-
Notifications
You must be signed in to change notification settings - Fork 3
/
example_sample_blending.sh
40 lines (34 loc) · 1.2 KB
/
example_sample_blending.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
export wandb_name="bdm"
export save_dir="./outputs"
export root="absolute-path-to-your-ShapeNetCore.v2.PC15k"
export r2n2_dir="absolute-path-to-your-ShapeNet.R2N2"
export category="chair"
export subset_ratio=0.1
export save_name="bdm-blending_sample_chair_pc2_r2n2_0.1"
export prior_ckpt="path-to-the-pvd-checkpoint-of-chair"
export recon_ckpt="path-to-the-pc2-checkpoint-of-0.1chair"
# bayesian denoising steps
export roll_step=16
# milestones for interaction
export milestones="[1000,968,936,872,128,64,32,0]"
python main_blending.py \
logging.wandb_project=${wandb_name} \
run.job=sample_bdm_blending \
run.save_dir=${save_dir} \
run.num_inference_steps=1000 \
run.diffusion_scheduler=ddpm \
run.name=${save_name} \
dataset=shapenet_r2n2 \
dataset.root=${root} \
dataset.r2n2_dir=${r2n2_dir} \
dataset.image_size=224 \
dataset.category=${category} \
dataset.max_points=4096 \
dataset.subset_ratio=${subset_ratio} \
dataloader.batch_size=16 \
dataloader.num_workers=8 \
checkpoint.resume=${recon_ckpt} \
aux_run.roll_step=${roll_step} \
aux_run.milestones=${milestones} \
aux_run.prior_ckpt=${prior_ckpt} \
aux_run.recon_ckpt=${recon_ckpt}