtI(W{@?um(JV2Q zOrqNc1GKXKXtyylG?hvVUaC}U3Rk0kqRB}hwAuKfWX(nP^Qg2>9D|a6&S_@Q*0dgL zzdyr7;) zNwL_O`+DT9bewYDYK;12rPOg+h!Dl(ThDOoOzHr)6Jd?zB^z=W<7$fgir(8c-*uTQ zA>e}6Df7)!;|awpl|e}HR)RE(e*W7fBeYj#KBMc>P9FoC9t_^qJ$qLaORsFp^t8e2 zl~Zmu^mXb>s_)oOcWGls!kr9!aBbi^P1N@&8nhyMAhn$dRsbEYk50ZVR{~cm+k1a0 zqac-MpZq!?X)Y)bOO=l`&E!|l%#P_i(n|g=T{wf{5|9SPytj5!K0PC-gax;qviuxME1nG41rg~NAIE+YN8D(S({lTvLcPsx&({;~!K{u>wNMiC8+(NE^f4S>!Tex6Ad z{1o4o4u+`_R|<7SumgKfAv!jdthTRi)K02i+dre?uK9T9y7WVxBb}EFg*U7=O1zrgKiSLEgnOBcy&*WI zGb+n#UybH55Chy1CF^Y_pM5mcg27a2IF#pNdw&a1>t{$C9ieNSSYAu0fg7|>^r#bNHO~C+2lY>csSY}FbewF zAIbNV10VS5xn!^y?0gT`#A8Z=P&sh>0p)yoUm6W1#yA+26BkM8m_6SZa6>ZBaZ`Zs zuM-Agpu{i&O*^hRQU;9}Nr%TU9-!%C1E$J;p8VW@GHVQ6Z$p6ePPrmRLF%e;n-h@e z_EqiB7`{U^PTZ4v@U5k;m{DSWfET(Uf_&Xx&=>f}XZHZ#+xt=;1qJ!SkR7?gT5nP| z7$VNsp@GdX3}p8pcu<(Hdy;>pe9he$pKoz8fkm`iYB*$YU1oO@y=d}n&~NgU%to+7s0bo(lcCK;DBQDoE7~Jo=hS!c-g-CD13~+;Cc$=JJhC~#1}KLi^g%|Cnb0j7JHPt zWMUk&(K&IRg16JidxR2+&j(8L|2O|O^pn#6y@NRmKFcJA?QA_K&>e?Vo*`O-?;U>7 zj^q1xT3#QS*AJi@MxkK?;85xl2U4i>oAumw!&)_F0iwpQV4610j1&-_$70`g{rC9) z_ZQ`wP$>P<=BBOS-(~L{UQj6_l(bAwzr-0r;vwUsyGFo`TuOFFaVe{J8ThtJ3cL=m z|J@t@?}z!S#;=ckbEZyRElG+S)Ga~LvzLMhiX6kd$`heCB;3bA1R|m~-Yz|-FDg7; ztk+0<{*U(a-#1}+;)gHee{1&G^e|osus%B~m!O7Pw-^xcP(%B(T{U5O=6JU149Isl zP2{2VqZc!LrsMWHM@4CCzpC&`At`J6IFIiK8@~OB$m^i{ZcS#V$v5t#*TC+ zx^7K!W8b8U^7hz&y!kfqe^C1W-UtW7`SIN)z&98xb(s>LsBwZ~fM2aOM5jzx8%Uxj z%Y7dqCy_AP+YEn?hyPh?7&u|5ok0-Ejpcq`AObB8CChv6LDMyu*^L%zQ12d?*ku1> zX?OqXvV$&#bLiczK9FG8jXrY>Zf2X7z?Sm<}k+LF9s zlW)=&MX5`HdF9rzKyQLu8I1FIXz>nD=mjynWo52x+`M1>!CMMmyInL>%?;x*2wgL~ zFZ~fiP&}~lQ#RO0mvMmT=y|f&!Xw0l>B2<0rBm1(`>CN4g-gR=R)M#KeVE0>9V#?F z&StOV*kRc005|xDHFB6Q#K&n5>!UrRlddf#Y+rs+BLdEL-K(sX1|exYW3p=RWs4W; zfxAnGb1oMiV-U=8mL0e@jvLJVCDmehl9u~p`hA;>m)e`R3X}8k$r;K=Rc_T-A;nPX z^5~a*V5M5m8{?9&ggF=mha;S>qNqmlux(+AKQWSX4fHOPArbk<&~D97FkOB{v7cH7 z;yvzmgwXD%5(_*tA|J2!D8v0V4e!SIGV=)oe7a`Oi{S@RTW&gy zZiZ7y`bMZ3owM$bZbwpAaimbQHQ$yxsqT7K8t*8|cYeqIteWYY*~C=+Q7tgEJ&#~l zW=j%-T*Gje+J6l`!ZSVUq2ynVl-2kq<14ODKyi<1hN4RSnEp6r>j*XxT zR^ZMiyJ$#ZQ>Eh6uPz=gGBN@I0+eTBs-fV2_qWIC(O=-Lf=@?&NVqux$^SA9%&?8C zU({x7inpmNnq&e4-M z^r$GvpDUKlx;UyE_FARXB>y6sEW?p}-2nr)Ty>l^rZQ;|P07m4$+QLdC{*0#@y$Y*vTdD83=S zZK`bKzP%Syr7|%HqVJ4Wq7gfG3AkvUi-9DJj}PW*T`HexEVKZ^4%?bMP%wJE_)u(X z032LdDsh_`PXq8u|HIzA(wFJR3I;O>2#bJf830s4YXn&D8Ign!L90=&_A?c1(-Hif=JneT*9Xje%x)4~PRT-_mr5fK5V1p9G`?QSf5ri(PsT zXUo2Y5O_LeZ-dUlHM z9dONw0-9z8;9Ot@?m36acR#?>-Gj3kCw2E{aA=V(_vwoXJHO?8gKi9Tgd(T~SsD@4 zAs=N-adskaQGVug59ZHQ!kjhe_N%#pqFduwA^Err5p`FuU23jj%1BT$J(?JA7KBZ& zB>jR!L*n=$mv|i)FFmCgE>=uDsTanp<3&bearh6QtNkJxDQ~&*_T!~TL7hvX(ma_; zQjDNva+DJM>15DVX^n8C?kR7TGiT=?7@sILuedv=bc>g6(H%zM$t&shXVj+D=FC+Q zu&ry{o?28*hmTYdQJ7y#ZvDn?SY**lOH1#I z+vQmV_JNpEMWBw~gx|fG@!eZioUrh%ItM1X(qB=iKHD|0&C3+u)AiJ*pa${}ArR2a zC6b?*jL?NH4WXnul!=VXmrPT(6}>|B$g(z6jQKp0NVhN!@}>+~?ZM0kadf6w*{`cs z|0MM--Px5zG}qq5_wY0we;U?hgQViQs0@7*r8c{n%HF8=(rlQjh+-ylo@~c9CAKot zW$)YMvtAe}qyv|KBz{S0G9fm;LV1Jv>t(VZGbZ?8R~MmNMkNnI=%pC}o-P`2wUqb- zc(p(SjK%l-L^j0jFt{;h6!9%MO9cil2^r4o8XAq(qMRBT#d)nWws`Q^8N)Eze<#+? z6V!{u?_iVSx1GN4WgX7+Xfv%E*q;>1_h%KPTL(NUz%9EoA4FuCA{!2X`tb`iMKe|6 z{QCRpJV|dN&+Z3|_J_-yqLtnsrkLTen2l%V{UxCp@m&?hl3jBd;imVXpaG(Q08n2N z4+LStqyUN+$!ZXFUkg+GQ~y-AiKJBXZZ9@8`70snm8Un4z^=pmylf<e?4^U=Q-tCBXqvTX7x z)Y0^)(pIlpr%CE?S!luZsF<;G1O-g9a&HoJ9HVl6O1(Y@e@Ol1R(0!op!svpt9QO6 z^_Q?=%chBR&>nib^{%kR$+o*k`jT0imeo?_eN7(9x6ZYM{R?-bUXx*d25qVbTL9oU z%IF_USSoq>ULs(ttpQ=sEfB`54HhITlrX1`j2l&T0~!l6VBQYoCSIMnaR34Aqqpij z;>`yZvq3q2r#9P(`Z=cyhnb>K#-_rk+)!9?od28XPEZ)K?g$CDBh$fDUe25nq-EYM z7qXgUd6s@xyE4CHsZjv+kr;bwTqdmz=<^@t^ey4ji^=_pMTre4514NCP+Ja{=a2Kq zF5H{D=otZ*EIbmF47?erd^7HfZcH|PiTzfDI@Zmd+xIKH+mzNv8$Rh*yYtz1;*s-| z_KP=7D8|>ms3vp&HWV4~Wn!IQ;?Z?^kK%t1$AY1lC+zGGP=*%we}9_3jDV#OKIN$e zzx5tK@Wl70-Bb>xlQac(W7k4e^taB1!AK>i+((%~{Pj%e=zWn~8Hy!mvG}T!v)fiJ zLfr1mO?q5D-rECski3Jb6h6z-ySUw$BDTLvBuMgO%Xl-O7tKudSt%BZC3)QZ7Vyft znnjso|0YwO{1wk71E%tC4mXIvu$TH05PgsCYg77d-W0i7KOX2n+UdVPFMReCU{PP8 z+m>TYK#ru#X_OAS4THMvK0>;`u<>|6{%1-3$f1q+LKNs@=3JO^N4ASK0kzqS=y(;0 z%gamtp<&D3*Ovoc1qM?LlE0f73C0KJS$pq2Ynm0%V1RsUJh$R|zubctA=2))gI*^W zXi#_A5QP~Yly{vA_%4oB!sAOgz$2a(7XX=G@aYMPKZQ%dvIllVQX1B*2<`9J-+sGg!O zK}Yr_*!@Xo?rXS|{}1W-F7~Hs*hBGR?8AjV*wp8dKUB)Cj+hK^vV-b`ZDzTe zE~IAq;LaXrv~j|R+8`^#BVfTo_)j6+xeT`E{Uj+nML1|~uX{$^&Ft)mmfv;rz9O6{ z(sc*#(P->DqZs(VBe%KC&-`*=KIK&wQ!4-^a85vFuaDi|ZeM{#YqOfNZSGKO{@c(- zN~GIP$|wzai6SNouv^_K(<*pHU)A%v2YaFPnk$|9JTLuwDcnWWe7~eh zW1B4Zglsu#{)~ppacWkJ0Uy_UBKMsb#{dKC9ddtQi0l&7TwDSH42}omd|ey22&&&4 zLR8}TsxF(c)4xZI;=eu~634a+*)!5nUC;g0AnGV}oSVab^~vL5CRl31d#lv6=x!pm z%j~sHdZC8GhmKwB$vD&5>VkK?c8V83z{6X_C+p=M;|Q?mnoT@i;cQnxP5Id8@`Fzl zmkxjDMw$9Ye9#(KkK!=a1OR1Jxjsl$Q`pUYNi|_YLDS65{Xz&fBb$7+v!u>{+TH&U zgG0!tGO&KSHkjM;XeG92^D`fe^mUxd!)v+%gKFG)WC5+!u{4=|6xMy8ou`oHRF+G% zv^9?1T;f@m)Aem0PVRnnacmR62!`GhJ<_QJ9IC*c$&LLy^#Nv_IOJC74Zb`GB1Pft z-;TjvT837`pB-LB6%*YTtkhLI!*05&1jSXkrs&tY4iyA$C)Ao|`+>z!a(zjL6mt@-fP2F@7n6ZFG zCG&YOl`#)1L>+e=d(axXr;w$>e;U+p9p}PrwR&#&qB{n_uS)30eXh2~B1Y@4Tm+Mb za`du8%6+z6sE0G~$|oy4MoOl9M`TjN*{ThjR=XmnOp7mjd|jjzlszlF3L5sai29kG zdKh{7g3&+p{O41~`q$#Hzx$1{s3QcTy$g==O1!z2J;ZZhRapjo4}RpKJpFtt;%cJ($e}Ij&aC)8AvM0UZ&g!AH?0UR+d)a`97>l?UG%a5YfI_# zLXKThlEnq$z7993`kjhUbdT1Z?kFDG@!okIKQxdz<`uSAlh}olVG|1FIC-8P#5Fq| zc0r)?2^S(_=ThzdD5_)*!p1p%=1|?*B_c`P*R^pvKri>ThVBV1yD61aNvIM1a@IYYm&;`{g^`hfZ`I*DFFx z=8Bff;9ijTfg_oYMB0Zh)<(*2K+p#+se50g$3c%7L@Dm|ZWu1E6;Bw?DSc6=+GpUH z@=>%hB*mA}&kv4EBS{s8%2C0|Sh&xyU?TRMZWa&*08ktl?-mfiAdC=k4K`Y4#lr}er1^fL=y^fc26 z!S-}DBPip-o2FdCjPiyfpb>QJZc0tYPappg4csS$x#hpM$q89aRWn*p7Jp^C^F$9* zU|_*Qw^b5k+8j-dSfTS{tc!rf8qo`oD_ewl#CC*^r|M$aUnF(6yS0W$SZkHI-G|Bt zCv%?_F1unTsBJ^jO(}wV`*<1~rbj7Gn>AF$8KivMx{;5eV3zQ}kHe)e03W+nG(_VxkibB$t&*pUN`TN+m|eX zQL_F8%Xrl9Avzb{ol!Rp>c=nOtvmV&PRMIq>@9^v4u9@lq1yeSQu`Np>-(=BaYl<< zm_LEEFQ)3@QTXQ`ABNX-U*6ps|DZShXzRkM2|4W8B2LJgwge=qSn#{M8_sSC_aRM-374yHW{vR7mg zOrbwqAL>XxYbBI^|A#8^J*b@CYcV_wZ_y}JSNE`8Z_@Bue9<*j+{mI3KfGjCm?FwN z)tJOmMkUSOB)!C*&>j+VH|qfr0qQ3dL@Eu5;bldB*G76yLQ>g~h2p*5d?-Dy@@>q_ zpx7Gdo0Xe2BiZ`$P2l2IW6Xq8@j(bZY&5ywB8^lXI9iOp&@spG7?rMnP3jJxz^gmy z_kZ_k^SL^z1dm!-0@8cdv|3O9dwKglfz+>P$pnMm3Ol1_(ZUcHvTw`x)imYb)S01q z^TbW=^{r=gM{_bmeQ}VLap#r(A8L?hdoZhib43v0{t zXJk$D>Vb@a*yG1j5XAGSD05#lS+`Ih6|Yn9WbHF2e4B$8zD_ekF>$PL8m74O=}`Vy zyl~;o!l-fCxU$~tne2ljYKkjGi`AIvicY$+y0c=W6$yEtdVAx1w}albwX9!?no0TP zZ)QmdLb~8B#|o3qr94XOqwf~M-c9^*LW`GMIOx(Wb+~Mb_=)jrh$!HOf5!Tt(j}X( z<8Cu!%}a7yeW8^Wi3+?d{JmP@^i5_P|8tGS-jIlF!)DlJa-WIOG>A>*2&r$>MH;$Y zH^EHSU2yGn?_`Cmvu@)Z_lbfVE8X2ino!oS4Ix5)lmersA9O{L(($YuT&e;GUudLM zCM&&qu}}%^U3u6WuPTdPdnckKxMnRkP)m+(++y1cx%BcXapmA-?gG|> zmEoKr$D?VT8aI)bH(@8Z$8g?Inwzl+j#|;PBLKV_l*3oIfj9NgJe$<>jb|WscU4ZScXcy(FnPydzp$)$Ny~OOelJnlntxqmsXjl${9_v zYj4zkt;ar;C8>oT_F$^d=sx}A!-qbJ<}k_&#OuMUbiyraImxGIRW?(uaR*E4gE>wV zNa@n12xXkb-yXwzEg5Z2(DUrVTKl--mYjEXpMP?u!J}=&_FA`qGfh$LxfIPcc`K~o z)-}jM80UT|*B|dzz;9`t$#jCj`-7nO#ypSg$fFTaYt^3w{CG&bis0B9u((rUfx`nz z0kb$x%u=f{+lei>9eun&~Y&W_YTPNxkLWZ1;evV;WOzMneuQKfnn>Dn6THAw<@|f$?+ioxd zSYHI94Iw4?lnEo+iGO2<&np1FiY*&17`7KTjh0_C66ITp04>2Qn5%=p5n&g{!$5Op5 zLp>R>iHI{noknMGnkA$$ygTH_A9RCjfXZ z1FO}K>rVoiJURQ2^SH%&nGhAztH6C;essC!APgExzw+*o2(5*6-@ZiDeI_yK-D1%j z9r~YV+2wDqYNjpG^_kEk);SP9r}#Cm`9ax#AruFhk$*2RsCXc3_k!ZYVq)|e&)DS28)Yi6rYIckHcIv)N3uCF7At~2|jXja`0 zncncMw|ENBIxi1j)RdxT%D$zikA@2|s{t$fX8No^e`kW7bCf5+#ik^($t&oKBmJ-?B@s4iZiqg1H z!4pLRG^9NO3=C<$R>3B(R}bXyL`Knrfy>%Av|O`zuMD2&~QDYCrN zBKS*zr>Vh}0p?;imTW|6{BIM_!vHN}MCZy3_j%jcQZFg{7v7>#P9CkGN4<-vp(3x@ zkv*ZuGB6V7#z*g-fgOyeEr`s?Y585R7~E;`1Q#Fybm!Y8j$w}uAh8aW)z$fxNpwO% z_424_VQz}(E#I&&Gdp2davhR12EQR#_T^E+#nIOoqlhZ8ruA{MjiQM%GXb+z!p?;! zJ-jt_7S16P2K3|CttcQYyK!G?-=W9j!Qa8SbmQ8<%&gJ>Gn=| zE3oEZ@{b|02#eLtk?K;G=zf>y`|2L+nK3PrlM`j=8h$t77xCp*6lZTx?Iudw3a5F< zKNFU>1UCob{3JnzG$Z6Rzs3OHN%R57w)4`jL%qHJ(+hr+4^8=#4uZo!q|NZmiJLwn zR@R|G4;Hi1pAOjX!$A{2k?1$cO9JZQ7)r47SIw!D^jbuo`aU<)MjzHNp7A^oq&MB7 zNQyaGYbD$?1{MuMFt!DWi5)24Y^Kmx_4X1FOuY(}ljO9=_6LtBq73S9hj9*RJ{bmF zJDTkGC-Lm+wtD<39bQAGVQPt;E|ooz5WD(^`(q`53$j_wZuGB9AtMLt!MaJqAqE=( zZhONJNIl4wB*|hhG0` zoN!vn`b5&+cdTZ7sn+vnOlD7LH?n+Hz>Nwm3MJ^FG`d+ghUxae%NU3lT-e@CilC(>9Vpz3+FY^iM`H?(F0{dR&7HHbFd?r1HGk5&nqim&n-tl*ays= zsH@aTEdlt3nwoyj2_BHhu(g9px>7fs}wM4cLabpRDe~ z`nv%=$U?f_a=dt;|E%=l<_WpxL!<72o_E?bF%F!q6tL5H^$F+i> z#3b~PZQOcllw6<@Fi+3xIkSETtbY*f`CmyB+58U+7D-vtC_GbH#_5$9!&ThN2g0&wP4j_Y&(0Fc9@0?m+DT6HD1;ZC4Z6*4)MD089r*-??N`I?#Dqi}k-asaMUvDm9{*K!gA?X)*;Uie=%%T5(Csvva=oQ;kZX)&} zSa+d8U5o0@N{rE@6Rnf|LL(77a_VnPRP8?h&HBWW zY&R*lalR8Qs3&No01?Z(tw$d?s8OwO?) zgah5~0EuzP%ebj3yY5rK_uAT)GzDF@2rdtP&Nsilis}kSrXez;xi_mWr0F>3;uNW1 zrw6rZrwxtto%ChsY!;q}o3`w~XkhZ~V;5(~-M<%@?V|+Lj}Msyr-fZdU)mT z*Pu07ZpjLwkHa1G3a^Q&^CoC6e@4Fo$j7f-tvu5~mScJ)_gCvvRYe9}!+>}NXdz|U z4=0egQupBIkcY2L$BXhZp7(d{oqqS&>&TUK+*-8>y--iNlT)6rCFkqWuWs%$tzuZD z{eVt2WpGIp+PtQ(ypyrjBtJr!_gZT^6OZ8WRz^JvBA?ROseKBQD?fK1bE};|kj-T6 z--}1>tZ@;}TXHc}p!iT>a~y9`9GY%fi@?OAP^uf73hL{Q;?&fAGv+&3BEDm_XWF&7 zU$^RRK$J-+IXl3#L>FS^aT?$9h1qDT3@8RiEk$2U8Xu*0n^tiVgz1w~@JLyXX7V_2Aiu_l7 zYM~me&8Eu}o=G9|S}Wr+Ti=v`IT2Egi`0P``W%iFC-?1wvri@#!#1`F;&qLcNts}q zhgD7XcYfq;@63GnNy3mhxvMk2z*8&dX#JjtaoejLes@0!-NwWzB^f&2_P+bvGPuR} z5BA>7bO8-jykflH%VZ#rl`5C=0w=r8d zA!hV4Ti`y<{X)ej@iU{?JP+ag^WOSIT_|_KERbH8IZFMNUIVp*zL3+MNjj0BVkyeo z#oxPZ?N8N#j|kb+v=&Z#BV;upsR_l=yf~8J-(GMQ4^Kz&9 zCdMY}xE$6mP0JXp;`+vo8=O~#gw}s$Va*hn05#2oiTR!SM5h`jXsbIe<4eQ*p3 zkiIOC{hi{y7nq?C-ZEl*?YU-RvF~8%xnFM)$PMkfxc^|Pu_Cv7pJm3OE4L?f6e&UQ zN3j%i&YW&^oK&L-Bs*+k1AB$arxnh#P?K@8U(y`J&#QM#=&U-#`y39n{xn+={jO{9 z{FTo3KsN!aHD9N06zhsbHU62Q)!6e!s*4W)P{?f8ru1mI=q1J z5)LtaFgu_~=^|B+!tu>DC=q^j^2F?ciCjm+}s@2m4&V~?O14JV`Plc8?wde z&dDdk=S$*<4ti@3zKY-Z^2oX-WS&0h-kJHLd(QI;CDWORKi2|?lW#J>HV-ZujKZB2 zp#8lEhGbIDWXm=V;d4fl6;`hyZ0L_@C>CCp&)OrT3Z5tc6HVK0IwJ0_t8!hqlXYdv zg67!!J15yHKe+aG?`oOu29Wco`EchLO0fTsE}1{fzyoEuFDe1P-Po#@K>s~irGyVJ z zw`s5R{N<{qvqMZ?*1j}7G~CbS=Ls@I>bTR6?Y$OWiVJoRjPs?l#&m^cY;8`Il{!!G zi<*}5j|sw4&w#4{+&DQ~KM{n3iu)r@z@U@h!>m4fA=_mN3)hn!V$x^M50v5&-%Csy zqXaDn*HY>9oP#G!*vBC-SqGbuUnuU{SrRaojrUh0E1#l-z06vLb7LD25v(!mt(MgU z7k6G`0Gv(Van4QTvTI?ncf7#T*)@g`nHmH-JMDUoJ4H?OU@+0rGe==Hr$*Hu$4QW_ z9?n!?1XSQE8;w5p5~KrfMoWGZ1xTP8SgyjG9f#=K)J{ zvxdwWV1#bv_^Uv_WeTLwSzpYX;cfKL`P1|B^9LR=v7*-97ZC()pUHyaZrW>Oq&<~+ zH+pzAQu;$_`LPK_{pxc~a(EbHQ@*E#C2xn{p1C43!Cmq&td)JmQT(VQ$LgQU+T6kQ zW2Sdt9hBALlo?$5EV$3BVNwgMG>lBkj>VP#0t!tO--gM6xJGSk%B;ZA(FJEo3=eT|y)6 zJKdPFK9UzBXfr9;`Re|KWRqzZ30MwafCj(Ka1Zzc!T{`$OCL^6H_Cq0LEzubHnjS$ z`c1uYBa}Mb{1!2Bwd48w9-E2Ds3Wo4x!o*EaSt5hdNL95CyLRIW~~Ru`rmDdKE6AE z#{xT?GUL8z9ZwYW%_Bx;{0i-;aCczpHqq~VaZEh&;?SL0!z(^qxHJc)%Bg^X4Vk9u zkjkHTe+fh~&v5I{w(GJsUvsWcR^*+7jFh8P)FM&UW@}Kstbk(6vC|tT!*003vXX)O zN(*d!-#19ckOT9yXAJUL!^k2I6eJRw!bM>JJ9OVxc{)kYgS@`|WJ4u582F%RtRq2I ze?`TT9`yZySPL|yQgz~-651Y|1}F^uxh2f%#ykn$a^fv!*k4o^Q49v4bn#>jiD^OhY953ttvYwD{H)27^-Q^MjFy9tQ?q== z*Yu1h9!eTClyyGA`qv@-*F%%^x1K1SK=2b_fZ+Lv-mrqW8o?d;1fH}!y{ba6fBeL{ zlyf7)o%4Ehn-8s#^BbPfp3oZ(YWYwC)UZYcW9oy*u_CF=h6iiKjA@|h^XOUF{=cgg zU}%&4CTpXbPbaj=R!b^{4tpz16Qz(HEg5~{0D9?UPS{r?w!RtDPtUSmlJDk)8Er&$ zF>^+;hTLs6rMd1I{NF#qS%9>Ra^O?+(cl+p0PH5?){5rTWE)T-M{3X+axuYihKG-$ zWLp}xVl~{1g_+46CY@{7d+755NQ~)ycPSw;pbY=^^c)DQ_Es5xy8-p!H&)`vh*Q2{ z!$$9KYA@ZrxSW)fL&x$hTG*T118zv&Sm3?^z<{FN6Ydk*q zY()Lu%`NO)Kc1YBBWdcKH|&TRI+CjDH4aFx{~d<{y!kaU#-!IU^&7KHKsx&WudhP0 zOkuzE#FV6w%jdO!of{maUREWF?9%-2f_+sYlO`9);_E%i*tQrGP>8G#pR(ESud3F7 z^pYrp6uf^#z3a11W*L`7AxwsZjU|d@Pc9v^ehV>i(wfFhwT}Mvj z%mDiDWdfA^U$uQ!1a(&09=Sd>@;@^~-vH)V*+QcxI%O~Us=trUU&(c|4ufWvibl1) zF-%qBn8e@Rd<9dPw|==TEdhsNM@FXX3Z&jI{J={7+t|DA?twCuTmhsxumB{?^W*To z>o0N21vi6k?V~c$q5u8<3`clt=fQnTzw6b(I);1ouJK)e#Mu65yXYyq7%>Y>Xm@VZ ztAQ^Td3CMbyZ#~$A?Pf5zWgD8gt_0r{r}*Ltp8rKzN!_#alah&88vun0R}ucvQt8S zSEQ%e5pNK&BRv7Pp2@|bILSVJ-2LIdjpN@Z@k#+O|8KuN&YaqKujJG8Sff#cEKbVA zJmcm?c2|?ap>9Q6(bGtKqvJ77%}nbLN`uvw0yTh!TV2!|2x1OyK_z+&cVIcMjyuk70M7JYWa85x#qKr!GhHz^&DdEV~Tr-BZO7F-F;)z%e~x0%~m* z0VsuhSpvF}ECpnYI-A`H*1_sH>_L2IkrttU*XL51c@S~2lHxcOKJFKQdwn1q7XboR46-L|FO*>Zt9 zu)tT7jFtVGZRLc=|KkZke#0F@RDKi>xD`c?q_pqi`^`D1St^>#fXxYZL6-Z+sK)V; z)Y)QpGvq|LIY+-(|KP(7rI9;dSwW`h;#je4zy)7Js-lT>7ic{X=RY;r12LvUGk_m; z>pn08THxNNLThBO-<}q&0RmB8{I7gW3>3VEQGhki;Ez-pH*KBT)$>*fiHCOO;MHgE ze@OAS8Y}Et$BDK*!enp1?F4Yh)A)%~Cy?EYC*pJpPB$3`uGtvL>HEwMIgeH(o~nqq z9eL!&9tD0r+fQZ(9u;$IvUy2$Yag>U?PoYhmq24jlM_tsnSQbr6Hy*U`P+a?)jV8G z3!M9S`qEx%AqBcfSA^5-=14z4HCsWmMMh2ABTG9YeWWPMc}3?B+b?QxHy~V9QLZE+ zapVbUQ7+i92NyBom9Zy<;h z@X?PK2Nd7(A++MFcn{6K;B?AH2CHAY1m;h6mlol0INn1S(ROij{?xN8a)koA$jpoH zHGexHSgalfub?*n;L};3sY)A%mn`@{v@tG4eBaWnNV?B=)5h(~`BMa^vX}TI-}(3= z?Vz&pGMQb;p~gL*^!KrZn4RLoW(o`-Pd1%f`m|ccVzl$}i-VpFI^%(zE_qhR)|jY7 z`jmi4bdS|xu1d~xy-R8-r9Sx4WsMX8%3z8c`Nl^WI}^0p&xpdYYV_{K2s-!GR}SL` zdN-_qCdX?t;gWBE#%*rO#9Pv-5A>(Z4q}UzmG{T1EhFVcT>q9IL~&?9-TsxB`LO~( zY5?