diff --git a/R/LearnerTorch.R b/R/LearnerTorch.R index ce2248ab..7536fd03 100644 --- a/R/LearnerTorch.R +++ b/R/LearnerTorch.R @@ -21,7 +21,7 @@ #' After loading a marshaled `LearnerTorch` into R again, you then need to call `$unmarshal()` to transform it #' into a useable state. #' -#' @section Early Stopping and Tuning: +#' @section Early Stopping and Internal Tuning: #' In order to prevent overfitting, the `LearnerTorch` class allows to use early stopping via the `patience` #' and `min_delta` parameters, see the `Learner`'s parameters. #' When tuning a `LearnerTorch` it is also possible to combine the explicit tuning via `mlr3tuning` diff --git a/man/mlr_learners.torchvision.Rd b/man/mlr_learners.torchvision.Rd index 29acfb0e..87883dd9 100644 --- a/man/mlr_learners.torchvision.Rd +++ b/man/mlr_learners.torchvision.Rd @@ -90,9 +90,9 @@ Krizhevsky, Alex, Sutskever, Ilya, Hinton, E. G (2017). Sandler, Mark, Howard, Andrew, Zhu, Menglong, Zhmoginov, Andrey, Chen, Liang-Chieh (2018). \dQuote{Mobilenetv2: Inverted residuals and linear bottlenecks.} In \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 4510--4520. -He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian (2016 ). -\dQuote{Deep residual learning for image recognition .} -In \emph{Proceedings of the IEEE conference on computer vision and pattern recognition }, 770--778 . +He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian (2016). +\dQuote{Deep residual learning for image recognition.} +In \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 770--778. Simonyan, Karen, Zisserman, Andrew (2014). \dQuote{Very deep convolutional networks for large-scale image recognition.} \emph{arXiv preprint arXiv:1409.1556}.} diff --git a/man/mlr_learners_torch.Rd b/man/mlr_learners_torch.Rd index ebdfe53d..3c5213a9 100644 --- a/man/mlr_learners_torch.Rd +++ b/man/mlr_learners_torch.Rd @@ -29,7 +29,7 @@ After loading a marshaled \code{LearnerTorch} into R again, you then need to cal into a useable state. } -\section{Early Stopping and Tuning}{ +\section{Early Stopping and Internal Tuning}{ In order to prevent overfitting, the \code{LearnerTorch} class allows to use early stopping via the \code{patience} and \code{min_delta} parameters, see the \code{Learner}'s parameters. diff --git a/man/mlr_learners_torch_image.Rd b/man/mlr_learners_torch_image.Rd index fce0bef7..0797ba25 100644 --- a/man/mlr_learners_torch_image.Rd +++ b/man/mlr_learners_torch_image.Rd @@ -64,7 +64,7 @@ Creates a new instance of this \link[R6:R6Class]{R6} class. optimizer = NULL, loss = NULL, callbacks = list(), - packages = c("torchvision"), + packages = "torchvision", man, properties = NULL, predict_types = NULL