表: Employee
+--------------+---------+ | 列名 | 类型 | +--------------+---------+ | id | int | | name | varchar | | salary | int | | departmentId | int | +--------------+---------+ 在 SQL 中,id是此表的主键。 departmentId 是 Department 表中 id 的外键(在 Pandas 中称为 join key)。 此表的每一行都表示员工的 id、姓名和工资。它还包含他们所在部门的 id。
表: Department
+-------------+---------+ | 列名 | 类型 | +-------------+---------+ | id | int | | name | varchar | +-------------+---------+ 在 SQL 中,id 是此表的主键列。 此表的每一行都表示一个部门的 id 及其名称。
查找出每个部门中薪资最高的员工。
按 任意顺序 返回结果表。
查询结果格式如下例所示。
示例 1:
输入: Employee 表: +----+-------+--------+--------------+ | id | name | salary | departmentId | +----+-------+--------+--------------+ | 1 | Joe | 70000 | 1 | | 2 | Jim | 90000 | 1 | | 3 | Henry | 80000 | 2 | | 4 | Sam | 60000 | 2 | | 5 | Max | 90000 | 1 | +----+-------+--------+--------------+ Department 表: +----+-------+ | id | name | +----+-------+ | 1 | IT | | 2 | Sales | +----+-------+ 输出: +------------+----------+--------+ | Department | Employee | Salary | +------------+----------+--------+ | IT | Jim | 90000 | | Sales | Henry | 80000 | | IT | Max | 90000 | +------------+----------+--------+ 解释:Max 和 Jim 在 IT 部门的工资都是最高的,Henry 在销售部的工资最高。
方法一:等值连接 + 子查询
我们可以使用等值连接,将 Employee
表和 Department
表连接起来,连接条件为 Employee.departmentId = Department.id
,然后使用子查询来找到每个部门的最高工资,最后使用 WHERE
子句来筛选出每个部门中薪资最高的员工。
方法二:等值连接 + 窗口函数
我们可以使用等值连接,将 Employee
表和 Department
表连接起来,连接条件为 Employee.departmentId = Department.id
,然后使用窗口函数 rank()
,它可以为每个部门的每个员工分配一个排名,然后我们可以选择排名为
# Write your MySQL query statement below
SELECT d.name AS department, e.name AS employee, salary
FROM
Employee AS e
JOIN Department AS d ON e.departmentId = d.id
WHERE
(d.id, salary) IN (
SELECT departmentId, MAX(salary)
FROM Employee
GROUP BY 1
);
# Write your MySQL query statement below
WITH
T AS (
SELECT
d.name AS department,
e.name AS employee,
salary,
RANK() OVER (
PARTITION BY d.name
ORDER BY salary DESC
) AS rk
FROM
Employee AS e
JOIN Department AS d ON e.departmentId = d.id
)
SELECT department, employee, salary
FROM T
WHERE rk = 1;