Skip to content

Latest commit

 

History

History
247 lines (183 loc) · 6.38 KB

README.md

File metadata and controls

247 lines (183 loc) · 6.38 KB

mchmm

Documentation Issues Coverage Codacy Downloads PyPi

mchmm is a Python package implementing Markov chains and Hidden Markov models in pure NumPy and SciPy. It can also visualize Markov chains (see below).

Donate

If you find this package useful, please consider donating any amount of money. This will help me spend more time on supporting open-source software.

Buy Me A Coffee

Dependencies

Installation

  1. Install from PyPi:
pip install mchmm
  1. Clone a GitHub repository:
git clone https://github.com/maximtrp/mchmm.git
cd mchmm
pip install . --user

Features

Discrete Markov chains

Initializing a Markov chain using some data.

import mchmm as mc
a = mc.MarkovChain().from_data('AABCABCBAAAACBCBACBABCABCBACBACBABABCBACBBCBBCBCBCBACBABABCBCBAAACABABCBBCBCBCBCBCBAABCBBCBCBCCCBABCBCBBABCBABCABCCABABCBABC')

Now, we can look at the observed transition frequency matrix:

a.observed_matrix
# array([[ 7., 18.,  7.],
#        [19.,  5., 29.],
#        [ 5., 30.,  3.]])

And the observed transition probability matrix:

a.observed_p_matrix
# array([[0.21875   , 0.5625    , 0.21875   ],
#        [0.35849057, 0.09433962, 0.54716981],
#        [0.13157895, 0.78947368, 0.07894737]])

You can visualize your Markov chain. First, build a directed graph with graph_make() method of MarkovChain object. Then render() it.

graph = a.graph_make(
    format="png",
    graph_attr=[("rankdir", "LR")],
    node_attr=[("fontname", "Roboto bold"), ("fontsize", "20")],
    edge_attr=[("fontname", "Iosevka"), ("fontsize", "12")]
)
graph.render()

Here is the result:

Markov Chain

Pandas can help us annotate columns and rows:

import pandas as pd
pd.DataFrame(a.observed_matrix, index=a.states, columns=a.states, dtype=int)
#      A   B   C
#  A   7  18   7
#  B  19   5  29
#  C   5  30   3

Viewing the expected transition frequency matrix:

a.expected_matrix
# array([[ 8.06504065, 13.78861789, 10.14634146],
#        [13.35772358, 22.83739837, 16.80487805],
#        [ 9.57723577, 16.37398374, 12.04878049]])

Calculating Nth order transition probability matrix:

a.n_order_matrix(a.observed_p_matrix, order=2)
# array([[0.2782854 , 0.34881028, 0.37290432],
#        [0.1842357 , 0.64252707, 0.17323722],
#        [0.32218957, 0.21081868, 0.46699175]])

Carrying out a chi-squared test:

a.chisquare(a.observed_matrix, a.expected_matrix, axis=None)
# Power_divergenceResult(statistic=47.89038802624337, pvalue=1.0367838347591701e-07)

Finally, let's simulate a Markov chain given our data.

ids, states = a.simulate(10, start='A', seed=np.random.randint(0, 10, 10))
ids
# array([0, 2, 1, 0, 2, 1, 0, 2, 1, 0])

states
# array(['A', 'C', 'B', 'A', 'C', 'B', 'A', 'C', 'B', 'A'], dtype='<U1')

"".join(states)
# 'ACBACBACBA'

Hidden Markov models

We will use a fragment of DNA sequence with TATA box as an example. Initializing a hidden Markov model with sequences of observations and states:

import mchmm as mc
obs_seq = 'AGACTGCATATATAAGGGGCAGGCTG'
sts_seq = '00000000111111100000000000'
a = mc.HiddenMarkovModel().from_seq(obs_seq, sts_seq)

Unique states and observations are automatically inferred:

a.states
# ['0' '1']

a.observations
# ['A' 'C' 'G' 'T']

The transition probability matrix for all states can be accessed using tp attribute:

a.tp
# [[0.94444444 0.05555556]
#  [0.14285714 0.85714286]]

There is also ep attribute for the emission probability matrix for all states and observations.

a.ep
# [[0.21052632 0.21052632 0.47368421 0.10526316]
#  [0.57142857 0.         0.         0.42857143]]

Converting the emission matrix to Pandas DataFrame:

import pandas as pd
pd.DataFrame(a.ep, index=a.states, columns=a.observations)
#            A         C         G         T
#  0  0.210526  0.210526  0.473684  0.105263
#  1  0.571429  0.000000  0.000000  0.428571

Directed graph of the hidden Markov model:

Hidden Markov Model

Graph can be visualized using graph_make method of HiddenMarkovModel object:

graph = a.graph_make(
    format="png", graph_attr=[("rankdir", "LR"), ("ranksep", "1"), ("rank", "same")]
)
graph.render()

Viterbi algorithm

Running Viterbi algorithm on new observations.

new_obs = "GGCATTGGGCTATAAGAGGAGCTTG"
vs, vsi = a.viterbi(new_obs)
# states sequence
print("VI", "".join(vs))
# observations
print("NO", new_obs)
# VI 0000000001111100000000000
# NO GGCATTGGGCTATAAGAGGAGCTTG

Baum-Welch algorithm

Using Baum-Welch algorithm to infer the parameters of a Hidden Markov model:

obs_seq = 'AGACTGCATATATAAGGGGCAGGCTG'
a = hmm.HiddenMarkovModel().from_baum_welch(obs_seq, states=['0', '1'])
# training log: KL divergence values for all iterations

a.log
# {
#     'tp': [0.008646969455670256, 0.0012397829805491124, 0.0003950986109761759],
#     'ep': [0.09078874423746826, 0.0022734816599056084, 0.0010118204023946836],
#     'pi': [0.009030829793043593, 0.016658391248503462, 0.0038894983546756065]
# }

The inferred transition (tp), emission (ep) probability matrices and initial state distribution (pi) can be accessed as shown:

a.ep, a.tp, a.pi

This model can be decoded using Viterbi algorithm:

new_obs = "GGCATTGGGCTATAAGAGGAGCTTG"
vs, vsi = a.viterbi(new_obs)
print("VI", "".join(vs))
print("NO", new_obs)
# VI 0011100001111100000001100
# NO GGCATTGGGCTATAAGAGGAGCTTG