-
Notifications
You must be signed in to change notification settings - Fork 4
/
streamlit_demo.py
260 lines (195 loc) · 11 KB
/
streamlit_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#create a Streamlit app using info from image_demo.py
import cv2
import time
import argparse
import os
import torch
import posenet
import tempfile
from posenet.utils import *
import streamlit as st
from posenet.decode_multi import *
from visualizers import *
from ground_truth_dataloop import *
import cv2
import time
import argparse
import os
import torch
import posenet
import streamlit as st
from posenet.decode_multi import *
from visualizers import *
from ground_truth_dataloop import *
st.title('PoseNet Image Analyzer')
def process_frame(frame, scale_factor, output_stride):
input_image, draw_image, output_scale = process_input(frame, scale_factor=scale_factor, output_stride=output_stride)
return input_image, draw_image, output_scale
@st.cache_data()
def load_model(model):
model = posenet.load_model(model)
model = model.cuda()
return model
def main():
MAX_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
model_number = st.sidebar.selectbox('Model', [101, 100, 75, 50])
scale_factor = 1.0
output_stride = st.sidebar.selectbox('Output Stride', [8, 16, 32, 64])
min_pose_score = st.sidebar.number_input("Minimum Pose Score", min_value=0.000, max_value=1.000, value=0.10, step=0.001)
st.sidebar.markdown(f'<p style="color:grey; font-size: 12px">The current number is {min_pose_score:.3f}</p>', unsafe_allow_html=True)
min_part_score = st.sidebar.number_input("Minimum Part Score", min_value=0.000, max_value=1.000, value=0.010, step=0.001)
st.sidebar.markdown(f'<p style="color:grey; font-size:12px">The current number is {min_part_score:.3f}</p>', unsafe_allow_html=True)
model = load_model(model_number)
output_stride = model.output_stride
output_dir = st.sidebar.text_input('Output Directory', './output')
option = st.selectbox('Choose an option', ['Upload Image', 'Upload Video', 'Try existing image'])
if option == 'Upload Video':
video_display_mode = st.selectbox("Video Display Mode", ['Frame by Frame', 'Entire Video'])
uploaded_video = st.file_uploader("Upload a video (mp4, mov, avi)", type=['mp4', 'mov', 'avi'])
if uploaded_video is not None:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_video.read())
vidcap = cv2.VideoCapture(tfile.name)
success, image = vidcap.read()
frames = []
frame_count = 0
while success:
input_image, draw_image, output_scale = process_frame(image, scale_factor, output_stride)
pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale)
result_image = posenet.draw_skel_and_kp(
draw_image, pose_scores, keypoint_scores, keypoint_coords,
min_pose_score=min_pose_score, min_part_score=min_part_score)
result_image = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)
# result_image = print_frame(draw_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, min_part_score=min_part_score, min_pose_score=min_pose_score)
if result_image is not None:
frames.append(result_image)
success, image = vidcap.read()
frame_count += 1
if video_display_mode == 'Frame by Frame':
st.image(result_image, caption=f'Frame {frame_count}', use_column_width=True)
# Progress bar
progress_bar = st.progress(0)
# Write the output video
output_file = 'output.mp4'
height, width, layers = frames[0].shape
size = (width,height)
output_file_path = os.path.join(output_dir, output_file)
out = cv2.VideoWriter(output_file_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size)
for i in range(len(frames)):
progress_percentage = i / len(frames)
progress_bar.progress(progress_percentage)
out.write(cv2.cvtColor(frames[i], cv2.COLOR_RGB2BGR))
out.release()
# Display the processed video
if video_display_mode == 'Entire Video':
with open(output_file_path, "rb") as file:
bytes_data = file.read()
st.download_button(
label="Download video",
data=bytes_data,
file_name=output_file,
mime="video/mp4",
)
# video_file = open(output_file_path, 'rb')
# st.write(f"Output file path: {output_file_path}")
# video_bytes = video_file.read()
# st.video(video_bytes)
# try:
# st.video(bytes_data, format="video/mp4", start_time=0)
# # st.write(f"Output file path: {output_file_path}")
# # st.video('./output/output.mp4', format="video/mp4", start_time=0)
# except Exception as e:
# st.write("Error: ", str(e))
if frames:
frame_idx = st.slider('Choose a frame', 0, len(frames) - 1, 0)
input_image, draw_image, output_scale = process_frame(frames[frame_idx], scale_factor, output_stride)
pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale)
pose_data = {
'pose_scores': pose_scores.tolist(),
'keypoint_scores': keypoint_scores.tolist(),
'keypoint_coords': keypoint_coords.tolist()
}
st.image(draw_image, caption=f'Frame {frame_idx + 1}', use_column_width=True)
st.write(pose_data)
progress_bar.progress(1.0)
elif option == 'Upload Image':
image_file = st.file_uploader("Upload Image (Max 10MB)", type=['png', 'jpg', 'jpeg'])
if image_file is not None:
if image_file.size > MAX_FILE_SIZE:
st.error("File size exceeds the 10MB limit. Please upload a smaller file.")
file_bytes = np.asarray(bytearray(image_file.read()), dtype=np.uint8)
input_image = cv2.imdecode(file_bytes, 1)
filename = image_file.name
# Crop the image here as needed
# input_image = input_image[y:y+h, x:x+w]
input_image, source_image, output_scale = process_input(
input_image, scale_factor, output_stride)
pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale)
print_frame(source_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=filename, min_part_score=min_part_score, min_pose_score=min_pose_score)
else:
st.sidebar.warning("Please upload an image.")
elif option == 'Try existing image':
image_dir = st.sidebar.text_input('Image Directory', './images_train')
if output_dir:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
filenames = [f.path for f in os.scandir(image_dir) if f.is_file() and f.path.endswith(('.png', '.jpg'))]
if filenames:
selected_image = st.sidebar.selectbox('Choose an image', filenames)
input_image, draw_image, output_scale = posenet.read_imgfile(
selected_image, scale_factor=scale_factor, output_stride=output_stride)
filename = os.path.basename(selected_image)
result_image, pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, draw_image, model, output_stride, output_scale)
print_frame(result_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=selected_image, min_part_score=min_part_score, min_pose_score=min_pose_score)
else:
st.sidebar.warning("No images found in directory.")
#same as utils.py _process_input
def process_input(source_img, scale_factor=1.0, output_stride=16):
target_width, target_height = posenet.valid_resolution(
source_img.shape[1] * scale_factor, source_img.shape[0] * scale_factor, output_stride=output_stride)
scale = np.array([source_img.shape[0] / target_height, source_img.shape[1] / target_width])
input_img = cv2.resize(source_img, (target_width, target_height), interpolation=cv2.INTER_LINEAR)
input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB).astype(np.float32)
input_img = input_img * (2.0 / 255.0) - 1.0
input_img = input_img.transpose((2, 0, 1)).reshape(1, 3, target_height, target_width)
return input_img, source_img, scale
def run_model(input_image, model, output_stride, output_scale):
with torch.no_grad():
input_image = torch.Tensor(input_image).cuda()
heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image)
# st.text("model heatmaps_result shape: {}".format(heatmaps_result.shape))
# st.text("model offsets_result shape: {}".format(offsets_result.shape))
pose_scores, keypoint_scores, keypoint_coords, pose_offsets = posenet.decode_multi.decode_multiple_poses(
heatmaps_result.squeeze(0),
offsets_result.squeeze(0),
displacement_fwd_result.squeeze(0),
displacement_bwd_result.squeeze(0),
output_stride=output_stride,
max_pose_detections=10,
min_pose_score=0.0)
# st.text("decoded pose_scores shape: {}".format(pose_scores.shape))
# st.text("decoded pose_offsets shape: {}".format(pose_offsets.shape))
keypoint_coords *= output_scale
# Convert BGR to RGB
return pose_scores, keypoint_scores, keypoint_coords
def print_frame(draw_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=None, min_part_score=0.01, min_pose_score=0.1):
if output_dir:
draw_image = posenet.draw_skel_and_kp(
draw_image, pose_scores, keypoint_scores, keypoint_coords,
min_pose_score=min_pose_score, min_part_score=min_part_score)
draw_image = cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB)
if filename:
cv2.imwrite(os.path.join(output_dir, filename), draw_image)
else:
cv2.imwrite(os.path.join(output_dir, "output.png"), draw_image)
st.image(draw_image, caption='PoseNet Output', use_column_width=True)
st.text("Results for image: %s" % filename)
st.text("Size of draw_image: {}".format(draw_image.shape))
for pi in range(len(pose_scores)):
if pose_scores[pi] == 0.:
break
st.text('Pose #%d, score = %f' % (pi, pose_scores[pi]))
for ki, (s, c) in enumerate(zip(keypoint_scores[pi, :], keypoint_coords[pi, :, :])):
st.text('Keypoint %s, score = %f, coord = %s' % (posenet.PART_NAMES[ki], s, c))
if __name__ == "__main__":
main()