-
Notifications
You must be signed in to change notification settings - Fork 13
/
models-paper.py
149 lines (118 loc) · 4.87 KB
/
models-paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch.nn as nn
import torch
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv2d") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("Linear") != -1:
torch.nn.init.constant_(m.weight.data, 0.0)
if m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
class SegmentNet(nn.Module):
def __init__(self, in_channels=3, init_weights=True):
super(SegmentNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels, 32, 5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, 5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(64, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(2)
)
self.layer4 = nn.Sequential(
nn.Conv2d(64, 1024, 15, stride=1, padding=7),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True)
)
self.layer5 = nn.Sequential(
nn.Conv2d(1024, 1, 1),
nn.ReLU(inplace=True)
)
if init_weights == True:
pass
def forward(self, x):
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
return {"f":x4, "seg":x5}
class DecisionNet(nn.Module):
def __init__(self, init_weights=True):
super(DecisionNet, self).__init__()
self.layer1 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(1025, 8, 5, stride=1, padding=2),
nn.BatchNorm2d(8),
nn.ReLU(inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(8, 16, 5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.Conv2d(16, 32, 5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True)
)
self.fc = nn.Sequential(
nn.Linear(66, 1, bias=False),
nn.Sigmoid()
)
if init_weights == True:
pass
def forward(self, f, s):
xx = torch.cat((f, s), 1)
x1 = self.layer1(xx)
x2 = x1.view(x1.size(0), x1.size(1), -1)
s2 = s.view(s.size(0), s.size(1), -1)
x_max, x_max_idx = torch.max(x2, dim=2)
x_avg = torch.mean(x2, dim=2)
s_max, s_max_idx = torch.max(s2, dim=2)
s_avg = torch.mean(s2, dim=2)
y = torch.cat((x_max, x_avg, s_avg, s_max), 1)
y = y.view(y.size(0), -1)
return self.fc(y)
if __name__=='__main__':
snet = SegmentNet()
dnet = DecisionNet()
img = torch.randn(4, 3, 704, 256)
snet.eval()
snet = snet.cuda()
dnet = dnet.cuda()
img = img.cuda()
ret = snet(img)
f = ret["f"]
s = ret["seg"]
c = dnet(f, s)
print(c)
pass