-
Notifications
You must be signed in to change notification settings - Fork 1
/
dragan.py
245 lines (192 loc) · 8.72 KB
/
dragan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""DRAGAN Model"""
import argparse
import gzip
import os
import shutil
import urllib.request
import mindspore
import mindspore.common.initializer as init
import numpy as np
from mindspore import Tensor, ops
from mindspore import nn
from mindspore.common import dtype as mstype
from mindspore.dataset.vision import transforms
from img_utils import to_image
file_path = "../../data/MNIST/"
if not os.path.exists(file_path):
# 下载数据集
if not os.path.exists('../../data'):
os.mkdir('../../data')
os.mkdir(file_path)
base_url = 'http://yann.lecun.com/exdb/mnist/'
file_names = ['train-images-idx3-ubyte.gz', 'train-labels-idx1-ubyte.gz',
't10k-images-idx3-ubyte.gz', 't10k-labels-idx1-ubyte.gz']
for file_name in file_names:
url = (base_url + file_name).format(**locals())
print("Downloading MNIST dataset from" + url)
urllib.request.urlretrieve(url, os.path.join(file_path, file_name))
with gzip.open(os.path.join(file_path, file_name), 'rb') as f_in:
print("Unzipping...")
with open(os.path.join(file_path, file_name)[:-3], 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(os.path.join(file_path, file_name))
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=1000, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
class Generator(nn.Cell):
"""Generator Network"""
def __init__(self):
super().__init__(Generator)
self.init_size = opt.img_size // 4
self.l1 = nn.SequentialCell(
nn.Dense(opt.latent_dim, 128 * self.init_size ** 2)
)
self.conv_blocks = nn.SequentialCell(
nn.BatchNorm2d(128,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
nn.Conv2d(128, 128, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(128, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
nn.Conv2d(128, 64, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(64, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Conv2d(64, opt.channels, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.Tanh(),
)
def construct(self, noise):
out = self.l1(noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
class Discriminator(nn.Cell):
"""Discriminator Network"""
def __init__(self):
super().__init__(Discriminator)
def discriminator_block(in_filters, out_filters, bn=True):
block = [
nn.Conv2d(in_filters, out_filters, 3, 2,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.LeakyReLU(0.2),
nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False))
return block
self.model = nn.SequentialCell(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
self.adv_layer = nn.SequentialCell(
nn.Dense(128 * ds_size ** 2, 1),
nn.Sigmoid()
)
def construct(self, img):
out = self.model(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
return validity
# Loss function
adversarial_loss = nn.BCELoss()
# Loss weight for gradient penalty
lambda_gp = 10
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
transform = [
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]
dataset = mindspore.dataset.MnistDataset(
dataset_dir=file_path,
usage='train',
shuffle=True
).map(operations=transform, input_columns="image").batch(opt.batch_size)
# Optimizers
optimizer_G = nn.optim.Adam(generator.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
optimizer_D = nn.optim.Adam(discriminator.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
def compute_gradient_penalty(D, X):
"""Calculates the gradient penalty loss for DRAGAN"""
# Random weight term for interpolation
alpha = Tensor(np.random.random(size=X.shape))
interpolates = alpha * X + ((1 - alpha) * (X + 0.5 * X.std() * ops.rand(X.shape)))
interpolates = ops.Cast()(interpolates, mstype.float32)
# Get gradient w.r.t. interpolates
grad_fn = ops.grad(D, return_ids=True)
gradients = grad_fn(interpolates)
gradients = ops.get_grad(gradients, 0)
_gradient_penalty = lambda_gp * ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return _gradient_penalty
def g_forward(_imgs, _valid):
"""Generator forward function"""
# Sample noise as generator input
z = ops.randn((_imgs.shape[0], opt.latent_dim), dtype=mstype.float32)
# Generate a batch of images
_gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
_g_loss = adversarial_loss(discriminator(_gen_imgs), _valid)
return _g_loss, _gen_imgs
def d_forward(_real_imgs, _gen_imgs, _valid, _fake):
"""Discriminator forward function"""
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(_real_imgs), _valid)
fake_loss = adversarial_loss(discriminator(_gen_imgs), _fake)
_d_loss = (real_loss + fake_loss) / 2
# Calculate gradient penalty
_gradient_penalty = compute_gradient_penalty(discriminator, _real_imgs)
return _gradient_penalty, _d_loss
grad_g = ops.value_and_grad(g_forward, None, optimizer_G.parameters, has_aux=True)
grad_d = ops.value_and_grad(d_forward, None, optimizer_D.parameters, has_aux=True)
generator.set_train()
discriminator.set_train()
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(dataset.create_tuple_iterator()):
valid = ops.stop_gradient(ops.ones((imgs.shape[0], 1)))
fake = ops.stop_gradient(ops.zeros((imgs.shape[0], 1)))
# Configure input
real_imgs = imgs
# -----------------
# Train Generator
# -----------------
(g_loss, gen_imgs), g_grads = grad_g(real_imgs, valid)
optimizer_G(g_grads)
# ---------------------
# Train Discriminator
# ---------------------
(gradient_penalty, d_loss), d_grads = grad_d(real_imgs, ops.stop_gradient(gen_imgs), valid, fake)
optimizer_D(d_grads)
print(
f'[Epoch {epoch}/{opt.n_epochs}] [Batch {i}/{dataset.get_dataset_size()}] '
f'[D loss: {d_loss.asnumpy().item():.4f}] [G loss: {g_loss.asnumpy().item():.4f}]'
)
to_image(gen_imgs, os.path.join("images", F'{epoch}.png'))