You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First of all thank you authors for this great work.
When I followed the readme guide to reproduce the paper, I wanted to Evaluate the trained detectors in the Transfer Learning task, and I executed the provided sample script code as follows. python3 ./tools/train_net.py \ --eval-only \ --num-gpus 1 \ --config-file ./configs/COCO-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_ovd.yaml \ MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_finetuned-coco_rn50.pth \ MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x_ovd_FSD.yaml \ MODEL.CLIP.BB_RPN_WEIGHTS ./pretrained_ckpt/rpn/rpn_coco_48.pth \ MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/coco_48_base_cls_emb.pth \ MODEL.CLIP.OPENSET_TEST_TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/coco_65_cls_emb.pth \ MODEL.ROI_HEADS.SOFT_NMS_ENABLED True \
However, the Average Precision of RN50 and COCO (Generalized: Novel + Base) is very low, and the test result is basically 0, as follows.
[05/07 22:13:34 d2.evaluation.evaluator]: Inference done 4832/4836. Dataloading: 0.0011 s / iter. Inference: 4.8330 s / iter. Eval: 0.0004 s / iter. Total: 4.8347 s / iter. ETA=0:00:19
[05/07 22:13:44 d2.evaluation.evaluator]: Inference done 4833/4836. Dataloading: 0.0011 s / iter. Inference: 4.8341 s / iter. Eval: 0.0004 s / iter. Total: 4.8358 s / iter. ETA=0:00:14
[05/07 22:13:50 d2.evaluation.evaluator]: Inference done 4834/4836. Dataloading: 0.0011 s / iter. Inference: 4.8344 s / iter. Eval: 0.0004 s / iter. Total: 4.8361 s / iter. ETA=0:00:09
[05/07 22:13:55 d2.evaluation.evaluator]: Total inference time: 6:29:18.203654 (4.835066 s / iter per device, on 1 devices)
[05/07 22:13:55 d2.evaluation.evaluator]: Total inference pure compute time: 6:29:10 (4.833392 s / iter per device, on 1 devices)
[05/07 22:13:58 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[05/07 22:13:58 d2.evaluation.coco_evaluation]: Saving results to ./output/inference/coco_instances_results.json
[05/07 22:14:00 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=1.64s)
creating index...
index created!
[05/07 22:14:02 d2.evaluation.fast_eval_api]: Evaluate annotation type bbox
[05/07 22:14:08 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 5.88 seconds.
[05/07 22:14:08 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[05/07 22:14:10 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 1.59 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002
[05/07 22:14:10 d2.evaluation.coco_evaluation]: Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.001 | 0.005 | 0.001 | 0.001 | 0.002 | 0.002 |
[05/07 22:14:10 d2.evaluation.coco_evaluation]: AP50_split_target AP: 0.0
What should I do, or does the author have any good advice? I didn't modify any parameters, just follow the steps.
Look forward to receiving your reply, thanks again.
The text was updated successfully, but these errors were encountered:
The same problem arises in the RN50, RPN, COCO case in the Evaluation for Zero-shot Inference task. The sample script in test_zeroshot_inference.sh was executed, again following the readme tutorial. # RN50, RPN, COCO python3 ./tools/train_net.py \ --eval-only \ --num-gpus 1 \ --config-file ./configs/COCO-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_ovd_zsinf.yaml \ MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_pretrained-cc_rn50.pth \ MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/coco_65_cls_emb.pth \ MODEL.CLIP.CROP_REGION_TYPE RPN \ MODEL.CLIP.MULTIPLY_RPN_SCORE True \ MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \ MODEL.CLIP.BB_RPN_WEIGHTS ./pretrained_ckpt/rpn/rpn_lvis_866.pth \
First of all thank you authors for this great work.
When I followed the readme guide to reproduce the paper, I wanted to Evaluate the trained detectors in the Transfer Learning task, and I executed the provided sample script code as follows.
python3 ./tools/train_net.py \ --eval-only \ --num-gpus 1 \ --config-file ./configs/COCO-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_ovd.yaml \ MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_finetuned-coco_rn50.pth \ MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x_ovd_FSD.yaml \ MODEL.CLIP.BB_RPN_WEIGHTS ./pretrained_ckpt/rpn/rpn_coco_48.pth \ MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/coco_48_base_cls_emb.pth \ MODEL.CLIP.OPENSET_TEST_TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/coco_65_cls_emb.pth \ MODEL.ROI_HEADS.SOFT_NMS_ENABLED True \
However, the Average Precision of RN50 and COCO (Generalized: Novel + Base) is very low, and the test result is basically 0, as follows.
[05/07 22:14:10 d2.evaluation.coco_evaluation]: AP50_split_base AP: 6.675366123124714e-05
[05/07 22:14:10 d2.evaluation.coco_evaluation]: AP50_split_all AP: 4.9295011370767116e-05
[05/07 22:14:10 d2.evaluation.coco_evaluation]: Per-category bbox AP:
What should I do, or does the author have any good advice? I didn't modify any parameters, just follow the steps.
Look forward to receiving your reply, thanks again.
The text was updated successfully, but these errors were encountered: