From ef8c87e00253d030e23b2223864f4ca75cb8fbd0 Mon Sep 17 00:00:00 2001 From: markjrieke Date: Fri, 1 Nov 2024 09:02:58 -0500 Subject: [PATCH] deploy 11/1 --- .../Alabama/execute-results/html.json | 2 +- .../Alaska/execute-results/html.json | 2 +- .../Arizona/execute-results/html.json | 2 +- .../Arkansas/execute-results/html.json | 2 +- .../California/execute-results/html.json | 2 +- .../Colorado/execute-results/html.json | 2 +- .../Connecticut/execute-results/html.json | 2 +- .../Delaware/execute-results/html.json | 2 +- .../execute-results/html.json | 2 +- .../Florida/execute-results/html.json | 2 +- .../Georgia/execute-results/html.json | 2 +- .../Hawaii/execute-results/html.json | 2 +- .../Idaho/execute-results/html.json | 2 +- .../Illinois/execute-results/html.json | 2 +- .../Indiana/execute-results/html.json | 2 +- .../2024-potus/Iowa/execute-results/html.json | 2 +- .../Kansas/execute-results/html.json | 2 +- .../Kentucky/execute-results/html.json | 2 +- .../Louisiana/execute-results/html.json | 2 +- .../Maine CD-1/execute-results/html.json | 2 +- .../Maine CD-2/execute-results/html.json | 2 +- .../Maine/execute-results/html.json | 2 +- .../Maryland/execute-results/html.json | 2 +- .../Massachusetts/execute-results/html.json | 2 +- .../Michigan/execute-results/html.json | 2 +- .../Minnesota/execute-results/html.json | 2 +- .../Mississippi/execute-results/html.json | 2 +- .../Missouri/execute-results/html.json | 2 +- .../Montana/execute-results/html.json | 2 +- .../National/execute-results/html.json | 2 +- .../figure-html/plot-conditionals-1.png | Bin 166958 -> 166859 bytes .../Nebraska CD-1/execute-results/html.json | 2 +- .../Nebraska CD-2/execute-results/html.json | 2 +- .../Nebraska CD-3/execute-results/html.json | 2 +- .../Nebraska/execute-results/html.json | 2 +- .../Nevada/execute-results/html.json | 2 +- .../New Hampshire/execute-results/html.json | 2 +- .../New Jersey/execute-results/html.json | 2 +- .../New Mexico/execute-results/html.json | 2 +- .../New York/execute-results/html.json | 2 +- .../North Carolina/execute-results/html.json | 2 +- .../North Dakota/execute-results/html.json | 2 +- .../2024-potus/Ohio/execute-results/html.json | 2 +- .../Oklahoma/execute-results/html.json | 2 +- .../Oregon/execute-results/html.json | 2 +- .../Pennsylvania/execute-results/html.json | 2 +- .../Rhode Island/execute-results/html.json | 2 +- .../South Carolina/execute-results/html.json | 2 +- .../South Dakota/execute-results/html.json | 2 +- .../Tennessee/execute-results/html.json | 2 +- .../Texas/execute-results/html.json | 2 +- .../2024-potus/Utah/execute-results/html.json | 2 +- .../Vermont/execute-results/html.json | 2 +- .../Virginia/execute-results/html.json | 2 +- .../Washington/execute-results/html.json | 2 +- .../West Virginia/execute-results/html.json | 2 +- .../Wisconsin/execute-results/html.json | 2 +- .../Wyoming/execute-results/html.json | 2 +- 58 files changed, 57 insertions(+), 57 deletions(-) diff --git a/_freeze/2024-potus/Alabama/execute-results/html.json b/_freeze/2024-potus/Alabama/execute-results/html.json index 19b55535..8264dd8a 100644 --- a/_freeze/2024-potus/Alabama/execute-results/html.json +++ b/_freeze/2024-potus/Alabama/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Alabama.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Alabama. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alabama.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Alaska/execute-results/html.json b/_freeze/2024-potus/Alaska/execute-results/html.json index 74b6f365..88857f35 100644 --- a/_freeze/2024-potus/Alaska/execute-results/html.json +++ b/_freeze/2024-potus/Alaska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Alaska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Alaska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arizona/execute-results/html.json b/_freeze/2024-potus/Arizona/execute-results/html.json index fe36d848..504a3fa1 100644 --- a/_freeze/2024-potus/Arizona/execute-results/html.json +++ b/_freeze/2024-potus/Arizona/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 69% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 69% chance of beating Kamala Harris** in Arizona.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arizona.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Arkansas/execute-results/html.json b/_freeze/2024-potus/Arkansas/execute-results/html.json index 7e3c935a..7f47351b 100644 --- a/_freeze/2024-potus/Arkansas/execute-results/html.json +++ b/_freeze/2024-potus/Arkansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Arkansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Arkansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/California/execute-results/html.json b/_freeze/2024-potus/California/execute-results/html.json index f38874f4..e1e68caf 100644 --- a/_freeze/2024-potus/California/execute-results/html.json +++ b/_freeze/2024-potus/California/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in California.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/California.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Colorado/execute-results/html.json b/_freeze/2024-potus/Colorado/execute-results/html.json index 0b933904..52cebd2b 100644 --- a/_freeze/2024-potus/Colorado/execute-results/html.json +++ b/_freeze/2024-potus/Colorado/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 97% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 98% chance of beating Donald Trump** in Colorado.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Colorado.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Connecticut/execute-results/html.json b/_freeze/2024-potus/Connecticut/execute-results/html.json index 67bfa2f8..b65c622e 100644 --- a/_freeze/2024-potus/Connecticut/execute-results/html.json +++ b/_freeze/2024-potus/Connecticut/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Connecticut.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Connecticut.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Delaware/execute-results/html.json b/_freeze/2024-potus/Delaware/execute-results/html.json index 49ccadf3..ab4a5978 100644 --- a/_freeze/2024-potus/Delaware/execute-results/html.json +++ b/_freeze/2024-potus/Delaware/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Delaware.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Delaware.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/District of Columbia/execute-results/html.json b/_freeze/2024-potus/District of Columbia/execute-results/html.json index 185d8415..b8597a50 100644 --- a/_freeze/2024-potus/District of Columbia/execute-results/html.json +++ b/_freeze/2024-potus/District of Columbia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in the District of Columbia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in the District of Columbia. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/District of Columbia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Florida/execute-results/html.json b/_freeze/2024-potus/Florida/execute-results/html.json index 8baf82a5..b642d7fb 100644 --- a/_freeze/2024-potus/Florida/execute-results/html.json +++ b/_freeze/2024-potus/Florida/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 92% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 91% chance of beating Kamala Harris** in Florida.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Florida.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Georgia/execute-results/html.json b/_freeze/2024-potus/Georgia/execute-results/html.json index 18606585..3f50c041 100644 --- a/_freeze/2024-potus/Georgia/execute-results/html.json +++ b/_freeze/2024-potus/Georgia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 70% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 69% chance of beating Kamala Harris** in Georgia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Georgia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Hawaii/execute-results/html.json b/_freeze/2024-potus/Hawaii/execute-results/html.json index 86dfffc1..38224b9b 100644 --- a/_freeze/2024-potus/Hawaii/execute-results/html.json +++ b/_freeze/2024-potus/Hawaii/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Hawaii.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Hawaii. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Hawaii.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Idaho/execute-results/html.json b/_freeze/2024-potus/Idaho/execute-results/html.json index ed4d3427..2cc3fd53 100644 --- a/_freeze/2024-potus/Idaho/execute-results/html.json +++ b/_freeze/2024-potus/Idaho/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Idaho.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Idaho. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Idaho.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Illinois/execute-results/html.json b/_freeze/2024-potus/Illinois/execute-results/html.json index 5a314d47..9d8dc1ad 100644 --- a/_freeze/2024-potus/Illinois/execute-results/html.json +++ b/_freeze/2024-potus/Illinois/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 98% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 98% chance of beating Donald Trump** in Illinois.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Illinois. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Illinois.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Indiana/execute-results/html.json b/_freeze/2024-potus/Indiana/execute-results/html.json index 92b0b898..593e70ee 100644 --- a/_freeze/2024-potus/Indiana/execute-results/html.json +++ b/_freeze/2024-potus/Indiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Indiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Indiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Iowa/execute-results/html.json b/_freeze/2024-potus/Iowa/execute-results/html.json index 0efb6348..f62daff4 100644 --- a/_freeze/2024-potus/Iowa/execute-results/html.json +++ b/_freeze/2024-potus/Iowa/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 91% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 92% chance of beating Kamala Harris** in Iowa.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Iowa.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kansas/execute-results/html.json b/_freeze/2024-potus/Kansas/execute-results/html.json index 25bbeaf2..89e7ef5d 100644 --- a/_freeze/2024-potus/Kansas/execute-results/html.json +++ b/_freeze/2024-potus/Kansas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 93% chance of beating Kamala Harris** in Kansas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kansas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Kentucky/execute-results/html.json b/_freeze/2024-potus/Kentucky/execute-results/html.json index dfc51765..1cd7b473 100644 --- a/_freeze/2024-potus/Kentucky/execute-results/html.json +++ b/_freeze/2024-potus/Kentucky/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Kentucky.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Kentucky. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Kentucky.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Louisiana/execute-results/html.json b/_freeze/2024-potus/Louisiana/execute-results/html.json index aeeaabdf..9d30a914 100644 --- a/_freeze/2024-potus/Louisiana/execute-results/html.json +++ b/_freeze/2024-potus/Louisiana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 99% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 99% chance of beating Kamala Harris** in Louisiana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Louisiana. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Louisiana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-1/execute-results/html.json b/_freeze/2024-potus/Maine CD-1/execute-results/html.json index 1de7b7a6..8fecd4ee 100644 --- a/_freeze/2024-potus/Maine CD-1/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-1/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maine CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine CD-2/execute-results/html.json b/_freeze/2024-potus/Maine CD-2/execute-results/html.json index fbb86206..13770fcc 100644 --- a/_freeze/2024-potus/Maine CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Maine CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 87% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 89% chance of beating Kamala Harris** in Maine CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maine/execute-results/html.json b/_freeze/2024-potus/Maine/execute-results/html.json index 43a8b554..d09bdb78 100644 --- a/_freeze/2024-potus/Maine/execute-results/html.json +++ b/_freeze/2024-potus/Maine/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Maine.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maine.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Maryland/execute-results/html.json b/_freeze/2024-potus/Maryland/execute-results/html.json index 4d01d7d8..124237f6 100644 --- a/_freeze/2024-potus/Maryland/execute-results/html.json +++ b/_freeze/2024-potus/Maryland/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Maryland.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Maryland.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Massachusetts/execute-results/html.json b/_freeze/2024-potus/Massachusetts/execute-results/html.json index ab174770..20fa1802 100644 --- a/_freeze/2024-potus/Massachusetts/execute-results/html.json +++ b/_freeze/2024-potus/Massachusetts/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Massachusetts.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Massachusetts.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Michigan/execute-results/html.json b/_freeze/2024-potus/Michigan/execute-results/html.json index 3418a026..201a47a2 100644 --- a/_freeze/2024-potus/Michigan/execute-results/html.json +++ b/_freeze/2024-potus/Michigan/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 56% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 56% chance of beating Donald Trump** in Michigan.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Michigan.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Minnesota/execute-results/html.json b/_freeze/2024-potus/Minnesota/execute-results/html.json index bfa1c82c..86b0767b 100644 --- a/_freeze/2024-potus/Minnesota/execute-results/html.json +++ b/_freeze/2024-potus/Minnesota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 88% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 88% chance of beating Donald Trump** in Minnesota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Minnesota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Mississippi/execute-results/html.json b/_freeze/2024-potus/Mississippi/execute-results/html.json index 7b1de250..0080358c 100644 --- a/_freeze/2024-potus/Mississippi/execute-results/html.json +++ b/_freeze/2024-potus/Mississippi/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Mississippi.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Mississippi. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Mississippi.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Missouri/execute-results/html.json b/_freeze/2024-potus/Missouri/execute-results/html.json index 3f0e279d..37083cda 100644 --- a/_freeze/2024-potus/Missouri/execute-results/html.json +++ b/_freeze/2024-potus/Missouri/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Missouri.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Missouri.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Montana/execute-results/html.json b/_freeze/2024-potus/Montana/execute-results/html.json index d3c1ab4f..478588d3 100644 --- a/_freeze/2024-potus/Montana/execute-results/html.json +++ b/_freeze/2024-potus/Montana/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Montana.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Montana.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/National/execute-results/html.json b/_freeze/2024-potus/National/execute-results/html.json index a4e37dee..b769c33f 100644 --- a/_freeze/2024-potus/National/execute-results/html.json +++ b/_freeze/2024-potus/National/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "30f18cb853999354865df51e58333e90", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 55% chance of beating Kamala Harris** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **45%** chance of being elected America's next president.\nShe's projected to win between **180** and **402** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **55%** chance of re-taking the white house.\nHe's projected to win between **136** and **358** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=80%}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 55% chance of beating Kamala Harris** in the electoral college.\n\n\n:::\n::: {.column width=20%}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/harris.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Kamala Harris** currently has a **45%** chance of being elected America's next president.\nShe's projected to win between **181** and **402** electoral college votes.

\n
\n\n\n:::\n::: {.column width=\"12%\"}\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/dev/img/trump.png){width=120}\n:::\n::: {.column width=\"38%\"}\n\n\n\n


**Donald Trump** currently has a **55%** chance of re-taking the white house.\nHe's projected to win between **136** and **357** electoral college votes.

\n
\n\n\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Projected electoral college votes\nThe model is updated daily, blending state and national polls with non-polling predictors, like economic growth and presidential approval, to generate a range of potential outcomes in the electoral college.\nAs we get closer to election day, the uncertainty around the estimate will decrease.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\nThere is a less than 1% chance of a tie in the electoral college.\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Chance of winning each state\nState-level results determine the makeup of the electoral college.\nMost states heavily favor a particular party, leaving a few competitive battlegrounds that will be decisive in determining the next president.\nHover/click to see more information about a particular state.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Conditional outcomes\nFrom the thousands of simulations, the model can see how the electoral college outcome changes when each candidate wins in a specific state.\nIf Harris wins in a red-leaning state, for example, it's likelier that she also wins in competitive states.\n\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](National_files/figure-html/plot-conditionals-1.png){width=1152}\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::: {.column width=\"70%\"}\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n", "supporting": [ "National_files" ], diff --git a/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png b/_freeze/2024-potus/National/figure-html/plot-conditionals-1.png index 760edc3fd575d57453a923bee1c99dee48d3a88f..e22f8ff55a75f90c3594038cc5cac67be72c6269 100644 GIT binary patch delta 113544 zcmdSAWmr^S)HV(X2q>T;APq`NDcu7K(jg)ZBi$g~9Iy~U8io#O>5gFtk#2@Yy1Sc! z{~7%~@AH28e}6y1b*?%4>~-&Z-RoX!7sU~D!w5<&t$@CupEh%Q=^TjDtkaojLsFSc za!lXS^sfYTj|nuf=PTL2)qfi=Rm;-CjCnld{aVs%7vbLEZ7wg+$qetbFOzq>fz3vC z_9S;ETa<}LCGxI{6wU>*eDB>aiMgNgYT}mv##kXcDZ6F~=fSz-{zB`CE8khW<5>yc zN>PF6ZVk|KVP*OutqwKoJk(&I7sP%hE128T^qqfq{{vC8yoj{kv`A&v7YcVou%jNr zyzqFEvgTxa3_3YAFBCD}{==|!?cGy7QGs1?268TFRLJ^c+j8k$*29MwnK5Mcf9RfI zbQmzFdoAA?uU;<>n#gyP&px_8RPf4?Eu6iaTEY{M%I2KrA}`i=_6o9L*6aT*qnG8~ zExL7BtPkgEESxa|>=Sc!ABVYEYZ#W9E3w}s%w@ZZhIPFlVRcc+o40#*KjT_hXY-&$Gn3bxdw2a8cMI)XQh`%jyE1X+ z%0u8=qu(h_So0Y^$u_1WbM*3GH!Uo}FHp_{G<)iE1qY z`zyVlTKQxx9hzaX*!LtcFtP7_eIRE&HW}Iuj7<4a1Aejlr^iJ*VU5KI>hBA@+a5IQ z{Swq;RcD*!j>eay@1wr2X0B_&%|9GJ={c?|w44pj!JscJpZycENQtq;6&2oCezRt? zd+k~!ZQ8}ys?=zl{Q+m`Lv4g(d$g4k>X(dxEq4N&<>pzC`f=^fiRW0ce#CS+P!6dE zl$RPZenxv&L}hlyzE!ci)(TCyUPRp?>*9=B*HJV@hzzX--vpVzRtQ-rK7|R|5yBeC zr(y3>NvS$pYzt@Cmu5GdkS(O+jQ@v!0GKvAU`a`M@HK_bc^OCv9G zlmqpye#BIJKig6**k&(m(Th_5=)$IW+`{*CdQT|OuMX*>Mk8=^s9l{;^{2!!qbEUp zYSOJUk|_(;X}tL8$^>}Lo8F>^xSq_9Y&Rtt;;|mKoTzqabz%&Ri+k)~vUr_+GcP7Rm7PqpL;jw_)pt;@*=MsB)_)-$}>E zkJ^98rEsXTx|_F~YwOsJZoj9+1(bNVs3DtThKNN40EOt^&*R@l$20I|i2P|h1m5F$ z!$5JS?dw^mL%Mz=XK>!&j(oH|NC77noh7X{+m+`H(b7;0v-_;U_NF5(XE!#sQbFz( z3H`{3t+Qp=rRmXTVW#CwfqJ=8=3U<%3Hi;)x)%xw~W=QBJIh(%rWJM^^i3WHuvUG* zoNLSHaDg+b`EV`4Rb@C~esyS@V_oHrJ!Il$75dy9-p#ngHOJcaO`@;E{K8nYC-sTz zECp)}T%6Mt_XKtcT+M82_9ZAShAuBbf$to>B7(j_~5IurjVRf3UR z_c}7C&{nHxifFX-J$dwE0%EneF&XIR;|(>@XV(=K?^7>1`*D+bT)UKGw=Mv2-MYg|9wZ3o4*2jGcpfVQcYXn9}caXDU#4=70@vz5xe3@S!E{_Jaz{N4w0xw)INc;~m- z1C>=$+5DwF_wjw9$?O(X5?QWua4$=dEX`mXUL*K_kZ^gAG57?DCW#NKJ zo;IH4t3rftwkr_aEhznmU;VHWzYB&PAv{jepqi;q%>9T4mA}8-_-zcco;hll1ur$% zHFmwucORe&PtU2_N+sU!z0)5lT#n}zwGiH~P!|p?tuWx-ttldj=k}809Wx8;{e#A*pOWfzqi*~s*>o)TQq8Vh5&4%SUv0Rxa@2fj$GqQ6(fst~#-SPx zYu-pew7Z@acimXn4=Ykka~4SP29j}CI;{Sg@pT&fleDURFq}&k-V{%5kL7#h%9}Xf zq~HDdWuM?DGuJg)mx4=gn1$(Lb<6S@@a4Nx>mLpa_B>@=CzSlwLKr&966JtNHnm0{ zYx-uPSOT?lRgFApxO?jSy5@*v;MCZ=egErUFkoPn;xk@X_m);NV|16*{uz8QrfAyx z!1s0t5yeXXf)K~=Yt-{ywf*DDBm3BC?~`#Yc8%OLUy-Vy$1*?4>9;2lfat3cK6C9n z=F@2w5@wZ18*`uS+3T~HB4T^~ZxH!f#a&6We$^{hC2F@|eYkds+b?tc;)dqyiE8kb z94B)<7tWfy4W{%r1BVV*loPwwo|_al(GiB~R@);g?2x)Y-@=hyA>rcQC;t3`@Y*-l z{oAL%M%cBI4O!yaUj$Zs1LR`Vi>7O=9HMX=^bvk9`E2?>cWbq}%9SvWeCynL3pYje zt%YVc3hYE(=F8#))|%fNA{=uju`~smv6a@s4R#b(j_yA+2vDkJZmJzm!^QX4KS}OO|QfU68ij1-Km&T#=b{5Rc1K zXdo*`IHXZ9zqXJhx6#`k+SAhWUbqXr7&mQYHSVBIN>2vK;fS{Qk46Q z0C##=fERIKnbnJ4Z8~&H!w7g!jt8^ZJ`=jVQ62&*a(4x=T(?Q-^3@Djs`}fSkGi$s z*_nL4o`TABDTM$vwDGllT!U!ur1SRG=SMF;klIa3yWNQBg~m6q>kS$;eG`DsdTk`2 zWG!%w&$y?Hh$fbcq-$#D556cu?F5{oGH{Rd8<)f?u5_H=%x{EAlsX9b?&xct{P1CZ z<5L>j%V;;cb`AB;qF4QW0_J=x`9hF#gf;r`OOMxY9|G>PiKjBgBlsY=SWiK4MQZOF z8{Yo+A(>CYmu~s{h--vWuu$jtPKUxT)@gR0Il{79r$tJ8kw#@))7Sp_FC~TTAyvm^ zap?oL%S{0ve>96#F=W~v>Q!0V<6x{G#`9XV;$i6St)?2oTc965A3dHerIv7#w#C#~ z1^SYsE)&{%?k#E0PFI+`kAg3!3luBFbRAse7k7y6A{_XY1H&(`f{jkhSNf9mtP>sE zT;poZm3L1sJSGJ1b$>#7k1&}t#kD^+sl%(yFg4WK-(~RLh8}jI^nUtlUde)jKd)f>~YA3o~^)Ru| z$$w1wqGIqwWNZA^arf^!6=Uv@ZPc=|9ubWQqsUTP>~P+jc3}-8+o`)tvxsp+L56N> z6m~!>%8serO3ebp} z-yo_+4o^+eW?ItUZ8)%31^zwTl1`-W>l@sXP6B0Z$0qkD{OBRwj7Mm7q&8-_UrI3I znlxj=FnszT;(5kW?IDqHz0c=lm5+eRRk_Z=pVu-(#oBBM^X-~t580nmJUI*^qFH%_ z;quN8&{o?*&J4rnuLUDenGtLgkGb~J4>Wpfiy#5x$ zzI?V%qEgJ?f{ior&F~LAmW1or0Ooyo)n#^L{_bFfpG0?cUgaj@`4d^Wqy&91OxnHRckWg@MY9Ci&KFEQcTsqM8Ry_j?{%&*F7g= zTwQ%HU$Z5SZGY_p?q+T-^(9Ctkana;F=)}&!IQvJvv1QaSp?9zxT%n9;~L*O7MWMu zU&@OEOcthgB(JA~9TH!diH{vBlmMqMTVSRN2G3o8_@etdVc!_sHyefo6XkBh(@g6Ruz2b~%O zx$l}=GoaNG{k<71Qw)NkeP`+xp$28vwP#B(+yf6i>djYiJ>s4{fgWQ&T8=DZ6H@(X zjj{q#L>*GZj^4@UClIYxTJ9U$h&arMjgsdVZIW|5qG^g?w@^7Z+p-*c>L{UVQ%3pO zWKa~>@7kz_nio^oX0)KPfdd$s?-_L%r_Zs!{eoJ|L#^&~jg6%JdyIOP0*;H|M_&#; z49k+1aIL!Xgw~uxUsAIP^Hq$ry5$Tk|EJ{LoC)G(s&3Qr`PK3jXviI`_AKQoX!ipBbQJ5=C%6Z@ zDYKLmnS`||S|3nwI!4@T?!$`j8E%YdRzw({MdiKD_& zb(peGG!rMwh4!y|=8ETum!w8pj_HmPQ9Kp#nIJ^EQ)ua&H`B9?=cbz~G(B5(M7%QQ z%GqUdtT5=m-F!W*nuIvnc^mnwmh}+|`v~!samAf!29cNt{C7+}?nnd9Br})y$qFH^ zB2PaC2~viU(E$EU8_BP#IzpGQ2PE=z@80oaKrN)@1_g%1C<` zoENs3Cfw*n;#gdNK2*=Q)xc2O&|u3d>cl#_Oqi~ETktM@Az~sV!#9@y{syMxq#U8; z#meVwCsdpAM8)Z+tMbb@Y9U9%s%;3HqVhc;dhwa1F7)Fk%>*Olem6}Y#y;}7A!=jpB8 zjC%VElR;*wIV2+b+PUO}mevO?f=f|$vsHE|;uq4QPNfi{l7h8(cl@eF^ROaI+ zB5o)f(^Mt?vBBX_-y;Al!N)B|>7pKvEUTG5bT8Nkm2tch^#@Uh>Mc4o|A70$uWPo)OckYpjDXV}2E_ zn{Io!Lb4M+aklehZffeEdQU|n>adIH!6s%x+>PPf`ugGYY#+N1A6Dvb(lQmJp0?%N z1Fm?X-%6j|wRp&-KR&Y|?wxUiJ7ID0Z2ru>dloqLv3w<&f3aErU~3lT|M*5E_1w|frTc|aTuPS)L&-2T{z#jr;C5*~Qv<#8lG0e^`Rr4R*`CWAVEYF>U>z!hd zV$YMg&o@Pg$yf9l&id`A>)BRM=t?Mm1SnJ9)i@bcQAdrymKx@vih<|OjBo2)o>O{l zKvx^`9+CdC#RaVhnrFb@!0t{N-mY>}7bnO0nd;vFoAc3nFg}Y_6^elcfcZ#r4+jt9 zpyl~^rHy-%-e3Xw=4f&C7`sl{Ctnc;lI3n#d2xdu!o8U>bo;&jYy(4J5Ls`cPCuVs z?*|CEu8s{E#}zU`t3dlT8pj8!|QB&Ov%tC3srCT?>=ZwVGi zdN26i{eEo4`!2G_uoh{j_}JMLq_Xng+OfjE(jlJnVi^@JYVKgQvTv>BlG}X9{4vhP z@d{1~R)a;wh<7mJ$`{>#*Js+fR*O?!@Vz%@ry_@=>h>N`X4)^^_EQT(b@IEOe@<8@z9 zUXuY~Qfgv)3w8JL9dfhouY;lGj5)PZ&kRDhR1ROP2b~}|)&(WA1stBh{gSt>V1fdM?p;&F$BdCNF-~eWuJ!Zb*i%E!-N|KndG|}ASnkFPU6tf-wCbJH zxF_3F+)rMGmXR%YM7*S3KcaIV**eta1A+-KhA8S%*)FKmu%1bMuF^j`^5d_{-6KSi9KvLx;iCgM8EOz~gv8KHk;FZ=8t zS^u>IiqC{TZ;CXZAm{7#MWIDAeJggnoF3KAZK-#&p-*LN%c@#OGd4wVUU-~wZ+q)Z zI;7cBLF9`P=i6?!Mr32_pG%%_YqM(gxYiYJB?$m6cX7ykqdwaCrHJNFGDrP>fCeCaeX4%lwM z9-O1rTOULu+VM1pc^c+1sDOyr6!B|S91@DF7 zfNVa&lNI$%CZmkD7O?R%4GmE*lk9lQMB#KTRU8M0x*+eT?OJAg1kJ3QqKWcb`!R83hk z<0sDWDK1Tp`aY`wp=ys!y&uw!-UBnGChev(S2(o9o1f&POn2(fX<=}#y(+@Gl*ZYX zYk_2b?@+#){D@lIGf18TtyY2ldL3L$_P<1Mk7REQO!;o?Ad0?`2H*VG>2XQy%)4B^yjO%9?9z-^9WioXMwR2&o5#zqF6zYFFIvBS9;@w` zMPXad7jmP4wj`2=!h#?@d-X!}Lz&N&ogYBeBC;+G(?$tMeZ(aZr_(r4^oOA1iF8 zUh&CPx_zP(_mU<{Y>dBfUzx0At*&$3kjsyK9qtY`SJ7TTpdNzaI>r5L1oq>))ZI!^c1E=pZP2uTH3x3?e=0u@>-~PmW~}hpTV7} zYOVr)K+pgl3H@mUwi`HM+)#nWJILPi#xI5IVvqlpg#MCv1ZRh!l7W-2fkjL$Sj6nF zf<=taFJE*KQ_{D8Of}6zRzKx=#;wQHOHi?&?_j5zO#8;7hrTxdi+#9~Y4T*5^Mz8a zxkPFWJ2?@Jlc1h@oJ8%bRN@HWt8_=#b`>UOlKgD&Y0b459rl9z>{x%_%x`dU8H?%h{hC_#M6}bwsq}R zgw`9U?`iU0GY^?0zc*AXc_$SwbWQF#XnHeI?-@)D@zZZW?Rba5hX-8rtx6pl zUUZxh8oHeF%3Tq8nfTS5@@nfay$ra)+{}@i|78!lf>s|JLjPh1;WsVZad@%)j$W27 z`~KhVwj_N8_LXNLO{(~vBT)S6gW~t>5EQ=>^9_H+Zvppapx=7z;G1k9_0QXUIZ7np zK4R3tF@^isW-K!L{{5;PhEwf|2~=c@DHn9l$3fW2-tY))1HakEL@`1OGbw6RXM+WI zKje!1{~*S9KWkT}RoeKn=u-oX^~v==K5o(r7(ku;nG(l~@N%dJt`q7n4iqCf^{O6m zcG0h`I;Yq6prYGJ32YA9gki?5v~iCI13yxPavkAk{W2)b2_s8q+i z@X4+_+Pti*N6i8O>e((jrh zUsXyDPqu3}9O(aaum`P5W=moT4)H6Daj|**mSE{X?2q9EUtU%>DrV`Fm^NC#RdGU7 zH8PBHNzi-=Z~f}bWX1l`DMb>WW!epuui2W#P4KaUIX!T*^BJoF($9W7Vk@@l9N z3T0Ez{K~Ic4MAYl+SysuBqOhU?e|*+!LbL;ffbCWjSIGZ3Y<~f^=In{#d zrp1-|Yzn;NBwD@wEW)bovqN<2H?}%ZVAyS=QuENf*H(Gu{(mL#3+<*Q8=@$#g zuc6Z+q!_WVNV2nujpWu^R?vJFmT%O>cmKzP)1R2=72M{lP)%*fA4D{e?-J)j`fr2Z71nQI;czMz zJ~b-vX{xp(6@^`Q({MI)`ry=^2{=Nm!M}a@>s9)nVzJrBFZjAzPhz8`?NskQs4m#o zf7}{OUY>nSbUtD;+9efrpH(roNAn9gVorI>Y3Gly&3G}w`&7q{U8~Br0Gi2Se%Y5K zY*T3$*7-2J`z~=L1n^@ssEg)j)HJSoGEiLUyvk*BR{2CWOd)~K3XtAyV$;t}YflT5 ztZtt^iRvzWU%lHLSB;uun*g?wlEmEQ!Tt!-XJ-pC!UtWTe{EUv#)*SPC8^|^mRjij zz{T`{BT_NuDMfKwq}nxnwYOBc=a8WBa)$c;?gnF(87O-#dZ(L2mc~-Vy$jQe4pzgW zf4==Gm#viYkqSWqgg`lgI+kILa>*h?#H)=sZVji^F49ICW6u9^uyQ4h4Q<*jWM81b zcE*2knuFEI?j2QaJK4|r)%q-C{^6q#LDu}@@A)NCKyy+CU^yeF7_>_#pnmQVj{DuXq&HvaoU z8qL7qHgwX&B$@NM_e@tH8 zKT0Z&4W9|D24AdO4v<9!B(vT2c?j;M?6au3tD>H#vf`sxiYY1a;dPW$ z3fr9kwFmSVtkI#kc2eLrvf?+%g75di&Jcl>YJfk>D2buQN<%pL0rp%A-0?7Q1^>@| zBLIG*9F4;FbWU)HqXGxCFWEs|q%tYmIrFdT`X`J0qa@oxC}jRq(DP5;A8))B_Pua9 zZ%1@M=2 zB4gDoc!Vk0c~02W@B~B`fquQm>nhuc2eEcJga0`b{|tLbfXn*OeT;{Yx^Nx#R?ass zvibS2F|i{nn!ZyBF0J$?%6rjG2>Nq3ij}Ux?q4xOWq0?VH;l1(K+q=r^tO60lhA(Fd z;@|;A5)3v^1mYkS9r!m5jOdQJdg{Nxzea;QHNo}{`oTLG0n%h36eF5Fh0)N* zzhVRN4dI_4`}=GV2Z+S~d#xDsfOQ$?-zOjFfQL;QcXb(!eIN%!_w}%;9v=PN>$yL* z&Sk!rZnch!U)n`DBM7P>#+P{D10Z)VjhC9BA6QNX z*E=Kp`VJ=c1J?KJLrlUTh~5uIOUh{y>tPaJ4-zpFV0FHpJ6P@>751keSn@cUupkxk zyApz??Q6cj7xe+` zK@L!9AAK=I|DvRW@t|{4p75f1kkre`?i)Gq>=5znR+@$=}zH z8i@)BB>`^mv44auEVKqYZH+${cDwTUKuP(viYZsB;D3qaA5Td>0P`zr5bgNc&gk*x znAvKdf#zx-7{>*8JR>5-O~2A|`jz!aA@`eX6~&>;uD<`9yA7)9A?8`-4EIUhJKXKf9b}8Muk$M*kGPv?&)ie zGw1Y?{tDMkfr)bW;%HXGKY1vz|IGRSlqmXm-hjz&3DRBiXJ{PS)_I$b@PYe!9REGb z)~=XQ)m}>erE-RkOp37phf!_nwXI7$Pga%`%Bu{Cjag|wGL)KV4id+|jsCY+O*rOU zvka{VW-$jcPB>SU9^kv~3HvO4-I_tP{}^bWaQ2G=#}~q)R(^fHbI{ly*oB_9tGl0P z;T{q6zaKA!w_D8Bf%>re#+mVr4GkmbNobc zy{LLJN7sHHicFu8b%ZXqnM0{W1>*l}Fx``EvcW`gDPGnr)Y%_+ebkUfA9uC6gj!)! zE8ym)>sS$1K%e$tmrBfQtBP83vFNQjla3ji|_}a<~Ac^O(`XF{L zZ84|>nJBk_{g4U%)<<`K7Ze4i~aC= zoRz{U6P%meU!gB^%sMjP4xNoaGrL(D(Jiaqviwe}uLxOse=LzJnEC!-dI_^i0`(^Q zdgZh#1Z6uSzZ36#)Kf@Nkh(1Q|i~R zc%2FS`FytHY7*CHCg4;v)MJ;i5MAQ>JRCoqqSM?9D{}Lia?=sFED3S&DDGLmindJ^ zd&?*J^@G2%|6NIeAk!lc)P*bi=ZYOCaQ=5WN{X&kpbXyzpCSjKY1XKlVQh`f?0|M(aD^DJpE-H0gpVx>4l_1nY(69A-ev9)N)*ulue&8nAkP+HWc+ zT45T0Tz=GBohcX9rvAf@J*YrWRy|?&HfyIAn3qgFwpdi-pL(B2e;1$K{XS+wc>S98 zdl4*kh}yY}bP0V*T33!7z>(K){ZN+)9rzn1ZXoxRpS?a57oF$X2Jg!acF7 zP`|covaR`JV5Uo6r25QVWk9o7#eifvxph%Mz+vJs*rJ0~SPgaE+Md)s2J20Bs+$?h zhAT1S$_(3hp68>fq7DrOdetgbyW>_|jJ$HK1f&Jr%EzH%y?)WZt`uQ2!gE$vpMt=y zIB1f#C#z3}nCup9O;tmg6XlK#;O=@af3B04f?6jwHhZy1G5`zM(KMp{SMEsQuO-iK zPgTPpH&;jzDCBah{9vzzSkd6HHIkFR%p4Uj>RxmO{)fkEh;ftXC(a$R4lSrJlNB=i zc>Or{FMWV>CR)YQ;f1$V+UiKOl#-!ZTNQpz<|-_`y?gJ#=4OLjk@lDg0~VeK%U%!C zz-$3n>O^Ncn{iinK`JZYSIs_20ioOOiEWa5tv6COoodRoK}iqpmVE3n?h_O%s7lKQ zElR53^<|~tHT~**`zX|>x2fE6&^W*U)uqr*O~y|?K?+uJQg>heosA8c7jG}jPgH5P zXE38ZGkX2bPs@uBD_19p(V*~us#RcG2&@zlzxp@>+?W(`=+q5w+{h;id>^^_A&8is zU6QcT)^{(?JJjC}rGan-lXFKj_DIasxgw9wqhmEW_2e+4-bVdTh77nrVAOzn_Yu8A zBdY2c%YD|j+GTUJx67$89;mQP21ms^ga|Wf1(a}!X*obzjsW*fejiw9Efl#zkA^YI zVA7l@mS6wYw2xb&5zXl>@f%7U#QauiZG>}cnJ+bqwNn*@;*xvMGVvi(8rinwVBb9l z1rQ`z22%p1nj=lgGroqgoHy5-8V-{o6r+bZbz*D?FA0mA7ejeN+bj^2*b7`hM7k)x zk4jIc!lRTwzTE{-^1T`iRG-Essb#11$lTnRen*MHXSBd*(@}P(8kvF^UX^jYi!nr0 zDR^-Tdz(KdWVbV>Q@-6_iI^xe18N^a}`KF=;m&e121=&*s}Ou91WG3DQ;Sn z3g<{14ZJ*941;um!v&^SXZxkNCvD@8c>gNzU%K?*T;DnBW1wkg_D3Gyb%A)BFSp=6 z$6wlgMI3j^Le3WHHglv+1*{BmGAo{8N<|3sc5c z&-$V&T^FMldD_<#1s%G|r@ghM1O^YuyK@IkOn*+a1=7`XPuK%ed*o;TC( znM(0PJ7mEb)8Me>QfHBB@J@bVPs(AU59I2$r_CIO)##Dmlr8Ol_H0uaR&m3{&zNc5 z;-HHDp9XNZ=T#|>WeA)zJoz_s+;?Y23GK@*`m4U+=+!!9xxR4^i2>q3Cd6aJ3>eM^ z8W(@nI=vr!FsLNyeG|tb*yBE&(#7QbrX`!sugtG3o{C+e!sbboTgyEJQ4*N1sL^xWOpc_W`8?{gGkX>2f z$R|H<$*sSB1yBea@uoIVCyV&j)gR7Wj*7Tz6g~x9H-@VUh-oAkqk4rxL_#J7vkz5x zv8=u@{CBfp|Nh!!Wj^T@GWYe9c%u(?ydI8YZV0bqrC3DFP@2@Ocp=9h^*7g-L)8wm zXZ2#6e?{Y`JjtKYY*|vRA4b8s=dqe8|%NQREuZDE(WQ+GlfS^TxO4P0rRDPG-YhrU<`K`!SOf0$g z@lhV+SHt~4d_wbe;}5zn+U}gky~lGjpy{5i6kl+i0PeQ#w#W5nad=M%wYVv_OpPEuUJJQQF{U0JVqY+ArH|s*)I(n=I!NQ5jl$P71edCC)6v-|Ahe zQckoJ~C+cf8__y6SR{K+7Mg4B&9{{J79wW2RqPO|kq)p{U zi?8DOJim?XW}qM>EFr=C-Gh!u`Rnb|7EobdIOTL&XU6j!YguY3C=Ms?$Tu%@@(l!1N_$HxW z*49g&b>aT4c?>F?2pz;&c(>}279FPAs5n`#FQKnuGaAdl7)ro zzaIAte2dOx2a8rp+`c^IhLd zV#s5FOW$%x?uJ2m2j1TRHXhcI86VR z*Lf{;n<0~@X*w~kavXY|TZ6I%cSW{E#8^cbf${EQ1lKHZSZP;^dhHNCG~eQv%Bwge zEj_*p5|*-|M`;+xvz9??GV|%2$L8A49D<3ak7uiYe7QL5e@Wbxh?*%W*3D8d^W5lU z$&~G1HEXDSz1e%yz=UL0t>7NRr}6UxYfnwGo>YK(CpsV(b!%H`7Ku6-M)qq9Mt=t= zE`we8X4v4fFED>8@utijG z%zv*VagJ^(c)hZ>de)CUv6sIK^k$ZGQvD)XQjdI!stennpbhOEto!ji3VET#+7Pfu z8cFjeCoz@6sm({=KwHV84@hU~E=bLCXfVUUjIo?j02N?Fw2$g`1gAdvfGBy9ELY05 zgv(ipuSX#VEtaLv^ieT$??PMSP1Ogh8Shn^9B>I$M?}2Jj)lu4yh<=m-Y|)=v`i^F z;78QxfPvjqMO8M<4N|oDqH$1*AYL*VnWNgR1qC*1#;tTk%?ts*ys)FKeZYKc%=q~S zprUNMuevLST^J1;jZ$MAHg(3INbBvote=x*Rx)6sOCO*s6wg)#x2g zLWY1!9n$!V+1sWsZUhcI76~HR6)&`ziuBZ(-N1;lnB085?5yNwlm&hqpsTE z4Vl+i21+GLT)clSz#%rXajn-ndaH)X7%TfpI{!O{tu?t%&Df*f~# zTUL=+M2^$VHW3LTZK@i8SU=(^%ztT&g1hEd>b4VYix+ZvJ-4_+lpt&q+wPUHy$Uvq zz4eRkoNP^-aP~*FJ9{6_7*?6I_i0xz*QrfSjNfHj$$RMDQD5QRZ?8HM_xF;dzrS8U z6pL!t)%jtsuwbgo#&D+{je~i^-mg2O;SZvil@GE-T+w?2U`Iws*8Zwp8VR)Su9v!r zDE6A>?zJI#DLYQBN^!6+xMp? zQ>J`%Yo=UQf`aF_*Gz%c8=FTQoAOxKmt&?95}=D(i8H0Fvm>C@VoEh++w++~#zNMu zAgARs>0bDAK;5B!Xj%7UXL_?nHwjtQKv5Vsb{BKENa$p0>rW;7tC$4yGY`F!%tv>6 z@9Ldw)?7flV%Zk$U2Rg#pA7w=sHAbQEH^)(`>$j4Td!%9<#-|ZHD>GngxdCGWtK{^ zNLjZ&OMw9u|B{tYRSWvwv}DblC7w=B>tk;NfL31&x`Q&0duTVKp&pM-RT`t%9@-6Q z0ivx6r@Eub?99*?$|l+Rb<$0y$hu$1`ZF}WSk-1!P;`ptL(W9s%Kj)9xap*&|Iz1U zE0iFc?QLB&eB;Cu%$%jFyE6#AZ)8DUMaU}kr4z9!=P_A5%@lA-stYGdiX~(HnKQs? zrHrAXZ-UT#7EfFi???cEM?>Csm-fc0+>Xg@}R|LLPL^2<{*7_XRf%n9CN5!Wd_x?(w<2P_6Ln|GL6QviW z_936~7>zJ#3>6&8hMHn6>Re%{OJccCozz#x#VLLhHthv14R?E&FBTjLcVXNPh7*3* z^+`vi8RL#|VI(Xnb-e?&n~8%0R+^U3U^}@pFo?#RvRyVOs@(uTGSIni%c814$JY+` z_xA~f7F6-*&X91x@+3$`{)$k{nH<_UUp!|>X>)CV? zvZMSM{`mYw$*TMd`tRpkKPZ5r#MDHs;e; z?(J15pz}dDY4+;J#(3^UYdVqCa-K$^u8fz&Sc}#E*NBXQ`D$v54RSAU``P(p)E=Gb zQCw+gaB{Z8^tTB;(zu0NLgVx}5;r_B+dF*uca$@6+l`jcwB zh_Zm~AJ+D;)Mw=J!pWLre8X`2+sqR?M@~QQ0qrEm$)MOS(67`5+ab(gN27emYtve= zr}fr+!IMQ$?REgYk`L?2 z&Xh$VnbDVxp^%pWPwVJ(?WgOOk&2d@41`KUep$859n%Ik-D14Z;F+YDmX}Yx5kcUE z{&mf&b(0mM(Wo4iuENCEcEVd`%v_EV7j(6Gx#phx!QpLOd*Hf~ZzXYFqfR+%I& z9}_7jFFHeiGJ zh8mCeolF5KfryCnf>0(s|6tJ%Ph;4FuZ2KY%AySqqt0bL(p9!`6ba8VhMRN^hl^Fe z5fL2~b-i#I?#|rfj66AtpV|}_80ucXINl60ry2_GX;1Z0*R2F>*}m^IDDrLiG=G4Y zO&(EbhDW4LH>3owmIPIQT5HeyKQyahvS`I_o6Bbvvjw?MBjdtv6 zR9;6BfdIN(51)rzv5MFtyfk?7Hnj>3If0%;ZqU&yH@x^h1`Qj;Mz9s$_y_QeVBf4& z6bhX*3iVZUuKv&5#|Q4TSx&3cV`ZjHnJPPdI1NTpxLqk1dNq>KO>DfGd`x2KrcwW5 zY?>xHm&P~&#$>5;j_Opcz4{DL8yiBws{meCUyhbPysGbfbkxz3te^k;ydFG#nl!x$ z8IVvK{v!6xJ%%dvT(x1Zs?`QD>+JOBPk`8+{^RK5O~DRup1H)2x;niXLI<2l6>K{e z6eDjF(?q5q3@fm*z>~}_Ugs_tpb=9LtUcwIEbOegG3+o`_q6}MB=9#qE6{IlGu-Bb z>%Ryl%FAOiqx@nnpUbrQPf(NPYSX`umlbP#s(25NE&z6U6dNca{un)K*w@q1u=TbX z>-Eco%Y^uL*qEH9!M5yBLzdv}Ypv}5I4hKp{hPqOjgdp)+I*uPzv$*vqKM8n*}5-# z+`Lz;tOkDowbBVj_B7=*2+&610Y!AXGSBzFu*JY)pntbHTZZ0O`6|0i)fgUzL?eU0 zisE(v`a*$6o2d}GrLQ8}t!f8O8hzn-zL;)5Q=#LQcvnb9nK`MZ3x`*K{QqO`y`q|G zzpqh55fK#?1VJf^fOP4dU_q1)(yM~>CcU#oY>0r;dyw7&(n2RHO-cwILYLlKARz>j zv*Y{z{@?FAW1KP0#kn{a-yLNq*?G!(=9+V^wTY*xCk+O@kSr8cIIQ+_SN=B9N~8X) z5#1*K^)CQTChzs`q%8t=yJl_e)r%B9*;`!C^3(_5-cIQ6FS6q|SLSjfVr~VW<<)7d z9V*g)W+Lup>wO!)#{wkD4Qi%-ew^a4N^nE$I(4KAZ)W~8?E}~DS~fRUd#;a`Y3*pb zj(z_*{y6r%1lKdT8O?M?{zbDo4}G#4`rZZjz4h!lEPqpkJ@gfQ-+BwkhCc;)=oZ*& z71ODPAFG(e#o10;kFjGj#Fcc17K@+AM_{L!z2_$}x?D`muP1lz(Vl8hBJbVhhI5QM>cw+A>61`j{l_p=iWxYw#c`?yo2CwX$9e?a#+Z`sdMnlYsGr; zx8sXjeZ@*XyynW>?!YYfKJ7KD3nE5cesJc2#_V3yw~1lg7WGuKR}yu>P}O`+VWS<#n$lHy`L&!3&q0k+wn1AF1jO~5C{rW zHtG1Q9tY#q<*q7nc0OC1~MPKh4hz`m`B&k<-b!d zw9uBgJ#jUEcFQ-A+fg0=j+PXoMZzUZUxF=;ue5xKHY!XqU!KT-^yA%&!)#+afxF_~ z&m9-Ungp%)GBJb(d#dGR`YZul7Prg>)=7 zt2>#jl0ndXJMKvEP{k6Wg1u=V2J+NPBG1=A-Xz$8??1=I)jqkbakvZrGBUj%tm1Gt zS?Z4Uo%Zi2nl6k5wp)CU_GE{Y$#L+UaHtql>F?TirVIUad1`~r^NSGedEF8fo41eQDJ~60zuJ5M6mUq5#ing5Tx*&B*4#Yq4pclKlOTXBv zO0#n6c=;POOk{ZG=8k2o!BLX^(W1D+fRQ&21T&Ojd8QNn%!Z}y>Lf5Rp-aZE3!p)m zCO>@Oz$`th5tzr}()|WPimL&p{SC!kyuq^Pk{{{UFYdl*KjoR9ln_qOV|=AC<<#Ba z_bV69v)qXXK`s4FJtJ|Y&I#Q@UFG7U>35QTzeyzw({OdA@p1_#>`lBw>$y&w+dR>! z&gYhU(-Y@Aw3425-8{a3z?dBHH|G|8{)2*9$~EmTUzw+Iqx>Q*uq22C)ngm5TS$zs zrK10q%zL$+kx26OO1jr-eNOU@tKFgMrf_pc=P~}H$y8mqwx+|g{2cKz{RbX4;Y9gG zWc|>6iqO_8D+kA(qHe^XVp9IP7^+Lo4PnEsyFRu%zqkDB-Cl3QwrOO);zguUqLFe~ zWR=?^LT~^!0JzVR)KKD`RKdVqpsm)$z^egO7b*twYCCOnT3{2Zj|bhdAJ(oTtsuwy zu`BniuJP-A$H8viYZ*fjh#z96&Ya&Ac{nmt8`81{fY#mgc#T0g>woxg4nIn=o+Y>4 z_$)!#QV1jt>-IO$gZb_DmtR2@bsi4gxdVLsozIjjN+xP6Y{`jw>|c*I-LPplfxH};L#E52y6*0y`-C6K0d_)W zwRckz&<5mlHP;)iP@~}Z1(^@M5MyYu&JRMscmtPl|& z71y_1@8Sf}&W)N&VUm0aCj)mo@^CZ4!Uz63w~>iC?(u}wNuFvAuZ4<5{sqDxh!Hx9 z&!FTv)x%BE7HB#IxZnPnn)nm9gv z)oH)^i_FrmGUIO>KjUJOvV86LECD=#=pe`6^}Sd6z6G6{yU0S$=R@!CeGlo-;a{;E z=}ON6*==5YgLvDb)BZq^T&n?H1NYaUMEwg}JKismJD{75SimNKcpFLVZ(rA|TxP6f-`m z-u}%PtbE^6Xt3$|eFa*`86qPRP*l9x-MLu zd3~$8cuBLyfx9KfM_q@^=77#Z{aK{cOq@olq;c|V$B_~T?VzfxVdh*9g;B#oz#kQF!Ej$hSm=Kus&j+6ghOZuTW^UgTk# z$TRNz#AciK0&>AiRrU#sVIM9TOX)cDeL0J@2MUd|-;+&8{-l=ZlGF~(40#8e+7VeW zDVsPSG;l)j>-)g%ba36c-Z^;?>;E5c@sp`f5w_h-(3DNxj%Ewmx$nOiZlMw+a-PZAXH48-|Y16P*v zqHk-YJ_(1zxGa$@_wkL(`VR{id_x(ykz0ZYxA=?ib6@+wHzw=4a~@AyPf6sqSgo4B z*yWWi8O}qd!lM3A;%PsgrNE2YX2O-XM`T~h`l-eX@XES2A-eFGWevwwCY$*gpj*oF zVl3DnvSl+*;&cq?R{=O~34)~%kmA#wE;dqPDA3|gb;;p!tWQlJKR-mgXgOPG0An#;p3}>xqzq;1YmNfFaGft=+hp9D8?&VNS2fIk-W9VYI$p$0 zf4?70mTnZLy@1?c{i#5C9x(r5VyzFEtF=r^DIRUDcP?8!hl-J@wCA?%`131`57X)t z3Q}sIHBC9^%PM;g`A)sA|76W`GpUTxzWgMLQY}%ax?-0>&_ul72NNuYUIpLX=i58M0|{`bR&#qx*zI74EryS1TiorWUGd%n z#~?R@IYSccQus6kK>zGxs&#$b$^5Lcd9pT0rnf!s-ZmO6o=|-%)@t~z9rt9-@4{{) z=r!Tj%*?@uWL(Xl++F`kiwe#ic0Xso`~*ZUB~a<2_Bv_9(zGmA>0QBbMr2$zgec?* zETa+^m!b_T^E4FBg3Tt^`s}oPgH=Hjlk=2A9&_aWB~dpuunx7P=jrrF{=ZI<=JP8b z`hJE{t3@yhmdNFR|K@ZWEj_4Z-jv3J{*YWSZ(v*hP7Vi39INMZ!k=(OZVOo1kanvQ zZD<#(-s1*dG<(=Q-7aLo09TYa)Tye<9-e-=&oic6$+NCuqM-h~9^U<||JG82;;{1B zqzjKHYPK&oCHC)fi#2fzIa2EHfB4Tv{KK2s;_ot9t8;|g7Uooms&e(IoZ4BcSK(5P z`vM|IL$-jGTcgTg-7Y;|m}AP*e=K3ImF}KjkzNMt(%~U_n(2Hg?y6#C ztBJS3eO9w&1ll?x!84POAyq5&Z%n+ZlUdE&uJ(cCA>dzW_XX_a_(_N#PuiHGPSS4! z&=j+DUv8hfYxMK|^U<+Wfg7LRNH`9SNw5qG=vb?ZvozdJvAr58m@*?Yay@YS;(ZOu z^PfJdeib@_c)oJ~>9Qfz5V#$@>|Yv)%K#akM$g!$o|C22((X9Og3Kw(GmH^GK1M5k z`pOCET-U^iP1VCPAY~g6m3}TL1G>mm zsb~#JbnW8J-Z5J|@%&clNL{%Gh z)wq>zu$0krC}lQN)xV4#b^r@@D#Wos6SjWLZ$6T5s@eMY7vK4!;t;6R3k*^cww(ty za3p`gWqT`12N9p~deDakl(|`*NqGo&P_H|os_riv`Bmg6E34G&29*z@?}Ow z6@ko!L{aeD*jx=s`23?e5Es!<>C!Yn+~GN1$r*bUcF_t9|50$`^VNFIT||^8h^BY3 znZCEFPUXhiFdc6-K8byH{_jVVhZ+3gym2OIRNKvm0vjyFWql$E&MvB%UpjOrXc#J# zx)TKFRd|l?9nsbDS@<6ekJ;c9(Z@YUUkz|lZX@zbJ?ZrH-0B~%a4LR!!5;L**ZV{O zcCwnEZt{C-#OLp*{qrH`1S*s;&K)V{L}KDfl1p^sBlwpGx3uG5qnnGoZt|;!f{+JL zbgloh?LKuN)!ITjGHev{dqp&=t>on>uuRb0dwqhVozvQxAy8q*}-H1Ue(61-rdVF{tLhMeGv(xlio8*=C zUSsGMtTC(VGRWag{4;op9uWR+2UWPOz^$Hi-SRX3c6;;?Y(8T^*r|!^vdJL*@{TFhh5<_o; zzs6;O-Ywmm-odfo`nhOWz_p|-7AN~4@ehi8EhXh^RrjHT#}>%CVlOGhuRM5z^_Eg* z=lP(6VMCD@zup?T)-7iFdzOFD@W~W+E~oj-Dko_IcV-4N1S4mhwn%6m-#yT|b_g2T ztkE`!k&GY&7`Am}3T@-Q=Q>$?+%yBW8EEsNyGCzcL@8$5^AYTnrUEAD*5OT}(*?Mbqqs`st}BX!Z>O{ZVr>Pp#}wP#7x zA+N;HwKF+?3N(Ma|6R7{HH^S@O3!vvgEQ8BjO$!FxJ=jH-sDOAb`4z9Z>i2uNc{QP zFaG!1bHn7V`v0R>0_i`l4yVsbgL`#N?fKq9Cs@Dw`KU-!fqZiOyO|kY{~(Xo>NoOV zl>VISNs|!+2USn{;)w2lg`_osKG03R0%ncr>pJ)6!7u74ALz@i?Li5Giq9wrsd3>5 z*7CpJSJgPvv<7f3@8T=L{qNm41pUMZ$@Z_uLa+GccmOlk+jrBu5m^GfEsOVzH-2?py%x>lHYO*S5wS zWXSW+b%yzMBX#W0A+GZb6`)=GoqWLf-`CtZw?~dbL_vzb??9`R`Gx$ty%h(!zj3IO z7K}sq8VZVk;?M&|Fb@6B&fokShq#2n*tal4Ns;(19b7iX;F7u(odKr@Z-J90t`S^Q zF#s(E_!}3^OY)8Wzx+_(e?FA*BIiAuuDI(WR*!lz6dGQ*t_Yn;N%~QslWhf_wHhV* zDGxJWoB_dD3h82!gp)zbWS{vtagoseY?Tfs%b@;NlU$iIERSc4%bL4LXM2)Fvj4sX z8DI!gvIp<$fNu707HhgRp%3Vjq}{EE_}sp67|;Z+t69*58YPT4u4pcLMi=_#YLdLa z2T|%d=)0vFc8%oHwxomx?LGZ`L#hT)!fnkL}>$-SBl5at*m=q1#3}) zwYw<6Wk64%*X2eL9L+!>ZrgMH>KRqtOaTh}rJiIiG?2~>PU^SwITV=;XTDv&t1KG& zG?tqN4F92{%Xsoa1Ycy?601vpmzE+0Bufgt%>kMPaN5q3BEbpR>CmPFXZFrnRq~#u ziTyHpm#P^Y`(LrqGj|gqqo=6O$RF1KGuu>$7Cj2#BZbE-2EZX z^RdX#>A&-Q_9}Uvf5p1b^3c2^PxAlyjQ_{60?VrPwGc!Li~kL@ zg7L~Wl=~XR{xo4*1=@VF*FhI0EjqBE;>|@>9%l|RSY%*(IM2x)i{OLmnD5Ns`5AQhXD12dZsai=m0bOH{~ZJW;$%jR z*?2?CbjZy9{vb-ve|IA6EE0ly8yjM_ShqUMm1v#;1;+lU^g>31+JK->0l|BEl0IT~ zy`M=$93V269lciV8h_F>`{CJtAXQK`MRJ^WlaXo4akvxu%L8h)VC~aBU|&oZzEGQ6m&(lg$dI|l-d4% ztCRe7l;%#TMBsiB_*Lh+g$={^COuIo2rk(!BT|@0yKRnrMl7z`NL6LFm6uk=IJr=X!eQc)$xolO$YBtS6@xXtke*=S?ml zh@0c`PqMpJ`6U)@LyBFpE1l({A;d=|2x7pD>`0$*j!S7saBrPRAa=vPVIjtS=&MRA z_YJq3>m`*wV5}55OUHb5lz6heiy&P@o_?#V)Q1NU3N_zS(a&*CAfP^8L;;T933XTg z>l{3j67z%JEtnzSlAu@RG9~IW;e4>tU=uxN1&hxD(;z{|vR->7}< z|8@3*(fuPOI|Q#M@43cY{%8VTKJMD^C_0$X_Ngi0apjT*A4=`k0HaH4>V{l4n5OIw z8(OxtC7Kyj9Y!=*^KuTfC0e9VlS(S~x^_{fu2HceURKW4!wLO`&+=DB1XDM_1gCZ# zJF%CUIh4@=Y&G*(1Qo8uyR6E;`)6C(n@~Q>*NmKSZ4kVqu-|7CxLIwznwuEan=aS! z{)X#yp0rmF=e5D*n)&j~ z`>8<7=}}`eLgB-d*gZCxahV;4W?xT)F=VI%3KYmeaNK&l4osaGYCXPUMxx*6$ zLA+{6-QU(&Y*88CbDC>?S~om=y7aTes9EKM8mxyY8rz73jK*)DjIPH<8` zE$pw7mzen5AHZ1n;2i!IC&Ih9e?Gspn#95o2=(;6`HI-&jKIX5M6t{`jg=!RQs$%bE7Rb%(4FxtpLjkZ4S1OB9~{&&b96h!Ad0 z5_~?x2M1?#Wd;E>ehuzbovA^Bm{Rc=*lDT7O$W{=Sx0p$KJ<>D6{_XP(}G@#0@s4F z;Lh-&u=T?mAeP)`_@dYt+{TbqL&UD%Tn>ba<2IF&w)S`5s zagiC-^*0eh;i0(6YcLad$>80K>>{@BtRp(tiQa;m6SXj>8tej>(*8I$NV(k3==TW)GXsJ6XjBaVdams&m3NJI? z5g85G^6z%5LZ@&A`-%<`r8U$SKUKK}InERnm$IZfSGez^gK-tzOsjTX8D1?KQp=+` zdL0hJ_@XXV{?hA)7gwNmXH@~-Qhq*mKwfmKQ}KDQbdcW&il$r_E@A4pY!Qt8SZYk- z=a<+u<>}VbZqA|eLLqh@TwvaFZ6r(w_Jfu3W6w_xtmh-8K5f5DzObgdRf{Q2k_a?# zhIi(bkC@P&RTi8assF6z(zG@pHA+s!l^kf)GvsA1$!&bUF8%6xGq862`t+rb4=>5w zf!=+J20%;|8*ISL8m)L_Zw8zk?1JR93L@lWF7BCTxLTz^s6#Q$-+ij8GP{UVY1@$T zEZ*1&WRHy8uieKQTCE>6JVrQ2d}o!i5FD>^tQe%$$9CMO^u96{G^nv`nE^kg=6RJi zG0`G`3*fcEtO9jyOL$Bb^5}4Pp3{XB{)(5DVol$bP*&ktlu~wAZaGpQtj`(^$8f5I z!~o3j`;ukVKhNH1%|qYR?aDLPf0~>%Xr^}FHh=^ng(rY6z)>M{tLQ1;h{$G4dXW%v zTYtho zj2Sb$#dd%EGb%>ALq-fIy4EnU{{*Lk^dGNJot~>2)aNVS1RWmbo;rsvO_h!8^5z)+1c8Mt7^i3N(-j?EgwRxgbD>269YAlyQnE5Z_0>j%53gmmw)-2@<3r{_91>7n2~!k5vmx!SbN6zTr;aioy2$N_v^G3&Ux@9sPP;#IJa}iD-6y-Z8 zN|Y;4SVMOS8pl!>dXkG^weXQM>NmTC)j~mbRF|PnFn%%7ead?@9x~-gPG0YN zgeodDbiAKRh^V>j~u(wrIuy<9pg<;xtT? zzrNk+%qI;FBonN@i*L8TgS{iwt%+5IZFiHcIWG80ylR<+0%tnH1g`Das>0sJkEX1e z@|m&;rPZbA1}fAe@py$mp;rPYy2C-rCMyTA(DXFw9Uu;|vuc;o325MmE&8YTlpPnN z6BV>*OEi0%_0&Qi(k7<55>@smoXTnsvuGI=<46{x{waGWs+QBN-W%@znE_}d@!&UN zz8+!8zMLMY$@W4)Xyx6QwGy%dNG&qTxn1!3=5UJVbsZ@Gn-|EZ2|l3p9s!O+3rRfeW7v_oM8-m_OY2> z5iq}+4-JPBj~9Y;CM&vyQjwOMNiOs=oVrVM%N6SK4#d@FYPR3-ICIV@Ic(Bi4N^>O zbW|RhB!EH9loA4`v2o=E-s>a&+*#swiHzuU|BqKhS7EG3-joWR~SFbYwv5=MzXsYn%x>%0cs2xFANDMbP`z$ z7!XRamnc+^c}`YZ{dT^6z=Xe66KWDTyN|H?`grjjlVu9~vFD%d-srgD+#vj_mS$I& z=~g`rq-G$lllRQR+lLcn*m#CXPYN_Dam5BTFfQF0JE6BF-Y z{j81ZJ)8h3=vQkv9$++#R@~d6G)+tQo1@vq#A-$6SHNTk9P_d(Y-}B_8EbUsL!)}N zH26tQ^y2zNMcfQT*l#V(63R*)vi*AR!`zPZ#8>NR$SqSe*3ryInI!$3biy~KnIntP z+f`0915*L#v|K-R(-^@-4fS|ohtw+ikp20fHnZ`$jkohaG(S)~oiS=-w$@!dEt`G& zZ-kZ&9kmD)EN#M$8@+gUZ7)13phU(gW>t)SJC}lu~ zzF`E$f-oBMrGZ=FRYv?a0b4OHA1n+kLKcUQSKp%<%{Is3NND~>mjfG*%YDQv-U%YV zjlCJ@TVPT&Tiqt7Db#E!iP!LB)=^RHcAhpiTu9H{`F!HsXMxN-ea7pR?&xpF%OwKz z*fwLv^|&hyzVN+D(qf|EW$BP3hx~R+pihagYqxHay!vrv)ZrZ}js0y7@ng8dD? z+kPO9!N7j%Dt&nX=2KRTMj^40w-o|T)_Shv_bWvsnH{zNGjg^Qz9>f)9po~&5oi}F&k@?q6N4M7$^v{f+; zuXePGc!HlC9+dTd(ysu*6RSMdQxM0nfwjR8UoBtKb3$ZRRm$60rWnr=3-_~FZXVje zujv;j2r@~ForH|@@+_C-hFoB4ob@rHO*8u`oc$QtO)+$90$#HCz}xUuK)mn?Z)#fI zQ5SLMJn<=0?u92j$FD3dYo@$9TFH*)hZV~r;(BE^ZJ^_Uf2fuLfd7z3KMk7$If#QU z<7y?lW#h1smS(x|d0k73h+@k%E^>bPi%A+c>51w53d#)-)Q_41g>iY)&X8X;Jguz) zm+_zY83k(tbha0R$jjIMh!U1ye?`uvBEakfI+K>ONo$`OB)pc2~dD3(H2bucK z85RD`*sjkYol!yDKx{X=zer$~vl-##KTy!BbOPX9UV~!_69b&_HPdWy zBmoli)^>9$seWBZ4xm4Nw)J+i^0QL34edH#QNyHzz9P(JqNrr({=cD8H8j<=o>%d= zq8M0&Svv!Eb10Ip$qEB&xgv^7>-ivYOI>7XI_{GaW}{(W-*;NX=dk6q^hz6GXVr~C zg)d4?<&1Ad2jWir4t}Z4VPU=>Rig1Pg1&H_N{$zVYkyM9?4+jP+ImQb583|>4^>@! z6CvDdcxDlyhk=Ttb>THfxJzS*fy%)i4Mn+adAGpIPnu@grZsqBI(CsDBIX@bZ#hv^ zAvcEmmqD4;L`5)eTF%5aRE0NN+hnm?TGhNgx4Dr~1u+CREIdW|PWa0kAGYBA{uMC6 zxamElQ@z#ake{Al83^`z8L7X-^f&+7rSWnemA!PdRqx)N96S$LGKC0-4Ee?ydDmg} zeY~(~b-N${-HkvfT$@M_a7qhqsod=X6w?vII`K?$Pcp-4y}*u920ax*d3#t>H{rhV z#0prx?&?&-=<(=a0>*|p&C=h+;(eyqJ;6_4mzkex4mxB~I0UQ9A-@1$| z@4Dx;|8o2E$&uif;kxE!hY{nz&3CC%BwVEAktQ){hzHsV zYB9@*jEuMgQoO*tZkN5DPT~4o%{UyE1^0{mH$6)J!RkBt73z1inm@Yn=6vtCdk1SJ z%t$H%SLtF*O_zZ)E`BrE_z2umS=a2-xlRMdgxS;CC>PSl6R6)EN#g3${*dY--)kwU zg7@$X$;)%e&orY+>rF25zU^gmgU*Jz`}MkqlxhqQm~<18Eujb9WEOF*h3-Q~Bzi=P zchTM325dlw(Rv#A)==Moa0Hy=ePyef(3vOT?TL3Xu?xL-O(QQ3Vy6SGDR}OY2L!P? z#5k;gDi|o6?+F_c8iNU7DPA$``4vr24@4eU@~3`$%A>c8`!hOU?I>ZIp8FJ5%I_Qb zr$uF9`vYF8tb-@Q$;{&eOTe(Tubwh_At>MZf|Z7fSU=vVTh8$3ZXWj$JZYMep13^+ zdiXv~0mNndQHQp11N}|!O28J`3wKFkbb(%v4Nh=0*u-mcXggC5R{S{FUvx~B+-5Qz z-Oqn?W*mG>Lb2eCBDZ?-75aSSZ_%$ku&U)}%_+<{dD6^re_?Q{bWlgN_2#Acj4g`L zH5bOLf|9*0IZ%OQnOwqcv)7y5o>&uxkS0zl&n|- z`C^l#>M3(R^Z|o?vQ7BrmlHXUqgEObPE&39noqE4JB?(Phuh6kK-E^2y1ACz$XkhHQx;+gFu{W7vr;#IS#=6 z8%dyM!vkZ6LfOa)%8ahR2G_ zn%F>NnsQEfX%#7euX0(SR@6ynO;AoMw}MT?$|51VYSYx4E7I^h#nEgFU9p^Z`OPv{ zGsYTV)M_85}-a)wpbc%*SQQ)(s%;D>NgVR8iSN9YbP(VYk*1fpcHwesgy_V`Ob z@2|ulPf99#$NRwsC}X<~6CGV>EOt>X#px-tx9+NuP-fn-OuT~IihoLle?p@IEiyE> zWLgX46XZczV|QDHy_;Q4sP3iLIy?ZRq`3Xh=51C8Ut%iAu810*JD^%KF92Ms3wpW! zQEQaAzfcwqQr1*SyM!XDtNWf}Obdgg_vWulWpB+G4rkE_@jf_JnWQXTP_GC3vF|=V zUkMzG$(B~l9Zw|}HT|a1(9C>J`8sA&SW|&3BWP_kDaB@m`PISp{2VP{$hC4Pj7akh zy22@rNZUE^)*qR!qRRuGX6g+%&V$B6Ww5ucktIIH9 zJXvugx8m-VY7O@imS4q<>C5Ch)&_~{JoQewG&n`E6K}C~Z;yX*|GEiu{jV`hNtu#8 zD!IllC(GJ`Q~MkxI3@9M>9)Tcw%hZJ`#SlJeV}^qaiGYTSa}R|i5};?a{z^SWChME zN~-x11)rP&@i;|(Ca6+lzBv@v%1+u}_T!tl6zq|}WjB-$U5e((2;wVU0c?&BRe0Ln zJJ`e!_2NLnxLN8z+>(Q?PX@#ySbtLN)$>U&jG&0uN?%a(`jqcX#C|P4!4&f@DAC-* zJ>C@P8g2h6@z41Gn7eW}b*8A>*U(0gzt}q9TC!?)@4;WkczV9F`2fc$#D@kpX zci-`AYoAgI$5Ve`W$~Tybh|*94O@XcS31U~dGZZ!!;jYR<>DfH4vfDmUhysLF@?x` zyd*k}3zaw}3N6xITfiKQm`cqcDP*EGQtYp`ud-b0~!rT0iTOyYi>nLu_%YJwiVMWEz^0ka0@;!>2l z2Kq|;EA2<&=45$3;t_|-Q-v2@``5+XO+G`9_2J6iNZAo@bne_r`e?Y2AkWYSrQH?# zUzEJGeVn8aagc9KKfF!bsyPuOT-hV)pQ)vc+yZ;mvQg|iCh*#a9gL#FJ`DIPR0?jb zn+z-$R*#s70sCm{Xn6pmMHXcPC%thBnA5KZf(LHb(4g&_!FGm%doHPK^2h<1HeWV4~l|Y8`{u{am8I2@poi$AZ@?cwojXIza#c665oVn@| zGcf}*yC##-`3ICwIkX|39rDYcA5`6w3sdGjT= z-Y4=>;3iwQYm?1=tZDW#4TBkl_W4IL1VhB<>?j$bjNmQ2AAZ=7kF}d^DzJy{jlb|j zep3-erteIka9Mswioz$WT3+T_!qfDy%)Ar@$3Frz$vg2(N`cZ* zsT&CGqX^pwNQU2B_!tOd9H$0C(URW^(>&IZ#;?5wk9rG6(mh^e(|l%Akfl?f2v~l-C;gbm*!>__yjmob$!>iTae zdwa`Fi=R2~LF1#E*x0evu>8i*{D7d!HORJ3*sgI43HmXNh-O}dFC@h4>UVDFUrj4X=w-;Ex7ReI;gX$;mZXt%A}bu^4l@%nZnM$;LTg5Cg*u$2d7 zpYrpr{OtL3gas3Bt6z9)X8E-r?kKhBBGKWi;J_x_5ITk*cbfaL4E>w|AY{eph`cYU zT}Y2JIZnUU#b`k`Z**v}Kxf26u^NBQ!}nXN-@3Qz2iY4KW`IW(U@h%;Q@JZ@2Y=g6aYgJ0sTQ)4rOoUmN)ZP`#1d6(;~b;6bYgTklpd0IsNE z9^7A1KaXc;VumP5x{(wTa`@*%#N-dKI7rsD_Rsqusv{IY#3(mUQ~d>EW|UwibcLJ= zk%fONvhaV(7s1$~h}3;#s8g{$kv%GFKKCXY9${B1EiRVjJXe1wg7)votOsWBB3jk`;!?pyxL9X5%$=zcVI z(}v4MXQwq*t1aDkDjgBGG;!=Se9D&bloMnQBZ2yrQJ4p)yL|A=}G&GW;Hx^^>|P68VmkD=5tU+iXCDY_~X}b}$t<1JWJO1Q3&Z zB37**o!L7a@ZJs(Y=lsf)C=tw$`LzrnsS?$NA1`Rh_RdI^;4JRKp|wMPthWPSf^Z& z3xsH%9H8x#6HCpll;BJOU0!hpULfHD2)&@guPSpf-9phsL*UZKVFODA%Sdb|4|Ksh|C(2Rx`#)Oy7smBbf3vv z(7t-U?xQ%inW+%M;UIfy>B>+50Q=Uo)^wVWY#Jgb+Rwu-?$JaMPY8c?@_rTe$ZLjX z<&RyoinA{LrhGfd1Ti#oS8j%SM+$lUwOug8|Jc}=c_VxQe`f}mTi=yZY28o8P*N7H zzl;{@el#;ZRjCqf^di}3IDJbx6f{^TXe5C3CEVx-75+cv9g6o$&Fl5hi0P)l#ZbA` z9Iq2b^smbCI8Okx9z+O@J9QT+m8+7tF}+F*t3de-=A$N3f(JDuJ8NEB9?vb|0R+KJ^t2c6?p4&d3W2jyMWB zaMoPOTPLycyreyT9LaJ`h1Jtck*E5Fq*Od(aOB}iHeTN%=nqvt-};BYQ1#3?hWAPl z8*0mtlU1$qZlQ)&I^eM7$VGHfWZ)(w`(bg%^CBDc`lQ>qe#OWz(}lPl~z&)|GE^G?9w ziw_`YT(2L|uqipw+T=TRWx}=6Tk+{VpN(3-?Gqek7RqqWbK%N|4v1@W`FMD$quc%g zO)B8r=$_`Whsq|fIDsu7+I%chp37oavgeN0OCymL;YC%Hg7GxQ25A+uP`0TCyPsOi z9qgqnmt892EEm=4iCr7rKeyR~v@;wy%*8qgCeIOCd{tpqIC;STZLM;)p>Dc6@;lB+6AjHFYeMwoH<%ZR~RI6ebysKG& znI06VJZ}0geATy@=O6<#2I!9l&i2-}nkELhG%QN`&l=G2uq;U11=vAVuqJ$N@wI?# z9Un}K?9>q2$^)J69OfTRvjpg!4y|zcF;J*)L*gwi@-1_NpHssyvo`l~==n6}K?W18 z9WoXY?b6uzgIV{}-@LF0-mI2C@r8+80E~#manxElg}`1Sd6=&O_e2G# z5IMkJd@385o#5Sc`Y4e9E^+&E{%BZ$AZqVQRmQZb#@n>p_oAgjKn&WRVr(+2J8?t) zB2I-JNTV9Q(9M%!(2ISq6)MU5Dz{$r#jn=uidKF(6h&17MWsI#ho^*D+2wqk$sV4s zz#D(vOdT}VLZS{{j&itA*1qMbj{`gZq2^Bnc3i>2ogPC*1MgDnGoN&3tDQX*H4e+b z?4@l?A=vRwsJM&=DBCQDDiqSlZB{+I>GAuPu>oRpPyf%VCrSlfw9-)lQyNULbh9(% z$wA;juxgPOj747@S=+}2{r++b4+ofNsc%RbaZY|z;ym9N?@~5U@4YTx?awLM0;6d? z0lg7oWvPixIkHibFq2lz8)b~aHD+RPlQK0}4OZ0wPkoVvA=L$LT;;@Lt?j)PMPH!F zA=snpDVq%;2#`FSy>uaQ3Smue3#$+=xQlM%R8XXH{nT!9x>AXXwgVORU@x}IapPZztY4c413?qWJa)n@ z8hlHh0bg@o&pr^XCj-Ru#E8?gi|x9J;|jioT%3SshJO`=pXZ%x{_yozC}Waj2&u5lZeMP~ zvemv>U~W)gnYq+DdigDN(vRtf9MG z=@`0mUjz63>}UV?hyCT<@0Y#5%)tSRS!-SKyMA?^C#L1B?Ag3^IA4AS?*|M47?iIC zdZc`A<6)gg(od>j^rNLA==x$siQTymc%)VC+G2-0t7Kj~OJtmGeA*>gA^+4g&o{pX zsXvL(5F-GSH_DHWPXY&P0|@rc#^(0!CbJWGqy-Co1frY20fTFu{P0!U^bI>qb@LZv z*H@n-Ez>Oem*7YW<$B_Ux;dV9G~rW>G8i5(;N*5_;{|v!kE{Q*`fc! z-J%G$M~mccV)a$}#19o~?#b8ZS1%PsC9b-jTcnG3ClL4oC&E<>ZQ;Wbv@jkE0^~&LV*N;o(L#*W4%E5?eG8q#Du~#`F{~If56BJ zCX|YkAq#1-nF-thv}Nb<*9R9@ldyuT|KyAZ0#M%_B0qR709Jf;SEEE0rh>1w5CIpH zn4=$`<7aS}^Z{a{7V#B9HpoKw1A{&iv39?Gj>uXAK#iqDjdz#}iEwW`1{eO&uBJGD z144gKYJksJOXonQrhsqlasU_K=om@F0DK7hs=?#`|8ILfTM%Y$brRyEJoBHu14pfv zd?DyPq~X5t@SbxgCi>eB!+iyd$OY0WJ(|eSye^ z63gC~09QidDt;cs{ze(&6!Uoh zn1gFE@D{Ado971SS_t@A01$J0w=9VMFI?{vbAO6RY>VuS=&#O_92OE_lLniwbzt@$ z0WQD@)^rGdIbTo6f?;f2qyZf^55X#CgW7$;znF_k%&*2VW@P*c3FiNh6!h4<1XY;b zU!8gbY)lrU13fl3fh%U`x<3>=#|IOUS_ok7CA;?fAA^9gHLC$u7!V&)i5B}V9>zk9 zBmHQxpF@~^T}AuVAItv+0R|*0bufd7k@RvS>2M>$|v~R%BL>3+$D*Iun_`jyypL%mu`IvfT!Sa

