forked from DCMTK/dcmtk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
INSTALL
916 lines (718 loc) · 43.6 KB
/
INSTALL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
==================================
DICOM TOOLKIT (DCMTK) INSTALLATION
==================================
PRE-REQUISITES
==============
The DICOM toolkit (DCMTK) needs to be compiled with a C++ compiler. We
recommend using the GNU C++ compiler in versions higher than 4.2.1 (most of the
development was done using GNU C++ 4.9.2 on Linux 3.16). The software is also
known to compile using the SUNPro C++ compiler, Clang and Microsoft Visual
Studio.
Compatibility with other C++ compilers is unknown, however, we have tried to
keep language demands to a minimum (newer C++ features such as Exceptions and
RTTI have been avoided and fall back implementations for all used STL classes
are provided).
You will need several hundred Mbytes of disk space to compile all the software.
SUPPORTED SYSTEMS
=================
Microsoft Windows
-----------------
The DCMTK software can be compiled under a native Microsoft Windows environment
(see section "Microsoft Windows with CMake" below for more information).
The current (minor) release successfully compiles on the following operating
system / hardware / compiler combinations:
Windows 7 / Intel x86 / Microsoft Visual C++ 2005 Express (VS 8)
Windows 7 / Intel x86 / Microsoft Visual C++ 2008 Express (VS 9)
Windows 7 / Intel x86 / Microsoft Visual C++ 2010 Express (VS 10)
Windows 7 / Intel x86 / Microsoft Visual C++ 2012 Express (VS 11)
Windows 7 / Intel x86 / Microsoft Visual C++ 2013 Express (VS 12)
Windows 7 / Intel x86 / Microsoft Visual C++ 2015 Community (VS 14)
Windows 7 / Intel x86 / Microsoft Visual C++ 2017 Community (VS 15)
Windows 7 / Intel x86 / MinGW gcc 4.9.1 (i686-w64-mingw32)
Windows 10 / Intel x86 / Microsoft Visual C++ 2015 Community (VS 14)
Windows 7 / amd64|x86_64 / Microsoft Visual C++ 2010 Express (VS 10)
Windows 7 / amd64|x86_64 / Microsoft Visual C++ 2012 Express (VS 11)
Windows 7 / amd64|x86_64 / Microsoft Visual C++ 2013 Express (VS 12)
Windows 7 / amd64|x86_64 / Microsoft Visual C++ 2015 Community (VS 14)
Windows 7 / amd64|x86_64 / Microsoft Visual C++ 2017 Community (VS 15)
Windows 7 / amd64|x86_64 / MinGW gcc 4.9.1 (x86_64-w64-mingw32)
Windows 10 / amd64|x86_64 / Microsoft Visual C++ 2015 Community (VS 14)
Unix (or lookalikes)
--------------------
The current DCMTK software release successfully compiles on the following
operating system / hardware / compiler combinations using the instructions
given below:
FreeBSD 10.1 / amd64|x86_64 / Clang 3.4.1
Linux 4.11.9 / amd64|x86_64 / Clang 5.0.1 (Arch Linux)
Linux 4.11.9 / amd64|x86_64 / GNU gcc 7.2.1 (Arch Linux)
Linux 3.10.0 / amd64|x86_64 / Clang 3.4.2 (CentOS 7.3)
Linux 3.10.0 / amd64|x86_64 / GNU gcc 4.8.5 (CentOS 7.3)
Linux 3.16.0 / amd64|x86_64 / Clang 3.5.0 (Debian 8.8)
Linux 3.2.0 / amd64|x86_64 / GNU gcc 4.4.7 (Debian 7.11)
Linux 3.2.0 / amd64|x86_64 / GNU gcc 4.7.2 (Debian 7.11)
Linux 3.2.0 / amd64|x86_64 / GNU gcc 4.8.4 (Debian 7.11)
Linux 3.19.0 / amd64|x86_64 / Clang 3.9.1 (Linux Mint 17.3)
Linux 3.19.0 / amd64|x86_64 / GNU gcc 4.8.5 (Linux Mint 17.3)
Linux 3.19.0 / amd64|x86_64 / GNU gcc 5.4.1 (Linux Mint 17.3)
Linux 3.19.0 / amd64|x86_64 / GNU gcc 6.3.0 (Linux Mint 17.3)
Linux 4.9.0 / Intel x86 / Clang 3.8.1 (Debian 9.0)
Linux 4.9.0 / Intel x86 / GNU gcc 6.3.0 (Debian 9.0)
Linux 4.10.0 / amd64|x86_64 / GNU gcc 6.3.0 (Ubuntu 17.04)
Linux 4.10.0 / amd64|x86_64 / Clang 4.0.0 (Ubuntu 17.04)
MacOS X 10.10.4 / amd64|x86_64 / Apple Clang 6.0
NetBSD 7.0 / amd64|x86_64 / Clang 4.0.0
NetBSD 7.0 / amd64|x86_64 / GNU gcc 4.8.5
OpenBSD 6.0 / amd64|x86_64 / Clang 3.8.0
OpenBSD 6.0 / amd64|x86_64 / GNU gcc 4.2.1
OpenIndiana / Intel x86 / Clang 4.0.0 (OpenIndiana 2017.04)
OpenIndiana / Intel x86 / GNU gcc 4.9.4 (OpenIndiana 2017.04)
Solaris 11.3 / Intel x86 / GNU gcc 4.8.2
Solaris 11.3 / Intel x86 / SunPro CC 5.14 (Oracle Developer Studio 12.5)
Solaris 11.3 / Intel x86 / SunPro CC 5.15 (Oracle Developer Studio 12.6)
Windows 7 / amd64|x86_64 / CygWin 2.8.0 (gcc 6.3.0)
Cross Compiling
---------------
The current DCMTK release can be cross-compiled targeting the following
platforms:
Android / arm64 / GNU gcc 4.9.2 (API 24, ABI arm64-v8a)
Cross compiling support with running configuration and unit tests is currently
only provided using CMake and requires the use of the Android emulator or Wine
when targeting Android or Windows respectively. Other versions of Android will
most likely also work, but the above mentioned one is currently the only one
that is being regularly tested.
