title | abstract | section | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems |
We examine the problem of designing learning-augmented algorithms for metrical task systems (MTS) that exploit machine-learned advice while maintaining rigorous, worst-case guarantees on performance. We propose an algorithm, DART, that achieves this dual objective, providing cost within a multiplicative factor |
Regular Papers |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
christianson23a |
0 |
Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems |
9377 |
9399 |
9377-9399 |
9377 |
false |
Christianson, Nicolas and Shen, Junxuan and Wierman, Adam |
|
2023-04-11 |
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics |
206 |
inproceedings |
|