diff --git a/notebooks/01/production-planning-advanced.ipynb b/notebooks/01/production-planning-advanced.ipynb index 91a06c54..3b846e54 100644 --- a/notebooks/01/production-planning-advanced.ipynb +++ b/notebooks/01/production-planning-advanced.ipynb @@ -64,8 +64,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/01/production-planning-basic.ipynb b/notebooks/01/production-planning-basic.ipynb index 9f8e0252..51181c2a 100644 --- a/notebooks/01/production-planning-basic.ipynb +++ b/notebooks/01/production-planning-basic.ipynb @@ -85,8 +85,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/L1-regression-wine-quality.ipynb b/notebooks/02/L1-regression-wine-quality.ipynb index 201dd8f0..d3ba5c6f 100644 --- a/notebooks/02/L1-regression-wine-quality.ipynb +++ b/notebooks/02/L1-regression-wine-quality.ipynb @@ -50,8 +50,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/bim-dual.ipynb b/notebooks/02/bim-dual.ipynb index 5339cc1f..a17d9bae 100644 --- a/notebooks/02/bim-dual.ipynb +++ b/notebooks/02/bim-dual.ipynb @@ -51,8 +51,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/bim-fractional.ipynb b/notebooks/02/bim-fractional.ipynb index cd64b034..f7d33ea9 100644 --- a/notebooks/02/bim-fractional.ipynb +++ b/notebooks/02/bim-fractional.ipynb @@ -44,8 +44,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/bim-maxmin.ipynb b/notebooks/02/bim-maxmin.ipynb index 88de41e7..6009fe1f 100644 --- a/notebooks/02/bim-maxmin.ipynb +++ b/notebooks/02/bim-maxmin.ipynb @@ -44,8 +44,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/bim-rawmaterialplanning.ipynb b/notebooks/02/bim-rawmaterialplanning.ipynb index 90540d0f..f59f329b 100644 --- a/notebooks/02/bim-rawmaterialplanning.ipynb +++ b/notebooks/02/bim-rawmaterialplanning.ipynb @@ -57,8 +57,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/bim.ipynb b/notebooks/02/bim.ipynb index 377c1f42..aa71729c 100644 --- a/notebooks/02/bim.ipynb +++ b/notebooks/02/bim.ipynb @@ -53,8 +53,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else: \n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/lad-regression.ipynb b/notebooks/02/lad-regression.ipynb index adf83d39..2f9f6d52 100644 --- a/notebooks/02/lad-regression.ipynb +++ b/notebooks/02/lad-regression.ipynb @@ -49,8 +49,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/mad-portfolio-optimization.ipynb b/notebooks/02/mad-portfolio-optimization.ipynb index 58be7e83..6b788d33 100644 --- a/notebooks/02/mad-portfolio-optimization.ipynb +++ b/notebooks/02/mad-portfolio-optimization.ipynb @@ -59,8 +59,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/02/multiproductionfaciliity_worstcase.ipynb b/notebooks/02/multiproductionfaciliity_worstcase.ipynb index 78aa17b1..aacd3022 100644 --- a/notebooks/02/multiproductionfaciliity_worstcase.ipynb +++ b/notebooks/02/multiproductionfaciliity_worstcase.ipynb @@ -52,8 +52,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/bim-perturbed.ipynb b/notebooks/03/bim-perturbed.ipynb index 31d7d823..48e3e9d9 100644 --- a/notebooks/03/bim-perturbed.ipynb +++ b/notebooks/03/bim-perturbed.ipynb @@ -47,8 +47,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/bim-production-revisited.ipynb b/notebooks/03/bim-production-revisited.ipynb index 70cf728d..51d1f4a4 100644 --- a/notebooks/03/bim-production-revisited.ipynb +++ b/notebooks/03/bim-production-revisited.ipynb @@ -52,8 +52,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/cryptarithms.ipynb b/notebooks/03/cryptarithms.ipynb index dff92843..fb78e463 100644 --- a/notebooks/03/cryptarithms.ipynb +++ b/notebooks/03/cryptarithms.ipynb @@ -52,8 +52,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -134,41 +134,60 @@ "\n", "m = pyo.ConcreteModel()\n", "\n", - "m.LETTERS = pyo.Set(initialize=['S', 'E', 'N', 'D', 'M', 'O', 'R', 'Y'])\n", - "m.PAIRS = pyo.Set(initialize=m.LETTERS * m.LETTERS, filter = lambda m, a, b: a < b)\n", + "m.LETTERS = pyo.Set(initialize=[\"S\", \"E\", \"N\", \"D\", \"M\", \"O\", \"R\", \"Y\"])\n", + "m.PAIRS = pyo.Set(initialize=m.LETTERS * m.LETTERS, filter=lambda m, a, b: a < b)\n", "m.n = pyo.Var(m.LETTERS, domain=pyo.Integers, bounds=(0, 9))\n", "\n", + "\n", "@m.Constraint()\n", "def message(m):\n", - " return 1000*m.n['S'] + 100*m.n['E'] + 10*m.n['N'] + m.n['D'] \\\n", - " + 1000*m.n['M'] + 100*m.n['O'] + 10*m.n['R'] + m.n['E'] \\\n", - " == 10000*m.n['M'] + 1000*m.n['O'] + 100*m.n['N'] + 10*m.n['E'] + m.n['Y']\n", + " return (\n", + " 1000 * m.n[\"S\"]\n", + " + 100 * m.n[\"E\"]\n", + " + 10 * m.n[\"N\"]\n", + " + m.n[\"D\"]\n", + " + 1000 * m.n[\"M\"]\n", + " + 100 * m.n[\"O\"]\n", + " + 10 * m.n[\"R\"]\n", + " + m.n[\"E\"]\n", + " == 10000 * m.n[\"M\"]\n", + " + 1000 * m.n[\"O\"]\n", + " + 100 * m.n[\"N\"]\n", + " + 10 * m.n[\"E\"]\n", + " + m.n[\"Y\"]\n", + " )\n", + "\n", "\n", "# leading digit must be non-zero\n", "@m.Constraint()\n", "def leading_digit_nonzero(m):\n", - " return m.n['M'] >= 1\n", + " return m.n[\"M\"] >= 1\n", + "\n", "\n", "# assign a different number to each letter\n", "@m.Disjunction(m.PAIRS)\n", "def unique_assignment(m, a, b):\n", " return [m.n[a] >= m.n[b] + 1, m.n[b] >= m.n[a] + 1]\n", "\n", + "\n", "# assign a \"dummy\" objective to avoid solver errors\n", "@m.Objective()\n", "def dummy_objective(m):\n", - " return m.n['M']\n", + " return m.n[\"M\"]\n", + "\n", "\n", - "pyo.TransformationFactory('gdp.bigm').apply_to(m)\n", + "pyo.TransformationFactory(\"gdp.bigm\").apply_to(m)\n", "SOLVER.solve(m)\n", "\n", + "\n", "def letters2num(s):\n", - " return ' '.join(map(lambda s: f\"{int(m.n[s]())}\", list(s)))\n", + " return \" \".join(map(lambda s: f\"{int(m.n[s]())}\", list(s)))\n", + "\n", "\n", - "print(\" \", letters2num('SEND'))\n", - "print(\" + \", letters2num('MORE'))\n", + "print(\" \", letters2num(\"SEND\"))\n", + "print(\" + \", letters2num(\"MORE\"))\n", "print(\" ----------\")\n", - "print(\"= \", letters2num('MONEY'))" + "print(\"= \", letters2num(\"MONEY\"))" ] }, { diff --git a/notebooks/03/facility-location.ipynb b/notebooks/03/facility-location.ipynb index 3935071d..8f2e3e4c 100644 --- a/notebooks/03/facility-location.ipynb +++ b/notebooks/03/facility-location.ipynb @@ -2,55 +2,53 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "6HJBsbRamSjV" + }, "source": [ - "```{index} single: application; facility location\n", - "```\n", - "```{index} single: solver; cbc\n", - "```\n", + "# Facility location problem\n", + "\n", + "This notebook illustrates Example 20 from Chapter 3 of the textbook Hands-On Mathematical Optimization with Python, Cambridge University Press, 2024.\n", + "\n", + "For details about these models and more information we refer to the book.\n", "\n", - "# Facility location problem" + "Also notice that at the end of Chapter 3 you may find a number of exercises that show that versions of this problem aiming at maximizing the importance of the customers served, when facing constraints that limit the possibility of serving all, leads to even more striking evidence for the importance of selecting the right model: it can offer large factors of speedup in solving the relevant instances!\n" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "ZFJeMMrRmSjY" + }, "source": [ - "## Preamble: Install Pyomo and a solver\n", - "\n", - "This cell selects and verifies a global SOLVER for the notebook.\n", - "\n", - "If run on Google Colab, the cell installs Pyomo and HiGHS, then sets SOLVER to \n", - "use the Highs solver via the appsi module. If run elsewhere, it assumes Pyomo and CBC\n", - "have been previously installed and sets SOLVER to use the CBC solver via the Pyomo \n", - "SolverFactory. It then verifies that SOLVER is available." + "## Preamble: Install Pyomo and a solver" ] }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W4-kKr6smSjZ", + "outputId": "41c6fc95-1358-4e7c-9bdc-0c293ad75e5b" + }, "outputs": [], "source": [ "import sys\n", "\n", "if 'google.colab' in sys.modules:\n", - " !pip install pyomo >/dev/null 2>/dev/null\n", - " !pip install highspy >/dev/null 2>/dev/null\n", - "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", - " \n", - "else:\n", - " from pyomo.environ import SolverFactory\n", - " SOLVER = SolverFactory('cbc')\n", - "\n", - "assert SOLVER.available(), f\"Solver {SOLVER} is not available.\"" + " %pip install pyomo\n", + " %pip install highspy\n", + " !apt-get install -y -qq coinor-cbc" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "JmSjUyeMmSja" + }, "source": [ "## Problem description\n", "\n", @@ -61,7 +59,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "A82bpYdZmSja" + }, "source": [ "## First MILO formulation\n", "\n", @@ -94,8 +94,8 @@ "$$\n", "\\begin{align*}\n", " \\min \\quad & \\sum_{j \\in J} c_j x_j + \\sum_{i \\in I} \\sum_{j \\in J} h_{ij} y_{ij} \\\\\n", - " \\textup{s.t.} \\quad & \\sum_{j \\in J} y_{ij} =1 \\qquad \\forall \\, i \\in I & \\textup{(every customer is served)}\\\\\n", - " & y_{ij} \\leq x_{j} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J & \\textup{(facility built before use)}\\\\\n", + " \\text{s.t.} \\quad & \\sum_{j \\in J} y_{ij} =1 \\qquad \\forall \\, i \\in I & \\text{(every customer is served)}\\\\\n", + " & y_{ij} \\leq x_{j} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J & \\text{(facility built before use)}\\\\\n", " & x_j \\in \\{0,1\\} \\qquad \\forall \\, i\\in I\\\\\n", " & y_{ij} \\in \\{0,1\\} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J.\n", "\\end{align*}\n", @@ -104,7 +104,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "XzvWI3kXmSja" + }, "source": [ "## Second MILO formulation\n", "\n", @@ -121,8 +123,8 @@ "$$\n", "\\begin{align*}\n", " \\min \\quad & \\sum_{j \\in J} c_j x_j + \\sum_{i \\in I} \\sum_{j \\in J} h_{ij} y_{ij} \\\\\n", - " \\textup{s.t.} \\quad & \\sum_{j \\in J} y_{ij} =1 \\qquad \\forall \\, i \\in I & \\textup{(every customer is served)}\\\\\n", - " & \\sum_i y_{ij} \\leq n x_j \\qquad \\forall \\, j \\in J & \\textup{(facility built before use)}\\\\\n", + " \\text{s.t.} \\quad & \\sum_{j \\in J} y_{ij} =1 \\qquad \\forall \\, i \\in I & \\text{(every customer is served)}\\\\\n", + " & \\sum_i y_{ij} \\leq n x_j \\qquad \\forall \\, j \\in J & \\text{(facility built before use)}\\\\\n", " & x_j \\in \\{0,1\\} \\qquad \\forall \\, i\\in I\\\\\n", " & y_{ij} \\in \\{0,1\\} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J.