Of course, GNU Autoconf also provides cross compiling support and using it for
various platforms might also work but probably not out of the box, i.e. some
customization is needed and you have to find a way to provide the information
from the configuration tests that need to be run on the target hardware
yourself.
Other Platforms
---------------
The previous release DCMTK 3.6.2 was also tested on the following platforms
that may still work, but were not tested again for this minor release:
QNX 6.5 / Intel x86 / GNU gcc 4.4.2 (see note *1)
Windows 8.1 / Intel x86 / Microsoft Visual C++ 2008 Express (VS 9)
Windows 8.1 / Intel x86 / Microsoft Visual C++ 2010 Express (VS 10)
Windows 8.1 / Intel x86 / Microsoft Visual C++ 2012 Express (VS 11)
Windows 8.1 / Intel x86 / Microsoft Visual C++ 2015 Express (VS 14)
Windows 8.1 / Intel x86 / Microsoft Visual C++ 2017 Community (VS 15)
Windows 8.1 / amd64|x86_64 / Microsoft Visual C++ 2010 Express (VS 10)
Windows 8.1 / amd64|x86_64 / Microsoft Visual C++ 2012 Express (VS 11)
Windows 8.1 / amd64|x86_64 / Microsoft Visual C++ 2015 Express (VS 14)
Windows 8.1 / amd64|x86_64 / Microsoft Visual C++ 2017 Community (VS 15)
Cross compilers:
Windows 7 / Intel x86 / MinGW gcc 4.9.1 (Linux host)
Windows 7 / amd64|x86_64 / MinGW gcc 4.9.1 (Linux host)
Earlier releases of the DCMTK are known to also compile on further platforms
which are not available to us for testing purposes any more, e.g. AIX, HP-UX,
IRIX, NeXTStep, OSF/1, Solaris/SunOS, Ultrix. Also the Intel C++ Compiler and
other compilers might still work but we haven't tested them this time.
Platform Notes
--------------
(*1) QNX 6.5 requires to remove or disable the define "HAVE_IEEEFP_H" in
"config/include/dcmtk/config/osconfig.h" after running the configure
process but before starting the compilation.
OPENSSL SUPPORT
===============
Starting with release 3.4.2, DCMTK supports the "DICOM Security Enhancements
One", i.e. DICOM network transmission "tunneled" through a secure TLSv1
transport connection. DCMTK relies on the OpenSSL toolkit (www.openssl.org)
for the underlying cryptographic routines and the TLS protocol implementation.
This release of DCMTK requires OpenSSL release 1.0.1 or newer, since older
versions do not support the TLS 1.2 protocol required by the more recent
DICOM security profiles. We recommend the use of OpenSSL 1.0.2 or newer,
however, since some optional functions recommended by RFC 7525 / BCP 195
are only available starting with this OpenSSL release. Furthermore, users
should make care that the most recent OpenSSL patch level is applied.
When using Autoconf, if support for security enhancements is desired, a compiled
version of the OpenSSL libraries and include files must be available during
compilation of DCMTK. By default, DCMTK checks whether OpenSSL is installed
in the standard path and enables support automatically if present.
When using CMake, if support for security enhancements is desired, a compiled
version of the OpenSSL libraries and include files must be available during
compilation of DCMTK. By default, DCMTK checks whether OpenSSL is installed
and enables support automatically if present. By default, DCMTK checks the
standard paths on Unix platforms. For Windows platforms, check the discussion
on CMake below.
ZLIB SUPPORT
============
Starting with release 3.5.2, DCMTK supports the "Deflated Explicit VR Little
Endian" Transfer Syntax, i.e. ZIP-compressed network transmission and media
storage. DCMTK relies on the zlib toolkit (www.zlib.org) for the underlying
compression routines. This release of DCMTK is known to compile with the zlib
releases 1.2.3 to 1.2.11, although other releases may work as well.
When using Autoconf, if support for zlib compression is desired, a compiled
version of the zlib library and include files must be available during
compilation of DCMTK. By default, DCMTK checks whether zlib is installed in
the standard path and enables support automatically if present.
When using CMake, a compiled version of the zlib libraries and include files
must be available during compilation of DCMTK. See discussion on CMake below.
