From b7cf683caf8e349c16dbc65322e4c31ac0f8b856 Mon Sep 17 00:00:00 2001 From: markjrieke Date: Wed, 23 Oct 2024 09:27:53 -0500 Subject: [PATCH] deploy 10/23 --- .../Alabama/execute-results/html.json | 2 +- .../Alaska/execute-results/html.json | 2 +- .../Arizona/execute-results/html.json | 2 +- .../Arkansas/execute-results/html.json | 2 +- .../California/execute-results/html.json | 2 +- .../Colorado/execute-results/html.json | 2 +- .../Connecticut/execute-results/html.json | 2 +- .../Delaware/execute-results/html.json | 2 +- .../execute-results/html.json | 2 +- .../Florida/execute-results/html.json | 2 +- .../Georgia/execute-results/html.json | 2 +- .../Hawaii/execute-results/html.json | 2 +- .../Idaho/execute-results/html.json | 2 +- .../Illinois/execute-results/html.json | 2 +- .../Indiana/execute-results/html.json | 2 +- .../2024-potus/Iowa/execute-results/html.json | 2 +- .../Kansas/execute-results/html.json | 2 +- .../Kentucky/execute-results/html.json | 2 +- .../Louisiana/execute-results/html.json | 2 +- .../Maine CD-1/execute-results/html.json | 2 +- .../Maine CD-2/execute-results/html.json | 2 +- .../Maine/execute-results/html.json | 2 +- .../Maryland/execute-results/html.json | 2 +- .../Massachusetts/execute-results/html.json | 2 +- .../Michigan/execute-results/html.json | 2 +- .../Minnesota/execute-results/html.json | 2 +- .../Mississippi/execute-results/html.json | 2 +- .../Missouri/execute-results/html.json | 2 +- .../Montana/execute-results/html.json | 2 +- .../National/execute-results/html.json | 2 +- .../figure-html/plot-conditionals-1.png | Bin 188265 -> 177954 bytes .../Nebraska CD-1/execute-results/html.json | 2 +- .../Nebraska CD-2/execute-results/html.json | 2 +- .../Nebraska CD-3/execute-results/html.json | 2 +- .../Nebraska/execute-results/html.json | 2 +- .../Nevada/execute-results/html.json | 2 +- .../New Hampshire/execute-results/html.json | 2 +- .../New Jersey/execute-results/html.json | 2 +- .../New Mexico/execute-results/html.json | 2 +- .../New York/execute-results/html.json | 2 +- .../North Carolina/execute-results/html.json | 2 +- .../North Dakota/execute-results/html.json | 2 +- .../2024-potus/Ohio/execute-results/html.json | 2 +- .../Oklahoma/execute-results/html.json | 2 +- .../Oregon/execute-results/html.json | 2 +- .../Pennsylvania/execute-results/html.json | 2 +- .../Rhode Island/execute-results/html.json | 2 +- .../South Carolina/execute-results/html.json | 2 +- .../South Dakota/execute-results/html.json | 2 +- .../Tennessee/execute-results/html.json | 2 +- .../Texas/execute-results/html.json | 2 +- .../2024-potus/Utah/execute-results/html.json | 2 +- .../Vermont/execute-results/html.json | 2 +- .../Virginia/execute-results/html.json | 2 +- .../Washington/execute-results/html.json | 2 +- .../West Virginia/execute-results/html.json | 2 +- .../Wisconsin/execute-results/html.json | 2 +- .../Wyoming/execute-results/html.json | 2 +- 58 files changed, 57 insertions(+), 57 deletions(-) diff --git a/_freeze/2024-potus/Alabama/execute-results/html.json b/_freeze/2024-potus/Alabama/execute-results/html.json index 4fc57b6f..19ebb3b4 100644 --- a/_freeze/2024-potus/Alabama/execute-results/html.json +++ b/_freeze/2024-potus/Alabama/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Alaska/execute-results/html.json b/_freeze/2024-potus/Alaska/execute-results/html.json index 8c4efe7b..35c6f07b 100644 --- a/_freeze/2024-potus/Alaska/execute-results/html.json +++ b/_freeze/2024-potus/Alaska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arizona/execute-results/html.json b/_freeze/2024-potus/Arizona/execute-results/html.json index 87b63b95..0bd635af 100644 --- a/_freeze/2024-potus/Arizona/execute-results/html.json +++ b/_freeze/2024-potus/Arizona/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 67% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 66% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arkansas/execute-results/html.json b/_freeze/2024-potus/Arkansas/execute-results/html.json index 97a1faf5..638afe07 100644 --- a/_freeze/2024-potus/Arkansas/execute-results/html.json +++ b/_freeze/2024-potus/Arkansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/California/execute-results/html.json b/_freeze/2024-potus/California/execute-results/html.json index e6037465..e0d0e2ac 100644 --- a/_freeze/2024-potus/California/execute-results/html.json +++ b/_freeze/2024-potus/California/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Colorado/execute-results/html.json b/_freeze/2024-potus/Colorado/execute-results/html.json index 73aa1114..9cf04a8c 100644 --- a/_freeze/2024-potus/Colorado/execute-results/html.json +++ b/_freeze/2024-potus/Colorado/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Connecticut/execute-results/html.json b/_freeze/2024-potus/Connecticut/execute-results/html.json index 0cfbb796..c35effac 100644 --- a/_freeze/2024-potus/Connecticut/execute-results/html.json +++ b/_freeze/2024-potus/Connecticut/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Delaware/execute-results/html.json b/_freeze/2024-potus/Delaware/execute-results/html.json index 60e3bee7..0bd1027d 100644 --- a/_freeze/2024-potus/Delaware/execute-results/html.json +++ b/_freeze/2024-potus/Delaware/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/District of Columbia/execute-results/html.json b/_freeze/2024-potus/District of Columbia/execute-results/html.json index 3b685e8a..5357d066 100644 --- a/_freeze/2024-potus/District of Columbia/execute-results/html.json +++ b/_freeze/2024-potus/District of Columbia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Florida/execute-results/html.json b/_freeze/2024-potus/Florida/execute-results/html.json index 33563a2b..f79ba1f3 100644 --- a/_freeze/2024-potus/Florida/execute-results/html.json +++ b/_freeze/2024-potus/Florida/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 89% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 89% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Georgia/execute-results/html.json b/_freeze/2024-potus/Georgia/execute-results/html.json index 0e8edfe3..70cc2a8c 100644 --- a/_freeze/2024-potus/Georgia/execute-results/html.json +++ b/_freeze/2024-potus/Georgia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 68% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 67% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Hawaii/execute-results/html.json b/_freeze/2024-potus/Hawaii/execute-results/html.json index f8c0cfc1..06c271ae 100644 --- a/_freeze/2024-potus/Hawaii/execute-results/html.json +++ b/_freeze/2024-potus/Hawaii/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Idaho/execute-results/html.json b/_freeze/2024-potus/Idaho/execute-results/html.json index 369e4601..e58a1256 100644 --- a/_freeze/2024-potus/Idaho/execute-results/html.json +++ b/_freeze/2024-potus/Idaho/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Illinois/execute-results/html.json b/_freeze/2024-potus/Illinois/execute-results/html.json index f6a2305e..707602dd 100644 --- a/_freeze/2024-potus/Illinois/execute-results/html.json +++ b/_freeze/2024-potus/Illinois/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 99% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 99% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Indiana/execute-results/html.json b/_freeze/2024-potus/Indiana/execute-results/html.json index 32599d52..45e85344 100644 --- a/_freeze/2024-potus/Indiana/execute-results/html.json +++ b/_freeze/2024-potus/Indiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Iowa/execute-results/html.json b/_freeze/2024-potus/Iowa/execute-results/html.json index 23bae3bc..e67704f8 100644 --- a/_freeze/2024-potus/Iowa/execute-results/html.json +++ b/_freeze/2024-potus/Iowa/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 91% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 90% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kansas/execute-results/html.json b/_freeze/2024-potus/Kansas/execute-results/html.json index da929a64..05dd2b00 100644 --- a/_freeze/2024-potus/Kansas/execute-results/html.json +++ b/_freeze/2024-potus/Kansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kansas. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kentucky/execute-results/html.json b/_freeze/2024-potus/Kentucky/execute-results/html.json index cc776ab6..592d9b0e 100644 --- a/_freeze/2024-potus/Kentucky/execute-results/html.json +++ b/_freeze/2024-potus/Kentucky/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Louisiana/execute-results/html.json b/_freeze/2024-potus/Louisiana/execute-results/html.json index 0861d0b2..0102f89d 100644 --- a/_freeze/2024-potus/Louisiana/execute-results/html.json +++ b/_freeze/2024-potus/Louisiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-1/execute-results/html.json b/_freeze/2024-potus/Maine CD-1/execute-results/html.json index 631084aa..4ed67b03 100644 --- a/_freeze/2024-potus/Maine CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-2/execute-results/html.json b/_freeze/2024-potus/Maine CD-2/execute-results/html.json index 770b7d12..10fbf437 100644 --- a/_freeze/2024-potus/Maine CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 80% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 82% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine/execute-results/html.json b/_freeze/2024-potus/Maine/execute-results/html.json index 494810c0..d53c993e 100644 --- a/_freeze/2024-potus/Maine/execute-results/html.json +++ b/_freeze/2024-potus/Maine/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maryland/execute-results/html.json b/_freeze/2024-potus/Maryland/execute-results/html.json index 414d2c3e..e832b8dc 100644 --- a/_freeze/2024-potus/Maryland/execute-results/html.json +++ b/_freeze/2024-potus/Maryland/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Massachusetts/execute-results/html.json b/_freeze/2024-potus/Massachusetts/execute-results/html.json index ba0cbb8f..4d3f082e 100644 --- a/_freeze/2024-potus/Massachusetts/execute-results/html.json +++ b/_freeze/2024-potus/Massachusetts/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Michigan/execute-results/html.json b/_freeze/2024-potus/Michigan/execute-results/html.json index a25fffb3..5845b876 100644 --- a/_freeze/2024-potus/Michigan/execute-results/html.json +++ b/_freeze/2024-potus/Michigan/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 53% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 54% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Minnesota/execute-results/html.json b/_freeze/2024-potus/Minnesota/execute-results/html.json index 0c1a41f4..63abca99 100644 --- a/_freeze/2024-potus/Minnesota/execute-results/html.json +++ b/_freeze/2024-potus/Minnesota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 84% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 85% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Mississippi/execute-results/html.json b/_freeze/2024-potus/Mississippi/execute-results/html.json index 5ccfab1b..16a753a8 100644 --- a/_freeze/2024-potus/Mississippi/execute-results/html.json +++ b/_freeze/2024-potus/Mississippi/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 95% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 95% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Missouri/execute-results/html.json b/_freeze/2024-potus/Missouri/execute-results/html.json index 6cd249dd..157c2c14 100644 --- a/_freeze/2024-potus/Missouri/execute-results/html.json +++ b/_freeze/2024-potus/Missouri/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Montana/execute-results/html.json b/_freeze/2024-potus/Montana/execute-results/html.json index 0b205ff8..e87dddc8 100644 --- a/_freeze/2024-potus/Montana/execute-results/html.json +++ b/_freeze/2024-potus/Montana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/National/execute-results/html.json b/_freeze/2024-potus/National/execute-results/html.json index 26b78bed..480ff3e2 100644 --- a/_freeze/2024-potus/National/execute-results/html.json +++ b/_freeze/2024-potus/National/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "30f18cb853999354865df51e58333e90", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 55% chance of beating Kamala Harris** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **45%** chance of being elected America's next president.\nShe's projected to win between **173** and **405** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **55%** chance of re-taking the white house.\nHe's projected to win between **133** and **365** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 54% chance of beating Kamala Harris** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **46%** chance of being elected America's next president.\nShe's projected to win between **173** and **406** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **54%** chance of re-taking the white house.\nHe's projected to win between **132** and **365** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", "supporting": [ "National_files" ], diff --git a/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png b/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png index bc7d0b6d4cfa39f24234c7c94bf66d5a2fb86825..98653ef282ce3f07e2a02ed127d420ac6720d5a0 100644 GIT binary patch literal 177954 zcmeFZWl&u0wk=FTLU1QI1b25Q5Fog_1-IZX4N1`8?%ue&(7Gj#e_Ps5v$t@~r5DvEQTrEczAq>sj|F4ViW6 zaTrr>ol@>Af7+YzJE@#WT!h1Bj@s6^CY$!5<=dTfu^i;$JT`7+)? z@(nYXC!C%d{V%WH-}fWT8Q&mu3w%z0w}IJJ52J~fiFR5umJ-7rVkp5#TN3`%y%h3h zm*QII)f?y2rAR@pqH;R&A&CL*(o_YCsdoQ+zXpjFo9-ol#i&|V0QMSe({&QPQ{s9s zdY1auvP(!MvsG;m`mjDBldpcCSmaJPxNcN@{3OK}O$#1DqT=@bj}HGdD+ zpMrzECm$Z_*$mSWU42#3k$2EYV18}TGgWy(C`hX0t>{CBA~Y?z`_4mdns(lrzXY5x zSy=JUjq~N3hrVY#3EMo!&?pq{)-29U5_>dcYQ*lP5(+X%M|SCFb$z(HbJNU7f!~Pb z!$l$pr()5lKNIWs)2ye-LpN-2@r&A6?w4PR8+?(~kwvhr6h|6&tS8)!lN>Q1`ZK`u z2#56()`#eKXjVSDpMZsk1bdb_d-;|*H#5JE);j5KpI{o*te^T1_a<1y3Z5xW$4ffF zmg*F3$iAMIrLN-$<_;9oY|<>!vHmwiQ>v82>~o2y&G>!Z$DPFap?U;6cbF*_ML z89I_WXGvL4dxAM_PAY-bh&xtE%F9_|I`d3|w5EYVon4)#vWj~+K>-LxEM9IrrC1TT z`mJz%RraQ(fU+;R#m+}|Wwo>GB5IO}a5O#zn_v!D1-s1v3TY91@<7{GuYlvL0yke- zp~cFtz0PN!1z#Kc82WGuV~cb;_~WmIfs~KVrk(a{hEO-ctupHBQx8JB2DUbh5i8m0 z-y(1S$fiAP*=r@5C_t@GvfPHL@@D7lw3mK*#9i{tH*?N{<9(nJfao;vq5Ud@9ly66 z;{IZ>*$##&6E5($R`HXIV)U-V2}Ic)WQQR*oKn#$rs_Q#>z5 zjwn4nJy{lDW8e{9iNgHD?MLFP*d-Nfc$Am#VE*BjjsE2YI^0Y6FEIaXn@@&8{_@%9 z{2l*4I}UoDA29GH|MU)FUVWB>ffMBx_CzQChYttl)hCz$wtxCuU|w=l!@#~H%n}Si z{fCbf<|QjkCmzfT^nbV!VtsiL9id3_;mtoj6c5G-`JYJ_y5@baH4py|Jb=dnLtfZb2i|=_m2;S+CKarn*qIw?FAmp z!p+uumw#&f-(lGMkIex8pD_HtSoS|*_&|2eY%6NdkDwfj#s{J-Fw|5U^O z5$gOuRKt%5ub_#&;#DqqrBL~zVaiY-YO20SAf87`@?btsP)NJJ%EstB9}+i7E-5ZJ zR~6S@Y3I_a=zZYJ>E{&dcxHL}@8y(bB{4wBspkHV+rL2V-pY|ge3%*-kuP8HymC8U zluv8?oP$N9F!`8#FH^j`*jR{&GuX;U&RgRSUJxHjtjvz3l2MAIAy6HRzXsI>>G+vO zVGak@e24P`Xgp9ShVhy73?|6zW?3$W5KLE+KD>KJ_TOCOi{dNPFFgP0ZH{v}Kd$+f$vfA#QlnVsn_!g_==hj(G-F355QwQ0twB!@T33@uoWC^z` z_64h~zd<8Wnm+bs)|bhk=gXJgewEY|xk!h}?6XSBEgi;8F^t}pke zlpp&@ocDwE*~Q95G#vW$EML$3DxWG@>jphP0dG54l=w+7FkZlB{~~@Fjr<4b|3G@N z=gs} zY!<{`4%C$2!1jmlt2W)QH_eJBy}nW+5n0)Fiw*KN1l*V6S(G>KU<0p{z@&H+c8gIt z!r6+m{Tn5EpB)u!p|caYBU=`*yN~_IFyF~@YHE!TdZ`#cy|=NnAv*r zMb_`6r+czfK6r0i(oFw)pkJ$LzpCp-N|$s96B$laC#4GYB|E~=eDjpiLmZBkJAJFRiHVFveSr8VYU!a;oNN4BFp zX6MJCh`OyYk%Z+rfi_8u*GLC4pE&5SK8ALD&+`FIxc?WDj+S_Lx5(91l3QuOH7rF9 z|K$tE?`v+N$+>2PewibQZLjV)F23`7yS+z{qrzX3Ar=KCD`MdETq#U=&I-K{U#+^S z{DR(uGH*6LpjwkrnrE$rOAIXjJ9L>>ky(O9hbMAG&lDNLfK;dLK?yq5#pfCV>&G+h zCR7r^j~yeKKx~_dHa_GpZ7*cM-N!B3lOtpryWsy9C(Xm^S1pA*Cb{>QZO6aZb{!Ch zgI*}Zi&p4`O8x6XiCste#&P*Bek5{y&Aaw?I1y_2OQybMh@OAKML+*4`VPLXRQKEY zKC*qP8r_F{MAJsO^uZn{<@|oI-SxGP+d8jDE5uL3Wn|mu@3A7#aF(HDBgrGi(?HF4meB zUG=$ck-d2}jP(QjQ;;G4)gPF2%JSmAmHw24r7rOUe1OG}C{j>;zIb8fxH?8EL*+bk z@{o>rI`%-^RAHrvB-Molkj322DcVkhc#!N3a@lWI`a}HXP$EkqooeA!v1(y_y4Tgg zrtSI9Yl$zAc6a0L(8$JgvWj@hZ2EL{_SXf7Iyu@MJb_ga z8PsDNeC`5)5uHqFe6!Ur{{WVENiZ%FPM*2k|NA?=F`;x?Xe{kG4@8P3OBYK6G#!Xt zki4E2Gty}Jv?2Jk+)652tdiGXkQVGohZqLo` zz@q8zKYo3<#cs?YL4%LY5I~cf+<+E`si#_(vpc310-SQZ&MkzYY>z3rbQ+}g?L95IZ7!%eSQ`+3o&1~59y_1HwYZX<0Ld~v*ppD(>3 zD1C12`{H=TN^4JbW5P%%&fpY9l%QCRsoGNXK#Wk*Ln~zcme(~k^evN^*l7 z^jy0SeAcTMV zs2$q{UAEwfg?*CQ&HHJ6N%MQaK;$#tbv2+DSD#T&7>;w9x9<9xJLE*4-{BVwlYYan zayl6HBrFNZnqKLh$TkX^CeI2pmN&^2&QLnxrK?S2#3%)Lt<4OnT>GLid2URZn$2B} z*3jTKEQEG%CVEakLyu)`>a-05$5mC2hTa=FjVA8B@vf92V8eG`)y1XGseGm0hUf7D z+!0SLPe8Ag4Z~$~9bbHwSE<;Vp~Wl-h~e|aa*CK$Qk_N8_#bdN%cJ3g5n}Am?en- zd#h3jlG6^w);LESPM61Z2Rrg}%O^6bHT&5Y3c8x~g-p2IZ&10aYMV2thRO&&m#Jp* zq*M?Ie$bl>%xK-azD0_c+#9b!B-UAotW*ZwU8Nti&}0Tbr*X$cGT-@E5DUqmo%F$v z2~g1%j!&o`-NNO|B#jogwHQeTt(f>_JEt{{A0y$?0mqe18FW)?l2~M^41F?H3gk;Q z%$fv2rgZwNjfM+-aMD~sAbTx^G*9zmFMeJN5`7V`@Cs4^1xWXWqYRnfVwpCroFLk^ zcNwz;CqN~=5qYr-vpzH0o7Wy?u%&Oy>nNKgc7(MW@_2A7eN-E*6U8#rJv^3^$6#zO zIcDgUC~1aye_x$DDtaw7G%TZ!(FhBOxpz#%(~oI9!-5AWLk$I7OK~eBDA&zriFF)d zJy0~>C1>&v(4)y=nZ)e=quSm`z8fHf(QkK)fNSRo&?q-JPSiUr)SdYC9!%f+N;0rO zE<+OOEwhT7{Ebz*2buOtQF3gf{j=}Ed~;Y$raqo*nL%^s=1`q>?e2KLGBDvBC>06s z1)DuT|K@U_4uumiBa91ogtFUxdpNij1hBB|JpfEMC?Fgxv>=*EXZ7X_S`hI&CzzMt zj+w0yGSN>Qw?Zs`-OPl>#OP#8Z;PSAzAKGXM~Rx|_Vg4yCjbb#!dAbC7G4PjDK_Q; z_lEOnbwHcE5$UZ7cMat-UWld{89#uJ2=H+G3k-V-DN~rl4OAUcKQ2f zXS0DT->WO0=_X}yw$V2!+zp>7GUg1xd2P$nLy0OrDRV$?o`dBxSDE!~q~@zbp7AP0 z5mjW(%d4U#MQ+b;cb5lL$luP3wS$JpNRji!gHh@3-;QQUH9POdk^>i$86$B6*93B(rynADbBTnxb<;?wr_r3q=k% z52A36OU7^3ou0r*@t)sFF9q|ndLKmxuujb?ThAapNrrq}bB&7j2bW%N3I!j7%9^7O z6Zm-cwmBDPv-;#x*eBAAD^|+Ae{z`YFm9h7%#=*5L^xDKR13}k!-)e=15;l{&`4jfHhZ}d4lSm#u63=VqxDQ zQ{M|Pptu!uJ(yHyn;*$wz%AFhF6{F*sc$D1aGyNP*f=RZoUTBDeTRdb_`BAjZ@e-U z410CZOcq_ZQ^H!n$4YUMslf1tux}ZcbfRouBzn{;Q;{N-+Yt|jPLdsI!^PmBdcW(U zi3`S#j869pl{rmxN?utxK?G@nW`nJoWq!^MynG zz=;V7+qg~#%f|CQI4%^wn?&|4SFR%nWmmDf&7S>F3BttV-tSo5etmCQa)3y0r#9E3 zaxTTdpW-V>_~i(NZ~CiC9|%_hAX$i!wvUJ$OT3pR#-3OEpz)3mXIVGVhuxFgb%2|X zB@YUQ^s^21prWxQg!bTz>F6>G%GSLwQ}%e*HI_r|{wdE{a2%URtG7lYup;DkFRSAr z-*BRl;jmfJu(IQ>i}5jsVZ&`X;%8nS%Vd@XehayIX(f-+9l7=eP}#33>m(Kjx<7}U zsJ%w2eE~O@F@8vSDItgUr-_6qDOw@2958@h1#AG%zqef!-ZXyb>P1@QbYJzceqKg$ zIsKGQLvk!^P^n%UL=ncal{smBCefbCY|vtADVTGzOQoyfyn&lO^X*}1r*#9V^hugz{2pIZ?@>5Xvw{Jsb2&o z!Y_Q#5abvPr+AkZ^wbi`%Sk}Pje77fLK<2~xq335N7O!1gIP(<&!qG4rrzc`J?u=8 zeuQ^7xF~-pacZd2HM_PGHY(+EU8-w2((pQ)&H56L;Nj^FNogwIA%e7fMm^zDt) z%^c_5QZ?!(sc@xdAcWFZAJTn$b9upH*?&(uxe{#PKJ9zk63=CSw^)&K?v@s27O9vJ zh2vV{>a8>Q*}aHWi;&YJWP>Sa$&|(HXumM@6t63&c9GL0@lY1|*w?RY=%Dqe`R5!+ zYAvEbli$UG?P+4R*6PCCOL7^F*kdn6sda4S?&f=3kp);-p;zQ&aM1i0_||bT96vOs zF~*SslG5RJXZ7&v&U}m39Ul3@%z1*F+~$FLhhQL++a?5^I(<|^lHO3y+RUY~f?)09 zDUm6)l_ALI4-Wo{PX6vtyW4IIMI*EG4I9Ktz0wzY5{(9nf)l*;V&`K4|MYOb%f90b z-W1d)?qEB_s03L9pOGFYIeZ%QdlT?=3dS~Z?uub!ldkM2{c)BmQE`}liA!X=%I zN4wr)4u^zcbIB3?QZcL$eR%nDerqSgNloMmGSudg%@o4%T09P{wjO@8jvjRZ1>MVC zp4O_pLIwJl672YcZD0tbHoEL~VX8@HPq=mDmfcsxOG9J2*uHC}p{(J!fWerg=8oCf z&cQu%d0RK1VdMH`KFc}ep&w8$W@viV6wT#}<(v@!3Xwv?{4KsvhJUHem+d^L+Ey-< z2uVjJ77!2{k7uDlX7+LcLiHS4vW|K9Z(U!jF}lbwytb;~-=E6_M_%r31a@nTE#_U_ z)S4Y?95W|faryNT!kmpJlxnCp*O=)KI>H6_EmWHn)>M98V2?k`(KYYtd>_sCt597A zp21K;yZxSWM6Wh$aqfZ$RbCg2xGrsRpYzc+asR5D$YvUz@I1ZAq02I@?t9wJUE$aU~|L*ws1uU`m!ECX7W!pn6Jd(QD*=5%%7qmEw zn{?b~j)tHcd=8nad=}u`P8uNT0A;b;raJs=i}AYh3Cpyc{)m?z5Ejj>+}XeP#iN=} z<@VSCc+|6byPHY%1lY%V1_{5-^t%b9C2SIceD*G30R5^YM_!pkg3KNT#rcsM`f-SP zlJ#Gq`M9IYXY&4x??Zz|5c|-E$I(37!E$};Mt$(1uU>$`A(PPhG_sejVt9cK%8$v?rWqVIZ z(ttNdoVY_oS@drh4%7~>>*5!fgRxB|SZGj1``S=^JV!4leH%zJHUQ;g?gK}O(!cY^c_<5k+D>=MWsQq+JGb>9z4WDD(ALj z8eUG*dy7ToLydA;a`JB~1v15WC#OEoT}`A3RaSy%F2@t%%Vz80}4<#irhpt07&b|!nD59_kj+*h_xIW#cOJ?B8o?E`Mt2&I zV3l5b6~n>>TW#BWSh-d*Z9lKH|rO>jK0xet0S*DL}W`96w z7V+obedsTIFQsQ;$LA;{`NIA9L91U2p6+VTV`Iu?__hZ!(g?VG(#^+G-`nbllyB){ zt#^WOS$}JwCdxsVoLpAKt?G1j5g4&^huZ?W_9cRAdM!Ls{&g?5B#bj*^tSp)s}QNnm7` zR22T9)?7s%IzTgGKgjnKglP`0?mM9C713h`++9w$EvRxjb}B|D4MU0VyC;q~)Bd6c zim*)wN8x!_DjH!@6Um6YT!~O#1cZ4RHFMb}e-$DI~emk@pc-uM9R2KSZ6v=0@W(s5Xdg9Q>Yj!$U zvzZ5;Zx?&dF<&kX?{}}K@JdK#Y9b>F⋙hl+tqxZXb5GaFtq)+H+X7!7p7;HGzqp z+jW9J!#!n^_W43G7I8MJ5|%YdWCIZ;Xh|04<8anApYARwy^d!zEf>zWBhNE6Or0kh zsB9hvn{${=m&>27 zw1qe=DrV$w^q#9lp7QE8NZK!LSf+pgFO|$iE|kM2#|=v2RAL&x0x^tk12>uWbMkz* zi?e0FDRaD8llWo+2{Q)G#6fqk*l)f$xy_C`;p?#qcG-<}-rKnJbW(LYBO`tGqM8w-%X)Z4iE5?`k~<4QH!E zRp^_^qJ$x3T+Z;lub&9gKzdgF*ugjsmE2m%)7zQ+@U=Xhq)OR;MfB9~hz=bW(vqK8)Pe>_A=odFx{VZqYvWhmnX~v{kp_8vQ|p7OAoNZekNgO)re)5li#N)!Fo&eaCr48fTBn?l>P*+qSY z!y}0t^`WA2Y&?_!;pJS2YTQ9)6!eO4bO3J%Iq3N^vFul_t!nR0f@_4S z3CDG4-~Qs&VV#D_uM*RPC*5~#uZoM!!fw1@aiPinMX^87zo7OJ5Jx6hT%4~y%3K+B z0?l*G<#EK5CW#I5FV{WGKF^x0EDXjMG%!46TZ2*Z5QSP);-p2CV`j^dqok>Y(LEmS zC#KE!$xGO?Mbt^zLsAv)Q+N%tDv(%O%~fYHdx{@h)TfO{kxQl~(rn=Zu-G`A7%qau@ns9jG){WE8DKOo|rDio1Iink7O^ zR~1sIBNoil2M1b$ol7p)gTlS#1paV7z#4eWf^08z0}jO4-X6Xd_2h0Pk#WbpY&&GR z6bUVlWI%AuE}Z-BfGP;5h1`w>O7#3jqm~sJE+wAuaM^n+%YM^4!Pw|OEh_hy6^h-U zIim%PU{vBKFs6?j|a&JiMgR)SP0gMhnPE0#Pb2gb;ZfhjB#dlqqk~L;lt(P$io+Eh@%j#0Z&kqTK_bSlW1?nq! z_HeSupoMz=l#8VTGDa?X?na!fv}H!Ii|uPyi@nY-J+k#rpudYJ_e_67H`>8$knAN> zV)0thOz?PWki};8a@s%)vS7xX$R%8#URI>4+tKQ(eSETn3pxL~M5pwwqje|V2bHEr zQY?MGl_Z!I`9ti4`?0<3>~b{vTdqI|g?(}L>0~E_HGSU0^I~U&1kEVQgpSjYu9e~Q zYgniSop(pvUCRBN4At6~_}Ec2tV5ExS7UMX>TCz`I%+Cn7?WnBE!I1Gbd)n@?N?j! zeFFPan!A&3piMK^#VC}2MF9ph3Viv~k#8@Q)6Bw(w;$H_sxb`df|zIE+Qm~4-y+Y8 zdezx0%1{Zuv{6l&+jMbS6f_uvcB62{0YAEX1w5^ry-->_uhX9#8kauH#WP!=7Cu_B zo8>NMp#rxyfHZ)XUpwNW06yR`ErzjX776^=Pc&p~*@ZwUa$(H~Um{sLQZL6@QX6yK z9ieoP5I!VX&!Xz^x0>{S95K)*24;Xd zG=q!8FwOtZv4{UScIscp=6U(v7G_IVb2v%Z=OzRQ1;DEvKXy7Fwp&wCNrlTQ_!DPJ zG+f)Z7L7l_bQ}52BA|(;AA~sI<@d~~FVqCmElC>vI0>zy7H~UJxz;RZ45vfJMjjk} z_rPM(GCf_S5}-R^oj7XK1n#WY4Z4*~0oPSZz7FKc2*`svt9_-?$<4ULB0yjAK^iOZ zs6a@HWqc-WB2qspPg?q6H_GMV20@CWClnW|x$B&n-vCL{gfnW{6-MTmFG3t>tohBd z$5kLH+Sd9Nk`fXrd>;amVkn?)DHTcL+FuS5bvJF&ri03OCSw!8KBB_|L_&mOtKs?T z$WvqM%;9{TivqdZ>6RmQ+#!N2>kdz7hFH8?DIc=tp{8C%()%n|*1AJ;n3Sl-0xHH@PVF$c$hK{Lq!C0Zwu(Bv&Ix*$@TyaS zEE#zU+zCqUl6gV|7rsAG$vFEilZokd?rvMP0T;uNkv?j`BK|oI;z+elS|zP>Ob>XSKHw z1U7FdFH+TLU99@nr|em`CVK;AKi~_ zgXAY20?U*novZmATJQV~jfTgSLJWWX1et=TBzw_oc0~L9B(7CiJ`pxJQSI(G!Jo&S zpVu!U7DrvrFvc66Q8an>V~7^$G-v4Jbv;BFr`zcA+4g|Is$iT2hyzKgQ|r)_P{EQv zr@+f{me_&uP$+m7LaIK}*qi4n)LEo=k;qi0zUJ9)b{q3jq`8Np$@p@Xns49fODkm+H#K)$W4FJ7`sZr>&wnf9?{-E%1w~8Xp<9+a zjr0>>5!!QpQp*(IU-rFG%Fq$K6fr(8#kb`Ro+=z0*T>jQi<+Zu_+SS6&bRp)-0?gK z#9`oftAuv>YDOi6OOV=ITn}mCMD^x+<()Z~BNiuiQ>>B_UiSnx)RNd!VcAx8hE!c>ctC>{4y@luln+`ToRzhV#W_fY32bMDgX@0WJOttNHPff4 zw{5gsm1Be1Xp;zga$tjL@i@b@oo`a+%QO9ssW$vW{7Zvy+24Wt8|cgeuVb6pp+lKq z*k?8WEyAx`aCZp;Ni3@2O)Q)ydU^It5~Kf#I|x> z<-$hpna9;dRCRp}$QtzSk_pvzG#JeeL$xFs@NR5;O>d!GPWxwonf%9d=p7l*s4rx* zs7QZ8_&sN_15eqE{t1`GfK#ehoQ~V6+2=M?_Iqk4%tv|MhR^Dn3EPWTj&S4;R9Yp$ z>uuI^W!vz&Rc^=ph389+efTidZ_s>yl5yY+r+g;}L)Tw@B6n)_W!sjH-1CO)C$Qiu zH!90AaXp<;iod%S((S+&TFZ{#FR1*ml0z0ZH+iXkFGsp*^K(d3udlGu^#=F=MtZB# z)hoZ3@fC~+o4sA9+teToWHUGqM$TM}?m3I~FiM%n21r5jH@gt|%+Ko#{c`Bl>03E} z2B{t4Tb|yNDuop;jkg3}M9aQs!Pgi~Ge}h!w`(2lK{(J0A-$X>wCC-#^1Yd0P2~mz zo&P9vyWbf}yIg^YjBB0seUGqS!w9u+rDoWL^J8sx;yRlnV8FjI@ojTEPNga;-y)a& zq&@esTyT3ZG5;G{yBw4`TxAGP+q^~wQ;i7i9 zI&U_R&ydQf!%Srg=M2Bb+U~S(At{HUCibhyj#T0rA|OV;H*okckKa7!zZvvqjVXk$ znUNtu5$ik*#dDb2R-60RK*|)?GJG)1W>O5%XqeEA%RZ6jz1bPn_-eajFUi%xtSe^< zpEGrdR?bV?wQBz-16+HUZWeC05GCPsYxpr@h1t4DpuY_j_w|eR$4&Z0U)D*9D&(lV zT%QFFWy$I-m(6RTMZd}0z{sKZ+(UQ|VocWBwRjOJ9T5%0f>Q1$Ue_ObR_>i zN?`gncW3H2oWxQIWJ1;CG`UmjYgkC&)3OM<&3eFVI)ua4)k=I1TuX`r)| zS$^-Kz25@7^%+JL4;|&oKDrNmll_QFk|oV7^m@lp;m6Ku2b(- zZ#><_!hG|3o8M?JyP(DOpr~}PCKDdE7f!TLF{=Pb4swTzoi3-p$U;LyRjzG16qMM% zU3QE-XXM}rM7DmME7z7dpnu|3OH6Gb4b4mH&?>SE8m{rlA>yon#JPx2CthbZeRw8m z6)j|unE0uhWYq=Yz@`Y#tNR`i(D2|stH#TH>}WoF3m4ZFy^OhjGQUC@+&Bm7KFPz-l4RR`7Sj(?Qo`xV=na(Ez~kd zs(t?0^BpH{Dd7G1pMFRrv8I8NAKwEZ0R-Ta%*tV_!)KprwKm5t?a6$dpw61Od$=(c zN3GJwte;S6cB3;m_tAF4=GfaGPNh0mqJE)47c#f}4r>_4@i~tgzgP3g_|wcoKg7Rm zp4ag_@7wlZLg^r&V30OP*3VJ8$j2wW%qGtuXlG;t`3tY#`bH0Qd;&GFc{j^1euK+q zTB%d-AgYJ^&xo?<9!Ax<_Ny_Jo!+nsDJ!-K_Yq>EZ}}&99yjt?0!i_iJLsekK{iLC z9>mRa+2@mdS?{NO+A~I%?GAqz$-TFvAr=(2#uPcuX$?vfv*mRQBy;7^BsyOdCE&0B zyY`5j+?RX3t#R_bcI;24kK|j!F34tzk9U#q!F*uj=@(q6ah3RcJOACIRR6n2HR)7) zFq2|>BT0PVy>rxSlVgpGBo$ewEf89bxpl~&?PC3O^xE?I={bJc^>Cxp4~NA-&V$WC z15r?;G7}iuF;}5JyYTL#JQ4das?`|V+_-hhRAEkIX2p@|gGn%m@`L2{7ni#YlzhiSZJx?yt0R~Ty)9ze!jDrlLe7H-&B@(9r(}IRi|4nhhDx$0Uls=IQniW?{%=s6)Ed0U z?D|?*7#2MhuiN&+h|GtmXPW03vpzAq|N8MhmDLJ!1!M4YBv{blhrsmN73$?|n*Dgc zeb7|r?SsqK&;U+au)J;DEtzFYoK z!W7lmT=<(#!kY+HM^a%*TvEImHl=~2%tCtDJJn4D5vA4yKb6orEB%u8^R*XAg7)|t z&>pbO)RFI>F^EeDpkvsAjA7TJ)}%MdDft4BgQI5_ms%0BfA4L_%D?$_8t3)5ufw-7 z+l^v|*vOlmmSuYvrUo=KE&o-+RuL$rVY7et_xex6UUOLORy0NH>1lYkJ!zHqWishD z(v$Gc+JYv zV1z1M37Zx8hz$|(qE}|qYgK)jV|6D&q*aoB+c%lNu}kb`VM|@z2&>^s#XVDGFtSef zwH>|sYi^~q0C*si2awPscbmtLn`VSHY-aw*otA006q(4RtI+Y?!PU^`ny&qPGHkjM zI?uCOkHlp+9fF9s@)(uilSq*fRxkNO|o4F5tj&id*&8W{P@-Mory1_4rON7 z4wJ6j)on8T)E?98*f5@j=|`ySWDPh_vH5i|H>fUiy+I`#Pvy;PihKI;H|KzPDINS5 zlbi}iP7(&<;d(`@md-X2`550CxSMlwgX?oN>Q?UKcfXYHvTgyUan8#Mk-7mHQjU%E};4w&K<-TUH? ziD`_EQ3r*MNwDtThcnWmehh6Pha)X&e(yaATg-q+35$P0F=QVIqQ&bCbPI3NO@bDo zh8KXCM7Y`CHSvegS4u0GX=xA4kN2mgDPYj^*9yI}qrmO00oBW)N>%JoBO{~Bjf=5n zDjjI2aFDL^-r@I{=f!{s{CUBBI)kN-;35hla zEGNOyCjFVJ*qKo9AOMPehEm3tnAofExYwy=55*U+4FCI z)jm^-R&TwM$ZfmI`2HnCeQOxw*>!oLc6S-qr^%wLH^N{@OI`GBUnH@BQi)nIHk(w` z?d)M&*M-WQoluc{>vbOJavI_YovEKzNw0*CXYIT5+13tCw02&g({S@bS0`jl`En3K zk&XExq+U)XBMh*O{dv1D{1HmV258dIv%2!4%aRE(J8f@6JK9LN9nZ&HuJxAFN6sdP zk{EWc@Hk$Vefl+ad)9-S=^o&k4h6=TlQXIvm4+P(&?PljY9AIXUgK6q+-ZqI0nOS` zoP6dxw}~+;=rn+Y$Fe_aMMMDEC$S2XJMMqAuRoE#)DRB))%^3Gw;w&TuWCF95K^JG8ajdufOK2XmbZL(VDeO@uqncV`u?MzcGK3?n3*A9qRNx#erM zatGa-vujt@8Jz~ZILs2Yuyi(7p3Fqec0j%wf5KrpA)Im9f&`LdYd!R-S^JL4;LNB` z$(Ek1%OU;B$^JW%@>gqu!s%e6*kAg|7g*uU*>9*N^f6$e!vU0AlyEAVrmv-Uf}p=A z@b|X>e#^Uz9XNNnpYU+adt;&Sxe$Jj)TGz!#3zQTkA*h%xau1Wohj$c>n7p7 z13hw|X@b*Ny?}4b`lEkVm8BL39WPQNd(H}99>me9N=os<)~C0qb$xLpyx4hG*d^aI zE!GAG=}_(^^_-h?#aDwNeiL7^G$wAST8km>3`IYerUI15@!9D`+E6^TLIAwQo4m#bX zoMgAM4_!obIao>@kDJFFNMb&m!IRY_uaGa(>rL*}v^3p$;5ikKF8o#|)VVq;~- z)YZLJd42gy6>eC+v8dPQyPBOdY$5mL*pg$b0Ly2;Q3xD8CHK?*Od;ut2QN+Ot)%RN zUijk2&zZkr6>6l7VWk~0RT|3HZpdMBs!r(mmw)HUurD*ex!b8=CbVHBLl^i)7|;S( zCokWd^e>nzl66kwEF`9oobsQ?>ta>EGw}xq)WfU$s_c=?qg!aSOI~`1ao4$Tj0G9* zdeo6`7iq0JWTgy8kox4|5m*h?tWTVeu2|`8r^?)SXq3s=+@XxWRi2$P9T8gyGy+u) zlz8(RZnM(cn*31rKLNb|Q^K1;9P%qOCf|DRb-911sxiIf0F6y>-vd z{jGtxP|b)n^D#%f=XfU7pvC&DCv`N!li_E;3;kBNhyuB^3f5Bn+PC>1V>+V^BM4^b z5^e@>Gd-*>SI{=&*?s)A^#hKpWv%t-zDbTON%DY~oiT4^riqQgJl%e1QzqLNs!?yF zCTp`ED$Ez$w1K9)OqhTvi0(1E_j`63I#o&_#tMN-3#TKAQTSkgzxPGNNuBYw%m%s+ zk#U83n%nfwG5QRRAY+!ZtW5 zBD^yLQWYiavX2#v{aNXmt%vs@@kZt}qR~sGzC^vqDPKmd*@?=GM8Nxmk?F|A~>?88IlE?mk@T z0gGs!=*6?x8(6PZ5Ub;uh~&^&jCzOFe?%T%OR9E&&}0xYGWe6}cPo@KQ@Qr~ze%_#?!6Dk^nS+<9mBc+_)k#K zs=pL`Z~|zobm0#i$Yy5z=_|B=(YpUgCoCp?pS6c?&81&UHH+?tHbKU5F<$FvcJKZi z{fjw1zQsx$8>GD8FHXR^BWFVSBj9~u`$}m86K^2+ZY-58VwF%ZK%+uOzVU-co-}z~ zVC!^)s|~^B2~4A;;NoUoPV0OtLZMd_e(>`KfKe95=(5UalUily0tv{t5k}FPr>8xo z`fO1$p@e}tq&k=`jB;hC9~ioe1oYZIXUM4$OhCH^$d_Q}s=TgIUL$?V1<)|3U?xTQ z!gVOcl_avd0c}e#B?g{NN2$d}3W|7b};CHThr=z)DJ&x5o@L-_+T6cb5Ga9-vWidJ)Up%#U zh(WPJvZxhccy|kncpN7G;Xh_k^sY4$STzE0yTa3(iB{GLCw5;_dW%N2~8^G%V{ zNw;@6GNeGBw#4RUX)2waRxdQ6clG)V*M)&TQj2Rt z9>040CDMEUCerlS@K8AN1@y6P3bCppWXwNf_piFgNX?j)Aid+N!a#E=p+lhc=XYdG zUY=!56N1t9^|-5U-7aYfcz+T15NCmEj{<{DV4uMkW7ud!50kxegE2w^I7~Xz%JGNA zhugBAT*%2@=zbBO8mB=9(s!U;taui0N%0ArM8v|Z|Ha;0M^)K%d!T@TsGtY}(v2Xc zbZtuP8*43N zO2bv?*dvoMN$Pe{1BY=*#D!OF=Db&&@wG;s_4;?nWGbk$*G!q9y{&Dli?~THF#6>2 zA*Hb2&82?u0gKJGyxvo$*X@pbkMxdG9E<>E%YA>mdf@-@+<3z9dR%i`uk}r7Po5)l zsWmQPvOM@RIktUI9}Q3VCrnag4lH`v_qbC$Rh8}?0XTA-Oc#ckRBTkYhSRThvZVXI z1+%A+dOiFopxu&s&ay5?iSZbisls?Y=zRDz1KtAi%04?^y4HFlLxXn-!{$UWO8u2C z6Uxt9r953xy~WM9dbUGKSrSHZJlYMPOR~VbMymf(KZS2BMx!#A+9}zRK%Z;M{PUj? zDZl3>JNFfv#fP$7$APn-7bSX^N<6i-*_OO{OAGt<=77tdoR_18IzmZ&Zoe0<3hm$Ux~32&O>>T(xJ`Oe0f4E%Zpg3QrbUyd>~3R zbE7+mcA#rAQ%6sTLE6MYp8%4sg{;_J^j4YOJmn(iLAakHJSOPWCcjJ6WxB@+Ys_%C z%z|K0@!$;CpH`YQUa1lcOzUs+-c7QGfqkUZ>uDrQNSA?ZFfi^N(eFwg2Bn8VXiLH+ zw_?$#-imfiyGtgH@T#&mA89%Yu}N3OVKhy}cDl6sdy8gstW4*ZuP+BTXl<>4;luF5 zA5Vm2*tEwJRlIkqnACZ{d^bcG@ln4Pf9GZYX09AGY2CMQYx?8%>@X;Z=For(Oj_hb4$Q{6azj(1zE^0>!7hqVWP z8|hbWrV(n!XO1Jn)bs-%+uo>(G5$RiF2GX8+vz*GUQQAvwQjMUsKq+ z=x=o3DAEbX;eSmBFLT3h`MVfUt)XoB>&m<*RKWCT>Nal6AqMIO2Z&*|C~xYMdAgtd zdMzA6D!BO1wcV87u8q<2j&vG=3bK<#d{(HRnP0-$M{&eM&7&`>Tm8fj?-dV(?(7eWZ> z69mF1TnPG|oA)lF!f14Oe4BY|Fp=AK>qvWJNX{Vam9&(eSajCs4*$`nyPI5o&s*;s zWa*zJ&k*;7NOU>_S#J9nkLs(YjJzuDYjc4fu{RAA-w+oh;ovp9Lg@$x$5~Ab-SgJ{ ze+DlEWTHL_;msws264sNyD5Sz$HMWZ96y*q?@31TIZ&P8D=ZYeauBeTk?*1DhV#;E>RcMx_WK^VaD_^>{!aK7v2#g!mHG>)!mwBk#6b4tY@@Mwad#$|eD6 zuGx1!ol7o#Ldy~a1Z>O_V^ft+#kd5IMzC1Tt|>OUlNKb-sdf0_>c}2YcR%I;bP~bs zG0FYh!vG3mBs_YTmHZF)n6(vh5p6i#a(FD%)oZ38`@Q+?H_(-bkD+qm`kw~cMuibK zi@2A`_8ViARBE=-fqDFbKE8T`OQwVUMa6ClMueuIfwS$=kA2t!ksu3RUVtUw0KY-t zq@)=@5ffc}#zDDEhQo)pUoOGsN63CnPDOYWLmVHOJ?!#fgV*c~H6@htuQ(=th-Cpo z(%hAxlH@7Ug+>r`o60nEVlCU7#d0&E}}ETm>K=tp`4 z^yr$ebB#L3Y2>R+aqTe0<1uTT)`GO36}=b2-<;zei?*_WGzmgmFqN9M$?307rG-NN zkcQM@^-h%<=`EQ1NC_ab9g>$s? zufS>j`uRe2FAv?$&tuT&HZb}RC}sqc-mo7ymg)i-4ZeJB>#_$^fSegIR6NCML-4FU zEs-ITt!RBwrZuxNXbQadE>?=oy)gV-NLzGc~ed}fdfjK7W@l!9tll#l#685~n1 zwC(%9$tI8Bz%V~_mzU3!ZksIV@1BD)mrX|$n-tE-Uh0;lY35-5eYTvFYuBOh!#9G+`h}Pjf9w(vwov0L`f6oHQd0M4<#t zc7x3P8)p4?rAu3KN55~3#Sx~D_r0P1{iDT*U|FhDe2QcQ7$FG^l%Xh3Y*Z6*Un$Mh zeD-vjdlC}b@}BgMzZrx6JLz2urYGvk%D7VxLY>nQx)nzWDqsn-z7L-_?D-*G{EH&x z_rdbN0mv9--XtJ(1K+Oo$a9=VPG$ATtRTR)-paSllLI5ko0dK{pUAH38HL<6g>|#BI@;fQwdZ`=}@u} zyUxXWksi5BFHnWU4KJ$e%!vjqCeoxL|x{t;+$FA&*_9YGxq`HrijrINWM zfxcBLlU^_NiI0y@E$`qIVUm*hLRI3yBP6)&9Q=<#d63)FXA9r`mp0uj-7&(Z>CekH zXtyqp*KBvrjQpSb2LPWd=eOFC`?397gmNI7<`{6bwu&S34R@=|KD#7lntl$naRnBg zD(FMzQW#XggJZz3kYW|!P}@CTFZroAjPHjypMlHGjeVWve$-f#0&BoXx{wX$MlOE7 zePYU|dg+|_-ZJab`SCR2`OCQq80uZ=#`iI|#jU9-JUt2UEj~oyV%=v~u!*o@f0>iZ z;fhMHCqx+FH4(P!+f0wfi#ooZ+q9oLo!Y*C1#_( zaWWQ8_Fnm$NP^y)&H$D4nue40M~u~&{|V>(K*-jOkA4aif`1IFi3%DW~fu)BmiS*q`nzH z8%tBUc)poEvnQ;BGMU*v=sL4(=F5#q#~y@_Vl({P)t;#@o}ZpVz75IEI!i4;M`cUcm# zTLT)6hL8hZ<4;n3e{(yS6SdTqG)W!Y{Kf4MV_A!40%Kz#S;0RLI7CbRl&@&>w*9_< z&hllr{@b@tfL}{>Lc@FA`PwwF{JMA}qV4At8zz-xTJbmc^a{vg{e$iMW}wl{YKJ(> z@`8hrmker+IH87X&d6aSN?D-BRWJ2}&Bw#3aMozL3%Vu`y8{eAS zt)CloL$S{Ou5OIaj{H+^#F;(J?QArFF-Ms}yzv%5Sfv3Z9TcdAP&=A<+3~+fI^@88 z#NgF~yO((ryNY$L?2FVMNW>HAq^vG1ZJEyq((=udX

