Skip to content

Latest commit

 

History

History
98 lines (73 loc) · 2.25 KB

README.md

File metadata and controls

98 lines (73 loc) · 2.25 KB

WSDM 2022 Temporal Link Prediction Challenge-We can [mask]!

WSDM Cup Website link

Link to this challenge

Reproduction steps

  • Create the environment
conda create -n WSDM python=3.7
  • Activate the environment
conda activate WSDM
  • Install required packages
pip install -r requirements.txt

Note: GPU is required for faster training (8 GB Memory at least).

PS: If you face the problem of "Could not load dynamic library xxx for Tensorflow GPU", the Answer 2 in https://www.mashen.zone/thread-3634622.htm?user=4 is suggested.

  • Dataset location

finals contains the final test set

intermediate contains the updated input_A_initial.csv.gz and input_B_initial.csv.gz files, as well as the intermediate test set input_A.csv.gz and input_B.csv.gz

train_csvs contains the training data

│  main.py
│  model.py
│  README.md
│  requirements.txt
│  utlis.py
│          
├─finals
│      input_A_final.csv
│      input_B.csv
│      
├─intermediate
│      input_A.csv
│      input_A_initial2.csv
│      input_B.csv
│      input_B_initial2.csv
│      
├─train_csvs
       edges_train_A.csv
       edges_train_B.csv
       edge_type_features.csv
       node_features_sampled.csv
  • Usage
# for dataset A
python main.py --dataset A --epochs 9 --emb_dim 200 --negative_samples 5
# for dataset B
python main.py --dataset B --epochs 12 --emb_dim 100 --negative_samples 1

PS: the total running time for two dataset is less 2 hours using NVIDIA GeForce RTX 3070 Ti.

  • Result
Intermediate Test Set
- output_A_inter.csv
- output_B_inter.csv
Final Test Set
- output_A.csv
- output_B.csv
  • The result of Intermediate Test Set
AUC of Dataset A: 0.604264
AUC of Dataset B: 0.898969
Overall result: 0.722729
  • The result of Intermediate Test Set
AUC of Dataset A: 0.603621
AUC of Dataset B: 0.898232