-
Notifications
You must be signed in to change notification settings - Fork 38
/
setup.py
267 lines (227 loc) · 9.44 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) 2024 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import os
import platform
import subprocess
import sys
import urllib
import warnings
import torch
from packaging.version import Version, parse
from setuptools import find_packages, setup
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
# PEP0440 compatible formatted version, see:
# https://www.python.org/dev/peps/pep-0440/
#
# release markers:
# X.Y
# X.Y.Z # For bugfix releases
#
# pre-release markers:
# X.YaN # Alpha release
# X.YbN # Beta release
# X.YrcN # Release Candidate
# X.Y # Final release
# version.py defines the VERSION and VERSION_SHORT variables.
# We use exec here so we don't import allennlp whilst setting up.
VERSION = {} # type: ignore
with open("minference/version.py", "r") as version_file:
exec(version_file.read(), VERSION)
INSTALL_REQUIRES = [
"transformers>=4.37.0",
"accelerate",
"torch",
"triton",
]
QUANLITY_REQUIRES = [
"black==21.4b0",
"flake8>=3.8.3",
"isort>=5.5.4",
"pre-commit",
"pytest",
"pytest-xdist",
]
DEV_REQUIRES = INSTALL_REQUIRES + QUANLITY_REQUIRES
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
PACKAGE_NAME = "minference"
BASE_WHEEL_URL = (
"https://github.com/microsoft/MInference/releases/download/{tag_name}/{wheel_name}"
)
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("MINFERENCE_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("MINFERENCE_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
def check_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
# in that case.
warnings.warn(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
cmdclass = {}
ext_modules = []
if not SKIP_CUDA_BUILD:
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(
os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")
):
generator_flag = ["-DOLD_GENERATOR_PATH"]
check_if_cuda_home_none("minference")
ext_modules.append(
CUDAExtension(
name="minference.cuda",
sources=[
os.path.join("csrc", "kernels.cpp"),
os.path.join("csrc", "vertical_slash_index.cu"),
],
extra_compile_args=["-std=c++17", "-O3"],
)
)
def get_minference_version() -> str:
version = VERSION["VERSION"]
local_version = os.environ.get("MINFERENCE_LOCAL_VERSION")
if local_version:
return f"{version}+{local_version}"
else:
return str(version)
def get_platform():
"""
Returns the platform name as used in wheel filenames.
"""
if sys.platform.startswith("linux"):
return f"linux_{platform.uname().machine}"
elif sys.platform == "darwin":
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
return f"macosx_{mac_version}_x86_64"
elif sys.platform == "win32":
return "win_amd64"
else:
raise ValueError("Unsupported platform: {}".format(sys.platform))
def get_wheel_url():
# Determine the version numbers that will be used to determine the correct wheel
# We're using the CUDA version used to build torch, not the one currently installed
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
torch_cuda_version = parse(torch.version.cuda)
torch_version_raw = parse(torch.__version__)
# For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.2
# to save CI time. Minor versions should be compatible.
torch_cuda_version = (
parse("11.8") if torch_cuda_version.major == 11 else parse("12.2")
)
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
platform_name = get_platform()
minference_version = get_minference_version()
# cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
# Determine wheel URL based on CUDA version, torch version, python version and OS
wheel_filename = f"{PACKAGE_NAME}-{minference_version}+cu{cuda_version}torch{torch_version}-{python_version}-{python_version}-{platform_name}.whl"
wheel_url = BASE_WHEEL_URL.format(
tag_name=f"v{minference_version}", wheel_name=wheel_filename
)
return wheel_url, wheel_filename
class CachedWheelsCommand(_bdist_wheel):
"""
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
find an existing wheel (which is currently the case for all flash attention installs). We use
the environment parameters to detect whether there is already a pre-built version of a compatible
wheel available and short-circuits the standard full build pipeline.
"""
def run(self):
if FORCE_BUILD:
return super().run()
wheel_url, wheel_filename = get_wheel_url()
print("Guessing wheel URL: ", wheel_url)
try:
urllib.request.urlretrieve(wheel_url, wheel_filename)
# Make the archive
# Lifted from the root wheel processing command
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
if not os.path.exists(self.dist_dir):
os.makedirs(self.dist_dir)
impl_tag, abi_tag, plat_tag = self.get_tag()
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
print("Raw wheel path", wheel_path)
os.rename(wheel_filename, wheel_path)
except (urllib.error.HTTPError, urllib.error.URLError):
print("Precompiled wheel not found. Building from source...")
# If the wheel could not be downloaded, build from source
super().run()
class NinjaBuildExtension(BuildExtension):
def __init__(self, *args, **kwargs) -> None:
# do not override env MAX_JOBS if already exists
if not os.environ.get("MAX_JOBS"):
import psutil
# calculate the maximum allowed NUM_JOBS based on cores
max_num_jobs_cores = max(1, os.cpu_count() // 2)
# calculate the maximum allowed NUM_JOBS based on free memory
free_memory_gb = psutil.virtual_memory().available / (
1024**3
) # free memory in GB
max_num_jobs_memory = int(
free_memory_gb / 9
) # each JOB peak memory cost is ~8-9GB when threads = 4
# pick lower value of jobs based on cores vs memory metric to minimize oom and swap usage during compilation
max_jobs = max(1, min(max_num_jobs_cores, max_num_jobs_memory))
os.environ["MAX_JOBS"] = str(max_jobs)
super().__init__(*args, **kwargs)
setup(
name="minference",
version=get_minference_version(),
author="The MInference team",
author_email="[email protected]",
description="To speed up Long-context LLMs' inference, approximate and dynamic sparse calculate the attention, which reduces inference latency by up to 10x for pre-filling on an A100 while maintaining accuracy.",
long_description=open("README.md", encoding="utf8").read(),
long_description_content_type="text/markdown",
keywords="LLMs Inference, Long-Context LLMs, Dynamic Sparse Attention, Efficient Inference",
license="MIT License",
url="https://github.com/microsoft/MInference",
classifiers=[
"Intended Audience :: Science/Research",
"Development Status :: 3 - Alpha",
"Programming Language :: Python :: 3",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
packages=find_packages(
exclude=(
"csrc",
"dist",
"examples",
"experiments",
"images",
"test",
"minference.egg-info",
)
),
extras_require={
"dev": DEV_REQUIRES,
"quality": QUANLITY_REQUIRES,
},
install_requires=INSTALL_REQUIRES,
setup_requires=[
"packaging",
"psutil",
"ninja",
],
include_package_data=True,
python_requires=">=3.8.0",
zip_safe=False,
ext_modules=ext_modules,
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": NinjaBuildExtension}
if ext_modules
else {
"bdist_wheel": CachedWheelsCommand,
},
)