forked from vsitzmann/scene-representation-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geometry.py
159 lines (109 loc) · 4.86 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import torch
from torch.nn import functional as F
import util
def compute_normal_map(x_img, y_img, z, intrinsics):
cam_coords = lift(x_img, y_img, z, intrinsics)
cam_coords = util.lin2img(cam_coords)
shift_left = cam_coords[:, :, 2:, :]
shift_right = cam_coords[:, :, :-2, :]
shift_up = cam_coords[:, :, :, 2:]
shift_down = cam_coords[:, :, :, :-2]
diff_hor = F.normalize(shift_right - shift_left, dim=1)[:, :, :, 1:-1]
diff_ver = F.normalize(shift_up - shift_down, dim=1)[:, :, 1:-1, :]
cross = torch.cross(diff_hor, diff_ver, dim=1)
return cross
def get_ray_directions_cam(uv, intrinsics):
'''Translates meshgrid of uv pixel coordinates to normalized directions of rays through these pixels,
in camera coordinates.
'''
batch_size, num_samples, _ = uv.shape
x_cam = uv[:, :, 0].view(batch_size, -1)
y_cam = uv[:, :, 1].view(batch_size, -1)
z_cam = torch.ones((batch_size, num_samples)).cuda()
pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics, homogeneous=False) # (batch_size, -1, 4)
ray_dirs = F.normalize(pixel_points_cam, dim=2)
return ray_dirs
def reflect_vector_on_vector(vector_to_reflect, reflection_axis):
refl = F.normalize(vector_to_reflect.cuda())
ax = F.normalize(reflection_axis.cuda())
r = 2 * (ax * refl).sum(dim=1, keepdim=True) * ax - refl
return r
def parse_intrinsics(intrinsics):
intrinsics = intrinsics.cuda()
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
return fx, fy, cx, cy
def expand_as(x, y):
if len(x.shape) == len(y.shape):
return x
for i in range(len(y.shape) - len(x.shape)):
x = x.unsqueeze(-1)
return x
def lift(x, y, z, intrinsics, homogeneous=False):
'''
:param self:
:param x: Shape (batch_size, num_points)
:param y:
:param z:
:param intrinsics:
:return:
'''
fx, fy, cx, cy = parse_intrinsics(intrinsics)
x_lift = (x - expand_as(cx, x)) / expand_as(fx, x) * z
y_lift = (y - expand_as(cy, y)) / expand_as(fy, y) * z
if homogeneous:
return torch.stack((x_lift, y_lift, z, torch.ones_like(z).cuda()), dim=-1)
else:
return torch.stack((x_lift, y_lift, z), dim=-1)
def project(x, y, z, intrinsics):
'''
:param self:
:param x: Shape (batch_size, num_points)
:param y:
:param z:
:param intrinsics:
:return:
'''
fx, fy, cx, cy = parse_intrinsics(intrinsics)
x_proj = expand_as(fx, x) * x / z + expand_as(cx, x)
y_proj = expand_as(fy, y) * y / z + expand_as(cy, y)
return torch.stack((x_proj, y_proj, z), dim=-1)
def world_from_xy_depth(xy, depth, cam2world, intrinsics):
'''Translates meshgrid of xy pixel coordinates plus depth to world coordinates.
'''
batch_size, _, _ = cam2world.shape
x_cam = xy[:, :, 0].view(batch_size, -1)
y_cam = xy[:, :, 1].view(batch_size, -1)
z_cam = depth.view(batch_size, -1)
pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics, homogeneous=True) # (batch_size, -1, 4)
# permute for batch matrix product
pixel_points_cam = pixel_points_cam.permute(0, 2, 1)
world_coords = torch.bmm(cam2world, pixel_points_cam).permute(0, 2, 1)[:, :, :3] # (batch_size, -1, 3)
return world_coords
def project_point_on_line(projection_point, line_direction, point_on_line, dim):
'''Projects a batch of points on a batch of lines as defined by their direction and a point on each line. '''
assert torch.allclose((line_direction ** 2).sum(dim=dim, keepdim=True).cuda(), torch.Tensor([1]).cuda())
return point_on_line + ((projection_point - point_on_line) * line_direction).sum(dim=dim,
keepdim=True) * line_direction
def get_ray_directions(xy, cam2world, intrinsics):
'''Translates meshgrid of xy pixel coordinates to normalized directions of rays through these pixels.
'''
batch_size, num_samples, _ = xy.shape
z_cam = torch.ones((batch_size, num_samples)).cuda()
pixel_points = world_from_xy_depth(xy, z_cam, intrinsics=intrinsics, cam2world=cam2world) # (batch, num_samples, 3)
cam_pos = cam2world[:, :3, 3]
ray_dirs = pixel_points - cam_pos[:, None, :] # (batch, num_samples, 3)
ray_dirs = F.normalize(ray_dirs, dim=2)
return ray_dirs
def depth_from_world(world_coords, cam2world):
batch_size, num_samples, _ = world_coords.shape
points_hom = torch.cat((world_coords, torch.ones((batch_size, num_samples, 1)).cuda()),
dim=2) # (batch, num_samples, 4)
# permute for bmm
points_hom = points_hom.permute(0, 2, 1)
points_cam = torch.inverse(cam2world).bmm(points_hom) # (batch, 4, num_samples)
depth = points_cam[:, 2, :][:, :, None] # (batch, num_samples, 1)
return depth