-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.c
1115 lines (891 loc) · 31.1 KB
/
utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*************************************************************
*
* utils.c - Useful utility subroutines for rocktools
*
* Mark J. Stock, [email protected]
*
*
* rocktools - Tools for creating and manipulating triangular meshes
* Copyright (C) 1999-2000,2002-2004,8,14 Mark J. Stock
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
********************************************************** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <ctype.h>
#include "structs.h"
int count_nodes();
int set_node_connectivity();
node_ptr add_to_nodes_list(tri_pointer,int*,int,VEC*,bin_ptr);
norm_ptr add_to_norms_list(int*,VEC*,nbin_ptr);
VEC vscale(double,VEC);
VEC from(VEC,VEC);
VEC plus(VEC,VEC);
double length(VEC);
double dot(VEC,VEC);
double find_area(tri_pointer);
VEC find_center(tri_pointer);
VEC find_tri_normal(tri_pointer);
VEC find_normal(VEC,VEC,VEC);
double find_tri_dist(tri_pointer,VEC);
int inside_bounds(double,double,double);
VEC find_cm(tri_pointer);
/*
* Safely allocate a new triangle
*/
tri_pointer alloc_new_tri() {
tri_pointer new_tri = (TRI*)malloc(sizeof(TRI));
new_tri->index = -1;
// set all the pointers!
for (int j=0; j<3; j++) {
new_tri->node[j] = NULL;
new_tri->norm[j] = NULL;
new_tri->texture[j] = NULL;
new_tri->adjacent[j] = NULL;
new_tri->midpoint[j] = NULL;
}
#ifdef DETAIL
new_tri->splittable = TRUE;
#endif
new_tri->next_tri = NULL;
return new_tri;
}
/*
* Safely remove a triangle (this means removing normals and texture coords, but not nodes)
* Returns pointer to next tri
*/
tri_pointer delete_tri (tri_pointer this) {
tri_pointer newhead = this->next_tri;
// delete attached norms and textures, but not nodes or adjacents
for (int i=0; i<3; i++) if (this->norm[i]) free (this->norm[i]);
for (int i=0; i<3; i++) if (this->texture[i]) free (this->texture[i]);
free(this);
return newhead;
}
/*
* Add a node to the list of nodes - and search for close nodes
*/
node_ptr add_to_nodes_list (tri_pointer the_tri, int* num_nodes, int index, VEC* location, bin_ptr thebin) {
// For very large meshes, merging nodes on read can be time-consuming; toggle this here.
// FALSE will read very quickly, TRUE will simplify meshes and support smoothing.
// We should make this a command-line variable (-nomerge)
int try_match = TRUE;
node_ptr curr_node = NULL;
int ibin = 0;
int found_match = FALSE;
double thisx;
double match_thresh = 1.e-5; /* threshhold to match node locations */
// find the bin
if (thebin) {
// start searching only in bin ibin
if (thebin->axis == 0) thisx = (*location).x;
else if (thebin->axis == 1) thisx = (*location).y;
else thisx = (*location).z;
ibin = (int)((thisx-thebin->start)/thebin->dx);
}
// new way to search
if (try_match) {
if (thebin) {
// fprintf(stderr," search in bin %d\n",ibin); fflush(stderr);
curr_node = thebin->b[ibin];
} else {
// search through all nodes, starting with the head
curr_node = node_head;
}
// search the list for a node close to this
while (curr_node) {
//fprintf(stderr," does location (%g %g) match node at (%g %g)? \n",(*location).x,(*location).y,curr_node->loc.x,curr_node->loc.y); fflush(stderr);
if (fabs(curr_node->loc.x - (*location).x) < match_thresh) {
if (fabs(curr_node->loc.y - (*location).y) < match_thresh) {
if (fabs(curr_node->loc.z - (*location).z) < match_thresh) {
found_match = TRUE;
// fprintf(stderr,"yes!\n");
break;
}
} else {
// fprintf(stderr,"no.\n");
}
} else {
// fprintf(stderr,"no.\n");
}
if (thebin) curr_node = curr_node->next_bnode;
else curr_node = curr_node->next_node;
}
} else {
// do not attempt to match with existing nodes
}
/* did we find a match in the list of existing nodes? */
if (found_match) {
/* add some data to the specific node entry */
#ifdef CONN
if (the_tri) add_conn_tri (curr_node, the_tri, index);
#endif
} else {
/* if not, create one and add it to the list */
curr_node = (NODE *)malloc(sizeof(NODE));
curr_node->index = (*num_nodes)++;
curr_node->loc.x = (*location).x;
curr_node->loc.y = (*location).y;
curr_node->loc.z = (*location).z;
#ifdef CONN
curr_node->num_conn = 0;
curr_node->max_conn = 0;
if (the_tri) add_conn_tri (curr_node, the_tri, index);
//curr_node->conn_tri = (tri_pointer*)malloc(curr_node->max_conn*sizeof(tri_pointer));
//curr_node->conn_tri_node = (int*)malloc(curr_node->max_conn*sizeof(int));
//curr_node->conn_tri[0] = the_tri;
//curr_node->conn_tri_node[0] = index;
//curr_node->num_conn = 1;
#endif
// add it to the head of the full list
curr_node->next_node = node_head;
node_head = curr_node;
// add it to the head of the bin's list
if (thebin) {
curr_node->next_bnode = thebin->b[ibin];
thebin->b[ibin] = curr_node;
}
// fprintf(stderr," adding new node at %g %g %g, num_conn= 1\n",location->x,location->y,location->z); fflush(stderr);
}
return curr_node;
}
/*
* Add a normal to the list of normals - and search for close normals
*/
norm_ptr add_to_norms_list (int* num_norms, VEC* normal, nbin_ptr thebin) {
norm_ptr curr_norm = NULL;
int ibin = 0;
int found_match = FALSE;
double match_thresh = 1.e-5; /* threshhold to match node normal */
// the normal MUST be normalized
double len = sqrt(normal->x*normal->x + normal->y*normal->y + normal->z*normal->z);
if (len > 1.e-10) {
normal->x /= len;
normal->y /= len;
normal->z /= len;
}
// first, search the list for a node close to this
// new way to search
if (thebin) {
// start searching only in bin ibin
ibin = (int)(( normal->z - thebin->start )/thebin->dx);
// fprintf(stderr," search in bin %d\n",ibin); fflush(stderr);
curr_norm = thebin->b[ibin];
} else {
// search through all nodes, starting with the head
curr_norm = norm_head;
}
while (curr_norm) {
//fprintf(stderr," does normal (%g %g) match node at (%g %g)? \n",(*normal).x,(*normal).y,curr_node->loc.x,curr_node->loc.y); fflush(stderr);
if (fabs(curr_norm->norm.x - (*normal).x) < match_thresh) {
if (fabs(curr_norm->norm.y - (*normal).y) < match_thresh) {
if (fabs(curr_norm->norm.z - (*normal).z) < match_thresh) {
found_match = TRUE;
// fprintf(stderr,"yes!\n");
break;
}
} else {
// fprintf(stderr,"no.\n");
}
} else {
// fprintf(stderr,"no.\n");
}
if (thebin) curr_norm = curr_norm->next_bnorm;
else curr_norm = curr_norm->next_norm;
}
/* did we find a match in the list of existing nodes? */
if (!found_match) {
/* if not, create one and add it to the list */
curr_norm = (NORM *)malloc(sizeof(NORM));
curr_norm->index = (*num_norms)++;
curr_norm->norm.x = (*normal).x;
curr_norm->norm.y = (*normal).y;
curr_norm->norm.z = (*normal).z;
// add it to the head of the full list
curr_norm->next_norm = norm_head;
norm_head = curr_norm;
// add it to the head of the bin's list
if (thebin) {
curr_norm->next_bnorm = thebin->b[ibin];
thebin->b[ibin] = curr_norm;
}
// fprintf(stderr," adding new norm at %g %g %g, num_conn= 1\n",normal->x,normal->y,normal->z); fflush(stderr);
}
return curr_norm;
}
/*
* Add a texture coord to the list of text coords - and search for close values
*/
text_ptr add_to_textures_list (int* num_textures, UV* texture, tbin_ptr thebin) {
text_ptr curr_text = NULL;
int ibin = 0;
int found_match = FALSE;
double match_thresh = 1.e-5; /* threshhold to match node texture */
// first, search the list for a node close to this
// new way to search
if (thebin) {
// start searching only in bin ibin
ibin = (int)(( texture->x - thebin->start )/thebin->dx);
//fprintf(stderr," search in bin %d\n",ibin); fflush(stderr);
curr_text = thebin->b[ibin];
} else {
// search through all nodes, starting with the head
curr_text = text_head;
}
while (curr_text) {
if (fabs(curr_text->uv.x - (*texture).x) < match_thresh) {
if (fabs(curr_text->uv.y - (*texture).y) < match_thresh) {
found_match = TRUE;
//fprintf(stderr,"yes!\n");
break;
} else {
//fprintf(stderr,"no.\n");
}
} else {
//fprintf(stderr,"no.\n");
}
if (thebin) curr_text = curr_text->next_btext;
else curr_text = curr_text->next_text;
}
//if (found_match) fprintf(stderr,"yes!\n");
//else fprintf(stderr,"no.\n");
/* did we find a match in the list of existing nodes? */
if (!found_match) {
/* if not, create one and add it to the list */
curr_text = (TEXTURE *)malloc(sizeof(TEXTURE));
curr_text->index = (*num_textures)++;
curr_text->uv.x = (*texture).x;
curr_text->uv.y = (*texture).y;
// add it to the head of the full list
curr_text->next_text = text_head;
text_head = curr_text;
// add it to the head of the bin's list
if (thebin) {
curr_text->next_btext = thebin->b[ibin];
thebin->b[ibin] = curr_text;
}
//fprintf(stderr," adding new text at %g %g\n",texture->x,texture->y); fflush(stderr);
}
return curr_text;
}
#ifdef CONN
/*
* Add a triangle to a node's connectivity lists
*/
int add_conn_tri (node_ptr curr_node, tri_pointer the_tri, int index) {
int i;
tri_pointer *new_conn_tri;
int *new_conn_tri_node;
if (curr_node->num_conn == curr_node->max_conn || curr_node->max_conn==0) {
// malloc more room in the arrays
if (curr_node->max_conn == 0) curr_node->max_conn = 1;
else curr_node->max_conn *= 2;
// extend the conn_tri array
new_conn_tri = (tri_pointer*)malloc(curr_node->max_conn*sizeof(tri_pointer));
for (i=0; i<curr_node->num_conn; i++)
new_conn_tri[i] = curr_node->conn_tri[i];
free(curr_node->conn_tri);
curr_node->conn_tri = new_conn_tri;
// extend the conn_tri_node array
new_conn_tri_node = (int*)malloc(curr_node->max_conn*sizeof(int));
for (i=0; i<curr_node->num_conn; i++)
new_conn_tri_node[i] = curr_node->conn_tri_node[i];
free(curr_node->conn_tri_node);
curr_node->conn_tri_node = new_conn_tri_node;
//fprintf(stderr,"node %d now has array length %d\n",curr_node->index,curr_node->max_conn);
}
// actually link the tri to the node
curr_node->conn_tri[curr_node->num_conn] = the_tri;
curr_node->conn_tri_node[curr_node->num_conn] = index;
curr_node->num_conn++;
//fprintf(stderr," add tri to existing node (%g %g %g), num_conn = %d\n",
// (*location).x,(*location).y,(*location).z,curr_node->num_conn);
//fprintf(stderr,"node %d has conn_tri %d and c_t_node %d\n",
// curr_node->index,curr_node->conn_tri[curr_node->num_conn-1]->index,
// curr_node->conn_tri_node[curr_node->num_conn-1]);
//fflush(stderr);
return (curr_node->max_conn);
}
#endif
#ifdef CONN
/*
* Determine the adjacent triangles for each triangle
*/
int set_adjacent_tris (tri_pointer tri_head) {
int i,j;
int num_set = 0;
int test_node_index;
tri_pointer this_tri = tri_head;
tri_pointer test_tri; // the triangle we're testing for test_node
node_ptr test_node; // the node pointer we're looking for
node_ptr test_node2;
while (this_tri) {
//fprintf(stderr,"set adjacent to tri %d\n",this_tri->index);
// loop through all triangles with test_node2, look for one with test_node also
for (j=0; j<3; j++) {
if (!this_tri->adjacent[j]) {
test_node = this_tri->node[j];
test_node2 = this_tri->node[(j+1)%3];
//fprintf(stderr," find adjacent on side %d\n",j);
//fprintf(stderr," loop thru tris with node %d looking for node %d\n",
// test_node2->index,test_node->index);
for (i=0; i<test_node2->num_conn; i++) {
test_tri = test_node2->conn_tri[i];
if (test_tri) {
//fprintf(stderr," looking at tri %d, node %d\n",test_tri->index,test_node2->conn_tri_node[i]);
// if test_tri and this_tri are oriented the same way, this will work
// just test conn_tri_node[i]+1
test_node_index = mod(test_node2->conn_tri_node[i]+1,3);
//fprintf(stderr," node %d\n",test_tri->node[test_node_index]->index);
if (test_tri->node[test_node_index] == test_node) {
this_tri->adjacent[j] = test_tri;
test_tri->adjacent[test_node2->conn_tri_node[i]] = this_tri;
//fprintf(stderr," two tris (%d,%d) share side (%d) %g %g %g to %g %g %g\n",
// this_tri->index,test_tri->index,(j+1)%3,
// test_node2->loc.x,test_node2->loc.y,test_node2->loc.z,
// test_tri->node[test_node_index]->loc.x,test_tri->node[test_node_index]->loc.y,test_tri->node[test_node_index]->loc.z);
break;
}
// if test_tri and this_tri are oriented oppositely, this will work
// also test conn_tri_node[i]+2
//test_node_index = test_node2->conn_tri_node[i];
//test_node_index = mod(test_node2->conn_tri_node[i]+2,3);
//fprintf(stderr," node %d\n",test_tri->node[test_node_index]->index);
//if (test_tri->node[test_node_index] == test_node) {
// this_tri->adjacent[j] = test_tri;
// test_tri->adjacent[test_node2->conn_tri_node[i]] = this_tri;
// fprintf(stderr," two tris (%d,%d) share side (%d) %g %g %g to %g %g %g\n",
// this_tri->index,test_tri->index,(j+1)%3,
// test_node2->loc.x,test_node2->loc.y,test_node2->loc.z,
// test_tri->node[test_node_index]->loc.x,test_tri->node[test_node_index]->loc.y,test_tri->node[test_node_index]->loc.z);
// //i = 20; // found it, skip out of loop
// break;
//}
} else {
break;
}
}
}
}
this_tri = this_tri->next_tri;
}
return num_set;
}
/*
* Make sure all triangles are oriented similarly, must be run before
* set_adjacent_tris, as it doesn't fix that connectivity information.
*/
int fix_orientation (tri_pointer tri_head) {
int i,j,k,sum;
int flipdir,num_flipped = 0;
int ip1,ip2,numinarray;
int inarray[20],dir[20];
tri_pointer this_tri;
tri_pointer adjtri[20]; // the triangle we're testing for test_node
node_ptr this_node; // the node pointer we're looking for
node_ptr adjnode[20];
this_node = node_head;
while (this_node) {
// fprintf(stderr,"Looking at node %d\n",this_node->index);
for (j=0; j<20; j++) inarray[j] = FALSE;
// set tri 0, as nodes 0 and 1
inarray[0] = TRUE;
adjtri[0] = this_node->conn_tri[0];
i = this_node->conn_tri_node[0];
adjnode[0] = adjtri[0]->node[(i+1)%3];
adjnode[1] = adjtri[0]->node[(i+2)%3];
dir[0] = 0; // define direction as OK==0
numinarray = 1;
// add on the rest of the triangles, one at a time
for (k=1; k<this_node->num_conn; k++) {
// loop through all the other triangles, looking for the one next to this
for (j=0; j<this_node->num_conn; j++) if (!inarray[j]) {
i = this_node->conn_tri_node[j];
this_tri = this_node->conn_tri[j];
ip1 = (i+1)%3;
ip2 = (i+2)%3;
if (this_tri->node[ip1] == adjnode[numinarray]) {
// this tri is oriented the same as 0
inarray[j] = TRUE;
adjtri[numinarray] = this_tri;
adjnode[numinarray+1] = this_tri->node[ip2];
dir[numinarray] = 0;
numinarray++;
} else if (this_tri->node[ip2] == adjnode[numinarray]) {
// this tri is oriented opposite 0
inarray[j] = TRUE;
adjtri[numinarray] = this_tri;
adjnode[numinarray+1] = this_tri->node[ip1];
dir[numinarray] = 1;
numinarray++;
}
}
}
// fprintf(stderr,"out of %d connecting tris:\n",this_node->num_conn);
// for (k=0; k<this_node->num_conn; k++) {
// fprintf(stderr,"elem %d, nodes %d %d, dir %d\n",adjtri[k]->index,adjnode[k]->index,adjnode[k+1]->index,dir[k]);
// fprintf(stderr," nodes in order: %d %d %d\n",adjtri[k]->node[0]->index,adjtri[k]->node[1]->index,adjtri[k]->node[2]->index);
// }
// now, see which elems are oriented strangely
sum = 0;
for (k=0; k<this_node->num_conn; k++) sum += dir[k];
if ((double)(sum)/(double)(this_node->num_conn) > 0.5) {
// flip all tris whose direction is 0
flipdir = 0;
} else {
flipdir = 1;
}
// flip the tris in question
for (k=0; k<this_node->num_conn; k++) if (dir[k]==flipdir) {
flip_tri(adjtri[k]);
num_flipped++;
}
this_node = this_node->next_node;
}
return(num_flipped);
}
/*
* Flip the normal of the element|triangle
*/
int flip_tri(tri_pointer this) {
int j;
node_ptr temp;
// fprintf(stderr,"flipping elem %d\n",this->index);
// leave local node 0 the same, flip nodes 1 and 2
for (j=0; j<this->node[1]->num_conn; j++) {
if (this->node[1]->conn_tri[j] == this) {
this->node[1]->conn_tri_node[j] = 2;
break;
}
}
for (j=0; j<this->node[2]->num_conn; j++) {
if (this->node[2]->conn_tri[j] == this) {
this->node[2]->conn_tri_node[j] = 1;
break;
}
}
temp = this->node[1];
this->node[1] = this->node[2];
this->node[2] = temp;
return(0);
}
#endif
/*
* Write out the list of nodes
*/
int write_node_list() {
int num_nodes = 0;
node_ptr curr_node = node_head;
while (curr_node) {
fprintf(stderr,"Node %d is at %lf %lf %lf\n",num_nodes,curr_node->loc.x,curr_node->loc.y,curr_node->loc.z);
num_nodes++;
curr_node = curr_node->next_node;
}
return num_nodes;
}
/*
* Count the number of nodes
*/
int count_nodes() {
int num_nodes = 0;
node_ptr curr_node = node_head;
while (curr_node) {
num_nodes++;
curr_node = curr_node->next_node;
}
return num_nodes;
}
/*
* Write out the list of tris
*/
int write_tri_list (tri_pointer tri_head) {
int num_tris = 0;
tri_pointer this = tri_head;
while (this) {
fprintf(stderr,"Tri %d with node %d %d %d\n",this->index,
this->node[0]->index,this->node[1]->index,this->node[2]->index);
num_tris++;
this = this->next_tri;
}
return num_tris;
}
/*
* Return the area of the triangle in question
*/
double find_area(tri_pointer thetri) {
double a,b,c,s,area;
a = length(from(thetri->node[0]->loc,thetri->node[1]->loc));
b = length(from(thetri->node[2]->loc,thetri->node[1]->loc));
c = length(from(thetri->node[0]->loc,thetri->node[2]->loc));
s = 0.5*(a+b+c);
area = sqrt(s*(s-a)*(s-b)*(s-c));
return area;
}
/*
* Return the center of the triangle in question
*/
VEC find_center(tri_pointer thetri) {
VEC center;
center.x = (thetri->node[0]->loc.x+thetri->node[1]->loc.x+thetri->node[2]->loc.x) / 3.;
center.y = (thetri->node[0]->loc.y+thetri->node[1]->loc.y+thetri->node[2]->loc.y) / 3.;
center.z = (thetri->node[0]->loc.z+thetri->node[1]->loc.z+thetri->node[2]->loc.z) / 3.;
return center;
}
/*
* Return the distance from a triangle's center to a point
*/
double find_tri_dist(tri_pointer thetri,VEC point) {
//int i;
double dist;
VEC center = find_center(thetri);
//center.x = thetri->node[0]->loc.x+thetri->node[1]->loc.x+thetri->node[2]->loc.x;
//center.y = thetri->node[0]->loc.y+thetri->node[1]->loc.y+thetri->node[2]->loc.y;
//center.z = thetri->node[0]->loc.z+thetri->node[1]->loc.z+thetri->node[2]->loc.z;
dist = length(from(center,point));
return dist;
}
/*
* Update the min/max from an array of doubles
*/
int update_minmax(double *this, VEC *min, VEC *max) {
if (this[0] > max->x) max->x = this[0];
if (this[1] > max->y) max->y = this[1];
if (this[2] > max->z) max->z = this[2];
if (this[0] < min->x) min->x = this[0];
if (this[1] < min->y) min->y = this[1];
if (this[2] < min->z) min->z = this[2];
return 0;
}
/*
* Return the cross product, v1xv2
*/
VEC cross(VEC v1, VEC v2) {
VEC cp;
cp.x = v1.y*v2.z - v1.z*v2.y;
cp.y = v1.z*v2.x - v1.x*v2.z;
cp.z = v1.x*v2.y - v1.y*v2.x;
return cp;
}
/*
* Return the scaled vector
*/
VEC vscale(double a, VEC p1) {
VEC p2;
p2.x = a*p1.x;
p2.y = a*p1.y;
p2.z = a*p1.z;
return p2;
}
/*
* Return the vector pointing from p1 to p2
*/
VEC from(VEC p1, VEC p2) {
p2.x -= p1.x;
p2.y -= p1.y;
p2.z -= p1.z;
return p2;
}
/*
* Return the vector sum of p1 and p2
*/
VEC plus(VEC p1, VEC p2) {
p2.x += p1.x;
p2.y += p1.y;
p2.z += p1.z;
return p2;
}
/*
* Return the midpoint of the two points
*/
VEC midpt(VEC p1, VEC p2) {
p1.x = (p1.x+p2.x)/2.;
p1.y = (p1.y+p2.y)/2.;
p1.z = (p1.z+p2.z)/2.;
return p1;
}
/*
* Return the normalization of the vector to unit length
*/
VEC norm(VEC v1) {
double dr = 1./sqrt(pow(v1.x,2)+pow(v1.y,2)+pow(v1.z,2));
v1.x *= dr;
v1.y *= dr;
v1.z *= dr;
return v1;
}
void norm3(double *v1) {
double dr = 1./sqrt(pow(v1[0],2)+pow(v1[1],2)+pow(v1[2],2));
v1[0] *= dr;
v1[1] *= dr;
v1[2] *= dr;
return;
}
/*
* Returns the length of the vector
*/
double length(VEC v1) {
double length = sqrt(pow(v1.x,2)+pow(v1.y,2)+pow(v1.z,2));
return length;
}
/*
* Returns the length squared of the vector
*/
double lengthsq(VEC v1) {
double lengthsq = pow(v1.x,2)+pow(v1.y,2)+pow(v1.z,2);
return lengthsq;
}
/*
* Return the normal of a defined triangle
*/
VEC find_tri_normal(tri_pointer the_tri) {
return (find_normal(the_tri->node[0]->loc,the_tri->node[1]->loc,the_tri->node[2]->loc));
}
/*
* Return the normal from three points
*/
VEC find_normal(VEC pt1,VEC pt2,VEC pt3) {
double length;
/* fprintf(stderr,"finding normal, first point is %g %g %g\n",pt1.x,pt1.y,pt1.z); */
/* fprintf(stderr,"finding normal, first point is %g %g %g\n",pt2.x,pt2.y,pt2.z); */
/* fprintf(stderr,"finding normal, first point is %g %g %g\n",pt3.x,pt3.y,pt3.z); */
/* pt2 = subtract(pt2,pt1); */
pt2.x -= pt1.x;
pt2.y -= pt1.y;
pt2.z -= pt1.z;
/* pt3 = subtract(pt3,pt1); */
pt3.x -= pt1.x;
pt3.y -= pt1.y;
pt3.z -= pt1.z;
/* pt1 = cross(pt2,pt3); */
pt1.x = pt2.y*pt3.z - pt2.z*pt3.y;
pt1.y = pt2.z*pt3.x - pt2.x*pt3.z;
pt1.z = pt2.x*pt3.y - pt2.y*pt3.x;
/* fprintf(stderr," cross product is %g %g %g\n",pt1.x,pt1.y,pt1.z); */
/* pt1 = normalize(pt1); */
length = 1./sqrt((pt1.x*pt1.x) + (pt1.y*pt1.y) + (pt1.z*pt1.z));
/* fprintf(stderr," length is %lf\n",length); */
pt1.x *= length;
pt1.y *= length;
pt1.z *= length;
return pt1;
}
/*
* Returns the dot product of the two vectors
*/
double dot(VEC v1,VEC v2) {
double dot_prod = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
return dot_prod;
}
/*
* Returns the vector projection of v1 onto v2
*
* Incomplete ****
*/
VEC projection(VEC v1,VEC v2) {
/* return vector must be in direction of v2 */
fprintf(stderr,"ERROR (projection): this routine should never be called!\n");
exit(1);
return v1;
}
/*
* Returns z-angle of line from pt1 to pt2 in 2 dimensions?
* angle is in radians, and 0=2pi=positive x axis
*/
double theta(VEC pt1,VEC pt2) {
double angle;
pt2.x -= pt1.x;
pt2.y -= pt1.y;
if (pt2.x > 0) {
angle = atan2(pt2.y,pt2.x);
/* fprintf(stderr,"atan2(%g,%g) = %g\n",pt2.y,pt2.x,angle); */
if (angle < 0) angle += 2*M_PI; /* M_PI is pi */
} else {
angle = M_PI - atan2(pt2.y,-1.0*pt2.x);
/* fprintf(stderr,"atan2(%g,%g) = %g\n",pt2.y,-1.0*pt2.x,atan2(pt2.y,-1.0*pt2.x)); */
}
return angle;
}
/*
* prepare the node_bin structure, given bounds
*/
void prepare_node_bin (bin_ptr bin, VEC nmin, VEC nmax) {
// split on longest axis
if (nmax.x-nmin.x >= nmax.y-nmin.y && nmax.x-nmin.x >= nmax.z-nmin.z) {
bin->axis = 0;
bin->dx = (nmax.x-nmin.x)/(BIN_COUNT-1);
bin->start = nmin.x - 0.5*bin->dx;
} else if (nmax.y-nmin.y >= nmax.x-nmin.x && nmax.y-nmin.y >= nmax.z-nmin.z) {
bin->axis = 1;
bin->dx = (nmax.y-nmin.y)/(BIN_COUNT-1);
bin->start = nmin.y - 0.5*bin->dx;
} else {
bin->axis = 2;
bin->dx = (nmax.z-nmin.z)/(BIN_COUNT-1);
bin->start = nmin.z - 0.5*bin->dx;
}
for (int i=0;i<BIN_COUNT;i++) bin->b[i] = NULL;
return;
}
/*
* prepare the norm_bin structure
*/
void prepare_norm_bin (nbin_ptr bin) {
// always split on z-axis
bin->dx = 2.0/(BIN_COUNT-1);
bin->start = -1.0 - 0.5*bin->dx;
for (int i=0;i<BIN_COUNT;i++) bin->b[i] = NULL;
return;
}
/*
* prepare the norm_bin structure
*/
void prepare_texture_bin (tbin_ptr bin) {
// always split on z-axis
bin->dx = 1.0/(BIN_COUNT-1);
bin->start = -0.5*bin->dx;
for (int i=0;i<BIN_COUNT;i++) bin->b[i] = NULL;
return;
}
/*
* allocate memory for a two-dimensional array of floats
*/
float** allocate_2d_array_f(int nx,int ny) {
int i;
float **array = (float **)malloc(nx * sizeof(float *));
array[0] = (float *)malloc(nx * ny * sizeof(float));
for (i=1; i<nx; i++)
array[i] = array[0] + i * ny;
return(array);
}
int free_2d_array_f(float** array){
free(array[0]);
free(array);
return(0);
}
/*
* allocate memory for a two-dimensional array of bytes
*/
unsigned char** allocate_2d_array_uc(int nx,int ny) {
int i;
unsigned char **array = (unsigned char **)malloc(nx * sizeof(unsigned char *));
array[0] = (unsigned char *)malloc(nx * ny * sizeof(unsigned char));
for (i=1; i<nx; i++)
array[i] = array[0] + i * ny;
return(array);
}
int free_2d_array_uc(unsigned char** array){
free(array[0]);
free(array);
return(0);
}
#ifdef ADJ_NODE
#ifdef CONN
/*