-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_decision.py
219 lines (183 loc) · 7.57 KB
/
train_decision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch.nn as nn
import torch
from torchvision import datasets
from torchvision.utils import save_image
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
import os
import sys
import argparse
import time
import PIL.Image as Image
import numpy as np
from models import SegmentNet, DecisionNet, weights_init_normal
from dataset import KolektorDataset
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", type=bool, default=True, help="number of gpu")
parser.add_argument("--gpu_num", type=int, default=1, help="number of gpu")
parser.add_argument("--worker_num", type=int, default=4, help="number of input workers")
parser.add_argument("--batch_size", type=int, default=4, help="batch size of input")
parser.add_argument("--lr", type=float, default=0.001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--begin_epoch", type=int, default=0, help="begin_epoch")
parser.add_argument("--end_epoch", type=int, default=61, help="end_epoch")
parser.add_argument("--seg_epoch", type=int, default=50, help="pretrained segment epoch")
parser.add_argument("--need_test", type=bool, default=True, help="need to test")
parser.add_argument("--test_interval", type=int, default=10, help="interval of test")
parser.add_argument("--need_save", type=bool, default=True, help="need to save")
parser.add_argument("--save_interval", type=int, default=10, help="interval of save weights")
parser.add_argument("--img_height", type=int, default=1408, help="size of image height") # 1408x512 704x256
parser.add_argument("--img_width", type=int, default=512, help="size of image width")
opt = parser.parse_args()
print(opt)
dataSetRoot = "./KolektorSDD_Data"
# Build nets
segment_net = SegmentNet(init_weights=True)
decision_net = DecisionNet(init_weights=True)
# Loss functions
#criterion_segment = torch.nn.MSELoss()
criterion_decision = torch.nn.MSELoss()
# Optimizers
optimizer_dec = torch.optim.Adam(decision_net.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
if opt.cuda:
segment_net = segment_net.cuda()
decision_net = decision_net.cuda()
# criterion_segment.cuda()
criterion_decision.cuda()
if opt.gpu_num > 1:
segment_net = torch.nn.DataParallel(segment_net, device_ids=list(range(opt.gpu_num)))
decision_net = torch.nn.DataParallel(decision_net, device_ids=list(range(opt.gpu_num)))
if opt.begin_epoch != 0:
# Load pretrained models
decision_net.load_state_dict(torch.load("./saved_models/decision_net_%d.pth" % (opt.begin_epoch)))
else:
# Initialize weights
decision_net.apply(weights_init_normal)
# load pretrained segment parameters
segment_net.load_state_dict(torch.load("./saved_models/segment_net_%d.pth" % (opt.seg_epoch)))
segment_net.eval()
transforms_ = transforms.Compose([
transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
transforms.ToTensor(),
#transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
transforms_mask = transforms.Compose([
transforms.Resize((opt.img_height//8, opt.img_width//8)),
transforms.ToTensor(),
#transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainOKloader = DataLoader(
KolektorDataset(dataSetRoot, transforms_=transforms_, transforms_mask= transforms_mask,
subFold="Train_OK", isTrain=True),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.worker_num,
)
trainNGloader = DataLoader(
KolektorDataset(dataSetRoot, transforms_=transforms_, transforms_mask= transforms_mask,
subFold="Train_NG", isTrain=True),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.worker_num,
)
'''
trainloader = DataLoader(
KolektorDataset(dataSetRoot, transforms_=transforms_, transforms_mask= transforms_mask,
subFold="Train_ALL", isTrain=True),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.worker_num,
)
'''
testloader = DataLoader(
KolektorDataset(dataSetRoot, transforms_=transforms_, transforms_mask= transforms_mask,
subFold="Test/Train_NG", isTrain=False),
batch_size=1,
shuffle=False,
num_workers=0,
)
for epoch in range(opt.begin_epoch, opt.end_epoch):
iterOK = trainOKloader.__iter__()
iterNG = trainNGloader.__iter__()
lenNum = min( len(trainNGloader), len(trainOKloader))
lenNum = 2*(lenNum-1)
decision_net.train()
segment_net.eval()
# train
for i in range(0, lenNum):
if i % 2 == 0:
batchData = iterOK.__next__()
#idx, batchData = enumerate(trainOKloader)
gt_c = Variable(torch.Tensor(np.zeros((batchData["img"].size(0), 1))), requires_grad=False)
else :
batchData = iterNG.__next__()
gt_c = Variable(torch.Tensor(np.ones((batchData["img"].size(0), 1))), requires_grad=False)
#idx, batchData = enumerate(trainNGloader)
if opt.cuda:
img = batchData["img"].cuda()
mask = batchData["mask"].cuda()
gt_c = gt_c.cuda()
else:
img = batchData["img"]
mask = batchData["mask"]
rst = segment_net(img)
f = rst["f"]
seg = rst["seg"]
optimizer_dec.zero_grad()
rst_d = decision_net(f, seg)
# rst_d = torch.Tensor.long(rst_d)
loss_dec = criterion_decision(rst_d, gt_c)
loss_dec.backward()
optimizer_dec.step()
sys.stdout.write(
"\r [Epoch %d/%d] [Batch %d/%d] [loss %f]"
%(
epoch,
opt.end_epoch,
i,
lenNum,
loss_dec.item()
)
)
# test
if opt.need_test and epoch % opt.test_interval == 0 and epoch >= opt.test_interval:
decision_net.eval()
# segment_net.eval()
all_time = 0
for i, testBatch in enumerate(testloader):
imgTest = testBatch["img"].cuda()
t1 = time.time()
rstTest = segment_net(imgTest)
fTest = rstTest["f"]
segTest = rstTest["seg"]
cTest = decision_net(fTest, segTest)
t2 = time.time()
save_path_str = "./testResultDec/epoch_%d"%epoch
if os.path.exists(save_path_str) == False:
os.makedirs(save_path_str, exist_ok=True)
# os.mkdir(save_path_str)
if cTest.item() > 0.5:
labelStr = "NG"
else:
labelStr = "OK"
save_image(imgTest.data, "%s/img_%d_%s.jpg"% (save_path_str, i , labelStr))
save_image(segTest.data, "%s/img_%d_seg_%s.jpg"% (save_path_str, i, labelStr))
# print("processing image NO %d, time comsuption %fs"%(i, t2 - t1))
all_time = (t2-t1) + all_time
count_time = i + 1
# print(all_time, count_time)
avg_time = all_time/count_time
print("\na image avg time %fs" % avg_time)
decision_net.train()
# save model parameters
if opt.need_save and epoch % opt.save_interval == 0 and epoch >= opt.save_interval:
# decision_net.eval()
save_path_str = "./saved_models"
if os.path.exists(save_path_str) == False:
os.makedirs(save_path_str, exist_ok=True)
torch.save(decision_net.state_dict(), "%s/decision_net_%d.pth" % (save_path_str, epoch))
print("save weights ! epoch = %d"%epoch)
# decision_net.train()
pass