}Qt{X5#^~*oyHjGE(njz(VlZDCL4|R1{0#d*huu*~6sk8TJGY^go4!U?@IW&R|$8$a@Sx z@+-Xv%UC4a8%IR)AJ$~Xe}%T#nc(;-*Iv)ub;R>MG)*7tugI1uv!r%^L|W6^kUS7> zoBn)U+!P4h+;@1S2m7D@O_2V~-{|I#ZZ9#b?dz3kZu*v9s+TGOYp+giyPoiWu7)mH zVQ-KUR9%MC3fo3Z@Yb$u3;+==_3tf_;a`DRcc_?+V8{G&n1zs`Oa@eDfsqgYcWHs@THniPSD$OJ8nvjNcU=P zPErTvyY3U-mC&n=&o&b^k1$M*C|rG86yG_g=YM^`^cfdmexG?|lr;J}WY$^%$k%ji zpODY0@A`q!)Dch<8kX66frG07zeKw{sjXTT&zREm!QsgT1rz+Ar>dvcDteKxakW~Z z$m}I7XmT<~V4xA_(p88>ETq`>$SqbFs`EbkahBeyuG-?<>7rz;sF%kJLyyR|%yH|c zKR9s0Xc!w_`BisL9{2A@0|{BhOO|^phE>W$gSmHZE%r`^IXgv6f#JkroFDBu=$6y( zxZFD|1+q1FvFXHT*4pD$ey3=ftSp2_+uyZ!gIR2^HL@#TsKtO3vVvCfH6}KVOAUN$A*amVpF%l zc_yXPV>K2&z3(Hk@)L@bI2lLV{FHdF#r|eI&yDLzIZfp8sFpqo3OaDjsTp3g9jL_5s_fl+E71s0xRD+W9#)2Q{47ed#+co)_T{>h;u_fIFB zX--7hMvq_FD?tKmW0TKS2@_UlpSuta#fG3S{8WmbTttalj zT9P5LHQUPC|4kDKw8bnZYAQ`2K!ePf_wMm+Fb>U>Lqabi#&^cT?-ZSmuC3g0uPh=T z$P11PwBQ~lqEuc@9p-Jqd+_@BP{JVT3gc`?B1lC!{o)86Eh5Lz`(T#Zx~4zC-OB?4 z&irH34;IKLDgoZcbl?ybHMONcS?5ZG>D<^Phk=s>)eR1>n8j6MX|6a@dok@ zdH?+RgP|$)IN2FA1;EOY5Essvg z2Rfj|?k4l7a`dOSf7!$5F;}UVRr)sWtH;-QA8e}ST2W@3*U9u^v$@-D#~9A`%qlsJ z<_fk+&CV1AcIlQ_6mn@*$OAFvmry7L*@VtVD)zstq!Hw(t~WqVLg#l#vXL|wTH2u@ zX=~1^Uxr~sc)skHw|0e7KSy(z)Ek!-htRFBxcP#ker9S_R;QYiCe%PnR_nEG0`-^K zBFa`~CjAd%qlItMmFA^pk3s7E4!>D@QFXa6!xEoq%QY`H$u)p^!zd3yPE!r{i+R!_ z*`9tMLw@b~?7<(u!RR*qidXHs!0EleiQnt`8=D+i6!oF9#|a|0fLd6Y&t?1m9y4Qy z(yOf(lP>?!FZw5@HEtHfqs7&LvPd37gJ#*4;(wy=+}%eAQo7~zcMkydrfJ|ot#-Yy zkH_A)`)ui;0i@KDJw$a*4h6^CrITWgcRQOd+=JFcIiOGjo`=74!o;FJ$-iYM8<-i0 zh!9l&f;!O(YzU@eGvlKbi#yHD&1m>rPE5_y^!b<4%Jq)l!SPJyA#`f}L4U^FbV;%` zx_zp)gX4vom+DU=lxg@Cj@)d~)QV89_8sE(>meb~rNx*ZpndIc;kK3{-NSrVc4LvM z6A}Ii=hN>V*}hxtYL#lt`ZHxbg1;DiNT8NU@aTS#Fwf z<+pj@49`Ye*p%pNGYbd zGhDGJ8ZA zMIdua?iDwg*%|g{G9>J5+p86wqNGS?oJsiEW4hhfsYQlZOqgV>JClFmux7K!q=|HE zI_19TTFvNW9w*ReQ~36(*ay9o{7Wgi1)A{bTpfM6tE?ISQ#)Gf;UP3+4E%t%MD;JaP;HrB#!e$xgJ&?Dr;cGJtg?LRqhsR5V+&S~RMZyX01&S|w-okxF42hSokMi_ zq)kC6KDMCk2qe(B8iy{3Biu(17iU?JKG|CxM{{wIl+a7Oa(ImfBEsO1Ak~BYBAN+{ z#aS&it!LpLXL))_wW1czO;KiXVsO+H$Nokj_i0Ns!MA6HA7V}Z_-+P_;uOLBuTc>w zoY~)ACg%C=_*psdgF&rfgbH*;|{HmsS8(KKkTiJiVC3{0az+~ZWa}~W3fZ`_(z-5s?zaJ-zZF{{Pt9^RPrEAeXl5Tl>E~5kR;E>@9#bvD~mlv zFY`*PcJa>Ri6s@fjf;8Aq+S{ic_eC|Pch5_qzc`~e5<{sUsh~=70KUetwI{0jo%;x zyhYeL#2~}p@@n7v4zAxAqpUv=>$rCIss?y706d>3nePF)a0>$j5{|Y%=l^M2svbBa0}HI3m1jclGzj6jJ#uZ20@D3}wPa z8qI2ib{3rzye&bo_h>A1$}DaHS2g-Io_z#}pIe)rrkT#?={o`VDiE>pW+}BAP%fx9 zZX`n-%v)2)Yn*k6X9UD@XU5vN+_mbNVJ{0f0qu--d>a}&F_bKosG%a$Pc=}_ysN1F zX{TY4iGt-TO`OV|=%w8o&*QEtfL0e|GDKskZVnwBWC`6-9WJ<=ZE~8H!avKRnz(ci z%c7_Bz5u;ROT2LYbi}w6Qhcy7ra7 zPRA@rdwuzd?Gg^I?g*(z%zm>E7!88&jgNL0(so{WVoVBv8o{8jQ96#wBbsoRTjNU@ z>O`<%55rS>L(mEkLkF9Jytq?wEOQsq z8@<$H2K&RrNSm&(=&RN2?$0gtIot4YqIjeCCw=U$wh#gNQ4#Nb`4zIiq0<&-@vK!6 zw#EGmL+!Qn;&Ft!l*;fH8tpRg%40FNgv7U{mc5gK_|4uMvzniW!x{Jy?gGnUA@uF1 zK6%{vUm?WzfY@fmlZh4DQEE-z2n`tIhbt# zTAS*dO}>SSAJ%YrQFBGuPP4YG4%fGu@*jNH7dJmOGdM%L?}k@s~;Q=~{Oxdw*PQMd(+x zY*KQXbWPpr`IEHEW1G15NAM!z+Q1u#<+TgALeJr`IYUNIrvP#7qdXvzLyTc*r|PSA zx7QVyM1G=K={Q=yaqbqp!nNbkhi`9e)|Q(7Ih16%Zt?B-bdV>o&Se<==%$$Ob6I6W zYX-_s^QFw+bp|gZU@Uh(1T+L+i@C?ovQ_XnhvV5-lLYnUp`Z};J|Vy+a#^QhH9${9gDBh=kS81@HS@}Sl zw9dz^<^1|xj(wCP+ezN?pdloPXj>~_Ze)pXUivfV#eD;FIN88%WxiJ3kaZuH+s^JS z+A60Jy1vk`NqLiZXMc{nXz5L3kyRI|`i-125`2!~oWQqct#gjj&++RT>MIct&Y2Fm zUSr`jN?E__4dKlj-W$p86NtP{3G=<~`w@>rCFrW_qZe;Tn0)a$>%!SX5uQ5Qq+<)7 zOnCpm&$k&add8xhFryVURar@6;uLjjL5L#5+kGnrJFDL;GcGH7%yU z?cX1L(zBaxI!&8JeWc{1st(>&@72C~w)9D)Q96WVsV|SYyuYHqt{;m)_Gm26j6m9S$K z6YUV~kCf?e6Vir?O~Oyt>S$T_QH8n|HC0?T!_;C6WW%Rmy% zBW4Fut)A}HqqEJTvQ8)mmzPl?r55o5%w}p4J``)o>}C-$LhaXQYY#3N?R_-{8tr+W*t5T!LTO!;S0M^7DMsrPea0_1eup)?0Rnad5{=V^sN_gP+2A7n zG^i-1F|~YhiIz1+2FH_b*nG8m&!Bwo366S6LX?pEeZH!^m+vZu-?_x5S^9k{^YPmA zr1Mr>y|)>26+RLj&jt_v?AEVmI)%wF#R_V++DUn|2xwNv#v0#yqsXnSD4Xar59Do9 z{Q3l*4v*;3>t5=~R1Ow3uTT)AuV1Y5gf6?QEH_wv8lf>w9zQ|osk@_`xdul{0B5yh zjmo;-oX(lcqnAF)1^mS4u})7-14xaUd_17f!EOU7YNaw1pb@j$qc@eJ=)Sn33?7n0 zlVSYkwz2LYVupoTD{NO(AVd=9DoEj8ZfweRZ_=eqI!Scu<_$@ zPv>%;p4D;%aw)fTjiv1{laA#|nyMyQ0t*!vTQT{kMd`~f9d0;Vp_vJ%z1{^wWR$a7kyG0I zixt)(Ba32BoLc%6JJFfAa!#SCIL2|GJtj|2HvhKf%OAO+Wr}Aih(MkJ_2I)n+0Wse z;bKUIrcn5Ay2C&a_9x^|6MRL*174IU=-Xv)jpjv8s`zNCbm!7U(b+B*%{uL`ztFwW zs;_8=D$7fv&(0jjlMvli$jdf9n~^ea*|z6c`FR*K=3HemvO8 z(QK>pxcDQXiGh8K)5Ov5y$H!pm1ao|==0HH&?&$9W2FvLR+WIp?LfOud;;9~hQ;12 zCJ@D&v{O;qAb;=R7Q!1PhM9Edo`^dAO*nR5O3<=#Af+R91gzMh=#9k%8gZ6c2=H)j*5Szn>`gt%IQpy@~s zn)0BS)v$>l*F*AnH40K}1gC}NLg{D&0urb`80M=o%;$GtG> z&uQqrX#V=sj^pw0O!kU>tZPmBbvb%>XX88RrEbsf*gwCDC~=A3ne;Vh5Cw7UQm6DC z(@|Ocsb{^j`>^};SOV)Or)9fd$DcaF@5m(>Mei@uW5W+kpQUBCL(};oTc;&7+uc;I zwgv1Rio6p)X|CVnXG8Q#(5D%{_nL86Pxd`M#^W=d<2vffk;_m*MvU6kKC_B9O2OY* zuBJ=ru0o$RZzi2Q+B+KaC|pc04b@RM=rvtV=>~CT=BJ3hIAL3kwHQ8|L%hsra_7g= z=r6SS#lJx`Fuz#=dF`PQftf3DS8V8o&iutZSH9@g?lRn?58EvD;MEVZik{^b+rXdlupbng3G>KgTC#*ia#)J$9V(x?GpC!2o5h}xJnlv0WG zr4HsQLRv=BF&OLXqsRf(7m1aifW>Q9TiYCzI;cC2}2T;H}lW-yN5NBjH_c*V65VfAl-1U%~!{hh7X?}E1 z%gVfMHBW|K6g~P)g4J{Hqh+RYT-l8B-yXkj1DP7f>tvJ78i>MSQ7ns48f15%l6q ziNeQv6yG!wTWmHu{$sj7c<`NA!Qfu5FJB{2OS6`9zPv3`=E$WQJpT+jzQtR6{1r;1 znfLacmlETh|HnmEAQN$2iX4{^O?Ld7%v#TWkd1En6~oxSzwB|LrU`e#i$1HBuBeaLBSo$?6qeRjyG3~H6U0RN zJ2pYm<3foHUO*u7yPVEgy-p7~eSJQ$j(>CZ)ygN3CIJN(93`Ye6_rZw((I*n*GsNg zPn_1&2oZCN@%Y(oiIV)4?>FL41lH3Z9_{Wr9{(g1f073I!-=W6g+d>h&7I-v-n5xf zmHyrFz}dxsf6D@^>-)P;Ge8I{f>ZPHu<2*4(#)E&rVj+DOa3Vz>Qk87Wdr# zA}J$p!D4vz*Xc#%{gdp=^D214Ud{a}Pr?QBGzpK*rhABqjkfQ9=1Rp11FM@tfqGJEXZ{EBxoknC1LH44*GrcQ$Q1|%WJ;`sTmfL*e7mTLODri09@EyIZN*6%O^x660PbX<@5ZNE5-?rjEE_ zPhu*r$ZA~yq;~QA(DZ^B>Jl8~FIc-9Q)rAHl@kY|cR z{>S`BUSk9D1Cj|)+O-&7lp9^zgM-b8@rRZqh8?L#236k8(I;(IuYDf&yxaE_*_C6Q z!W9sIB*sq~E2=){w=7Qocof!+fFCFnKvAN#gk}kh$p_AS zHnZug7dO1!hoLFIM2*bRg{uAbNt8V7MFM*r``Sf-MnL6HKDVX&JBY>H_=U!k#$cq$XG z2-8#%g)HoKG9@Z!=koN^l}#$>wCl#=^@o0k0*yo`N9UGkl42S&7e=@`r7$0V`dI0g zMDYyy@Y@mh1p3BVd~5Y^Jf(!*2sf2 zalA7bxh#V-wbplAnCcKgdIH=SaZA-YO*K)hKMOlzoF#1%V2aqm7(~%9xGGg%sS=4W zw;gi9W2HXdoAP@!BUdf8-VgwS9O!wD;5G zqtXgdPdrvRNc1a$;$9CX(Jy-EAxU6tp_C~ehXxz(x3fc~=dqnaNpT@t7WnZ6e5Mk% zbLGqAv_HB-tPggv87@Zvs^#X9(q)huV<5IzR|UExCZPYp?Dam(a^a6x#ZMmNzdr-r5EE&> z(V!H}QYN}gw$A3zfLm!lQ8VoAmPf5S{A2nGC=6f4eT*LF9A$kRZ9C1`9qg^|O?6sSMyT&=T>m#>EAe%yM|5QA zkyxMl@j3sbFqlqI=cacBf=={rrt*hCgZ?Q7+h5AHZkpVGby7M%MscFK_~^Nc{qJ+H zxs`fEL|c-0*lx97s>x`L9;WdE?4x0aJ8Q}g31ci7 zlOQIz;{OSm*OVab-a?$*8C`8~tT1udyLz8l_SNvc2j$XEml*jCZ4xf1! z&ZcQ7RZrFP>y6SK@EVXcf`v+sG@Jb$2lA526}xz0-w;=Yj3v;ki)?r5jwbq-Gz_E3 zjYT^ArMB9%TJ3wyhnB5Oe>({17V_rGZ2VP2k07n$o;8L45|xnn!^9&QS|1vY`&|UV zyZ6cGVzaKhW20jFQtrQr81DzN-ui%Lml>oe`5L90%}nGV@FH;R_Vr?qzU#5OMyv;= zPn{2(7f?=oR#_;{ZpP%>?gLSW3|GRAkR8awHxtO)J4>X;(@(kApOa(F%q3Zlze-Ha zW>DyLZ9iBZTAkZ52G>BgH5V_U`WPo;9@l3X7OE7bXcRRNh)r zf-K`?A&`9&y6w2w!(82Vz`!jRjl$hc5OtQFKub5|Sxw}`wgxEHpIj-L3iR*x)Q z9{5FA)XkVf?YUcq>c!C)T3p(x@m!(p|N86`6v#8E{ODnT4--m-MpUjB{tYOSw(LnC zGalp*gAU-4-ERGYFk{1{i@|iDdbONeZd3Lhbf32P@_!T0R=FfAb$0CB9De8h_EJA* zc6IT2BL_T;;MnxF_r!r?A<5z5=`dI9fn21;-LS0ZY^p*Ye^=v8zmK9#l_#OHo^0)B z&B^?8YtpJmg;)HS*;BM%t=cqL15C!EP(@X)ZX@GkWh0(!qjos?Xq0xG~15g++d-Qbs3Mft9#oFj}Ln6|L(~U zx-3C`3N0~hL2656_yVdIw}?ISOCVLw*oB)HBXhml{EWvrd5!sw zwQ$(4{Ceg~nmLNwe483MjOF!*pI!7s7zSXa|IiG+!o5@gE<7aGv(*ZF3%xCl) zxh_7t+TA6;6O&)H3~1zV6~(XGyIov?xJKDn^y9n#Hwx^lg+;gt5=@ zJOHu8`6cbmMg~gRbbTq*mo%HY+uOuvU$8aeI-K4&C%7DL(;OV27;Ku0JL~r`#ERUb$?vv&%LkqG z#Zist3+c7&REYR$7;6&r>OtMX9IYiF!B#=8pv}Y4nI;bbW#Wo?EJjnvABOk(_dDYA zq@BE;QRg3ZKFi_fu@xrYR>WNRHt5@^wE5pDZh@|lx9l6wiXXfnyvJN`L9ibW4_)nS z_C@4DyDOr6+i9V;m0KV$60dOI93Ar^tzPH%QZq_ieBuyl2Ni-p0z$I_MR5umPY2B) zpkvk2_96f8u1+oek8T``z(W7bpF?*1*~+6Jo@04OL|KwQeMUiG%ycT%acwek@4^qn zMfmyJZvvE*f{97G#oaC&#EU1bD6d|Dp`+CIH~E-V2NgjPW_H5M_;q9LFwz!NV1rYL zKt*P`Hnh?TWvWTHsYB@Zz8+~4PcWI@))^%?^iUqQ(HS9Q#0h)vHU8zrLmF|<^uBC; zr3Vim+IoC-T^=0eZQJ&F8~ar75Sctvc0*8tj@ec7S+<(C@4*J-r1=KF%m(Sprn7@e z29=>_-!#I>e$+?f^C;Sh?n!)SXJgeZvw=RpQApDH^Wfb~B0$Jw2JDvPIyb1^2P}4@ z_SNm^Il*@7Bt!4r>_{%{9=kM}7%CnelS@h4z9(6ex)Gqu@SqFVzCYJkEjpvR5U1C( zE_JT8@6u|0=jD&@o1!>1O@a?XH(R2 zUkAn2E8L_J(blOEQk05am;2l(eQVA>Ui=#s;%br&8*zXH+nTE#V<{))t$o&Yi0<_+ zkxS0svjCDPDF6)A8G-bR*X@Rj1cmnH_-X4;2IBcFrm&KgUg-1wjJ)xqJ7}OiUN9J) znO5Sp^7<8T1YdwUBjhW-(d_tP{drz1w0H==erIFPk>x%AKb1J#Z}5s(@6!(PwV3AK ztc=uy5OcuW(JV3y`4{{U=6_)i4rENRZkCB zlxRk4N|o#8eTP94e<1#uNtcxvOSS6OT3vX^mU$~cG_v8IrO)US1{r7YXS~nDm(^4+ zN5*ZKw?5~0FgfjfK9vbmtI}X^2ARqwH;zE_L8DmuOs*l&2Vz`AGaL2y*T>4ljM=3w z+mT7g_)_OcsqLM$+ARjn_^|?0v9PS-b~p40x2Vbid1CXNHTO~E>M@WYWwy%lWDxX! z@~p?ZpfmO1dlR5vpoYRVv&5o5_w$@)6_32qyghE`_KwunCk=j!-E}GJO;6UmBIK z=7WBxcm*=+86p1ehd2Tj1Y>O2?cOynre$eMo|ni!1r8ytq(T$YddKy$IW(7}-SZ<- zVNl5VPykGK_V7Q)gx&UuZiPc?qMv5Xs|{KotB&{Zufz-Kv9>IuHK(>J4;i_MxU`F8 zh^TpNq@<&&ULd7i7M^$j44Vz<9(VcJZT%{j@MvybMMCwZXRNx**M~4|P(a3L^JH)G z(_^ZtitSxdw9IBGONGVw9;+ghNc!C=UuhqYE zw5;BsAxlbln7$x&_|B9afhW&!I^s0j!rpIRH*8ofR}Y=Vh*eA4U05G6Ooqar6N#yX=(7sv9&VwQ9YN6Ch+xtiRUCA2op6O_1$CtOgz`j z@u##!F&&uUGK-`sxj#g`Z{erM2juN;E1jfups4G5QhCVhDW@afv$&Qy(^%oJ#0_*q410rM&iw7YI_IseLeT6Vdl1MpO z>LI90G+pD+dLkgncM*qTL%7Ee;pX>U(Id}pdd!f;6Iy(KOPIMmquAYMU6lvapvp9~ zK;Kvfko#-X+Xx+%<;B<@S`N||e2155tNA)ai_M6l=E|cY2q?DI!2zV`^{e|23Cy26 zWwt5n@lm^hjERhlk>Taqf4eFK?xbX_3LbTV{zTKU3dm6iu>&eoD>G#gW_%T9_#f{k z+X7h#M$wwdY`ZIybA#G zHz9Z%?__WT>ska)VqdPF%{GsE`x?JMsC7LTUtvTKR%P@+syI8rOb6DeaPtJ&$p%& z{JN!7#VozYL9bT2S19#M$|5M{tU+Rb3a4<*!~gst|MM|*279+-3PEOpp8hrNLu5pLoKVOvpHoJm#!R7xqm{#HB>LvL=GZiKQ zPGeDj*FClJa$Ky8yn4fANhYSmw*di)&!H`bD83A()~)g6DA>W)k!$iI-M_DO-uvSR zf8ZbO9;r|f#tdq$8Za6@6VmoWgs|#O%f2tE+uo^iPxKk6F9!JEXHTc}-;U)|)S^`s z%ZfTmj2KkFdZK8BKU{c2(1r~h~&HIwK-4hVB@}4HR|J)#+!WP_~^o` z_)jx50pnCD)}y~QnJ*tA{1e%Uj#d4z7|*I%w+Rqr2v%Y&?0k?h*o^x~LWZ~%#!e^= zWM+@olDh67pOU~h2&fpbnyfj5WDu#5Y(x!bxZu)yuLq%s!f*}(9q>i@*+Zn5@3{=x z$|%6KXRCyg4=@)KHdupi`v33xziWh{V^zjCXRd)aZ~4LR5}5#$hGHb!ty{N#(&JB` z%*K&Zv*}e7fMbw-gJc-y&v>mVg89=4eVCNbA!Cgg52620JR&MCHX6S5EX}`aHe^At z!vndqD+DAYB)?my<1nTxg_6ynrUGQb`7QE8i61r~;30IPEA!NapUYxT<#+%k0d6rIh@Q%zwk-WQ!&bjq`j7f}h9I#6VeCXB zRE(5zBXwtblF0CnFg8LzVp6PYQ^H}Zh(C#J#ObzR9rf&<%r9XUC@T?655QKi>iu09 zz`A22v;`MOmaR!^A|2nu*oa7{fJwvKCrLj-yhvcXWT^`-F7ZKzYh!Z|`D0N7S>0BA7hgApdAbJd^`R5{*DR#-->*|JcxsU^Q)z z6I2*}XL}KxUzk6}20VfNECBGq_NBC}K3dF+i!LLq@WdspcnSmMTB>%K%zqn8|B^dl z%t}<cm%%dA0A_@(e?jyfVgmqH>%jERRNs=r{FNBa*bfYlqM+yF zAmlwwY>rD{{toP#$bdCsCzKZi>qIR$i2_U}JK1u)=K0PW`ll7>^&ck>9ad2v6drJ>jSfH03opYknJ6J(MP`NQD8uAIe;>=sLx>u!_J31Mu%x!j6RIJ zws1&1|3PX4C}7U?WvlxR@mI~{g29+0w|~=APM;I-?xbcPUuq_QyyQm1~!ll)p!)s zNqP!6h$*X*$=}B&nHucm6~OKJ+5qH;AJt=J-U_3_bAcgGuYk&+l}?R!9u4+zoliBL z#4FN3EXqht`awFkp=bQNdOP6qv^8py06(O)7N}y<< zzPz14job);U6X0Tdz>i7Jl~m&yiCI+U65xL-- zcij8(IBnM!8Ie5tiocQ^tdRFKVAoWQD6b2=`hWpRxpd$*{I^}Z=#y^1nC8zY{+I82+v@4? z;bkhvo9%JYQnBck+ag4reUTuKpb*Wa9pUlwZMC5Fh{pE+^d03z{f)CaS|8%DKni&| zvFWb4cLQ_OpL0YtB|EWB$pcSJ7-r~m5-cP8Rw?}ZyOT^+7u~0NK82da^8tF7~OOl35%4HwO7drf{oJk zo$;)>t97(YxTMgz@m)9e2a&rvz%?>*YUV{ge1AnjUj9RSg(lGDz~s%|#!eYv8Ug*_ z4#dj(h59`DbsT3g@RYL-9eaiskDQd^#b(o8+wZbR3hO%HIJgp|lljw$IyC{^DwBqW z`gQ>@a(Uvc6YU)|bRPd(@NKs5{Lb7@zpvS@b3jsMe7Wya6_=D*BJraMdhMIAvn zlpGpe$~NEF0gyd%tkOv|xdm-~0*y&H57=nem;}=QXfaW|xp4ilAce>zz(^Hcu81yt<~<0 zpnw=Xt2Tff#6EVohTD_Uu-mLIVX(7Udo+`;T3--)-2ZLZD5VFQ^8(zvTd&4KqX-zo zJi$WBNUEJo^qBoB-GqSH>E}SBxR5rQtq93&;tsNb&Bj($HdEgLF~%)7(}g+$Yd$ui_WB5?z;>39v?r z%|o|6H%$2#pkk?xQ$&_>>6*A(h1@x~2PmC(c=}9_<(Jvso?W!-9BE93g!P!DPq&NN z^ZB0QUwJi&hWDsSpS{GN!vBE(?3aDA&*?iC-x5Sk*Yv^uw^tWEEPjKqLvh(lva%s` z><62(2vzBmzAN58RhxA(m1!)83Q}u;Ce9`V;Dho25SI@6bDUE^QT$om4^?7 z59^qFGgU*K#|&jdB7lT|f-HER4kt}}U_e+x-FzRE*^SOwm3p73;CYs7PM^Bab@}?MJ#9m= ze5Otl2^eFO0S9oQX!<$+ld=uOOjBIx%{{TrL7i^Y<{rLcA^whSV8P$u8;YJ35|}jJ z85xN6q18uU_e@&)Vz6R8S!`YM^zOy_x&&zcsJ_tz1;rLC5BOQ$#PLhuHR@-8nnu@Z zXvG~O8*wQ!t}3k61hx)>KK|%TmADGMd94bgKM%Sa)4-t-FE{|dlWh9ZQd1q zD>6_ql+3By&PR_+yW5TGS!=HgX*W)G#UHCanJgE)=PGMJuP)2o=6z5#+2%qkZ1>t` zv`)Y7(5#}Jz-6*F{Y%ih>GM4bkHDSqn5U-&T_~vnKSJ>jUs=(p!0q!5YTJ|-blmWx z@Nu8z>1mI65v=aGNDQ1KQunjqvrxprBL-gA9QIFxYo(3w;djFDK8^aag9fV zt(ksl_~?=NYMOYNP51W@<7-^65H_P_`m!N6xW!dun~xa0wdxN4^2ckVAjj7OxjMsG zDN&i1bImSuXceRwKTDXeWH|~2Re|=n{*Zg3&kx0XKQ}6dN}i@SOVoDUEKNC6t)E$frKtG2-Ac)t5JL z(-x^E1xd<0&^vW*bK2I3&xP{g-*4jBCWJl{;!>8nNu~b#r$^;<=@lzWAFmTUP|Z0a z{M<0fuXVWyrL~l27j0eucpU1)v_iU|NK8os` zh_97Q-{`FGYBiHvl{QKVqL<_V%~*M{>*PHNAlg3vQn*_aji)wpQ!(JI&YNI?YZ^k}@?kx$avp?`d? zc#}faHC(^iy|uGGD3X<7ZDsWd#wcTa3x6ge3#td)PodLej{~4*Q$uv>m;l|bKUg&f z!L$%(7j$-H=&{``mraX`*HSYEO6t5-t z{FG}l;CD3pZns=X>(AKD{QGa-M%#|C=7+`r5|=Z!d~beDs=U!V$o9$mVBfDZU?=XU z8#4iLtXFZ!+N)6)J>&JTRJX17H!GwcuZK=wk1NfZjJF>u1O=|LmbZZjx^F8*peQiB zhsZaL3eopK|8nFXC^2e$aKv-F=2=32T~M;cWc~gUr_;zSKJSp@H~f z>B|5Dqb&ug&t?pC5+W@77>Nzl&C?YSjOO795I#(eD_5#LJqtgIZbJqzTn&F23^MXt z^jTSMo}C5<%e}lNHv95Ui;#5dfiX%F{ap+s%B}!UOaD?I9FmxcwCuGhrxmoZ zQ0Egjd^7Oa)`{Cm$2^L8z(q)NT9$-jluKdRwc(3g{={x;2ma2Qzt5Lh?Y!*m8Umf^sc!v6=AAr`R9Y-FRo=w8)RyV9khmRZGCz+Kay9&&6U5&C z*W#&o8Xd2P?D?*M8aS~NDKYipqv|gJvuJ>xw)#KVd(WsQx3*oBA|Rroq97okO9AP< zR|`r#?`ReB97MY<&P7E~b81*C*7p|=2`Ly|Lt>)qdb#yEe@zjOB3 zzZe;$KINYGyzZ-9FU~8`=@5Wp1!7IT^CJpNL=Ug(4wYn76){|GwwANhgPNT117x)8Esw0{Jd%zE-{SyX0>D zdkbizCx^Q#B307+;X?&Gy2uMKY`nNUQ9i`_$K6B^DWB}?{h7S!L5pMbWSm=wM{B_e>ohaw2yF>6YJIkRWU?NF~ zP4k_Zk=qZQlRvzf%v*SdrxsVDIp@*j?Y?6p29{C}$}Z`#-3sN+1+3n%XADlK4bKbr zSM2S-w>sur)vKERo*SDe6N~cVi~B~>!`JkR?My!^#dvy0%`|;|@zM0TBs)~@l_n{d zt6iJer|ClPt%v0e+FgrQ(s7n}*kPcx6oBRGcvu-FmcA$cuV(z}K2?&4bt348N0*p@ z5=d_+OwvH3&Uf_*z#_%B%FsFET~#*@AFaH3erjQ+!yvb4;HVdC5y}$&Ui~bd!_~py z)L!}i#7ELMTZ5YeTR^KQDU67QVLp;H|EX@tc(lpC*8>%{T);K#2| zJsAQfe;c?i&1WdsAvT;2mYdDOj%WZadxt~e!sxHrK=jl*h?cj;Wl8dX1Q?Hir8P`N za-lM*)WWxd;a~fUbxoV^ug>_^nY(Xu+mhd6+|Sa7@IdhDo=y&$5-v8cD7TY_;Ax)m z>x0EP4?g_OsW5dCXc`dFse#1l)$)`RIXb)saxxrRefYCn8yVVCSha3SRglnLcI!@U z$X*pnYF9Wg31&O&&Uv-Xg zU$7FZn}&@$e5?s=1l!eDknG=XaY3{klYN!lCj=&IlO{*oe4e1HsT`*pXDv^iv=D>* zjtKah7}S%L@(k&Rw=eMVB~sS0Ln z6YwKv$%^I%|L>g+h59YqNpYzyH|6DdeA3S<2aLwR)%Qo@3bmoGktD0of$mVRwb$33 zegv@oYqg|a&_r**Y+w%9Vee~Q|6cW|<#WhwNm%guZ>xv75{wST+p0&f*G)bb{qy}q z_CrciW_)&vP9N@(o~V-ilrnWBe#x2HrlbQ%k?-K7r`TK{kU{*^HQ)*P{wi9(<{88t zG@RcbitK68p)Xq+@bFFN-@znpFl8iUT+rc--wr8+Ym0tWIT-0pM?XzZQW*SSt5hTX zzaoh%U7k^1NhE^hTF1sP3+0KD(k2aw{Hbh>rMC)2o!d(1@87=~4FJLTdmi;zgkHKV zAA`0phugt5KG#7(D8`6BvnTDMyZo~A=*}tvu>5iWf0@2gqmAZ}@ygpIt3^BNI5K^Q zW6c@2vre|isSm)n_kOx>M;$ii4l`a@k#@_}Ou?Lazt_`9ILrx(&HVVnDS_W8-m%Un zZYg&#*j<9XOUyre&S$L%-h3Sins72)EJg*~dnzE2bkrA(l4$JZMe!%vYuAPu|7=k6 z9|($^0=rE*D)|yTtg1vDw7n^k0SNLof9BacHB7G&I{6Ll4$yq`m&vyEB=8%@gCTpQ zgK4Imt1-C8Ix)!AGRZp+j^>v4G{BV1jxhkk_mtQ7Lz2j=(;Ph5R=qE#Wp%z#fF@Al zald4^6k*^}MS32#iQPs>ISfm)p6wb>Gt!1N4_B2Y$Gh z+BcOrQamW9|G9`+R%3_MKLJmd=%H~R0p9>;gIFu-=e`O#VKJ7hxR<#f28|00`3}?d zNdQbl@5sH-Fqb)6F11J$(8~AnymH*smh(Nx)$Z(k1KOm$(^<2q@=JWiw-IyU^n#oF zS;A+Zwsbc2^{}%_ywX<~eaRU4xAl~5IlZzByz0)KeZ0UPg!7%U`hCe@X)bt+8@NK5 z3J1t}8B2tf7nt6&T6rMxR3ts~`ne}mv5H4;fpf})?gX1SEV-UAXzpJ6Kw>STcT9gobD@npv^{&yP_3BB$QrJ8M!{)sprWwENWD zONVcq623*2(4kY_{h9r>o*K;imVe>;w|!LHT8S44oc7Cu#nKGcwwRMj8Ixj-MxELh zdQ#Qt4fW8EIjH!vxLrh2JUfBoPD@8CB0FuS?WuqLhbMG;VS^bfm+ zxVJ`b44q*A0y>^xW}6cuj^CP;o8tMzW>M}?p=Tj_imO4B<79z(RY_->igj*^WH(TR zdX6_Xvx}}%n<9OSXG9-nah>7#D@8oTx;(rb=;}Iva5f&8{sfL~0v_wL891~eeMumG zx7tnL#C`0tmpjK@FPXiI9IFJ8Z`qmf)jyO}>nso@Aze5Y&u0Kjtj~^b^o9oIY#QTD zYo6uAi=vQ;q5T~JMiD3?`e?%PkI12azIKgoLhkIFrZeZr1T})9dA`23Mm+mdP2I5P zCR8lKR_|+|)x>bE${*jhgS4l5j7oP3jccFZ9Tawb0X=iNxBh&PH0qSd1;i~y zy$Zf}+ki}d#aBLGV8x804jp025|MD!8p?__)O? z2~)=?S{Q+(Y~oUjc>eh!Wlm&+-^wt94UYR>^!rD)xX3z4w;9<@u@ZS^c@E(;@@ zC7l^{}#3HL7e9I=Ady ziz|%x+aXRTBCjY9!zQ$wI6B=hii^OZ2_721NvmR5WFin5^-!AM#TC=utILUw?z%a{ zLFFUxv)Wy69;S9dJxsJmdDp^fwo7Id*sPNC#_$CFf;ko>J1gpL4IxGWYdu6#Q1LM< zZFC({bMZ-O*gY_kE)2}{KV0>j9)zRTjUZne&6gRPZ2y>ffD$ljpEzm$Gz_jk35gv< z9_7O9c{Qn@{;@1hHVP}BnLWUCrEH-We1uSAn%Q*8b?^$=vyjpv!h3WntHr8%eX*a^scU-9t->zw< z3&Yqaw#kgcg$M~Cgsl%nio!sBhe(A`L=zQ5GjkeAGSLSECtYFUIlA~GuG_K7_oTGTa4hG)Zor{^G`D6SlI!a}4rw@GBCj{ZkDUO-p zd6|Lyfesz-P7#4KJ>7-R#x~P=@D>4xXg*fI-&7s4%rRYovSykjq&s~mpiV1ydPhTm zv9eow2CS^_y(k;;yw5<)Kh<$~V(Af}U~s%(Ui2o_K!=$}t=5{w)orantgyuH{!_%f z@snwzhZ${ANyn&ZEjo_muNgYR;WwA>o}5q# z5#>7l`qT>(K){Z~(!nqLjRlxA_VnK8IFF1oMj$Fh>Q?k#SUS^UYUZuaSvxqFcW7#| zCzpgk+fqY!Pxg17`j3zWNXR#C}D+|}pz8szzhR~UgldLj|I}X7Fw^^CPj>{wE zFy_%xr2o<6JM&hhJlthEw+85$xAkW?jDrgOx#UQi82RZh$ufr}yO?>niFwBhV8GP# zGa0e7QhUgWfz4NS?2>>V_;ffgJn9xoL6p=jw-ouX7s!@2SNm1?%$Js5v3s;joXS}> zhgI%x)y~$-Z_v^R%I{LL+1Lft1>`2z^N>L1@f96!*|E7DFx2V3#R2H_C4nE z9RBdmp?Sau;~f`m7d>DSnFkM$E~(xus9wUEpv5}`Gw5_0NW{YppPjIP@rt45kX@B? zNtVQU+274^oBWEzA9vn~%ilb9BF>VgT6SPv@f~r_s|Idl^313e`vE~or1&zm9|jn>L|XNhlsb=nUpfn6IiD^oZ_VLnXH8Y1|dRwh=%^7mwbfQ*s97(K-l6WOpc zA)`zRHe4z1aNi&9)W^Kf;B(zk0RAUwZnYZeKCO#oL|XRQp+{Adv}Jf*NTD^H_lou6 ze*JL}F*w;)S9P@6#h<9J)Z@GNWy$v(vzAbWVX^KyHdduI6vPnPF9k`1)R*mH*U|KZ7U=d2_Bwe1|QR+X6)@_5{SK4Wt^N94ozR}B{c z5OTXbqtxwavD^TkgVxXe7!ulGBF#|zT|}Re_c)yU6(sVs<&sJBW`_tDqw=0jqr*WR z=1fFtdmQHUnvsd6R3FH&t#iBLH|8nDVXHu{%onw7`WOwSGv_B`sYMz^Ko%U_^T0=M zfPc>slgTl?XL-b8<+ge4)^$0#{z*u`^jh#)Ykh2;0W1h&bAzQ6wbSO zHFstc9j6xom_=wg)3?7;Lk{P*OV)xbq4QT&pMwrUg7+;?HHT;O`GCr=QbQIJ?jU-G zP48{u+R7vfvdFMsUw%&`H0j;1{mR@BfE%Pvmg<^&2` z0+v}bhe<-x!FHzDR3f|WGHHytV+~b01*hFo_`uh~>=ZAg^knse?e2#Wlk1`okNJzu z3Rp^<E?!m&^v>Sy;{s9IN0WmfuY}hZ z+ebz9o9zR_9EOFbM#Cw>tSzqEA8B+TA>atv`@!z@LW;eSE`&aU-shCG>glg{7k;g!bR8mHpkfRG3Mf9HX-h<-Q z;T!BjtChX9y+LVVz4paYLaRms71OKn;)OXzuFRI+z0*ck(OzMFM6E%QTQ6ADwbF`_ zJ0o7%8E&K9EFB_MV^?Y_Bag#KoKKebI6!9EQhhxjxA@2t48HCMW~W_pmV50@%`0U6 zfEkxDXr$K>su5|yhT<~Qc&@rg@4YH&UG6qeKSGfuEtEEk388h+3NHTTcnu?{i5t2b zNpC3dmS-iK`%B-aMonL z*n{QLSaXjCDf7V1{a|qM-S`P;Lcy)=#^!F9MmEj?w_mV&p|g4s-V4Z)?%>|zr!?VUGB%cB_SGk zX2rv~l-0ZbmdzT77LoMZjRhjP<3e%5h5IdnlH+L;<^FXJQ81bgCg5A6*@u?=70Ay} z{eJH9&ni6-KaEftxgXfjQqW)3_lj*h*B}+pD^yN1>V6U+wV&^3k3- z^yEh0N91R&`OrdjUxe5aO5|RoAlA5)(tIXNWi`>NU`=E$3an6(fTJ4t*!Mg*K*#3! zgj3n}O~+XXH^_9y8JcM(WgH{r3j<@{5S7>2=>iBt>khk+cUzhwjHf&)TL)Onyhpdi|_J7`y z{MP(T3uAuK?GrnklvFgAzVO_=rJ!4J9BD#(1EdUuG9Jf+TqL*MVG4Q!&MPREtF1m^8YPGgV89*5QH7%e}@0)0vEN3}?K#ZLz3Z^oz|jO)QE zby6kybaMvcRXI+TdrT^)N^j?xaJ-i{3OfO8z!D+aJt#{xBewutML$l+`>kC8+8&2n zSvP1vl1Bmr@wK(ON``4?8RY5q=JM*WGoR4Zw*eH2E){CvCTjS8b;yZo(aQKhIQybW zR`0K(i&Y0Me=ZSl&6Lw*Pv2Z64h1Gro~OJ)|2O$0`O_6B$CXXopm!!e`v1#6A!i0j zq18E8B}%GoK2cyUlPvG!5@OX?@uzei-(|_)slb3T=1=L)lBIG!;)%xo>F@vC+3_)| zz*gd;MjTI0{}k=8K1llcVjvaXG{(OUa=Xv~XP+Bf%4hknTNd?P6$mgsxeh@ksHT*R z_vE`clrL-pi$()y!qEJF1(E-Hw$}&MNM<41iUH#^2G?B8ic3!MU2|_^K2@6STvxTJ zJkdAR3#bP&=JQWQ|LavP7o325T{#fjJxVY(2gNGBx(R4CZGj4&yCiG>Pjz7@f3l`l z7RU@a&Tet>rgkl+$f6zmka~xFOW&X~ql(rltT9Wv6%R_nV{%l{BSOB^acT)S54fS5 zW&VzHX!qlG$$N% zrhpaW7OSYMcZ>@KmHjRvS2tsX!t4|M2?wjIA+*&=Qh0Z-{_|AN=W-_=uuz?Obd^S> z{$Q!__nZgy+7q2Z<0+t1kBLiaK;AA9)PRE9QX865j;ONI8MyOTdSv zBE*R$&8sxG@=%X;97+Wq&hw= z=Ohg%)R#mRxygxE^yH))wPmsG<41J2z$!#@TJO*DbWsO9>P^DMP~JRgcn&N#l-~`= zs|^ngNa`{yPhxxr{_%f4>HqD~gP5Gm%1;%FgvkjV@0ydv>^5D>!LA>y4AOapGY9|o z*5Y}S$j$YZh2HZ9dG|p2xh+@*2sEXJW_iT9G!I)q&N&~=rUo)n1l*250f}lbVHnJlRme}&pH1Kd>e4ZygWXVGMRb68S#Z>3?V)ONtgWZzy`IVofN z_kGT2uF$<}z*=^7Z|XbaCy?FlWqQWw^`GMb{oAXa>{J5ZuS+RJ?7j;~DuJWloadSW zyi(2!0KPDa-Ui!6?M4!ad$hnd`u^uN;CE&HW(XE{xUHSJY4_dZGxLS3qS2~%E*to- z?Xyg0-8mcW^(tLKXLRmYwHq!hLJ=637#2CF=H7cEGVH<9$ zl5(B?xSbA@`)mD{^!M4yQTNDsIHauHgE#`T^c!%o1`tB2Mj{eEg#^jW%&ViTZ-&td zuXm%d)6wtjHjS+gr(EB0Dk)S%hlL#8B@G1KPx38>*sGt@!@w65Vbcs31GFEn z43~MS(PeX^8V_7Iwg9dK)PlYEDnC+Sr~#MOFSkY z^S%bINW4pQN~IxrPd@o1c-hIud#x@|(q*g~CIbNYt3R{AA|~~DExn=jithprPmu+< z33B=)i*A(@E|t1_pddKT2k{>lh)lJS?j(CwGl!HMyV(Sj0?F?`$rFImsc{jn-z$%LyjdZRnGI)y;olCTFT90~{NR2G7V$ z#N#B~SE{Sm4wgH5>RKGq?vGaD6HuANHkMEK(M)=ZDX|>d83%TPmBY4TSIup0ehXXX zPFA!I0m?sQc|;(UwC!qjSPFrd-2u-28iTy*sUxrJ_B3YYemKqDi~+Imkv*ZZy=e&x zue*uin_wK!gMJQ@_4*$b^?WQdtSlNa3mGaJ^nAsnvwP2eJHNW)C%b!8n*k5HU7#d> z`xZQTAT&R+EIVR*GyPB12Qv{gXOLj!xGyw%IU@w^0@`n7_lkhT#V>%_x4+v2#-fs$ z0dpyr<-MIU_XEkf&LHZrC+@aEn7u?fZGu2tl27 z56}xzU!biC7gfOr-~Dj>dQRk3bxt3&R$k8N&Ty9;dsLszz^dOE>z!@|NJV-q%eqs> zdf1V~JamzxZhm9$P!oN8G0u6Lt6;R&VelA*U#pwN83k_+p@cXg`PE-8bp4sZ zON+8cZ?4-NnOG-q9sK+b#m@9F%CA2kUYnLNuvRdBcBVY<2&EazGC@7JxZ?Cyrj#J8vv!hGCH zu73L)3u9x*G+>sW+C)FAqjZ;`bCle5Q&_-n(#ylbbJl1B;Na~^i~K<-X%*7pwARDK zaHqr7%KWZtWoA1Zr3K;&b{8r((v&F{mIVFzQb=!U;7JK+xc^_!NSPg4cD_i$E&*mc zP!zwoEJ2XdRl#;D-f8kgU&+vGOiehxA{UpTS)j2d7lH>tVc;k#fmN+eopK83O7ybZ z+!qz@wjjoyb+qKBxw8RN#qJl+&noXtRRbZO-Cb!)1rF;CD}xrSq6kOWPKV$nc8k!5 z%u`-L!CO<`#kkGoOA0o-=08mjpsZ37mZ4qag|YM0;zupvXl$&KL$1i~X2*A1IAJH&1K~9C5^-~c1F3yNOSsHG zn6TaKKZkL|OD*+h4Fiyz6(Zp6XXkO5LigW0;BzP&71nAC0r+|`JH9>9-2Gwb5r|CS zI9yY?slTpQ=gTmM>;$7Bs3KU^eORFM?kP4+N)43C)|cvySJ3@J&B23uQWzcf?f0`i zu^Of?rN^Jd!DulbH?Z+sc)@!~*2MWoPs3>1OHDCx=17sWyi8)A;)~u0fueIEhb8am z_(Kjbd7k*Ls@6JO0}Hf2dMV&uR)+7`2ZRAoJ&_OjubWT7vJTCBRpI+?VaB3#<{v|o zktZp8`fRfx`&@v_P;Tb!oz0Y`v?p*MGOxhlzRiXjbJTS|3#GH8p#%O)6?)SIk;oAa!A_|0(Kb{Loo@)7T0>z z(_7j4WYtcI%gsyU>LhunYRnl zUS|b^HVgL8)SbVs{DzJ*SX8+a@oJYpMgerh4Hz z!)kL32ZGib%`H3!Ca)K(pvEglo3|wDTnda+LlXXm27mnR0j8)wBu)Q0aHLdlW-TE= zL8_VU3N-AHTje6jT`_l+k78j0ri%Lq8&fRlW5<>*(6Jtu*v~KEoL}ZQ5g^0dMN3P< z;Y?bO+(r}K+DFSwnK>GJJa#(h;QFIGU5Il=g3fajHS=&d9cgO?b6vRGy(kxcNvj=J zj`P?l-5WgJ156C_rn2K`;crFkjXhs0`AsVAj6)s|6c5L|Ja^uD*@4;;%>zd1V=Z2P zO2Q{qv%%$LyO=f)|M9@(VkugZq2h05bJ%$k3s1EbP%8Gb+S4#+3L~_fjmL(_FY1g^ zjf3TnS0tIo&6k+iG3 zX_`X%O+P)+j4^~zqz5cz{K`^a4qo!>Z59VDr<`Y-TzcW;EulH0&NaTlWRV^U#d8f2 zC4_7CzJ0zd7%!c(5vQ~ZjVQotLN{`fW-+e|74%x%0BB)K6c;khOx#V)&^NKWAhn+( zpL@F9o~c|{WjlU2urRFOkTCV)>UaIGvde(tx7@to145W!drt zjs1VN3-2$fV~Pz_*SJV~XfSf*{|nelNv(Azdh4W=iZnud(~56y($Mgoc(00t{q=QP zVfC#FPw?Jn(mH|0RvL`(*agtw)C1axWQ9Er?qIGD^qbKjw+GTRSR>ePD zh(K8=>#XZx&V~#nRe4u#H{v$cv9%~3TNHI+-QG8>5B*Mld3uN8N zOPvuq!Y3B8uBZP2*MXnN$NJ`#gGLK8!Td zSfwGI?|d)?_g-liD886RNH^Wc5tP{MjMr1%=c9gL_9`S3Hn+JFU&|KvxlJURH6x_^ zZGC}re#Igfp1->IM0sxy`_WYz^2GxcUF$3WGFBvuN9-IctR4IW^G7r>>VFVpFeRk& z&-{^i#?lvKj|I%GQs2pT>DMh3#k%E=uUN6^qtN zrIw_%4bjCuH z>w9#cBf#J4ljORud1bbdo7Sn18ukr7L(#e!%mtfY%FB)U`MP#~0Q$^i>7B|(2aNoV z-`GBUbGIWin=)4ccd$qxn$o^l)RLFZ_*Bpb3{->r-!R_m{L=9~R`ETmYO7DH<&=P+ z%J&_F3|N#g2q-Us2m?{#u<~BL{APjC4?{gZ>ZAOH_wCXDu9NZf*=b^62;7xaBD?wH zddEcOBAhqFTR*f@g}4!$qC7|m+LvV3uo!$*M1zdEu)AEqX!Yau!HvS`r0^X#bK{^0 z9F%;46tLE?xB7DT9_o5&qzYkq@iOt&tjs=CsPrxxEXH-@Ya*V|02e=%M=xuX;8r=p zKi9@HoGmB?LcpAI>MERi|B_y)3e6dHnD1Ib+{g>p%nyDa?PHj}V%Wb8Y*vl>g)1hk z{uGSaE(7LVL*L=hI{xLPB?IOw-t&;dmHGV5rj#*J1p;W?G$c%Q>OcnsB4;V7E}bZ8 z*cmw*nELwSy8Z3+1OxzU9O7z%946_x+Hf*m?Q&NPRb8lN%gr*)S@XD6{~B8@jWB!#$Dvz}5VQV3Wi4d}hB8ipbF zc2OQbk_zPK$MA?-5Hhqvv;XL853Bcq;9%ZJ#LmJ7Dy;te^?TY9U#eyk)6fz<%Iu6v zM^78$hwDvM^-Ti~QXH|7D=(yk(u_P8zaUnn2-?(-^0T*}i6}0)aMI|I2S|6w=LKya<79vy4A!qw?6(WZx?g{K7i1d)>1n2RxwFPD`1AZ z>i%*iL-$g?i{jd$pn30b8Freun+X=Cv|rUIj+2s-VPdAf5nBWwB1@}ud2ZLUph4?K z^C&hMv3tQpqhQ6r+uHkOOH$ujb@zmc8%^s+y(K!4d)v7kfI}&GscU{?enrslIW_&! zH!7rjF0>vht^8KA3NTdQMg(3$TJ2NmI2rqm5LARDu?yK0XWH=2aKNYka3I6$!^_ar zliPQs=R~iWw||`On*nH%PUYQOAqgWf8oy?eTA#IRriNHsE=~~gh}vPgOi0)dK6OA& z6zLVQ_bGB0%!hH2!Gq&143m0X1Fm)%DpAz3Gb;%-);c)*WqZ&Z9WbB4!UCGqN-O6C zQ>6r~=7TJ?MEcJ|&xP!6SDK+sFq6!ap$`eopUN;xe=Tl|vCiMEvrmk&g;`haKuTY&(<7JU6(LTFcN^EZw5}SSlHnk3=V-`3Qm1 z2*_%;lz$g4zYRGb;q9yVgO%M8z4tuZ`SND9(trc`9kDD@;_N(`D7!iDTGSX=?mAR* zM2OH+?$&pl^c`IdaQGmCU|a^$;nrVpkDI|e`}3FlGUoQt82POHP8Dc7pOh>2IfBJG zcaoY>`ErjE>2?&`wi;(S6rbp#Vc#BWP$1hrdJNfQIfR)YbEFNx#wfvcqUM#7{<)vP zrjY9nF7Sq#k166+!?F#26uUfiL-$tJ4=N*wMd(@K5^~KBVUy+M?k{W=ii?ybRT(*s z7xl>3FjG<`Fm(1Mf1^{0<}<9^8rm{h{MmSilVZzi$I`)_58@Neuh-5nBbMj#W+?b| z`|T^6yJQJ#hD2$^(^%zbYfI6{=QQ#QTt_@Fjt{6&)^akXq1gjFRu95HWO{)S^Q230XmOboW15N}0fp3U2$F zCEiH5=wms)QV5G(0Pa%zjr(zMQXGQynBO>chw;9devu%Eqs-RuoFp*L1Z|hje3zuT zdIlh=)lv*Zjh+t8maxnST#}o}p`3CDl>2~X_9clZ6Qj74oUAURu6Yr9ai# zo_zbDP9*`0at9>k0WOl6Ys816AZn5+CMALTk zMT)H%1HFX2*P#$#BjLHfrpkD5vb%lxdOA;bw;qoLuvr(~DLT+&4nOM<`sn3rhn&7( zn+NxFIKqxV-A`eGpMZ(i2H>x1GbtJ_#(*-{mIrUWg;J61>%wp+S^RZ&Z`H$Ye>SlT zc`AX1BASb2v}GBT;nHo(bo|>sn_Ue#oBKYI5=tA__l>!yQ((Ou=v#{Q2S5B*Mbo#{ zk(0!HSHt=1>kKD5SCVg^3f7<$wGUGrFv^Ef=~tCl7LFF58*LY-$Z5}=ZF7{O_^gb+ zQR{Qqrex2q8H*5$ZExy0;CEY=Pud<@iQzUHw8H%h$V)NA3zf+|{`OC*U&-TG1mxA( z?>|Qs=PFy=1qd^u*0F09BR#s{@P8HoyPIup%b&~HS(%?=WEEo+50a~Q8xOIwkG~hV zX^=^M6j_Xr)v2P9j6%$?2VvWGB2fsN2HP10R7}n^K;j%DHNDtB?>xH2cP-ChamT%S zF*o?IbZ6}PS>=T$mu{>5Tu6=CN|ur0U|~L|iGQ;2z|VlgU|p|YkY?u+M9_+M{!*xt z28g|&XxiKh0}%L}2YEg!;hx^+*WTUh5*E`NoOw#ixN|1JWke}NH}C#7hSF6&a`i-n zz*_`EHjG&!uJ>bgadAi&bWn9o=$(R8XeTlHv)dwaoyv2`iV9kCUA9-D^3u0)Kwk`W zcrnjM;q*j^D6H3UFT3y4{n#VNcO>L5eXY64xW4%ofF-ha2-U%&yFl2n3>M#`91Ci8 zRq*7&mAHj{WKaP<5A)=+8nbD3J!iiP>%NzD&g?hlZXW9{p&a4X_j8GrpXrXz|IJj@ zsue4JHeQIIJuNlk0EO>X*#FI8RvyKpqL-eQftRb?I?Sh%pyJAhFI~&jTE;tli|#bz77#IgGl3} zS!L%t2cjW3!Y+CKl(3fc5hXM7^n3Lx1S+~c3d~Es`>+3gjSn&K&06f>g$KX4zrDw& zUtb%B0F&>~gF7A8yI@zD>A%_Lzq&nSr(YRwiVWcIc_r%di)9wAO`6$W88+0v`U`AN zby0GVlC%DR&*v=)4>Es_BJ317V6lTveXVx6TiR8DJ_J?vpu^!S5iNgCoL(iEW+A#Ff#b-*eSVnI(Oe4U==VQ#z8V%Ok9 zN}|kbr#|)NF$uo(k}uwBkwkY_bM0x&Pe>!PXICIcz)MR z@yV6?{+Rt8CM0Dcintn)Z20>H{`-o25d@g5j3fzSe_jq*Aa-Doc83R%Vx+UWg}FD|cnq1SHH zE6K9Tq%;$wZUx&_9vreL;&>#FI+83#`6((9QJBJmokIPf!$r)^VT*^ zd7pE(9@||vz2sUFzOy!Fvt?qd}je_n&ETA-w=xFid13A|;jGIX%82WY0QL67!B zuiuM$gX~dO0MrBK`|T5#UUFm%k)F6LSJ|pn z^vm&sY(Q+qbnmsg)|wa6Z$dl#B6D?)7R|1wbDZpKp{n38P?vGv8Fm}0=Y|w#%d6$n z((!ksQ}T+k!*8J(A!RYrsCkuD5Bkl&U38;6x9q?Q1 zZ3tSaChY9nCnq%o6tG&DEX^&qCp8GVJI4U`V_A&~26JI<`iapC+`VNeNGUz!*E?qLl^WU|tzIr6#phv43LH=>3r%}l z$ew91tnZ|D5U$^Qul`kvi8qvqui=@ghI7;I_~DSfh~pkc(wsfCUq?CyvLxa5rd}{^ zt`e%!J@-oy)O7Ht7AqCIjT`&((5KBX1PzOYXkvS!sXA-OM8NL2V6|hM>~d7U9pQ|0 zdlHv9(0>Gc=?mvQ@@A6CnE!nJY^1k=WKJn@^peS3ELd!1tv4l#ohK_?hpN}>uayl{ zs+?(0050l|1vs|C(nNc~z++L4;`d&%BxlklM8$k_Wx15M)n~{GiW715#mqu6OuCAE zDq9=(IU@|M|LjzM-LpY!;p)KN~%OoKl38 zsWXKG0e!JL_C$X6%6C1LjlGr3z}#3pESn|s+J$+?xLAGBE)Pb6fXm+C=haVm;k+L%7#%9>HH?s zfF8$Gs_=#O_ukJB%gqB?oa&DdWxpv=(aad!XTWX<`$(UB&$OH~?Zvhmn3rDh+ymTI`-?9#`uvh;NFZE6$r?^vk?8rn;b7nL9R3nfA!$M$ww1yi z8ZAQ?xo54<^+z>8(5;7C<`7{I+s3Qr@?Fjm&g#0es?c@S6r;gn=JbI~bFfJ5|`#Lje|Vc*fL ze6`BZ>)Tkl|J+3LVWxxR8h*K9b76;7clyln9tV2B5GJX>-<693jig1DP zUPN(^SLj{E%zLdFs0vquUh|G^*Csm5=1rush}a@t2Xwkq{a5RjkvM zAJ{8xm1lP?CjG|!r>nm{ zOq+u5vn(?SaQXPJB#RT${d~(!y`qzO59{uNbx8F*4Vyj07f`HZ*qkZwAj9Bb4%7oB zhBwafXZ8fI@KM}6qe;-`rn!=n1qT>4E8f1hhL2h=l|vTEoiSewXq94it<4bvC71c6 zwmReg)dBs8;YvI6M96aUt1@V&B4iMqnjy$30qa)BIhnS`Gip=&^Y9*r3q356LY0s1 zI79D!J87t{BXgvxMqCR0L7D~r>JV@o-7Nzo6$gpjB>qy%gMwW!^KT|oE=;Tf>>IPc zJ*T9e9&s&=mh3N3);tj807T8A#I8OOhA+jj%eAxs(wzc4s))I+G)I}@W!|(~A(aXQ zcH}Z^75d9=poYTNl3YDr!VquV6h}DEIz;;xX_k8lTNv=!~F1MXOZdw z=eyR6`VO(;8i$`(mznZ>y(I`zUK~9Y4UE-Q1YjXdY zdgVxAwn#yQ`eP8!CYUdJrbJB*xPWd1zqf3ERebKIR9L*{+W5*O5=f(~pkJva4S;wP zAD#!icrgv>oZElBZ@hCQc>Sv<#y)9wXjIvp+2?20tujEM)A91)EuIkdUicYodRV@B zr=8gwTna5%`SSyA?ZO&iIA~sX=Q$i-f(5 zt3s?~krm~VfUdjZ2C2};M>T=2Bdyd7>9ix0p|2g55*u;TL17^9?5XVdpUWjk--dy! zAy;>QH16e~SK_@hxs&!LUlThs3*AQdZ3Cg zRj-}c8Mcd6$3XgnOXlu1+#sUmoxg&4&b0)1;@_6y`o_!Ulj2@Z`#*21COUB&Jk{IP zk%{s1X!J1)ll08TEt&r8XAu(uLdMGOy?kqUsJV)FUSA`SYh-psyoN( z0R{Kb1|ZKhS9@YNzrF+A$%9I`{?W^y4piGW|1b95va8DPZ5O6P1q4KXl%Rx!fOLln zNFyzc3do|n;Q}!z=~{GmNK2!Fbax}&-MQxi|1qBNe1ZGk`whb}ShB8|^PFcK5gfT2 zQ*Xa_yt}rwml#_(#)NmSQJ~)JlJ`mGzaWp`a(mJHYzjfI!tzqmoJ7FEOcszZ5_=*e zhtv>gsSj>#0JFVS0vSKp?>E)IG9H8_ui}<`1+NW98a!F=Rr#+sxiT7-7}))Sy+x^H zTOPz9$Ds6bj^PgcRiVecXgMf2q>*8oHhd#IfVhY2#}%#P#aSfx@RgQVmucSpcFL#p zRfcenG3GJ@bG#Bt@R5I^9Z5xB{QWQ2_kT(};*j68dX-Y}clz|7H*lM?MeILNfo@nHp$IzA|NG_tmWKd^-Z$3l%O3{K$yK=| zz(4H;j$g(DS&Fqf{hzQpua|M0CGo)3h zaL$i_FRhqX;V9y~ySWHybw@<2xbKck<%d43K?*$1v~0I@m>3kXKAA=D8+;F@D8oo$8cl~O@;LUv|Cic z7=f3GwP&6|Im@KHZdu7kQ!kABTqEA5N>{9zzPP7&7ftaV8I+Wya+~pkA3eQflx`Y* zt>ed!uRaX)xVkUhv6!H#eu#}dx|_J=I60~HJ|T8%(r^>bak_=XA5=4Aq$mzVq#C63 z0k+Zxc!Fed)rdDhXn_xeOrZK>1%DU=N(ef)<zAoy9D>|-!~Uxs(A@~p0+C02cmlQQ0Sw+%_3tXqa(~&ZhMFXoOfgY(%_14m`ZRJmqWPh&|~?~f#Z#nKrM_dk^VN-j1USMl5=-$N(REmg#k+p zsQA&7VlyG!sIUP^)w5=0^DKTIDNh zLJ=7YLPy#E#qY23*R{n5;>SPWPjAj7K3ifbl<8k&PP>p{o!