>Zn(&e#(6(lPAf&y+F{4NuM*fl-axjp{ZT@T{zjDxKJpzz#Q`i>jCJ?X1v_>GP>u$TVA1dR+rFIRFwmInQMMCa9H z(4%}2D-@O>67d$Vp?+yXf79M-?_D9Q(J0WEd;wy+H@BZvA~*U}@^Jy5EXku>owX{D zX?LU(py$nbqV<_;gg!GAF8iHU^xht_%P!G<-ysv=&lQGVr&O3w3b-aF?Kp}Q7qwrg z7sd;2g9dXX7QsfHI9H$DmB~@c;Ks@*|7l(cf4hXR&7!JFA~ZnBfSk+VVcet@W8rN& zFC{o#pKYi^3Wv-|L_H6_8`#_j6`JK#Wx?{VugXYnCN!XUZG9w4z%VbsuVLEA?LrX* zjq!3?QTaE=$z06Y1>rODeeGGcLloelM)kj0)MPG?IF`QZ95n0pe))6zQ>R3@7xmG< ztxIO})^8G3V1A7P`GU&(tGz27^icT^DftkZaHO6A%;Hzx5lR)y$^vI)Oo1L$)!yg- z`!2ZZ9)gG;*k)x|+*P0T3|k)d&1j>$V^N4Lu};vwUKU;{e|7PPQd=zcULpQ_2f5_t zKSdRhmQ7bYplpkv_dQpftgsiaMG0CpS3mEpzVsTlsp_TM)+`j~M~r zzA@*eJD*o>-mc}19t3p7+^wA-hJ@Nhumsx7eU`ke9`-neI0NbDe7Fql>ol|4*N{5+ zK+2^CFSp>=vX&NT#ieGw8-;)VHdX>m(5_+$)04fnMUiQ$60dxxMiB(?iq0%6Jxy*8oG6?SR`mt=gs=5l`Nr}SHUG)@>r!6ZD`UX=Tde3@DMU5c%tWT-=mae#AlGlJo z$gB1&$4sRN@F~F_ZtWMC^ZN`%`?YCn0iAOm;vtPQ)CvZ}E0c#-=DwU|!?`-lJH_)( z-2UQkB?CJpMnJrgX>Yur1FfW|%8huB3?_5B93a1sU{l?A>9(kc0sTGx0`O5U^#ACT zb^3srWSW_@Ub%&FnQ6>jZ8ebIY27ViDZGWu76U*Bi>3{UsrR^~)>%OEjXnkr&pG1z zC;e!l?;2i9RY{dv1o~XxG)H`NkN`Zaq;;<2donCJT~ao18=VZut@NP6g0$2`^wpYl8~ zLp5^sN8wq&Gn(ykb~;NiWqKXTH#qwRgDwO&6rdBGEM4iQRnKe->Rq{zf@Ar@&*h{O zeO5*)7n@#(?yok({>j0^z%h+w>*Tv=on1k01lrx4pX^0;!fN&}BLa;e=8H2Qj{e~S z(&{Ak>wVHe^Cjrq3XjV}gl=1tBUxN(ar|asKQ`XC52;Jr(8HUq8X-W$nN_nuhB$+U zgxL@+wy3`y_)PpQ$Q7dQHTGOAd&Jebru6VrLZgV3o$+_HpZWr%KC0_*fBkGK^g{+S zW0bUpMTg`v;}EAq4TA`$s#)BiHg;qoXxR^U@#JUiFbFIv@4WhWqCareb=i3asKey|$$J?ZI1)-vErRCYNso7gs8YRJW^|_Zn zuStx!&8e3Y??(l(A$AhUb3DDGu4f0|kI(FG)` zZX4h4FjJuyQxtGDJh#Q{5zQ4*^zF9%P*LNPY?)Vu^lVV#cOBIVOn{GI}l&^SJwSP#|}SQJ07 z_%6;{S=NvGrd$sb4K>RcZ2$o1=ZcGvVciie2q*Z6zus0Pi%xms03lA&efRXsvRvOP zN!Hb0gn%erp`VC8YPEzO=^3xX=-gF;%_)P~h*?Q5g{8;7M^s|rV|7r!R~jdm<=^G1 z-8^@mJT%-!1!Vc>?&6BX5-02@YZZ+(=9lZ^CFvJoKl}Up3teyc(##q0|u_RPE_f7*8#qjL_=m*e^y z5R-I5KzhO%KKs+qWcmcxar0!?-oS3DU3G91u_}DR?zAeOv7eA++7pw~{iIBx%fZKB zc&J1Z#xTZf)R>rLS7ST))6PLN`c;XJ;)VqtIk%$(!Jd}D_*$YYa=H=K6-F~lPPQ*+ z=O#d38&^X`aOshyMq5{GIjxX!GcQkB*7)YMk_HBHN_Q!9;170WXT!K=VE39TZxv(7N%)<^H4U$JMd8{@K4r#t8# zhhMd=pA3PN-AtE+O8(Y*dEiFb~~ z>s6q3b#ozKwMw7kclrW4dX~UR()=#-QMiLpA@OSrV2S1^s`P!-?kzMLjf#Z0AXDUN z=d#nK%8Xn{(#@e@Dq^~_th`Hb51{T$yZf!2B|5zUDdw>o%$V4(WO)%f3;!iYad(tQ zzuuzzV{eKGyMpd^hV3{S&zW$@5Y8VQMkVe zBx%ds$}7m!gjJdP>yVxNkiRg?QpDSy7Br{=)@AAd=-{Ht2)j!rgVe{R7ejk$%&;m_ zH{Ky9N#_t&XenAbU>;Fiuc);?eIUkLWy@SEw$;sNG-3Uq@66*`;6dbu;cOOR{_f9A zT^08k*<`q7P8VKAqf(1WPh-p(V|(ag<#pnxI>J zjQt>+{um1*>ir5;yya@H&W`2}jDs~qA7wQ4aM5d+j9@~EIprv(LcEzyg898s$0glu zrEUdF9e!Ar>>cH3?lRd2r~YGUZOYb_(EL1WyLN(81qd8BC%s`8wCTaL1vlEis+{l` z&aC9DS+%I$Q7n7fG;&Cru%bf%CG1&+aY=(@mMCpQUq!*8zS{y68h{7n0mQ;yxJmTu z#p|xiLo*=1xbT0K!tww=i!P=?)yf-^kC(4Hm%*;^&o%N@ZV$XT zt2$-`Bl(TIMccQ>x@ckZ^c{+|rB>r%KU@bhjOH3cdKnuVt$qcu-XwpTGv_7}=UKkK zJPyQ04-;XQ?+R}Z%`@2?{*heTd(z?B`^z3Y<_sMc#eL9;gHhbK%o5;GrNP$9e`2VV z(D?++HsJQwu82cR(%WPbC-Q_`2DwqgLS}~LHuvu0{o5=x=Rtsp04w)v1;7c;0QgE{ zx{OgtdK0BLZx8{g4?j&3mbQ2kt0B7!X|mts8s#(Wx|K>T-0={L!IOK>a;DQ*TO}$W zQdr@ypEU^?Pn+g4EU(u0F3!0fPZ!_qH6-_$A28Er_C9!x+o$g{QYU5u({?!6Mhynr}fzdHc{ot?p`CBBxz= ztEuwVX6i1?+Izw#9A~#D+psPyvS@oh=R2uPmS@EFm4LKurH=%(G%WU=4nA&1%>3$^ zOH{7Xf5M_;$MSoB=mDxl2HeYM)5`Vo+=J5U`NiPBjtj#g8a)X7PHhO_@f*q|F}B&7 ztcd)z>NAn0nqUfONXC*$NJOYV1Dayb+mH_3dWOU7bC&)~NqHq_--jA2J;ckg^K;Vz zaZd?(^|^v-U1N;yJdezTH}ZmP>dMT>cl6!IIPN4n5 z<`)4^(>IU%hoOSIZ7M7-a#L!Wmm47H`-ndTmsfji_*rkQ;~n{s%|h3pXz8wKp}cM% zz`rRubAf><2?M$%+a)kGM{_e17Me7ukf-aSsrG<3`uO+Lsyp+8Xr8W;UW64=@m_UC zxal@avsh!osuw_O{?43v&~-Qp#VMJqoEkw0VwkRFRz=65dJd;vY>n&YxiFr^Z}ozR8q;ST>}Fu@xwoMFH8TVErss<(hqW*G2$!$Jo0nzf zSJufrh86OKbM+U+L*t>~?5Vy5bc}7ydyDAUgq0I+26St$mJ)0BH%B){auuT?F2dED zZ|QYmmuYm|e|*+<7Mf?is!%%G)ZQ=(zr`k0|mcz%$a5l9|1CK-BxsTsSnUE)rV;e&qjCFG@}E@v z0cWvsE0*4AUZPHzLHgt1C&^@c_qegMdik&^_HZhZmv3VVg`~ULQQmoxf)}p~htF29 zIS&^1BgQdsJl<6C7!hCPGIkQ4?QCI>3H!VgkyG+o0D zAlnPTs;r+)O$T=GpZSfd9CmK&n;Sd#?8M!7p3I9HbM}(C4_>h2s#ub$b1Sd*EJBFV zM4`N;mO&t-Bym3hBI!r$DQ~L)e+0vJP|MBOCgj%i5BB}HM(plXcCd@M-V-1ft5P;k zjK7ok5d}gvEUGY8r?2e4ftWgCsuxS`!7Jdp89n>(l6~m-J#QGt16udaF6| zBze6a-Fg&$PuAN~qsGtKM&t2d7CwYaQzc@84PO7Jj{ke}n;CW~ZYy7fZOrBxFDjRx z)m7R&5Sm3lL!a%x#qpwfX%}dUZ%j8qSH4{~{8Dd*_Oz&`9S8O zOBKC&o||&tL&Nuc{k6_ZG{4&V!0CmBvF1un8-{f!5y)YZ{=>qlzZ>%%ocfSX-rD7YSHfZ6hX z`?GAQm^%jpib8kzno{ZaH)1z!#Bgs#XX$(pytnSxMRU;q7Slh@HL(cVEt)9g2H@ie zDIZUmfq#E!EZ6@-+*`Lr`MqJkbclqaptMLxOLqxKgMc&xDll|+-XJO{3c}C`C=wzi z-6cxH&@i-gcjsQC-`}&J{R;L!9vsdbGYoUzYhCNQ&hv9B@~cy?A{h#WOU5h-O3jfI-tnEwMZkl)>T@O?(n|>;k-!ckB9B7BU{5ik~HWthm zWA1+@nknFx9SQApxmPHs9uA}ZCals%+JAo$uw6VMw8oQmh!8D&k}^Nb0L#lql~g2X z=hmp9Qrrp2t3=+Z*K<2hj$qz_-e3D9456N0Z5+o5B%GF5a9%zOR(kLGF1b|<6KSLK z0_L^yM2!Hn-{m?IZkmjtJEGw5M`tq$hDDDuU>x7M2fteq`Pr!7n_Qce;`5p^OSh@A z>iWc%Qd7@Wa+%<8)Nr&}bFca{dEnN;h0Lmij#>R3$;W`9%hnmkQ<0P7b#?}YOVu_p z{AwKidrTn9$4X+}JUv*8<~462m=*@Xnuk$qt!^~xg zk-LN6b%`H@WVJ4fQc2uSrHB$ua*J>Q`1vg3w1(}*`)aJN5C0qA7+@+k{xAo3AZJ8X z#oA&CEt)Jx#(}HG7)E}T9~le#s#7Efz(+-M9$^P{Q19CUN>h8b4Kt^sUR|~4chwH< zQR{!6cXyG;`N{8t0?st%7E9(d{>3G73Kpbn=z&QiJ^0eyi;Jy)@&Owy`#lDgcduf0 z*%@-n^~YJWC!5II3St9YErp ziC_iNKxae2<=iRa?IpMANQ6Y=KG5;&E%qck=_r(gjCtFk?>1{l{2osM@8ySyryByT zEE4}o3?9j-YA)w(Hd?aE<<0-Wj|lh`wh^$ltzmcPFB!R?<#mHL;xW^&O9G;X~C0WBxXk~-V2u(-!9T4MrD4q#h(&qwWeGDn)M zs}%BrMph~~#B~3_iRE~yLeMTlt2y2tZ=MS}w;?sGewwpQGqxdg<1TB*CpN@n1>S0& zNm18^i-h5~yRRR=f0}uwo-eSbJuZ|_OYd_|6Xo)~D{(7rBt_gyo?fV=2C&@udEG!bh6-ju;}b^ z0OLo0+hD9$#t6xT7es8EBxn_Ju{=ak*p|$q6!xE}#2eRjvCBq>jGix(i7$CK=8pqt zQT<5HYX7LP3xDhV_{;WT^N^>Qv1xLg_}6=6L%5C;mE09h(?v~-S{Ekw_s$*fmW1m& zw&Ctox~xSg)_^?FH-qd^uqj)EpI;9Q2|*{wnPppL4}$Z7^igyM*n2v0z0-j0;F2LM zse$NODvXQ~r#}vw>Ti3v|7TVPWGFJF{X#av+^vzz`X0P^Yv+$&Z7_O2-;=YPtUeIh z`xsZ;Z!fgcpA`#2vPAU4OP9jlljnpBZA^o73j3DSZO`?^?&SWt{8ZN=6FJ-Rj9tjG zv%{JEdWK;_XVP_LJZMnLBl zjLs+d;L(-qI9dH?st?_f29vg%!g`$TdOtq@x^Ax5;7p%D9Pnsnb5h)OVO96-)l>h9 z;3+8=KKI?XM9Y%%#*2{Y-UqPhWt}9qb>{)%x6GI_q~uN^Q~Ng!X|NT)-h=X4#+Iwgv|XcrE>z_HzMr&ZQ) z`;6`+pjAt=RUyN=r&PPpoy4a;p@GSt-GAX(It>deaEkt+=-mmL+N$H=GOj2?c@8^G z%y^nXpstCQzB*MEN`5b}nPhslKHgwfY}HBeLXZ}lO*j1&=f#d9%AzA^vd(Sfa!R4i)<<%wjE~wSs!hiQIKDY;;mfw~BL(AF`b-#voyl-#Hz9Ys)nO9#O zdB2YE<4!nv>k9jQ#mFdHaj!9koG&4G@8T{Y1AvoRzSDm-wZdEiSF1=ANO4@BZw`B} zv(T2>9OpcM!LWe<&FT%(m%DEBT}{MHtkc-^|Ee7_5W&Omw^er}-&%Wl)Nu9Ma)4p2 zz@X?+K@vtJ068huiSmbV&Jkl7*=ne+QwSWfOc| z-_#>Epg^8~m@}(+V^L_Puf5nwy)DW^=FBWZBCgNpe`$c@{xCyjq2thi9^z}tD)IE3 zVOEV-DbY8L)pHnYpSzyW7t@`ldHHiH%zij8r?pAimqc0pyOZL;`s1FlZsQ7z<~JXD zD0c4t+azRh&{Lb~NWl`Q+at@(dn_1?DHgjDqX8nSujvMQ$C&BH0)Qw)*?44!I0A~j zHkpmG3ZNg$cyLv!Jl}n)V2SE|yz7B9+I?{{fpg`(N2xwdw#^$H&2lHZC1eeRrAoPv zpN*&`J|w0ZbHwvm;xU+Uoz!9p%WMiKUg#{$5`ksAC!QrjfdHrRLe+mo1*!Lq>;+6w z`G;<cIXav_oYe0)CKB0qoK!WuO+**KKjwc^QjIo$puPIixz`_PQ|0a8 zRBC6Hc7p#uMaxf~CmBjN+TmC^0P*Xk!|vfx=_TNQ>|B#?ew}+l{DmC43H7ltmYj7V z4O#!uM{uqEr!P|Y8P?S;pzUvM``2dnw4ph=iVQk((T zv0zi{7WmelmuH25-Cs?^ZxctwY_lk!oC==C?{7EJn% z8rq(sXmvVfx)MtOVCi-%`~S8~h9^HK?7xF3>vewN>mcosX1gjI;&FfD0Y;ei3>(Hy zb+;{ADznd?NrDeM<3g}5=Bfd%9)?(7jrel&z>lxj4%^C-Wedwfj_w=&^zP5==jW@_ zhZzdYF#FW$-BV7ReGY#=v$h8qLIA@ggRH1d9=y_Qe~Vz9+gu64VkR z1jp4bk()~wI(SWZ-pBizn)_uft*itP;|mFw4Ub;vJ}~3{1&*IG)je_2<)aIkD!x`L z&0v#`@!pw5y;o3AZg|nEOT+38AXtVap82I)y~;fRwhg2+*R;6zUfq?4wl2=h6?lYg zIFXWPdFF2Iwkj?wmu2b~o=JJIGrvYYO;dS`PtbR_)`*+a@9}L|vW6YT#u%7dc@KQg z<6}8CM&kp)NFzrj_6#vgv$p;IZyy;fW8}-g?=ktL1TNmu8EUDCW=5Z%t`+WffpAig zQc*blvsiKstq%ysbxicD^IPnRr#Exp;^%l8*WIkx{(906t8jMTV+^!r*FQp-{T7o> zyX&J-(K}VwZVtpSXWRqp3exuOYs<*IaG5)}0>3@3fN>>AHpCKemb5dCJjCrdp8v%0 zZ2VPJ(-F(AQo-#cHYF8jMO)g}Bu4x2^lS@SZypLB$W~>gowDZP5%@;`qvNd3uiY+x ztgRi9ow3u|%>CMqs~ma<_%=}fAT|9r zSDzufBWN3wXH=$g3hc&c?LF8>#VM)+hLedWYrNt?B^o}gu+{f9bo{^&?Gu%73?85? z=tw8_v;4xgb5KZ#v72%7JA(N(5j?Is>z96&|6OKJ&czDId$vUklxQx&Ku6g|y|@K+ zPmmj}^;aQiq+K5A&ho-whhNoc8^ATd9-dJ*^~qEKAkv&^|0Q1OpAGLPR<#zQkQ#A5FBgRk-lgMN4u=3Q*iY z?xg=FA=>gE2N>KMG{Hc8-wuSi4rEA(qp+3{fS$<#FfP)wz8`0~oZs-|MPl+geZc;W z1yMF2L*!<>tx!~+ZXyi`X;RZCOV#NP2 zwtvu|3sk}%6&KYKnOtVi_`?O=00fG@ja2&bR&UMC-{GCVG^NVNmqW$e8~`oV^|+Q{2X;DY=YFKLQ=@Yq8vwjKsvt zepQ~gaU=uOtUxSP+5q|0URta$0ELWCaIUZ;YF#R6L9yiG{imv?uQO@sq5~=o6blwZ z-?I3s1DJh!a4>J2lP^FfBC6jkkz4B84u9=0RVi38cnS~|n`ozE<0v(p!P_p_#y=CT&*UseEs zeg^}&K;hc*9UYLv`m%8LFhIT~rz4(&bq|h=*-_i6O}&NT;y84#8`Tleu92#3%0vG7{tR_<{6Y7|b>&ip@OY)G;1GEo zJ5oB4M$2EvAP9EhLqv-GGtE>9&Cd0^)A%a|rb@QGNYG|y26BvO;Igg2_LCJ_{GfxG zzmSV*n5afZK^**z`-jZ{OJ8CknxMa$-Erdc;B%sXl8^&?JU1*FB&I2yL5CZeK=LS5 z6N%Tex&&Pu#CP#7umi1w+X)!YGx;5^7lY88grGOu5s?x zXo*#19m;S5=YwK}=h`7G=lIae^->xMm$Oty{DPn6=&*}t*7@&;E`*)VA9X~A?kql|6pnL+E!DZp(1keBFb zu9glIK_ki@PT3_KHD@?U7XV6)UD<}q!xuZqZtA;@Zn?L2UIW4U#7D{F2*6dW--Ai^ zq^@#id8w^nr%c|eT;a5$?Q#}KxiR@g4j*I`YJTh|j98dDR0GQDfcyJPTG!-{lAk-N zpDM&TPAo->fU-gRYh?rBc{|(5g-(@8B!pXk5B(eYYwn{X`@C;q^<5+_X(beEqSGte z{2HizDNeAa?qFnC<)Hi@f1qM+4kfKX%+pxW`FE*FkGz*gYrPno_(;Uc|J(&w8B7@x z!c=UcPgh>?U4@ej+lu#0v$?cPibo1L48QA>H^>vpaUQjh0&r`K)9*bg$j8Y#acQYB zi9q5ez{ilFX6PrYdIoookhUN@G|**h1flMvEz%lxqxs++=ija$5Juw&d_{tE^$j(S z?)?&b6kqb#F@Q#=H-xA9EZ)rl6;{eY#uj=`6;weu$dz(m9)x$T8))~%?0+|pi$%sq z^_xx|X7uN6nsx<3Q{x3$4kGKBNcgq> zE}6d*iCV07*QIC+&84_K@hjrua3)kq;^#E6=zK>9<+f3OGU_P_UjP!PtK(JN)(Qqn zsJEsMY)g+bkgTeJb;b-Bo*GCvG+w>|kes2OhDGVJb_3#*L8Si_#$ilo?}s8d(B8L+ zTt^!syd|(KQ`;HZ$$ul<;tN&#KG^_k;ZpdiYWndJ_8Pq=kH}v-`hR5-`0z4MZ=ta& z=xOEQjoZjbHxQ-;h=4L_>T*}H-tCBRXoCuho{TwGN#rT?a*r^TSH)BbQs^v9K^#7v z*=sjzTP~VgU-d0Ym_8>J2YC=T`5&uQ`E3=L)Ou@?&`B`)9ZmAUJ_>K~@BX$zFag6r zD&5P2pKQ*j`!>`cV;N*$I&TJdlWo%mqay@SZ08NXz3TaWsRDz+)-(D60XF+fDCGw; zmK3A&$*!ewv1TF9S3Bd9jW7#!ggjry{Hf^otLxTp#MBd0#XMHO1%Cg8o(KlXJj5*U zc^SMdq(bD}O`h3cs==Mm2u}a&k~c3vd;n05#O+c9e`9uD8|D%P!rJA8%s9l?doyH} z@XhH@Cw{pW56tvlv_w!<>2FF;)o~atYHcY?9t`S4=q#WVff92!iszl9lxQ#*{&c)g zEU_3^>~`InlFX*{5%Y4)(W!~6-Jd1Gxe~cOD+e(7%sk#tK|4s2-SCil0Yu)`GG!w_ z#qBNibTacBi)*F7ik`@DQ?*GSZ`USUsCU#L0ML1+YiWQ%-)2?MF7^&20rTZW)2H+2m24Pjp-m9PZ z(L4DDE&ziwj})3k9+F`EpJ#$sA;JQ#nrI21-Q!34E9MV_?;NQS9o}_9-)@DJy@uw( zjuYFbf&H@o*RMlX$@96S6*w($@&8_U0=If+=-+(#`iBz9_O}m8`S%TuGlC+fmqkdr z(Xfo&x~=zgXwv{2J{bcU|IBS3bOHezkxb(f`q8Sw_auKGCD?uftOKDGwST`d!v7y0 ze7J=3;>;wnuC^Imus5o_G(ppxVP~%OXm{#OgP(q(DNwokErhE|NS!l{UpH-bpHy)_GPPr3n-8(0K)g8YOS`$CQDbQ$M^D# z3xmBpIAf+hNkgU}T7U<9Po$RWTQL8_bwgCcRS>v@I{n0zkqE8UTM!o2u}-d|B%5K@ zr>^9N#&#-yH1O>I`cA=h@aM)h>bi`$=VlC@(^2WtCq^IF#B)@}6DwjH&s2Tm^5XH@ z0bp4G$5{!u{hT?L+fsLYntnmd#&|gxDzReurb)rXYzDWPZ6>}&0V|@&%w8kU)YgE$ z&=pj~ysd~?DA=j9X;QU*-)YJ!L+Q^?%udF$->G$emR+MRKzK**y3@~Gb2eIJt{T^s zn5jJXc-Ixta+9BB$3JSL=kou(wEz7S=7<&Y=6WoMnH(E9L?-DI=H9iF)!M zAGpjGJRK-btI>;LhSL=$AJp_HI~%CVT<(fr%Ax!BiTf)!U=iCSTT2n~;hV8y`Sob8 zNr?REyfyFuM_mR;JKt5CH{i)bjx{{L4?XSxjmekxzGsIH=nnC6;{*ssw&?#w7!|nA zfWKcXj894zlc9`Aa?_Z#l>91AAYb1InnP%J3efAmYnvAJlLz@A8cEZ2V<3uR4*eW0 ztR7t(Xsargw#5PX7$(~FCWa`hV(O869r0q%&cIrOAUisqOV?$i45DR0 zBv@sbRO2|K>YY5pKq;^sP!38Y)t2{n6<9d|MXdwN7r9eeRhS^;U?i@$mA~YBG2w#} zG|#fgH8#GP1!->OPiB~za(_O`Af=b$MAO)T^4HhLX~onz_`x2vPrp^#xGZ+}>La-s z0P5@i?obnik3qOxIB#smt8=q{WOXlyzKmmwp+Rd*c!VvB0{h*5iKj+rWer=-kU zb|uJ)c`TDzpkj0NEshE#cSok7aCnAMIXLV>dq`{JIrptV4z}}*LWw%SpiBFeuz3+C=8=;#Bx1HfuF78}zh0#4u z4Vp^|1sH99OHJ^FV>bJKNP~JN;`a_QK7(W-)J$!q%bd#WuO5y^-h~2^dw7@^cl*RQm-;seQ?1*l*!zm1)D!_u~&>nBX0pPuCP%H%Wll7LBlrR}0wP z+x*VGWPapNu@S&%&khz>(oqF=au35|c|sdhb-w**rB>;n;T~L_89AVdpVv%;-hG0< zaXBAt!XU#R&w{&BC5-`}o>kOiHAeFJ1#EF^iwA8oL5Ea<#wvN)JrQx7pA6gM!_5F^ zEiCGHQte;opB!MJ89#`JHN>4L*UzF!_C~Up{ol%|rTDCf@UTyBa)PPX<%3gJAjhep z1s;Y1Ef+Z4|J(X%4WH#Eib#4ut54At@VWq^(t}1l8Ba_fsI;jBtQo-aLIL_EPEy3D zZvZ#su*c8f_QEd!A&>M3z*kvhj|D;QFlDoX_rI9T^%K+#?_!#fhppJrdJdZ@t`vfC zdE2U>-KYGYR((n`1G>;f_fx+XqqtnZ5pEzu!_onZwT4ms>38U2c{a1t6K*`SkXr9} z+#k*tIAKt83NCJo!%tPIj;pS94eCN)&`CE77pI4WH_zurm7KQg`|4BX^4n!f1!n|# z{;s;|<&7!`<^rWCM$aFQ@cGewN+45-!(t&yfg@23P=i0Hw6)9a4Rb7uXEvtl#BD>I zJqf&_2S1!A>9XxMB?Dz!x=>8IQ;FR9kGZ0%>^$3J*Mw6FIz#_$M)C^5L|OJ9%uVw3 zx~bAh9nQKuGT~BL|7kKXfK~1D!UC`q+yiFvnCH!J+QH7}06zez@^M19q$+D5lJ`sj zewj|-`uG1+x_lq&%QcgU3dpQStV+|nHHK%r!8?c3>FiC{17odWQW{39az`Q$C=YCZ z^=xF!d>FU6pDKZD6_8+j&Iz^`#EF|#xEW4K;X3~nVz6Ijyz6zaDJRSZuoB=yC^6lh$#)cJR3DE$B5R;pb>XZ>XcN+TA$@ z|HxLGNe0ymmvMQRjfr`GOs}?!?}@&z=n1NCy;uEDwlmtIa!}o+(93CUf10t23olezu7OIz|Rt0{OQX3>WOxUMq|o z>M6S+i=^j;^+}8yW95V+!Wn`aQfcR}-(M}8`{{HSkzdG}8G{C=Mb~oF7ZTs)YT!DI zUo5O=@#XzvEuGkO%b_s&vJO>+7;x1At$-3}eBXBoTEt?Gbq9kOA*YjO$Lz90EPMQr*_7rjbZH2=+yxjfGfswc;M72NjP;Tqv@yP;lURNXh zUBSFmG6%M~LgiVu_sA__4UUtIH5G-~0m73w_QYk(1uuEdEq=-)60={sZ|uUi6`(Km zW{y}*r8XFd+&z+7a&?=@&w+J~^smo62I8s5F+PK0B6-U`ocIpWQBT(!Bh`H{<*J-i zn9(+OxtOhn#lQZ$Jk;}S{|TiZ3rYi%lXglo|L0a5qT(FgSo>gTp$b?(8JcNQeD2Fn z0IDH^Fv0ZRf;yoZ6;>ZO*}%K*@RfK4pn$-!>nb3UbMl8~kBO_~1J}7>T0{HcKE-$P zI~jWI>*Z<&saj!#-&+kuuW)m1H*YHyPv+kypbyczEJ8q0=U1)-LzWD1=d`~6Vf%j-FLmXIo**})G>_vZhBr1A5 z$A^N%oq}o1DrCFV4dS!iT(+c8e72u}7|rk}9=0WKX3)jW*XLU;3mO2P05T`ZEU|*l zFG|K_-U3=5D)_CKhplRLsZI0ssr**sS%UtY=kT_8Aww7_M7jLBuW$rQx|-xdGn5Aw z`D|ucwZVoQe>TELLsbdD?IitO581S#46>Af{k8A9o{KRgsh=b~RPab?W?bpLy02pV z>IXO&jur1m&i(Q^jOD+^UmJ59>XKYjhqY~GK~9XBk!