-
Notifications
You must be signed in to change notification settings - Fork 41
/
keyword_encode.py
196 lines (171 loc) · 5.71 KB
/
keyword_encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import spacy
import csv
import re
import ray
import multiprocessing
from tqdm import tqdm
from itertools import chain
from random import shuffle, randint
DELIMS = {"section": "~", "category": "`", "keywords": "^", "title": "@", "body": "}"}
PRONOUN_LIST = ["I", "Me", "We", "You", "He", "She", "It", "Him", "Her", "Them", "They"]
PRONOUNS = set(PRONOUN_LIST + [x.lower() for x in PRONOUN_LIST])
def encode_keywords(
csv_path,
model="en_core_web_sm",
category_field=None,
keywords_field=None,
title_field=None,
body_field=None,
keyword_gen="title",
keyword_sep=",",
dropout=0.5,
repeat=3,
max_keywords=3,
keyword_length_max=20,
out_path="csv_encoded.txt",
start_token="<|startoftext|>",
end_token="<|endoftext|>",
):
data_list = []
with open(csv_path, "r", encoding="utf8", errors="ignore") as f:
reader = csv.DictReader(f)
for row in reader:
data_list.append(row)
shuffle(data_list)
# https://stackoverflow.com/a/434328
def chunker(seq, size):
return (seq[pos : pos + size] for pos in range(0, len(seq), size))
num_threads = multiprocessing.cpu_count() * 2 # colocate 2 processes per thread
print("Starting up {} Workers".format(num_threads))
encoders = [
Encoder.remote(
model,
category_field,
keywords_field,
title_field,
body_field,
keyword_gen,
keyword_sep,
repeat,
max_keywords,
keyword_length_max,
start_token,
end_token,
DELIMS,
PRONOUNS,
)
for _ in range(num_threads)
]
with open(out_path, "w", encoding="utf8", errors="ignore") as w:
pbar = tqdm(total=len(data_list), smoothing=0)
for chunk in chunker(data_list, num_threads):
results = ray.get(
[
c.generate_encoded_text.remote(row)
for c, row in list(zip(encoders, chunk))
]
)
# unnest and randomize results
results = list(chain.from_iterable(results))
shuffle(results)
for result in results:
w.write(result)
pbar.update(num_threads)
pbar.close()
@ray.remote(num_cpus=0.5)
class Encoder(object):
def __init__(
self,
model,
category_field,
keywords_field,
title_field,
body_field,
keyword_gen,
keyword_sep,
repeat,
max_keywords,
keyword_length_max,
start_token,
end_token,
DELIMS,
PRONOUNS,
):
self.nlp = spacy.load(model)
self.pattern = re.compile("\W+")
self.category_field = category_field
self.keywords_field = keywords_field
self.title_field = title_field
self.body_field = body_field
self.keyword_gen = keyword_gen
self.keyword_sep = keyword_sep
self.repeat = repeat
self.max_keywords = max_keywords
self.keyword_length_max = keyword_length_max
self.start_token = start_token
self.end_token = end_token
self.DELIMS = DELIMS
self.PRONOUNS = PRONOUNS
def build_section(self, section, text):
if text is None:
return ""
return self.DELIMS["section"] + self.DELIMS[section] + text
def generate_encoded_text(self, row):
nlp = self.nlp
pattern = self.pattern
# category should be normalized to account for user input
category = (
re.sub(pattern, "-", row[self.category_field].lower().strip())
if self.category_field is not None
else None
)
title = row[self.title_field] if self.title_field is not None else None
body = row[self.body_field] if self.body_field is not None else None
if self.keywords_field is None:
# Generate the keywords using spacy
# replace smart quotes first for better tokenization
text = re.sub(
u"[\u2018\u2019]",
"'",
(re.sub(u"[\u201c\u201d]", '"', row[self.keyword_gen])),
)
doc = nlp(text)
keywords_pos = [
chunk.text
if chunk.pos_ == "NOUN"
else chunk.lemma_
if chunk.pos_ in ["VERB", "ADJ", "ADV"]
else "I"
for chunk in doc
if not chunk.is_stop
]
keywords_ents = [re.sub(" ", "-", chunk.text) for chunk in doc.ents]
keywords_compounds = [
re.sub(" ", "-", chunk.text)
for chunk in doc.noun_chunks
if len(chunk.text) < self.keyword_length_max
]
keywords = list(
set(keywords_pos + keywords_ents + keywords_compounds) - self.PRONOUNS
) # dedupe
else:
keywords = [
keyword.strip()
for keyword in row[self.keywords_field].split(self.keyword_sep)
]
keywords = list(set(keywords))
encoded_texts = []
for _ in range(self.repeat):
new_keywords = keywords
shuffle(new_keywords)
new_keywords = " ".join(new_keywords[: randint(0, self.max_keywords)])
encoded_texts.append(
self.start_token
+ self.build_section("category", category)
+ self.build_section("keywords", new_keywords)
+ self.build_section("title", title)
+ self.build_section("body", body)
+ self.end_token
+ "\n"
)
return encoded_texts