-
Notifications
You must be signed in to change notification settings - Fork 24
/
yolo_seqnms.py
292 lines (277 loc) · 12.5 KB
/
yolo_seqnms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
import numpy as np
import cv2
import time
import copy
import cPickle as pickle
import os, sys
from matplotlib import pyplot as plt
from PIL import Image
import scipy.misc
import yolo_detection
import visualization_utils as vis_util
import label_map_util
CLASSES=("__background__","person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush")
CONF_THRESH = 0.5
NMS_THRESH = 0.3
IOU_THRESH = 0.6
IOU_THRESH_DELETE = 0.3
'''
修改检测结果格式,用作后续处理
第一维:种类
第二维:帧
第三维:bbox
第四维:x1,y1,x2,y2,score
'''
def createInputs(res):
create_begin=time.time()
dets=[[] for i in CLASSES[1:]] #保存最终结果
for cls_ind,cls in enumerate(CLASSES[1:]): #类
for frame_ind,frame in enumerate(res): #帧
cls_boxes = np.zeros((len(res[frame_ind]), 4), dtype=np.float64)
cls_scores = np.zeros((len(res[frame_ind]), 1), dtype=np.float64)
for box_ind, box in enumerate(frame):
cls_boxes[box_ind][0] = box[2][0]-box[2][2]/2
cls_boxes[box_ind][1] = box[2][1]-box[2][3]/2
cls_boxes[box_ind][2] = box[2][0]+box[2][2]/2
cls_boxes[box_ind][3] = box[2][1]+box[2][3]/2
if box[0]==cls:
cls_scores[box_ind][0] = box[1]
else:
cls_scores[box_ind][0] = 0.00001
cls_dets = np.hstack((cls_boxes,cls_scores)).astype(np.float64)
dets[cls_ind].append(cls_dets)
create_end=time.time()
print 'create inputs: {:.4f}s'.format(create_end - create_begin)
return dets
def createLinks(dets_all):
link_begin=time.time()
links_all=[]
#建立每相邻两帧之间的link关系
frame_num=len(dets_all[0])
cls_num=len(CLASSES)-1
#links_all=[] #保存每一类的全部link,第一维为类数,第二维为帧数-1,为该类下的links即每一帧与后一帧之间的link,第三维每帧的box数,为该帧与后一帧之间的link
for cls_ind in range(cls_num): #第一层循环,类数
links_cls=[] #保存一类下全部帧的links
for frame_ind in range(frame_num-1): #第二层循环,帧数-1,不循环最后一帧
dets1=dets_all[cls_ind][frame_ind]
dets2=dets_all[cls_ind][frame_ind+1]
box1_num=len(dets1)
box2_num=len(dets2)
#先计算每个box的area
if frame_ind==0:
areas1=np.empty(box1_num)
for box1_ind,box1 in enumerate(dets1):
areas1[box1_ind]=(box1[2]-box1[0]+1)*(box1[3]-box1[1]+1)
else: #当前帧的area1就是前一帧的area2,避免重复计算
areas1=areas2
areas2=np.empty(box2_num)
for box2_ind,box2 in enumerate(dets2):
areas2[box2_ind]=(box2[2]-box2[0]+1)*(box2[3]-box2[1]+1)
#计算相邻两帧同一类的link
links_frame=[] #保存相邻两帧的links
for box1_ind,box1 in enumerate(dets1):
area1=areas1[box1_ind]
x1=np.maximum(box1[0],dets2[:,0])
y1=np.maximum(box1[1],dets2[:,1])
x2=np.minimum(box1[2],dets2[:,2])
y2=np.minimum(box1[3],dets2[:,3])
w =np.maximum(0.0, x2 - x1 + 1)
h =np.maximum(0.0, y2 - y1 + 1)
inter = w * h
ovrs = inter / (area1 + areas2 - inter)
links_box=[ovr_ind for ovr_ind,ovr in enumerate(ovrs) if ovr >= IOU_THRESH] #保存第一帧的一个box对第二帧全部box的link
links_frame.append(links_box)
links_cls.append(links_frame)
links_all.append(links_cls)
link_end=time.time()
print 'link: {:.4f}s'.format(link_end - link_begin)
return links_all
def maxPath(dets_all,links_all):
max_begin=time.time()
for cls_ind,links_cls in enumerate(links_all):
dets_cls=dets_all[cls_ind]
while True:
rootindex,maxpath,maxsum=findMaxPath(links_cls,dets_cls)
if len(maxpath) <= 1:
break
rescore(dets_cls,rootindex,maxpath,maxsum)
deleteLink(dets_cls,links_cls,rootindex,maxpath,IOU_THRESH_DELETE)
max_end=time.time()
print 'max path: {:.4f}s'.format(max_end - max_begin)
def nms(dets, thresh):
"""Pure Python NMS baseline."""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def NMS(dets_all):
for cls_ind,dets_cls in enumerate(dets_all):
for frame_ind,dets in enumerate(dets_cls):
keep=nms(dets, NMS_THRESH)
dets_all[cls_ind][frame_ind]=dets[keep, :]
def findMaxPath(links,dets):
maxpaths=[] #保存从每个结点到最后的最大路径与分数
roots=[] #保存所有的可作为独立路径进行最大路径比较的路径
maxpaths.append([ (box[4],[ind]) for ind,box in enumerate(dets[-1])])
for link_ind,link in enumerate(links[::-1]): #每一帧与后一帧的link,为一个list
curmaxpaths=[]
linkflags=np.zeros(len(maxpaths[0]),int)
det_ind=len(links)-link_ind-1
for ind,linkboxes in enumerate(link): #每一帧中每个box的link,为一个list
if linkboxes == []:
curmaxpaths.append((dets[det_ind][ind][4],[ind]))
continue
linkflags[linkboxes]=1
prev_ind=np.argmax([maxpaths[0][linkbox][0] for linkbox in linkboxes])
prev_score=maxpaths[0][linkboxes[prev_ind]][0]
prev_path=copy.copy(maxpaths[0][linkboxes[prev_ind]][1])
prev_path.insert(0,ind)