V2hEPtNVRJe?#d=HFA|go zDm*49F~hqsCN!3NHE3zptLeNwW`ti+A9?;slTVtnEW@T3B7YGVvL71^#)R}xPcSAY z^BpQJb>w`YcmB;o;`JFWW3yKEo1TQY>zqR7WMx1-?dn@ika^&ybP>O%)aK<0^>TY+ zm$$aslAFaC6b5Cc8|)0b#c(}J5zzQ?gu#87i?9{z-D@YbPt1sUGsn*DaIrrY&(*jn zFjvtRGZrjKyYn>DMCEfaz28dTD{BC7#IiRwgnC#$j(MjW{wgQ9=2>qtC^>GULZSdw zP5Eh9HWqlz0eFKGMT*v ztbp*M{b?pVa~h zjm?ehPSi9A7y*dm)5#Llxtv-Wu1W61$AekIyOAy&%z(Elj%Giz3H@PmFu83%H=S*W zO>#UyTH#ztnK3rH{V6(L?m!H1U^qOq0C17B6|S8fm%cyVRTv#KT#ajVTOFn36DXJK zV`&yo$@`y18{@N?j}z_KyS9E6>g8j@Ud8da2HI^@#$yM#z^7d7$=Aq`ie*~0b6cJ0 zI$c#hwN?0nU1DV%5s276#J5z;(}fR`L&!8ihHlW>2kWr?`n|8{860dfpR$EWyY<^|2 z?qiGQ8RRH8_X;?E22R!}kHTT_OCBKic}V5@xL8#+IWouW>DakLGyJ{4Cvt61Mka@v znM}b&M+c1sI_$p$CQLn5`@?I|@i;NAIjrDVPgsL{OQVL^vx%yEa{Fet+Cm@oGGBsP zJwSK+5k?zP9nR39SchpYSImBcs;Ki|}6=yhg*{_O$}N)|Q*j$uS8g z0?03fG}_myCbxE)BV)eQ0KUF)mlJd06uh<`V!-;i}{XjhB;-xRVi} zX5&rd(`x5doD*`}2XZ;=7k$B6y#+c?*^7-%uRB2iC8^?<(^@B3`?KwsOBI7?CHH(q zi#S%-IGU-Z*{c4cXIPqG5zuX#VZ~8VMrZr})nt4GNV5T6w8J0ket=)ceDBIv?%%j3 z&>`XNn5Mr8jXf&cz+EUoSSq`KLJJO$5_joux+gQ47zVElIXIkMU2z4M%_-Djit^u(D7 z$_aA@?~*Wa%)jtzXfE$%Qor+}cICvKyT3BZRVeI>7SCR8QL9u-nK^B2M8Bu5$MDZ4 zX5&$-bVB=qwaCIDLGC-eI|U<*JL%JnzT)3(0HbfMh~=m&>fT*c+JGUTK)E8yzyjy$ zqTYleYk=x+@JV!?nZD7dg;Yz)a4R!WYRx8xOQkPR?doF}dgp_g3wgzP9Qj-opV24m z*L&E`8+j9F=j`NLYPuQLW_XteByl`eUu89%4=`Upm?AYn%|GeZ%A4%y>{mH-A+X2# z`;ip@2ur4ZYVu;dfJkJsJaF$u{UCVHnUOx-yTIg-TyMwntgPFK?Sj3z;e2N}H*zqk zg}mBy!a;h*9@tCT6CQv)ExAoB(w6IBr}dq!;+M^lEIOe88K;#@75&-k<`uD<#T_0N z2fkm-YykK$mm2?M9=%RoQ*J!A{2TJerb(Tw2H-Ac(bofak@5a6j&Ju}@0)-dGV+{P zN=XA=0drD4!-}63pj2!uy95XcfnE>KHk$D32uA7Ku2j=H6!MpDoY*u(c{4|AR|d)FN{p%rr+vo< z>h*Qw`JkiS=jjBUAk*n_k(bj)0bH!5A78+D6^a?q2ru3a#Bv80`8~Wm^wGw^momb{ z|ClKmA9a9|p0`1(@O?u|PgPa89(vQpaR^G7YKS$dDOe#F<_dIodh#HOA(7kYnPQvk zr(88Z{h zM)FVS&s!gVJ(MjlBgsZ7&?CfG^9z zjNQfJ)f}4K$i@*gBo6HP6r4ItJJ7G;?48J10o~kL`78rz5d@S< zhm7t!*Hu^U%hX9w;;ox&?9?Is{m56#*2q4*Hw4We5f%~rBh#^avnTh^ocep zREIC=IX@gcB0B%FKfhT0WEHWZ`<&I+D|M>rsroulYtuy;KBfM&8zF8#8v&#aakt*e z`UdMfp64GuARt86^;cwKi80y4Req)Tu8QrVCx_>eQxo3Z77UXmCcWJ z-+#s*D>8gjxKnaTGV;kQ>1|zu5eb3a<|H~+qV0VGhm}3$nd{Ty!Kon6+o{PAf5-wo zuFXaSxd|-tF6-_Kc(2xaM%QUlw&vplqYEf^nsP)~I^yo#hO~Nm=DrYwavtohRki(a zx7-4j9IY~^an|^pPFg)0MEP_n&;k~qQo*bSv)S)$2A6dr> z`@9%hK^MK?p=jxYhC6$3PWh(zikvjx3dZePf+4a>%-(ANY+ot7jk9)6)$R`x@=}@i za^LGSvK(nKNU{#XW7aqQst%f9(UceY;W7kvvh$%;EDQs}u^APInKHf1=i`9k1@*crN=On+4yuI!$;i8)hgu7(o+0 zKh48XA}nGoW^%WpArAC`GDINelO@@pS<2}U0k4E`;g~?l>os?l$Vk}jT0v29zv#8w z<;o3>!Xzpffe*PZK83;gDA-kjH!JvJf0v-rX#fvg;z~l$m8R=SAj{)!@61|Iz(&hf zYyTh%*ZwJy!+!B%(=ah?ucW!+8?PS5V|$2ZU22(-bsuB#BF(!)3p!pE#b{CpTZA-n zg})*(VX0m5uDaE36*1ew7xhOwR&*f@W_Y-hYfeUr#epnu;bj*FxI`|DNHLMCqGge6 z#1>9`^w!DgDZ*8w7`skVzdY@{=}UGRh~u4mygA~SuaLWX3iEUmMt+88sAuMEGL1jl zaD~PYk8%OyjgE}Rq1kT02pVdtH{j6B_O?;U8Kj32L_gl>>$@C+g5O?tHM#U)P-f`( z)}$<)D>6Tr1&i)kQZKf*vJ|S-hPiOMCD5r?$nX(z3j@RlvD4~$ocG!Qk0|TIFIG2c z57L5GtRddiOS~y|uyYr*+TS>Mkz4F_yud-=#@T;vaDh?8&ZxnL%L8FlT@ftAb(7K@ z2s>a}*$GIrfqrM7m7^k+h8H=;Mzws;Fox|sSD=}(BK|H@rI=_`YYW}zYWo$@l=ZwW zUUhW4$z+dSwRyv6hWM+gMqUXq2g6q#{R1JNh<6wUKm;^q%}FGjpT$K}o$Lyywk1{d zts}J>ns0MWSSlO0px!qL=ml(dmM#}}jv$ID9-0-k7yb5M`4^0wMK7x{W;GC872kpo zP)I!Zjd4EU@541ASlBM@Oct)qcO+~w*x!ZrD&{Iy7ulQyB^I^59eiZ|08Qe;%iA9r z=Tm_tWn__kPo?1qS#p4(evIwr6B9wbhDWPb5gNSps*_t)G+e@qDPg8W_&?xW4H9Lt-w1GDn8(Smk3RScaJKtTUFOPezh89n| zKt;*S1A#h>?iRC*UDAn_!C{&B7j+Gjrks_6AT~=_`8oYLBr{d*DQ8b#pcHb>>MQ`#bZfkFFMB{kUUY@kG7PTfewp0U+ikXeXy? zu(>+st$RwWN0u9;aN>tX9E(vx-;T%K9YF!i`2vkX7ef+^RsYHO5@ZSr3R*D)W&7;R zuO5kRDc7?$-c_k$#!2?ZlIV)elvt(fyy+QA{qoGWP5wbD4R9QAz?p=U{L-~0Rrgt| zy(zZVYX;1MUG)WG=R4Ush_ClzeCYheDh=%r-xyML<6hh@-g0=4Zf9xqgFaYPxw)D0 z!S1jrCz7N?ODjWV5&=o9^@g>w85D1VqT2T$Q##JPes7~$z5chr>Fo4%(JoXrM!tv5 zq4*-fVQ26aeYM4}-U3PuJu#>s0iFVI6CNU-GpG4=A}cu#=D@WWJ>tgjScu!Ry))Th zR^#@j(7Ou9eNnRC>wfVb9v{XZ!gc7{p>bJ(a%RsX({))}86QOoR=E{8>@Ow`?@gZV z&8U|rd{NCwD`Yf-^m8BdyDd9IbgwrFq$RW=@fqp-|!DQ#ewvuYSVXqoR@B!|@o`qQt^e%Xkbw)x4(bODYm zGwy@ubYfyCp%KqIOAB6S_@ymiv$-m616l`3PH;&vJfwxVt0DEW8LU*z_v&6lA}w7n z_LEkKf-Zhpsa8G)$J5Tc=G#Ni6wFt2MgcHNBcJ15uty2~^1mdqNV21qRrRHyeU8-2 z-x`rDqvl-8Ewr->=!DAQ2Qz1y$qXwV1;`%n!GilI=jr*JXtp9{B`^Jpe${2QA-{d@ z^@v)|A&tl5xmaN>u{=ZwuD10vk`7u28|y?<_-)p+v(NWWp_7%_1$ev)Pm9zj4F(3R zgTfYdNv1@sqkq{Kn_u>YVjW}WB3i3*J9`tB7zEL)NDfHLO!TP2>EaGD_-!%Kk0?WK zo7ryiBvG<9tn1S$Qze061&4=$_PE&npAWG=g9k4iauDn28{_qW>iZx-n8CP7aKS25 zrmKd1-`VesXHDN$*vZ1CUytuu>UA7zz9?qa?>4KRUu9YXYJTg{n(pPDMkO+s)t$(N z@oVDQZn2{W4fc*G5?0E&j@q!*ja>7CQ<2eKwnCL2Z^l{8cM)~ zFtnQIVbOvZXUNFo`I}YC z6yWrX)tR=t95nB4O>lgK0$v;&ybV6}-hm}`{cyy^r3Vzq?V@qmN6)q*d92ORTy)Dr zodtx!(Yw)S1p^bVgya+>-O*PIj~ujHpR{7U`D z^;}%ppJr>OUfWR?8uiud&K?nLEHCA+ry13c74U*#+_=T!C9;L)VTB+l-9w4F$aF(? ztxT2b3XM7g*hpyV7F2vHU)|pEH7?J*rQ=9pAzO59&&LN&3<>u8D$ttRT+3~I3r@v& zN_Re5=Z~b}G<;R+COr|%MR!x2axo8G8UeqhB4*+|;u;iT^R*c8TW)~g(gge#U}^l< z?Ga`*!gkgB?SFY<^bec}G<!|(KlIJAkM+VUoC4t=g~|0x%RE!}sCm%X5y*mRAg zSnp9*yfkIaDWPZ>R0hnnjc5^x;K&9Y@6T41B6ysgpKXIWp1{TN8U%4198GDFHg;D> z1M@I`SJpPptcb2aOOB&iq(_ z8$Q?K8h6TkQw6BELyoPBTDm;?oG0k@DHFQLsBDmHt4sxy&kl(U_E|3t_N(5>HcG%N z-yUj=pn`&A^R%RBB3=pOePYSPysyh3xrySifH7mZ967YQK z)>8$=q>zY=1UN&iyUpAn+t3C+XQ~?9nA;hBS#T}*pnkpYcr63a^J9ffP?WKLO6w3W zx(QuPJO2(i6yR*-vhPR+R4XE~lW+|YJoLN8!Uf%{>2nw( zx;P^aS1jYcjRxA0|B5#NEE(c_aV2JXq>Nj%=+1f3fi!h-BgPt*S)cb@vEkU|f(N0J z8|8NcfboSP!3Te`S_8*uyhZOexAA6uD{Ek~=1wu%u0JG`->qlgz+o{+FKoBAjn_fU z$NBKW*~UPUd#gd&V4Rf<*3Z4#JGD~4 z+lp<5F*qz*)w9OigU`VYj+2(HUy%xk6&9iy73df|$Tb%mP9}anIw+^OLTzi8HNN=R|x-rR508*6ckle)NIQsq`xADP&dA>{VfycMG zx`xrj2|B(+RrydK6ZHokcnWnGaPstQ&4w2#;RdUtibI;^;*ZyRU*kK}BZnJSrF>xU zIy9mt#EW2_agFL7MRVThudS&+Xqa%Go^lr*%j?MeuxPrd@0WKB^xL1RxW2n`XEcmN z9rK?bqFsUR`TDi4>E9>!1mLKvQ=IPdcS+@SRr1q7xm3I_Ugd+fO||8LS}mpPx0=3g zpH1^Mh;Y;42&k0&-5t?WU!%|TN>6{?UU~T7N zKt+4Xr=Vt(lnDWCBU1cx0UxZP3ad-?v9-T1=y!9^8cp*wXHZ(&g-DP_k5*bFy$Z{= zz>``D_Xz+q9hR=&2$qBphy)X25=P6+STK!ni1ma~3Na4yM%tUrDgku{v(Ek+xD=42 zjt4Tlk6%ba}yR%Q$6>U5*rje3GuywY%aLKYMK zY<@Vk%x;&hR;%tk-o@nH$+551g166C()q45mr|ZEMg#1Tq9OvJ@=F3PHx;%$|0kQG z$qYZn^DQais9ozSMu&Cbugzu@y2untWVYLC1Ji9HSkbrP`Bg;G46iRs6|7fQDV59b zLJAh0`0WX=rP=m)=$=TRM>OKIBx-tjW5=71aj~JAS;m;ta*AnSBF0SEdVcA(RnAd= zYCPq0an|EGPC5>QAmoZu^zZIAU>pp&QCv>%hR6;Y^*EY4ZqBq0E+@YtCMHoQ+B1D+ zhdaqY|5ZI~mp36HtCj7u>z@<@oeN%bYSwSYIH$RfV&gs(s4Z&5(7{0iZaky3&q)~I zs(;DJ4424f`yr@k38;}7NmS1R^cv+F*{tn&s1^IsO9^9;epTvPvFJ%*Ixq*}@If0{ zqapv8Bm55u(k9Z8cdw7#?Z{WSV9Ng*KVEO$1lr zG{<1Dh8O?R55L(|bcP7oL7|=*KtIG!pb8jm)u4Rg-%;>qL>>{h_Y&u6>15Fz=i;T+ zDi$*h9h|vJ=m;LRdZn3SoKv-Cb8JAw?Rg)5znY772x{Px0cNH~;7IA+=~XCRNhOqg zGw6>o;@u^dUU286ih8Zwi^t=9QDC}M+WwYng3n}W4DbUHtzO8SXu!zMHo?;k{+eK+ zwcZXjdkffz9FyLnQ?wOpA9k3j@@g3$YvE2^zvk{mci6eJdeqyD(Ui}lUfXI4cAXjBHoq1(?}0~S){Laz>RnM`^L9f0XM$ugF0~Ih2m@MAK3RIZd=^y z`#(_>7-NWh>#SC_@_CBYF186=+^l=JO3ASHlcni}(blYb%r5GRyWQ0&C1t19t*}rru2BCXp;los4j9l=TKlXcE}H3YHCHV>3!Tn3 zdM)nWtAP141E-0mcDz_o@dVsFx*wbZPJX7DQepjs()G@ zEoU&)=e;yFEh3tUaYf;9af!yk!0dDEqwnhEHlI9td}Xl#?uh4|%&<%{l_hfz`ZD$_ z#8+bpuIZedSOCa=Z)dUgjgLU#0{xBCFbkhmSklc!+cB3C5Ujgjv}=P+;%TlDu=i~G zuFtK|Rw%`z-k3qDR!2oR9ZxcXbN!NE3_>hRBr%Iy!v4Cb5}sP>CaQQxaHXUz1AKqG<{8=4UQL*Hd_J#GzI*l^B`B&G7byjv1{lV}#JvEBP z;i~8>ujJ^%Iok+&5OlB9_-&TS3BjiG59gj3-uj!I95+eesC*g!byP!%VM9W#=D<-2 zQA}s0y8D(R{r1UZnjUZ|Bn0I9M6{_V%|m?Ayw1hCj3Z6D`JW2ohRNI{4;L!~beo(W z_B|waqYw%DX_vchgv4#X7h$#5TtcII=1K|oL1fE~L8W4PXHs0# zL`+&UQ?;5QjI=$H5p4xXJmDVf*qKfO9O7}A_}HDjC~+hkOtCgfUpZ8BMO zu8g(+ct4@XKO zFH%pYYBTwv2vVKA&T8ewoUf*lvFX$dov|8PWg2|F%$$Jo)`&;PI?5JW5}k?QZ##GX z7;#sH`|a1ij~z($DLZLYqJd)vBwGY>Qe!p?U!&4pb!Mn8>%OexYXwV*s-%Tz8obs8 zccZz!udVO&+NYL!k;WD-6WoIPZVi&76U)K9$~K7y)bZI+tvZB&`kvOeP5c9RL9H*2 zCGJ(=?Z2r2;SX?{Ry8Kjq@D}--rO8He6f01?|=2%Prm^xqK7dYjY)%gV0?G|w!!Rc&-Uf)w!ys2Oj>|G-Qw^=U~?6$wCOZYok3NFD*;z01H`a8 zc>zs`8${7)*rH+n^6Y)?X*c-fEM|t`bnE_OL@P%Z8&~Pkk;r>vQTg}hsw$10wuZHF zk1jDayb#Wx7MSxAVeIqC7!OvM{LKaM3UUZqF7r)=HiOGb-!!63I#S9f-+7m{QuxqE z><0b#QDmb+4OFbJqksns;#L66FYs5clcvSK=kXTJk+ID~CtM4zUz_cQH@*VVUDdWU z2u3DZWTIaLPZZU;={U05aZul9@~8gt{mn1apv^M=!`$hb$;78n^2Gzy2;2!VtFak|Q}AADy`uBsUyys-Eme90JAp3)!^yR-(y# zUZ!taNoLO{Rw=Dq4W`&!&DhPyyXW#SSexQ|5Lotow}Hf-LHTlu%xLOZzjp0nF2m)@ zB;&&hS(#4PQ(D>q_V8vqWSD%enzDKQId*eZcC6cEfii9OKq3oB0yd%|%=|Kv`XH{f zW31QdVvAu+(qo)&?C=s`PRbZ7tnM?bwk`YWFBZ)}5AbP}Pu@*r6er?_mBpXcGd8^$ zAKM|bR~w^}%$PZ!QU-Y>F-f^z^S!p)9gk9BH4&q?=|AV#o2eIZyWKX}bxq?ATRanm z$_yR!R7tM@O-Ndt$WN+j4>$?959xw(-$peA`u| zCL5EqPYyR2bS@Z7YEP=~yN@>mw_5JLz&bpFMGuG&vRRdwa%(@jUp7s+=BNUI3r ze7M{SP1Q)g7rQs#%j4UBPWxCds3aS5W&5nouND{U<1}n+#_OF#&`fHN!>v*Mz>gOp z&y}l>+DUpx2vLZC7U^ z;JiMuiydhXAmFs_UKiEuksCq{yLy7HB=CN%$#P$Oz9|M7s}XdfPNS9+;%fWz*>1-* zx5cw)MGa?lDi_X=3>pp8Pq3kSybYhAJzWn!oE!H{eaAS^8L1I_d$sI~MZ_5wW0WLj z7moBwWHKsJ$7Y z1-5i)Jk1B|OCHq$?ob`iG^Z#$f2vybBzxSTQ7T6@;_6NRn6wJ684Gu^{(9V7o2+vg z5$D>}ne)-S4au}v&jJ^5VKBow}k8L_|G9-4x`-rE!1g2w8aMZkb7}d~_%WmET z{<0%*2%(hd{U-ZA_muz6XJUZT=CR*}UfaH6g^|vc^ZG*~+(y0Y9?kSRU6y?Zu&KH} zr-Dq48?R_Qsn?p`Pu^(b1=*9B{*7{CLK5GBfdJ?WG~+zjtrm?uqaO0X*v0Bl{cYpMiH?)>GXcAmU?<0u@2^WIeL-ynXJi;Hg$i)|GE3`*!D<~#M+$~ z;_!@2x5?lkAGtK>%6q*xl2+r#<2Y!=4ezX?Fsi#;*|)91Ff~q_-kZZl+9961h^~H~ zIQz1|o|@B6lVX(_I{;meQJl0WY^WbJTWQSs%A~oVP_@#!Ny?B!I*EtrI{jGzF?;|v z{f^be?bT@?`7=nADCR4r^D_=P?_l|8AeZS4fU(Q>YTEpmnw`v7Riu)7$p~3;D4uc@ zWF<}LN;BSz)FOhoj*%o?V+GU%S7~H3XQ9zLx(&UzhG+&Q(tITGmH3j?cxJ5n&VTcC zaX}+0a68kaFYjc|#Nk8Nw+(`T>}~_JlN;+>j_uo)yG`?#L%0bnhFaa_Ub^e`hnKg> zxV@c_SW4q`pz5+$=gHMM!urG|&PA6##mH zcvGGnb2tb+aHO6pwEJFV^YP8xBU{*mzWHfDT+Z(7-CxZhYsqUA9p+r;FGdN?sqiBEr zx24z%#!c2O((&`-3h1~s9nZcqN2l4m>w9}54pLv~gs4*-MsdH}86hw4#~Xgn(d@;3 zYyi|dlQ1uUvPCr+ZJ)gnn0NJi{Mv6F<_sm6Tjwc0nt_17U$RSEtA5*^x1OIzD^Pa> z^6rJ5ojicpMK;~Zt|w~1*)rYzt6w~A%z-HD1YL-DG($M@=EKO_s}o9dU!})?j!N)# zNW%S5g?@lBVD_67|Ga#E!*oe`_?)LsJ3V2#RBn)fi!NHCb8v5yDt(XY19g@q>4;YL zxRRl>ANNj=Bj0j4F_7f&i`Bbd%{0xn*aQsBQk!t5S*97e@e7}?A)KM@ORnvzy1v!4UkW$ z{bO3t|MH^$`o=HMN#MGlpr-%hMSVy1JR6be`B0z(zBvpBhT)Yy^@YE3pil_qBK_sH zL*c-Y)LcsPSby&pNgiU&WKdqakRI?Yo*|Dc`A~4_X@6I9?swrkx+hDtq+dv#4BDT# z^*7$=f88Mz84rdQ1VkPCfBY6QQ6O*qz=b#d=LY`gH+sS$p};*x51jeuyF&qw;6b)+ zD1-B#KmE`CAiN-fqvn63FY>>N`)@l!5_Ydi8R-J*zw@wv`>+4$BY@3RA^iJH z{-;;|`7qB97{IE+f{^Y0xq|ZpqW|B4{IebYzXSQd8}bis@Be2_)(7I{+x{TH`%tK8 z-CdtsFSmHUXB_(a?`{X(6#*!2MgVjLLYf`9Zvh7!;*SJyQc}TgPo-aDYfb%|QT^bG zpj@UK8pmpq)kG*Q;4A?r^O!4U?=eCsLkPQtMo$8#O@?Cl^)CnWS7jR=33z_}^PiQa zukTH*=Q?^ffQ5X)sKLX@*1`7gdrKmSIGX*+g+lPDP+ETIW*Lp2MjX<=effW|pCknc zM(uTWZ1>Xs`R@PpFVTDBDe6M^S8DPf-^c&u-q93;RR6gX5CvR4rC+emKNbX~7)V=J z&JA||<7)mAkK*28QXH4Q`Nx8ltXBN@ zZeI+8_{l#O99;ttylr=A^7#i=1RMsn5V>rr9^kQ}aszzj=_u1kQptSu;K9W5;Lk5T z<;g9NSA}*7EVoB9<;#cms1fWvnGFWJXUYxs(_adcOrTgk{lMxQM<@j6`GP9Ni~~HB zEUoR_aX_-1?9l`{XXY0mseC*f6sr=366Dpmrnfs51``(*&1~ zR@(2=*xgl{*RLfgpQDtu0K7hWyOV_i8npTENVpJ#h!00Z0~g4;LFp!uRp_J7@nhhw&e;iVZk$)0e1Z|24+{ zpI3%%cAqfJJx_1?$E%tKw6IM3&G&yQHh%?h!(W(*1YZB+RcZa-Vf@1b{J+Ear+WMU zmz(jy0$=|PE|OFt7v(GIq!*&$!YAOq=s;Det9UNUqm=HAJ`7Aua$tP;yrvzn?cssA z%uWfNAO5=|BZ)&492tCGP?aw;P9GP9X7?Lo{I9%_q!zIoE<$b8d@lCQF>UR^H~h?Z zT~g+9g0Pb|pC@IGr`RL>v3*oBRGE?SDwU~Toh z0(aM==dFXX*;4z|i|=50O;&4Ez}QVb>*+iQ8WPWKe`F!B`MdA>*AB>j2bj&GDO|Y@ z9*U9rhA#l#hja)nGP5sQnU!9nAjXAb$2AxU*Q%y@L_WTwVyvSEA7AS73gs-6x9 zm{=+Y_ecIe?7d}Nlv~?24hW(sVh{on1|Tin45%R89Rt!eAe}?VR#Z|_a*&knPPYQW z5Yo*c-3ssqvXB@|I?k@I#IzP1;=pmq% zD*Unu4-o3O=f|;zS?MM!h)wwaE}FNX=2p*9DtN(gAqOG@5#{ap%o_? zYPmv@jMOo-IZ6`oWaNOBYKYT8pmOA#9Ll2N^q%}HrmR3w_x+i&D02`AU6?@J6f?i& zhQX>M+R(kD>;mF_xwX3elNU!j!!l8=p=M>5@m9V!8j6xg|NV4eHZ<<2-{)S)j_La- zscWs>lpoC&aX)jD`#4BKhu~mie9^A1@1PLjccclxuJOjn<;knbXz7mL^k)U0JQ?Ar zkn^D@+i%dX3fM*L3`a-xm6TlG;NkiE*IcS5I(e~b7zyx#%;P!fqz+RGeU{y8!WW9J z7hnGBAXKb)6+PXS-lii-bq=f_fD-!eW_K?JYQOgan z>1G7C?>WOlsnk9`_7rkkt3E07st5tqEPlI@heiqZ?Y#6$Em&%*cezi$3ioHqGtt2x zvD{mE%;I$2f1#w3NR1@wj)DjQv%Yt5$>8z5-*jurKOu%EZ2f_fJ#vne0RD zi}W>7kH^xA`u1YyBtIGjdKIK_CWE#@*0g;{#a+M=4RBXfQ4Xd~l=mXR6+4LEZxwt7 z2v+rQ!M<@Jy$O%>(P8R!O^ZLBMYS6LN@aGva+x#CDrek54koMW-53yu7LVyb(XEN& zfyug~SEhBX$dJi|wr=6%?y_mAT+R@CW=PFwnu_7ro?(SYCf*HdoMn?IkngNkt?xS($ zzARVUes&$PMW3sGye$crD@%Nzfzvi0NFp8~=6&EX5r0qWolFt5!K~RI7nqt^M_TEh z2m8~eW{z8jWp-c0<7jkCteci*2j5=Fw62)ZdK4jUsetG<7l#6>Q6GLeOggZ*f|U*C zSF;;7-cYy&^2xFzNa3{~cxV$AnO#`Qn4oXzBvJ8d8!QAEI5f&H&U3+QwPrD;?B#EaiU|)wsRhDj8nRY? zF0U#4toSv^RL4gReoE&ZB9Vwh*>`?q};k+kJnbkh7HuYRa3kyQk{pL7rsg2M5qV; z5v8O(Gwx0javC;t*Zur`Ox$(SbyyaNI3}&Di@0x;k7WZvA5Nf-6swvp{kBq>?_C<| zV)~+$iaJQyk_X6V1tHk`v%Cv7n4JULbHkfY2cTl_; z!J%Kz%Jtl(&Mz#7`tG|P`F5DKf4KW3GVI$BY+Rv=Lf#B0HI#azX=}0!baTwauZB|b zMuU*w!w@~@x@rcHVDecZ@pG|C0{XkwXx+RsU2_ht1KAjsm`t7CG;SEiB~QP=fzi*l z%Xx0=#?ek*QPL``Keu9d-HO7{ugHMe?@XvC*XZp{hPg3YTbV?yf+Qp%_lt#2%A>tq z$Dw-(HoC{Zp*4vTFMW1b$YSUs$_SND=>Vw;bATUdk1f#e@}(`Sz1r(l$wRCv)ph30 zdUmM!&}hnh``o;XI)AM4+NaVjb1R5>n<_Wop_VS~nxj>bi>wc5Jj5in1Gpzajw?*D zrgcx!fpf!EvBOa|KdwRi>aRd9f;8amEvAkOB%<_Q&_U@~ZK!9988$eyssr?8g7P~| zu?1cvjx6e|kOv}b^SeEeD!ibXuFjw5YQQIQE1jAT%V(>QBiCi}b1w5RT*!ANNg<)E z+l#aZVK|n^@%x@?nm>B88>-!kkAM9I(cW6GA)|8qJ;G~uBDRebA~q&#g|me&mWw^_ z8%F7HdZWE$+}1{Ze3;uF)fNeYzg^y$4kXcAS9eFjs|Lk2LBkUdR%&6FPc`Ht4?y3>=%S{x zvDyIG$>FxsF;GfnY}LPfAJ~xq(g!a_zmjNd9v9ms>@?ib*{h}>&S!^##tDfh<}rn|GVP|mOivUW$E_+PI2 zdHq<|Mx5CkJ zYx<~5U9!NkYapt9?E6{pr^IZ||>E__hsM%7EtotED?=Z`nDJ3y0e7SK>E zByq0oJ9mHT?6;>b;|0klI*&8#lZBy+iCgneJ&y*5^A&J6ctSDLPnP?Ra6R);=^Ih` z!)J%17yNnqyqj++w?p!@>++R1F?~+Qu&R#cY{ZUNToUpzEwp}TY}M&tO_y@7vmbEa z*IXNFOoN`%#btPSe&SC5WqvQ|7zZ5TKBd;?MfQLu8f;=-ds{VOKw&xf;#F(6RB<>) z1~{IXX6=z_r$y>N|3)oLqGIGEEgVpSi@8q~42xA4ibfeIIIS0jQ;=a7n9K&s=ZDgz zi*h#W;9uWjQTe1IS+hQ*|Fn!h9GvDG)u;UJ&&Lwi<{Qwcs+W2l zvFxk`dQ%So3c&<%$6*94*zWw#(+*9$g+5*t@?6J6jXdj0_q%8gOck{6cm*a_MUGUm zf)zWPC5(poh}+l4{E*?H6?!*Cy6_M^0gt;%OBzS;jSGqhzaw;Stl(67*YsmHx0iya z=l*F(gSeSa9FEFGKdN!dg_K#8W`H zY>kc7cUU%?+~4b6;_7RJi}Wh+1;l0(UW>GbC{&T>8P>%P@C0yB?UlLa$-?Yw>qqQ2 zGQ5gy1w4;3DKbot55%>bTt>N%nkbBJHmu6Z14TeUzI6fhdGeax3HBnXP5ZtL-crjR zj(s}{2H-xIWz}JizGt{j0T!#M)k`bhsE8>7e&->(QLENvnrHVF?st7(d|l1Cu)Dt@ zR+rqrKl6}z{@A*IE>jy?amH+Ak#&)HMIJP5`jOJ$ZT9Z1;Dj0XMISq=bkMYFtqki` z5GVk7cFH>&&R=O|RJ<}gWJbYaNmXBd!>Z!)CCvOV>gi^;UX4?X&rwVDQ$k#!%EeWo zk~W49(8iTE-d}M?{pBPPcO^j7g0fEU!*?&JJqA4feLz3$$Gn%J)^(w=?Mj}Z?4lt4 zX;dUSZhnit+fbfkTT9Lz{-jMA86M2vuF)?xk^l?x*;sm~cq~O%q-5|=F^{aO_L8ky zMYS1lZ5Evro}SAEKuPvViR*jq$J;(kN8*O>J1ZHWH=AavadZ8e8fEQM2aRJ3vy#n0 zWq*jDD$$;|kZ&}mB6OulD!9|ML^J#u-6|(aA;HT0wVPHef5Zs?&2bjdYc~E}whmXz zvaG$;dHQMISZwH;jG-*LPbNFQ6^urVRal#vzp5;HIv!RF89)-9wI>RM$NZ>+Hq>h2 z^mJ(E&5bjo-g+IZLL?adc-k#v(*qfIdzO@2dOWgH-C9B!%$-{qw82XkxzFCeNg zmoXweV_9seSA58{>BzTgxh|)4zRhSZspkD>eIYDLcJ#1|boGX*ZyV=iNpke^2-GQt zeHM13H5(`3%{3e~lsLewEJM!B;G@2iyq7|5pJ_>~?NYG0T*TIcwq|L%hHLY^jqv>G z*mjiC`(c!ax_$MT7wgtn@o-a}K$VMPB40b6o;THCR?8@s$LXlcy28%>#K@zUNRLG| zty-{EXz0h8&)T6Q>;8^I)5%<4i!R6=&Xt^nBklS*b1m+y?4;IQL1l0rQ~@^KaDrz4 z9VSMrj>cqb?PGEu-*3jN-Mq);gd26rwdgg5U~XsOg#C5)8>a#D=s^@CbnOr`S!J;8mbWWi zYoJp0_{R11n``Zs7dx2f{N_Ha`6$UzzjbDyy;#0lh~21{RUh}lyD(kMv)h=S3 ztQCED4u~vMaNAlu+a!n=HZOIqy_U}p!3W}^vb^eji-<7S_LKqv(n_0Awc7n9>&e4x z%D7th^_kN8(^s@X=x2?qPWKT?!~3FJ#@ehBzH^^Q^6efU%-{aAV6cgot`IA^{v-Vf zVgLB=Pe?owy~yZibnpS2M9h4gk=fo-?^~PMol={hFbY+6mDGibwD8(M!jA4y=K_x3 z-4gO4aS8|84)YnyHCBT`=>^ZAQKy<^crBH-?7BM(`<0hw(>3T}8N>S2QnXx>5_-O; zu-Baela5FFdmP!%9iW$Q_wjz&_zbC~ZAiBSSf>oo@6Ty(N%d$ey%(xo#2kh2nQ>em zUwqDNC_DtBh}Flw3b(Cl(>j*OYx0W_x4)zG^w6^iKZCk2a#j^}?ndo68P*w5RAgcu zy#Dpa2U{MWA$o*e{sXHYStSKQ^OeYTakVgpIrMl4WvShfQ(j|H{Ye_o(^@(Jovj(e zNjww?%|qISGvH-GxepGi@sX?=$1Pqz3q@*;{#hDBJ3B~DCNE1Gr0>q#O%A4;4Y=e_ z&(j`nWCFNfIk%fu4ZKG|>(pDtr}TvR*qFHDc@FbeOVk(V@`P6BriOhZh5{MekJaPa z4^G?Q9ABQ|tJO(p-@=LR;Vn-Qa+a2cdoV0nY|k)gFR9~?ibE=jK07C5M8k^l!WPH?-(lXAaUXZ|-IjAV0%c*_R z(8rbVFCO}n=H9G1E7Kj*_a0?}v99H=Er|g)&bJZ^`FD=r<)&QHC$>I&J1w4!s`)Kl zZ+GBsWYoA8UmYmL*}xJ-#TP{>=7j{7sr^-%{TeYy#2N1a5vkJpCvaNAaYsQy{OAO+Y>;Q&Dr7{=9r@O ze#tSxsmAL4J=(Zo`uoX+%%N2ds0~M2hxsgH(`Nut z`)&oC{w}0zFC(*2cG#ffS(SORup96qeMVQv?YhtDFn5pLUUDTx&)#G!GF~HG{aI22 zHCFv9`xwnEWZ*k8RsaK4Fp272Hx# z^vjbkQ*Je=kw2w>hwru_XiU&uBrE|LS9KZrw4xbcV@@Q~66raQq6wPc>>@PlPr2`O zRO+6xPN?+llQpv7S;@)heC6v*2L4rs%`1-x0yJ16071j^>x6NZZU*13^CIC!T$OZ4 zF)#3+%v}RxG!pz2(b{3uU(eCnMR|FqrNql$^kspWsd8O8gpF4TF;TFoGz;0$JyfCR z$Q!YU`k@9+$2ia&c*LlcI*bpdm4GWdp63$-1Yf+9^GDzKa>o<8ZH@tV6Ix!%?3o;Y z`Ddhk3FtQ4jg`x46+ziG6^2tVGIlwdd9l%~+DfsBiEWmNs4b#J*LA*oC96OHrvCCB z0o;`~MYqm<5wy%$dHJk|vx$!xQHE@sR>zcA**VqmTE338SU0WEOhsv27n-_@J|i4N zH*$BKqoiIh49n8)>WeXW5v1M2ktyrEO3AAN6z(i)%SKobaB-zt_tk{d+B2MmhYWE1 z=p|7G#U@WZ-WLlQ?Pj-3sZ1v18E;)mH?$!r%aAvQzak=!4rRnyDh?;f&c>Maq)hfN zMT8)unai9T5*kPKWxqKf2WK_!1r&Dk!d!bzq(FfUHgx=X{2-EBT%%2Db*@NTZKbF5 z=RD+S8-tSHP`7~ngkbxn+A!ddw%gJv$KENK@*~~xe&R>KDKWYUu z^-C4aO1G}^&Kx&os&t2NFOS(WFftD4o1I>I8t3oExqno>ofg0@=Di=AEaEPEvH#*w zlMyO)?TwhcGyP;oor9;YhOIoYp#|M*3%(`?a=Gw2$PQ&`{HWB_>srDAZ=0ZZ~m zUPDo;bz;BMRJmvJBbW<_d&;4^zm%D9@$0YP*THSRye8f$XxCEZ(Z9AyZBB$I3ECcE z?@Q)C$a_rx29KgACCbq6gqe}OAY-`~XlL#}y*}KX8>vpug6B^P*b$_;0_3wE8Hy6e`PEp$K&_4U_N?2Xw{5SPs zqYc~s*-TuCF&Xl($nTDqE3^d<;$gqiXF>ic=@q2gkd*S&S@<^l}-geDaYn=+p zbL~~`g8}IoSY5&m{R>f*@%h6%mR;PVtcGRBOHNIR+j{TfsXy<`wVM*xVMi;xs}z!j z6+s&T>#@9R35iSBkn{4|YBB44?hZ^9f(Jc%%Kq!lvXlJCUs;Rm1$ZB=5W>%WvwxLh ze}fti&uvNp6oZ({o675axDvJ4G3-(PsPkNO`*)t1N%UNWHgu=mX>O^PwZ9)fHf?>W zBoBFH;BBVN=ER3{-bB#paO-(d=!3JhmOgXjTzhuP4Yc&FxQo~QwB}4{3l@RiN4`)W z{)_s1+d2$EaU^n#Kk*z9eRT+FT}y64`1z!K@VSfM8_T1k5M zubTu|3>$G)D5CY{JBhUux@v}>hy_-*n6`xxzzjd?^}^9p_c@y|2_dJb?9v|m)lbg` zSz^rJw%Z8JqIJ2Q7dD5o5Hy01pk#X%rRQnqO~tM7Ya;Jvy>yJm+eET<|8$o>QoKkC zPln0Mj%1k9SYJ3?e|S03R24i9{os`hq%_f@mG7;mnm8)B{d69PsRlCu{Wl*Yfyl&l zlgKF1S-ZFXc6ZvgnU*59#XC1%T?o4>p|_u$74GEVF3V7ETZdkI z51402)msXhB_;&3sPVljsHW3=$Nbvv$w?&7HR4q&FPauj+3*J7Ej}#t0?4C}1 z=Q-kvpHDrtQGX2e{A7v7=g}ejT{GWG)%HN5OpdTLGy^oZ5_3=7z%`w#`G~a~!({1` z91B-mDe{HWyTpeFA*l`>(E$Ikmg(b=Vdm4>=h}wA=p# zn>+}VcsQ2rlsF~+@TZ;nNG4<3h=}q1#ml_22hYCz(vO$Gs1xi)k;VKby+I>aqj#mr01cn2KT<2O8N_$D zo@~N)Gy)Za+SLT%#pLH3<$cqLz1I1tUOK{xyB#&}^DY2Nu^z63hyntAIVM>uvq_O&N0+Lieej&18R-<)7Ybr<>I zyX#d$pSnpVIKva@@BW!$dm1JIvXA-v3^4t^T{n6$$O!te!^SW_$7$$FFI~25_Z^|N zC`xJiB|JisI}t#!M-F&k3m*R+zD$g(s1iK7Ij zkK7)KjI5J+j*T@fd_(%C7KdJ}oy6BI)n$3;$=M@^sU~vH9U}co1zpSQogfSBa}lRN zw{A#JdDO`~IUZJDC`iO;H7j%M1}otGhVT_v+6&9QBhC?0ex(pp3gv(R6wA2-b~)dx zdkk5jZCI{+U;r&;2L}@WLx7NX4rMc}G}t4&X(V+VCg!me!6*M}XZSFIZ#0`BTf21g z4)rgGm?&VP##ug!QPB*L#<<}a7i&}_JZnj3!;WUIwhZRg*S&2o7 zHnEWh#2x3NcLmbE#CV3*c>Z9?PwP)_pM@W#+`XZWj1F_wD}ph52vm4o!GS`t8?Fsooy>RaoBO~A0I9IY+bgKt@MXD z7Y?2y9?;W_kq)J52ZNi>M)*d8r0rM5tHxF<136CLPG|?xq^>ZlHt6BVbF<>Ty(O5; zP-Z6TtmpJKR_;a<1(Q-hW}4!3WX-ZE8nJ8M@2+0Zj0pDiCFyWg6k_f#Y1sd!x7C4e zkqWMFgFa1^w<&O#vA;}GrUjZvWV+^QX|YdvE{YXZw8wE4O?b&O*<#+fqoSNE?Hkvw zSo7aiq|DEB@0s4Out!M?zNX_|4&N`t0^H9B@m{PlsC&;>P>qeGfslwrJJ(EX6(L%) ztMi5M8f|e}dGam03si5&Le5LQk$0b594&sH?gN1(3~Sm@ywC&6st#%rZRV^ywG!M) zGD<~e6YTu2&cpBP=6HZ6S7jsmVp^i9cE|-KcKY#Y+#t7cGY-1F{%52q^AWF2DJ7<8 zAwSC7D3P%MajFLjfECAAc3V214~F#Z5AmZzc3 zKx}8OC=MDU8=BA_Lfc@D+(SJ0IE`RC+Lg`ZNX|S(qrP?ZH$~-&)xEuc$YkS|^bSM% zrUQq5GCe!xHob0{*?XXYbTsj~5suM;``Nybui6mHFZ^=niq+U>-7-sgbPCDatS6wD z6+7WE8}s@`o9J85uy!g_cDElV1VSEL5&MEZhc8UDVlvEufFiT|gj-@o7)s&Y({*KE z5S=(pPfOZPc=lf}wdm6Gv}>L{FFg)b0|#D*(*F*1Ay6pg`{b@kOt&3&N6f90OSb&u zLeMg#!*aG&R{U01!Ti^^*!)vP1?-NLB5Dtvc#)2sv;MHu$AX)}nuZ4S+q%EA7O|KQ zTdB@Qc>PZF!b!nh)RJrS3Okcxa}q9oRC%R$||GQl@jX7sKNKfKG~N&wKAi-ulxz`0zo|r1ya! zT75jIoVq|Vu*fW6h@ZGiC(b}BFqHR8S>@gRb@T_T2vCkus9ed|$GCO4pA(wRfyBR7 zU2+4IOSdeckWXGe{R};7S-JvJ2lfV_FKV3V5Z1AG?Smdi0@ig*8YoA}uJZZ)%GyiN z@8JPi?dYrp#tqFpt@bY@kULu!ft}!3RoJ9WIL!urKQ3p_&-9WUsi1XZf5FL%as}&2 z$*f7Ay8KhS`XpKUYj=~|JB(_dh*)zS+^;zeM`doLWDg2+obCIxehTY%IAv zSr=E&cLGBYs+Hk1oDMzmT#1*|LaVKdxJA}`?#cw55SW2!b?R_|XJ&$W+0F`*^T;5s z=~kkE1LN4?)+T1ZuY8nv$mCqF<<;)lo;#UjqQkdoNwo~C8~usWW*_tAxEfe#Cfgo{D5UN{Z4)aI95CJ z6ti0Q8qTS`_D2SqRHwumab6?wh1Tna zB?~VOE0K55++Sabd4G*q@!itzH79znXV&S-01mO!5Z#D<=<`f*8W6&jrLLnZ2Jhxya>g(ugNq{i!M*TxJF z*2f(t_p;ViVpz1wYfC1pt)t3qJfrHj$5@?Ci3K_=`d??lTxuH@FG5xg2!HJxU^w*x zIGaxTY!H~aDCK-MiS%dTN{^;>{76>DD)JPP1XY2cAIEH`;u7h(1I%|NNua6C;q-{2 zzh#(r)Yi8QotGhdALz-%a0|FcM6&D4y#By?S>Z%4Ha<;{-i8M!2Xg^E$(m_8i{U}L zJxJiSXG1BT>4AUE2nz2AyXXuhe0olN)+_M=@C4~++u)4n8hMrP{9BFm(_deG1g{d= zcuHjTgT5!J)u+0GZXXNhmbMwJAL@9Wktk?UIwSbfuOpV(^d$ls{eCm#4f;ze2lhbU zp?%VQ(t46B3u%?!3928VhDxkfa&#m~ zo#l?R(jXSA0E}!DO z7*CHOAWEc@Ef3!Z-Im^5+|l5LytWE_o6RBVIswYS_Fd_pAq+LhIW%yLj-ivp*Xv0# zd6z+kK=SDcvZy=PntYYyS%U+6`hC9R1H|q^dswnaCg8v82Plv6?=2J$X9AA-^HGSU zIpr@XH+>8dDOXdSHFebeh-|e?Id0z*kJT&(_nR;TrgOre2&O}IqTVra=M2=ggBkHt z&xe+yI{mWdxqG*%^0%)TMYE~qyS@b2ITmd#8!;gXdxVI(p07Aayg2cEhUBbuMYU#( zHY6n+=+iiErybg3SN9ws(WoMlZe`x>#@hy$AcHXqPN5@73HdejOF~4;H)+CUe zEJ(xE&{QO+Z!l#Wn2(SpXs}qoVh zfjg%ar{|5{h zqcWz$oPRwH8t7Z;fVwMGYFWjtZF^uP*N1-wh#IWba(=}>pN{v|DdR5nOE<%(lJtB; zY&yjfd#&8W&6l-Cs~iw9u3n&8IK)x`&-FdUsFho(uI^vkt&6Etwsx~&7eM)x`J8OG zweN^TS4f`GztEH@iW*L&g;Md^m=W|`2$ZNMXteED4YMCvDx=cfnU5MdfGJiY4rDjR zY38z0OV}@MVRO+j@9|Y!o9$ zzsI=?MITX$uQwDH6W3&5Tw2iTO1M7q6tXK5DzXZ|E?;MjA zw(juX>gq+DGM4quAj|!ARm0PC1*Xe=C4CM0+MZ`vXtBLjf8zL>K&iD>x*DT*#2*1I zu%7XF2`!63biNTn&I>y0>Ir04!0X_M>5Avcc3Bx{w?Ww4$!xk(vv!^HJexs($%+Ch zA4D8pmF2P^J${otL0=LgMa36gzTka>0GCY06<6ZUzvz(Q9W5mXV+8%q>ht+V_xJ3{ z*~hx#EEw*J=-c>c7x#c+QV}?rbv+Q!;AC!Mn>1PX{W!tZ*NuNtE->obLEfHBB|8H0 z=a&MTE7!-(7rPCIV)^9V?d+IsN5&B$@!Wb*<mRVCjH9nz8mi0Tg+!QnEr?`0x85?TNUiR%(8w_JC;C z@$H=AEgaJJXF;|9qWVaZf0sbmFs38^n6@1C>Dbm`nIVPcf>cE9{FPl(uN5Ea;^9lb zX{Nq8daqpfdeB~6oObu^z$aBh;9{x|hlzR4}OZkv-=<0iOqZ-Z`N=cgE-T zmOLl_Q%M4i1QX6T{tfQ<`X=wVT5pCj93|dX#2z2~>1`JF?_UWj^IVuuZFr8?VB;e}UQ|?#j(S9{AS{0!&D+ z<7kAqD<)q4&pSuIX_jLxxV?O1QZD03t>n*f{_A^V10-h6Uns`?`&0hwg1>!84Zz38 z;k%yE|DWITUw)!Pj)&(T`>NLV?+^Re`Ton@t>|%aC5Z8tdH?5a{N=ZQ8}9jwdIcCr z<{vi_{?XM`GT>cakQ65VKYaJ!?jB%%mmbGT_fs9?Kf3zj&FeS=5)n#I{ywq){n?Fm zFI~dXBVQ>5%(4Ib-T!yG|FSiIO=!UXPWON8wEurrx5Ok~C>7s3i>`!0!*(bh1KW3i zpS1$`s>^7V;Y$M?(_*P^)ZQIWn!P1FCoCKCb-{-&j!LliQ@<1R-By}yeI0h?RNNXh zd_Mwu+{)ENt8dAE4R;f_#Su}yvwCBTc5A;{*mnEU?KZX)Z%uu9>aHF+m4Km*M5IG>bgMgGeH@*fNC z5@{tEVJ7Kl_fme{1WMM+u_3Ri8=7|m8v3T+!{j31;EEF`l1Z~vlvqc z2=vOWZUCU^!+rZ$7c4$b%-;H-5Z)_>@1ImbD|wxnlHY4t_5SCCnqDQ7X(D|1^PUEH ztuNlK`dYL9YZ?MxU*8h5fAWxH+?h845o11%ul>(9p|LDM#*B`dP}^UI@jp-b?@Q$& z4wy267q@r={>hXzM}jx4_rLf4>&pG#Ir-0(^Zz<05<-_0;<*_v5>t^nFLW{oZLHi6 zc!dx3`0>hPw@ZLx%>F`v)AhrxFC@EY{~ido{!VRPI6nE!+u}YR^?;Ui1y&Vsev3qY zc0ZECy?$ln$2yD*FxineJPt-JO=rHoW$34)xmzrVx7m1Xe|BW<7^WI0!F*X1s6BA` zo*b&JL^fXkRMmXE*@S2!^x1Bq*cX?U!pnT{$YtsKZ5|5+X4jlG%sre>YxXtQZt3vj z0cr&a-G|uFhCK4u%^+=j@6<2#`a^ASpw4?O?u%T`K>P2hT#C-~NBcW9>|zxCCAh9+ z_|=_W)9-Xw8IO~07F_6C5~?J{4>67X-Ebg?fozMmIKwH7mF)aX_G2QzA;XFdT=)lu zHGup4q-hl}8vZAT$2%inR<}`4#QwUH|MNZm`pH96U?a?Zc3qSIPgnfqE~$s-N5}s@ z^q+_D|IYN^JfHtv9)CZ9|KFAed>J2*dm3DrUhw|QVff=i>O23E*DSY*_oA);Bi1IZ z2Oi_gCMlHN1wekGHf?JpQx`v^2Lw877qnicF!o~D!7_v%W7hzi;M>}`XI)|O?|#=S z7UTRMt2I1T6JGjuqwcFCo6UjuLOq%P?!%`>10xW#Gg)AXg8H3?3a;<*%#5Rspmx1= z4tvzaMr+0W93`XV`mN7{=qR!9lkE>cKS!)b3o|GkPJ7FtfsX@3IAqG=`x?vcIwXHL zXcF<4uhMcqIGC#PJM)-%%e1<7iu@9!JtVeJJ-eEp=yrBgzq^YGy5pr|ZfHszLrRR9 z+g_Uj*-EAvzGNh=tS0vPw|fP&bIdY16fwHOtTab zv@k8b9Ge(|6v)Z9^zDthP3dsg;erYK{Ev}ol8Ch?BPp&r{UqL&_aDb$^f*_yl})6$th#%P=ZQs`GyQFVO= zCWGgv3oDKXN`)amM%ng3l6pQF3f~_zjZ)-)J5-<_NAfb|JOsT;u;FR1AS$pkdD5GE z#G`xt`&cjJ%EgsB-yo|#9j9q-AK9gyd-z&V&-taP0)5Z}ni1-CG%sumi6gkA$^Inh zYN(<6Wadg%$Kqxa)|d7qihpmT!F=BB*LyarGIS3G$L&wk8}R$hPvYVgtyH#iv+4zU z6)gF$ZO$`Ku^*d1QQL>*q(j3692&%8SBs@xkc@&Z)Wr_@1A}v~%{}yq&iX(+ct#Ev zBlg+)7{nUrcQ9d!7FC@LKQ!TB43PuLpPjt4k`Y2X^SF$KN3)9(;J>2KbZSKZw zx6!r1u{99!lcjX4(KM+$o?m|u3_b3;`_l>Er|@`m1=Db{gPa8ntFRvNW4nM0{nH)x zb?fA9wBB}WC2h1<)^;zP@8;;&&0;-`x})!VEP6t{5p+=yEyEnmz12x}j6;Lc-qJv2 zX&4j!rKfviCc!>zW^=apcRSm=5(SLjFu*Ky5Froj_r=e(`Uz<;jD$#_vjFqliePQC1)zc7#ux0TRj_wY|9}ZStdMx zp7`bgHq~c;AHIz|td(x-OukGp)_Ao2e3N@kXAwWtXiYrTNPNiC1|g3Z6O zvtx*HTOX5(<47*EB>L0z?h*7Is#77nz)RfeE{tZ6s|C-#IIC{m@~+$uU|_gjOgEpr z#|tQI#H`4~2aul6X?pXAx{bn$aXPaol|Iw0(M9RD^{UVfu=$ikHg7AI{YFmob2h1} zcMAi~eboBJ?6ZSmpcbAX*OkB*9L!lypW?H!JmMgM6<+O0;A6cgwrf|98MEbbn){@~ zrO#oP9?BoWUb#fMT2uvXC~q@|QAcJXl@>h&f-MZ(lQ&8vD|tux^SE=`CdU6ETdAf7^gB>}7;|3A=igo4(UHginBN29OxVv z-Ia}wZP;0KXcQ98Qc9*`u5;Q~yMZ&1-LYdt=DNZ&6cKCf2Xy{RIoqe+g7TP|>1}GW zSsH4oo-P6XxyW^dFUFeRVpoB-lXqo*I9)fk_me64Uc+#T_t&h^$YR$RmjaiyyrM?( zqR>0>p$N9PaKr;(GpDKxpQL*=W%+DL9uS~-wg>tHP0mg{N2@z(OB|ZuJCy^jX_Pz` zUui}^3{gAO-`F%qj%HP6+h#w5ney<3l4&+bKdC5K5fb|&V?a)NTiC^Ft!}gN$Y~EO zW#1&vh4`bM<+|)#hEV0n7W)@$kGh!c{1cRL3x{(Kw09&qxikmD6-8;Qkk z4scnRH60IXEm%gWGKwE~oLN<#?DTpTiKQK%T}Xo$rMUVcjK+`bIEe$Kb*&y<-w??k2!F7>_^u7f;EIyRIys6T? zzAkgBTneZ+iF-!Dm9 zAryEzo{K2c@Kw@%JPh?-*KzLRlh2gLNTyEVF-L8D;4(EiUau-bbFtif$Pi$Ofb%0B zOoBb1xiK_8`gE1_TT~;RAZ96jHd3BLcMg5Q+Gpj1Y1rGm!de!GXH*F89IqUQSGNY# zjn&AlQt-N~MlBN0GwEXCYN5>_J>F=UBD(iVX4JoR5^LO9IFJ6gqHWY@8nh&AjIxU_ zJ}Xg+>mGC;KH8oB9GDKIqAX(CX!flP3wH_2PVveW56bZ9C9yl8Hs?2?ETTnSDK+>d0pUfF<) zPER!b#Mi?u=RQN0cgOhk9mvLEbuii&QLT`ac5bfh5W%36tzt0OaZ(7jrCJ+L5K_!$ zW8F=}M_EDx)@qU6CEdc4yKhyME#p1T)r1KK&+2RqEhxpCz4-Zk{M=N0@V~-Z;w9i-_ygPKFUz+wm zDCH%OW^_1R5oqcvJ+dqRPT}Lwcw~{Zvx-`f@5}a&rg0w;=kMVr32o;VBI&|_G*#ei zYodMkaTEpxvdRP)6$D*uIc#63O8D2gnM80+{BThr>Db_odhYEsOeH z`+xa)VfM%9aE{SUC-!lUq|C}n=MiW*D?mr-8L0gx^8x817!l9q_w zMbX1-2gKBo({pB|l+yn?_uK4FY67Xu-lB6)c(VIM$!F?!64j ztf2zE7UE%OnS@)Qq1zO*5oUFI6Anr7*l7nWHa8UPv#z)1xYp^B7}|&O>s}BlIf39Y zO?mUi6B3~ZVJF*MT!O(mkjYVaT$il(kDxmbB2w?-Z-8k8?PL@MCV3IM71fIh zWhH%fMZBwMpq>+QiZ*)ThM7rGhW~UpL<2&FtAh6gkH+CM%i4^sle$`|*v37#&XnW% z2k#Q}PCoDT%&Y`S&xN~+6ebbkt@mf^mphahC=SBztK7tEC>>a?vP1-BDa7C0v_R&% zeTzjGKI|c(jf6}J>c6zD87kOaY$$72V7~9DH&*YJqjQ$`q|#+@#!Ocss$k=^$8V>f z2E-bUCnb;^QCGcOv2}3BD!1d=Bv=M;UEz4oB|uFo&V&pTWjYoK9X0Sc^Sojv4D7Da zSL|^cWOk+r8VTV?`Ro#Kb7Gf!78gE463r2;Sf}k*y&PBQbM>Iz+&(nUYunpi{PLI; zw!B>~h&VxKQNP0IPqNcP`VOIsDc&4L zCTBCjoP{}Z$>SWrgq|ESrFh&ks%->PO0Gjy=htVleSdHa=VafGp+zVslRKCH38!jXT7d6O0KAbv9m6UR0M;H{Nz~kIRzO-Dl~#Bp)cAlmDS> z!sg8mf{^yjjiUNU!v3V>f=NBT!|a)paf_TCwPJY|3Nv{hO|u1ANOo$*Za0=Y^Z@sG zvr1)4IXBAU)#*l6(_20f*LQ$t?cj%fHfCTdyV{54rfwGgQEi$I8US4ZIQ+oZ4O=F@ zYmB-Briy{~)UfjBu?rpr_1(do?4n3clq!;r+4Q>+XYC7slGG40zbCw~#7X$24`*`R zLHW}>8~@LsEr5aI5NUK4N$1lov^Y?+X93fek$;tGs-7dL4RifjtqqtVw;IcET&rHz zbNtaO(xy(~%c%r$8DFZ{SP5Pmpx#sn-F2Y8DT44(zvKDi^r+MX@a}Zy99gbE|2C0adEMw@+CB$ab>hG;ldT*S~ zKP`zXz1lyB%qwb$br^$J8Dc3;)HD08=}MgGpk$_sU+XElMxy0I zUtfsw>9Vq42N`R(=0ZlTGN=p~q|SH1OirIPQk>d1F(3FXHIB@Uq?;Zo(X0;0QUTc3?bo!yuTU}tR~6G9^~jX+7t9tB;1pZSrd; zE62Znga~Fhp-xFeKR{4-^>2CZ4{GO4Ku_CgM~%A+swQcziRUlhVv=5DgE_NUtFRGU zWJV5!78PWC&gCszk3@2WA8#~4uIwCnhH8RlgOot4%QWx1Z4F0qbGa5)6w>@W5sV!P`gRBaJ*p!vVZtyO^lHQ(DdTLSglXC9*El#L6oAw&qYp2uR>Gm`!Mu8Ki7rTbST0<%PC{y$}%?Ja`AAASMRvnOZGEw7C*>U2RwAx(bQIqoI(D!1A zX@nnZ*mcBl8+jL0?3g!SB%x8$g(zxKam~ckLpyGk3!2aK!&vgN=NoOPL}ZZ>gBpF2 zD>-&`T|*_(2cv~qk$oKqM~wBA_1aAcdU0H>S*_)E_v4sS;$xEA*DaGAwHn!UI$G7a zaPz$;_r3N$HRkLr0t5eG!*A=esI6-PuT}+w?36Ca+(3>pv~MnVg@J&XT~W8MlD&(M zM*e5|R!-L#P*OeJmU(f#t6FrPf2?hv^4_FbAFBwCCa_YdjC`6Hqm>J7>A|Pcn4Tqp zgy@dWoraHvb@*n-JWH2!OkT6SrQ;nwX;Luh9vTj%ro2Vx$34{*>y>i6+^JV2a2%yP z6RK~Iq$?P!3g>el6XzG++0rT5jYCZid!^Dy-7Vg7=#=WU3pG#+C?E2McZh5@CUOpI zs!y&+iqDqO$7>Afx+f>(YTK_G%+rNB&bDe^qs?3-VrhIwkl3F<#`Gbhg4<*fU-ueeC zWY`*PfY0U1C?#=*Yu`%AU@-)S?6B|3gReQP$8%G@{7fs*OHBLWSuYnwe|{9o&aNoC z*}Hs4V9MkFWA81)qF&d&VMI^?5s^|-ML=4l8-q^iM(H7?yDX%U8XA<6j-gv6q`PB~ z?izZ4d9Km5_gZ^Bd)>G1hxgm_365jxfAx8tzc`I_y=T4@@7No#Vpnr9II;M-U#V3I z6Ue!KAKR~|WNQ*$$&YubotlE$PP3_7FzRtddo=;3Z~OW|R@v%6quhz%1J*}sI%6!d z$DUtzT3L&b<7)*yPHq(=w;`)A$ex& zI<~9|BTQ@RT}P1%sfClt$?3t8D6iQ75DI3^e)OklqXD_#c1|YS;^RfPOPSzGY~z>r z2ruzDqtEADYgso7|6k3HAUP6f$;$M4@z|-Y{<&i?hTp5}uKVq|X%m;U7Kh7a>&e9) zIi`0~+`;(VsgJ=Zze{eJM@_^~uX1Zfndp)BH(}wN7>}(Q+m9HjAjiw1OunY7e9u{r zGqZ#|`n9gwntam15HxVicX&1mGG>2QR=d0_hC}wX4WxYfqv*-A^@&1*^(g$9j4@aA z6>ZY1r_L>07597vnh~p;_;CF#*({U+#iU4}zh8-cDL7|yJMm}S#FZ+B`&d3BGlP)y z@F7aD^_9U_mQA-obRNiWm-xsk=EBKtEh1xNjTj?JrdoHZq_w7h}AvHMx_aC_!sexX2RHg6n>p=R@g`k#`t>!e)RY=FwQX+^eyuV89n0cE6qNB=}tYuN}qT=BZ#R?m{EX+pt>3c>C}kZ0Yn@s=IXinh0&y{>qf&ppz9(HG>FYc!XV1wvOr(7L3_s+JwT#CEnmI%x0|c3{ffzP+NzuKcF*zH%rm`>Y;93t#n-kBr|V5ZN)~7PBSCZC zyOAv67IWqUneq#6=(K71xO2^_|4H1hp?NRXyo*D^nIE&5PO@a)Z{M83A7X^Ywg4`o zu3v9LS?a}O$#M?GDZhHlvFa%nu-Bu^&FkmUkvL7Wx>W>iz{NOuSkt5KMRpBC#s~vs zVhPjqeT2dJcmr~)2-x#+j4Vf*tZDU^IF}QTR4tt{8Ymd;Epu?VcP_iS9lfta`CUeI zijkcy6!w)_j*OZtCGEwAQq4+QQ(gCmM((l_I3w^!G(sB&9jPb& z0AXw;Qt!^aXddnF*Daf+WHu$5BthSmj!v)yHjDI1*K3DITrQZMOJLRNc++;ib^0Ju zR}pNM?8PHt3QKP>x%F}tcI`B4EU!4gAS0w;I)Mu#8q;_B+=8)a6-l=50PRjfFfrae ztz+@c1Z4xts2{$VZSpkGX3I13zg9M!+Y`!lz1#qG&LKp>B0Cmp>dnIm99*cTO1_kc zc)7QVcx;gbadxokAwEdbbiDRaetHs(I`Rq9?ave0Q1$;gY%HOTqy}9|KD%uUWJ^Wl zYwC$}VXZWj8|pe~Edu*vd~=bv#+Kd(jCoj9m=D)#d0l(vFD8wXo);;fz!MZo1>Hng zN`G9I`+}GL+;4=zo0vT`nX)hhbsLZRvjI;f_c$BbS;Z=~|7MK*8_j~|$6CgC^>gG> zsib~U*vnu1sk`Y3L*6sec!smPMAJXb5KD=d0ov|ejMO_?nW-T>lMe`}W%k`|$8s}Q zgUVPGKjyY+nCouGNOkPzaU19q3-;IqWH_DHTJHR zKVqOOT)tw3`Uc*M**A5x<5fVv%y24(4UHF+aAn!E_=)4n^{CUh+4iTe!w#zZDxb}X z4{P{|-NEVXe%P$wwz3c_wB8)MGqhzMWMPnIRU$rN1zC{~6&4sCw}#$SHep;7r?T{U z0r+N2oygs?awe0N<3p#Bg^N$n;Oyx}i7c609VnGxCR;QjG&7ObT77)A@&&s$e?oqF zWX9Zp_BLZICN2g!KsAysh@tcBG~-@Lo3h+#%o%~yFB|=Kj?Ge9&km=E z@VTE@&ueVRK6(Zb%gKBQpoDmy35lQa9{JPf`Rl^w2rI2XGT7n5i*N75#l?DOlRW{} zw6mCCE76lIJhy#87Fx9lB&)$1I-Znu9xeeftU7EqDuWD4dzkEHiG;vB`ThRLmj0es zpI<-O&7I+>O5_;toamF5meO1M$f*pkgyCYv6dR7)c&A!fX->1UC^h9|;XF`KiSD_N`Qd3zbHMP&M&Ef)2ZLD?Hvz*{eXprpqmI}aK{=rypQ zbD8R z3$S!1W$qEj2h)n3?SE-aE^q@iW_VyGRpLlFCU{A2kA!Ylc)BW%kX*BuhEfJ-^T= zRzDY!qkHGxaM|LX?22ZW?s`F+qpk1amrww1;_BH$^bj3_$mBGMZzXm5m55S)9|tg$WTF#?WfdQBqrum5u1Bpxt|t8eZK=~r?QAIVO#-XyDfxO%?1K6}Ipai^ z%e8Z7U66^|L5iMo{ETOPvw?