-r{Jail1%ssm* zvx5bkefjiBd|klyaNWn9m|6FcdVzKb7`3)ext~26+M~Nf`SIf+0cq7s7M&^@nagvI z%g3{l|8--bk~8P&5R=UgJ1SbJPhvYl?;V?ETe1EU|KfR}-D=#-QYI_S4=KKf|Gwx3 zW;B*~K?WW$J#5l7yOvM&VGL$py(RoOL3DGX(%|v~IuKvgMHuS<|E$)9CeH7`1l@U7 zGXESR@g$Q1sIP@=)v0Wc6^DT?p`)%?9$9oTfvvyNjJ<{w3f1d2VY9S}Xm$ zf5pJlG5vG#5A}Lztts-QqOzbdyg@2@)+giJ|1QtMg)lx76j-~2@D zl_yZA1sti}S$|e(ARR9zAV&|rBoXByrb1hJ?Vk`*Xt|M(gv~TeN1C{cg;|#BRsZU< zP$9x+-XTfHh<)Rf)NqGzJvH4r^>ZkrD&xt@5?jg|0XtF)YOGwu-)-H1iOyN_2cUus zp_br>Hs{CIQOpDDWjJKq;T{*KQb6)qd-Ip{7V!wjyGWc%YYVC4A#*zF9&U|E$aB6> zs~H28sAlVd6rAqsp2f8&>$xrp;>Om03t~V z90H!zj}QhIAVVDO5CxE}2!#2E$HjsAxW=rAbm={0G;)-F*`dT}KMc$j_L&M*rD{75 z*qaQj>Wa5-q{3n#{@?SzxxwD2VnCBm;HQO{bxc?%^I%~<5K_`)a&obIGj3(BN_JY- z{o!ldc|`P^ee&%`M*xtvVv5~)=^X=%uNVQ}ovnKSMI5sX7~M;%<-JA_2P64x7h8ZG zK{`m8`hc%XMrmM4`4Z(_Ad5aOJ@wr|?&p2xBAJ{!E9q8qpSk~`4|0}h+h4R89Rc_4 z0nv!EZc@~Z^5aBftS{fwA1>6ZP`2e&{{vKgiw)P*s&$X@)$((2kTfez%G!~V?ALh2 z$aPaC=I@A(jg|nnS!_uPDs#;Wzme{fPGCl2*cYB%Y`Y}SXY3)m&>aO}{!H(q2x$ET zwpMp9Ds7hxR*DUa&Bq-^caEk*8SPCV*FZYp8}w;+LFd8T>ufyQgOPl?w~jyuG*sB# zg+VJLKqc?>58de^y@BDZjVhzMbsmc`8t9@-1$ax)ed-WALdbk(d?kA+#5wl9Gl3KO zK}m4mp&=vWiK!A6Q0`V^jGf~!>iEYT(%BjR=xcK@2CSpAi^aI4TdFE+c%i?d%~k|} zZCA13lR2<>R-uq6ybESGW|cOu23e^?E+s5F_C-2}jscC^{~106pgK z4ZjYgrB+oK465K5X4AbK7Fw)Bd8-xpaNQH&N8? z9yk9Kw>fV4<8$%Wh46Kn&p@6c^%%>}24x?ic>ZwjyJnzaZMd7cLS1D&SG7{X@UWB8 z%;+p9MP~%|$*4Du2l9HNRW~81FZcu*Iote7iLd`<8VOWoZ=!SSZ)~Co^prnHS9XPA zBmtG8b}$D>2i~x~EQcVaZBKgU4VYIUyF*%*tzf41Zf(<;;SXtVrX>xq-Q z$Z2L`dXqPv^pyvt_@sddIKQFRwMo|z{l`lb8L_yG%y=RLL%ITA{RiB;HcSSKKh^B- zGL?HT*6%%uV0#CJWYaxA4!gXdky-4xGCw_E&kM+)8h-DISz!3;d~LRm$~ zOg?zE@md0>$IUBW?J7H|DUY>IV`Ncm#R_9$gTID4ENGx&z=X)o!!w0?nGjBD4(fY_$&_~(z+Zn1`2e}>f@chAfX7ezM^_B;hZjRSZ#*I_e41g zvpsIGdST$C-D2G1vX2N}W0$G3YaqwkX^J7Wr`beHU%1BLH<{prbDiN}GtNX`=K7K# zE&Q`F(GdWJQwqOL1KO@Ht7@mX-qz;c7C5q;Z;R;P53>s?TeFboNCa~aNo3KkGk(0! zeV2)Y(h3ai<<>6mmbl3Jw9p>^C2)TA?pKP8{rX68!`QxhD zs&ZBza&(u4>Gvxv*m#pe`NxvNhOmbczjU@2u11@kO7A*rRLx zaeYos3Xb148GMdHY4!+K^4`%AYYm}&nt0EOV)Rd#+(CeZYQ83I$|GPPv-ivrn}k8efTjvgP7v(sWFz zWAiGC1V%(o{sj2uL?tDq^g)-O970S|yk3kwOnvr>bUqE1;~z_Dyu_;gbkwuFEv|CU zEO;P8E*6x&BEGp)RL$7+B$xT??87dH@XU1J@nN&Stf-+ck+^bTUpm~=EgXe6Ed06yAB!(>+cnl~VZB}pCb0(R>&Dsv8BbcXmgP&dE93H5mF%}iXW#tzAUcli4jsPj zZiEHnmq~4!Z<1+~1jW#Dbn7|CZ1tA;RiKeQE*91|cn$xlbUk zy-CnqsG&pG@gU3swwA~OLQzIl)+|hF6L*kuPAq$T1BZq?gk6s|I4A^65&0Eo4 z%P$Qk&*kn`z$48DmJ`!{`ESJYysQy1e4uM`w$uqX%wUrwD!N>V5|E54m^A2}ZQ^$A zv+WipWDp3=2#FKkGs;LN9us0Mba3OFecef)HeOx3lL5&cX)`2<{4=Lj;p4ZBalH(^ z{z0?zuyuc(tn9JklllGrhBllN7TUoxiUc$^T@l9Ub1t_Ifu#y1fn+@UrwP4EA07Gl zYMK%`2`U_nvAZ@jztt?p$yloH9GgcBFeo?3<2xvPdLBy0b=47oANcjU2Ea1@oJdAz z1--|EZzSRBFAe-K?4`)@zRPcblCVfQoJZtBP{L-RgW*@*aff_s0SO%i$)}Wc z(v5eS>iiN~ORtl?c<@9HzhAu0H&KOIp6bWRJU_r&;e#G(0z9)?E=QZ@coaaL&`se7_{fYm3cMc^YDvY}3}v(AiqfDIdO{Ja z9{Ry(>|1nO*&2^Q>*7V<#rP+s!tvKDT&oHi2S?A&^!YR9My`d~??TAU4RlNEB7r4* zL!Ai%JSo#HMV*7D<#`$lU$$Ph3E_~Abo3X2^2MHI$$qQmEMa}LMBOH4CgmBba0J38 z)J%T)5=#DzLuoboMK#^V5H_*BsL$WoNCD#Fu+Ja8cE@P|J~?hK(#wzGN|RoYK1`(! z3wcLYczu6ZR93Difx_9kwJuU_CCY0_+!S^q@4Lu*14i#%-EC3%9;~u@?pLbwR4XR% zOha1u(kG1@`8itz)BA3z?T@YOOW8{X&o3ZMgN>wQo4yXe=ZM~lo1AAdT*~UD{XqW! ztX{@=`2nB(YN`fcxPbrZ{w38IUGw>V3}2QH36#EA zP--!%bh>}iB7Zw$)aQZ8INex5Oc^~?=hi#4=9eOlYOWt<^m62V@nb&Xm*e*F@<&8m zx5Ek?H^ck7t(kZ7wX_R=UEaL%$KUK$lwwIMf$~sq2F6!^iG0m6GtAav!}j^P-aT6P z-&e&aO$&lWqema$i+cbGRt%kPV?@>Sy|u+XeAW<)UP`D0=`D^}cQM8GrfDknX4gAV z@II`@O9+=yFQ_zcuJl(o*zJpVXbq-|D9zVWO0d+{wRtKYt;NBOC?l7m2RP--6>o71BcHT_`nfLS6!CHY;mJnePt1I_j40Z9bhYu({AWo9_rLI`Z`YQ~) z^8s1PM4>(naHdHrXt&9t&K4Mpj6d0XwM`lJRm*!N_3*^FUQ3qt>C+zhpz`-y3DFMk z$o|ziPTq{#p0%lXia!LM>(bLl?Jr4%G`XNJ*2+zxsc`N^%+Np+8{+*rx3Su*45;6q!L!*JS~>#t&PdRwj#48wqK$x7 zJ*s*NhKvmdRi$XYm3NHJHcOHEgh+PhjlPoAFqd_5qcOI4%1i$@dadx1_h!;d-!T-$ z`C;LBU^#^MZ{y#bBgQCXSDjR^Q-5zb8ZYzNF@Cdb?vB`Zo)qEqRr5VA7$G+z*e6o9o57g#?71+B~4wL*OyiPvg>^2^HBB&_y{19)YGOW4hW%&3$ z9<1^$MngQ?g_wo~8~?=S`aVSYC5ZZVML*pXqWuR}v8W(AZgj)M_O=y+rP0Th@RdcX z6Q_i>j$rFOk}-A;ag&g;koQwQTYP+75Ly={KMj+}x#Z9LERmRXWSb&5ndu<1m4MbW z?T>tBm2XLMkQ+!4dtnXa6l}S}c|~Quq)6fYXt`)a%#06#M;VmEmAkRb692P}?Nf9v ztjc2WNvBJR)y`Xu;&}yuM=~!BVMECc4Ud%4m1whJAG}rv^U2Ir!gbYO%EDU7n{f$+ z914Bw22;$dR9oTHnK(#e6r?V>Iyx4P0n2@oHcKg^z8HAqR2#a+mfoHixTKG&jFDbt zE75KQHMx=vM4>=*B}#9J9PMTD)~t1}o1@eCyddE+mwmvaaXj0n)XZ0)BS;qY3t=mA z*C(u@S9!^BW#}nPQ;1%^xd>F?;N&tzZr;~B)v_4d>etx}=TMig_NZ%}bpw9B)@ViF zC-{)nR~yO-Ca1o^9Z2D@$^_?AsJAOY<>E#8BS`Vohde?67@o6t8mvuG-Z$b(Ved z5kI@h$WmhKe73UTzQQ{iUf$PsE`b1lHNKF^_AXr(-p4)@b{Uef$`4)EP_Qkm##Lx$ zF4eo86i+gI9oG8JUM8k=q09bbKs{gHf0GV(*>M_=b|UeML_nQx6mM)WI?ywL8B z)V=%Cc{e{((*VO^g+RI2gM8!2cp~eKY&C5Qcf4-yIGND8elA!ieHBMvSi0AwE?$rZ z?1L(>MTPJ@b&H~j%}Pc@pwQ9mUzG-$g#s1ZX@wFbT|Az9@8wyUC}>d8s{Rgmq-aF6 zV|tGiIH>9}H1sFXRGANUaO#sHmBRM!kB7{(Tq@UU4jOAXmilpZ-lKT;`|?pB?B`Iv zo~3C4-0N+aT(c@i8OK~QxB0rw?f?VXajKUnXtxU=8KmYhCz6w~%gA6x&}&GXnWucZPv~GH6njG7o<-0!Fc4760@k|KdLD4uErP zNh0;U>JLh}(299;TJq3a{LD+6NMV(dRL~$xHi2E$E=ltX@wiNhksNJdYhE~*HTdK} z6IX;Mqj$nn|F$+oe`4R`>~`Nja|HeI3U{TKS89hU*%oKoaSf0NdSCSWsIpTJDhAZ( zstJ)R6k{%wI$A`apX|<|Lz46ltii*^X7ds%$h@*qQ9$+PG*tk30bv{g%Nmc_x7gXR zi)L&2CH45L8i)KC2e7vkT75#MeK8u0C6el|rWn#?riqHGFP{pO+2@|W>!WTiL%Yvl zhU$6vWin0zdXh2sOLokVS={elQK9bvr9HD^%6FX@ZrEFnD^ByNpB*Bu+H~?UvPiGq z{;<7{5MEB$oW?y34#6EUTui#n0=WFw2W+{lO*D+JB47gsz2_~b-Ou&Nw3x1w0}k3o z8HqELeb^iACxUul%qT~o&mUq}rD4fL%&G@PG{qja2dF+Qb{iKlx+^-rVn11y>839a zQ=^uQ8Gb?s@87#R+KhXRczuoHqM5vje5U0>X{zn_cY&QsiXWk2EiXv^HB3GfH zc94{y=#7&!y!;?CUri}7T5@!hFetA1h9Ba1x=q!NoBizu(f+K^7x`0=84}*VYiBYL#5g zgGd}E<&09^4An&E*iq_9o%Iyw?On~`;RR4uDS<}CO0SSZJ+n|UL@zUxhu_)v%&Y)t zTL=QHa})L0*PwBF{kkd`w)IG}(ByB(2d;l;SB*qHw~vNh zJ**ZOPjcV0lBnk#@5Hkn5x@@}9*H~mAUdviu4YLZ6pClSivCZ+|w+e0*ELD5} zx$ZJ(z?7bteEFQZJfKy3wqHicC8JpMwuwA;Jy*8^7WVt_Ld)`~xZi;9!>9c(k@5;d zWoKkYIYAVm+&Y>J${DhaJ27Q5kb>|Vk)zGMkaOPC$GsuOfi|;^*v?CnM+T?$wqy09 zsjeRsq*CBt!9mGNxxYz`ih&#X;)_Kfl+e$wUFW8OND}B|Yv3qVE`q3esM6TTI+69(2ZGg8&(;_Q0R%!d*vAPKK_vA6Y zw2XPZFnoT2Y0#y7T}9h0n03^*D#b2k(o#ZVh(ddeC7L#Zzy1;Y7V$1JP7ESUG(Kq{ zzr%J$vpNLwvzPo(eheEXk}5Y0l&X9XJ(r}o%vUG*E7defe3FY_M}2=H)W!NKM1~7$ zg)A$J4b5JD&aiL@zodj{vgLj!WG&=B5SsUCO)D|#)O0?&z)N$S4oU;|(2H)EO}+Rj zaF4ow_*HfnI>}bH16dt|fw)y`9-r-e7&59Mu(wqj8IYosCXYhnNzHHfZRN?h-kWI_nU}uGEt^ zuX5^72cFAw_V28Z+Rj4?LMtP7eauiybz5Tr{`+_C8dnF>sAyP#VTzjxGn(B zMaYp$ZR!{0zpdaIZuBaL4Mrxlyt^AqIk1EfxdcHC#^}5cY((x78E~lXd{?G5nk`i} zo?jI()Cv0^n(aOJy8Y)50l#}>{4A4O`_St$s!C@TjihHn0!>kM8Be=a7(hgVJnON6 zFXBf>ZH^U#mf#;5QbQ)Z?C0Nel|)57RdQbU8m;%bo2V2nS`2Fy40HC>2cBr0dQ9kX zqJ~`R_f^hQr02Dc^=}-oSfE+~ULuP~0Qo~bcMfek{vz;l#$mPO%~34wQFbd6QjBT= zmoJ#(N#1Z7&t!6YuEhSC9y@{7yuH0Ql3T+bM*+x(55`J3lh%-R6`K1XpZ>u)f1Bw* zQ0hVw977y6*{(N5ATQz;sKZ zb#5*A@wN0=-?^#0uvx*xiV5ThDX5WewMv6%pMLX+ck%cP$9VD()$^?ursEl{{Z;Ug z42KA`H~4hrs5P_LaZ7i+KK;T#v%-~>GkA)!h83uLM|hzMha@(iKWgtpmHs>Pgs^Dx zJaJ8ABA>tm$auPN9f1Bryz$Vg-=cH0ZLiq}QmO$kQr{b=Q?Xg>fQblnKmSuBvQ?|D zFIB-qYxg@(OMYX)_>KJD6ZR~78EmsLNtBKbI&f>E4TUP{2w5Deni?>#Hx`|J+xUIaZ9bg@cEHt=q9)W;sl(1l4Q<+X-xY z#T`XeLNh<08(3e)Z@)S+D)u%HjSPSLnHS(zjdo<626)Xv@hE9LJ6&gyNo7O(zpEzX zd!L|HHD(%gC+MtBxjVYy)^5DxoO|U<(6nJQ{&)`UCUvFp5(Q6sV_y$QyhQ;?r>+d4 zsWQ{3){Y9M6z+w#2*P-o3jnzcN1+>u0L_6*CM(OPpP?*N5pnf)v;@yV4VZ3G`N6@j z@Dy6OExj7f@W^}#^(H~_WeyI%coD-~<%8|e`{}y(1kMmC>TN)aY3)}KVFqNRRE`(#I|6aZ@sz_t#ac_pbaYhxg#cZEx##B!A@yDj99pXEghONxad0$By< z3st7S`TI>E#S%h+Nas21mS0sbFT*-(GQ0{v=r7qzc2$tcVgTi8hUl1Qc;7c^e0cG? zQLz4}luEN6g*g*(S{auNbXi%~uCIU7s+-3`b+^P5*KVyh^@|RR_IIi`bT1OSrjooz zxTxbu@qV8oYpJAfpBcLy{450KB{KI<( z5&jWL=C%qlg;4%&bns6r+HI@a&`=&N7nnuHF=HH4Sgy{$GrPZ+;3*n<3&6M3{D@f- z((GqurKrJ}i#>b0t=(p0*D!YHF_lbYS~iwC0?k(Q%98?#inRu&Lh`R~yZ%a_LeZwA ziIm&uQN3@F3Ga(}&Ei$;G@2+rM(pc3^iWqfoNOutND~|DI}yN*GUJe4!#dqSu_bu* zK=DPGS3Cpe1TegvkNh09^9PynmQx+b4iliDtcQsIhh>3|g=8c13j^`NTY`E3!qr{> za^NlkjEep5_Y}pZgUpDXzzTq?OViXQQTQszj96OWJ0|+RAtOF|2MM{G7<~WU7Cx6) zSaLW$W2Kd4X`G5@c-OUTVDJV8&~#0OMkRKdUyqcw&rmqsSC zgE-~|*@Jc3zlNNSf zc2YXtjZO|!xZ}JQ&x$;S+ofZ<^C@pTLH%KqPn*tSpWVJ*bqdIz-<&PEXAVaFAwyxn zegxiQ(1c_RKrm|{(_<%s7kTnO`nS-d;J%k*&p5ziyNw1I6SM%-zxN?V34t5Gu0jz% zB>OP2$*8D>Ev?SFk(v_TmSWNFmk#M%vCeHG*c zP~P|OIB}mLc^zXLbjGMErArgld-L78jtatmV?&J+)r-$}bTup)5mE2BL=*rBijQYixNu!1k1FR`{MX7DS#q-jEsrje!4x(&g!+iU#Zcc+~c?OK-u z?(Uy|u$(eIFE>m@=+KcNqMj{JCiQ}2(>+*4;%(kKR3`|Cc0pJk6K-{=HCKy-Nb?s* z!S|_Vh*19g`BUt2U;>y0vlfc2jdw?CoJ&B1;4zzgCm;T{lNZ2Cj%^`*m=U~GQ~V)D zFjD7U{qf^Rn!Zs!W|RbGtHlnIGm3^6oZWQ_1GwP5`!Iep>Ldk5Zu$d*ZW0ZwXtGnS#Mgfq`P%s6rnrhK3 zybIzqlLcYKb)1e$BuBwSdF_8gG5{8~B-zp_|WQ1Bpx|=O*)%P(+-5ieifR5Cb+~&3V?$aw|$9&X*|G2Pl}xzzhq) zG57?|2VLvfESl?Mr~q*cZT!@{W*J~V2g|VVyPOKa^)f_49tMBA(%}vB^+~4-W`Duz z6LgGGY?LT$$oK!AKmRN5ivbDw?|muvsq6x)ZETM}drRHzK-_0xx#(Sm{bpm25`vlX+@4Ms6s)f$>`*&M@ z;feEuu~VbNgOxUbglEXtEcYoD$`*N|StEvkKMOc+hJxm()T`bUDIMAZL^u4V0Q78t zD2Ts1o#doRb&9NP@(L0ovbfM!GobcoH(F;cwi#p`EqAXb7j~mb;RapNQg>bj;mc@% zF=TpMTVJ0{**Xno4kCa5o>OXrD&b55yBw)y9=|<;;Sj3gIWI^>F!aNGzDrS+5PZ4eF0CMNnXGRchmt(vpB#NxFEY?xw6G-ob8O=U?&eOT0z=JkC# zzMh!@txbub3WLeh1D3)(<$|DpPT~>GwiW0|Q4iMlJ*55O+?@78^3tIh#`>?jsczuf zBj2xZIg;wSwLseWls03IH^1b!;21}F` zQ05|mR9_S0Yu;Uw6VPx;V6@ttHPra#QK(&IBZncU&FuX+KQbnLSIS?rX}(TcoW?yy zB|+1E^%LTi-o-=4Idxtb?6O(ihq>DMV^WrS|B#-xj{j zCjI#i$@#0s`k0!lpied{jZ)ZJrHw4v>}gRyzmkpVCkYPbN`dU?{PxEoM3c@ML{56# z*9qTqjT%NNNE!8T&!l6x%^zheS8gp+!X&&P*pdQ(WEuj45}ONP18detksam`$E;WP z+yacW%TsSHv`>eu+2G$iJAxOY-tGVk#0*5x%BK$s3X=Op?N$e*bb*<#R1{16O-Z3k z^VD(U0onOn)-KN8FNc#uXg!qsfSnLcWds9tu!boy%||@rRkO2`I1&Wj$F?ByM*T^W zqaJ|s(#qUl89#ebd6a+=!WaXX9pe?f8LCXq`@WCO@Afobh=c%OvvkNK@kbkL{*>~u z4Ot`{@1+0 zU#0>j_N`ksl@K0Ntsa#@+g1pv^};$IcEZz9mX+Q4kfg{?xu>seTa^Opy(C|`A=XU* zBKlvx2Otg1mC-$llckwwC-xIg&ZpUrb;^MT&#&DQIJK@!rn)Z^R<20A6~Eva6RP=3dYM3;kAU!%+3Ktc)zF3TxFz=ZLw z0nEqUPM+zOMqk2oAeuNeq_XOdgd&g9ABid8?stCpb0L@A-OxwJ#z3A44}e7Pm-)-I zqKrP;YC%+5h#-9I{`(F#Zrw@!*~RH$$mzjaWxk`nK0e8|6tr?|@>qb~Wvv|A@W4mf zU!GHF)7`69_cs!Igw&$6O?mUSYa~RWHRHq~(68RG{AZ)Wq%X}EE#}$w*tC6%?5C=? zO}F50Jcus}?I85&?TE5xa#&>AdEf46tb?;c8 zP|6f#7SX*!LY%(P#k6RhpmRF#mf}8se_TPGX1=Bd*bAq|8>EMW!!{?oh73lJQpjTO z`I2(pQ$8{ODOTySk)x8Wq9Gklzv(b+K3>s&dO#+ohesj&q*BfSSx#h9a}D2r9c8#c zC+ur1cdH)69Fad>E|m=C4@&8NeWlj#DuyS(Ox|qdyCQ_56f0?IOX0ZiExS8FqlAXW zpaPDukadq$SGFyZf!TJkE21xbD|FYeee{J+ndQ~xQ@Eg^-^UpGJ!PX+pc%F|RwZOy z{A2}H)sfa@a<*UCamh&NCW0xVW8jk01D5XR__17|4B3~f&f42Mt=J9(&uFV1x9+=N zY(N#$9WPQ(0fre6n0>0467fYFWY7{URpg5eWvOrTZ2E^|)0-Rw#aB_KE}9p~?3`<) zr^6rRX?&$>ji5cPCrNqG{vPqRywZrjn`P7-+l&mCKRS>Lc9aFU!Lgx2b#)B4F+Ij` zCgOLLpEv7W9kcSd`c7a2iEEY*n)wPA(J0%z?L7K3exs zD8mfSu2l3Eox!qTt3Yf+r1wHTo}W3k!i*d57*|F^`HK>*jD&!j7aaF_CK@)kyU zGg_L5@gH#Si0~{a>NS|FE(3H@=E2(UOL~S%BIxwZSzd)Rq%?L+`wk57c@ zL@}r+zbCWSZGVuB;~c%@B|Vrkc21vb57A7I=L^e}FI%(I+I=mHoCHf@1&l`&+Ei10v$tS!r ztx#;xbv~T|O*8A1YhyroB#beY%{oXu%ZVP5-Sx*xU3%Z|TGu#8^0g5LiO|(fU9#Q| zepg!;c(I^F2(YR^JVP{HD;~GTz3|Q4(XfCn}P+j zC8S*Tm)|T2QSw;C!Ecqq!i63|Pc%!ja86GEMNQ26Qv&2Pi>*;*mmM!6w431e9OOxN zv$P75mTeAy8p2EHQ~-Z3l1l)u>GgpQrhH2ScCKMh~_4DWa!KRRbKS}nMHs@Y(7a`vfBRZJ)|_$vMILFC&PIy(NOu%pH`e3AY_2zH2%0mU;7IHw+-L}KhO@9VJ%{pthG z3pIOzIREr{na8YXp4HfSk~i_7DZyQ}S6iFcZCtj5vEirH>)h>d_p?dv?awDdWaY-b zI!cC;te?nuN`Htt=ct#Eq)$9(K|p~3Zx0kBUa_DVYvH`>+id={3y%(>TH0xT5MefY zDYGTAzX#rld0X^44-Vz`t8%TpC6~)jhs6$)F0KXDYXc$DMh5EO{5M$0Q8m(F&QwSY z>C&lc`?ymtk>kJDbi-|cQ6zF9bD_(s#e*Zd?ZYR3GfmSCD^e4b0AZ&souwCV4?GUz zD*LYbksYQ%t^>6R(Y1R8j%b!x#6Nkx{RK=IE&&iP$@x_dbzfZjz%&$9M|o5tg2kws zNAKbme6r)T-SZ4C=$!L0dL0{#le&!1`a%rZA{tHfWQPr|5tW`0*7A#6@rO*{9AkG_ z9|6;9-dvC+vZ}pSspLZ z`dGuGWMvDcTn@PksCpbyhT`V$XE7rP{wwwG;T#}vc8HGyT z(*ovLUx$G#i*8;tg-^P&V+UM7fwOx5FL9*u4vI~jUH(ep$v1^*AJMdM24!i#c?R-W z@e-<9Kzz6+<59oFb)LCAn@_+v=xiu!2f5o@c)h+?9KXA!OWj_9+rh$;wM$Ft0rV#w zm;3m!>!F!arkXj2ss&^}9#jt7GlFwE`_&fcLbD%tirO3~6s@QJRUt5=^E<550|I~P zg?7vee|b6px&XI9yKJqB0{Bi!Ca2|;wsh0o@8siq#fk5+4H(Uga8}O!bONK_hsF@m z+bxn;ni*|csTafvJ^n#RH%?pIdQYQt!JA;9xYB?Dx<9{pcZeDs#=-!$1bSaxQDYT6 z@dRP!Go9P`)Eih#<}vbx=@bt&rkIHmsT#ebhIidttv8JK?n1$`?Gd$NxoeaM&LP1P6%vQ)j7u z5pzuO$*(E*_01rmQ=gjQwfgKXMiqM2jRaRU-IW22`!TpFN5bpO{d5WecB|7+;v13r zD+^ZV`9CexYY85!49TZj80cvb37}PBQ z1*~EUa%-ZV?1s`XF%AgnD+!0haQO$IiT#!Njjx&@xm^;|$S<@Wk`{j@H1#EL-g4`pn{`>ZGZ z7+1^7r^()!t$@ZvW<6HrIBkCRg5S}3(#UM+4%8dwK}MN>l{)=6aSUNy$Jp}z1*VKV zVf37KsYuR?X7z=wcmc!z;*1P;bXvwX#1oI#Q+390hPa*VO5DDG+GJod1Z*c@{cR(O z9^okHx5UUHfU6tHu7BV@E2U9m;0yn4T1RqzDB5_aRok20{lWW1S~RvUL@Km;CJE0P zFNZOIm9tW*K4kTq`l9DS@t9TcY9e30)#2tex$BeOz|LX%ONGN#{NdgmV}vA_;A;IO zqk6#;U}Txxd6}x=MJFF{Ub9p$dPDZ)0Exs-mrACD_MJrHKUL5Hp@7e~`UJQ9h*Jg7zxkS}pc z^ag#023z#D`>hO?BDym7ahDJ0AMDbAP!Dq;rca1EiES!!n%9 z#=`~raQ+R)X1cSSXWVPD_oXH;cV4=upkFP^6SYM}Srj@Jodp3R2)U3$M_teixG_Ss{HE~GA|5eZJ zJzVE|?|hE;yILoyQj?%@U$OfcZnKH*-v$d6G8!mN47(ATEjAXG&oBwXmo%*DX$1}q zKd5qQx_&&Hq78mzZ^AIKj9huN#ya0?=%2QTxh362U*i7VL=pP#JoP=tQiMc3)2qYs zs`z79G_5+Tj!hX8;5ULI<~|i_u=;deOT;j&;div6BLDlHe8!}SA1nWFM6Cs zH10g}@lM>gF_ve}B`q>^C9md8yo{vp{|*)_n?=C3gQF2-!@$860XS@gRo5zh$GqV& zpw>n{ITR%AAtWbwJ1uhBLT%BVui*g7n0F{9+%3CAOlfj!YWQbe(R}T7g&L_<_ZYMx z-nZ@pJo#GX;ll31#r+>vEalZNB!LKCi0c;Y?m>@aB89t9*9BjQ!&6F|*gBxKemKU^ zkz!FjxTJ*>eVfz$8R^Hg3(%Rs=iQu}=5B%?V{ zK)7XVopf~T9;{DtcOZ|26q+ZjGmO<{hxboLkPR0|jik^zNLeIcFLEjWQCpo*w29WY zMW794Zi8y^NvvKgx`EF?XhX5RLz=4tm9@Ay@w>^ujnd)cK<2appg~B}2+wK`Q`Zw-{nSQA zR=^*bV<7TX7J81G5dMIgxb^(N)j$&S=*O-#KZ5|`bj50vrg|BkT{b~c`nE|L1i=EG z2pM_mSmmUg|H25z*dz0NA`vSkLAX@ckbB^9vL zMf*T+J)CpX*FiOY%4A@<7ok0H(%fMVALtWdH0becbzG5_taq}FEW@O)iq3%xr$|C zx5N2%E-7Zt{7Ua4+Iq2~fLXGEJjR;rP6NbLY@I*gvewc^b)w#RISK#<9SI!6J8ZLq z_(*BWmXo&7FQ0>gDahE!h&e{1S<&uRQLU?`k!cr+|4dpOpUv1D7pkqBj5%TH<<;RP zYKLzM&dl*`%$HlW(yS;bjP!{?!ert~w;$PT^7&nNh){nRp zB{nIp=BeI|r>ibMg*G}sOFWn5x(ea}1c9>S>FX~pf*y=at^KYkIIIZI;_mS``o`~s z$BNwxDv4YgML)Sc?@A7-V{qkqi{kQRjvM)NzrYHSr1?Blo?vZKcYXQdW8j3T<{ey{ zIH3@%6ebJvZ|~u}7@qD$UM|_|6VYBpVK?8N!Ca|R=rltv{E=kNJQ!L3T2oV()WyEK zjN5AOp67n)kS)$}=|@UMb{^`pxXs!~`eYvtMWnBpfLI}PNmso!aX6{?pkLW!CPYM~ zUL}H{<4^kzr%43-Y>TnQ7O zBo^fFaFYozyc5b|_96~jDN%d3anO~o0&xb8Ew*2VVZ)mz-bu;jFD3${CHSI!?XHW< z$)2TFN_e?(I*y3bbmuk+I`G9-N$qLPJHi5P6sds;EX=L-oJvHYc+4)+n$n1Nw73@l zsJ5KLCtS#Dm*Z~j>>E0fiGzNbS?>sZnju}jmNa)F5Zs|{bzNxyjCuyAVy76n7#_@j>UF{;xG4%gwZ5V*o2+cPPsKA z3_$aW*NCYY@X35EE-M#@^5YS1n+!wuXb;oH7+g1xE0%s0f()D1G-3(1($3Gx$GeMU zi$9?5Ad))yfOmMimB+?J|RaS7`uy3o*A(b@4%>zMty7WKxU!C?Nme5RS4$z9e;K`?8mA zv)JYSkP#+3gIul9ZbDcst?3sqbW8TWXz&%7&_q6#^3}+HE)RxAsDzPq#C%Tj=RK08 z?Kbi}rtig9qWfE}a>u~|ezeBH&adivJ;FsUFq&0M0k{H8e}$mdwmCoTc+ZQut$nsZ z*XXSL&ZZp!Fw|}-OZ(0Da@d3&VIMz61A-+m*Vnx3f}M3}Gy2k}PQ7;0NvF% ze283RdwV+-VU9vl!uN+`5dR0T!As}BqgkRmk9Ea+sbeJ!&w_YsR=(YNwp5ACO8=Q@ z-M8a=x-KyGGc0T0yOY&u;}IoRiTS3uQO<}dqVp4^8wajvZghUm>Ao=zOa;!z%UP}q zFY*-UelM#>@W`rUYp1>j^A&w6_hT{*17&y1lzl4JQI*c?GY5y0jA9)>U;g{QepBuN zHlfVmsx+um)4(8Xd0>iIID98@JVz3L*g%%mTB@~+RX+LYMZ)&)R3p>FEJc$cMku+> z-tOnn$v3qRl`=XjEAP}&O?j9RKV2h)-ifDsdwvIsq8}h~EM?0w=lOc}wW_5$s;(VO7=r2-#^FD-)@>CnUZv-$~>nk1<{5DHk4IsxO)5q!*ObL%rd(y|h z#MfTQvt!-Grp61Y^d=q2;Yx#AYWzF@QJ%KH{<7{qND6LWF*;~}T~OAR#jv&bJ2?pv zAXlS4A3PsvrlrYy$s(Wq!}B)h!XJ1RE_}m6mDhlJiEWlasRR-m7`LUis!G>nPe!Cj zY5IW4r_@8)&$GXvRMHwag$b&N;y2jWdBs#>c!@QBnJFLf`Tzlh68gd1qVo38vzmE~ z6!CsgNO4GxM&68VsmbDM;VX9CNe*+BnGSE9X5} zrTx@a0xP(fytshCXXAM{^#%sUM8P~yn5+3jZUt$ZIm{H_QSXK zE*^)d%<@!9y9#lO28pWWvjrI_HL?V0tt#)MS#WS)Y2MOj;qRO22XDJd?X~o|r|>ixy&QnoWv)JbaPmAx+#nMhK7kNt(2CFhzCWXx z*%7;TVbT?)bAyb7?N)dY+{nlJy9fB% z<$$60LBu0LP0Rt&rvnds>Qm&->Dh+^(qT}L-stC)gzLiY5!M|y$)YE z%8jBwJ9B0MU71s|=hDi+(B!9STA9}ESItiXqIj9)BCo|;JM?}bmMGdh6(7;#Hir%_ z?-h6N{Z0d2{i4DL^0-vMd_>Ti6N#u^_Mfb}CKZ{s#aWBL)!&VbZ!z6jzWH*j%pN&} z_V}4VHWVJmXH}8EZ86pVwfB{67;NRDd-8I46)xmtqWUsoyi7Y3EJqA{Ab%AID>*=HOwD`GA4+@hC{y7%UEbBbnU<|oDU-&pS@YKYd1yj`2{u52 zhl6ypAVX27zWpHs*0961=^ACE7HX+~VWWC3FSdBCVoR961}cAEB#j5~wEVtN7yRt( zR%L;#t=O*eu}iC3EdTiva$b-3o#jr) zi)w|&-kXwc*Dn9Aoli|LuPgJYLv$pdH(PhRB{&&XlcGR-NKffPX?_8(1*v)S&Lk}e z5Q+{BGv@YrXfcDvtMBPl33;FOa#*#=w3eR9K-0NX7fwSKoq=xUXI_DyhzW1ctF4hd z{Pa57f0Sx8jj(cFTb3s`$if+u)~sJY4Q<&YGb*~|j>W|kjcuT?)kh3ZwXx2H4(6e* zVUhAQaFaBBjP|{9t+nZ+gkt;HW}zg+kau3^KeZ=c%YufGWG2lqzPSq=Y7GAtK!b=c!fR}X|nOv|(k?56Ye1$z8 zDOMbzED(^C=uDr}xD1Cn7(5dGoEq_flx?7(q9v>VfOyq0{MlIb-EgYIBZ2hk7SQn4s!p zT_Azq=|DKz$&CjJ7j@&`xf&=uHq|2Y8o_$6X0R?6S%ZJw^+{Jer6IDebX?X|{JWIe=z$gctX`+DgkzP{^Id%{B=BwYK09p&>m1$8R= zIR8n)p~1oyv-beg8Eotal0Vna#4U_Ze{ZIa%r~f301hq^C@Pm0zEoNWBD~weBrYrh zQuyr8u>wAl*t`*VNG50sE7scEAd@K3QlNI>K0Hv+*O@%na|Y!G`6%lgdkYZ&3%*|E zj+GmU5@VoP5i>m{*PH^%!6MJyyFwNmqNJ>L?*_RWxKpcAzfLF;KM+!&Fqn9nL@o4V z^;gpRn0pKKGt4bg3~{IcG9%~Cg^Edzk_5NoQO4=2NXwMS0|)6FN>dOqmZF6CZ3@XuisBg^F=eHn;pg9*X0H8d@WQ^7 zAym?v;*DmzcQoj~x=)8l+;oX<;9pCFZiPQ&^%pRVKJnm$XZNPn_ z4Zq^XZ!^wxdFI@8;Gv%HEfj>}BG9sOQ|=}&x0zr$JzPgVdJ-b%*&i8pz!DXgz6c>G zp^K4gU$k;`2d;IdGt`y4UIL_qr}1>Q$nMiPHrdRLuX&>ISg^fmz@b}|ugQn<9 z-pX$>Y}OPh$7n8ErYN38oaN{}NIMsG^5KC5`he-{80u&yB%`KsGTpz~>vB2pfiD*= z-`NXy`Ar@W-t{v-((ts!txt9;0dFPAN8{D;u7$TlRe9cmfYh|6O|KHmXQ;9R)oM(C zo@>jGdTAB*+>1T>4ZH*|*AO*&@Ie;@Fj?eyHU36Y`#s8JmeRUK^++)gYU_hiRYnnE zNm$}1TR#m0AeRTMfB+(P*`SkBB9_rp9`dKSo+XAQ#B5Ysqc%qH@t?naCQTat(pB>H zPV-;Eq&r|Cw1cn9WW?yjt&==%hpwpv*<K-knR)L|l#I`#Sd+i^)2s!^w8N z=!@97zCrPaCB*GNG%(!c2BzMoh@&L&XIS5s4Mc&2xlEvpZXF<`Jc*yMuFWu88ny4Z zx|As}xyE-S%d=XVef_}_+h+GUyrg*%)bN=sSaS9tMWcb^Bn-2iVov>K&XnetRDFs7 zKjk(J2I-aEdlnVF7tRMVSNuUmN54K+j)d;A>k1Zoe&q7+FuON$qkICmj@->6;^vw3 zwc7-$f8kv4BLCq#lWL zcL^6Ihq6Yb{+=dk%um0+d=ft^%agty%&9pFJ)9IHbp*(gr|$~ysqyD)4MTZ)&HYv# z|0ex{)1k+(VE+O03C@k7Z_Lql_VmA23>fC)#_4pN7lXxdtS}J35wPEUN_H@5_kfL> z?$a7Ph`KmFdlgj_D~TiHfqXx4!p8e%Hh%ftaoa z-(_dH^f}k?oG%@kpZyhL3e=qkMl(Kreklu`aU-judwU7mfqzMp|Gs`N@K`)8DRH?o zusf(17knY&I3pnBJy&>N#7oKd^xU0fDN^soT{fn-%3*K-j)gtC^)2|{mGs}g1osV; z1qVKF6L?*1U%9G15Sga{s!J)9N`zyvJ2CS0+Z&_SVwmbzyPt;_)Byjs+W%rx7I(qw ziPMw#v6{qbWY`PcmeBWpGZeG(Z`1cbFBi^wlZ1p8gen(ZJ}Qs-{a?;1;=f=g7WU;; z?$hMxgg-&`NE20<2zKt@|87-<3BhPtk>8)gUcy@bCg&q*)WAO${TqmH20ros+^3;8 zKtiALv>a-rtaOOCsgJ` z-DqrT3cdhm%}3b%D__13WCNN?`n8|oPk_WL(mj7GO!LVKTMTLiiQ(UN!?FG4Fh9x6 zE-!X=Ysy|5`rSez5A!0JGStNPD7VPmWq9jOI*h<1{IlR``BD3QDPPYPLWT#!nDD@m z39LKVALU5@_&>gAfp5EHi?9lfbWCEx0~0B*p1^6UsYhFoOYi}MVR?U&DV5#K(-P4L-tPGUQZ3TcX1<=6lB zmBVza;)}0OWx2uFr=b|ElurWKB7SfOoUUXEPDP1RQNg#*{`Cg`XRX4amaEjOBeZj; z^_VJg6c?oBhpY-(N-1Xl=OcfX8@vjCt}9VwqI}sh0O&&1UQokcFnwZHX8?M1lXv4_ z4)28?#{4=|3q)GV+~#ID|B&I5+~UNzPI_s?lpjBS4Ej^bZP(1#xPssnypLy?rZJ`J zOaKYGPv1*fl<=aK{)a{v=i+$rfe_*#H>b*rD1Gst^eBAbS>l^#EoOk>zKMoYJ39)} z8aDUV8SL9@Gn%$WJUL=_;`R7=4IA|?8)_D228-d#kbyj|bVxlAI~r(oM$k9izfuvp z414it=4wSK`L?ps)yP|dK&xMgB(1xB2o*&%>=afQ`@g1M$h^!|S_rGc@BDm0X&wR; z<5Vyb2BlAE6r!4?+V|Wm`&rt%RWTA==_)u7Wz%zTbZHiYZl}o44o!<{%}$Q52cgky z80TE4PN`KiCdp?%2@mIyK?2-q1!ZIMa`|h$vrY~*xu_32hFVF;yNqyNG3 zC!oDaM#hNo2(7CEXE429nN9wo63xx!Kkgv#N{ngp*rRLIz?LLez`ZY3Pw%ic{CK3? zK6%v#6omA$q4)puc>((vjO^ZO0q`@ROnUI|{ZUB}d7IW!09k-3FZ@j_dFS}=Y6%bVhR4U=LKQ*yq7s@jF>&|##bruem; z(~bPQ7D5TEmDb#Ue0_JP1cu6q6@Ti{fOprh`M6yl>c-QUITL%nVWf`cXrXM+AYOxoiE;_sCheeLF-CrPW zkkD^nHCUkyj5wUcVn=>p-40m00({{iNHdR|XVo08sd||aOlsP=m8y0cp;)uve3wlJ zI*C&- zg+a0mHY4M4_YNnRCGO2T{=3lZ(211}(Y%$-%PJR@jxF*7Yz*HjFx&DDgp5o?bZvvtlxv5l9r?`PIg0+Eafa zZXZP@>d~?nT*@j>o@ACFwtAdh;y#HmdPhLXfvFywy2`K^xtto8s zLTq{W`9{eyXYd8KdX}3lhLcOu1Sgg}4#<0-JE5g%{UObRk%>t=Ll-{njx$F1nLnhA zhw>+8R(aO5?^4t+Ghdy(S6>;ysIzdDC1p{FSbVSW%*J3BbFbo)wJP>!$=7;&CjP=R6oORi8{)Zc<3dg5S~=~G zk3LW&8kEB7VvW0_3=!^(BDNbw^ePQU)Q*IV-&r;T=(#Xu|M2^8JehYb;QaU&d^rat zD=Qan@h-#M#qp z4tHorxRf(ow)!w?F;gj8z!33^Phz_<<)IWvYo2hQU>@SF65f7^rkz6ix#X~cJ(HXexItW2_Jskd} z$1ogZwzYijO`~IAX!3d7kLy9|AYL6NKCYpFWL|d_GjOm>tfEFbCv3I+=-|4wG&(Pt zt&x*CggS>7lb!ntF0q76L$8AHk-dtfU9p|Rdns?7^5?>1VzF`W3wk^imKgqJNY`oE zMcfohZrg>RR@4Y;IPw`Hyq0#qD_U*9B^PXp&)Dki?d}Np-g$n$3y{yfVe>WR$6!ID zPSezKWRzQzXsc~_P%!2AiwN&(vyZ5E#~nx8+>lkHLl{d!9m3>=**#pG*<$c65KzP! z?6Ew}bg^6>Di0f)uYw0qF8FeF=c~8;bWJe!4y$-KTa2f@lvV#h%P2A^l3{FoDBkcW z1jL>eqkS1QGJL8`f<${4<%Qfg67;?(ap%AqgU zr23gIr}m`n05|>mox>8)zaH4;#IR48$HTu^(}77t2Vu@1Yd8!=mm~Knwt)?ajGyL9 z7VWgrON(oSbC$g|vAL6ll6Tp30cM0@qxy!%69yxz zYJI#ITQ;53*gkk+`~0I8K*4KS@C=kE#r@gmVYAX!zqBQ2@${YK*%9J1w(#V=AK|-V zmAj#X)LQs^|MlQ~Z>)`1_TyZN(ox`m!6Q}Iv81Dc~u;Ja{~VUiYfn&-`BUpqdQpZB~#vs35Se%o<%$m<|365J+p z&M2Cm>nD|Up6Zt35jD5SwT83T_v!wlduk*TE&-$|qqC^uUIfL&>2q%I7 zYeq1fV*3Ls{}9`e=fJnv9cUAYV9uQnI^sA0nT^vRu@S%VJ2l{W?$d^@H~|S?pTl|K zabzZNl2&(@iQR~1qL#3~^gnVP*BVBdhpi84A4Ge-JWCf&1g^s-KumUii2T+zzUx6)u(zy6rY{fj>!m z+O%HhNWu{8t3?ru{=QMQOH@v;^k_=2{y0EusBLr6Tx-`U;ptVi^cx)seC?Wf{~YhQ z;i{|d6M*Mr3Kpn*jOPXJl7rD96!*{#0Dgg_=LO3;TM@dYXUr^2b(>YwQ}-DKwRUoD zwSt!F86#Mrzxh0WKR^1b=b|mE{rQgQz~kdn1P4@MO@?f(a$Pm(-ylh-tG4E%Qh_xb ztvMy&X5BS6QfI};sX{_^QkU20 zx2XB;&UC1<2mq6}ik-=^hD6c zj>om;1gG;GT+;Du_MA^*g5~WtFaP) zcSm1vN^sY;roGe}Dw5(78;ABEn)4Un;wZxds8?b+h$9g!;yK3zBFxq{xjeB`1IzMH z0*Q7R=WB0zr{0aUv&e}hc{QiOj`J#^cjmbx~UdUSgccx`HN61r^-c|<=Plq{&u z2u_Dlcyhn?yC&1&V;{Oazs_Ay&10>3CO9Ts;z!iH#4a>R4~2n36!MHTt(Aave;{Ws z=SAtDy>tlsdDO-+AZ<=f&HKr&P|PN^~7CMB3X=w3*LO6il0h zbS^j=bWMsCaq$q~z|JwReSnM^nb-~9>UB*7q50YHV`}7ThtvZ0t}2qPw7nGReK_ln z$b{F)>i={cf=q;;Vy_<=FMZ0wKz_h-Z*YZWV+<(3eNl@UhqX2IC?h>kiB)^-mv4I} zxC*HV-VWbhnWRc?`6^Nhx~c~-iuL96A8&66MN%70ARmZ(3pNPTD>f0oxZ|G6NOSmB zWfM-X7~|48n7@))%hh>}Xt~D-tum-j{uxd~cohOcD0YgRz&bbQL}`TfiBwT#xj>(} z*3xzzHlS=45wp3oY?RzKZ!i)dfeibKhFucEuBw_xQ}XrujUmbY*18PMc&bGm_}8)5 zC-MNQn$Ku>d$ZW^W?Y>^YGNMhKIltXw^{NJ{i&~%&@2j|k2~E-?HCeXU0GDvU{R7l zko2T2AIb!IKViLIzPsMiWEF+ z@V={nRH_c7t{sdDV%6eU{(?^g87wt9k zrz>)}))l8fmoblav-Qb~_+r{+?>+rbs}V8F^RFrF{p5xNBYx`dYTfG=SJ~VlSEG&f zq{3Yvhweph`-IK#;t$q>q0(E1#W)2_3ZRXbyDjMb!e$);HI&DFy)jh&+i}>N+Yfko z<6N3U6L%)uC&x(m7$+~TTsOJAxB_GZKc|l1nB!08w1r->~W`$xBU#3-<1K*l*}p3$4!|1fT4S z*~RU;hp}}KT=9oXRNrU(krF=gqz`W+~_QzRiSZE<6h4pk;;2|lT#ug_5`l@V>%W0(7 znj}_j{rx~;CW(4&Tz-L5o2lQ(Oa9wu$~L5du2zW+Rjpj0=*n;^s?qSCuI0>}xhZHd z`hbE$|5?FecQUdwzPu&Vh(DHT!&xm)SA$Y+Zu1l0#%U8T42`qrEZ{bdb2{he7CT(| zO4dFnxIa=sDdwK%RBAr76NxwH7;#N!$^0ZOj4Z@WOL#6@QXaMfU=a3lbl>y494Aj@ z#Km-zJkB2X){7AC^lpZV&pR})=h=o+2nwt$KQ5ze2JLZ`SAn4K%o~gj7c^wHfoESe zir;lEu3ay{rMv4OUOwtP0JJ?3K;bbuX=0AD*DSbue%Me09dlbXa&6zKZ*u(6JHr=& zvo~%MgE#j(T`ENrghiU~Cu~O4HDj?SIMXLLvJv>h|Ew~iMTLh)Hw)zfS0aM#>-;mn zb$FTvA2SWoP^$N(y`59!(s4jm<8d`3>B8FpcuKNCD9LnB+gh3g>;b3Y+KSk562GnY z-CIkCkR1LZMX2h_yYJvMUF%6U2R4`Joc%J^5svZh0fZI>d~rN^UT|8OO>~h2>rT>o zlOgS=1sKKCDOIOO%850je6#(uvMoK+wCO(0DiH%NKaY?>asw`i98IUmw;SsvSPkIbqw0pW%_E2{G(Xpd!EVXxi~bD-KBwwJ@*l5ejvVJK8s2gsbGVo?u;++ax!2%6>6%5@!={&+yEam-6~k_1Cs90_ zGd8Qb7k+hjVbm~dynX6#g@Eh5{Y&ALs^_G{diC^2cs|L8S6GV*Eb?t~u!a*KVof2d zpOtDdCvOTlK|Olw>QQIs`@A2Jcm~o>oNeEtoccgmLA*a;eO3(NF~PgIX=thasp0CM zW2t3|uw&zxeQPkc+!hT+a4MqOId^qbQYLBH!EP!Zq;n7EKihm>jm)X`0;4yz3Uux> z{?p@OSs@Se>${2katqhozlPyvbMhRs(XLr}tlxX#qLrKi8+)cvi15|AB8Ow*r*klW zn%j6v-OX8*@IDQggIC;tu2dL+eq)Eujdihrk{dsBc$=em^jws*P!G?WtP75cL*^vw zv+7TsB|ag|8=F3)7$Hqo|*lr51ApBO=hT3U5rHUKaw%gO9w zoAIOK4qoUJZymJGpKa;2PgOdX(UO$nl+AGfHsig}@71%`QX9Wc4opK|e;kYmzZhq*_&zd}qdOo2p9!kO-{wi_rrgrrKV?XPKOm#M5qjqeO0W?NV{PleI0W9}{ z<`ZK9bm-(dSt@mn(eni59&-$m1;S?EaDLy@k->U;B3Mj{^FsxWpzhrR`V{)=P4kIC z#~u2vbc0Q_!9rJK@j8O)UK9RQxZ~*;hcvVbWF{X=5*nZW}aCCQDMicPHFq zLch|f6;L#7+~|C9T(%pe%z4?piLN zDuYsJk}(5l{6?4iG8E&BxLeaE5N-JVMo~i?dv~HLl+d!}_3X;=!56#HE*4dw%5Bv$ z@?mGy^0iFP{Ef~|m^(u|CpbuZ5W4$=1l2Ym&m6HD_Zc$4g9(cbuzv=7XtFcCYFh{X z+rN8g=qmtq(LxQZKoRljIVjK589IWzv3*jure&+g(8zsJNd(PMU`Y*q*CeWyOCk;b zFHn(I&V9NVR3Xn}bk&SS; z4e-=Q+=e`|GJIdbut*%edLfGhUa@chB!amn$6Vlf$2a2nmkcc4{ zDyk3ZVuq#whQ6E8Aet>tVLVhmiADKg2sM_LX`b>ee=SGJ_+4fWr#EB5RlNvlc{!2pN0`vH zB^8JKJ0+PZDR*w*tR9MK&(oEU0c@DD(Fq7ZuYofuEj2njt-3y(*3k(HRM|NvmKeTX z-t>{`6=J}}sCm+|Yw|pr*61sA)!WBSNaanH>#%R(RgAJY`D{~N&nD+?=aT^P*Wuni zVQOmPLk?Bbi}4=xGWLUfSQ16ToI1 zRTua?E;;*NXv9fv`p2bAyzp)fidx)T8;s_9K_(&QR590$>@HooI6sBfOPqTg*||u% z{4GJ9w^1A`Q*ZB2mZ@C+)69}sY>2!;{QH2n)0UqZ?O2jqF`R?S&13{OTz5FNt)EoKt*%@RpUVs*3ODo!& z{2Ba8(qgBPv3njQ9~qziX{?{ef5V=p8LKNAHo#aX@$Z4rI^ge|G4}?e)$OGLeLQao zx2p@z!N!EOmrm^@fq$)zQyk+^sks?dldyKs?xC@~nu-_x(FwSW+~%M$!jhc}(N%pQ zX*kg(X6sFS86D@dy)UMae?NbkjCitvCM!;lJV1jAQqfZprgh%9jULQp5U)%6byzuh&u-l;nH6H@9 z3YPD!k_~Hu3`-F`Q4Bs2wm|Sd%6P9yRIHDPWMNKh#aouc`$58Smvs#OZsLBzG3M9# zSKue>b*l6CVn8J;Ivs&Dd<^ac;vw5M%*Oa_U)NS&+`r-iaF82b>Q9Yt{9EvPuX8Ud z)VgScd2hXRm>XIOxw#Cv?k=$R4HA5>ZN|YSWz&9Y2A8$fBfS|xp{X?w2`l+N*6~28bz%dks&vI^j^bURN;^`!E@tQ_C|ZG3=KW(L}+CU z^6N+-m6&V)2?RdVQi1PDjAJ6WT@o=m#&YZ0-O3Zt$VfM54n41QGEH6;##fD_>^;9m zPy(Tj_BKz`qc{?|99oV;&urhB^}#b6gEr+~-a=R7Cy2PKV48@%^hvFgUwh&i^3}K5 z!H9y_8erK?O)1~QU$S2U-OYEtuZAehz*~`DrSdti{5C-4!)$j=lc4C|&9;2SF@H|^ z-7(;oKf-{y;Z=^TQ6j)ZA=%0TDcRnnmiEuqbUc&ZU=HWmA$C*Ldxwjp+w_C2?_vJF zV1F=a)HF>#Bkf78OL)dQijLd~tbmd@5)8`E@lC0bG3d1^e7bn&;Pn?#1)I^XC$``?SZpz6_ z0cU(45HS=j{S31y5SB`!pqqH$Ll>(rPX-+vb64hciuL8V+k;u!_I;!r9i9i3%x((R zH*H;9r3zM|O3r&c2jm#BoW8s5t4fqB>){hOVL%|4nbQzrIeB$BX`TR`y6vVeMaT18 zi)R?fMH`z+cq29NL9}E*U`wNXx0gn*#68fc^l;d_><>@}%nGV_%)gSnhv!{s6%C?@ z+BY1nye{S2G4<$+J?!8f1H!>gL}A-@V+RE29#UW|f%D=6jHEN~!Lh3mC}Wq;rlbz0 zSqMjyj~Af%FGZ&68jf9)>c4)qk;~BlUM`e`{OhxkXg?fu9AEnaCzzqiTbubTxD8Np zE&WXZs+WK3xy<~u&QPp(Ga$2d!7ysqq2g5BqI*$2OS!z5qqd@|`T77r1EG+&{{s$W z>6y!`B7Y>C&&GP*3Dn2^-;`(#5Fgc z^TXpJ)18ZPVjK6tpYI3`s#bu5!5Rs;2g}#435P?xJNHY%jZM+giGDUGk)Sq?le;82g*4)46iRliavvNZrWXBda%{#EB{Op;ck<9UI@04(P)mXB z2Li|_;BO}N#jl0~29IUJYp-PJwqi63y-(5-{dFR0IVY9Kqc|0PeSO&Nu1OMyE#x2s zyN_ouVk=o#D{J=zc?!WOA>SG4*PR%~Ot`FWva3H_iyHb;zH}UkRvq9j(V{^$0~?O2 zTcQfpDBv7wrUj?v-dtKU^dHGL6XIQZJ-Y(h(ujI&=g1WG#p|X+8xv*HVxKI+9$hD< zaS?rTe( zGZtT=Y{Epket;~J)@+cm!b!5VKt~mJRM|>mTOigYs#+l2|Z_W7&>VBsuB8JdzCnov0m(}55O^2LoiTQYG z_7}$+FaTh*dl9c(f(A^61LQnGWV~HXZ>ix7UMNY>6ORWfFfZT!y+JcKq)3@PC&(&P z7}&UedM|}?QJ+~uxxOt3$Ihbf`N8I7vPJ%8IVl9fGM?Zs(CaX3*KIbiG>=IB3!