-
Notifications
You must be signed in to change notification settings - Fork 2
/
YM2149_linmix.vhd
623 lines (570 loc) · 20.9 KB
/
YM2149_linmix.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
--
-- A simulation model of YM2149 (AY-3-8910 with bells on)
-- Copyright (c) MikeJ - Jan 2005
--
-- All rights reserved
--
-- Redistribution and use in source and synthezised forms, with or without
-- modification, are permitted provided that the following conditions are met:
--
-- Redistributions of source code must retain the above copyright notice,
-- this list of conditions and the following disclaimer.
--
-- Redistributions in synthesized form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
--
-- Neither the name of the author nor the names of other contributors may
-- be used to endorse or promote products derived from this software without
-- specific prior written permission.
--
-- THIS CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
-- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-- PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
-- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
--
-- You are responsible for any legal issues arising from your use of this code.
--
-- The latest version of this file can be found at: www.fpgaarcade.com
--
-- Email [email protected]
--
-- Revision list
--
-- version 001 initial release
--
-- Clues from MAME sound driver and Kazuhiro TSUJIKAWA
--
-- These are the measured outputs from a real chip for a single Isolated channel into a 1K load (V)
-- vol 15 .. 0
-- 3.27 2.995 2.741 2.588 2.452 2.372 2.301 2.258 2.220 2.198 2.178 2.166 2.155 2.148 2.141 2.132
-- As the envelope volume is 5 bit, I have fitted a curve to the not quite log shape in order
-- to produced all the required values.
-- (The first part of the curve is a bit steeper and the last bit is more linear than expected)
--
-- NOTE, this component uses LINEAR mixing of the three analogue channels, and is only
-- accurate for designs where the outputs are buffered and not simply wired together.
-- The ouput level is more complex in that case and requires a larger table.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity YM2149 is
port (
-- data bus
I_DA : in std_logic_vector(7 downto 0);
O_DA : out std_logic_vector(7 downto 0);
O_DA_OE_L : out std_logic;
-- control
I_A9_L : in std_logic;
I_A8 : in std_logic;
I_BDIR : in std_logic;
I_BC2 : in std_logic;
I_BC1 : in std_logic;
I_SEL_L : in std_logic;
O_AUDIO : out std_logic_vector(7 downto 0);
-- port a
I_IOA : in std_logic_vector(7 downto 0);
O_IOA : out std_logic_vector(7 downto 0);
O_IOA_OE_L : out std_logic;
-- port b
I_IOB : in std_logic_vector(7 downto 0);
O_IOB : out std_logic_vector(7 downto 0);
O_IOB_OE_L : out std_logic;
ENA : in std_logic; -- clock enable for higher speed operation
RESET_L : in std_logic;
CLK : in std_logic -- note 6 Mhz
);
end;
architecture RTL of YM2149 is
type array_16x8 is array (0 to 15) of std_logic_vector(7 downto 0);
type array_3x12 is array (1 to 3) of std_logic_vector(11 downto 0);
signal cnt_div : std_logic_vector(3 downto 0) := (others => '0');
signal noise_div : std_logic := '0';
signal ena_div : std_logic;
signal ena_div_noise : std_logic;
signal poly17 : std_logic_vector(16 downto 0) := (others => '0');
-- registers
signal addr : std_logic_vector(7 downto 0);
signal busctrl_addr : std_logic;