$zTUiBz+;_~^n{7RjJe~2vHLE|45k#SaY@5iQvk#YA zLiu(-^KB3`6m}9vofCST1~AO-arOiP96_Q`U*{?Aq*nZHcg@zKKTs4=xnbG1V+`gv z<+iJ2-p(G<&|$^9rp>JEtL)X$LSY-FadtGPIQumSbwiT!Jgr?$3_?E+QUEtcfVoLt zbvx7XdZl6s-Lrm-VW!;De5c{(UWNJ8Kf&YA*QH+HCDU_!CUm;}&F%{}SrfbWPEerU z{s|J`@nMoB?C<;YwtydNiGJ(nr|3PYnQptSb8Kg(sG`J5G|gxvL4Fw$qWdB;gg2C|Brg~uM;kpY zdlMt7WFj4r-g>lS+e&cl*gLQO#NwFW%*=>Ik-(karlW;-*U}g^mm5PI1r$;qEk2t* zx4rihRA@sq)}dXyRuLI)ibgE7`fhaR=V3lA-#?`776;(N7TTF)$Z1Z#95z71mJ+>N zv^cC+OOK{q8X_-aX9z&}j}Wjn{ln?Ql+$n(1rf%cZCyLhC#S-|dXew&6mR!-#+D~4 zoNp~yba9L=!OTxOJ3XVd|45d}xbLj@e>?1Z)(FCN2D zhd!tZ&3u8wNr$-x)R}Ew#k9K}0O8n&iTxX0X{_fDNW!B=vI~j}89iR~v{Bh(d-wBK!S$ghAUCOF<-nfzCE#Tniw0Jn? zQONfYFECqQIlK$NabygrRbDsu6|c+dDFi}gwj&}GljJmTxdZ zlb~39XKT`t(iOV{nRGoX8w;+MoC|C?6IM7oquF&3IcxH1h~b(EvMRzwuWh9WOc1<; z0A!h?e8Q%N?|42EF}5U%9P3#f8sU22(9W3kG*>-;*CE~EC+|y%9Mhp8mQ1nXAqT<9 z@m7az>w49`EZ$U_%ETzI&UCK9mQ5d<&Zg`grBF3wW;hNohNS@~5fZ9r){ zRy%NeX&)nQ4v>JI8qvfU#iG?ow+*Y>#X76W#erJ)_B{vb1OB3K8Cwx zl_ya%uXmOZ-C=m_)qKO7ll%nV-IkJEcB@wqv(loX949O)5!SV|M+v^1PKFAy#zda0{oT~f2zd-HPwUe`3mTtSEf>WoOo zb=Q7rhJ`s5AmR0_8+Z8emQ14kJn~h}0Kf8f$zyOEvnM_}P0QX<=UFlA)H`gt{7rH& zDD~Napmr8jdB-d7lh$~_jhph?o^hpV`j>N6_b_8Hm``*n=c&wrrEwz2Z+*BV#WQ9+ zXAYFd-X&Z|Duk!7u3?>4ZVkO#g6m2yxJ$%bj&03k&4r5m{Nq6UoTab8_-SB9jtTO7 zB}_{_1##}FaDIm!uDKDmQ9i}9S$#Gojv*-^;fbTP%4o8%$FMg1+D`z6+HYq| zF$`ww$>S`v(!#gd?~mvd4Z=N#q+p+%numqVb&IakxEP1gY}6Oeq|5@|$_Y1)D$B(f z1p|$Pl)#R|4MYRoSLK!k5?FBv9pegKAu(1|i!KvAL&i=_R0coD-tQ!(g$ms*s9cXA zZ`JKj&&@qQ4m)b&kX(uk>rXG_GDVL9h>}}Ppr>>^6IKIn@Fnk7<3>fiLgm)!9pIgO+b z(sNo61z2~v^=DZDf?s5#UNMj|8^bBA*{nY0Y{y|pybd_)KDEjDa?f!b{nz-cKzlL6Ilf4u>$ z5YFt^s?SN^H#*S518CVipMS`QB(biP$(EODpjajp(F~%79@gDdan)EJYi%AzL)Y}i zK`y(ecf_8rVD&#u>q~2Ws$DLOy_+|dt&&$|nkD36aMcg3J0KhcZvv zNz7gqTgV~$CjNn*FC*^*-1vAoEo?U5N~>rvG+M(Z;jqDwztpybYT;!*@WB#Dc~D`> zBl7wBeO^D}c|LlI1O+WwV$6m6+v~8N7IH21MlOj#r3FyCBM8((;R755*W570j6%lT zP{j;O=aqgsniQEiO!F!umd8OCNNiN5re!qTiSRyLWl{`CW?y5^4^10ikKen ztTmqJaG{BwK&{828LTVFH|5q7+WKygJJ26H!;YHoj@~-2M3uM!O??}U>_j1?>Iuv|IPA5=aiT}&_JLH@{*DzLtpt+ZO{;gT@%%&FWg9=>tA zw+It*TriI58(&!T*m2qe6D<_+RKLPaGn3OB8qSwJQ#b}PA@{X=8wqn`QJjP=Js zOpMpF?IPJV+Sh>R;isGlfIWeQjH`SbKQ_H=c)+OXJ>d?B^d#fEBHCAT3#lR3O#y9> z>3g{)F?zwX)QPosju$E(R_^-!h-O&p%eG!mFgaNnsY%GFV^S0PMK1jnn6KTC()#Fg z++na7wmPT6IHv>-qz5|VD(Lt4{bU2TZ*m&V3i3;)tqZQ9VbRNHc~uC7n1kKB*=j%+ zlF#KFl_M5-TX7)+Y7okh;$A&0C!XSUprz|RMxwRa#y(O8_jFk6j9ImO+<=Z36fi-o zV3+O>&b14e3v|5=wuj(m+xPFgEH560^3PrU*D-m!hy^QHkrmHrh3YwDA_x@;N-tyK3HkT@1$Ws@rNQ_ z-VP_PeB5Fu!64~I*6D6~EEh!Clgr5hc%8B?_9T#5Yd|Of!zcvJI7OIt1?C!Q|H7gE z+Npon_(dfFvVTdjUcFq}6>b2IAqRF|J0 zfjNVJpXc}VhNOVa+H9Xy`UlSc-=E;u83zUhAMi^o#ESoeTmMfD5GzKL+hYVXeos(r zaUJNTE(Xf~)7SkmSATVDpg3q_@g(EM?+J=ugRUo6vby{CF#-4Hzx4C3Rw}WeIW!9j zklzy&lY>PurGLyssPiN;!44En@j-acMR zkp!>{Lh_ht*{uq_{jgXL;QPf``ty$N1J#R2mW?k{resN@y`{EUGo33m;K*8 zqtt}n-HsL^0{`*(|F#jLKYT$<|KeX7`%iDf#0t~|8!{nWNd6Cs`~Tc`z#hr+cZSzj zj1Ui;A+rftE5G#=z(olEpP%tB&vf4qG)>$S!Sy>5T3<00Eb#M3nOJBpAg5{PQ6}5c zFMj8*Mu1EgAed8HkC!s~#+YNGdloS5VLc*2;GiF>sCNI$!$Kw#;&Z@>L>e)#PYnorkOfwxpmxy$&91zZ74Wl0RBfJxb@KSx{1 zz)wA28wVqYUEOckl1r2sdz`21w~jio=Y*IcWW{is-&zt_xacvy0H>7yn^^BJt@}&o z7u^S49CV{3<H|xK(Z74N@2f;mBG$;2{zJcZrTm`V#Vt0~`%v3)a=02$_fc=et zamao_;a&7Qz=Arbe&BJiuDlxa(??*rFU<(l^!wNA97Yo7)Z1fbDbdOmd+2pX$Ns<& zBsKvs*LJ9K8E5d`_Ls{v^C<=v<7O1V=>Wj$8b;uXzR;`Yb+0JA5#*7he%TV>ZNSh@ z2f^grOu(i($$r_Q?VuRab|BXZZaVkOh$}P;z6YF!3AA^u}3(r1ouBreB=N#{d0vF?yN01 zTF;dUsq0|jM4!oG{5dKAdEx^92e9!h)?{t`P76)Yq?UC9OpM=|+kskOyX1fi z|CU+PeGkw=6VwfiKR1BCcfy|?rPPT&#E&;2g8$sGe>Yxi4BbK`6a(XT1{~ayF;xG{ zE&0FxP`f^8;aCF}#$UGme|&yo7#MKFdXMqn36zu$KnvT?=`jAe6aM_6)L8UR`TwT$ zALIM~bxQY^u47|(vi_8dD~g_ReFE-C6{|T09o#Yd(q=u$RA>qFaM#OUIQyU7?h7!1 zo8Pny1up-mDS_Xs8{ro|r`kxaa4o(|unDDdp5{Iw7;SJA*jH0jp6L-eyZjVL+(K$D zP3zg84cz(Lv`qEHl5xArFx9MMQ^#7qUgNaxGV_Q76#m++Dh5H&zvngh$Am%2{+6#q zC^<>P(L$Tk^mmY#W}~FAXk&d>Tf*Hmp5z4U-#3=)5VC!>l{e zbuNV0=ybw%$>!u_yUq)JFqu5SNWW)RJU4bkdYY;MVwI~Krg%>#yjoF>7G}k;JDGBVRe$9 z_LqH*7~04{1P>^7fm7%q4}(YqoLCB4EUmv>iQ1Ez3G+VsMsD^lV@!lV z9Rsf~HAgB6Q>FNvyXks2!#@GhM)4ugps0>q0t2xQcp)GDog>!7Y{|l1^EL;r0v-C# zJCiQXWi;rMvg_}SXaYgiCmo)+j|hE_rwHJfa1b)^>J#DpmG@9I?d)K}T4%0{4~RnM z$|ttoqxma0h20$|-H{tRQ?CgMiVH&i=rlh=GFJdk&Vr0^C_s9c^#Nn{2#8^J*)kf3 z0rb@ZP_fyfZ`T0Ptc&ITfk!^*kEn{q_Z68y?k4?WF|Uead#vv`4G@d^3Kc7aZki{B zT6a)LZ{aCFU*KULi8na}il_JJRe0@u^AORdyOiwmXuZ6H?Nuz^u7btS+%wp0Q=QS( zpBLv;K&@ik=blXRy@diILm!{`k1HCY0Vx^P=beonOdbd4;V(W=_nhr?YFa{*(k6Vp z(&i2(B<4)JnATh$r_%eia9guLtsxlM0AO}=@i#?X{FifxpE8jYEZZBA0B;gl%Oe7E zL5r(Y0$ga;CYoflE9ov`{5{;$AO`^e9-e-VpR<-Y3pgZ%6cqo6%<2mE5$3ylAh^-Z zx4kDg2Xt0VQ7fF5d6u+(kBK#HsupHz;K%l}!}D#CAY==8J1S@W?>o!qN6&$!@y?n7 zN&pxjOl^5X!xYPa*DFoJxZ{94Vr%sh0d-=SY{pKuDp-d6+=*@IWK&dT<2;!`sA5Y) zozl``S2EGurq2Uv;l-m$w*;!WpOf*in6P97E-HyLtew;twO-=@_cm7` z;MC3yp+c%(ZL4ST*e@HIJ+rbt0WuC=o@w)Mqo!;5wD@8}>Na&72eHWJ$x%Z@@)*Zj zQ-Aio${DhPQ;S2aqKh8y4v)Y$;bh zjH{Q`#+f`N2Ohax*8N=dPQ89=F06Z=o0C;;^clw-qU95&3Cn}o1CO0@Y@}j(2yRh^ zP;iIZ`mCjz4}Lx%-lOq8dLgv;o%Z<0<@E}KQUE&ds;*QMi0+yTA=Y6WkbdM?{bDgt z@|zr*q>Z9E2!jV@t>xTrAo~ugJbCSrTsPg!VodJTm1ioZP@^sNrdzx{w&-delQ1Zv zuMjh9L{bK!8x5%Q9Z)j_O)r>*Hk_KA&RiCK9|Ai><(L43#0~(PEdZV)2V!4mp`9io zyH+Zfr^thiTy?}x{&S$%%vp8{TS;^py(e)R{nb!B8;Tn`w!L>w_BW_&Y^M3O%kCrZ zyb>SJF0#TFP-|0-^&U}>^;2VC>BxB0Ba{&KBbbt(NnQ8F+tK?J-^L7sl8evX*VGF2 zj}hOWrOl$@5YjH4CLsEPn#p>)9c{Y`P<)e~dj#ox0sP5w9af6p@kv_r&IbQTKXEag z6GkHwJX6MzqtDOw2QsxgI@k%qMkGRld6>%r>JBE;hTTa7FHJirb|&(3@=U)>n=Cf; zkoOVYX^Pz0Og}VC+FW~D*jZzt)z1;}?m@nHXwF8CYdzPT9Ldr)@2?0+2_|-;Z{4si zn2eUnX;;`#WhL6nP}+aLGiDYPLdy3X7@y@Ddai;_?QG4m=~3U3>KH)-Bln&B!eDT_ z1XGkmcb7LRC%-dZfK@`@!|PnLSau26V-%brn{me?#&P{{{Yq%2Ec+{^Z9ZI*$$=gt zmH;jERO58Nzk> zRwr|QmuUi-QBG=!-s3bDRF07M4nm38eTgT?f!Rn!k?dM$_lOuVS-P%N570+1ZH{NiT2+}8 zVjpOn{RkD@3Jf~m9a#qAYs?Oqe3AgS_fZH z0sn>eKIPEG&;4aKl{=YyYl=(8e)@=9eE}cuW0ctz+e~`S^rcYI!B>thtf{_lWc(dl zF#}WY-hXuglj$~7pkesk7kGg?OWaqURo6Uudhe;lil*VpyF;PNrVgggJkMQBy_e2{ z1vw9=9eU36r%~M^h{Pq&{W2kB=fLhNGrQzO3&l@!@+f%ShowYk zXWj@`zc}u(7u?}D{lKS?1#aIf(x0h+2fv-9T=tC`Q}T#h&P!pfZzld$Vl&t9?kN(A zj4hQ!@+oXj*Y)SR&>XuU52R@01iY%frm6;DyE0*$FLuJ-3qtyP-+xHEr_vJKpJRgO zR&2>DxN_e!g=BZ2r{Q}Pql(FL_!oLVdX=NhiJlvu!bV$O?hSUtuvc)-3sZ_0_BWAP|>4r;puJ(eVp59 z(F-1tp=u{f3aG_+X*P>q^`L?k-d403=xg6C9Ac033}Tx}rGxG`_L@$3lD|elOakF9 z?kD}7IN>k5Bi|J_Xf>L5d2W4v87Xn&IsKR3Q=P^wBHzc4AFns~etnB8iG=pT4lN(L zOy}cr$#-6k%2CUeD$wOO87Y{0=>7HSSdDFpP+vh^@bQUkwpG2R!%%2KyC^*N=_hgm zQI>^HD~^2Qv@f3_17@S#>u}FCYn6bk(utf0b{nALAJwh|ykY^AtXKZ5bSGOcH&bYD z=HdbQu z_;`Ik40_4~d6mu?7g3Zu#UmMYaAAolFSp1-ao{3@+FLTttU!3h{^*K-b5iv zT38r%Cg$NA_wsyDQ`ANgog-v1*oTI>#S6Dv#dh)LN-?f#XmF z!5HjTXxTU@g)7vd!_ua?oq6v0nTf1AJZ4XB$cOjO(^#{0IwBKdAD9bC4(J#{{ z;3293Y>-@v3&|2zMaf}(T4&@Q_N8xvKQuKDa$M68C3@IBze-vAs~mx^C|>RMS3I8M zEZ|}D5Y*g}VivBn?`sc=-%AU4BEX*ys^RWVxxlN&lMd0fky8kzAUQ{5)+EL>WT9`r zZ$bu4Mra1+qmBiK^#rTCPwPynEvISjW3LVsw}~BFh_JNTlA&I@uuOO=HWm{3mPWzY z{4?_3;NXf|$;Pn3+C;0P20s&i%kZwNev!caK@wW%emtb_%oE$494}<|DqYGhH(qHp zv?Apct|;0;mf}OsD*bssE$sUMmEf3@oG5CSS*MJCwK#MH%-MLHe)HY1OV8=gPhjba zDd*}?e4Df0-OjCgl%M0~U>|)RU-!r-H-`iaF3ST-H^jb(LZLh}9t+on2cRG0CsLA6 zv#O+*`>;|0{Z_i6;zTA#HTx4)=0Y45iML}Li{wDbgrLi2gkf`F8_N5Ltv^_B-^xnl zy0iB=_E?2agS?e{cjuB45{J-i#6qEFF50n|(>%%%fcjxWiJ8reRHl>k^4N<$jkp{|@WEvWX zx0-t21%+R(xW=?k^_8i z*vJahywqbeo^fks+NHe7Ts#FX^zr0 zc%L7e>Fk(+yeBmsif_`9(L?WCHW%{@FsXP%)CzRx=_II-yXYNYTimad-$81nyJx&L zdjr*`pki#;vlnOoW0?aA^*C!M!Aa(B6;U?px+~rZ{~E6pRcCbz+FJDG5bLWY19G~o zExT96e*Sx(Ie~or(abl${)LRqgB)(DT}S_e7ns#@Bin?u8*5p~o_CdZ!;Bc@Kf7&B zdGolLv|i(swO{3G%`_LKh`${P!+o^SsjZ9b6?<3y4u9330riyc z87n8VWj&6CIF*4)q+?o}BH)^pa(=%{dE>zG%U5yxomp{Ec1ob^+jQ7UKmkW#M=)gD zv`WjcNy|YM)wj^PyVOHd9u%t5p%q4ja7v%2X}zYFs~WSrKwZLK_Uc0osfLP+*J?St ze91@_t>jbL^FHh9PHiYz%19Q^gDP7&yMsA@d!IkdG;r1_VLUzwo(z2)CnWm_m^LT8iGR4_vpOdz_J{>>6VSeAeW*pAQE% zU|~n9syFp%eSP6L#*E%6s-Cd0Qmtw+a&J@!vGuKcjPeDqYMhVf8OL}w8RDi-aN;J5 z;!e*N%=ulm!)u<5F4AI(Bw-95=6fqwJo;uH7MheCX&_%-+#TG{GJA+@AYzPrO5{#C zWJYZ}F}#pJ+(fL`Et3$V*+m)AD0740@?gW@tWtT)D;>^I^O zxAS4RLZB)UFKm%%!YHdJ*2G8RtY>fHQHBIQc@vX^j%cY`wVrgN7MxrvfdetjpOBzD z@GOBk*Q?UP&(F_UWqbO$M$PEqoW*Ln3XJ3SZ82bdwq##%x1u#mu!&0onpAY*S3MXq z%=kpX2~V6%*tDSI@{D0&EZloB&g|Z6Ep|<0zX;@K6j@Ij&S7l<(Sf}Q_DHMhyfvs^ zUBSZe*8Z)AtetZPug!GSg3h&e3OHL#e4S5BMZM15+zP6P9UO4Sa>1=T*DWvTbx&wr z&9WOm2F5_HD0LBKCGT=D&LkQ2=&@r7Y(sd{3>8>_y9>j`LaAH zX+Ek)^_k;vATiF>1l_V87QC$-$o@j*9^uH%(9kE${FW1?D>OBoHC}{2M60c;*-Q%a z-B@n;I{N5cl1or19fvWDii91djJ2S00{B;yH$pWdj65DUOMxx@rhiQe4vCq)%eC@f zb$4cLF+uHN-dwTHGBw|Hai}lFPMlg zIR@!Bx~nr!+tn%}k_};}&^b!r@ArY*)GY#3>zR<@(|*?0r(USVeCN&`X9$Z1T@@8l z0J(CXdxPmmo1L7lJXLG!J}4gr`Fbq`68u7N7wgxAA;1P`tqGBHJQu`Jw8Pa^vvkVF zOH0MT8+GQwICY>WolLuj$&C|@v%#scT$&z}g7-lGnXkmMlTIP)cxB0es{b|mjH`HuN@S)AxFtJ)}F4NRV2(?>! zhR_Ro3y9i}_tv)C`F!1Vhf@?g8|FQZplECtwOQ@ z$%bYt1z27p9Eq1{JjHNh11#c4)1%$1>yKU;@f|GfO$_<$f#6|2pp-R}OdFzAi2UA{ zR=!0&r61_{J}nT&){%TyJWy)F(ESG__+CLKM-n`8Be^9`XeG$&XN-A$o6IlTbZiLJ zWRzA?3YUaSR@wK#zwLM4NCPl=G(jLVViqz`Gah|ND0TA!;&SmhJlVLQVM0EZs1FYl zhvB6PN@BRdME*la?08?dUGT85bJX zCXL%)fwJk*J1lio5ahcP-_+D>7u^e2ME_t521Qj zz*x9Y!fmel@v)m1vwHrEvy>Dd|C$MOeu9K4xE%1}NwVuA zU&f)el`-jHfWM-grQFkuo?dA(n0eRsdi1o*CE{D2y6We?e3O(pIJ59Q>x7FI8TK>%lY6opY)R-Y}bbE7-uZ<3*LSG=q8Kjp*cLIJa zo0tbn5cxW9jnV2NM_+SfOd<>D074@Ay~nR-HUFs1yiqKx&1edyMf!U}qX#2S~d+NTma?xE5VRco`aYMEuU<0 znC^0QvibfT(YHRjE>InmHUY5YR4>Gn#9(lFoyd8VSC?7Jp6uD_@H}DWT6t&{ughh7 zehMa!o9URVwf3F+7KnE@rIo`t#km)_f34~1yDu4LRUk%HgP$ujITX>*CY`(E zgWdz!K3X*mvd>Y+c%+G3_E& zt=#Q<_nPQm*XVq0>0k@^aT4o$p6|r9_iCO01`{$gDcW-6TW)@J&7jc~j6zeEMVXr%u1U`i zR;=IwS?q2DKHG++j!1?utuwkRs6O_$0|q~4vz|5x=d-!JO=0`}b*(Tqpx33Y5v!}- zonfB3ry^9pcDQW3?l^)ig<=0#KTq?S&I^f)7qoLKL*wo&JN^ZbYQR zN8ThW%5O`I7>T~z7AwWNo#ZxLYG+iVIy&iwu*M8et91xk?3#13hRCVEICI}OUfo-9 z9xJ@Gzt;A(ImkLio9ey=2t&iAzgO>z>I$TFsX0W&IF_9$)HifRjSgpik<@4d>5xh7 z_yvW~*Y!U)pi_-h)of+u%9k&+Dr}O@Zsg5uG%bz>u5+i@ab39I+qp+Ql%;1y5LSx9 zi9CgwbdY9)B*5~P4>{&JeGw>MtMj8|ej`KkbmOFII-R))(aRWDZjmKt0Fw<(6xiw$ z<6g!-mtIL$f=L^IopMR{EvTZ~QH)@v7S zzkbSpmHzzONkjx+outilB~f;e!e)HIWjIK})-22s(k`@bl+CAYx^K@sf}k8F-AeR4 z`j(`NLsA|*8!z+G4y6(O;py5IF*Z*#wY+*!vv=cZiqoR3Sdw_=mxl>A2h)oYB1Ss} z1$PRqS4vDu#yzhO-tqu|QaCt#LWgA+CuHN7-+{EG_(Xy2a-DXKbJBpd%UoBUR>}AP z$h;Bavj|vrblO{R{pyO%bTI(TY;1i*2QPgXww_1Qcso`p8rn#`zp2plG=+|S_@PI)u7|X|{8hg19+R_W*r*%NPou3eodsVz)pG|py#{5nZ3pBKCqat7mhhn zO~m29egVt#>CC(1Yn~}u0jAHwk{{Mv$ZPF)BS8klxUS)i>N>KzRIgZy+>=*3u+&^( zH!SQl;ic29dl*&WeNJ;u@2b1aEk^2Jw;fCpmM_u4f|~=QnKL?MrxpMlY0omRS-Oz( z)mfp5;memVyM3+SHdrbdk}cRRhYLcYI@7gAXgv8ELmvR@G|%htv6r&YVHwP~^X<{h zyVJ-DkB`a*kCZ z9PWek3sdp?w0-8&Y47i>VQb66dF@5YN| z0@5zVEfF>O7|%%s5x4C6L66TxSm|Ag5G5X@t!riRjT$*H*sI&($8D;71so@6cMlWLvAqbqxlydq^%|#VeULj7Xl#Iv7i+3Q!vDy7vMc*R;Ya_R7D_QLC6OYI@d8dLf@IRl*biU;d9VK36Qt~A-MhHddZt%=aBvTxgd@noT^;v}H^w&l+BTECuVxUQW&K__9lu!`YU+isUHE zQo0t$1Ff`o`12z>L{FjQeZ!M&)jQ6wk9!2qrXxU}1eTEpil8#;d_D1oMLm|1dcQtd zCQHt1ai0eN*1fW|;fm9193g(7y}3NIO!+hNvBla$v_TEL8G-Lrr4W#wKOE|O zQ>X>YlpJX=ZoA%K3FE5m{X3_wvn;V!5nSUhD0&`x zwZB$|qozs2kMb6kErQ7J9{Vp)(oDTJ`FvcSE-qF`*7FK^lKkB1(BVuFPqW6 zZk8Dpdt_(No8TXV`6`nA@zSbazEsSz`1!pRHzF#C2UAB_A9|C*BIf3VEqyd3SLtKz zJkJ*svn~q5d(y()^PSO$f7~%iFC?9wHIo@g)i`g=2QVZT?PP;O(ym;m;MO!Yx3@(e zqG<9x{7c&0C=O`&HntxON$|aZaiH^tfy%=A^!65FN>8WV5t0#poLp_5OB#_SL)S;w zV1CZnnB?LBUmGl7jbsRg=BP2rf-L#^u4+PsRdJi>iNN>H&+$iVJ<9dE{JeGdHZzqo zHlYSSC!*OV^?L&*HIA1iQz*`FNbV}GC}+$gi{Vo846-($Ooh^$^hDs^8*nLdvP`JT zp~HWxflQrze5#(1$lHFQospy+>Qd#A5lFJI#@-MPDkhJ4m0}L;k}zA%NNuB`5xG>us#P)(sxAOMI zOIO1$W!`|_g1swZyD*$7PXR^3ekRCnLvYsxD4Eje3nNc#gP~@k$&3vNSgElQJ`XeS z!&@z*!&9cM*kG5+qHS2)aoR+s5$6w?Mli{9kE{lzR*)@gpJZz+Nv5d;o!`-+%uVJ% zT9EnMyK4c5%9;g|gbl1XB;Wc1hw&)}2`GY%AcsY~pM(PBuQK?@apw@FQ0BX-EOq#- zINQGeaBrV4@>^WW9~()ouYw$qtv7&c;`q^E>Z8|&!HN*M9AG5m{Hm%Y2jKP_`Ouz9 z^i~pv&6W^*day%evKUD@8cj}vA5lA$6Mi~Z zTy47<+iBc0z1JlxJDS@cC@Sb2-`Mx%Nd&FgH5?XQ&4;FY1!LjyEU;DA z*l%c-zRLKQ7eK8>o#J?otafI9$^_6B&cl6B(K+-SvP8?~SB?@I!I*7qg&;R;df;qH zYx2eySYfCAvg~8`p69>({3sGw6UlfZ_{9>~aH?PacznE30hfDQmsW0(q)vdYuktEH zSJcCbLwYcpNv%XSk6yFY@r^I^3R-2ZoTb1@C%+&=4#K*b06&%al$kk>WO}v0d1aW@ z1;~q>v*jMavQp@!6JG1_dkbAp3FLcI@4T$Qa;)0OpD2%O<8QlXFzxvXN6f_|Ldmm$ zyPhM_4YAb0Y#Qfi4d9iBm)zz!6J2Q%{s`|5<=>lJ1~=vkqHSE_``0^Y$EYrBk@2~1 zr>;L7S`^MtUpv$2B)NTE>-kWQS_Fe4HR3q?hr`05Xk#M=eZ_EKOuZy*GQbCickgpr5_DoMp+8H* zL@ASA@k^wL&hykHx@tUavN3$9az}E?_K!?vP$ag})Mx0C#~A=wRZVA~#91$?#9m*l z7zW6pXgaf8iti?5Fi*_R(HHyN^h%?02Bm^z;pXnJMKfqFSnkq}p1?0On&HbNPU6V* zCSWGE#GxPcId|2J$l;+l|%imB4HA)$%5A-=`GYHn>Qk1?ax6qR!##! z!9Bwhz>DNC$O2vv)H z4`aZ)aigXybj(JAh#rxMkWEYzTRt%SW?X77STSG$t`h17`NK|;ud!najeRq3@_^A% z$C|gE2E&t!hSeh59e=sMAb6(77;#yvWVf1pOp*}IWfl#3Lur|Wl5f7_6zZ*TvYC_< z`=QTOwZI>KG^(B?K6}ZX+xixlUX9N42UTPn`7ZJ9-w5Hule; z8iOJb1BE!D%exn|^cY5|j-L7$#H)DfiQrPQHXOuil*>#9ofL0wn94}Yf@Y?d3Gc4C zs)1C&colr3tn4PEl30L}=GCPsvMu3zD?@@ryU}z%&En6Z7fAVtNhi9$TMXuPCB_tu zqFlJ@fBlX}H7UMhZnMPZ+V0Bp6XCHUKhXYnXZgPL&+GL(lZE&ZoCW!SzC*LO`6if4 z#6O8&^lA7s2z|vji|=lr17roeSQtZC(*2oQZ&Y*;f|rT;gBZ>N5=(>-&3Urr{0GHT z&)BH$+7cZ8^UjbY$tc-^Md>~!l_aUSp{}i7CD^Xee8_kn6|3QFze3y# zeDE8PKUVPs(I4vbvvmA7@1{uyK?&?1Wk>h@n}_~M8junsOvn!cf%ACsw{8443;6lJ z)l1+6ZI-FkdHfHt|J7$O2q}>7j=V(l3SI2A9OJ-CX*x9Dx_9A~|3INedZV^}<)4-D zuigkOB^#dtxnaqi=+e`_dFY?iltSGDHPI3~{%6hX0!x{&125$?%B)j;;g!F}4n(?P z{*~jOzWDE6utEyhhwO5_E4MDXa?s|5=kbl%@eeEhAK&f2hvWaT!vV>QNpTweOaxAc zBPb(CL`*La<_CjbDzW(3kw@9(o>zFrP(bTND98?qy}d#-IZ8-MF=2)h!KxJws0Bqq zi#E*@?;B%WusR=5V|@7N(aKzcFA+ywIV&HedKfiJy_6Cp_QRP}@=VYSdcvu`8y^5-Bfz8-##X} zh@m?FgVjF3gl55*sb%rO^Xs$g5U_%3X!sF5}-F1lJIWL5%T zr~daOgi3LG^`fShVxksdq&8Z0<}bYFK%^S@MXe3U$14L1#aiWbh4jLo!SmSXzJPuG z`G^N0u$j}f+yNghe0L+TkDW{RQIU-k)W&y|7i51p{nQFh-a?^9|aYW|||` z`WAS86?}h6nHt#>WC$7s_eMfcpMJwVe;0w9CC)qPu|lpx-J^pzzY7Znp#bL<93cYo z61=lYR6LJk(EmJxF=FTW>M~9fhg4U;)g$mR zs_m|FQ)r8@IA!sx=LlsZ!!$g8I>qx3uN@)Mb#hNooD+jUJkHc}a5U*LAwrIFrPRNF z_1~T3v+JU(!VyhjKhqc&P>2Z^pvwnif-~M1-P~hDB~G|(P@Um-;r-3w0nN@p+g$cS z86W-zfbrT|GnGkMK2NrJrr!|5-UFW)K(N!ByS; zi=M|*W^f+e$KA8YE_xoD5njh8NyGX@y^do4J36)5xu|G0K@=SrF%Efq;oTcYnE1Vuxy6f$ zwgQB06s&O1E94j5Jvd_b){feHFDhEcQiK!ec8N&nqPypg*uC++gp3P|)*9i2{P$q| zN5%5^KR6f=@v|yemJk~nBJu&ji5D+wo8P~&Bop6J0IWU?(e4Q1A{vQsCLvg|`mdIm zKiC+;(1#lES>1tYK_DesS zBN_|;HOW8$qJ{v9Xo#g{4(C$}RO)(Qo#lSg%vG!iq5y&0S1?)X z_;h4F0=D-(fQ?ceZZEhT2~fB7CBh&}_`9H2QT?-yBbf z6!r;c5^L!0ApB()M)W*Q`m-7Xa}-u!9O_FR)N z@7y!%y*Au>AfcqUxp|f}RnL+9HD*e$XKhKZ|3}Ab9yC`94+tJU$mPCLFS7-4K52N( z(>lw4NCDL15~2Zde8Ikat@q7jkpMDw_fyy%p_!ooW(?}0>f9X?)6D??sfOsnypL=A z=ZzR$`2n|;^CZn9&&X4O^e3?bkwQyO#a5Tgjw6bi!WfzWH#lQ&x?*m&!I;~4)r9ab zrJqnhaX;R87s{fcO3Y1NtnsOu=#a^3{<@Xigqn@%@ z&MewRRk}%Yz6HIl&D8kHF~9k3%YI^ukSTD6 zQPFYk$vxv=3b)Sa*%(46ktUm*1W=1XlX91F$U=dm)jXHr&T^HQGY~XeHh}3p$4zg2 zo>Z%$+Mlr9ACk$|0yy!M_RxcNyCBTorG_ETN7FUonVq{+S3wDZAB73o-XXSfl1a75 zY<5`<69NGCxjKCb&EeUBU=Ch$6o&ydK$o#(>kY%tn(E+Z;XTM{Go2!;gC|l6LR4p_ zr@&|8HLh}Gq5-{4#cTY-O5Cqsziv2wgS{dYe@ypTg+nYs$XTT{Ln*rnG_UCS9H8af z4ReV_u*8LOku#CQ){*H=gapcrpVcQv&AM9*Q8)X24bN0d*8ci(v*Qttcz2zjhTZku z)6@KT&3!L5+$#pgBx45 zBX6(?lO)r+xMuO~Tx$A(fem{ka;>?tb~OxZruoSTHRg3;l~UtEMD>y@hDQd#?ptb# z#AOGW!~%KcQbgyhcfKh$$HF0sS*m(E%4u?!2X09bg;0!tetrog$9O}tmK}e(0iKbl z+egHis{prbSe{Xr3uhx8Y;63Ca7Ve6KD3o>0Dc1ZNA!1i#~Xd|X|c=X6{XIwpr)yY zS#@0+@7Armar_QN0pL_Lfw6fe2G2=_-PGMqc9c5x9{hyRh$$tCH^SIWv`M0j!;xdE z^dpvWc$chm`YlF6X<~MVManqSlAeJ+!{@=C3?mUSXO#|Vb?At4RJM|4P_0iy!&s$D zt3f6C%$vCcpKk3Po2g63Ev$_wXY~>y3_9il6AfCf)2HEUnCoTN&cuJ zyNduo4-stC>Tyt&w8yy4fND7V7RQt?mfSra#vFU^lqb9z`Mf9w%x${skSti{?l?8}&E5g+F zeBDN-ouyuzveu2+JaC*|iGXe63TWUcEtqW2Zx^(9B~HYy8>pW$)K&?Ap=kKHLoe`N z&bGwS;nSVaBHB&h$DD0Oc!5&_S^;EK{PwG%{>PkTOmH`nvH(Lj zqAZI&o5kMo>*`#llJ2wZ8lgrpVwVXLh{8WG<^fTbBLgk~f~X1~zLx|}+Ee$fOjNY{ z5dyP5g#$(Lm0I~$j4jI^Ktnu`|J{{nI5UgS!;`d z2oy=xB0RL$`vG{++SGg7CO3-aOQWz+cS<1}ZGGK-opgb*O}$imR8x11Sp@JJ1JlD8 zhs9Ce;gE+Pr0{hC@TmlHNcD93LP@+!E&zEqhBIf#XREd*2M2@K6 zZi=^SZVo452DhnS0#Ww)T`xemKk*93bW@sbOVF<_6@j6g`U>Le;tl#t-OP|~GRFyI zCoojwCo+7Z4LgZ_oP^M&Aj~zEI|IHP&knVZ5}EgpGnaPL-68I*Upyrj|BAjN$u5K4 zcw~8BES_?9&41LsdihvYp!|UWM)Y4C%(RsDcXMjbMn%#$^DnlA6@pL zJ$P*T>YbbJD{-7?oYx7FZq~Z(WLEhaZ5g1iQ}4+AtP$sogib@#QK-wl-lto?ltY8h zbSzdSNZin2WvCWCfFOoOw%}W5K50VGLw%L(_h2jx(XQT^!=czPR{*#)q+{~J+bcVs z^jHt9U*A+-5}`qZk5CeAoEP;ePEq)~oUqM2 z0>eZ#?Y(ZRWk9pe0PuLk9wiP-Xz10os1zM;b_Bd_1YmKU`#Cfc5rdHdELO?&eca97 zysCch$cwD}BD7ZYGN^Ef+2v`aV{r-UKkMVYv9(q-H2mBWdw;l2^mhHzW8T)5$^I1l zDoRBie~aVC?F*u(3!RlQ6^0BHPt?;h<}$JyK1&OStU>Llm7o#)!$$hFOA*0mM?cC% z!{YCkrss;iUpzj>&a*gkJDBO;*aRJW8g{iuzdSnJC)$9Djoq+=qTKscU9^DMsg>B0C1+*x+mg_2;`a5iYmj+&w4a!1GSGk@htW8MDbWk79Go>lsh-2ns8q-?3 z1~(enu4IA{xlx{82;~DPlwC%mQ87I!;}PO2enDT2(wB?6)jO&bJyQ-mD6>m!cENH83gW_yJ7CQZuyBe3Ombq zEF2YT3a)JMk(h4HHZ=P#yk!+WlNTc8rBvMvFz*%@)zGX6v$g&44dCJ};8oC{r9g@Y zXq+Vr=5ks2){mUaVf_+q0t2AO)v1m{z3)D?JjG(`MKew`ig6zY2CMDmRlSAL@Ko4}r%dl~M?>0ft=< zPl--4V*w-43Y+O;B+p31^)}eRx*N%65?GCrwVGvaDF&W8q6)WOUnX zx>~BeWO=P|Il8arLa!QU>1TbvcTl`m>`s3N-%Rltar0OF0R^V?X_A!wiVUhRnq>G* zz$-_<<@{^#0z@BZ zw-L_9>Y?Ls5erV|;BGSXWl0ejup=@g9f91P(#Ynri#j}a{fuK+lDgb^C3=2SRiWj| z>3e3O4gAc8DIP5so0C;lz-TmL7A}61u`JV`)REu+(Up2;Dw3ZY_@3Ib_4pKE;K!f9 zwVZc))k5;9RwjO6$Bm@mXV5{TsiTo3A0c@rF(*nm&t$7SGWOdSjaROePsbsmD22*a zstnbxR6l|$vLh^ z_m`}-+EnvX{PfaQ9zK>}Gzm;jjM?dyi$RTiPZJThLm0EiS$(WOUOWv_-u9$>cL2Wz2Sq z>%K}SxZv#(S0cq7w7zUD)_Ulha`dajqM+M*a-@)DP9{T?##gSr|wx=!Q3|?|cO|)N&4WTO!wCY>~0ucF}a| zws15}d&1HPeH}h}jGj)R5vA0JhpQ33%<3h9#{l)r^McjCt&q>ZPSpRlAcHEJXvPB( z)9#dURa%XRF7Fk*`PE4}5ZqqjhbE>8tz^~iRy;ehW>R~4g)aTd&ptw2OXeK=6;)oR z%_L6q5zwjHGVfe}t4OysTEV#I^Bo@o=HPbX`ynp*`aVA}xTtVJRz@lNy_*Fe|98XF zSwC{Uq)+)_Wm+t80(xY0Gi7OuGkH;KuLHhl>X0*zuUdp-n9$A~Z3h?d>SP%%=Sg!> zOc)>%v4d9~>`OtCBe&NwIEr;z>P&m688MP{v^PVuALLhbqOV z(!BOej~_mKXc{Fh*uO*4KV>cM|KNP5tEoHzp~&#bWZt$?556IJG}3l}%6Hzau$E`s z^{004V}w^4a(e4}4T<@APhe2s@_U}09<`GN%52aBXw+f5a4`L&5xVl)Rjh&GakPiWq!gIyXV5K; zB>-e@x0E4idyjqWVY8zq#bNS0f;%Jk!fw$UAWF>;naZ<*|4@LY!d`` zgKRs1`c6FR$}Mlgl5Ibpe@?Wo#39t zd%<bG^?Jk`XIi2vn+555YkH;|Kp(pF;zcOe%H!Y8|>}$ef zSEql(_zSV*qei}avHaG<0`v88;WP6{T?!3NU(njbhG?Y950YN9I@~5w(NAA81eu%E zB&bV3^HQblMljTP5TMYGP13PL?`n?BRAJ`+SP!D=n)9pTVp|AOWS+_G3n*LWLZC&H zDGHO4sIE86wCTTUGw+@?r{^et#B^pezy5q-LtMI(LKP$wlhpdNHa%2KG$Wo_p$7C+ zEPlWLVvwW!X9Zy*3Uau;u;NcA6}!HS#O<;m`(h|K6-%qCt98}%ypFt1<$2ksESqUk z%*@d40l(DUyi4S*qfX3!wszMT3C741haK_9{vpDnvkre_a9Bc`{aO1we3 z2p^uuEVHuqQ4iLGXKJu1I;YKP%%x3dfvPLF*{nm4PwQ{+M}29=ZkNc{hthy(l~yR6 z>&w}LM{k?XPPT0ZO#Wz>|)d#iwQs04e?Od=m!yH($h>ndoYG#S&9}(gAJ2U(4|rz z-)LK4ZP#VEH|N_J4(C!Qzz3gV=p}yVdg}C1?{ncz7WIKs$PZ4_qq%hndKjiYvq;bGUD#ph1=10`Vg{;f|#3z z=xem{=q3BztH_x(i8t}PMyB`%$GEdXGuF90u_Lm)Sr+ULkM;89H=qG;6X-RJ7e-3H z6lB~wvrIs2tT{S=VVgz`Pru1*(poA#%JvZEhTdPVKgFH)A{fb5E`a)A!bM8v` zIdBVfdnhM@c~XczG?fa+-1!Jzknc4!vqgBt?9KVYYc~}e+on7p4?Ht4HXF=)!k~~& zZPX0izjC4BKXg3d9(Nm zP0B~O9oIA)W4N>2-|@1X4*(dwa&A)lqLlBe59 z399)wG_JMK%9RZCj}E6w#RVtN^3!M9?l)Bo&RSegM=ITVp>~YsANhC}*nR1ArEIcn zN5f;0$rC~Ka>r-8ZE>vSr;)T^f?jY8nc`}T%7@q+X1xzlVz|PQpfv!i1^I%y4<%w` z86Q%?f8Lj+X26;*HdRNap&nA_x9p~xe!#l*q%O{|JEc7kk=4>za^6A1n%x-;dRi^ zkvmOaFQ=Zp%dy0tWj5UqWZx*c(wyt7r+zfagAjmc%}pMgA9<3hMH+lCP7UJSIEn=5 zAg<14fMRC4CPTuN1$Bw=YwqIc4(T)sYwZ9sH902U=I$%={E;xDd?8t8j>u_d#)HmG}~y-1J{7VOr>IfR8-UfS39Dd*XD>s+MdvUhy8F-s}8NB{8I$Nc=Ngy zfufMyX(@noE$0H2SCQTR z$^xJo$|$KV`k!!= z;-@cky&!~&@tEP$O6B1=xZ)76KOZo?Kf0Ejr2%?ks6c-DHlh?j1n%)04C({B3z5kw zQ?8jx(w#(Bn4`q^O(_%@l!ALr`kKJpmxwj@{b%A4EPC+Qqxl8_pf?wkevD#UV&IUf zL+65Rmtr{Sw@n%!Y7@o2Ea?2v19uS0dcd)6aKVqpoR^rL)++asK-x9Wu#>VeVLad4 z`SP{ffr*I}ovd6!`xBSweW~n2xG&}#pD({cLUDLD@$#Uh!eHo1c};(# z*_pHL>@;#(k_SE4Gmy=n22pizx$=vFPi+XOYAhD$6QK85gO|3$9J`{RL$~!l2v!=` zvulIiZB8#169K{HtmRbC_#fo%)N7ST{?l9!zGS3uPD{xth=#ZqbUg!p=X9!-a8ozw z(0I@WHHY4&$Te~nX`zi0!SSndi{{-a?z$(3!ZdPql86FE`8EKdFCLqUa9}gnlM-Ey z``InH4jikY&4xpl9B_TJTZ~oQdIqRjO!h|gs+J8$%L?Zuna_;^qzhp6j=%WE=RS+x ziJ_Lh7R?~cIz*teDXl8koBBp<|Deb~N9Eo&rqfEUIQ1FziCQbh_4i@b-N2cm^z>vS zlS{QXixRM^kk6DIZ0qXBYKm#~b%CCCCilIH<___KpEAufhuI7(0btQe(%pKg))+pm zQ;A|a`QxNYuWT5{p$Wb1k;H?OU>SS|PNAOf^4wkfzU7LIfPVR~ne|)n*!{jjSS?me zO%e-vMZZ>8sx&Kk40W2ZLdK9)`BH${dD;dy=I08Wg2h&Sq&8_Od+VNp{De=8(Y2-3@dfF@aY!;nPVqDCYZmp__=`U}f2h z-0XMAh!b*s`f?B5C;TIePCC+oOI|wy`>DmTl$DMdX@nH?)&q|DMGLM8BKf;}qYeph z4Zi-E_b7+S(7n}By_QHe`x^k<7;=r2Pjs}*jwT?AD02n$(B%OPD3L+4vCB zC{R7I6aHDLqSxLDhMR4(%xW~?@#hjQPJHGXMH-BRz|d;3>o;g;@Y3nlnn>3Nh3=|V z!AhaN3^IujSz-d62NPKs^SZKex8wlLR=Ks1)JupgzH*^)m>-GJn}yegU>0mpgr>7t zoj<8bxk*Q&XMx4I=3-A8K0yK>7@XoKeX{0$mLK-Tt{zPEYy$MY(TN!{)HORD?<}xy z^IF%?egWghHDr@Se+(0nG-s3>d6P+gQP5(!&AZqcM1)NkOv(I8vM_;wX=Nrzxof~^ zWvH---8lC}ZE&5(ttVg5Wa|zwu0g7OQ1kSfY44M{@jQDPOE34-2@EQE%*##p9!2-3=E7w3;2m5K*#G&$*Cp}Jxd!>fr-<}Tq9zCOy)El^qLf-5;%|* zsKHT=)boI)68e~?Lp8J~(~f~_q8bl#kv;kELQpzLYm$G>)Hw%X&Rc7$ znyb8GluMBeLQHdM)9*|P^I%ZQGA&-Z!sMQ?5PM^lPzT`+zo5bmWO&1wb?YvEgn59i zvQ)@?_ZRDDM$eKXM-1>h{z!d*st7oekQV^#KZn-#G|IpK%sDxK2M zY58Skel8BIaD<>kuli|)vXXIVqeZZX?2nhfw;26=nz{r6Vuz%|4$ojA3(ZCu3ip?L z((iz&atB?1lNO>l|N2L%qdm|kh!rp-3$|=t{ITqF4MhA{$MF;hV?3yTV;zR!mAQ10^7x%f<`=;S7~+qLbU^wi)e__{o5Y{_4Ql*+>ci30w=L#5~t zpMDVu4@R56_~jR^Vw)UbW%-Loeisgk$MLm`P(0!Oq*WYo zO1}ul69j@3IR2A0;cujT{$EcJG<)y)rF$>LZij)i$^W1J;`y?Fa)MgTrCpQ^)9vyF zqy?x|&pAO?1r+Em@*02)bM1F&|K*PS;slLLUHr>Oei!HeuZsMiMErkGc|B*Js5^j7 zOMH(C;EDLyOgRuvGltci_hnE8?7R2c1-2e9^<`o!fBcAXBLH$ZD!qmbM#3`2i)YY# zqF}WE7?#@^_I%psNjyU^dg7F<12Fhark4x>eyqeAv{}Gn1o)6NyciAL(y&?ptIok( zgsd6d9zW8e>Y(EC{{6cuo<(NEvunuEXij>SOIKOVJP{03hf+!mnx3@ydGZy#N;Vfd zvB}KZ^!{C|?wJ?Sz`NFfd+y1YXZl5WDP@KLGn;t%Sz-JIbT+X8!OZ4#IbG;?#r%s6 zh8Q7;>Q+wsoiDINPf7$c;WX*z!;74SWM*JL3XZgvE@D5t)geeSK@N$F7qP#gMIK0r z{}uEfTbj(=QBe?+y#okvldA`Eb#y>esGXC<-an|Fz)6Tli{`c<0|zH#PPIf3p%^`n zwE-*V2AERTKaJ<~+aBGu_5|c&kDJ4peJXAyYq%mql1I-}r4yyl4tG~b5bYyzW8JNP zd^ymB&sv^O2vn#E)GfarX1*>*>>$Js^{M}DA_QZSUsh1mpIYlVNdV$fyDzzQ#I>XE z@v>b*FjW|=F13R5?~m$sxR8n<0V5r4HT&)F8)BeiXNm6(7bp4*w5 z_9Aa0gJ8xieWrr5*?C-z->>?EGOl4;|+g}Uq&kuSI0Xvyq`2p`Yz5JU^j{!U5{K-M* zLTfBUSXGxtG{C#P>Iu55>p?>Wf-$$Zff?Jgj_w|8e|;Zx$kW}l>tj``UiOtL5!ZX z>TLLF^x0LlRBk&Cl&hi>U@+l(MB6`duc!h>Ph2&KL&M>hB_r>BST$diLM0CLSj!`p zF=)|NKt*b$h;0TZKC1ftb*hgJYhyo}$D>OdM;%eYs4GIyW@9#G6c~>C*%N{V6J0|F zOlB@uvx37QQ`c|Z(}rBR&6BgiDJp@{1EFwriXFSu^%}_wA!BcmMCk;fpqC!hD9LvN zUy^st5qd$=uwcL*uz`s;vSwBG5hal5ny|4;lKQM0TCefUPXSPX>=pV|hUcD>7G;3F ze(e$SUvJ2tDtz}j&}^EKg9}l|%Nzq;^@igVUP!TD1MLg5oHMzIV++|p+`FejJt!AY z5l=h>LF~7<>P+{PQ9}To#g4+GvSJqTWjoV$?zB;guJyc6~k~^lO7ad4pOMGrLe)z$WD%M-v9Xij!_w)0@^Yn6uDJhG7BfGPxgFz zm9#RyG3?&^-AC{qk=+A=xeE%nE z11p~XfY)$+;?}*1W&wl4gJt+BshWB2fo-;=#4Rnm*20ac0O46DHBMH6J+P4LOWDQd zu%Jx#e6u~X6t&d1u|MJ*oa@-?6L5u(*S~Z2N-~mGZf`ap=md;9_{d2M(MNN|StDn# zeX5sSOf|x4xRw;=sOdJ-do2HMcV%kCrp+J9wW|26k4PwdvFhxByLXlAk(At1RkZmx zglG8K6^E*^_KS_VTmJk~A@%>{k4Q4Fp9H{bVpoQB-7hIvP&W1SyFj(|F+<5&OQ*ZY zI_#7Z~eTvha2(Bdqw2f%tGloZGC*fibU{eiY5M z2E{`ar{u5~Y02Tf*QuV?)mJ*#G8c~$B)E@puQn?7iy=Rli+5E_hVp5{Px5-*!Xs_n zzP;XHvz*}GXf#Nujj^b@N%hp<7f$9X3Al$@tcCzBru7#y@nKg|rye$^b!jXqalO>U zF9k#Gfp;EF7WR+7H_0j&0zjsIp0#6ao!&4dFA$%U6cyY3u4;bj6Yc#1gu=($Cbn8O zx${+hFLDQt^SL((Of=cBlEhez@Olkz3ng*&YzBhy6>vs@&?tk{dord46*NgE<7;fe6X zAG}LqPU@Y!YlH;Y;Z(aqic{r7&U6 z1t(SUqk``C_uP4q#DXWoo6XFG{Hr-9Nn0F;)45FV>3f-zxAJ=5G+ESh4V&iAn5pVV zCF`7B!fCq{$pYVODw$1ZG}yM!qB^&r_X$K3q~l?mjgDYO+@T^ImbK9?QXXga&71QbIk}a3VNe8^1?jzqeA=fQFdrL zK*a~)yl%ol%dJtpvU6JUVg|z#m+>ezF4=-x48M|^oW`DjX<3RmfjD-hI;g8+tBu4Y zt5hG5B69^*;Rj>%ysP#|P4L4U)IDR=uGuwFk?( zU{a5(KDIXm3D4Y6(sHW3@l|-nwaZ%~Lc`fAX{Eett3974(SW)&#(QwIHKk3V6f5rNw&p~rxzov=zM8c+1pR((YvRSXf=A*Nt^-r6r0zdOb9MD8} zg7*~w7F{Q>)q)QKbN3O;?^ib(r~;+~wqbD7nF?F;?8@DyqLv#40^NKMzXCHCiR@WF z9&7LN;|8wn#)-v~{;4&uN7;u;0y~QEeY2JUqPwFss902iw0&R7+xXbrj`w-?DzIMw z-nuvRCD+8$3`sWmN>(_FMKehIX9gNLZ(9E0>fQ@Ms{%CJ13CeMn~jE-Z(Bk}0QY)G zU1}Em^biI!UM-#T2asa^VRrj!$t=G~Oi9L$wNAPe9-cc#N3$_Xntl-hM`|PGedrra zUa2+3*>IwTlE)rMo^Khz?Mb}ba>t#IhpegUo`f3T$yQeR)WoZ6u_>>!^BX#j$Q|zq zgVe#hx_&KpL1=s$jxV@V<6TbQIG*@%=Mf#e`lOH%-pM=6$8hzdS=C@lP*G?)li>Qq zBR2by0hmM@O`c$9bE;4R43GSH&Al^SF9Q}9V>MM*dnR;zPtz3;=k%64xCMkMY0?)B zz3|zLP&hpHVLhzp7j&8JPia`D30J1fn94hVXn|Hm#>%WbeERo`yY3@V2~rY#5#vP} zA5CP}+Z2>E<3&7DC(?#&+xwTuSk0$wHg8kuYa2%X*~w@_gr z`L3*edN2jZxSIlm_dC8jseE_8MYcEMFrH*xJoKV@zT?A5Qoo!qQSb@$Y{(?Lo^fzr ze8^tFFTl2))}vK;942P~D4xM-53WlgbK35lPjGeOq8x6bXib-%k{mWI)N4s7gy+eV z!jr?*t)rVS!w&So@vqtV2;x+haAjDoGVQRU*=S*ZT9;My%M?DDXRb{KQO=U4Pmhwh zrmSa{rg#zJ0nv4CwHdg0K)CBDM8uDF5b7r#=E_1(lHk1mgnkoyk6*N zSfjHhQT%M;Iw zr`Z(ob={26Qk>GO8h1H+bvMSWcuR^u^rqTOdx5vq9a-WWRT^wJ@vl7X0!OBqmpo); zIsxvSYc##ku=9m%JOQ(sl=CX)xhU@zRHG59<0AO!tE|UV4B~Fqle@!CX9j!r27!nt zH=9`lBv>ms+l0@KVPT12qqwAm4yM!couLTxVh3V;M;74%HG$Ko!tf$&6H-j zVO<;br1&xB6=GGg&)g;g+^bGj%jx|yix$(v(6f>t5tpu=%2iE1Qz2?UT^hGqGCL!j zi?!2FVs0@B#uDVR-V@xbJ0R4Q{~<2fKW?dWJ7>JgYWtacW{!97MhqX)yuaxSC1RID zK@x06iR>yatBSj>UmXAerL^kR(q)*PyOc&kS~jCFZ8%Dtev+0kKMS{AT*a@vT*?g| zfIyz|>E!d3L_ck`hEn3NKnDXVp1#HID<(gp_0<8)~ z9Ex$^9P1}uzQ(^DD4IXm)zwn0`-&gIB9$a7bgJ!hl0oU-t-SjNFWIUq)WxV5WUE(oAC4X}l`e zovR~6zdTvNS98DJ{gZ_~6WXS_Q*W07&SxEB)Ut+k ztZPk%8wj_MOE|3F8qO+IHVs2VZ5?zAk5X5wjVP9>){UL7#{IegeBS_*P?RgtJr67_$pxh1|Mn zNRIZ+I~)eR0|tF(OqcxN2Kc>Q-jMQ@vgRIzs7X6Lw;7I;m1()n#B5vB!d^wc`}tyO zMin~M9;{SmVW$d347;b7$!^RgI7pfHSGpWXU?0MO9cHPY!5Y$ja~+W|@T9z60@|my zCK5PSiVCvc+*29?k2kv~-M(u}Z)ZUqu zEu?S=xWHkh@#h7a6;xGD3u2P&3d>VbM&#t1p7D-TTaNJYJq3c1xs2yQWD$b<_FwW_ zj&se57-WjW2)z54uU?kNoSVLanY5DKwL4UNI=*ty)M%uxv)KD0MQQyFp;qwavo8gc z-UkE|Mpsf`;=|G8yK_{N-R(ln#W#eP1BJtc1s9yKZt>0ZbW@qlRPBVT)xow}`Jd!; z^bYP$(#P4gl^$@d#__Y>(yOPvDf=~q^P25wp^`Mm0ezv}_z8}0f!!d8?*g-@)xXZ% zBx9H!Xuy{i2pgYj>6UJ;H)$HT9IxE-e}%)#H0CxJS5ip_6!^!9mq(2=D1F8EG-hXFo6SKpqk9 z11;U!NZUSXM>xErz=vNM)D3}7CY&7`kfGYne|T3{r?S4=a(MgMX;nPFC`xNy?XB>J zy2lY?HpTl3OP-x;xpb30%WUk}*4a$ZTf#zBP9QhXSz#8V%rkt47VVN<6M?H?@QFJF z$ZuuBE8}L0VP|*zWB1Mtx<dxs|&Et{@`G^EFDV%Wvah)~edrYCo#e2@rl}Z(Jtay-P`-JioT7rUTvkhN5>@ z_|sa9@S<$u$5eV+vrqOL$%30v?-sBJUtNpL)y^`)vi})6NYYpi>P0+>Mymw&w6;&p zLa=vm0Y0K1W45UmE=Odvpm*-_5{Ec-H`2|B3Mw^7H%K=! zbYsxn9a2LNIpoaz*XVbj9l!rRXP+16#W`oc^Yc-kd7icIb+0?F`??xLmCl-C7mJh| zi(Ut(1&-)cunPJEC&6!s%N)v*)EWXKV8akfvf0JB$W<{9!<683V2LfO|^B4q4>_zZ{a}|t% z*Tm1hPgVsLdG8=9->h6Shm^&c$U!OYxgpN1$52o7Y)K`HdAZ@blU{Kpn6CK~O9}dy zkND_N?lt3+gm9L<*-Xgh7q&xiyg30GAe6m0?pR!1u`4`P%8qc7vs$Xq<>#-`MQ7!< zQIcs=`Rxkt@`R!%(Jf&pGqnTXi~0;-Wr6p zU-+ydch*62yw|nrxEu{G+p2N;7(@G-b5B>aHiIs$XE7TxKyL}EZhgT=I8CHQJ&uL2 zHZ$JiRu=zt4f0F->Xp%&CsBA_gGf`>t;&t!Wo5-(AAj2i7ByzEJ@znjm-Yc2D9ZBp$Sn>@DQ=^x1cbzX04k$bB6W}n_yn`zfUK~JL>9|SoI z3U_h`n%WpjAhZ{e9?XI#Q@)NZPY_S%96o4zhDH+PvxisKO6@%g)gV=!6D}HlE!|Dd_o@ufeb5*m7$x zy{Sh7LnCCbSK*-AUiuj*G`2D)DooE7rV~XKy-(^@7wF{|Zz_-0(g|SA(swKN=^9r{ zh0Uksq{NRmok$a+a|BT;6pK!T_Qeao%SBQz0SoY${>k_tr9~3Yk3(_xsbUGHMOEQ< zkacaN;%JSJ6@4P&Zr-S@Rkt4krTr_3&xT?+^9x6EAH7>#Y?`Bj+EwU_HO?pvY*dOa zjL9+csA-2sV)r}yjX+buW%ZYp<@NiL+vgTO15J=SPUF9@MYR*0VICP8?UzVUi@cz( zLM7_9c_nthR-~)THNhff^=!Xy_s0(FMPF4TRXM9>^DhC}(^R(WogDQ$k9Yklxy>=S z_}LQbYa4;(rY3E+(m8u;g=Kv`u{7L}!c9*&Aw@`Nohzre@Jy;z%|>Eb{3q6;#z||( zX&zDwcBP}olz+bbDj{INxrHk0V=l13Z6#LUZJ9U-()aikU^1ev8JZ&Q-C8QX{mGMD z%hW4Y%?mwd+w$|(gj-_C6(6AlP3OdZIb!FxQa6aeY#rkqy?Ypm4B4wK^_p=4oeE3x zslpMaM#@uXpWPWK&x12z3Ej|g7{BE)w_{fs-OBIW;$4;AJvSXlhvh`Q*OZ8+M)6`6 z=T~(>o^|vYU3XPNEr+f;NH2;SZkq$&v@7&KUekP?_CTNmLShJ=0%0f{%|GeBt8c@*RBat->NUxu&;94S_M7K-#2AG zb%i^H@CUS8f*Lb^6nyL|5=?vEe-`;1>dsZmFTz!)&N zSI(6r3pb~H^T04njEw|1#jVeFk$zVD5}D#{ zCc>WB%Gd1j#NCpRiJ`Y>1@_CyzT2Lj@$4K;K6=h0w@zSFgbkm*|2CUuIy^exgO_Ly zLYxu7EM66yev~pwNW_IweQJUJ^jzzVH%clkm#~q2eX_u3k>dF`DfkTPnNL6BtonF9 zlnU~$;&nFB??U?zr8?6`&5}PW#`Ni|bocUACRNtExLJzj^ae%^RSiW!sJOgHVx^+- zMApoN-P1Rl$}lfKEP$3;wt%DoRP%O~`rOMn`2tNB6`t&IZmQC>hL)f^pQ?}4aO|)Z z{p4?u${E%)vyvkJT49SclhMy!Kalr@c8z3x@ct76*IvJWaI8jza|)(*TGq=dOM=(y zF8asisaC_9ZUy>Ivl~3z{HS%7#AnMRbwWzu~5OF5e@mW#kn4fG8(tl zdjf1cS6^cb?z>v#=aDI~S$pqDm!YxAB?YNgP$W!k#5O-F2MAf6WLQ<|KX)DSfe_%J z5;&)lk#Cbt!i4j^tsd<~_i$~7_jIyPT_`G?pK_>UYK10FvzWCF^u;u9AK z_qnPcs2Gi~X-AzZ3h7aR#u=yR7R#SYth#weQe&Sz(cd7EIx3pSUIF(l#9H;n7^ru@ zkxC{KLm?>~fB93J7v!j69O^`h(h_e4G#l&J{*>@W+^U+}g;tB6O+8eM%eU4o;pci_ z-W^wOXGJ}@o=qpCKwFi&EpV07@Lt=qSzkoM!(Trmv*Q&s{F3snZ_ybD8mPT%lsmGs zM2+-=EMq{k^G{du@ZO8|-8@j9URJ!V{*F^)Bco?q*610*sW>_lCymnI`6@16G!aja~wQo*mJ{hHZ?c{AR zR~Q78`i5giJ2uKk)a6*K;Z59PnmgVxJx=n3B84You$+0$Ii%LKgu%$ALisEN`my2>VrB^HDk4_BMwBbo;H zz*B>Gv58M}2oXnl|KpP^z--wPLe8^R3**%(-*~td$AS$(`l|`aQ*xf@Iqf_Pt^2H_ zX@SR@3;($Y?Lr(O;3-gy@A0eXBLmZ4pHfX4X^$17PX;^uC&<@XIqP@6pY$1{b6%J* zfY8R6_IyZeDrRFe5kosuYflD7SPOX{T0EN}KlveEl(w%=?xChGH#L(JRY{x(X*|jA z)X9Mdz0xaIdNdvKyV*?k!pJ;C+0}L+{f&Scng1!pYWZkF>Es+Uxq)i(~S@+F8(7~19Ym~k^8{4IMx2GNgYDxRBQ!x*FblLeyf*2jZC>^Yiu#ak) zT*WOF@Q`<2@xGB-%{pzJ z)|CRzo7nnGA?#S}WbVyK?F(kSk?Z4L1)PhG7irt8ln|eb-q!cOC1s&fcUikB&+$1_ zyq?ZiVoh~mO|}gPt=xQ4)?=zVLY1;uwYU~VCDyP@r0Tc!w$+Y}5=9EL&doHEhSTjDb>`yxeeQe_y+h1?;HEI+B zuK67`tRAhB^31PUm?#KPyo_^2pBN8-ULx0&12qk~e&#dRNUY-+xdHnBu2JSHDHGE+cp|%d;ea=OX(|C)v+?N?_4Ptg5V%|bjbll?2_EH5Ny1~c3|_Z8xe;B0_BIj}W+CK; zpgre2Hb1ejHMC@jbM^IsosB5{b%9zfp(IX;%-Gg6Yy#e%C}z4E{+zUiO%B_Fm;PYm zW7{h%+NvbF9d78pJTj&xVld3D8@-3U2li?F+V2T8_I1~%-ELhrH$RL1U3noe&u%U( z>!nJxg~>LG{L*)y5%^J6yBH=)Z}+mPgbr$-qCLGg4^km*Y;Ckm$2sB2=^S_j*&rI@CzP3Kv`qAU6kB;N zw}yd{@X-05?~>v3vxcv%nuG;UU@nnS3AyQAp%LN0Vpl|pRt=%Y^5}1DgtMD9?nraw z1UzyZ1KLZ=@7zD2PCkNe2i?Niy*c>j@km~^#g6Y28ccQD_0B1Lgv*o z^+2=KT>(iNDFC+Ui5=`PoRkV^7>XO>=E4?+teFIW>9zh0gGlcyat@LaN*vE ziy`MIPmzfnVSp|Mp#Sc34{hxsQ>WiGg>`kKZp7k(q4-(bjWG!d>g3n%NsvD3-Ithq zLq$V-#C?=Go272&M}y*vwG2XCnrN$u^a+=eNPj6i0&?K!eOl(!TGPJ0W9PI6ZU^d% zOsH-+6^5tKxtp>R=J5E#_yNX}RbvJ<^{GvHQlp+jSrJlcHze3(x`{B^=ZWRtj*uW8 zab^2C-VVa-SWVF)!Q@s+zwSzBZh0)Og@t40Gofc6=)cDdDodi0s%l_HUtl)uXP!%j z=m-as)Yjl@BFD;~-}-i{uVn#G{1jjR_{ZOSA(-s~0FiKiDS-wVotLM;>N;6ilUxR61se4H@CZqd z?T(?l9r{PDs&$(;NE~X_&k>W<3-FSQ8rpu5<~_###ni2Vnui}}W_^T58|J51%U9N! zXVmgm7;*6euE&)M91%HMm@R=5;zBSQW%90g#`tK)EtF45w4#>)9uJa8$F&y6LDrmQ|A$kEa%bA8D5M>R zU-v?Z?StYcmGuXp4Ek}xJh7@5y%w?am>Y0}UH&elwp{JGC zMADyjy1-2>=N_rUQv@^Ub8#E^uYpW0MbcxsIAF?j5%dT7;mRCdi96+cG_yGCjp%91!Gb`}on>9w!kJSMNs4zcU=rQ9 z355&>CS4>F+wlaTt`=KEKKXMuCD`pAdR*~Yi@t4WZ~RzYXf4hcy$$GkzX*W-=$A5_Hi3?E;GQTjo}jqD56tryaj*>>`NW zL!0cI^5;`U*14U z@(&Wppz=eV4@jE5yGiACIyz=+Y4}KJ%}PSSXtV*O;c#K#1MSDdFm?o)O}`hxpCQ+cXM-bn4zb0<|G-C`OXi%xt)QWMx{TFS_r zXc|=bOF?y_&ACsU0*roi;d^DfH~CK-nOOO(H%(Z-WiP3B(gPyELv=qrffu`t{?*2_ zMCab}Zo@SgbH~xe=kPojdr^wc)t8>Xf&|f^4^3SlOK2_gxduWES)mNs(>GFzgbAj6 zm)K{?>a&?T4B7q5$()H!vApRSzIARVSBm&Eitc3ts$}@Y{8ZJP54CfTxF$zL&rh4w ztLtRES%v^Th!&w<+K7#9XvW)z<3p?-$g?T=BbqQ05*-(C$9nN5RQltdrVSH#AvfbO zN4B4sV(wRD+c=05U7_N??>7GGg9jk$-RBg+oQ^fM0t7*%uVdu_S;aa~_nD5jyXXiC zTP+}_GA^nZ4U(bru35%wfZB^WnJdz60Lo6MdJoDijQ_<24c0v%6yZwT&CR~a0wZo z;yGE%USytZzRuk^Zd@uQc%wi|g(tLYBzmo&q%lER3rzPAZmh>_KS}#`DYJtI1;eD+ zef@UfYPJ&F<1{Y9SpW`-19csfUz>HQk24P@i~yJlS~ceR^lF&tQsvk$iSM;D@PMYb^5;HcJiaGJOR%djI``mBL}WnK zG)Jv%m0fpPtMy^!n{&OX(JTyL9C9UsqvM3xH?@F?aElJ?`w{rEfCcaEImrr(VrF1+T(QE@Td7R|n z?m>XUsS0aPK9!iq0!0_=LpbQKhdB2N=S=Db3b;Ml0`5@Cmxv#zYKxTH3Cyr@H0>k} zh!dYqSRYE8Al>jdbBLLryu9qPInJZ2Z{Coe@BD>LH?j2dHJZt`Aoju+x%p}ZN&KHV z39YhZO0$fqV%Y_C51GI#;o`Bzt!Bj<1Pv)mij!>D%)ce37tg0k6= z)a79fqfy&?Z%Z?n?O*9?Yb(MKPH;oWjBRkqmhrdHx@Y?uLm2M{80-$X1)IBXg7C4- zG+O?*+q!h!5(lpcCixV2sD+0M9~l-Zr|g5k=kPXS*c9XdG>e0gI!td zANa}q`PVjq(s?KYRLp7cSWSnu{QP*Bt)P(C$|pZg@_$mKf02sE+MdIKliO3D4BKj`h5JjExoVe76fDnT zbCusfAIHA}SgyVT*_EQnwY)Zv5>@|JuR3 zFI4dA9Lil}D>P01dHzhw_Y#L=`=i|ni&SmLDv6z$NKiAp#LxMhmFRz<-+zDnKfKNF zUq~~+4xbU%CH_7j|N6Io`~AOm`1<`2urc2svIYEoHUIs8k!rXE3T+f_LVxW1pFZes z5B!_$fG@ud+EoFLYDEA3fq(x|f3F*$V9mX0FZZu+`1c3?{U_2M0JICyVlEkWul{%c z;GZ6HNDn4y48~`o{{D0S{*|PR?SjJo#s%;SEak1%m#qKEuMn(DV+YZ`*8Sr&uZkQKL-oEMt|KK3|w_*?5?mfgP~xuLh!&kpYCsK030nL*(#vX1_En7 zgd8tlV(sQZ86kG0zrp(`WuofkKXOZ4eVzu+3l<|TkVcg!r$`9G2sH&iJOXpAv?m{~ z4V32vw3*-T5BR(F1-(cEG;PvaHtOJ{0165q)kMFN;=Miitp6W)D43YT(bvL*bkjQC zbKG(#9sWE0t za})jJaZ9@a?rCd+4rM`ds?PeKuSKuJnjLo34>R>g@}6K~Wb-Q`&0PACBtI@)KPxs87Ffyz_%31Hf0LRSj=3y?E|V2RY|~kUYnKe$!ut zY!zhY2Y~C3EU~zUz!*>kpLk=b0_5Id%{}P(e6suOCq&~}@ki^zd;%gCY{%++U;dYz z+D-q3n;rnjU_9UK-=c0+!Sv!Tn63?6Lf|r&l3h~ck!AsnJi4E6aPfnRXW7KGrEvO9 ziTnQXX#LycN0tl@X!-{4t^edoz5C$5kN)TQ;J*v<4|m${TkO9U^8XDBNjq7}Nx5RQs*s+S7#NG3P#MEP9f< zq{+Va#Oxo^fi!+XX24T`r6=oYwGjXYZT_~o+HrBAxDN4&|6ZPZssy%E7rD(lrsv#( zoU)_#-YWIR5~D?i#hym~9+F3&A+Uv^wpc^oTl(bs<-@Y&sec7AFJO4Bta6nb0!dOG z*wR9LadGvRcNa*)aPb?vl?|M%psTgN0tdjrdJrGR(FHqYE})pGC6zCCpXKih8CBgZ zK_N-G-#sf>sqbB?s5@Vh9#-NDgfmq@5X`ikl z$2NdFA?}mpuADaBC)$sm{6p;5Ql#_)xs4V@Bfr3MeIFN*nR#V^EF3E45m5^Qa(Vx&$>c`F1$R08X zm|Zr0fh1IsOBQhr5*X9ti!tz83siquaZf63mGIQ}$fSPGVWE?(54lNK);B3qX;3Cl zd!>Byu`{{v89z2iab*pE>xXvwX=w5jT$5nr%{);Hv@ne0H~I8HJI{DtXzu4ecm3_7 z8I08V`F@|{^ktS-&>1GH+lD#oYm_~jwHZ^gvY-MvGR`kiF{)$J zq9V^Z@|rD=IaJALdX;AY(_vw(fD}Hd17lr67V%6X4wa5B9U22kU<@SPs?0pJxQ7b# zLDm3DkgY+Y9z&w7y(w^lks6N zCv-hJRGG78DdOaK_|*p*bD#WN@48nS=nV=?i2Y_sQ!52jJYLc~-lkWp{7jH% z>U1M285s%oOqvzM*!Sy-cA^dZYL@AxwVRNq8;;wa6hHOdXFoS_ohL^<{}X@$8Z|In zM_soGlRrSrNj7bDvX|TeGLoT$06#%E#LN zETA!s?dDZszVG*jg3nA-2?mS>54jqS(~tLW$gC`iG7_O)EvjOBl2|mA2q{rSSx@VhB-lQ!o6rKXPX8>6Y zwe^ntHc=BZP~!}L{zwVi5C<)nat@m;NkA%f<^jMt3lKU$D`1efkYr9B$D&n7-h%CXNA{B|Vw-!ucd4_dIt-scHD<`dQh zMGJsep?5Yow&3d$n9F{MMpiYofIdvJ9ZRVnm}T}I0C_Lbz6dZ7|Fz5K5^g@5BX;o~ z=KzLwBJ`u68{KR1j$XXC?kse*))+o+pWI@SY_B+{_G<3dAW&~TraQ*iF8NzYP zRcMKG;`O_$`B%`aHrs*Jg>lB zCg=*74-8>a)XyIK<2sw4`pc9dWRZXl0DJWrC)!dE1#{KjkLi)%R*RD8Zj1!Z3(%F@ z7FNxAoiJ7uRn69>7lz%)Ep2|RYfoIygO^AxupBfb;55- z%d$){T{=-v-2e`dC@+AjWW`dZ7WgNa$6?=W&~&Vw&Z6#d@EY76F! zIYG#u3^4#`)#gE4v)V*Wkl(CtUxOn$fI>RqM9j4o9Z0?S289gGfSzs)=lnI$OGx^h z{WSAiG+Fo*0K7j03s}G*N_asWK(3WNmBn^{ioIS1%n)6T_1bxz8%bD0k^bF6!mrZ0 z2l3fE{OWNY+PFJBg)(0KXvp4~LPw1{tHusZpYzDnjh2p3>F-7R$LL%3%9S|21#T`> ze?F4q#qYV$#G0vMQO&v3mP#ZwpLS^GV~pNHBF>U(1o{bD!(#i$(1p@b$%r_q4?il3S_fU&JZT4jZif2K5=(P3_gFC`R0ua!-ZFOnLd6bx)8)^M8Bg+ zK=zdE`juKyGRDj&wKjQKi5PJTi@2HOiKKw!x%ifBmJSQp!72w2&BFwH7|DAIoXkgZlT3NF2HFnv(* zO){R>Eb2qPS~Q?s?*wujri5raJg%9sXYc3znG0U+DeXiZ7;E2LX(n1Fc9|Hkt zzOp%@&Z5LBTk?!oKLX`juTUnzU8)`cO`(%&3{IkTUE#@Kxm_E|6qqvbD-$L~I<_a{qMe%hmYL`P5SKM=Lnu|9Y zIT!$u`sW+>6Idcw3&u=tnYN5F@b;Jz>U_0t(ra}4vG^;e&+v09g>7lc`NWXy5L-Z| zY!+SwpQ<&q?JF+eF8>I{qdH!&Jn3P)?@*!Xbr@5#zip~vuhrB@Q`gUvG_yh+ewh?f zLFuYf3N>3ao5mGqou1=;y_{Y*4(8B~U?juOBd z0S-XKt_j46nqX~C(`S@3#A$^fp2P5+2Hi+ z@x2&6Dw2p`l)VWTYD;G`3loz?2LHOWcX^JXY+AcN7j)+J04DM1y7TNIXD z*Y5xB;#Pwzul7g1#0x}M@9?)@zz|%x&_4F=VldjpE@2{96%Nqa(N&h<0PhPB;z#C00XDllwf%`cSJhHnNd-yn5?TB-h}C8zCY+SSMQg9&q^oRK=zF(VxA@P~*J3*Qw8? zUE6&DWBJL2rYdj$xt&GRh+LL#rf{y z)hG_;2W=HrvWLao_4hH`z*!DkWn;M?Ox z#Tc`zXxVuBfRM8_nT}-9s(p_hgQCcS6x%7K7!G}Fx$k|kUalJ=RWjw*he|U)o?3|h zQL#aD?98~&b@V2SW~Ibi7LoR*PXbj!leQdkZUYW*uf%{b`&k7sQs(Ys|86GvkBw{x zp8D6g^|^HY;_tV`qFAeX2;`Nwocd)ac%909%^uv6;lF+#GSnI|NH9F~+mCUE@Aw(w zz@grF`gIcA+GXYy{txJmsOKv~qH_vTtkz-nll2qVIu9_%i`TzNhMDAxAB11^8936h z?iLtv`ElWJOQC4q8E#s`D!NcC48ufm0qLYPXz%l(kjD%%SBP(%FRo?)iC>jQJ?%3f zm$el((whpTwLXIm#MBWA5c4SPKJ_Bk8)<&}Em`L+zih=V^N}W*<>Y~`%x5KzgWf;swQJYXrXNg*0JX$7Qa-mH9vkAk z$XCmIitlDT>9RKzi{AvBDYqFCdAbA5KtwT{?42Qy6^~>@-M1rHRda*|CsL_Q_o1vp z1&?G=XTD_2$1?70cAYKn9)2O^x6EcvdKi*nSN5El}Lq)Uj5&tA@ z@yjPLi@ufJ+nhyNd1)14s7I=N2KYARW*rgIY#O;n@&SseJYAVC#a3gY=mGzHN&VvpU6nF{fPuPQ|~R^O<4a9Ry!s*?gf%zgwCVcM|NiFdCb+1GRXWvYUtWB9oSkHT+(hw1R9l)SAafAxRacM|y}Q8j`3j@9z|iSLg(QjhUomEbnSIjq&}g$MV-|*}C`8`0mU$ zWBLC=9USGw<%dcGRZ z+!umQpb}}?vdR;|shVwh)Z%~X>9hIG38Na9&0Iz<+KefX^C|!tdagl8oR4FhgJu%52|aur9X+@q9}DVwkF zj@|NH0ptDq?b#`AoHQ%rv;%!h9g$P|_SLd8?(GB&R?b)ZOW7ZzA|D32nnyC#IbWSD zs@u5aDl+?*6)^b=*o=;&Y~qZj;{>-%0OEGgy`4Kka9)YL;r3z8xmL(ExDkPmp-~QE z?(v;^d`=d@u_)4^G10Ajxs8ODg?V)+S?u9HAmIJLRToYk zyJAHaZeiHUL!m&O{!;3zIFmN5c6y16zO(i2uk!~t%fT!(lWmj~<=E*2Gu8US~vYLRKsK=k@&0}?Kg|Hedb1IHL>o<*X*Rzh&InX@Z1l5jW8_R-;{jayv^q{Ov2kcYZVXR@TS^K#HhEM1s{y@4=AO=KAbI6|*e2?P7IlyUlf{VpWY;u6%e zhqEZtPJIbuofa$$B4vC&k0j7fMbM8G&-5f!I>VLX#VzdPd}(l{bi4{QlD%G4))n`2 zgiYRA9(0`uLv1$kAtRY?ev{SawJ2>v@EA@?SE&o|VOW&o*{Fr=A|hFoWmmfIS)dUU zWn+|?nac|qL+PS1WXaBsSN^(F?_Q@~RE0at?pzev=1IA{d4A~5dL~CAYsHqVh z8(wW9ZGH1#vdYQ1h_!BSa>GGx)reti<8@MGDzIA+uz2V;?`DMy!MbO*exN86XB*vq z+m#(VSjU7u{U^@x6$@r^$phPeC?hP)%@ z@t`$X6*)@80h^%m6Aboh6~EOU3%8Fi68A=WT)`poeJNC2 zmwGSts43(z)p(i5xBC7M(#HmEeprRL9OYEE3wQzU;U?*Ei}k;@Hmr1k6td}gpGoFa zu(;`uz|g&>lBQDbF_geDJXl%MF|485p4dSc1P8wkdj$U+ymRflf~`5cjPxJBr(zQK zTD-^R>3YzS-99qUu|8-!8YB%za+5NB8Tg_lN83y#4ZGRh$wG#Lw$rz_lb84o=LB$8 zn;}`v-)DrALPa9k&4S3BI=VS@D{X7|a}AYOxV0>y{dQjZ#fn2l7-Sor+elfT7$^6k z$AGJIW{h*93ad!sW!V;0ASpS*i@H`3p!{Uu$xoh8Mj%B=cMiGoAx zx_$h|kHxZ(s@_z|Ir9T*(X>R<_S>-G$4}ep>`AU&BS(GD_t;&C;0F^2iX05{6nKEB zBAih+Le9wOjp4L|i^JY&Xd=uF?xwjwV`C;6Cgm>{Nw{-Ca{< zfm*s(ViQpbrWe((@5x%Uk{|3xnadU<`=5NS^+U}p7Oz!@3T`2iI^GxhOTD!7$33yd z>HqdTB=rvO@0JvgWmNVp1O5$o5L^gFu3im{MiqGcIR50XMZT+Anq!|98S&?8e!h=1VYv5t zeVA3)NNzTUOJCyX~lw0#ChQ?j=y#D4-Jch3)S)jN_jSfSE45hDdN zvyg9Z32oCt&=^hmxUqcgp)J2!r_^}Htci#xP$(HtGQU%&RB6}5cVQt9zlYg((8oW$ zD3_8u$bJZB(nDv*q{(IYS(`6gRsnXo#^9Y$YlPmJ3FV)?CfFu2?MYDQzqHD|pB#K) zN6fep@kuGst}`L!q2pugk$k2A1??A9c%_`Le}sHseo%tX%=$egk8deLJ4`{|`t1-< zbqvSjOpqOgnbA96I{O`e(T6|K@X8wUVA<)_^|gIpaRJvVJS1lnJz-&sOawKbj;K6U z@hxVyBYJA+>A!Z4RapE@W;Sx6+_YvMu) zeV&gBHb&JkjjQ~;FNWmi`C=CQkq}VIt0J7NwBkHvN~jc?_32X5BSHjK zJRJqC+?nlkRJrABxBc1oke*eoPjzm`JFh&~a{6c+t=8E8U%wKOZQg3^WnFQ-y6wG4_l+a z;L6n+pimd(pe_Fixi-{B3twgLOn!|udgQWs>*6eHh{}wTxLDsrl|hyCJ)V$XI~EeQnr#{j7PI zz_!(+pm1zira8HJf>_h^JiTbpyjjg^_(+IS(4^sxgy*-J;$GKJq)g!nS$plxaGS0{ z?y1fXeHyVBiQyle;wdaXa9|By;(nU;k^ush&zVs=7p3Q5_tq&e?r!Q;YQfGdOe^OB ze0{_wbANxv^w@n)euz0#e0EKq+pS8Q5(ulZ*rj^uxNVNFO&yLJfRy06W7-u(n}h>5?Y#>n*{X*F&8-fJ3{^}-I*If zx7a%;D{PhlJ$~rk*3s&~k0{KvC3ApgEIFsn(-V(tQg`Y7saMJnDQkRYDVI;T;$VePI-a ztIT{By-wKCWW~BXNr?nc8XLVK!W~oC%Mr<_Uu~n((x|oo@t_61dj<&Mb+XN2$86BLkNBo zKU^wPK9%p8bhSMxrK+%=GRks4YusA>ek~UO#riT!XSwE}cgzeymyY+_Q+gRFZM2x@ zUVC^+BY$2FoipuXZQ7Xb#Bhq?$q^f+@cPBXU%5{|Ekq2TFU;AjtSg-R!n4)>!Gus@+i89J3x$*$Fody98;XsD&6Pjt%JVmhl(qy`a+MxJxZB5QmF|_{<(rJ*fN@psYZpN#TQqxz2~>hD zLAXsHNMa@WoSfwBt?2qn^F6GxJd8_z5Zx7ZcIw`C&EkQwh-#}*e=|3e@9Dv-TF)=K zntV!53g$iW45@zTfGfihySTXN%e8kX-?`}J92Jy2XWDNuRM08QR$PM0MlKEK4e`1q z!TWNozmV2>9eGJRnfB40{CJ5%tWA66oJcQG>CsXi41(0Fv2UyjR**Njd6&#` z_Giqo91z|%z4i+0yyqJ)h2yR^emz@}Rn1YdyYP}eY)~nhE&AM{Uvm&1I<^)2A>riN z&|}fJ5InrSj*Ex}_EgBJ?0dQcJ$yd^8ek)d;YQpjNk55j9`AQxG;H*7O9jJ^U3-$4 zsCOT(O(Y=c8ZjxW;y$k~)Z`}=UON57=Q8x@YpEp4a_AL{vL8G+5TJz<)6y4JDiy4T zFk|WXMkxu%laW|Mxx`WBNx&>@Kf`-tJ@Ki0PL_P4(uISw@$AOYcqf`v8*Xiw>F)5Y zjX&q{<7X*@eVMg`wIOLp74RJjol&d|AR%rHCB}~eN zpjfZ&9s*OYXMI4$QgTK2e()&W#|OtO7TLptSud^P(J$HKcifyk*FP^1V4hw~H33oo zERkC7PMX50U3$;<;-%LE+z;;j?#Yl{?H(w-k^GU&pg_GW`+RqUV8G}eCp=5rThL*` z_#Nb+!TkE^VXPx4gbG*9Wb((yHJvZ;d17YV8S75!J!gDU0PA-ws1pMLCNg%7;jj|1 z{R35dD6~_q=lHx^Re6Gkk!JrgYH&B5k$L<%r+K`s6nEn=-&4W$o!({On08JrsQ*fF zxvm@Gy>|_f?Ft9O6l$F@oLB{5M^T9^e@RH(reBtPY~?peVW*|9Z6G$Anxm|Na9_4P zHjg_;zSfW5A9jXqRLS1BfMFDvyGU+zmdT&+P(z0^j>*hmor?hDvG%I}DyXF=Na5|b zIWA=zwN5hiJNi)clXdG>+414>TxQhl)l0{f+J5U$znq3ELv`Rh-~326kvY`z0&TJ@ z`A9ZubG&A#`+=yLWR$h_YHs=byfe%JBO&^vD6{4Qgaj$sA~n7yMnFqfsG;!|nBk#4&K3nXIf%95+=(LcPMz+}v6+S( zrO!{-V@aaS)rsUz9#5DYA_&~!7W$jSs|X6kDZ^QXmHrNTklE~{yt%MtJ5f7g>RoTf z2Nc{cRC6ZM4p1I;RVFigz}tT@L@?QqU*X8mB7kV5+7HwSzqaZ78+N&;9ONw=Q>Lz?=)6bQjC?~ zzFIkGJI+sVt|-M9zaTa^i!nt^2rC?9XFp&9>3+HjWjw8xz^;_)d@Z`uj)&eyN^Dx%8|zs(M-zEP71JY z-6|%hUd(6)=E!pQ=kQYuXeQg{j*T2 z4r1>5yP?!V*GfY{YzWRKVS)xL<2#n3%g!G3d^~BO6`d{q5Wmr{P8#YP`h=78MNGc_*bc0EEx3qM33kWCzl9G!?Lb_X0y1TnsbjKM> z-Fv&^eP6%t{5xm=@mj)Ut}(|P;~7uf_jA{)?QJ$sq-6l~mElWJeZg z;5qF>i1sBbVmAgp^VXfSq@gUlKu){W2Q`W=sQMNk!5)ek$r|pt2Io6R0D`gXKf9MHrf+Rv zs2lrP40ecBQgtUwdt3)PWeAKSGB|sEpR`{sUni0`lPVM@N8e4(?Hz%9l3jz7+&D_&0 zHu!as2)e_MnkPF8Z9DsHQ&Btje8kXByi!A*B2iEEP`=Ok^-?zkPF^{>+xaMyHC(gp z)g(dPI(t;3+3!_3UB~rKTa-Ip9F#OlakF7rnJqG)XH1DV2n+Ckn_TdzL2x=G0IPY~ z9`l=Y_LiAPc&cbUacb7km#03-Yv>axI)2!}Ty~~Hk+b3yWi$#oU(;pMbn2Tx0i7Rq z`nwXlJ>U=v7rFb>T@#Rn?VxuZZ$V*+HhXg5=2tq#jQ>a`{`BQAKX&^m2}lMq>g_#% z)n+4EoQjP>^{o2IRO}Tb7N&(~L`M6cxD~5ampdxIC-#3#ESQ5@1|*=R{I0oO?0fS2 z&re1&?SwFruNzV_>HKuk{&NWdm#wHcgo9MSGbRiqZH1ad@yNBC{Da9wZVN?``9UWL z6u!TQKjz0B7a4rPeG0YjWu?E|-`)KX8Jk>~43rk~8K8&afq!{2)T3(tCsQ@Zn}3Y> ze|@^V1=N<^AUt*fe+=Tke!7kYrr<3K)(4f}7Tk}u@gM)Yr2!B0vJXeBmi{_i*xUH0 zpKbF4l#%_`^)lrDb?@K4^xwz$Z6^NLjQ#sI{#{i6Y2W?Wi~p~-__&pa7uvB#Cy&6A zm&FT`$FGqR8SWxnP}f4?++23XORjElxnE+Qsku+VUtDOw9R|W7R6mHngf5yXYB*b} z7L*_zoz2n-ooqjccSSjxm6?mGq5^+wX4o5%gZ40B#Ylp7eV?M#M0t21>+%1xZhveB zjq4l>Em}|IXF_$z1vIWa-0}?zD{uNXoR06zEq?G7$dk!tjsZ`U(;#08+=XsZOE* za;3nHeK9@T_%7dUs`}xY63mVN-E3?tkbsz8I``$5BPUN+bA2SZ<1bGaZ{P5xL0~hR z1X&%^hOo97&fi^9@EWIyP{)Dh1yPK*%(vUv%S<0^jQP*lLhi>f?m}V%&|LhF?Jfh#m2A)Ikjvd2$n(xWcU$GA!zA%SI(0Ajvd;HUV|Mas4 zP2kYXZq?89{xtIce*XFbaC*G2*YK};S?>GMeZPsyo577I%1!&|#J6hP$5iCTfmwS>9c0~v(Xz5Wr zoG5bjI_`4VZ%y-X5mP=Pp+}2hx2U_oECrPt)pFWwWY`s^6PzP}Mg_ZKr!};vj|d3c67Ee0BKT{c0MtmF8uFcH>w%XeQ%FaI(`FJerxRS1R3PC*#*ih2Zb90h^*bDqe2zeah zH!mVb-u`V(N!&XmbmiAYjvM@$aD$G$jerPrvYl_)e_R9*Bp%+dVmfJJx9SDKU|wZ`1=%loRW8&)lzm^#BK7Z@0{p1 z>|5N=nR@sq{}eW;=_CX{m%Z}yll&aDDhj~lwYv+X2T9V^tD?w6?^tjTb!j)ZEYhjO zGy{#A!LoJ52hz#8vN;Dq>yIAu18qKwtN_%|94jNT=V*0$oVlQIEXhIjNq$R zwzr!z@yrj_CulU>m}CLE=z&lO*|xpFlpCKkfR`~G?<|CPqF}*DQUFLe#dcO;8k?n< zCv6&yKVU47A`}a9VUQzj_esJas7MyGSqC4EuBG{B7i{Gc)T>>4L`@TSld2ifuVF<5T+YOwulQu8E zopzax@yVV%?dF9gi@A+rB8KXhf!jlH@hePvt!rin7M!4x8V*O2cIEqkx5cIbG8@or za3h%wf~$&j76V7XLkn$=mu;MaNofH)Z(#}IR-6OSIjw+UOJ=p$zWx67>0>w#MeO0y zB`*SYi%t{hX#h%FP>azJO!oSyu|Cl%OBTR4AE~iAo>`@;RCE zpLLG5W&jH#Rk4z~`~bycA|$Q6s$-1JtTo}e$U2SCYCm>&ZZ*c0@>t4+T~KeC9} zLMKTn#gT*(o*<_@+eXpp94`afaE-~be!&Nlc87Lb)As<#HGh4gMB;UayK(>l$9fUV zBSgb8ONWaE;*-%tE4R2!pZ)LF{F&U#%;SlSNSA}iDg6_!1JHjc0%-NBN=NeU2Zay*l2myV9{(kb8+n&YEWw!wfD%<$^P0-T8n&{ zZks$;b@H4t`CHrwMqOc%^kBOt(>j8^skhxjw{%`lU4kN*l3r6JFc!KZ6Rak^ik1uQ zE9vMJ>V!)j8YFI?6*YxF5Jc#-1dn!gk&A=|o$Rj)*Lj^~U&Rf2|9y(QNOM6D0az%0 z>r*vT@}JE8CA=@_MQ9Y+o6=k_&+T?6`eL`!6OmYalG;*zk%FV8%Y;B}#%O6=LbZ1; zCpxbuw&ucAqoqJMY#u8-WSW43Tsz_Q4Vx}oV5x!D;B~m0OGHBb44*{O#CJ}KL+0Bf znHW!+AN8Jlo8IFDiIN=A6NU`slIMEeiIMVB5 zQ^_nC$!N_x;l!#XKHKh&j)k%y_UulSkA1ndBz!E>6eapxMwA%h%E;fFCSqsT=O*HI zQS{`BD~lkrRbU!i{3E_|+NT$XMXKe_BMz0A6dcN9te;b$Ds}~M9D{3J7ISVNToHL6 zAwE|oq1C}Z*?8!%Iif$m5Xay>zBR=)WMtG+sZ_YxWzr0gmN2)HV8H{sglrV}Ww1puPet)-J(fp?_==KzBF+;PuYY4D<;b29^iuZHNZdT0|X zm@>zZ*{CS&5p07Wg3VDOETCr9akj8VWDlk&yR5G?P<)ZNn;7}Cb-lST$<)ZoF zp4S%CO373`X->l==A{M1{V>o*d~)tcHj3FG85ClBQ^oKNrmCyXPS$cdx6^5rj+}Z5 z7**9&$48t5ghg&Umwuvy*+^-QkBX1}wwI;29 z6Bra*VJqZ>BN;NLGk|vWYA~|i;xK)IxV|9NhT-$`bz47j7KFi|)Rue0 zQXw}q->y#<2)uCS>(xVY1Q1>|EQ|sIl|$UcXIbA}*V^~6CY{DxU7$k)9jJC%6bKB< zQHdQ?Yq%aah6i>Bzm(wF4+X}EVLjkm0)HI!W@oIFx>IH1o}t`hc~idoGGY(AU)xZ; z^J=+1pB`Ig{=A8P+)x94q;~{cQ;ZrnC?>Mkp402Q5q-hm_9{!gph@}FF@u0nf361x z9H(QujvCV!ZUA{&8lK-?qGN(z1to3EfZgSWJTjsCY&wdQdyqlV?wx*2Vh-A|Vv~|+ zL#2Bd%r6BBq*ifV9f`fK-YyI&EB@#n4`|7LdPgvDxj*q~NHYn^hHTrUE1PAg zEL)0cTV#8$@`3GX&1Gxh3e!ADm;wNrS+wyJ@;V)xK`T4Q>P(D_7M<#Thfl(C>9XmG zgaTuw1|esU4DvV9mS}QXp*3Ruvc+rH*;??wJCA3o{GP7NM*@hBpy7*;pusZ0G>G@@ zqyjAy9Kx|E9w*!609{I?aWpdFC|QKN{RKIh`dzJ)E2)mYLeH)jx+Yaj#IA{(jMAPc zPh2v!?3>$A4JSs4kk2_;K;v2~D?UR_QtZhSC z>2g@yz93YbDd#BE#~$n2y=~y@6BW8n_)IwT!3XEE7+KgWjrUk$m8vIvjdp>8>VE#g5r%juzq_oCB(I z7$E-AHWcf(N5sdLTNg2n@m^ZS$D*ZO*;F>3fK*uJVSWp$J-QK;tBpL4&o$aZ7tVnC z#S^oDt*Xu@ZbIolH^zsn~XovyulVaZ*^&6tC=2rJLzNj*G0I4f(FGEZO zTuA9|q@LyZ3_y{2P7Sx525AYzQiadFR_-6BuxrR(vaYDvUdB@M}cp@Yrn>7 z>*S3>9NJ09B5TK|R{8!P#n@KEsp&kIwNCOnG}tO+h46K&6#wgUeSh|H5&(gf%2^4O2P56)?62joX){?lDTO^eoh;TJ^?jtqYJ9Ac=gu_UTg4&1uPm+=OcGt>71)uyT)WH2MIJvkB93ciQL zoMpy{$P!|Ft5x8{s-U@Z1eR&AS8_)fRKHTCF#&>Ld1h3>F$Nrp))`WP^_|+BD`OBA zL)nP8x2T5~KAu^1T>E$iT}voN#|Y}-Tux8{0Mq$h3BDV29{U$uaZE>hj}{tLJ>3e4 zU8cs8KMkfvzF{?+)QTWI4Gib%o5nZEW|~$Fv;)YJho7m|M&CqzNxY|laSi7z>68qB zZp(SynvZ}#Z3%#HLr?2zo14zPInZdn$35nxTL3FOQUr0{@rylQ*NZS$Sn*%EI6ob8 zA#m|_g2RWMCs+tnA>?@rRn=~Q$b6PnwC9@j`etX?m-4D1$k&0YI7gQh$PztDwfMCa@0aav7in!x(kj)r)}UFLEdKEJr#IP@)<3aVQlxggYgW30lTaJP1hX@ zp%@CAQZ-dJJTkkBlZtlJ!>lv;g6uOU^IW88D8)DCw(1QML`hW#Z1qx1Iz(36GX~2B zq)X@X4#}Rvt|&}p88)uhhFXqMZek}o8ye9@bVuFi^7grv%WX1!mYQXji`EqY_Rg;& zF535ynBBZ~gEvlolP`Cwj0*Vmow`HbSxN;QQ=20dLzoXZG z!5b24zItA9y7^ZK9xVu%MvaUm6mSSIYtnc7BO6c{6QX<@3vj&o=aE24fE+-oL)J$M zU@BUqc0tiqQPEupQL*MTb>5a=Mej%$wZ7@S?u+4Zlj2p?vn9;nBB7@vdif?4BLx}( zIm&cV=gl$|_Vb^N&uqP1bRS47!U)dK$BI78N0wA*J%bSi>h5RfY^Q?ixJ5~ZVP_F8Zv;$5smu^THcAiTN5wwcwAFN9oVQa@zn1me=wVt)D zVKf_}P)?iGVUm|v70*kR5q-g7MKjkN7(u~vMR=8)oRpiQj*wysqyN3RhAlsd`qeWW z2I#8#gzQ#ICZkOw{b`0QbJ|&s6QNKTcS{u~&k`(aFza6n*5XFdtL}H=iB~58rOQOb z!DPI!B^>_U12{qbA*X`R=S#%LTGO%qp`7=`3bwpVoenn&GIw4`9;kWRz-Y`&Xd4qw zOCP&kR-De)SJQQwv_(g=qm2cZIuvC9`;dEM)wZghveJU21SKE)+j$4icUv(}%NwI| zATQ->_-&i!6bQ1lzYz!@89%v_Qhi`NTc_PTc}a+H_++}hhU=LIzR&xhw=R>pT19n{*WE8va^IoX;aR(AHy(l)Fpb!Wk3cE=qEoi?#oa9)cysN5$Et5f`+Zrmx z!`*wzrKfGcbNY$7gF4wm=u~Vm9+^VhqjTr##O*_sqMyr^3XG5H?ueX31(Y6nQ)==u~kIw=G$sx^0t z+{eEjbh*M-r8V-!r0cT_#fuznwX|o}71QjnSE-Louuxby>(t%>iny-%}zC>VNrIMs3#)2I{U|4Fwcrtu1#!R@7G z=H@&8JcIS@eVQQ~j;s9!mfg3Y*&h>**bn=@_U4)|K|s?U^Rw9d|F ziG}GJNmjcSPo@Wp*77qh(}HUpaD;@LGT668OHly^7?!F%XkZCGDN@gAwIbvi<1)Hj z2hMkSi7691`>={yqcWdFkrB=L73cd&u6O8~J4oIS<}xTHmS!nc$S*RelA+(GEnIS~ zkbpcKiZAF_cRCkC<0-|_%6-r-^~3EZ*+hLsl3BdmFOTJd+sSJ>b+yXx5KLOF3og5z zU-0Y0^Lys-fau+Y3`^w%h_b&E8&Poa9->z(*Evw42A%=B8C#BVUspnvx|5oC9Jhf; zs@vHNis@;U^Krgvh3(Sij8qG%IqOl@*o9WUwC4vHO*&HRwVU-wk7~1r>JV4)F3$JG zh*XE``+hrJg$Ti+z6QJazBv@xRIP@djb4ocZh5lL>IKsEhoETESbuqqS}yAWIPlr_ zr%MEVmPVcSF|C$bbx+?J>JjCrKSPQwG8%g!ogz#Qt-kaSjpnVdR>kU3GK0}-u<%KT zQt?7SJoy~p$Z39J2*W5IohMsgzAPmR7X>w!9enxL!UhiEP=(}Oy29rT-^fOSzQtuy zDa+N&=Kf$n&aSOMSdpd(188!`5*bGrcEFkcWs`s80X2&x7jS)M)VD#J&g1}s$D}_Q z0vG?-)90gctC2D5>K6@+LT#o^ddX&EX42i2zO+~m{>=lctP0a={+@6)38H4|oO6O7 z+-Ewm-ru;-4A2UJ$~Tifzo&#wqAEHJ7$T;Ln`lrK?=#{^|5%`GzI!tz+#vsi#X-TbWW zwZZ#C?$mjOgxAOmew0KJF&uT6!5wUo9?ZY9fTgn0h$Sv%X1{}ookinS%PbGxg7i(- z9gVW2z#-1!P}&hF61+fKAD}NqO|=MsRw!^XFG2$$J&)$^Ox^D8Upm2)5h?24L|yiJ z?b6)Ul3MjRe`A`e%yrIm(0j|DF;$3Oj0QI}07F=N$2vzSFEof>xJvh6~zqoJajXYV$>cDw)-=wcc=xr5+H+8^C$;NYRC4NXU~ZERCP1d)sm zO9(5-zf8|+5N`(8LY#c_t##mUblS$7KGMQ zce9sTPgyYc(mm);c5G>a__{|HQae=UKa9p9x(|NVV9*tgC@%OEgEHai4H7mtVq*sY z!)r(D5O+O-?gPh0vB}uF>G96u{+%4BM{O-Xl~kga@noeED^RZj z^%eiYBIEH=sXe$yWlw=u&Bk zR%tT#@j0s5XHCy5tZ;%%%P{7-GS4VuopxeD{RJY*{O4-B*B_W^tdibfkglhK<3I7R zz~nSG?~Vit5;Ag&(5{lSO3!_7o{ig|_oFs;#>;jOhNWkm^{O4i^5S2?TV03MSKKww zZ!%9wtW4E%vZf4Bzr|%Bq6-Ad1T6uCT%h9&qjV!Qoy(Z-NYNSp*`vvckdXhooov765I)+6#IYZQwEK6qZ~ER9Yga zBVWLRZku+T*q0vMA6~F8od+1)Xf{ayZ@hxkS!5;Uys~TX0FL7!!s9Oy^UV&?DFZ$s zDUGKgI{h(XFe;8vjO1zYWVLhmjFB*u!g8PS01F2}k*i7@tynh~=_t2{q{BCfY4) z(fUT71(1ABS1$%iv#j0MHOOMKVVNDs7M6b!Z7)Wml9pkc#s|A z`rA;{7{wBG`O3ot(ND@Uw{4(Ql%fZsek4bfVd;$0JI9^9T7$9%oW}|d@#lSjK(u7h zjSix<$L`no)%o{I=pC!~5@}Tn1&c3FbF5c)DxJ@Id^&@bA5%)S2B(ND%()`cinIii zuNyBp=_Y@9!O0|w=nl*FW$^6<(aD69Xd*bFq2Z8)0-sw1xNl@NEqci*cL>CCP}%~ zX$pBO@7X6v43CvOpi-N7zAp3x#kQ}wh&92W(ldH7X}$6_8JYM))l4-;;Vt> z*j$gc1$r!Z$VF{mBc(cf76as-2q3+V8V%A4u$he)&hb-8la(CeXK?-K#N*EYzynvq zSqcQn_W_|U9LNEPbJ}eZ7zS=lxdQz|#x|r!xDQjFCvg_va_utSxAU+%#rhgY)u&V9 z5X)!&P?|tUI*l=I>ip^4{YMB%}nmzU7jduRtvnGy)6; z?ODE-fR2b$c2fn-bQ<}BjCz$JJYW0D6ajh|=Hyh}?3RAYcX?LOpRK0ixVNn776Dpp zTYV_^l1h5P5!l1KcS!Or*W+Ic>WsRe$C#L3PAnr7a&Eb@y8o4c;y6DgEH$-Kp-&i@ z+%BB?1LqsqV*?X=WYj3k;dGEywedCd((>pP-a`yHuru(k@x6)vtPjt=tK4*qKekO5;3vLCdr#{ zZSI*)E$ff^Zx&e+eBTk(6w`Mgjt#P5%ac_VgxZb=Bl@H^_;(-f0cGSdv_($dlt@Ga z)P`r%hUU5Jv5!=2CE};noD8B~OF#V#8;s%9D&LVP)o%s(O{w}aLe@YD+?YJx) zPJ|eBiwfZo>~5kEw=Q<5tk?Qt2D}mh%`6IydsNk3%9dRG+&4y33fkEob8>Rg%dPg` z3o?s_&nft#ZxRk66$l(9A;P%Z3r`q3vkz#atwA|8;jj*op4xYxCDYZkxNq4)cv%+; z^{~qI7%{|Rc|j7z7ia6rH=ojj{r*-^%j>i++;@-q5}u+c<-YXTTN{!9bfu+(tB24j zhA4Rl(BR!xa>0k#H3-n*$|oYiVCPO|?U#6~owZ&!-IJ+``J+gY>}YQKG>KTzyYgQd zIz*=>($AE5Hk+@&e0mQqgn%6lK;a3q)NOkal_L0|jv`arJvNu6zCHd>4^A?fp{_oF zlW2DV7a~N?gl9Cob;A-g5EucR&rdh>BSa*T) zeu(jim;oIQZBjY}D$v*8P3$@@VJMqJan5(~ReSI?=$Ip1vdPd2BWfw;CGMOypxvWa zkdcRu)kuJZfeB(PbNvlEJp`C13Ml9zVbpTIgMoPD0;iv9f$kR>Xc8@5YOYCKg-Ac9 zfDCJo2zDcDK~&%vUO$Ure-JptzE!j72pMb8aU*-#wd+`uF&{a#1Q8cX>Czp9^QJtkj zFIoE;iYS_Ip+WDke|NU-9CW~@A!V0Vqk3GN=qoU=KcJ2G?SM@ zpMQAkCW5FQuUQc&;(`_*CeLapyQlIvH|Os_dUL33oP`gSij5-)A+2#d6{0chQq1nY zAg_wFXk)LA$)G}{iA&YtW_5Qfq*LdN!*U~IdA{`-1>*H@E?<#hSckuI?#st+75ny9 zH9Bx_*#dViCVa!M^hhh6luwBj9IBR@KQ6ahTYPjRkn;$n%~tyJJS+7X?|`oJDtm~j zNlg`|5)t&DL+Ry&abejxSmC{pUyRAh0rH24(FOa(5|*A?aAC0 zuQCF%GV}f&xKJ`1>K1)!uVvm5F?r$hILQ#gk69=^oVX~kZ3 z_RNpC*oBZ~p$c?2T+dH)3#Je;WHZ2U1YMUTPJiqEqj5`6Tknw@XuG}xG_zZTWs0Xk zA@KIOT6)c;^$WQa;V@%PUAiKEm_wCF9mH&LKi#a=K}?63JpK$#hn^DT5==Kvl((&GgDC&Wql2!QP62P zBuxQb8jJNRDws@0^5w2zT|g%GULIS1%SwKGqub*Ah|U@EpA9v(Hy2CqAzd%cLFf?6 z?E)#tlms*+LwSG*q7T}yR>z|J3(3(p8gM*Q7Q*(PKLyRRu%q+y;VIg>RyHn2;~{5a z_(E^nBehQp_h2XQI2(vZH}QEW4~qFgliGRj?5?)j$DXvw{f_PV4iBAHK+wIa6GE<07)IvTLbj-Y z6&L*+yaCu*{M$by0qC;F%REA%d*X6I?5^pmM8If*UX%##TB3p|7DDkd&6vUUItZ|e zX1?BrvQoKm*;pHmaS>RH`4$HnCmxx;IOK!XQdcxTq#xFyqs5pJAw>eh8&zd> z=WqA>8weKWzFaSX5fD_mJTtcw`OB>ho@+?gzKiX>^^1SqjD+2kw>D$>^Bny#TmSUw zM}xO_YClTi|8&itf97ih%hwc9*6sh}6KuI1Y$A$h%(}uIb-(k)xJ4ygfcy4pVjdaA z?e(grPs5T@>rpj%huL{UirOMKS;B{%9_NutC8OScc3m>G^RmNJ4H{52w^`~rF$Q(! zZL4O4Rz*T9w5K{Q^nMZq{-HAxe-$XbWw?{m{P@5753LmbfBN9zjB_0>)XeVLKd8?9 zU55r$_Ay`%-^$hbB`Mq>Gcb^yjerMOzcdnRAmEaL5T5nDXa9d2G`QW47#K+P#Epf& zsMY-QA4?(wxmUT`V9-eJ&jLdKG$;JkK!&8Xge#HzpKtb;zsVp0${be}^M6Tr_$wP2 z$g!936B|0jz(elmt^K_vk!6OVGr zhXAJd5V(fjl@7a-IqFsA3XfUt=fZgatS3u?kzY$@ZiG=qOCO$Ije}MhT6QMw_<0@#7gTafqI^7{hj)1gUSPS5ZPm*4|e*(%_ zYt}q+0sQnH06yvka;fnW%Ovh0B9XtR$g`C-VxLcn;wx*BzqX@|^-gHHlDu|Um z`OmHaIXw?({?#KrbU5ni=(Ocu+B%}}i~7Iv(%t#t(Sb71FW(pN4e)+t50FUK0t~??*tU1-8cBEG`k}R~`?b zYX6;HnEDR_uv)a#Fs(Hou!?o1)H-c`dW~NZJyODzsSAxq7_o#CQDG}rQpp3f)Ocet z*CfYU;r!ED?uYkygMt4hOkO!1vp?BB6TA+f9T|nAIFIlMZut~iqcJ~Z^Y|wtc^ks- zgGq=4N5|``K*8_MUxWnOvD^loV&pz+6MmP7`Zg4P&8y5tgQ7qSe6rj)eXT=C+O`AX z7Z(M&WKFzqX6{eJ{QHXh{U@Q=z&5|F|228~I@raEhav{QWXb=%^#M-@`s???$$~gE_WawvEU$d zE0BK!)%oIhX=co<<}&)x6+5j#A9d<{SVS{2}Vi6#i?k-)XoDA-$CX zB~iQ;{aSztd6##xDoP>>WDj8qdStMx7Mb|x45TJq!zlRU-M^_Kx`M|;$o5FY`Bcq+ zO*LTSBesXuEnoQSFhQa`d5x-fsxLMj9PR`%#n65}WP^&el$ zTfoYcyfNi0NBIl>-~(rHym`A}4g6&d|86*b{t)jAWU_BSP+kAdxIJ^<<9RIhK8;mLm2JR$ez9R7 z3;$`jvXA5GO9swB_FeO6>xL$1g(r8tB_|7@#IS(6%{3;y_OCgwsWATZH`hOT@z)E_ ze@Jxx4T$u%)CvEP1b%;M*P(12uR}fa=QT>{8oh+D;3-2$4AD)$CBF^s?LN*Uv3{SX?RHiVOY=)Pj-`I{ZmYBuBJvR#^XnaG&$9GZ6^(y zTL~ZF{`vb!B-aoi7=(Al*;nS*ZNxdY8*+~qqjiU9l#lj@H0m`lSMgorcC4Z{Y7sF} zoi_8Fp8Lo;Xs8)wI?VTY%y>trUwz6;h+TcYS&=0W9VRclaWHDtmD?{(S1=|*f41RY zQ0D~2qA#PWsBFL%@fuK2p>z3Mb)cLeaJV_*!cz5cy^Wzh3`qH1!E)sjjpF9uaRHt5 z>ZyTF=fR{=S8ms&llRH~enOUk-4f}~rrRS5W=VHb7vd}$Zz-U5@mxCJ;jonb7{mOa z&^WRJUI&~OGm)3P_>51V)SRpu-MRu-bvik{7qeZL`MKQi;G|-`Qv2xa9Yb(au-wzM z0K$SXI$4dE`vVH-(HEv654l$`isvxL6fU0y04cv8FIv(a!PDnG#+3ghhw+F>Sa+5m zA0_(MZE8jjPKJjrqkG2qLRsqz3hK95C-&^Zu1=ROO`g_KLR_O*qS!68Y|Bz_uL`S( z8CP(w#aPwXHWPIT?RJz*y~)fzcJfVSql}#%RCL)t-f>~GHBNVuW35jUl9Zx2UkP-( zwiIKdSN7#uq_dn$;6lYwZ(AKe4hj?A73jUNJlZk`(uLkY@$de)^Be|?>xMLLA>jPN zUi5rQZ78(qjg-VCoAr2t#H-?QO9!PF-uJ&f5;=0=aCrZxg$0a34Zd-wDZai;=e_Ob zg)94&mtRl-u>9lk#$!)v+7TzurGs!~(=y$sKnJV9L3>WnS%`(Q8$g@P`!I%v#?fN^ zzI_`lg$Km-gsN&MScJapqwsV-66(#wTEZ@80`;SpvajNhF3-{hd~&s+^a)F=CczAY zYqzv)LL=ck?qBy!s%U@$z@ zb>(Z>IN?f;E5P6RxYZCM@y3VfLgDCMr1Y9QA{OT1gq1=%Yi4jaC}3a+5Odh+thFCd z)rg{LIP=mvAN2^_3s~J-x9ai^3@I+8$tk6^Rx_&-E%tVFdxTfET=$Lv4P+RE1Ws3` zEHXW{9N?E3Sf!07wH_J4;R4Yt=+YMgZ zEfEZdlTK!L*v((spKg@YgB*r**l=xcfqqwRpE#HI`N0?iZ5mq$y3}>y2|$Z zb3H4Q8mS%E5T^*jtK}8T9fqqFmYDCn8YpfHw<_!a#!+z(!Gd{yhV+G(QBDQ#-b#VV ztMN}#W!|OxgJVz55DdfQ*Bj4=oEi}UcN?bm#ncBwy&bMqDxJn%W(x;&ABDzUcepe9jY{M zN+Ks_=8S3ea2~hpefGL8hb4`VS1ubmtq-T{BwkHcI1wC|U zW%W;?C1#3N?^*I4Xn%NTa=3sJL!7@M1FhT@Pd@@5t+@$Be_SAQpk??Ock^Xk&+Ia3Z1h`@5rM88zie>l+LhmUZW8`!GXM zh@C%HFP$uXE}0TyYoaSKa>J`IAiGpWmyVy(p#IeCMDwnJ+^U$_>#)Kzge%z4Exe-d}0g?cT+C zgGSv(%U6Cb$iCq4MvOpxY?mu`lh{d$eL{Z>oJZvi_MNY!PXOHNX-vTC1qu;uiRu)& z3|B*Z_{S4s7oAs<8dgdUiZCy_bZyhAcfx`>X%2-zh59IM-XfY@CWmk@q9!?-LhOPH zO%Nh!X_pdlIP6kl-Z7w%ax4&thjXzH6`*!8cEFqaI=+qm^Z@8m3tApr*#6xR9`aXf(zg_ID;y76MIFYhMD2* zQC1uQL|Z5LW?uK6@}fVzJgn*dWHGl#FlJh?kKm&d2dX!Y#_KGs^95aX*dnwy29=yP z3L_M0pE{%)SItI*S_m!=sXOsFbLt2xa-c=6PFATb7j&>L#NMyq35eSp-(~Q6q+N}f z$Gw(SC9kL-Yx5*<{%9xlnIBJ=US|~EAm9#%vShU6>!KTYd|QaJG9*{7LV?2U4A6fU za}px9Xt*&0)A}BMmGnNpi)7nj9%%JmwVQIWE8Qp_t20Q84ZniKb2RO_5WuV0G0W}` z=YfEG=b$4HJ?l$%&)idIwS#Uh&AFmcFG9zhyT$9p!mq+b@hEPP@V}HoFEpr<2Ew{( zebbO=(`xed@WS^E#Xk8f$X;0~ zqF;i=UhKBqn_{KB_(tfVyiH$I6`Sx_kC?~jg2z}1*Z!Hom$h>xU~ zCqJu{H7c77OpP}2Ue3O=+#LZGVc13wWq7Dr=ast@=adT1YjLy2_51{w3$0oc(L9&c z4z{Ulb`v%VrNEZfQ>DcO7fbML)go%9r-V~q&KH&HKiR2LI8UxD2!RH)iqw!zWx6=` z(XAMj&2wb#igS4daP6UW0D(iI$PJj^DcOcFaM@N7jxMhtLG0+A{ zy+McW3TO%z=NiT12an)VmfqmM@wwcGZi!>Vh0;{9*_)S_?Z2hb6F_gBfA^kSLDfM{ zF+;a42A)5!XMT^VQ`o1plK^LGZeMFuA6f-gK@35wQM{iAS97er)?MxpBFS0EFurl~ zMhOy!lMXeC(KX0rADk8 zb1=<&;u!R zq_im`XdXFr#%ztIX{6;W3T<^k9IXY@P}j;FqsibbOcBk>P{zRP_PBeKeLd)D?+tCO zmwSAhl{5r4IyKVz#JtYW?8zeUv!s^h7z=!sj$HaYe%N(de+=k!;>2>cm-}qvAN?Jz z`0tpnKhm{JStB3Au(TPZ9$CDO_zshEzPm8?fmMDQoxEE zOhhd>PqNi2fM4YJsv6oji#NwKOc8AyT+O&4)5X0jI?Q_vwmq$Vy+siA~QKPqygQM35A%4}O^dOEj|wI<_#|Z=J3fcIl|^ zWF#{LtBa(O@r=&aE5uB>zUyEUapblUdma47$1dbWXi12{*9(VB#FolK?K&|wRkkUD zRG?HM%&u2!q4|Q5Ry$KieUH!d*e97@t@kX4oTm?@p>Jy?NdrJiU4qXZom}A^_M7;* zTGwT-S&q`L5SAE5(9c9@xQQ(WT{3g;PU-iNzyKHQXS6-JHtkkyv=Dpo zg{EZ*Fbpnh2tE$-bRMh6%1-3VEhz_lug2;k&jz*REy)sWPzJ#DCq93due7KV$kRF{ z_~PJHn=$q&H>)_hEm-ZH5nWecXMem&Ci&Bvjf%9Kz&CD?D~LQ{q8O~(O9l&xXN)F# zca9cw_ljm2JL(Ur%Do8LREfBC0>o3~J5m`Jt2Cc>jwe{N}R7b_(*PL=vHeKZg4zd7hL?Ke`)axS(p$x}T+>6B zDsm>;tVT#dK}mNrbf5fi;J`A5h%97Qu=CyhM%#SR)#1FSdOch)0}afkkVjG=FDJ%@ zUu@UK>D1*S!TY@R^g%`K_l0VPZFD7~dam|#4es%4*%jHw#n1C6$yQ!gH@P~c<+LPK zU)8{L=DsGO&ga5XKEBo^r1$yG-(9~M=c%GFCv2{7E(bpg$O*{dWS9GV?k~3)W#0t> zaax~M;|EjW)RM_4e7M4%%J>j=><;RdPD5%{Cmq73pPGyfBx*JJPWI-r|GHu`OAQIrCk_D6~_Sfv5-7z0Wn@Ne#5Eo$LT&}GN zy-P^N>dv!0KmOqj=8BU!d-*eH4SS;GxLci28rgfJ_cR1oIIXHwp#yX(*;XSjz8#er z)LWX2$jfvkcxH*S<&&q63KZ<-2^(#-nSKWaSiSqdgvcob`0x4m2Bmdw?9wtF;pDO3`3 zT+$a(8#N)a!SnL+y#AgK;f+Z=<_D^d$G0>Obx!iGVB8IDl^F?h+N@$wwcB7xFiuNm z*Xn>rA&L>#b~RzN8S!3%uuW0TJ$RC5LRvhcYSXxopv%Z;O<_`_2Fcx*cM}$n36Lpo zzTqug%%Z!q;25~^7_=v%pBMlpS5?W-M#Y%#ZC6I#QzZf=N2z3=OCGz>b$05A*nVfLK0It>MrV#7hYs!U$ELd~!Pcde^GuqKjE33{1~0JPdDdqHdWW!ELi1v6M|m->D08lGGXMt; z9C4%9KWX4o+H}4}X8iJym`tNHOw>aCkiAzTNk@EdQwW+ZI%+=ofL}Ka{&aaR@Tsx0 zU%Eavhicf~O3*!ngW(FgAz!#?N>T)#2&BPz!*P3%?a`EF47DcUSvuS8q`P$%LiLnj zU%y1n77aJXPMkAeQqPGX!(rcj4}gS-Uc(%6z{A7VMK+xD76N%k3!+KYNezmU=w zY)~o;!Z~M)^M<)V5iGymCfDF=6^e|FwTY!XsjBso&GDa%a>}SNjFmrXl4r^k2QL(g zeqVPq=CHs*Mmol#2`|A0+gWwsW}shlQ&*ckJuLrl3ys-Ok?$l>}V3a9LH};ha^CLM4AIixK#tPAhaA z-`|P3*|*Trzg-Zlz8WS3I*N3NI~A+?Nrh5d8H+6_Sx$Zm*A5P_DT+;;1KA=81{}}i z(Grcl#}Y+q0!!a38AVh<1`y7*tb$%~L%Aw>fFG>`#iO`l2{ro}Z#kYy`Q4oEB&TJU z&PdH1HubADH3u2FJH(gQS0k1`#jVZCRG+gtJI~S0^qAP9214`o?^rJJXs#ZimF18A z*zI(nusdo!z-L~Mu_(UAqSf&Ap+WEbx*sDvuUbVmZWK8NOJu)Qec2ZtGb~5S0xB0b zv&lV;jSzJOli;s28Ogfg>YN=!Igx1hshyl#96Cidoj|&(cVNmS-@=#l?t<|C>Hzvu zoR$2rK{KJq|I^-EhE>(IYr}wqfPhL$D-8nDT>>I4-5}lF4I-eRpwdW6Nq47&bTta!q>1gzUmceOF~lL-n`k)aKyl z@2OYB?*z$%KoC&`(?xyUH7d?)@|9I=OXyZfI2Fg{qZaD)zd203JIDZk{p?80pLx)| z?W&&DTt@G-aS(1lh?vin()0|5JWJ_vjhJ>`dp#+9&7b77C2LrYyNd~P?_^pm9Bh&% z_JpqV*pYxEDv#!F4q~{$qyBg{DqZin)UEX8(zGJ%axtzM|hI*919hIYKCV zW%cpD5>%LX&$!O*z{n{Wj?}3^IKm!?wY?Bui~H?l&8*%_Z|Pb=m!;mpn)nmW=P6hk z(-(@1I6PNESg14W1$^{#p^Ex*%|O+xtgTK8LMbzVcUcL<+dL35v|T+SlRnfx+3 zD46j`Hs79cr5FccO$?@RVDmIiXE)1EF5ewyJD#`5I1)NkET-0^%_e$s)P}Pxp0D1U zwFRKGVizgXsYR*>sYI`jR#X&2r_vmkx^rIZMGbp-*^e=iC76rl5OEcw=}009t|l9| zcYWL_iixu9XOv+>$g!=jGF<6WvTSr-wFOv{zJ)9J3xjC0#Gq>&=EY1*E_ zKD>K;becK5my_x*6H-54*CVEyrJ!w=RcFfNOq~DQF83hWH=UdDGq);8Kd~Lnme2R` zSqt#6NwU5!?Ig$C+H+U1n09;LSH#%d$$GjRr-B9JVjRmq7{;c2afZYZl?o%Ggrwcn z2OA_t}*2m1Zk2hURxyt`z+7} zZyB-k2!{@IzVq1rN!OYt<_uGuca2MiXI!o2zDh?yQkr|V9MlrR)y5bY6f*9OzB5r> zPyOT;nH8ta=-s0vEg&P8UsPq~rc)G*P3E^1&Bbn+pDRbAc!k7jpq#(DR`uSr=Wu4L zI5eE4mb086a@j$sf0t3fRx8Qqv4T9T?d<0U^wcy?pLC|mRsh0h`#V92+(YO!lqoFf5p%Yqf}S?DeKoM@9icXkDse?ZA`@t z#5b4Q&Kpe6l-#$c9u`0vy{G8WQDN$^uR)#<~(6Zj*J3sNI zl(dcCk4J5cd4-7BlzL{7gvg}Sm-Vj36qa@NO8q*gdT@!@_MFRQ<5*TrbB|8?`20vu zZR5-3a%3np?7joD?EFvgpi!iCiD4th=kip4d#4xVU`991!5KDf{`oQi}!(06XA_bya@pap0>imr#`z zoNKa13ZYGI6c}K<_8n|Z;(iXTp{5GmvXd(5xO+2dAP6 zsSm!ep)RU&%O`P`mT561+Xo$czwSg8zF$;-6SA+&-l4fYhc6`_R!pex!=UTe5wo~X zbr~#^u39S(|v;+Z%pm&L4Y)j-TR_phi) z^d%xv<*+bUqr}1?5{to5Jsm9shK|6vuJd&t%u=%e;Qk13VIkd|F9B{VBT__KYP|d1 z&8Rat?@3(g2plu?8(SMsuQ^Pz(MhguE-ky4yF_Ci$kS^E`U#0LfAc=EV z_#F;1Atj_G1Fk*G(K!dyVyI^NX=*PzJWeDF#E-QjpV%l_7#7cWw(A7HN(1Be|WXyz*EX!FlF$tgY z)$&(AZOqFmVyeeHdjEif_DJYx{|UdReagE#uH!Lrp}_f(R#SNR3z`G&?r9qLOim&l z;()8rxcwM?#jH_zoxc1r+=U6$#sh`U@EZJNuORrY0nnb;ARWSvzTGW!t+7VR_JscA z2QizG$^9gDVR+qcqiFNpO%$Jb_bIQz6+9tofOh2xbLcIs4kkjt4SIER+C12%ZC#kq zKQD~ll@QGt?F$H>pq#0<9^c1CaVy}N#+MvTct8MjLN~l^uW|J>bZp0u@V(!4eDuHA zE-@w&@q2nU*-UW{K~-meKo)KoDj$`c%vk3@ef{-I_FHwSog-|yA@l`9P0p2yTmW)= z6kev@jhA*lB+xX2??@SFg&`NeZ+uX0(A=Z4u72p`={}{{tbk+u{TlBXU9mxqh8^ed zv$sHHzJM5eXOx-KeuRE+GgB1Q6RTR#JF#w4`0N{Me(^kHR9mTq8az+6Tv~rpJ?G^7 z#+Knc*2p}E2;peFA-Bb<4(yIi-lqeh6u!|B*`xwt%=FiXfoPwG3##RX(R5hot%ENq z{Fg*FZiv>$Ds?6?4%JPeKo|8Mw)C@`b5K7TiLmC;cee!@`r5%UHNMD(Uxp!|#U8$= zDwWuitvl6wVQwD<^%4^*g02O<^*9Xm5s0@OB%5`O0u zumQY??*&0eHm{T7_CtbDmYapP$WNZjP*eolANB47y{xq>pA2^@Com}d52QVyb7F@3 zm(I5WxHrc+%x{9{YC3o8gRP4iS=v2!I(>w)RS{mmb6<4Q2t#zKKH7_>O|Y9wm&{Z* znh;Zc+sg4)?;r?HD%N#DtMPKQg~&UK)HN;Ob29enj0$8NyZK&Ft7ObYjrk7aSn7=) zI|~0w@392JbBII*mlHbn!S+%5n@oij%9RL4X?p+zmYlLR!GTjW!N-pFUQu||nDsJ6 zI`R_0InB7e>0WRmQBZ%oluzVDw=O!@dEu*9d=)7okEMuBOiu297{33ri-J*Y4u~)Y z%THQTxNXnT*p$xqq&sGy#_%i9f^Szug zv)4$-ff)PTl{e;X)YK@sbT*&%H+N@q@;+UFyz1F0Rb+Ms!u4`d{iuQ}J{g68db0OC zN;lp%Pl%3v6I%g5qv4yfxE-TPmi>FLU}a(cj-k3g-?C>%M`a(5WfNy=V?JxLhhNb8g(0Q=~C__q{o7KS6kUM zW93at5Kge~sR$*RJUtXq`rK$=QI6)8$I^uX_L;NKuiDiOH z&dIL6eb4#+)5AN>XGWStXJ^Z%IK4#%AWyR4WJ5ILQ=Uk+`vjG6$G;_TIwWITQuc9Q z3QwcfrJJp+O(keh0#0@e@t3K-C(=1Jf}p~hr?=o?b0zo#)SvQwvC-~RzR*P)HS4=G z*dXwT^!OAO!mLoos=GhP1ESw@yUx`%*v_axgU@u+;!Fk%uS&Z)V*=)f<{R6reYGCEz&wvX?{QeDJ3V4cB^7apP}jw=?g!{yF;tpJC5R*QtbfmUQsA4jhsnM6a+PgY3*+!T_L- zqk#3}Z<87}sCPakjNf~_GrRYCQb9mSaLBuSzsHd-xY)qYHSn8=EbXAm+y%u0H}9K` zlDVMM5U!Is*?q-Y5kxn5ky=y@cgH!xB6(}^vI1q49s8dPz;EiZr{x)C7}!CW9!JRE~?qwbm5Co z9?Oy|uJM=?p0&eG@!8yP*fda7^!D9p7>(G7CI@N)a#9R+8?icV=BZd%AZu#Vb?2B! zaf&-3<9hINhr~{iIDUZd^yu69RAaa>Pxhh^6$N3o2nc6ADgFW@d8t@t(EBfpsh1kK|Dvj8n$8Cz9huemt$>4TCMu+l)n% z8PlaW9YvvQxthb>dhz_#SXn8q8;~CvjnF8yrS?OwqF25%H0@n1)FyN~PdLDPxV?XU zx;zr03;LESu)@?v!u=MEBXf4x9os50$ujdc-n8Lhu~H9)gGJ!X%bCExHPnO_3hJ(m zF1tVYY<0pi^rXT`?CSVzy~7Zt&98UtH!M7Ai|}W2mflR#i~?jvD^wa*;Abt+HeTmihOG5C3pL?#Q3G>BL2;rd3Q;qWU{F) z$v(L^m8LxTzKyXnE&a^23n(~}8L?W!Gl`}s&-{28ur53W(XY+3L@j>1#!D1+gRt@qPAryEi{v0Po5YQ zQACF|obH-XuRzgUPmLB*A^`8**3kEr=kM^&Q6P&t zNi-O7OOqR~-YU1{rA9Z(v)U}_VO&f{yLo_0>i+Z$0!$PL3ldW9chvR;-F=j!!QdNEGkR ze!&)ADUnGAtzuJR-AwXT&Hm-3e8jA<8fVl6@Vdnh;@If*J5@R$6R-s&VvNN&9knlj zpmcHDg<<#owXfWB-JevR)aj z_czZYj{&T+LPAP1;su4xlU(_o902Tu8}H&7;wtJwg;k|)&GLj!>#=l@dXj<-kZIkh z&`-cEsGLYNY+<_=ueQ_U_*}Nv|Ct9T&cIEYxW&bIgk-zk*5u zx%r&y+DSn#xu!TK7BT1ZK?-PXWSd&&vr?kl_y%kp-*b5xU)Ugr2R{ED+|o+~-og=l zl5k=8yyj>`c9dNG7t&|4*uZV9vCK6Q;6!R}F1EzClexGOss$si4&$1yvTV4wfGbjP=Mt%oBmzeu2A-7(R@04K%%i^h?26v^#J=oP({=hoQyHY=E4-R^x0urr9t3L4R zZAwx2CaD*ybVe+~6a<*tt5SG7E{`&uhmGM?Im<3WS8b!WG@r1wG(zh4YI%ORb&7ma z3TR>-H^UWhAd41+?v!5Ijk9QzTCU$*?n(=|HeU7QKa6%rm+iv+Ql>)zZHiIr zGm_AJI3N%bF>7mVReUGR{nze|he2W4pmZZpks0w+%9_&TdHkS=4fSCM ztFZChY_)y$^WKuLn{_qCxFn>2pG53+x~sR_cD=-sv4#6pJ`gxGJa9ggZF^Dw7B5d= z8Ip#+rz!77X4D9|N@?d2Py`_JgIz*G-MY>7WaI6uV_XFA)9ld@hGOn`%; z_s+8_?i{=TekJFT+_RJLz$(CRzy;tOoDoaK30>#@S49^;c^dDgc)CkuZI-|tqzLID z#nhDK))D5bc@2!h2(vI1MBk%fDN98NQ8eYfuS`f$wDQ%Lg&4;UgJC@jF?FHAHX0_|>@i866?Vq>M{T2~6$ z#`k%XEmOl(9KYku=IDcZLxr!