{NR zHL!Ow@V!tu!nY`xOQc?kSP3Se=rOuYO!)H{@r}IolO#ClFlUt{MbyNWUW(DBf01$T zqaffO?M9w)J~>QJ_;_^{F&C9pfPpZLg-c<(3!H^ROX~6VKPt@AmphdsOdy136YBx` zQ!)I3+u4}tSKq$zoWAr!_dp_Fg^ik7H}hz^g8PgSpWe(90Is!YWY`jLty6_T{8aqj zZwNm-)IHY!`cyL8sGyd>(<)`jLAo^qI5b+s4$+KWk)9jX#TlSS5HDULTzUMexmCn@ zflj;N$*viu=T|(o z14E>nt5s}oEIjse&iK7j?EBK+7>u_b`PzI0Hl9PXm8b8tbV?`2$245T^mzTKk@GkrYe( z!#V||%DFN(GrVA+2g`kKw!hq;D^Ez#bxk z(`cu`(SPGJkwDq2MHLW7P#(o6P|zL^F&_Ku=aViSv^>y(jgrrS(qZjM&m?pyRl@il zEQnzVg0pPqW;~2Q5)YOteC;dMqC)rp7Lg$kf3Cm&#+e<%>3{u%VE(F8cyIAQ=F zeyaY#Az>?oeJ&QLusul%ul&j1zRvk+=PwHvU1y=Ff8y#{)vio{y)aA{};~{^zHxv delta 114264 zcmeFZWmuG7^fpSTSO`ccC?z1Ebcc#GC@39D*MQ{E4`2Wy9Ydp}NXHB@z<`u==M3H5 zUFQM)o%j6Tb3UDq=Q>}!oVoTj&)(0v*S*%d*V?qfNb+Mz3N0*w_P}N9+QT2PjDztY zrzivb4Co7+pO0|-zCLo1nJVD`Zc-E(OMiWM5AP0MIEzd?QLo2FQij(-dxTAda&e1o zvAoMfTZxJL`YB6`l5J<=O6fDKm+^5k?>W+%zZDT;@#h*EvTNp>B+MPmOg9FttypY^ z8Xvr0>d@CN!+4hL0Ym+G(tB>J#7n&ukquO*X|(;elT8UjuDARrnbuPCysInK+IErS z_2qfT9`HR3P5J)ZLdxjMlu%fIbE@>*@H=*0ae;LSmIW?@n4jO4Y$9K5JleT~l}^g3 zhZ0o53PUPABV(sT*zvx?Ezw*LdmPs*zoL_o{vkQnVe?Qp4nR2NB%+)~me{xwY{bc_ zATc#-wg^>})6v({N-KXajKHgECy9zOOPQAY(bDIKEWc->!IIljJA(>nN@d-=Vr>&~0@;_}c6T71D+Z<{ved?F(T9B-S6sFUZ`L zD=|}v4<*^zTN6*va?$M38EH$u-+t8J^GpZw3j#k4N*ikWx|5*|(tMx5AuGNo$d-I@ zr0Ll)kZu-CWB<*jZ7To^hls%k3+E|L%bE^)tNeI01R(#j!Q)#qK5$073x}n>e)i>F z0VD3nml++Hl$W5273#Nb@fMxnniWjB&|Ac@+LmKtf00rq?;rc2zr>fTz_GhX|DO;T*m$Vh@2=>yKSn0o-y;k^o`{xjh+c`K2 zK{W<@l|qg)l1cybpk~J0Kmp>>GxYMin6qw8lvF7>)9!H3{_P7p=F;lJZFVziyqi*3 z*my?xMrkjMvSj+Z8E;6=-Z`DoI;wKp{xhbJ1V&l)c??NXfOYMxN%|8d-foPECYvte z8^1j2uAKn2h9?_M|1{0%OnEW^RrT)l&c3{%7eD)Wev0i=!#A=ahr=r_&L39>3t-wM z=DKJu^~`U(g4#B8AAwa>D}qwmUoZnt>Fqe1XF5&as5w0LSK(hE7fbifloR-hUh;oX z07~p#*{%2-=eY-0uTk^Jm7tArt({UcO9$!K;cs#@-n#F3Hqf{nq_`08FSl`{&B+9* z6Ly;~p~lg%#N9J?w9BRvkrj;+giT*PN1i+^K3vge|JIBgHAT@Jv8nU&e$1D;&t3J zVbe}gXxk(qjY7fT!0dqS-rNdy-gLh#>#EqIrzR$ItXWym;Hk7Yf}%HFh55NVf4GaY zf+8b1!$6;nW5Y~`>8j#d#*6b+HKeCB_0|i=mdS{@HiY++`?y=j+ZhHsRF4b&+yJK$ z_Gk`|GqLW2KeaH!;$j5Zz3m!|_X$Kr_10pScvf&i_^guwaihn?0B_Vx%Tyv|u452) z^IYck+?@YLjXf=B8t*Nm#&l!<;qPM|f;_k)T#?;V@2bAwTIyu0$xt8ETWG^Q<2*%| zIoMuTxjutN?_FWyrra%@mL)(3z2|e(8$!MaxY8#KXTIqKyhgwsg-N2kScD_yyb ziFO86wmh!)&pm?4;bw;w9~c!Y`@YdKdR!dxcA9{%41-VCsNK^=EUcuvnzXYZcP2=v zI3Q7-K0c|LF;`}Y9BZ|Vw8RwAT|guCpi500Z{ztKRtTS`zwrlL)EY3?wC8$~9Zt*{ z)7L%~MdX>~EH>bn8H3)s+eHO@%7P8nYt z*3F?L1ndyt__5YFp-Iuk2s$`Xx|45z`1MK7&6fvxE^9jb`t7#sMnm-3Rna1FYqa^s z$O;{uamp0WE1=6nGN8cX!|TrpMrun|FugVy_d(@XvoG?-HHA%@-cO{(5WQJYRgSa} z2xctJAnd^PCz5}q_{dLey_tUI@qBEB**y1CYzccx9&(LbJxf#mUblE{d0uQG%H~S( z@iNs!E>Akx!29a3zV(q(i%cfS-JtXc7U$J15wGLYA>fyF46~u4XTg>Z%gz_GyS)zE zv+^A1=oQ3s=f@cQxpK3OqaFH%gE+G$`^VO0_hR}MxP?_B-s)Z#3ARQg#?O%mDU&w* z@!{fU_E+@!71PQ(7c~2|_cD^m__^_y(9k)Z+X<{`)L5(jiC3=)xY zA_YP^8K1h|H_uqmhU_}(6n1h7q#WLd>-ObCT>|Z%vRV6uK}_2Q^AL3}Bnf8t>8`1h zeagJ#T#$IBPC>xwpq=f!ESv4C5XAk^I4MAXWBFWYkUPT*2-tvAcS5+=i?```^goEk zc#$UIdh*1!3x&-6S%y2bWN@}Q)5deMqL!`;b!Rj=;xauCp;Jld(5?P8>(p1hE8GWx z84DxrQvM!!H&bRPqS=IN?a7|G<^G(U{E93xamD2}&;83IchSm2xGN>MfC@b18S^X1 zG22l|-+tw{UB}l?Mu}|%YQ%c?r_q0D)XL}|jlOs&f%S;J#IZYYMS38=z=pYm*gLS` z&WFWj_lfhfEl%5xuJ{4rw!o}tcA?#jwRpE?=OjOTBP5?=(t=P81nqKS5!YKJSu?^~ zN!`6lgD8fe0Ri;)v!WkM?vHg5v0lCBcH;OYO3=k~#gil`CmOn1s9KCKIl}6C_tD#5 z>0X^7_e9s~!=HS|RzmO?&B}QUnIkNTy}oVm=c73nyYa^j1cT{+h)|M^IpNO7S2x2? z3M3#oidOzUH^}0(kL^}H?7PDI91dsQSUYJM4n;~OU#Gs2ZP8UZUSL(i3+@#(Y66Lz2+GYh*fnxd@VyR?TfvZe#t?(%f;Kh zr;cd`%fn{x$>N0zU9-JJ&0RLacjo8Cnj;D{g1_T+&N`4UrgbF@I1$e4bl&?=^WZV^ zxoGN4F=}s-a|K1mEIX73Q=B&ggmvYudBRryJC`F9yn6AxVd3`bK1>R}lr`I>f?nb2 z?UD)aRgppmtx+^H{@pQ=E4kdUVM6r)3(<~4Ii~0Kgt|!=r3c|R7i!8s)5Dw%Xzu`5i26x+_O&oR(p1Yn|393AJ~!g5z&Ba~rHL&sTa11(#V4 zC^Uu8+TovDeCUtox6V*+zOI(m#HnHSDN)#wAg@xmBS{TuTSb}5Eh8$f`Y80Xi)A#I zvQ>rWUOZ5(LUVZAYwnlDV6r1sS|ePskdj}abv0VlWNm-=OQz(|MtBUrv0uF&FVWH$ z+HzvPV#)Up2};|zpv=~pPWCK@m2`cfRgjlUe!@(VE%S~Kj=w@8_R4p<*{DVAKYQsU zug0aDjo_%YX~FZ~D(LYtj8I*h@+kvdaG=txHx$@FZJiHsk&sfc&$e0F!iWbKlF_U? zPoAoEa{Tbz@c2&JGAk#U^?4g}djcD2<;_$Wy)tAhxd7?AeR4N<=z~xK%iy=YTbD`B z%>XA~xr#xR0LQ|bHoR$f%>!1gAp_zfk|F0RFTv{>hQ5_>X1HY=(rk3oW^QqG&taf+ z46qzbZZq#{T)Lh6B8Reg2R7o+P^v%j)dg20)mhQHpZ_FO<=V>w!%F?N;x>Kxh50XS zIb0C9aJzB{O}FEmpX1PWR)_NEoN;=q37gC+x7<}3e5K68h&3I>FRMjssQu5+#3tAF z<`f4abiokjSe{5;1z+;tuHI-{d6*p&2!MnmR7T#tAMvKZD47sEg%p7 zhFDq~MHJ!qIC;*uYun@aP@Zo253g?yy?apo2l|-s#=YCRSOamq=IL%Z<s_v#qmlQkYWMff_B?t+>un#`ti-uVdUd?p&U|!bW{UlqS-x{lj08RR2|?90 zp=u3%BaLTnk5hRvBNN(YVRIMv3Wp3n0s`wIECUJ)krWsA?sRM#b1-k4!*D86)1@+AvJ@G+obxyfLba#iRi8EWZHYT zf)%DcCA$J{!)1rbTI?P!LU_7zg1~q_Ni~EwHpOE+S@7u&-5H%fd5JQ*G9=|BeiVO6xJ*!afurvQE!@SxzZ?9M-r?5b^3@j*^t(7M%mR3YqW!}H*jsxT8K^w7t*-@ zFDuH%2^ks+srTL7bjeE!TO-^-Dj5|(odG}Rwdk8UAM~4-_$gmPxR+8>nI<>|+v-p; z=q0|xh2by35gYSX4j+z4dag+#F0+_Gb}gyWl_$+u-_L@K(cITBs+$nyXGMi=9l$>I z13J0L2i5(6=a#Uxz@l>jy!>5Fy+v*0dEU9jr+!ZtpQyEE&yutuGN!t#<0ngGlvV!> zPx~=b$n8BIv*jW&S;DKq711R#)eSO}Vz0S*kk=m1r@xVQ`*uLbUVPO)$Lhg+LkoFe z{!CArEO|9qwc^y_R=IPwcG{QOHdxo_Ij~K^F}v7ftkT6_kB2|<)c}KxG3IJRb{?3X z_BPgCP%h=9gH*1c;DsZw;l{AVLK~&!;4Gi2?;CRaPog_a2s8C+k6U3g=nwn z!w}hUJne{A4CL$Ds3Nq&_H%6elRb73!d*HMdjkZ0fc!|6nXZi)gFdU>e!Cjt1Hg6f z8qxt8N#bDFM$y)Sv|fS2XR-u3wfgJ&yuxK=8XHJ_c0 z-=Lz(lTA>SX z4}!hK%oIsiITc&9t+J@6u|66nZhI~|QNm>bqRX0n->!1Qwjvu{Eg?C^+;_e5a8A>- zFLvu{^S%2Ke6lTjo;Q~dyn9#Sc3roZ7E)g!F1_6e6@9pGWyS{l-PuE3pKDSNM7%@1 z?y{DW$k0`u_DbD144NrkQkqZpoL8)}?y+^}Q|y3Fgd%#Sx=zlZ6({-mgGQrCL#d5H zc~hrHJKB=DmHCG0ayD49$(V|{<}G7=sz9jN#}=zQfifF+56=@`J2c=~oShw5tu(8x zb=s^|Iy+1QFBuxn&rUKnX3k8eRcA76MvA4!I$qI}l3~%zch5zy=bCLTjaL;vMlaG~ zy+Ii%VZ9oNaFZz^OhVpGsBv#WoiG`Ov==+09G?W5k&-O%Y}Oq2{xHyv95av39d&rc z^|E=~c_DlJIm;M%;|BIApNo{jEUVi%%-o_N|5P zWD>*QiT`Kmyemsvk+*N~1Xf?xHT!VQXYCIylU|)zVs-y|P@njRFCZ%daDtsFCgS># z@c*>qgbkG%X0+Wlb-rb$`?>_nR6r0f8B;tU(Bl3WQ|R00S{~egPwbTfbe$o`KlJ8W z&FU{pLbg+9>kqxlOTU!e{n%?i9cVrD;Zk;sT*L%1Kx zAL$0#6_~|5y9`)T48;Jx5l|7hdKM5cnj%CUS@(iNxBSEOM@om-^Iwj$e;%-QxNs+| z3#%lHFpF^3I1HPl7DaXcJQb9__J_Oj7mSex7(R*-%kz&*6 zzO1f4aV6%=C`+-;U9rJ05mSKM&TNtQqXBwFxW(iEJNeCBV05ys*l~fY!l?2E4bLv_ z(R9hM?Qg%jo6E+pYvj0EBE=&uG&K>a+MXdvH4M7@jRZUC%8?4om^=TP zXZr^#Xm*XlSJ{5T-_pDy_;0RbOXXdqU_xfGRe zMi~oQR8|oX19?xzGM#hjF_TZc^3xwxDBpZ%)`vgs)@S;|Mfj&al}M)Qe%AH6bIeW_ z*HmF{*^a``iIb_x87===2NlIu$F`t?Yo&x2Vh8P5ZiheCL(*01M>Ax;E2>q0iR|U; zera>#Dx_lL`LRx}>4-k)qFDt2Q2_!%{uk)^!+^|h(DmD#)!ka61VgWmO6|i%C(6Pq zXjh~h@g`Gu-OqVNYbLv+kN|frekZ}}+_$lfNj6(;G{7_^6L(Z!tDK6=!fLC7%AupQ z>>hfvfKC@B-MNltWj#k5`F)QOasHTjk}Ca-@IvQ-sR;Dif&NamH>l1uM1B8Ul?2=X z*-W+jI=+3ztOJ)qs|(JkLBxJp1Vhc~2;bjK^F8CF#5SYNFDhz^3a(DWui^vl&HMNE zwPkQ_Vx`k^Xs3SiNtm1E&s}vP%sDL7S_K>Xe{s_kBel^dhl-btr9Ore@2@J6QNsD+O#SQ&7g zgfvw_`3mJf`mRHCUME+VAUtjT{N}41VJ1o`ES)8`E<_<;d3kYIfjb-;?FK9QNMp&5 ztK?^QKb&Gnb{CTA2Z)waeMJgB9aq!8VUiR~*6XsY6DeEeja#-Edt)M4*LcGj=vLjT zeSH7x(1$`LT*luTf8)0lLlKT|<)Dh3xZjaJOVJRrQu0UnzCwU;c|JL)<^?Aru|@6t zcFWGiMglodmHR!ALK)y<53HLKPtamn+l;4xJ| z`;+s&Dl)=9S+*WJrc|2Ny3xG1M(c3b0-Xux&m6I$JT2;O)hT&5ML$>?!K^6PNK({g zr|fjtWuKf`yqmGgC#~c@m5``7CIV-+8;`Xe;(OkEw6pNB2KhsRa=m!hlfUg~Z}g87 z#XO*OnV~qG_nK0loS;G?(~XM6B6zJa1aw)Sp9!UErw{}iFx?|mju_!UAoJww^t98p z#%=89O*^8vI!on}Uv>V-LB7p72W8FDoVpU0kFnPFpb486l2>*<8;QLFvoX}c^Y;sD z!jU_|oZSmC9SO#?zk{f_%|=g^8!}*k!#YNo+mT#?BdTCZDuG4Mm;Y}vFU1h{*N#bk zXZkEpuk2U_+R?l`kK9TUs_i}qoJW(ZPwCPMhbH9L)3rrAE|~T$7KKDIl~qVTG0sm^ z>HBT@0&Ng;jgCnj?G$wn)$XDTf7HkCCa_c81WyM`b!W8~KxiLmuBrcJu0uuE1;^Ll z(V)3*5tmwS8cvDf{;N?zbAi?hcL}91Jeo&t%+=P#t}>6pYzElhPU|*i9f^C0J*Kw9 z)NL=Br?dr<7wNNCplg%GJxq6R80TtNILt-Z9*ob}K0PT#zxX_c-udi49+AO(IlAljN)#v&A33{L*+!?a}$9zwF-8O zNdiQ?GGATj8}gzT0n5N8Y>Od|oc+3Fdm4J)^(R7;pk*ANbS|Por7U`_&nz~-*2vDG zP`L|$DmtUz6}zUdHKOY8{@jrU!^`=a^Cm2$;R*$wZ!_0q8ipnmEIhXM-Zna1^$&<* zcQ}Xwsbcx9V?1}(pqU;v2l~Eed{gECIkaqL)0@t=zYzGz*AO^Sc0X9+&@Ho#CPYd; zCcV&`EgFr?Qli-FR-0n!qK*=?Wx(cr=JnXYq~%exVuOjegXWnZSduACl>^X7eg|R_ z2mK+q_0yrFA9R3M`|YEnu8YK9-)FoekKZouT}a1QKQXWp->R zGA|I~cv1VQm<9LM2?CNAe_zx^k3eiExB0tNHSS8dLFiW(`k%g$L?>h4u&|`CFuQ2)IJ`AC!TjUDk$XwsDRJ*R3Z)E8Wci1j|5rIWR~BiUvwA75yjX6}bE{igr; zqa6>&8LZ&ONcN#|5zOS?m+AhZHTRgA0y`M-V|o2&vvo!Q#tO5#7Hx!5;!(b~uO8Kh zHJx^6??=rrGIxD}i`^1+3MWt7f*PLum*R2V<#DI4s$(8|&f{Ocg^%uW34D?2pzMrF zqXv;vIDT^O3Ej8r;@9Z*h%p4p7Ro(aBEp@yNSs7{bq<#m(Ln*+sOawf)B<*rzm!r# z3Z(COy^h&s+T2w?n>)K8ig<+PzE7YdTTmRlHg-*PCz5T9LDoq*mi8%=V@*Y;~lhxm96jr$K&yGNm<| zy(LM1eRJuEudfSrVH-s{uM$tq3lt6Z0M}kNeibpdu`eqcuXb-$B4=>^vnyI-JLbNG z$;iRD$(nQg{0R!d4$J*))@aFdzPjWGY&r6%lctrAV-PNzEPmU5xp;w!fn)65Dtq^; ziAXi1hH|!j8>d=5oul}5!t3|L49z+a2CS8gmdYu!q5JD`CMS26je82!-fN@k0pYNE z#7;7f7avDA4AtP0WUgyK&ucDc?q_1e`$njf)PJf{kRl?E1=&>*1RK*>sI@;Bo4ZUw zzZ_JIjY^hryxeSHy}!Y+Gv7tE#=h7k6O=J?52~=Ba!*G6jrH@xsd|5tqNDcyuDCXs zF=lxvhjk6zh<9Ch-Mvr}6tw}4JN3R|1$Z;nDcpuOKBGfvFI(RDPj;W5B^N>+V{ang z+3K#4%P*9^OVst;8(8&&IxRDiv#KJlrxDy0v>NU{TC%~5;gtZ5LoOm z$4%&P`_o^GESvCB1r<skyjJEUQ zbFsJQ73KtT@L%#n0k7>ca>=jL&Q6cZ_#qGTbPzW?_zruT8BI3E zy#@`zCLe|X>qwo@EBOjM?sH!q!xo}x>!d;?u3dG#z!r-u@fBn|DE}WILt%?~H5hW( z&zY8`B95~3y3~SM=nQXy!z+kEt6??vC zR(>Q<@D*v{{g8s7GBm({+J?97dGp&r4Qe9EYr--7(o1g1FQiJ9kuRQ~%z#w)HPH1W z?-K%cm+@Tos@AR5^xZt$!wiWNMa~(xEy=h|RhTo&0wHwvR#6kXSz{M1-aMYe7fg;} z>yKN)#gU%dTe92Jq+Q64_B2aY#e{F78>o|zXnj`oOeOo}B}+fE`JbSS<%QU98?AiH zapLNUdzoT!OJ4LJ-zxkt_1l)JD?zY8Y)i}V$nsPxC)t*YWG8T$XLAlV8+<|gc&;sa zM+*&r{lK=vBFR6v2hg2zr9!h$+gfkfsL9)BD(z?*)XSbd7-|`Gr7_k)rJf8a2|+JR z(Q!sc#Vx~BXvGx7K*oprU1Mve3Mm@yrMVAL)gCaXT*E_miFfN? z>{IIGKN1*t&6!ef_4pe|@_sz3pt^nt5)XiPTn(H+l;;L~xfQpj8}n)^ahE9CA=cuI zYl)PLjzN+&uV25`=pKJQM$d;0vo~(yO|TBU&oXI!SomX5aZ=jRpzqozca;N;)9jBB zQD09o!rs!c;CwQ8vU}b@rn9wfwA+iT_mAcKgpz0$RKHw!|4;Snk2O&6>F~v|$dBDN zb@*3`_8F^K5igM*8{u^YE60!Tetg**>xlTUe%_`rWz!fWk4|Y)fH$AW#XMX`hdGUu z&YvjG8Hmqz9--vpI`2VpSleVr4Ll`tFX`mCIwfqQvu54xNm-tAK&j(v1~jqL#o1QI z8uR&OI@O~|fsc&`Tvlxp_-gusjR%d|y)4~79H~aEDi3>kjF<1Qfjuw&T1dg$}QmT?#q?zrK#fZ@l2LDP!Siav$nC33c#e_kD-ZskdKq9>6y0^Rs zo~rE#yZQcVbWn3h8-HXGZ%#$aqa5PfUqQKm)Lkw4hU-RiC85zHHgR&a zN?7+<##&68rHli|1frOR3~PlnC)SE}ooOe*ER{*O6EY6s*@@{wt?1u|pJ# zH8hHyX7c>9iTi@|gG9h$z3kk-JPTalc~dTqjn&iV{jJDbQEVg+rG2oz%Lys;--5k< zgUw2Ug?$5z7j8c9d0_U2*sRyEaKahDQi_R=c{uqLFUAzvzKv0e)h(R)LA zx#4)Mg^%BRir@cJ1HqoklUs7mV^L4CNe5s>Z?Rb;C&TcFCGi(=+Et%W%0~J|JR)I8 z#3RBY$x4&fhy5_bW+UEI_rYS2tka^q+7&65?}ytASdS7z2%IB*BG`#k!9Abi8QWhS z`L{fHIi4><6uSPx&Y$d)3TVadk)3v;bRplflY=%ec~r-Em(>4Vd^N@Z zq?`DHlFMzZs0c%>RZ$$G7wNU2v|`$qseDTt${zfG-2^fDpV+62*iyu4qzQ14;+So$ zp38u$uQsV(wfkF8CyU8F2v2(cm!7XmUu<*iYLCaxR_+W?jrZ3sk!*(z;i++$Q*hOc z7<~Zdg$)1gMM?@^Ekl9XvM=H}%lDu1RZnqzBJL(;J^zd4FdU2@m7Fr-^QD75B9XdH zdJ`+EVN&egl?#$$;rN0Od=wUML;4@OnJB?80_)sFVA!v5*ooLc4`tvVq5N;X{A2Ko z+aGtFVA49^4-(<2f$vJns+jW%&=FeTCnkc0rN6F2lnzphZ@-D|)nZa2rXujO{I$-$ z2jJ6i*ofpnZ@|fJL0qn8CpH2<{g18VVd1MqLLR_w(cwHI32Ok!gZZhDs{hqd04WC0 zvq;ie&>&BS;(&1=JWsc*bs$GmoU8sCUPMXl`WSL|@jcP;?PmCl{6xu05s8{1T zGQ-m@#UM<&I)>D|eqSs$5gP9Gyf*F9dU=ku8HzBm%OAMJ%O?3S0+Ns@WdHD#{ble? zIUHXQJ32$$@|$nO0DPSHY=y?n*M(hHwX_C<6&~EQ@$Jh})m`wh9?Hi*$sU%tTwp!K zCG0ROce&t*MG7m-PUZ1uES$hQI@UY9ue=0hjqB&U)j^7#cGh=n_K zgrSkrQS5k9ST_r7;ozsHrIDAjTC{hlc6-N`IsNyWU%y$p4js0=#s z(f_tT5H(`HrFCdN-HmrnW1z0zrEc7Ayvd`6Xg7TJ@Q=VsZL8EF~GD#A&%4!J{mu4Mt|g^X9pxU7wHW++BG{E}q+ zzwcTI#2A2MP93gGb1|d3y?*k%L0`m-3{R)V=<}W?QiJoz;_yjJ45#jkb#n#|eNc9> z>@W1S5tNp?H(EwIn>j-HKTLJg$@i?ev(+$RUonV=nTg%__`4*%s*jWcm5}RV*ea%? z&8WM1#L+u?Fi)qc?NSs!+MEGyT}}g9k2qP*2+Vx;pp^kt4U?T1PPH06ZML_?CRHcx z|KlMbJnZoi%1K~reM}m` z(G#f<&8{%QV>;WPtzO(>LU8=PUF*nW&x(U+@f;wek9eAfipLi~4D)|8vmhAh)+&N}a(&IGbx(2wE;te&E15IvywzT#w12;?|Lt$`FM{sjZ5I25H2c$@h}*2U&onZtp;exCS9B_yFr za29x9rRkeD3To1(iAx*aK*Jx^xts!7e3uy;vMXQkWgt2|KiSxBAXk+;+Mbg^Zug^p z{(O{e+PU$O@J389tsuda_6XCZRix61m2@iyer;#8X`0S&uk|j}3-|7h*l&-AwwcVV zr-dU#`>A{bZgsDt_<}-RKJ(l6niT9wxU9x{9*i9f^00|J0wLqE`+=4TJ^OL+l|eV> ztJ7a{zzamJtz#0O$)B5+nDQc%uH-Q*bZ-J$AzsPvhU96XQj*Bqe1mG55mEWI%M4i( z-{nkXh~&IyKm{xvz*!}Ba+(P)$4beEx~!@cWH(b8-jOrlhABV97q@CC%?uk<%WyEI z7MTUS3VQmuQHOpuV^$JM=LVc;gdHr1rSge!)3+9b)pZY~cCbTb+GVdfIdoTU|D^r; zm2~wYvzDaKbfHgGk`wIoAU1r=R@=fE{po}qUTEa&S)NsIHPQCw=?c1SR3D_jtMl78 zrM^OwoG{Mii0hcYYV*jHu{jsedf+Ii1!R!UgTtN@~YJ0 zwdE^R&9{psR_ddXh2Em)9-(U-Dc~9W+t5+rGu2{_Jqqm`v=g zW?COxz0DbI{`<(wX{!g{1x;2utW!L<17FC>>WXFvA}F3>_m6S{%biK0b7(sh{G44Q z_tA6z>(Lr{I?SO-=G>QQf-4?EIgS!a+=uS+Wp2wwWfW9%HR|$3_9l%g)*bIL!CMkv z%2$9fGo#j6(yjH)2%IBx{)@}FUWeH!r*(KAPZA@6uW?1PYPsy##PJ4bf zWI{d6G}0alghq2{M$quvhF_Mrk^3s@WfUA5I_P24g-;ZR?o0Og{1%%29J_}#C2p9e zCglW^j!}5T122M#G)GqJ3iT|Nwqs!Mvh|SbjxphRSRUhs>VknYJbwluXyuqs?P?Wj z%qz05s~J^G=redOc+4EGyT)(syr^*4``TZA1W>Y>9~VJ2_g6V9;pZqgk4-ss>(aXzJ`?4l?T0JSK8>aMYr*9j7iItlywg&?jMJ*4jI3#SSMMbfKsX(jfJP&kS%(?)MEkpaixP86*e?>Hl{tnHUvjX_5By)fT~se zyN6I2+)yX|YFZ^+AMa$LmgQolw0gMMNqgV)U95C6tAbe4hUlDgmr)FNi5a>XUK1}~ z2d_F?_eiZ%iNDvPKhrmCKQosH9p?|0vDXC#WWA5$#4u;lZoe)f^Ak+zu1FXgg;#UD z%&|0(1Ea_lHEJMQLYEbw>4j{0q|3Qcr^UM~LtR!cdcOZa+afz!@4m^?;YTG$e!kKQ z9_mi|nnh^dm4L)uEBs-VmVa!p!G^c56R8gh*#dc0Xb#LR) zOZ%g3)1%4y&{;IC{#RjJo7R5IOzXVx?SX|9T|pJ$PDi>Lm$i7Y(F1#qKP)cCM%276 ziA!IN|u4Km}&y}LL+(|{Tt|CAP=@Z1Srw3E)4LE<78fMkzcR3JI4Lg;<**}Wmd zGVd(6gE6Q+mHDM1)R%PlZDzF;hE$#mis{Wz5LQ-g|1%0-nGGKgZ3PoqzN#H{e`-Sx$u}#_Ao32GeLf`{-UMMROK1Xi!4H|It4c+CX*er zGQ~cYviP7z3+=+m8ys@WQS!n^y#Pl+>z`ZnM-LR**4!me|aFsTAN><&!y>VY+sS*_Q1~B!1ub2W#F& zo0E0DKb{k6o3Bp~zPxkQ36yHR)ookt4$n6`J43GgRO0oOLY=~ufl}Hhs&huWZ{sRF zk$W&!T^37qWR%mBIw^{;bNi(veYd1)KT4&@dIS-SCrWs|tl@z$<0dcL8LHX+>a{H> z6&pjP7_Qyg4;H#+@kH?kd4K9yrL`s4LB!})$1jfUjT-C>ZBuB7Cwnei9vx+EMQ~_x z`NNF~C3*EDAWz5Y0Z9{E3wEPo8f(Floq6uU%5Ot9!u85NJ(EKQ!TNR056BAL4$dA7 z_Kte@?hfkaB@Af9yCk{oc$e{rTMMMS%oElvXO4%=flS=H(<7m=sk)A-$ZhX&UhYTW zxDMtSa!0bL7L9t9o|#W~NxF47IQ8>I07rX|z*PDN#;6#eG5r%(r=y9^-fb$TGW3@D zrID@l(!3eB_Q~J8H}FpPsvl^0O0x5%@oMBZp1PiKo`aF(d_@=+OLWg1-o)?v3HYTj{cjdJz-k;Fot#r*fT8#kigKK~+L z=k5$BQN6#HoBz94re_Q(SSFVui}fm%!566(1K#l=F%JhkEb9M2JJHRR3H^XXYA^ogvnnQ|A19qVi@h~G!TUhTsQMtNfXJ&qsx`#`@RYT*SE~ef1(nx&X6U|Tl8l)#}bdOK= z81mq-RGIQ`ccb?8WZ8swBq+MYBfsb9j(H1r?l>QQyde>$#B$T+aC2%tf1|Gk$Zz^P zaMSWe3b||bCgbO|rGYo+bS^1XTdx?i^=rPjNKAYA!%2(YlWWSAP&F%t{wOhNjo@@x zpElj#cuIwhm+ns-(_&nyi*nsc{dW48WznqhYjo;}Qzhprba(^aN_FE|;O+Q$e z;9^)Hnb%x}dV3tHq1*nhPZ_Ap+KyPl8GCvt3+vl5ClrI^r9wn6PD|?gmTj}_CTgDZ zmCGrj1@gwYj1y`GOz1@%=fCyw(B!6RXQIxhdBGdC=x2M&gW)t~7@J^QOnHmI$eJ-J z`Q161(=^h-@;OS&frs-f2!56mey|sIl>_3iZZ^?A^{u7%+6@QNRa3?{$jbQYYT~6W zLYKs!eGI%5Sfmul19+-C-mLZMigYD&t+8A%QQTi;p%yoBhL7ky4dg?pCOx>k=tNF4 z#=pKbW35MKB3Z-gPf6KufMAj1{%Vi#O9$!|jc8 zxILQPLh3mIJHFUeUh07T)iLXo41J?BP_yA5-|OVsU&_aI$F?B79xrSivtn~nZgx_U zXGwlij`Y<>LbW4z=5{a>@6Ty>5N<)SP9^qv=Dd9wu~}-Z4|aMx^+m-wo1FfhR*b~L za6#wzU?XMH_5n#kKJ9wt3RlHDu0wM-;R1Ic7Y|JHK@lJ#PwGw6u7m7HhwY9MhzXbh z{ZWVZNA==6x{et-^2VLQEm2k59nUOJ+wZ!aw;dHPrc^uZ#m7lYWBCfPU@uB*t zOT?aGNJJZ}imUEtw_6NSRPSzm2*c5C6l3Wqu$Q;2$GOFv%Wm=*QtK5u?KLhZDP4_&^J#>vqI_C4kjTfPJ2rZnw(iUj07|wb4F{n5^R%P@g5Gem5N^Bj_tp`Ka`x7Jh^ou?3vl`c_hjJz$#j8oKgi#crE z6Ix+a+-dL>7)nj69z2_!=PX`6`!UEPYdsX@cj2MQSAUav8`QGDRvE|qq@m)md$V=` zUXIo3<@zZW4JMrODAxPXc=2QZry2*kA>@06)%t?#o5$|`f;=u5*X9wG`k?~DlF*I* z?>}^nUqV-hEy*kxH9dnLfg}IHV_&oj)G~&f9-dsIC%Bw}QqNS0bY2;1>q%>7QccFF zSXyL3qqWD9OPuHAz9RqN$LU z?~Lq?XGrkFC)FZTL|{=tPjvIF-u6f~^BB*!3t>x*LITEn3S_uTtHz$1#)Nqas)>kl zL8oV1VzcDu44Kwi)CC8Fw9y3@v;sB^@enz6C5gjLpuTt9M9N}xR-?jcDdMr#roU2x zL_JAFZ&Q{FWb_ce_7=F{>=M67Ef?Ss=D&Lcm!W)lDVa(!Xh?OvrNN70^gqbgG8)^Zvg+J;N@}F*+hf3Sp=3P=252?7kZAKZ)t(KF`+oYdfakZUe4S~(E>tNtTwwY z#yy6tz35;=Q)h(N=>rdgEecM>|a_`MTj#I=jGCVzV!xx7C@^ z0z6qEEef%*kRq-t8Ty+Pc(>vCtsj@YyG36`CHP8zJ~OCNMF)d}ph+yaD#Ve*tThgu zPE-i!ghW}8Wu+Mz)~Ht+$CEOE)Gbb{_yw_b{&=)=EnfGXt=_DY z*a)Xw>i_XESGR1u)y3)jw_8ghTS*kxTZQHRY)%Ne6hRYy>K0Nl-&q>Tk``{J^MA1S zUSUmjTi7TdsDOxyf~bJfJJNfx0Md~Tp(qe)0Fho7h>B8GdPk*5mlmYk0O>WfP?X+V zAP`D&X8gYW@BQDMi*tEyeB?>8)?9OrIp!Ge`;M^=4?Bg(#-A+e$eR##8cH{DR5>Dy z7+!-G+t z$~nD4C2vWM+dyV+kgY!7vGX7{d>((aLCyVYy|n<4VkX~ak;Pr4LGMTqYYS;b5X_>1 zMe0eP)2g%ww)nERMR0=nq~C;>v2p*#nnmPk@e?`6cjC22VYI*EI3K+FM;r;*SvF9+ zpZscK8j1bm$4f?e&(`uGDU#emcYTXdDy6<5B1uryuXL*?mW`|Q5k z^LF|dOpzv`kzCpx(u43FP_AXMnu@br(oh5Oh2TJL+)x0X(Td(ac7Q0f|4g+*XN-gHG7k|(-Fd5zd%K2pL_nol@ze+KO zzMBu5?~NltQvfxAC*$lOgYbHZNE6ZO*?6s1e9?+&ASH*f1ty*(k|EO}Sj$O-SgWdL z+uG=n7%f&;b#=O52-f|>-I!(l;6L9L=fh|fFSV6co67@zf^DufW^}5% zne$`ckmDdCZdUF*6E@UyW5BQphn3Cu^V^wA6!h^#=Ft$AY+eIK)v?Ltem(!-P>9lTzdRW#&3kItx4AepHn^t$9-GP~MD!`~4G+r;~5gE;6sS zr9A%evfVEZ$`!f=ucn+h0U#DTgg+jravXe)c;@v_OkVIc)g^pxkA+?%&c3xHj%~4h z0#!dlgXc-+Q};&}@(x;VveKRQes?C-FmYmR$yy|(>HcWR*^7PWI=fwCDR=O;bNL@6 zEo=FjyHYtOnU@6R{jrHT=aTzfe>Wfc$D@J=pb~VD!WqJn!rZTv!6rVWtKu4+>p6#` zft`6ib1u>Uq}z{g>ehKW78n*KE@`3YxU@BOqj&Q>U|VmH2@kwi`g}F zt@&qZIt{A~2g`{}{mwFQ9C+}SGkSjb4d_+FiXBVd@1aIF6J% zx$bepda1=`{OdT*PR_V%+nr@iiOP`-ushat)EgcE&SoO-u36FgXqpX!OnnT4nqr+DYheS69>)e>CY$HFdRfGIUC#bC2Hm1_t z#*&oM-1Ux0*1LmEKA`>g9jI(fl)}-1Si#?bUx0mZEOH($eoV3PbLYP%FNSlPV^BV(FOqfIYhnD-N;sXT?3k{I;sQNylG+X_TODA~_4Xo0x_wA-i zY@!_J)16Q4FQ0%O0n+}v$**&|TFw-f{o?;ivEM{>O^*574?;SMC+tEETh9WIx7&gX z9C*=FoXJMLq_pYcwb-t zZsA6M1j@4R*Iz6$FL-z2;gGf5iU(9eTso(&L(*~uzOdaPZ(S%w1Rf893ACN>e{``I zs2cW$VVrDU)QkX@5p$g|0r1qSv5Nw9ymgNl4C1;!<#}%0@QACmy8h@f@z{DsQJOl9 z-WN1+fFJg^IWu2EeA%$x=t#)%%s;Q!;hC1)f2^RT7ED$?ogO#cRIX}CK9I(8*oxn3 zY}muri}ZW4RJhM_`t2-}4qqF;@PRS(gB$sZ!_D4$w?-btD5gdC$P+EARp^YSS;JpA zl`2SVhOWOg#bdE2G7pYSK)RU095Y;Ik*YKmxJOGD{O~PFaMW~BZctl~k*+4FxUx-B zGxVOyc{21NT6#0NjveXgFs;p*ax(1N*Xlb~W{}rB3UJAe%3e7E3hK+R_8noMzS?Vb zC=m_`B$cTK*}!EBA%wyM)RXXK{My=>hlp#J1I}eb4!2v`ODt$8b`dTsZqS z-P%7RV+HSWAG%aDw?zX<5VEL{yk!{ZZEI? z>mGAfjqbN+J0{Z#PgNJSv2aVKg9^E!kNH3oWwOy!lZGnQE5Azt6kD$llgRF>#i}>^ z(?KvObz-<{3$LuB*#^@58#%r3V+M)pql~ z*k=U|uQ=fW`(1s8G~CtA*N$j0j^yXlru(Y{%9up$HGl(9kavv7DHs;sljWJL4V&Y( z=*agn;eJZtP!Ks`leCm-FBY^9HEth1inA-vi(*o=#2>j;CamBlYCW(nlAo-mcfU;; z7aEqVh?6`Bd#S*T4~@b+}Do>Z$@>6eP=`emN<;-X{t4X)4$8 zU~;exex5Gk{tPuaYQ?Esd3tdvD{*bCBIWFc_D;NG)WGlDpY$#eNdN$k=Vx_P%otEeDJUp)fCo8sMZBnD7I?06yttSzq?~F zTx#J=aSSa@KIG{3QycMVh#MdD*Zf;Z@IZmApOd;ZYjxjbEEsQ6!!=dfhzPKJZ{oVF zTN71PqMr)>=9Xi#=5+gwr&Rk75(Y^U!a4Rf1VJ8}^&LFr(YE zZ6)VM>NE#AwTi!TO*Ru~{CaImn7K5P1U$wS{v#*4;2&Dnbf}I@`8o+-kOMk!m;PWX3dCp?(P%=kIKY~hoKwn7v(Ihx*M_{px}J>3 zpz5}fKrup*!fCKNNynkx_PqgT_r{)Wh0vM`D@9c~{0Pg$DZV4f*I`!QvLiYFp@b^c z2xm3um9p8a!dmuu?G)2xmX|v@td_4quoD&pa2$n@7m8C8W+lH&&uUj={a{Er%AZH z^WR(PM`_+?zQdbgLfVad*G(>(2)Ly3H0vPpbaJueeDF)7)<*sX)wqDoM&t1sHz9au zVglfWV0UW4nf6vKjx(iH-rnR}0gdK9l}xDxKfAKD9aQH%`uTAf>di;eUzf@CQbU@~ zRBI$qaq^K;gz8cUO4w8f%I&#j6+XOaA73R(syNdV7>en;Jsa#NnUE`~uY z&|MQa>kAU${=(!64TVNp}549niTIuu*9C zp7S59!+yT)Jj~yZxO44SIw~F07Q+OZJ5*~x?__q^c~q6k;w0Us_{W1&Iki&bD`(dn zi4=e1TvXAdZfR;4emlWnK^*qw;VHhQe1}Rjy9-&JuVqtU?G-NF)?)>o*P5gvB+3i! z)aoVG?m6bQ6~k86SvLXd^MOW+QoxL%JN_dSDu~ha;ek?U%YgpO?;O5=amcmaAKDAN z e?m~_lzjNUyjVx<9;AjMs3O@h7u7Q(XM&rYnxm_jC~;6X*)935__Q>aAI2R#sy zHDVb6%2GG9Zs*C~%=-&zDrI}E4_KZG5wU;3CEy(Y`B|`2lF-sf^bMYnSd05NXDF&l z?wzvT6&g~m2Xama**hZtzeb?O@ZlyA%5py(lpU^7KBFA!c zTB=~Po!vT#=z^n1h~!zSv(IhZB!_jkeDUXd2g4Ue*|NCOipJfNmvx z=#WGs1_yrhv5|o>aPx$oXOfvK%GMjVeF4PDod=w-lHLW{-eZ84u5>|Zt zgLQR-jX=yF`i$DMi?e8O__LL*2fNOHFz7aXfUEfE1Glp1C6<#Mld-;C$tT+085n=1sg4wC$wCo z=oe^ICnrgmN?z$_CC8%kbtW=gRuiz{iaSd-)*opkqfkaLfpJ@&Aw8V+A;a4b9Y@#z zS-lIo5ps%~6P0XQ+CaZdoZ7z+bAj7Cw6VhFE7Ck5VQJXC7P8)qz|!5+%^}kes5ZC} zG}k-3!&eqzY#Aip)OeIRcHDLPtq4r8_UAic`;GME+mG*_V?K5~cYHA0kaXSFaa~7d z`#I}+xgFjAxxr1PY*#W3JK5pDqt@#mf<^@Uqo!c1DqY4MBBwWw74o#@6J?52{KEuVc-B2Te4La;hrlLDqqLx4{2x zsBQ$0>e!$VCJyqj22mv|DDz~PZH7lUe+LvT0N4+ZN8czku%Dagd9me2E z0>{y)2mdn^U{~t8U_vM#oG%naS>9adLW9Dx7dMqXm$T{4_)q1?0VAc-B+bA z3Lnb3cxIew@ zl- zoGjsD24I4IA5?^N@vp`a6-YGEFt$p%M(#3bcdX)Z<=ltPL z&rMC*W+dgH6#D|q@HCgty`($DPsv`;0SlJW5KsDj5q#?K1Xv}F_QuPkw{O9pR9xUv zPZFJ2<8GnYDf@l{E4`LJK|?fes15@mz(Ejj$wz0Z;Hi#A9GE))v_T|{Gpk0#9 zK#p3=;3EN!|F~xG^C`0KRPjjcI(np@`HEO37;$T*k3AWj>$c}o-&L?WV|%c0%KzgV z;wzPs1R)FSJ(RJKJy{SJaE<+xnkgb2fbO>PTpxb)KO?<@ZS^`Tm$@c{Qk(y{| z(Nk13;I91Sdf2S7O8X>bE3bF|^**6~e-8yQH`kN5`=`LbBh+qoPyd=R*JR5p`L7$I zTM_#F^ODAWDl)wYW3T|*prRt~&NMp+m^c{!dYW_Kpl$$D7~!*4mHv17DL^l}sZ;+f zX@sfL>1=Ced6%SbSBdKs02UlhpeOmeE?vZ*`R!IE-5Md~IJ*XxG~onB^6wG~gC*o$ z=pXd{>xL@8k{Mv#NJ;*Bz7~F9D9Nfi=)az?!x9W^teJv@I3A9(m0)83U)>S<&mBoZ zUtUZGZIjM1%SqV*G5l>wPX;nA%|{@45Vq?|<{akjzSVb|3?w1l(3!4O@uJ7BOM>L7 z$zNYxWV0Un^iZqVF!f&cV{+n-KKA(v4CLCv%ZiUJJ|@(8U* zGe2MB7L%-cHCx&w8z3_!+P;VrT63tM{AW= zWxWya3-xu_&H}3@_pD*pjUl^2s-z&6FuSzsap?ldT##-L8K@wnBQfZ4BMFMVOdFSuL2$8Hf$61U~NOZ!Ss^daw+wVP&htWjNg;1eW0-?&37p=?)XH z28?kE)7)p9iN9gFC;xY6p60e8u6P{jA8v|c;&R6c{^33yMO^CbxLcE4r?-jA{QqB^ zI4w{VMQW1!^!4ghU}@1j`g!;H%kLL|`A!u*o~T!k`_%uDZJ{R`>4H`PIWzruBcrI@ z{YZKNdjGD-|8CfSVvEq$3%9Kv`g-NPkThibzakDXEmFpiYmVl4_oHU(whW(WU|=J^ z1wbz%BM88>TyM$X3wEI*xkldTpxz1WM!?32*$5yjErYPHGtmf!{V5;9NK8QJe?7@R zm+$K%Ti|PA+?K@$*&|TSX`}n~XYQxc>i=)70}POdTC9L1dw&X21PL-1bbP=Sen0it z#6ay1{}pIN?q~uNDbt9ErDYLj?UCL*KKK@UzJp5vJ7qsT>Yi_5T`3Uo^I_Yu2vDt8 zS9}I=>!ZM(_UvSZAb;>v4|ur7Cx8~r4MP|P) zAtyOWriP_=8W;?%%)y%uk8WegK=1Ny`{3AUce=Ew!tvI}tH;av6eTeD|2@0e1(d{R zU>vmnnSCb=)3)l?z$iK8iD7ND>rJ)r(`w2cW-U8d(DB`?9+^#QV`fOQ^u|d-m1YyS zDE4n0oUpViRu`vKlZ*OgjXUtp;tzcN1DuK-h4n_(!n}2M>^fv4IZB+Iu zFwAmke%d~6V}@82p_VJn~_+1x2RZ!Yj4h+%?-)+ z=#i;>pEd?P+6P#U>GAU6>b13C*ZcnyD~INBK3SNydUfj~XUoeB<5yFSbuF3l!x87# z%_OVsoM=N;u9&#i&VPW7lnOuk{nfX~ZTcE|XMl|KZW)}q+4hZ*x0u!T`SFh( z8+m_(p5Tw>@yro(L%T0=NkJeX^yZ5b%?iYOgp4KF6HSTV3jVe~*|S`vU-L!mF)$Cp+6<&%$S#PN>NM(}DENybJyFz+&>DO=C&=_UY~_ z*!ti!6TkTcn-qBBYw=+dHt*@6{Vxlt&NE7+w?-h<6h#i)I^6Z=46?U#!c z{`ZDHRBB0(Ed9!2dMioT=E{U#En4}$r?+sF$#vbR5(r+9GtUYb)p`ARGGi? z_1?>KuT`1-*n{_qtmf&s+L(OIqpnMqI(pwPBD$#G*BQP*gqAWwqhvtOgm2#T8>v4p z^R16&2^aIHkIfqnzdb3)ZQkyG5|$_UdEN*^7Gl?vdS%n@juJIrS@X6^S4T{~X6H0s zWVM%1oSdZbt&3ll`XOtPMpDn1=>JJ9Z*q`J?N4}o1T>8M=;QE~p#4b(P&TFpz<*I% zD#)MhsLKl^lr2~^=mF9$rJm>Nv#lY~KpTK=<2^Vdvqg(14<~$jE&4%5u_Asq>@;nRaiv(- zX2X$dqN|^8@nj>cILl?QdVLse`w;rsX#m>~7)x^Ene^zS7qB6mV7q%Y(Dsd!g!QY! zGnmmQKWMD0wKHZwC9dSO(P~fqMo%xJq__Do#)?o_?9)5B{|T$$7+KnMatQD56q;Mt zDB2_9FQcNca;v0w3jC9vozoZ%{leL*q(Ch=%FyU_QE7u*@40wAbD?4gyud|lqjrDl zz_u^DIE&62g>Xg=^)&8Ju*twr%1Vb?-6p+;Q#N;Y-*3DioCr<%El&FGH|~D`@|N;H zr?1;uAzUwAcdP0TTol}(B{X45lf?s!5anYF<=An|8D)Xd;ln5mi$?ky#U2n%lZ5Wj ze>vKypZy(18xxNc(t_UI@EUqp4%B0+HLjB%lq2bJt8R^ZMmZSQFMnQs+3Db$4L!sB z>S(iBaoDPPyM|9-vwtuE>_Cv90a|6YWq-j%-e58#KTue7BN+eVxZEi`w^HDH-2(b~ zN%cwv%3{WgjDzp<{6d;BR-l_YSNb(YC&;wkHOE)rc1N9{&SSrEJ9!H8e3zf}{2;)S zFG3Iu-L>~H?$yzXW`n2T#%k`z++QyLeXOl4Pu+ttXt3ONdp~aUFbn!8M+t3V zxT+B7o4LIR(9+kr6`Q1>c694tYQKp=J^vJPsOS|%yVO{i z2jk{(&uT!^J3gXi%aQ%aBv?g9XQT;057Zc+4SZBiT>FU0thYx$--}78Iat{oyTatQLmFF z6RQ!_;Dn}K{0ldR%5HpN3*HK2nS*Jkdkvdzqo?r_w1)+}anBqEJ3j47;pXBnB=0Yu zi|16g1QYKhN^Vs0!-IHgaMOfVDfge)Lz0;rM~)MOfe^?Szy4m>1Doz7D;c;p_vO#G zCY;TW9=^Fyr2wo6pG=jr#k%sEcDdk=+kM?@=eh@WIZz?PR}%8h$rW(9SE4_+;ie zH4i+i0Qe&7fVqjXpA@YBaO66H-agAug*nP#+aCq71RQTmt?%0di~}QLVSJ;=f)>z#c#Qk`arO7e6V00?ELQl|-0pyQqnA zNiL|t!a29y@X%B!+Z$=di_;$Cys%8x<1ymh;Y19U+c1==^b7ki?$5r>BYM%>OYc=} z?65v?FL>+E*V}*Aedc0wjjaUgHU?#BPn+3wix<`ZT;<@tO|WXwDh{)#^NiVqHkz#_ zwl`&Gbs)UP?na|ej;44dOdCJRv;7sqr&%HA6Jhsz`TIDuqRw3tlgjiJiG0<``Sd() z`LX*{t$mw9W59?>kotPyu=L^r%qfR%@aNr1jx^=f;S!q>3-9(at)fU`IvF@`*vm^N z13b^}-BtW-mg}q7)8~G1zJt#9h*IVX$Y%PkEMI-om}qp*!ViUVU)a>KTB=4hN+Ax6 zi)2QM7onkjxG7nWJmJ}KXG?sF<7!EO@(5xR^@r_coBaL+!>LMIJIUkuGC!54t8r(bUO;j z2n*reFdl67VoJK}j~Y^FBc9RO4HTf7Xk7~U6U=lk&xNJ>>5~oCI|GYZvYQQ}0}_vn zExZh|V}(9Bmpee^w&`58HW9cE9k}4o-(b3iR8Be;4({0XT}lY`yRF+CtBM-^h7VIw z^*0Y}>nxvq2^A@4Sx#E#YmK~0)DT~Gd~xk)?q=xtSw!`GBCg?K2T9c-c z+#z}^L0&X(Cs{mMh-Ht_XQ8VkyLO2Q!tfb&_+!Qp`r_u5Ui(ZhZRX=R5jjvsI$Rz^ z-<3hHlIxd9fK!j?sicPmKYai~T}4~3UKaD+F45jrs4PZa(CTsx0Qqb&#)NZ%$-OX9UWcGTvZ{t3YML*HF^08JMUcoZG?W1OpDCCQ)Y~DY#3<$!T2p>U51*;$_>9nj@?S#X9OM8k9EZufQz1nUB8659_ z3*UJi5-HfkUfOV6(NaN}jubLHO-Kj5VBc2M83;5V&I|iJ=_Cf!3>JZoYsV#ShG`Wm# zL7m7=CSN7gJ@>6UXIlO!%8J0ouukSr$L39u?@utV%W&F+(E%FOEYo@_JeDu zVB_x)EePvECpB~qli#k;4s^xCF|v{k^1hGyK@nh?<<1jt{7vTL-x!};Ez~AfUczeL z^BV=j5br@g*{zdrZ}iynOX&1g=5~*(2DOW%)~xVz&o24b3D8hgvMc&?3ZqV%k-lT3%Z##oO`BU%kq;=#*5j3={v0vyFpq)_$j8h;l2O|SgKxD8QM1gI*P zZ$D7@bR#5T@tdFNTUy1n{Ow3YY4L{~zf#ZR=hNxw6hl?N$ZRA^q~Zy(e4WpO9w)ZQ zz<+L_Dpk#cp=FM8L;~e>oVMI8*I)FL7Jhr;IGf6Di8P^m-nSMVT^rX~w!@vv@Ma-; zX2(8Tw-mc;80)chtFzBAJsD-Rw6=`z^|y4W%n1AIgjXFD-d3C@>ZIDuimPi&5gxq??x{Od~}`2x+|40TT}=%4a`Og+sw`qw5?+vWuv^ug;U|wn(+g4CKUxfJQN`Ynh3eW(OFz!-Z)Y^m#%4Uz>oAEPxt0C z=$m3eX4Ux8uD;G|RORcWs;8^5(4j{)D!&m0#c4$y?<9Y$^bE6DpvD(qKbYM(us~ih zj6_%s7IK^f&TO~M3*`pyTK$B+7?x@EhSQ`akvgOx&=pnoPC*@BV{=_7V{?2pP%YYb zgm}*N#{MeOq0`O^mdP2133LeMdT2udWBJ%jXiD0O8n1RGUw&Cf3O{}7&pGW3J zTD+zH>%48rhs_;R4q6moKiL=pgqk22kjiRtu;`9 zs<~IM^LG2IZ4R3cY~=5h#(Nq+@F!DzdU{mG3^Po>Bwuk(sUQc@{!ulyAW&Z3Pd*Lv zfP-R&Ut10R(h!kSJ>7H^xIS?Cs>eFYc;TBo&pln#)85AYmfzpPFug&GaO&B@(*%R` zqzZhXB+Ls6PGppYL&F8!FEaDT1kjgUzOCI~wuB*?{MMS#t~i(J6?EAQHi6I-7xX@< z!*zOUuL!h7{&-Q=jxm(Emws5Fc!M_|bx>96QdF*Y=HK}E8byyBrtA0sWo%`UzczH{ z#uKH$McL{0O2#}AR$@*#&)(;RJ7131IUg~#KXDN{QaDyZc+Oqym(Z}((@%+OkqJCJ zh}#|#iiw6?8f}g@cPp*uu4C}pCCf5x5gOU;XGl1DSWc#CKf;hS2E2vyjUZ}t&o+PmIrZcSH9gLbQ^s)Hr8_jy!D}xSNQ6#zghJV4-8lR`Q5W9UL*0K z)LbamGF{~9+^-ht##WEG-qQLW^c3PTS1Br2W4;rlj)j3uzvF-p)6^-*dHuOZ905a4 zD;)jQGyVOrgFD{HFNiKzVOEd3%qGK{(lu z1#+F1kFg47NxbGjDFHZh-ZvGvbO<-QK9izB5Gs{=x)@kgw$SY~rDuOI+V1`%EXZba za5G{v%g1Ws@TaV>>i`1>Zw?GhARw_!;PVL>!ToL{O(OvzI7}yZpvbtlBWWv)_Wk4E22{CuJ9ni@Jtpg5=ZInS?vZ#(zt#WFh}Z?vnv%gd$s zTRZ8My-`5tow8X8f4}HB4A3}=G-DiwGYyfh$bucS7Y+y&!(KUoI6A+?i(C^Z9`f0S zS)h@hk-pLYoSY_AO3jFx@c0b>qBW2H7!al}Q5Q;ow0>+pzGF#bxofHT(OxB^GtX^i zL-JW7CxLJis$=;A@h7z095S%8t-l=Pd&IQ;d!IH!)(5ZM;J3$OZH@H3&l4QF(9-uJ z9=@=vAIzW#V!!QnuCSQ}#A<&0j_*TwU-q4Z{2cl3&b-d0(ry7Im!(8GI&Jme*43_v z3sfp4ztGAvkhgcwl7#)5(?rP(un&f`$JwlXaW}MrEaxx)(Gu86znjqqM1LKHg=w$U zxcECZa}iJa9kCBrvmE_#|#TGj! zzY-Uurk_=zLvN5aAix4m?YXa__X-LYob9_)GhEQO1;*v1Wsdj_F$}-NN9MRgXD%lv zLKLO>LdLLa|7I!KY!tajs32cW>}!4dpU(>hXCoO=o5ES24{5JuC<-2rXq2CvX0oZ- zz}T~ss%MXqBReV%<+id2DyTIvM~%<%rd;qu%O~iP%(3rz-^T8iR?&=R)^BF|NV*Ud zz``EmX6#7RJN z3|F_(|FMTpjY{tqka}CXagU+HJ-dA_iU zRf*9@CmmVWF={P^_*xHWQP4=#=;W!+VMKdwOP%j6u6&fSBWe_MBw=P#jfoKJPrzE~ zz_ID6To8la8*A_JaGad z?%oXIyejqNQB%+l-lAf?GKqYFpL&eaYlFVfuTg)LVNqmTH}nbRsLiTdN2ae)@2LF|ZDi;@*iTnk!8vlFi`+1!hORQ0Fv8w)!gf;qO zqlg4V!_JB^V+c@4mK+~n?ux4*7tmI_laplSuXe-x;G*A!zT6~>i_34xLWV7TGKj1x z2p5@bplU?GQ6WcnbxxE_K~>o$UH!fEl}yQ9Ijt5sjj2qEg|B)>oB5f3oS8w`THoFB zHjFArtv&*Xue`-BZJsgNdo=h6SHWO7QdZYssgGXK%W@_jeZUjGid8t|wl@K2(n`zQ zOJ_Ydr{pc6lf8pa5W&QeCz5uBVr51hBCSkLxSScE^0g}V^nJo$Pt=~zsDhb54I*W) zNvsYgMymAsNRsOYi;nz>re?Rut~m&h-2dPfhoz`yTVu0)6Cyfa7C~K`v zL>NADtll0ixA_PV2QSw@fT_6HEWKO|H=-m!N$)VyE#^8bPRiJ3pb}S$)2_@g{3SQg z;>JHm4bZHKlIiDlb*eo4g)3P$-KzY{)9x`O$3YyVj9C<9B?C5{hsJp?Pcv{Al4Mui zT}l2J6QvB-`bO`d`)6myI48Sp`jbT~TD1ZN9=7 zqK6K*D{5Rhyv3`||T(m<{Ue{*2?RZ%+xlE!3O=v2r8e1EKNWaLyxqJ{UEiBE>t z%n7Z+D`U$5@#)iR-8EBP^<$!)!}`!jg&h)p*a8qP9@*Xy(o;5H!5b56rqSDdpbt?N zP1%=~6%*%@YU`v7pANTjfK96&AvAz{;<6h{W7woF&y&!JTgW~?3K5Ql6*L}$t`&MW z`!GVsLIDjIHXAUmIqTo>d$DMzbV5;44 z+nV0K@)SiKevT=Xkc^~W9V)j$-BZQ|p6rcu?hEMzLATP*jro3zrXPzH6W+tU>a_u6 zz$dx=ZHOzgD-0T7h=xuuG?5ePB|G0`QaGk=X%M&l< zhTmAyj0x?t5;u4r+Z&Pjl1A+KSQ7K5%3+Yn;9{C`bsdy=O*#QJymn1~*wpJ`{s_*O zYC?;zejszrk)q~q_5`_J;!BQ1bJlU>TS5*r(b^P$C>yj;d{y4vEGp%;K+~@Z+)$oa z@6`VEn054Muohw3>blUPm`i9p#nM|6nM6H@(Lb18e6KJ5L4C5ARqu`Y(_w zmD!~{lbCoECg;nYF~WwPX=>sK$}|gD-@w`Q%42_t62Mzvbb@2+H=6QANVq4t1fHfr zTRpPEh|$k2O)mNw`KA)+9zicmWr9TCt&f(f}$2+)i7Vxe|@Or5|F7+a1&i>GlqdtcGvc~;& zAO1h8fJg0WulN@HR=_$X@#I8C6iQ1gb}{uIjQ)tes2ELeb=qkdE3+uh6#9XhL_L%{ zKjW}oYWFkSOzoo8t0b$ST(fRhi+aP;-x`wE2Q3E~Y&VOR!%m7tgR`;@r;-F66HHT~N2Vqz!ZwHB zEiKnZ29i<$uVdG+k8dddRQe2%NG(gkHakC7ODny-^2Iw=X_iskOrHA0RMO!RS%9t8 zE|69Lb-HBmcBIu%t=96PfuQ{SuhD=_`Bn4Y4}v%1PNuZ!WaKNZYyyPWY-l-#j$1mk zX3C$>42ejA5AD8yY};vEU;8)=3^8smt!Di^5rUhlC@>oqO$nw@6k^SNP)n6wHKSgb z9$}mD_$5%UUsCFIDKw8?_aaHW2ub7Nc*AV# z44N=s^f!NyefQDNR~P+s$B<}O*rjO(g%H}1E+K@=@Xi#Cmu z7C@Y#=f_whN{_IwtNk|_-R#v&5_`PYA4V8wb0_`D^=uDVYYHe0Mj4J66lGye2pgcb zq>cEB$K;3bw6a2mT*Te|i2y77z(d6&Q?TVvju#bWS!qMSdqVWmgIi7CVuQ;{)1g1g zep@;+P2UbzjWdTI*ZL7cW3S2c0?7*m!}+7QcrFxOn9mPCW=}M8DmdUq>u)ukVg7{d zsG>0E<;lRt$Oa~qd>W^|wxx8>U;I(c#9vk(Xo2>d_8S|NldOXMN{~I~CK&y`6+rJL zL6o35PQBp2`d}qSD$pf`D|30@@dhEE%O;!-f3dlF9_PFM<6V3QWxOgjEv+bh(1z>fS;g4I_Byu(a@i{8C_h#` znMo?&#GmPce6;mb@^K?fgcySC(r-jsrC;PXdIUuOA^~vABSoig2d&Eq{S9bH$+T1+ z5wrg2iVVI(yKg93`CZ)%wAY^(3=1PhT?wdKRt5kPWWS5b+gL z_L+VXI))jRnrQc&-CsaAaX063e*s|UisVk|;_qPh=Nl6382W2l;;*N-Ot~5yZAjK04 zxcfCsH1i#Wsc?bRX;ov-+LG}E=o}$r2Mu`X z@48GD8RIeE@m$@?hKM#i5em)E>3!nG!&BdV-K~kyJ~K$${OR(%Fe|#L@k5RPRc4ow z_mtnrBu>N8GT%upG9No(GsRjro%z&Efe^Rgp{JHbIo(w;#N;#MHq*F26+7%=)^>W# z8-68M7s7~L*+b1w-w8Y2(voCJ&x0AD4ffP+0EawAU`qowlNr=g>xb$TtVe)qz!Je4 zcbdPh=w{zpvc+@{?cfn2M9OJ^+bBS4;Q$jx4;oz}@VNP-X+p4zkOwpPw))*i18?4M z4_A-0S=4V_qz&FA%!Hv`W0z-}4B%+-mXb=i=nLuQuP^iTs#I!Uq=R^#w{pNpj2>;CqK(u z-E(b7xU>sp)HhrGSSic| zy0ggb{$g|Q=SXUW=8er6oxL~G%TxeM)VotRDDi}g88Xk&)TQRDUu)1;c<*JHxW^;k zR6QHxK3Q!nv^MmtdAQG#Vl#w_hqbXRD{eI3XGAO zdBx9tkTQy>>|UvUVN&9{#Qyi_tRVZ*su@GDMF-?U0!<2x4>9ZymATAn9GL47NV}$% zk>ORZ4thBML-$|J0m$%9)LvxPd(woVs^K zujlw=8HYW^b4oYWO+7Ydta0$+MK=K+)-@Bg3O&XZqYSV11AO z-fjxyj;&o(UhHvh1u7vMP{og1=3&E#8(T6uYTycUFJQzBS78&28I{uSVR&zw8z}-? zpxcVc4gb-Lxbz{Fu?YjSUGalK9loN5tz*mwVnBLlLU4P65sU zl*wm0put=3t`U|##x6vn2lkaA=->wn0%gD_&UNvo?i$%(We!6abD$J@W;OIG?(ll` zO3x(?K}Mz;H0Sh;bF|y$rEXYtA<9de*D~}24T<{P8J69TYp1?7Zo4B78}lkoywNR< zJ}0ul(1Pih`g>!WuH2snKbM z6L$MXZD*rrSDZ^t_K7MdlyJ zuOXy+HFz!c zIELwODn3A$Ea##kcX-IN{M@?8w(}_Y z@`X6{A_Uof+t>}$RD$UfOD-mz$XPr#NwLjq?0bn=O%&s}$JDbp2FqVHUxQAfCHb5+A`i6zEbqh+VVJo@ z`LF+*BM0?i$WgmAml@DLInt$OQo^-vId4t0Jr9Kxg)279MDWc3im0=a(b8wqtK0^8 z)|?1J7EpDydv`J(c6pfg^`1b&?45WS`&Q%n#i60a^Q&doE%uk`ocG2$hb_hLB>XPt zs3=KYNPN^>xUQ$}CI@tO{GDA}OPRS8f;Elb2A@DOwhzu-y?r~&*UY6_`|UFyz26-l zI-XOS8vOZv$8XEP%&{7bLvZDtKMRYfoo2()Q~)uFTm<4hbO31m0Gr z3ga1d1#8Mz1C_42(a}ACXoHVx2oZm57U4jcimCH46U2_y!PZcf&c#)Tb)y+Ulf{GW z*-B;h6YEF;uCQBpE1%A6Obj@tG=7qb@8d1X!GPUVLyMJ+R3Nr9ObN5M!X z{u7reo-_vau_!0lwSY`c3ZbBPF4T$RWkc|y2y|KJtq8SPp7Gb0A3Nr5=k!|t&Y93~eu6*6@xtoR9 zX^??0W}4pia#HOuNv5wRN^sm~qa_!52d76NJSJx1j$D5lex3r=QnV? zY?*3zoqD{m>Jsldl*v4AG7z3GR$eI;CwoPE9W4}Rf2r`G_7>g(Ku2uwC%ml#S1ntX za=QP5M~a~Uj^H@NuBVj+)`1QR(Cl|=p)MBcB60W`89*k_0##{LRVs`qLJZxx1Quqa zVL8Ao>4WQq&GzdXCN_{`cbk^d>*i$c&Ks=YbB=x zJrvZQf=aao$2i3v6tuSl_od7b1M^v|iD(CO_aa6nQB8U7}Nrvi_F{2Q? zQXC`D^|6%W|!=n7Uc3}V|6cJFQ zQM#oY2BljNkXGq#kbD>$K^jItLQ=Xx8b!JUq+7bX>+Au4@Atmf_x*LQ>-=-h`G*Ub zXP$Xx@3q%nd#!cfH%&s&h+X*A(-gEXb2)n2RNJqC(#ra!7lA{5aDVKS-|bCQUN&b; zp&W}>P%jWac?x=fWRRM}O^IEMQeCbhb9&yZ6&~{zy*>QZSZP|6f8UPE7X~ngaBHoD zPJu&XE>2fr@QQ*u4c2}NO(J4{oSL%VNB}gzFpkVw=UG($z@;BDipxa71&+uwK|?uo zS(ZiJ2Yl?uy2E#C1X(T?p&^`z2M-n!n%+u?uthD8=TKDU zbpQQ% zrmzSA>H~|?LktI> zgifF-d4ZZL08haeRdxIiYRV6M4vZ%AxR%zMZichJ?Z+(dzD{vfAl(bfNV|IGybqCf|0g-qe;aIqy9Xv}|G5qEJA z{kyP!VPb;B6)8ArSiso3F;Q#xYYsf7R(@OXZ*CAQQBdQi%?FJ_G9cD%ORuLN)If*R z3x2JTO3c7TosVRKD25)#rW^d*()PxHfo?eeK1kc>l>DnsBXkznxAyEo-no6I^t>m;z~EB=>1fQRCw zT!Sxux$wZ7*x+~22hSdV#hUrwT*K~dVmVU3C_~Rh&w=EZjR3Xy`^Dax5^5D)9fv9Q zS6;bwu^N%Kl;~Vnjld#1z21lN8^{()^!pbWD3nwCyRec`j)d1!fZ@WCKw$aq3OvTR zSp3K|a&Y|_ShGv^U$0y&cqEJhofG>MV5Isc)UIDFa-<;zItTU90$C3J z1?{46anM6Pu&?1=06IbT?RJrQS8l_Q%3U>2SORqBf$DSL5l)lEw7PpA^u+;$8X#!2 zaxB%rj)<@O`Y8GN%3wk20GHT3a0?(^Ghd5=8nl3-xQoh&vh)QG&ax*Zt%qWj=2s#N zFtv3`)bcJUj|D<-B0^LXFaU@a;FQQ|VDo;i1MFv86X?!!?UvtSD~J#bbRjiuWT0=3 z$SO3AEf*MR!!2iVfJg-!y5J28!Ta78nM4Tz3h<}RA$LP-(6q24lHs^8efxpPp#z4~9K_4F!o=vG67sV~ba2DXU!&_AY1Ek~461Bg}s0N4t zhyx@NbbhL5ze*q5y)B3S3#=tTpw?f>af^US2J!vX)h1B-3n*9|K1l_;pgq=K*DZ|# z7rwu$+KU1gMunhbqElVCR$LmjpC|;|iw#~BV37_Bcu$)3i%Gl&tnL55?f>+UK&T1m z2>7-dGyWPYO(l*DDEaz7dG7zj@y)Fm2gT*_;=hQvB|`-3We?83t>}+zPw~@3uhy;p z$19WPLzOo+zJAC>Our*r)bzYw%?#_oOc_wSbyHdr3-gxb3O2u#Bxaj6*0MSDMIlc; zCD~75{k2-kn{k}gSe|^x@D;mO4tf6Lgn6CPQLp*VQ(NBHA)a}fNm{^~a)=#fmxO!5 z?e=+eB)_28azuRTE%AmD2BceJ$;xLn5X!8Pp6bW?hY%2fT(E)s>j#Y*miiV&P)$0( zZ$(sE_eZ(yk3pQ;x%xQ2%c7SrSz7<~7Hl*GF=+N`>(4<6UVC^i7n*gj(7$|@`n&O?tNHj1BlE~bT{*u2CGfhf7uZK z;km*-sDyvOL;LWJ`0lf3UeA4u`tv4efEZBZ<}_pLas7BW;CO2Eye2}E2ooN9Qr0O( zX!X)>xELS(FU1pzBL$4g1|Gs0BB3?ejyG1%aS_+Z5sEYljFwFEMm&6Xqe(cph?Vy- zP(QjSadHs8v(jx4?~&==`fdu>hv8R^0r^mk@w*6S1BI6XB>OtGF0WB!WB+=E<47i{eCrX=!N)Aer6ftcjSM{L@qDv3=)w3kJ)@jNygs z*gTU_OgR7b@Mm-m&qv&%&!sr!6X*kot@|D*6kD@E3Pd^|1`lrBd4DgwYant>NL8L#pnw9;xd z`sN@Bq7?=Ru!17B(oAIJ%!hU~N5^ox%2 z1S#uP{uxTR6VYHTR4WQvm(BRR^MM4AD%b>>^-68HW_f?Cn6v;^1}Fu{f~bFUc;*4b zKxR%3w_8>T@7zGmMjiWY!51gl*~4!48+G_sg;>@>>3V{@Z`$*TK{t$V~#a?kxaZlXKL_Edr6^7N8Ps z1xH7Es8X3ecr`8T9fun@rw*h5+v%xrwMH?C26rk6faid35r6Ytjd`t-Kx*t@zJJcT zEPnccfzOheN5m~EN8)2BV1{iR3?_kT(@2}6eP|oe&3}q6@kWIxxhR!~n@V87u~HDUY#Dg-s0 z7W?h_k$RC&U)K^76Pt5)sx#D29jw=m$nIY(^L3{nC;0gOI50S7pp470r3WpL;=uet$z3l z5M6E4!4h_i4}ij9^;yYhgXRcgebQTt2#a6G(uG(h2Lb}kr zje|W#z_~KPxc+g`k>RT*R?V*#l$3du6-HGr{3!%o)D$Aw==%c8oD~-+{5h49_oqZT znvCt|qA7eJhv2`y2Zu-yh-!-hU;y`oH+2MyCJTzfFm5^XQS#fFHe{FY?QVD?!2gca zC4wz^&bE7=r4#1@;*9^tTEHgZ@mD~iwUz3SOLlJM}Y!W2-v8#KXU8BMH7 z;hKo;1vWZ~;n$O*Vm#p!$K*erYXsGD7(v@P-dl_2Zhx8z3@~04-{Q(zkf1n3jNqiW zzr!brdqK9*+QyGIQ?MpB6XW0STrA`ah1=Jhs*L+?UoQ*is97+MKm5hJ0d}`Q`5SYi z#h5Yt29otJc|F`&yo#RM3dccTw$1 zDGzq#Vct-mtFdxxmFu~;O)Iy<<-^mP-%&&N=#}^}=C^E)p5-qat2P6%h|ggDM30ua zx5h&NoF}>`G*3uk<4uM$bvMS>9sSxsQr3s#H4Zl7 zT{@?qvQIld3-J%iLbdrXK-td}2tb7a5k4k^1*E2DZ{H)blip<68$hp2x5TOi1pJmo zFliw_#*23|t0yWZ;Xb#`3dnZsZL06 zJw@^%t;C63VRV=JDrjS2^pdb8p*$_?aymRjaxuL3jJZaB6pxeGvNw?y8|>XJ>pkzV z^BeFS62%$!ys=8IJ-XNU?X%IZ!@%q00 z9@*QF5ogU-=5<4|!|xkRBURC~o2Y>#8@*NSA<{)$EfN3Mi^4~-cD%9xr(lcB_TdaZ zQTqwVB*!K$S0=dtwv8(-k*vtaJPEP@4`)g$#=yCtLdX{r>1 zKZOb5cLNRg#*H$26pQZjssg~S|MG-?UFJ&6?T(me&Q>c0u&J61mPL`~lHvdRhw$`3i@6P15x({1F+1{U+3#irPHd_&l6+Q-0Nl|wny<$X& z(`;)@&s{y!#%vub48OFA&r-eeX@E&mm}6+w=g~HniFA09<8+#Gsl6&Xd?`5x@F9nu zF0y=EQ{5~4E>Z3@3q^QY^+l2KWscNk?vnGrzj8gpc4GdhEsv;4F)fgkHu&Qi&6l+9 zWB)UK?WXGOHLw1y+}6m|u8&u^D0#Cc8Dh`n*Kw~$J~D!gd0?)diN-ti9+w=<@Xwe# z?k7OLhY1MVu*O%ouTw2M>fTdY{<>TPFr}|h40u{Gkd0@j&ffFY*OV7A;fYqFLQ7Rr znYPG4Si|yuOL3%#X-3PD^WhSNrLI8pUOV8y7C2ofBrns9YM54@d)VTZgnGA)}9k z9YLcVY~$V84~5-}C-s=sLedl7n75t#)+=)cD8o2ypE=O*hHN) z6tRoPt*wla!h0aAM@~dRh3wBXRU}7CiB94xLd94HRHe-(=iNfFfo4=P^YIiNNM|}6 zF4w^Nv1-ow=+U@W1DEm#5WKG1FDiRrGNJJ!dF;9>gCanwj;-620+}B}Lyy^8Dm?=CQX)_2A z^wBL1rnI+@#v=(MWMB=sf?=9U<|k4}yzdFWie|}T&i*bnCp#J?7gkQm=E_|sM|$?Lnhs+& zbswg^Z67?aLHo4=2|3S3A`M+UY-3=aU!u`^`_o+CR|mIA++|3V1$vRkw(-{}HZoCB zTH~{r_@U4#Sw%CUn6xn|@#-E`2Hh}fI|xmhtTVI|(~wmzh&m1D?WFAD`m9Ir1=_Vgd#p}KT6lM0E@ z`5AxxB&gGn0ktMs>X=PcjJLe5TR_=h25>YGtp>bB?U@9EutjCFeg@4CLnAHDNR!Sb zwP-7DjGP-^^?33M zLI&Il&~1G@Z{`x8l%_+MvMt!DbJLaTLE9T^t%O-tt-+_!a~&}i6jRJRIu#ymx1$Bz zOH%9y-M@3fSKO&fDCifY16RulGWK34In$qx0eq50z^Rwx;=2f5X*{ zkBz)JncO8*{SEG{!5YzN!>}2bJ|OO#g=Sj9xvlpox|iMhDDZxg30TpUjk)Q~aMZ-m z%73+-fscxA%!-D`YHV<$f@1K!zuo+`wS(d%VmHp4T{6Zyb6iV{KIB*k;H(K@jDPVU z-WL$Znk$qq?R%g^U}@-aEq3F*`PNFy$n390_~7{>4K&hPY89heTs3NjAp?<0``YZ| z9XzkfF*W_I>&<+b3QWN3ez@LFDm*9uEM)BgJ&ucM|&>RQIamJsWF^gypvu zXbtX7n6mfsJ)e2EcUT`s9Y}aGJt&W11(t2%b;F?o<8-As{;>k)Mjs8HmKhcR7h=&& z@#rNdQnBt(;8SJ);m(^Vp=!TC4BLk>&np1CI z96Qipn>U}BY86;lZ$EGN&=Lz8auOb{){uFlR3nFJe&2ogcJS%c3-=%Bm$ASD8m}}O zk9=Pt(rqj9Xug!>9sCToH%{i8FKo5*49ZAf$5ZcC0*MF`(w%yBo$A%ZHo|5qk>|89 z6qqvi69?d zIT?~E3-V_QJ_ft@<&QF%XV)lBlA9K`Nsc7aZ`j`c1GKJ(n%2(bfxnEa@9uIF9!Ro1 zY9}9xF!*QEyH(z% znq2En*wY%xYOd&KnZFJMhzNVInl4sv%6&wVM`0_EZC2~(K2-=cWP~4jbty75n^f#P zUdU^zP)WDcpu*?AVoVjcp?G|i%!3>8O3%3URi0y82-#~p3wG$e9poN?PEUg=8^`)G zquClC6`fk`J-6NO&te4nXB>}GM`FkHU+?BczZxooYHNs-7hAW1P|eR521eNYivyIb zz56kR8*91`j^!38prD|KJVMrbwZ5;|x9t)HPm@i1OCqXELtbE_EuQIKQHtd#9JGp@{=lOwcRy7MmG%cz6LL-^{*-+UWQW}TJ>*7H|~-cFzg zTrS}DxhCR$h4xApFHb3dlfKT1Z2nbLFzAG7#{<2BBG-qdbycZ2SLc+F3e}!+X|O{v z!%4oP1GDv$H(SR%rzZM2UZxF+Wi!nkwPj*d%`&w&u?I!Ru#~UwD=?7df^YbUyL~|< zov*uOkxsfhDYsW>gtA>C#_1@b#M;#T$*1YmJNxlH_`+7{%Tg_*8hMcp_N=xb(8sg zR!}xei+x5lyc)zR0X7U29bacGpp$ZiANBRNS}=F!a?0b13ip(ln&(PlCBS5scsNF0 zzC2TWLpgG1x`+Ds!VWOw>sE#YV5ZPWiS>M6!}4Z0gK`+j_~`@RG0){cKU}5H%bm^X zmlM*J-+t#c{22Y}=7uZ+)F9-R9%s-Sr`?Ar#EtPC5ZrH^TUv@pW*0K>_RcD<2ES_R zYW=FSypm&rSm|lPB+|rV$SJtb5Xmun z;uP4_XL|`0@LAY+HsYR;p75bCfHt5g%2YL+ z!8c*|kFac*S}zlZ@?`k8P9FMv$P54BMRJdZ2FshTtgktOx+8))yggprz|3{=_Of}o z-_Nuht|Jqj_kW%x9s6|uX?E$U(6Mf{uCR&Y&D6?S>Y)AOJ5cOs zOls4bZ&3B(QE|j4=Of5ccI<@#ABveB8F%J2>6dX`WK6~8%{yv7BKtY$DZ}+@{ zQt3^(y5l5%yxSZReb#4Tw6Z^J;o*i^rC9@`1J8HdMky}R2q9Zoxv>+9BW3nwsqDBU z94mcT+SyOKscJcGkSXJyby+okTsFSoISzk}BakbHrK_(&sg9=DQbdCulPNo=&k^4J z$A;yuchkC6S~Y5KGijG*djk<-u3X7;@h%|Q7&t)5X>t3RtQlAur=3xF&NczQ(CJZ0 zGjc_=vpQ6D`lOD_C^4ahaCmfgs)HgZDAjeD;1Ha^r4@aIuA(hcG}ve`DC<4A?Pyu2 z$*RF}77KxjyAFeKku%yaUm}MTyy@cd)<4;KjExljA{t_l{%}sb`G>YUgI6!I_y{=R zpjn}Wm2AOWJhCjJsA8(qY(z<|OT$0~@{JFgZ$S8nl!|?45ax&vtJ%*wmxsU3vBxU_99z`a{ zR~eQir+Ld|MR943FYXP-RP^QO$=*JzX;ymB@$nkkhx?%=+jA344+#l#?5g%Mh#;?5 z<1aMQVkW75RxE=2shY%t2EzZGac)a)gLYm2o9|~t8&mF(%wOoD$dSU1y!3gRXZdG^ zt8IhCa}8@|Y_%_^-p@}F0lB?V)ZD)ntxr`SfM5>cw;jgpm|8HWHKXx2;(m5n0CN^nJtgnZ@;|4ZWiW>)`D2drczRd6n?s+>cX zn&fj0&sLg55GsEU)0zCte5$l%$|)4qp7G7K~w?aAoyHl>*z(Ed%YSDIZ2KS^9A47~-ja9~1wOmM`!W-#lnR4twAHI10O+`z(>|kh z<_#VGEPp*%`S4wfDnmXqb4--(a__!SH%%cp*|+vqd$q;6KMn($2(rVO#yP^S;m==u zCPJAa4HmWq4(xQy_vFAaFR!s%cBwc!Xp1Zy|6&)^$Bp0&dpOf`6FKtYCb|)}Maw%1 zA*W^>jj-h*^Z2ND)LZM3AI96KEaagg5f;rbaPt4e1}~z;@B`GSrWxe@d7NMzRR}80 zEPA+Y$n<&b&rX`r5%QVL zS?a}m$+c%P;wJ}0c@Bp`=7VuY9kzkM?v zcrhXH70LsFYIA37pC>pdhJyoB>j@T~twcq~Ci<`Lg0z8nLCY|o;oWZ8nIZ8mL4NvJ zFUs00=L@Y3kiASW;qHYN0jN4Cq8pGJCQ0GwU0DIleqmjhKNyN_xmfE4

%F+}Lx~#?;h~Pm---!_v9Gb8jNYh8Ril06XoU z4rZOg*B$qhiO^#*zaez)&gQ;Z9iqj;B@WqH>?t3i*Qw1#7fblmLY~u9b3Sp(1@m*6 z)oGjSkXC#HX0hfvnp29q9T7zMr?15F%B#kYWG$f7YcrI`@R7Xb2MBBuVkntBMI0vm zaGEPZZ>wt;ms=kN2xY`f2Rx4Rb|E<-x*6&+t;j;s8Gt$@OzNS!c!pX&TK1;N1Hvkz z(Q>Lh+n;`hJzpLkW9}1;AV39x#|Ymx3{+wQ&d$>B5?H{1q99a4%F#B))<9@6(6xJ% z4j=rY!Mz$B$2~TRPa#5{9?%?ix0*LgOMe(t`7{+~OCW6#I!4m*EJypMnFziXSSmo=$>`!Px9h0ByCNczskds%ty z_}eC%9d@H7LIz*H6neRT>R`!fieT4hOto}Mpxu1ukv2F^RQfj|kp~kl+wD>0Z26s` zF5a=LA^Pv94m2=)bOVPBNmD@Ip=x4!qltg*rd%hCB#0_< zjK{34vqfXJ_|S`;gWdJWMZKABmI-yx&NWhn)MH<~)6CLpm{r@8Z-lXZciWt^5Ib~URJ&S^ftpX0bJAARlkS?RHTJKB?{Zm6$Z_LETj-o9(Z zdd>OwzBxLmgTz^|6CobZq2Knoymn~W%5u(uSFb=IM{eqedd73d(YSYdRF;o>ZUJj?ikswUghcst8 zg>i|4a}10Fq~FEZu=VorsM4_Xk17&z}1+NKJiWlW6+6_+Svod=kLxtP$_qv`yDy#_d} zwT&moIgi=Ot}W;*-i9_pypNQKVhbsXMj9dLIV|m2^7IhdCs4C^E$n@KvQ9hMY zpT1H7eIw*TGhf#69Z6lL2PKQpEMw+#MoNc}6yfqgtKIA5ykG5Mp5x&>=ACj-^_AJEUUy(mojI!#j4{@ zO-&U#4{%tHXJ=GN>=%ota$ z<+G*b6 z97k1K=f1lcPR662r~{U$VEKEhS~iN_h#H@Gpg3i44iYoaY<;jq!EEQNR{^nDvh%B- z-y2KmHfA1A2MfhB#CjQZPVw?0{*ZRu%goOw-(~}cKBBl-hk-xB?~k9^#su$si%LUeC=J(;Ff5g|LFUS|&iiGHPU9!5a0EcjpBzmGaQHlP>uh*vb)@tf-{|>1vD(`>-~usO+dwo|3FqkshFQNlOga_I#Vm- z&lhCM*yAq`JV=kXRh{x$h!agKU9d(WBj}tqXfol$EtY2YiNGjN4h1`*;HnZ0HI+1_ zXeq{U(UOzHt(M8M@j#{PtCmLdehEPRP_86Xb8OA<6sYdBbxDK+TGwG8RKC`_bNOd@ zjgfur;ad~X?kIl$yB>%u6?TfZGt^VVZpa3Pblz|a1KVhT*^?(A<&>=hZ6i(EVwA_p zw}K-0j7r6~HXd&MG#;A)a4L7NoXfl#ye`}?P2mg_hHdyom7PUjY&<>o8t>&IyPtJz zwGncKQn>B*d}H)wJ1 zk6oP^a?^YRO(xVGcx;ws{qEvDKVEp~u{(>DQmnMTJx*!%@-c~&Wp8_7Y+wwVOh9obc zuw#+ck;UxlDh^WZirW=&V0q?uh0@B}WW?w)+z+tuHaaivPLRL`4Y7@9<4gt>#S+($Tt}gP zX(GNm-LkfsCUN&YmNL@mewwWHLOV@I=OcI|9L=BsX;rFK+sMbXXdCP5)se{rTm}L` zt{C6FL6etXv$XT<6tfu`g@mrcTIAv98~SF2=A1=$f`Q+-4cuww~cwM zp8nu2=#`4#{Z{n8<#y~wk0GOKJa53genriqU#}8-1viVrgE5PV59iqR+Mz$6AFJoX zB|+)Xi2G1++YR4*{N%7_AVPkC-+s-;SdB)WQ>?rz^q^i;<9RItXtWgJZGg-BwL@m-_fI)BykS3apfj z&r0t0_G$2`n5{xZXFMdP=VE6)R^jUQ{TRFGP9>0?@#mINAryqYQ!4T<9+YOB)gb3j$N0+zl4(%7O;b%j5XG*iRo-i2 zo_N^|=fH{u)|n%n5?i%zZ?wVia5GRQ^zY z?r{wTapi&-YT?Uez{-^(6L#h*=MC6 zy=B~S0zIY5x%%bz4xz2NTgt&omw_u9Vum(RM>=n5kT4(ZgcH3bkV5_B;Sj3 zG<&X~nRbS##AveHDR@UlWTtLy3K(wrwA~?vZ4zQjcs?$EeG01N(rpgQB$gd9{Qlb1 zEB{o8u<26aU_ev6_Sg2JBBm!tfi=LL2!6GTlc7ZnKW1ThTpNG=sQZ|gp;zKMx;qRL ztvr0nRi_4ep1QL*!l`}_aLI4|dKgEWuzfN0|MjB|!i?ABg!UIYWbzOQK)+t47^|5dAPs8kxxN6&KxijOsB#-c=>;5}(Xy{1T5I2^5 zkyV3%-Ly1lpM`*Ap>&nmX-hQiJ6;Plqxj{4fpg9etpC|}411E8(gKruNFxrubb~Bw z-Jb2!rHtHTFJ(UiKBU0K>G?mO`2cK51+@ngiKKsH(aR&tMcv>)iKe8>Gl@3*W&|@X zft(9E%#SecGZFH;I*b`-5&*IMyv^lRk&?RTOt{!|6=;CoN~IGA*?kknjJ**D{;VlV zL4GlUG2x+O5*h&DfE45W>%W&D0Du?Ggia3;($NT=5f2UK&jBzPN#V{9z^AcbGs4kA z*4Y+ukdGdtUPVZe0KNO}7NNWUTwX&24nFQtJFk&b2Ix#U@Fb9@h*+5UjFcpRvEWSL zfUJdxqUVEfL>Ln;O*b%D1s5lk_o$0muraaGw&Li;?jmnez?g7C7Qk513kxwK9ks!W zD04aN42uU34*vRo@H;~;h+=U&gfc!R+!K9ZToMolsW?(n z75x1a7zgp-x`cKxl8YKl`8;Zl56PQ1E-t?c(*w3y=ZkdEMQ6c7mjI^L+%*Az8;o=u z2c|U$F2>qB?gHqbP$t}ia$wiKXIHqrft@nqA?j`e!_1$6a;Z?J%7oJeOl@mhAY|&| zYVcs_aK!1E^X{eD`vM~mNvK6!qrNn3ntX6M?#g~bmMpMTM%)c&u&7Q>uA3ZOTn{1G zL-_MK!K-M9pTzIqzYhVS3Bw$-5Xoh*|2Mr*0IzUaq_fpcqYgW;o!mir!z#>NgGvU_ z0Q_Nq>%aUaYE_@Hhk$m^^3~FjljD0Z@16EKtb-e9$YA($+}Cg4wu0D-a695NSh2tr zK^H&KF~goDzS#T&I;W@TsIby6&f)Ka>p-89>FLq#rqFAj%l@WIUsTtH#e0wry7zp2 zZz04^9uFwv*}!tCfD2HZ1j+3r9Y2eI^D(H-8d7c(g6i%I*LNa2xi#D7G}lggPI{k~ z_CI>@^RUzb&I{xx_A97`g@?o0Fhs$Jt}mkhsPq6oZ)}-+_j?EGb6!NkFNt~ zvl(#uVP607?H=YI8iJcQpFvmk%bn=)y^8Qq_5*ji3EGFiX^|c|bsry-P;(Nr#P4k@ zCdEfU;deshmve<(yse;Q|_Ce3fbbiUmKE>v5F{2sxBA{ z^d-?=#i!VqW_`MVO{Wj9h4)UNlc`=)xQLQAs1YDEX#;B8r{;Bm#OTzx7HGA;zF+PV ze1(a)uMwZZKD~w0;4Z*8PAMILEyAn3b4k%b6ct(j?gs5t6Kb7r#y0)Bm@!NmwD$=Y zlLg>jm?uwAKEikVPIy5W3xL&b@?2~O*Fd)&YTBCYsUD)%Bop$R89E2!4slygD&om1ui+c_Kyio{@?JG2;sV5 zk+LA(zsHtO5cg4!i{D1Y6vWag4hUdV%^<9#2RKJicn%`=Ezzg?cV`F8mIf~b9n}9% z>8kcNi5ObP_^cHxkJpf_+PQR7a)Nx}p&>*NT;bLo@#iTh)Ygt~g{nfeRPLoq`|HtA z&IZIz1QOU>m_L5}NHJaJ4=uaJs?|8yG(vKl-S8fg(>@L_TK%E?+mPc+5KJH?(zV}?pC=Srg}E~XX<8^?CeZkQfT|M_h!Ge}DKvI4efqGJXqia2Y zL=lvgBp>{p0~0ofKR*;W7TxkI4U1?cB^{zbV9_>lflDBkp&!1^ss(eE^9ux^?n`R28Q)m*3vc_M} z>Sx1)Wf-bxgDwi=s9i2Bw64T@z~pdi_Fo7m5x4eE(_8GikCz7WI3ZxZp(mIUjLGhS zUs5m;pap%nO|abOT{h_+BHIIcJ(Fjkq43Fy17z~UT%x&CU$@PW5n$f|jsrHA6EyP1 z>X6fxFLQ!DRUtBLxWuXzKy*x_JmSz2zmXRH-TeL89Y8%8?49qu0jR*KCB^3B_-zh- zrUc)k3}~h!RvQr1x-JeCrKc#jHPtPsh@$rG69ae~V4*bD4s07Np8vYAdb$ZI#C>>^ z^05W?ccRlx9EGO!mv^32`S~Sa?<@^Hd>ed+d7FeS#B@%vP{7ubo1aPE&FSH{Cq$U}VVV)*7| z(9}RiWCgxs2zXFA3>eZ?6QV%cr-E`a3P}9r_&4J#P}5NkmlYky2}7>B{5GRBfaoOZ z!!1_1A#T%^<=nl#>mZX1059^S1O3A$Jk6kYK5&fFsD=$yC;_GaHjt#D3-?#adGh7u z<6Q6b(MK8Tfv1$5Qq%)|S=y#!N4tgXcWj2MbUqL>-*X?+6jJ%F21>2S7LBy#wfy@+ zu1gUg6$Yjs23kVjUt&?F&w!u@wF2`nfhr!Y?MP`P##Q{m33p)}LPEml7#^U-ibFPt zA{3ZXE70*Z0k~+;ZL8V_plU1IBlfjpS;Nz)83BCjJFZ zD*F!aQo1xsW4h=1Wk(wD;xNpeZ7D#_U<&k9_Z9%}rna!#iiIz7Ab%nYxG@#C^>KDE zKv4h>qvLxpbv0VlqYwq$;-7YfskGe1rg6}qvFWsT8uKPu$~EB9eEuN4Gr#Ow*?iO_ z|6PdT&exI|HtqhgyHx<8AP+WZHNsl-mc-w`V#k_V6?Ylg|UAFgOh+b2MqsiOV6j}`~^ zhZbUA{KZ;SVS@Y_1F+YU)EW@@-$NC_I<}@qT+?Tx$G%{l>1VDb7vc#oN*wSB#Xq|)+6?>hIdMD@q<%N$J55Z1)S9rk5y~Jv(-hDz4Kfp1Ml*I^W7zugpWe1)-eG#!b z-kG3(-$?En#m?LIco6}GT2xsGbPqMZb~H|^T3hmu>Rvq>Br5EcE=3=Mb_PsARJ|?- z+@=9#=RbJm$v3EUl(L#Lt%&R`h=PI*l&eeWSCZW`5G_EqxhNU}+C#RaT+d&#U)}3f zm5`tBj7whc1U)V9li`ah`-*8Nhb99NmWB3H_sW;VX%#T&$>-PVsg~TmrucMWt4eL zDPQGoc!6vY5j%9?6S~5iw@5cA3qWo5HR8<$UNhCXeqQrq`zyG*2BF$*5sz4(iGQQw zWgTOP6^^NV@X+-4z{FtluF4IUK+&Mf1S>Xxt^t|Rp6{4*OGqlfK^_U{QHA>J`3NjP zRT8AoZVW}L11i%53y=G)hz12vHU;K2fo%a1gp3=m>bIF4MVI!RoEAPy(690ASmmP- z^;MDS(lxig6)+ps&p`0iboXgXH2td)<3VuHk>^yadcjqm_t1+};#rb6-;uTDn6T8= zd>hF+LJaVzxsA)-uz6PVq}L;`%8U^DA3#{KI!%r*wb=EbVYEa(=+uCZx}&x+<- zIl?igHZu9BL_`W~EB^@>*srI3hfBxuN4a<#?kzORU=ltA$Hkv&d#{`=TG*}!b*D-4 zbmo`_%(>mO=mP}+2%Di)37yP_XR<`nZB{4iHhcR|Mc-fqf9E`lPSR`dt!}w_WRhsV zJbR9P-s0lB8(ykA_3_SL_JhZ6>KR*r9=s_nVZ?dfZQQ2KW7l(ubg0y)()%2ePylR| zNjC1HLZ+>8mW%lw&gQc6U&bokIYm5*EjFLWPAwGJ8Ki!Nn3rcqL2BDFp@z#MQS{fQ z@4WKX*Oty-)#jX!+JH7;>*>C02=DKntRpi7raiFJ2qd!sO{Tb~LI@LHNyoyp<0cc4TQ~e_GR_KvB-( zx_=acZEadV2$B>2il% zwoT*t4K`*!e;gV)Boa%fJxK53QEdx{7%;+|GjivTb|Ztu4->r23u()(b=Pd>I}Ox( z*r<+c*K0q9E$Y0=ii!36%ILWhQO$7R+dk;nbGq3y>e{e;X-hN&s))n1rPpQ~%r=GB zfsim?|0MPNnuzNX9XK+FoShyk0!~U(fHaQabG!0~3x-1=mq1?>;X4V5dx=<|9ryGY z#gHyUFyC4!jkZa;ip(o6lQ4uvuAl?7=-DtI{Vh|MvBCm$gdQ^-eOWJKS=J}-{%j@q zAXCQYWWQ?#TASB%w7dE}2O@qI%}Xg~P?$Ews`7qXXdsD4imOV{fB)W)thDxRSRyyi z(v6xuD|MBW=X)yOLL4+Ay8Uc(9XbnjNt-*Ze0Ze^`>fk%y=ofYqXv@j8XRE2Q$6TT z?lh3{I9X!ll*Kvg{r!wWs8db{CtrDChz$>nxPz zn{%(i&2lXldrbFqmP4W*@q6(=Nyg_r-tm2D+YhS~R!Hd&WQ_)%CY~{1e|^%OboARa z>rr(@;Mo%1;XgQ|flHiGoA?-zcbPU_`+LZ&y9z^fE>s6n2=zp*1==G)pY(1~v>z($ zL~*RFPpyEKZ7NLe*z6ehoi%0@DmKKZNugYpDk|}_kSN7nrv|$BgM6+PCwotBkQ$YJ z$)*z453(Pd+q}bn&(CiimBFaaFxnGz-m?)|13dsE5$&BMH;IWsX?gq!dRkWNbL$EK zd3kkIuzEXhRTz5qyX<^>53kkJb@>xbOgvYRdti>)$0aI8_u(>I)Pjwo0TT1TwyR`7=A^>Q!zojn%8cnCQ!#=^H1oz*Q+=I-t8C{u{7o%miu<2 zg2z}Z&Rt?8)BA4v$6wV`KNRztl7lo89WVhe{Ts%R#KpxDBup`kS)#qAne9I7=!cuL z1RjZoq%ARA)lFH#{{#NTjaqo|;v2*N;E0~6na6&Y=@R@I@%E#&L)n#`mC=$m{Ni4W z8{a4$zC3u7^85|1+p&U1Qhm84>3v%=iXzb3=d*IsMNt$2t!zcInn^<{8J4ZiLIU=4 z|BJo142!CJ--Zzd6jTfZX$z1RDQQduq&r9HMkI%rEqW``Dll{?B_Q360)wipJZtd&{o~8~>HY8=$NPRX820SF_O-5cUT3I@+zg-bHR;&#vGW|$XzjBiX@I7= zN8LB#x9)ZP@v^YE`F8^W!!Lkd4PH9y!Z7;;YoE?{wWIHNFUUO*u` z`ROLDYvp)plbM|py|(xpw%Y^Nn%^G_E1K8Q?DPw;Kxd*=CVd6_3_U+)U0<=B8JcW` zZ!v*a#;KM}qQ<$_rAV%k;_~U@mw!S9j{uiE2Pj%yW5xWcRC2#Z@I8K}^u&|@*MZuk z#9UGJ;q-o$6`S|mzzMO$)Ik^a{fTM;Es53hG{q+Lfx4f0_u(b8x<4LJaPT>(&01)L z_?amxL($#+rIWTxP3&?mH}=02%F~0mC(7k$%#+3K$2cc5rTF}`jcugJ{FWt>gX-kWn@Xkn z%ilE0UjLIUDM%HTSh_c_cBg!0YNPnB-Jm4o!)x{?(7QC7&(S{mRka+LNKOsX*p&Ub zf6_E6FI?^gMgnn%qq|ye!|OZO`O)H*)l~m`kAt7^JF^{50V!Uaoc&Oc`D$~aN%71A zOY4`$fX9H@BxZvV^FxJp=Nc;U)^Yrn=}bNV6va=O+)ng%aJvl|=j}Qc%l4SYKmn-n zU#|2efvK3$-b!v~L*XsPhr%Y^cR;q}E?iYJKIIw{`NU~spv?e0ubax8&phxZY2tpF zY34M8IX5xqS?T$&cq~?6)|Av7Mg{EO`#pCqpVTo}T^drLj=A&#$So^G$;(&clZ=E- zy=#HSRM6C+_>WD=c3=e8Gbp7ybOhU#*{gUy@lK`pPIfMTepb}w96$WPZ3DC3$IJip zw`8#S?K+^%5)8HE*3hmunZq;c!*a)y2p-I2bX7i{4%Jm-t1;5OQ@8X~66yJjZ|4jh za40-`Wbfrwu@FE>5*)g_pU(d~!N0(D;&8m!eOWg?RN&sdd#X@N#b_2F3wreJIvUOO z#{F}s>NZr~KD3wMj=w8-17Q9w8CUYKE=QgFU_XE3;?q2G z&q)&%!%~MA7>Bw$Teq+08YbF+xnghMi; zs~1kAcxt)ASUmkgsqM?lf47wrr+j$}EZgZv|0H@&Eb6o{9e^^*XkbqsMU0izdX=t> z(ScY(UO${lm^ra0d*w9II=4fZlvQp6XGq)CJYpif4uo#lQd*N5#u$z0l7^IfoARKSok7e7sBH`W3YKt@831_oUTvWfDHtXWj9!rAn3uZET_8adtq6>#IK`6HMRX zTEntNcxBnH1U9j+21rb2GCL!gi1QEf(P*pFK@;E@(hBevi)g(>a?cyEkeRoi*b%pY zvsURG>#=6Uurw0T;bQTHA)jPwq}*Z-wzmZT2j^gd#%7+)u`Xef`fhqTXmF<3$t9Gc zH^cq!DxHE3)Jf9~-#%Z7SvbvnyQS8Ia`Ai!`&RKe@>fGdFu6-#tv!c55>}y4F=8a6 zdqM7&v`l<+xSolD`%T%ezQ2O^cF_t4NZYPNx_{W%)fNAYFN3<@^@V)aa-exZeVdj9 zV2X>k+P)n<*XHXkuzyUVIsNQ}Nn&n&{R2oveih(=w@7|x?@2}%GGg|5zMsWgAlR#0 z6%WO!Osl;+5s0VBvaF@W<5xFcwb56wym-^CmHydn5x2!_S>Jc$=e|#|-~1tG-s5qe zvAfCAz5Od0DiMZ~{oMRAM)2q|Iq!M^Y5M;|Bi%dqB31+*v@o6fiQVrOV9>pXM!SOO zxy{NKseKc-fR)WZV&@X@lbOkZUBTOaW#J27^GHgcRX3yU`IQ63FK;MrRv!#?oUG(w zV6S`|PZf8@XF5&M!+uDC{gX98dd5o4^goVmFq+8Q8b3WM{RkfURfEs`z!VB>O3qG) zz8{g-uH{Qh;GP7I@Iv!GeJR`btpunps*w+c^j*>VGMBA*?TdlmbZ>9$Kj)*8uma77 zBEjve*tcY$ZGTQFdBTQ!@nfv8b0jg_a84lnhn#n(Kk*xtdyR=oOGCzCae~iEqxiK(X6iP^ z7rq(gMA)oyCf~Rr&|Ge``uSz4dceA7VU&|%Q8=A0rQDV`Z>5=}en@5&(9{s#JK zF#@$EZng}bG8a5`NkN|B);Zr59XK|St;h}i z3h%nZQ_dv-bS8;IJ@QxiTLw}Pe&vMs|D`iAjvn~UC&xsV=C4rg8PHlZ*X{_b`j+$P z<;xI6ZK51tDZHE=9?FHSm08q4Nw^QORIdikv)p@5p6nEPsXA4YL$7*xNWjF5t%d(Q ziJ|0Av|f{K_|DTsNd}!JSGsaRr$!;K?kTBVdUGtt;B!HZ2phWQOXio9LpbcP zJK<)bS44O7J_H5bR{8PZ6S3n52g5L`h|g!QZcBPd#z!q49xywRxYa2RojTpGel657 z@l_i)es~ZB>*zP;JR&jFKixHUE^MYR9BQN;!bz&$Qs=yLm&QWP-<_BD3XbAOnA z+Hzm8TA&e}RY7MsPuht>w()g+H}7g?&qo(iF>ZYw^O-z!+2Svsk5*kC@C1?_!*Yq| zM3_Z!HbcnXB=Oqn5#HYl&Xu7(oRxO}8%Q{-sCj62U|Rh+BeRaUw4A@0-riQN&h%RA z*e1JS>@={6zb5DRQY=SGrXWiZ4|wa-gGSDwk+0zKj#e-v^o4WC?L5i6u^;k}T*NGj zD>Mb_$*{$+@Q5`BG-*}b^ORahS)mKNW8+()6-FJz6T)505&vGW@H~BTb zg(`;x%x7hR9QEt`jAb+DM==D!nuY17=$LliMV}d2!V0_3YN=Y<%BGT`szX$iUYF;& zR^*WqBLdPydyJxsiD`Qnj{}QOkLd#uqtDpe_g(3)5?9LmPQrUjY1)5%f}xZJ56jnc z8Alz9?IWW=MpTqz*S2u%Syo9utV0GXg5+EdzQw#!3UC(c0XV%E;F3^h@ ze?8yP#=^E9l{P65f?sASYZVYxml^We5qA&F;hsNS2e~ ztZDk~buBfyo2%7C|AUyzR7n@IR!R+Y4J`Mc>&4yo=$TSBGe$nC{thhAMCYTMH)BhGP%W$+C#sBMMZh!#i?LTp|{-CIr>2Uwo&CRo+-1gn31Z;e#2LeKE z00ix!bYf?=-1aFa>9+sqZ`N;aaSSQ=iSig)a1(fWEFopTaSsA3{K*$L+YCK>N%*vh>+wC9YTHFX%YipR|Sz8Uu6F~f?wQ3&3Xv-(U7U9NzD<8 zSvWEIO=6hDF7D}%Ct1%D?~1ZF0@FCN%AqaJzs{uUe*RC;pG`6oJq!^)^P$7#*rYk_ zJsyY@r!@A7AA{zgd2}=<2pNp`u_%z1NUv-Ar|$X-YRRv>$BI^;Y%~dRHGODF4zWcS zceN?y@M&S}6j<4$XyJGEiOU)Kh&7q724HZMXvThmyp-?xnF2#f{*3l0iuLcsyM{eS znAefnOUabpVjy?J>sEa0&RPIlScDqHa+SN*%`vK^MBn>rY+Ej|iXYPPSeZ=r=?X#H zEmkzrN{Q6r%q*mFYfuZG!T2hJiS)fHk7XpR*a2yny>_OBmD%=*v14>@c^liWT~n?k zAB2suUuUVy%4B|Ul%6R!ZQMTavN!wrPvAy3bAEV0fb=D(Zd1@@gwc9l#|v5tZ24+Z zy@-BmSFM_NoJ4s}>zXAIZIc?hNtRS{c78tI*>vSS2;xM;cazhLIC#}07t`#LF<>rq z`oe7ie~lSV)S*F2_c;0zYz-1CGmLUBdp@&JJfexe1Y`c*FA*n_H?DYjAp4)Ur!U0V z`!~}Y@tto+J*Bja_2c1%7Ax*EB(QTOzA^*|&}iYzYm?2_(HzBdbrYRP+1v5@10aLy zs&7wAMvf1aZBmC02}iCm=?+3yCMFP(W!C7Bs#$CdD3aAY@b| zY}t7<)kvGVHfYq$-c9gxs6x}@WyDsC4X}j-Cl{1$Cela7nUu*5-nIdTr}w46LW0eJ zh?!tgRzP0WQnsDih^lhu8VCo$cY^d@i&p$nvD9bzbn+Ql7Np>sD0Y14E8m?$L%eF8=;H0xMp+0H%$L|L4Blz3tF`SG|D*Rn!JkXpr^@FQBm6$W~biLh6#5|3n$lt@HI~b@0iqMoA1Vp zxYd?cm+s=V7Jmkr7;8f1dKm+$vJMs{PGb+nLb#|_uDm^u<`Xk;=l&rFox>!*Lq>jU zKoGF3%ARYcmdgZ(D%-J*d?T}3cOQ&$PUhJ*XA9Z^@Wl-6{Hh%ZE%i=y+}^pBR_Q~A zB@Y99HMP4%frJSY94L0r+sm((Kc6I-(TD&j zYZYWI=}Xg0fb2jpLWc#cvP&pBPZ* z+q!$nmETa$BnN}Bu<{9n6#I7rMCF{>7rsMx6X51sANYrzHas%OJBp7+J&TF}092ld zR;%&c=yNgYCmy|%&pK0sn-0d`Rp!OSyQW(=I2Mp4)K~qy#bp z_%i`=i3j&coLyaU`D-RoZWZv*#@vTYKE3&{^fj$}Mnu>?k&j>sob;Eck*oJpOwXjv z?Z=7QBPmkz)$^Cq@19ee+6k`22fB)@%EMO?ae2cqcpY%7r_V4!3_wqOrqkt%D0C}5o_qsFUaG{eR1g$Wg( z4C073HbeEA4&-_nmdRKO?9WE1rMlLcRo4=9&b?bCG(paZ<0cCGZi zscgk^lGlD(U$*f`PREO$0ljwNL$|fbp^CeHUyjHslW zXQV&A^${sHYSVZQqZ|s2me{i9DR+h&fzjKSHS=@f#hfj42wXj^aeLb&Nzppca zi$rtr_k1Krv>}I{3Fq#it&{HoF@kxZg8|h$QscvfYt03Pigk4Uy8xdV3u-%S){?tA-ACwy%)9w?bU;_07auoQdlYHlp|Dcr4TJ z5=F4f>}$fylF#X_8e4w+{fvund@ugKv?s{7^sia6ut$hK&}&SU|nk#J+9btLw>B>Cjfbyz+nhq|;@}5Ajw10>_Y;dQF<%%`{ts zuE+ty>+;VhPHzvtAb@;ae?Dd#jEY!W@uAylv7(4rp0sm=NmPS0{RJ|SaDS7(S;ZHw z-Kjryir66tB30yHHym8nFUFX;^sd&LZ;4i+F0B}K)(2I9Af;2#e{R;PdChD5YT4ii zohhnzx{-bDZ?IK+Ys{S^Wr^kDuI}J5SAt0D#0{nAa~Nj?*QmPMZkJPutz*RL5nlBw^)KDE~ z!Ms;F&N-m^|H^lR=uV4p50`ir_rj&K^okd$si}1=vR5tzQ$*bqJd= zaDsI#eNo?cqdC>G9l13-BA}E~M^j?cbAx!KIk}vLI3+qCC7-F9_!UUrww5;Ylv7M; zz#-u$-da8t__Djp=!7-YTzcAF)a!XY-HU=rrCn)57uHEyM>MA+%U)}mE~)uMl- zoVW!F09YV3Cv}n|evI5YQvzyOln2pXhP1YBo%uuxec3#(?H8dje(Ovxc=NPJ4)b@S z|9m~caasVZ<6lzhJEYG&qhtiulkHypV8s1Nj?<(U=*F7-K=hBRCvH*Sb_7f2|Mg!9 zDH)|G+KR)L&s_MXe4JBKV%xX0iClgBpArS`qc6SwbAO5(wRFclJe$7=A_C=d{D;4- z?I|UN6mZ7w0eg3^?aPx6S!5}c!&z~UQtGH{!01-UuK(MT$v=e(XJ^j`{ZdU;&GNr(^Kmh!rHB)EW?TMVtSa+8mPbb~MMEt9 zp=8*SokSR!f90j8Zxu)c3}cfr*jm@+luPh|9$Qv zq=ct)IdY}%j~{dsC=yZn0rmo<2hDMslsi?huVo*7{W5r9O3%Q<40NxUzZCJO_a^oK z4L=I~*9H6IIo5%RItow{r!$igaWI{iF!C*(=LfhAA(!bUydjl17uXYk0w@xq1VDm2 zLg$CynGQXF=Q=zmn9ARQElCV{iRdr>Fy2lLx}r zWKMyAny(EYA#@tB!1$Xp?1lY(f8Pc&CQ1#^b%4Vso4-1UfD;C+ljZ5Gg1AfH9{cyC zDqx_-!D$YYAbE{5HQ+X zC;$Ilh0Oo|{v8tIkL>fY^o))uf!>88i_;KTKpO1Si_g`1qmX9ND9$ z2qF09tQQDXoS9LR4P;XmH0iecCi(Z$p#Oa1lq1liWy|>q!R+n=uCF<6J$%cDxbfzG zk9CB~SNG+?sKGgadSWnqzn_w4DSg4-`mep>xBRIm(3YQw^T<6zk@5q_lZ%?2*VK8* z&%JmC9uF)C8hiQBt&>wC@#TR_>GWN31~~ZZnc>Tb%jPI3BzEPlE%$e>B;UKxN@dHc z%Tg;>GdYb2wlFr)V@!6!hj^&(gtjzW1m3;E8^^JV#}Cv0fqx*(_hRR0c{s{oy$0NE ze@!~DZwJ+y-j4?