LIBTIFF SUPPORT
===============
Starting with release 3.5.1, DCMTK supports the conversion of DICOM images to
TIFF. DCMTK relies on the libtiff toolkit (www.libtiff.org) for this purpose.
This release of DCMTK is known to compile with the libtiff releases 3.7.4 to
4.0.9, although other releases may work as well. However, libtiff releases
prior to version 3.7.0 will not work since the TIFFCleanup() function was not
yet available. On Windows, libtiff 3.7.4 or higher is required due to
incompatible API changes in libtiff.
When using Autoconf, if support for TIFF export is desired, a compiled version
of the libtiff libraries and include files must be available during compilation
of DCMTK, and the libtiff support must be switched on explicitly. By default,
DCMTK checks whether libtiff is installed in the standard path and enables
support automatically if present.
When using CMake, a compiled version of the libtiff libraries and include files
must be available during compilation of DCMTK. See discussion on CMake below.
LIBPNG SUPPORT
==============
Starting with release 3.5.3, DCMTK supports the conversion of DICOM images to
PNG. DCMTK relies on the libpng toolkit (www.libpng.org) for this purpose.
This release of DCMTK is known to compile with the current libpng releases
1.2.8 to 1.6.31, although other releases may work as well.
When using Autoconf, if support for PNG export is desired, a compiled version of
the libpng libraries and include files must be available during compilation of
DCMTK, and the libpng support must be switched on explicitly. By default, DCMTK
checks whether libpng is installed in the standard path and enables support
automatically if present. It should be noted that libpng requires zlib.
When using CMake, a compiled version of the libpng libraries and include
files must be available during compilation of DCMTK. See discussion on CMake
below.
LIBXML2 SUPPORT
===============
Starting with release 3.5.3, DCMTK supports the conversion of XML documents to
DICOM files. DCMTK relies on the libxml2 toolkit (www.libxml.org) for this
purpose. This release of DCMTK is known to compile with the libxml2 releases
2.6.26 to 2.9.7, although other releases may work as well.
When using Autoconf, if support for XML import is desired, a compiled version of
the libxml2 (and possibly iconv) libraries and include files must be available
during compilation of DCMTK. By default, DCMTK checks whether libxml2 is
installed in the standard path and enables support automatically if present.
When using CMake, if support for XML import is desired, a compiled version of
the libxml2 (and possibly iconv) libraries and include files must be available
during compilation of DCMTK. See discussion on CMake below.
TCP WRAPPER (LIBWRAP) SUPPORT
=============================
Starting with release 3.5.3, DCMTK supports Wietse Venema's TCP wrappers
library (libwrap) which is freely available for most Unix platforms and part
of the default installation of most recent Linux distributions. This library
allows to enforce host-based access control via the "/etc/hosts.deny" and
"/etc/hosts.allow" configuration files. See hosts_access(5) man page for
details.
When using Autoconf, if support for TCP wrappers is desired, a compiled version
of the libwrap library and include file <tcpd.h> must be available during
compilation of DCMTK. By default, DCMTK checks whether libwrap is installed
in the standard path and enables support automatically if present.
When using CMake, if support for TCP wrappers is desired, a compiled version of
the libwrap library and include file <tcpd.h> must be available during
compilation of DCMTK. See discussion on CMake below.
Since DCMTK uses the TCP wrappers from C++ code, an ANSI C compatible header
file <tcpd.h> is required. The official release 7.6 of the TCP wrappers
library is not ANSI C compatible and does not work with DCMTK (i.e. will not be
recognized by DCMTK's configure script). However, many current Linux and BSD
distributions ship with an ANSI C compatible header file.
Character Set Conversion Support
================================
Starting with release 3.6.2, DCMTK supports the conversion between different
character encodings, e.g. UTF-8 and ISO Latin 1. For this purpose, DCMTK relies
on one of the following alternatives to be available for being used as the
underlying implementation: libiconv, the ICU library or the iconv functionality
included in the C standard library.
DCMTK detects the availability of these implementations and (in case multiple
ones are available) chooses one of them automatically as follows: the libiconv
implementation is currently preferred since its integration is most mature. If
it is not available, the ICU implementation is the next best choice. Otherwise
the iconv implementation from the C standard library will be selected (if the
used C standard library provides it). This choice can be overridden via the
"--enable-charconv" argument (Autoconf) or "DCMTK_ENABLE_CHARSET_CONVERSION"
(CMake). Selecting an implementation that is not available will be ignored,
i.e. the user choice will be overridden.
LIBICONV SUPPORT
----------------
The libiconv toolkit (www.gnu.org/s/libiconv/) may be used as DCMTK's underlying
character set conversion implementation. This release of DCMTK is known to
compile with the libiconv releases 1.14 to 1.15, although other releases may
work as well.
When using Autoconf, if support for libiconv conversion is desired, a compiled
version of the libiconv library and include files must be available during
compilation of DCMTK. Please note that DCMTK also needs the bundled copy of
libcharset. By default, DCMTK checks whether libiconv and libcharset are
installed in the standard path and enables support automatically if present.
When using CMake, a compiled version of the libiconv and libcharset libraries
and include files must be available during compilation of DCMTK. See discussion
on CMake below.