^*jFXXOI4fEO-Qr9Jbro)^!(^Vpe+rPHFwNWw&;hj z%Zz2{5T9qIZr0|v!I-)?a^VsS^(I3BgHcK>JkusoM^J~4x?_^JS3b4~bc<3uss{ko z!4;)kyevjImHP_~2${zTKtycIk2Y}+1X8Xm&j>8ImI#Y;lAL7t$DAb9rrc(2#Yq_~ z8jmOP>2+dG(Gl|46K-wBi|U~xc>QcEZXKQ!*4dr2oXwL2sK+?Y{T%VFte$>zDMvtd zW-PiatOBqs z2DW=wG!MFerbDhD_DR2rb;|lK%Z$%|GR+Tslwk5XXVcO`1TYl-g1pKKF+P|;MpF2y z$r_LL<879I6OT1rkl50G<>&!m{Prz0>^qL+$7h{3azOe-A$xTj-)+V+rvh!_3sVf! zJ<1mrNXS%@{cz0`-4{F~`m$}Y+hH@fUoZIOE(*O(s zZsKDgH{Of_HwBdcJ(d1Ib)iIfuJxn9(e2*H)0~R3Up4>#N&os!ni;Y>sA@b!g;nU9 zt|s!Om;b_v25Q3>Q*VpHU(x)5b&pD}M*6p8)W+aN=)Vl4Nc_`o2V1fD&(8wE{cEbZ2nLiRx&`$&=tfIWE00nLWtyRrEW=z)EQ z;n36j^aSBDE#{(1b9OPzR0|wwcixPD!QFrG;;dR1;l(0EoD06o{AyGEf0(>~+f)CcAOC#|g=wZ4-ka1LM<3%0yy?XL>g=lg@UN#XUVaNK*-hJG&a1nIZ74n8G1n=*E-i(vd+!TAkPyX(`M0h7*ewvTle~PY7hH3DETRRVz$=!=unWuo>gl`$ zNfwJ?qmKq0lPD+%tIDPCMG-N^fTmrAvKXS|wEIyrFsX%tZURh^33UTueoMs)$IFw3!GNe{VtS1Vd zfTXOA>oUg+AA(PetV3UwGJ4EoqYwgL-PdHdBpv873f57mtyeZ!WB>@~}v_p9|lrFg6o=Jm!hG6YqLMkiUS0oUL%p zbyN#*H`AQVL zbZ9=weD~`XQlWMw1|ZBT=GV4i3%u^UbErRQUwaXAw`Mg~r`0f&EOzeTJK*HZH+ui; zf@FSI3=k|m&#wiv)zCP7uiPRHt?Sz+DC8asfhB+!XFdrii5n%y6FTrK;92(@bhsA5 zuR8B5ETSirx}K{s)2^7vn{_P!9!1R3bhc!}1q3ch)HMx*x9d=lT(w@FY)@w)oq#@~ zBz7RItkX4hrFtQ=0JuXqIjMeLZnGtZZBIcBu6&E&_LyrR@2h^0>K(D#1-R6)-0=wb@|wF9UVmNU|DMu+J?h4!;Su&hRUY2ow#~oI z{NEpoXekIe8Dj+sQ~u;WT$SOPQRCf-xnOKhD!9zYmK^jjO&&AmQv?=(wA>9*6Uf?adx3W<4s!HmzuzlhFbc}03JVpk!6{$- zZrhrZ`2~K+W$;W4Mut@6K#}|U&_l4JAJyCaVr?BL!dDIe@jRS@_>-s} zA(4Qa4H1u>ZdIanQLP!M9*VimAqCd4?03_pn&j7Pm-U7Karb}S=ua5zjPHYVeqoii z1!&A`HZA}N$9G}aZ~SrEE5?*%gF*Uc@|=IN0|NsgFWg-%`R`BfzxOf1p0(h;lyuHl zi~jHb{*fbfVaXSKHE zpF~HSU%*0#gU?}&nKP{^ zo#o2X^1WbPe${M&)#6`H=}aNPP1vlX8TAfdIFqNJf$l+(jtY`6ot4apXP6Rj3EAe4 zTk{T2A^sFgha;`jskoRK)n^g5HD@e4J-|SQwG=ns5EnHse&63+_y)&-J-uqH13*^8 zkmcpC(RUpnOmuF!&1%i2bL+HF=y=l%ve33-ImYUg` zf0+TuZafe#>ljSG4N1b_%Ba0!ne4<1p^*?3<#8u@3_&=)duFR>Fr`d-nRfA`zfiPZ zaUUEb@PPbcvbhzAOyf0?2yhE!>eW|mxR+k;lq;@J6mB6YE;}0qN_eJ z1OTm1l)?6`bEiK@Zm!~jMqa)-_CAW=tLY1&@FSua;N9AWs|q>vNYkO;bhmgISOlWu z(!RcRNlpx?Q{0eRqrn5Hfd^Z|#mv^?5lo=4m9?ko($0pRapLRwz(?!0qm5ecEP!BY zZcQ*x#f=5RVQ`9fIw;&MZoqDMemL*>8iK_ry)bK!<6Ar6-S(a*_zX?1x=63h&9|yQ zrh^;l5d97rKj)=Xi;qCB&Dl9Lwb$m{b{yJnPY?@m1Y=)|pGu01)>_@W#p|4vcy?#M zAX;{!Dj5IGAYUl?JgZOam4N}fd=hW&idAqg<|WK~ZH3E`d{E|r{NCSpUg`UlC0W*9 zxA~qiTDRQ`AdXPsJYgIua?h^mX9!%Ef}>ux(c6!;!!RoV*=ot0M|~11fjH+PDUU)+ z_bnyH)|*xO#QNY`ZCVw#S!%|iCr`VWArOueN%GzG%rXnH01U(!1z4YdDi&R`)20tc z&ASJOu5XIZk|!%Q4Dh+t@!dV&j}+L$08$=K{1;t?JP=+3L}O#$J2%sC0wxMH`STp4 zaLa4)>rH2f^^Koi&0)lB*=#RMlHXc_<^G_)_wGGzh|OqOeIf4GSW(id5?EUa59W8EeSrWeOXZ;1V*g)w9G+@_Px*_)-tukXB}J1&Thn)n`k7gWRdo3xZw6qgbXPP-1e}WT13jbBVqSHJ1AGElFM5*%Zgh+4HuE;bN5JyG zzZ9q7h*8%}_i?yZIZ2-?dmvdLIN5FLp++o5b>s1gfaQ?VAQn#_VD{WHq8wBZ*u5(Z z%;NqOuHwoagbU#Bw=#6cjs8sEjgC@y?CKLtSXsV~VuaI8G>^TehHjx`BbSMCKVgro~xAY(#s;ga^`JwQNdjEtfUHVb(NPZT^|9#ckv-ABJ+5e zX$^zr*hZ3Eqt3W0F08rJdIEk7s2%TiD+Y*`Vw{OoYwr2X6}w+ua=8s8a+oX3F#H5X zPjttbBY??L%RiDW2>PUy0s&Mp!Grad5}4m*2-l=0RTRzT?zxbxVR{SPRsc&8IOo#A zOjBagOVhSjJ@sX*s*K6M*=?5|@YB~*$~o-iugERi81n6W4N;1oXLC0mSIv%&wg=)Z zxtGQbVxs2t)E3t-en0a5a(3lB+s_k6jKx+3JC);)r*HrVy(+u>)q9?~PaFtcPzkm6 zLjn79+@&@5+L#CgP-EHOTfte2=bn0b4FniySbg^c(Lx52`LjNglkxKScV9c!701sM zjMc5Ixk#kPXb;Yv^jA9{M)&QHuMcmOG&#D&hO;)LjZvJ?9BR=5j4Uwu4}}Wc_uk8( zz@h~;?sRn{SNNU{chb1WXb<%9HTSXiM$hO^#}qf8^Y_;&CqO>dIA#HfpHp9sy;FKU zhM$9gNO*5)ug9!=T@x-1^j3%fUG?#Y^B|rz?Ycyf`k$JqxJqJq`ADbp?grYG3S&Mp8Qrz@17}_Z71(N|V>8j4yKXL6c2|Dk1iAk*3Qe`dp={UZ9(L zdBY$SsErF0M}BsXi5F)qS-G&?3r*^in=?Kw|@jQ(Hyr)9!z#~bdRY;2G zus2&Df^$BgHz>BGpWg-GtBhtJ!Xh}6c{;79As^#mt0pc5XyiWhWYSv=<%1EQsgYs` zx~{&FkVxyW)S6^PG9?T{CBWlxm4B(p{$7;Sl{(wE*OE8vlHi1+rCeDx+Dc|&6A*@l zy*tx~_Zqh-3;`H3&vi5L3?`&slRdDkm8)GnEC&44gaDXx_;v`PmaDhR9=X2PVr_+# z59#}chKiX6?xY&nA?unSx;l3;^t9~J1g7LmLw`441-zbQ^?^-{UwT90Iy4!r*OtA^ z&M9Vw{*e`nD<+ktiAZdkdka=@pgoUtE=f`ES`qP4?56tS^eNG*W481_#~6WU%;Q+(XbFs^iz-f`b0pPUz7@!>U!rL$LKaR z$@3XMzQMFHIE)dRH!GfIDg@{is(iQBqI8`7fK=b%u}cN#}YtI{_w0? z9z$~E|9+sn=AK&z_jr4vDjWHc;&fdM*UNXf7gOr@?(BS`Oxw)<^&;wjy@)#Z5l8SM zqTnxL!;a8gZ~1F){Z5^1a185o$S9CIN%9nGhMJU?A|Ml-zzrDU4-?5ghLX0E*(_V$ zI6WVwfosR*sm!4B@*7CDC z9r>Y`N5FG@O!*-o3;*H?qmdXQCP8M0#Z%1N%GeT_Xc@0i-_Frf##4g+!x*n#wjsS4 z33qto@Jji9i^UpjcfPKA$IX4s&TY@{@VsSrpyAYPO<=XZ{|eeD9r?NC;m!rqOouk* zErYuN#RDASM7V&DNABIRW}p4Xwz7=f!dI1@Z-mHS^;UJhmp9JAA`yP-23?5{9RZ%g z`FqsQv5Lr#(2?goq}d(hdoxqsQ1{lj+#Q;jBOWWJ@K~mCNjMG}0-d4yEo@gyo(5y2 zOCvSUO(1H25bB(D_Dgesh8L35sAH%vdUGOTZTjr9E@y@ve$V*)E&s4yV|B{7ogC-e zmRTgp=kE&3+TAkyZxN7aBm3kdzbq;e~|hX06&# z+=A9qO(dQQYr1NPn{@%TqkK8^tS1Jei9$73Ih$eBt=P)^W$zH=+n~?R(Zb-u#&8Py z?D9k2R3W=~f$FZAe$$YD_}MGZ}rKxAS4jjuIYv2|7&Li&)5c!o3& z=r!IO=WoO^X4AAyCO|FV9cp4`7Urgs)|M_FDmQ5$a&wk()SOeChT{b4N%GYnLKEHJ=L5=?%A1yGUxbOZ>h-#?j zod1SPwQE4^x5`h9PclCRXh7YIdlt1BVotDQQ4o=p)xi78vwIMmPmglL=bW98T;=3_ z;|Y~a;+ovMr$v;2iez`HxA~THs_U_lGEyiGMeGC5IeNX5dRa+>mG|5=LJ<|ZyNeQ| zrVR#27lN*XDMDr^F^o{u({^nFl7?~tbN42bG2C*uptN%Qz`Le)msho_b6|M_tI% zC5{=KjSE+zV_P8E^%yk!i7KA(S(R{vQDYI0@dQeAyJ_Jz*!W0MCI;-fFMo%PH}Iv& z)4FYq&}b`{GUrA!>dE-|PtKLKqOX(&p=zxQU(akEN`7V{<92zjDXLef&9%Cjuig8@ zv$&^g*mxyH*q;EaVU&_W$nA(Zlw_uwL(*#D$Jb$Fd5#Fe?yZKiHho~$ zsY+xKQLz8fwNl>ujSeXt$*p-jHh-=0BJmDslIcJ<_Z%99AN|E%j8?hn*qg=s3<2-G zTCIL+B_SWpnB?Jh+^vslz+>Yz6Jf`g==3~6KxwWgtPLox%K z%#yB!k7tMb0p@mTOOIN9pAa7NNsqe58+{Q8;u^om%vP|=9qRX#6*Jq^%^pPE^YFd7 z65Z;qc3Hn$e!IH!Bf)@BQhdAIkr*Z2dV)=@0qmfFd*;g(|DI=&aQz4Z|D{i?*P}#D zuLwE>dZB6(+4pc&N>MTPp!b}Wo|Ts0hpD8xu5sRdP|&NBd64tqJC%Y&9`?>`RZN6u z|E#4f6KeynWCY(D5!CSTHts?ip-E6#NS6R6;q+3U`Div_*IB8t+?Lom?fxyqNM!Pa zv#*amn5rQQ0{rtVfFGhf_Q`fM{T8aJbfp#Da|5~nXaR@+maZV#$K$QZUXDQ_=#ltU zA^LuISJxBYx)1{HG=C9XqSLa&s#iCoYcgC;^<|^Mo#HqVJYwR+(VQ0hcSn0(#3>|8 zTsn^%297rWTu47n_*tckMOg=HN~c}#ide=Ce2I98w#Nvi%{{s2b12V~h|oV%Y1KP9 zTh-kv8Qv!hBpHuubDH}SxJE1Z@pVy;B}z~s;o&Vy9kP9FX-g{AhSmc*=^2t_ff zpB}~_H}E%mt3}K>6h_N<-|l^dfRsxQ-Wh&1Mz5+W(nXo-DS2a`Z}goUlv!cWA~6|k zHYLmW4@>#v-Yfhv$?MUTGT8;i>hKiSB`$xQV> z*)SpaD0sUa?`*P9W2HOC>9mj*nqsZJ@-|lNlAvk571I=SoE|V&shvb$VNlCcrL3(o z8!y^99?7-l(Q3SqO<1}T8v#7F%+k@Piu-ALi$cfk5YyrMy+oHw98w4Ex;%4jywHgY)^H6Ncx_Bc%Y_@RNjc)lpCWm? zpYTE;g`HDA(+6zJd?|k9yY#t89|w|uYD)BU^6`-Kjbw%exOMoQrh2`pdS1lLE5hrS z1hP(4OG}Q|ft^+*ZbizKxSd%AEqsKHyfRLosox4QP(cwi)a zxoaT6n^*nSpz2-TwW*bq)y*>NpgV4FT$-v!jeMWMuaqsY$Ohy#&VfFZzzW=g6mcg}3JUngMX4$G1wL+cn zn{Y0RNf!?D{!ga8^Kmq?^BndnR$HoWB~b58bf#AGI!v3H3axpay0L=q{XBEgtZ5u0 zb)H&i7U#N5lFDXD6u)g|C$U4J3C)=V=m6A;!V3-g{3QDfa~(6-e|vtkqN!jKeFmwv zDHGpz;X)|!&a#SLOE}y=8LwvVjeFM;u9A~z(|q1wX$i?fBpSfKSSM~rHD z$W5JxrZ*%o?zujTrgZUgB&}F*qMy$r8`GDQLvtAylnsEl@(I@pz9?M zPNK#tLfLT9kLXhtiphpzG2iW=M!ncEOtAa5R-KZUKS0~UJN_?UCkT42+)`$vqWZuo zATaAw9i#B_)nSLa-1M}-E2%@Wz)TccA>nD4&soez6*i7zqe0G#IY z()~Gm825(bxm7>$a9U=O9zPm^C2(pEAh4TBWCBx@6&%%(ml3^$m9Lli|l^l*j|b;(R*4Aoj+d%RyjCP;bos3PWB(W|=ErK+D%1rt~ z@TL-+>UhT!Fa3ginXBU%JP8jz2}~R-`^9X#5%6_s0HqQY%0)=5zvFg7aJ7o zXHwtmG{qtVMC|>bT2V~fFB(B4F7)_gbMKfXK3k6&4yG7rlb4O2Nl@NH#5#MxWmX`# zhCIFQ5Hz~f)-FXJ>$KWKqb#Ru*?h_3?mxaJwoG;;UzL;M_r2lU6St%1qw?|nm&roU z4kFM5=KW#^NbEt zoaq2JqfeoI$%N(m)6USu4QB0%CxsF1a!EWOp|?@C(s-H_UXGh(01-CS%2OS9uUUDm zgi2Sk{EA9BC+2ciC8;<8@DAua3did2}CBkscEcSw32wlAQ$ z0Pp~x;L$oeIk(%i(=0RN^mHqM*3 z)Fobh3dy$E-q@_vaQPW<9(uo)>zv$N1{&wg9Z#;xN(p_8q}uTZ*w2&CAMi!f_K|1w z{Tms4etx1kxIv?kNE-f(NzethXg{Y;w}c!Kr_)un z(`>97;zzm9_O*G!>85qITC$;d=<~r{e@04;vz2Oy z7Cnz^jpW727M+2ABeS5`d^|cX1s9|OeK`CxPk17WN9&ZM|3}-|D!3o<9I#P?=o0oi z$-N6KA3VPmU=yyzJq(W{x3r1-RFBV=cPxbOJwcjr{h{Z-%_6=_LW?6L_%JW*=GznZ z`FyjBj{eV5cOo)U-t=_7=DhD=zo86}0O49o6523^KK=mfEY6w0u#GQXzYO&AKKRjR z2)gG+o4|L0=N2K%)!+T+{S7y$-r6c7)=cU_tH?_GOeL5(G_x(D2#WDY$u zRnkRo;C0RGHUQ09Egic%9Aj3;9q}y9ezd&>@x&KA-ePIo;bpNj~knD5u)d3BeSH^UZ7~}Io4Wycwcq*XAXJe%J`&y97PgK zy~|KQP#o->wKfNaaCkYUqWC_)TMtW}h}YxI`mObPm_trd$|Pqp1NFK{qr>RSx1j0h zD!?$f&5!tR?NrP6#45Z*zJ=6%`;KE>>gZ=FewVEo$)i_N^=0A5_Q!FHA4j>8!WnJ7 z>FA&WIp~`a*^>CP!SBd1Ikv914+lRVp4A<1-C~xuv{sur z(18}s$r;Rm4y zEH|^AI(}z6uNCDFqzw#5C;9a(Ut|A@^5|U7LCOVxkq2~4q-^DjYfP)bSg(|c)Nkx> zY$xWjdJglx=!vj*d#yM6dVaJU{7AJPdkbUxWqu6MfEzSoTNeVZynvLg9n1|fySiaP z@vuZ*i&q+*N-sXHF`YU*l{`y+6CiAk)#x`2nVCt)o(c2M-0%jnO%R(1{!RLgkqvAP z1#kTgXGM|WEjr(nJX4E&(TjJdz)_9o)Dv*;iG$pvrIg&?fO$rj|7^R&l7<}{VSzrV zRDomz;;)M4cB7efsuS;5J{l&FY?`j+c!Gvy;j#I)+v$g6El%_;+($kMD-!X-;FQHZ z%aA{gWzpk*n)gGAn4Yt9L%+as6munF)-Ea|DIhH_d+x%SJ2w8se?_9@`;tIuog@71J8PbYY~l1?8SMS1gnBlb~L zeL1nsw?^*!<@|>KhIQnkN8NB5P_QizZMqbO;>i46^i@R`1oKD4QupTlAunowhMaIq zPthGq5J_uC0Qvzl4+-Xb(P4~jr!VrMB2QY8<&Z^)ic}d?2CSV@?vNzX%#bOGwdJW9 zbTL=EUo6n%zDzqzVSMu!hTl$nV^IJOP>l> zK<}?Ta;&4Atv!s}Jvf>o6|pPOb+|bnE@LA{q)PKQ5j@;>F7s;(@p*J1RpE9S!(|bm z3Q|0fisvF<=^o`iVIf2Q&O684w7-ORh_-*F0eySop1i(bO4d@T{N*AO2Y;U(;d$@L z=GCqmU!9yTQ!dgic#~5-@LpUXH?C0_C?gY~>xFURD**to{+FP+PYI=Qvm3>S>rje)0kZaJKV$mz2 zQOQzs?7WGtCc77ikajfh_gDx?lBLA6mmp{SqrCFu#zDSWe>=q|n(~&Jq&W=(-&Iw0 z5!qWgpL+WG-{Ag4S89_hiS;W^}C|K*`i| zcLW=RyFH^s)VH+lpi(zWG->a}%=V@X?OyH9RvT2%yqT%AP7t~CNlOLzv}0W=q{vr! zx5gr@vzAKGvTpc)M+6e>HR>`F;T5-mdJQr!lpv?DyUv5T<+y(GOSFb6lKw7m;v_4_ z;}!GJJv>Qi>g;~BNvpm)>b|`$+|;w7P@tMSGEy^asa&L6YZ7*E^KIso&!7athrQ1M zC?JCRcZ=Nr`G1t4*&$78OwwQa+)~1OK>zbU3)KjqH=sS@8ocT6KY#2mg9HHJY=G{< zNBlp$Cj`W1l-mdg-k4AP|7;Rqin_N!2SB9AfaOY>tpcNrRC*U03#QKk}T6h|O zKuPFf@?U!p|KkI0u?O?Mnn&uR_~VHaA|WHxwoozs*&Ts9_rnD9J|%d0^G8#FPqpSQ zB|;Ypxz-=|``y<8^KPz2IQ%cYq5pY}wFHAD!m{5L_J>b4AOHg9ecp%?FY?C|X90bZ zodTuQ|9FL55rBE`F}Ga(@x&b-f+d0}SoY|TSIB?1#viWq|7?x_Y>oeASN%VFYV7;F Y#;$YDt7*MJ06)@_3KB(6U%vYP04UlVng9R* delta 137450 zcmd?RWn5Hm)HO^?hye;ptE9vT(yge(fGFLdbeAyn5e!5+heo8kyA>pct^tOjdl1rccv9%>Y*1VN^cmoQ7%Es@7Jp8f8 z>Uz74=pmJwTGV?8vEO_9CYAh;T5qLsGd`)LS7jVdz4N_H){amrl^5(}O)xpE>nls> z92VPTj_d4+b55cn{uL>>LPi()-K7lv)1Jf;@nOAn_c_pI(erSsoLjQq7BYn8pz_U#B}{~0oy?>nphv?>Ak9q%QI_R zU3{eE$&7@j1l={2Q!W0y@Oz4;dF}DG*A^Gzb|W}FsZi_#VqM~dIID`z8XIyHI14E54qR7xEf#+_Hv&z=B4TB4}ulqKb|Qf0C{Pz3i$S{rLm zkzj;0LD263JKE~f=RuQ$YowiU&V>A@ElLQ%%}5c}H*3GzK2P0CP~&`Htf*-j|B^#M zq1eE%ad=;8*WHM7L-OXH3;K6GgkMOFqT>uh6YeZp zo8Ik!@fH>q3BD?tvz(Nd92}`SFdgA6!ud&xYM0k#i>r-H<#}m*ElWm zEnnPFDKjHqwW@U(G18P^Tus4PKkOG>!93O~dWW*+zn59*vR`{HI9}_Wkgs=~GF+qy z2?)29WVkJjgG+Ern&}x+fxfjEgQg+M(eD`0XB|V<)k?KA9ysxnnv89W^2OQ;7rKy) z!sdq$I9FL|`yLDxx=s;b%z2TR%AdB7WW0|blIfSs=#V%}u(;2DN$0Xv^oI!k&Iqxp z)_B*p$qa=qdFMy-nVUe^QDoMK(gusnAN$j~(r7{I3mADM!XBJBl5`^%Aj zGz`6Z=WJf<_~92agp$yt5u*z*>cv5~*E;{YMd~2H>_^6a;c1IC%9*>ipX9sT?fiufeeW?)vL$zu8(@Nz28mVT!9!Jyb1hay=_if*IiaX!W z-#as&&c5Gom!0ghCLh2%{<&N+_Q~5y`{{S&sEbwl^Mb<036ES~)%f7wfa=?{6yTyQ zK9O5j&~iwWxA>K;m4fy8tN|1|QL!-Pxl#EQeLlp~^7T4{O$z^niOnG6Wm-=D(WaEA zOM~g_LF8{`)hsRTr|V>H_p93pTttX2g?n?`_fm23*V8l#3~U))>4@7)*l8m*6{tJs zwa7X1dPl}2 zWXyvqfoNr-N~j7W{q3suTIFE91#>y@i0NQC^k$w2yq2gjk zmYmk8j@w00%qUXW_TgBH=W9+O<-tLB7P?Ju%{~W7WwPb+H%Yo)B0TDOYT?@{z>*-i zHOHl6rG$?!>ej`c^2{CmwZup zI?ZN>bm}&tfpPh36h%XM&~Bz3QSyZz&Yz<;2jvxjxP%ARQ$T3B50L-i%=PC&FgIHp zjX-&_xu9)aj=JCW$xcS$!0^G(Q_2nJ=fx9yzqh9j7x%+-cGJH&zkPxtIdjRvvK&t< zSa@z9s<)jHGkwItTh(VWF2{Exs~_;T9xL|srrwRK8{3zCY@hM=_t%3?6ioP9`xsmG zb$;G);AR9TjhQs8+-bep{5GAM2BvPvJ~FN-k4bKnYb!Auv~NAP&j zEswlw2pifMFSp2Kw!Iga8Np#Zw=L?r9*fMi24YwYp-x5HM6A1C&F&34Ep*)GL`7q2 zf4gu^5-wJoZ60H!mJj31{y1_Wgs_puS-qkm5gD`x!V*Xuk$p~TXBz4tHvFO@$g%#K zYMxh+8i)Fm&NW!Vx^#%?a?5;(a>2Wv9pkyBh$x!H?;S9i+Ri%s!svDFr)+TyUAJ4@ z0Pka!rlO|vUP)8~>`?w-SNbXL`PR8f9&N+*`+Q^Y5!`m9bFt(holsb!Jb#iVUBTe* z<>GnAa&p;I5pK0*ssv@H(20Uoa)}~kJHZ?izc5?V-+zKDTkc4GofDuVRVDwNd9@|r zzDV!jS+44!Ts%8AG1+myl=VmA*P|ee z)+wc?&_r)x8Y2FWof>}{PYW9`Pf^v_`)5585umF8uuLtZ)yp+DA`Z8~Bv z^6c9=S<+;h{fT)xCL1qf*TtN=0?G_Bem)>c1aeez!-iaKl*`4QAWN6GNV49R zv?bCO*-&oMo+o&T+J4EOEHw;CRJ?A}70z9@VrT_7s&Dkl*&QuFt(U3i>UB!4+cpbq zwF}y_OCH)_M%xz@f3DV36dpFFnOFO#ohMS|Izx*?p{dUUQs8W_g#m_46Wvrda@jyj zg-I6bbHD0Y4p+h5`N|Oq&rBVKb5Idyse%Sicua39muQ~T&|A+?##q25wPoFZZ{NfXx=(C&^uVRKZ^TaZe*eniawD!59s-q;ot_jd} zW^xD^yZ<9PKlPb(3M=p(Z;XJ*q6Y%Y=d}sWTX}N&e^9V_hm*V3lW+LqE9(O@$@?^J za2aw?E25GBGpqiVMOILm>}R|7uG2p z-S|^rV5xBzR5Ywe%65sg=qC7pPu5t^qhg(G0Z385bP~h0h2-o%HWT|>y@=E4efb%2 z7B*9zx`k(j*Ec;Tds2SS-k^kO>r8Ub+a|h3x}5A#>tXS_9M7j>5Z1NN%c7ISU;#wC zW3^$W!JES+pYGzM_W>8jNM>B=GP6D^6#WGaS331^h-u$c!+WwHqCRKU<+gBsnJ{4f zY~w5ar-VtR&~nELYh*-L3LP_~@$9?00QUI?7B*F(Stb|$aBytzX(771!XB2?*N$k! zgW$g|QisPzJ1_+5jhD$KeSc{>P>Vj8u-@v6FSwTB`sJQ>yGh{RW?o9u(5PeN}-DF_Kqudlce<~$j=N|v6i!%AuaC;ks~ z2W@>Q@u}WxUaqWNFL!I$DJDoPJmt^VZ32o6zWycrx8!v30%{C~MtxqMP0>j@3Aee3 zJIqLbN2bC!=tQH+dG;|Qk+HG&tj`0f07wk}wHusgYyEjGA@MZHp z0wMfJ2ug8PylTp+%uB>4ak$73(wV#0uF`XTZ@vHBV2$q0I59}cJC@GwXLPqWjAsjJ zi%sEWr(9YIV-@fXr+F)qxOee-vvmDshg%%u^guTP))@FJCx$;rx#TwN(V5@n8+bCG`dePg7_R`vE_H}kpqkFL>|sE1=qaV5 zSI#it^O|hAX3?J!h#0jkihQOlVT!nY{>Tz}x;_Y5EJRS!z0H*L-l9aI3Y<^8$~pcTR~`w-3s1 zJ;#4BoZR4KGGt~w*@!?)n04G%eL;FOmQ-aMH|&w`fl*S~uhjLLn$#Y;Aqv~Nr7bqg znF0^^df(DhJ}GU%Ly{O=u*<Im!3Br7pq}?CM+MmFjj+ zJU8^Lt1SlZVf@vRi_mC=>oe?n*{TxB=$ua;Y%m?gVD^v40)DFw0RB} zx>&Y15n7MwRc(;x_H13RSSl^t#|8RqwVTz0Dh?RDRMf2S$o>R$Vya| zpahB>heX|_o&-qW_4`&XwmHR`qlMf^eU!%cgt{+e3lOHbGG>EUJWpV>O%ez6RTsV? z*Y~Z3=`wwFis`O+CP+3vYc}ueh=omj-lt%zwg?t&t_Jy!D(f5 zxdRWW>=nj8%sJK#urD%Odj3y?)e=$wKuy5L`M2*AjFJ&yEiX8AOHH~yQSBsLIBkBcIx3<|v zyA81nehatn^50~0rKBSL>cANIID=GS)=T6?U2W;zo;l~OG0XAdr@XOj&Y9N-v#p-v zyjfDbpOMpv$A6w8jC!b1{N{M>I5^EaO5oNiuC$Ikxy8v=xGM!P`!j#a^^Haw7M^rX zx#KInzeyvBpVK;#(lU}MwJj3`lou+=(9&h16oOSc2ymD9^_i0S^r@`ipC(*VjZaK~ zwOea_62KY-$*zak-yk883~`a;TrM9LuM*$yE<2b>VPl|WhoQ$&;lq|%b>+ma@&!l- zt9T;RxBUnIDUTI`dVMhQN8SK%`Od4vx6=0{d{0e|_za+mj7Ai7= zse7QeN)8hN&T7|tM08n^GiJ2l;GI3bZk1h`va8;dDW6H2 zWM1RU{p`z0mrK(GtwI|S>#g@@vk@VDo{n{^Y zu6RwzV!7vONMZzsGg2%#Pq!p?p*K8sKgU#Q*_5gf%?%yhbkzA1rVwexaWm6d$1*HM zuij1Gl|jyJ)50i{2pe;`y;YYsQtWH(Px`+RCc}C#f>*qykN!B)(@S zv`qkFe9RF*@d1ydpFZzo}->nOCIFCWpyqK%b z-GOFSa-v+1Q*M>Z&h`v!7NcCB6cDL6UdEQQGV9W7t155yt@JjywXkMCmn+DhZfdxJ zowVH7yOZmRH(~H=S6AL*nlPXKpWfLbyM=S-vvIL00M#qC9>}Lg#6YV0G)vwSo;oNH z6;}U@_ugJac$2X@=KIg@9NZPT{$ag;$|G~!%B&~Z*t8%{z`Rm`N3b$c?=83E>8PAP z5HiFcodIF#CE#8CVz0v!Oe+xe@Fhj9{?K*#tk+4T#~WWywW<+=yW2&*MM$d5yeI8H z_5DR+09EroM5~mBSV#nC*PR$V_Xxom;hsBx*y8ss$Euq$FvXpGw%cY^0vrZUs-id| zggVQ`MM|0PQ};Z2EcU^r>cgs(B=)o(f4PJ3ZJvGw-!N?t4WF$NO4ZIh9bqYKuB78Sk1F1o-KH< z=O3;HR5o;by2dJE`_(JY_QcjGq&3R$d^#S7DZo`~2&F6ekd@^Vn6+#+b9J8lSb))ISf!#EY~UUT8FdsdTfwd(hJUJvd_t+h}teJ{lVe|XE$*>qdLwUjlUby9(9Qr?We|tS^{J3RUJmz15yo&Ibag1pdCqWK_c9WK%}$2ESVb zB|rnrq8WH^MX*Pt93$`#s>6K#X7D$o>?TC|!hepWukcF@-|WHAM!g=bVXuDg5*Se~ z70!QB5;OI4jVf|0J4e$nd@PTuPa(FRahK~3<6Bsh03md6pU)9*++p{VabD|?L;>V# zW$CehilU}bfRM=8pZ4K~LBUvnmBG?;d-Dkq#_QI`VI$y4e^QgSt#@bL70)o*()0HA zeig-pftR;BFXKOMv2;fIyo=E1d|&f;9Y{&oC_%#r4|=Mm1BjN#6fS+dZ9j4NaOsq1 zH|U0>Ed^qYm9IxgcplX17nvdNAGK2c9RF5+edY4wLT^&+0TTTjC@En@^euA9oXn3N zN}U;{6d22H;!1;ZILx35ZPiocf;pVQ3Dx(tOk(g_xjo)!>_0Lxw$M3^s-h&vZ&FU- zIo!vx(F)l`iFr)3IA5Hgj4QIdq|}FHpcT2vPubn|p5ah}V7{~5%OlXmVj|(Bc|J$z zEZ-I(zsYJnO99+jsLi)VzAqg5eS8Lru!Xv&Q4#fLDTkgInB~rvo8|6;=HN^VWT7+E zT%;#W8T=mBiZ0Isg;MD|LD?pJI4&Dw1G%d$pZrZ`j6*%IlMag&Z!{kI3~b;FI5G*{9 zmx0uE8$5mg)8qL?a8(F8?5+^R#%AWf4$q)VW)_8A(>mb}bXG?|Ji?kP5x|Rn%o?{5 zf49Sh2wB*sm*u~E?Dwt@abn--oa-l<;%F~*TxvjhTxm*sA27v_+Z~I1y}J@=vu0{H zs0jU1Nqre&R@{3He3sK)^mvm5QtR2Kw$HhK%KTYL$$$$FsjHZ;&e0ka75EL(6x|QD zYaWyS3#3LelLK!JU}=weYvs{R1jarns#CQQUZ^h$jpNH;abDsoZ6Ww%fz%9yGan@B zPw!Qr>$RUM=aE{Rp;^iLL#58S#9$jygk;q6S%v6@KeQeS(T}4uUTjm8dY`&-a`wO? zSy7(=E43mXiK5Nfp#%P*zO@nSh4PxnrK}X7Bxd0HD^mqP%-qJYs`PZDLDokQSH)AQ zX`WLfKWYOx%_QOZp~~-j7aRhS4P~epJ>M6ao_NZ<$h!(Nbn~gM8+o~29mB07mzP&m z>VqR;ns{>4O^!w|8?wJP8tt(Zi*X!lFt0k>!SG{Teu_nm@5%dIdLO1wNPYoZmqi9D z8g`C17K#CEeU>z159!_jBtU<8d|8_ql3?o}h> z-W}dBk+`R(VFTW}x~I#oE$j@(MwdQ(yM0nG>qt*9n>B+KvdXJd1$h?Vt!#;>tL%%q z1ybTpM4T_Y{B(y{mC~KFJ~uyT*T4A>vUur$?p+1;sZ(Cw09>mSuag`_7vdY~7$fkS*3$NDh2>P1aV^rfJy2GnS?+6vuD+-Q}J@bM?#JrKO@c{%pg(4}CC|%GS2d zsz}z(2o|X6Fzq9g&oxwoKN{|GYIc>$_{*n0|FSUP&w^ebYlJL_p&5g<&LA4|y zG>~p3;=B~(4mq>vy(G6$U;ZC^@!=b$SmcE7y21YLOodDL7cu;432g4WOVRSv zUfiFOX}ETm`l|fC{ZVq*fKEE{l0Wt^U)NQs*Wzs-xGj}WjWM30V}UfC#4DcdaMn1? z`gI!?_n+*l9bZX;3hNAmM+()UFL!A&78+7wY8EZtW!7+3C{ZQWiM&q~hw7$RKl2 zqKLi3l}^>G8WoD~wM-SRI+{NPh9i}=?%VQoA3Pd-#t= zQO2h2AxWc#<9w!*L^#K)*U+z@7=q<9I23kcC#Z?;`ohZZC;!Rb7ctULiYoBO%l=pA zJShVGjevuH{)V%*6)`KX*yuHqYtl&ECe%8aZ}k!Tz^Q z=eNZuk`I^X+ZouGZ7=H2HJ+oOez!0GLGqS5lM^6u=yLO+NuznPk3zE7oMUH-6aYlf z+!Z*tlsfCjxi7Is-g*D07<6YD!M0g{9wWZLz*H6I&W|-AjC5Sy*EB3C#VmA$Ka!V_ z2=4Eu16`~#dIA5 zUmnT1xVvr*?fi27ouRPU#bAxfeh0`LTg|zxx}4fFER&3U2K~(V5|S42!qd!W;=y^* z4)nGXeI|+t2D29el$~f`+%;2C(ID4*Ebvnb$ zuR+I4O$!=pKds)qO29O1BGtNcpj0C`@lfh_umLI_l4?bor^!Ql&^=yU!!+68asxbA z>~6dn)39@G)toZD4TfaNS~xZ{i3etzy+3SSa081%<#s>%pV%n=7aKkQYkvKW4d5y` zRyC_NlsIGCN1hmua{U~4nv4!wB5I-NNvKU=4xc=S7yNQZ#Ds@TD@IM6pDJvqY@otE zOm#1vLW4a|K^>F@ZQIbd4b1A41(}jmev3FG0chrQz|0K~#iKBzqAyT2?6Fva+RKZh z!T-h+R`S04{Z+WY$4$KZJaKcU>)n==D}(1A;}*3?gF8dRn;BlmTGm>dVTLDtO{EAE zg02Li(CFEh5I5DjD^0t0V2!H8YM^t~3)c4i_lEPQ2h!T}Yi$MM@JJIjo+(7JKZxek zEUj%-=<)dMp_?FNUs7v`s4{h0yOGG30d>FbK@7NfPZmfu(2>DT8A2RsVe~Qd zr=f_{`K-mWFHn_CIfenI)c1tW0YqXM?M_=W&oH}2%f0%eo-(IOMQSL%!MXrdOI)_j0#)qnjrdkzkuFzpxNo4bPQ}Rpab=!){OMNpX$eYO;!I z4_*xb3aG)>vmYwy4zta!-!lFQ4r!)zyc~Csz=XUw0ecw+o`iFhSi}sxR(7l7Yp|2o z=?xL*tuQ_Q`(nGX2|+utOsRTpfq&Ns=G@#{<(^&K&GQ$BM%Obk%@t52cxb~3198N_ z!QA*)j(-kWHR&y!g~xOAP-kUBDlfgn@qagVpqQzjYi*(Y*HHQUe}1gZ6|Vj4+PA?# zx;28Ac=PAU*4zI&E>{;Y5)7JmkuVy?62e<<;jxqXTHIp7VW$b9aCs5=Hk_TL`4bMV zG=tH-;K-6#4ibK1Q23I|28c$6CvuR?Jo|{lbn{8jEAUDVeHsEjSs9i`B_R!-XdeHY zjFq_>#YVnz`43(G`eol9;`VaB{ZO3!_`i?_TgqxA4h8h;{()T&L8s>d<&4)YJ{^sq zzmawI&#ebn!A0@FC6y*JHJ*c%X(kIt|Kl;qpLOu#W0DAPW#J$Av&kagC2|n^T)h&u zdu8x93b>C+h>aSHfd|9`(J;6rM1;Ot{23z7&tDq)cG zw6?cjs~0D`+PQx*3GU|}$=~!0{R`&f+C)p z_ueV;zx!GFBhHVl@iJ3_!6a!ty~K4?6$FhH68k@a@KGA@p!yaZ91V71v&``hu56fZ zqQ3L(p@{EyIe!*Tsondpt@}6T@u)kJCF=NX#-425EjAe=;Ko{{XPmZm?C1xZ~Sd(vs3h6?*%=Mpr16V>IAo#{!O1L06eY{GE^(M}hYNXXJJaJE=627Z`J2`jWY?qM3sv>^(@@R1`Z% z;l5WNiBrI6oh>s*TxA7Gx)%8Q?ogKE!3UIZ9~1w7a!25Q?|4hPnc5fJL&OHUZgH+H zu(7*WoH$*?_e$V}Kaw4s^eK@cK6>b|)O{aAcZ-p66S3a?NjjcV*kR@)ourp=50+Z& z^G67td0%oxFE04v4^3T{{!-Czw|qfq-4Q^^_Ap&g4c~Y8uCV(~y32V)t*$9xP5dIH zd8)y4@o0NKT=jvKpY&tWL{XRT)1@i{2}&=Mn;X4P7gh$+!ZmrV7RtcaA*sp>*2?r3 z(oIin#)_Zu=v9YBj1+U>z2z)+!DtMSv614fzLlm`-lqe1#6$dKy^M5ytVCu{mjCY$ z>o(DeMpy|ymxgtEU7R7wJb~6)+ zHg6iLX)ZBt&v$OlfWilB23PEpoN>gwJtqLGU8CLpex) zUTqhMjHXINLN=0YoOvbQMqE=RV1fL~g}!5HR6EQMLKB|98HEN$b1EAx-q-3H@P!p*Odt{?M!157^{2fp4Lq@ScRK zZ$w>se7<~^1$wB$Po`q-U5E0nO0;95uB(rO;|1ZHSr=g@qL1LIBzTm-8&a=bENt+H zqw1=wxAK4>&3}UZe?aPQVY%-6tqZ5z46Eb59`J0`=k8;zHrS)~ z;sO?7+)VUj*YAt!#ax_*vb?EP<8Z%3!xZtB zuS*7ao%dAj99KJz*2g_H4`<9&R4ARyA9r3jJKinzIVT#gwM|fCHrHA{Gwy8V@KqivPS50>s{ zCB8XjZy~zc^=<*;Cr6Y{EB&d=&X%td$DNn7fT~HaNb%i0)d*hW38m}m849MB1NCt> zg3qM&MPUkaEyVv9w*b4JOcKP3adigqYMdNxq)Q4n>kyI;XW-4r4W3wAr3py^Y}Isz zcO51|-@g(X?CzOQC*sr^F9bC^?6E`FxrFc23d%)yMW=h&*py;Szcv#*Eb!(jZZHC4 z|Nj84w6qDbo-l&N{56M@DYx*gt;aKsEWa=ha{!_3-=UI~e*6k|AjuxI*t_40zrK(~Je9psgD^SCabAp8sj#{$;;|QdR%I3Kb+(#S z`tJ9uaUpS2+TfXtr>0%ZjP-|h1jw-52me=*!@*0v`wiu+mV7=97_z1X z$ff17q(kSw4`$klbVf@+Erhx!Zhuqptx|lWj1nwhDf9oxfU;W+wyB(9L5r?|PnVFxsmq{+rnV^Fo|#MQLr? z`!H#5Z3JO8)CE>=6GTjp6=rQ9&A(>qL@$J1Y{{Ka@v3eN{%B6Ez~s*`qAP&;rPI|? zUSm@gjOz}fr@;iRIo+YXi^3tqO^|LS!Wpl!0}Ro{ZHfeY?dpkBP~b36PKNmLd8meBVsqx zT|;Je###e(+dK788g^o)xuOJ6H$;1XJ;7UjE&VCCNJxs`(*5xKWTgj8HCxa(`2P~)r_2lj(gZ|3R?qDq7n)=OnGm(@P*(&?-~zw? zl!Y!bibHjwS8TIO53Nu!<#~3HIAaY#0s=l-Q zDYQdyNM@jIcNyJ_=-7L7t3>~!rI31ouA#9@#{M8@QRgs6By*m~KvsIIE&6dFH6&a; zPZK~C>eppBWqfz~vYMHv9hn&cF*FFxGbnQ{;L>f>D>dz5m8gZ4Ee&myX4vkZ2ULH7Nv;ZSq77(O5<)XK zU0&2#2*Kl5mq&H&qhq*rb;f}^ua@H^y=$ZCSCEE4#nL6{a4v#S__~rd@ByIaR`TbE;wVz&gIN*i0!w2P;r{ zJSmYZ?D(7&kWwE7r-s1#ce|jh60?$Goe)&Fcy5ar!V(Tj0@RF*kRkK#DEHlEU0ZL^ z0;!m&w;IiUa5e71XBIT($&N1Jz3~@ie6uO~r$3z>ZbBHn_rldT!Hm}Nm9*`)*FD}{ zuKJS%k_m7!>=7laVi?E>yB>v#KWsWbNU-RC)97{l(+bGp0<&tSsCkM7+Q8$qJ?TDv zf&xBZAi5V`6sVF+C#U*lemKC;hXvBGlWS?gCo-qsRkzsyf$cZSFt{H*fOC*2 zdvAjiXM=JZzM(fGE;S0Abf%T1F5gQur7rL9>_vWhp(;hBV&JncAmVwDe;x2y>tqgA z3UR@XRzREESy&8w*C`QyyXomtxa0>7;6$I2!|r>^AU&DJlQqs9J3mwXK*6Y$B-In4 zArp;yY$a;p{BXKzki|NU71-nLm_FjFXzeUU<*x*pJt53~Z5WvcW zEP|7Wx5=4uv`T)K*KOz=ugojcv9aBEwec)QTPz7j8rOZ9`sjj`I21+CN`iT^7^y53 zx$J*45_FfH^@b(sf?OjVxcneOK zK`{{JaXyt)UFsYoKi{1wo<+y|tm)jihttK6Oc;%g5pik=bU|IVSRr%MJ5e^ zh*Z8A!w8&=>*V{Kdkl6E)LQf_>rDb0amVe9r9G2zF6Jq9iy71@@WLc9PyO>j;39n4 zz-?e^D>e8|9G_X~MydT!ZAC@?RA+_r^6Sn>worbnvHr%!$r@*rKmD~SAb6MrBnVZ}h>Po+3qJ-b1d)$vo(%tdNrth@5p`MXm=BfO5GMQmm+P-eGie^=52k6G zV(bqeL~ zcH_m8?iH_}^ul0wW=}UoD}YtJiH0*U1&m!1GO;R}h9iUJ93z!6`tK)3sd)5E2-PhQ z(r-?AvH=0QKWyDaoEB~Y6U*i2tI4OQIxSLPNbi=HeipJC?kBC*DRIhBOx|fQz1T{_ zHywmc%kk{aKl&fu=f}3SmRAJ+N=Zq{4p^w%8wyKoD>6Hog{MuhLo&q6hJN8w8*mUcuOupg^dH_`gr(pRm zM);%Nw6=ec@9da5|3?O&sY0M_qAh)4sB9>GS#5Rv1*+(^e&Rj`smb8J#~UZ$SsCrP zQYhvL)gD5}6qz1we6AA~c{`yxsnJCg+_@a>d36=R{ZkfbPcS#>Uc)vsmHx z3+$LeVXR-PzI?AT+H6xS@UbNQRzhoVY1 zM@aHoc-}FRgPf|32rw-MM{Je5_l;gy6f7@v`NP{^ewN z-RWc;^AQ`1t@{@;>e8yV<3Y(Pt9>hH{3%vW&mro|(_s$$D$%N^zRIv^&lH#4A7;L_ z;8;$j{=)yXR8`oEt&u$LvtOw5r^kJcX0N3Het=EFa8Qt{qELZ{Gb)P}nl{Cb?4SMW zh4K==^7bs1n96EaQ@!A?N2e{FhdP!RePWcBzDCRBAwAF|-q6e2=ekE{P?eK-4c4b` z%sEC%znFAC|7u?3@K%`DI31}?tIfdwOj>8JFwH$vjK?t0wLoAl`18jHN;&H^XK4Ut zpf2mH_){$f_+u8?5W4U~DY+HnVYFcRyTyQZ#z@?A#;~15<0L;|vS$-hou#Cyrma7v zcXGDv8>*Ane}1&tq~2KA8?OvWEMIx~h6?VYOL=y5SZHbEf$4cG?+1Li8;_f_c~0_7 zc;XtS(l+_DM!8p6RpxScvq{6-&<9v0bR@qRz>XBELm6m~zTN0*XT|jU?6y$lQmiGno&^W|cbZl&JNNql2>Pos5Tl$`5Z2(Yd=;qD z@wZou@jjALKQ>6PhMY+717NisN?Q?7io9R<&@ETE7=PKQt(J@Wn2Qkok=}LOBtEJ zJ@vy*_p9uGzQUH0QR}zcKbtru_WETs4i6f+qlMv9{h7Egbdte?7p)}MuO$EK3nu@7 zwCt&@st<9Z^0gOy>Q<8|S*Lir{D$bj9bj}A!t4T<~kkw$I~I#8IyuNo9X>tV3z7@n_PHu33`kD&KgkH_O> z=5T8reXOOE^!$Fv`4vmo*Z34<1KYEIY8idbae9E=HFquA%~ehiERg6`ok}+=j|Qp> z94lLxLpzTxGugOe4$|H`R3B#52qcp zqy3n>)~nY#Tm>m-3L5~!ex71d)w9=0!OCe0>lz-E{U71iddT1DTpfv;tF(&_Pm|T{ zLnUmmfvVsg`L$ick;m%dg@vwIozZgrOtKR)Y96=5tNoYm`=gYQ?=tmaK9~Wi-!-YI zndaeQeR4)fmbkHSn{If^qZ0xfxAv-C~Du&W-X1*vM)5w`kOg^dl^`N0%1g zjRgI7Rsa`*7eAs?MlN|`@vCRcz-(VQ2evt-(m`OUoFa+-fb{5|_fotPa)Y(fz6y6U zE`GExd>wzfFwrN)i}rSj?yjkaz4Q8yupJ+N)irTK-6%avI$WG=Jhx1G+_P!e3d035 zWu?oyuirl_-`jAmvKgmfOGzk9*{G>gF1^Oa!_zAndLXn>03I3ZZ-^o4P2|7bzHzeG zYlio3?>%!Yiz*+6)9hiaQ2a&5O?t_7q}lF5=RER^BThuOa{Zu9LSSv>dgrlijaPja z^Uz3~E3ZbWntVVY%Bq23o%ZIOban_3xHyxhc?;&R{@0*Nf8Z;1arFD-c7}}q4USqK z4zQ0tEC36I=+~+hdd%2%sy{hqbj3FvX3XeKl3*Lp!h+oGDM2kwj0}?%VQ;dCHQ}Ub z&w=6a2L4@HX+j06UT(I&L^x$uAN1@?Aj4Z8eG2VjGx$DSM3u-=MY2c@D7p`+adOxD z3|5&hA6-fI+p4!q-4RqZMfOtTCB|7Up9a%z-XxYkZ>V@SUh5!X?`Iv7;F@-Jyi-#k z!-VOdVdeJt6j{*FjqU2`a9Zr@YC^;W6ezU|8h$$2UxXWGbryn6hwW#|3ZWb5mu0Kf zWG5xuX`xrUuLt|_+XIkEpt83$@GVSO{AU+}?z}a!P(VV#rmQv_qQSK#$Z>vN?0tH` z=X2)fo?*&q`KHx#DR6JC$LEyimi+{8Uy2ypbb?)sMcW=aSmco^lRrsVP+z!eZ<6=} z>engTI-SN#utPw$$+oAg$&8%iXlGZYICnWgrM@sI;2m)H+jktMyH@=_8o~Kq1Ab_? zC!-g8lBjFc`_A;@L8AxU@!Wq@Wxfe~I@U~gcs`9i5%1;F1P^vs%D?j-HlpT+mlKYJ zs?@tVT5o`s@<~b5vi81zUEI>O_BLotmn7wJ6)5;Qu@yXyvp<)`dc=zc+`nhKP1OoK zK!n#7HUWvtuZ0b0aMFYAX4yOG;cq;@7^jT0{-qfv#5T2FLauiqu+OJDs`~y!IBm95 z%r$+UO|;EO7muXPYI|+EhQdz)#4jp79zrJGHdw1M;NHaBrsnB1qz&m3lj4S_Ht2Z7 z1`ZH|HdrO0Mb*OjHE|olON#<~UVRfw*2H0er_zgn>rk|loHPN%Wr$i1tO z+Lto#sXQT|KOaTytRWyC`;s=b9mNVnm+$#Q=^E-2krlEBtrT$lkFOK#N^j7MG82+f zU9bKHy*!ppzPA@uE$CJ)I7k50#~*3=>eEd5qOy(SLIJoafY z_LH9jMtfk73_M42Xpe^N5JR+sU$4{hs48uR-avgfPJqw5p+5ZYpVBbJt32S=MX4!_ znpr;*!#MCLcb;fbU5Q`mh2dlgr$4Rt7Pul}Ul77qZhgze`2ij}Tb(W{3c4qv;B&Uh zRs-Z6(ns{kd^cW%sAiVC+~KDUyb$qmhe?QgXhs%9@gx-|V%_;AC-`tI(XiNTa};4% z)9KHg_-o>4*%tH46;|rOfK-ltUgm<3cMVEBltBVCnya>8Bd>Rt`D$h=LTK_$$OxR` zTNVSbZqWh7#?d+kJapp!n2Idk3GgV8s^<@U@V&0=pZ|xtw~ULjYu`p;Xi!n9n?|}( zQW{jcq#F#nrTYT05T!#JN$Jj^EV^rGP`bMrc-Nr!^ZeiaX@A)JxA*(W-#FKB&0K4( zbDigL9>=jbgQvW*U6VP(uAuY)(Lh=4kXp*_`bZKgB3JJEb-xqo-E{co_cSO zkmFeHOdUC&LHKaIgv9prBLXcAtR`kd1a(}PZf$4l{V^;J>o-IDidn|b_^xK+E#}7n zz0Q{f%u)Fl-8w}^)`c17QQncF&@%l=Z>l6qYZz@c>>Zzl^71tQ&lpQA+(!{tZBNK{ z4*&>q>V>)NupZbr*Fk@jrTJEbrt|DF+aO7Wzx=WAP`Ce@vQp-1l+ z>eY#lZ&2;fU?mzGJ7m{6*ju>;F{@QoO`L_A?DhrV6h8g4?f~?@jAgfBSXGr9ZPz~{ ztCR2Vw5sAJxgwG6PwACH5*N-HsY|5i>53`LEwHG@sdZzE}~y z)CZ_Hc-Da4ueX+~mz$0(VhH01eTg@YrMIL?T}a$=dG;)6(tVA~gwl@x`W|4Gmz^3Q z{Kr!%1&78v1>%e=cH}5+Cu3Zedg>@Qj%qq$I64826C+?t6#6=c#H#8g1`eS?RDQzp zcX{^Q6%vIr70CE%dTFT5+6-TF zQzH;+-+YKS^_aOj&{w#;!|i&9Qd|oOQ*#ja;40o{kJt~^<3q~N@3}i9y#1&eex+GnqqfV zJy0>mqvg!$AnT{@=SafT|7_<{bTu$XSG=qBa&m4~whwGj-Pan@xkXSC+2CsR{#kzX;9 z(N-gm*j?A?&+zA?z9oVI>c(tI^c(%UG@9X%(@CWhTv zyYq*g3=Nt5PrTffnD_9X*;mhkUS28)s&id=HuVuGFGd4w4|f4dYuGvMI;etP9E5d6 z(;Ucd{`x$}{Jcxsc`igVtFupGx4)Pp^7=(PunVXt($s0$x8*9Aoo4^;;K=O8PO6e9 zwN3)FHlkx@mIb})XB!KY8PoftDOH26!q6GDM+aB+G`GmQ9txtWJvbDdZw`D#Swoeh z|DBvy@2jK;wEn47RA6FvHxXWEZ$8uLS0$YzXRl;bVO2VKKjq(G=!9u!uTdqKCp98s z(e)39p;EQO6z&BcX1FOOvWv3yzLJ2lT9FS+lP`VzuVP%gNREy*U- zgVY@N-wll3npEet=uTi(9@tZTWR4b2Qz8ukp>@(CPKmhBk+--%#_3V@>Bh)xEPSgL zu`1G46@XoFE^He+=`w@74H^{y0E!Z{H<)0?Ise3A$!$A!ytkwC@U5V`6+$Q1xFd#( zL+Ehb+TQ*21G&!SKFG%+kT^H==6VukKMdz1+88isqZFcY^yVl8t?0bTVhe`~AbmhE z7EK5AX@+r2c%e~^leGWo3E7G7*AOF(6bI`aSz& zE)c8Sa#75i37>Da3rZ!X(A+Qx-NdaDs{Bq4tk?r*QYc2CdVtG%*!p(9?CJ(|bSey_Y&GA`y4 zx#YT+h%F$#yZl_|h)`tk^)Z2tXp}pi^dG`HT3|GR*lrtxM%#JSeyuR!_Wqlb1~CHEbnE9X*_v74g^me!-3Id)!u&DJCbszI)4w~eZ65OEv~Oze zUHD{9@GNE*16!E`_+~g&9JJ&iBsrI^Mz>mrR(^|&%RuY&V2y*JJ6V4E{j~7@V%sg= z<=n42M;ahE6(S?XV#=2PU?*VxUM+qf3NS$FGm7h@`;KSr{Th{Rr|M#?zJC>oqAxPf zw=IxC33&+?FE%=VOD9{ll?P=#YQN1pzMo$dA9^Z&zu5q4toK?t4kmKm`7LvHXi#N$ zCqu6B*HG$=8=@+vm-jzKHSY$!1!t3UxO*P6=SBWmU6 z9+ zagsUQ)}O1%68{wDrv$|v7KZIHDaEz{49UtEW7$~4Yj-~Qybc+#}U(E~(1g_-P$O|K^fV!lwMVu}5M3 z#cHSXfq=bPxi!w9dt;(wo%$Pzvk!i>|NLd31U6&ti~Q~unu$hHAslLcVfRyxtd10} z4MH9JM-4s6qK4v6u2G9`N=UuH=TT@SQmcGW#F6vM3r0#M`%z

