-
Notifications
You must be signed in to change notification settings - Fork 13
/
simple_metricless.py
293 lines (275 loc) · 12.1 KB
/
simple_metricless.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from multiprocessing import set_start_method
try:
set_start_method('spawn')
except RuntimeError:
pass
import torch
from torch import nn
from torch.autograd import Variable
from torch.optim import Adam, SGD
from torch.multiprocessing import Pool
from torchvision.datasets import MNIST, FashionMNIST
from sklearn.model_selection import train_test_split
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import scipy
from algorithms.exp_norm_mixture_fit import fit as fit_exp_norm
from algorithms.digamma_mixture_fit import fit as fit_digamma
from utils.MNIST import get_dl
from utils.wrapping import wrap, unwrap
from utils.misc import tn
from models.MNIST_1h_flexible import MNIST_1h_flexible
from models.MNIST_1h_flexible_sorted import MNIST_1h_flexible_sorted
from models.MNIST_1h_flexible_scaled import MNIST_1h_flexible_scaled
from models.MNIST_1h_flexible_random import MNIST_1h_flexible_random
from models.MNIST_1h import MNIST_1h
from variance_metric import get_activations, train as simple_train
EPOCHS = 15
def train(models, dl, lamb=0.001, epochs=EPOCHS, l2_penalty=0.01):
criterion = nn.CrossEntropyLoss()
optimizers = []
for model in models:
normal_params = set(model.parameters())
normal_params.remove(model.x_0)
optimizer = Adam([{
'params': normal_params,
'weight_decay': l2_penalty,
}, {
'params': [model.x_0],
'lr': 1,
}])
optimizers.append(optimizer)
gradients = []
sizes = []
losses = []
for e in range(0, epochs):
print("Epoch %s" % e)
gradient = np.zeros(len(models))
los = np.zeros(len(models))
for i, (images, labels) in enumerate(dl):
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
for mid, (model, optimizer) in enumerate(zip(models, optimizers)):
output = model(images)
optimizer.zero_grad()
l = (criterion(output, labels) + lamb * model.loss())
l.backward()
acc = (output.max(1)[1] == labels).float().mean()
# a = tn(model.x_0.grad.data)
# if a != a:
# return images, labels
gradient[mid] += tn(model.x_0.grad.data)
los[mid] += tn(l.data)
# print(tn(acc.data), tn(model.x_0.data), tn(model.x_0.grad.data))
optimizer.step()
if isinstance(model, MNIST_1h_flexible_scaled):
model.reorder()
gradients.append(gradient)
losses.append(los)
sizes.append([tn(m.x_0.data) for m in models])
total_samples = len(dl.dataset)
return np.stack(sizes), -np.stack(gradients) / total_samples, np.stack(losses) / total_samples
def get_accuracy(models, loader):
accs = [0] * len(models)
for images, labels in loader:
images = wrap(Variable(images, volatile=True))
labels = wrap(labels)
for i, model in enumerate(models):
predicted = model(images).data
accs[i] += (predicted.max(1)[1] == labels).float().mean()
return np.array(accs) / len(loader)
def plot_convergence(models, sizes, prefix, suffix):
convergences = np.array([m.x_0.data.cpu().numpy()[0] for m in models])
plt.figure(figsize=(10, 5))
plt.plot(sizes, convergences)
plt.title(prefix +' - Network size after training for different starting sizes')
plt.xlabel('Number of neurons at the beginning')
plt.ylabel('Number of neurons at the end')
plt.tight_layout()
plt.savefig('./plots/%s_1h_simple_flexible_convergence%s.png' % (prefix, suffix))
plt.close()
def plot_accuracies(accuracies, sizes, prefix, suffix):
plt.figure(figsize=(10, 5))
plt.plot(sizes, accuracies)
plt.title(prefix +' - Accuracies for different starting sizes')
plt.xlabel('Number of neurons at the beginning')
plt.ylabel('Accuracy after training')
plt.tight_layout()
plt.savefig('./plots/%s_1h_simple_flexible_accuracies%s.png' % (prefix, suffix))
plt.close()
def plot_frontier(powers, data, best_acc, prefix, suffix):
plt.figure(figsize=(10, 5))
a = plt.gca()
b = a.twinx()
valid = data[:, 0] > 0
data = data[valid, :]
powers = powers[valid]
xes = np.arange(0, len(powers)) + 1
ratios = (data[:, 1] - data[:, 2]) * 100
ratios2 = (data[:, 1] - best_acc) * 100
w = 0.35
a.set_xticks(xes)
a.set_xticklabels(['1e%s' % x for x in powers] , rotation=70)
a.bar(xes - w / 2, ratios, 0.35, label="Loss in accuracy vs flexible of same size", color='C0')
a.bar(xes + w / 2, ratios2, 0.35, label="Loss in accuracy vs best model", color='C1')
a.axhline(y=0, color='k')
a.grid()
b.plot(xes, data[:, 0], label="Neuron used", color='C2')
plt.title(prefix +' - Accuracies for the simple flexible model')
a.set_xlabel('Network size penalty')
a.set_ylabel('Loss in accurcy (%)')
b.set_ylabel('Converged netowrk size')
b.legend(loc="upper right")
a.legend(loc="upper left")
plt.tight_layout()
plt.savefig('./plots/%s_1h_simple_flexible_frontier%s.png' % (prefix, suffix))
plt.close()
def get_data(params):
dl, dl2, w, l2_penalty = params
models = [wrap(MNIST_1h_flexible(500, wrap, k)) for k in [250] for _ in range(7)]
train(models, dl, w, EPOCHS, l2_penalty=l2_penalty)
neurons = np.percentile([m.x_0.data.cpu().numpy()[0] for m in models], 50)
accuracy = np.percentile(get_accuracy(models, dl2), 50)
if neurons > 0:
models2 = [wrap(MNIST_1h(int(neurons))) for _ in range(7)]
simple_train(models2, dl, EPOCHS)
accuracy2 = np.percentile(get_accuracy(models2, dl2), 50)
else:
accuracy2 = 0
res = neurons, accuracy, accuracy2
print(res)
return res
def validate_plateau_hypothesis2(ds):
dl = get_dl(ds, False) # Testing because it is smaller, does not change anything
model = wrap(MNIST_1h_flexible(500, wrap, 250))
train([model], dl, 0, l2_penalty=0)
total_weights = unwrap(torch.abs(model.output_layer.weight).sum(0).data).numpy()
scaler = unwrap(model.get_scaler().data).numpy()
plt.figure(figsize=(10, 5))
plt.title('Proof that the l2 penalty is responsible')
a = plt.gca()
b = a.twinx()
b.plot(total_weights, label='Sum of absolute weights associated', color='C0')
a.plot(scaler, label='Neuron used (Smoothe Indicator function)', color='C1')
a.legend(loc='upper right')
b.legend(loc='lower right')
plt.xlabel('neuron')
a.set_ylabel('Neuron liveness')
b.set_ylabel('Sum of abs. weights')
plt.tight_layout()
plt.savefig('./plots/%s_1h_plateau_explanation_no_pen.png' % (ds.__name__))
plt.close()
def validate_plateau_hypothesis(ds):
dl = get_dl(ds, False) # Testing because it is smaller, does not change anything
model = wrap(MNIST_1h_flexible(500, wrap, 250))
train([model], dl, 0, l2_penalty=0.001)
total_weights = unwrap(torch.abs(model.output_layer.weight).sum(0).data).numpy()
scaler = unwrap(model.get_scaler().data).numpy()
plt.figure(figsize=(10, 5))
plt.title('Proof that the regularization is responsible for the size plateau')
a = plt.gca()
b = a.twinx()
b.plot(total_weights, label='Sum of absolute weights associated', color='C0')
a.plot(scaler, label='Neuron used (Smoothe Indicator function)', color='C1')
a.legend(loc='upper right')
b.legend(loc='lower right')
plt.xlabel('neuron')
a.set_ylabel('Neuron liveness')
b.set_ylabel('Sum of abs. weights')
plt.tight_layout()
plt.savefig('./plots/%s_1h_plateau_explanation.png' % (ds.__name__))
plt.close()
def benchmark_dataset(ds, l2_penalty=0.001, suffix='', test_train=False):
subpool = Pool(40)
dl = get_dl(ds, True)
dl2 = get_dl(ds, test_train)
sizes = np.array(range(0, 500, 25))
models = [wrap(MNIST_1h_flexible(500, wrap, k)) for k in range(0, 500, 25)]
train(models, dl, 1e-5, l2_penalty=l2_penalty)
accuracies = np.array(get_accuracy(models, dl))
plot_accuracies(accuracies, sizes, ds.__name__, suffix)
plot_convergence(models, sizes, ds.__name__, suffix)
powers = -np.arange(2.5, 8, 0.5)
weights = 10**powers
data = np.array([get_data((dl, dl2, x, l2_penalty)) for x in weights.tolist()])
best_model = wrap(MNIST_1h(1000))
simple_train([best_model], dl, EPOCHS)
plot_frontier(powers, data, get_accuracy([best_model], dl2)[0], ds.__name__, suffix)
def plot_convergence_comparison(sizes, gradients, losses, prefix, labels, filename):
sizes = np.insert(sizes, 0, 0, axis=1)
epochs = list(range(1, sizes.shape[1]))
figure = plt.figure(figsize=(10, 15))
plot_sizes = figure.add_subplot(3, 1, 1)
plot_sizes.set_title('Evolution of sizes')
plot_sizes.set_xlabel('Epoch')
plot_sizes.set_ylabel('Size of the network')
for i, label in enumerate(labels):
plot_sizes.plot([0] + epochs, sizes[i], label=label)
plot_sizes.grid()
plot_sizes.legend()
plot_gradients = figure.add_subplot(3, 1, 2)
plot_gradients.set_title('Evolution of gradients')
plot_gradients.set_xlabel('Epoch')
plot_gradients.set_ylabel('Gradient on size')
for i, label in enumerate(labels):
plot_gradients.plot(epochs, gradients[i], label=label)
plot_gradients.grid()
plot_gradients.legend()
plot_gradients.set_yscale('log')
plot_losses = figure.add_subplot(3, 1, 3)
plot_losses.set_title('Evolution of loss')
plot_losses.set_xlabel('Epoch')
plot_losses.set_ylabel('Batch loss')
for i, label in enumerate(labels):
plot_losses.plot(epochs, losses[i], label=label)
plot_losses.grid()
plot_losses.legend()
plot_losses.set_yscale('log')
plt.tight_layout()
plt.savefig('./plots/%s_1h_%s.png' % (prefix, filename))
def compare_convergence(ds):
dl = get_dl(ds)
replicas = 30
r = range(replicas)
simple_models = [MNIST_1h_flexible(500, wrap, 0).cuda() for _ in r]
random_models = [MNIST_1h_flexible_random(500, wrap, 0).cuda() for _ in r]
all_models = simple_models + random_models
result = train(all_models, dl, lamb=0, epochs=EPOCHS * 4, l2_penalty=0)
sizes, gradients, losses = [x.reshape(-1, 2, replicas).mean(axis=2).T for x in result]
labels = ['Deterministic Model', 'Random Model']
plot_convergence_comparison(sizes, gradients, losses, ds.__name__, labels, 'deterministic_random_comparison')
def behavior_on_pretrained(ds):
dl = get_dl(ds)
replicas = 30
r = range(replicas)
pretraining_epochs = 10
evaluation_epochs = EPOCHS * 4
half_trained_models = [MNIST_1h_flexible(500, wrap, 500).cuda() for _ in r]
fully_trained_models = [MNIST_1h_flexible(500, wrap, 500).cuda() for _ in r]
fresh_models = [MNIST_1h_flexible(500, wrap, 0).cuda() for _ in r]
train(fully_trained_models, dl, lamb=0, epochs=pretraining_epochs, l2_penalty=0)
train(half_trained_models, dl, lamb=0, epochs=int(pretraining_epochs / 2), l2_penalty=0)
for m in half_trained_models + fully_trained_models:
m.x_0.data.zero_() # We reset everyone to zero neurons
all_models = fully_trained_models + half_trained_models + fresh_models
result = train(all_models, dl, lamb=0, epochs=evaluation_epochs, l2_penalty=0)
sizes, gradients, losses = [x.reshape(-1, 3, replicas).mean(axis=2).T for x in result]
labels = ['Pretrained %s epochs' % pretraining_epochs,
'Pretrained %s epochs' % int(pretraining_epochs / 2),
'Fresh Model']
plot_convergence_comparison(sizes, gradients, losses, ds.__name__, labels, 'flexible_behavior_on_pretrained')
if __name__ == '__main__':
# benchmark_dataset(MNIST)
# benchmark_dataset(FashionMNIST)
# validate_plateau_hypothesis(MNIST)
# validate_plateau_hypothesis2(MNIST)
# benchmark_dataset(MNIST, 0, '_without_penalty')
# benchmark_dataset(FashionMNIST, 0, '_without_penalty')
# benchmark_dataset(MNIST, 0, '_without_penalty_training', True)
# benchmark_dataset(FashionMNIST, 0, '_without_penalty_training', True)
# compare_convergence(MNIST)
# compare_convergence(FashionMNIST)
behavior_on_pretrained(MNIST)
behavior_on_pretrained(FashionMNIST)
pass