-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot_attention_map.py
271 lines (257 loc) · 15.8 KB
/
plot_attention_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import json
import torch
import random
import argparse
import numpy as np
import yaml
from modules.tokenizers_new import build_my_tokenizer
from modules.dataloaders import PretrainLoader, FinetuneLoaderHaveIndication, FinetuneLoaderNotIndication, \
PretrainInferenceLoader
from modules.metrics.metrics import compute_all_scores
from modules.optimizers import build_optimizer, build_lr_scheduler
from modules.trainer_finetune_iu import PTrainer, FTrainer, PretrainTester, Tester
from modules.utils import PretrainTestAnalysis, SetLogger, setup_seed
from models.model_pretrain_region_knowledge import Pretrain
from models.model_pretrain_region_knowledge_local import LocalPretrain
from models.model_pretrain_region_knowledge_global import GlobalPretrain
from models.model_pretrain_region_knowledge_inference_iu import PretrainInference
from models.model_finetune_region_knowledge_v1121 import FineTune
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
import wandb
os.environ["WANDB_API_KEY"] = 'f1064ce1cf22123c5b34de7bdb0aaca7d5801c95'
os.environ["WANDB_MODE"] = "offline"
# wandb.login(key='f1064ce1cf22123c5b34de7bdb0aaca7d5801c95')
def main():
# -------------------------------
# load hyper-param
# -------------------------------
parse = argparse.ArgumentParser()
# basic configuration
# pretrain: multi-granularity cross-modal alignment
# pretrain_inference: retrieve the historical similar cases for each medical image
# finetune: train text decoder based on historical similar cases
# inference: text generation for test dataset
parse.add_argument('--task', type=str, default='test',
choices=['pretrain', 'pretrain_inference', 'finetune', 'test'])
# data configuration
parse.add_argument('--data_name', type=str, choices=['mimic_cxr', 'iu_xray'], default='mimic_cxr')
parse.add_argument('--mimic_cxr_ann_path', type=str,
default='knowledge_encoder/mimic_cxr_annotation_sen_best_reports_keywords_20_all_components_with_fs_v0227.json')
parse.add_argument('--iu_xray_ann_path', type=str,
default='/home/miao/data/Code/MSC-V1212-ablation-study/knowledge_encoder/iu_xray_annotation_sen_best_reports_keywords_20.json')
parse.add_argument('--text_decoder', type=str, choices=['r2gen', 'bert', 'cmn'], default='r2gen')
parse.add_argument('--visual_encoder', type=str, choices=['resnet101', 'ViT-B-32'], default='resnet101')
parse.add_argument('--tokenizer_model', type=str, choices=['wordlevel', 'wordpiece'], default='wordlevel')
parse.add_argument('--tokenizer_type', type=str, choices=['uncased', 'cased'], default='uncased')
parse.add_argument('--max_seq_len', type=int, default=100)
parse.add_argument('--freeze_image_encoder', action='store_true', help='whether freeze the image encoder')
parse.add_argument('--freeze_text_encoder', action='store_true', help='whether freeze the text encoder')
parse.add_argument('--is_save_checkpoint', action='store_true', help='whether save checkpoint')
# parse.add_argument('--freeze_image_encoder', action='store_true', help='whether freeze the image encoder')
# parse.add_argument('--freeze_text_encoder', action='store_false', help='whether freeze the text encoder')
# specific knowledge configuration
parse.add_argument('--sk_type', type=str, choices=['report', 'keywords'], default='keywords')
parse.add_argument('--sk_topk', type=int, default=5)
parse.add_argument('--is_add_indication', action='store_true', help='whether add indication section')
# parse.add_argument('--is_add_indication', action='store_true', help='whether add indication section')
parse.add_argument('--sk_fusion_strategy', type=str, choices=['mean', 'cat'], default='cat')
parse.add_argument('--sk_fusion_num_layers', type=int, default=1)
parse.add_argument('--sk_file_name', type=str, default='_v0107_')
# trainer configuration
parse.add_argument('--optim', type=str, choices=['AdamW', 'RAdam', "Adam"], default='RAdam',
help='in the first stage, the optimization is AdamW with lr=5.0e-5, '
'and in the second stage, optimizer is RAdam')
parse.add_argument('--lr_scheduler', type=str, choices=['StepLR', 'ReduceLROnPlateau'], default='ReduceLROnPlateau')
parse.add_argument('--lr', type=float, default=5.0e-5) # 5.0e-5
parse.add_argument('--ft_monitor_metric', type=str, default='RCB') # choices={metrics, RC, RB, RCB}
parse.add_argument('--epochs', type=int, default=100)
parse.add_argument('--batch_size', type=int, default=16)
parse.add_argument('--resume', type=str, help='whether to resume the training from existing checkpoints.')