X9{b%i(D>b>Y;)2iVBvY#2ZYhA+T07ok zu8G)`{T_V@u_rWYn|iHak&9ZmMiK|tohLHLb#MvIn3+%Xo9h(lu_?uJ3b>yXq_J(h zSK>RG^g|@;Fb7Jl<#jIbdzgOoopU3XaD7M2_fcg@#UlG7r4Z;Dj3?_uAcHr5DXinM zUpF;pvDtJ)!x5ssIaw>-LzIV?yFrqNe9~|=5h8fDzY*}rBZ`a*C2}c0UGtapUXjo| zlI1&UxV$(U7;sJX0?t|FVxA?F&YfHlO&LRfX5BI@(StUkUo%#IBBwDHK7A~c-DR9= zx2@Kgq`%OT59M_nvxv4=#5qP^7_Z(wC)#KDj(_VNXP}O*DOXez(jegz_Op#LV?Mr1 zK=dIw&*&BPSY@5@7wE4LVnTi{@;>00&&Qi9ESf-(eU_9JPfHvMI=nZ2$@RAK&di%o0+*s|6HFR;(UA z75@ZZ6(LfyFcgq49fYmFG)u~5(Ds(r-)f6_XwU#83GCOqum3)sPzObi*>QYL)Xcv+ zyX{{o7Up6o)Snr%CxOO$#P8tax%1!#Z?2oD{^5vdq|vq-_8#23J+>RlTKIxkSj2)9 z_7EnKzf~yql9^TN>Fc*1VY{@>Fm07*7Uqr*$4!4N_c?ONHPg5zddQbjbvT5aUj8** z~}&E`9cTC||cXH-s*gy;&KsEAPP)b}WNVBJ2@8#u|*-?|vk3 zN}eKH;?kuB43(>&c&q58NlCLA=S359=nTcl6nbf7aH$0?2rOGB)+P!Tw}UT$ZC>*79iW~{(ZZjjXC1z-H)2u&)=j8^#O`#7z~&{!~w3XlCVpoS|RVVAGltt zxj6-thy!>zHg=`;U`vN*;gXr3X-_<#9JBH#Isk)K!uVu|*5s}6r19KI z0(^P4y4|6Bcd5o;E1QW0CahL;!53Mr>46gFozbNi=Tn!yC%cLp29@W=oHBd1m&M)) zUH(`nPnirNw=4V<*GQ_^cG_o4d}XvWV^}`@I{)cXZiUUTBL8uYKk_ui;wfr=0#Y^w z8LO#SlNP(al;FD9`U^EwPQlH*oMRlc8!4$P7`As09YCyM0n=?6#?Mz$n`9`%FjknS ztCEMTItMvr7L-ZpkQx8xiK_%+J3ok=hqZO}#{w*RQ|!%)M%ITn6+uS7Fsy4D17Mh% z#IF0O-KZNcdhJQs1*kvPUNku;P;z#7tT2+O%&J`|l8E=TzS_SNz6lE$XnktV^RJ{- z9M5%isNH72Z%HVCszHsUEKeo+m7D_l>eL*v}t7dNJ3clc}?0Zl}s2`+p}X zvfcV(46je5g>e-S|3pPh{GnnaF_^7POjKzoF_94#zE`=`_-Hu zP{I>7JP|-Zejhsbhzmtv#&zNV3Jyb36p5G}j~d02Zhes+i(*NGkI|vEaSanEH5jw4Qzkt&*ZY1*6oY{YK(2Hc6-@I5t7S{T7PS*BzcRDPl2nPX9 zH5INW>I-lXaG<^bzSA2(sP3sztGInd@5U_#-_^_fDHDpHjn@OTHErZa!8(8BGunX1 zUCdcgxWuCV&*a+wtw{4){rTz=eF9 zM1@!Phnn-HMzJ*O9iF1-i#MeLL0TUS6c@m0M9K4h>09*7EcUm!AUVsW8_=w;L4?}a zB4Pdg{eWOBd#2dF=gf_%5!AdQGnlh5-yVh1gbejjjR#1*C-?!D(dqsQlV-Luo4~=G{QGPqsOO3w?hMQPB`<8-^Xf`j z(F}g{|9lSHUS!r)orbpfwJ=Bq1V z+~8HSLhj8gy$F6_G!Y>7FBAw9p{~V6Cj+l$Gqs`uQ`n&nyiAo^%@@p=H*wtpmzS-C z-Bz`}@Hrv>u1-+y;J%8Ms&c#zahf=4nk?H9NLN8f1b_ow=odP_%o^#el#4ri<+Z~Ux9 zEsmqoDkIcd!=l`MGK&acG9^tLP47sq5 zY?Z`$u(a5mB~)KZ*$|C3`oU4Mr%Hj4L%MK!7z%MsMYrrpQi#}laT`-3u^BLJ%>YX? zw@|+VCy@9S5JOd_qUWfks$N|H!dzf8uHAIK{ta3Qs!ttXu+ZP)p}6+`&S+z7O2_?+RM;AflYwcI#BiCfcF)>P%B|NiI4tf zBn%|0kzc;B0)6%ac@s&pj{z6`1(4X|o47LQe#`l(=u17x1V1~M5^jZqwxfcpEB|fW zSD7ds7xLN@Iw|>Se{KqNOe!hPGz>k}r2D^SInq{e8I7edJ{>sf;ln<&rxE(Q-6g{c zd`t}VKa9O)4|ZByx*Y<6Hv1j3TiShH5c-y;MGdaxDmVcFKorA+ezmf008vcaSD~=% zD^UuT6xz)ulqiM`?>>;&(BaI8CHz<7a(?4qjm_*6@Y|?-_pJUSnGyY~atR0mk-~Yq zJ7Wd)S5WGkt-qR?|99^Mq3(nRQy_j95~B1wg6hrxTvvaVFQ)3O&A$4NmX;3iT;`j< z2DRHP4_g_QQT+J&@B04tLzuZ>K}dT)kMh&@q~Rh)q|Y+~PaWk3NaJ+d@gZw#dQ z`{5C?m?%H3vI~y3pMa_iGlX516emQ-N6jyS{{12U{o{ z9VVu-im|M}7TERwH-!j@mP&LjVqw$wpG8OW;<4>&v2NK4jWEoT)>JGtHw3?aLfW^| zVB)!B9xv!u*U$w!+3S2rO%shz;t&pm(@M(9AMEbN2fhI)=XtqrEp#2W+E-eBzCU*a zIssKrvTN5Xv%pr-c>ZkL{OCE(pG>MKMhcv&us+i?W3k0yR8unF5wm6>@OtlxRgy^` zSn49w@dGPyA>UM2@#njG!JA)XK1N208fI$^DJHy>+9vR|dFc%VQ;gOPnERe4$m$ut zts56RMq9N|()bxGc*m}&veYt4|6d9R=K1aWU>^ffQm!XelINtGkJAs;7zlh!G|KCr zUO;&mGnSlQSep)79g+{_@v zXP~ElRNa7daO{sBG^A%(KoXuQL0cZvHw14KBV6{E)lU`>*3NCd?OmVl1i5bPzC$4O z{#NrgH}xD~?oB6)lqlZb`gDV+NfgRn#bfftTi3M_mG@*kG>(*xS5xA_!`bQjyAbg26H?Xu?B5W(=Lz^ugj?P z;WM?=+WAqJC7!l*ZTLEeZMN$`g$LS^)dk>kBP1|pW$nNXyC(JfL9e?$ED!63cp4prbpwuEqwwI zT1Jn}N$Ka!uTe1z59^T2gq`JZU8TmLD+p~2?iAt2<-2FhHj){Ehi$|4dUYt)Y0r_F zsREUlem#?fp8jSWE1mm2xmVmUzE_r9w=$3w6(&hR=d#!nRb}D-wWQ>3s?8~r{l&}I zWq^RZm-ZsaOla`6c7dLBo=$^)M;yn}-u>R|6Dkw2occCvqt7qY;f>1HwO^H0baHg; z+anm@OGP`e2**)64xOUtYb$(h$s6P2_V@0|0c>X&vUoKmF%jx)-q|85JJXePkW-*n z`pxYAIJD>H!ZMjBeN4IlBeCxE~Sfy>X z@?G`Si7Llx%{=SmpYKVcbh77EX*)Eo7Q{{YqGpjjuZcQ0+c6uMD*-X<6H&#@h9i^O z%{pl9w{~Gh4rqljQ=sktdQ02!5{tm>+bcXECu;OO+rdVKSUOLv(4Q%>>+yq~{i7kt zE7L{$$L)N)4%5tM?4LyQ zR7yStyI9rX<`hje`c!aoN2&zAxPLMpgm2pD`x;4J>6kh%G(+xqH=ceXULu+^o{z;H zAHD%v+-1(g?D0a5jT`0t5~1wc>`EaP-M%zyg~crsJ!i^3{_%n;^eQu57f77U4=V(D zR;MqsfhY*ifrm#(r@)MGZv-a;W9s75Jxx+hBdarr*G%5=%+$5dP?L{B2V)-ci+Saa zbAu-OWRI-P$mJs$cao5w1VU*|hbznJ^Ml5`C*pszct%aBCY%ajIeu|*=GdMfkiWk^ zrYYjFX=j`RM|L|xT{ zCQaWM7v>kORcuY8x=@RlSJ(a%uB>RUl+>IDUZ!tLB-*gPbpbL!niAffz*hKWue+HQ zPRFP^1BUwoMa|yi9#6*`OlxvumgU_x(7@7EV-{%z@#>tF_WHSA&!?WmS2DB~hnKT{ zxfU;j>th@nsV%~W`=1aj^~RLWwM?*ef=uwK2lVTNX7}9*G_cG*{`qiqt+;c*{IW*J zc-Q6Y`K&8+#uOIR&gInT>!FPViUjO1rqb?fGhKu>&3CNvM8a+|6(yXAnb#1%fixb@4i5u%{qI$YskkPR&xdjq8&+Sap;Y0L6W zTP;#jA4piA>z$k?e%{^5NmZz;ur^=VHIJJ$E(&{4{@}*>yynSf6Wh<*I%)c0P4_hI zm(jR;e~!r-_N z2%T+3A-s_gDP6B0AQ8|f(`-J=DLgXTG8hSbf;`=iEi-Spq+Ybv9XT&NbVA52oSz(D z3a&O8Z`B`U^E-|VY1_-6CkZ*GBunV=@qofW03A6Y%*(5>iYTVFiR(F_e}YAtkY+&L zM|JDgi(whngx*WDYRFn(`6=IpsFEvws z#`hFkdW%^G#q1`uLG8>RDckL<1@B6WzW_Rna`Tq1_}eb~U-o?u+{n*Qa)K?y6-PrA zn19!M%=jOE0!IUl8&o=!j`(C8Ch%lNt@GQM#`lOKVTI&x{wC&(GP5Z@o26eR2_?@< zKyPZOxRl6^80Ww#I!Dzuy(g zhE&!;fjai$;a1-fc9N{8r%(3jb9GDKfmr)t(pys<N5!DBkki3~J!Cy4%UX{6!|m4WWS$Yx|;c!Yo>6a%KyW za+y4v*x4@^H(OthkjUx(=UF!6gkARAEjw&}l6y030zv&+!_ExX?g<;f7_+Kq4Mhtf)N8`ExC z1VOv=?e=_fhywlZ*dSmw7__K;0`b_d;?i<*v_IHFSj0+p$X|Tlkf=*b*FjMKBfpdG z*6TyfmF6;C?*?`uojiG2%U;T6-aqje{brx_hQP5L#-_he{N+C1u`^R*yw?Ma*ZjE4 zKpjQg{RRnCHO8BFt5ESbl(>(r;XVHsOH<1(m!pkE$1iPoQA{1@Tu_c?;0b%bA-(z7 zTiW)r3yiE;E`cuMr}mkigUpekU-cW?URsDZxJkQkAmKMRj>n$M-nC*=Pk#mBoRsR$ z98Fh$m8||0N}9~g32*;4$6jbqRl*hrxYDnvce0a3yA!52!PzC;ddJnG$2pE$9vfQE zQ$)p(LqvjKWHExLFQK$1{`v!*ejcys_o4r+nZrEz3*9>xyR#mDei>&b^v_e?eJeTD zMdkSUCEBJqdYSh%`8Gq_f|Q?JP-ma53%e*&tdKkVL@{q}#2J2iHc(*gwReC}rW=~t zao-yK9OUX(kjN=`YlZg4vHWJ^nkxOfIlMocdNXa{z2_~^r(Ckd__uU1=5673boZag z^KE~im7G@2atiWA9w2r>ex-=Thh+K#WmjN2TeQ<1&A12oZHz)%%siuR5 zjMN=c=@tROqu}L@4|U!9evH-1Ckteh=TR-L6t+6%$+tVTX;!z>tgw^aJ!Tk0m_|dG z_xk#Z8(r<)FNe@IMEpi+2Xhp>!#*@l!9AiZeZ+X6cr=&pZv_agNo9gX$NpUSwEvPZ z{LJrYn!&ODFz>7{(VPa%t)8gr;=r|CWPq*lZ;AQXm&X5?g9eO<3$rfHJ;4W z(3eJ1|=YjkwdgqQ#uw9^BlKo2WJBr`1!M(VPJ}HoR2)sB@dFIKJI7wD(PKf zLBD!8ePWp)-Mh6@f68G^D{P^>4R5>PMC~H3R9rAC3IX zic)nAaL%rBNRmG528Z>-FBQpx`UYxL3_`B{^1KO6_lP*aIuML%dnOy_z?<#xP=E3W zL%71h@7ddu?m(Csn)9rRl4{gZ{4L{)XmUP_4%Vn=V}|{;Q=$?>U!ex;amT?8XN;)y zQYrMAy#hf2YUbxHp+w0Ky@1;Kwt9VyIJfhf&Y0EW;LyOuCVXAZ@vEbZ%V zXN5I$TdR-dCksI<&xyk6Jg4G`QkS>JjhiAf8{LjoEBntQA`GWmPs-Ca?Ci3M_p}wg z%}mA{pTpaK5dX5(9f4543{;Q7%?^9yfMch@rkxkfZ!>?kw-|{*RNy%uAvd2DXA;>S z)xA%|qG~ey!L>A}w=I`%Y2imMpR?*aNi`=9Pf8e!Wv-|Fq{LqwSYxrIAL!92Y^e|*@{`q=aQ7uP#> zbu8VY?Bz`x6@e5PRW+Chtu=E@6%D=s^~>OzM59jKsfDYLKT+Cdq37X*-Bgu|L)}h` zCw%zsAk@mD!+%zJ12%XO_d^k!Gw0_pV)tk;TdkVB(oHJSLi0bo=3PvFqS>KbP5Tkr zNm;{(^6uY2=WrUiHZ2M5MlWkAEuBoaI=+60S(a$I zsoh09AS8YwnYdz^7~kP}Wa=_MxiSbz6whYHV|z`NY;ADJbB~Sfl)2$3*)2D_3tMxiy6tzJs!5Bcu_01yl64256s8P5bT{i^A`L@? zk~he%+j$ijdW`8@Jz!STF{{>}LM!H zztaVn7EbQW;1++Lxe=8r_hEmM%JJme>%GmR1bsOQBVV}vggZPf*(h%9QG1-w%q8L} z6q^6|*QIF4B;~o@7vua`e(_GG@LH?nM3j*bV2oqg{A&y0{EF+}hxKPaG z?^Om--$P~R{NJ7^)T08cYeuvm>W&E#u$7O0RF?ThP-C^p8+2zb#qq5O1{3HKUs|Y2 zQEM;aJMFl`RC1H<7VZw2`qwg|ErWKdb4wRnv5cG&li;(C^*ab;+`yPi6GMMLS>jDn zcTiDYehfX?g6>Nm9ZeP%#kVMzU*7N;jH3b-C9tY-`M;ssgGP5d7ZlYo=!Xq3@? zIa!gd@q$0HjiTnjPnwabW6qJCZ9CGOP7{UIkfHz|azukKfE8%x2R3$EVeXZnJB6OV zW}`jy>nl#CTGP?|#M7BzRl{N$07Qmob;h=T(1$ueqQ9PNx-qsF$-JCaftc}CVve7s zHFhWIy&&s7DB3vx_e26)p4rtI=K~d{9GN1CvU1E-=C={gQOuC)X6q<1DCoBlXapqr zY(-A)K9dO0K2;e@S( zOQfNZTW0&GdacfOdz{v*O$#%p*-e;Fsk`jN{4ACuk(BkmKn**lFG2nBxr;M^V>{-; z+#2jG%w{T$>ayg2g=i+2T3e(j+17d6R?sS(#ZG&!*~de?2V`fvVu`B14giv)7<3wU znBmL6{XG8ei^x~;=;l*2K3XVlDi#6pySR-nTRvNz+o}GC1(D`|a;cm0STNlTh$Fwf zNdAfeu>lP0@G@fs>EyeZ!r_~EOg*O ze8!`j(B(m0Vz%u_t${HcWy5B4TgUCoEYBfz{ZqO!d3u++t?`D5k<7u@)_KeG#L2o< z_KAWh|DMDR)z_Ld4sw?-+!b(O(6eRsleM2>-;v;UcAWJD>x~)5^8W@tlDR zbsQd0iTWG8Phe~6i00-xnjAE76*+q)bLmGR>R)d>l{@!vw*v3>zx#233nt*4nw@1v zPBdlduIFWZZs+vW436xPPRq*Gn5{YC_FnG0!)BA>_a@O_6Cb8Z{7%4c=dF-k58-#>rb{?HpMLv+56;V>WDT?ih@Xmy;b>c$@R+|;YnvKDpwgpF1>Q*x&t zEzNBWG4W6-j%}mo%bb2(Q|Bq&Zm8&1q$Z16dxdGXe5n~^Mzkxobb2|SBdwlb-ewpa zl7TUqNU(MV9G??i@t9b1B`?o40UMT8;X11x@Rdcig;t02S$I6GmS@_dYT_>X>)khm zbJgc$`_(6jF(0Tr0T^`Torlr_D$~e5ULwaXM(QK%|9RpV4W@Emaiq-UZz}R+GYckvvnO;E<=uqThQ5U4||T zD>ShwqDnP|J%T7lUO5vgN6YGtR(LO9&6qV_75lQ%R-vXnGy5Jou_eJPQTR!P1RG3* z)~33ZyN6BEvd4)0xIO2$aHY;Sk&N`iF|95<1bo_KbEx0FuYiyIHN>ovvToql-iuCq z9WcBqmjzg4Zhw|u1C&yPi^6VcicZmMG>c+6s-aJTlLC4IMl?z(wT z0M7hIs9V1_mHAZkR3nMw)@!G%dS|4$ zXVRv%9>45zC1?HEjEak{U%cSQ{^&svj^3tn%Ya~GVuow3MJ@a~rBDZA=2{E{?6W4) z5&$!2Y(>~E&x1%FIC*B0i^YtcnFoUa|lq!ecY%Nldogdfp}=A2SGHrfv;(%w{Q zN&=-Te5=P8uKc8r*f6ZJ(Vri_*UnW_w@` z>EvnkZ)RllNdU*l#BUQZc=DoE*+@ZSRP(*vmRE?1f9z&xJoJf>M$C*?cs@JoysU2h zs;-*7?YU8jFdHp-%4^j}XFZ%3b7Ew-K0c4=?UguF29h3#X`v$qI24MWxm^>zVliT- zN=?SQ>>~1#dA)v-#=|Y*lEgi}7KaoNN9Y~&G zY%bLhtu%4dTa9xm8fyXV%)&lBR4Y?CsrJc-)>bWb(d-mET@Q$9NFBW7fe~{SJoN!1Q^__%U z@_YnV{Zc7M0Koqx8CJ5@fLtQyL!6pKkvcAR=?iA`<)jjpCG)YULO;e=WQT5kXd|Asdzuq{E{P{cC+4X~OrH`@c&}o`Cb0>L#Dum@U?WlX#S`%9DDwDkyG2m8@cRRz<_syBzeC?F7i7tm~RAQqgnU$S<(_l)4siAeE8PSvJ7nlWx-ps7W|Ht zn=p}0c6`P!&d2!MYj3x;jvp_cue&}EQGRc6y{A7emI{zXMF-pW3RXT0%x2A#ZlJAM zX*}>3v?}TLj4o-^%u(%l>axkl{N8!ov8nx#dcyq2HtiIo|MB+bmUl7wLkyK4r{HiK z?hM(m(v?bMYCY6JO1eIW(V#ayzW(3^Grdb$dr2m>=HG3#NNW}--cY2KHqotm29*T< zh?GUXMIb8RCv++EF0=t%zui;NR|Hl5#cu>y=5lV!EdD80-c>=h10Ti%D zRUB9QSt~)(yKzfC^}f^s4)6{HULAn+q?zE)~}B1bNnhHlN) zITW>o1h`k(P1SX0%1%F(Q(39d6Jh6MlNn?$Hf);is-<9lO+Z3=9c^ItA1I_sM$UHS zdj}vEh4dKGesMlOei3C*_qG6J`;8R5dJaVzKW&E-&=ty$t-`}&rBi{HF}!|r-P~Nc zOP%t5rnE9N-XE)_#G@_h9E1JZ9+-E7W+~GO?BqW*}>q>`A(2_ z9PV2WzEYUNmr?FhBd^`aerACto6t!UHF^Wkmznch*>epl*#|cnv409;YRF5Si3r+{ zbE-3kxcEmM8sh*cnyobZVmCi|v%$ZiZlL-IE`bBkKJ6oxlxSnPM~JGiq{IFfPXiHX z*R&d-bV_B3UFZqHV=i?io}zm#j)CAH9R-kTXMI_ry{bS&K0e7@Nh~sL@<*k!ApsFG6;=fl9kvS*ucHU2bR3{PNE?vPWD=)Hq9LR^~mq=*}41I-bDuS$_h z2`6uJH#FBtUv~xX`|M_`K#7^5@hO5T3G+yCDqbt2Wo@F-?LF3$vu+P=(^S~tfa&@8+|LlQiTi;Aizi|~<5Ae|q92^SaD+!4k$7^sA2S&#ybtJ!o345BJaNhrH0RSbeOEZ1_Vafn+>z(QvQE4CZ#T$wwde;dfL&%jW(0gm znS;nk4$7|ypARO!4!?;EICQfL_|RD7*1z5^BEJ^AIpqhGbd)H(I}xxPE%IZQsKXW5xXfSefTEuacV2PYBip zY~4S1l3ag;uSVqH!2uc7Y%jQ5ivB^b5Ratf7B9BH6Ykb}y-Sbx=bwwVFd-l$jC=4J zf9w`V!Vb&BH`frEeo4fr?>IY7@QAqW4#j-A_nEZEbNq#N_ClN3GC=QO4IgYsK{1+U zZ3x!y>a%-nT_93q&ny+A-<5PWUPMVe^oA=mO?YEpLdWB&2Y(ZnS+PLCcTu{$KxP4_ zBwm+AW&OX!R!^d}bTNEWB-bJP(#`_geT_~C#nrxv4%Fob zt;M>(FBTIDx1YTJ{iPw;g@mvOKGQ$W(_-_*3pi%Q>LM zCnn$Yep(BNO&YQA>}ZAQUv)2<8B>y8-5NC2h#h(FmFciU}eNgcBv&YNC$qt&^h zF46@+Qro!8XjMR=H>$gBM52q@U>Q}Uat=;CHhod7EijH+IaLZKU-w-V2Cse00JN=- zXIj|$YnUwa5=HXt?mtoI~Y;I#F~u`Z7Mg`pKq;H-W}zt*PG>SlN-=i1;I zb$<`rfB5Zxa$~JP_$p+=UOPLe#1J7+8Jl!DWQj3b9H{jA1Dqr`eiT~M_alh zq`2IGdAswN-xxYNNg5(-CMcY!Pb)&w_oxuMMtzv9%r}?`LUv2z?FUv;j}u1Jz-OTR zlnSMipa4GGIWtk@cj_A)&6WYr9h2d|Fwtt+^!`ddykMDkoTkMyexjZ@P7R9BuUYah zy?+mAK%D>2coPZ;*uxwUDQ>R-2iqjE-y|Vn0tbS-*z8#g{m&W92y}fZVv*n=Nk*#n zJ6E$BP$H!<=Hj4Za&z3Iq~rjQ zd)!nQ_0?LH{<~u7JTc2Gx+%oSzQ>>z-5q+T!*%^rrw8*UF7f|eM7TAWplLR1FrV`f z>l^o{-+fhsb|}pa&I1!Vv3V@C|3B(+{%^^Cp#Q3i&{^=naW;CfT!zd*mh(cR+?oT1 zPNWBSF9gTPFg!U>zXemh{Vp`L>PnU4{`dXSnim-$jTZR({(W$0F7g_XxnxEqs2HLs z7vW@jjlQ)&fAzW^1MM?g320WHA({A#Q}Sh{%od=Im@?qy!+H}}ArMG+#(M*RJJ9R- z1DAeWU>+&!zB!5aDhO*pq-KL39En85h#DPXpeYD4P}aPKTM!_zuLxj>CmdOVm{jy> z(A_o5W?*MSHSjDUSn3JZ{+0YEurPZ3rqjECHNJpL!u#`Y`jt_;h9o-jqK8hH+n@S@ zwiI-<(t2$e-s_exWoK9Lc>{@tzRlfh5T>N)#;tb-JDj^?)-)f=De z@7X~_Zo?|(zWguhzOo_8EnJ%p6#>BjB~(JBl$1uLQ%PwR7#gIT2Si0cI);#t?q=u` zaOmz@VjBydRNad}6J8-EoCstUwBEy^_PaZ|+m9Gx{`wa~ER~L)sx2 z?nLTM^M_r@$ZruVWdo52$4OSe{@Fi$b{U@kdlB`%SSE2JOHE_d9*ua;=gsgN6lkilN_)Ji$o93{(GcDqV>PA z0A(hmY|439x4E6Ynid%196F0LtLKKs=hwo@ZZoUNeYtiru~=LA8!#@~0cMQOF>iw7 z%x810c8~kb7tf2ud|-0}(lkIWgpC&3rmquUJCe@0l!5rq|K_FgfW!_{)H;3E;PikB zKCe@1S}F%cJ(HFQqGqP4o>l~76ZcVlFp9kSNbA5QQ@t$Eocp<`g=QJnzYv#yo`n=Q z7E0orl~LiB^eVuJo$TY%3ktFfmIQpEouR{AXSCU8XVorw1jZMj3adIC)KAiXPiF-3 z3iiVw3QoiBcp;^Olhw)7p5d7^h+yeO6~e-xf1&eN<+pH_*AEiyl_~xkr)fWw;zrg^ z>nQ*=kJOH79$d4*@PZEvPL*Q|3i%>SV6j`ZG{*6dz9s6mugrPqk*0VtiSxlc42aW5 z17bz{(bHr)i?PH7sh0Xvx+`cJC*bCMxDmAQ1pOW$(8bC_n`IdSEw3UFL3Vq1wXfV} zV;Rg=hkxg@)tw|$zAP^4xo8QrgF-^y)5Envtl}GkmJ37_Av#;+YvQMe}fc{c2u<7M4=7fXJW+*wf7 za6fnq;3Lc5im+qjEyc{}kMVV3)LvJse=ubDvajFS%?3-kP1V9R?p{Me+&=@cdhY2U= z+1xUqM9<0rn|KCQTuiyvY_!Y#yC`Y7uYMPBR6r97^dM9z%hP^Upv`n&*VewWAL#bC zaCQqm%+(C3VWYl|rt5go-Z-+ISGapNTbbf6`F=ijT5VMQ_`P#V03nX)>*Daa&iK~S zs{kQKOX_91a6b%8w!i=r_(Cu<<_&2NJK0=dYV3ACIc-zT%K=x#O5bVD9WDPBRKajj=oLOj1zX>6chzR4GP+>s zmHLw^8%c^Wch&FTx-Qrh7u2fvi3PVjbM)$_5QU$j#}ajGTzGc7DL7xe1xf`RW%G?*0r`IFR}3%~%xEPf9h2 zjg6w;$F9s%k)4M&5o<6@9j*J@PO-aX5=V%YrG13G4S~`Xzfcyvuk=)I)`KV#+X%eXzfjh0imYo zNYJul#M z0ifXJr(G1Zc%@Xk#Gvq#&*yfb^-aXXIl(elHX43ADGy%a$E6dah+G3efvnN!K1F_u zE_(YLdg1FgW`szEzi;-7K2>@hGd0zu;QVKbui*u)9NAFF3^}mT(5W)~+2os4rv=hH zrGmH5$A77TLAg)SRNy;6mq90Y>JOe6wvktW2R{#b>^7^pWimk0EmbX76Rz?jGZd{^ zgO;-abJ%_b!h_ZPx;A-UofDGPP{>=u3!P`q-0^yxy4!x>{kNZrYgP=2tPu5}cT%BvA>iy@tDM`!F)rtxruL-na zvLEM*>M)o9c$MeZ3mU)^#b&2D_;E<%dTGN+AQUXq8v8IHFKYzm!07_C( z*ZA__@t14VbGBEW3>!`zisEaOx|E8EkwZW!xhW_~IR=b3nG-yOrR+=tKBY$a3Q`}v zhM4s7w13JUxJQ_B&!Jgus}bvmc$Cfrx>j_p(zze!r>cbJ_u%$QaSSwS{Rhq6ew8Bm`cD z3~$sqQA>^iXfrS7{A!y~Q~MP^;B47mHtk{N?OWmptMmX0zt^wQQyiHN4oDQ&%`QrVOG z{HllQA4A5@@+x2(lWCf!Bx8;d0Dr0RSu~5pcql0X;3aPYb$XVBYxh1#$8MNH`NqM% z*~BuZf+d^!GoI%To}r7Fl=Vu*4m#uNTN~q6tvZf~-3b=oeQvbzV!TV557AFw#~#Sa z4hlb8OmH)&j#1r0jN)zVIsL}H`)tm_hX)oja(J@8jcC1BtQGJ2n_fe|w%eJR-%0K? z!p*&Vw>mH7AV|k#Ix;)1_9R_<9J`lCU8mu|7VJK>CUvay{gJ$Y)#o!dSTVkIeS0Cp z`Fa;NRYg<)C;rA5Pj}UG;p^A0KwTAz8BGU#o+J_A?DU!fFeCN4iA&hmK)W6eCM3~b zhr9BxZ0574)D%c4u_(W$wUVzyrQpkP-lja9AXIm*ZxRtx`2JwrBaR`Rm}Wb>HM*nZ zZR%J_QG;lOn;_?*S}%}NTHiefIjQS-2R}Z+CpWxApbjuHPX1c(Pw4m{G<$q|?ofmc zmS{3nl1ZptF21u^*X4FR{TMw*qT;6%-2*bNN&sWNl6{XW8mi^-5(7N$(uYMQyLytE z^3f;$RD~BZ`Reiv@qWIr&(fw;Xpc|0YwhE)*C|lR^jKo8%G2JDE=02OF)QE@YX2IN z+_6VnHQ&yTH%giSflP^mn6WK7Q;erYC6=n*5u=AZOkUI<_Rf0Fzga$#n(BU9 zoP?(1drZ-lc)jp5wL>QU|{PNr{3ym}^ zv0muRZdDs%>`d_f-qEtE1DVd=sWw&El+I}sfYzncY8AZw(RncOL)mD&EUX~N^k9u| z2e5?JRA3+}N9!ZXM02EC=s`V#VVN%etvEuXdz-)#Pl+0kil;KUXM?UA_n+VCd@|5y zz|E%5|53m5@Dh)mIyT6m~*viLV3o(}*t#e|_$Y z>tfZrPa%KO@$?Rxn{m(=i}pyV-i$_?+EX=~g_hrA29jOeoL-tb z)b1S)T_$gphb5^UtQ5EP6h5P!8A27Ev@Rq}*XnXwfKq7ekBHnwTM81zlUgp=LZhr8b zz=rGLIiwb=8}F*HqWZ`jPGF{%TW%mlGxU;xx^sl063AUoJ(^aGq2u>5pFT$^wa6`4 zhwG{5l(5_L*&uOJG+}sEY!S8Kd`G@}+8sDwcO}}e?1ttGp#{3#7f3z38xfH{G%l~= zopRFMb1&@HNDL1}4$u4@obBSi&S~2b?mvI|1sa=4;D=!iZvA*k2PS+^eX4s-`HrX4 z6IxqdZ;ndtuMDOxl)hyUT3T<|9GOWlg)NUbN?wOoGkCUCERAReA>)HZI#`x3?g~k` z*g;Lsjyc0qfsIZAh?}c_2&=ad7KAG8mVaxjE!xDeKHw^7R+~`u+%AVXbH4dDq*o$4 zxq37NC~qtvLzFSSc@N#2z=;qwEsjy_jg1{c;ui08cLA#?SR#{+@gQXo>KUwdcNm$~ z(3p}K{VJ(Jv{L1bW|(-u4HsZQ&~xpFFtv#FL=J_^lc|^9>{DwOkyMF28!+DIbca*@ ztZ9pta>E6`AFhEEx{_0E3ksU0CCXSnbfLLhon%%8TvG=NnWt=JIcJ$S)|iDdzG%qS z+P6m@98Jruuqif=^K-qGkZr%!c>yR%m9O-}NR7L4D7MFjf8k6TZ}o#&I#3#!S1>v| zwArZEGhe_YdTcsW(h3ROa7s06PnU@RuE+fJ{_>_0>dhf2NjME;OHHnfR1`Uu626#5 z7Jh{8*$?C@kC&^JS#f)|DsK-BD92T9z9d`YHf`E+Y7nVZglnvBFAX+4p{gIRaSgIe zL#N+B7mE&4-Y3U!YoX_1E4C=5YBsoxdeRrkQY`qxo4_&J9hX8%)V+AUKCIMAs#uN>A zAKszy7urRRWn^m+@L=j)w<21iVLn1ye}|zeav^0#if1$OvD{;YI`BzN{jr?lW&GMf z5#6mIYV}f?o6Z}+YJ@2v+8pU4f6LsldEEMr6%sK~+BoQ7HNKF=hWHC`5dDL5PhSZe z?^;2E>J3M=wd5)1MXIWX*XnCE)o7gj3w7F>)*j8g_VvDn@uxQ9>>{%J>8{cU=tc;& zz*)Yp*GQR@FUtxl^jmhn)GeWlqBX4|IXeM*JDe9TCsXbDd(vA9%O{Ced+w}iPkizA zo)vZ5Rm@&5vp0V0$7Ynu^qpI3VMu{WhuZaJ#mMOA@5Fr=a0&)~=L8M)BLL2`EN*bp zlI$`ou2hTCFyUX7#eVhYmbwY4JtUzXH&$x#CD}xzGZ+t++g@%srl`(2Sz_AzvxCF` zYt{JrX|?mNU)R@uyAe%Cpc49?D%)FAB%1qLX^GkH^p0Mj_nx+5s+jK$2HXQp->IAH z%TK_n(NBc|4lTEpNAY;0Ow0kFAEHpqR|=^W|4#!>>Xj&5bHuV}4jO!-C!xxf@UogU zt^+Pe*_1tce(MY|$pUyA#uv&AOS~ub8q)iVnECj2)$5Fl_elt_#t-5n_m;a_GgVHp ze(;rGVluxfHplEmBHWRNqiOC%e}Ygp3lrjH{FPRHeYpoAoMw0?Dw!FAZn8I-G`8yG z9#|^E@Ufn=yej|j4q^fZJz(tiY6yi;0FW@M{@8h#hCQo&hXI{rE1W$+=Uf|(sa0rd z*s*<^T{oQQu1A>1F z2P~^R;Y-pjIL1AVynv|ONX`KNbCJi7+jbkM57eGEw5ZCb{j`Tw42jP&N|_KRXb7q_ zvf;eP;d=U01lTEfaV^u?#{_pJllB|we)=L>OF1Y`!-&`nM!_-{QSE9i;>F>`RW_}3 zSv_me^OLVF(J!y?n$xPfly@(!Fz~Bs0QvMX5Bg1yR$m?e9c$%4V;*yd6!pEop2aL{Ig)1S^s@ofq0aF% zoqjWF6r$gB>yn^d!sWqpCtkw9di>#Rk1x8~JlkDxu<(nWl@`$*oEMri3}J(koHqrG ztcI+wcIG6LCH-NmQXR+XFvbXG!(Je`GgjhU3{>N$`02T^Us>;pt5I{lUj5pdw+p!5 zG26-gu<8`mocWfCNl%?&4q{j6%8a#Ro_{T;S->2QMKRY2O~83*#-QNv}jUH1saJ5&$*PikFuC`^I_2(QHF zjKH0|P`)DJ4@n7Jympa_ErCq^YY!FEAGHpmek5)xKXar_!S=+f6M}jS3VjpQ__C#a z=Lv3D1MVcID8E3qiETILBS_Exd;jz6Rx&vhniuD*@;3{M@tQMV8hu6;z4ZdKW+{(& zA*3+Z>TBN{Axe!ot9iu(l-%Zbsshb&jV*<_YNC5PW;jSa>pJvkEA8OPK%Awx^Nk9? z9%gFn*4d2&q6me`AoHn-uIv58PL<(rP8}@t6{7hqV%&2nz5*^1Rq^C;v)<`JD|zwS z7%M_S%7wI`_<{xR6WC-p55n*hGj-hG`szngHA#m1v*W)V>OO-9$q*oTJd~3{R zAy&_fse>nn?FoR4@4cP4mW<}JR1s`CQ##n$asGiua#2TdOE>lciyYRi4pQ-UjUy9N z$aN&#f!F9xPh-#sZQ_qciLb(TatmMXwn?)VYr7OP1kB2R=)cw;W3B1mm8U4vYYWta zEEIbomR`b$YUiCXj6|UJ#bB4wj*9>FE|e27zw=&tVky%?I>)c^@6ci+z>*|Oz!ymY4&ec(lw|7e$|F9iyh4;IK3 zIX(9h0jOY9(vJvbucwB&ss`3(3zx+QF*`X5p4yhw#LEG0Y(C_ z?r5`YaMqsh=<#FhYfgJ`jN)7@nMqnxf3u$27)c22&K}MQS=4iCO@r_qYx8XH#+B^? zp*?h-kV0_g$~vN6M<8SAo7q@(XKqe6e)sYLybu+ISev7LZeZ0UT_tF`)q_FH8dKwp zR%uI)epUL@;ILOIUzh51?JP*2BL>z8yhSrwr^2*`w69{=tl0_+Kg~BADu10O7f(my zb`;XV+it%62`X`4@aJ@28fgPb*_G<@ud@C{V|2_Kst{&;T`Pa!Ro$=T_2a1=ky`azR*FGK(eX+v`F5^ub zDIMLSOyPhw%&oEsqjtHrQg(C8#*n^Yj21Ic5FQpQ&*}xMZjl&|I%rvO#lJgabuEX&tb^(k+!oP+Q4b7n2VQcuyh7k`NZ-Y(R=B%pT?j`vt(>oIPJ1 zC8b+K>DLX|Y9v5Yo34stoZopRyj9|Cnl7tJTf}yuBa~U4jn852jT~)o`YspHIY&mt zr0ds=!oL@?TIC`6E^h?1dG#=%Z&rqi?dtL8HD&{WVE_N74X%=BmNrsTPQuB@s3X#u z5TJV1Ytx6*{++{{j*@`Q1}5VB_|zBj7DnQaby0AZ+;NDiY7L9Ndl z{S6F@P!j3yY1EeYq}_DQVM|y|{D&zjlKfH>-^B-gNFaE*t$iw!3$iENHqNUJ7P0U*gDF(~_BHFOoM(LRGKSt^A|MAUt=rjsiD zgTJN6(kQIkB3bomEG#RUVdp0O!fm>S6?U6_^5t>LsOjBHi)&*q&+KQ6@r3W2LsM zp;1(z1`l4~on}!^lP_-fC^hyd?uZqcj?WtP`g4mahaa+EDVfwxwV5xk(w|BYfrJk?;Ys+&J7x3*KoHVxqRlNCbk&BY&+*8_yD+8H4 zJry;r3&U9sd{$Xfdwh~X)Ddg&Aemg5&*IR9G6?~%*P43Zs8{FCe7*t~LD_l#bUoQK zw?8?MoK~Su8q4Hk=-giLHIZBbPXJf0nq1OKcqCqgpVSyvCYe1o{(X|iSb^xKSc%Qx z;C$UmRK2-lyZ&923>U^-wZFaE_ zomKG}@6WIVZ`5P*z5Au@KafvTT;#Lsq5F{JE7nDn^kacE1^7DbW}H40i=fN$&FmDL zOp=e4$_#w1lw$o-+MRXi9n$ZnFMonJmbxdY!0kf@K*Z}SY#b!M`?8aA<#t}`(?HiH zJ=m+%@tVVS9i1xQ+Urdmp!2yrwys;XP~CozDr4vk*(L1K2JIHE=i{C%VGN%T-8BI7 zgaf#4td^z#&BEX+j|F5|xX8-&dJ2@as$4}pT8Ny!f_L6d`}0pYSMQ1Ar)l4;QD;`u z27?9Dy1Fu8Khv)JXDg)f&znY`4er~~^8^2iCP^lyYrI#2x~up4WOY@OM-$v_HRsu1>9YiJBSlVmS0HZI|%02WxGfn9@tJN zB&)NvXR2CnE2XdXyTx>G^-gDEj(9O?XS{7GRpIp~R_9Nnqg{o2W%;MZ_=cVmPeBQ- z&|A0y!g7)!On$4pio;;!LzOIC$P7%Ps~W4PHv9`&^Vz$6{|(-}n8>IB(8x3`#&EX1 zj~t0gX0uwExpz6B!exuDn{|*wNy9|;GUPI*Rn)HE`<^kA;Kr*4uSA{7zzwgaE}uS3 zeX|RD+91-fBpN#ll$6P#=_X6(9be@7HG8TI@baiR8$HZALVzwXnz$wd`b!0w!NB5_ z+^Qlg$~%A7ABb5y8!bJl5=O;2I)>@VH^tjN2}?8bD89fLf1#70`!Gc(LMGyIj2w3J zx?F*W)n1v;K)zl#3sL0w;BSXmw)NC`zhj#n(6%`EVRCO4x}_5+rwmKrvz5TRcF(}E z%)Ixfp+ss2U}rEDN7h8L*PY1loSnPo(B38b>2eaiXzuRPF)s^Ww=dlYe;mQAUIg!x z6K|BPWoGQ)unA1kh)hFq>C{qkO6+JC3%H+HjY~K-ya=>){zsX#USkG;h)de}drtc8j% zv~~uUo+f$C1tx`+>$}j*LC|*)(w~58XSpC?iBn-GR0GLhQL@2T9IIII&$3A z>F!q)iJSWpK*=q`)mRE^^Elf^hPeqdqT5>y3|slpM}^R+jmFuZY>qt3hZ;v~S9gYg zHYbe>MdUR5OP4azz{eLlLwRQFB5fR}?voCm*Y4Xtg}wQ7zndnI&{-dL=g*Dx(#6y3q1g; zqVP6`L`iQOhxI9{{<-Ja(>4@#v(H3}F=~wPzT5qZip+4ZpsLaq=H+H;#JlFErH~-Z z8W6)%jCAAm(5|NcWv4T&#;S#8Ef~Nx6y#;A5ZmyJB7qJOD1YBsd;{8g$LF*aY*(>r z8OvYw;&>;i_&360nhgjkggbWd=gY@%mqq*SjX640ywu&?%}TyfCv2v-GLUCjM3EcZ zU3a8Zdsde(hMh6sp5FR>?{L~^ZoE)`E!2p{{mggIxhCJD`wwp25j|14o`CH9<#ryH z7lrpy0)wq;qM6>ew5T141hU626KHr#g4>Sol2IIBzcAWeIlavNKfapju0b03wH|O< z96Rv2aafy`Ep~)H2TUiX_0Ai55wdecKXv;JaL$+$W!)!@VKV0&7p6~w*igCpV(~I@ z{G}E%fz-*1(<;SZ(iyw`OrTvqb%+W&flK>!`JgKwkr`|0K zpkO{7<*h)JalW(`HP?x0<*TqaR%TTf7o5syoR)AX5f~2SM1JvK6vhh~T%2Qb=nt__ z2pVKuqj{?27rV{SNjcZ@C0AddCc$08)Rkg}eD$OC)RB!jv%+BYC6^zRI}ip*PazXg z==qE{vH3w0@B^ba9Ze;DDA59nF)PNM)jJwuVqzG3Ul`B}@tpM8yP_h?1i?Y!E`E7} zZM)L1_eSZ9)>)O>a$LgmT~rl)irAZQlziSmZeww2@-Z#MWJpk}K#P{Prw9(Ej>SYl29EblAFwXij8w>%q1U zjTGSjSVVvcR9G``*`f~Xl-eAQMV+}< z8dfnMT~Q}Q4#BLhh_#&qE$p>5fw<>~J=lk`Q`OgUPEV*`(STHlgbmBSbF(79?tILH z0qsze0;Vhrj$JNglL`8ffHPl(s0L_|gTtV%V4JeD^l_PyOPmKu4_30#1zTC|Q)&Ka zB)k~np}TVyCTu}zqFVgPZAn9|;dt5h~^2A;w;>JYJ<+0plsknZ9DvC_leeLXM=GteDc532@N zJcOL%t>a#?tMthY90Hw1Z$akCJ^IZ?y7z&2im2C_ucd;ImQ^vf7;u&jE<34cNSx-3f*6V>ET2Ay-$sWoWHS8NrtC|_#+=ud!S(@NIkD*@gS92+2;2~GJC$|c66 ztxgt92TcPWJ>RPg+i4E0c7KXr@rQBBnD=(u$95B-#GdHzEd z&IZ(3WL#U{FYHPKf>-C__avTrjf*Pnw~?xY^y{TyiYxsQCB{8(@aY^EEl1IJh(BMRw@=X=pU*KAb0N= z1H;*L`1uAuY}k_%Xyla#(mNZdVmg8DwT;4wV+;qfyTiSkYW-o^)>_nvfmqF)ShycI{pvE&U@}J|0v#jkoC-0P2ggPFLYaadyEY;(SNov+Sj_90jLEa)F-T7 zmYGw!((sRiKD_h*#M4*s9NS7^zm*R(PIsiSGjRUyl(PqDH;`UwOMVjzK*=j|JGMFg z$!OzyiatajyqIF8@=H_@VYHcI(Q_}QtN0v*mfm@O`om!} zte*zUGc@_O#9~(rXlOo2T#mP=VEdOEg%cERl= zjC%V=vd?_{ucG$Q4k1Pf1yimY6MUeNTFxEC0olj6Z;%Ye=U~1=DL-GlJZ!Oa5`p(k z67l6di5?Lee3N2cH-(3W8L>&Z7B{JT`-#)(j1Bz8e;)L=GkJ+}rp*B8*hjQrH(py2 z?zvQes=zXN&^OK^Vs!l;SNA`ql|BQuGRYPlxDv*=C(~sRP{Uf@ALxI2r83WTIM1=U zdJz|0=~}OQR{TqsL(dm4hm4-0ZwdEm7Ef3^$==*3xs=xa555|`!YsYU@@sBPP$lj& zq0MUi!tlFs0hi8j_*G{(Q&>2c$<2hd{qniaFh(bSQCV>HVGl#-Zao1=_(#_)i^_D& z$5MQAw2Irt`}v5&tOFkr;NmEy*K?QSpiMij5FAMZ;J-+N66-(iIKYJHmCPesA~d$2 z@CuIqf3&R+p$xD+3ct~&jeSWOAQV9}0T|z8 zq1gpYg!F(UAVX-F=XFWLN=T%0T$$W718bVv9JSMCK z?AoAqp;^q}|^ zF{PA?>~ACkCpadK+kN!(669QU>{&^dtVu8O8_(QNO3;j*&w0OqKk@%=4O$W$@TyV( z#1>R_V>7AX)$9JWrUXn;9Z|@{pe>wfnb8LC?=BO*+-o?wqGKi3gmBh7lYfJ7h`<8& zSnsYenr{kI{Uh#${&oU&F96H*F&loFHl2CSO>f}xQWCwom$+T-R|r1Ef-Cs#fLsoH`yDLf|8IT`fh!js`>^^1C63{>`fzKr?&6pBGu14W zr}@raU;y*%{O-)6i1x-al-;clXJ@NC=XXCu{AS8}+q{C0!y| zXJ@C#2u*KE&kMYdi@Lo^(^sE)oR`9c@sFqAln}OF{q{75$b}b_KT#TdO?1OxBoG5j z_$JzGghjJNicP0-uHPl|n%7&>H#IJ$=(X@BMpl4yD--Q`zqaWK%pFflbRWN@eSj)zk`V?^79)AEByHkM~AWbEl3vatzJ!i}Xpou+N<(Ln#zgQ>0$q=sxo|$Wl za10CT&KLEYSin0F4id0q6u&lxmniu&r>#U3)dwJmBWg}f9X|K==j69@Heh1g1CAys>F%@k-!5uiM4DtY5#S+xws^nBeT5>tXFW(7(r0JFwdm;hnrQ0HqUZ=&-O2?@&X-P z6Ii()!ZC@lmB>mCnh)B|?aSZ~stb zLA2QsczXLUSMdM7Q*wf%zjtbjg>{=vTWW^D;UT=C0E=8g8U5&OjzA&qHuqJ8-BxE6 zc5S6{$JYA4c>pLF$-zPL=yPI)oVge1w}r*741@)i*++t`uz9Lg0L}Y_fW_7kY{JQ8 zBBw&kekuIHu;q^>yY35$OaDua)3Q>k0U&8`SWU6-fNnkd;B+6#xYZf!FZ{0y)r^1_ znB%tss*?fGwL-J*r9roXoK1TKXJ;r3Fn*)}m)Onmsp&r{^c^paY{$0IUARHRiO|81 zXiv>S7GQp38p%ovGQ=xUh&~bsXM&KNNofSd3JY=_bpedvAP+s#kou~!(* zqVWQablH5vLpvkm`Sg+c<4Y+|0Q3KV%NEOC2YkfozST3Q)+* zLQUxS%z2d0qSD>qiT)WxpFAd$dHr>0)%)W&NFWyPBWjAg8c+HPQ|DY(c3qPfPzDTB zbSL=_Pvzxp^@{f-Jvtb-THjm)R^?4Fr=^LC;%}fGSqs!RDR?cvQ#~^oElLFd z`Zhem2v)73uEZ-**Lz4Vr{)HPYXUBsYF0ush(HL1JdeDP*JE7QyU?wy=GLfiACo(Fl z;#YG-^P3ksVvT~NJ0OwuafE$z^9+FA7d55$Oq5%Pp&iNW5(|KsB`{J^%~Yx=8qbFvirk4IdBA9Db?5^?&?R zhXiYT0Tr)SU|D4jKj`Za&ad9_L-Rj%OD`qqb$0q>*+&x-f$hiGBG3qI7Kj8TCAyDH zAIz%!X>VCmJ&k3WVb$^8!N}2ca?n@dspze2t_+nXHqxPg!c>o^b*cMS z7CKj0EcvWpl58549p^-K&bzl-Be}Dwf--<&Boov~WKA68yy?GLtEpX<9{bgy_B7U5ddY)( zHo&(h@bQGOVm!Yp(A{BF?vb~V+*?aw9?{NKmt zo!poE=%a;<^3W0*f$zk{pp-IwG-@mqbeu<0?WvGE|5|6(-aGAwHg;S&hS!Y29kkVfxnN7T?Sj;zmX*C$#PtFq(7P>)rM*vtak6nr zW3Uzck>lK*kQRH@bp@tq~7*cn@Im;G5>jP=PX_4swv$Fo{%{hZx& z6c;pETUWDdv9sgPUarkJRG~v9e^MgpDr|`loo5^SenTy20TQL(HR?SC#gq2)X|{Cr zX*U6dDHqq^;|rU!i>J_0FLI~e{jjZHQE1r?@2?FsIMM*M&7xjWZ8tTt)^f0I_x3X& zW^}vr7HDTYtRjC?W;rS6x%!?A8qpLoxxHX~85lfow1hsbnHVhj=)T5pCzHlD{#Y4q z1+S4*sIpj`XTE6rxbM35Q1+KyUzP-+ZwEyS+x5b3zAwi~Al)vTvW= zrqb_C(g?PbYpfvl?=Y&2F7}8#0p>aB32t+4n$^SD_(VKpr5K-mRnUS(|BW;#S1^ zcpNXX`h2h02Hh}*QnV|Io{l?R_Itsut0jF?Y8s)_w+d$FNu#+{j++~We?af5wcuUj z9IW_W4jx9$*3YX9kE&B9R(@A82i+_}ms$k0UL~ZYN(%@DaLl?p$VJ0GdZo1xlC8}m zqBfI=SuO^JBM;Zvn>BgL8bm(>#OHuXU%5~K)enf71ZsL{cPi6;gXGBMWDp}7Q0!z6 z)&P6Uc;Pz(u*>N#UTjem>D;=5F{h1M;WnEKIL8*_Tr%$U$^`TF^8`5nut=#mo>|CT zs*k+RGT#!?DEJ?M<7t@cmU@ zsHIFFS$+-6M*DPD@tjes%p&Ymz96uRV_;3p7K&yc@8Ie5CMsl@_pL zj_+DC5K3)y)h#-`wrL~f`&+_jv6(9yr;EiyW~SmqfxSu3IlEFjS#vEgdi)}oElA`5 ztuD?H>6+WXlV5!jV+YN>GjVNaRmynvJjjcu>t;Bcs*FUyy^U(7p;bZ%lqEnTYwUU6 zeeda8L_5}OR>U62>(5lPHC3m$_d)Xw>0GAMm5tO_Y@uNYIJgL)ekfEaa>J}{wzE|^ zeXZ|Zu~BF6-f|xwk1WtCm|HfA4?DhkYvh_F@dT7W&fETx51zRIEK%+e)pgywSBudoWHW@Vq|)!Zh3Vr zS;>H!?3#)udiYpT1hc#MlM`!Lb!Kr?9m)EjBL`|}Y57w)mK1Gamzl-S;G{pd_3lsg zCuabdT;ouPnOBEj9X997l{d9hr{|l+3_PjM)z4}zNp29K6yvm>;Jq*uw6rdT>AYXv z=bZ}op{^ETIFdZ%Dj)+%OSjKhSyk24ys=DQ1u6k;&XKZ-)4*iL(|cblh*thSY6ZyFzdceWWlLoMZf=L~zv+&n@ z9=uD$;8J^N+qb%nlv`=OQHbZEO_eZW5i=r3=e=QEcQOu()kVIpm={b#K{Xvw)Vse= zlMM#G{@w;&JqfTED}e5j_>d}U;=gnkV@wo^(`C>2^fb?Ey4F{ieZvd*PnX5o6?}%! z8bL-aasmr_5ZL^ywb56pz zIwvN(A4{Y5w|fdd0fy)=SL2z_Z1?TE-4EM;iu+p#&^RwWze_i3ytfz4X#tCsqu^|- z$Hab*d+{u=mzE;#Q?g-{M(spM;RsYXeLOn8?KwB}qv4UJCc^k!Z!1VSH9%e>kq?%n zw60nD9pQ)4c9LDqZf{UPEw7}cyusIY-3=pr(w9WxeM8IcTdHb%HmOv9o?&31>joib ze96*Sjmb2d!-q=vsS#7%C%elF*Eke@H12Wqnk~k>BD{y37W_>4jEbY%U%oZIFFi0DHe8&X(jG)zqZ%%tu zq;tD5cXf|f6jxIvC_Eo_-<3IN(RMdRwQhV%FA@=Ta~7$&2`ty@R~`nY#V&Q6y7gw;YO^{GHLiorB4jC!%>n_xp}^lxg28c@kr+_QjJ+PhYz~ydq6&(Zd6ORU6gcxv5UC(1% zEZo-!q%do}2wTQOivs%gRTn!?n{`#-r#7l%2onozPrF>FICu3NV`54f&}I1qU@f+ES7>Aa_?A7yHbacq1GL=3avGLp_KCz97sdU*9V6H9Mz)mpvk z1nNXs9&4TbZS9ju7?x)smB_}5UC{W02j{Y%bFp3iD$#^KC>S!R>Q@5EeaiP+n{QA$ zS@vf~vq2nd*_jOcMx##1BezD%!&S1=GfkDRqM}#Uu0Snny^nBiFn{>nHy`yj(b08^ zrPJ!0+*;;6AJHNlyQENswB>S^(r_lNU$ge#;Y9vC`UH6l#K-Ri z>jBlUTpB()RtDAWdHfcyC{^l(f(pHjIa{K2p)2 z9m$VZ!u70G^>sR+cD1$vFi_8rMjqwH3bWNGy0tc=gG~Q6&t7Bkzm$<}po2WDXS4nv zb#EC~Rn)eN%A!$_umF+nl8`QyZb@mC5-I6sf`xRmWRW5%CEcNbba$hGEV{eSSfKBB z_IG}rz5jgskC$99SIjx$8TWICy$l7s`+W5k|M+D=_nP&-_xD@C`h4kI1G(=O{{$5! zbl_dBzPr8-jv`ItYa`E^(eq484^IL)SM8sNc-bYLpYF?dFeKcd3pSo&IFfoai{_uz zVn9*mQrj8Q`ycrYH^Q_N*rG;(#CHV>l4}Dk9nfo+c*=cUfV)Rt7e9LHn8mqZM^5qO z)AJa)eqz%QxmUfLfMahH-d%Sh9&7XST|Bza9zs#x5<2eG8tpQ{v)5F65!Cqnw@v&{ z&8qmaQ&WZnrC9DkEL93I&ql=qA%=6q3ZXw=d{zDqQNoSf`d&*?7L+U{Yw}4mG!2h^ zop4vC3p7bKZjNv}-$j$4c09(tg7-OY(OTPaLpqQkqIzmS7$duPHUT?=ScIAsn~jT^ zYWjSGR_}2Vu+juxUgbGTMR$Ohp>3hyc2upf0VrBd(lnmudYz*dH5ovgcF9Ov_8iEG8HWs$=HtMGByQdkCfB#Vv8cL zAkyPtirYXN6V|>WwK`T>0F(`*7QjGD?X#!bc$Fz+hC2$>5B?mRQ(sN5=DSb)(FNKt z+Vs^d)nBhB5e2e=W|UubOXRC7(Y=Bs(OV3c$5j~O05NNosmoZPYnW`cJSDSNxN&cpmwAHz(OeZH0x(-86gy@+ty{3xqLuG z;VeA^+C(p4z7zMXoCUD3McGaNEPA>e^D4RIXC#IL$937mE&i5SQ4je+mS|L<7#GjZ zK()==4{Kka{hh}5FrffLy$|Z}Tv?mZlI10P(#68^B+aA=%hzHT8zT}oiaB0AaY=)A zM@TyKjhaL=I*1QqZtf(WR1w=OpP1auOJ4E&(o5#rcQ~ZCI@{P9$u}a6?t6<<=hZz0 zli8n2&Tii}r-On?&0oi7DHLU$1pz44m7=LSkqi;^3b&en0gl!+ zrOIn@ShqV9c^Db4yxg0p0Evo(H_9*??zCK@c&x{odyGqv z)pRX;89EK7J{^~rymcFhDvS2>pN<>U^xhcMrJ0E|SiNKpvAmhxVUr z%O}?_?x-ss@2i0pXU{(+rgy6~1t0)kvvC>G%-=Wq#D17lCSYdhrk9kl9TGR)4SkyV zwPdy!@bQ{S(1uA0VVRx#v*_>DEM%O8epVf@xO?6@_igxqY7ATjME@ zb9D7-5x1pQ!xWM-UMji3wLm=>m?b>Vq5X#IrK9_k9-$(m%l_pCGye>?4&+b))e)1P zLpsGT!$BVflIG1EA4ge&c`P}ItH5dAEy~Pnl%Fwi3q#{0F20fg9_;$JgT}!9PEZRlpTA9Vy68uDY zo$dE+0P8W`j_FJ!h-~n?-X3nb+&-n+Rc7?VijTRp1Ud7CV4#8pB&fTT#9Ch#L3HxT z<*}m%ApH9fP@_yfA118e;K&cODr0-?4r=pRP9*@xLri;9r?J^%cov6Qm=$S1NTIMI zrAJ4TsKrkI>2td!kvZW|B+hW_(>WFs3QZw_k|If2U0R~%$4yQ{8vI{L1C>XrcM}b< zW=1he{6W*l^)8G_fI!~P*Zz;~@$^tGh(aB9uP(*%e2EnYdVuaC9I7r;Q-^${rm)u> zMzw4n=VQy{`VxOO4Z9@xi5t?e!kD`*Y#wugd@1~Vkk z4p>Xmu;uPug&{0;Nk>@g6?ki(651&mlefdyvWlCfy_4K>^3p0g7^k6=g@h3qA{|FlwY&YC@K=sENuEdiTKT{ik_HVw)s6EEHtSJXla8S!%<)7(wJ3yU`@@+Z~Uv(p7Xff4k%Xp;=Q~ zbm`5qVw;4_A*4jaEeZ);%UahR8BowLlJa}M$#w6kM^hU}y{Dk)wsCeWDb8y%S*gST zsU$4zMNv0=821vA7(CFug;|EpXeW~wuMJlP&E0PXl^uhNfwwsA{_830&H%8!ta)#3 zQja56Ts~4a1R*g3{Gb$ovS)tOJV|M3@xqpZijWSpjScx?y`9@gC_7?)*3^ZgO|vOz zY^bEQh-_^oIGLPQ%^;&PC;v3Ar-E$fRd(3@fpNRKg!?Uz-P*^rG z_Z%=CVAcL=vfQ8Z2=Plsp~`u)=p4BxK}p-I_$efXr^W!f*{NFdqG_;zNBejb)hI+E zhErFOpQ7@VdjSJ6u9GY4fdOw_23SW!7E*^Upcjd6IQqT*R9A1ezA;aP+c}Z7MZk|* zeCO*J06q7MBXd^oF=>U@_q!INf37k+=rO*5-pr?aj4H!?s^49G-*46tZ~9har@am& zs6mWh75MorU%@$h-a3)qH-hJy8611t?v)Kr*?E}reA5^u@LZgMXZvll<@|VmwO!Q3 zrDUOY^ql?h)y|#X>pmf<6bQH7l40P4(7&2~+X!i0ci_0P-{dggrj7l>5o>fKe7y}+ zB*tF{9}3m%X&e8PO`ND$-RsXdFFozkfj<7-Ge8MGY~V7=Tg<9NwH~P=7CX|vVs})v z37UMjPa|e)kJm_)DikkZ794ip2jc{7=RD^-n+q4{JN$hanYd^y0u{@AzK&$>vT5Cwfcec?*5wUHMBi`EIEy5_6kBMhc>o|IZMK(zSo{=mOZ|bqFMmu4)kTKzq|46BP{wp%Ud7NGw#bLWENVnT`yWZv6V5o78)cdAky!|*^ruHpb&El?C7nkJwHzSI zJWPneYs@~H|>@ddvzdlYCNsMk+fic8WQLA zMcxDxjqn4kiU3N8$Z9Wb8<-zAT@TMz7^7g;*;GBEKNHwXTaF_{>_@i^w1f0(*_TsYN?( z>x@ld-*ayaq1WIu#v_X=vfN+$R7ya05R=MJ8a5eirW6OsGmuOWQ`EHIQ%jLdMUK3y z>MOP&A-%t0EeI+T-dAHC_x2_a>}=q7$gN`Tj2puuiU)FZ9^>6;u{CNwWxVrK)^K?{ zVB&nH!MU{=Yz>q6RbX zp?W_`Z>HrAwLDPLhQ|POV>3_WPoSlWRNZ5DkcVsnOt1eq$fCvG2eYHy6=n?d1Q-eR zq}vAjz$KxB*hqb@v2@k{6@<7(nhNA%0KsEo9!O411>%S&3wEkV+%Pnzoi&RT_tc_k zN3+P7Mvn9O%#ng?BcOOzOb&$P*l$TlVV8fv_mVlPIYZoNNiyO<#CnY@YEk2#^(xBD zw@*_UH+#~98mW^LWRIB0Tq9?2nH+60Tn8;GRNS==um(2ijxm_>w)8>v86&cgpRw2A zz=!21jY1>f0$x0VHFYTN>oCk{!l65&?!{3&bw*<6Ck}#(P?T5K=VYENz#X9jHnSz) z#f2JP0Vd{NAayg>rT7U%Z`zO?I1G=gr*>wO%zv?{qX)|@gAy}LX(X1^#Zm*}jbyw+cgjAiNNmzvZvm&s%gn%QfTDtueD!1Y1;nrnY-JpQy+&8 zsrPu=4V?#jbG3W8eHG3>e5A}MCMaLUmj^%ZJN9uf1*sDF zuU`SOZuMw>KH!8%eIOuZ+f{T%TP49n@qbWAv?pV7ow-xcSI}GLhR!^Nop-y0*GFI zs9ZSon1W@lh0_F+6Q7U-@lX3%E1Rl~yLX|lH3UAn31en|y#r_u#gJPOMNV&hT+ncz zZib|=a-s-*Z&k`Xve(#*F!#j>_Aye82N3TH76tmq7Z$CSJnX`#GUhCKP^XTX)JpL`1}Jr^d6~Dd8;Lr@rDUJoQ)6bj#@WIs47IrNU^M zZP{a?v^1q$kUO(HI1j+|g=K5dLbxAEGZcuG^vVYd(>IE^Cr41|Uf38$%}oxCr@U8~ zKE2`RB{a>@xuqyBGv5)b5P(Rwb%}M>kL}_sLMCyyL)sRxqLv@HnC6zg-59?G_Jm5S zDzgV;06sTqM+}-N_H}pt(g&G^R_I>>Zn2YfUE2{=#B}6dbdJQ#0j{IZStQCD44#2| zf%1CYK4j)@VnUG-x<&WnQO?7BVS3_antA#@Wi;9;VM$4hwCT9#K)F;g28GS|}VI=bsmjR0=W5EUNMKtF&f1iy4hs zzSjv6($3Sr2TyPwWGKZ9k#IeyCl}cFjX98$fb&_7)NgkPh#Tkvw{Zr|Y>iFr-GR$| z0-u{b8qJXmN)dn$Gxjh7>;X`0heP&C!^2b_gs>x$s* z>d4uV4j$AN!3`rjd0P0`L+AV#; z@0Tw`o~c0+x%QZ8Z*gI-G%7ML&o-MG-fb-oH!)xeGa#wOS?8L;ndaN?PK$#82glH& zwZOkDSONYl>q}#Xt8sCkeP0u|7}BWOAcr*VwZBq@=jzH=vaw~{Q{JDx?PaRbb30(* zAKd^){jx*uQ}0CFbE6lX(#kU-ugerTaI0e6TiyI*bvPUP=?^gPat3~emK`2{8|t7& zzTCkuY9$hC^Rc{XEuPoo0p9etvJW4qBg12E@P-Na7F+a><%m~+&>~RGxA3TlN0*Zb z;{9Fl{*DK*^gTk6`NPVC9bu81kvFL0F&To68RDx{rvGu={#}9N0eIS+SN^hE9|D1h zD&e#U0={{U#)Rbq2(TyDE_k-rz`$t)#9PeG&M%87IROUYmB#M>doP20By@4W{ql_> z1U|4~C>w8Jtf2PWULW1phomK%6>ie;iECy|>MfxxE{fznK8=>8PU4YBJf%;&fq??7 zEc&-Hv}Yzsb)$$;iAP0s=zYN4o)|t$cJUm=h+E?L^8vTMRi@+#KA?Uj&+-d}$UUUe zN6m0%+E^ZQg5kCP_4^m9hiTLIhusn&fD0&?P6%+eDBozDBZ%j`k`GZg8}D82mHuxH zdqe$pkq@Joa8*&#k{fF@UVw1SjH?G&%Rl~q{*F4F5~7Xyko`|$Gjl##b$ufQvacau0 zoX7hH$Aww(wWeF`#VzPK?@s~NL@hs}b0wDNZ(Zi&(+x)RTv1u#)yuUd@@FUwp6oR+ zsOUdbwLJJs=RU{*gHFt2x#BhIo8mQ6ff4zlJP;^ldY_^(;r-WZM1But{6D-L0`J~R z(jfI3u=9ZM4kXb;B_~s@BiU;HmuQPn91IK$*|muZ(Y{;37jwHYxE=_$Q5ODo4%}V; zz>146iu;HP=mFHy6=N}aZwnELf@hPm@bd|nKKQ=Cd`S)nU%uGU`CYusqrVGF7U=hPz(c^F@Fdhk&3I!k(yh;|b|%vA9?!MW{hf5wpU1 z6~Tx|!N;gpo&hASz3sqZr+5O|8EQ0dY*(BJGpJgvep7e`boC5JA)#OiMa-S5oNVp< zpT(php)%k`{w7LNr=3xNfmogJ&N%+7=;yVL!xdWQz6ruEZQtKwC-85Qp(PRZTv0ux zNQNYU@=eMYC?@2dJxk^^6dDflLDq+#5j@-YNQs4dz*QJ$pbd+Qhqsld+^>frB0=~1 zcO&lcVbkNz-fJ*J#&1r`T7vF7nZvtr;8WuI_GhSog-OwD{~d$1>z8`)IYD>o@zjXZ zk*79ztll>+lnl5pz$dLf_|xlz8ZH3H{B3?At$@#{qG4cPX$iEwXCQ+TS74&9!TKM6 z&5aknbA}Txm1}gbPmi1cn>wxkmLbr`-GpYwQL2hC@Py>SB1>=lGpIKB``}-{hkqL^ z-7CO9b~{`htWR248j38u$XD1MfWT7#!Z9)`Cq|8z+4@Z_(y!-Dms20_ zVYYzZeAkD}<3L%EXz~Azhzd;>CF8_xk<8w{oSMs~b zfrXmd!sq?cRe~;g`rKwaOmY!)awD&P)h6+Ieee{vOPPd=xZ%a}dzh8)rc~MOuZi;2 zONJU1*ryHTYx7qs(SMu`xhKqk%HXyhFKY*h2CTsFz38-WMS31;kB-!0H;e}UMeoOl zfuEfG@S3e(mC8DNstO=o3PjsX#$zo2A}@C`u6%+HXHZFCP|r|`1SZ9;VDwr?3bp4n z&W6gB&0;y3@ddj~9tuHy=XdYE)Y$^C?OO;bmcozw=i+4XeNfVDTImzb&F z>epDV@vkcT_x(K;z|i7f+b@`HroaEXE;p-N{PZMnAm@o_A1$XrC0&C!B{PT~C~;E% zq|uPb0YnQCZP6@khLNV}HVI>iHe$--03xb!TpKa~))rpfZV&oh2Ja@dbwH%kkWH@hh(#!e!Ls}ZJpi7YtZDF z`9|US-l`rDl{_CkT(1Lh-cU=$_QHIpaza|K0;l|XqNpT=v94o9eu%A8Dd3;Qr&?R8 z#+V(Wa<~8=LraYEfo`6D1QSF>^c&t3hDTKIqS&Gn&jAnJf6>lgPo$TWXG2Mcri|A5XsJJ}^|<(>vpG zpW|F^izZg-ayfG8;x1Ogez*`wBX@^2=b3wEk0CIt& z{$vD*S(68qX&N}cZGDOrQGR&E_Z{^&^DdF`@cwa^k77gD@3IN9XcvE%aQiAs->RM_ ze}^LNHqJrVl`o-B%11#77lY*jw?@Td>eskG`0=Ig&T*PPU#uY>f^+QEus6pK_Z7mp z-UW~f8}p*^TlXUfkkO9m_!Tm}gj~arTLwqE;uz8yB4MIcLC5wvQLZO;9tWAdMk7A) z$l`g=4sc{%9S7#b@A1y;^3;ENO0a7dzMI?`j;Tv<0ox{Okodm5%J!h{EihD~rZM4MT~@lC zK69Lw;*JPcd#2?eCk)bKve~kyR@r5g9$`(Qofan z`>M=%k6Mp+NX181SI0}D!4FgFj4K~zW}Y27Z4&DgIp?-=JL;dDsL9_ea*Q&|$U0l$ zamIp1jPFA0<|p^n-`HY})2HFxJmPc+S(^rNWL9U(oSO=Z=0y{r1X4farc6QQ2LOx3 zvISS*a+InSOcwG-Uu=D{N@XZE2j;%AIorI7T_6)6%65}g1Eu&b7vZZ;Ad}qfbRk*I zGykf2wZux>b@zd*IcQF%>-h4PvsBW9eGKZW(!OqSpk~|~B%!Xvko<>}KhVZuubfjl zn3wc6-$x^sVdk?3RlUFn4Y++oI{OQB5=dUsOsRxmM;@nOHphH^yxws%M5-E0&L6{= z==unC);c=;?bE7X4vaElL9iwT+aYk#H);Gx)CZ!0kns`57t09^A@uZMArWV9V$^f3 z??G&#m7mvKE27H`^Q(Gk@?2ZQ(7fFWs3jO{t$q$?Y{`IE|=fLMWoKuZrE_=4yLl)Z7a^PHB%}=$+gf z3v*~isj(scgL#lHLBGI2Z|TyZ$Jdu ztGDm42<{@cj*DKpd_)JRf|{?_)ms%gB%X_f&`P4%;U8YK0+s>Rozw<9@!%C>9A zDP)vQU8`c9JG~j{RppYjZ`#`}?q}718x(3~3hz5U@zD?LZA>*f>T^`{{inUUc6DcU zd>Aq--rL@e1m_L~KLU!zLysHQa&O-Pl{V*k^>&D2g3#blZzb8C)W|8IJ|*0TT`#lZ zScGl)bD%r7oEX?I9|hwG+l|s0A9$rt#95_6>fp1dt|(3@^8Onw6N01R1A zYu_Y%PPIhX93I=oKJW;68E5OXM#BSr;;=Y5ZQ%R0cg$s`QwY-K6|VBQMzot?_OMAS z#GEozb@JiQk@9)I+wsa*DPMJ38&mQ=bSjwCE^>F;ewZB(NEn*H>xZ>p5!#Cfe=aeb z&e;w(mLAv9`o%}w^^;a6^qmzbZ*5za%iTX41-#-*Z15v!9%RmqO;jAt32r?NDk5;8 zxflT$%p1S_D92_f6Ks$B6# zt>UST95}F4(Q+FD-qZvU4o-`C%vWg2?DM_jK>?JL#>+o*nK8(aLlN^BWY3l4U2?t= zwqAgVU)>+5i(L^HI-9rsS)7=&B`HhMNi_h~H#@H=LOf)PPu0=3WA`#!Z}58T>7xj} zo)!#)z^zuAv*wO{{Oo(P2CLq$!6#lW{^Nf4SZL-u%_r{)+P46+HPeFDkbx`*?Kr`D zJH?TO^1JY>9yY+S{XKAQn&r zI@xIGD>7Hn_A3BN^A``PvgBOD_G2?vXA!M)6}G=r`0gOz$(_x7jpx=8-Yu}1dDi+Q z>kU3uoBArVTp~+!cEbo@h1;NTB8Di35;g|10@FZkDRY`d?q~VDmMmbsF3=Ps=bI3N zgQT3Vh|#_9n+Ecr11ZX<*W)s+2;oHg%3#~Q`t&SrD8GgSyMz0Mdb)BXU#_n7kV*M* zcY-+QxXVhI5o8EVeI1YYR#%?2*fKc%zRqJly4+?-laSVdtTWN@q8+Chy8_iPoK&VN&)A~%a|*Hc ztUXae(&{A)cu?qr^}BZSC;8rf8L+}6^`2m_g!zT|FLIq8?G` z0ld~Gl(z})7W+zg{NV_@%HS(0IbVv46bB`h7oEy1=iw_2{_he_bX7WS{8ll?AIBgR z32}mTW7?=`f6X}Xs;?Hq6{L63#7__=YP$2Op!83r)3P-Kg;#%#_OcG<(g`_sW>Kpqp`gihXm!0{l}@bJy=bqM}r9=F?|l0iLY zHH?9>8?IYp-tq}EZm!4wDo5yZPzM~O`zWh}v^mcSwcBpNv#e51mL<%VHnkN-x z=xxk~{z}}-iN&o3p*~gl%B#AcmxAsIK9ct2+ew_E%#8wGb{4~X5A@DKd1PPj=|7_n z65nc1`fR>F{rsjF;vcO{0Is)wwZl1+hx#V*A?pqg>U==;;k9$GW{kPH}om!zvi{9w4xl!i-aula`4 zAZC)syuCZWID%9~BN9J}AhL+T7Yp2y6yVOGI?xHN5RvU{N&B6T4kH8^dveOeOh)b> z*O~>BZOInAuqo63nabj5LWs9cB{N_@b5_6MTveikZeR~u^uMA{4$-Z!&?a4|6zS5j zc2=ew7NBpzhVIPO4XdSqqAgcYWh9Yzdb*FZ{C@H?ttW`hTt zP9?;qVc;@_%qaqAiIK0JMsA}fmQ-Yu6#PpUCyIBsdS+$?9sZ0=PukY(PIISzwv;-{ z1B#N;h`cy(CO{oUynI0uLAJurzRgEV)1)aZojbELQf>2Be8hkv!E4PuN^#Dl?n$OW z4`sNvm<|<>)=JbiJikKdofjB7kTDD>T?