ICU SUPPORT
-----------
DCMTK supports the International Components for Unicode (ICU) library as an
alternative to the above mentioned libiconv. This release of DCMTK is known to
compile with the ICU releases 58.2 to 59.1, although other releases may work as
well.
The ICU may be easier to integrate on some more modern Linux distributions
(e.g. Arch Linux) and Windows than the libiconv but (due to the way it is
currently integrated) lacks support for converting the following character sets:
ISO 2022 IR 87
ISO 2022 IR 159
Furthermore, the ICU-based implementation currently does not support
transliteration.
When using Autoconf, if support for character set conversion using ICU is
desired, a compiled version of the ICU libraries and include files must be
available during compilation of DCMTK. By default, DCMTK checks whether ICU is
installed in the standard path and enables support automatically if present.
When using CMake, if support for character set conversion using ICU is desired,
a compiled version of the ICU libraries and include files must be available
during compilation of DCMTK. See discussion on CMake below.
Support for iconv provided in the C standard library
----------------------------------------------------
DCMTK allows using the iconv implementation provided as part of the C standard
library on some platforms. Building DCMTK with this implementation may be
easier and reduce additional runtime dependencies, but this option should be
used with caution: the iconv implementations from different C standard libraries
may vary with regards to the supported character sets and functionalities.
If possible, the libiconv implementation should be preferred. Most importantly
the iconv implementation provided by the C standard library on OpenIndiana does
not support conversion to whatever character set the terminal is currently
using, which we consider essential and, therefore, strongly suggest not to use
this implementation on OpenIndiana.
Known Issues
------------
If both the iconv implementation from the C standard library and the libiconv
are available in the default search paths, the wrong <iconv.h> might be included
independently from the user choice (--enable-charconv resp.
DCMTK_ENABLE_CHARSET_CONVERSION).
DCMTK currently has no mechanism to force including a certain <iconv.h> instead,
so this has to be achieved by manually modifying the include paths and/or
DCMTK's code. Some platforms (e.g. Arch Linux) even rename the <iconv.h>
provided as part of libiconv to <libiconv.h> or the like to avoid name
collisions. In this case, the user has to modify DCMTK's source code to include
the correct file, since we currently don't provide a configuration test for it.
Using the native STL
====================
DCMTK can be configured to use the STL (Standard Template Library) features
provided by the compiler / runtime environment instead of its own fallback
implementations that are used by default.
This can be achieved with the "--enable-stl" argument (Autoconf) or by setting
"DCMTK_ENABLE_STL" to "ON" (CMake). This will, however, not forcibly enable
using the native STL features but instead trigger running several configuration
tests for detecting whether the individual features work as expected/required
by DCMTK. It is for example known that the implementations of std::list and
std::vector provided by some versions of Visual Studio 2005 have a serious bug
that might lead to segmentation fault and std::error_code is currently not
implemented correctly on any version of Visual Studio we know about.
It is furthermore possible to enable or disable individual STL features
independently of the setting provided by "--enable-stl" or "DCMTK_ENABLE_STL"
respectively: use "--enable-stl-<feature>", "--disable-stl-<feature>" and/or
"DCMTK_ENABLE_STL_<FEATURE> (ON/OFF)" as appropriate, e.g.
"--disable-stl-vector" or "-DDCMTK_ENABLE_STL_STRING=ON".
C++11 SUPPORT
=============
DCMTK can be configured to use several C++11 features (e.g. move semantics,
variadic templates and the like) instead of its own workarounds and fallback
implementations. This can be achieved with the "--enable-cxx11" argument
(Autoconf) or by setting "DCMTK_ENABLE_CXX11" to "ON" (CMake).
Enabling C++11 will change some parts of DCMTK's API, so a C++11 build of DCMTK
is potentially incompatible with a classic build of DCMTK. This setting is,
therefore, stored in "config/include/dcmtk/config/osconfig.h" and verified when
compiling DCMTK itself or any program that includes it.
Enabling C++11 support will not forcibly enable using the C++11 features but
instead trigger running some configuration tests and only truly enable it if
all of them pass.
Please note that this setting does not depend on enabling the STL features but
not all combinations (e.g. enabling C++11 but disabling std::string) may work.
BUILDING
===========================
CMake is now the default tool for configuring a DCMTK build. CMake is a
cross-platform, open-source make system which can be used to control the
software compilation process using simple configuration files. CMake can be
obtained free of charge from http://www.cmake.org/. For configuring the DCMTK,
the toolkit contains corresponding "CMakeLists.txt" files in all necessary
directories. In detail, these "CMakeLists.txt" files will serve as an input to
CMake which will generate suitable build files for all of DCMTK's projects from
these files.
DCMTK 3.6.3 requires CMake version 2.8.5 or later. We recommend using the
latest stable release of CMake (currently version 3.10.2) since newer versions
of CMake often provide better output in case of errors and are generally easier
to use (for example by providing better support for detecting the availability
of third party libraries). If possible, use the CMake version your operating
system provides with its package manager.
More info about building the DCMTK with CMake can be found in DCMTK's wiki:
http://support.dcmtk.org/wiki/dcmtk/howto/cmakeconfiguration
CMake and shared libraries
--------------------------
The CMake build system allows for building shared libraries instead of static
libraries. On Windows systems, these are dynamic link libraries (.dll).
On Unix systems, these are shared objects (.so). To enable this, set the
"BUILD_SHARED_LIB" option to "ON".
Additionally, it is possible to produce a single shared library for the whole
toolkit. This mode is controlled by the "BUILD_SINGLE_SHARED_LIBRARY" option.
If you don't want the whole toolkit in a single shared library, the
"DCMTK_MODULES" cache variable can be modified to select a subset of the
available modules. Please note that this option is marked as advanced and thus
is hidden by default. Also, when building a single shared library, applications
and tests cannot be built.
Default value for CMAKE_BUILD_TYPE
----------------------------------
CMAKE_BUILD_TYPE is set to value "Release" if none is specified by the
selected build file generator. For those generators that support multiple
configuration types (e.g. Debug, Release), CMAKE_CONFIGURATION_TYPES holds
possible values. For other generators, this value is empty, and for those
generators the build type is fixated by CMake and cannot be changed otherwise.
Please note that Visual Studio ignores CMAKE_BUILD_TYPE and always starts off
using "Debug", so you should best change it to "Release" manually before
starting the build process.
To disable the CMAKE_BUILD_TYPE default value, set CMAKE_BUILD_TYPE to value
"None" during CMake configuration, e.g. use "-DCMAKE_BUILD_TYPE:STRING=None"
on the command line. This may be useful if the compiler flags should be
controlled manually (e.g. as defined in environment variables like CXXFLAGS)
and no CMake defaults related to the selected configuration type kick in.
DCMTKConfig.cmake AND DCMTKTargets.cmake
----------------------------------------
CMake permits to write files that describe the DCMTK build configuration
(DCMTConfig.cmake) as well as all targets (executables and libraries) that have
been produced (DCMTKTargets.cmake). Those files can be utilized by external
projects by using CMake's find_package() mechanism in "CONFIG" mode in order to
adapt their own build configuration, and directly make use of all available
target libraries and executables.
On systems using CMake versions equal or greater than 2.8.8, these files are
written during installation to the installation directory's subfolder "/cmake"
on Windows systems, and "/lib/cmake/dcmtk" on Unix-like systems. Additionally,
these files are written to the main directory of CMake's build tree during the
build, with all content (e.g. the include paths within DCMTConfig.cmake)
pointing to the correct values for the build tree. Thus even a DCMTK build tree
can be used by external projects that process these two files.
On systems using CMake versions lower than 2.8.8, only a simplified
DCMTKConfig.cmake is created, which is only available in the install tree.
DCMTKTargets.cmake is not created at all.
Microsoft Windows with CMake
----------------------------
Using CMake is the only supported way to compile DCMTK for Windows. For being
able to do so, perform the following steps to install CMake on your machine:
1. Go to http://www.cmake.org/ to download the latest release version of CMake
for Windows.
2. Execute the file which was downloaded to install CMake on your machine.
Follow all install instructions appropriately.
In order to manually configure the support for the above mentioned external
libraries (OpenSSL, zlib, libtiff, libpng, libxml2 and libiconv or ICU) through
CMake, perform the following steps:
1. Go Start -> Programs -> CMake -> "CMake" or "CMake (cmake-gui)" to start the
CMake utility through which the configuration can be done.
2. In the entry field "Where is the source code:" enter the directory in which
the DCMTK source code resides, e.g. "C:\dcmtk-3.6.3".
3. In the entry field "Where to build the binaries:" enter the directory in
which the libraries and binaries are to be built, e.g. "C:\dcmtk-msvc15".
4. In the combobox "Build for:" or "Specify the generator for this project:"
select the corresponding development environment which shall be used to
compile DCMTK (e.g. "Visual Studio 15 2017 Win64").
5. Go "Configure". (CMake will look for a corresponding compiler, read in all
of DCMTK's "CMakeLists.txt" files and perform some tests. The variables in
the tabular area will be displayed in red. These variables can now be set
in order to turn the support for any of the external libraries on or off.)
6. Make the corresponding configurations in CMake's user interface. For
example, in order to turn on libxml2 support, set the value of variable
"DCMTK_WITH_XML" to "ON" and set the value of variable "WITH_LIBXMLINC"
to the path where the include files and libraries of libxml2 can be found,
e.g. "C:\libxml2-2.9.7". The support of all other external libraries can
be turned on in a similar way:
libpng support:
set "DCMTK_WITH_PNG" to "ON" and
set "WITH_LIBPNGINC" e.g. to "C:\libpng-1.6.31"
libtiff support:
set "DCMTK_WITH_TIFF" to "ON" and
set "WITH_LIBTIFFINC" e.g. to "C:\libtiff-4.0.9"
OpenSSL support:
set "DCMTK_WITH_OPENSSL" to "ON" and
set "WITH_OPENSSLINC" e.g. to "C:\openssl-1.1.0g"
zlib support:
set "DCMTK_WITH_ZLIB" to "ON" and
set "WITH_ZLIBINC" e.g. to "C:\zlib-1.2.11"
libiconv support:
set "DCMTK_WITH_ICONV" to "ON" and
set "WITH_LIBICONVINC" e.g. to "C:\libiconv-1.15"
In order to turn the support of a certain external library off, set the
value of the corresponding variable ("DCMTK_WITH_XML", "DCMTK_WITH_PNG",
"DCMTK_WITH_TIFF", "DCMTK_WITH_OPENSSL", "DCMTK_WITH_ZLIB" or
"DCMTK_WITH_ICONV") to "OFF".
(Please note that the include files of all external libraries are always
expected in a directory named "include" below the directory which is
specified in "WITH_LIBXMLINC", "WITH_LIBPNGINC", "WITH_LIBTIFFINC",
"WITH_OPENSSLINC", "WITH_ZLIBINC" or "WITH_LIBICONVINC".)
(Please note also that the library files of all external libraries are always
expected in directory named "lib" below the directory which is specified in
"WITH_LIBXMLINC", "WITH_LIBPNGINC", "WITH_LIBTIFFINC", "WITH_OPENSSLINC",
"WITH_ZLIBINC" or "WITH_LIBICONV". Moreover, note that the following
filenames must be used for the corresponding lib files:
libxml2:
"iconv_d.lib" - debug version
"iconv_o.lib" - release version (optimized)
"libxml2_d.lib" - debug version
"libxml2_o.lib" - release version (optimized)
libpng:
"libpng_d.lib" - debug version
"libpng_o.lib" - release version (optimized)
libtiff:
"libtiff_d.lib" - debug version
"libtiff_o.lib" - release version (optimized)
openssl:
"dcmtkcrypto_d.lib" - debug version
"dcmtkcrypto_o.lib" - release version (optimized)
"dcmtkssl_d.lib" - debug version
"dcmtkssl_o.lib" - release version (optimized)
zlib:
"zlib_d.lib" - debug version
"zlib_o.lib" - release version (optimized)
libiconv:
"libiconv_d.lib" - debug version
"libiconv_o.lib" - release version (optimized)
"libchset_d.lib" - debug version
"libchset_o.lib" - release version (optimized)
The ICU is integrated using CMake's "find_package()" mechanism, which is
somewhat different to the handmade scripts employed for the other libraries.
If you want to use the ICU instead of libiconv, you have to include it by
setting the appropriate variables for the "FindICU" module, see
https://cmake.org/cmake/help/latest/module/FindICU.html .
The debug versions of all libraries must be compiled for the multithread
debug version of the runtime (/MTd), the release version must be compiled
for the non-debug multithread runtime (/MT). Precompiled versions of all
libraries can be downloaded from http://dicom.offis.de/dcmtk#lib-win.)
7. Go "Configure" a second time. (CMake will adjust the configuration
according to the displayed specifications.)
8. Go "OK" or "Generate". (CMake will generate new project files in the
corresponding directories. These files will be adjusted according to the
displayed specifications, i.e. support for the external libraries will be
turned on or off.)
Having performed these steps, the Microsoft Visual Studio IDE can be started,
DCMTK's workspace file can be opened, and one or more of DCMTK's subprojects
can be built. In case you want to build all libraries and applications, mark
the "ALL_BUILD" subproject and build it. The "INSTALL" subproject installs
the executables, libraries, include, support and documentation files to the
directory specified by the variable "CMAKE_INSTALL_PREFIX" (very similar to
"make install-all" on Unix systems).
Compilation and installation of the various command line applications
(including the test programs) can be disabled by setting the "BUILD_APPS"
option to "OFF" before configuring and generating the project files. By
default, all command line applications are built and installed.
Please note that other Windows compilers, e.g. Borland C++ Builder, are
currently not actively supported. However, they may work.
Known limitations of DCMTK on the Windows platform.
1. The dcmqrscp tool cannot spark multiple processes. Every association must
be handled completely before a new association is possible.
2. Visual C++ contains two different implementations of I/O streams which
should never be mixed within one application because this may cause
application errors that are hard to find. The old, now deprecated
implementation uses the traditional cfront header files <iostream.h> etc.
The new implementation uses <iostream> etc. as defined in ANSI/ISO C++.
DCMTK can be configured to use either of the two interfaces. This behavior
can be changed in "config/include/dcmtk/config/osconfig.h" in the build
directory where the symbol USE_STD_CXX_INCLUDES is declared.
3. DCMTK does not compile when UNICODE or _UNICODE is defined because the
VisualStudio compiler then uses the Unicode version instead of the ANSI
version for all Windows API functions (i.e. type wchar_t instead of char
for all character string parameters and return values).
Unix with CMake
---------------
One key difference when using CMake for building on Unix like systems is that we
use the "find_package()" mechanism for all external libraries and not just the
ICU. Most Unix like systems provide a package manager or even if not at least
have a consistent approach for where the libraries and include files are
installed such that the CMake "find_package()" mechanism typically finds them
out of the box.
If that does not work or you want to use a different version of a library than
the one in the default search paths, you should look at the documentation of the
respective "find_package()" module to find out which variables need to be
modified, e.g. "FindZLIB" to control which version of the zlib will be used:
https://cmake.org/cmake/help/latest/module/FindZLIB.html .