+RLs%F9`FRj689CBKaT(7J}PNUwGm9iMw7h-#bBxSkVCyww?354 zk?L|1S}+be{N8zL{z-~{3*8edv_d+9VhICvPrF6U>(x0mCTfQ51z`oCt!1WyVzD~{}jZuO#@PTsFBm5 z9`^2YjQ$J!9A@=R7wDi!k8jEN8b9p@zywi^XwAgN_veDanh+Q%b7bbtt1#PMo0J!rgH)54XwR}D>qpA%*baU6KCBEaGxG8ce5qjm zwhN9!rLTqFRdR*^MH>nZ9hkEn^rgFEDh_&o6n5Ng@2GeQd=I|*>^T*xOy@28ov>Ww(j^&>VF6^9X>PTEX!t6&2z>B2 zIndWFslhsi;=UJcw&73y08fasOJZ-&WoBmxE`JZ^)6{u<9FyOn&`jwDdia@e^utu3 zYm4@oc7`Cr=mO9+CitvY7LGbq;}Zn+TH{Zhj^tYJkH2X)_7A)Di0J+(`!xH*i4K?y zy>mPjx#MWHwVU0LS;ox4gV*x5r|Gt09>A3yJHt(t8U5<;^P>lY(dX;DGNzJ$?u*#= z-V&&pIv9pG+gur+my&-%a#SAWMiIbOwwAyD7DZa6D1XR^7J{!9eM&! zwvF|V3e&OH$)TTa)_3fxgr8SC`Ps<1)RIpq+|W4V|l1$w22sLlUNj9iE?<4WAz-n*lm%#1z-UMW9V?lrB6ltF<`Lf zxYJUBK=2XrJz2v2bTW2?kbpqlO!HM=OmJb>tKb$7G<4~O(asV*2zJTcmX(*QyWBEfYar|}|heu?IHfHV{?@#JWK*z?#Oza45XVn4#?F=5+sP*LJL zxa?e$6n-(yC9n%UIlDIjL3Q5;9m^*_u?u^24C65Tw2blj%H1dD{a+uoln- zK@s7s&*FErj>hdtQ0Ql6KA{<=fpHMZ%|5+GtdNzH=JzZed)2P%y)>OD+05})u#Fv1 z6nav}%G zHt`6YsP$3s&ij0qgXHb90ia?Opyx0$n7C=kmPMhe#KvAWE=~UWbk20Dv3fPDBotPA zpp-WB+m(1BQGEO!?8f&kPUgomeC?5>LjC>*I8uGtw%{+h3Gox6D05b8*N(2bZA=aO z7R!nv?!-_c!laJGH@d3Vy0nXZR@=Wi7jNdAL@+9_yIZ8i+FPc(M4;fiU$zOoW!P3eeyhQoDV}`2jDshc#UAb;|R=~Oq zo>9Z8Kq18Wc*acGUEF2-u7(2J#ghm&`GmsagwXgSxa+|xEymJ-GPAR6FGvo?Sbxxr zaOvo&PjXBaKd$2q38!m-G6uds6SAgpRpV93JO!VdY8QnB!SS%hLL zQ`^_Gazwlu+bxmh4FnfB?0jix7>B%Df=otRYPO0 zcGxU5uW;PEy=k9U;9_Xb#ed}bnn_is=S=^6%+C)OZ%$WSrUd9{okT>V-=5q@V%@U9 z$?4h4RP(|O){@r<94e2hZZr4UL{La(lBLj1xgJq4%+rST7ILvb4i1%gdPo?>-qr;| zY6PvkopS-Ad)8RdU!Y!kJ%!YbwW)>^340G+c0`9zXzRpS!9G!Q1yQl1c$t50w?8Ur zf1Q}^@}x=9KHubzi>okcIU1aNo!9;*`ZIpk;eoCJC;*vTonfp}sCSUG++Z80?m$|H zVX{H~24Sl!T;#+GkUOh(aKQ%BV0Pwwwu9by;9Wu5tiL76Q~y-CjArv*__7d5Ap!G1 zTf*17zgy>*Pk0v&nff#XIRqoH(t2eK^1MEwsx>dD8}6E3|9DEQ7CVhw&-1xyNgfyD zSD*jwAd(`{Z*%=7KF3zfzsQGJ2e(QIGkAZEge*1-K(P1lh>roJWrkn^&UX%dQ+sO$h+0ku zD}qpx%V8dxDbH36#xzyE=1;|Qj!fykQWn^Ool$u36CX~}N{E2D2T-nU8d%l(#v}R#9S4h)ivTr>pO<#I|Jq*k-hU|RNYnlWBNpdr|&%n{ezwC zoULCwE~ZoljU&s0k1`=wD!oZYX z8pmaM2*2hd&<`S1l_=8PI^_7S^QpLE86w`@k-_aB~{=QuU6mut4lCs1yN3Cu;jtB_w(^Ig61Z_wuA$GGme4cn{H1a!ovgeU-9^y7U+_rIl&>Yz|m(fgiaqs z%l|GoWoQ2E4=si$M0;f5S30n1nMc2J$93wtVK(7+V|a+?q>ms>Z29+FS{?==inEEY zmKI&s?^8V?I+g`;AoYDSo_|p;<|xsWSjM_e4?^Qee)Kp;+XV048@YOTW2ks@vOv8E z_1ky7c_OR8z2u1Mk>StjP2QsfYxX>>L#X5UGKV0%g@-=tRX`}E^%^k5(w?66Lb{TK&7Ng^K+sDE<1~hj}NXH1! z%ceE-8K4@#S>OgOo9gBMZ0aNKN0QsWA8t9wTSJNNx@n-L^euW>zH*6ybV%TC{n@_S7fHJQtOh$I$uwx052U#3Y@Lb&e`aopQyd(1Xq0nAZEc)cd{ zC*Tt|!M^5qNk2ta=ZVQuK*N^+w$IQXr4vG!qgC2D0dpM<6?R-bF?eXw>n44dRo@|W zH0EjzE=bC{@toMNld#@3+pNN(Sg*xB$9<99g8$gA z^IOtY?dR)t(H&@cta_uV{PIPIenEbO70Zf~M1rU6L;l*0>f-JsejHcrB!7IM z=g*Cn^iJybD`@$tbOxA+(Yl)C^-f4kdi&$z+X(KbOA*-ifBqiY=e4I2`L6C(E$0QF zN1rTg7p(VHRqK{ZZXeVEBg8)IeZHibU}l;8YQ^7vfNqtQL!AmXFg3E!6VlSg1Cc}o;#r+IySbuw~pfZ zUE(-T9v*pOn!f*#J7ZR=qZc|8F2yNc$MEn9xP1Wf;7LdMj%OjfMBE4F1uAbF_y@bIomaXIhilB?7~@iAUcgDs>%06}9K0 zQ6T~qFV#&;OZrE^Z?c6H+QQuSvoaq=J8%*KIy~K0f8eMZcUPfhumm>m!Dk!Bv-te) z@%cHYzm}>52l4O?jli!rh0$@gFn5Haxgl?U&8xa5zqr|q3%Au$6u0IJx62OA+H>+k z#*+|ygAzMwHs#aQbF7kmKA&A2_1`KklAUzI!3HnzFKe`sZE;NYbn+WQN|v zt%q?L=(~wn*l;gd-y!WY2pUBYjgE4#wjyK5Dv*_uu1k23 z)wM%tj&hWq&8TOW(m;L{RP|33sff?Ck=kwvd*HyS9wi?V^P#;-v|fyd;krBLw+{RriInN6qY?IvY)$DqmKqt#Kf7OJ&Co%0fR=<{xz z#HgX0-l(xLT?%JCTCT7>RGC2wcZX>R)@z!*ic@|qFLXwq{CkXd&iUn$eCNpuKn&VU z&lUiTLdfCwceT=95hx*dBdP6fyMUIhW3@YBQhoxsG+Q$bFHb`8UI3f(!fv!|r8m)c zk$-M$b4AA`g2qgz&O!H2?+Z&p&VDRqfhI7mYI6t(`$f5+$$j>B>`DqYl+(4+LJyo+ zmp|s2fTviUxp&;Q%YTtq3QlMfsK#nSxLp=!T0p6MZy~&*hM$3%EnlSR+Q1LU{ApoF zd=N56p+3HNnCfy_8Kyhb>2gltxf?R^20vkBH(lslriM;Q+R)uZvqe=$b6oVyOoYZ{ zQ+Ncg=?y-9b`Rq37x*0fn^5y`6}=CK<)$3;j$8HhC$lRO#{mQ{>>n4#?HdV&(xzz+ zoL%20W+{7^-tC?y^eFUox2o~s)Qb7mZ^_VQuV|u08H^nEAAM^@$268-=8TL_tf<*9 zu^Y&)DaW+>46sIgYZDBei;T*PI%S`3UgeP}n<_^ksnSt&J@Z=Oh``oYSlg05T3-__ z1ehAfkdZ6rOXA@kh6`H*ZFRZsB<2E(-B09UYn6w)UKu{!zV8AhaspG8O;WZpn49-f z>w-4WlUFXwvR;&n+Bzucu<6BZY^Ki=Okct_SOHFc6yF@bkHtTFr8SK|M^K z?DxUiTW_PceX24N9!v%HA#5_70z}YPZz^)>8V*G!VrKY)<#`}In5*O1c6U6lG-9NL z*okFLdh=ckKl#PT5`DT$0^_;yaJOLnlLCA2O4*8>Ii^-lZr!-tbIm6C@e)!`wq4U2 z*jm@Zt-b&jfFvq}73@-N8CR_>XQN?APo<*?>zf%=WTlQqc!xP^LG^;0o!dUMJqj}< zSW*Mc5I_f&M2~xg*QBhrXZFFKPS=2T3*IkZhd$kS{@og0u5B_ke+D`*g5i5<4CY zess4&+Gulvg#wEjav}q>9Cz1Ki$3pXe?QyJ_C2km-Q6I&Pf(OqIlJAXg5kJHvUy5w z>%bc&T5PF}$tZC^-$lX@crTE4JYC7`6y%{YKYpsbGAq-S8Jw*sz46n^=CiKdP|F~( zBIA#!dN3Hj7@kPYdOYgBRW}X9Iv@P@&{9W;ak=S?c;`TpJ!!@>nc~4I0^g2@;Z4~n zk*(|^v>y6m4^SI0w#+lj5xH{V^*v9RQK{iFY_^JpMPw<8=#e;DTKFwFyHSVQE(2w1 zdC9|$;^|dB9G7Es)KCAUpU__WZuB7wu~XbK-gRdyop>aU5MED1zX_#Y7Sa=c3H-!B z2U8-yU!y`Bpcyn<$!}TQ55;YdkD0dNNe4w8|L(e^3(jYWlA4^?-;w!G(|v1=d9YtC z7X=_Fo$8($RCvyA;m%G22jV=L(&QF!`nbF@QkvtUvuyXw3=35xk7H8uHB*<2pw1P2 z%}}Yfz<--}3NVI@r*X?R!>2FZi3)XA>EN`YAyc;dZao$Mz7y9C@-tO}d00P{95Sb&YibHd$IR^4mi2i0TZ z(V^J}w%z>CC9`_DwS$U3sCX+W@!GMrT> zInjcb`C-ZidFWTyfGVR))`*fGnKO}Z8WO^|(;A}b$h7EBYsYG!Po=Y*`RzIS`tyO`{=zv!TIRzTtp{};%oUVYOfKkY#CUmM`lVA zU@f!POKhZhE&RE@VTXKDSk&vDl@9Kv8p4$NdyzTs=#X`v3YZen2dx#Mor(Bvtsc+i zT(e&{!{;;8{IX1;cb0}oLqeI<>aWTDW&{BR8tbB$o~30{f|V9*WFpg;^oDHrUOuXH zNdV|_8c<_%h`U2Peb2jJRl)w^%2DKtf0VpmZUVdnh2tA=i045Xf5W~3Bh?pm)$sT* z^j#?mWnFC#&2ziy-HY4V(o)aQ31I2SAK&;`L<6NY)JnA4XxviCDT7p*2+homgFL?*B9Wb&g~!0=&c> z=HT_%x>|AFxDKj!oJK;2yr#YzQ2NzKOZ4K1WfpZj3Fk!df;dpY+Jjf`TGCh-8{L45 z#^Z2mq@ZHYq>)1%e9U#y4_^c`aw>#N@8f3hqFNp)2JPTLm}L0?Ck9m)`4^Q~C_PRG zBZ-Y|;qE3Q=X%zNqV$e90sSMx!qg{zIz1fIE7&n@&1>4D)NH?0p*U?9R-T#yfK8Ap zzx?wptnem46ho=lysjC2EuLrGTLsGIgY36zGPiceJtyBt^{>t^^rX%Ja5%($(15GW z%4=Yi)i_lCklt%9O7Dhcq4A4%SC%{<+h=*CqEtc%$;3OWh~2kd#NtKU@ti6*>IYcB zr7k@5mN9=D1xYGIpeP-4?iMG@7oP5Djrm#BF2F2!xHsoTNL+-B^!ia?XXB~ss)MB! z`HG#_z;f`PKqBSTl;enp>_ZsFsJ_jGD^Vrd!yEOCSK0kUq&>zhn1<6 zaLP=WR36IF2VlxT>`)&Ddcb>#ou}Om`hSmFf0#2eI|}ivLFnwCk<4=j6@T)yIY2o!lip=8I85!HI{o)2lvfxdko^ zXRB^cmLI%oZ{|cdCPDAj&$lA)s-Z6d^kVehVaMdWa*AGmUP%p{`bg0-{fb@(ltJvD zi+L1qe#N|@OKNV9&3Dlf|0tXB3imMX<#2&-K3{}zFFJ<32>Z-4btin95{;ah z^AGX)I+R3_wz~!%=o&Q#Z*+4ZL0GM6ACts^%d|LZwz=&;O=9Bt`ia5pYQPw9R`_>s zrviusf9L)*)_E6D2Yrc*=+^_2c~z2to+2`XQ!AQNItEo$=yAf9ZIQUb=aV6C5fl0l zRO@d3iLbyKSW&sGu64IhjspQsduK-zpeM+OQAXwzFN0EhpfWfEm+^wz~i@qfq|2LdSy~5%l7Z2all4Lad)Se^I)is zu7L!^Yk5-%lj+*l*3aiY1rT%S!jK8%=Vmi03nqa;ezWtdj|R!Q0D4%`;(d?;L!NUk z9nb~ay`Pv<#h>>)VFJ)zD_3%Y+;b9yl4??>TS^*fNL-1DLuSKWA0>DV%oJ|8h&Q(m zNi%lW9m3ne1|>lfKiiWv$R3iOxsLatzto>D=PEtOGVQ6{oi z=d%_izKeB5Fbr8nxN=%Yz}wmY$!?~j6v=AV7h%n5hlN=JKe zCf=(+Nr2{G##)!>nV6TGc(ktVt$(~;NJ#Rrrfo_J$uDAD$+{IFf?kT52@4-xs}P2q z6HAA>gvp?}dJAIKvQS`Z*u5L{T_|(SJH7emrEhB%s2M2Eu!PGTd9iq{U&rIR4bj*I z{vvEwF|y>qhsU<{mqoIvZOu0UB~V2M9?Ois{aZvH`P1Qidlk7Xm7fslT3B449l5HG z;-85b9D*@L2x%1HPsMgGGgGSWA0XPwf!>~l)+dE#Ki-^1o)ZhjbRYTo9vTk#TeIpK zad;=g?bx=9@lnwV<#k4nXRJ_yN(;$h8JBJ=olt&##j?CJS&1Evdx6%xN!#_b*hGUr zOm^uP&TRIV*X$>St=F;2fG>EadZPJ*HvQ8#=fsX zu^bE^eQza1cuP3hds>JVX5G9^Dp04jZ-1mz6sW^ZW3RW-yZpKy(DVw8-777ok{{p) za}v0*-_8J@tQ9mUrpIC^GJoT#@r&j~4sz^JlV3M<0TxcIGvrw@6b*MAG?j!++s`=# z>n^i^*(rcS!P0z*dl7(QfQ5um5f9hy5#P|vd@Z4ampgqz)+$B#Xe!Q7aIttgYRViDphx4idi_ilt^HQ7N4j?AS zB1_7;#5*rCsLYw2Yc$TXxxGkgt-wBUm*Mh>%Z!}DuIPP_w-mMqgQW~g{J%u< zZ)FWH0$AyfRX#lm?4b}iY00uLXRo#{N_4$GadIaD5dR`lNDQsg`OHM&mkT*i17xISO6`QlQ-^i}W}`gu<|bk36I2Hi zHsh!$hn}yGjm2=&_wY^r__xiGc+T`S0h%LV6lY&2dq@G~64A6HIvziMzD{nYU%qO; zv!wIqkL~;@NzqbeRXne$D7;HjwBX#DJ}eY3X1MGcSkJ@A1p%i(ABbA4m~Qb_FPH`M z(~FxzCfJI`-5%fsez0=!rfmD0pt=xIT^N7$(OeJETopB16VM=9!C~EA9Sevyc)ljO z+9Sx2{&50Q)xNJvMRqDmGcuDgw0?i?sBqyc8=~X=!nxxzh?ECjvD09uY>y6jI$A#V zN;wLX9y?>}F`%Kq8by^k0Yr&CUmgbVbi0y@z?0DUt3yYG(&5GLQf8RR2}TH7*x`8# z#fjOn808Ph9J$RRH-;&EP~1Lw5J)pQFuI{$MLxi)^_0<)(gfFXZ#kqdRclv#f0mEA zgNohvBNY+w{I2Ng%Mz>o>izbzu5^I!B?AZ!F^mT9?B~9U);wj>dU`oMuXaCsp>&=J z?vd!0wE>8Pz!b_loDDtvQ^Ez$@zy%TD018h5u)f&^5?zF&Z^!s* zg6W8&zp`x>j=9JM$q}vp^?RJ~p>d5?<~>Zgbu$mITK6~UzAi~zx)|#7Qc9fD{bTYC zQ<}Wt{tgJy=;BhKWs|-K3_+6}F1ZifXR<{XfT?-QFNYi6aaTPXPEd(FWe?4cZNTwK z%|U{7B2H_?I?_qccp!`&fa0G8)`z8k6l>t7!feE?!HSRN7ALr zr}B{(1)W-H9_Dk;QzPg0+XCHfB1Mx(8>KHYgpMqdGJRf0@q_~R0wzLDHgpgj;L+9) zVMWztt2hK-JKQq|)Ve|xll>#5b240(qyr$Xr4cILYOy$Jz#HXT&A*8=o6Jm~~i5JHYl`!MuXPb~JP z3cbeZjx70owofQJO)`x*buApLwQ9bOLrdoM>XOKPuyA6C{Gaa9Wu|;v3d!mS7YZzK z(`#!;xO-c$uh`mcb*$3nmpx?9mu16b92z9M)31fURULWG=(@TcIrq$10GgQW2xzV8 zgKjGvA8FD!FeI7^)Ds!Eyjw*tgrm(XM1r zR-#AE=OfsDzUl`h^P?G5XpTES)kOg90Jomblfph$P#X;L^jH^(-L z*-_tG^eOwV@ghF?MNx4M6YF<#(fJ!3fFVPYBH4v@d*1ll(1bMrCCXL%yh@e z45qp-t)!do2?mh)k6g9^K81jAvWlX!%b$0J(&-lZNN4b&1XD-wuBEl=aX;m)4a)5w z)YmL5HS+s=X!g6HFVp@D_Y(rj`S#c2UNfPe$Y1yJ<_>=(|HP@9aP?-9;-szOu(sw$ zm$o3F^6?o8Sju@QbIHcw{$T4*9uIxTD3Tz*rxvQWse3y5)1(Z1?(b`W?JfGjssA*o zY=PrkBt;oGQ%YAqh&vI5-0=pinyqJYmYlXIT>zt)cgyT`K-T$@wQHnyFZ<^2e9v&u z*?$q*$&8I?5$G*~ZyQ-J4hzui8>CmKJLZ@#lB)c1Ykhn-V@y)aTf$s`TCkujL<;vldaIy~Cudf9I1{qO zLI)cySEW20k`}8>sy$rYSgE2joA$N%*m zI0{y&l{*Ih4|{JJRn^+>4bv$if*{f@t)w)HNK1n>5(|*-W`d1D!(x$2cXy*mw{%N) zcfQxcz3+3*^ZEU9#`ApHW9$L4=9*Xh>lY`_|A9gN*UEHS2c(v-N#xuAIYnmi!)Uvu z!)u$WLf7maT(n5Q_Q;xOF}(g?JhTH{@WN|1sUyQ_2br%a9qqpBOh{G{Za#7x_5c3m z|E4ztf%W_*SDP2#4w6@63_xuq{mfNm$p;uNjU{qYIGur#0JCcH{T*pcxH_f6w?-U3 zZ~u)N0n>68dldu#~p9*86A~*lBX= zw=rE`&3PEWV~PxnRCEm{yM6!b?B2@2M#JYUQON-$ql0hESt{z_@bgDHQ=_6ebM%5) zgXLh>AZ6kb#y|It2=Y$&r2P#b)PL!D@*{C|fp{qaSJYx&5teKGvH!U;B(3oHtmu7G zM!f6#N^(fN83q!sNr1SZqs*a_MKEl4y%yz$qo^;?AUjNEYKnFO!k)h}0o^63P?R#Y41Ey*RIa*m#fJ50Xj-K{BURO}i zg$((q8FvEs-t$`Zr|4EjeZF;H0LhiRu$QD$$wEUS!)T!MLXFt`NhU6pLk{aPsKkni z>-$M6TZlNiXb0Qo6d8)f#6|ic#;0d9SEJSVk213k1Lg=PCu3k(dIt} zAnwa`^Z+-MpV2bBWpJ;jQ*O$8*T zeU=RS)UK^+l7Ocb$=A08|9Xc6foG_5&bMU!*KVc{e9Wh3Kd``Wv*7~G4ch5S?Gln} zOA@&CBq}c432BX0$AGlfnqb$3J1U_O!yVMn$l%*EsMx4~eQba=%KtrI7R-JA`LdBR zoV891pJWa)NQzPN9-bAD{WqhKzrv&E3jT$+uBsCEvHs_e8m^GbTkpNP-uE^zJmu9_ z-To>A?@HiE>@319O4i$$w@8n0rd?R11qLr3RN2mWJW0TeL>@bznaAf^4s*Wzv4 z+ySUGH(Y}7Yq!;gF}5g8>2RO77K0fJfxw7Q$h`5#yW7-t zGDsmyAhPY^d5?e#an#}Cn4)!gag?f-?q&;bS#9RG9v*dGU7P*&X(gP~R`)||P`pU$ zQ)tIT?a`x=Ld22>4v<#UUmeQitX90GBHKZ_^N3jUzdrv~MJ<{-d?Vz$M1Iu!$k&W1 zFx5;g`g}&EnE6A2*V)(Nh>RHx@9@dYb|W&KcBX0MTsq}g0`9QAc+i;l^M&kdRVVuY zy!(I`7;evFIIKTFJ{*sg?#YD?aWc6dyb5DvJ>f8UX(|X50cS|Sp_dCi=FZZ{<1mFN zEx1dp_F(0Y#ef931F(W@WY^9QDs%*<@Wp4v<{fO(pGh34$G7Xwp3+3TC6{uB-iMM0jgoX>sV`I$SMk3}122)y zw~wj&j7wkW;8ZDYgnD+PZE!ruiqA80`a-dwC;TN}zR2P%`fi?0O7 z{|YHe0+%p=bY)I{27L_!Le`(T2v)OPHpVowv~taXf1Wc&-*>C5P5hS9ulCPpb$ z2R&Pz3somG8<^7)`JJWjbJv8eU>` zVn3YmtnTu%M8|h-B&{p7%JC0?(Kt8VKWo)p<)XmRs4(Z13m5ZFnezbheMl<`aO003 z!$ZWp1#oZP44Yg;xB2=0t6hGL$pTxoGCX>$?t(kE%JU$GpR4#JPSmqML7816Uu$qf zXcP*#R-XjMY^(+L)8bZ>Ri(?ca$$^e>xvnGh$R28m?Hy=kVf2Rq&qqWcwpoR=wMO^ z*xU~mJBvs+rmHWLZ#vbevjwbqi z^U&r2>uvQ^MJC(vlAwx?lT%hptW))S@-Mcm<^?-BUPmTA0u*9tWy2uh#5Fi!{sZ#+iY*VmJ>hFbwZb z`}kUQHf5>NaJ~`zYpg(9e=5`p%x7%bT9Ga@#mq_*@jogJidi^c9A~#hIY^d>najh& z03uA5NnHY%j&{${*F`^Cv8Z&rh|$P0(8u5Hk)`-nmvuj{1p4a0LWN$) zXTD&sBH9oG8&i&8Ps(s$cI7xEf#p?o5VZ(1NFx>f1Wlg`+MSy=+kR5$AO)xv&4ION zKKVhwO(?>=1KvT$+aao%6{`S!jo>$Z8uMLb_1K`Ps^(vvO<*GUy9X%e+$UyvUP3&| zhm!%i99-}dFQhTBM-&VN(7|JtUyJ~Z%KAw366d!xL0ppR`glfug_?Itv2+$k>#pM^ z6pKfL=n7F|GP^ETOs!@=Ir^(o=LPD+nFDvLv&X{=z-xeRZL5Pk%Wm)M;5TZjxZZ}? zf`SJkA`&LVTKPKG=x<#7AET>eAyS2zFGO{;5Gb_T=DCQCd}(ZNJVeIw$Aw_v%(Pq( z%%l!5t?2%Xu{0M`KGpe_y{b(~!@qX{KwEZe*sJn9DfNusVJR{}Y@;EpF8IZ>;FHHs zbW1`4XrLP(D@IRr;Vdgt#c%>QCp$iFSPUu~=TW)6Mg9gG@8c%FQoB3!J#LzaxJHCFP?C8Mltf^kOGMUHod^l=y~* z@T}e0=|#Ysd2l9oo7eKC@loVImPuFBB4sdO*2>*9aBf z=Sx{WyhU$)9(=0@$;QN>T^V$pIM4!fDh$5ZV5}<;IhtU{eKV8MpQzIjkV{f5jNsL9 zUVN7a6(uF5I{)FxM@cN=PQyQ`OB-{or$CRuvg&P53i#oQI5kwd|${GU`FV*l$^2dJ@=gisVXU`IA*t(fYxa0& zE{s!8;B0EArwYP`WodqnyJ#t#p4JwfYSs7j#qn(h&}5 z?>M7Yc?a{v!3vi?C-VS=QUr{bf3L0Cd7B@<;Dm5no`!ac? zp@u8pw^s<fV>@a3iURCfxd+{2b|gZ3N8AN_t+o zyE-Gjy^NQZ`y@w5qsT*m)n*x<%|l ztqJ~Rpa&}fW&d>Ndjbk(;H?`9*gVfBx~wH`wdxesEGK&<4x3LWF(q}p*)S@3aarj! zXuHJ~tr!$rPi;k`qcCX>$6=o+LZm#bH&p|BGC-0D`Zx}CVSj42UACYuHq5*!K>5g_ zfvYDKVMiZzhusbfW$;*V`6+LoB`i_Q`zR(LzO=t7rO=s#V5%>*xMbkL8{%>`ShS*u zu0$?*MfCCS;4qK{#12wS`ShbCmQVXC3yWWvmC%szbM7`YO4)1&8@extG#=u|%$?SH z9flA=u(HvXL_ZkK9i@A#AJL!F+&JyUy3%-HUF^5JqtZsS@J1WH=e2o4w!poYyy%|X z((2sf;ua^|zqi6`VRNE6`i8h5KHecl;3u zS8ftmR@?pl{pFC&zWdeZ2x(ntO~7j6g|M67v%}4C3zl|QuhYzrgP#8;fIGK`*x7Q!jcn6H1 zHX{`e)jC|`ox1kJ={=n?En)0J@`G7|#VFDSSc(?(Ru6)r0O(x!X7KOgn+}#%1KV|1 zuOa$@9D5!#&IbYfs@Tu>fj~xjTLNIP6))Xbp5{hAHA&1tx4UDeE&A`nD z*!jT#loIlUB$n!peAH>ydS@r8%pS0wlpDrcp zty{N9+6k|UcSAYyJzadnksr1vT}l{9=Zbjp z8y?H%kEzfm+>n7xu9jLtKG7cD`pFiG-5L`-*9f#jhOQ}wndlLchiAdbu0giW(8(_$ zyZMo&RUzvrj@^x`XYG@VGQ3@)8!w)B4i=Ud<@V^=D|j4Jx4nG*S^VDlcSZ#$s#8bo zd&`G={I8asZe)XEu0N%(tIZ`QP~=sgW4?VIHCOU8pF6C_EspwK_Xbm)Qa>H$GK7bk z()9dIT4`r08|cDw9WKvLkS3-p1DWA6EdA36KB=-Opqu0Ea+B>ON|KG2yr@ZvP_}qS zLbm#ybLx{}GR8M@Nw?IY%9nnGq6KD|94k`_ep#y8QFWJTlzeS>`JxkEgRpR%jH1rB z)nG8Fqx?IqCuFkv=feI9FYNHLE5KF8Ul~|%J{{I|k9eh-J*FrCDsm^AqMjhvQT+KH zZqL2>z!L5XSqHJ0n>4nKalUGSs(say7?9%E&CwKrRkuID%yY5v`I{Yf3}ztSx)QWfCs<5JIL zJ6c2uy}srWkaa;kiNL5YeDH%{#d$Z8o-epm*3do>(v(ee7u!p0sT)|SF}=8%D9SBD z7#C6SCVhT)aLsNU`m?KvsIp1-O;Lz{GB(7;MHL$nPKnTA`^9h>gn)X>=wfsy3KVNI0ji&1fyLxGyN8i8Gse}Ty2lCI(Kk(j zDGe?1`%b)W=tS_^qCBJE4V@U=Qg;;71R@Bw7pySE8Cgd}ur+_s9z(#)qSAbg>3! z6a+-l&D?7IPKw5-3`C&EPoM-78dgwqB^{MV7R8ImkHra10Bj+$BV&!$mn`m+i!DAf zh0LP#aytx!uuQaa4Q-)h@MU)ux{iY2GxYJ7N1~!$F;f`%$TRO%8Wx$!72j@3 zEIKacW>jz*CLW)2CRja9Z_q5(-zeK^mObti>VI{}Cl|i}o5i?V=d1;8z>>E?#(Q&O z<27^Y_cRG{ul?u?=HfiU}3&O7}(hOSgq1TI`if0fYrfV3R|rRLv0I1t3Gb6avuZVhWgim`Btvj5RS6%b&7e)5wOo8_GnZQe{ zTxRBYRAKil@eK4K3&))w=OOPZjF0}NC)^iYg1*g)@Y?R3EsjM@=FfZJ&^Hk^&F;=% zOk@xb8?NkRb(Q=c;pjMMnhTbOM9$*x(G(Fl77zRksK1I@Vb(jUyEwC5Y$s+>Zv6_u zOGM3hPE`MCo6)|+45E>+Q;uFD)h>4!#JhN&f-1SBlqP}Zua8^E$sF*RS*HPYPtPh; zi_=v2i!V5m{ykti;qt*wGqOF>ynCXus1F0hs?V6#fXo0M#HI(8DVAtiNd{q|0O5sZ zER=UKd~Q`Wks!#LJlCY$FoV76{&EVW(#+aRta!XSUjTFUQVC|e$ttD&hp_cv(7R+M z7qv77)C(^C3S$e!N?{9|@%@%|U=$J*_ zRafYGpAu{YL3)fd2*fLH@o8yc_f?OMr8Km^Cnu0KglC~EwW>Q-hi!*5$eB^DUHiwe zt{M$;bIy0iOdZ@TL$;1^JQxc=>nfH`mz|r3xO$&Rz0Z-7>d3OcLRIktQ>(avVRlP) z?Ydd^%na?y6>zWWSyP&my7y&&NW|AX1_Iu5!$Gsr6{%YccJAv-+dX37KiVRL^}CX{qDB z@50}Cn+kM{S%S=e4CNZx=O-ZoX2XRq+9XhV=TTvV*2S_ShK`&s`(8$5O zt7pNEM38Hl9C`$gdFTD~p19C8BCKcn@e-?LE-+;*HzGYit-?@&(pwBY~(zdIU*pk0_orrPKN%s15;o^J?eialz}iF~=+ z5{1rueDy3Y#*q1bbxDR{lX#JtEOELpUO2YO zNG(9qzT66aMr;;636VhJsma5~$BhegC%>E?ignWbw)SkZnr9q?&3$8RaE{piL471ZAIN5DXERg5Id+akHTIPP z*1(*pZkn`Xle~C-E45?(eVZ&fJgin<2iI-KxV9|Oer^35VD3vJv)1RNb^xlg|+YAkHEjBw*y0Oni2&C%Ko6X zktZdJ%b3{}Sev-6-QhANYq?1JojTGq`A|i*XdBwoxaeWWpTA%jn-!An^K#NOQQqX^_@nv8)IdGr9mv%>!a1$K-vxVpr3(If>F4Vt!$QHPAW!q zuM<&RmI=DsuH*9^iyxT&bDVM{!7zi#`*6L;;m?!NO6PPEcCF52{2Mgl6GPUfTGg_4 z%u_1oMv!C+*UfxGcF?6)IF9pl8Z?s)R**BIttU8U1>I7!b3t@X{Z+>sU@w65OU^g9 z@v`4giBmsyw~Ip(G;>Q3zD`T+zzX!SUG(mciOVCY<^7a!x+wn@Nf zu|3SbGl4T!Blq?h4<-omw_A!!`E1|qE~IMrP&-z=75qYI z-W~R9R4cw|F-!kpqdFJ`xx)g znk&Isyi=F5VVS`jVa&GoSPiO5iv8+9ldw>Rx@>EDO;ECqM(mjjb4)TAfvKI=9F%pQ zyF*H6!(Im^3W-98EKS8Q0o`)H+I`>r#2eH+11TSBguI{k_%5{HIXNho=2=;aW&M`z zdDl4d*2X;L-?vslENeHEPR(QXaq^;xSUH+Wq`XRGV8P8md>sIg3rBJICwY+lLgktH zQ3amE;oRLBf2;o4+{A@79g6v_Ip|?ej6woO;DkZlw;SG@)HbQKaUTbGZ$)7x5`<$%aYyN1Ooi%4vj2MV zAs!j$C2$$1AYH=Cln7bh%-aj->9DWS=>BY)IkW&%RPvZ@EM=9N>*@}$c}=drNEAK# zfuFPzl(;%Fnow?o=y#))QWq3yZ#cr1mEU_wURpDi4X1pFZ~?Bf?Dn<4wWro3BwxSA zL+nwJv`Bu0ot~`E1vA+vh=yiKOfLutd2EMtA_SEoECOnJsSmy!?-XPCtV0-zLoW+P zi_h5ICWmAriD#6i%cqMv;w`agsb>0QrfNKy5yTu~VuZWjD$_oOgA^V4)b#K@lhQLuYS~(6Q2|umExgOgk{+QhS7Q`M{PB)`f0JuhxhLSu~d8? zZTng|^!OH8AK7KPABpYGpi|9n2%cHG{(IRsNznp|n?SK^u5Rg5UQHSazlk8d6?=t; zce>7j^SSWo1!&(zfPs6n%cC#vw{LTc6B9g5 zx^7L-&g7y2XXJ1o{Hf_8;0iE;DF#rrTan9(+8H`%jT%)rJodXhvB&xY&Ula$U(2rk>;Vzr{fHLp82rw#qQ7@kts zrIR#D_?;g;9tL^N877!@Ewo3fyZlhoR|vfQE54(vM?S^8VRkGkqh)es2cokLhWTBt zc5tVte1B5r39K+~bq&<^n6=bZKSuY=-vSsnyVjYPh5e8b|J|X(a7P?V4k{XVmbq* z)dXmtfGiQ@8*r|6`HQRHtMhp41#fuDc^6UTRw41(!TbjAmou8zrG`@Ds%O9SsvW=xu>HBv7 z>uH^Vv_-?a_wU>2e)|!a^w*I+FuH4JL1CwDw6zbp22l!`Ts|vPP~tTv)x)@ow__ic z0X5c8H0{qXRg1tpGtkkin|ua|P%KzWUE@grNx##};^3IJIN(;%IpyA|F5hObP) zI-`%Z!z&D=(Y*{GWNTSI2mvH8${|M$+Yir0hc7@yRdiNl)<*B!Rb*s#SxD)3(6c$} zY`)VWX0om>&)ZBrP*O-@HL2#LnMpZUn6N%j&r79{YfxR*^=-3FDC3PkH-3(8Y5QfJ z3JB6ho6jW6VL#it`;*-_$=;39f;q_$a9Mw*X9zViV2w8t;k^o=6Jd zDMa5U-@68;;)4+dEl58FCosqU{evF>ve6Sqh98M*#j61nHd^}%{F1)_R6G<^LZsdN zt)N%`AYB2*3RQB-fy@&9U!*HF9(W)+%E5ndvVhd#U-O5n7m0jj#T7-u_M{$VT|Yi6 zE+7x0c>Xl__7^vchvRV{Jj@3N4Jm-+WyPgHVmIGcOa6u2;%*~ta|!=syodiWKxM`G ze_tGlQHH)tIuWj^BAu}-m;xeL)#braWdyOPTqF1m(KcBC03*qR3hN?OWFI|1@3w3x z{kw}BvM~`OdwQ?ujO&S7L+IWtU){WqgOMb;JKwfpAqnm{w8FD}WUp;oCjg8K6tXlj zeabHQC`3QZI&=~cClO5zcs2nqA z2Fgx9Nv5~3#QsHF(>}nAeoqyB6mJ+#7kVG>I1p?eKPQG2Ecjz(wEMWmVC#_lZ~iHC z94P4|v4TAbE)1GmBcQIQ6mjds)|LMs_+i@b7+3rHS)3u7^ihO-M1R8 za$U2nxDEf$eSA4C83)MqZ!gQSomvC zVBK^4fN^}ILTXzdIg0t1-T*oa^T2F*M-+dMXj=*OVtm+95f3eZ?OP%$Py{0w*!;bP zLgwIuwGHWM`CrjtI2@ha*uIEW1~C6=DKCG2WgJQgKYguy!>*Z7 zH_`Nnf9Yw%8YbwznM1*GG$64xX2tz6FO<+%eXY@!y+04_y6D8$YzJISfG3f;O>2 z2~Z_eHBebVU>F7)rPA#s`@exjoDSUO$`j1@;5)Qv58;iU&{*+M6Op@@#g6zZ+)*2q z4Q@=0hJ`xvm+WwB29*>KyblmPh|2??A=w(NxHG!oV}`kGkkk%VTozWSbOvy-{&-DgdIZwG?0Pn%9B1jf>=K%nJ0$BI6Leml6#d zHTPe(#{VVXlm+MbpKrRU$dIpJ88$;!=kVt>rI?on0EUw0JF`3+pB%&9JqgWL5PP68fK? z#%E~-s? znoN01%V;Xm{;vvtR|dM}c!4EX&+7s1C{VxFOB2}#g1iqmBkAAaPp>dL`u>}!f&A{a z(hT66IUS5igz-ohJ*~!Kx$gFC69lXc=XZ?Iw6wKrW}B^**&CF{Ot{Q$8oty>=Pt@$gX^r=hT7}XdOku*UBzTPH|_YXrpJ`TmSo@jFGv;-uU zz4gkMV(nKrlL9kI;g*Z_$lM}REfx6l zFayA4+47wc&`2`meqbt{0ZJKZX0DSC@m+IeZq977$dDN6RFynM!)d>JACWus7KBQ0 z>iOqap3`Y3xpz?rDd)Obftvdy6R2H6F0gMxt*_tJw;$sYF90CAfb%}MK$FdVgCGT; zts7q$PNu|?e_e0*0M2jI=6)v&WTO?1$#IVypQxqC(!ImG69z1PWkKvlr)cT%hRimE zg+R6GOQ~C^rd9J>8Bd@_`%?*SXicfLoZ8+Q({(9D3j=S)nP&q;Vf(W!WFt`jVnd@^1f(HuFTe{n{ ziv>nxDt~~A2{OZcrCVBH_B>Iz-?8Q|yND2#s($6n5TZB_7jlLn=deyalLYjx&(UjL zZIW%*hISi%29MBwL(T;Om`7GcMJ2`bVyBCo_%6ToA*GO=AERPCTcpeCafyUmxcK#B z(gM`GaOOsC`BWHaShg;7zzq)hN6wj{p=@n#BoK*Fxm!7oE7ZrsbYy@$R2P~&r&>=C z8W&fK-Ku^k6{8TUMHiO4Zx9+ZM}Rz14G@}-@TJ9{@cabmQfOteI{4go``bC6-)qs! zWd^P@$7MhRY0M$YUq~fOEO$lYN3mSY8SP&?n0lVBNX~m3Wqtrz6VpQe{`t5dEmIVB zS*8V&TCuiXpma`ohafTpD8D|MkD%p24@ev#AcN`vTf`jnHTz4gwNHS3&eJ!q0l{!) z5)FTND-<7|Uu8R=W*{R?gWi%KQe}=mV*Cwj0WT&H^?YmmAE*xvar8s$sAWPEUGe2< z<<;T*C8!J=%wu>wdL=zCf5F$CLiNh*@IRt_!>0CndbmDmZNSHH8&%To>giuVw!gnN z(*Nb@l*b%FrPo20SzDMi(3|tiG_0)xzHKtyi4xq^T~CjNoEKX`Hzh>@&b131&RPdD z)l)&TZ#YVG&vgxLm>XO-qt26BH7?M3h0TRqiLV)#ZW9L)sR`O^UD+zp%E`Ydo?9Q0 zVf5IbCsri5#CmuL>&i!LmcnW{tu#e}%vY?FyN;4eJ5N6}X|Y2k{MlC<6ct5-#Q(;c z_(aCNc-WgeUe4R(rJ-INn-NZc&I?`xK|KF^?xulQjHs5s}-7HTEU`N z9kt7Br@1H;S6eh#)#db@soWO|ta>>1-aX*3fuHQ`Wt`BJWJItU$S)!WLQ~}@nHJh3 zN;M4*?5FE4cz*eKPEb*ErFZpPoieG95B)IHX$QmfY6ba$GS7aAauy3DP6-0ROcmoW zhDHdi2KS%Ey)4jh;c;13sqE?EK>$8YB@m92pYqvLIsxXx^ZE6cMUNlHJVSsRXo_9s zyX!eRK7tyUA^syH4U;)#jN?J>-NiEDM^`$jB>Zj5B@G8*e}|h z!N!Tu!wG>RKd9F0A=cF+FSU9@1M>4flC1W1G|hbPzqf3SmFfXngK3MI3uUUu&a7IQ zqE)6rc2vg>Qwu+3&nd$sO-EE4pdD?DgapY&vKr{JY24>t=scK=%$Q^GnppX5VYZhT zE6q|E`Ox;hPSVqoReb283#URZ#)20u?TR}Jj?yz{ZE{fr40ZwXIjs`+@%A}-q1SVGx>76 zNygmI)9@+JB`TeAyLey;X+X+t$T66uS*-9bbVWG8?k!nd+N;Fjr^P5#x|Q~~$=0XZDu<_0hG;GdrG z^wzd;mWApqnGXCO_rL*ms!jxtZOmla*({IccdI1+U$YeX^@}_xve+I-d_}Ec%4dWi zNKN29_2+8O{4PqV3IeO9p&disTVmr2m?9OkBh0%WzVIVHr6HVe+&d01>yB8dH@K=h zH63*#7hX5*>lE8W^GDJ_#4pyJD;;){itBF53bp?v6uWOlxO|4P+)_EIWx1<3mO13@)+Y1Lc4MbdJr{0xH1etC6f*C!b#s&`hyjYcFzJ zqC?b)YAohXaxQUI_29W2&fY;(%yXZ$f@XIY-atPGvDSU<{jDMQx(_ASjVoH_fDPE~ z0bt>=PDcp2SknCd9(wqTuTY+F;9+oR@+I)9xO}%f&m?m)so2}ERv?K=F5vQULbE8v zRJ&ve(5w}X5^CprIQ8f^es^~0ZrV>j_o^RKP)iS@3`stt4@z7f=}t*x>G;+twSEJd zoGxx*2U;yINm?|;jIA-HYcA!*oe6u>96N9$uRaLY;IessBt2j)J()jer7SwA`sC-2 zq|KtOdUBm7;&*$EF@}P#YWpQkI5gKpE9ny(mOlCdYEZ$8c%2=J&!`CSJTl$Uf1nFMhHGxBpfx4vj?a`DME2t zAV%VPxIU*WK}=A_YFjkT_sS#DxjLPDUtigMl>;zM%hNN|tIIU_c&q!s>pB7G^-EI(9#>h*S=k2NQe50(E!Nh==oRoj0|la7`Q3D4{o;yzeC zJJch}Zdy5*@T_lbAjBRw1v4i)_t;JxVN>g`fj5jQwzXr$EPph~F~=(NiZF1_%B3T? zqc5hf8oI;sUVMLTc>&Vfjz%f$uBzhSj5fnuK~GpnT-@$v+s+k~ER+ z*WQRs;s@(7MTy_qZ`*0~4r4px`_PA}CPf|A<8CBYHj203>3;bpAV!Om1Myqt>fw;; z2aD?)WQ(Y`0V0!OwP|L#omJDHoPN#&1&A4_6Vv9+(NsDul;}jXC`ViJu8JOSC-cl^ zbEj4z3}{L%n-kMJM|#2Fju8;``X|g3xwJ|$;y;%D!ocV{Gq1CBTLF*QQBi2BkA*7K zT{-k+xMn=Rp7)j<`fxbYg*~f6*X#XV_DS>VHe&=N=Iv(XF#Ilg% zMTN@qL?MRSvl=ENzsnU)^Sa-M?p}vNARz+o2$=@OQ95=hF;p_+C7#8K2|R;_+WA*| zDY%a9ZX3&F|6;9g6*mYJ7d-_^Xf|buIk%fT00e5xMa*kN{}J zRA?;Rr6B?h?{@L=Hu0d?t@wL5CDzS0edY}lk!x_SHh|JuXK*dEfq51zsx>JN^k|)O zxoeIfn>W`GD?cZ_#Eps38}f>U0fI&lZ+~||f8NTjuJEm-g+b~`d#hVbT24E`d1CpE z5^ak6>mh{LqZ+M2KdHT;eWKXF45hQ1ZgK@+#={8!Jd4OzP4eJ%aZX*PaGwSI@&*fh(u_VuGJI;B1*PW?NXEDP`8 zRqggL|K$z$>F^bGKex?cGTu%&I_Fl+L7Gd2#BOI*3yrUauo$!#m&4OH4+yFN|Hq-@?m82qluZ#9ZTwB*XYj9)V?ay(B#sqiMCaN;8lnXYEI3^h zGRGT+rmajx$wjVj7rW05Q@&^Gt}X!fAsTthd?#$$c02ge<8Y@pcpeCCIwq9a#S6QM z0SuW&Y3tOLC`({vTS@Zr3Dwb>I$r}vLee`N6O6;r?MU|GuM96w( z+Z~m(;4oYyj#d3xA1y7X#MeYx?90pXI%?r{;xql8oGZhw&i!EfJ{|2u-^*07uUM_i z!po}2A(GklHz*)U!T5lG1u+Ro9G->$kT^y!?&wML5?q{E%=7hcb}x+Nb;Mh3e%-3zth5Yw&6H?NfAX33+EX0Lm;b>}_3NQon0%;UZm|64?pgsccn@GggtLAo zh;kory&QG>#mcl+Uv$VweHi^o{jeih=EkMt0JxTN+gi`lEPMO9^+@?4PY9)I94Y>p>Un|>Nww@Yb6p4?J^~7 z3PdY>0tcu^jGSV(Uct0Xzr+tQH4WXQW+PskX4#{Lbf2&&M`kbewEP2E;l>X^ZG~?c zMw9`xyJ=TWM!nK@50IH>1uVW$B(5BlUPc8{ieM{0Kjh|}lkdrw=AEfv*UZ)+^{rs9 z(tjadoR*!Pgf3oX^!vfqWcBbMon86HXmv{^w{~}2_b`#sd?%vg#0^x?ZYu4CbU-1& zDN&ATBah_fO}9LdFyvCOmU49F zky7GIzY~RCWqg@@+WS4cXm3J5&dyIZiT0Ky8um@fvc~!BLnGz=ytRJA;3+-%Ln<+L zy(7x-jWgxe$n4F0@5LW?5CzDrD}pPsBuDkBFh47|5Kp?&ewh<;Z=eK>VBVw&((_+b zfRP_6kQwy6rWRdBZ;OM3iff~>_TRpLH#$rhz4dzY6Ks@Ky{aTb(vddxi?#(qRVoShWA1-v!o)c_T=!XPqeJpo;3HO)S;yXI@)(*8(3U5U-%@ zF~iB%a0#bP;SWAnahDwxDn;W9m_EMuHf2td*Tup&IP2ogSe+Nf3KY-fry_vcpvx+$`+ z_xVhQpjbVf81~g);RwFp4%&YP zOnge`yqL{iU8Q*zel5De=(n~h0vz&zh%2-QU-(1#t|sZcAi%qg@VfM)oWM zXhX!>`*k-@YfOI03vI!e_dwSoe(=Z9MBJlPQ`w*#q3(E9Lk!G2MS#HY^C!cGV-5G+ zjtJ5f37g@;*)z^LFrw?^bX7 z;FbNBcthO%F_fVClH?=9R5Dal{EwIgN%tq86!t#7MT9SFkA|kjL2{?se}<)BLqk%f z35!iLg@$Sc+~GcZ-IL7|22fbF!jFZp^CeH(*h$1>{50ce?WDU!XMK>9^p&_;t@?-g zPX&}<3*%6r2EBdxTZ466m1=4={;0DeYRwNm>3t~c#w%XsmQ0y5FMe3#hU@!1%#g9) zW$NjC8nadYlY7x5)?PPtj}L~`vWJ-DK5_Hx@vlgKN5jNp)X7s_!iUH>d1_g5LnN*y zxPe4Y`Oh57=HjIq39)!HX>r)Go&-&{8PWCPM&K;>8hJUVgZdnGc!XSheZB3ilnGXi zi56I^mz>{f(YnqY!(FPy>{`PM@@|L#z%I_)N=X3pvnAN4RLKuD+vaI{T#jAc4q7<| zrIVnK*LgJyDGYmC{J=%&|6ZO~y#uo-Yti07=!75U%rR0u;SdnWD_{JxT1G;^(Y+H9Pnz^aRu2t4D>Kjf^(p?3LGj*eZql=AltT3NqJg$-e3gKp ztI;ED2Xc9-^S<=0K6T$ywEpv0iIu0H=uNfHyLD6inS3siL{RFve3vn4RZSl}#vOnf zh15QZ1td4cfQ!RWyAI!?X`T$VAFRkOKgv;`Bd@|dO{y|EX=i<`JQi3Rv`4&dGTo?E zTbIP{jJi4_(#Vvgjpx(KTC&qn43wywFN<_ufa4nZyCyq#z9U{O<+7w)_!;XSLg7`n z554kVVIiZ#7s6ebLdlz7$~>-6$fRH2Ls_{bRE58C}KPeU*cpqG3wYvM$IK17yz9=T; zF+*;LFvoyn&t9`}B$I4^ju8N|p&ZY>Po_O-sLZB!^n4R9;~z=;z9@M0e4_@f8cy9w zm5}Doe;{Z74b-0KOzH&re<^LYoImKhw}SeAz7SCtW!9B+i24NFc0X{5PJeOh|DtiL zemGjMu_=hG1E}w_flNFKz@YP`-|756Qua2SBqZF-2ilFK-|G-|ooJ!Zu%az<>Wyp= zMp5Bjj39FS*)dZ!X7rx=dgc=jjwk;xd4BS*03@3i7-lb%TkKha?hNbsxQ0{|EE%Ll zT}_573}XRRb%eoJYyl&H&>Q(=gV!6Diu5-9-r<&Xr<^~Q)Zt)M51en8ohOl2gI1X0 zA=aIqUIg@BI_&A&u6WsT5pZKX?$@7E{ttw$YiBDEMEkbQ~-D*~5F zFxnFAj>fT}9t~#6k<|+pNJA@!Pm7WS7AAQ#ZjY~F134172~?9ZcIhwI$AJlAG0e9f z)st-s(0^f%nVZm7Iv#cOn&Ll(1CYjm6f9gZs;^2wQT zMDYY!sClyxWU3gc!EfF=al2D*j=V}2T`g%7CA?_3R#&eslfrCmR=wR{+F$D{o3ESm z-lQ|(j_g9~UtLXv8*G$PWtcm4VPwg$SbT8Ymcgp#=lJwatV?UbZRl*oI1V`f{J}_) z`u4r@j;OxmB%%wil`zf9G(sO@Zm?KgFryh4~9rTNE& z?pcW`AII1{RhuFa9>*PKGH{aROEvRO*t?0!z;YC0qi)$(HQM={ybmU6mUExV>5(|s z8=dm1cUkQp3~Sq{TYI94PS}i|@>be?@)Bfp>U1Yr$C``~KGOP_Y^`!Ze0`}>sUE|h z>;W__U|SPs=SuvkJXi@nHMsa(0sDJ$^6$ow;Lcp$q#&y*v-H1Q=_bQ(R1HZ6E2`{jQ&-0Wm}EU zyfflC&Q0c52vzJ(t{^l0Mu$QTB58L8LEVgENmU_xqN*kZybknj>yOWl)xR1&Mur-< zoW)%rx~katjw>1irkU1UJWks>Ik z7!pDBH#DUZFIP`Rqi)But8A%#^LSDhO47d4UmeX~yRXAnYa;8ViUok?pN#Zj_Ii#f zE?qVi$i7~M-=SHENS9MAT&KKz38Tl|x^xn&kJ*V~LS5f~2GKE3@1K z8sWL&l4%?O*DHN2HR5biiP@DD&l^OG0n0Dw!LawGnniZO$bp!FJ3k-Uk1*NSAH$a& zb_5Ev-1X=B8uFfJwJ7>h-p$@H?@1{i_AfQ>iTlY?ZCirNig6)1>eBAYfE=)Yy$?o# zMuS>P30R>;o9#T53*xiw%lrVGP;~;Y(9B+n+mA{ed412}CqasRnt0DiGUxdkG?ARC z^D|-6r+vchlcq(Va!3M36o{P|$!%fhvXU~oUHOP9n5W}>{%dK|pI`G9f^I`#_t(jS zq|YYvn{$YPm{ULLupxW+p65@GWHy9nUtZUQdmE8P?x^F8tIb>ce3|Xpoo86P{sPm> z$vN9yf^D&8<8O-wlI>Ak_Q}v?Kp)kN2M3}CqG$&@)nYmtgIy>jylgs~J#5k&@ugzC zpVd&wALfW6@))B6i70Lf5mz*T(N;hrb6oWKwxj{PX7wHp9?J$=<2JiR9LT#dfgCd$ zaqkKZb6PmNHOV*f!vq{R5hUM6Yo-WJZDM+SCz<5VR7ap^EFx=Z7f+VS4PzCZ>S#-w zjsM09a)P9B&%*26ny=E{mLf==2s1_-cukyj7%{nk-VL)SWv9X(;v2hrnbm>--q)`r zaUN$QCH?jdjM|kO?v{N=S8vU$_g}&81$jiBO&u8cySxf>tvihX?Iq8@g-QTn0j zDnFUxQ}8M?`>uXSuRo z&Sy4qlxEgN^)IH*9D`drZ6+IN+!5t(0Z_ENI=T`Kp4Pp}Di9?dpUHtnsacnf*J~M` zFpKsyab%fIpB@8Lrd7&rg})KlGKHO zwlCujDkFD|6yIOTkp z=!SemIG~M3oDtONqokXa&!1PUA8$6p5va~cf$!sQEwwGpJdg9W$_b>s4u8C%!R;n9 zn3kSnwf9av%}%FtPY2*qn1p*=((!_%+}=TDL9@us8YKqrj8CL%+b>XPT7js<+bZ#Q zngTm^Zq)xV@G4tkP#KL5H(*~GnY+{XWm=pS6}NNZ+#@fJVT`@Vye=T!VK-XVW;QtK z3)(36n*y&q0!npH-Tkt#nC=0hz76COgNNw}LAdmAnwZCvtBKPYP?u{4NF#gVZA->X zMu|4Zh-#w7o=$MWBNQl`JC;j&M%@Rn6ToM{8|8B7pCmT6>?C%hSH z7d1)>O;8Q6JgDpIEhPpt7c!n($<2btT1=~3(Xl}P5O6h@K4 z(Nfbwm(A_swLjGwfRJ$Sc2B~_{Za&|kW6`Qt_+w$w9DDzbdfO1128AV6mYpJIMwoW zw;G1zEeU=o8G-$}-!=|%v!LOy@0G9b@H)=Q(C}MCpk99w)tek=0a<*MkB%+`0eYov z`t@N`094%|J+ti1@UK&ecIg$X{_eJ}Gba7K!e*r3B-w_*f0t!z3_umH9Sai~2-TAz z--$A{4I0rN^ODbO5va3YtZU?kfuZh4)d+o21L>Ks@F<8p6t87@hmZt z1o6-B;@UU;O4aT(adWR)4qf=SpFhc(Vv}qw!zFL2Y;|wwBXb-gf2eow&S#-6<*=>4wrt-@2h-(G`AvOK;`f6jO|ltP*Pq96SfXG3;-Ho&&rJp<5Gl^zTfLg`ms3$pmX z@hyob?TSeUkqu0~b9wtreV*96|G-VyYGdk9vAQEB@=}+5rL^|~H{}WDI%>GOaW}+c zZ%_+!xHCw8|I;h~bl;=4{m(j}!2MWcoUQelvng`&hvhR#dL|{F&&&1C*w;~VJXiO4 zrIVL^J(NHnEt)%3wC&kI0E8Pgv`*=~F`>BFl`Lna?