forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bisenet.py
307 lines (230 loc) · 9.68 KB
/
bisenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg import utils
from paddleseg.cvlibs import manager, param_init
from paddleseg.models import layers
@manager.MODELS.add_component
class BiSeNetV2(nn.Layer):
"""
The BiSeNet V2 implementation based on PaddlePaddle.
The original article refers to
Yu, Changqian, et al. "BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation"
(https://arxiv.org/abs/2004.02147)
Args:
num_classes (int): The unique number of target classes.
lambd (float, optional): A factor for controlling the size of semantic branch channels. Default: 0.25.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
lambd=0.25,
align_corners=False,
pretrained=None):
super().__init__()
C1, C2, C3 = 64, 64, 128
db_channels = (C1, C2, C3)
C1, C3, C4, C5 = int(C1 * lambd), int(C3 * lambd), 64, 128
sb_channels = (C1, C3, C4, C5)
mid_channels = 128
self.db = DetailBranch(db_channels)
self.sb = SemanticBranch(sb_channels)
self.bga = BGA(mid_channels, align_corners)
self.aux_head1 = SegHead(C1, C1, num_classes)
self.aux_head2 = SegHead(C3, C3, num_classes)
self.aux_head3 = SegHead(C4, C4, num_classes)
self.aux_head4 = SegHead(C5, C5, num_classes)
self.head = SegHead(mid_channels, mid_channels, num_classes)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
dfm = self.db(x)
feat1, feat2, feat3, feat4, sfm = self.sb(x)
logit = self.head(self.bga(dfm, sfm))
if not self.training:
logit_list = [logit]
else:
logit1 = self.aux_head1(feat1)
logit2 = self.aux_head2(feat2)
logit3 = self.aux_head3(feat3)
logit4 = self.aux_head4(feat4)
logit_list = [logit, logit1, logit2, logit3, logit4]
logit_list = [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
return logit_list
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
else:
for sublayer in self.sublayers():
if isinstance(sublayer, nn.Conv2D):
param_init.kaiming_normal_init(sublayer.weight)
elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)):
param_init.constant_init(sublayer.weight, value=1.0)
param_init.constant_init(sublayer.bias, value=0.0)
class StemBlock(nn.Layer):
def __init__(self, in_dim, out_dim):
super(StemBlock, self).__init__()
self.conv = layers.ConvBNReLU(in_dim, out_dim, 3, stride=2)
self.left = nn.Sequential(
layers.ConvBNReLU(out_dim, out_dim // 2, 1),
layers.ConvBNReLU(out_dim // 2, out_dim, 3, stride=2))
self.right = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.fuse = layers.ConvBNReLU(out_dim * 2, out_dim, 3)
def forward(self, x):
x = self.conv(x)
left = self.left(x)
right = self.right(x)
concat = paddle.concat([left, right], axis=1)
return self.fuse(concat)
class ContextEmbeddingBlock(nn.Layer):
def __init__(self, in_dim, out_dim):
super(ContextEmbeddingBlock, self).__init__()
self.gap = nn.AdaptiveAvgPool2D(1)
self.bn = layers.SyncBatchNorm(in_dim)
self.conv_1x1 = layers.ConvBNReLU(in_dim, out_dim, 1)
self.add = layers.Add()
self.conv_3x3 = nn.Conv2D(out_dim, out_dim, 3, 1, 1)
def forward(self, x):
gap = self.gap(x)
bn = self.bn(gap)
conv1 = self.add(self.conv_1x1(bn), x)
return self.conv_3x3(conv1)
class GatherAndExpansionLayer1(nn.Layer):
"""Gather And Expansion Layer with stride 1"""
def __init__(self, in_dim, out_dim, expand):
super().__init__()
expand_dim = expand * in_dim
self.conv = nn.Sequential(
layers.ConvBNReLU(in_dim, in_dim, 3),
layers.DepthwiseConvBN(in_dim, expand_dim, 3),
layers.ConvBN(expand_dim, out_dim, 1))
self.relu = layers.Activation("relu")
def forward(self, x):
return self.relu(self.conv(x) + x)
class GatherAndExpansionLayer2(nn.Layer):
"""Gather And Expansion Layer with stride 2"""
def __init__(self, in_dim, out_dim, expand):
super().__init__()
expand_dim = expand * in_dim
self.branch_1 = nn.Sequential(
layers.ConvBNReLU(in_dim, in_dim, 3),
layers.DepthwiseConvBN(in_dim, expand_dim, 3, stride=2),
layers.DepthwiseConvBN(expand_dim, expand_dim, 3),
layers.ConvBN(expand_dim, out_dim, 1))
self.branch_2 = nn.Sequential(
layers.DepthwiseConvBN(in_dim, in_dim, 3, stride=2),
layers.ConvBN(in_dim, out_dim, 1))
self.relu = layers.Activation("relu")
def forward(self, x):
return self.relu(self.branch_1(x) + self.branch_2(x))
class DetailBranch(nn.Layer):
"""The detail branch of BiSeNet, which has wide channels but shallow layers."""
def __init__(self, in_channels):
super().__init__()
C1, C2, C3 = in_channels
self.convs = nn.Sequential(
# stage 1
layers.ConvBNReLU(3, C1, 3, stride=2),
layers.ConvBNReLU(C1, C1, 3),
# stage 2
layers.ConvBNReLU(C1, C2, 3, stride=2),
layers.ConvBNReLU(C2, C2, 3),
layers.ConvBNReLU(C2, C2, 3),
# stage 3
layers.ConvBNReLU(C2, C3, 3, stride=2),
layers.ConvBNReLU(C3, C3, 3),
layers.ConvBNReLU(C3, C3, 3),
)
def forward(self, x):
return self.convs(x)
class SemanticBranch(nn.Layer):
"""The semantic branch of BiSeNet, which has narrow channels but deep layers."""
def __init__(self, in_channels):
super().__init__()
C1, C3, C4, C5 = in_channels
self.stem = StemBlock(3, C1)
self.stage3 = nn.Sequential(
GatherAndExpansionLayer2(C1, C3, 6),
GatherAndExpansionLayer1(C3, C3, 6))
self.stage4 = nn.Sequential(
GatherAndExpansionLayer2(C3, C4, 6),
GatherAndExpansionLayer1(C4, C4, 6))
self.stage5_4 = nn.Sequential(
GatherAndExpansionLayer2(C4, C5, 6),
GatherAndExpansionLayer1(C5, C5, 6),
GatherAndExpansionLayer1(C5, C5, 6),
GatherAndExpansionLayer1(C5, C5, 6))
self.ce = ContextEmbeddingBlock(C5, C5)
def forward(self, x):
stage2 = self.stem(x)
stage3 = self.stage3(stage2)
stage4 = self.stage4(stage3)
stage5_4 = self.stage5_4(stage4)
fm = self.ce(stage5_4)
return stage2, stage3, stage4, stage5_4, fm
class BGA(nn.Layer):
"""The Bilateral Guided Aggregation Layer, used to fuse the semantic features and spatial features."""
def __init__(self, out_dim, align_corners):
super().__init__()
self.align_corners = align_corners
self.db_branch_keep = nn.Sequential(
layers.DepthwiseConvBN(out_dim, out_dim, 3),
nn.Conv2D(out_dim, out_dim, 1))
self.db_branch_down = nn.Sequential(
layers.ConvBN(out_dim, out_dim, 3, stride=2),
nn.AvgPool2D(kernel_size=3, stride=2, padding=1))
self.sb_branch_keep = nn.Sequential(
layers.DepthwiseConvBN(out_dim, out_dim, 3),
nn.Conv2D(out_dim, out_dim, 1), layers.Activation(act='sigmoid'))
self.sb_branch_up = layers.ConvBN(out_dim, out_dim, 3)
self.conv = layers.ConvBN(out_dim, out_dim, 3)
def forward(self, dfm, sfm):
db_feat_keep = self.db_branch_keep(dfm)
db_feat_down = self.db_branch_down(dfm)
sb_feat_keep = self.sb_branch_keep(sfm)
sb_feat_up = self.sb_branch_up(sfm)
sb_feat_up = F.interpolate(
sb_feat_up,
paddle.shape(db_feat_keep)[2:],
mode='bilinear',
align_corners=self.align_corners)
sb_feat_up = F.sigmoid(sb_feat_up)
db_feat = db_feat_keep * sb_feat_up
sb_feat = db_feat_down * sb_feat_keep
sb_feat = F.interpolate(
sb_feat,
paddle.shape(db_feat)[2:],
mode='bilinear',
align_corners=self.align_corners)
return self.conv(db_feat + sb_feat)
class SegHead(nn.Layer):
def __init__(self, in_dim, mid_dim, num_classes):
super().__init__()
self.conv_3x3 = nn.Sequential(
layers.ConvBNReLU(in_dim, mid_dim, 3), nn.Dropout(0.1))
self.conv_1x1 = nn.Conv2D(mid_dim, num_classes, 1, 1)
def forward(self, x):
conv1 = self.conv_3x3(x)
conv2 = self.conv_1x1(conv1)
return conv2