forked from sigp/blockprint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_periods.py
357 lines (266 loc) · 9.87 KB
/
compute_periods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/usr/bin/env python3
import os
import csv
import sqlite3
import requests
import statistics
from classifier import compute_best_guess
from prepare_training_data import CLIENTS
from build_db import block_row_to_obj
DEFAULT_BN = "http://localhost:5052"
# The 95%-confidence median estimate seems to offer precision while still allowing for uncertainty
DEFAULT_GUESS = "guess_med_95"
def get_head_slot(bn_url):
res = requests.get(f"{bn_url}/eth/v1/beacon/headers/head")
res.raise_for_status()
return int(res.json()["data"]["header"]["message"]["slot"])
def is_active_validator(validator, slot):
epoch = slot // 32
activation_epoch = int(validator["validator"]["activation_epoch"])
exit_epoch = int(validator["validator"]["exit_epoch"])
return activation_epoch <= epoch < exit_epoch
def get_active_validator_count(slot, bn_url):
res = requests.get(f"{bn_url}/eth/v1/beacon/states/{slot}/validators")
res.raise_for_status()
return sum(
1 for validator in res.json()["data"] if is_active_validator(validator, slot)
)
def fetch_periods_from_bn(slots_per_period, bn_url):
head_slot = get_head_slot(bn_url)
periods = []
for i, start_slot in enumerate(range(0, head_slot, slots_per_period)):
end_slot = min(start_slot + slots_per_period, head_slot)
num_active_validators = get_active_validator_count(end_slot, bn_url)
periods.append(
{
"id": i,
"end_slot": end_slot,
"num_active_validators": num_active_validators,
}
)
return periods
def create_period_db(slots_per_period, db_dir):
db_path = os.path.join(db_dir, f"aggregated_{slots_per_period}.sqlite")
if os.path.exists(db_path):
os.remove(db_path)
conn = sqlite3.connect(db_path)
conn.execute(
"""CREATE TABLE periods (
id INT PRIMARY KEY,
end_slot INT,
num_active_validators INT
)
"""
)
conn.execute(
"""CREATE TABLE period_validators (
period_id INT,
validator_index INT,
guess_k_recent TEXT,
guess_mode TEXT,
guess_med_95 TEXT,
FOREIGN KEY(period_id) REFERENCES periods(id)
)
"""
)
return conn
# Guess the client from the most recent 3 proposals.
#
# Prefer proposals from within the period but take into account later proposals if no others
# available.
def guess_from_k_recent(proposals, end_slot, k=3):
relevant_proposals = [block for block in proposals if block["slot"] <= end_slot]
if len(relevant_proposals) == 0:
relevant_proposals = proposals
num_recent = max(k, len(relevant_proposals))
recent_relevant = relevant_proposals[-1 * num_recent :]
return compute_best_guess(
count_frequency([block["best_guess_single"] for block in recent_relevant])
)
# Guess the client from the single most recent proposal.
#
# Return "Unkown" if no proposal has slot less than `end_slot`, and "Uncertain" if the classifier
# is not confident about the most recent proposal.
def guess_from_latest(proposals, end_slot, check_prob=True):
relevant_proposals = [block for block in proposals if block["slot"] <= end_slot]
if len(relevant_proposals) == 0:
return "Unknown"
latest = relevant_proposals[-1]
guess = latest["best_guess_single"]
if not check_prob or latest["probability_map"][guess] > 0.95:
return guess
else:
return "Uncertain"
# Guess the client from the most common classification, ignoring the period end slot.
def guess_from_mode(proposals, end_slot):
return compute_best_guess(
count_frequency([block["best_guess_single"] for block in proposals])
)
def guess_from_weighted_average(proposals, end_slot, confidence_threshold=0.95):
if len(proposals) == 0:
return "Unknown"
averages = {
client: sum(proposal["probability_map"][client] for proposal in proposals)
/ len(proposals)
for client in CLIENTS
}
best_guess = compute_best_guess(averages)
if averages[best_guess] > confidence_threshold:
return best_guess
else:
return "Uncertain"
def guess_from_median(proposals, end_slot, confidence_threshold=0.95):
if len(proposals) == 0:
return "Unknown"
medians = {
client: statistics.median(
proposal["probability_map"][client] for proposal in proposals
)
for client in CLIENTS
}
best_guess = compute_best_guess(medians)
if medians[best_guess] > confidence_threshold:
return best_guess
else:
return "Uncertain"
def count_frequency(guesses):
client_frequency = {}
for client in guesses:
if client not in client_frequency:
client_frequency[client] = 1
else:
client_frequency[client] += 1
return client_frequency
def compute_period_validators(period, period_db, block_db):
period_id = period["id"]
end_slot = period["end_slot"]
num_validators = period["num_active_validators"]
period_db.execute(
"INSERT INTO periods VALUES (?, ?, ?)", (period_id, end_slot, num_validators)
)
# Build validators table
for validator_index in range(0, num_validators + 1):
proposals = list(
map(
block_row_to_obj,
block_db.execute(
"""SELECT *
FROM blocks
WHERE proposer_index = ? ORDER BY slot ASC""",
(validator_index,),
),
)
)
guess_k_recent = guess_from_k_recent(proposals, end_slot)
guess_mode = guess_from_mode(proposals, end_slot)
guess_med_95 = guess_from_median(proposals, end_slot, confidence_threshold=0.95)
period_db.execute(
"INSERT INTO period_validators VALUES (?, ?, ?, ?, ?)",
(period_id, validator_index, guess_k_recent, guess_mode, guess_med_95),
)
period_db.commit()
def open_period_db(period_db_path):
return sqlite3.connect(period_db_path)
def build_period_db(
block_db_path, period_db_dir, slots_per_period, periods=None, bn_url=DEFAULT_BN
):
block_db = sqlite3.connect(block_db_path)
period_db = create_period_db(slots_per_period, period_db_dir)
if periods is None:
print(f"fetching active validators every {slots_per_period} slots from BN")
periods = fetch_periods_from_bn(slots_per_period, bn_url)
for period in periods:
print(f"computing validator client affinity up to slot {period['end_slot']}")
compute_period_validators(period, period_db, block_db)
print("done")
return period_db
def slot_to_period_id(period_db, slot):
res = list(
period_db.execute(
"SELECT id, MIN(end_slot) FROM periods WHERE end_slot > ?", (slot,)
)
)
assert len(res) == 1
period_id = res[0][0]
if period_id is None:
raise Exception(f"no period known for slot {slot}")
return int(period_id)
def row_to_obj(row):
assert len(row) == 5
return {
"period_id": row[0],
"validator_index": row[1],
"guess_k_recent": row[2],
"guess_mode": row[3],
"guess_med_95": row[4],
}
def most_recent_period_id(period_db):
res = list(period_db.execute("SELECT id, MAX(end_slot) FROM periods"))
assert len(res) == 1
period_id = res[0][0]
if period_id is None:
raise Exception("no max period, DB is probably empty")
return int(period_id)
def get_data_for_validators(period_db, validator_indices=None, slot=None):
if slot is None:
period_id = most_recent_period_id(period_db)
else:
period_id = slot_to_period_id(period_db, slot)
if validator_indices is None:
rows = period_db.execute(
"SELECT * FROM period_validators WHERE period_id = ?", [period_id]
)
else:
assert 0 < len(validator_indices) <= 999
rows = period_db.execute(
f"""SELECT * FROM period_validators WHERE period_id = ?
AND validator_index IN ({','.join(['?'] * len(validator_indices))})""",
[period_id, *validator_indices],
)
return [row_to_obj(row) for row in rows]
def get_client_for_validators(
period_db, validator_indices, slot=None, guess_column=DEFAULT_GUESS
):
return {
x["validator_index"]: x[guess_column]
for x in get_data_for_validators(period_db, validator_indices, slot)
}
def get_validators_per_client(period_db, period_id, guess_column=DEFAULT_GUESS):
validators_per_client = {client: 0 for client in ["Unknown", "Uncertain", *CLIENTS]}
# NOTE: SQL injection. Don't read `guess_column` from the web lol
client_counts = period_db.execute(
f"""SELECT {guess_column}, COUNT(validator_index)
FROM period_validators
WHERE period_id = ?
GROUP BY {guess_column}""",
(period_id,),
)
for client, count in client_counts:
validators_per_client[client] = int(count)
return validators_per_client
def period_db_to_csv(period_db, output_file, guess_column=DEFAULT_GUESS):
# Output rows
fieldnames = [
"period_id",
"end_slot",
"num_active_validators",
"Unknown",
"Uncertain",
*CLIENTS,
]
csv_file = open(output_file, "w", newline="")
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
periods = period_db.execute("SELECT * FROM periods")
for period_id, end_slot, num_active_validators in periods:
row = {
"period_id": period_id,
"end_slot": end_slot,
"num_active_validators": num_active_validators,
}
validators_per_client = get_validators_per_client(
period_db, period_id, guess_column
)
row.update(validators_per_client)
writer.writerow(row)
csv_file.close()