%5;b_>PH1bVOnsvghyb5VjQgFt27@iNYy zTIaKcj3ni}@tn5P0`}bG!aHcbWz3mS#yBgY}R^*)i z(cW=S-jns}&P^eewTZ1AbxjIeTCYSw%TiC%q1<7$N)6`4u?qFnW>vJygXjiEOq{8( zlfNIJRg9p8Y%G-*<-Y7q0TM{+Q7dnkIJado1c7|R3y>4sTX7Hapg@T*nXNavx*2pAtbSqPDa@v>Z-Q>^{2KIPWn5& z>&JszCYvH#(v!q$bS}s`t9ASA0I+C0e zcSD(~5ObBFcEPdVm$7AN7;894lO3?s1%#;F zIbhFUpvN4;acdq0N;CzHvO$k;UUd=8Ivl4rk8ZPHL~>O)9(>g2F*eI<%d#GqqJ#+U z(2dH&qlgoxqpZ^8D^a8Npc*uMxDJSV(B9=42+8?{*pALnT7UJ|VNfXgC0T;pQs3_A z)4{$@5drAu2#NT9`{N<&@gRbfMrXTgACTOdT}@nfQrm+xa`$qe?K}^|W%pcN82UN} z{-io}JU%Kkc+$Polj{zp6cjEjpBFDk!6|x_6Z`JSYh=3gFjG$M@NlEsip4TC@!ijh zbEK#AGf*1r=~8;E6x=a#04}EU)6jWz68xNcf1ZtOc8|vT*?B@YUii=#7|dVGXH?#Q zZ|LXd`^6;4x}A?QOx*cyI3^`u6rkcZ+Fcg_3AJ>*z5tSKbtrk&_Ji_v>uuw@sIhKQ zM$kiY7*$dUIz$pLxKC{wLA2rs2Vv|h6x_!8LQfPGR;yy){BTD8>5MBhSya<0^M0!X zn|nt}B1|1pfQT!z`H*{W%aHMxp#0Bkq<1;LoZf||XYG5}1h7%oBw#s6gN1CeQ^W;W z^m1_nMtL#d6m@;0P4Bc5foaVU6W}V;Uwe1=+@a>gBnBs&#}Z-Uo+1Ii$zJYRIYGZcb4&L_xoz zyA-k-vH*C5{$ex=&(|~ay9L*9ob-PFPYyzkKZU4DjQ0>de`CmY#Q&EK2NrYpC<&?%8&Ezn{ZV}tMIBasRN;AfGO zK076u1+5FKNhe~kw$kY|0IKp+y|6d}UqHY17TfZfC__p6Em?`06jo3|8Nnv2oWo7) z*x}$v6v**d>~(!Yt1QuOv%0ZZ3HXq!{5*$cw$snew!}?T4rf!6Rvc`2p5(c1%B(N` z{18l@c09g5w(_t`IH9>QzD&4oNM|&W3D--%i)2`q997={2*a@vY_&4aFnm z%h|%fnO~oZy9)rF;5CL#+@L){zV72Isy`~|cj(Yig|2U03OZXbf;X}>zbyP3Ll_+k z>NIV#7hk~_tY0;36uFR?O@G~_``#dxiaE+-U~#u?tp?)%%wxJV$|C-1a-S_gcQHXoXY16(^Dz zL%!r~roODpo}xhz1d>zUD>+)+wWgC>Gkj+0*xg`v@!JAMRVMSFBbMNs>>sN|Bq`4Iz7 zVe-voLV@1*yjnV@R(on|Za_Okt9sDB=-6-Z$e=vhz)BH0 zYtK>H#eq7SpO*s>pM7F(`X5d-x+q_)VSB!)|f=lM%ZtwR!)Ruay(|iwU3!X|k-5_q5k^GIM3% z`0GQxNCuSxzXw(uZ>pi`440NGS{h?19H?=61@;_sYoXhge|4;cbtR9fZg{?~c&;T{ z=7eVomo31a*5+<9>8{PEQBr30^k=J9{MDHe2N*W`b<}_SjMP$Ry7L=dTtpqD_}|#J zMKANuFYP{y6dkDHD@xsmbKuL%eb%>&lNzj7J_Lb{x6C zxPNv`Fe6R*~)&?KzmU=5`<>|6RImbLdmN(`;g_<4qUZKJl>Envi z%+?;?zQwHn6mJ6mnaf%WNWETx^za`AFu5)q?S5=-01Z$IZo}Q-81}7=2C0O&>$^h8 zMt{|H3ft=E`dz)+|C0EuU`P9Qz;FZzh0nrB{8PWB!+@kG3)LXZdWb(c1(MRpDWc#*W z_kP57v3iel)(cUkTt9+L`qeC>fx97!YeAd2dS+%_HmjFlwGnCSBW| zXH0H46|;cZ?}qj=tFM{FIjpzzlz=0O4f;ni-j{^#*y|VT&I_fPlX**S<0fUd`AAH) zngvHvL6K^33hsoy5D_z4MK{k4s~k%oaI2H@>7fuj=jzu87BSPqi94|DMA=j^$nP_R2?7 zB#I6)Q_R)s6dpck8YysAWUj7kR>WGwC+GW6rT`ux$3#dG(PeEaNtH}8X6X70!mJVk zs5otkmlUX2YVfK0a2+b6n7{#vIHo?h9c~Jc?Jb4&VN>b(43pD(l}Ws_R;|iZjf2c2 z-XpK~B7!e6@nJLvjL#?a+#_ED-bg^RN950Gag$pE!_(fZknJSdtDeW`7D7&IEJB%| z=hNk`021jeX{2Z71G*NxNvS?<2E?o&g zN+N<~MJcW);P1_*NHLu5zRo&-^cZBtRf-ntk8+zWmNF1MAc4|WYmTcqS+(*Cn~QA* z`|{k@1t7`p@%1j(z&`)X3mdALZPk10raCA(UPNmoM2 zGfDIQ3j~AVJoPQBaw3AZb=F7hhR^FZ!K5|L%BM8zD%43Wp)GkeaBV+CWUD3N8Fgn+ zuJHr&&c5xCly;7nX7jd;%2CHW=B06*`sFX1!5}I5Qfzr#*$H!88nCeFTe&$}eVDI0 z`>HN32(~KZc%Kw=&E+of(x~3g`A1F&lwURkR%$vLUyunuzMlAjfP&@xWY&<6aG`xT zs2_ye7RCV<_-u6`kjxT>!YWgT!v`%*P519{=X!#zZq-2W#hYVVy(Lxy2{E_o?YO>; zGNZIVbL*)+3i$MC*u(;jw3r#vRE8LLM1yYcohy%JxTshFEb*@RJri^zM=j_H6nUho zes686NamFWq$NfwAd%?#6|pi|rjnR>6vb<^6Hz^U+~tQj*A1xA23Te!^;_)LDp8<+ zj6cFB8%s`&H>&`N;AA5BJ-rcPUhbrPjSzh&d>NJ?J+b*FUAoex-a{&@~8P4=hhS_kNK6RkMIJ>PE4va=xj?r7N(Ye@>cEs z0z_(@u)KllWxke?XtoFG5sZ%&`OLLZyYd4|4fw;PYcX&A2u9Uo0H6uD#kbZLv&D~t zkf}M-=LhOPRStA(&;IB!Yppz&vrs!(=b1GEcAOE+kqn5HPKCKZF5|R)kM(h9Ep{UY zA?I{R3Vv&Ovum8YCtkg|15w+jf6{3pY+z%Ep2UIJOckqfZwpBfMiDSX8CJxn?sMEO z?XJFL<53mh%<++8OndDcERL7u0}xVMD^H&p@wq3#e$?b3+dm~H(*H`{iJDo5OU4K&H@9m_56qoZ6daViv%cJO8G?js6-YDfa|OZb(h zJ)2Gw9zc0%wJe-@*~=zWsa#1Aqw%2K!?S1K3x$QwsgwAq0~Iy=A!os;_G)_$X@9C` zMWHkMAV@)N0p~ujis$9(X6!j|8!wqK>!e5)SAJf+H~uL{&?uDB92#?-AQ*Z1c%dul zI_??s(_|mdlU_e=`-A)BH}4IS%y&gAd=)({Hi)qti<0a6$#$Bi;PjWVu_5gXx}FN) zuxAQd=4uu8rlZC%KU!8x#i821KSh2+gS_pc9(zG6gqMRx^5M)z>s4;E?+jUk9v^r~ z@2jMz%~_OE1|Y$HmSA6^L1_ z{9AQjPFAta=ns?4R(lol%3r2M=h+3uD87y}ROd~aNwUOCnE564AZ@jZWr~|)VTlX{ zs)NvxC1Mv+@}*;N zT7xPay!xpg>X)SRgO~^4Wg{;X*`;VMY7v8Y_Y}l4KD1nnO(i)9XGqcvew@76c*-&ZoyJoh&WJinBC;I~5Rtn|0^3J8|d~O4gnoS;h)F zq)!f2yEzC8{9ahN9awXmZ=uv$-HAZ}XI5v>eOP^7(#VQYt^N$Swxpcbh?;PFsS)Sb zw^WeN1!BfcR@SHfSx0P1ImjABE-oxKZ!s*T)c|dRW$nN;4ZQ*s6SQUDYx7(U7Y##% zh48kq*mGgewFx)e2}-8Qs9{<&5w?_PN#B~^d*w$imD-HkaO?m1HtPFh&1H8g?&rL| zfgj_3u5L-2^3#EpYe2=IG_&!m!TEQP*)$;L2f~1FVl=j*bdBeqs-$uzA?Lw#C2~|h z{FERQ+!vXBIg zLdJr z06G4$Nd`&e;3DC?V5^NNwH|K+n~4da4Vx{#+fCuQ1q5A*lU+}=GP_wSl zOAup0xMAum-()ZM^H{AlHcmUD+}LUARs-bAFxh3lFZb0gEpFRdp2xofb*T@=_O(-Z%nJcW-+Xq{LCpC4l%_iSTeV~@wG3F%!* zvI&o2t&#N6x~5z0scGX))0`C=tl=t42rF^Zz`6V9khmH1>_{DY{3T|3QJjKvyFvZ* zw2|YYyVuL!9C5^`Zjk{~>@;}!s3+w_ER~8&yFy?yhRX;}Yb@2ci1CWld<5K1z1c3#I z9dtonUZ0}Aa5Kl%1n=%PxSCRgk`Um$y9H?B#n|hY>|PcWBY4TVSLedq{1GY%Z|tqh zh1S3|8oc@c&NqY%>BDmJnGFYxg;0PDa~Pc*v0OAuG~l)?M=;Ru^|0E~B!q-Zfad8+ zHw20*;{gI}+L>V33BktCD(NIq=Hw)=zH}wlv$L~AtC&(kP&bK-i_0a6)gTwBFTzNC zTyT)*MZ4#dN9V6mJ3(^Nw9|=nGZ!=9UHQ-&-&Jqk2LDC)gn%S%Y@{XXPwLmNtk=!T z*~I-mg@3>KPs}nC2TT36(RtjZ`Ii+>3~mTiz&$ygGQ4)79(x4=!2pG(_O; zg-^(GpkI>e`B9|$|Dl&dp6XN;wuXG#pmDrO{d#vvv%+px+A|*E@SmB4!gEA$4-OCI z0B|w8xDtO6D-JkVz!N75fTJ=Csv(!WtiME7&YQr7JPWj@ekypVlxc#S<4pkOa2Ey) z9i5(uiK(lr+5g}2bfLebI>Us)V01vvvN=uUelfddO6yUL0zjy<8P1?VRU{W>3HZmg zP6DWJQbCT@6htlNiHUkz4a41OAT8uB9_YQjzb0Xa?9BT224I%U;=mASvXqx9@^vCW z@Mk~|+n?ZY2a}od-z)pbVDO^%0Gr{3@Y0ubC{Qqf(xoc^HL0*=Fe2PjZ<0m+ieSEa z#n%<}cnwDcnNc$pHxc~Q!V^;b2BoLKtp-^wH#k?~Z(K$Qbb}w~NM&@vl`Oc1sMoyh ztbFmBIOeFy7(|=eGMoFAXNgOF?J4*y52~@NCdo31g1^tzj+W3 zu7Mk?$+ZNYaxuov^#xE~<4__}nwlT_OU%^!qNhBR05#APiSyS((`X>`;rHYMLQ~>x z@@}X(nAl7pXX56ut}sfsQR{lBkJ2{Il)!)@)^ujta{V4fXjVOFSAnz&klwb50*Ay)89Oi-BeZq9{6yf4e&@i#U zV*|RkNNPAx8~&H<%@7r*bbDH)^8cfj`@iHWsI{hi-BC0K6LjD?00g~*)IpiKz&Q+v zqFysOU?H zM+JzCCHz-I97O-yTNf}(U?qZZy>tgdeuH; zzu70Hmn*gXXR9v||1m|O$Ns%h&@;EuyVPDl`~znP-rM6_H|=MC;veo$8(g@nhlxX; zF84tv+ew>B~hh1dDv`2koMEaBhAS0%n(0i)C{ln7eZG@;6QM zabaKeGD?jd-ne&$GkK}AyeeR|2#o#~-1pZoJCzN`-54)Xg z&vSm{RqqyFS`7l4Esjmw4dVej{XDOP2`OrIL&n6wjLv-p+SGw{M>w$}aWgn27G( zTh0_m6t4n%(C2r&Doy(@?`>SIzUZE`k8KA;!(S4P=4NKxC!(jrh9KwqwUF~#Z9+Gn z^>_S{GK&gDE`?kR$!`CXBe%+1BsoIO-q!|Cl41A`tdyVr7YubbzplkC=t?ZA3mJ01 zW$cQV<8SDHMhb}=sPq!eZYy2P2Y6ELOS;#J6cUE@WQk5zWvo>T%>VXCPOA))h|pcxSQ!bIZlYbDW_Y;eFX=MTHU=xl4$x&ujb!L4gA31cCKUFsZWxUb3BqM1YxUNUYQKbJk8&&u~ zI>(@%p?K{|h{|%mmoh>*3E}&0=OT{@I;yPU>?teP4%lG4eu(;;QGXwHKmYB3f-unjImg1l1XI*7Z*iqvmP$jvv~ zy}rsnKL-L3pkq~i>&eGYJ-MDfjcWn^;_inxdOXi7GlQGp0urUtfs_VE9}?Kz=-uSd zeE^6~VM6wZ8vGVO$b~c7ou<>CeSOSr)_dPz{?F(+#4>+YFESn_uqMuN!k8b$GQp^j z$r;t!tAw3#Gr5FJGwHni*AerI~^nuiFWsv=_@a#elFkw;qu4B$Bew2UPvoopT zm5SJ#VUsP8A?r6resT@d*W`P@PRm@$V4Yhb4HR2{w+o-2bPsL+Nc9xu0EYDFCrjas zbQEg&A7qdtyJn%JzWXYl2qC{w>lG@&gn#nmEM)(|bw_lORnRk?9qF7dLi?eLIR|NM zW>`Objw3B={hB-0dgm!9B#%JI@wM-IA0N@$89|biye>_IXJ1aXSj{#(JVBX?7GpOr zr&1!i)p(Rz^O2f->SR|>@G-4 zpkL|nzZ14lMtgeN2`TwuwfnR!2oqoAyhN3+j#)|V&jd>_0!W>>qTafH|k2&#a{Mj>X_Dg#EejLJ3B^ks+BH2*)lDX!F>I#Hw8i=K(Ad0 zkc7I^K)wJ>7g^O=)#hUWiq5METZ#433rF`X;{o>>g4gH!tKFQr`W~CoTGbBUPH?lp zX66(E188B~#_~E?IB^69I6!obF|bVE+Cp)nKHb;Q8-?h5oPYg<4u%FxPY ztbEm}<57$7XR+f#(LGID*PT!isLS8^-A408hr`^4ic@xBp=`|}e+J}XjaNNM?BJ>d z@W+Z1GDPesbKRz(Nq-p_3-I-ysDBa#UDaL|=+m>JU77(O9)o-l`<2Ngh&qUI+-opq zZOTKSXK;w20OV`WLR-T`9TyLN|L_~_kQDBu(BJH@^ed+sERg;EeLtT2?U|PrQ0UQ& z3E9nNUFSA@D2@I{@z>T3UE#^TXVK)pCsY<#UbhsaxEt_hoeup{FhY-(?JfN5;!LL@ z>YXlM1}T8sF{KIUzjRk`?@S=I&4E!AfhiBeIB-LO>Pt;~9%sjNNe8Xhly(BLtP#Ms zwkDjX|7Mz?>ASYYF@8WII35L<_M?MsBXLhaw73hUuz6!_@8ToJ=K7%~U^R}dR z_WS#CVL#`J&h;RF)WA7X*&hV3#L0|6C2Xz&;LEFfuvdb^HaKT<2SwHAgA3Cq_%hs@E)TgWvOSA5Xcr~_1gPHzp z7}shZW5j&}&1ZFy@}S5_HtDoM&)Fak2<-g4_&YkC0v=pgtobyB`q(AYKF6x@IB3Y{ ziHzB3TG7th$d66_{_R<2^*Jatn8;7WP?d+U%%iNz!EFWotVM8Aa6iwhuDYjMTt?^L zT=Qx9X;{0`!PC_WSfuGLn}3`T&wszI{{jQ-Qbfu-MIidLhI;s5(>aP@z_axwTf_Mh`XSJ%UXEaYP*psx^|+Pd>yk1;I0Eu&YR0`(Th2Azx>G4T10FV zK&AJ1bx5ESLas#n5FT8lJpQ(LO-H-hah0u0R1b|{DW+OGO^u1Z2|n)pLRlinFEDifd|&=3J{(e__+MHH~_P!xHg|tGO=y zy@o;@$*I_B2Aa&O*Y($JBjA=fQVT6rq#|+qe!6_rTg>NP`(f^1uslCfIPvw_O*TbnW`^yD3+`>&w$y$*g^3OH!$ZwfrDYTn#_VTAkqZ=-kJO&>AL;vVSbljZ&sgJb*A=BM=GP02s1mQHtwpq zos&1iGx-LUbZ5$OuW9$^+RgBMw&GqT@8BGMe>n#mTwYm#OGu%r1(j$>%$?tCu=Epo z^WiA|1wOO!)=pgecr!q>UQO=*ftVjC>3VK&8MIeIxK_%Ir$@zaU2OF{TN6NT2D&?B z%@U`_eWHUSr2~M-&L*LlM48Rm$wb4mr!Z3HUQzlGhff&02J&T!jYe#W$1MA9JN!`e zR-M{E5~TezXhGvZbpW-!(y0Jb2M!MExvjH;zLf@qs%0ftGrJBRnGaNPtY}nS>SeQ>qv}+53~yWFh-?& zb9dTb(|X3f2>FHhR&Z$H+!nhkGaD6xu-AGyx31PM>i)8O1w#reT z<*v8n_iHXCGgK*1xWz-%Lh4h6f;;O^t9)ZOWqbvB172(MlYWW`9g zxM1LQ1419Apj=gAczfoMVpJU_>0Y#Zm$mLZMgj|X-k3Dy1Z}vtv>JzqhD&fUjS+6+ z$45Da)W0Lc8MnJMW|(A+w|_k+32z$i>QZq!-3~UL4kx@_H&%jdd-lA;cyGFJ^^TC+ zeIs>na6HkMS@^)z!gp`Wer-rZ%x%xvq7|M^vlm}y=lj0!l`ZW6 zBwNwR;$&HXOmDYYtR?xW90XL+3BS_6h0x4JBI7=F#=F)3R!C8J=Ll8!e>t z2I6Kb(siKkxX-MfMm#cE?UzKx=;JyxAJ)(d#9vsT=F~OJ*8J27NP5$NDGfz3& z-0RMCmU98kFWnJ!v-j&vTrs9%ZcD%6ve6_a=4))c1oYMO%nM4IJTDAaEv%yy&9>b{ z4*NW8gonVClEtNU)qTk09OEWDwDFW27dB)R-N*-T2Y_klY_7~rZ^-#DIm)|<}e z$XwVvkBYf0ejo`9sMiLkKhLrbL=H&xRsy zJE8xXu?FT8(Rtao;~ZTJqOYq2T1d@jdg_+!?T1V!;hacZN59ADPGW|el#62l)B57k ztU9pzWwJ_+w5L(23tIE+nOg*OczOb*kP#r~A&&f{y>1q`JdnO?Q7{HcGM>a(_hqMN zRx679tql%py$N4KAhw%d(7iq;{-hD_a-~&D(`YQ;A{S36cFd-s?2#mhBelo6u-u!L zr~7m`$z5=Wi9M@|wHsi&QQKv74+skC<9Wlc=thP^C+tTD+o_Mja^#JvE=JTWhlh2r zaVo$#=pT9SP^iB$ENE_fv3iFRKh1c#bjj|ZHDSc?i3F8(h1jN)v2Em?(U*2JNh=7t z6~MN$QX&try>x0zoycYQ^tPyJGR?u#7}KAN;$j_JZ#qFFNp1c5V0wv_JP*0mL^Zl6 zSEs9bJce+}v`6dR?;9;nXkLe=v?Y6vR5ab>$1cA~3g|f1(IMkiO}XslGEtan%b{@1i1>H6YOK~kM{0z)KF835a5o|sKxC(MH*tR+ZRRuxaggEvlRf;APS zw!UXZbcaVlea9;HU1|PimJw=keQN{O5e)_U^xF2n`POSyypvS>v>Zcj=Xw!v{~@~H z#HAKPg9z`Qh9xYtV_S)`km(--goG$KJ&%-!|KW7%<#m$No|(@QM_CT5y>0wlokojd zuerD0Yw%vlbg#(oE&6c=;v~I+YUcNVv-4O9;@Wed)E6sHYs=OA!S?8@@wR~urljVK zx=O?^97NB%uddy>r7s50BxpW!-+3d`SzKmW?e%M5P-_!Q^G&57F>DM!FGw=93;<|JTJia*$x27##^*~NLTXmD zf^X?+S)i-dW6&$8wce6(&cTJjV$kw#-2U3wtu1YXaV?p>rDtRDQ-E4P>`GNB@o?60 z_*Rjl=j*N??&lTi6h*h9J3!vUEk`=8C8J}dsU(Rsc+2t-SI(X3Z0|mMX!3NaH@Ot1 zEHpcRySv+AXK?CuW{gK(aCw14FPs?#Imw0xFDRh(dEiz!kQ8-4I{r=5!VhkN5<&;NICW?^MBdYzs`%I@y{cx_+r?b`9m26#Ft%px&_?)ZZJQ2UY_NDlsGF zi5&UdlxFj<*=0I_ag=~fwdZm&T^E6n8@Rr4OX%IxD|u+1=*2Gb15R@#Lx?zCQpDm`6tCu9K!5a3p6J0FJh`h)y-h)c1#wdN;5v3UAeI*y zqw)f&^g|rEji}Nkg=1Z==-{&9+|()F?9RWG?ci3DT5A9T(oI944txkiWUo!I4kiBv#D;b^ z3O3!M)rWH7Z6~}aRk4M$-S1vLxfMe+aX@9or zlMI!!CWzzf37}>w(kZ{Fi1He}^^a*+1XEagqodGTe3hMi@@>JXiuF#e*ENeK&9XaW z3@W!YtjxX3qp0RfMhSQ_LhpLIRVXL%1BZiU*OaiD8OqQ@g2_6K(ac(ocV%mshLX}6 zLSa4b+Yk6;JNg*-*8)<5DKDn~8W0Rg<$#wgOm3r_PHY53*I8h4l!9_H4t&L3A;P}2 z@I4k$HS~#ssoh)tMcU5EZo4)DK(GDvM6mU$U&T#RwAyTAQIwaaU6>pol+CV>#@2caj#i(4L z03|XXQXX&^N@O9rG^w>G-)D<$`R*NN_xOCg?u5qr$Rp>&@wkn2KEkCa9 zN_SJoopnumHp;xP#Gw}7x#MO7k<<|rv$Up?;NGLTapl={X=wu0Y;sHQWCzt}kBYvk zJ^}Vv}gWu@e!_n_2jMO#lO3qvx7;4-XCPlU6qnNM|^8*S99<9}4>4WL!KCP~%l22FLgVHT6SOAv%^1u)1TYLS=&Q@KE#yp&~!#7^*e-U!H26x3&Dc>W|f6-A?(G z9AAAp(U|=M&31pi9R(HPgdJRy@Y9f~gNC($rlCcyS+9hfW%9#WHF%stMw9EafgiwRnbMZrmVrqV0-ree?eYd6RwX-rr;LhrP%1`R?PyCt=6Z*A(ogux~@gJitudxFu zy!eVV@MyslH6Vy^qd>}tvEBE*cO}7v$@>Jp2gs{O{ozKu>^ch6Syvb5B27%-sR$*8IS{ z=Zl<}TRj~Un(pP{*4*q!W>OSOB;m(ye($; zz6Eb_YBM%n1MiitkK`TJIP%yi1BId#=~We`vzhh_X`aK-wB$QHZx5k-)!gA1&S?I$ z%R`l)YF4JJUsgkTrrb69^fG}_>rk{Aav8HXOVOLFr4DF@lBKyrPy8;0b2h~O$+xKe zOSc2=G1rNSi3{DUn=`Jt{8JNW@rBKPIfqr@{=6n8z?+l6F2+4HW~({jq#tSZ2eiwk zJ-~$_9wMLEOWr5zLXDQKgn8&W4oL>)yXPBZUxP~cbH@CbdI0l((p+7hmYbQ@QLB*0 zq)T44WL5(tji&*n@Sj+{Te}WqiU>MTF z9Fkr0_!CdfAG{HOtTXrYb1+M@ny}k)*w(4bRsmG2N>^OU{=Nbgo29Wc>BB=LK`}?r zI_D#wUm!`c{)Fg{<&Ia$^YEy~MoDa6+ZkZ!O?oMtX2eLGYBGYv;Ljx@I%kJ6mxySi zfNAs7!QHvar`>$cR@--ZzGg!pNIrD+d1L&WL~uQ@U?5F z;?2~5+mqfl_|`uUUPg*o$QIq}ynJaNePfy}5&wHfajgkj?AJKL?wvr49A_d~qVfV38ak9#$Q}cJ;bz zD>;=w+XVTRbbZj_?0T8S+#t&fkJI0Lb1ODdCMJ%axd9H)-fgOGiV~|eeVdWuU-f#m znq0w661OdOs?`{i_PQ|FU92}3+!L#TSF{h*24xOqeh`eDAojt#w ze6rN`spdX*$A_5hF;5n4?`^YBw4G^eQpd;({`5|jNZ4EtJRuv1(S2CXM8y> zn+MOiyF9g!$g-@sX*iGl5M^hKa><^L-ggXx)B@(w81Coc5@(NjONuOB*48L5IyX*w zV%q?TG<_9d5>y4`r33Kd$u|1dnw-u)FJf$oBNPR zniKDpC+EDir#KHVJ>QC1p8ufOb?x9a%3 z)0v<}!I;{4+ZFiDTpRZTVc{d5v>qGHglG3FeK4Sz&MZ%d`OXky@y-jdfW!OOx63ZZ zRrlshCuK8iw>A2kw}oA$G49|YPk%J<2mdTBYwDsfG{cFDr|;EvDbeCeH!Uj46|-j; zEPijP!*bXP>GezQgq(v7{AiqI8IN!eNLh>6)J5Z>5 zSt7>m*Wt`x(AJ@^uTclB=qnrYboc&z&K-Aqrhnq_seg%2`bbIlzJkCSl6YHBtXz%F zz*}^zIQEz~Edd0Kk(n73#N!)vUK!&6HgG;h9LYS@d^v$p(?9&h%FBT>=~iJ(N9r89 zf)HiGNY(l4fe!-{1fpFv2rrgGNfrsGCr87ZB%X=gVGQ;+YgW<&keI21Bj-~5wzy`dD02##U^)2dS20L^w`Es-DEGGc`AHrhh2p#RFhx`?FLred6>BY< z_>Qj7&$}q~AITkxD$IAN6-$x0gIsH@B7gKn{84KSp|{iCqGyk7YQE&vJ0JEMkBQf{ z$^J_#^Z7}(gBei=ZE9A7Xe>v=@s>jExqJVScFN@&4N5QGuMpv7@EsFV@V)W!G|5C-%&GnUdNw!zIFX ztiL?~ttWw#QRBg5Q6>Y(xc(!D=7Sj~j|T;pYL7nHE&Z9gkJKWI_{%`>F2Hwi{eskY zlbdu~VK?hZ`M~y2;1jQ7v4Anas(JzM*4_RI53$*2Bbf6T5`jB*IWc4e1y!J^!#9}@ z-a8A(m6){ADOq1GR`7Vir3HZwPRJI1wZwL52anm7o`SRM^4HS@uf=DDusH=cX5u%u z8j_ssVyQxsxujoIDWj)Xl0K&_c}cD58`OmJ&@J-QgO;?z0-XjQFu^MG;iSr33@*o17qsy4l67ZY zU6*gTWl*kAQD!>u)NY{@r0mXzgBGl8mR7bR3V7hOkNFlLlD>RWYdF>8Hf#OW@xLk`>vgauU~QB7jiQy z$8odioPwVi(!T+J;69p&TRpoJ&1IMdIB38aPNXJch=#FoBrav&(m@fEdl?1WBaHQ6^fp}L<>(`SN0lwcz)C)Bnk^w~%EcPjUc;b1#3 z3J@@=PS2pFQSe2u#7sx~*wmU0nobxIJ#~016~LhcTo_oFc0Ib{ws3~fX=wdd?;ISO zHKYC!;46@litZ3+vWlWb>!v*trQ}V+6aJ=_&W)!*Z-l9|-CFH8b9$xZ`>`~Fm^4hI zBk-jXr+%Z6Lgg!vR2s`Ov^Vy0nif?%ZE7g)C4WCrwU z=}xc&MpN~qX04cF+9BTJpyo%1QAvUE;pZCy#X{6nfAOIPif%b`Dy5tCcc1vl>XnqP z5ZedO%avGW5qh|@083>gi1CV9r@qVo*0j+ZCoy|V99N(0J(M8GT+<;>r;~{eQID%= z_u|}BH1<*<8_Hu(SL{|%1wQ*qemnXY=^J3MrkhFAxR+3;C@Xivu3tUsSuph#6QFWAMPf{EZ*_`u4uuTA zt=|8Ff3xHB(HW_clK0=CcduNb^)Y zyCTbiL%zH;kb^X31mXbVG(0BZSFm3R)x{c{De<_chbYd5>vgVCj7pTZ`OG6!kf*&k zF~B87&XGq!0(d9O4R{9mdK=;o=IdD?e?jav+@xv!y$9(wbB#qM`i=$JZ5w?l2(!3N z8J@FeYUPc9KdFQm+_f9Cs%S$WiEtT{Wgbs1?SDk;ln>{A5N4L~3h4vCXI zEUDn5cd!(=6Rz~b=GBuZ4n6adFE`n>cL)M_Dv*> zy>T5^>E=^|NZ@d$0IY+hB*GmJhe33CD;w?TvmJX`iSXSsBuu?Jk1d!=B=;zh7njgnD2~be)P!aj=7$v`{>T?t=P6#5uF{6b+AK8 z`sB&K+$8y%SpaiCSJZL`50rq%)Ay!+a-14PwJuIIGyr6gWAG&ic!XqOaZ1%dhr_<{ z-3zVA(RfxN(t{@#y0dOW?LQA!#I|ms;*?^iwAv9^=2(G7Loxm|QSj^3Ci&83Ky^tA zI?0DEjv2@`z+Jan|6X%S|CR^W`?)i~R(e4!n^xu9*P!Ulc^L`BM4y7}Rl)r6*`1LH zlO?x1?ByW#8%YS+4a8pj0)5fBd({P>IM%ly%tdylIZ(PG9<;!uIx`DkThVp6@c`Dsc@JV%anc8#!Dh?B^A=$}MBi$EjLZx93nMJO&k(BfY1yi9s??`R_kVmO{-B z5nM>;LH$EC=^jje)CRR!jVmZ7v)A19_O^iu{&@l>H9oi>6y@dhUfze;*c8QM1>1}S zvfd0?Iy<+6m4b@q(m*Oyos^reWpCX1`w&6bx_yEv`OJs?Qz?}V0n1C8ID#cYz5N!7 zee804h+Aa9XmXNpT$C=5UR+Ys*jnhg zH&XIYaDF^T76oHO&|j48-?CN3C$`{nNFS0DwMOrsUfGtF50a3q1O(DU2a(Oi2}47qXVT0?)#oLVA(U&MWI6DH1v=ijsnL`v>qa8fQa-!7QQ`T`jL zjKqTSbY-d93Wh*a!%Qkk7YinNkD!asxfrJe{&<7CDP@3t&q722Fk(s~PFOR-O!_to zd}C*|e(8VYKc-;CNzY6ZoQn!NuK`hk)=ET zXX1F&E~}eOC6F*H%;dQdKqn?#dRNW3IKtFlBg^`11_9T+24X} z+_q@0RHN3ACru4^7wZg2-~0P3Xlh2o!Z}W?O6FBTkRJzBdXrw4l6|}zNGjKi2|zLj zAQTm z{?h+gzWCM|l9H0%z!Yg0!S7>#UZ4L|rxO*`ef;?GpQ>8}|7*3i;linfApb_Fip*=u z34EwijSCk*cG?wcYBu1uvN=H_MDgDp3hu#-JNST<6kKoXqZi3I@R~fv?@R*5niV#| zQ_B5M&lmB(|HzPm6rIoubTS5yLZ53W+Pcu1f(&RuDetp!!P&<>ivMFr3Dbo2nQ|Ud zm(J1CxAX-6{HO}8{?C;S{!X7+*2|6mC~wvAPnLeUKxY$?=Z9uD(JnLp`dh2`z=)>wAf@?4Sey?mkm=6p?tWRp-|7Ib642F#} zB9mA2jXZjN*PTrG%PX(hX#eZK5K zm`sQ+m^t@mX|aL-P$1@GU#Ps1qpir|Y91L4ni zFKDwcrsAqBw22Fb5(#Rk^aHQnNBH9;u*Z!Tp_G(V2z@2dh39*R4_gm;n}L@BcI3fL=rWWj^oV|Ib( z74^O9H>wf;6=nVR<^oR6ZTM)J_R}cXOT8ApiKKwM*9kauD;p02 z*GGit|GT=+Z&BXC1g#fl4c{s+c)(&VxjI7fRl~XL7oF=@#K0}!e=J$}CLlw)h@TEj zPvLEver!G9sR}sj*DAN6-lJ2ZSzvlsFUSDe$p8DtrnxhSLvR)|3Yn6^Fa2{+eZ0F* zIhLH6=Q^Z{rg1$azNC9!GON^$7dJ~%tAQQE^y08`h94d-h|f32+k zb6cbfc?>>l#AD9fiV0G24^5}_NkiK8S`kGVhlaT;D3%YrniWUQrJszUA zVW1$0ITk$2G#d7e>r3O$(~0^ayAZN0hZp5*FvRDWU zHYYK!2rHqJOWiv79(OnTmi4wyimmoSB}@=z`l%76wIvY|Eb)D}G8d@9X6`*jk_+s) zUCXidcFUtb^PF!~SJZE1RAM8};h z2!AR*%Lm}<`gdA;m*9go=bM&Fhg^l0a=;;H1F(nPOD0pR;_H>vUXKQ$jjy^7r;r+# z?yyKN4}^v>n%0`0)Pxzkn_UN!@(L|jHh)qh->o1}QRqt-mmtX=_|iCsid1N-OSb@z z3q~?c)CcU3>f)ydhJa*RjvqJjTU7!4oitF%z$9o{k|@!S@;~gs;3PNZ-Wa3b7xlRJ zoDpqcLpv8RSMDRJWDyY|iW75hWdp1kFu1>QL2BmKQJgPuy9SSM)E#Fd>-&!YlidQ; z$^L>xBMPfs5w%AnGD4Sp_ldvUu81|Vv9a-e()e9>^QS9S+g=eNAmql-?_%%nW(#$% zUF=^V`2wyg0YFeVW?F)g;ElBd8bgY87_c~#2eh1YAhiS#YlX~MGa3FL`oi@JX;4M& zSJ^FvVRR1SJktdB<+lf*0@kZH+EI~bC!FH`X|SzAh$YxFTMOH^ z2pQQKkiPH? z2BbluI4I3?@9KrwO^x^9%!J4CzJgC-;lm|BVpEKM_z0|D(=p9X#pj&brCDi8af1*7 z7buIuJq~{RZ}rH~$^pkFqwz}HFea5mqY+xl$XWs?4+)eN9v^-8sg}KT$BaK`eN>p0 zwtU-5_WN{&m19S>@L1fJ!Fl>ReC9=!oYnH~W0jr@$z>~pZNLLuE^aXI+CbRG##{T^ zxni?z1Sn5(@S|HtV1Tz`;w6N(^7{%7zqWP>4Y}p#->g0_5333Jy?@`@1?+r`84NNb>ezFMw%Gc_t;gOh&SG3u zk0m^@f>38V~}!F#ZeVr)E?6d1>5dsAy)x(v$H7R&9dqd(6#Y zZ|;NxYb$sn(M=~betqI^Id6`(P5{a_*wP4?ZqdV_k||NQJKvNSHt!-OZ|kXUnRz6* zKD3Nie7ll&hx5uuB}rt2LL`5nYg*X|Bsw5w5jCs_GcXGe!H?699tpC6*67a(G$*3Pf@A=L9 zTRHXzKm#I1&^86I$46FAg>}pU2D0R3ihDYmgS9~q&%~hIbK1-G8zcd0NH@tK>wXeLdi1cm6VF;2j%1&S z2h)#98V=Yt7Q44}^0@Q@U4qf>=R@(DqXIssnw2D1iB4y+vKhr{DeaDH+qzs8OusbM zIt;g9>n`|Qtp)dJh`h}3IdpbX(VwrUlcAEdX8S#s!!;WWL^KJAtPUA#vr|x z&19yCi+kSi8He|DYmHgPiUlEx2p*t#nXA;|IjP%+Btihih-;Ev8wjmLPiNIr490=K zs7di*DIeZbWAxGXf>HXX*2K+;eeR`j6|~*`v(^?`{e)i`Ow88BGm9PUG=i}_Hu||Z zl9Xv_=~^Wjdzq*9dl;>yqvrx3q(j7+FROaeq`hwdXR&h#+5_}WD@Dq zq)7VUZmkqFj5dWbC`8GEhyp8U)TqEI0~ln|U3ro$-{z4Ld~0lqS%DuDsfDUQ{UOKB z{z?D%58s))>w#33Vtm7-H~`(Oki-_+scEw$bpLEhFeJi(9cLt_(*ZdV55tqgvTM6* zf{%|;10C)AllH+hHQikCG>j#k73!HIUxY6^dB}>#Zus

7P{hnM2J<9C}HGhFl|x z%?k*|FJFLM zely)T=@Pmn&7h#AMQ++a%1QQJG&ynuw8mQ%hqVjeeogqf+sleK>uYN`Q3LlJ*Qk-ntAp89WE$R1gZ}L9uNfCyM zlx19fpbPS@yt2X-j~t3UPS6#0XP#D23c7MDBL*;?N}42`W2fVK=w+l(_xi{2F^k-~ zDq<(ON>}rmo+_=GQM+nRPdiv*GY!LsN;aLUj%AZl4Im^9a`h_r<48yP>bfPIEBApymvBjm440#yB^MKc1qP> zz4q!qG(0Mtgx_f>7jQjP5nfi?zSlHCwB1i z8(;W1n5m;CUO;%OGY+PeZN#Mt2+k=+DDL8;qDXf4CsMTQ$~p{ZIhwwc*=DL1+(*&} z9KS5on5h>~)wsA1i|`*T078*b$6_c@&(BM-SEso_6(-dH3^-+lDLB<)hf@9M&@R4L zi^dd{+p`pU=_7Ufpr9ZqAiH@qYNRzdoz%ey<^iX8KsohCM8RO&i&YV)uwRUgC$~y; zJq*Jc`o_YBi|*TWonJ2C%A-l3dUSJXWK;1@EAgJI3GNlN2}OUjr$PP=Ao4 z*&tvMkz55~*s|HX%giqfT$IZ@&a}!E6F6Qo&U8tKyELj-y*(;D#-g8NTeV9+YTe8I zKu$>dK!3cCqZY2e4y5SHR64)QQ8RSsjj4xm8i-R7^O$aoStE*_Wyu#VRk5x0>5eVRa)K=XxCTV6* zzsk`neY|-*BP@#+v1qj#$R0%k%+j%r=5V{^P@-*Z!X2~HWK-{|w-Ibj%u74&>9+rQ zyk&wS!HVChzjfsuRGQ!UW@WE`;1MS}1oWH+d_ZwUisunPzdVA3 z3iKA-#&VKA(I{*!-#=$d!JoeZ7ZT1-*UBflME#(;R>LCzLFTqU;k;^{UsQZ>$M=X> z>PGimliiEFd#*L2Y*uFnO3Q(_?@BKZg+I4doRzRBcFLy`(66@`em-BmN~hCs^z^$* z;ukm5L>QqIr+8(a-j$VLe@~Ax$6#u*H`4|ZN#;SZnE?w=g#zK^N4(n0&_Et50qN|1 zWiUrx`nP098muP*?Lwa06DDAz|IMp~#_3z3kUhl9oUmTJUUS;xlMSk|QqDMm6PrWM zA*Ts}@@vfW`slFhDNJ6x|(^oF2ncaUYs%DL_*<>mk)c zvt4DagZ(=_XN)c^Uw_}4!y1oa=naB8dJoF!%=B_fBRDC~nqEOF3)8USK%*S4|7F^} z>?*ND=+XC1|EfIfT44nPfX$rZ2zM%rSt@LXI;}iCO8{fiDQ2$$-Elm}`m)v2N?T^o zF%V@sZ!+YfJlp(01w;Zc*wpb2bC8w0Y=*VAy;98{_D&+)UH^PE=-9Q7sT0;>H4yKb zQ9MNRC-kR73emqR?jzWk>lac0j(dL7*1b__6r~m`;+$`qu?&;GqSHg$jx+Z?K?{$e zrra|0F##FlfhOjoH>oKi31!mN#;`q6-F>!J8e9kfjIJ&+qy6ziyK$v=K3R4$O7nD{ zxs*HQ*K=Q}%k$bGqDX6GdR>ZY_4;QvsNoKjY!*P)NFo(}WBIIlr7~i#J6As+c+10+ z>!Ss|7;*^C!Bj;(%5;e7EqY0Q@tBif5}cT+hg?-EVUneeqbzhiF2n zT>s_pQ2G2C!hIPR-L?GlI=WW_Wi+Q_ByN)X-m)$Z9z}dA44t5qjry__EB?ZjD7a{ORIdNA8^TNX! zpUD64BL||Q+)vBpL7{=P68e+hrew{HP>ETFMLf71J~>mdkY2%`GoJ6`{-T8k&e#JW zkx$zzY*L%euilin;to%TO&C{Ae0BQ#WI#hdjDNp^509t4B9e&T``3X>Dqu&J$a%2=VD=Z}o9YreZz(3ni zz7-E5y4=ndo~X@3MkD5?7?dQ)p>Z#N_~e~ojF9uIvw;hAL%D)OLKIu-NIso|m4dB> z<%ZeT&{Td?Ic(~j-OsuA)M1|IJNcDDT=xRcK|(@8M(v-DUjj^?cu-u3SiA{u!5bPr z>2a4@Z;|oKRm^K3cXl<1j)0NcDbur3XmNnfiblPgf!jd~*ExMmT?NFko*8S7m0QJi zoGmS^WLM*QJ1pgacuRu{v1KY4nde-sM3<2}VNALPijr#e@tNk(;X^=ZFH{B>sc z7~->N2hc+s_?g+^qAP$x;r6l;U<}fP%u9BgB+Mi<3i7R0!{?E?aQ!a@^O{@J1G?{p zun~L*CK>4`2BCYbQ7*^gNo-WgsbF`2fp4L$;=_y{pmC4zr(M1uE`im}@Yv3CcxdsX zC2I5#z~?D=vf2)NFEKooY6|rphxb-SnTAe#zTks|g(w3^=YDlsH0uRfqGB(t!tO!y z$>XEB1_$Vhc_R>FmM!g8T(fD*!zalo&rOudVpcc{4QOxFvt$V=b8<-<$8t2gdy#Q}3EDZI)c+Yi(IQaX0vEmv;hwkRhxY%=|Z%`+vrDIS2Uf>kKt1sc*z zdzHDrX7ug^4sN+_FVp~&g_ynkYuL)bk5Ew8BE4foGCd8}mVnZg^r;<<#Bx`7=BbEH z|9+jTKFAFS&&#UBaE$~AJ1@Oy{uCR>FthRr!LMCvTBOzM6tpPCMt*8rq3dC}AdAsd zvur_}t98LbaJeblzR5nsat*0e$V&hkG|8xs($Vf&Yy?rd1y@!d)6Id#5fovUKS#dQ zR-)oep*N<7oPd*YK|I#?8CO`}05q2o6!T9oRcl@HnL#w7gMk)LN-~rH^BsUebGoKk zMqDUwpnv<$L6Twdo!_#1y86i%YCi4yv)37ciL3utPT*Zxf4p?*UqON0ME%iI025;H9$Pzq*_v;9;-4ndb<1+O9b8$#<4C}`6z~cebz%gNb?a3xOsZbzCzGoWmpA-L(f*m{KAmpf3{*8LW>Q# z8s@B+=>%a$=2kc*keN06A;2O9+2As`s%m#tmon&tu2?G;gvU53GG1E7emC z$Y@GDop9dElM$9+>)Kts<5;5674Uz!d&{t@+JAqLl2k!L1S#o8=?0ZfX=#-1E@87k zR8){|B%~Xpy9^qnJ4CvroBzE~f9ITQ-peUIM1HyUwor?&xkoOIO= zu9FO8MWJiFZy#XGm3#M6AUvOq3~nhnycY)s_jI)+y8MvqYGik~UacluQTzocz|<6E z{o>Wx^T<-9H@SiK-X05^)ehXf=L4UT8P?vyZ{>S7-n|RC$voDYmQy7e`G$?n3T3%A z-vb|YSE-l*_3T%J*(&<+JoS9jolLafo`&Zk&Oj{(j&}Wyut0gQy^#7dP+vIOSkA1l z4$6mq(%{N3q~P0GZQn+j#`!4XEEW9v)mtC?VMjHsY8y=^foj`YvY9%K9)r{1wei~% zz3X)HGEwG9;Z%Gq312HHC*V(h1=EI}2#AdSI_pKao7rb{H*W4XP754^MPJ~$2RW=8lbV-e-c#Hh+J z7sJEOe=6>8XXmYC3aD+RmZskZDl<279oce7I@#^`*z{}ExdWd}K{c)!BmVo7!?L-2 zkGm+l6L|H*SBLCxod;!6&DsNb=Jyu2JHd)P)g4(_&Uq47X_eKb)1Y4wKTB!<-t4qG z&*=fc8%GXSXJo_Lq~P=|LWv(bYA+1wtfi3}&u@k8o=3ln49ardEdq$BN)sUYQ0B)e z$et!2JJPrYu~+Wzbx)bKvvo(4IeWu;nPxMMrk%ri##Bi+Q^wNw7vDuYnbk3Vl8hm@ zcAYuLcN10c`6wjB8L09oWNDlO)JXMO=YS31Rp|CrS)8G5(sL=Xq-!#w4~c?&OHQWm za{+LU&<9l|j>I?hw*K$&oyZOzHqoUts>LWm_Yrgi9?2bbo(?OVW52(!j-7TsswV3c zks7%;;gViaRV~rLVR}ZPjXfVy^A08)HQgXKqTPQ(kQGF5-Q$=pK}y@-ms{q$8c;0i zadQJ2+qx!;`Pxaj?Qg@<(!0-X7Y5psJ@W?!(I_mnpEuMM+*g^6*Jh-mN&vW}(;5ij z6r0hi2O11DETn^_R#B(O_X{qKYTexM6fm+yFVAq?1B$o0SN%h8{BO1fpGoivg=A$f~oU@(rFXblfZ-Y5cR%$bv3%+4p$Zl&GNrSCZ z7KL0$_zub5)aAFBjjtJ_Ct30)fCe#UOLT+6ekwO(igz-od->_RTDU{!nZ26^N;-Oz4P22J5y|jWIHet8VmC0(ZX0gl9+pJ+IKfMk*k{?fp z<&>{>zAT(F8Tshx2sA=C33yptR#@45V%ZCpx+CS3UFnV(!bbe20CMdah$QH`y0;FP z^=rypR-w`61EHhsXCdb!U3|C|_U4ti-WxZLJ?7FatXsB#%fqzSCF=24w2S4K5{C%R zUbSPxZXvoXtaTuO_whO@=b)zbWOkn`SFg+C+gvm~QHsk0y`m9-MkR&Q)YqK5WVmb_ zlC{raSi=gpUX9nR+34iZ;xfK(e(seHK`2W>!4x!0UEy?vPW|bv6g+16thx;?aQT}> zqvl&f*4SGYXsT5MmaueQ?1|`YIC``*-(x!?>b#h58<1smZ=~Vx_C}T41fZ`rG1hm) zeCpuJnF^ohzBkwmVeu}Qe?(68+lm1Q#Q@D|On}}ty;eyUsU-^OQ@eU8hg}d5xA!Yz z(6&5&Qn&Wx+b)L8q2|zh*1e7Sz>Dq-{V6B>Pyv5yu0O=eAYZevwUMlt`kZp}Ed$RV zXbV9+4@E)DO{{OF5eRUPy+b=+)s#B}D3v1tDsJp>>U>x4(A-uNwi1(uKNj>Wj4>o&QuK-w?HL;CU*_6_L%&Kc(S%m`lF}C|&F~3N*GLK@gS%>Rvib?sx7Ptmhk-D+ zZf(I;3`i8R9CF*y&Ug!H9K@Cl=*08Y`hZM77}WrwO@YYIBNO$O7-&{TGhI5@ml6rc6^mh9+eKGeyw;v ztPOOM(t*_@C*(GW8S&!8uMLqZ+IKK*Ih+56A zJNsIOqo&=!!Q+Vm`BD570&qZVywWHF;cXEPIPrhbHPI`?QjrU}MFJh#PWQ#{(*Ec- zgf&7AE&wGw!+xgWAhQ?r^K9QVS`c}_9AfC}W1~|)0#561ZV|uDYso}^8*Y2s1hgg5 z`A>RDV_BL;ALZ&%8`^06u?2TfOj!XH!D(U74EM$h`X39i3P;;Cr!qj2`^I%KB2yGq zxJZV2IK>bz(5l}@$0=1Oq+sBEtkHM9r(g?eQi^2;uDU0!tnRbei|t7wwGbTZPOArc zel$KArKJ&GiR;Jb89#>ii;K@wmEW5w%?RvEd7@)GiWt0{a z@a8(O2}e|XpyLH%&+TT6js7f3pQC$+T5~AIwYq+Ri%CyS!S3Ol9WI58esqM_%qhe+1TISeRep# ztg@qe>BB2oZr0FO_M>n%xv6Px=esrP!ql_J8&1!l&*b;5nv_9Db^c(&Zue>Z3AuaQ zE8OWAP&S(o1em6n4Cw6M>A_Z|^?2j)iFGRCjvadSh52yAkl&|RNsQ)(lR2)0n?h;t zCWlfjGjS90r8Vpeo(GF5xgd3^^%)0~K6oT3JUZQD7YMgs*7)ACCq|1<)xw=VMMMD? zv_P@7lf5ih`A7B|4WAn5AYgdzcJoQvA50qCxmakX0KAx&@SxAG=Mga1Z6i+#`__ zFQm7Xy??@vNIo16t>l$Z=ixxs__}Bz5^*=Z#?5nQ0St0(@0ZuHB%#DXW_?DHNm zfV@++!COG6q5t@2z~m-nG9S+`XHd>BF_sZrB-s7*OLCfUPcvX%l@h?3A4r$TMn3+j0yVwG#iq0maTlt}rS^fZpj#Jtu zi6CoqiVw6Q_Iz?qwYI>^755lo2n5a? zR4ZuQ7Ulzs-A>0&uev=5?hr1!jqO$S02)F?+-#yhuzQ*I_M~ew*}=lZd~024F|mJ| z6nwt?HP6Y6DFhaAok;pY41mlx+s5xfe%_pO9%-(r+f6edgvG%;If8fR$ zTU)a^EuZ_D*1gqj)k{7GVlQvjjK7fpKNt)8QgZsVx(i#yhfS2%qB#uNfinsBp%V&X z_#8C%yU}+nG9Qx*Sq)}~aoddkDC|f%blY{vJtv`S~~V^G6Y63h%5LBbrOZwjd6AMseO9DH#YJO z+PNkZC?qc{zsnfTmoOoCg=PT+06ze)mfO%N$45{lrl-kguhD#>tE?7K&2sAxIcMeO zL)D5$UiM1h{(a{x&2~6QTG<7mXXbraPsS}@Wle9@?KE#I3!buluk_ze2i{xuCyhRc z-Q#*i;38%fQxEi&Dwb&g{(|Zk;Cgp}wk$i~GX+=2jQ}29N~e1P$%F5tCOO6s5u)MKJV`a(T}BqqQI+*09g;-#=LAg+p>Ae~=5@CRbF>mn!0h7BnNIuJm%RWOSlm68nS1Qa54UsT#pO%$N3D0bOBPd(ZwW1~!unePwe8o!$Er80Jw|VsbxVhOgcdte5 z9G6bE)G-c-D`7#b?A7Z4Ss9tP`MQk{xiJ}|;_5{_ek7=78#TiiEHGSuz7mopNQZO#)mWiSFvQ+S0#pjFWbb(FQKyqxdCPHz-AY*mYpb*l`kad5rW!2 zAH@uLZ6+-!ALyndKV)OqEepliY*e;uEYRuduKRCLbHLGP7K1q&fLSjC(6NLr4_2@N z(v?V>NtOz_INR9?JkNk;L{sHC$;5!k!AE{3Eoy37txdfvZb$-OQ957e>p!+b@Qj5^ zAaG7)4*KC|$EySG5q`l$jAT@yfU&@&S5=JQPpRhqW4`$Bz3^kkNk2Fy5x92+JjbMs z1FZ^Ksdm3V*z$Vtw+6nYAQ*Ct_5Z)0LG|LfESX0aWgo#~Ia3tBR7(p1yX9Cw<9_l5 zHQudT&u*z^(H}(5pkETqay4BR3Wx-=H<^pO;2IpqASEMTxYn<*0W>EW^7%!}9i@)y zq&-?6l)^2Jpr2oRKa4X;`!+sP>nTrX_)YA9K;IT&yl`6&<3u~U?r`Bsi_~_EIuc58 z1&GGMJo=1eiTVFNH{<^)N(cm)DE%jnGb@6icm8x1gnUkmT_lvrQ3HR&o~tF-)J@nH z!4NVJjDr6=>w}wH{a|Z`vbR3_UwnPFJe6+C#IPp*MxqDWuS?s{h9M5JEy} ze?$fT(=PLu`jfkGz(ynA9qN`+Vb~{}&cH8BkEkBMxz3bIc`^A8uswd8Bb{71V_^G& z=BKJq_3twBD=a=X1f;dvW+2pMv6#N6$c$KN09Ws{w~+Q5tPMu&3w8i@Z@fhR0Rikg zBbGEwty%7r{sn;hjM!)T0ILsO-blHG--{ItGkE%9LcafT@j0pmi|pd!uJ|SVW-Kz` zhZLH|LHQx3Ne8ff+~LK1&gXk^^=2%7;G_hYDWaq?4@vtgK+b4c>lwbmWpfh`ZF<13wzz9MMmoWnB zte~vqM=MAg@DOmyfRcS_GI9)%5!3gT)hI_MgK{#`Yqe`?)vh615>64On_ z`vDkQ@AWs%)mQUz8s^ElPbn9o|CtD_0G_w=`EJhwAo4L{d&GcgGVLl>O$yIeY)S$! zA^#U#82bB-ueJf{|6_H>NJby=hpUki{*GkLmPIoFN<@D?rj1{^s4Xf(>=j{AT7JdE@ zeD+iErO^Mn+@C*5JOrmSV~V6}Oy%?@^^FAXC|>(AoXU5HHHXEnl2lR zfFDBzP}pvsain^jr^y0yG6i)WzwvWa>T5b{YMi>qT`Lsz+0~0v8pirlJ=I_pZ9;bS zCp*WdLYli2H~d;&LpZYCq(i15SSVKG>5kkw&$a&R`Jl~(G{KhcuY0p(r<^=99HUUe z8A{h0P3L-v95caJ08VGX_)3yqDV|lU$e^4!9ib$M$*R0LNl`0)@<>=p_VIr`Qb%#4 zwL`IvzNox(U(ew9-M#=i$NqFjXf~h!8o1CGVo2BO<03F*P;Y^P~Io`z>Lgd@&_Yr?{MtO%%7yckk+OzPX&YvgO^aTY2 zmm-qKdbka6P-vgEyb7n0zL^8$ssMGf`HOU_0EnFE{5+wx!_LAl<{Q?7W&5gvhGv#J z<-Xk6vC93K>1kat7rL`Lpu}v4#rm|W4OAZ#6EyMZ^;^cR&ajb zp}X-fy+^wS5aM(I>K+M%58A+XK?^YEssQl@Q&7-!Q%F%Zuen_csPt^y41K&y49SH9 zIAC4KNX!}i9Y*{)b^^BbC;JqoalS6t zMb1k-@7xxvnAe7jD)U%0^5?C%*8a}zrp{|X9)fPhd-nsP;Bw2|Z9YgM*_|LkT-PAx9`J*Pb2a1v+nk;BPCAL-VjPnU zF`JHwAt~k_$R9bMcLZGA{i%BEZDCWpvzE!X0~+>(YR}W)u9@PQ2Gy+XQWC%Tc&3() z+ii0tqAXXLqcDTR=9#DVbBbU~%fap6DM%?IUWXlkij!^;Mx7*dhwVQB5$=;&-#Dmc zuX-sd!n8AbEX|^EI4wk!xw^Y7Q?Pgg0Qh!5|MdNV|B5x(WGbLMo3Rqy?R<;zyVp<{ zl%2h_V?xNHnjC*^9FR1g(_PcyCc2cmL8pD}YoN0;U zYISqT>Gz!EScz+%evvDSWZ@6(v%!gEF?Dj|VXamnnJ{Xo+kwq!l}h*tT@-^3 zH*W4yokP1sh0;giZ=&47FVLv5;B@Z- znhw(tbcxtSRDV5d$Yz95^O4RSN_U(nMd57xCi0CPOU;6mF6~M!cK!O5r{t^WEm3!O zPE*MbqPUEig(ROE6I_pEa9(}lstwn^sqhef0AMlhyOnPy7v!|~Q|l!fmO`le&573E zhcjHji^FNC@zXh}*WpG4OH7eWCqps>gv+&DU4NZj!&x|b_v_()i_Ug$f>v&9j^*R% z>;qg&p?ke+>2d5}L7A3}?%kTI_iEjnAOyZycgGrXLt9-h^8I$n zv57|Y{=Hk4Z#F~E-Fr?;uAIQZ*Xbkpk+Xi6$I2wD6c*CkTN_bc9fI=Ap@~;EoyJ|!Z+O85};%>zSp==zbUd#q#SpYwakcEN+o9? zpI)UMZ{D6L`ejQmgeC=NPz{Agj`dscmkHgU0WDApGG z=?ksm>R^fY%AC=}-j|Qn&I?~cyxyaeS2OpDoCdi-MF|t!?@6l$juYK&TEp|s6L{@d z&qXi0hUiOs@2%`8@!egY&uvj-OD=0wie}Z$?(P{Wclk~2Sr6HIO*|whc@7T245+b} z&NiO=9$!1CJf<6G_3$Dw4N8?#J1=(aENnjmSV)iTZc`TZ@U@X5`H;hz2x3DI(NQ<$ zkGjR^^~+ztIinzzN3L3Kr6I)J7s&oW{vp*Pl#>7(tKG}iab!>fBtRMesZ#4^3#=~R z04D?S8n+FI)UNczAp?+DInBE6B;2#uUmZFSnIuos{t3LtN`}z*wE*K>4^b&y>ggs; z)q`U*THGuwqreO{@ejL8q{CPSjh>w*CjwN0qy;hMd7AvW@16CR8t_^L&@`?aH*1Kg zxSRy+J?UA}7(FZ4@36LA_Z3rrL9le@jd}RCEKNM*E7B307YuT?M8xlUXLwR0m+DY%JxV`Dm zexfUmkxR~nItWPM9A5%(-A@%dj`hko@`179f&Ip}K;nr;zK@lqLE;`L#0MKOP3>xQ z4jtUpCgErj>9n59_kP=tio+fzT|`jF>tkIZ>J1ePzbeL*Uh@7dWsYmu_lXSj>cnmd zFmNJCO0@gCGOIIE4vqscwnx{H3Z7Q?+qs+U=9q9IS@tPmB0Qq+Jw`tr``ue}DQLFm zr(@Cq@SKWN{TRG>QkSt%l^YwAHRl!@`eqmpsGb2S{jnkfAFhEnWN^d+y*a_xEn7D9 zT-)ez8VCyQ0OAsZ1-seR(I^!c_+0(WR8-=bO3Ca%*&>3ssQjjz6)Ar@IcGdVrgYsR ze)Z+zr9@%u`n3}WhXXO^b<9Fo@1^J$guVOlrK@>^eK^qjgP-{AIF|g_Od5v#V;NHoJ zcMEoo26N0Z;j@#?7=D%5Q+QVa0b;%H&62*AxpIrf_i5bTb$$SI=X2x6V$PF>kH!%b zheBpHMwN$NXaHMYkwCk6xl5zkk#OLe;$I6a5T1=SAOfa7j)>V8TP3Yi3Yv0Wdhbph zRzT8Fsi5_2fm!abpGSQC$vFjOtjz!&ZNQ3<6Z<&d{`g&6+eY0t*HgiXd`?_cNFlv%jfh+E{3v@}C`D-o& ztFi4dz12{3>t?;BZ*ObzLHKY{1vb%Hnq}DO4KfpdXs_xq`i)2cGealOnGn)nu;v=K zi6wE(;FIww0Q{Sr1d$y4vMw-; zy16kSz$?3JrYKqIjyM!a*sRW%eFfF>40yhd1ABq9y<#^sCGnx1rs3%pn?nb3D- z{_MGSIH46!=#xs~$9*T;#*g)HJmu?a?H5;SmcUfFIewk(TNgKaaB5tpYkKC*p!f&I zX2lnGq!UB8#Lk5cIL$j~X&Ud?WtoihB?%@zm5^)Yo2V_w^y5<&IsG_g@cGd-OXCxx zkAYbyP(WFCa_c2EO(WU8dl-&@FN5QmGnD5xe#jyHp(4)vWADSPaA25FX7=m54<&10 z+2%xw55jV4(N(}C}oN#))>~}{A`SI=jSYaqt;yK_tC4vq9rs%A8@=KG{b^Lj2xPThMEw2sdS zxShqe)8`;$W7^nt3*(Z1Lw&*oE#4Z%8hYgR z(IQGVB5O1tm{jpxJ9)bKB}ArZF`Uc*3h51q7h_$Ig7*bCMr-!hHVB^}#Ma1}kEGY4 z*fr#8+^P>BZvg)k0#`?^ngq+Lk3cXs$;T&4-n=$2cyzqP)Vg?zr&wmh+On@syV&;R zp?_)v*@G^0UP*@M!puvzS52P!T?zIB8w@`Hw4V@Da#h;PCOr39o2spx(h!mXqLsel zE@(TZ@+|gZDk_V6UQ#|DS)ah-P!`rv*i6L8avx^*5;eu z;S}bUTEgO%SXKJ>YybMIgB{Py<5vuU2fwB$iTlEf}MFF=}(!pB3SS2pU0M_xX{qESl zov9JSYd9B*^)S-#E!)|quEJHbh3N1x`OCgy!NAJa>ZD8rjP409|cd2oERS6hz{+2gQz)M2@17zh)Iwe4EGFE1_-;su%Hz zYSS9z8?38SdFI)QP(q)%4!83Y1Frqp+Wu5+u3e)YE+Mv9Ga9Sod4f;5R>P@eW2FH) zMJziDyOn;5@g2v$?Md@`WFv)ZE;U7=+OaN(REfTXV5;1u%+@PGeGsZgH<@t}HA6`v zUh8Mel7Z8d8|1^Hg%vzpGv$IrS-}*^jc%2+if)&c0eL5V+U`GFB*&onlF4bG!E|G{ z^HXZUjZzL2M}4a8rfU;%o{K%7s(f-O1R7gePUNRbs!boyVrhRqe`~{|_G)F1bF-s4 zg4h()7!IOl&PBbAe&vZ{1WZRjOD$B7=!_62k4`U_jkltavs_skZQ@IQRN1o@s znAqwLCt}cx#LbSrTcuX}_1DET^3<`0!+S&uB~jlf#c|x0&T5CnZC|vyo!)zSX@S=t z6jwUm)|a-URCzd$6;U89%~OqY;%Mh~>F0l7{1jQZXFo9p*v*)WE%FY;zt-SJVvz13 zb4!mksLTs*>yo9^Y>%f4M2kgA;acn*ubzKkI0}(;ml+F+oe|SWw||o-wv}6ILst=~ zBykeRUAkRDew7D;$)aimNFZ)QG$F$HPHO3**0)nYF{KS~@-tkEK8I5~H^^*IW_0WZ zOIY%`J!NPfn?bB+jCv-)=8>e+HOOfFn5G~0mdCq9gUsSD z$k<5tQc+VLMT276cupN}T$5uWdRN~TVM)?2X8_tK3#9NgthGyo(TNoqB=I~r%58J) z7x!$1p4~x6Xe(TXMkg%#bx95=NAfC?o(iO1@_SQ9|ps{Tcj8WMvT&0nw4XG%$a z%gXnKiFa9u0;(_AE1`rznM7XBT2*4eook)6dpG(5} z3o!AZJ}pUbpSgCaC#o}3OcW@4Epr28P3(~M@aWz}$_4~hGr@AXo#ij(bXo2Bdnxa0oxPs4rs;#*M?&7Z#c%b}z1(BYtE2CGLEch5 z##@$$pj};r_k*dWA)#Crz2cogahjHq!!3B*$3$-3GX&VHsGNb!fYBFQ#+hAl>n(Z_ z-;ROz^&IANN9{3x7S~ywrNXUo1)=@!GChvQy~Za6t(upiB4Kz4iQot!@A7xI}@`2d%-uG;0>p-rES4_jEs5Ndsv!+qZc2-ZRF$d0|9 zcu*N>vzwdFp+n1_M6m=~;|BCV$$@q12lhf|0u!HEyA%OZx}?9Ki-Aj`V6I6!{-+)} zR3~mEkVf+GA^}kH6PFh(-~fJ|n9HwjZ1y@hh*aQtl|nqHbfIU$;-JfPQ_i7vP}bNbq@}i({%dOPE;Ou-?F4-Wt#)gl5AJ_7JzjX3mBoqCSbPV~o z2M+RLLPhR2OaG3we?@$dwOu`ssP|^1_irGLmw5(m$T*l>=9nz{yKI^`d^CuHI-*R^ zI2zv@#}~WOCw{u!eVs7OMljgzLr!Eg!%#Hfe}2$; zl;Yfvl);^&)_IIWJYS*K`qsI2Ga9%-GXWj#7%uZ3v}-8Ud3kI0({+}7*5A`HRCZ!5 z+tBw;Cr_-!HN=g4Z6?dcCS%5+ic+iP?OXIwZlXE6jA_A?uf%MxdH@oNR0-`*vlc>0 z63M3KENC2e+7$iqrhb*cMj?1f;vfdyu{u}%sbLJu;{daE=u+g1L8;PGyvS+&%k}jbuw{eh=dTgm@Z3&%aQX&$pXq z^-k^pqLfbP*%G|;EYH4BA;Qy>9c&>)WfV~8NajRFE;G#d$>7E$pj4JyMs9$)2pNRx}44a$)15? zjmt`ZIJc$h1fOfC!c-JLX|qtUXbCaKjnJ34N1owJXckO`*szc#dL|Kv!K7%+&~Ba6 z*();rh8C!yFn;AZjVgXZ!*CZ-hwO@*y-f7`!z3(e6R}k|_UMB}1Z!TZOd4_>!YvM% zAqzXR(xjK=SZUx0)9AfHIN))wS z19c$Au9~Fj?BNfjyxeMO=d1xY11PiSSAGrr)vA4l70Ift3W68Y4qQsPdIfq=9TX0TS;>$O1IFzEpu< z6FJhW-un+%$ER9NR(Fu%>fMU;YF==pnR|Sg?~0X+S8wM~%)K2c9H$nbmACq3Q z_{1jxE=CFHxzjg;{0O5417jvxb3Hf<=AW= z^mYv=kZ@t&W@W^^+zSW&9hT80!T=QT@YBk^wm^G)G|F$U{s)zNuGBwnLfNTdyAw+<*2ix_Py3eAQIw#Pe_yDUQ=tr)}z`C@y!}U>RKF zvl@YNiOQx4a7gv`=Hv_J55+EACO#Vb90Kx7Rly&D9Z)rvPeGg>q~eaxcx}})CcZSg zJl_6-yU{Ry8{VAW1~*L`FPR*r^X!bCHgFQ`^nPUYJt*!#5aKdxqatEa$2^P=B<7$Gwj46=s;jiG5|S)wfeXEA zOYATWg~?cI$K5N-`jyUGob$()0~t7iTI63Bb0_aNtL14HxRt+i{Wo}u$kNG!7?j>r zq{U=WbIW&~%ZQ?QK_Mcb$#%f}g-zdcfrACD9rJE!6UpA`TMz&tKS`}pKPj#iE_L}d zc>W^th|flRI|MZfL;!CcK_mb9$FmD$@&R8q?V7>De5=e^>^${j`;L&;fw#x3NXgRF z+$AeOzgHRkI;jmOu5F~bp@$0S+R%-E`pGD`uURyWSeNcrRZkH|ZlymhY_&b|K&?IV z3Bldq)($p;?kNss4@9{7Ea}5#Fk0m>J#NLMG{8E3d~w*adth8No!lPs%Ln`5i;~(J zV!N-E^Sn`DV`l9@>B)N$>AQW1kuIq<1qqK{gL>21lzUF=qxF5xr;bCBi^?1ex-uqAiZDZ%aiI=5e)>)LSC$^I8gk~6iO zguSTBl`AAULP zKLFVJ0rJNFnh&;>>F=Hl1z%U3T4y{z@uByT4d)ky(CZs#3KBlvk8>H$*Jhza^sBwt zKUM&)CdT7Jq=UD@zpfvCD}EL(qFa%2?(zvyTj8{~{2&hKBkfW0%e=WxPVd>+1@~*BfQ&N?9!qE6_)1~m$+7# z&{OpKE^a(igIi}f=xPjaoZ`xUu}Vva=q)wNeT5DB6#UQd29VyEegoc~;!TN7B?~O; z+&eWQ)B}*fc%Nlc!^MG6pF(S?SvM4YS%37>SgmZv_5NsN&S8m=^%I3o^Q0T4iW^>W zLZ?3TsiT{e{SoKOUnu%lheqa)eiQ6;IdjN>qDjWnzSPvQG*lE+Nz`ogy)_nGF&!;f ztFxTKQ#}c>XnB0}1-GS6llL#EL;Ncm5Z7W59QX!2J|vQHZgBNRLVF^0oDQ?%o|or` zbil``B19oMQ3da9P}A%4Q_z=i5&AZg;U7R__LmvG?k?*u+XX_Z=y& znPt75;Mrt+dh1>YcLqTN5-d!?q}@lrlw&@?zA?Uv!h+JxjyYn5Y}pkqSAZek2BQi#RHkUG+zO#Z9g;$5D+L z`W#E{9X=c>)Xy-ee*uf<#dI&rEP`z7nk!(S&ol}))`-5k(sulbMJ9ld6}@o$Jh*xi z=t9C}c-v0!j@`C$Pf$*}Z5k(MnzDS{kF*@&LzxFJp%#BLI9A4c<7<3U#H!61c=PFd z$O52YpZsvyg~U=Uo2Xx~-&_0Ub{U!!V&-#UH7JvyuO^l(;4HbU&SNfdPL+Ktyc5YoPMuLf9qp;*02V&2|xpYwe!rn~Q&ET%$UHsv;;noQvSG?!F1 zOpPV9m{!=~v1=PNI5YpHh62KZl6Em{LdIFOkqt%SyFL^m_BA?%-!gnN`G&Pz-kah7 z&{CI!fCpZBrso}!yOLZtiI~-YG(7)xL`DEt-;n&4v6mSc5?Rg@>>EB80gxDsOnJ$Z zH@4+cQw+jG*}&UuFKvHa!8ww|Gs~FL<@(l3Y$kp_(I8-uqvDaD56?7vUlbs}z&n7! zfUOY#W7t9XCm}(_dm6BJ=mdy$&^inCk{tO}4FrIm^2P1Avb}+7=nkMXbbzyYeMedB zoN$#2RJbAld`BPPbT)RIYd$$Vy>-v;tUICV29jJHTY^c>>Dx(0y(biw$LY)V67Z71 zn}HD~_U=Ku|Iq|~gt@#t4|e&nnBds{eDQcsMN~-N^{YDQ0Z340Uu|dE*cQGa&PY#W zFBSR+O-?MIGEu5|NfJe!|I6vGo(wYDORO@RG1Wale__(DcFG_VaFTGL$4I2kfAkug zm*z<^`H``6h&hUT~fJ>&r z%L5gxZ_HvCe_EIzX%l8ip~>8ngu80OOi!|GD41et5(k+gTFp+|Bj`RbBxJ#rudBTB z-^)uh(5Pnw=RfvI7Ya%eA>-%{mOzd7YhcZxai}6|lWCg;kH9oF0AyB9$`+y`KmP9@ z;USK~6iy%3E|TmaUNFFVbwK`)7d$SMZ-xl%KQ~pULiLHyfNxMQM2@?MOJ95Ms;(R%;_ZE(t} zR*Jc$0FcHoaFWHIh4}R!^eGFBEbd5L6ug2k*8%x%s-n6AJ;E#S>HlXg4Y6Fq_gc_! zQ~{&Cga)vBw4l`S)_Lh0);&Bm6kw}GASTurD@fM*kV*-QzX27WRt7JtCotk6RVLce z&9_XJ!34zD@aYvSE^p2XQL#^x_h5n9=)jSJ;0LfbM?*h0Opnjvb6?-BwC>HFc4oZh z2o?5pYCvrooSJV=-|e}6rOJ=x=Kw|( z`+xm!L-3u;khv>=;ChUNY)>#+>s|!-U*9L#1J~fi_HRx3-A8kpZ@UN1{TpfM30MC* z7vBW%8>S#MaNH>4r~J=b!7q9E!Xp>~0PA8+G(YzI0j_@eA93NN#JiX2fy1mnuPrTGAOFe7p2NFP8adF?Q zgbWe1xz|kq7Q61=1dhI6-;SNaF+FsQz|mjgyriVeC+~&%6~}LPsdr+_7u2J_2JSA< z{>}SXbt@EZk_)0?polU#%(vY-J^jYOkrXJ^gqg2btqSNQA=luaoEX!{L-#AuRLr-%monDk@NT*Q>(m6UNx! zw;C*qQ!mtfOs^bA+C4l<9^n{F0L?zcJiBO3R{bo;V|igBUkwJ{pI;)s+!Ltzf^@M+ z4`^Wx_uQ+&0OEvY>r=JLcGGnvQ<+zqPygdmcZg-keo5~&quR}Ueq7Tq!M5Bn(IvV&QcNKmr_aQ7LWrJ2nYyRg^b z)hEA|M~Nw%4h;xD{g$CNr}y`pHOZq)c8yoy#ro49)h4~s-3NvuyL$t`CTKNfzXyjBF{w6OXt-3zYyk-X;;d@b zlY6Jk26eHKEV{fF30cG_D5$2(#Xn2zrd|j@KVRC4I?jC!XK=UkJc!F$s5Vaydxb^v zc*W9v9BiE6W}Aqw+3D5M`s7gTe3M^_zncBeVfNr1-v-C?H=rmawk+cxa5EyF$66wL zcXsJ_V_S5AuK$6EJG80yqr~`=!_P;mrBbeA#!`$xj&SsI{2>O_kGx)Ur=3A2%Zbbn z78r#88UWNB+uygxoEF9vEp-Y~xIveiGfR==SZee?&RY)mwo^`x^vF0>^K`iFnQPs) zc>UO}(Iq!R=?5R=qkv&IyNK6*G(ZGY3qu7o(jgtiw+!DNSR+Kt;A$YhdcARL2*w%* zj`p)WEM}+3*45!C0}(ODy9)E!#AEIvjTfjG?Hd!7{u{YtaVUrDVZEYTpwXllQ`AVh z@!J?fh>G&xSgl>NGpMG924ARiMl&-VciXoJ@2|??6YO1qq`;GdBH(4J%JtHArHy(+ z7?VS-7qqVyCbl5V${~q&`0cTMX)OiPua|MaW}RQkIIV{AwD`s_tOJ8hf;XIIzg`=|^Jq!>o+75%J_{uGhf)R7Er(E4 zvuq#=*)VQdn`G+NfAJ;<{x&?lEV)A^4S!eb)p@8G*zVTwqqyX1=CFRa%M%_Bq^N+F z*TQV`V@|~P>&L%(8|NeARM#>zi#j;OLLva^p|)-voTM@V2OIvjwcZOQ>(fM3clm7b zyH~kEVRo#}v-CPSr;J<-GZB<;r!K~NKQ2&oOH6!oy573<+-3bJGm_QdQ8=A4yjPE(9ytl zPn+z$^X_b?lf!9aoF_(F!J6WG86U3ZwAYr1Y~uJn_jPvnz3mQ57L=Fe7D-TLTZwJJ z21~W!^Bi6FB5tl`@u)x(K4b-~mqQD1Ms*b=;E^Do7*VGY{jL$a+_8SL-3uemDrZ*j zuy(q_iJL-PziOVDqUFSeVztXkxVKfwwGVes{XyJ#atH*6R$96&3j8F_F|HGK-x=Jf z-{eHBn#kfyK{^spp#<02-toFKsE7E;68IbojDGnFn%Qy-a#8b9!?q?vt3#=3iS@e9cN&n8O6iK1XcPQr#e2;{5_Xdk3)@eu92 zn(=X;m;-=uNg?$zm-Qb8_zy;^bn{}zQ&bks^%a_LtFj1J`ysk%QReG zc>UhpjaW+Z>T!!yNEFn#I9cN$;kAk7=A*koIBclA`-wA z=wZ=x6&)$n-uMsg9g9jV&NdT_anI!-XQJr8!;9pHiSq-4;8`xFR^9W=!aIipy%h~+ zoU1!-Sw;ZMcVj45`>}!Nv1#q<+3P^36PH1s5fQlY^uRmTb}0qR`_g)jcIk_RrDsGt zy-SC}@4|(FB#06N;G(#*o8>luhv|_8C!Q^qj@iE>0Hl5-P+6}Ws;`TKE--n#a-?va zlZfLqeIG>1BbS6Y(7uaywo&u{$^2enzFlG;i>j-a5Q5DmKjDERP;=6 z)3QHVHQi^QfaY9aWfQ*CN!iPq6D}$xA3=Q=Xx_@!qi7OigJ&8bl9ebo!Joxbwb?!s z&MQo&UrgPEwD*JG)3D~7Xn205RbLevBk%fGAECH2U6%val-JNPN0S&B|r5C__4#?y&IV~nX8CNHFpHAx*8FB(zbqp}tAAhGZxt94oe7U1M ztL9?5&UxbChUYz1Pf6>2vxx>c;=N9P{N0pl2RnZ0byptpe`f)i+yi;)45w>Zky}5F zXBs?eCwzyp70C)FKzk!;w^s%&J2+j>Lu8kDKFdmDQI|Z@`c!|@IY_N^U^|J6-`>-o zXZ#h+VY+_%*pa>8B#OZTUQ_y2bXb`zhT@Y`&UrMa{kh7)*72i>KkFHMxv4V$@aW4L zL?C|zzx;5)&BP~VcGahNaL?+mh+<(Hh$xN`f*>Q?S=O`-1+b@ieo~hq${1wdFy*Tv z6bXir!04rp1EdxJ`N8YQOSN#+iKR?U-6$(!)svbXj+uUgDXt&u=+&O1Y=s=uDvHfobx-^3eya z&4YX^%8ZwVIw79u-iO(?|Cb8)d6G_@oaiO^V2>I_Jk<8Rvh5zti$6nTe|2o&h@ zV)p%EUn{&$n(f(GpfeGtbIE@vJP`~c6}c`@zP#2(5+aAPG+r>@J><5>T=!c(`AHZ{ zJEUkOA5Te~J9s*6l%qBJX*VKGETyl|JYr@Gm3dY156JG&YZhewS|!kJbm}y%KKd*7 zlxdwqIeu2WW=Glz2IZTIeNF8)I|#JfI9%^5d~FUdKt7v!f(dIm7kem$YD6^6nu;gi z%z6x&KW=SefqQsyFR}f{*m@oSnLrmKxK~!Kkrrn_B&n8&TIosB6f}5JtY4iCvZwbe zZol7#=dz8Q4!Q~ zPVI_pKvn4A4LOQb8yU&;tSl>#eKmE^FUd@e;kv)1sMp|N^r<-!U-;1EJD>@4qNma> z!mCjJ4_8yV|FE3|ciGVO*3k?GU-#^ZViV8hxO+DiAeBS)wQrx_q_CUlKBE0?V8kkwJ*-#7Iw9#;BJU}%2J=@D{P z*a9Q&*w^aEA_$b2G^O7jLx&$W&MjUed!zYvdF|vqjj-b8*c?e(i89JC{ed1sI3*_! zFx`ufE7X~IXiY6!^|D><)S_oiVdgu)`r~H+rbPVoOaGMGe^@L6g#o@1kh`a zm3RD`@rC~i1{1hk!w{mImU_|l)-e!Dy{XsVlln0!Fgejuw6x{2ew)U{uW!Xrxa4l0 zV1KYulJ(;wH=Ayq6bh@|s@u-n?@;R+@D$Abzpy8XU#XexJ>b9%QQf^Y#v6I?r@{2r z91{X_^>y6F!QA&Mse+2UiJ}ATXnSd(6_X@OOSau<^mIR+DKWAm3C&aceI7(qVUKc8 z67bGFNg{m~F$B_cJR4ke^*#g6;^~;IXU<4>bh`@CN`Y+Nd$}v#nlIAHgI41oKqz`& z*29p28^w7D8%}uB%y$d+AyPQm)rlmu7Le_(uZp<;Z4@d#DjfR4X&Y@JG_-9r=iBf4 z_OwoArqS*+EMp!4Sng9Q3J>vwiQsNN!?@dP68iv8M$0q!iCBr1qlcGk%EJz0eoMyg zK{YFvBPB-Nb)gx{*26nEw|(~qLynVQKS&HpP*Lg{Glp{)>XgO@1coRmLjrV$b`q{` zQtW?G)-MDMkb!&QZ;6J0BU?Tk%ZAxN%wxxHRo%p_870L1&W1Nse%B$xl+s{YTZtFU;ts#`q#e{W`Gv`EB)C~ zrY|<&mq611p+ya(HvTadMSmm>N{4*ChrbcfX#1(gcExeNm9%19SDf9IvP}%>+kuU!HChmS&@2wP~xr zLM`c(xS61U{#xNL)Na?pcV+u~17AFemTCyXoOMgmC0Gqw7;H_fi6{g?{+=rA3A3Vg z^v!?mcNFj+ZsCJfqhEDRsT*MFgm3aY?=z_RT|XP?g3K164g2{Ds&^IEd?Si?WraFB z1!ME=j{vqY8>qB7J!9pvw`vFsxnAAdyf|F8k7H+e6~lHuX_H9X>)LcyjQ-0OfiAH9=x(@TMOI3UNR!%t`> z<%9N}bI;gyD1+v{tHP&w27B0Q1040E300Ej1cEW%IW}nhbx?-kILtNQmA*KPxoAFL z%POlp4q_c`@PIdXZjF~e*AD+}pK~tIiPx_i6BL*p!zV7mcGQguH~Cd2K%OQ6$@wKV z>FN83DW=~mEx)ouPxjhQ>Re#|?KDsdR{GYTt!6WckxmyAorxHOYthyaPs}!~-ogKJ zlxL#RJUsi}u*%`~usl$2(7M@bl{({gqYY_uAl;!Zb{-zFK2IOyTA2LD-kxWuSSFvRPf1gh#lec0@1LB zA?!;@Zle6?V2fjnxq5kFA#gcq`AX@ixrx;_XAeP|K2>cndgC7+=w|_QrHR8`Obg1e z6gC5vKc{D_2gtJ|4@Vm3VbWY}VvD|b4K>q>Dp5<#!gNaYUgnl5{6qd>v2%F%sfK8U zrN@L>v(M$jtWVI5MC;Gfai3~FVoG8L1k_Aeru$7A9b__hD3SB=0$YO*An@WX?v|CJ z<%*jddD_lqe!RMv6mC;PcXpPhgEdAJr7lX8dZ3kw_{Q1S>F^fIzF45r{54LV?_rB13_C9! z=G^m`1LfNF^Oteg`Ae}xhZGHB^gj9FK#>;O*AKAA|C+{OU^!{DYWm*0ePP;{mrVAs9RYPdAN~Q%;#uJ75)P58 z(o230 zx1B?sf2t?`GY*TQ7-+t`z1RhTS-n=VzEDL2-pE*UF=&u=fzos-0ohBQuhwt!n(O;; z(3Vhv;tvhhrJm!omFgK4Quon|xalTt`Gn%KQgcZuAV=p?NUEKUpTM$MBYsr}a&9M!9M!yuk6LoIUFyAI|Yt9(%eJPg7pRCn?mi6SCE3a|Am4?<> z!j?tJ&%Lf@lI=Izb50KIDtV*k2W9*@ojgnHfD2lY!B)*2`ZwwWW`_MBkx}pN;5zN# z1sRJ1I;R?n0K=6L&>QDX>NZbdqCtJYi9Qq9qPe(A?7_Bz1k`ne%m zasKzXX$Fn-Cp>eTkBJ!)%Grb#02ND4o{CkNGg-WOLQ1Ev3%dVet0a^>!p3PVm>FXY zB=GJl%y{P)%+Se*>sM`|N{5vaj+k=Pc1O;tA3VUf8kql>$w!RArIB5x#eYyHedcJN zkR}Rh-(fbpADF9Z_Z#@zq=B0`p?+ommTu##@{Il{y#dl!2P^%;x6?+uz&W)HC~xT2 z)KuHHI4PuDOqaCy6rEN8YxTeu{6{A|!ZFOD^Vo!Od)t;OYf3A1_NtUsytnFwHftkn zMZ}jhmGpe=TyfuvSHdy6WCIp8;xkKDN!O2502X1t&i^J?%Y& zc1u0z-?(j`HAzLF3|?BSZ$Q4>H@P6jRWK?W+UbqBMM7dK;EDvvN(H)wlmb-kPycQc zdrSetYy&#sS#U0~gdMBJA$wfI5ZCFW&0TDaAlU^0@L}ecK@;`+KJjR4yhnq36v!|x zw;bA7PGHf@MLpyw_wk|^KL>P;*OP>{CJ>>g+ISY%C%Ax|j2@TN#x_f6O8-OaJKiN1qs>X~MS1~Bm3#5lXnbX!D{nyL` zCWv#`@b^CUuKzsHza_VS`w8S4aoglrHGKk=F8qVayARFyczYKNgI*}lu78eGJxXz%f>AGDy1NpUe?jjhiynND5kxT#M8moI6P`g^1eTddzrrc7m z`*yZ#esuH$`^k*ObZO{e!RV*k6S-*DTr_H<=&)}lsuodqveuPdV34O#q$iXLdPJTa zR@q>t0KB8Cet8S`%`&Q8|1&-b_=obX8o0MtDJIukfzFTJviIi>-0hX7@vBSGNRWe^ z+zTR7q-dc7Oc+=_#P#W^Ou0)y*dCZ9CbiLGeG~L?i>Dfy@Or%oW753G2fk=ziD`D= z2K=4f`h&(hz3i1va2pc0*YiYc(cZx%;%oE9Gn;%iMN0_ zR=e0(PK{TM+n)zAaCfXk;g4;NK088RaIxf88(m%XnGP1^OvJjB|1Zq|IS)pMG~C#m zLp8|vC-&OX_4`UarxI0J^2)c!eAAh|-B(pf_0z@S&BT|3Ye&1yr}|%0oOvF-*FZA@ z0McL&0FQ4%9S{ti^=VG!E~Jd>UGuY*5ym?2w<*a#QJ+HbU*{ILk_0MVw%_2?ElFij zjpsS1OSMUDa#dX^nPRWh*^Q#Z>ld+iYDpA%`Y2zYr$MkJ)?`C_kE*3@Hf^D!3ESZB zI)$~y!L(4OzrM|#PhMqW!tgFr2zy43CP}!Ho zXf{Z7!*MfM`#JF7*tQ^cE&f`_RHVa7ss!K?9^3)C!e-J_z1tWiWcr zCBM;zjw(Tr9xW~>3ldyeWH#_<{C!Z#h-{T)g`sQ}bo-7NDOft!$V&8p_Cr25mRV=K zj5Dfl#t}J4n6qylZJ|x16bMW;ibenM(*NL1M^=&%sl<~#VQArNkQs;ttZ={Z(oLYR zg49r!$BFO6PE{$FJ7Pymo9~dZtJdiG|A;_!-sm8-h3K+J8q`e$(onkl+hZn*05g3n z*l|xeUPVt$-BE?b#_m(AziKdrX-47WjP_F=9{_(nOpW{aC~@%DKW!@(R61yz8uSXr z!*(Tc1A=!mfS30dBc+vq_Y#!#a|4WuWGk_C_yz1wsP0ndJoq)FHrAIK*96R~&>{kx z#TEQCeJr{GCz;bK=+<{J_};i?V~-O`5l?-@3$XHdAtZl zfuAMa=hG$mt@p_dN@q4p#oZ%+dY`$j+h4@wsfD@c)^UX=@VHec|I4(OeKtSiF<0$& zG~;>J_4YwVRtgH}n6H@ub8PCt8G0+pi&?{_gHJw(i!bsgmZ{dyjEq=#s1b4zo^aO>Xbm>E^aanOFVeS_ z<6^rQkSCBg5|cr0P|ETA3k+ZA@Wv2M)E(9G7oKujPh_!q_*BW|ptj&cHb%xfa-_0$ zrC3;D4g(5|m`GlR8I#vw5u9zq@@G?k*VLbN6?TD)uIR=Blaf9U&U?O7~Oe`St zDj!67oWJzKr51v`-iZzl8xzbl_@tivVmY1l@>0FBudJ7BM5Z_7Xyr!-tE=zFL)DLF zec>gZbDy6wA8cHjMDENi%W&K1*Ul_Am++hIF^*|EczttP2YkiDJyK`jIB7jz7GMZn zxa}0CtV@i3U==$|#HGHlHlh`CWbEt#ZU=~wl!yC{Y|tb{O)mH_%IOT!4-Y#1m?Hgf#`f&~n$hxoEz=gz4!hD)~7_Ky#5^IPpbIbDpr82Un(7#gYW zcgqJAL8oIn@W}Hn>)z@cH-|O&#xYFyv}Yr9e{C>pXoOm<&^DoOsAz&%BS(p1IOSmB zTS)IwWGA0`9GF$5_-8X+!&8EGrqjKxeo6p;ICX7eIzqGI(iHRF$1K_FmQi8etyIcRp8!0|5}|yq=#}?3xHW#(=gR!+M;I`V13W|7 z>BL+~wsX!R#CJ&Oy1Jz-J5|<3LMa02uR!64Ke2I)KhRXta@?ECJAg2x@gw5)UEed}d+M1p zqh~kJZpN|I!KgFyVK&{HxS^q;{FkTY7U#MR&7dVBDC2B>6IN<4^Ke6&j!k9E2;j$5 zkthkMNarG)FTP>d241@2HDc`l<2@a-`q8>24)q1&T?cz}qcYArtYHadSYb7tbEDtc zRH;S^SefOodlauqeO#P08TuSmbbdy&K2wXZeL6R*p5)JxHn0=$6DHa zT<;mJ*8YAhMrS)1JersME@uY&>%Ulm-()ugM(U=Tef#E!6sHxVApXA$c>kN2bS>U} zsiH$2gkHYOak@Rd2_Si1arU}HFyO$9VP6$JD+gfNiV;ZX4$I?;3|#k07xxDX=2YhU z&x-N*t3Mh#t#(pWcPBA5my~E4|8n_ZZX@}>FP9pDY}eemq_+fQhf}cy+#;o7oXFV1 zq_ni_oLNQPx8M^^-nHS2D=Ep{zN3N4m$_l92tF5!-dK4C@2`gaNn+dDgHT;jddRIJ zM!M~%?P_POvBryaTNP}_MXsf24PedouA1{ApyIgX-jWx^5{hvI-CII-UCo$5~t$@jKX#!Y9x~{SWCW_aB#65O+ zDlPjTAVWdA)iSsDv%4sl%?ARFWAUd%%WHi`Nd*Qz0a(tL?}ZgcbZV7CgO5BDB{Xf! z&@bi-T|kH#w?}>0Iu%k)>6#X;G#mKv5vrIBbC7af`*4~U*9m$7(^iuAN3&2e8hz9r zGm_uGe-FjQTpvH2{9a|;F%+(I9K_v}k==x~9>l%9F{xQU6o!RB&eB$H!*zVQ6&3M% zrF&DJm1R`fxTQ!;9*`bXCFdQv&Blz9JqL(=sj}bbq5O{LQSjF1@|VTowtQVh(1eQ$ z{GshwiGUuLZUM^$>R4!TCZXc>M>YM2%0yBp1Bb2i#<;`(?m3TPk#T5tLzUIwBa6ON zP7|NsLD#F&iyQzOu0CT35cZPu@_~Be<&g$5&(OJ(l^?qF8O-}sDUc@Vt>&eoZ%4dc zE&1(Z)0WprzTq_X#WXbjiC@Nhf}`=jo3DUuS z7bhlNs2MG^wG6oTEMU$OpU%e@v%KkXHf>h-0w?=>j&=`;$!bE!$#kpba~@g7>)2Jw z&UDAwU~xQuLQ~)mJ0@Iv0s}9XkYs<|&4bjYYExT$5k3+{=wOp%g~so4f*Kl?2pNfS z)+?k+JD`J{4H0cuo{M~JrwHn>k;D} z>?+H$yQ9^Mg(dY|cQ%w+Ngegk4j3Af)W;Q>GLpOIxqf0SR=cxJppfQVX^zA-9{cq4 z8*Rv;eu5w0n1M`iI>78{;s!dvH=WDx*IC$J#PP$0j+okXb<*Ci@N}w!cxtYLkv)NK5-R`&0o&Z z2Jw;1ess)M{1*|f9ay5T(8~}4>9Di@E8mz=4M4D0@m$?_=#$=G{LV?w|rM;UR_zSD%hU&FM=R>2MVe$Yvup_?~EjDSd$GAm)_ux$%UK` zrH=_(>3Cytc3Ev5ZcPVm@=BTPuk^7(2oYA%MdyyV>h5q{9HC;(FVv$>-d z1hVg+{Kr3O(CeJ>73gfd7S6{0yXL_+?640Xy>%aEC^0%>Z(EH;!ArPL$($7r9>?W8 zxqMSro^|K%qxe%KGRAC2;KLS}G9F5w@#$;)u6N7!Y7o!qF;7scvrSP_v;E|F>+j7} zLz|daaV-B2n!-OJUz=0joNjrkHuew%R;o0sN+$fSGd#h+0izCggi*CHt`yg!U? z0_=0Z)b6;+Qvs~8xdO8qyN`;13D+^SeG}hKp#4oL`%IXx?Kr; ze5+~l)6ZMq7X34bm7|;xk0ufxNpT2W&{^eO<=Jq$CFE4Ma=~N zlyVGs^9I}HIuPCI&IgtKvGIr15UmNNfRyg`2lmUMWpoar= zOb;l}90Xqhk34J-H~S3D^(H6>-u_SQYNfsZ+VPVtfR|0~)in)Y^mPcw(JYCYDMXWe z!fyiL|LzDD(49uie5t?Ju|r>HYP)~-@5hk+3_b?wtiKk+p9|HXFSLDZx%($X;Eo~q z6!>sh!M_)pLN{&QQI*I)lyg!LR`BGFFyqMI3qke)spUM#6xU5%m~aH?9y^B$FE|zP^zjZ?%HW& zI$jjXTZ#Zs6Lx?>iBUu0D$I*lwyO~aOi1|=NvS|W^b`xHDE!;PD?0fr_mP(8+pz+c zY74a;qw_+P*oV})mvpvy;0+zzEMdWZAvb^W8w3yaCJFS3;X2X{<9wCV9oNB-jrkv>>*nmCvJK2rI z8~iT3^0f=&HzmpNWgB4N1ZCmm?A)>dl0Y-enMQftV%}_^y(vMe z{CPre5Uo+n^4VZ9m4r#2t!42$OpAtOmHZB8+w|VJ}8;Cy(I+`c8sw`aMCG*6V-4x3C1{yQ-zlTd~TB{XY7V^ z-}j_Ticfloav>vmMKUY&COH4BiD#r>P3Y(+U&#Jl6KILs|0h3%lmcj1i^$`=f2c9} z!^ZJhSXn`Opts>szD{xSQeWECQ91#3rjaRNhN628l_>xt#1c|)$)b2GA^gvO$jG4n zcWx@x$O!{epZ0%$AE0$-K*_31LHFmu=`Q#0?}IeTJAjGc*i`zgJaefZ0nMTR0Knsb zJu(sR<07=JuQqtZVT!;b=HL4T5*OJ~$X$I?Va5NmpF;opw~RzMYUyIE!0tN^1pT3! zD2!H-bG2Q7YkY2;Kta-BgLz@Mxq1LHV)U9g5zCv$wY%d?!0PTGDKZHEO(8~msH6Su z4GIFRRBpLP+}|DO0#AKCbct$c`{JgBlKyz@5bdRGPKD$|-Te?7YgV$DT2TV6zTtAZ zr04Ri*^I?#C&**rWT(Ut!EJj{C_gH7^}C%Rb5;2ZO9a`MwIGL?)Q?kw29GfU6i7w< z&ObK_dWIEUUV2ZIEm#gp7m?k%wUnt(r39Y*azF`E5$pzyJADhx@@8N_h^~Zs>XXZD z;<)&?)|oVF)#yq$Cx|Hdpi>plW-1H+de2WwTrr3upzCXk(m(uhq&DtZ< z(3v=zhM-NHbNT&fsT1^B4!E`U>OxDw$|Yr%Kka$R$D@~--FUgdeLSUA8ZLDy`#AD8 zGwS%_`N}FdNgd#BDfu#uk-G^Nqq|EoH>K|Y0Y6x)nm6Xr-^u|J?sF&u+@w!hWxP zzz%fNd8uEzw{NK@Y1pvAdhA%udak56)gv8gnJx-NZXHK1Pl_K+Xv;*9m7gnyHToii zp#YV%2fe#tATdSBMh{s!9iutNT(a=FkbgV7RX&`uGd#xFnIcJCs`t7BjY!)>iPZqcmDob3TU+`Ou2h>Mx==^|F94S4IaZ6IGkJY zwX^BGNcT0f*GwSz0O26%{UhL-BEMC~6H$fCJeGlTgC3ILplfiA0~=l* zw=#mq1RQ<)%loBfu&ZV%c z{!w_7x0uh#Ta*D}_{(MURFL@78>>n+Y^C6s_J?Eox%i^W1S@b3sXN#1_t(+SRv;fU z>`d-Y!B-ZFaEPQod6+gvE!WjHsf(#!Q**#?s0+2 zvDukUaN?B?v9UMH8-7zP?DEdTw&?fN4ZcB>ZexbllAyHD+YvroOyo8Z?C%n~d2N4H8%B^BTi>z41h8ksP>V8Pi(@PrN;_@#P0uYrXZL(&5`rFz1R?_R+Fe|t23zi01x$@0<0Xw;6RS63Sq zTW3mX%SJN7{YC5i7q*kU?KJzPjlvR@hD0PjHcQ3~0osx25$_ZT^gZ;@VFTA#MyNKxVHe^1BGty3Z>iM5XTUGnbv zyv#w(h<$Bce+^b>NjxwZNRsXo+OOBjKU5#JZQG3>u42y(f1k`OaQjipr9g((6*0i22Gtguz_t;xWtT8y3OPi~^_^$q|u3s** zV{=9P59NW>%NgftjgY#-#kQNW;xZ3m_63jO)pd+B)NV^ot(%L!`i2+Mi+|)yO1SH5 zBGmvpi_oWsF~`&ZA;<}A?*iifIR!H$LICjZRBGg_!Wd&nq@so0e&_Sd%No;2Onr`3 zC3@?m+ZnB3Tv0raz>^L1zXbqHLUFj5cF{+V3strA=FJCb93d{OkU`}6A8&;7l^-_U z@>hPFbERjFqkz=WBNMvY^UA<=+*O={Pp4{1Q1?01R=^BuSXuyBYvKsPowIpMgMh>s1KIhS$yot|OE?U#3(P-@ji z<4v7;Pg|>D>(XY6u)zrOL*uRSSW`x*D;=E2b?Vux(xqx?$pyl)O_y`yUajXXbmH9) zY!gp7`C5M6$9TK=M*7!6+8E0J^MVoFCIt96PcYsaI}6m){1!~Cfphg4UhmQ#p^@Wk zE?_%*zI49R?e>{Z)m$mT8DZ~5&Sk{qIlCj-={YT6H&_16b+fRk@*VxDN`ds&%)$Nl zFh(q8DO69wIgYo|auJfV>!M z*s|wdgHD|WtH7K5yo>9{|74gumnR^eMd~szV5cxf^EJCVySIy{x;$#Q4D<@w(@Dun1M;40zmi$E>A+K+N%b0P~ zZS#YP`(A$&a@yYO-gUD#A;dI(@v13)Le*;*KV!gs*(z9f%S?|vya#WA^s2kuB!`Sk zN@>}rh3z$ge zBiouN(e*y>YC;{?t*o~JMYu{So7nl#1=205e$??f3wA1bqQttK=Rvh@j%8$sFJ+-5 zru7h!YRFB7ds})o=xj%~M044T z7i2;Bs+{H z51UQJ=S!-$?bzDz6*5?>P+uq`GwsB8j96S79GsX!%-o=YfZh@8rO>=2rUzl)SHHr| z*Db?)$$n4L)YWQ9E>lPF&K=tBtCm%HibCq#Ur`FA_{WvqPIol)lf7`c?)m;uskFIY zsQdZK&?Bw=#p?@tC*pQyZh>p$1E%J58fwGeZc1|adP|#&so`gTt~*#s8UgV;oWL;g zP`^z`wKV?x6go&*7E=oL{w1H(L+2JUk;0`W!G$)l+0fncpi{_&iRFk8v32~-~vUbNSE>PivnOLKbSz! zOLScSp5SgY%RH~#dO1y56&x~{K8mGC%Z~N*Wtt<&KE3++xiscta(7QybXAm&N?JdGCD)&JZ5S%mmN#Ut&}T( zOJrL#2Gmkl{&TXtu5@zKd2`C(blMYXD^j=U;@#7I+8|G9@z@_$hA@gCBOU0_8q9)) z8#p`|b4;g^>{@hAtLq2b%kX#Q9_MY=xrSaB^7f zdl+RkyJT}c-&_j>6-bzOvD|zf8#_ey0rjZCBLg(0K3mx8y2ThL+hK*cuJOUyZA&N; zVW5nvu{-UJH3m|>&eaFajVQM5bShYK3`)k*_lE!)=1YpY5-Tq@pV0~vj*>2!C$7qim`Dym&Hi)%+*(3Q8` z+(B7D@GXgB{=PU+R)B~!NC*3*_kCQvg|sih_?V-hI+#lrUk$VO%?+pAW9P?yeX#}b z;XC)-_;nmX46V`yt)gf5FTTc#PAWG?a7BT>O5H)ksPO>~N^~o&817S^dE4YBmwwe-&S84vky(GpD7e|9W!09?19CIj z*-kIJ@O3olznmSPWA?s1=4eN-YV0DWOAb2dFhPPX_1gyG0Bq5>kGju|WjbI!vc5@8 ztqM+GgXM9aIeOjYpN~6$y=Z7(neE;5WL1b;H-+j^hK?K9m|jCeEqm? zBu>}w;yusV$xFS984qW$`06se+`z!A#&sR~`SdWjBCpNqYYgE*=0npR)PZaW)5wzT z37--D)_qv_yrCk6!UD_u&)tSUD@P4+V*_x97r4Ob@ww*uQI}eP$7-KY%CNBmpY`Ul{XZ`aQkCsDx;S5u5w^&rSoK za&L{$?%V80$pO_-{QwE~Ax5GL73dHOmu=vtlW>I9``3dcv(8>&p@bj?AC7N`+nnkW z$Dgd`({NAMJmeA1pRsYS3 z$ID&vl^kQS|3%$MdZE#+RvKq?LL6(eF zHi06TnyMH!NO9Np*-8Ji2WAAhlq|(01~HL1ZXjp!0Z=FW65_84{NdWr$BmQf;~=`4 zJMxSe7!b9ZqU=L0%4b08TNj-9eRg~ccklpDJ@mjsovSAtJHS*L4b48r<-cUax~jE` zDnu?FZ%>}`+!^1EqU;l*MYQo;4}e8aNlv_(zM3sO(uteqM7kW!#^DZ3AT34JUXg|O zoPuM;qT#76c7-AA8X=aVdv<IzdB`B|^cT_>F5 zExv8N42I3h01y_X^nO$E4^01Xv@H#jGO6$3?Q48s?VSJaw$RWaeXI>8oWxPV^t_GA z?058%Q{WYl^=kmqLMiK%Q3$B^O_UONStAWFC8)*g&BWO(x!Epf!Y_Q5lr-T(RSJm|D z?UGJ=Y)Ty>B?px$ds1w@(wzAMp~W{1xWj{Y_LdX6dp%&t)tv?(6Okc_KLxmkqJ{{8 z$PsEsOVs9DorZ|-qfa2?@l6&+OWnda*H6v{?8E2zJ2$0Ylw`5!OO8v89*~x%tenqq z6BB(kWE}73Z4bQ%H!YwlYn>9XNOl8kGd6Jc@9C+5bLwuYt%y{p9`p}Zz_*ZV4GD$X zlAt$HIK~q}#$?sVGtGht(|fBth%Z|KL(joKELk_j-*qU*y0g(47RRj$=a?jZIV0v~ z$ZiH*93>oXN)OmMm|pp5fYdR8nRY_=fs_GYi}4|XZYNHpkZA7qZqF^cVQsiV%jsER zfL4?n$sXt4>@*TujeRmFvr<%`~JPI!WOPm zTU)Ox=DKr-=D|77aIv(4{;YGjq1n;EV!A6wqqU|^7P)*hsOdATP_-#Uz7L4M_xjsWu*Oy3x@y~trL>-bMG-= zabf|w!TlD%PNj?E)PZYIjTWs}4E9?d(4=%~>l$-{zC#r7DVW;uw8>WSdY;K0srKru zNj>gMH;wwHQ|jL9?^||MWqh=8JbI5xnpUV0Qyv@tWY8>#&&MPOP4LXGdx!~WD>N8S zB9k~}po3TXkuEts8&M!~;e~eVFx=9DN20hL?qIRhLB@+EM($l3LJx4Sp|_)-Lyr}w zK}}KnhSUGn%wxm5z83B?!(O!P{LJ#{Tj(6+;t}pk+{*l8`>C_(Y)~_MUo-qx&iaZN z53D8hqjnp+aeHfN9XV^f0&R|<|I{bcyq_P-zoI>J$3KSRbicy1jH zm1G<3*4&+A+qOF}4w0M$nted&RB@;~WfOpZ>z7WMM;!D^n>>zC*dbM*S|d@i9V-?H zASnd>3Uukcf53pHhVNtMc3aGK+)-02ZL)efh+t6#E-~8$jhZ47j8*8!qaMJ)*ex66 z*gGSe=w!WrpZ@CR8^*y{7ZWR*0rg-qWZiu-vY}`-{U$UQuXvCd;pEnRG6anNZ2`qf zv6ANUWo~yIw`E+MOg(aqlTX!C&scq(lfyo#G15LDC0Us2VwHP+z}027Hztm|C4RZP zg`L;V95ngH9^j$%wvwzLWwtWVC9)|Mk)P0ZeHT*vyGl|^3i2v z?F0sQ#EkpHBW6tbfEvUa6P4iv*nCTEp=46w(uuAE)gZU`SIK&h3OL@$1bW_;2s@fW zV_e)Vmp@cYJijlm5YUfd+5RfvF1ZJgxP7naXX>(&h|Q4mhBV`0``iguDl^>x^DPm+naEb5r_h zY5}j z9S|{1vzy3&Rt{yUZhOue1F1Wo41(T*Qd;2Lnlms@&F0Z9z;a@~OtZZ#ln19s3hB z%5~#zKtR-hwhAKPQBqN%`;`6VG4N02m%OoE={0tTiR2SZw6bhuU$bRbEiMMIdrM-YNV);OrbNT*ARP+^ z`v5=%({JLr8l%SYjajNrHyle(a{C9e&AYX_tEQ--=1z2S2C#O=&Zw!k-rak)$Fv8G zr4D(%;&b1iQ%x$9xvY0x3)E_lAMx~a1-y`pk#|+>lEoOf%w9s(eIK6gUKWYcE+$KM zCcq$kFK!^mxP`-8pxv$A4&1vMawS!Z3=oZmh{P6vJk|9i`ZlE<%V6gg&q2b9LD!Ix#cyrD7g?B?z93%k z$06sxEcF+<-%Os!R{`Sc-IOX}*EjQo@9~HYBC^_fXo5VlYXW73>feCWt zHKc0m)q(`k72TymwD2?zG>Z^6xx7TdHG3N-t6duF18A>R-Ad&aoh2tvB=~o|>&A)d z?&o~t2X81V`VGyme(7x@Y=5S`QxW`Z?l}%71*eAW?5l0u1>_VK};y8`I z;IWxma+ehsQ4TP@voOGfCG*-2$pY78tK77+{wX9!7PMa%90MLzrP6$6I4{4Pr7Is2 z!~<0<;#qZjmTSLhze}Won@OJ_Rubtz|I^*( z3p42K-4c@t{noL+grr&7IHm5nSBup<1+!p{AG@#A#9obd`8QV5p3?gtG90SAav3V&0H*xEJ;~1Sj>(*Q0Ag|s-y)^En&`wsk7bQ#>mT!96bmnBhF|*n-xs)(+G6=Q zRAPaHWDDI)7OCNKBh-S0Tvo^ze=hW0VfaOO?7dXjZ20YW&bNvpN-H-5NVzf;T^j&c zvE}9hw#~_-nYxP_1I^_{k*F}{Uvq#=@msay2IB`etYU|TUh>OjFrPURo_jStkQYwX zJz2fk!;fNIyq`7IQ*2P%mAINN96*^RFU9OxwBt3L3v^B?deHfA`ANA7K6B%wSc!H1 zd)ET4V@EJZ^GbS2L0k+zCsFI#mV2$3Lx5y@yC}}@wM0R*xjgh0K1nuUl1E4s6KOfYV=w$|CiESHFq$I1(L2!pYqokx5a9V@%5 zPu-(cAxq%>pcMZfOggch0KA57|A&E~aZc7)u*Ptm2$DV-;Az?D;+Dj12iT>n{Wbor z6PxdZpe9MlFPCn*GF!gy?~;Rmh9PIIo%ZLUsQ09Dduo7z5`J3+K%(W-XM-)fCO#m5 z)z!CE!Z7C{YIyDpk!teswTXD&X@iNO*$rmQJamWm>!+vrN>BbAfurasVZo*|s6Zud z`6set_{ZnqMa3Y`3C;mP=pWn-%>6yu#DQ9HM2cDUug0*c->*b>^V{)8K-Vo??pP2L z7B%DdlRkil!pi*{BpYZ~74kNO-cMHQeC=vU-L`{QmD=&%>I`xz)VQe^1>Rqaf^H*X zowZ@O{~GbypCJgR(Qp#%POqe+SS-q=XLEwn!Cg%k!!q>vt_$AKc4o``Y{Ue81kSj=v(Kg-oA%?X=j1Zr6~ZYQHuf zkM`FCll;}0?(mLg%_Gs-!*#>nv6;9PzPsqGs7U@A*?-m~=per{X6ZQ1no0W-+-QNVP<(f_U~gxMcxQ zV4KXrTg$vbmd+xTYz7ALt{~j5Zu#cKwGlA6w1ZICG8~bco9mu)Ra}yG8>IpY0usB% z{K)Aq$Wq#ul`V7pg)9CGIx(+4w$W<@IbJzIxtA@19ij!K1olNtthh|jN6$!!^sI?@;MfYk(%vfj5=j>f$R>oMx2RWQigkZcIKVj> zWxROkQ?9DtIxy2PTv8OP2vm%e+H)@km-fRiM>m3IH=UB_x|iI{w3w8oMS!0KI% zYo2KWZIy=!aWpc%Cihl@uTO^?mME#sd85D8<6w!)aN$fP$`3oGaEUTiEO^QhXzcB$ zP%1Rk!E=qa7pLPU{Rq+th`g=8sY@v=&yAhmeQPnXm%;dRHra$>w}{o)vSZkn`@~cnHNUmi6~{O==%{h*?!+Sr!Sm`sDDOXdD{N zR%Gcph8yU*{>a&BM~)eI?DYke4eCj`0tk)|3~Uxuo7%GA^oyeuh3a>&MBeWg+&D@Bd_NWE|XU~>at z*Ckh3j z6AZ24KK~)*0DxCm;!EODj10~F4}7ktQdtG01eJapQ=eGTc92lvic}HldEODtbEs6n z!8Pk@sg?e6EZ50TN5;&qG1pPL~naUHbcwU4k{X-uX+Z1%W#KF@}nkSAs9*(MQl z<&hIm1r9RVZvgGlHP*1tROZn(n7h<#j@}Z%mR!66t_F8-R}Fl$d8~Dq6)Gh))`L{77ylYuEiRP#{dugzA@>|Kq2ea()g zYpDX;HNtn|tMo-BlE>O`U0FgCR-F#*MgG#JK2BS8XyGHk2rg;Vy>{8o(>`6{oMW5j zrvWNE+ye8g`KVe{s`t~V^p!mooV?!NjN6k*?f8MqZioC47{|6M=39}LVHx7WDEV2`%1tOv(JnyLu-35V6BsQLv?HPdz#X} zwPc$M;8>SC_y9qs4}O&L8uJmgDj5sn4bOX@n_THksPgeK#Jp{17#tf<5{{#QYi#5w zwv}Es>t?HC51N=%;XQbEF3!MEso3-0LPgoD@2oD&U3{kCK!0RIAHDT?R=B| E0bS`?{{R30 diff --git a/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json index dbca2b71..2c5a5894 100644 --- a/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n

\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 92% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-1. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json index ddc8ce17..70559d58 100644 --- a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 87% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 89% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json index 7b08f955..e56795ac 100644 --- a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Nebraska CD-3. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska/execute-results/html.json b/_freeze/2024-potus/Nebraska/execute-results/html.json index fd71ee96..f8177700 100644 --- a/_freeze/2024-potus/Nebraska/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nevada/execute-results/html.json b/_freeze/2024-potus/Nevada/execute-results/html.json index b4f736e7..4f5a90bf 100644 --- a/_freeze/2024-potus/Nevada/execute-results/html.json +++ b/_freeze/2024-potus/Nevada/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 52% chance of beating Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 51% chance of beating Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Hampshire/execute-results/html.json b/_freeze/2024-potus/New Hampshire/execute-results/html.json index 0ad5f69a..6cac9817 100644 --- a/_freeze/2024-potus/New Hampshire/execute-results/html.json +++ b/_freeze/2024-potus/New Hampshire/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 86% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 86% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Jersey/execute-results/html.json b/_freeze/2024-potus/New Jersey/execute-results/html.json index 55418105..9d53b3cb 100644 --- a/_freeze/2024-potus/New Jersey/execute-results/html.json +++ b/_freeze/2024-potus/New Jersey/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in New Jersey. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Mexico/execute-results/html.json b/_freeze/2024-potus/New Mexico/execute-results/html.json index cdf7a25f..17adda01 100644 --- a/_freeze/2024-potus/New Mexico/execute-results/html.json +++ b/_freeze/2024-potus/New Mexico/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 91% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New York/execute-results/html.json b/_freeze/2024-potus/New York/execute-results/html.json index b8789ef3..9cbac192 100644 --- a/_freeze/2024-potus/New York/execute-results/html.json +++ b/_freeze/2024-potus/New York/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Carolina/execute-results/html.json b/_freeze/2024-potus/North Carolina/execute-results/html.json index cfea779f..a2293396 100644 --- a/_freeze/2024-potus/North Carolina/execute-results/html.json +++ b/_freeze/2024-potus/North Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 67% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 66% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Dakota/execute-results/html.json b/_freeze/2024-potus/North Dakota/execute-results/html.json index 849b133a..8074aa36 100644 --- a/_freeze/2024-potus/North Dakota/execute-results/html.json +++ b/_freeze/2024-potus/North Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Ohio/execute-results/html.json b/_freeze/2024-potus/Ohio/execute-results/html.json index bcc02443..f6485d80 100644 --- a/_freeze/2024-potus/Ohio/execute-results/html.json +++ b/_freeze/2024-potus/Ohio/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oklahoma/execute-results/html.json b/_freeze/2024-potus/Oklahoma/execute-results/html.json index ae04f7c3..ffb3ff7d 100644 --- a/_freeze/2024-potus/Oklahoma/execute-results/html.json +++ b/_freeze/2024-potus/Oklahoma/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oregon/execute-results/html.json b/_freeze/2024-potus/Oregon/execute-results/html.json index ebb574d8..0935fbe7 100644 --- a/_freeze/2024-potus/Oregon/execute-results/html.json +++ b/_freeze/2024-potus/Oregon/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Pennsylvania/execute-results/html.json b/_freeze/2024-potus/Pennsylvania/execute-results/html.json index 42591cb8..586005c9 100644 --- a/_freeze/2024-potus/Pennsylvania/execute-results/html.json +++ b/_freeze/2024-potus/Pennsylvania/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 54% chance of beating Kamala Harris** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 53% chance of beating Kamala Harris** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Rhode Island/execute-results/html.json b/_freeze/2024-potus/Rhode Island/execute-results/html.json index 7a6a0740..bc9679ab 100644 --- a/_freeze/2024-potus/Rhode Island/execute-results/html.json +++ b/_freeze/2024-potus/Rhode Island/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Carolina/execute-results/html.json b/_freeze/2024-potus/South Carolina/execute-results/html.json index 2e32674d..65f8eafe 100644 --- a/_freeze/2024-potus/South Carolina/execute-results/html.json +++ b/_freeze/2024-potus/South Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Dakota/execute-results/html.json b/_freeze/2024-potus/South Dakota/execute-results/html.json index c854dba8..1189ea26 100644 --- a/_freeze/2024-potus/South Dakota/execute-results/html.json +++ b/_freeze/2024-potus/South Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in South Dakota. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Tennessee/execute-results/html.json b/_freeze/2024-potus/Tennessee/execute-results/html.json index 3d004a30..b3bb051e 100644 --- a/_freeze/2024-potus/Tennessee/execute-results/html.json +++ b/_freeze/2024-potus/Tennessee/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Texas/execute-results/html.json b/_freeze/2024-potus/Texas/execute-results/html.json index 6a6dd266..af14093a 100644 --- a/_freeze/2024-potus/Texas/execute-results/html.json +++ b/_freeze/2024-potus/Texas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Utah/execute-results/html.json b/_freeze/2024-potus/Utah/execute-results/html.json index 4c1c331b..a58a9ec8 100644 --- a/_freeze/2024-potus/Utah/execute-results/html.json +++ b/_freeze/2024-potus/Utah/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Vermont/execute-results/html.json b/_freeze/2024-potus/Vermont/execute-results/html.json index 6080c9b0..ce14b49c 100644 --- a/_freeze/2024-potus/Vermont/execute-results/html.json +++ b/_freeze/2024-potus/Vermont/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Virginia/execute-results/html.json b/_freeze/2024-potus/Virginia/execute-results/html.json index 9d04dca4..f0f84625 100644 --- a/_freeze/2024-potus/Virginia/execute-results/html.json +++ b/_freeze/2024-potus/Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 90% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 90% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Washington/execute-results/html.json b/_freeze/2024-potus/Washington/execute-results/html.json index 29bcaba7..2f0784cf 100644 --- a/_freeze/2024-potus/Washington/execute-results/html.json +++ b/_freeze/2024-potus/Washington/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/West Virginia/execute-results/html.json b/_freeze/2024-potus/West Virginia/execute-results/html.json index 131e981c..d606f53c 100644 --- a/_freeze/2024-potus/West Virginia/execute-results/html.json +++ b/_freeze/2024-potus/West Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wisconsin/execute-results/html.json b/_freeze/2024-potus/Wisconsin/execute-results/html.json index bffc7183..853bfb0e 100644 --- a/_freeze/2024-potus/Wisconsin/execute-results/html.json +++ b/_freeze/2024-potus/Wisconsin/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Kamala Harris a 53% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Kamala Harris a 54% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wyoming/execute-results/html.json b/_freeze/2024-potus/Wyoming/execute-results/html.json index 4cd64dfb..403f7829 100644 --- a/_freeze/2024-potus/Wyoming/execute-results/html.json +++ b/_freeze/2024-potus/Wyoming/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 22nd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Arizona](Arizona.qmd)
[North Carolina](North Carolina.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Minnesota](Minnesota.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 23rd, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[Wisconsin](Wisconsin.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)
[Maine CD-2](Maine CD-2.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua"