From 48b50057b3ae99684dadc55372426ba0dd194c2b Mon Sep 17 00:00:00 2001 From: Nils Lehmann <35272119+nilsleh@users.noreply.github.com> Date: Thu, 24 Mar 2022 17:22:03 +0100 Subject: [PATCH] Work on Data table (#478) * added to data table * add links * fix docs --- docs/api/datasets.rst | 6 +++--- docs/api/generic_datasets.csv | 22 +++++++++++++++------- docs/api/non_geo_datasets.csv | 32 ++++++++++++++++++++++++++++++++ 3 files changed, 50 insertions(+), 10 deletions(-) create mode 100644 docs/api/non_geo_datasets.csv diff --git a/docs/api/datasets.rst b/docs/api/datasets.rst index f8d1329aced..ca4822678ec 100644 --- a/docs/api/datasets.rst +++ b/docs/api/datasets.rst @@ -13,7 +13,7 @@ Geospatial Datasets :class:`GeoDataset` is designed for datasets that contain geospatial information, like latitude, longitude, coordinate system, and projection. Datasets containing this kind of information can be combined using :class:`IntersectionDataset` and :class:`UnionDataset`. .. csv-table:: Geospatial Datasets - :widths: 50 50 + :widths: 30 15 20 20 15 :header-rows: 1 :align: center :file: generic_datasets.csv @@ -131,11 +131,11 @@ Non-geospatial Datasets :class:`VisionDataset` is designed for datasets that lack geospatial information. These datasets can still be combined using :class:`ConcatDataset `. -.. csv-table:: C = classification, R = regression, S = semantic segmentation, I = instance segmentation, T = time series, D = change detection +.. csv-table:: C = classification, R = regression, S = semantic segmentation, I = instance segmentation, T = time series, CD = change detection, OD = object detection :widths: 15 7 15 12 11 12 15 13 :header-rows: 1 :align: center - :file: vision_datasets.csv + :file: non_geo_datasets.csv ADVANCE ^^^^^^^ diff --git a/docs/api/generic_datasets.csv b/docs/api/generic_datasets.csv index 4d37e33c066..53da85c0b86 100644 --- a/docs/api/generic_datasets.csv +++ b/docs/api/generic_datasets.csv @@ -1,7 +1,15 @@ -Dataset,Type -Landsat,Imagery -Sentinel,Imagery -NAIP,Imagery -Cropland Data Layer,Labels -Chesapeake Land Cover,Labels -Canadian Buildings Footprints,Labels \ No newline at end of file +Dataset,Type,Source,Size (px),Resolution (m) +`Aboveground Live Woody Biomass Density`_,Mask,"Landsat, LiDAR","~40,000x40,000",~30 +`Aster Global Digital Evaluation Model`_,Mask,Aster,"3,601x3,601",30 +`Canadian Building Footprints`_,Labels,Generated,,- +`Chesapeake Bay High-Resolution Land Cover Project`_,"Imagery, Labels",,,1 +`CMS Global Mangrove Canopy Dataset`_,Mask,Generated,,3 +`Cropland Data Layer (CDL)`_,Labels,Aerial,, +`EnviroAtlas`_,"Imagery, Labels",Aerial,,1 +`Esri2020`_,Labels,Sentinel-2,,10 +`EU-DEM`_,Labels,"Aster, SRTM, Russian Topomaps",,25 +`GlobBiomass`_,Labels,Landsat,"45,000x45,000",~100 +`Landsat`_,Imagery,Landsat,,30 +`National Agriculture Imagery Program (NAIP)`_,Imagery,Aerial,,1 +`Open Buildings`_,Labels,Generated,,- +`Sentinel`_,Imagery,Sentinel,,10 \ No newline at end of file diff --git a/docs/api/non_geo_datasets.csv b/docs/api/non_geo_datasets.csv new file mode 100644 index 00000000000..6b5f7436cdb --- /dev/null +++ b/docs/api/non_geo_datasets.csv @@ -0,0 +1,32 @@ +Dataset,Task,Source,# Samples,# Classes,Size (px),Resolution (m),Bands +`ADVANCE (AuDio Visual Aerial sceNe reCognition datasEt)`_,C,"Google Earth, Freesound",5075,13,512x512,0.5,RGB +`BigEarthNet`_,C,Sentinel-1/2,590326,19--43,120x120,10,"SAR, MSI" +`Cars Overhead With context (COWC)`_,"C, R","CSUAV AFRL, ISPRS, LINZ, AGRC",388435,2,256x256,0.15,RGB +`CV4A Kenya Crop Type Competition`_,S,Sentinel-2,4688,7,"3,035x2,016",10,MSI +`2022 IEEE GRSS Data Fusion Contest (DFC2022)`_,S,Aerial,,15,"2,000x2,000",0.5,RGB +`ETCI2021 Flood Detection`_,S,Sentinel-1,66810,2,256x256,5–20,SAR +`EuroSAT`_,C,Sentinel-2,27000,10,64x64,10,MSI +`FAIR1M (fine-grAined object recognition in high-Resolution imagery)`_,OD,Gaofen/Google Earth,15000,37,"1,024x1,024",0.3–0.8,RGB +`GID-15 (Gaofen Image Dataset)`_,S,Gaofen-2,150,15,"6,800x7,200",3,RGB +`IDTReeS`_,"OD,C",Aerial,591,33,200x200,0.1-1,RGB +`Inria Aerial Image Labeling`_,O,Aerial,360,-,5000x5000,0.3,RGB +`LandCover.ai (Land Cover from Aerial Imagery)`_,S,Aerial,10674,5,512x512,0.25–0.5,RGB +`LEVIR-CD+ (LEVIR Change Detection +)`_,CD,Google Earth,985,2,"1,024x1,024",0.5,RGB +`LoveDA (Land-cOVEr Domain Adaptive semantic segmentation)`_,S,Google Earth,5987,7,"1,024x1,024",0.3,RGB +`NASA Marine Debris`_,OD,PlanetScope,707,1,256x256,3,RGB +`NWPU VHR-10`_,I,"Google Earth, Vaihingen",800,10,"358--1,728",0.08–2,RGB +`OSCD (Onera Satellite Change Detection)`_,CD,Sentinel-2,24,2,"40--1,180",60,MSI +`PatternNet`_,C,Google Earth,30400,38,256x256,0.06–5,RGB +`Potsdam`_,S,Aerial,38,6,"6,000x6,000",0.05,MSI +`RESISC45 (Remote Sensing Image Scene Classification)`_,C,Google Earth,31500,45,256x256,0.2–30,RGB +`Seasonal Contrast`_,T,Sentinel-2,100K--1M,-,264x264,10,MSI +`SEN12MS`_,S,"Sentinel-1/2, MODIS",180662,33,256x256,10,"SAR, MSI" +`Smallholder Cashew Plantations in Benin`_,S,Airbus Pléiades,70,6,"1,186x1,122",0.5,MSI +`So2Sat`_,C,Sentinel-1/2,400673,17,32x32,10,"SAR, MSI" +`SpaceNet`_,I,WorldView-2/3 Planet Lab Dove,"1,889--28,728",2,102--900,0.5–4,MSI +`Tropical Cyclone Wind Estimation Competition`_,R,GOES 8--16,108110,-,256x256,4K—8K,MSI +`UC Merced`_,C,USGS National Map,21000,21,256x256,0.3,RGB +`USAVars`_,S,NAIP Aerial,~100K,,,4,"RGB, Near-Infrared" +`Vaihingen`_,S,Aerial,33,6,"1,281--3,816",0.09,RGB +`xView2`_,CD,Maxar,3732,4,"1,024x1,024",0.8,RGB +`ZueriCrop`_,"I, T",Sentinel-2,116K,48,24x24,10,MSI