The typical way to build DCMTK on Unix like systems with CMake is as follows
(if not using the GUI, in that case look at the description for Windows above):
mkdir dcmtk-gcc-`g++ -dumpversion`
cd dcmtk-gcc-<TAB>
cmake ../dcmtk-3.6.3
make -j8
make DESTDIR=../dcmtk-3.6.3-install install
The above commands assume that the DCMTK source code was extracted to the
current working directory into a folder named dcmtk-3.6.3 and that the GNU gcc
compiler will be used (note that clang++ -dumpversion will give wrong results).
DCMTK will be configured using CMake with the default options, detecting and
including all available support libraries and then compiled using eight CPU
cores (adjust as needed). The result will be installed to the directory
"dcmtk-3.6.3-install" next to the source code directory.
HTML DOCUMENTATION AND MAN PAGES
================================
Most DCMTK modules have been documented with Doxygen (www.doxygen.org), a free
source code documentation system similar to Javadoc. Unix users who have
Doxygen installed can create a hypertext documentation with "make html" in the
"dcmtk-3.6.3" or "doxygen" directory; Windows and other CMake users should
build the "DOXYGEN" subproject. A project file for Microsoft's HTML Help
Workshop can also be generated allowing to create a single CHM file (compressed
HTML) from the documentation. Other output formats (e.g. LaTeX) can be enabled
by changing the configuration file in the "doxygen" directory.
At the current time, dcmfg, dcmiod, dcmimage, dcmimgle, dcmjpeg, dcmpmap,
dcmpstat, dcmrt, dcmseg, dcmsign, dcmsr, dcmtls, dcmtract, dcmwlm and ofstd are
completely documented; dcmdata, dcmjpls, dcmnet and oflog are almost completely
documented. See FAQ entry: "Where is rest of the documentation?"
On Unix platforms, man pages for all command line tools are installed during
the "make install" step. In order to use them, just add the directory (e.g.
"/usr/local/share/man") to the MANPATH environment variable and try
"man dcmdump" to check whether it works.
In order to generate plain text files from the man pages call "make text" in
the "doxygen" directory. The output files are stored in "doxygen/man2text".
DICOM DATA DICTIONARY
=====================
Almost all DCMTK tools and libraries require the so-called DICOM data dictionary
(i.e. information from part 6 of the DICOM standard) to be available in order
to map the attribute tags to their associated Value Representation (VR), Value
Multiplicity (VM) and attribute name (official keyword). The data dictionary
can either be loaded from file (default on Unix systems) or be built into the
respective tool / dcmdata library (default on Windows systems). The default
behavior can be changed using appropriate configuration options.
Details can be found in the documentation file at "dcmdata/docs/datadict.txt"
(or "/usr/local/share/doc/dcmtk/datadict.txt").
COMPILE-TIME FLAGS AND ENVIRONMENT VARIABLES
============================================
The behavior of several DCMTK tools and libraries can be modified by a number
of compile-time flags (macros). Those macros that are not automatically
handled by the configure mechanism are documented in "config/docs/macros.txt"
(or "/usr/local/share/doc/dcmtk/macros.txt").
There is also a number of environment variables that affect DCMTK's behavior.
These are documented in "config/docs/envvars.txt" (or "/usr/local/share/doc/
dcmtk/envvars.txt").
RUNNING THE TEST SUITE
======================
DCMTK comes with a test suite that verifies that the toolkit works as expected.
The tests are contained in a module's "tests" subdirectory. Some tests are
marked as exhaustive and are only run if explicitly enabled, see below.
When using Autoconf for building DCMTK, all tests can be run via "make check".
If a test fails, make will stop and the failure reason of the test which failed
should be visible. Additionally, you may run the exhaustive unit tests by
typing "make check-exhaustive".
You can also run the test suite with CMake. However, the steps needed for
running the test suite depend on the generator used. The Visual Studio
generators will create a "RUN_TESTS" subproject. Building this project will
call CTest and run all tests. When using the Makefile generator, "make test"
runs the test suite. Additionally, you may run the exhaustive unit tests by
typing "make test-exhaustive". Other generators should use a similar approach.
For closer inspection, individual tests can be run directly. The Makefiles
will build the test runner for each module as "<module>/tests/tests". CMake
will add the module name as a prefix to this file's name, e.g. "ofstd_tests".
For more information, call this program with the --help option.
BUILDING (Unix with Autoconf)
=============================
Configuring a DCMTK build with GNU Autoconf has been deprecated with DCMTK
release 3.6.3 and will be removed in future releases. However, you might still
use Autoconf with this release if you prefer it for whatever reason:
You do not need to obtain GNU Autoconf to compile and install this software.
All the necessary configure scripts are included in this distribution. The
configure scripts examine your system capabilities and automatically generate
include files and Makefiles.
Perform the following steps from the top-level (dcmtk-3.6.3) directory to
compile and install the software:
Step 1:
./configure --ignore-deprecation
Step 1 executes the configure scripts in each subdirectory. First, the system
capabilities are examined and then Makefiles are generated. By default,
executables and other files will be installed (in Step 3) in the directory
"/usr/local" in the corresponding subdirectories. If you wish to use another
install prefix you can use the --prefix=<path> flag to configure. E.g., if you
wish to install underneath your home directory in "~/dicom" then you should
start configure as:
./configure --ignore-deprecation --prefix=$HOME/dicom
Step 1 is also the place where support for the external libraries can be
enabled or disabled. By default, all libraries installed in the standard
path are enabled automatically. Use the --without-openssl switch to disable
OpenSSL support. The --with-opensslinc option allows to specify the directory
in which OpenSSL is installed. This is usually the directory that has been
used as --prefix when compiling and installing OpenSSL.
For example, if you wish to enable the security enhancements, and OpenSSL is
installed in "/usr/local/apps/openssl-1.1.0g", then you should start configure
as:
./configure --ignore-deprecation
--with-opensslinc=/usr/local/apps/openssl-1.1.0g
Configure will assume that the OpenSSL include files are installed in
"/usr/local/apps/openssl-1.1.0g/include" and will expect the library in
"/usr/local/apps/openssl-1.1.0g/lib". Appropriate options will be passed to
the compiler and the linker.
Support for zlib, libtiff, libpng, libxml2, libwrap and libiconv can be enabled
in a similar way (in case these libraries are not installed in the standard
path):
./configure --ignore-deprecation
--with-libzlibinc=/usr/local/apps/zlib-1.2.11
--with-libtiffinc=/usr/local/apps/libtiff-4.0.9
--with-libpnginc=/usr/local/apps/libpng-1.6.31
--with-libxmlinc=/usr/local/apps/libxml2-2.9.7
--with-libwrapinc=/usr/local/apps/tcp_wrappers-7.6
--with-libiconvinc=/usr/local/apps/libiconv-1.15
<or>
--with-libicuinc=/usr/local/apps/icu-59.1
Different configure options can be combined in any order. configure --help
will print a list of all existing configure options. configure --help=short
will display only those options specific to the DCMTK. Useful configure
options are:
--enable-debug compile with debug code, don't optimize
--disable-debug compile without debug code (default)
--enable-threads=TYPE compile with MT support (posix/solaris/auto=default)
--disable-threads compile without MT support
--enable-lfs=TYPE compile with LFS support (lfs/lfs64/auto=default)
--disable-lfs compile without LFS support
--enable-std-includes use C++ ANSI standard includes
--disable-std-includes use old C++ includes
--enable-private-tags enable private tag dictionary
--disable-private-tags don't enable private tag dictionary (default)
--enable-external-dict enable loading of external dictionary (default)
--disable-external-dict don't load external dictionary
--enable-builtin-dict enable loading of built-in dictionary
--disable-builtin-dict don't load built-in dictionary (default)
--disable-rpath do not hardcode runtime library paths
--enable-charconv=TYPE enable character set conversion support
(libiconv/libicu/stdlibc/auto=default)
--disable-charconv disable character set conversion support
--enable-cxx11 use C++11
--disable-cxx11 do not use C++11 (default)
--enable-stl use C++ STL
--disable-stl do not use C++ STL (default)
Step 2:
make all
Step 2 will build the libraries and executables. If you run into problems see
the section "Solving configuration and compilation problems" below.
Step 3:
make install
Step 3 will install the executables and some support files (data dictionary,
configuration and documentation files). If you also wish to install the
libraries and include files then use "make install-lib". For the HTML
documentation (see below) use "make install-html" (requires Doxygen to be
installed); "make install-all" installs all of the above.
In case the files should be installed in a temporary directory, e.g. in order
to create a distribution package, use "make install DESTDIR=<path>" to prepend
<path> to the installation directories specified for configure.
Step 4:
make distclean
Step 4 will revert the source tree to the state prior to Step 1. If you just
want to get rid of object files and local executables use "make clean" instead.
Note: In case you do not want to compile all modules, you can remove those
modules from the text file "config/modules" prior to Step 1 and execute the
following commands:
cd config
./rootconf
cd ..
This generates a new Makefile and configure script in the top-level toolkit
directory.
Solving configuration and compilation problems
----------------------------------------------
The configure script might not be able to guess the correct compiler and
compiler flags to use. For example, we have noticed that use of the -pedantic
flag to the GNU C++ compiler causes compilation errors on some systems due to
system include files with incorrect ANSI function prototypes.
You can set environment variables to initialize configure before it is called
(before Step 1 above):
Set environment variable CC to the name of your C compiler.
Set environment variable CFLAGS to the compile flags of your C compiler.
Set environment variable CXX to the name of your C++ compiler.
Set environment variable CXXFLAGS to the compile flags of your C++ compiler.
Set environment variable LDFLAGS to your linker flags.
Set environment variable CPPFLAGS to you preprocessor flags.
You do not need to specify all the above environment variables since the
default settings are sensible for most Unix compilers. Further influential
environment variables are listed in the output of configure --help.
If the configure script fails you may have to change the configuration settings
in the config directory. See the "config/docs" directory for more information.
See also the FAQ at http://forum.dcmtk.org/faq for more hints.
---------
Have fun.
M. Eichelberg, J. Riesmeier, M. Onken, J. Schlamelcher
DCMTK Development Team, Oldenburg, Germany.
Last revised: 2018-04-10 (Eichelberg)