-X1)+lg~d0hNwE$#R5&?N~*5 zlfMrbIl3bx z^6?)aRlD6qxUAbnc{T~6L$SdH&kQB=!?%mL^Ki>S9_1(DUvv&S0OT|=aEVakwRvQOe>+ympM`AyL?X$cAciU29-4>8VAxJ-*t z-GyZSA=#Q15`mf*Sn?a4Q+tVNVE+3y7+nDkDyRF?_{u9O=*LG8;Cc?KwY~(oDMUT@BC(8Iw1wTsIe!Y!3 zOH|;q8+36M*QjJ9{{Z7k7K~0bdxgNUIV*!a6VPG;*`P@g#q8x)=(zJ+p>L8$3$A19 zRsWkIO)k`1are#xT%w38-#~G7K=S*R7~_dsk~og2+8+tl&&t;ae_|U5Yg{%=kp3y# zedi{i1GvA!t7cuKlM}*^I(<}~b;*?z2m>qg?srPZKR3m{&hbSG^k(K!?vqi1Q@(N% z>5_&x7ScKEBr7Sg)lgYJs#{vEC)o9EczlLFj0%!_E^cq_RJdH9C3hZmO0?fGBOSDW zFm6%KP~+x!mf?5(p*U|cQ@`YVlDqn;9%+J>yu-jK3VF%X&~%! zP)sM`Ez_MY%1(HRs(9EFB)az>0Y;_{oRN-soU9eP{_`gO=NH*BWXw93<-n2CIpT{oV50bU|HpLy z8GZ0?PvbZ-~$S|KexwK$$YQy9Hd?M{N;zq+@<3STRLBV+6dB zC|0Go_k12fQZd91S3X7s<|Y{szIpRT<~)-8<5T=F{JuY{zX3ML^jHcp1H3+jDGHv@ zlgpR;rPZ5&;5E2#*H0=N_meSk*$ijITY}#ttzv>%@Wn4W@Nm}Z@;7-z|3F?^!x#Vi zY_8zJ`Zz%i+&8xWo9>@3fDuf#zzgwvntdt0Q4bLMIe~m+w?bS%4iNg;FMR~FH~g3~ zuI0o234nHSJw%kPS{IJAf0u+w3Rrg&TgViE?*c!I0((-{eoVs|Q25y|`Gbidcz0p6 zk@w>9r}5b@6U!jL4*37>(hv%km{qy@o6f(La(M*Z*IIa8;9ubW?^4dxG%`9r0~VEi zcZy`Yu?C7df71%G8WwfU$imn39Yhtpr|4ip`%tOD)4*GtCmJripRT zX6FHhurdWDCFQnj?mJ>37~KUr5`(N4(=oyqp_EUO7ncvi(}=)|rSku7-t!mD860$G z6sKm&(PIR(0*)SKRS;S@{l^z)9XxBpvLNK@RIzG%itzU>-Fb^GT2h!Nsm6Jjt2#&u zWe~_H+&2O5>Z*byVP`hyE7Kymm){3}q@ETr`ziR~hVs+t`8LW$gO_@28>SFzz`|=s z{}V#7PL*SAn$Fv<+g%C!x6D6*XG0GIy^Y%4jft@rBe-VH-s+(KW}*~hKOwGh1E!ah z4cd&B<#&Eb#>(3}tuC=`;T%fAai{MLvIDj~^sqb19Of@ieb=zA)@Gt+@a1>lgHQ^% zpYn)@d(sW80J(--EC+H!(Wk(GBFAyA8ID!{8~?K<{Q+-G5g2&riS7eta{DKqx@FHE z0$3z>FTzlgM%3+FVG`&AMl;EVR88{vOR-!|5q0N&+~B*^ooWgS>PS7))j%nj|MRS; zZ5fXP^e{k7&2rf`U{m$$sI_*3GfOu?H4=^zdRuX{-8*-I3=-6O#>)A=0UTi0=%fj7^j7H zS-wFYp&c6(0E7|;8YN3y2x6I9 zzccy_h|HorSr8G!tuHc*rVGBof_IlfH&z4(9!FnKWVs|0iYM(StD>Rt92cW5`^y8p z>%ULno)hlB@ui**{MP(8`Q;KL1%UWMe!k36{im*b4(7i+`^_(K1E+Ulhd#>S!ehyc zd`cMgv+3RX^L8+D2T&mR@+U*$fL1UWXvf3`O*#A;K2U+7d%hC5Q3PKE7o1OPPS-`< zTEVvVSv0-_TY2F(C*x^Lv(HIKAf$CE=w-;H&y{)Xgg#gAo&$Uy-o_6SifLWHDZMF) z`=s{%0Yqe@XrXf`2`&6ZF{M68F>U>#68MT@7Hu{DOW-tUeo2N9IR~VH%q1m%mM}{H zmeE*TmpY7bqdRsyz13ynlIU;u}9?aQUs zzO08P%MRK*U4j+g%)SBc;^((k3BPORDG&=OgwSOw?kMW!(C8l@E_GN_wv5?|cD$8k zB*zz5NI#l!IdnL30Ye1xQpCN6;M~yJiIZjOX#a6=%R=TuQ*XOjq-lrA@8t&)7@^Cb zs5tJ~*B=IA9yOv*fF)!}j|AuO{;B2C67XiwDYtozz0=%+RpLXt?|ccm9jT9WR{&#@ zp&adjG0Jbrg2ZnrdV4x6{@A8bu_j^Va?No zA+pW=@I@5akhvDAu&NA(o#SLx0x(BBe0JtFHxIrWH_N*^pSOz>qP>0!(7C_J4dB=s zIXT=}Js^RFAG1zmRzAfi@DCN_lm(MI}e;mN{i58jyJDq!O!OAq=w3K)g!SYchKsT zIrqb{>u~^_ns!2v6oo&C$H+5c`BL7#&)}#M?SoRzC!JCbdfw%4k$()G;I5MxNVEEa zpOU7|8-}04=@DgWkOA{d!!!g;EVyHIH`9P}Wc6%l$t9zHv%5W@grPf@PQ?J%?3;p} zEFSH@wtRbeSs)55z9rAM9r>XW$UD3$F#1(2wvi$Mm+2pTj3jv)*b2tk z6}&wE6>q4JUUwSxdAihjiMtQ->_HF4H@Cge8pPHZgi#t;{;&c=(_Rnit=)%Na%P}H z0FLwmr2Wh^4^1NM$lPL|lHU3QO?nNTZwGmo8-1z8YsWA-r^#o;O zKLCaf%;%3x5`62*hUwPV&B35ewuD75k6$u6*4dcW=UEG-BJqmVPNtB!ozgjRpJtAe z=}Pa6M7T#vqVV@62R3~K@NkOLVplFx`-(c>7*o%6u|z6k^KFm4Y{~n3BzfXF;Z@@= znth%yR~x3E3_JN@281a+cHtWn*_tcr2AGw1O4h^MRVj1t<*3X8 zgQY6rWb(lBqIP2)0$$(QhUfS@;lfnc?>=iVmRRzd-+UmY)m|MXr(<@JvDkdmVC6(g z%PW#UNLccws9BltrU(BE>nqKhNITw}=ovkZ7blw2OQ_;_Oh?Q?Z5TA29CW_dBm#@Hg^y z6IOlySo-@X14704d#tBN``a~o)D{j+ooZ$yVua#)EhNp@kJdsG$$lSvFDd(?ZGjBV zv0|4rm-;MIHl+2pR@I8JGG&n3d8caHh2A+`mHP3^uo#s{B2iL zM^9(c*j{-;?|$=TAz4)E*eO1}-}Hj{{it03<4nL^)eyxx^+z(rRhl`F?0eHS;af$3 z_r6>YPTO|pp8C5Tb?1}&#MwmGvHb3ndHc279KUZbRr)CG?uLF;?gL-1H(%%aB? zJYWqDWh1JEi`ZR#j(1g`O)fpvzPSfGdY^q!z@pzE3p8u2^E8fcw*>zViIfy4(Q{Hz z@sfBlYn#6NBN8KCjR||n@SV`}N^h(ad_FQR(HAIEE4m2I#qQD)#0aV}cy#Ig&Nm92 zRI$B;d-Z&OUwwIzoNs)QIgADh(vT#le>9=+;qr}A!4i=qgEZ*q(EQM3$fi2aM>PLs zc|r8Az4k-or+2};l*G;E@pCc>0wTy{DMt6SaVPz(rzDH4zL@qxN7S;RnT%gdW`egOo17-=t9)@&-AA*??Z=e|jCtrIY z{RQCyR$q`VWsYD;(N}=!14tWJ2@bkKYuLh*E+KSKI#=n0jL@Rqf5^j!iOZLEHYRFn zl!3rxF3Bx@`eZ^sV8wyr-+K}&7dlST@xM`j!X#q#As6IlZ|^gF-n=&KAlCnIfDGT~ zt8Nf<;`9#MK;@y<8++5QG2k*HAlS6PW^P8KC<)Gmkh#Obp5pxjb*I~T>3YM=sS8K# zjz9F7Yx79(E^Y1`Z(gf1!ckKBrOCL;(ZgRNy;;o=Y?kAjV{?FHV>PKEfCB}qaM``*&Q&@DS+VFA=ySG zwLpTgKdy^>n!YnBs-FKww*Dpk=PCCIhvK28>L|l5`8yy`KEwseZ;e^sYT}3TnLkl; z6|4QUwx6F=UpTN9s_|}Wu1Yov#yFj&y?T$GVIp6~?UkxB{^Jz{SOo(%eNS?=s*>%h z8t1HFrwopyEzF#Jr_l9YBU5^H)qy55*Z4D^^fG$(gYPwo-_1te;J|fG?)q``J-GGn zXP~|?jYr?5*$AF{k9>NdMu~U*%vPS1yowQ4f3{x;?9O7X)$Z1*Pt-VexF&pdtw*?< zh5|ii3S&BEsi%5TlyYfyX(3Ei}R8gxsy=i?gjNGc5%WUQ}$*AaVp0LwTa(I z|K%N+8pF!goT$9Dx|^LT9dsD&^oz*Q;-~xU?vy*rYrnvY%%s3%(G0R$CKtVKI9pmP z*AVZAsqQik4C+f8I#HlwKY5;|>`C6+@G(uGnX@k4HxNR^lkO*DXloFM=`N*aC%JQ%l!|Ehg#^7nKcQqFRTe~|M zUzv@ywjM4pr9R(v)}vwPX(5qgdT4NpoTH?1&7%T^iL_Lfc&a8KIGFd(6&~*Z1eCp1 zBU5Ia{3+3#7tG0UdH1SjrVPoj&3b_yAjmv&kPkZBaVuTC*FXU3CL;{A$mO;U{7NHJ z?B+U<_WdggzowGwyWM{tN>m}n4kv{?QcR_T!Xqw#vM0G;aB}%D_#!(G0%ZLT;@h+4 z(@F5?x%ceaiys2~_BUPv_Q^0MPcT-Shqw!nQo4r>t~!HxPC}p1J{c`|`jMDhncZ|t0+Dt#I&8=QLwF?Ke?t`V5`jL| z*moW#$65=4D;`r+Wxe3Uoh^pi>SdjWp*)(rhv>&(uwgOUB~Z)t(eyXzDdZH!H4a%{ z!-I8G`vaatymOskH?~!~S%6NC=`A8Lpz_`j;8{ho6ifQrtV6&R#EVXM3OzMT81yC(EH)1uAST+_ArjKvt#?jhwIYXb>1Jo8GIid_v5_(qCm64 zUu4+8Ikd$U`u)wIX}_V=Y0&C$_)78;!*1@>EfrPG3RMux5LEXgD1LqFXgE7{p(63u zynM2-Up@F^>U;}F_`R%M_vQnx!;Bjh8Ly|VA>zKq=qWv-F)K8q@WCUJkrxxKo!Jy& zwIgs6&rP;_GXp)Xr*K1lMS<~E{pR2Ov9baUG}eKhyXTE*K|xf-mE+hr*m<(>fSsyW zb&*yjyhX+NY$NhR;%ml#A?YUnL*#ON17OFQK0V=86r6NGEeF(2s%K0w>+=jd)UG^~ z)P#9T?rqI9xnT$||02X5j8e0|U215&KvL?MBHwUr-yV>EkJ++e#CkXJ*{z@fnjam* zFTsGKMV)V`sH!|75%(zE(1h$^!}#{az#Y^0p=H#=evFI5>%5|)8zD{`vDa(#~D=pT?m=@n2c2s@qcn!1PhQI!>#JMGG zvNU8MS~0gXF}ovR!UT#XnRkr3sJ(1{^u1^4lbe=^%T@*pzANy*i5g29zvsNczulce!+@sw`Jdq#|j`t-alwW1(})&zbd6T6DsmnnQ4X&XSU`^@!U* zr&76)ayos(|0k?_>7^Gu3AVMwcodfb>1<)H51?Nf=yzS2n<7KeC znhm7;1}FOu%=$1yYQY$HwR@eHiTtG`k#y`ozQm5mK?DE>nHuzR8hd2x4QJ}zjD+AR zAh8bCz6tXWu)~^sH$B}nD5}(NqlF~3HuWv>Qk|i=x%Yx4TPbRI&)!zt@(OJrr0(^D zK~a>Jt1*Lcnsf%?CxPMuPc}CHD3m7H-8>h#mY<|kX~ThScDK(HFTxeYI9#TBMC`{! zp=A>7b1)MQ{YxojaAf#s4*|uPw|uTZ5wX5%xJB@eg?D2?%cSu~m1Dpr63f70SeG&^ zAgUjTl^B_||QQ8?2-Ar)&cwUAt;elB!H?Cnb(4LY&*&2<@ zEm{(u=1s&}&AZ*c8_%C7DDISru!dyZ#Z)grbAn4Cwx2J%g z#h-}AN6W2=Eu63oSoiH(>rPp9dgg--`U9d(!~Eu^P!Nr-w3gOd)qbfbTsO|=9JNjg$s%8Wb8TaVQ9!204vGCIaz zAvekgPL+!TCg0lutjwkA+@Q^*W-Ar+r}`e~?*;B6?dw;1xYaM>r^9adoXAWj&|ybv zW_LPl!^I{qE&utUW#}4fGgUWHI|L|njB2^ciFzaDf`u=+bX!kTMLKF+>pQMvh!mjj zWA^d1xj_urZ0Q*l-%|lx&+O6ER7-er8vNdvftE{RuKSeN)I}@J0?p^1;ycBud1&wX zk``NgNx;!b(X6jZI(hBcN&8^cQZ&V&BvV%3|49Yj`5kheXQd`2$H)`xcD-rTipuJ& z)u7&^qr=+0xMm!$BS&q@7kH9D=LumD!!gyTM)Vh4n7xU-)xYzG5{jLw=9y4a#4DXhu%dg#(%K#2G3w$wpwuY4 z^!8|7Iru}K)5&74Oqke;tW?mO&Hdh{Oz|jdvhE&n(U$;+UU9?ju^-Mi~8JY_Y?r$J{>>l2nVm7~^*W}3ZR)q{!jX7}V(ZcGB znm9z|O?jCoBDB;Ngj5eGl#)#Wz#Gb^`8 zfUwIC56S$Eh`r5fuFy-o$<`la6|ipSAUXG%7eQte}`k2>v? zcXTTEi-H(!t&6zUi*mwlQZ4hMR z+OE*ODGrjX_rng^!P$fJhbUmJT!L` zd(1Mny?+ow!_;4AStMTx``6r%rUOpYWt!aNa z6Yj82t=ms3T&EO+6Pjf<3Jm|L9L)lZ9wQQEK9tg)M`=2#Q&pKNy$2?Am?eBgMC7J| zS8aO~>nHu#ikPm=@>Jy#XF42PXPf zEL0jp)bEmio5C6uu~$zl>Tw9)0qhDXeq6psTBJ-rK?q9DyI9v{mim*ULLUb-=xo~{ zk~Ta}QWsAq427Zg4>}FQxM~L!liO{=6>lE!!%j{!TUI>#RQ~*w4w>Sv0d4gBR}-SS z*l*n1H7v{L>ls6Xna`#N8q906d2$l0hdYa|rV|j#t1{K?st9zey_8BR-l;>Tp?2&OTf7jZNaJ-Q(UODzT^fn^3t<#Ntu8sFlTalGzTZq z06reJM$ac}NiM|l{{i5acSXw=pImn?3fS4D7$>xd_%^uH_w@xaO5rftEius2hLF~w zx2EnBPNb!gxIh<#FFL@lf0bA`z4mW~M(fcFX(_6HTmYyXDQLDnmFCotlQRNXS8n{m zaVPomEtVh;Cw(uoq1WF6Vuc{GI2N>mHNGLPn6aFowb^`fSvh?>(kDWza-bq~bEaM$ zOpdCPYby$}7HT6YIe7w+T)%fyFtelaIsx9gL<2?emYu zKYyoKhd&>fX*%B%o4-GI!~Zw2MMDox%k_fNBx~jBz+6+uoIwl(0F)dv0giUB} zGkdr}w?{ro5OvubBvdDWedi`PR&GhTJF&NPGefkoTD>><-HqJ;O$ymVYpFa_ow*zXyTnA_XNfaAn9urwMTKN^0YR_%$$fPBz@!LBCPcRZOUv@&f=oW zTp7|gyLj=Xl5i5bzdg2qz4Xe>=T5j~>h$D({WF+=)$ig$)eVCU(5^6@7_Jc zucsq0^uor0X8lsRKZ7?F-dvkR;^0+PGv9|wyV+A(M@_pDISNP$z}Rzn_YL$<9k$p$ z6YdJS0CAQrDUKBhs z7NQ#h4T$9Nu`gK`YV$c=0#O{B^_&7$Cs;gVMHwMTEttZiKkHv@zEbjHgdHMuS>`eS z9pYxIaYn8Mst&{B4goqtk^9JA7?&>p_vAmdrk}p)Vv)mLKIctj@J-c1sxHd;IiW~D z=Cvt6!q``lCnT?O03R+Z<~(;>fz%IYT5gNmErSZ*WUye+Ezvn*JE6~Z5r;^QEEyF0 zQyI%ia*e3Cqk=WIXMe4KlRQ7++h!V}mPE*Sr?Jo^_)9&60sr&}(EpG105e6s25Cgz zM(nO_KYN%H#ci;=_oli~Mc1R&-5!KK^ZqN_&IX=`H$-#vKR&A3r-cxQOpse!C*EFbo~5;i9^6B|zWnq_OE)Rf}ZEo-ch0P0+?71uU-y^9~x zt55px01So_omoMZAPv~mRNw$i(v{pnpLJC#?zIGX@wt~*y==qpb(23lLiOccV%VH$xgq1IcI>8JWc326Z+Py5dRyWx zhM^ow-P`&iU2BG#IYO_Mf>K>MqQzsX*ncS_lpxWA(iJB1Q{NwUXp5Ti#p)l6);SKa zX{o7?>c;M$41Lis7mafRu$l>&16nn8^z#)Ci`bH&Ba}#>aG$x0Ao*5X)KZh%{*q^ZBIdoDS0=T;0}}zkwjENlyP-ch{uc9Uv!`=<93{k?I9TqQuk+z` znF7DGLa`Hh9xtvEV6N7`6x?FkGbygnZAoD`00v??DB~R=7z5O`R>Amcin;Q| zr~-V3g=)sfieOj5dKN?NgFw++^&6asb4fbwTDmF7BHQD}u(3yrGY&Lg{^Q z2A8glu_`Q{?_zrT(S0qp;iBC?aF$DwE#V#YY|~u|A`H+rIEso<`$8Bo)auQqE}aT0 zAD_L2cpEaQw4IgOBHc;_%*>{qRxAQi@eU!{(7Pd&DC;$^*rlOEU>klO9MOgrr3 z#5o<)@LCjm?;mY4#iTU>Ux9{d;Kwu4u_Dh=@_te!u zcF;qc^@c~gzG5$sx7UpQ>{6U_GzIVzDM`lv9J~bGC-=TYC)TOQDvn{ z%E^8qg%Uxwddp2x;mfh>ziN3b327X1;>Ky_89s=BS}O5Mi_oRTUG<% zbz(QXh>g`l{W|Ks6Z*a$h^ieFlGi z>OWMstUc*R?!|US80IMEoUtWJihi3IDKe~|1R+uBg>%F`z-E;!{Bi|Gtv6joBj<{Q zR#e^$!zVJuFRox&>?h{~=3o;K=sOqx zY2y1#%O%Fpr+tFwz_jH!$X`-mL1-qN)|BZnqhUcmD?As of October 31st, the forecast gives **Donald Trump a 97% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 96% chance of beating Kamala Harris** in Nebraska CD-1.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-1.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json index 2f9b9061..f14fde16 100644 --- a/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-2/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in Nebraska CD-2.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-2.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json index 0a7c9b5e..072669ef 100644 --- a/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska CD-3/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska CD-3.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska CD-3.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nebraska/execute-results/html.json b/_freeze/2024-potus/Nebraska/execute-results/html.json index 69352af9..26c81b95 100644 --- a/_freeze/2024-potus/Nebraska/execute-results/html.json +++ b/_freeze/2024-potus/Nebraska/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Nebraska.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nebraska.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Nevada/execute-results/html.json b/_freeze/2024-potus/Nevada/execute-results/html.json index ff86617a..52a44b90 100644 --- a/_freeze/2024-potus/Nevada/execute-results/html.json +++ b/_freeze/2024-potus/Nevada/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 51% chance of beating Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 52% chance of beating Kamala Harris** in Nevada.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Nevada.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Hampshire/execute-results/html.json b/_freeze/2024-potus/New Hampshire/execute-results/html.json index 9e0a5136..4f8c7905 100644 --- a/_freeze/2024-potus/New Hampshire/execute-results/html.json +++ b/_freeze/2024-potus/New Hampshire/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 91% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 91% chance of beating Donald Trump** in New Hampshire.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Hampshire.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Jersey/execute-results/html.json b/_freeze/2024-potus/New Jersey/execute-results/html.json index 91dc0ecc..e6be16ca 100644 --- a/_freeze/2024-potus/New Jersey/execute-results/html.json +++ b/_freeze/2024-potus/New Jersey/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New Jersey.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Jersey.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New Mexico/execute-results/html.json b/_freeze/2024-potus/New Mexico/execute-results/html.json index 0b5c0d6a..5988f971 100644 --- a/_freeze/2024-potus/New Mexico/execute-results/html.json +++ b/_freeze/2024-potus/New Mexico/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 93% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in New Mexico.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New Mexico.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/New York/execute-results/html.json b/_freeze/2024-potus/New York/execute-results/html.json index 415be4cb..cf033a17 100644 --- a/_freeze/2024-potus/New York/execute-results/html.json +++ b/_freeze/2024-potus/New York/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in New York.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/New York.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Carolina/execute-results/html.json b/_freeze/2024-potus/North Carolina/execute-results/html.json index 0b82558e..fb26dd00 100644 --- a/_freeze/2024-potus/North Carolina/execute-results/html.json +++ b/_freeze/2024-potus/North Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 68% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 68% chance of beating Kamala Harris** in North Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/North Dakota/execute-results/html.json b/_freeze/2024-potus/North Dakota/execute-results/html.json index 9e1bd9d2..55dbc69f 100644 --- a/_freeze/2024-potus/North Dakota/execute-results/html.json +++ b/_freeze/2024-potus/North Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in North Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/North Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Ohio/execute-results/html.json b/_freeze/2024-potus/Ohio/execute-results/html.json index db44f7cc..e6b304e1 100644 --- a/_freeze/2024-potus/Ohio/execute-results/html.json +++ b/_freeze/2024-potus/Ohio/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 98% chance of beating Kamala Harris** in Ohio.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Ohio.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oklahoma/execute-results/html.json b/_freeze/2024-potus/Oklahoma/execute-results/html.json index 8a37e408..dd3c2c2f 100644 --- a/_freeze/2024-potus/Oklahoma/execute-results/html.json +++ b/_freeze/2024-potus/Oklahoma/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Oklahoma.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oklahoma.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Oregon/execute-results/html.json b/_freeze/2024-potus/Oregon/execute-results/html.json index b2d87b39..afe7cbf7 100644 --- a/_freeze/2024-potus/Oregon/execute-results/html.json +++ b/_freeze/2024-potus/Oregon/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 96% chance of beating Donald Trump** in Oregon.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Oregon.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Pennsylvania/execute-results/html.json b/_freeze/2024-potus/Pennsylvania/execute-results/html.json index 4e9215fa..e3e64d68 100644 --- a/_freeze/2024-potus/Pennsylvania/execute-results/html.json +++ b/_freeze/2024-potus/Pennsylvania/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 55% chance of beating Kamala Harris** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 55% chance of beating Kamala Harris** in Pennsylvania.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Pennsylvania.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Rhode Island/execute-results/html.json b/_freeze/2024-potus/Rhode Island/execute-results/html.json index 2cab781a..8667b9ab 100644 --- a/_freeze/2024-potus/Rhode Island/execute-results/html.json +++ b/_freeze/2024-potus/Rhode Island/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Rhode Island.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Rhode Island.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Carolina/execute-results/html.json b/_freeze/2024-potus/South Carolina/execute-results/html.json index 18d5342b..c2873156 100644 --- a/_freeze/2024-potus/South Carolina/execute-results/html.json +++ b/_freeze/2024-potus/South Carolina/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Carolina.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Carolina.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/South Dakota/execute-results/html.json b/_freeze/2024-potus/South Dakota/execute-results/html.json index 4051c927..d7ee1f30 100644 --- a/_freeze/2024-potus/South Dakota/execute-results/html.json +++ b/_freeze/2024-potus/South Dakota/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in South Dakota.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/South Dakota.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Tennessee/execute-results/html.json b/_freeze/2024-potus/Tennessee/execute-results/html.json index 55a7246c..3b37f89c 100644 --- a/_freeze/2024-potus/Tennessee/execute-results/html.json +++ b/_freeze/2024-potus/Tennessee/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Tennessee.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Tennessee.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Texas/execute-results/html.json b/_freeze/2024-potus/Texas/execute-results/html.json index 3d445baa..55789df0 100644 --- a/_freeze/2024-potus/Texas/execute-results/html.json +++ b/_freeze/2024-potus/Texas/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a 94% chance of beating Kamala Harris** in Texas.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Texas.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Utah/execute-results/html.json b/_freeze/2024-potus/Utah/execute-results/html.json index f48c70a8..7f2145b2 100644 --- a/_freeze/2024-potus/Utah/execute-results/html.json +++ b/_freeze/2024-potus/Utah/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Utah.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Utah.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Vermont/execute-results/html.json b/_freeze/2024-potus/Vermont/execute-results/html.json index 7bd56701..6c92da35 100644 --- a/_freeze/2024-potus/Vermont/execute-results/html.json +++ b/_freeze/2024-potus/Vermont/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Vermont.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Vermont.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Virginia/execute-results/html.json b/_freeze/2024-potus/Virginia/execute-results/html.json index aa84677f..785d3d82 100644 --- a/_freeze/2024-potus/Virginia/execute-results/html.json +++ b/_freeze/2024-potus/Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 91% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 92% chance of beating Donald Trump** in Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Washington/execute-results/html.json b/_freeze/2024-potus/Washington/execute-results/html.json index 7c82c6c6..d631f34a 100644 --- a/_freeze/2024-potus/Washington/execute-results/html.json +++ b/_freeze/2024-potus/Washington/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a >99% chance of beating Donald Trump** in Washington.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Washington.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/West Virginia/execute-results/html.json b/_freeze/2024-potus/West Virginia/execute-results/html.json index 17ed0ed8..04fa535c 100644 --- a/_freeze/2024-potus/West Virginia/execute-results/html.json +++ b/_freeze/2024-potus/West Virginia/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in West Virginia.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/West Virginia.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wisconsin/execute-results/html.json b/_freeze/2024-potus/Wisconsin/execute-results/html.json index 73cdf259..b0aaef45 100644 --- a/_freeze/2024-potus/Wisconsin/execute-results/html.json +++ b/_freeze/2024-potus/Wisconsin/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Kamala Harris a 55% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Kamala Harris a 55% chance of beating Donald Trump** in Wisconsin.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n
\n\n
\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wisconsin.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/2024-potus/Wyoming/execute-results/html.json b/_freeze/2024-potus/Wyoming/execute-results/html.json index 67034392..6d048130 100644 --- a/_freeze/2024-potus/Wyoming/execute-results/html.json +++ b/_freeze/2024-potus/Wyoming/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "33ef22863f8e8a8325bc405c8322e46f", "result": { "engine": "knitr", - "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of October 31st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Wisconsin](Wisconsin.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", + "markdown": "---\nformat: \n html:\n code-fold: true\n page-layout: custom\n fig-align: center\n fig-width: 12\n fig-height: 4\nexecute: \n message: false\n warning: false\n echo: false\nparams:\n state: \"Oklahoma\"\n branch: \"dev\"\n---\n\n::: {.cell}\n\n:::\n\n\n\n::::: {.column-body-custom}\n\n:::: {.columns}\n::: {.column width=\"80%\"}\n\n\nAs of November 1st, the forecast gives **Donald Trump a >99% chance of beating Kamala Harris** in Wyoming.\n\n\n:::\n::: {.column width=\"20%\"}\n:::\n::::\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Presidential probabilities\nEach day, the model simulates thousands of plausible election results, from landslide victories to tightly contested races.\nEach candidate’s probability of winning is the proportion of simulations that they’ve won.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### Forecasted election-day voteshare\nThe model first constructs a polling average, pooling data across similar states when polls are sparse.\nIt then projects forward to election day, initially relying on non-polling indicators like economic growth and partisanship, but aligning more closely with the polling average as election day approaches.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n\n```{=html}\n
\n\n```\n\n:::\n:::\n\n
*No polls have been conducted in Wyoming. The projected voteshare is estimated using economic and approval indicators, as well as polling information from similar states.*
\n\n::: {.cell}\n\n:::\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"60%\"}\n\n\n### State similarities\nThe model uses state characteristics, like demographic composition, population density, and education, to estimate how similar states are to one another.\nSimilar states are more likely to share polling biases and see similar shifts in polling trendlines.\n\n\n:::\n::: {.column width=\"40%\"}\n:::\n::::\n\n\n\n![](https://raw.githubusercontent.com/markjrieke/2024-potus/main/img/Wyoming.png){height=700 fig-align='center'}\n\n\n\n---\n\n:::: {.columns}\n::: {.column width=\"30%\"}\n\n\n\nSources: Ballotpedia; Cook Political Report; The Economist; Federal Reserve Bank of St. Louis; FiveThirtyEight; Urban Stats; 270towin.com\n
\n
\n[{{< fa brands github >}} View the source code](https://github.com/markjrieke/2024-potus/tree/main)\n
\n[{{< fa solid database >}} Explore the output](https://github.com/markjrieke/2024-potus/tree/main/out)\n
\n\n\n:::\n::::\n\n---\n\n:::::\n\n::::: {.column-margin-custom}\n\n\n\n**[National Forecast](National.qmd)**
[How this works](../posts/2024-07-04-forecast-methodology/index.qmd)\n\n
**Competitive states**
[Nevada](Nevada.qmd)
[Wisconsin](Wisconsin.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Michigan](Michigan.qmd)
[North Carolina](North Carolina.qmd)
[Arizona](Arizona.qmd)
[Georgia](Georgia.qmd)\n\n
**All states**
[Alabama](Alabama.qmd)
[Alaska](Alaska.qmd)
[Arizona](Arizona.qmd)
[Arkansas](Arkansas.qmd)
[California](California.qmd)
[Colorado](Colorado.qmd)
[Connecticut](Connecticut.qmd)
[Delaware](Delaware.qmd)
[District of Columbia](District of Columbia.qmd)
[Florida](Florida.qmd)
[Georgia](Georgia.qmd)
[Hawaii](Hawaii.qmd)
[Idaho](Idaho.qmd)
[Illinois](Illinois.qmd)
[Indiana](Indiana.qmd)
[Iowa](Iowa.qmd)
[Kansas](Kansas.qmd)
[Kentucky](Kentucky.qmd)
[Louisiana](Louisiana.qmd)
[Maine CD-1](Maine CD-1.qmd)
[Maine CD-2](Maine CD-2.qmd)
[Maine](Maine.qmd)
[Maryland](Maryland.qmd)
[Massachusetts](Massachusetts.qmd)
[Michigan](Michigan.qmd)
[Minnesota](Minnesota.qmd)
[Mississippi](Mississippi.qmd)
[Missouri](Missouri.qmd)
[Montana](Montana.qmd)
[Nebraska CD-1](Nebraska CD-1.qmd)
[Nebraska CD-2](Nebraska CD-2.qmd)
[Nebraska CD-3](Nebraska CD-3.qmd)
[Nebraska](Nebraska.qmd)
[Nevada](Nevada.qmd)
[New Hampshire](New Hampshire.qmd)
[New Jersey](New Jersey.qmd)
[New Mexico](New Mexico.qmd)
[New York](New York.qmd)
[North Carolina](North Carolina.qmd)
[North Dakota](North Dakota.qmd)
[Ohio](Ohio.qmd)
[Oklahoma](Oklahoma.qmd)
[Oregon](Oregon.qmd)
[Pennsylvania](Pennsylvania.qmd)
[Rhode Island](Rhode Island.qmd)
[South Carolina](South Carolina.qmd)
[South Dakota](South Dakota.qmd)
[Tennessee](Tennessee.qmd)
[Texas](Texas.qmd)
[Utah](Utah.qmd)
[Vermont](Vermont.qmd)
[Virginia](Virginia.qmd)
[Washington](Washington.qmd)
[West Virginia](West Virginia.qmd)
[Wisconsin](Wisconsin.qmd)
[Wyoming](Wyoming.qmd)\n\n\n\n:::::\n\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua"