Skip to content

Releases: mikel-brostrom/boxmot

Release v10.0.11

02 Jun 20:12
Compare
Choose a tag to compare
  • Minimal requirements
  • Avoid ultralytics installation by default, only if Yolov8 model is used for tracking
  • Avoid SG installation by default, only if YOLO-NAS is used for tracking
  • Update OpenVINO export
  • 33% CI speedup by lower imgsz resolution
  • Boxmot paths imports. From:
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0].parents[0]  # repo root absolute path
EXAMPLES = FILE.parents[0]  # examples absolute path
WEIGHTS = EXAMPLES / 'weights'

in each example file, to:

from boxmot.utils import ROOT, EXAMPLES, WEIGHTS

Release v10.0.10

28 May 07:42
ed2d5ea
Compare
Choose a tag to compare
  • configure non-yolov8 models for inference, based on input arguments
  • add @torch.no_grad() to all ReID related inference methods

Release v10.0.9

27 May 17:56
8ea0949
Compare
Choose a tag to compare
  • Multi Yolo backend added (Ultralytics + SuperGradients)
  • Unified yolo-nas, yolox and yolov8 tracking file
    • python examples/track.py --yolo-model yolo_nas_s- - python examples/track.py --yolo-model yolo_nas_s
  • All YOLO models tested in CI

Release v10.0.8

25 May 21:07
Compare
Choose a tag to compare
  • Simultaneous pypi + release publishing in CI

v10.0.6

25 May 16:59
Compare
Choose a tag to compare
  • Fix conf not getting updated in DeepOCSORT: #877
  • Add comments to custom object detector example
  • Fixed example/track.py Yolov8 bug. Filter out detections, sementation masks and pose estimations based on tracking results

v.10.0.4

23 May 12:24
737b6ae
Compare
Choose a tag to compare
  • Complete repo refactor
  • PyPI package published
  • Yolo-NAS example added

v10.0.0

16 May 14:54
f8b5b9e
Compare
Choose a tag to compare
  • Tracking now available for all main computer vision tasks:
    - detection
    - segmentation
    - pose estimation
  • Added DeepOCSORT to trackers
  • Added LightMBN to ReID models
  • Added ReID export compatibility for --half with --dynamic, thanks to @Rm1n90 in #798
  • ReID TFlite model export now available using onnx2tf instead of using openvino2tensorflow
  • Deleted Yolov8 submodule in favour of a pure Yolov8 package implementation
  • Complete track.py refactor
  • Simplified val.py
  • Log val and evolve results to tensorboard. Usage
    • tensorboard --logdir=./runs/evolve/
    • tensorboard --logdir=./runs/val/

v9.0 - Mult-object tracking and segmentation, Multi-objective genetic algorithm for custom dataset tracker tuning, Yolov5 to Yolo8 upgrade

10 Feb 16:33
9b69ce9
Compare
Choose a tag to compare

The goal of this release is to add segmentation tracking capability and specific tracking method hyperparameter tuning on MOTXX & custom tracking datasets.

Important updates

MOT17-train evaluation results

From now on we will evaluate our tracking results using COCO trained models only. Yolo M will still be the standard model. This is so that we can focus on tracking as we don't have enough resources for a broader scope for this repo.

HOTA: MOT17-pedestrian             HOTA      DetA      AssA      DetRe     DetPr     AssRe     AssPr     LocA      OWTA      HOTA(0)   LocA(0)   HOTALocA(0)
MOT17-02-FRCNN                     33.206    24.564    45.1      25.163    84.839    46.954    86.804    86.686    33.647    38.14     83.737    31.938    
MOT17-04-FRCNN                     41.731    32.692    53.308    33.877    84.349    56.459    86.095    86.814    42.495    50.444    82.724    41.729    
MOT17-05-FRCNN                     42.656    41.307    44.419    45.386    69.872    51.719    68.892    78.993    44.857    59.422    71.221    42.321    
MOT17-09-FRCNN                     55.857    57.727    54.145    62.213    80.136    57.66     82.182    84.264    58.037    71.027    79.983    56.81     
MOT17-10-FRCNN                     45.976    43.936    48.289    47.112    74.19     51.34     78.774    80.124    47.684    61.839    74.3      45.946    
MOT17-11-FRCNN                     59.008    52.593    66.413    59.229    76.382    72.324    84.023    85.503    62.712    74.143    79.733    59.116    
MOT17-13-FRCNN                     39.175    32.501    47.443    34.011    77.744    51.174    78.836    82.474    40.139    49.312    78.08     38.503    
COMBINED                           43.582    36.14     52.761    38.145    79.618    56.557    83.461    84.453    44.84     54.209    79.569    43.133    

CLEAR: MOT17-pedestrian            MOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT17-02-FRCNN                     27.84     84.61     28.045    28.852    97.278    11.29     30.645    58.065    23.4      5361      13220     150       38        7         19        36        155       
MOT17-04-FRCNN                     34.552    85.785    34.657    37.41     93.147    12.048    39.759    48.193    29.234    17791     29766     1309      50        10        33        40        345       
MOT17-05-FRCNN                     45.713    75.681    46.451    55.703    85.756    17.293    63.158    19.549    32.167    3853      3064      640       51        23        84        26        186       
MOT17-09-FRCNN                     66.423    82.262    67.08     72.357    93.203    50        46.154    3.8462    53.588    3853      1472      281       35        13        12        1         61        
MOT17-10-FRCNN                     51.39     77.087    51.834    57.668    90.813    26.316    45.614    28.07     38.177    7404      5435      749       57        15        26        16        277       
MOT17-11-FRCNN                     52.522    84.907    52.745    65.144    84.01     32        26.667    41.333    42.69     6147      3289      1170      21        24        20        31        50        
MOT17-13-FRCNN                     38.301    79.725    38.782    41.264    94.326    19.091    36.364    44.545    29.934    4804      6838      289       56        21        40        49        165       
COMBINED                           39.464    82.58     39.738    43.824    91.472    20.696    42.857    36.447    31.83     49213     63084     4588      308       113       234       199       1239      

Identity: MOT17-pedestrian         IDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT17-02-FRCNN                     38.345    24.859    83.814    4619      13962     892       
MOT17-04-FRCNN                     48.31     33.856    84.298    16101     31456     2999      
MOT17-05-FRCNN                     58.983    48.648    74.894    3365      3552      1128      
MOT17-09-FRCNN                     70.24     62.385    80.358    3322      2003      812       
MOT17-10-FRCNN                     60.785    49.692    78.253    6380      6459      1773      
MOT17-11-FRCNN                     68.644    60.937    78.584    5750      3686      1567      
MOT17-13-FRCNN                     49.824    35.81     81.857    4169      7473      924       
COMBINED                           52.627    38.92     81.236    43706     68591     10095     

Count: MOT17-pedestrian            Dets      GT_Dets   IDs       GT_IDs    
MOT17-02-FRCNN                     5511      18581     72        62        
MOT17-04-FRCNN                     19100     47557     97        83        
MOT17-05-FRCNN                     4493      6917      135       133       
MOT17-09-FRCNN                     4134      5325      58        26        
MOT17-10-FRCNN                     8153      12839     110       57        
MOT17-11-FRCNN                     7317      9436      96        75        
MOT17-13-FRCNN                     5093      11642     115       110       
COMBINED                           53801     112297    683       546

v8.0 - Tracking experiment platform, MOT17 & MOT20 evaluation

30 Nov 11:42
78968a0
Compare
Choose a tag to compare

The goal of this release is to transform the repo into a user-friendly tracking experiment platform by adding different tracking methods and evaluation support for different MOT datasets. I will continue adding SOTA tracking methods as they come out.

Important updates

  • Tracking method selection
    • OCSORT added as a tracking option
    • ByteTrack added as a tracking option
  • Added evaluation support for MOT17 & MOT20
  • Added custom tracking dataset evaluation tutorial
  • Added to CI:
    • Model export testing
    • Tracking with exported model testing
    • Tracking with OCSORT testing
    • Tracking with ByteTrack testing
  • Less bloated README
  • Evaluation on specific GPUs and CPU
  • Update to Yolov5 release v7
  • --vid-stride to process every nth frame now available
  • Experiment results:

MOT17-train evaluation results

The hyperparameters used for evaluation can be found under val.py. Notice that
none of the models used during the evaluation has ever seen any of the MOT17 data and that our object detection model is a modest Yolov5m.

HOTA: exp105-pedestrian            HOTA      DetA      AssA      DetRe     DetPr     AssRe     AssPr     LocA      RHOTA     HOTA(0)   LocA(0)   HOTALocA(0)
MOT17-04-ss                        60.908    59        63.405    64.121    76.02     68.898    78.923    80.981    63.714    81.25     75.158    61.066    
MOT17-05-ss                        40.252    39.213    41.436    42.163    74.171    52.461    63.544    81.546    41.789    51.945    76.574    39.777    
MOT17-09-ss                        56.907    60.309    53.739    65.712    80.477    59.512    79.408    85.724    59.415    70.643    81.881    57.843    
MOT17-10-ss                        50.853    50.201    51.696    54.009    74.875    56.683    76.058    80.464    52.834    67.831    75.599    51.28     
MOT17-11-ss                        62.797    58.699    67.396    70.483    72.798    74.55     82.031    86.688    68.912    75.266    83.145    62.58     
MOT17-13-ss                        46.722    43.064    51.08     46.897    72.133    56.866    74.246    80.146    48.893    61.802    74.62     46.116    
COMBINED                           56.852    54.364    60.008    59.706    75.249    66.14     78.487    81.823    59.774    74.144    76.496    56.717    

CLEAR: exp105-pedestrian           MOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT17-04-ss                        69.718    78.487    69.847    77.097    91.404    50.602    33.735    15.663    53.133    36665     10892     3448      61        42        28        13        549       
MOT17-05-ss                        45.757    78.793    46.668    51.757    91.048    19.549    63.158    17.293    34.781    3580      3337      352       63        26        84        23        249       
MOT17-09-ss                        67.925    84.484    68.732    75.192    92.088    50        50        0         56.258    4004      1321      344       43        13        13        0         141       
MOT17-10-ss                        62.575    77.025    63.206    67.669    93.813    28.07     61.404    10.526    47.028    8688      4151      573       81        16        35        6         663       
MOT17-11-ss                        61.753    85.318    62.081    79.451    82.06     46.667    40        13.333    50.088    7497      1939      1639      31        35        30        10        200       
MOT17-13-ss                        52.534    76.716    53.247    59.131    90.95     30        41.818    28.182    38.766    6884      4758      685       83        33        46        31        321       
COMBINED                           63.933    79.251    64.319    71.832    90.531    34.091    48.76     17.149    49.028    67318     26398     7041      362       165       236       83        2123      

Identity: exp105-pedestrian        IDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT17-04-ss                        77.326    71.274    84.501    33896     13661     6217      
MOT17-05-ss                        54.125    42.446    74.669    2936      3981      996       
MOT17-09-ss                        70.485    64.019    78.404    3409      1916      939       
MOT17-10-ss                        69.701    59.989    83.166    7702      5137      1559      
MOT17-11-ss                        74.445    73.262    75.668    6913      2523      2223      
MOT17-13-ss                        63.099    52.062    80.077    6061      5581      1508      
COMBINED                           72.488    65.002    81.923    60917     32799     13442     

Count: exp105-pedestrian           Dets      GT_Dets   IDs       GT_IDs    
MOT17-04-ss                        40113     47557     131       83        
MOT17-05-ss                        3932      6917      103       133       
MOT17-09-ss                        4348      5325      52        26        
MOT17-10-ss                        9261      12839     96        57        
MOT17-11-ss                        9136      9436      152       75        
MOT17-13-ss                        7569      11642     133       110       
COMBINED                           74359     93716     667       484

No performance boost this time, only that we started evaluating on MOT17

v7.0 - ReID export and optimization

17 Sep 15:33
3a9b5fe
Compare
Choose a tag to compare

The goal of this release is to increase the deployment possibilities by enabling ReID model export to different frameworks. The ReID part of the project was enhanced by batched inferences for all the supported export frameworks. This results in big speedups, specially when the number of detected objects are large. I also started looking into more tracking methods with the idea of transforming the repo into a tracking experiment platform.

Important updates

  • Added Windows testing to CI
  • Added Python eval script/deleted Bash eval script
  • Increased StrongSORT inference speed by batchifying the visual appearance inferences in the ReID multi-backend engine
  • Warmup added to ReID models
  • Publish StrongSORT vs BoTSORT vs OCSORT comparison
  • New best MOT16 performing ReID model in val.py (osnet_x1_0_dukemtmcreid.pt)
  • ReID model exports and batched inference support for the following frameworks:
  • ONNX
  • TensorRT
  • TorchScript
  • OpenVINO

MOT16 Train evaluation results

Relevant changed/used hparams: imgz 1280, crowdhuman_yolov5m, osnet_x1_0_dukemtmcreid, StrongSORT. Notice that
none of the models used during the evaluation has ever seen any of the MOT16 data and that our object detection model is a modest Yolov5m.

HOTA: StrongSORT                   HOTA      DetA      AssA      DetRe     DetPr     AssRe     AssPr     LocA      RHOTA     HOTA(0)   LocA(0)   HOTALocA(0)
MOT16-02                           38.665    36.637    40.944    38.537    76.614    44.547    74.684    81.639    39.705    49.256    77.503    38.175    
MOT16-04                           60.283    58.906    62.211    63.644    76.869    66.581    80.092    81.303    62.872    79.943    75.772    60.574    
MOT16-05                           38.966    39.128    38.924    42.247    74.007    50.935    61.954    82.021    40.537    50.046    77.021    38.546    
MOT16-09                           54.379    57.758    51.227    67.172    73.999    62.039    71.768    85.541    58.648    67.299    81.843    55.08     
MOT16-10                           51.081    51.565    50.736    55.758    74.916    56.163    74.611    80.794    53.183    68.005    76.058    51.723    
MOT16-11                           63.351    60.472    66.585    72.742    73.149    74.295    79.782    86.921    69.584    75.419    83.756    63.169    
MOT16-13                           47.139    43.125    51.925    46.561    73.727    58.249    74.375    80.826    49.113    60.92     76.073    46.343    
COMBINED                           54.087    51.797    56.978    56.54     75.637    62.799    77.756    82.107    56.675    69.878    77.185    53.935    

CLEAR: exp306-pedestrian           MOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT16-02                           44.569    78.978    45.006    47.653    94.738    14.815    55.556    29.63     34.551    8498      9335      472       78        8         30        16        366       
MOT16-04                           70.316    78.861    70.478    76.636    92.561    48.193    37.349    14.458    54.115    36446     11111     2929      77        40        31        12        485       
MOT16-05                           45.321    79.635    46.436    51.76     90.673    27.2      54.4      18.4      34.78     3529      3289      363       76        34        68        23        205       
MOT16-09                           62.792    84.37     63.192    76.983    84.807    52        48        0         50.76     4047      1210      725       21        13        12        0         72        
MOT16-10                           63.817    77.592    64.377    69.403    93.248    37.037    57.407    5.5556    48.265    8549      3769      619       69        20        31        3         588       
MOT16-11                           64.672    85.465    64.89     82.167    82.626    52.174    37.681    10.145    52.729    7538      1636      1585      20        36        26        7         109       
MOT16-13                           53.022    77.397    53.528    58.341    92.38     28.972    43.925    27.103    39.835    6680      4770      551       58        31        47        29        305       
COMBINED                           61.268    79.594    61.629    68.19     91.223    35.203    47.389    17.408    47.353    75287     35120     7244      399       182       245       90        2130      

Identity: exp306-pedestrian        IDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT16-02                           50.77     38.154    75.853    6804      11029     2166      
MOT16-04                           76.092    69.546    83.997    33074     14483     6301      
MOT16-05                           51.055    40.1      70.247    2734      4084      1158      
MOT16-09                           66.946    63.858    70.348    3357      1900      1415      
MOT16-10                           68.361    59.62     80.105    7344      4974      1824      
MOT16-11                           74.887    74.678    75.096    6851      2323      2272      
MOT16-13                           64.001    52.21     82.672    5978      5472      1253      
COMBINED                           68.563    59.907    80.142    66142     44265     16389

Performance boost coming from new ReID model