{%!xs<1P8@YF@ zVk9kMcw-DTla{T1`s;0)KND5ut;%j;L481JesPq8au^i#E4OFC?sGx-y40^vR%o&W zNTJ|3wiDl;<1gszP)@XoUkQ_|7SicS4)70nwW@66zv}DB^%<*Y?e9$@1WMMC{ z?9_4wz_~ox9&)jSfFe#Ch`XO4wXqdKuis?^U1cz>qh0t-X?80=xIkFinm}G3lX#}D zb(~nWZOlQ@GMJ6%a4!vi;j~+vTe-)yp4*IP8cvTIV2!P2;drtUEz0EJiYy7Ko)9Ja zcOLToiIv@TCl>y5c=5qSW})5iH^)|#fO)BghTCmO9!XTBxGAK+)p7OGCN!S!nAp`Zb`lA;WKTurr5KR*cl)lhDN6hG$*fLlDoD>E&DY zHePBYaawC^jiN93`DK69R!wnhSAML!9Of08JOZcO`4rQw#J5%_k1Pr!mJL#JFSkX( zWelO)43(6JhX5ox)b(*7S4G@htTzKQB+0S3ShDTM z!6I4j)FUWY$6Igf2*RgdDinKNKC1d*S24bs`ta!0K~ce$OuI>DG$G!1j+M^XsDvW= zsd&#CYzjs&xFL|wxv~}a^pzO%6TIR(9D`Y3L!fQl|{?de(SG1!Cj1W07OGtVw2I_KSpldD(R`M+T^a*aX%N9X6t}zU zuX>|yDv{Ux&C~Bsm3j75W8lrGW#Km z<`H1|I~W#j-?>gFVGx}V^qd&0-!&Et3A`VCZW1T%Sd8ZJ9gJC!OI8}8eD@Z9>M|k_ zzI&R|I$y`5ul$;BAY;j@q0PxSvW<4H0{5Rj4AbnU0aR-7cEfRIT{_}YTp(ODRLSJ{%K^8;W7wq;1rj!^UNUdlI8QVjw=U$&vZG*lRG!AIW0 zZBofVE)8OyzGN7ceb;Dhen-K^IHaD1;Q(D8c!h1;7t^DB5$ca#?a;loFW10PMDYy? zEo56rED#>45l3Q|YfzLfU_bgKBI!)bEZ{)bK-ek(r`D9=HQ_E#Uv9R5$wkT2LT4_5E_E*`6ezy&%rth*85VmQ3v ze-cyJP=vS;klSC5YG$_VxFxICr@f2TUr5`5bF*w5Zs6BBtq4ND@OWJgbp{mQqQ*E_t;0Ja^lgVqkA8}W}Q4eB7@vXo^#lv)=OvGkm!xwqna^<%&i z+rW?Dt^BO&6Dl)E7G_hB&9C=>2N^-ftv;L|?b?i|T;0$7`?^StWK(z+V|SdExh4EH z`>xzxT(RFUP1V8l?TYaqWSBUq?`2}xF|%GJNiJTPZgu2lr5;^g;LGC^jNzyfuD>_J z7cYfYWMn|il9GRO+YpTA=Od-BKpHymOjXMSJEfB&RyS%wu>OV$INQEP2JslTi95Nw96;Gkxohd)(0YmEXwl%MqkNO=JV4 zx5s|Y1x9ef2A>Wlhf-mgj-F+gU(Y2np{jPO%6!w3$8VDQ-3!Kk+zU~MKS1&wTfZ$j zq!mM@(RN=Kbp7>%%wq{g8;bn97W?ZwJK0?*pDVK+de=)hSO7C-QA=QOBE3*!vEQjz zZ34uoY5BKz_aX^WSgG%mp|Ff7m>oYExSsXE5Pw=TE?owCOsZM_7EPK~kjg!5GY(cC zzR=n!uM#4PfBl5*QJlD>qI(Wh`_WwE7jG?sNefVKh(HJ}$Y_k@!q)rZU)2~cSL^v+ z;k5x-52=t7it#?+R0rnz2_rVDmBJ)x2?QQzTXszdwpLEF@xNVv*DjILXmL(5HDO7j zWL|7)S7Z5dl_z;85z1g`h8rX`vvSVCo};AyYO271WfBK;@SbZLw$?KCgASBAztxp} z%S_fSPL`ragkfQAMWe&`xLr?rY55&}9>6)tIp;zyNHaT&W`D=}Rcy7vx{q_%3MWg+ z*M!5Q0=EXtc1x{Ue)}GNyz{56c43i>^AScc0fF~4EDa*~^xk{`jAY+tv6|Z3A~exw zeIenF{v@%`%_KCC98WjTRXVmX_dxLYQF0b7iIeIn!&!tQwBM$cjVY75dA3|+UfdXS zU)+B_?5(TR{iU8XgdeG+3J&rSxp$h_{ndCgC{{N&u%zT$seMx1gS{gpy8;nqoHomy zZ;wu(U0H2*{3%njX~6~@JQ6C#PI{APD^?s3%o6|2epyXcNrv9}d5Qf*sUeV1INUD< zgda!YKC|>cHo+w%um%^%><>y)zPt)>oA@l+$f71IC-hYF0k^gUH2hn$iU+F?ExTW{ z{ax`HY>AfDKm1~uORnjHQV9T3WD+Xy+?Zvn@@+0rdz-p0ygTycmG*pcaVzV+AA8$| zE0-%g#qLj0nO8su`)Le_OOpv2 z!YzZ8?0~#ZCYw1tSHE6{Hc4cJM~ct1xOQTIdnDdodI zyrsY+*e!YBfM|%esB%+|z&mgTGkl&KVbPc}wr8G^o4cJIW((gF+xb1uL;2jdWh&;A zT1NXOx_A3L_MydOsTYs6_qTql#?yq743xm9e6B+3`KEEMmhBXYB*<PKCB^6VfClNTLPp(aPDM~l*eqxZt+M9%!qE+L$J3*fGLFG8Eo7VENVSmzY zuyHq)U`7~Wp6d`_(p`@)g0#oBXTE;P!$u`Ao8iw?LusTA{Bi#(#mb-_lHpKONWPTW z=b_xm6s;4<<=bV$Vo9tiX6NI5W`5Q6f?qF$V!Q%)_x~~vWzZreert~3D*Vc75dCIS zM9Ipp!c}BVn#7VLeJc0BTXV^&O*Q}^EkX?89d0eT4(vs^)IE$Cf>jgLSrK~X6vurwmZUZ>vM783}(F`UpJ#M6Tj*BUi>y8*o+B-A5de&faCJY z@ngTcytbvBCZ$S7^IvW+^d`da&X^I<@B>7TK!WnOd3 z&DxVJPV?(F(*^m!Bcs!wh%(y2&g7<(a8FPZ43;QJ!kehw|4DTCrHO;;{A;46UZJ5K zot-_gHy7#QMX3`Ej@AEdwLLAswgf+4m~EPbPK;@*e#98wo!|(me#ezAkE2`B($!&Tq@2v=~$!2luK$|~_3^!_@LQ`xG?J$M+jf@P!hUT*S9YcBkFofsJh zDGLN8HJ6K#AV%8WnK`mieFme8plul|zu$ z1kOVnQZG(lb3z_ue^N?76umS1lT2qlkm1|04XPK0phg6R0SK*wtQx-U1Z6Y1XL zi%lu+i}JOsGLGSw|HG#-R1=D@JBqZ_GP+(yKmkm>e43z)B+zAeQ-%CgrIPt%#2gpg zfBslnLKsSfW;Ro5i(M(K0NRY`GjCOCAeC}vOJ;V1*Q}=#zO1s~+Z9RohdGip;VMSb z5sk`ut0+wJ_qCQRb`_oV?zcL5Zr=LQuwCDKtKCv1zBrPiP@p2wza^oGg816$(KHMK zl3Jff>teuK@>k#is5PF3Xf14RzELMA(iXmIvM3!Dz#iF``2R+N>4OtoLumX>T$1Q7 zl1C?CFz+uU*JB1!7wspK=ffh?0rNJBkom*A`h}rSP{TnWk(@7B0*)YcMT$oU{$ZpC>vZbeO6|IRZzw zRF0OESLM;(Hz5f?Mw%?UtOs%rE-c@TfYqP6qTZ{~AhsE0vFBn&G}*V6K{%(9yF{c^ zqVk-BYj!l%>R-h}ml<>!Xk5IH?-zD@u&OdGwFT8kPAKuWZ-y6UwSAw~3x~hbhzSf6)a+nK0w1-Ww`4Ht%uT`y8#1B^1@?%u8-3PR|ZZKm4BM1J{9(FXHr_8 zE7FfA>L^Cgxlm!;LgHZH_Sovwdh>!o`WJs`^DO`8c(&~N->r+!ZV|W!(TaPH9#Oe3 zupciic5ffmc;vx2 z18_S+0f&53zoCUHpW?#Cwey{&G%%236|c;){LK;|CQE~97d$d2h`u{z1}VP5YRZW* zk|g~+UttBg`#E4wJF)^$+n$&Jv2*`g(Ya%RQ*FV3`-6^a>r%cN6zBDd6#3J3*g+Da zTEwS0S`x{FT(NT3APd!vc9y)5zvrSx@*AVI3z0$n>!~r6g<5sh0AiO+FAc(6c{eh(dXwLso8S~bNEa`$h6Ve}s2&uNRgE;=W(Jt#HDGrJUN zS$#>50120Wk6mERhQn$+V@2Wp=Z(SG8+G;Dm7I`Cl<+G-jjvPJ59f@cms3nKRRxPfp{ee-HRl!$Do1E}laq9F4lHxR?w%) z26A)Jf3XVuJw-NA*iLKS`6w3w{;2XS^`DdqpY~;2XeUE+T^W2ysD>7f^_4 z{KtWc2F!K1YEJZZ>f_293f-!5vGGZuusG!b3h7Io*#zE2S8PfmA;$@(l<9R_q#-{= z=|jUr#;+@RVq9mL{A;BqV-?f>>f4$Yjm4zsH60(9O4!lf>B)O~=_zCxh%3bMl2+xwCd5CY(3mH8 zdWCC1H8x&%(yyaWH&+fF3<6RgeM`R99`8kJ@15mDpDncDTpjm}XlQ=@A`?T3(Z5x? zWIV}ysiTS8W$St%*?`LV`YW7L6D0IL!!kF$!3EXKTZ>^70Tf&ETLo2}PhtTb4jV2h z9)n+Wtc=Avi%9E&4C?(~*A9RG@PSd|1>^nXq(rqpHiT-|ey#&vvwFiPK7~u4hsIMy zJj5ESWBH0QHU;7!%R(j%%mqeu1-31Z+q8C<%phe1yxa2P4Y4eqVnl*_+Xeph(ly(Q zK?txAMLcO&OX3<%XJp5$%V>`ND9V=i-Gq$^$RU9?asH)p?y|LQY1?30+HSXSI`)$> zZnI0|A*=+`du*&>YB=r^$Yp%uSy28 z)O;)|0^yu0t#a=6IbMZc3$wpfJ=K(03vnSJzmjVEBc5zGe+-v++?sAwVZ%YSK4&eK zwcpth+n+VL=BZWyfu;{IeOtE9D*1r6I4r~cWy-(hicB3BWSPD|)&glpIgPc!-P6Mj zJM1uay*%rJ8{c1fxD6{d=Hha%Pu)*ejEG7^>c!HV*)aRTk+I|Y1=SmF6B)`(UIQ)K zZY>qNv%8tv-`wz(W7xiqI~V}(%G5owaq;RMYd?56r z8{!$4;XEh|s(k#*tpZp&TSOVNaJrYX^Hb?^m^tx&f|7 zP{6WGOYgmq`?ntK25y-OB`nXk>+~Nlz|#}0Qri)V8p*rnNtR0ZmTyRDIgz^G8G$x_ zEB@MT4rN5khYZcFBc|M(50?k=W=ekiBI#`J%G8oT`8SV@A0hc>U2UmI4aU^tu2vBT zSkltQUup+)V5$_{Mw~iocME{!Tsi9J>kW2fa&V?Lvua!Q0ky?0rCCROR-nHW2yM9x z96(-O)-X;7oPFTrZ_*}b31qK3gZ!UW7+wqI~79~agRgomTfR!Ud5c1cmcrSHG=fk96cQ3!~@k6^cM@h~26mh7BL}lfas(0x7 z2P^&o_n^F$&Oe=;3pUdRr05EGrkw!YxeVkJwgv1NcxMy|z0}0lQm7>)eHk#o3c!6jr;5b5YE`BzT`5kHR#V$U%S!7n&$sP zHI!Khad;pIEE5dQ-8gGo#+AR~jv+CtO&`Dh7pK3Y-XkULRQ!ix)sVU$6I^D!i|>L+ zkDz!$`Q()xuC5??A?WJK$^Q&2G2FV^vk6y4EB5L6K*R>NswwNF{TtIcBIo_zlQIc!$?6pMj1@W(nLavfzc9xW@$UHv+B9{Ezmj zuSV{hN7jQ+O0aug_n$1rayZbu&Ob+)G|zusN=In)iN z-UE2+%bd9&KE5c?(_PW_A$;(GPnGgq(CIqxSw@0{0z+Vkd4c~twI{{c)MogpQH8%c zxaV&d%-OL)4?Tu2M6{ny^YKs6G)bQZ)C1WwpVwiRbIMnEY`^;;)ldj!Q@`T{JW1N%HshEDNNakkUgTS=q*V#&YvIvWL`d#cM9NiCzj-{< zSGJs3UUR%;sxgFvVe1)=UZJT&$TTo@&j+M@RV0uvZUoDKeIpba7nFYQGu9O_&4RYJ zqUY9>0~r4e=i7w@yC!28bwBZ59b`-1umbv};{F)1UOli2od8WCc1OqV>pRS6+G|b%777dU(sy>qX3?<$BI#N)UqV||wQs+2DYWNz>$6&17&F`DOXx*Qz1(1hBhwtng2 ztyPdI^bzO`IN80Ce7?rDBqvSg%<9}?aR=qN84$~9s6E^AVa;)xP-rH=K2=LLzN5DoNV1F?$Q_uQYnuE$j zua^n0SA}M%bVR5 zI6okV&d*6pc-W#tMyg9iRh5Y|&yTaEo_h{jDZIpM&i) zVospBREo|k{C!b1)H-PufzDDxTS!8)y`E9tzAFO&=_I>$@(iFZ z?-;GBvUchMIiv01w|j5Zbcw03v=kbV=Mq-mO|(cjFL-BSUL-*lly^C#>_P(hq>N2p zBwpcxSP-%@TtMm`o940l_lE(=4kiph?<~}-7!rVfyjo`SeY*lZYmZqJ)$bD2O*7n* zY?6Tghq<@@i!$okz9|V6K|zs5B?JVdJCtS!1(jx0y1U~9Q4y4mp+Opv?nXhnk%k$N z?(TZ`px5=>_w)V(&u@N2;bdmd-fORQe2+tN2>omR_n9vLlyvLii>#1E-;WXwH(T}U z^9V5%3_+5wdDkJyFbozYjes`Z??_GAUTdl_9-9$+*n-~k?z1G5vzI6)fs76*N3^HC ze@4hKISUU?N>u}J)LvsYdrd;4kLR$lD8y0@(svUhqF!YjMWMO1 zJPa!~gqh7^MI2e+_zv-*jU;h#!0^yo2#|>b-P9^MCF^ zZ92%(_|FIxpDqOSQ~k*}XoxTWvhUdx00itnikykdd^{KW6ZLP{TE|2z?&TpL!P4XHOjeXl>GRob}koZq*k^FTeQ_P?^+fB$Go7|Q@-J7FUrQB20iY|y;DIPzO7 za0vYA_=4~>`(=4z1oTKvdAFut403=X&rXP10lq{ta8vO5|NaIN4tF-c{U3e>B@0aG4Y!TMpLQjta7XJ| zj<#FvC__Dos$i`5aL2O_m6>mGuK#(qI}%_F6ia=sgfv2mpr`&IhTAX;CM)QZ_&^mhSj8f{{KNSk^c*df&Nl4SQqhE z&UN5`#gs(*>VkSJDzht9YU?c;_L$0%Za)Ev%=YNQ8H0`}@!3D=FsCFSw*?biZWy>i z&CW3fG8ie&8^~Pc6aEWw{&!2nzd!X7QvyVCM1Z!>*p21?kS(}NHk?g0&VBl{Ww zhW7{%Nj!>2f!;5{VKpB19&ob3Xd3z+9pG1ZUJ7i;gLX=4U^5;(KPsL)Og`|>D7`d* z%)4CeQ|<%38wqqq$p}U+Hgur0?T&5}X6o!Z^*Gv=KC+*~k-YjCNz(sb<=y2+_IRI` zZinpA^{S~K)%q>L9V1(`?Px7enhMhhUE&lg?z!N#Iz^N@W8%yD+_KMT7#;igARJr} z1+{r6l1wi?2Hs@`s4ziMFgjfo>3L$%8}bz@dOdwVhR60@heQS)rA#Ql&W=omb2;-T} zpnQ_2l`oS+6cHiNrhK~18s#B0O#)vo>e<@^dXcb)p$k83#hl+c+yy-i;7@dYHwb|* zKqg>i6|hMA6&&Qe{3Kx`KM(*H5`vF@7O(XOmex<%{ApACEQ}e^Q!1Q0 zy({&vEXUjU!uMpg(OMy=TrCiLASQ2=XAH=l`=0>=6jN-}L9V8n^UFNfVC;83gY5pQ zk2A@vV~0ANcet?N11NIKV_cD|V_gQMW)GoS_gYq=AdqVlVFcnL_E!UE&?+QhZX+c!fW81{Of-xN*jvFPCq?(ul( zz;g?yV%{G|%4wP#M9&~gh7Z9Ry04_MLX(dVt~+_`GgD#C}s;(Wq*)(dVKKaM2?svNCe)A!o|Mb5jhl< zi?0z%_IDdREC6qX*y)^TN}fu>zOKZkO59Lx+Dcr4Z$xXqs_uuYwQS;@{5}#WU=etvWK@KfGF9beLbPTdlYD$X zj!e-KD#nUgerpN_);l{dnAH^8ZZV`8u9OwMnUU#JHSUVzjTBK4r!Khh7yJOV<~9z` z!=>ttx^U~dBN=pJOW*7C2BqSP-}!KOmD3tajM5Z4SkWW`1+#dRr}`(B?|6eQ>X2ey z7q7hy^0Y>Aum?k-UBeE!PC0ys176DG&k_z~n`1)HgZkm=$MvxZkt~o?S7T-*Je>7hvOnf}K#qET6sQ_TEhNNGHzh;XTxY1U ze6YQ-4i-T+IhXMsyQ}5wt?c9O11_s|#!+V|UXjx$&?OLEGfc%{eK|OsKiJQ5%Z+(c zcW(4;(sPjIW!gV@hE^Thji)%c3<(9zg4o5gT7>kOfRQG=U9B z*KXJXl5^Dg0QeMlXqO{mz%}{fkH)#xed^#0lGWRoI5nyb=G+*!`Rct{PL1iDVEhk9D=7Ak^|yM$I02Yu#O!@!`R}C;-EY1 zdKP4ZIchCSw1-tTquXzqAFc? zr@on1&5b)-!TNqmcYb)T3~_SL?kXAAks z^Bb>i<+?h11j??}KfrOU9fa|uM=_^9?vJ48bu>lZvpHH;YKys7 z886^0Z8d3|ze*e#zh#1#LmJ?||(@dyY zyzeahu~@%FS>B>ZVFfh^T!07$?kc)8)BM~ysEsO#6}AR47XHMNiF{nEmCl_pUUT$G z^K|gb7u%pIygu_5&;o2PT^a5?j7vg8JyM$AKkW-2azcBxMpL#CBI~{9j>b7SN8bSq zG+)JEy%_yP@0wq^>0{-M17swEg7;<@KF{QCD)6P5o=hNQ)H>R+J32x{rijnvY30QW zV&7RCs}=qa6$Um3I~=3#cvGg9B~SXUFOxtdoDG^%pH^b^TY}m^nQaK-=Fu@aknl%7 z^Pxw<8|2c;)}z;e1yzN4vmXgK)C&~}CWYs%@2RiFR+d+ubujOT{??H+wtl8kG?>jm z(4X#DN|5xxTY{7r{{r3~JUv^D24&RGSI!)yM@DGu^YF3<@}%;%IXf(7U1RPoAn1SV5Sw8kfs^dNPz4ZrL z#xIQTingJx#$8Jd%}0T;^njJezN-~Em&xl8p(P)6Dj>{QY|zSgK4(H(7w%F%e*AhX zw$ywMEehYBZJPt4aCy*ou+X*7?aCV$82k3J9%`HAsEg=M5NcmxuNwesJUIbiJ9iAw z<4-H+%<+0OvlG#yWnF2HureaH$(`xlKN^0SvuY1)%;!>V^(6`Kk5$-)mskwE!Wu3- zn{G*372Mr8@%f!~?h$e(jKmScBaFH_;qcmSH@Yy4-u5je29NnZ6*=GAv@`O)JqWqn z$0i4|bD)pdwBf^-2hMZJ}Rq}`cjlt6s^r79vkA`d89$dZPXbu ztmm#&<-B19shCI6jfIoRk)l+@RyCyAbt><{_*WyZWKfNuPL!+HMuxDBrDz+Cza#99 zxW;b1xqZzrs=~JBxCpr>SV(+nQb%`8AT{I?+)n*iUuM$1hE4e5j30mYo%H9`lc8KK z1u||cVy%K!K5iG9#6rIUfKsnjFBzqbKhtJmk@M?{Q(;u(A-B?!8)mo0g&Uw`hXnkJ z6Nsopnv{|K@^4aQZxGprKe~VBc=d<7`V0=w*1gp z6RnMz$ki+b5qr#g%Y)%bUdQqvPxUQRUu7Kqh8g4$1RQ-nnPN>RQFA}FI&+r3ak`mm z!k0`!3GoFSO*@YUUUT1XpTC)ExYNoRmiK}{?f&;X1J}B5O}1fljejv5v3pa4&R5YG zj(9w90%l0^+OGutGi@FvYYlM!vG#xPI<0x92e#CIVZ6cKkoIj1BdFf{(d6W#NjaFG z9KVJ)!NY(LSKocWx^>_5!1x-z+-EGTerS@8y}-fQx4{`%+$mJux!S$obRp7Hz-_-F zdJvDIo*cDD?Ic#ytLMcR*)OmQ518~IYqup9^0r5rXh-)dsP|UfrrmZF@jxuw=pQ@W zo|F%epc6uzjNO48qr`EXk8@JO~T)oX=a?oLh`_$pJvT+1}>Xn;=+~F*7n$H195~$;OXr8+=x&SZG^filF z$yli~r>1C1CHLI5w{0@GOTh)XJUiqJVzRCkZN}pVxDnznG^2UnkXVhk#>3MctSB=~;`Iu;5+uc(t zN+Fl-^H$5@8JF}nX?L}pg?Qslmg&F#VLjKt++0uWc=16W-78%rl=JNCQ<}Y{x|8*A zpj?Eh?T9Y6F(vWTUzmSlCzsi};nTUK+U85xG18KlYHWC11Q{G}Clp;A3YHVrc+F%y znyBaz>(7*DR?5MF#l`+gQ`nkd$4;Gm)r9-^QW_>fCm`U}?9OK~@^CWIMb&|vnR=me z1L@v1n-^w>gs#6g$DNiB&m3tJ9xuOOOM;FI#}k_kSASIYFP_&WnH6!FB?kuannvBF zPGZqY`$V23Ko1g6BNG_yw~gT*rrcPQ5URHO<@mxDXSc0(`aEI6|+9i~#Y2ZNRX9c2FI@H~Vb=30>P2)eIG;U&4+B z!PgkGe|2XMtj&BO*tgYI4Cw{hjaB_o?;@lb2B}|z zTpTe%+V|X!nPUXa%LvQvp0DGRbDJ4_ksyn;;0Cg~o7HX>`o-U)Q%#<=cpf+v{a~r0 ziZZf@5wU%G_$ae8h6~+bk~a1+y%XKa?7?d@pU(hWZ3r|n>9b#Q4^8z|kJT?V!SFXC zQTUe95%VGXVrk{pJ=FOIYu~wGK=(7q%*g7h)5_L+K$i8~ICbDJo}GwfX4H@?CV$Dh zR6;F%Fmzo)(yyKsT$aO?55!+DTigdgw(aU$NNoF=`jQLk%x-^G(DkB`NJ+acs9^Hw z7a5~k$PF>mWz&Te^Plyii_|ejxIJD8LP|7zjzSzU>AnzmCxVx4vRahACmQMrO*PT2 zI!hPJADQd94_9yTI^H><^@<=8zw4~+9pYwc^q@<5*GH38ubA;yh7OPEL%8P}Vcg_5 z!=3rC;k4Dyr{w+}#sVNF@$Th<+aRp~x`5pc6pC*hl*X779v*P$)x2{-tOYnQ+75=USx}ZxDjecDA0AU5L^4Am>$e zhBAGkZb#ScgR|YGH?USBml;Q4nmLctM%`+K15j!y6u*a7K82>HskPjgo>8lUdj#4G zB&j7qCzA);ZJ9}<<&LKrk|$1~&YaxS`l$7B7JD~I>t1S6im0<^#oCP0%x|rZO$9*) ztFE1xQtW%(w|j`T@U|Sb&~^TWmIuT{^*3&BE8#g`vt)y^L0+2VqO=xH(OL%oLAeZ=f&aNtuppKC?*VF4a6F5Hv+dINR6BmUxG-nOxAUWU{uymq-f# z-1c|qkU^#EO4sn(w%)}l$=l)qfwH9@DAsw>5T2)1+k9ks;sM;4Qeb8;^Is`ljrO@3 z_!wDYx?_2g%jL_jwa!(%rmx0Bm)XO5CgNr>QPH->?C|=DagFEEDAP@J#Le#-U=y3I z(^fZ8W?4OBi4c$DsbqQz5Ti^y+6q*6)xdD3N>UV=d;Qc1>ABi)aXrf5elJvHx^o9% znoli^(&xG^edD~(QiyJ6-e$xMvcqPY@h7-i9K8&hKB z@w#>D2l}N+1}=+bK0L>6X__C$LtTdpC%3r4(hQo}Glm=>)QT8w41vsyOmG$3p=`M+ z-&CT?es3nz`JE~5_;m0w_o#BmfXZG;c+To)xr?Us$t6UOP*wxv}ZC!=-t)G3-FxNM4gwq%!r| zN%uwCCS7EL{i}Nm`g@gn3#0b)tv|5wR_Rih_N4P9i_dt>M(DQ3r}JlKxT*BWRW2t~ z9$K$K-ClMEB6UAIitjobL+aes9*ezSxA&aIVF!t|Z*|o{Cd=Wj;fb(lxaQT*+es4H zSff(3qS{DP#93^;SFi=jdApukM`WDJO=p+Wd^sIwoSuBGN^woHIgGE+E{Vu*2-L!gy&8D6xv z(QJ)Tk$NIOq((37*=+2V#92}BV)-mS!o8@PN~1($|D01LNH%O~1@2XlY(f&g5MwHt(i&n)K@B0IUBXG^IGT2GcKu|$)42Nl`$-9IVGi+P^m zdxrvJHMy807)b$UH1mr*C3VMhc3B+jS;oZlHiuV-g51T4N$h8mHv(O=3z z&|D@Dq5TVnZ4icfGT$0HS*I8(@?mHEW}2Qcatn`H+ZeEy_1do-4#PZ;$2!~gmZ8B&ul!xdVftWX@VCk5 zFGKE0e$3)yIxe#?I_;{g+1sZRv~G6SiG0VHlL5FRE!m#Tq{5k3LbhwQHyfpk_0|3j ze(Ah${+M@u2O+AA1tR6&Ckvi5^P90ScZDU8;@rOms+5o7^?d$hLAkotv@0!MbdD%W z#w!%Oo6rKy06)&@(*`Ci?-x~o;q331y4xMkt1ZT79$wDX0hi)!gazB;s4Q9}d<<-i zGVedoz1>2)`?VZ5gzCg(Glc!1!~smy4I4n@OiOT52l^GZJkLy8f*>j5 zJpn8wDwrQQS4G<;h+2+x&N}tqy*hRmxSI+UM>@0>WCdjKBpRvSSm`VW{gI9~HKw_Y zO3t*o0zt7nhAJQKT$F24+%2c|k$C=MwTvX}6QcKc7)#y(>>Go*?nIP0yU5nQ6rx)8 zbcM)>Wh2278N%f_hNibkR-=_fj4z*9#L}*DZf%hV?bEMbPDiIeBJ`ZHaqfx|L#R!ID*%O#i{QER-R=U&E9 zf2@U0V=6ZWtxK6hKH+&a@zeAcm5D%67agC0pjc)%H&EwJfVX&Qe-|Xe&W((rX zuW-;=5%4%Hh_5=&pH-wGMSK&ugIRy8!mMtXo$~P~47z%#>YGC|{E7!7h8%}P5<)LR zoa|8vxue5q<{L>|Syx@eMH_TfdYs%C~#!dtwuJJFqT6tn3+G>>~<3_p+!EMv}dci5OO z)%}v+Q!wll^6_%c>O!AfpTvtV=NmYq^>gLZA6zw^o*!FCHkPZla?zRwVtfIg z=%51~F3nhK826Hk%5QzKw#MQcvb9OZtD!A4B9JhPMLw_5mn;>OSGiK19Sy?&TixN^ zh3LmyWbOfEiu=nPiklHZ!Zo5U1vTPECF5!>rIYI{Lk&Qk;|VSvqt=X$4AQm+SUn*8 z6K%Khl;r$ikj!r87@9Herc_H0IRBWeOtZRWpmOBia-+{ez0vPR=zLeKkb0v%c(Wk% zLw>@;l$~$dO)UfL9rxe5yt-s7hKk0m`PVL`VCXuLrDr~zTf7wN*dXWYQSv)S zd-&Wz1Z;KnQSYx{ECp7Tt_+Q@LA)DPtRD4gZd_)&cVo6!Ui4||izY4JW794R5n)Vt zGX`u<;?Q%cqjNvnM!5S)IHfW_$Ig74r?&mI7?U+;Kf=;sHhP21_p8@K35}e_!C^bn zDUsR|M4~IxIZ)D7oegT)`de7XDH(vYyeYS z?xf+MPn7sOB|J3Iv#y-5f?2mJf*j?hzyjdmSl!mG$#oEypjzAw%_!zA2L{^)@#{e^ zX=(svc(&aIl_R6TOvZz%#d{?PP8BDGZ&B(`j3R}kVpsnbC&aOIr}fQwzr?GXJ4 zUiY(GY9PI0cY?xT#w^ga#nyjI%{SC5Mr1T`In<99ylS3|oXT-i3j#KDtBe_m55GZs z1H2|VQvQGT`%+x(L|c-<4gMDKqR@260! zJz-Xp+q+ent{&H}`c+PuW8+?zBnGT(X>B*}l0^jlUJ{{;K~J^d{25y_L&+-$JwQZTfZ28BOQGEGtBn zbG#(f>|C9&GPE$)fhZ=o8rd7cd%ZuO^V+H*5MPR;3}f$E(bJT|}( zJ7KckimDDSD>fZOeIe%@ezb77HN)4s98M%20A>C3#<1*!= zG3?fgW3j>0kv`9jDIJJgdwa!ApjZ3~@V2=RG&zwTM?0|C-=-c#;p(05eM#c@ItmFX z=fX4tM#95H=BUGqmF4T%AQsP5mr#cg_No+mjMywyO6Us${h>84z=1DKN!DTH5cDMe|3d_MKw& zW8P;2H-axAZ4ax&79Gt;Q$BcrhCtDUM1NXLP+nk_C|DMW@t-{}7kZ8MC3=9d2wdv~AM*@1iXJ@#t`u@Q8a zS?ESoo52lewNF+=jQtz+a4wufG|5W_ZT5Giv+HY**x3kfj1 zyA9KT1-9%r?`&iF&5ele3iJJGcyG@Z`?N}ToNqt(KqfE>q*Vx7-+=N=KURyKW{Hec z=2XB0b&6kUK*T*j1ip3)?q+l5w)b9I9&9Up+@V7ZJb;rP>1a$-imH;+d9^Y{0UZ5tiR>tk6)I^UEKBly6ol$XX%y zSY!1QreE$`N94)@`}WG0d-)+r1*-G+&>Xwi#VKSzYR}p#kWs1<$ESpb|BdJn;mh+U zq`#`KTo8+8CDc29j(cA48ze_?eJGNzKQV7jdO#DQl4#As_Kl3;u%()V z_wR{c!7#Pt61;w%rFlos_agv08P&R+shkbd$cfBQTY5*w5UOHa`mON(RM}H9N~p-F z%?u^#bQ(?Q^Zkkz1;RkT`yd+oL;oe*QcJu5HhwwhI2I6ty}I&ib8*sY5qT*k(K@h)r$ zNv)H_jAzQrVeFP;o1<26XeZEOtVZyscQ~$CZSM&~_3xOny{gJ-^suq=^?k|kA`^v` z%p})W=jZOSF5FOF99##un}o~KZm^@(;0f7-l{>!E<9lrtL}EPWE3>&iz6MS1sk58Y z7h+66>=Stev4_AJKd||~s?{pRZ*d#{e0Y4_UAx`{Wd4FRLPlU0Iy^b0wNw$mb66`puo1+fbJ? zN*n7-}s@)`O=XAQD1sJn9@HK z?d;doZw?9vf!cm5vjgb^UdOIABBvVseN)tgr*12O{OHImEAyf66GHoQE+)99y6cK- zI0_t1`M)eoc2b6+uD|X%Y9EDlG>$WKKwMwheT-56O>2PaWml$xF z=LeJXs)GK(YLU<+91pP{T{`D@lrK_g58HbC%WAw_A+p_xnI%^n=6~xK!+7qGxN#@t zS$?F;*-J_u$bPom>u5{SAra`Pyrse?S_Ikm+{^aNSaWvI>jWSM;*Sdz` zu-T|{=c<$SHTsM9@8wRE55`ua1`W9SpNOSTvG`1|?LEZDak?0_}f;#{2tT~bnXTUXHGOZJ^%X`n3|9z-qN z4m=EJ`z+=Fx$B=HDF*IvB3n%)POo14DNp2^i2TmKYv#__{t;*xI?LSevH za759l%EZ`P_;{>H+J4C@D%MUNy+7uOsc-OG+69{wv~AyJ1<7u8W#s-qD`}3%8nKLe zC=8vyJKb$`W@POWIXVninM1e6%fEf1=ontvuEKk+AHYoOa%X5dYq#zWSU=D0WbtE+^ z(y6_W_Wk7Wb8seD)C_Um-wdu&mLTHTj~lyGC)BpSwXWh~7hQ911}&Y^!M?b>|E2tQ zPnEj&42)XI!T6zOyPef(0#^K5Jy(l2;K5J6rP>S-T?DlO+iiLQ0S%eppyNdSlG{bt zSpJV}e$Y#d@LGP<{j;(wevc+W^aDW}$4Et}=AWFv*<5Yyu(&Bfkce>@?A>F8(GT0S z8D>{)I(-_H$79he!KgyT!MpM89+1eCV2Z?*TNFN_Kdu5$I@i_$Z8}K$d;V&!6)R16 zFo!H^31ZsDe3DTY%i9=rZNRd-MGDDZ2sh7&QxQ9Ub~VQ5He2kT$yOLcQI7%6vs52z z!UFC*BsZp7soBtOY@D2R&HlF%5T=?3zfgCIrHls75;2-kQT)-6Mr{T+&> zTwnb&_>#GAX-R$Tx$WTcAn;Sb`{L%XVKiI@4L_l^=GfXJ-{1G@7rQ*3v#vNq73Uf2 zeR~0Bg7z8It-Y9p&eD*v+479pyl?~1@TCFy&Grv4)fi7WAkmy^FNF+Gf3Ec#jyRZ} zk4YVw99Nn6LaOvCjE)_1h?}Amttp`ihMW3(X)@V0dONjjp#*}|=*`qS=_=$RgiH;8 zhot2mJ73Emy~P{eEpF7SeQ`dlT48e!T!P}b-X1=V<7H&Y8~GwC^%6d7DHO!%HY?}4 z>2qS);Li@Lvz=kotaS@)vxt}fSjVjaE=bHoF%}||iq90lQ0e}Q(B2uUUjcU_6IDK5 z$z9Y4ePC{II0`H1#-`+_uQiG(1%imvb)OMc|4*|5xlah~of6l~vSzKLTuyG43vV22%|_&-3gG zUAEq41GfN=^P`2ZamC{#G0!Tr_m24E#Sidni?`tS)H2$kct2W%|K55O?*kcsrXS*! zUGLwIN#eC(cU*)W>m$QY372o4&I~7!3Xx@DwJDla7wG)Nyr0bflP9$kblVwZyQxxE zJ{WgKb4s|;4k=L+4pzDuSqu{ z{hCpD8RLM;=VfWlu@34mqB`2Q=j?r}DHLh4Pa05H9GDflbTz5t>=m=l?%log5NGf*Q&Ub1OOp>sGgDhg(NRiR5K*hn4VNgI8ECJp6_;P3^ zY6~^;0TOuKk__DwUo(tE1hmKJ~ZFg z{%9?dY3yti6Z3YjVF`%VVqxf_zunaj+hW7qQ1QIglPIJwhp6qBO}>-Bo3RwRHw}|E zHZ+}5QT$Ak2`gM`q`jK-2C4|yMdMJP;=Ip8vx~zV3Z5Es=jv3dHiM8XckT3J;Z#76 zJJAkt)CV%Pq3{)Ap2ohs7Ulo>+-WpwLbG2!heA4CDff>mPwz@|e9h!p&qpFLr_t`; zqeb#IIrC2b`Kv}hF|T0aV8Q67u)MKWw)?gJHC;B1F?IW4v_g$GXl~GcLAlalDXhyX z%lGcVgne)q&0G&|9kP7L`SxdGj0nD$3Z`06dO-=_sMj|{XJfx!otKZP_`k>dFGhn; zUnTLT__(DU<;4ngP1)e+?0HmM^;|ho#FYE?Qacvl`{>8rQsB3h?VW-mS|`Ur?tb-c(?di4b#O z4THj+^vRPgRkBF1?_c0Qt{s8$(&2mbt*1Y$Y|pCFI<;=MZ~R;Pm#v3QOdlXxR5(99@=Q+W;Vc5L zN2oMf-7R*{W@lch(rGPLr6f}3f51$<-rlVsbm8^of5(4@N!|E{ib;Y)Z1U22^6xhl z^jR6sKhcRZwTYJCvL`uXy!-d{Mk~hKJc~z5C=k>4u~=|l0ANe(-+KW>`q`{&Omx#K8Lx=IH2ZU8Uybhl95gOKli^K+@ z{{jbm7Z1c#4JIqW8+35h;h#Q-%Oopoe2hPcC&A$FiLQZnxsfb51I?MSU}F#`T|N!u z0nEGUXzN^jdUt^+-c5<0q>7C|w|-cnpZI^iWPe*W;Gym|ZlNFQ-#Wf*39d{+8Tp5bNBZ;z)TC z4K#MLEsM&)ko&s06=)GR25T4CgrdP4r`1EinoLrjd%YDWAQ&~pt4H@8Kc647K2e4? z*gTa&x}X0u`urbHJWN8VoZdTs0WUeJVoKjEb2M;_9%IyfZ2G|GRY9G7de-EnT4X?wt({pm+ksFSE3t~C%RGpxW0YICmDLXn zv)iALh{!ylBgO%Wz1LVbo$)}V)&s2V0~7?zImXYF-=YeO?NsWwxYmbxi%vF8>sM&0 z0}>?AO_+-rW_+A?4S-QH_!R)%_UV0j{K>lqpGwF>gU0oH+;w;7_otPwzfuX_;_O`j z)a3RN8C)TJp3QLI+TJ4rPB8hb+2$>Kr*mR-obCIKtLXDTpPDVW(i=(Czi}w!8vD+> z{+dpO%?~eRPoiktqVDAGkvdoPPGgb&PYyciPHb?8&SU1w7}!7<5N4kIi=<%@9?q0Pmo**FIR&C#Zpn!o>&K zumDo#*@0kjgBQJSMutyZfF4`3#3XceqEd}r zw~C&e+b9Cy_Hwz9R_Sbzu*b?uq8HK{S+lf)m@V5^(Y|vZPbD6qVw_hVy#1jVwi5d* zUApvs7=z^U`2Ip*199&~`HC~eRV*L6WYlCOCo#Tytk`it!Ed$fcqk>|9kv~PbQc&74+O0!fZs$Nv%DsoaTpv;o(Xn8Pnb{_fYiqCuE-k$1n zDDe;Ej#cL<+j`)Eo%c&Aj;9b);@Gb{3G|M@ij*-;F75)BPX-63$nTmFCycu?)TdhL zSPeGWu0yrLryt&nG3@=_fr*(gsT=O{n1q}H`vG=59nffalpy371{w&GSMNN!3*rN8 zCUA@%5&1v+kd zo~EM6@Q6Id6&KBjr+M5Y6+?rZ-~jYU+!W00X1i)2nFezlWs6ZGUxvBQyPo82G2TTd* zl#{=PpeuHQUbp`5He`D z#;%YVL~SJu^f3>(?Ds8-rP|r;?RTR|IrJ3UBiSC$>@rUqB(EW?J=yg;U@ z!E9?NXs_hAMzLvI^b*%|-#Tavg#>lYmR^*nb!ygXck9~KPYfKvhG!A==Vie)qy6LG zB`B`H5OCgwePgr=7Wmg&#XtPk@UnPf8IRV>A`aLw);hHh5!VuWH2Lo?qr$&&OFSfV0%f z9Kk-r16;3{0C3kC%L_xBIzZ9#Yd&F1n|#E`O)Z~^!5okh=ob}xTQNl=XlZr*nI^wm zyyq9GFl;Dyi2K&T`5h-cmpaqCLe=&M0}o$)Dt=+&K>q+SmN^Dmt5<^-h2IH zX-W1kdG2PunPGGq=-}9kYU%2NEo}c%hj(Q4=}Q%FJ<{Gr>@c3xs17bWRfemd)PfIk zS%`5G^knF}u5o#~d^kw9)1jG;wyry3*C1KeDJYAp~Z(i8Kc?SMfpu9buSUIBZHeXhtNry!b2Uoys|MC=z-6dRGq635Qt|v% zo*p+WE!IMOpv&$xWQjD!iV;1b&=V8z>$>{8M(bu<*uB#FLL3K(=j5GN4~V(Zk`V4a zY9Jl~aa*fnrLg4~Z|tjB5I%iEL$gxctWUSDCAQe{>v*0lxHys`)km14?ze2&#aVfW zP_^iJG`c6sjy+6`=drWq?DS|cHU{T*<>CSI07=dMQt5GM&L0t{@Q@j)FVhwM!N;O? zJ5p*KjEm~N#=zkya&~g?(FlYNJ{m1#0w&!D6C`Kf zNXXcALi}jGG#FJ9E#5_Sv~h7`3VR;!$|K1rraZA0dXf;J7oY%!ylWbsZ_77RcG*aLu%zKaktGb@z z;7PjS_8H>>N_X#w+)Q=)?VyFb>P*79#*QIZJSw0t!1%^TB50WN$hEPlU~lcf%mvsM z@yf+;{gFK>7p(6naF!i0EA=Go!ax{xYg&3~_Qdg{j3{D(AjZ_t>KoG4_*Zni*w4Bo zkK>qAeXCiKlMRKhYiPGljz z4>Z9=Y;jJsB%ark3UrpESYLBv^M2QORwDM_G-F~CAJ3D0zYV=KxzNo8ThAh3=fAYy z6mGZmN19tAUTwYlKrehNGfmTI=H2(lF|15ViTB~L{(9qGT>(AfgdGy3NAdZ)(94XT zXkb&URT}X7F=i3PE(t}IEHvMh#DTWY1(Pktjq5ZIEw#&oJX{V}(x{l;US~Sx+WZ@e z=OcByw+**y6_KaP>A3tNn29D0hEV3wXyu&F1A3zEt(Ls{9C|Z90dlNRoc{UFdvjHy zMzopd$b0Di;W~No?4Quo(EZbmxxE~928VsB6S+v<&!n7C8)-n9Iol}fA*!k4!mW!N zR33L3eDJWg=!gyKUh|sWExR6#TdVWfS3K{XDvy91?26L81b*x9J*Sfg;&R!I{#6peN!^Y?OSFImR|e!S?noMQm82-Ywwra_w1$) zUCV2GzdVV3B1cQ!k25Nf!pHkre(r7MeUAfMZA@^I|DEDbUE%p8^BGAs;1An+3Cb}m zUud0+Bnp^gFq13s8O!!rh*UWog{$mwb@;N~PDmU4ZrbGk8irsaB047rWK~Fs`FOK! z#o5tBajn5-$XC7)lf&u_`BYrOrpd4!c|ql-yUOo7n*YJjx0I&#hT(`D#*sIme@ugS zAwZGY@!G@`N1#NPQn)ZUkgJCjPB>rOc${y zh3oB+;h6^G&f+7oQ1jGJ5HZtNmdoH-H-buXbY@4&V)&%pmP;(jTv$D4>0Ny#LwokK zwDl3eok}Y1?0eK5j=a`GJlpekYrA6^K6{)ElJ)mqKL?f@Yh{$LLE_#W!tTC)Fd{-Y z3L}Rjn!v=;zA~7}dY``|R1oiCk@NU?j?8_$k=MLuzDpYt$!76Lq8Q8>AGL*h?aRNP zqHVc>o{Ionp@^g0a(vw-?(gK=i!u3$c-4!L3xl?j+&1H zobgG!6XX-k)urdJSE|&l4X6qYvYBFgq?k=s!qn$LNfG6TN?=xkC(vzNRLSg936c!n zvw$x3f9SW;0F{eDm#~&c9x;>J31VX zgKxt>P5xnxilh*<^@~j3QLMH+Z4`2NdIZb?$#aAR@O_%@$Qjl3EP&47avi_oI=t-J za?o8P_{z!i$l_{A!^uV4ZJ4jSffGX3pyj>19q)|;nN%S%pe+GY!d8rk!+A{G=GaoR zu}+-WaZ9gY8wvbPS4YJ0l$KWM z4(Zy2iVD&&4lSv4cM3{NcPcFUK|Sy9yS{(E@1Jv>>m1!Pv-e(WJVzl2y9bcHuacm$knj{qgO)62d0-%lU^fqXDA(hd)l0b4K(G`rU040U!b3x zSU#p6HxC+<$2V%3`EqB*FBG4^{vo092{>Skp3hwFjm(jf1f5!J6b(v^+WY6pld-tR zm$qhn2DSV&uNloGKhF7m>TL__Wrp|_m!f(ttcyoPu60-XG4~9nKATH4E#&<1zd9c?DwJeBiS9My>%md^PKGGH4Dv3%@O{1==pkMtjhx zZ|wb{@}u4tz1((Mf6Iju-+?KB++xg$DyWH!ORK|S!a9EA7y@+5vvVL-pr^Ts6lP)R zz`N9d`XPs|pV#(E*C~7z#Lx@ym~jC()uW-Bw{-V_5}TrW2)MTm(5{T%q%Fq+jj9w zU@)X!dC<`{k{+>yji*?-yOjB`k2<>P8Dc7$Q(BLJf<&@85AAo9+xRBS#f%x$F5QM-g`turaxClA_ zls+~PPUH|^l;I<(sClszO-xGcHfZJuz1jYGuYc9`;;ajR2(3n`le3IK*3$#GVt*i^ zJ2tWGgH;IDdo`>?J~-fgOf>7WpIY*nhx zO#twRf||Z5jJ8^+Y=h2U_-Q$?8m<9(g;O{E8f-?`&g%6jVW{2A7YT7Wk6VID+s$U- zM=PlsB|kSO{FW1sDi-@v)k-aTe<@VlpOqVn8u{7bOEyG!jZ%~aq_I_%ErJof1J+yB zu3m!)jB7p*g1NI-%r3MXnA^nt<|N^XOAzmi#I%W63+vA6Sm5Y0(TZwt72q0i%7oR~GNn&>j z2$H#5piK2Uja;cm&z#pvr#Ph27?&U_k7~oyX@~j) zweSt0FD9=O7P{gQj)S_#udPxTzC9o@eK25%Bk&jGh`@ zSOGtuca}7=J3SqEF4XueX0dwj@a%Kr6uW-7 zFw13ACp#exp8{ z;+Qu)-%EDIUeWUE{hD_7&t3FnN2;Ia^%7e z0LP43nfUtmgaQqkEhU#uFI#K(6@+TCIFMl8M&579C$?LKox2xu;&EAxMN?mJ4I2dHh$!u)(aoVE4^2!8vaObQMYSePv|7 zyHDaQY`ExFmAQ7(dRWm)hHOL>Ym;h)pudm!z#{-uJ%gzzt(SjWjeOR+LP@5+(rHeG%7anGcnMA7=}wk7Qsy4mfqjS%!fh?RzIIj6 z?}3`|7PXzdB-rrgEH} z7oW`CWbt>r)TxtQ?&uLTN>AL3b&hv=J~Z{Vkz+2nUl_D1oB6CCLGX}cP$052$6>VG z`Z?d-bILfj8Eef)G{UY=_-6KM_EuDUb`=1{XAy|U4?O$X>%T~Qrms~)Xu9)S6olqG zD@R_xxHYu*aQVt+&Gtl|fzildx=iR3dSK}_MtydSC|E3EHuzeb@>2M*qx9N#6ZoG@ z!>qpPv%I$oJ4)>@neQwk0M1MvF_}c?#ZyyerMmVw=Vf`maSulZ$;cJoh+H$~zq{mb z-oWdO@07BY;fp;Nk#XPMY)6s(;U04t)ia!uL##UWAB+%fi9TMV(=lRCx4u$8sn;q@IkYpp z&!Q>YX;7CPEBF?_G!Bp_6N|X*AJGbf0ZTgRbDty}o5aL8VTug^JqrBJNzzM1lq+oJ z!>=ST4DOmtVj2Y-mo2&iWY8;nY{(^qoMrcw%kOz9A)mt}dmCU6JR@)d&IZV#s^r3i z6A&aOEA2r9LL->-KDmT}u#KNT2eGvr9hwmyaT+qD%%mpDU-e|E@%9Z=~oWf3t#!L4pi_|6F!j{U)kZuQr{`eRs1hYyfUL(u3mf|TAWsm_Gt zdjc};)8($-zcD+lnPN4Goo+sGgrW&E8~s&EwOJgoec0H*;4XH`QMMe@^Pgj@3vT3vFxH&yOCtQ7BtPRmb3pSpB z^7J^Pet#mh)M}^^5PAp~J80Fa3K`1gYIOZK=Jctp9w*GF9yjm}|1ky$m?Lx@P1F~9 zF^Oy#+}4JiaYm}wf1lC#vH)8Uw<Y;dULa%L{&g!rbHC;y5lr1^M@&Wt5L*WU73RrEixfUXWix+_@7*?>^B%9vMCE*s zs(dexOc3T-lcyUq`3Ud-$+w9azZJ1}H!=XLF$#|n6Z4bs58MO+YdRpfi5W zrm%qzXbA^1ucXRm`Q9S)3IFpb?Vh=?OG2X z!(U?s>|a$Zs1UPW00p7g-iOq;e=AGfx!3UY z$3yZ5$5aDh@xbrvKIW#!oK8rNBf~KI0jC&a9{y#h#)?wOSROYom`;#@)~fnh&;${u5tj&r?uz|W*~fZU#$uvBKT&6$ ztc>$2k9W0*W(7yWxh}d!Y^XFIDif|i8Q^VzN{Qs5rL4I=Gk#d%g|$E}0+!HJP4onzaJ5s}Fs~qFg~sdrR--q;fUul*m8yLV*cG_) z2!3^Sfz|Dvm-W2~Ke=FqMo=*?D38)6o4Nh?A~TRxLYZYAy6o=d-fr8j){DjGy@*c{ z3#w^h>zT?101arnEO)R1Ptd5)WuN?;$z=Td$t~fn&kuN^yX|jpx4s=={6YKYc>Ku` zDdOR9vQ@WjN85)@BuZ=Iy946TC;2D655z<9P^;2)pu_2ya%`dkKRQ5C13ziHas~&X zEZFVa8>!STN};Q4zr~DK9*n>wAL9F z*l5Q<&ddhK>usKcdvB=)TGar@IulsUkWk~Q@OgmrUproO9#~P6kfeX&p3if>?u-{& z!1qD?WcAUMh1fh8f0TN5UZ1ek&=3HePP|5bNxrX3KJ>4Z3IJEL4BJafNaSJ^cbwD= zI(t^2my6w;s!Hr}irZ*@iF9z%hR~koLpKHa;YVQSWfTtm3~U(--Ip40$i^#=UWy`+ z+k^8IbsoIc`tr&2Eo8+4^kwVLlb7URLYEnlAu2TWjU%XlI}E zv{)Q#Iv)cOjG31yP);_$XPmGwE|CtI%BAsWZvPvjO_jEG9yS8Uk0nx+S#4SW*s|Na<49Sx@Pi3C3=j8c9E=?Sl)VYpJJYR?_$ z=U0v1=@2+b+$x{*GSvB&h|iGLEJ4cLUBo%nSuQ|j-mQxY1(@)w&O`F)(wb?+gq+J< zv_#gob;K+5PnXnsA8?D1ffpK|+yCM|z<~2pp{mj5}nEZU#gcGcX6*1@CB=cG=4yr1&T8ym;UW@rCQM*Z!*dMDep= zAfTG9WJx3l7$NIO>G4&}#biTlfS7B`sdU{qkrY<6&ZxxjQ`TJwKHM*p})wC9%I%+0C$x70nS} z#b=|m!-~|*4%0RTE-oPO0nX9isobn8K7c{n%e81dkk!byzH^sXJ+Hdc6D|Sys}a3- zZ)&@Z#+QFW=JO(I(nQ85RcQKR=L5Ii(syJy=fEo;-+_OQ3O&fGZTnOe3%qs}0V>eb z5Zh3xAZ(lsc>qJRtLFnvN;f(68EW@+(avqaod5 zs&94)aFgLruVQl7-{xa|hVu>1;(+)%z5Y388f*n{e*TI=FNyih!0Xpbhh}}lI_I^% zlp~w;H8bV!zEWup75}5c59CY>CJn~BS{h8=8bSmEl%=)Ejw9v9DQk8&aOZYx|4g(MDQf0k703;R@UK z?i0SfGS#+s_5&D48WzQRG&@GuO~KeO>A2Bm_>V_>zzP<4XX2?q0-2p;EysAR+xmv> z${jRE00RFpw$blQ5wIDO1a~Mgi>|YPI&TUiO<5-NLt5&nMy3k80u7NKPebkkAE3QG z=LA#u{Iv)Dw{Q+W;BNzC=ke@c`6XbeeOOZm1!>?;sCe~qD>@P)oyUv;lnbgle7itU zqjv+JAr2b<}^0j|{EizYoX zzg_RbieuA`jxFhN#pl6#%Np6qz}=zKn3ObLK9M5eHkyBZI=2SuJ&c*DS3@KAbbz5n zruTBppD_|N)C^}CLuaSuDdVcj+BT>92a zfi`OaC1TMA-+H4Bt3hR$@4<=X6;*?)NZ7|tEK=xPF2I=%RTIDeXH4|B%>gKII-tan zhVIwZ=AZrgFSc|+Mr(dRlKS73 z&~FgH$00I6Iio3J^K)T$0&Hm^poL2k_PVY3Jw?P4%WqIgr_9*GJ%)tk#d42Bgef-c z2Lm?QU5EhiQB1~SX8(ue20kGW%_K>KuvR557?}8Kml=-MMu$9Mm`m7f1cm_^X&5Ms ze!rN3HWq?8G_|g(h^7Fzzq1hHJAv*K>l|D1=pQQ(htSsm6lrsf{^is$QSmH<&44#Z z_?rl0Mh^C@4$wR8(S*RW(*bXAIp)iO7`JFKSehj;Txr0cW+rT|LemU4*X7nPE(m+N zj*a{O_ZvXI2J_eE9K;L2;6(Dq1E0fuySYZO$8~B=|3ljYtyMImk|OB(eG6y!ZliB1 z?G_dqBL|$A_69neKjWl7cRLX0RtG2-$w0l=($`Ax6F`+|$AVe1;C;ji1gFtEfw0-;z~Xxw8F3g>>lj0z5P4?^B8GJ!7wa1qT<7{Fi!Lg-`Aa>)PDp` z13=Kst0}*EL5ajq0=L9vbpDSmK7lwBU|L2P-AjN4u41#|2b6&q>-!y1v>88Pb2}QG zF1alG;@{)Ig+&}-UBX=XbLHa?XnLo6ixt-ey%YaCu+$f_{r$&{AC}sIbqV`+uS`tT zR~GzcJ@6DQucrKs0Wd|!0F2{i)LdNX(gQSmGrt8E6@|ri(^q-^8jUS?uZnaaU=k=k ze*Bm&B}xqxl9bL5Jx`fP9bRS#-s|E#cj6&?>+3Keqwx_JGNQfjiB3l;29q zgrpnU%4OUXc8>-y$yizN_~jUqh#Qc^%?JMH)x(a%Rmb5Y)B@Y)B>)ZGh&oq_ zjfZ9=Z=lH`fX2a&US`0DH+fKa9_ia=`!v2}^H19)1V8Q3HgA4KDn?zE;2tYZn?pHNHLk09tJ# z3EB1!Ecl*u%^uWhvEWzW?2Gh)5)P3ivX33ef{Q-unifnNy!pEj<8J~az&bQRBpxOa z9KJOiZ9+wb70pP-HzC3)=c-wEEsW{sUtryt{+xOQ9BfVur>u+LII0vZzpJ@%+cL;| z%i7nYye!1+-U}fE4pR$UulTI{ogxph|26$k8m{=+`DN>&+PKBu80IvpRnfo4#Bl_O2fbvr+ygIl z2A1amS!rpstRO~)&u;wjuh9afZ*HiXVTI8c3Z}=;kM{LkmWHh-kcf!Gs1m2Utdore zWY$B9JRr2r%zmK_Fr7Z2*ZHyA*isYU8)?