parse.add_argument('--load', type=str, help='whether to load the pre-trained model.')
parse.add_argument('--version', type=str, default='long_sentence', help='the name of experiment')
# sk_type and align_type is the same.
parse.add_argument('--align_type', type=str, choices=['report', 'keywords'], default='keywords')
parse.add_argument('--align_loss', type=str, choices=['local', 'global', 'multi-level'], default='multi-level')
cmd = parse.parse_args()
cmd.config = 'config/finetune_config.yaml'
args = yaml.load(open(cmd.config), Loader=yaml.FullLoader)
cmd = vars(cmd)
args.update(cmd)
args['image_dir'] = args[f'{args["data_name"]}_image_dir']
args['ann_path'] = args[f'{args["data_name"]}_ann_path']
args['text_decoder'] = args['text_decoder'].lower()
args['device'] = 'cuda' if torch.cuda.is_available() else 'cpu'
args['result_dir'] = f'{args["result_dir"]}/{args["data_name"]}/{args["task"]}/{args["version"]}'
os.makedirs(args['result_dir'], exist_ok=True)
logger = SetLogger(f'{args["result_dir"]}/{args["task"]}_{args["text_decoder"]}_{args["sk_topk"]}.log', 'a')
if args['task'] in ['pretrain', 'pretrain_inference']:
args['monitor_mode'] = args['pt_monitor_mode']
args['monitor_metric'] = args['pt_monitor_metric']
args['lr_monitor_metric'] = args['pt_lr_monitor_metric']
else:
args['monitor_mode'] = args['ft_monitor_mode']
args['monitor_metric'] = args['ft_monitor_metric']
args['lr_monitor_metric'] = args['ft_lr_monitor_metric']
# -------------------------------
# init wandb
runner = wandb.init(
project=f'rrg_{args["data_name"]}_{args["task"]}_{args["text_decoder"]}_{args["sk_topk"]}',
config=args,
)
# -------------------------------
# fix random seeds
# -------------------------------
setup_seed(args["seed"])
# -------------------------------
logger.info('start load data...')
# -------------------------------
# create tokenizer
# -------------------------------
print("load tokenizer...")
tokenizer = build_my_tokenizer(tokenizer_dir=args['tokenizer_dir'], model=args['tokenizer_model'],
data_name=args['data_name'], ann_path=args['ann_path'],
tokenizer_type=args['tokenizer_type'], is_same_tokenizer=True)
args['vocab_size'] = tokenizer.get_vocab_size()
args['suppress_UNK'] = tokenizer.token_to_id('[UNK]') # used for the CMN or r2gen text decoder
# -------------------------------
# save the config
params = ''
for key, value in args.items():
params += f'{key}:\t{value}\n'
logger.info(params)
print(params)
# -------------------------------
# create data loader
# -------------------------------
if args['task'] == 'pretrain':
train_dataloader = PretrainLoader(args, tokenizer, split='train', shuffle=False, drop_last=False)
val_dataloader = PretrainLoader(args, tokenizer, split='val', shuffle=False, drop_last=False)
test_dataloader = PretrainLoader(args, tokenizer, split='test', shuffle=False, drop_last=False)
elif args['task'] == 'pretrain_inference':
# mimic_train_loader = PretrainInferenceLoaderMIMICOne(args, split='train', shuffle=False, drop_last=False)
train_dataloader = PretrainInferenceLoader(args, split='train', shuffle=False, drop_last=False)
val_dataloader = PretrainInferenceLoader(args, split='val', shuffle=False, drop_last=False)
test_dataloader = PretrainInferenceLoader(args, split='test', shuffle=False, drop_last=False)
elif args['task'] == 'finetune':
# has similar historical cases and indications
train_loader_inc, val_loader_inc, test_loader_inc = None, None, None
if args['is_add_indication']:
train_loader_inc = FinetuneLoaderHaveIndication(args, tokenizer, split='train', shuffle=False, drop_last=False)
val_loader_inc = FinetuneLoaderHaveIndication(args, tokenizer, split='val', shuffle=False, drop_last=False)
test_loader_inc = FinetuneLoaderHaveIndication(args, tokenizer, split='test', shuffle=False, drop_last=False)
# has similar historical cases and not has indication
train_loader_not_inc = FinetuneLoaderNotIndication(args, tokenizer, split='train', shuffle=False,
drop_last=False)
val_loader_not_inc = FinetuneLoaderNotIndication(args, tokenizer, split='val', shuffle=False,
drop_last=False)
test_loader_not_inc = FinetuneLoaderNotIndication(args, tokenizer, split='test', shuffle=False,
drop_last=False)
else: # test
train_loader_inc, train_loader_not_inc = None, None
val_loader_inc, val_loader_not_inc = None, None
test_loader_inc = None
if args['is_add_indication']:
test_loader_inc = FinetuneLoaderHaveIndication(args, tokenizer, split='test', shuffle=False, drop_last=False)
test_loader_not_inc = FinetuneLoaderNotIndication(args, tokenizer, split='test', shuffle=False,
drop_last=False)
if args['task'] in ['pretrain', 'pretrain_inference']:
print(f"train_data is {len(train_dataloader.dataset) if train_dataloader is not None else 'None'}, "
f"val_data is {len(val_dataloader.dataset) if val_dataloader is not None else 'None'}, "
f"test_data is {len(test_dataloader.dataset)}")
logger.info(f"train_data is {len(train_dataloader.dataset) if train_dataloader is not None else 'None'}, "
f"val_data is {len(val_dataloader.dataset) if val_dataloader is not None else 'None'}, "
f"test_data is {len(test_dataloader.dataset)}")
runner.config.update({
'vocab_size': tokenizer.get_vocab_size(),
'suppress_UNK': args['suppress_UNK'],
'train_len': len(train_dataloader.dataset) if train_dataloader is not None else 'None',
'val_len': len(val_dataloader.dataset) if val_dataloader is not None else "None",
'test_len': len(test_dataloader.dataset)
}, allow_val_change=True)
else:
num_train_inc = len(train_loader_inc.dataset) if train_loader_inc is not None else 'None'
num_train_not_inc = len(train_loader_not_inc.dataset) if train_loader_not_inc is not None else 'None'
num_val_inc = len(val_loader_inc.dataset) if val_loader_inc is not None else 'None'
num_val_not_inc = len(val_loader_not_inc.dataset) if val_loader_not_inc is not None else 'None'
num_test_inc = len(test_loader_inc.dataset) if test_loader_inc is not None else 'None'
num_test_not_inc = len(test_loader_not_inc.dataset) if test_loader_not_inc is not None else 'None'
print(f"the number of train_data (indication-not_indication): {num_train_inc}-{num_train_not_inc}, "
f"valid_data (indication-not_indication): {num_val_inc}-{num_val_not_inc}, "
f"test_data (indication-not_indication): {num_test_inc}-{num_test_not_inc}, ")
logger.info(f"the number of train_data (indication-not_indication): {num_train_inc}-{num_train_not_inc}, "
f"valid_data (indication-not_indication): {num_val_inc}-{num_val_not_inc}, "
f"test_data (indication-not_indication): {num_test_inc}-{num_test_not_inc}, ")
runner.config.update({
'vocab_size': tokenizer.get_vocab_size(),
'suppress_UNK': args['suppress_UNK'],
'train_inc_len': num_train_inc,
'train_not_inc_len': num_train_not_inc,
'val_inc_len': num_val_inc,
'val_not_inc_len': num_val_not_inc,
'test_inc_len': num_test_inc,
'test_not_inc_len': num_test_not_inc,
}, allow_val_change=True)
# -------------------------------
# build model architecture
# -------------------------------
if args['task'] == 'pretrain':
if args['align_loss'] == 'multi-level':
model = Pretrain(args, tokenizer, args['data_name'])
elif args['align_loss'] == 'local':
model = LocalPretrain(args, tokenizer, args['data_name'])
else: # global
model = GlobalPretrain(args, tokenizer, args['data_name'])
elif args['task'] == 'pretrain_inference':
model = PretrainInference(args, data_name=args['data_name'])
else: # finetune or test
model = FineTune(args, tokenizer, args['data_name'])
model = model.to(args['device'])
runner.watch(model, log='all')
# -------------------------------
print(f'finish instantiate model!, Trainable parameters:{str(model).split("Trainable parameters:")[1]}M')
logger.info(f'finish instantiate model!, Trainable parameters:{str(model).split("Trainable parameters:")[1]}M')
# get function handles of loss and metrics
# -------------------------------
metrics = compute_all_scores
# -------------------------------
# build optimizer, learning rate scheduler
# -------------------------------
optimizer = build_optimizer(args, model)
lr_scheduler = build_lr_scheduler(args, optimizer)
# -------------------------------
# build trainer and start to train
logger.info(f'start {args["task"]}!')
print(f'start {args["task"]}!')
# -------------------------------
if args['task'] in ['pretrain', 'pretrain_inference']:
kwarg = {"model": model, "metric_ftns": metrics, "optimizer": optimizer, "args": args,
"lr_scheduler": lr_scheduler, "train_dataloader": train_dataloader, "val_dataloader": val_dataloader,
"test_dataloader": test_dataloader, "logger": logger, "task": args['task'], 'runner': runner,
'is_save_checkpoint': args['is_save_checkpoint']}
else: # finetune or test
kwarg = {"model": model, "metric_ftns": metrics, "optimizer": optimizer, "args": args,
"lr_scheduler": lr_scheduler, "train_loader_inc": train_loader_inc,
"train_loader_not_inc": train_loader_not_inc, "val_loader_inc": val_loader_inc,
"val_loader_not_inc": val_loader_not_inc, "test_loader_inc": test_loader_inc,
"test_loader_not_inc": test_loader_not_inc, "logger": logger, "task": args['task'], 'runner': runner,
'is_save_checkpoint': args['is_save_checkpoint']}
if args['task'] == 'pretrain':
trainer = PTrainer(**kwarg)
trainer.train()
elif args['task'] == 'pretrain_inference':
tester = PretrainTester(**kwarg)
specific_knowledge_data = tester.predict_iu_xray()
save_file_name = args['ann_path'].split('.json')[0] + f'{args["sk_file_name"]}{args["sk_topk"]}.json'
tester.get_specific_knowledge_iu_xray(specific_knowledge_data, save_file_name=save_file_name)
elif args["task"] == 'finetune':
trainer = FTrainer(**kwarg)
trainer.train()
else: # test
trainer = Tester(**kwarg)
trainer.test()
runner.finish()
if __name__ == '__main__':
main()