-
Notifications
You must be signed in to change notification settings - Fork 1
/
.zenodo.json
60 lines (60 loc) · 3.47 KB
/
.zenodo.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
{
"language": "eng",
"license": "MIT",
"title": "pyeee: Parameter screening using Efficient/Sequential Elementary Effects, an extension of Morris' method",
"references": [
{
"reference": "Cuntz, Mai et al. (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resources Research 51, 6417-6441, doi:10.1002/2015WR016907"
}
],
"related_identifiers": [
{
"scheme": "url",
"identifier": "https://github.com/mcuntz/pyeee/",
"relation": "isDerivedFrom",
"resource_type": "software"
},
{
"scheme": "url",
"identifier": "https://mcuntz.github.io/pyeee/",
"relation": "isDocumentedBy",
"resource_type": "publication-softwaredocumentation"
},
{
"scheme": "url",
"identifier": "https://pypi.org/project/pyeee/",
"relation": "isIdenticalTo",
"resource_type": "software"
},
{
"scheme": "url",
"identifier": "https://anaconda.org/conda-forge/pyeee/",
"relation": "isIdenticalTo",
"resource_type": "software"
}
],
"upload_type": "software",
"keywords": [
"Python utilities",
"Optimization",
"Screening",
"Morris",
"Elementary Effects",
"Morris method",
"Python"
],
"creators": [
{
"orcid": "0000-0002-5966-1829",
"affiliation": "Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement - INRAE, Nancy, France",
"name": "Matthias Cuntz"
},
{
"orcid": "0000-0002-1132-2342",
"affiliation": "University of Waterloo, ON, Canada",
"name": "Juliane Mai"
}
],
"access_right": "open",
"description": "<p><strong>pyeee</strong> is a Python library for performing parameter screening of computational models. It uses Efficient or Sequential Elementary Effects, an extension of Morris' method of Elementary Effects, published by:</p>\n\n<p>Cuntz M, Mai J, Zink M, Thober S, Kumar R, Schäfer D, Schrön M, Craven J, Rakovec O, Spieler D, Prykhodko V, Dalmasso G, Musuuza J, Langenberg B, Attinger A, and Samaniego L (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, <em>Water Resources Research</em> 51, 6417-6441, doi:<a href=\"https://doi.org/10.1002/2015WR016907\">10.1002/2015WR016907</a></p>\n\n<p><strong>pyeee</strong> can be used with Python functions as well as external executables using libraries such as <a href=\"https://github.org/mcuntz/partialwrap/\">partialwrap</a>. Function evaluations can be distributed with Python's multiprocessing or via MPI.</p>\n\n<p>The complete documentation of pyeee is available at: <a href=\"https://mcuntz.github.io/pyeee/\">https://mcuntz.github.io/pyeee/</a></p>\n\n<p>A similar package (EEE) using a combination of bash and Python scripts is presented at: <a href=\"https://doi.org/10.5281/zenodo.3620894\">https://doi.org/10.5281/zenodo.3620894</a></p>\n\n<p>The version 4.0 modernised code structure and documentation, moving everything to Github. Version 4.1 added <strong>pyeee</strong> to conda-forge. Version 5.0 removed the dependency to the general purpose package <a href=\"https://github.com/mcuntz/pyjams\">pyjams</a> and added the original Morris' Method of Elementary Effects.</p>"
}