{D0-x8rY2cIzIrzB#Y$E_rpyQ@{@2|4% zo(I`~H@pBxLMt-lmx_RlJOvyRA??-tYozAwWl9zpTX z9c#GC|2XAn03SN2{#N!-&0%C)Z}VMrCW@|ed$e9j6C_Sf-ZNi>jyA4U)O&SxX%4JEx>i7 zza<6a8H>lE74u@yLVKz|(=BeJ=;tz_ig`MmGh6Mi+erK0y!cB>xqqX7LW$pYG#0ob zc7XbEBP@9-I~_pf^TES9^ZIUf=Htj zc`;z0C8uf>%k4kKVt+|FUNzW1&Ji`v(cb4m1x*M2fn~uLjh0SZAr;&3TKS&H917!5 zh!$|t_*V$h7G7+(;(n*{@9*&U{JOlC2~uGP>pUD!Kr>)}uOGa}=D-2mJzrV3dli5% zvFy64fUtXgO!I|r0O7{Dn|G|3M5)bt4nO;Vu%^5e4$m!_2|)-7oUV4~>@pn(ag6wF zG67d4od@=!O;c9~jF{jQ{{R*b1=j(cJ~$%nGH9r;9VHV2$EyGl)9 z-FJ9bes;#>FsP@$9IY*`5h^g=l;Lf_-|6rHuB7^?0zRf)4l9kQYjsZ| zuhMlUdE$=?v$bxJl1|Y{_u&ZG;SDrCko3J$Hc=T!m&uewo=g2ov83);bFF-J`DW=9 z?gVXfkOcBrGdxxFu9xqw{C!Q6=Ii7LX0(fDTz0C`Ssh+#}`VA7*In5jT7{G`xr9U5&>-OJL0_Ti7g=4$ri%PaS^8Bo7v zhIwTJQYHshpQ{abCr>5}`?7!hdQQ^O)!8~fgY%o*6-CmYH5IsGKHc^3Gf_BF{!vUB zZV$@9Kw@0aNn*OFGsj2}d}lrUoAJc@7a#n%S8y=XnI53OPV=2$$+JzK%r7j^^Fz71 zF-1)No4al0!4_ys^1jJbH|Yk zwJ7xvorC!nZ20kkAP-=n$Y4iN%7|E(n+cLfe+#1~w`-3sG&x)^0{*6$0=*Uf9%OP) zRflwq;~O21qK?j>xxBbxQgrV3o;DFL8%Dlm1r_{L+4_)FaBosiTGE zyAI9fUwd3RF@r<646A7YjXKWn3|sB~&rgeaZ%@ot=cUl;>Fsp07e(;%v}RzlljSf| zD{!0xpxj-sZz={6Q}^&$^*3AK=js-vs4mDy1f3NQD0qgQiwmVM&rV8J>?;HiO5 z;u`5qkf9|1?iM@KoQlh=V^*MyW5dwcwc=o|Nev_9b(N#B;*xn2KlgYRpqew@#6A zXNpn0;Ky=!h?#h?DOp(76;p!G!mp70t$y|6Z1U9^nKZQJ(HPFOVWaO?988tyl$p8{ zK@|~$a%>r;2nQqjgO))Y-hy%Cn73)#-8ZB8m2M`!vO3vjmo6iDBH`&N9il!($dLFO2wJObiE!Zz8r&d`FsX%r9yYwHa8m)W-VV*?UMl! zkDtEfT__&n7+xa=OWYuYLV9C43MR|rT7vNu#Y{|4rt5~K+Id;< z^#(JMXS)}3M_LO4-`_2lN^QruJ_8ib7jZE5@jDXAevzgg9GF3L|I^kGcJ?0>s4DFN&G&W?54lWG;+)wD6TBV2vrRE zJqf&+2cqRruh5aqJ$!pt?eNyP8xvR>8{HT*zlA*$9|nOZalnFT(oTF*Zm7*H8{&wR zNF^ArVOk$8g6Wm5bc|(h+Z=5{OL^SlM?gDK(>{XCdv8H#(7Tm%_Yoe-4O1fj-UL)$ z#PE3y)!#@d_cja}V**1l&G;Oa`f&l~BM&(&56&?p?t+^2dqLA^z@&Wqa4^%|KlLWq z4wHzs|8_UT-hn{0(+Pc2&#+rg?Z-hquo=a4!N$81S!UVSm19ARpm3~z792#m?j=WC zj^*6LK?U!QFDcSsI$rtB-EH3F<&Y;OMbxt=YPqy4B{9KcQSWEYVmu5|Y+@++^AsNL zO-G^!Rxjm1OZ)p%%@1+orkS~#k_k`S>Dlo+q#VOD!G86Mc)T%mXQUlq0g>B=s5L^&-54B4pFVw&NKc5)mjt^ zFG1b9AP5Hqtyk8{!z6=umE1<8;x)vl!A9Y6b$1||%SfMG!o3_J z`gA^|(v;KZ&<@$X@eTvET5bV6y{aY>nV>V3v@pfV`?{?-;uZFDEqIjHH$S;skWu|% z8!Qu03P=^C`W?a%e*8dg`xvk}88i|v-5_O#RAb*Qdkg{z3_B2m6YTp8lu&I)(f>Bw zx{_YxVa&?NUPV>XA_>`v(RuW=(pxSqzOvs5BU-IR!>g55(qPBbbHzZT81Y09Fr3 zc)Oj|>8jp%wx*V~wWGGJ)c99OiS`DI z$F)$@=uPW|w4S!GmT;6~5h$nCs%~c$t>^T8SZlf2g%sLb`qJcMsN-xCOz={$$PGoo zFp;ZO3J)xe}kXprn3?ho*T{wAEra2Hy3Xn$l z`{(JZ`GpP-9wk>{V!#|Xd#WJ(-heH1bQ_jfg-UecYa<;012>^h zkC1?C_k3D$Fs%o|x@~(PvYltF=+H7?9HgWXgYfJ~lL`bL-3PILKX66j8vJR@vr|2k z*9tYKbczn0v_>ED+RHgDfylj5m!;OTCv(CTSoYTkkTGAC;wSUJ>#xlRVh7`(R(C0x zf?XYNA#6$PgQNeJgz)PRGnA27g#liXJiUw zbd{q$^8my^VKwX3E--nr?>Pa@2b|ZfJd1T$kiAM{vWXIV_T{C(gVhB!iI~(|-0@Z3 zArcsQFX6^L+MRIT9AJngbAIilW-`nTA3`^~)EsH_k>z{>nk>?ptH>t!XSPdWry9Rf z)ow=Rrkl<2T7Dn*hNf10C-Yf^ocMI~=}ee9Q#s#nh`F~ka+x%3?ynwgNkqm?MNH}j z9Xn^)wd7m8D_O~sJakn(dUlbsfj*gtNdk32YMGuzt#k6M-|ymQJRYOUkVrKfpPLQw z`*?I_+PAP4wI5mQZZ-wvyp|Kz0}+&BHrTeVHLBRznzic~Il&gfFO!5`e8@t@F=iu0 zvWet!0v?!NB0%=IJ?M_NwnDkw$YUE0ec9FM5OQ4HS{Oi99kNc<;s22LyltL#sc& ztKz55ITY=so(|--WMf#y@-2C+m^+1XRfSRh**iVM28D`{EU)gFI4OoJ@(XTG;;X7_ zDmD2s!FKfxWg-P8x{Dn@?6Cu`ou1%M7J8OE7s%S*A!W|=NUc(FdW=0_C)|RIz?mN4 zmK2+{ScK*Mw3-5ek4p&(P;w8BwTz5&X8oun)4%0?40gSZ?N0#qlU~J9`q1N|FJL!G z2j%ddlYXpCcVAghH)yyt>c6t(cY;W5-OYh(*l85$Yw$VB5{X_;2>W~cwz!Dr_URku zii$wQ(J0;zU%?X}>#<6ePYHe<+s`1ClzJ~ihax}z@N@)6f}UKc#e-2~W=xLiTMNuz zHh8tT9N}x@Zo>PXJ3ny^Z{+qBLZ@os)FKw^9p-p?HEcVr&eH)0H8zi$H;?~);zv?2 z#>$)NA6U6j+YsasH`-JD19UDvJs7`7Qhk{^7k2RZKV4Vi5|;`xu*jY6&G^P{|FeK47wOw-`)4!GlW6Z13$>7U^cof7X4X%A=DHc`*t zw9_H(IwABJtH4T8-#C}X z;bZSVuQOQa3$zze0P}QS_2B_(`#K(K#gjOM({r<-8g-%llw#+gb1;Lem@!l%myW(CVkjc z7Gmc$AYCJ@I8Dq$k|iJY<+~8gQOTw3+PR#C_Rb`)J>}6%8he{{@V7d?C)aJPpV8!u z2PBiUhMYu551AS}QJ$5YQf@jQ`tJ-v_U@G`PTdvQn+PJj4pBhhO$7vA%B(qTE|2_` zi-w7I8GjYEcK{uY0+}0~uSU4=&$cCjdtW}N6$gb`PdlDgGIz9m{5w~nCB&KiHKOTn zvJ+w`NdCS(9QEY&Rr1AMmdTuS?27W$hP-uTLUlCYexd9)L*!7y-eee=pm~wo+aDsz znSTNbnHjo7^2NiAvOb*Yum0gys7^*wCz^rl(13vS{_#e{#qyH0BkPCLl|MMGr+YsC ziQfNqDoT3s!$zp&2i%@M%fTx|+gYvk+#FOmm%FO(-8N&7N2*d zgEl5gCoF88`ra*dfAJ$cm8^(@k7=6#c(0U7Nw^)6J7U{oTLECQAypy)`>qHi911A4 zggotfzoiug1U`rmY#Z3g>Mj$r*;|-;x$g%60UpaO(ZrpPnjwc8b?%&V?7t| zzcu3TOk6(6obL5x$gJ(t00@13XgyQDY0d72#r?Y-yPwJFQ~A^Zvq zJVI4lvxcU)&kl4^7-{C+u&GnNM~|HtK|KiPwTypc(RK3XO6fZ*iXaj0_zNx!IFfBK zx8*e7Qu7^MBViRze0A9Hl|L@?T`Db|b_q9@Iuo%3q^H4psKf2mHC?9xfSSO0G*?=c z5s!o2@Ka>D{g6KJFujTWooSWTGchDhp9`Kwm3&{_4F zMEKbUC(~Cdy|!8Ps{NbJYfmB#>rR|vedRB8ByiOXb3|$0iS1;cB{x))x}#x~|6gS1 zL-ybLd%EU_Nj0T&I8hPQB9IR9sO1uu#|ZMyRSe;CE4F(uin=GCgHy$ki<&2HCys-g zy@f767ZpV0l{^OAB48b>5}h{LQzIB@84=l7KIgaZ`T-c?rR$Z^zYZ~yk1;oSDTG}= z!NpypTtRN}D&9v!AY{ZFSZf37aP|UaVjkSU0Iab>On_1TZI}Sg=UCi-pO-Evv*!!Rmzi@L)ecV! zQpP4R#XR-w0%d}OhwW2~us5kJ>YlkzQ*Uz+_f6A$Ji ze239DA(@UG=B~wQ<<@&Kcpz${>l~=E&k5shQ``**Ahco(!BDvw|6aF&okAKL+~|txJ4X{$(d81ndA7Ow&9zWA&T-AElZ5UYt{J zys!Z0HYy1Ba#t#ZWCd01l`#T;kXVbRI#>fww5#D)bs@$LGMm6XU55^$ZjX-c;FY(I zD81d0bm-v~qyjN_p_c!5gKv$-GRWH_%Ho~{94!(bZ(2V32Q3qVQM;l%DD3S<7QXpy z>=GCB@IAZ3R}P~2;DS)&ki8tdF$wP~MR%rS(`9#x0s z!4&}z6x{^AlHlHbe=wNcu9$q<{V>Lew)#4`J$|9_|J}<1ahO;#t;Yp=~~u!FVn6 zX`+sXM~mHO)Se;hbmLX1MdF#Mr7h0$1~5P`LCQ71z;qQq0iftq)YIOCCMH0oJdl6` zJKI$Wk@*yUaF=aKySCz1)Plby5AK;b?&g4NK(8CwQ&xd`R%d@*SbA zg@uLjkw%ZrL7C_TG9O{W0{gl{cj*LEY^tw^XYXzd7Cw@zfo#*gLqRP7`b+2hYx^l2 zYpnt^4KK#<=&bKWSB|Mi!%ZK^wyKRkgA{ZVtQ%e|@WF7*c7(0JFlY_RkT4#IajE4Tg$LkL3{4R;&j|MswN zt_6xW_$UrCC@e01*5o3}(F|zVbs?=&K@lM>b9Bc-oWos?J4jBBhx!&Nfcvf=Qx#S| z8nE?HKHz^bYL|%6gN@~?50wb_Lq2Bvsf%54nl`}5czp!Z1Vk0Y*aCYinw50;YvY`E zCVON0D055+X;})a(RRzfZytVwBp4Sk)YTB7gRQSn2ypC+ByjSFnqbGU8d&=Eizp2_#ZIUGP@*#WMeOC3>Xh2fIa4K+hrqXeW(d>P$@lNbq)Fqd;_ z1k9Ww%li@_T&tc>B!er-{@J89p~s`PwAMq}QTxVgo4z|^j?={}YPC8GyJknmMZ7-6|$=eAa^CS`5pzCcP1nT1#tVU|-<7~$%Yki|XnbkW@FS?e(bLUL zi{5#fpajAd6W*hU^D@aJ~_j*#sj;gweky;j`yVc?|vQ`7*I9;hm8rJUoN z3WhF+as0M7d2cH%g5?_BYsPd(!XkFq=d*g`;jf?$t4GB*%7`yo1WX)5!c~mlXl5l~ zA!GqKY+0yJj~pD)R_+k3t~rnpqAgfoRap%@1eE7Rn-`;ZiSwH`*>#utqfIu*Oqd^u zn1;Y#F=(zuyT9Y!{>80`6+;|=234eA1I&Z&QIv4X2T6dRnjeN)Yt(8f_|SWxt>YR^ zL#`qRC`15AWBzTJRij)!iq@Xv$!}};=>m~Pi>T!LTM&1O3eo2l(QpuWJ`3MJ(A8)( zoS;4X738uk>#~(kzKp=75Cs!uuPLd_7713Bm(|$~$RB6h(%8{Sap<|8_u=YR>JoGH zrXm?P7peG}R((UmrcEz#xy^yi6lV5{gj4gS-C<3&PI=NR+S#twXHJ6E-cK$hBE-Bn zr_j;1qX-Y$!Meg`q%@gKnDc|_q++|??7gN4Ks}&m?1{Y!yj07Zn4#kzm(c#Hrlhm< zQcs6wV|IUv3}uaU$nf}#q!6PGW>r{Jx>jPg=L+eSLIk1&f8Dqd1kwF?`1l_JB3&aH zx?H4Km?ZQ_G+aF3%yZ-R8g%APGr&51Anpdz<&Z5BLN1=&DDhQp`qxBdL$8GL`n#1| z)N{=UP$OAsaau&hpgCD`0Iv!~8eUbzK?K*

rWmM7ydgYfBEJf$wnBy?zn@#PZ5FT<>%Y;!WK9-*8(GT0A1|}1~ zgOP>A9V#$L6nIZbKconQjUZ-W0HM$9N|bwdxW=fWgJc?MI@9;PGfaQXENw0TDx+fj zw)^z)y|-@?Vx@4Wkwb@Dyi|(q;i0h0C*;AKp+_;K0 zs4%LdeFYxlvbE^@eIuhOT ze`RH2Mz|{0*Ajdw3&hGt>2bQk^6Az4IS25>SfbzRe#VxrtW6Sri&vMXG8PGoM7jS18kAW%}p$%RP);a1HaN{Ti_C*fN+j`lbgnu%s{&`(#`aT^Amh ze2l-UlBD`RtEl*9vW}9;56(MpV&=}(9-F9Z^C_uci@}vQ0jZbhQRp23I~H`&<=BK6 z{qETK{43$W)BAD*v`3ipb@(Z*jL& zN`gOhC0a{Oj8cl)jQ-}I!WdM?_YEa;)IH*jgxFNYN>A0wQ?O22j{=xVCy8%}5C1{- z!1L&cV}}8{gS0;i;c)`o(aga#y|lH5@*_7Vx+b_~>?s9|xwwHYf{3h#WXS$OQ^zf+ z!>CBL7*ld5h9PQ$Tc<=y0^SuHU%fmVeX+fTfU0QVW6%A+GklCd7UKQ^Z9t_i=k9%( z!y3xJ9)X9l5~%$|sYivIvrwWv%DK5fgAvPb^1g7nDGLl1XObg4b8XTY75V-aA^$c&x?@LNG#|2n? z86r_lF?MC+Rb$r*wQ@aNI?p*ei{e_cWmXs#;CR{HXP z1XO${Ht<=RcXVQ$!&xCvc<#(Jy)8!{x%h0q0WYEkLizXK;P{J~{W*!N$lg#07J~D- zopVYy=aZ|Xi6Hve_$=vGsnv>!>a+5XWp1$@aAk6x?$SopUCf$c>n7;cyR zFNYVCh=j!u0$sFf^5i3ZCEkmDpHA~BIM!YEmU}z$qig@YzUVJO`wj=Z9hpFsuC66A zBAX>i86&eGr9~Z33;tr@C*o?qv&tk1NSrM<`ywCZZwW#C1`F_46oB}IY*;z&qKDk# zays15tMNH1tP`YW^CM_K2H;^d9WOqoz4#J6+YbiI8_mf z_rJgM&yPJL06qXlg+_Hu*O|jTvy@i+ukQEXd^H;9Pf66!%t!I>7XEo^%~_ykGTbe` zjyZ-k`An-nmq7+@VJUV-^r1;sS$l=5K(@TGQ zkN>_GF|k(@3S*+&yew;V{A0uL-oe!<^XcOV^R-g*XfXo;`0t6FyACu4f**K2QqC)% zzuK5C(Ns+mUF(Y!(qx*_-F1m!ismsVL@nJvz(zc{f6(P({1==6o8%wES~kFa_P;i* zKYv&-^>f9e1I2IC^8~%JK24stMrfLyg;OEVi~#_yb@s|U1MtceYf8E0<2m#)3mub- zH@YfG$okjGN#)pOBVWy!enNADWHcukXpVVinngk!@jzXb zas#t^g&_XbtNU63J}I}op9vK_1;zj=vkM`Ia7d*%u9z4s?rN~W5ME;*oXn#IurrS> zPx*CgCNRqEM-{E3<_@+M-mMUT72!3;p;P5KheYr|EnkSQav9e$kT$`|e!7#)(1IJZ z`*kI?vy?G3^Z6@6l7etVD{ZmgnLB`rly4tC)x;6ieF{8eT{b?PiT3|CRM6idfUx}i z{h8`!TUZ=_&9g!ZOX8YYt>cWPPdCMDoY#NQY^(b}y%qqrjD_}y?xvFYXSM;F%cdMR zFJuW*m7F&(JN#h`91=6Vx^;LQkyul}aze3d zp6F87c}#oe2j1D-w2ZgwfRzj7ws`f8;2AM^!XV-uBEx? zFsYvFmuGZOO&I{K`$L>sUKTLp154ktzFC3yRVzT47J=w83b7pcKDeMWIteW+FaO1#_e59kg`=PiAu6Uub3reTfZE(1j)GY^r1 z(LZ<&!V3hmk*TJ&9Ke2hf2WZFcXx%Tb=K||@$s`RHKg8~$qIY=nYj&{EoUUfWiY(g z_u8tl%<`>q8T|a>R^qE22wNhyb51q-fphgOmj}E5Dv%V`G&p-aw~519FG! za|E4DkqH23w5GY!Iz>dC7{bqM4)h|z-f#r|4Rz3YXJfRF<*ih_0|wn0;b>8V(PEv> zLv$6ANpOCo3uS66$ly!AmjneXgVg!4fY`yX^-wbP;$o*}da|K@ZR3F6Pu$gMms--l zgvj6b0s$(6_HkkWg8adck1nC(J%A$Vs|BeZ;M_yLXPZ@kCrOIdGXsPp%$gM2aPHN5 zP`F)_0}n>;nQdx0RfBYHy_mLauOYXv%I%Aa1?->cCTU>Kj%L5Q-|Gtre%%p#i735^ zb@IlQWtP2X37LHnBR7%Vg)I#f`g5U5e}RoSW%Nu%eC{=*2WP z?*0$nzg@g%d@~@NE#?(9MuQ4n0VqAqLA8VCJWl|lRx8?m;G&uZz`1B3D)w56(_IAY z^%S?D^24{6Hy|<$vf{hC$~tMBrV{abae3Y8*+rdALlzyJ*?vUwZ2;AI!vv%vGNgPV zZ>uGj!{C`8$)S^+76}vIlQ=%R$0q2RVCGLXi8Djj|3lVWM@8AbU%Z5%Af*UMcb7;v z2uOp1iZn{Mbk75#fFdD7x1@A;8+3Pr(lK=Bxkr7!=eN%J>s`Js1m>B!?<@BH>@96- zr~Mb{I{a%>$1^ljVvSNOn|enZj@tWUhH0p>K!FtrmNCJuB0w*ZHl+5jz#O<#9gk=A zS;?haMU1Vu2J;g(o_`b~Z<==tZ1R4}Kr-e(#M{ud1Iswxux1eoo zY&<%C1QfTM_dZ<5&Pjp;Ga78B6XxFgAkKl_*rpj^LVbSdHaVwnu(qlh)^p8q%$OOT zmSx_V(~!`pGqKxMii7xm-^|ARZ{8Ip)kigBQsMC=9n$Pe5;P}T{Xg@yxbkC|JElgNUNBr^uIaHBgWLBk@}0hE&}+pz|Z<3f=T|<&M&y`I*L6o ztXfv6!J%x`dZxK0q5zP6^yjonqq&(K^t)|-mp%fjB_M?%xOGP2bKliW^G2F(s!W|L zNUo%)0i^{9S2S50JUxV@RQpllgqMG15$lsYsBlTeMfV=41?9qqbMko+(=z-E2>NaG z_CVh}oNJ@~9uS-rv3cA(C5`3_6xGU)!${e|5G@?Q(UjW8>c(l(ua68kCF5=6_EpT6 zcV5XbMtKC0>kSNq5;k2uZiV)8aOoUv(kY+ll+!zOuYS&ugWQ_`jC6k(`2pFr3=r$eR=x6NDCFNv?}+hO+8U%wpq z)P*sqB?|SQ^~12-#i^;=iQXh(KB=%9ljtwsQ;xo(GlX~*G4W2MtVX|5ZPL=O6WL^P z{2{M^3!C6i94M%SV!&`*k(RgG3mmf=`7cYP&exiS5hU#9SyDdN(B-iy@bMiT4k~kZ zfSV{2L|mt(e&)@cwzkrM%?T6 zYb--=RwUjOq#-Jda%kJQ1}rrdh5MMrVeWmR6g0p*fF#G6j#o!?VcJJ|`dUL`2b{p7 z54<=AN86G#BDvduxUr{Hw!F9Wt}i3wgGu%uWz?-7Dt=sxkNh3WpMU*=Vs)*d+blh{7k$G;komdCm) zwy84&3)&F0i~aPYYOyaW&xWWkKGdhk+2ClOw@;`~hw$?inz^kw?02>P5+Z44g6WG6 zRoo?0;RQqyGVn=~%sIVHHCe1?xbV5=UTm{##mp z?gt5hSKx#D5hM$@%_>()RsG^`pKK|N%{0Dwp+l%)PK!AlMst?-6Mf=b%Y zvxA7V2Cw!HO`{z!-uv_Y+)bVOytqYWjvL?PCN96<1Jd>HQ#a5?qVx{E89hdukKw&X z=EC4EC(r@i<|Fo>u6FeO113DNwsy0Cp-5-w%|8%&HrTp0tkcA0Xg78G0xC*QTcea= z6Tuw=mKEFRcO7#uLKbxO?=fTwxP&%Cl|DD8NKb}_Ee8u#H^OsqTrU}U`?9n04Jw^W z7;wUWZy%0{Djricn7r@kd;pd{mNU7T?g=?~J;Zpx;-Cu`F0spxy^+nI(8=>Tbg4MajGdEAz{u3q+Q{Y6n^oIg) z&ic((aI3Eq^y}JFX=Q9HfBm8kiR>g|7x8&{aEULeVQJ#ymv7HzCNFrB|*IN_xbMg6rVp5J@E>YTev9oaR^Z>pqjj6rX zXB7OxRyLdE{D+Ek5otPlbo&AJOYW5ajlz8~FS>!TPHjvWur;%fomxiHCLm-a?o6!< z9E_&B&JH(Z4!v2cYhOadbvJ&;uDHe-ve+7C-aM+3mO5YI3MVvk4Zq3Mm0jjIfg?Nq z@W}XF$uK|Ygzqb}u+@v0cT6bBe+GxoXzXO!jUaHh(g0k0nzWP-U(!*@0=|4j2o-NH z7rXuP0LPuqTedyX`y(VNU1Nr7x9(jSvp>9!9X-r-V;@O7JKH8D4y{Ju@jAmYAbRP*ZbQ%$tnVsQ3``my{^ z`S%A@Ac-xF=ea~Zv{=9E8ucZ7c5A)MoD+trAIOv8C9=>U;i%iTzq%0S^XLAp!O-_iz{{8!B@WWrhMTsv` zm|U#l4tivBOy0h8#(p8c6E;Nos0N}FyTmBW1%a@UO`4M^+Hifuf{nh(QNp{$s&12l z>3Y*(#N7RdC*Ns6kKJmX;_=w?aMLb9)ZzD-z$+d3~2;^V^^E0PP(ylvi z*a+rSa1*CY4srz6lr8Jm1zBg0ITbZ&nuZXR>}vMY9M-d!Qd!Y#%PIJ0d@*o$}TeQlxLCwT|!@47<2X_Iwd+!JV!lLY91LguPPT9Vsf)47f$?*-Pw z;@}EG~Vb_m&EogdoLGk{)?yH zl|MnR1KtR0!35A3DY$aYIUR4cI6o3xCbkL(xJQYcUuU3W9GiXn5P_r%(}@h zp@((r6)30W!gJNGBDylqq`YRNXAr-838i&I!GDT0IjPdOX`uY<4r)6D=6heo; z$9o%Yx&kslE`DGsz8>5FOjuz(+!4zk%LzGUp%mh5=H1-0`y^0rf?*^6(8m`P>YU#}-r z*_}b5?SWsn1P9h8@hClGi6+?fYY7r^$CS?{0WJ9c@5;{&ehcyAp8SsDv3ExdS|}pq z{tlde=ztlq>x7frfya9ix*RMNXbe^b7G3SVbFi3ayM*tm*p7l*&;-*?r|lAj={IiT zRt&whWTHjN%LyXDT%8uHWY!jgk8we_!Bc6Y5@AcOTVeCdk*#Q6O;$8^_S(p|8(<;N zCZ3|XF5l4GdP%Ln4ZuJLl971>=Cx0;30?Aws$1XxacU5h-Eek>c5r!rN&^cwo%icd zOYZHt4~c=&ckG^UM5w=BUe%XS@EA}Sb#f~o(B}sBR)zWgFC|J@|1$z`)SYaF zv2i}y#P`qU*KcY>!#ncumhY+GVEKH<8S!;PvBA7EwgVG|Qk1v^C3STj5*z@TeU^jc z=lb$A;q0PqhmHpc)sq4uV{$QC&dG#rkNzCL%`+GjeNI3Le#f#XeVg-h@R}68hU7UN zfq`E+#_a$%EkI86d&vY|5{|lgo?U0J!&NQ-KnY{GO;Ao4zdyWIY1W%;D`-3Mo8O~s zgZ#?`r%u%_jBmRE>Sgyl-7`)2#jHc#-14Uko_D_BB7YS!=epLrY(y96tmwH_InGUs>NR_BkBz7rmgovM+kAuhX71wCOpRwxePO2$d{>;0v5@p${B~69 zp59pRmx)AMaDp`>k8f+~v)2f{K zP)=w$wA`bS^I9%jeqYpC;bDSW=Q{{1HfEId?w@HbKJizBhFV+{BqXx_>TKhe1RUcw z@wkut0m34y*W%umXPQ+T*sBL$%?7X5BR-Ebo*z@U2Z%G9v>2Y7tT9Q}z&4sTQ3^vp zi~C^j0#$`e4||@LqgFyG-oGpS8_kot7pidr#sM|}bon?gzY&_9C>5QVVy^OdV@x$~ zVSdTAFV+4WrC*KEqTnZUSXh^ev>N`h8T(|VC1=@6cf}>uoZ6Ma?CR#(mBZ+!@ZPUf z+PyV%LX+PygbY9$dw1rN2~05feW-Q2D?Hsf6F*yFel1(+oftXYUvjC`F6R!jE3%N3 z#zTT2fO0$mAnH@Judgn_V*$W1%B>eyKvIzAHw1>8gY5@RPYG_Zq)L(}^f=XmS?1`C z?m*a+B~ISzIs09W2}!rc#Mx?LqbN1WHXi7^3GBh zd=K{zFQ%!ym7$b0dHoE~QxVs~^MO-LWNw#d5H2c-+{OyvS}0$7x*&MuL#gN|ljlF0 z`CH7UMe*5=PMZbXvLpX14|T7U0x>iQEWl7u+X`@e*S=t$-^87zmc*vmO&tQHO`hKT zbLh7=MPbsd-IFxjjl8OppL95!MmKSJPMA$gW%nH4U+gW2x|rDm6E5UHc>npC zJ>EiSv3qy^JSo5SyY5YfhU6LP(o%V2`3^d^|H*UDkn-F!!9y7Dplw!<-K%PZq_AbH=j_e_mk|R=5QdSREbRw8k=|Z~|2WIRCvz{v}8e#Gy03mT%99sv! zaDe_X6jB+?uaNWTbg#vBPc~YvYK%}=5%1&Qr$den!p8JU6TDJ@u1QnC=GOIo;?s00 zHSVdepU-h)on&0&7avLSUQ!rbC0xu_1gfy>8(ewXOMQI{4c=?#{(0WW7@~E_#0}ej zznH5VI8RN|oBs%?|G~Byd-i>1iIh|}gwvJ89wR=aIOoGWMP*9yCb3q60Wq5%lL5QO z;=H{jjs#2te``;PVtIYj>0=T_Pym9RDf9nivs(b5YHMzu-D^M2H<8_!NUZun?LTF* zX;(Dh$mF&+U0<=M%S(E%-We_1oNcH>u4DnVk2vcy#P&)&G}{h3+QU7)8bb`Oey`Ek z_MbqSZ-qTt4!19F>@FyctTdQ~x7_;Jn+chiW$LUCmwBphGmU>SMFMi4%dW=jTLRqGXg|pUr!y> zSS(v{G`{+f=TuoF4<|_~V^>--DmK)=or*L?uCu=0h(+UgreXu#)5MsCic-q0hSb2U zfs!Fx+njs#W+FE%bHvYA@?VpTDcrW_0zIvO~-cSpTTHR z`fdu1AJ{HwRdtfm9;k~Wgic?jzGEE-zDK{Cc~t&BF=2Z zIhwHIIG0lMF0;HE<1Dxfn5(2bN)O=fpjgmEN_GQ3Y{3Y7M)|B3Hwx3eF4MsK)xqm(>$)ycqMVD#9msB=C3(Yzo1J+tKu?@ zhO&FY93~&JtV*HLZ zeDj5TnPM$4>(PyAc`51)tNy-U-{l$P_Mk-#;D4_Q*&96=^HNM3^eOlt}j)YQ}-3n79( z#>TXO@x;>qxl6o1!py1*z&5+GQ(#u;dSzxkY(Ur<1)?5m`O_+O?bX5YNCBB5Y$R;_ zY$hO)XNTD;@lUMo^_iAlo;;|~`uby>g#+zON)x>hS2#e?9fu@Qw4#0TLLV z%V)xpf+YRt3_T}a0JGF#yp?`H#VSDLQ(a+w+~hbRR^Dz!6>i!S|5NQVaYPGzT~OF< zD{*tWq6@Qhr7uQ3LM;9_JCt!Gv3985xuKX+Rkq;Nx1bWR#Pd{Y+XF9N1#HTrf06Eh({@+0A_2*C^Z2By{ducRJmZ{ z4j?!%L8{I*`{k*97{t8-xT^IwQh!JwF^io5Ud$*TkpY#aJ+C9kK61R3$%DFCvylMP zotsoaEJ^*EL0}wgFN2a?L1JGpw)dILE(hw~xX0*WTE$a_)PY~|WV(i12F}jOYMNQx zf9=nk_bdi8KE$=oTdslNG7kPBdgtxgnZ^URcV@=}pInc(=c0mlk=~u7$Ho@@f!aZ!HS?h1ZPO$R~HEB>9UGad3Tp4tg z87~Kl&GBIxmrOv7%O98U){M#V*!no5etPEpKZP8@2%3nH8nuo!(zIwY^GjbA^vBZ(y;ngx`yHN8r0yhoIkX{)Dv#tI8tDo zeWH{UBi*3(1&MxnN(XwZ$YPEE1#A;kpuO)d$5f8yxRaFaJ({l##(obc>>rnHL>f+h zdD?vA<7lD&RH$QTlBnCTK} zMbe-1IuMtf2{|kWp36=kd@CkYMmAN4uyvHYfN67;@qhQTTGxAkt-+svlpNtsJl_U@=02=I$FP7)SHue+9Kvj6hH+ug^t>q_VQzG6LH( zG_M`pzv9cVyFlBS&P5XP2d#=lQw+Y5pZH0@UqP)rQkM2KCb*R@=1Tw|y1oP?o@Od< z8Ke#ryEz@{2mjh7XZ-&vJ8yA-x3Cd@Ba*Pniaq}n{2(5~OKBxBw4tc1&<)}s>J#=k zWNX_;fE2|ci*H^s`-^*^?UM&^PS58+7`6V{HhbW2d;WKz4n0P~t(8HGZoH7= z)QhYY@=3-ktYfC@J$Oe&QU2Q}fWPo%z6H=iiXezq>`PAhE)VjpPLVHc8?lG?GI%btGNv0x2NmArTE{6R|1H|spCGE!Z9sJXh18A)IWdc zrso2ji^Lr>V>N$A zN^y5?E5w9Tp)taxqHkcot^!|Ca(?D?6!V!DXt4opIXuu%Dn1O(0|>|jb>Is=&Wxp$ z{R1Q;k;-BhXoKEJKr-Yvjs%QvHeMzAFknwN`iS1OPG|e?cl>X%4?c>{Xa|b#dOs8( zpZov)>!1$gkH47LRU?7MgYqv;hr&?DQGQ^uhG|75ySo5<=KB*!auJTx_h zw(3uLuz!O`3bOj7YdrR|+LA%i;Iw`L+{G!2f<-&USY#Q;rdH+{Ue; z@ScRK_ROvr+Xiq;k!%A3X;e&t0+QcX?LZ1AwVZzjShoM?141*8l-^6qEkZ&b>yam? zl%+%v-|NU{xlg1uGHx}(zd0QI5zhW@{h&>WS_Rq9998u@QSzJR15~HLGfFDS3n976 z?eSkU5ul$ugIr_qao5M9Kw_j)Bd`{0^(Jl&=HH(Q1&*i5>*Pmg_H2*o-#C^$p3hi2 zQHx~x4CL=3qlvuCWL_A6%VDfO+ttP1NkAp$PJ`T4j(l7W@3w@?PdI$N?-zc9uMF}t z<8L>iveF<3T0;Xcpc1Idl-FM$0C*#O>yFJAyJEDERWe>I2d|6IhWlOH)Jhy{u-zKm-wyds^^&jxiZ06S_zx>UYq2>NnFVcq_q&GY zK4%ksA>Ub7X@3&*8M(ref(|V!S1)hkwa%PHTgV9aeAgSb^mUc^(9t)eSXS@{dQ|6~zd>xC;EC9Q)*96c?+*>o?(LX0u|Z z$>*T-oIM(8>&@%YZX@Yf3crPRjblh>0XIbnt1fo!l(YWrXJlW0 zG_sv&ko1n``+B!e%0gWqUH9OZA~>03>Vl_ivmu2I4_Q-`elQ0#{qgDW=sAb|;~d@2 zwj1b6k&BQbVQtb)+>aAzlTULYW?*C~E8;ajej-Kvj#AA1$t{%M%-@DErVAwL|B079 z`0^w;?1vitHy>z2<;XSp`fwp9ShGY7=V)|*_Sp1Sn%qOgxda(sobF%p+tuoKC-PXA1Ax)X>_@2LW)aR`ZOH z@9qtXV=++5pfNqKZfL%qsJs1uHIK`8AyB8bPBi0=r6SSV2PY4L^-GH9z=-fkp zasy)xkBH#&4*afct#obO=~m5yjn?i>n_|(j^QJ!Dt?q>5%Z76w(dpx9Cq5K~rUh%M zcicBn)?xuAVpl9acI)uOV7MhD^!;+SRfxKM+ea0FeDwHKCACTB5LCstx z^VLt{)i>DzKN{Qv8gWOJ>z-d{e~zO>EFc$qB;veE103rm{+z(vTYi0u)1bZ@7}Iru z5q;UF>VAVw%bCyBSku4_^uwh3$80VMZ2C<)tWCC}bZ*U4Bl{C0yZX@7Kv*o3; ze8J!|QlzCW;_9y13T7&|mwQU2AJ-Ozj?{FDEUu6DMq3A@prYTLlCU%y+>9H_d=Wwh zF|G0hXQ;x#17W3yH^vz$g+-OtS?BP!-bzv|{mXIp3nCOsojAtCi*#J-oVYnI@=6Uo zsx(e&MoXo52k2Penj(U$%i2ECC-I_AlU<}ETGx0>eZEyaY*Lfaeo|C&vERc`V;4Q} z=jx)<0(Y^(4wpuC@iP`f1Bg$j@Y+|}?j{S}7tyD%k9d@m%3}MB%0q(JLOuaqSBYXC zO3nldQ^0kvkZ6%8($9$YPdNRCwiwVfkcq@%)}{SEAlBFQMTyzRPD`by>o!>hx>cR2 z(*E7(@ZW>=9!|VYXJ3Qqf9C(J+M13^5v0U%9jMx#g{KHWRFQbb&}X)p?2c5+4byX4 zOxCy3C4aA2zxy1`?vH=WdG}B}@aQ}~YL3?juEt(2X5Z%zGZ*>G!YYA6IyQoS1##Yg z#cUja^YGV3(PGD4#?8W%u=7XGkKNoSE1RyP!FfL^<2_td!~o=RQscpYgUnfXg;m{7QyZ zr~E62ZY9TWHLCBS<B-h?^)F{#;y)W6*?bhn zX1dX#rGeVUA??vZU1lgQ&;cOzpkm%QJ-f|cAJK2(O%AtQZ;rp(P+RVbQU7?4%fvq< zF>_(C<<^YA^Uh~`-iIrR$#UjTIrZwt3-b)C3Wrc{>z{V*EeRkTk$I0F&@d9Ix<wT&DMyj%`M~`eOtge<6okyc*r%qtI znV)N@w7|T}`smmQsXYdD#s_naY}4LIMXOPFgO73C@mrIWa85-ikdN^wG)c5T``4rQ zn<~|5av!UwqL8#Y2!QBSjKEnfun{KlmBs9e*bQ*IL3O)u?WV}B)rEt^6eE>UNOS_Q zYjgtc+TvPvN~jsxm%79m`Mv~c>ant)hZZD-vys#jgll0Ktz&_DM?9%@J?r(HvJbSoFOhqjk@-4MNpF1 z(`=Tel~wlqD8R;a{me!x+9Ql#8|rD=L3 zfh%e5VH~%U@{CBu_vco!{tgnWmyLWLUuqJCJTzc@m+q%OUlgj5|8~S>(y4$PYw|B# zq9Pxlo)qdd)?d%0fJ&ow^3(sM36K5sm$g;(_id~}gnJs{(k$%U))H7)Svk+iJyR@woqu1sLT5`iyy@#O3X!G1>Rw_MXKyr18t?`3qCo(1FL*|7R3`ZH;OjCT_sA1{oN=_?%Rl$66 zWp#dqzUP!8-Y;uiy~Z%dZs;`{4bYwMhKw1)d+lAY`4lo-W-9_NvW+FnrWh0m40E3q zQoM0Hzlx8G8Z8-`avYWoj1gp|PiWeCdo4irhHr3sY%%L7I}e2hciJP{%T3p57HX5X zhny>Q#rNl3+vokHwI=$=KF?No;ZI!kN&1a)>(u{%*-d7Y)X$X#t~O-;spMtt{p=f0 zAL}GErN=Ls1B8_TLHop9$25~~W!-6A`cjMM!744_ywr$+o3hmN(2Di&>w(lkv?I(# z&M6Z~~qRQQgtI3bIu6J$DuvNqOzzKH^c_{=?ic^0_hHtcrKfYGyz1 z|Ep{XY%!?X+yg>G>h~te)8L_r6}yCcT>vuK&2i-2`=Sd-Amx~44n2#^i&0X27l=T~ z3U{@4Eth_LO=(eZVN}Z9CkP)2z$4{g?e>3Y&Y5rgv^SLK&BPu=#Ey_p8ed#LL$fQI z^Q#bhDO--l#NG^NIM0%WzQ9*U2|r>s?Tj3(ekxO?KXfG;uSS>tudk8%0idpZ zfnZe5fXrQ+@M#UBw&%UNAujW9pJD}L-&@`gX}cIR@KOcx8gpJWtBwcpD`@=CiCVAC z4AVKZ!Wrqm>@iYsn?!%hdrZuD=#%uBQlv!EVy;#jCVD2$-R7-5l>9$U*N%ekT_Y+U zx$ejI3C)C;fmf&dE2f((3*Wr^-D+K8o*GM3v`F%&Kn4<9$6ve;f36IsdkJ>fnb}eD zFiON%c|W}ZVb*@VUk>~DJx{@SuLVt!0wOQGLb$c*o{q>$h+4<{Jobk!RF23fS+JD5 z!f6}IttP&0ofTlAXuy4K53-GIm0BOY$5uLANye@2TskjURu1T$9_$ub>xl`h5^;%i zNbzAyiACjTL+Sou-xwt*+DNo{-&VJYRy__!dh!f*@>#F`{)KX<5pQZ%izHaOKoPY5 zm;r2eFRJEVD0h(m8d3v5a+>kEnbpjDdm{`Vsnyq`y4VS8Mf~flXRk{nNDyqQmrkPy| z_s2ZCet8BBt2>v5sp$+lg!XPb6D7soOFlxzbQ|!J8$fMz603)e<<>)!kjf+Gs1N~T z)k2+@;9#ZfE4euNuyAAxQYR>a=?={c^=dXxuf&h+GZNjduh6en07NwK+H3aDlmd)F zPHvRHeRO$tXuG2hGj(z2F=-!ucL!9LdmHJ!=K5TMD|9@*Iv?_}~AH-kCFr|wCDr#wEabYt; z)pG~WVh;Xfiq)!-rmnswjw<|f2}*IL$2ixr@v)9NM5@C0l+AJCPPIL1>4vV(n6YLX z4tz;JpBK*)9xZ^BgRYm5@aS6KITO*`_HuA2{m(DS$}t$Wki?{xKlBamkfom>z;s(f zW59FUFeGIjB2$%X@cxN?emY~Pe|f&pT~{3YWbkj?!Q=bCL&fF)r2FhgILyXkFcM zquK9134(Az1Fz?g@u->QSGW=F3cWU**U zj;|D0(xeczHDuCXepq@*;D66<;N?H=0^i-B_FWv#kw*JD7P z5}WLX(CPcAp$-F)=zF8CYkQ`;Y8Npn(UT=XP&8+}vNa;&knwCKLI>ItYW6U+2zi-p=6b|w}5!HJFYI)6}dQ)weZALDFy~k zq8opY>mT?0ikhx~M`^~27sayGrp<{cH7`1^-rzbc%IwToW;(pNhV;!d6UPfsf<9gSM(YRIwXy3mf_ zs)KJOb#Mo~A0xI+y)^s8^lP03ip`pvTe244CBzd-pJlZOA$iQox^aH-<~`JdsjB9u z#~bHmy%%SSe!@Zy~((>Sbx>_X@1S%QLtI7i zt3F`8)4BwE*vdq$egv|?0Pah3lH+a3{%%=O&h6tXDd()jX!?!8Q$%XryAzL}ol&j{ z*&)_I0-b1AG_ZOpxy20fM9S70D9JeuN{1Uq@*hLOrFB=1!~GeRpUfMF4FsPK=-7Sw zi)FgJu`CwPd2uvlKh*?(Rr3ugfeI$(+*HYu%Q|4_sgVNJU&f;^91qJ~h_uB^GjU)I z5s_YW@Hp{hZ?CpNe`fBE*c$Ssn&Yglyzj(aiTrg->mgI2BNzV};4ByjoJAU_(q>}qW+bW8ZdMkm zB5HyfPJ(?aBC+8`{ssSh7Hy*>$lZ3{JgB4$R<>g*Xdn#O%_LC&hWYPQdg2EJ30+wG zRh3FnY#QCqG;UcBLETf66vl5}iQ}DP5G%wpmfhPJHz2z#m9^?iWWvy?2tQ%KOM^o#8e)L4DSrnA-PG7C_oq`R6rILmG(D1O1nX{!PfBGFWg4xY3EX?bqUnZgcbgy8O9EoPmdI-rS`EAL_;SOwX6+4ny~BbQT!D<>?+(Xz z`zQEAUGM$-nTQyPc-MCTw>wAC_kTv+*wxL1)MqjrQ ze2u$R+UmazvAxK*$Wy*}{nj@-s)(aRCLW788UAy}$2blP0n1Wqp8;FKE6!v1N@0o! z=TsYHY?uRvpN`arpZVmjy(&q+v(|Wnf0PCph1jA%XWnwNVJ;>hB%u?mGi;a1Rliec zIN{Vzi2hh2y)qQF14ys24YCH7e zDk(nGCgg+BAfnkkp<2(ZXk+J2-K_RnQL1Q`DtvTy8~r9ervA@A3`9Q*nm2$lO#UFT zMNU9iotwvgHn62st2ZfS|5R`;IG@dE-DY&D86+4WxAjomLBbTycjS(4UcKJ^4@7Na_BYAGsy38u82cbM zNx@h{(H0U^!qQgq_R9Ga|Joi9++*rfvZmO_2dafeFY(-1LhgEJH&3EBf$}9Z9rt18 zFZM|8Z6QXVRdDhbBj5PN>$@Zc+O%tSPGFP+3X`n%_P3j)H~!oU-%~ zA6=6&*0$LhT<LlRvoT>OIOXwF~t~&w1&t(#uk25u?uyywXF&r}K*HHw6w|`kiJUm=^J|C?(WZ zSAF0F%+dY1(ME^86z}C(-iX6kHX+Fl=F=TaqRAXhv|Ba#Vlal7!lzFe zX&-V0Z0;uJ*E&j<1*`d-5Gw+YA$JkA-4{A98PGaB{+li&f9e-cAd)Ohdgo7bmb@;+r~IaKvP}HFw?d<{h6@ zA?F>Mfx&&gf1l2vm#99`X+1p4M9Jx*p$?+WCVM*+VLtQ*^Q{wQj$LBhs0AzRU?tj4X9VyVwxZN_ItZaRPlsBy@Eu zZvfqkTwL>WX=VYl0mqh%99W&EyyZyg`|P^fX}g_%^$UN0Y@v)zFf z`T_(Dl;4_cKTcCW=c%o_K$%KWN_jD)?3Gm628Y&^c;QkgM<*!r z@mxQ?RTsNs6PJBEG)_g$zTDEBSA_9lT%mjz8Lhh3*ZH+Ao4|iN$1enLo*BORr8W%&yY?kbdY_RpR&Xuj>>7u8Q#c+I1(!lh7NlN6 z0@aJ{1Lz1e)-N9&Oth>m3&fAAvyvA0XG5RC5P zBw6rV_fmNMEULeVsK0!{TvT@!L>BDm@=C57oq{r9kcWrUoSN@;SlJ~A;^L~X8s^I! zg$wHm9)RBlEZ04zxdr|!yZW(KW8(xU z_pLx5unM{26<5GW21=6@7ns9;A8ug2{5};#Ty2ZiTojK@p>-|Jb!<1Yx4Pr-yDjE| zGeL3S$X0wZIRup9ez5?&_T=82M*)eX&$5bcsP((J!zl5*jfr1i8&xUIDk4?h5&1h; zC-Y<1taZo{$fo>|0w>E9$;;30s4fEy(544JlvIM*CwBNuQ8At`=b8s-@aT}-Y=DZH zXr_>#apR;t64IF!^N=-sWeLVz@TN+;C{?Ds&vjX@B6aLlIScFgmISJEFzSit;P{AU zi(;SR>#?13E0)&TC*eSHFNCK?mP)5R*A_35;+b5h>HgnNh-~Lwx1Ah=m|5%OAg8^;PAl4hitucOY&`qg z$ziS(z+E_?exM*heVnOsa;7Yr(}TdXdjWfB^X_YbnH>x=7fMw!JS$NPgc++q+<~`7eXz%bk86s0{Q=9pL3zN)Mxwn8WJ13bh4(Fq@Qt`kmjw z8XgC4+FrvRhc_P%nJ+eflPiU`&}xdk!sO*c7FL+GQ*zj9$cN$GQOVKcOv)m-NM%TK zgOts2o;EotnvZ9Lec3kBNCFln6?zm zrO6V*e*GZG9E@Enf5ar0J7y}i^deZWDm{D1$b-_zWt~rpjF@r1zeNrOG1o!&p~wC;|1WJ5!J~K)^nPem%-QU;p-s{_&(sd{4)O zk8=(E-^HKz<5Yk+O*0j3`$TF?&GIgDVXC`({r&PbQn|4dXP%7JMf>`PM4*~Mg!+nY z#QJt$cuXK?w06@r9`JZrK9aQ5;Av8URaIW_tzvjUb<&D&q1Qj`Zo+Qt`~7ND$dv)kNN?qkX&@fuUCzKPP7wAP z0Rj)sCCaY{cw)nD;v7&zK=L|S9l&V6hM5=BaPuLH{Zu z_fKf2Jx-s2864PQuQ~Tu`tXP1w&t3+kx8KEl>m36(q@!BkLFfr7<0K#+}T$IGA)Sm zI$CMJi(_9Y8s=t1QlEV0J6~|i*;`ZS&?&%fk!WF?81jq96v{EsY>ZcNx^s-QC>{ z^X&nBo_D>!-XGtO+jXy{IL^NIwfA`*=MfPxwodz{0uE4E8p5+c-9@A3Fy#93gf6gs zHg`hNfZDEe87w~3 zPV85Wp@KGdQ5gfNpc|wdzp-!gl`I`uI;j^r#`CS4y40##p#d}k$e z@QIjB3PIEce;JgZ#K~j&a4`9gv;{HBGa0g}9o>t*yzR#sHh&Y!O8~~a0T`%v1DuRR z*wa0eKdUfyq{x(pKdGzKO4r}2d%pXeu*`Zcon_3r&gkUmWHK75QszR;Bgc}ZhH}e| z75_$rFydfWq#VCNoc))uMfJfeLS*3jpA$T?AgkIFIWP)ld*2oXc^O&urxR9T-=r`@ zlu>fib!-4P_ZF%6P(ThYBiq2S{do20t^%rB=&8{rRXGlD1*gg7{Ad|v zv=uva3^tA<%j&1R8loHH{^mxW2P-{|YX|CWZ{ktTf=bIydV8aWMzKf(sai^pS1+_1 z%XGN(ZKvRn#(s9sNc zRi;=kvn&@%|K*C?S!pvvqB}Lejod-sOy^Iw%{uoD{`_-@zNf>T?{vqu+`OjNr8{Jy zg|S>_sd#igoYszB-tqM%LGws|Ql6Gzwr?q$A<9L_j&EQK?iR2;6 zdt8=puDs=lwbj+&)Giz}kp>!P7i{%IebFuV7$Zg46&P8}2 zcH(b|*p7MZ-YKo)QC%Fz@1PM=Y=Y9-guJES)Rgwv7=dba&7wr2Y+fSsHw9P>ia6`X)e)hiF~uNks^Ztq%4N5Ym6FnU2m6z{DZMZt;w!5`_tjE7!R5 zsrnTn{H~wMiaN-nb3RNkVx)aT5 zSHbv4xxwgd7h1v^@>Jgk;`)$k3B?a{>@;R6ZZ|WGQM3nRN$`Aom6hBBKWp7;33pRt zli|5q27EY@t-l%x+!JsOL(O7MJ}$c*tPgdoqukodx~LLfi(wca@Y(I>+{oOX?aucIPm!yjW0xfcDx^aogQs9p!r^r)r62hQfitWMSA$ToQ~(xAH9=;OA4eb zjsXXHl}3jaa^3?(dN}I++Hz{|3qRi*(4F6Kr$eP8%sxaY!aPOI)lv1?JiX zrW=w+*4y{8dg0JF`!ln&8?bAPhYU)~wB5OmHtM6b{-=YLHAUZ4f+iCePe1)EzT8as zlCU)C@DTP!54Is${Ldxel8U|l+Z^tDj~sbaHsP17|KeAh!4IH{I5NKSF?IbYksg#$ zr+9Z~zsM<`*eoA#xo8sJq%!_(6j{wN)OwcK3_>>kd9c*kMD@QnPZyo zv^r{PWcw$iHJT&VFJUOfB8eq)1k4=`26D$7(U|QbTEBk7$)g+Dt*}RXiTFgvRXFwL zjb@?I7jmk;>vy>@lPl{Qpf99wBOX=~Nih*Du1s-bPVz_5r@I?o?bhEkOLLohBRh$!Oyf|0cl0u`3So#2g zkS@CUsaBcwSCO=4pA7;BX=;5IDF&G}t{M7BcHIb;^i&lhPRC@zRFfLUIwy*WDyv<7 z3)pe|!eqUVVt(=tPU&j_Cb#>O@i61I*=1mzFsMgr#rQaH;=YdOk)Z&(Tpub-Q#O{n z*jtoD2BP~6#4f|gFKocEJY6={$S1ED#AcIl&XzAE?8uq0ulH4H?9C-dudYi!|lVU)2T$4>`-%K0Z~pAk zQ}xsYa3B?{ac_MhW>}2w9zz_jXqLuCj$x+ zRM-$LX9L@X`sM1gBmjF7d}#jqx9mUzN@WRfX`)nO<8B*Ia29I5%@aEc2^u71>i6Gwoq9Zy;HcjOQpfJne>igD3(C8V6v&{#~)0 z*03AXyMGHklpv50s^h`5UllJjG@nl_PA^&p9q-yR{d0_75{8GW?M&Nnpxa;c8Z@~fF`ng3q}Yz2ckwIa6Tca?I$&EA-wu8 znqQ_Dfw^>~fk*l`6OotmQu5LkO4aW!JIlwge2OTd#~JfE0P7JML@6ZRr0i9vl~@nv zy?a7%Rb6BSxA6<9>MdF-X2~WEi>VbDko=ZL20c(nZggcF!HW-mI@I%_{aVU>d}SDq z6*PYPdsaNSbTXG=3(u*#F)b%*SdRq~0ozzYfPvw{Ct~v^dd-e=qel{PFip~g3+Vmm zfL8NM9HA`{X7bBPV7OI6IoEg-WfT_>)-P{mxO3IZSG&3hQ>9e~bs z%?c%o(LDGxekqE%A^|W%5i%f&`1Jr+q^=Ytiur!>-0DA~80ac3K2IkDDys%2L~RZ9 zVL*4D6Sx~;`4@t_sCGmEagPqzC5v3Zq`yVH0pX+>SU>4chTAn?Vy73sbC@6kTx;n- zj84sfjVlW#+7|epFd;_knT8ufwNS16e!SfO5Xs;ZV)5UilX`~sQl@H43uT3?hk27y zh=s>${5R}>sxjO}sNlmzfKXiLVcY*l4Nu0dIhkfE>d4UhFq`$wsgO2|2_s0@E9n|B<%?3z&;pwD8E5j-+wOKW>(E@0(vbvKtllD!2&Eo&C}DqU5pG?gWZM{U`kM&WuxG7pVeIjzv}}wMy+vlX)O_v*k59sz@GSJ zpHpbG9TT9vv;slrBKZeRSLcO$(BTBm->-gk@%l%=}IsO~(w+F}tH zlf(seB?g3VKv7J((BAvoO^Fjrjx5ip3NV4OJ*%nA@g^WPK;r$3e0U(>5j7*yBzh#~ zdtIUbiripM6&zT&`bt)iVS|&%dK8Fs<~MZf%bnK1T_K?ul!nxDaw{!-}aAuO*|Y-=lO7M6Bx6oW^Yt zg+`qyB3NYBgnWdcV5T$6fscWOM`EAxtX`hz~vh!}lQ?cS57?=J4+OtfHda-TMeW6%P|&qYXKd3VpP*re>H6GI;3?(O{J zlU#HHRB`AP(6O@N20#!TwC(y>S#Y|H7kyaYK2XXyx`Hh7oN-v%-q*Y(;AnyDG4Txt zwUQ*T0!Z`l3rI$qAe#(uV+5BpjV4bZ<}K{YecVLcS=+4Zd6d?g@I>?cpcXk)M+dAD({=Gtz!jLx@88iVuLxZ6L!~ODp$o#jA7dtiB zpJ4&ys6@qa(mHp&savF{DIT@ZNdTF~aj3^1`RJ#%{ke1iSPd`w^AWp>>yktE8>QQO zbI9&xgcBt==a!wsnN;Dpw5ph@_$OnoSXBpv{hY|LY1dGLW`u_>>Ot-7tv8?VT%HMn zFTBAuFA1Ur;IuUf^gxRo0%D6KUl$xKS^PrHvLe{D&2+{5ZWen#y(9ZDFRxhEO}@o{ zM>XEjZN!^1Ij>$gH&W_(fn>F8#QIa8H}RmJSRUA}Sorq({rz zArCGnep+MakCgPsHNc+OMJNN3y#>+NWcqLX)Edt1U(;IG$19oXqy-s|WZInI0#0io zKIx7Nd*%aak~1&7D>6;bJk@KSg6KqcAU6&<+&Z)P(n0+m7qQcqh#SVr*cpH>l%t9C zI|W^B!B`Z^thfct0m0NS;`Z0f*t-dk`OVHd;}?a%VOibT$w3jzIOB26_?ilAV3L$lS4z&sia5*J0h~6V(SI zD(4P^H6e7{g(Tj~F|8u<^O75Dk>bezp3oFHWPl*fZ2=8F0K$p;je&_l?k+nL^-r9o{sc;t36;YgMNY|9nFsI78zsHFX7&eA%h zTc}cEIbuX#7at0g5Mdl?QquKr<#|U02Ma#jmA>Zq@?R2^$OjnE21XFEYJjXK)l@Yo z|IIcqK$mKZc?_zby6BXH)gc;P_pSFRA0$-OAFFCs6Rh6z}jhelee(!Ouexp z^3+U;P4wh|2OBKUew#4?%3>V;A?m?kPQk|SxEf`@HvS8<;*`)N_W7sC!4BD2u80G- z{j2+i%$*JQ-LG!&Vc#HO(uge?aC;(a)>yQyvcOhgx=C{PE5W%I0;ts>`EO2Hux&Tu+e#n?NUazlb4PvTenUa;XcT>E#(fP^A~L&$Rb zHVL0u(dZ-5)qoPCHH{M$gza^tL8hSLTkE)Dl+MK?ltJ1E!^;TpJH`BN5XVpDeRnH$ zI>qpMYq_%O%98zeL6n2$B|E6SQtL!ZnCzA?J&%m%N}Uwxs(cD}pAo;>7K z0zc7AKYK_gBPv4R5^#b?ArW}s3NDb}+zP#0(`N_5{-E`jT5((hjA>A~uYTri8%~KP zE{Wa^0)<_uHpuE(aH?ooRp+F&32NE|m|JspUMV+cdx_>xhJ*)Hb1h-PV5r&b4-qmv z^U15I>X8LO6w493)OkZ|{+Gnu$vqf=sUlzh@|6VFnc;UAs${xaK~t-$E#Fl6L>*KR zT3*fZH$mVWjY87p9rr%MQ39>BZR4UmJdKD@T_pb-AMbt(Vfur0Ve6qredD~QviF*+ z*=o7=+;=lyWNC#^LpJV_CqMq%2>@lXYt4i-5u1jE{Bf@moosr%qGNaOea=`9zzMXS zT~y$#+4j9owwd3Xr#S#$;D(R0Q0`Gu@zbZs`b^LK-menOAZT;JOCzj?u8}$GnV!F6z*0I=P>&Czq7;2u-Zwv?rQsDB5 zsjgv$1m~w*))Lb10LrTQB9H>k33n^9qlJex$pEOd!F=E0b%zeht&L2rObyVg)(Wm1 z$l&*WO%oncJq=@|jm%mOt`yalRN{K`&Av?V(d8g6S!=S^#P7kzHFD^K1-h)b`|&P` z+c4;M-<|CG_<6qZfj-6-ebj#u7zQeTO#bwAS<8v9p{v|kcNn6hwbw>`YcM6BCFr*t z2utwq{8<73=rc~LwC-0Q=h0JAOk0*bPWEF%j9m=2Q>|d(D`vp&zt{QP#U({nQvm<* zTH{hT3c0TwPLz&-*ib(2ByYe3`sQu;xm;vB$8k^o_FC!&Y>jwV?3s>Tr~b}`(|Vl~ z=I%yGKg|F)u%iz2fyh+VGUUiLdroHpg;8)bB2f5zQEg61cqUd)`^I$Fz!5W#L3832 z10dnt?wBgH%+m*M;>mgUh0pKb`D9RBFB1OA=nhm{mLQC8>jwKrodeI~orXx^8t+>O z`^F+WP{ZKbe=eO^et>~}BVx#IzNJ&%SGt%<`58kzpE*DJchwD{?*7lUz1(R+sAlS0 zvoZgad8*4|hA=>G?*V~sVdsL3 zU_i6Yd)R2R$u+MYVT9I=W5;i~-@=?XxbQq+Z+w^2u%>GJRmZyG_E@g%n=_=v!_FyP zm8P+k0d2>f{`a2>>{{^l!&!`PYEsK^V$e0mHO~qC6~AbE57vx0xKij`G}RcPSmK&y zgr~O>_7U6AT!9OMC{&ao;rhKnVYSUbib}Pv?7vbT4Be)Lh>Ff=UR|39vR@AC>VQVS@5gv&JE~} zJipTt8ObwJeB<_M3NzQtOI1S5Fwi}DRbsnRc0mJVi<9n`8XZRTw)2#|=HgV8Fz{FJ zLBbO^DS#&$g8yu1n}Q#b|B7{#3g`M-btrQ`dP~$p{m@3=R4F^kKqmY*oOmN@XoMNb z&!SzUc0asQHaxIKmsxW^-nJ6&KlU2H2qj6~d3^0CVPpWkX zeha1@*V=yeWH_-mo6+Y2BAPOL3`Wn zywsF{Q&Ni)GFdtJ0`9i+(x1{3e>gfKIg}qT-0{N;o`-TGKK}BRNY6lgVsjc`qZFjo zeBr@V_)U;OTC;}5&8RhGL^Zc;5LlwvJ3Zb?(NN)@|Rq@@&0#9&oFW7+YPem}iii+VQ+^uJ_1})0V zGMQ7q{1CmA#!|8S?g@uJl$+-4+Yzmy06bWZ%1kuDPkCn4E{y?>zHR^jK zR*sP<9oE+LAFcJ=8HjfsNQOd2$wM#K5fBtL^!|LjWBUg)pUYzK zi<55edgd^|u>13IG*bkz$Jj%{4LoF#*3H;$U1HhyxK3-mzOu=A!b0~RL^G=dX*rln z?=K{V4yM0jx}*d*D&9C`3>%}0yRZGy}*j2j4@!HUWxr5`2a2k<@ zwVUWFFLwFt^&SB3+I3dMtsf}%`Z=XtjJol9OiY;>fk#_z`!CyzT4sazaIFi&e?b6AED`W%{$Ku^O|O?KeKUc`RGg6^W1UEQdlr zF#bU&lPNG$nfY133MgBvwj_*kT0Z z&9r3hM~Qx5gRO0Jv(CDP7S9at`o3L`-Q$Q^wGR2eW!BaBy5+v?wVV8afS68K2iWS& zkmVrNM5K$xG>{`f2Ol?gX$lUip_39a?X7GNx|SfFZ=Xr-FHtDheps!s7DD|!U@{1R zPfxMLCr{~>V86R8$19ecNtY923XV3XXdG*c(pAhPSm7~6+-Qq+^*;CE%e6ur?Nd+z zmDTwZPc0%AwFlyXnRP4S%#M8=>8 z{p5(aZ4F)asu$vk0FHxzN9-L3*K5)!W&j()woB$%jz+)mX?L4`> z>r|>-5G)YYF^VSWu>t>}8UcX59sEaGS~c!}1Ye!9>(Tut_pv~sqvdewcg0|9GdF1r zP_pY(EV>#7J%)m90;n=>->6&Kc`Y1m^%mN#PQhv&B(yHquRia!51oQ5*tAWpah_aY zs)7{gXKpEZpxF04!8~s)gV;wKKek`F3dbo}w5b0(YXqwoC^q@?kNC{fuXm-pJ>MA# zGIE{O*dN)Na646e_cX>^Q48t8xQvW~!1UzlZR=Mio0L1(Z14t1c>`=ZWEwtYtu+kU zJ=*Iow?utCjjO*upE`6+t2{~g)D$)KnkdPOF8iq)JqVQfj5$o^EwUb9v(Qdn$q!iT z>)g0SY#i+bi|^)tH7TSR0+*a*b>iVtI1MgvH2H$mWQUN&L&&~whM$ruhoBCA&i1Z# ztg95ZEIYHtue1so&fZ+W6W##$m{f}QcW*IBu)E{FY?=o!j@LY2LaF>SDu0))f$lOi zCT%p*^MlO;t%v_!BK&&TP{9*2;tF7qw208Q`%JgQtuFQ`VRk)AbO5xy&1}~?4%Rk5 z(_yXQp=3tT1ysuE-5b~v#NSXQID$A*X_S3_6%I^DMo)3DG`Q^oekoqOONsa&%AtDq z>3zX-IU+_yHDCckqge_MMOES4b6eXgmf8|rs#J? z@BF!C)9%I)kt|s6iu-sPwMFX-*KBV~LjVnmC(9N*j;6CSLauSWx0lGuIpevxP0x|X z*OYa1;Uzq22m>Hrq;j@OGq#dn6)4+LiJ3%`M})I+%a3r#+&7y%SGa2{&xgQ zQi1t3^s#nKq2N{SVwaG`g&PnUegf&zf`@;RPW9HYIfwDOpeD9O_bg*~)~{I0jwf#I zT1&!uLGD89($SlHkryz4M~(ZD0g#1&1U0$R6Z5s+!Uc+SJeDBg#1Xhp?&r^TyzN;E z;~Mv5HM^*vlYR0z118@pKMX5GjPoH=J}&apu1O}R;w5=fLRD6dydh=Ezrl3mFknMi zh%Ulu)OuAFEoeROyL@Cnh(3L^QC5aljY^C-J5m4LHZg$~d&Sl5aMw_M7ceJ(cqWnw ztf=#~)8foD+sV&|xz24%WVw?(Rc`0%Y(Dx|c>-%OCT~Hgd`H4!=Z7SQ7vOQufvB&> zcE1@}m+kprue2dChoAV|?LaD<^SFN7HFt#Gtys6pS?++>WB7}&h2EJS#E$Hdussmx?dWAH4p)kk4=XZKNgvjM~FQe5^`!Q{FZ`HZ8>+rot>C~ z23maZ3z+%&V@jMKHIF4FfZQ#y>DbkoOaA%6jcZBbxLg#v^3?}paIvaIwY zr?#B|9uOib<~zIx^5t$f%CKs09%tuC2y#9wxKJrte?{nDCw2)Ell@;L{S{UAtp)F{X9TX(?0m4stb}z+9{uch%6~?`0(oP-HM0c zp%^ltEDAw+a0dpy6ybNV^FPG8A85#JOa%5pIz0lFJ6?Mvpan*eo$Kr2Bf3?N(w4naLwYbx zWeTE~H8TZ$Q*{-X6%>o|wC6g2>Z{~gWv*KxT+=xASyRD0y}p;+e0Q^XXd5k`D!eO% zPEHloRxXLEUpj!J!R}u(A?X0uF9L7_3{DTX?ptnH_>l5gHUWQ?)o-f09(~Xdy-ukN zLsH`D1h)D}cAyNqrh?~6w|2mH4e~de@`{|^)q|Sksa@M?if;3-7(2i5)eGx5IW6IX zrNDOtuXGl#Qd2h*P1>dzEAS@AAu=xoDmI#myPJmc8dYxjK@BdNY5 ztPf-aqWa`IH1Q4+15$3AckmDmvSFzlN4^8u!s_N9eYr+Ax- zUxWsG9ou&2fU1Wcw_{G+{2BE!+4&Xw9eSJOXCVTrY?XgXfyXr@-11^_a1M|#!`U|M z3%!LZR>#NON@@pkwe2jZ*G7tqF~kAF8%gwCC#3d#*es=yoD@3UszpkI3|>0;Fjv6y zde0a0kFN;u;a(txRZ=2XIQgB{Es#XDhtr>I57x(C?#W|l07{|$K^OXsc=%fOTFFsm zrTfl(7q?N{tZw+XUF7R{izkzUdOVYliCPj~0CARz$_=agx>efRW)UrPTQl$BDr$8z z+Y}e@`sMjwE|M%hBY4n;!9>2$rCPUMf%W_u8_G)1VuZs9#2N3K?eOX8>ZS3<(4Nhqs++u9>M`h=xv_?f|H`@_BikRgk z{*QXc9tP$dB^~-GY;ox50c59V63_{vOS=|?0GJvM+>)8NDqkFz5Fbzm$Sp+ z&I!x4@Mm$qkb3v4mVg|~WpA(Fwxw4B-k%%}61=6Z32nWL$0_OP_5Qx)?r>z#M3tqu zrp{-*ne+Zlvx_>virDQ&lV8OwnQ=I+uM z0$Y=u-+s{0ih3tT+wtw?h(PClXCvk$n`ViO=h>dBscAO>Wc>COd41tJe!5+HL!-P;Z;JYisNC|OaoG`l(V z%XaKDqbajiX3%vC-ntqn4!P7-oo#|`!79lOyjTD(Ds9C1Rk}3_8o)uN)4KDUz3a8= z{cXwv5X;%!r2mn$2-vRo0T8j(NGS~tK10wqDK@!7SF=nRy8(e00qiGNX?H;|*SjL= zu$)>``WQ;JqTdmR{H14yx;+2hvm>w?fxQu^bgVk} zK;znKW7fn7i_lQ3o^Oc&eW4f4p*X_rvFWJ9e0u_8IFry?5t3iu{P(7Os_ukP$bApj zN+ig%v)BwYB5|Jfhi(4~+nAk;)UmIqWwRJaFXn=G4;sGbDlGoxAp=o_%GZ#)w!IwKRZ$PD8#e8nYe-?^XM{E_QCoBg>*v1tU| z4T|m+=WHNQ>Z(%j1c|2st>!l!Z7&gh=Wwrc*(eYy0l0c4puY%1O>gw5RO5R^KZD`; zNVGJF1`cML-xvTzvle_k91)mUNu9_($nw~=Er{3;VhbUuUAqS8?KW?nyMH_tIx2Bv zJu;NwTyF)GA+I!hS(~s(%L{J|I5VgBiw^;giP1Jt zatAG#2(eWX5a>&?;kExm$E}$=^K^x~a)$0b(`pwiBzbHW29m)Mb3)MBUZmhoE2pDC zJX(!jJ*?S;-r7yN(kh{gT&qAPqI8X_hxt{o@RjRC@*t@oW`o7>WG~ogMMbihy+I1J z!!(DDnwCswD8z?alqv#}%rKw-(TRVRB`GZjlpt_vYr{u#)%GQ!LiX2X1yH8W53`6u zX(g#ac=W*oF;SC%ypb0Td|>Mt`*?!LXQt*5`fxy68j^YObuAkkAC5Hk^QZ2Z)zx7s zYW$F6ep9-Z+AR_AR0k(n;yuL0s48%QtfK2C#{%F$ROmuX0}Eg4fbs_}HLaXZ`?dri z$V1nK0dF@HI0y_{I9$^A_!qx^2X@e?!IVGto~zx+dFHB7F!gf_o`sw-8V~w2iZ_un zzXRy*Tr+$W4a6$N(?bu|?j+wOb@uVXMwn-fD$;Mp0q;6uUL$%%vWICN!1d<#7<>2% z1h`YyS4~_V#`C5PId0E4>o=qnyqhtZ8c}Za*2$0`9u8DP$>@A3yh?SplR zV9dx*RDK#wYfjXxU7OpyuQU+0@5-AsHrJ4IHPlOGZxCoM$^9IN@hQ@M3JGC4^hroI zuxRnKJRJuPA((BYm=DnBH4m7(U1LFO>hf(ibc$aW%naIASr>-hLO&fQ(FDXB_<-h- zMuT2fcgpmh=sJ^|qDcTL$pBf*`43jq_7|DO1qaOwm0T@GPz?XTxOZ}MI^{JlA9q?}rXF$qgYt?QI<|>o6*8+(k7tzd81J=}1U+z7w zVsfxidly2x%Sqxb8@Hc7@-8?6oWaF@<|&9h^Z1 zBPH-;<$Fb=CXSp#mB4*|8?1XQCM8KrOc#S5S`aptVU|`G=2>qji!!s)Ff)fGYytI7 zy33&GN|mqeiT|zCRi>A9tup7AWR)q9^;%IE-w>(3=e%2bo+6aRMPq=$t`x9X%h!ot?Q^Yt(zg7 zWNeu!oNM~Gq-Zb#Dtrb+aOxrCl_R6^fGe|Kn#N)aRl| zj13+`C~)uthc_5}OM*!^Eyx}GNA&?*UQs~NU;ru1{y9pv6qv~}lR)OPKiV8Z_o+b0 z`VA(v^dxYFu|3&`gTN+3gZPjgDttp2%Agm}w@_BkDLHs?7hw}rW|+A;)l9%6Z%RPE z_tmCdzXZ{wfIO{_UB!btWgvA5CHw}-9d!Bnp;lB{P{hMe_fA4>0)Xi?9qiq#Yx9>R(o6Q-yXSx( z_#-nP?}G7mO$V5~2Stuvt?&jG%fM0lfBh)vz5kCt3aMdE`x-Lrivl&}{f8j>`v|_b z9A%TQ_0L`95;O+bMfC)v%V8j~VOX6k02;V2FyQhM9(aPc*^t}C@b5eT`wr~JVcalA zZ4DiZK8}{WP#}e_#j;03-?%ea>{gnic9ebK7?ki&odI25%UxONny65Tb$qD}Z zw@?;bg10)i2&_ndb>(iw`{{N?(bhR7MA?^?tDJe})$Rlk0U?z?xj@MbjWEFn6&Sx~ z%7iJIY~v#2kdpvzwA-CqF60?bT;!3Rka_1*B8hMgAzt=l%u|1VDE^cQ6!Jh**>{?h`YPkCFXmBbRKyG zFjElDbPw54b*VtEfdTX2U~tWk;K~5CEC5IOj&)d6iDt0IJr1-rdu=MnCq>}0S4|?Ld9FTV z@E%L&mjRCHr|hNx1M4m{mIoid<%#~&rW#4nC3Zmvy`lwx+Sw4_$ov2plZkUJAnA-l zf#(zB@pU6F_tD9ak!j{QU<~^zBJ4@nIMG@j(Q{IGNk1_ooxqTPsfp+?@kc3%YNk7^ zuToj=2b))pt{VFP6hJP-%*5F(#JNQ*XdRT*9=Y=tf)cIOX+D~Bp&aQ#5$RQpp@q$- z3tq&yNQEj4oolo1;Fz;L=X-m znE*53vA4rYe>0#+x4oWg4i*2Vn&+8APTlC^B~SI_i8i;@_-btbigunG_Dj_3=&i5o zWt^aoB(r-bj_Ewl_ojX@pZy0IGD%8H?~rHqPnl@n#DFy>*8w#-?c>LNP9_@Sc@BHm zuabR&0cL6>kc=JPltp4^L!S&I@oF)+uG~t({UJl!dPz~Hasg+KRD#`~gviN87}FI= zuq^+V-vmeYe}0nMx)o;?d156gD;o|-U<~Q{BLI!d(Jqw(aUr*Rj&t65v7%Q;sOHJt zsiqH{7m4PLIkpfW@&?$1Ht_bkhxj&MDTWvW@2b8=VmQ78J-Ua=w5xnNr=!J&x!{2% z6z#nIRpwBdBLHAd28n0~>#K#3k+lDv&WW$b?q{V+iFQTU3B~~tf+Js)sS+yOa}U(| z)Y;XsGBf1+Ih|J5oKSzs7v~-DmzdLg3R+F`)DxkWmIem67~x&|4K1f2`T{VT=KUPO zlj`L?VKE*2@paUxV=RPSw}yt<`E%RhAt4F3ds%7*(lP>!P@tDFJe8sp9;t=19dESH zULzB4;cQ+3Ap z=UoMh-~9PO;=ySgaQz+!m&HA&*Gr+&2xj)`NjYqHMS2)-)DITD6@CXN^Y*y%?RK|~ z=AZ9B87R3{L~BDer;Lh~Dy-$zhSET)Qxe;|W7pUo-<@G49DOzyS<^DyVjOoL<5<{o zdsC~~YQD8YD3U=uAWV@?x_L)Gf$;3+8xavKOUo{fWiO6uOTX*)qHsD@%BNgAo*_Qp z#YBaWFLi$h53#bp)NzFS`&{~bn@5lOm)~w1jyr)olu*k%=4J+Pst0+%Mk@E6gw=rut^-T9`rW$?%hF>#cwd`%2o^Lwv%0~!0D>ix` zXAu|<9)0zj-A1t8h~^%za8H;J>n@;@^JY}aXf7kx{mdUZCFa*M)IO2?_KN15uj{d% zdV0#8ACQ6{;YRhym@(X`zswuX&&I9N6zHppqKuX58XT6_I~o(+nY1e$5xv_Z$9tsDkfuW}j=d6m z$kP|=Oz4TgZ!uI;bCe!<>PAAk4ry^t>*aDH#xYe}^Umdk%A|y}PIA?*=qrcv5O7se zJ{BC8cLanz?MnOmhmDkeHVb@jzON1!Gc)1bXy3hO5k{Kp#I8R7oH?n3QEuL6 zRT~{ynC|gVyWtBt4G8?PA-)2+Z-1t&tABQrNNrv4q>^3BusC+g6QfZxvSY_h<(MT< zd=if#h_l<(0lBv7a85M$c<=#FZ;x9u2m3vAQU~6x@yfBY;$S?(pM9<8@-VN0i8xm3 zAZDzhx%d*N31;B85BnlfjYVDy! zB53VpWdqzNQ#~5xws$!@n$7d7W@9M@yR)ry2~Shz_NPCwLDzL!xnM6Q&)qhH0owkq zm)CkS$$n*AY@hew2vo^#>4gfGW#dmwqeod$Sw0h1~y@5Cr(V(G{@)9(jopmfAr>C0Lv zAAO-M)UlCJ)LO*y@~gYcQh%}Zpw`~|U(Flxk4&Wu6aop&%fBWFtupGp#)NS%TU(4) zI;g^D#iBnD;jCF^sG%vW(|XMuO_-KF#?_ zSZlPvK+)Ay=x!8|q^6DxxNXI zjRx1&y&^tw@^;=C`||UOm8y_;@#4`}5x<^FU+e%&!3BF{=E3B$aRMXz7gFL)m9&zk z{!X0ns%!^M^%;8w&ix}|K@2aUsPnJQxkER2%7$V(8i;jSG|r2xB>eRjBT;Dn3haf-!ek!!}aLQEM8@4X)B>Zu=6baJJtJb=3kw!u{1o+H*qLuWQA%$iFP$**EXAfohdK`HsbvO5CqYA_F_wHL`pWz_-`=uo zO{RIu=u3IZ{o6kt;-YIh@N$DOYBuVhXJFG!SjB6fQGzr6aEQiBWc^mu>Zw=%SI;v$ z*jwoI&Txq(D`Xt!SrPr%(CmdPa*ni{JE|G<`G*}sf_XVdGIkYjx9<5O4<3Z9Fb?uPI;zIPUvL3-sD4FBY&s7o3+PYG#Qx0&Kd^h_OCbdbB6ncT1x0(8MRn zJY#xZ;fy(5E$1*YTs`ygPHoKC;_+Y#dcE*^jp;xD6d#vM?r^w%vLQR5v(9m#RC&_< zRjc#BtAs_hM5e(>Y`CFy0>c$KFh5@0m-|`_`^u}s3YQ&!kyIG)AATq)FTBRpb0dDh zmAmD}KxHJ$4mCmNdd<3Z#q-`t%IeaZ^`bcSY@;>_l^YWJE8}ox%9dw!ORrJAgG44M zfZjpdAuin4STw5CK&1AYlEIBFp@dqjy@OedgNc=q>_49(4;#+Jof{4Y^aL}mm3f<0 zK!4ukSoJ!r_0B2zr9@m8SDp03!j-|hT|vyMS+Y4w0``xqtGtHM3o5!g>RQVgrZcaU!IBcfwQ2uQ;t-;j3 z{*u!xYo78aqWx3v2st3UIQ(h1NuU)-$11Cq`^0)MJ|<@-F!uft6@GS|RK_PX51;3L zBTrwEEfqK;z``?e{APN%yky*ZrWpH_5_z1hm}WZ{RZw8F(SKv4$&Z7ehtYrzbvYWL zua7=s`Y6ezL8vGy1e)==x-z&{gkNSTv zdZ6&xgX1e|?a5Xu54f`r-i$$8+O88YRfLVhEO2R>v3 zB9nKCIzK2lJpjI%0?S8BweCQujc(c!j(`^D5peXM&{Y4g?@!B2M-4qrZUnJvmc|Ho zYkQVEy(^84kjJ#RmZPy3+q^y-Dj)IG^9*rf^~71g zFo>vBO@3w*+5k@&*bG7&;EY>O}%e(YtCW9Q$?kxM&SYbggY>T~0 zMjefc&1zIK-##jOYO;KVGHPh}&FimE-@gq#OoyYYKS~A~g=;2;$PWy@l8g&C8lAB< z4=gpobwAA)oAU`=0nboZ06)7TL#>ylUy3-YzKKI};t9?ebHA2rC)_N4b!P_Q>-ucn z$t&Pwpl`)~bFxc7_n<3=jsnEM<&q2aPl~V4qaRbYjH{d zA){PdZ)d8e1o!rX$)SOgT6vsWw6BxG=lz0}zAkpJr;`6{m-gI&J|ih@p~KhS%?)tA zrwqG+_KEFrjKE$mJYlTz$ja9S^A-~-S0&?9)J7}!xr1j)(8w|9N!kiR<0$7U9oIs( ztg3-M5t0g&nvUlts#4#Sv(4TPuvJZhB-aOoU|$un;BPn_cL*b!_SZ(*biyA*6O0mC z5|2?*X_i<*&0#VdTiL1^AIEq0#A^gn;iC^sO-a+7x2BV|#}|J9tBan!NXuFTP5j*F z9(kuwaP-T-LMIZbhr{D;PE{bg=e8n9+k95E@7xWD@B$)=@9w?c95zL{*d^e(l%ux2 zrN9hX-nA+LmjdrjBBgftU?<^wV|RHXqxpy4knrj9J%@pL&y)Dp!$W=0?BL0bwcgB9 zDgM^`O<8HU*p&5H+&HgZ1yy$GRJ0=4yus`Pk?J(T8C!W;ApKmo`^IHS?$>ST>4-B} z;e^`$!P>^-ZUO*ztb7PCZ^MtGpXn?}Lr^Si9{y30LO!)RH$4d=Q@m^L7r4L#Pd$M12aC-0-JH3pLt73|187Cp9OA!GxppH;;emgC3+= z92t9mIMsAwyqW_G>QtcDVih7}1kb3VZ$l@+_Ghr0d!~ob)aHR#1o~Ni!bBc!wcBv< z=TUUFy7ee7XFI;$o8!r_qOzZ3zSs>(BMK zUm$RCcz{nf^10kQ4+w{>yMI}{MN4|f%K|1g0EcaL^CId%#^*Sz1TfOh_0P1oU1_4~d#j*v>SGNNQ;oMhx=>yw#K$vpPQ zI@Ynb-bQ6avW}IJomq}-Qa;FD*-ogC?CluG?>YMZ`~_am`#kq^UDthI*L^|iczXzZ zEJ-f>M}KVrR8^FRSIESlk#{R_xg!MdRVO5wffd_B5b`btaK=PVe4S0_OR?C9XRKIC zfUCTh!&hV!>43lE3OVMt9j+;q>cZ>xL%P>`P80X#7i4BI3o?pf>}j{-W$365>}ZWK z4N|6BvKvYT|2PEEKxc-zw($PDae$;qF5*wvZcA&wpu1veMCZ1!5uy0L8O-w_0F6fC zFrN?st+9NO)l+ty#%o2*E|qXce7)0L&V_`C9M9YDP2d;7N1Cd4pJeUBw-<|CtXf;o zdWRDJQ~6@krGV;Q$a)l4+zU!6wdV6y20!3cJ!uMN&W+HV&DQ3V*0W4KmBH!L(TNiU{W-JUr(9sn*#sxJgCfgvYl;<6vJe5 z^3!_!d-gHkrGUW}D{atU;b6WN6m%t+yO+!SU)F|^p;Z%8j=hF%;-&@&x=2}`Xq-eh zzJ-c>QFoIT*C&=R$y|3p0035t&g<5e#7Zcgw`A$D?9Md3+pgj897_RHIC0_=hjy+d*(rey`YwgGm?YHvraSIyy*a>9;IqjA+3J4p1ma$_^6x#+8LHs^;e)x}C zS;kjV#J$VVv#M$9r6$GLwe};h%tb)XZ&$K-XLbA@@Gv>G)k_7xH5wS+u3O6WESBMo z8LB*dR?Q!|OI4O=THYA<$SbtET>>UJqsNhWGqA$guY=d(5zsWeDU8?3Ab93D!u%8& z@9hgPl)*{!lZropgu&m7edCS|@@jp00!fEgDV8Db#9Wqtpd~fO*q8o`bvpieiqylI z1f9+lX_7Uo!=OO-2v?-Pw~{v^AW7KMbsKojavxYIt$@o_i}v8&uUgxT-Mj(%a%n;k z{2E`w$WMYCoEgF~2)=ija|CIgQ^y*3ti2#O3ncg;6%FevWm#>C-r~ zsJ7WJVY>8)k9!!G`HJl7Vg4^Lk#-k0Asur8Iyv_4kL!*f~fdmi}{&U2JTWsr&bbe>DeJO}OHV%No8!B|#!)rmqx;chJ)x;-feZ8yehd z^0H=RQ&g^A3XXYWqkMS&vR&Lrk)cio>rMjtt>Cvhwq@~y@n){E&uCgEK_0n!@A%0z zN8X8wVQ@_o1<2G!-#&nMi8^V3&uLVlL^Hjrv?(`}FJSOKYjGaz8JG^2yyoZdJneX% zgLU{OH-yY9&;b8SoI`o-gs?%KV+svXYUi7d_1CN@=3tLtuhMF}4NC?I>60+Z$0u+6 zRK+aM1-HP!gV~96pHF^=!qoC!H5j4=Fl?hQX$fx@y0Luez2{n0V$6xF4&Tx3%cL5* z3~Fc<=Kd=wZACK<->g8@p@WK%cXk@M11L_fFxd9!p;&hx8m5m#b03IIx%3QcS^=&g z=Dk|IxidPQ%>2GGG0@v(=@z;f zwb$;ir{G~#tN5x-*O*MP+51*&3mfD0QdMA%tM*ZIsqDl`

Tl-Si$lSp_+7Aw+bG z5-_rH^v9nEKBB<#dcbG=3#_y3n}+A_DA;*Wua54AK*wF(Cr`gOgu@aZSQ77DRhvN+ zFvZ@C@f24`UK%b1TJL%TqigD`Dp9*GJ}_t@Zio&-NdP>~h8S$SesNX0CsW~*4yTyW z<^WO%$2PSVYzH*_X;z2}vP`WQ@dN_);^em}%qQ`mET-!sTQ&ulU@#$1$&#$@^eCL1 zTqJk{V=cj6YSN1j_}9IhN3@4l-0aQyJbL%xbj zkr*j*#SOv-NdQK#&ZtD$50()3i;wB*?{&nf8b!M-JU=MZ)zw9(wxyy@h z3WVxOE^5B;Y&)=n{M`AH8+s+lXcJyMS~P?_*p5;qhSi}iZiv|rP{j{J%6NkTtiR)V zwreH;O~;!UO|%tO|i~K!33Ogv^~W zlxjE0Qu*bwJjdL-0;V`6hIlj>)CS_4g-5<87P};UXD1Gnh9?*Tb&Gndz0h4xv1o zj7|Bd!Gi)2p^B%2e*iXjTvtz9M%VF*B#bizzHrA7NqpLL5Yi3CA}UsiLTv9`=J<*O z3Jdz~htF-CJ;ibS#Xo_H!pk`A1`GPJ^{*44QHoh@`7qw#o?mvF~I3&JJuF(ml(q%AV<(vzCyN?A1$1hQPr;ijqYH{Q%UJC*~ z^{<01fgYJFdwBW|c`(YO??v1QBe-%+dDNc?`SZHHT-^bwy;pB>xO*MZU)!~>G;=JV zV+~61nIBcmh?3A}LdaRkwjEBbFzYJP`wcnGF|5|yV3_qVAdOini2xeoCqD9(029(X z60DXoDJgdk35sM9xmn(H6jy@?ot*N|*l@Cs)6a%iah5rJI}$oGjI>cD!Q%*NT&;}R zN|kdQ16ghhA(~AcglTuzl%9M^Ommsc%8-9^q08|vLgt@xeZ===am)}>A$xsA)eZF9 zZ^76qAA$IKw!2R`UbqB|FN zLsu+kE&_VPr+M4%x{u4D_->5jd94-+7!l^z18nE_+O)s^W}Xi|T#F~h?44(|n*UUG zvXA*xiuK)s)-w~)vXIkHm4T*3&qC0{$e%M6zrg@7qyeF1lyZF>%13(>g7c~%8bayXoV!N_gruf2lsCUYj|{Z_QH8P&?} z2jD^@S7$IGad$E#12bjil1MdG8^fPlg#~oHEdi7NyG))?KtjYrF|P#% zGON+}DIm~1Q^c`5-_mG0IB+2B*00IxkOX*PqslR1ccC;{hBG}J(#tf4pPq&q`>Fq1 z`@t8NmB+0d$ta4TK$E?mJo_xo4$L;?w^BQiXK#1#*W(CES96;|?=}xK2CNRkxKgnB z2fM4hS0+#Rtqva2Lh>h;*r~znJddZ_j|{7w0}HLhNIH_3lgdFhtq65WFGOzr1-xoL za7UAZ3Dv5}M7-KUs#mD<(ViyC(6@K-v33})w}{iV8D(!@bdGBym!_Fr(&{~Jcz=XkxrEo{i@esh$u(0b1sDc}ufb2m8}s3iVdJmvG*z0v>OEs;lm z4`xGJtMggX*)38f-v^bv9iw(ZN_D2Iyb0^IH)U&DHrPxAALV9&UdiR*3!sI=#1at` z*K7tI^X|#@oBHi63TeyV7EB7jQ*csCS%h>bFI{C%%EnU&LAv^;*ACis0}p2uu5c#M zDI8=T&3X)Hhn|^h*jn}9R7)zesRM>kdgSNB))K?b@4xmmhZ;fpqv(?VvG;ghQu26a z?~$LD&1c7H!moVm$0dtD4D6`%+g58Np?GromO=GLUN+-Nvw#jgFFSwNvM1xN!-~DsvXUp0` z^hdak*_4nDBg;WE*YQN#OvpLT><2tn3@pQj*5~)5B6G5}u5JMOyJ5!YHKkWe^PPIs z|2_54EF44vD(BlWRKHX2KL3&y0$WqQS*l2I{8J-N!u+xqUh0@SgL7bxi?YyHb<9F{WN5sk&y) zMu+aQI#IGqbA1=wB4!KegrI0?j-JU=%KEuoBZZn-eQMjamrGu3FD$-hB^D%u{jv;> z?&V^esH#^5)4>jmmC!%xDExRr#;VQ$Sr|)ubYi?#=l+Kus2S1hKzpQVmAI5PeZzNaK2ht6%$>XJwjHGPQQFadMwQA*>KM&i!5nW#Y~^8P&FQ5^ zU39chJ@~I52!ltwn_%yiUpd{E#-Gml$IEsSMras-ll-S1KkBo0* z^$BX0)k3`-z9f#^m6M+H_`RX?)Oq*D`bz;S+%5!NO&$aS5trK}QIP4C`XE!X6}j^2 z^dWA?i-11)=hHs<9iSjb;CL67>HGD*PJR!>d}Ci4&Z&ocbG3*+{T5Z?!U!ihwdDME zurWkrOZ83wh?JLZO_%XLm}e4v0;vH9KEJ-H>vN3hdiV+n4}?BXsS@Zf_18`TUbn@O z)t4!mO51z9-iMN1(P{iU+kh0sQje9id^m;G{zstG%k3{uL)OV@TLl8O!zd+X0-g4j z6q?}=_fLL;nn*E?K zRi_eGi6{I~^Sr0D>!3{babvl0ZD%Dhr#=^dORrc@w{kACI8A9}urrQVL8D7%m9g|| z>QS!}NnISv;T_`IA~_+d`8Cg~c?S+Hp@})0}gyV+s7(vyo)~gMtr| z2S+^)a6|V|K+|nLv$@bGGO?oHw`!8-u{cQH z)xhUC4DQZqUY9HiHeo-Rmt=-EEgbf10-Gh<55B{?I}L0jIx_`YNp z=_B?3CFrUfIGtEj?B*ED4C~35LVNocdiw<~G&?f2`J=+g6z{|jThQ_B)-d?MF+EV& zwLp-=inmH{P>As of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n

\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json index 420c15a5..2c26d5f0 100644 --- a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-2. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-2. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json index cc74a979..63c412a6 100644 --- a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska/execute-results/html.json b/_freeze/2024-potus/Nebraska/execute-results/html.json index 9995abf2..472f9c6c 100644 --- a/_freeze/2024-potus/Nebraska/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nevada/execute-results/html.json b/_freeze/2024-potus/Nevada/execute-results/html.json index 24f309fc..e2694d1e 100644 --- a/_freeze/2024-potus/Nevada/execute-results/html.json +++ b/_freeze/2024-potus/Nevada/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Hampshire/execute-results/html.json b/_freeze/2024-potus/New Hampshire/execute-results/html.json index 10b24e31..79ffe8b4 100644 --- a/_freeze/2024-potus/New Hampshire/execute-results/html.json +++ b/_freeze/2024-potus/New Hampshire/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Jersey/execute-results/html.json b/_freeze/2024-potus/New Jersey/execute-results/html.json index 63d86149..8272a0b5 100644 --- a/_freeze/2024-potus/New Jersey/execute-results/html.json +++ b/_freeze/2024-potus/New Jersey/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Mexico/execute-results/html.json b/_freeze/2024-potus/New Mexico/execute-results/html.json index 163d4cf8..e2d2e295 100644 --- a/_freeze/2024-potus/New Mexico/execute-results/html.json +++ b/_freeze/2024-potus/New Mexico/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New York/execute-results/html.json b/_freeze/2024-potus/New York/execute-results/html.json index d969756d..81644aee 100644 --- a/_freeze/2024-potus/New York/execute-results/html.json +++ b/_freeze/2024-potus/New York/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Carolina/execute-results/html.json b/_freeze/2024-potus/North Carolina/execute-results/html.json index 57c209ba..3e67562b 100644 --- a/_freeze/2024-potus/North Carolina/execute-results/html.json +++ b/_freeze/2024-potus/North Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is likely to beat Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Dakota/execute-results/html.json b/_freeze/2024-potus/North Dakota/execute-results/html.json index 008750e9..2b13c202 100644 --- a/_freeze/2024-potus/North Dakota/execute-results/html.json +++ b/_freeze/2024-potus/North Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in North Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in North Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Ohio/execute-results/html.json b/_freeze/2024-potus/Ohio/execute-results/html.json index c2f7291f..188586b4 100644 --- a/_freeze/2024-potus/Ohio/execute-results/html.json +++ b/_freeze/2024-potus/Ohio/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oklahoma/execute-results/html.json b/_freeze/2024-potus/Oklahoma/execute-results/html.json index 5dbcabe9..04200b61 100644 --- a/_freeze/2024-potus/Oklahoma/execute-results/html.json +++ b/_freeze/2024-potus/Oklahoma/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Oklahoma. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Oklahoma. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oregon/execute-results/html.json b/_freeze/2024-potus/Oregon/execute-results/html.json index 62382053..5959e4f3 100644 --- a/_freeze/2024-potus/Oregon/execute-results/html.json +++ b/_freeze/2024-potus/Oregon/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Pennsylvania/execute-results/html.json b/_freeze/2024-potus/Pennsylvania/execute-results/html.json index c446cb8e..95fe3623 100644 --- a/_freeze/2024-potus/Pennsylvania/execute-results/html.json +++ b/_freeze/2024-potus/Pennsylvania/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Rhode Island/execute-results/html.json b/_freeze/2024-potus/Rhode Island/execute-results/html.json index 7d41e493..fa986d88 100644 --- a/_freeze/2024-potus/Rhode Island/execute-results/html.json +++ b/_freeze/2024-potus/Rhode Island/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Rhode Island. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Rhode Island. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Carolina/execute-results/html.json b/_freeze/2024-potus/South Carolina/execute-results/html.json index eca69866..f63196de 100644 --- a/_freeze/2024-potus/South Carolina/execute-results/html.json +++ b/_freeze/2024-potus/South Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Carolina. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Carolina. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Dakota/execute-results/html.json b/_freeze/2024-potus/South Dakota/execute-results/html.json index fe22a352..86617012 100644 --- a/_freeze/2024-potus/South Dakota/execute-results/html.json +++ b/_freeze/2024-potus/South Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Tennessee/execute-results/html.json b/_freeze/2024-potus/Tennessee/execute-results/html.json index c4932c65..6250d5ce 100644 --- a/_freeze/2024-potus/Tennessee/execute-results/html.json +++ b/_freeze/2024-potus/Tennessee/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Tennessee. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Tennessee. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Texas/execute-results/html.json b/_freeze/2024-potus/Texas/execute-results/html.json index 4667a2c3..4d4204ca 100644 --- a/_freeze/2024-potus/Texas/execute-results/html.json +++ b/_freeze/2024-potus/Texas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Utah/execute-results/html.json b/_freeze/2024-potus/Utah/execute-results/html.json index d9aa5a8d..a34fbe12 100644 --- a/_freeze/2024-potus/Utah/execute-results/html.json +++ b/_freeze/2024-potus/Utah/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Utah. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is very likely to beat Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Utah. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Vermont/execute-results/html.json b/_freeze/2024-potus/Vermont/execute-results/html.json index 7d9cb433..69074c23 100644 --- a/_freeze/2024-potus/Vermont/execute-results/html.json +++ b/_freeze/2024-potus/Vermont/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Vermont. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is all but guaranteed to beat Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Vermont. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Virginia/execute-results/html.json b/_freeze/2024-potus/Virginia/execute-results/html.json index 88eb7b88..318f0ec3 100644 --- a/_freeze/2024-potus/Virginia/execute-results/html.json +++ b/_freeze/2024-potus/Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is likely to beat Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Washington/execute-results/html.json b/_freeze/2024-potus/Washington/execute-results/html.json index f110f6a9..c69b7f14 100644 --- a/_freeze/2024-potus/Washington/execute-results/html.json +++ b/_freeze/2024-potus/Washington/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Kamala Harris is very likely to beat Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/West Virginia/execute-results/html.json b/_freeze/2024-potus/West Virginia/execute-results/html.json index a933ccae..8d2e92cf 100644 --- a/_freeze/2024-potus/West Virginia/execute-results/html.json +++ b/_freeze/2024-potus/West Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in West Virginia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in West Virginia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wisconsin/execute-results/html.json b/_freeze/2024-potus/Wisconsin/execute-results/html.json index 4887fec1..de6f4518 100644 --- a/_freeze/2024-potus/Wisconsin/execute-results/html.json +++ b/_freeze/2024-potus/Wisconsin/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that it's **unclear whether Kamala Harris or Donald Trump will win** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wyoming/execute-results/html.json b/_freeze/2024-potus/Wyoming/execute-results/html.json index 6d193662..54cb4657 100644 --- a/_freeze/2024-potus/Wyoming/execute-results/html.json +++ b/_freeze/2024-potus/Wyoming/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 16th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[North Carolina](North Carolina.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[New Mexico](New Mexico.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Colorado](Colorado.qmd)
[Florida](Florida.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of August 17th, the forecast indicates that **Donald Trump is all but guaranteed to beat Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Michigan](Michigan.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[Nevada](Nevada.qmd)
[Georgia](Georgia.qmd)
[New Hampshire](New Hampshire.qmd)
[Virginia](Virginia.qmd)
[Minnesota](Minnesota.qmd)
[North Carolina](North Carolina.qmd)
[New Mexico](New Mexico.qmd)
[Maine](Maine.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Colorado](Colorado.qmd)
[Oregon](Oregon.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua"