-
Notifications
You must be signed in to change notification settings - Fork 5
/
seqgraphalignment.py
275 lines (228 loc) · 9.12 KB
/
seqgraphalignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
####################################
# Author: Jeremy (Meng-Chieh) Lee #
# Email : [email protected] #
####################################
import numpy as np
from math import ceil
from collections import Counter
from scipy.special import comb
from itertools import groupby
from utils import *
class SeqGraphAlignment(object):
__matchscore = 1
__mismatchscore = -1
__gap = -2
def __init__(self, sequence, graph, globalAlign=True,
matchscore=__matchscore, mismatchscore=__mismatchscore,
gapscore=__gap, *args, **kwargs):
self._mismatchscore = mismatchscore
self._matchscore = matchscore
self._gap = gapscore
self.sequence = sequence
self.graph = graph
self.stringidxs = None
self.nodeidxs = None
self.globalAlign = globalAlign
self.stringidxs, self.nodeidxs = self.alignStringToGraphFast(*args, **kwargs)
def alignment_condition(self):
stringidxs, nodeidxs = self.stringidxs, self.nodeidxs
nnidx = next(i for i in self.stringidxs if i is not None)
if nnidx != 0:
for i in range(nnidx):
stringidxs.insert(i, i)
nodeidxs.insert(i, None)
nnidx = next(i for i in self.nodeidxs if i is not None)
if nnidx != 0:
for i in range(nnidx):
stringidxs.insert(i, None)
nodeidxs.insert(i, i)
startslot = -1 if self.graph.startslot else -2
condition, clist, sw_count = [], [], defaultdict(list)
for i, j in zip(stringidxs, nodeidxs):
if startslot != -2:
if j == None or (i != None and self.sequence[i] != self.graph.nodedict[j].base):
condition.append(-1)
clist.append([-1, self.sequence[i]])
sw_count[startslot].append(self.sequence[i])
continue
else:
if (len(condition) != 0 and condition[-1] != -1) or len(condition) == 0:
clist.append([-1, ' '])
startslot = -2
if j != None and self.graph.nodedict[j].slot:
startslot = j
if i != None and j != None:
if self.sequence[i] == self.graph.nodedict[j].base:
### Matched
condition.append(0)
clist.append([0, self.sequence[i]])
else:
### Substitution
condition.append(1)
clist.append([1, self.sequence[i]])
elif i == None:
### Deletion
condition.append(2)
clist.append([2, ' '])
elif j == None:
### Insertion
condition.append(3)
clist.append([3, self.sequence[i]])
return condition, clist, sw_count
def alignment_encoding_cost(self):
condition, clist, sw_count = self.alignment_condition()
ct = Counter(condition)
vh = len(self.stringidxs)
u_s = [base for base, c in zip(self.sequence, condition) if c == -1]
u_a = [base for base, c in zip(self.sequence, condition) if c == 1 or c == 3]
e = ct[1] + ct[2] + ct[3]
### Alignment Information
bits = log_star(vh) + vh
### Slot Content
bits += np.sum([1 + log_star(len(sw)) for sw in sw_count.values()]) + word_cost() * len(u_s)
### Unmatched Words
bits += e * ceil(np.log2(vh)) + 2 * e + len(u_a) * word_cost()
return bits, clist
def alignmentStrings(self):
return (" ".join([self.sequence[i] if i is not None else "-" for i in self.stringidxs]),
" ".join([self.graph.nodedict[j].base if j is not None else "-" for j in self.nodeidxs]))
def matchscore(self, c1, c2):
if c1 == c2:
return self._matchscore
else:
return self._mismatchscore
def matchscoreVec(self, c, v):
res = np.where(v == c, self._matchscore, self._mismatchscore)
return res
def alignStringToGraphFast(self):
"""Align string to graph - using np to vectorize across the string
at each iteration."""
# if not type(self.sequence) == str:
# raise TypeError("Invalid Type")
l2 = len(self.sequence)
seqvec = np.array(list(self.sequence))
nodeIDtoIndex, nodeIndexToID, scores, backStrIdx, backGrphIdx = self.initializeDynamicProgrammingData()
inserted = np.zeros((l2), dtype=np.bool)
# having the inner loop as a function improves performance
# can use Cython, etc on this for significant further improvements
# can't vectorize this since there's a loop-carried dependency
# along the string
def insertions(i, l2, scores, inserted):
inserted[:] = False
for j in range(l2):
insscore = scores[i+1, j] + self._gap
if insscore >= scores[i+1, j+1]:
scores[i+1, j+1] = insscore
inserted[j] = True
# Dynamic Programming
ni = self.graph.nodeiterator()
for i, node in enumerate(ni()):
gbase = node.base
predecessors = self.prevIndices(node, nodeIDtoIndex)
# calculate all best deletions, matches in one go over all
# predecessors.
# First calculate for the first predecessor, over all string posns:
deletescore = scores[predecessors[0]+1, 1:] + self._gap
bestdelete = np.zeros((l2), dtype=np.int)+predecessors[0]+1
matchpoints = self.matchscoreVec(gbase, seqvec)
matchscore = scores[predecessors[0]+1, 0:-1] + matchpoints
bestmatch = np.zeros((l2), dtype=np.int)+predecessors[0]+1
# then, the remaining
for predecessor in predecessors[1:]:
newdeletescore = scores[predecessor+1, 1:] + self._gap
bestdelete = np.where(newdeletescore > deletescore, predecessor+1, bestdelete)
deletescore = np.maximum(newdeletescore, deletescore)
gbase = self.graph.nodeIdxToBase(predecessor)
matchpoints = self.matchscoreVec(gbase, seqvec)
newmatchscore = scores[predecessor+1, 0:-1] + matchpoints
bestmatch = np.where(newmatchscore > matchscore, predecessor+1, bestmatch)
matchscore = np.maximum(newmatchscore, matchscore)
# choose best options available of match, delete
deleted = deletescore >= matchscore
backGrphIdx[i+1, 1:] = np.where(deleted, bestdelete, bestmatch)
backStrIdx [i+1, 1:] = np.where(deleted, np.arange(1, l2+1), np.arange(0, l2))
scores[i+1, 1:] = np.where(deleted, deletescore, matchscore)
# insertions: updated in place, don't depend on predecessors
insertions(i, l2, scores, inserted)
backGrphIdx[i+1, 1:] = np.where(inserted, i+1, backGrphIdx[i+1, 1:])
backStrIdx[i+1, 1:] = np.where(inserted, np.arange(l2), backStrIdx[i+1, 1:])
# if we're doing local alignment, don't let bad global alignment
# drag us negative
if not self.globalAlign:
backGrphIdx[i+1, :] = np.where(scores[i+1, :] > 0, backGrphIdx[i+1, :], -1)
backStrIdx [i+1, :] = np.where(scores[i+1, :] > 0, backStrIdx[i+1, :], -1)
scores[i+1, :] = np.maximum(scores[i+1, :], 0)
return self.backtrack(scores, backStrIdx, backGrphIdx, nodeIndexToID)
def prevIndices(self, node, nodeIDtoIndex):
"""Return a list of the previous dynamic programming table indices
corresponding to predecessors of the current node."""
prev = []
for predID in list(node.inEdges.keys()):
prev.append(nodeIDtoIndex[predID])
# if no predecessors, point to just before the graph
if len(prev) == 0:
prev = [-1]
return prev
def initializeDynamicProgrammingData(self):
"""Initalize the dynamic programming tables:
- set up scores array
- set up backtracking array
- create index to Node ID table and vice versa"""
l1 = self.graph.nNodes
l2 = len(self.sequence)
nodeIDtoIndex = {}
nodeIndexToID = {-1: None}
# generate a dict of (nodeID) -> (index into nodelist (and thus matrix))
ni = self.graph.nodeiterator()
for (index, node) in enumerate(ni()):
nodeIDtoIndex[node.ID] = index
nodeIndexToID[index] = node.ID
# Dynamic Programming data structures; scores matrix and backtracking
# matrix
scores = np.zeros((l1+1, l2+1), dtype=np.int)
# initialize insertion score
# if global align, penalty for starting at head != 0
if self.globalAlign:
scores[0, :] = np.arange(l2+1)*self._gap
ni = self.graph.nodeiterator()
for (index, node) in enumerate(ni()):
prevIdxs = self.prevIndices(node, nodeIDtoIndex)
best = scores[prevIdxs[0]+1, 0]
for prevIdx in prevIdxs:
best = max(best, scores[prevIdx+1, 0])
scores[index+1, 0] = best + self._gap
# backtracking matrices
backStrIdx = np.zeros((l1+1, l2+1), dtype=np.int)
backGrphIdx = np.zeros((l1+1, l2+1), dtype=np.int)
return nodeIDtoIndex, nodeIndexToID, scores, backStrIdx, backGrphIdx
def backtrack(self, scores, backStrIdx, backGrphIdx, nodeIndexToID):
"""Backtrack through the scores and backtrack arrays.
Return a list of sequence indices and node IDs (not indices, which
depend on ordering)."""
besti, bestj = scores.shape
besti -= 1
bestj -= 1
if not self.globalAlign:
besti, bestj = np.argwhere(scores == np.amax(scores))[-1]
else:
# still have to find best final index to start from
terminalIndices = []
ni = self.graph.nodeiterator()
for (index, node) in enumerate(ni()):
if node.outDegree == 0:
terminalIndices.append(index)
besti = terminalIndices[0] + 1
bestscore = scores[besti, bestj]
for i in terminalIndices[1:]:
score = scores[i+1, bestj]
if score > bestscore:
bestscore, besti = score, i+1
matches = []
strindexes = []
while (self.globalAlign or scores[besti, bestj] > 0) and not(besti == 0 and bestj == 0):
nexti, nextj = backGrphIdx[besti, bestj], backStrIdx[besti, bestj]
curstridx, curnodeidx = bestj-1, nodeIndexToID[besti-1]
strindexes.insert(0, curstridx if nextj != bestj else None)
matches.insert (0, curnodeidx if nexti != besti else None)
besti, bestj = nexti, nextj
return strindexes, matches