signal busctrl_we : std_logic;
signal busctrl_re : std_logic;
signal reg : array_16x8;
signal env_reset : std_logic;
signal ioa_inreg : std_logic_vector(7 downto 0);
signal iob_inreg : std_logic_vector(7 downto 0);
signal noise_gen_cnt : std_logic_vector(4 downto 0);
signal noise_gen_op : std_logic;
signal tone_gen_cnt : array_3x12 := (others => (others => '0'));
signal tone_gen_op : std_logic_vector(3 downto 1) := "000";
signal env_gen_cnt : std_logic_vector(15 downto 0);
signal env_ena : std_logic;
signal env_hold : std_logic;
signal env_inc : std_logic;
signal env_vol : std_logic_vector(4 downto 0);
signal tone_ena_l : std_logic;
signal tone_src : std_logic;
signal noise_ena_l : std_logic;
signal chan_vol : std_logic_vector(4 downto 0);
signal dac_amp : std_logic_vector(7 downto 0);
signal audio_mix : std_logic_vector(9 downto 0);
signal audio_final : std_logic_vector(9 downto 0);
begin
-- cpu i/f
p_busdecode : process(I_BDIR, I_BC2, I_BC1, addr, I_A9_L, I_A8)
variable cs : std_logic;
variable sel : std_logic_vector(2 downto 0);
begin
-- BDIR BC2 BC1 MODE
-- 0 0 0 inactive
-- 0 0 1 address
-- 0 1 0 inactive
-- 0 1 1 read
-- 1 0 0 address
-- 1 0 1 inactive
-- 1 1 0 write
-- 1 1 1 read
busctrl_addr <= '0';
busctrl_we <= '0';
busctrl_re <= '0';
cs := '0';
if (I_A9_L = '0') and (I_A8 = '1') and (addr(7 downto 4) = "0000") then
cs := '1';
end if;
sel := (I_BDIR & I_BC2 & I_BC1);
case sel is
when "000" => null;
when "001" => busctrl_addr <= '1';
when "010" => null;
when "011" => busctrl_re <= cs;
when "100" => busctrl_addr <= '1';
when "101" => null;
when "110" => busctrl_we <= cs;
when "111" => busctrl_addr <= '1';
when others => null;
end case;
end process;
p_oe : process(busctrl_re)
begin
-- if we are emulating a real chip, maybe clock this to fake up the tristate typ delay of 100ns
O_DA_OE_L <= not (busctrl_re);
end process;
--
-- CLOCKED
--
--p_waddr : process
--begin
---- looks like registers are latches in real chip, but the address is caught at the end of the address state.
--wait until rising_edge(CLK);
--if (RESET_L = '0') then
--addr <= (others => '0');
--else
--if (busctrl_addr = '1') then
--addr <= I_DA;
--end if;
--end if;
--end process;
--p_wdata : process
--begin
---- looks like registers are latches in real chip, but the address is caught at the end of the address state.
--wait until rising_edge(CLK);
--env_reset <= '0';
--if (RESET_L = '0') then
--reg <= (others => (others => '0'));
--env_reset <= '1';
--else
--env_reset <= '0';
--if (busctrl_we = '1') then
--case addr(3 downto 0) is
--when x"0" => reg(0) <= I_DA;
--when x"1" => reg(1) <= I_DA;
--when x"2" => reg(2) <= I_DA;
--when x"3" => reg(3) <= I_DA;
--when x"4" => reg(4) <= I_DA;
--when x"5" => reg(5) <= I_DA;
--when x"6" => reg(6) <= I_DA;
--when x"7" => reg(7) <= I_DA;
--when x"8" => reg(8) <= I_DA;
--when x"9" => reg(9) <= I_DA;
--when x"A" => reg(10) <= I_DA;
--when x"B" => reg(11) <= I_DA;
--when x"C" => reg(12) <= I_DA;
--when x"D" => reg(13) <= I_DA; env_reset <= '1';
--when x"E" => reg(14) <= I_DA;
--when x"F" => reg(15) <= I_DA;
--when others => null;
--end case;
--end if;
--end if;
--end process;
--
-- LATCHED, useful when emulating a real chip in circuit. Nasty as gated clock.
--
p_waddr : process(reset_l, busctrl_addr)
begin
-- looks like registers are latches in real chip, but the address is caught at the end of the address state.
if (RESET_L = '0') then
addr <= (others => '0');
elsif falling_edge(busctrl_addr) then -- yuk
addr <= I_DA;
end if;
end process;
p_wdata : process(reset_l, busctrl_we, addr)
begin
if (RESET_L = '0') then
reg <= (others => (others => '0'));
elsif falling_edge(busctrl_we) then
case addr(3 downto 0) is
when x"0" => reg(0) <= I_DA;
when x"1" => reg(1) <= I_DA;
when x"2" => reg(2) <= I_DA;
when x"3" => reg(3) <= I_DA;
when x"4" => reg(4) <= I_DA;
when x"5" => reg(5) <= I_DA;
when x"6" => reg(6) <= I_DA;
when x"7" => reg(7) <= I_DA;
when x"8" => reg(8) <= I_DA;
when x"9" => reg(9) <= I_DA;
when x"A" => reg(10) <= I_DA;
when x"B" => reg(11) <= I_DA;
when x"C" => reg(12) <= I_DA;
when x"D" => reg(13) <= I_DA;
when x"E" => reg(14) <= I_DA;
when x"F" => reg(15) <= I_DA;
when others => null;
end case;
end if;
env_reset <= '0';
if (busctrl_we = '1') and (addr(3 downto 0) = x"D") then
env_reset <= '1';
end if;
end process;
p_rdata : process(busctrl_re, addr, reg)
begin
O_DA <= (others => '0'); -- 'X'
if (busctrl_re = '1') then -- not necessary, but useful for putting 'X's in the simulator
case addr(3 downto 0) is
when x"0" => O_DA <= reg(0) ;
when x"1" => O_DA <= "0000" & reg(1)(3 downto 0) ;
when x"2" => O_DA <= reg(2) ;
when x"3" => O_DA <= "0000" & reg(3)(3 downto 0) ;
when x"4" => O_DA <= reg(4) ;
when x"5" => O_DA <= "0000" & reg(5)(3 downto 0) ;
when x"6" => O_DA <= "000" & reg(6)(4 downto 0) ;
when x"7" => O_DA <= reg(7) ;
when x"8" => O_DA <= "000" & reg(8)(4 downto 0) ;
when x"9" => O_DA <= "000" & reg(9)(4 downto 0) ;
when x"A" => O_DA <= "000" & reg(10)(4 downto 0) ;
when x"B" => O_DA <= reg(11);
when x"C" => O_DA <= reg(12);
when x"D" => O_DA <= "0000" & reg(13)(3 downto 0);
when x"E" => if (reg(7)(6) = '0') then -- input
O_DA <= ioa_inreg;
else
O_DA <= reg(14); -- read output reg
end if;
when x"F" => if (Reg(7)(7) = '0') then
O_DA <= iob_inreg;
else
O_DA <= reg(15);
end if;
when others => null;
end case;
end if;
end process;
--
p_divider : process
begin
wait until rising_edge(CLK);
-- / 8 when SEL is high and /16 when SEL is low
if (ENA = '1') then
ena_div <= '0';
ena_div_noise <= '0';
if (cnt_div = "0000") then
cnt_div <= (not I_SEL_L) & "111";
ena_div <= '1';
noise_div <= not noise_div;
if (noise_div = '1') then
ena_div_noise <= '1';
end if;
else
cnt_div <= cnt_div - "1";
end if;
end if;
end process;
p_noise_gen : process
variable noise_gen_comp : std_logic_vector(4 downto 0);
variable poly17_zero : std_logic;
begin
wait until rising_edge(CLK);
if (reg(6)(4 downto 0) = "00000") then
noise_gen_comp := "00000";
else
noise_gen_comp := (reg(6)(4 downto 0) - "1");
end if;
poly17_zero := '0';
if (poly17 = "00000000000000000") then poly17_zero := '1'; end if;
if (ENA = '1') then
if (ena_div_noise = '1') then -- divider ena
if (noise_gen_cnt >= noise_gen_comp) then
noise_gen_cnt <= "00000";
poly17 <= (poly17(0) xor poly17(2) xor poly17_zero) & poly17(16 downto 1);
else
noise_gen_cnt <= (noise_gen_cnt + "1");
end if;
end if;
end if;
end process;
noise_gen_op <= poly17(0);
p_tone_gens : process
variable tone_gen_freq : array_3x12;
variable tone_gen_comp : array_3x12;
begin
wait until rising_edge(CLK);
-- looks like real chips count up - we need to get the Exact behaviour ..
tone_gen_freq(1) := reg(1)(3 downto 0) & reg(0);
tone_gen_freq(2) := reg(3)(3 downto 0) & reg(2);
tone_gen_freq(3) := reg(5)(3 downto 0) & reg(4);
-- period 0 = period 1
for i in 1 to 3 loop
if (tone_gen_freq(i) = x"000") then
tone_gen_comp(i) := x"000";
else
tone_gen_comp(i) := (tone_gen_freq(i) - "1");
end if;
end loop;
if (ENA = '1') then
for i in 1 to 3 loop
if (ena_div = '1') then -- divider ena
if (tone_gen_cnt(i) >= tone_gen_comp(i)) then
tone_gen_cnt(i) <= x"000";
tone_gen_op(i) <= not tone_gen_op(i);
else
tone_gen_cnt(i) <= (tone_gen_cnt(i) + "1");
end if;
end if;
end loop;
end if;
end process;
p_envelope_freq : process
variable env_gen_freq : std_logic_vector(15 downto 0);
variable env_gen_comp : std_logic_vector(15 downto 0);
begin
wait until rising_edge(CLK);
env_gen_freq := reg(12) & reg(11);
-- envelope freqs 1 and 0 are the same.
if (env_gen_freq = x"0000") then
env_gen_comp := x"0000";
else
env_gen_comp := (env_gen_freq - "1");
end if;
if (ENA = '1') then
env_ena <= '0';
if (ena_div = '1') then -- divider ena
if (env_gen_cnt >= env_gen_comp) then
env_gen_cnt <= x"0000";
env_ena <= '1';
else
env_gen_cnt <= (env_gen_cnt + "1");
end if;
end if;
end if;
end process;
p_envelope_shape : process(env_reset, CLK)
variable is_bot : boolean;
variable is_bot_p1 : boolean;
variable is_top_m1 : boolean;
variable is_top : boolean;
begin
-- envelope shapes
-- C AtAlH
-- 0 0 x x \___
--
-- 0 1 x x /___
--
-- 1 0 0 0 \\\\
--
-- 1 0 0 1 \___
--
-- 1 0 1 0 \/\/
-- ___
-- 1 0 1 1 \
--
-- 1 1 0 0 ////
-- ___
-- 1 1 0 1 /
--
-- 1 1 1 0 /\/\
--
-- 1 1 1 1 /___
if (env_reset = '1') then
-- load initial state
if (reg(13)(2) = '0') then -- attack
env_vol <= "11111";
env_inc <= '0'; -- -1
else
env_vol <= "00000";
env_inc <= '1'; -- +1
end if;
env_hold <= '0';
elsif rising_edge(CLK) then
is_bot := (env_vol = "00000");
is_bot_p1 := (env_vol = "00001");
is_top_m1 := (env_vol = "11110");
is_top := (env_vol = "11111");
if (ENA = '1') then
if (env_ena = '1') then
if (env_hold = '0') then
if (env_inc = '1') then
env_vol <= (env_vol + "00001");
else
env_vol <= (env_vol + "11111");
end if;
end if;
-- envelope shape control.
if (reg(13)(3) = '0') then
if (env_inc = '0') then -- down
if is_bot_p1 then env_hold <= '1'; end if;
else
if is_top then env_hold <= '1'; end if;
end if;
else
if (reg(13)(0) = '1') then -- hold = 1
if (env_inc = '0') then -- down
if (reg(13)(1) = '1') then -- alt
if is_bot then env_hold <= '1'; end if;
else
if is_bot_p1 then env_hold <= '1'; end if;
end if;
else
if (reg(13)(1) = '1') then -- alt
if is_top then env_hold <= '1'; end if;
else
if is_top_m1 then env_hold <= '1'; end if;
end if;
end if;
elsif (reg(13)(1) = '1') then -- alternate
if (env_inc = '0') then -- down
if is_bot_p1 then env_hold <= '1'; end if;
if is_bot then env_hold <= '0'; env_inc <= '1'; end if;
else
if is_top_m1 then env_hold <= '1'; end if;
if is_top then env_hold <= '0'; env_inc <= '0'; end if;
end if;
end if;
end if;
end if;
end if;
end if;
end process;
p_chan_mixer : process(cnt_div, reg, tone_gen_op)
begin
tone_ena_l <= '1'; tone_src <= '1';
noise_ena_l <= '1'; chan_vol <= "00000";
case cnt_div(1 downto 0) is
when "00" =>
tone_ena_l <= reg(7)(0); tone_src <= tone_gen_op(1); chan_vol <= reg(8)(4 downto 0);
noise_ena_l <= reg(7)(3);
when "01" =>
tone_ena_l <= reg(7)(1); tone_src <= tone_gen_op(2); chan_vol <= reg(9)(4 downto 0);
noise_ena_l <= reg(7)(4);
when "10" =>
tone_ena_l <= reg(7)(2); tone_src <= tone_gen_op(3); chan_vol <= reg(10)(4 downto 0);
noise_ena_l <= reg(7)(5);
when "11" => null; -- tone gen outputs become valid on this clock
when others => null;
end case;
end process;
p_op_mixer : process
variable chan_mixed : std_logic;
variable chan_amp : std_logic_vector(4 downto 0);
begin
wait until rising_edge(CLK);
if (ENA = '1') then
chan_mixed := (tone_ena_l or tone_src) and (noise_ena_l or noise_gen_op);
chan_amp := (others => '0');
if (chan_mixed = '1') then
if (chan_vol(4) = '0') then
if (chan_vol(3 downto 0) = "0000") then -- nothing is easy ! make sure quiet is quiet
chan_amp := "00000";
else
chan_amp := chan_vol(3 downto 0) & '1'; -- make sure level 31 (env) = level 15 (tone)
end if;
else
chan_amp := env_vol(4 downto 0);
end if;
end if;
dac_amp <= x"00";
case chan_amp is
when "11111" => dac_amp <= x"FF";
when "11110" => dac_amp <= x"D9";
when "11101" => dac_amp <= x"BA";
when "11100" => dac_amp <= x"9F";
when "11011" => dac_amp <= x"88";
when "11010" => dac_amp <= x"74";
when "11001" => dac_amp <= x"63";
when "11000" => dac_amp <= x"54";
when "10111" => dac_amp <= x"48";
when "10110" => dac_amp <= x"3D";
when "10101" => dac_amp <= x"34";
when "10100" => dac_amp <= x"2C";
when "10011" => dac_amp <= x"25";
when "10010" => dac_amp <= x"1F";
when "10001" => dac_amp <= x"1A";
when "10000" => dac_amp <= x"16";
when "01111" => dac_amp <= x"13";
when "01110" => dac_amp <= x"10";
when "01101" => dac_amp <= x"0D";
when "01100" => dac_amp <= x"0B";
when "01011" => dac_amp <= x"09";
when "01010" => dac_amp <= x"08";
when "01001" => dac_amp <= x"07";
when "01000" => dac_amp <= x"06";
when "00111" => dac_amp <= x"05";
when "00110" => dac_amp <= x"04";
when "00101" => dac_amp <= x"03";
when "00100" => dac_amp <= x"03";
when "00011" => dac_amp <= x"02";
when "00010" => dac_amp <= x"02";
when "00001" => dac_amp <= x"01";
when "00000" => dac_amp <= x"00";
when others => null;
end case;
if (cnt_div(1 downto 0) = "10") then
audio_mix <= (others => '0');
audio_final <= audio_mix;
else
audio_mix <= audio_mix + ("00" & dac_amp);
end if;
if (RESET_L = '0') then
O_AUDIO(7 downto 0) <= "00000000";
else
if (audio_final(9) = '0') then
O_AUDIO(7 downto 0) <= audio_final(8 downto 1);
else -- clip
O_AUDIO(7 downto 0) <= x"FF";
end if;
end if;
end if;
end process;
p_io_ports : process(reg)
begin
O_IOA <= reg(14);
O_IOA_OE_L <= not reg(7)(6);
O_IOB <= reg(15);
O_IOB_OE_L <= not reg(7)(7);
end process;
p_io_ports_inreg : process
begin
wait until rising_edge(CLK);
ioa_inreg <= I_IOA;
iob_inreg <= I_IOB;
end process;
end architecture RTL;