curmaxpaths.append((dets[det_ind][ind][4]+prev_score,prev_path))
root=[maxpaths[0][ind] for ind,flag in enumerate(linkflags) if flag == 0]
roots.insert(0,root)
maxpaths.insert(0,curmaxpaths)
roots.insert(0,maxpaths[0])
maxscore=0
maxpath=[]
for index,paths in enumerate(roots):
if paths==[]:
continue
maxindex=np.argmax([path[0] for path in paths])
if paths[maxindex][0]>maxscore:
maxscore=paths[maxindex][0]
maxpath=paths[maxindex][1]
rootindex=index
return rootindex,maxpath,maxscore
def rescore(dets, rootindex, maxpath, maxsum):
newscore=maxsum/len(maxpath)
for i,box_ind in enumerate(maxpath):
dets[rootindex+i][box_ind][4]=newscore
def deleteLink(dets,links, rootindex, maxpath,thesh):
for i,box_ind in enumerate(maxpath):
areas=[(box[2]-box[0]+1)*(box[3]-box[1]+1) for box in dets[rootindex+i]]
area1=areas[box_ind]
box1=dets[rootindex+i][box_ind]
x1=np.maximum(box1[0],dets[rootindex+i][:,0])
y1=np.maximum(box1[1],dets[rootindex+i][:,1])
x2=np.minimum(box1[2],dets[rootindex+i][:,2])
y2=np.minimum(box1[3],dets[rootindex+i][:,3])
w =np.maximum(0.0, x2 - x1 + 1)
h =np.maximum(0.0, y2 - y1 + 1)
inter = w * h
ovrs = inter / (area1 + areas - inter)
deletes=[ovr_ind for ovr_ind,ovr in enumerate(ovrs) if ovr >= thesh] #保存待删除的box的index
for delete_ind in deletes:
if delete_ind!=box_ind:
dets[rootindex+i][delete_ind, 4] = 0
if rootindex+i<len(links): #除了最后一帧,置box_ind的box的link为空
for delete_ind in deletes:
links[rootindex+i][delete_ind]=[]
if i > 0 or rootindex>0:
for priorbox in links[rootindex+i-1]: #将前一帧指向box_ind的link删除
for delete_ind in deletes:
if delete_ind in priorbox:
priorbox.remove(delete_ind)
def dsnms(res):
dets=createInputs(res)
links=createLinks(dets)
maxPath(dets,links)
NMS(dets)
boxes=[[] for i in dets[0]]
classes=[[] for i in dets[0]]
scores=[[] for i in dets[0]]
#for max_path in max_paths:
# cls_ind = max_path[0]
# rootindex = max_path[1]
# maxpath = max_path[2]
# for i,box_ind in enumerate(maxpath):
# ymin = dets[cls_ind][rootindex+i][box_ind][1]
# xmin = dets[cls_ind][rootindex+i][box_ind][0]
# ymax = dets[cls_ind][rootindex+i][box_ind][3]
# xmax = dets[cls_ind][rootindex+i][box_ind][2]
# score = dets[cls_ind][rootindex+i][box_ind][4]
# boxes[rootindex+i].append(np.array([ymin, xmin, ymax, xmax]))
# classes[rootindex+i].append(cls_id+1)
# scores[rootindex+i].append(score)
for cls_id, det_cls in enumerate(dets):
for frame_id, frame in enumerate(det_cls):
for box_id, box in enumerate(frame):
if box[4] >= CONF_THRESH:
ymin = box[1]
xmin = box[0]
ymax = box[3]
xmax = box[2]
boxes[frame_id].append(np.array([ymin, xmin, ymax, xmax]))
classes[frame_id].append(cls_id+1)
scores[frame_id].append(box[4])
return boxes, classes, scores
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def get_labeled_image(image_path, path_to_labels, num_classes, boxes, classes, scores):
label_map = label_map_util.load_labelmap(path_to_labels)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=num_classes,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)
image_process = vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
boxes,
classes,
scores,
category_index)
return image_process
if __name__ == "__main__":
# load image
load_begin=time.time()
pkllistfile=open(os.path.join('video', 'pkllist.txt'))
pkllist=pkllistfile.readlines()
pkllistfile.close()
pkllist=[pkl.strip() for pkl in pkllist]
load_end=time.time()
print 'load: {:.4f}s'.format(load_end - load_begin)
# detection
detect_begin=time.time()
res = yolo_detection.detect_imgs(pkllist, nms=0, thresh=0.25)
detect_end=time.time()
print 'total detect: {:.4f}s'.format(detect_end - detect_begin)
# nms
nms_begin=time.time()
boxes, classes, scores = dsnms(res)
nms_end=time.time()
print 'total nms: {:.4f}s'.format(nms_end - nms_begin)
# save&visualization
save_begin=time.time()
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 80
if not os.path.exists('video/output'):
os.makedirs('video/output')
for i, image_path in enumerate(pkllist):
image_process = get_labeled_image(image_path, PATH_TO_LABELS, NUM_CLASSES, np.array(boxes[i]), np.array(classes[i]), np.array(scores[i]))
#plt.imshow(image_process)
#plt.show()
scipy.misc.imsave('video/output/frame{}.jpg'.format(i), image_process)
if i%100==0:
print 'finish writing image{}'.format(i)
save_end=time.time()
print 'total writing images: {:.4f}s'.format(save_end - save_begin)