\n", "\\end{align*}\n", @@ -133,14 +135,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "GoWTKCS4mSjb" + }, "source": [ "Instead of defining two separate Pyomo models, we will define a single common model and then add either the strong or weaker formulation of the \"facility built before use\" constraint." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "id": "q92lFGTHUO9-" }, @@ -153,9 +157,205 @@ "import matplotlib.pyplot as plt\n", "from time import perf_counter as pc\n", "from tqdm.notebook import tqdm\n", - "import subprocess\n", + "import subprocess" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W1Hq9OxQmSjb" + }, + "source": [ + "# Solvers and options" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "g8ASWdpwmSjc" + }, + "outputs": [], + "source": [ + "def ListAvailableSolvers():\n", + " shell_command = \"pyomo help --solvers\"\n", + " output = subprocess.check_output(shell_command, shell=True).decode()\n", + " return [\n", + " line.strip()[1:]\n", + " for line in output.split()\n", + " if line.strip().startswith(\"+\") and not line.strip().endswith(\")\")\n", + " ]\n", + "\n", + "\n", + "def GetSolverName(solver):\n", + " try:\n", + " return solver.name\n", + " except:\n", + " return \"appsi_highs\"\n", + "\n", + "\n", + "def SwitchCutsOff(solver):\n", + " solver_name = GetSolverName(solver)\n", + " if \"cbc\" in solver_name:\n", + " solver.options[\"Cuts\"] = \"off\"\n", + " elif \"cplex\" in solver_name:\n", + " solver.options[\"mip_cuts_bqp\"] = -1\n", + " solver.options[\"mip_cuts_cliques\"] = -1\n", + " solver.options[\"mip_cuts_covers\"] = -1\n", + " solver.options[\"mip_cuts_disjunctive\"] = -1\n", + " solver.options[\"mip_cuts_flowcovers\"] = -1\n", + " solver.options[\"mip_cuts_pathcut\"] = -1\n", + " solver.options[\"mip_cuts_gomory\"] = -1\n", + " solver.options[\"mip_cuts_gubcovers\"] = -1\n", + " solver.options[\"mip_cuts_implied\"] = -1\n", + " solver.options[\"mip_cuts_localimplied\"] = -1\n", + " solver.options[\"mip_cuts_liftproj\"] = -1\n", + " solver.options[\"mip_cuts_mircut\"] = -1\n", + " solver.options[\"mip_cuts_mcfcut\"] = -1\n", + " solver.options[\"mip_cuts_rlt\"] = -1\n", + " solver.options[\"mip_cuts_zerohalfcut\"] = -1\n", + " elif \"gurobi\" in solver_name:\n", + " solver.options[\"Cuts\"] = 0\n", + " elif \"highs\" in solver_name:\n", + " pass # there is no way to do this, see\n", + " # https://ergo-code.github.io/HiGHS/dev/options/definitions/\n", + " elif \"xpress\" in solver_name:\n", + " solver.options[\"CUTSTRATEGY\"] = 0\n", + " else:\n", + " pass\n", + " return solver\n", + "\n", + "\n", + "def SwitchPresolveOff(solver):\n", + " solver_name = GetSolverName(solver)\n", + " if \"cbc\" in solver_name:\n", + " solver.options[\"Presolve\"] = \"off\"\n", + " elif \"cplex\" in solver_name:\n", + " solver.options[\"preprocessing_presolve\"] = 0\n", + " elif \"gurobi\" in solver_name:\n", + " solver.options[\"Presolve\"] = 0\n", + " elif \"highs\" in solver_name:\n", + " solver.options[\"presolve\"] = \"off\"\n", + " elif \"xpress\" in solver_name:\n", + " solver.options[\"PRESOLVE\"] = 0\n", + " else:\n", + " pass\n", + " return solver\n", + "\n", "\n", + "def LimitSolveTime(solver, max_in_seconds):\n", + " solver_name = GetSolverName(solver)\n", + " if \"cbc\" in solver_name:\n", + " solver.options[\"seconds\"] = max_in_seconds\n", + " elif \"cplex\" in solver_name:\n", + " solver.options[\"timelimit\"] = max_in_seconds\n", + " elif \"gurobi\" in solver_name:\n", + " solver.options[\"TimeLimit\"] = max_in_seconds\n", + " elif \"highs\" in solver_name:\n", + " solver.options[\"time_limit\"] = max_in_seconds\n", + " elif \"xpress\" in solver_name:\n", + " solver.options[\"MAXTIME\"] = max_in_seconds\n", + " else:\n", + " pass\n", + " return solver\n", + "\n", + "\n", + "def ClosureForMaxTime(max_in_seconds):\n", + " return lambda solver: LimitSolveTime(solver, max_in_seconds)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SA0joA-h2imU" + }, + "outputs": [], + "source": [ + "def compose(*functions):\n", + " def composed(*args, **kwargs):\n", + " result = args[0]\n", + " for func in functions:\n", + " result = func(result)\n", + " return result\n", "\n", + " return composed" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Kb9bxC4mmSjc" + }, + "outputs": [], + "source": [ + "initial_solvers = ListAvailableSolvers()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W4VTa2Bsnlg6", + "outputId": "a6235c0a-196a-416b-b361-85bcfa46e78e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['appsi_cbc',\n", + " 'appsi_highs',\n", + " 'cbc',\n", + " 'gdpopt',\n", + " 'gdpopt.gloa',\n", + " 'gdpopt.lbb',\n", + " 'gdpopt.loa',\n", + " 'gdpopt.ric',\n", + " 'mindtpy',\n", + " 'mindtpy.ecp',\n", + " 'mindtpy.fp',\n", + " 'mindtpy.goa',\n", + " 'mindtpy.oa',\n", + " 'mpec_minlp',\n", + " 'mpec_nlp',\n", + " 'multistart',\n", + " 'scipy.fsolve',\n", + " 'scipy.newton',\n", + " 'scipy.root',\n", + " 'scipy.secant-newton',\n", + " 'trustregion']" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "initial_solvers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eqgDYMxFmSjc" + }, + "source": [ + "# The models" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "A0WRo9_bmSjc" + }, + "outputs": [], + "source": [ "def FacilityLocationCommon(installation, service):\n", " model = pyo.ConcreteModel(\"Facility location\")\n", " model.facilities = pyo.Set(initialize=range(len(installation)))\n", @@ -166,28 +366,27 @@ "\n", " @model.Objective(sense=pyo.minimize)\n", " def obj(model):\n", - " return sum([installation[j] * model.x[j] for j in model.facilities]) + sum(\n", - " [\n", - " service[i][j] * model.y[i, j]\n", - " for i in model.customers\n", - " for j in model.facilities\n", - " ]\n", + " return sum(installation[j] * model.x[j] for j in model.facilities) + sum(\n", + " service[i][j] * model.y[i, j]\n", + " for i in model.customers\n", + " for j in model.facilities\n", " )\n", "\n", " @model.Constraint(model.customers)\n", " def ChooseOneFacility(model, i):\n", - " return sum([model.y[i, j] for j in model.facilities]) == 1\n", + " return sum(model.y[i, j] for j in model.facilities) == 1\n", "\n", " return model\n", "\n", "\n", "def FacilityLocationWeak(installation, service):\n", " model = FacilityLocationCommon(installation, service)\n", + " model.name += \" weak model\"\n", "\n", " @model.Constraint(model.facilities)\n", " def ServeIfOpen(model, j):\n", " return (\n", - " sum([model.y[i, j] for i in model.customers])\n", + " sum(model.y[i, j] for i in model.customers)\n", " <= len(model.customers) * model.x[j]\n", " )\n", "\n", @@ -196,6 +395,7 @@ "\n", "def FacilityLocationStrong(installation, service):\n", " model = FacilityLocationCommon(installation, service)\n", + " model.name += \" strong model\"\n", "\n", " @model.Constraint(model.customers, model.facilities)\n", " def ServeIfOpen(model, i, j):\n", @@ -212,14 +412,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "raacgtZxmSjc" + }, "source": [ "We introduce functions to generate random instances for the problem and to then visualize the optimal solution." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "id": "9upGR6wPUO-A" }, @@ -233,7 +435,7 @@ " xF = np.random.randint(0, 100, nofFacilities)\n", " yF = np.random.randint(0, 100, nofFacilities)\n", "\n", - " installation = np.random.randint(100, 200, nofFacilities)\n", + " installation = np.random.randint(1000, 2000, nofFacilities)\n", "\n", " dist = lambda i, j: ((xC[i] - xF[j]) ** 2 + (yC[i] - yF[j]) ** 2)\n", "\n", @@ -242,38 +444,48 @@ " return installation, service, xC, yC, xF, yF\n", "\n", "\n", - "def ShowFacilityLocation(xC, yC, xF, yF, X=[], Y=[], title=None, model=\"weak\"):\n", + "def ShowFacilityLocation(xC, yC, xF, yF, X=[], Y=[], value=None, title=None, ax=None):\n", + " if ax is None:\n", + " ax = plt.gca()\n", " [\n", - " plt.plot([xC[i], xF[j]], [yC[i], yF[j]], \"g-\")\n", + " ax.plot([xC[i], xF[j]], [yC[i], yF[j]], \"g-\")\n", " for j in range(len(X))\n", " if X[j]\n", " for i in range(len(Y))\n", " if Y[i][j]\n", " ]\n", - " plt.plot(xC, yC, \"o\")\n", - " plt.plot(xF, yF, \"s\")\n", + " ax.plot(xC, yC, \"o\")\n", + " ax.plot(xF, yF, \"s\")\n", " if title:\n", - " plt.title(f\"Optimal value of the {model} formulation: {title}\")\n", - " plt.show()" + " ax.set_title(title)\n", + " elif value:\n", + " ax.set_title(f\"Optimal value: {value}\")" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "jLJ3UjTRmSjd" + }, "source": [ "We then generate an instance of the problem with 10 facilities and 100 customers and initialize both a strong and a weak Pyomo models." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { - "id": "-HYGbBjyUO-C" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "-HYGbBjyUO-C", + "outputId": "4a99fe24-caeb-4362-ef7b-048a9fc51118" }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3kklEQVR4nO3dfXBUVZ7/8U+HhwSUdCQOedCgWdZdzOCIwoJRaq3VuDDjj9XRmSop3GEcS3eYsAPirMrOKkUNiji77gw+sVI16hYiO1b5hLuD5S9xcJgNDwbjyqDIILtkgQ5r2HSjSMT0/f2RXzc0pJN+uA/n3vt+VaVKu2+a0+fe2/3N+Z7vORHLsiwBAAAYpMTrBgAAAJyOAAUAABiHAAUAABiHAAUAABiHAAUAABiHAAUAABiHAAUAABiHAAUAABhnuNcNKEQymdTBgwc1ZswYRSIRr5sDAAByYFmWjh49qtraWpWUDD5G4ssA5eDBg6qrq/O6GQAAoACdnZ06//zzBz3GlwHKmDFjJPW/wfLyco9bAwAAcpFIJFRXV5f+Hh+MLwOUVFqnvLycAAUAAJ/JZXoGk2QBAIBxCFAAAIBx8g5Q3n77bc2ePVu1tbWKRCJ65ZVXMp63LEsPPPCAampqNGrUKDU1NWnPnj0Zxxw5ckRz585VeXm5KioqdPvtt+vTTz8t6o0AAIDgyDtA+eyzz3TppZfqiSeeGPD5Rx55RKtWrdLq1au1detWnXXWWZo5c6aOHz+ePmbu3Ln63e9+pzfffFOvv/663n77bd15552FvwsAABAoEcuyrIJ/ORLRyy+/rBtvvFFS/+hJbW2t7r77bv3oRz+SJMXjcVVVVenZZ5/VLbfcog8++EANDQ3avn27pk6dKknauHGjvvGNb+i///u/VVtbO+S/m0gkFI1GFY/HmSQLAIBP5PP9besclH379ikWi6mpqSn9WDQa1fTp09XW1iZJamtrU0VFRTo4kaSmpiaVlJRo69atdjYHAAD4lK1lxrFYTJJUVVWV8XhVVVX6uVgspnHjxmU2YvhwjR07Nn3M6Xp7e9Xb25v+/0QiYWezAQCAYXxRxbNixQpFo9H0D6vIAgAQbLaOoFRXV0uSurq6VFNTk368q6tLkydPTh9z+PDhjN/78ssvdeTIkfTvn27JkiVavHhx+v9TK9EByENPp3SsO/vzoyulCu4rL/QlLW3bd0SHjx7XuDFlmlY/VsNK2GcM4WZrgFJfX6/q6mq1tLSkA5JEIqGtW7dq/vz5kqTGxkb19PSovb1dU6ZMkSS1trYqmUxq+vTpA75uaWmpSktL7WwqEC49ndLjU6Qve7MfM7xUWtBOkOKyjTsPadmGXToUP1npWBMt09LZDZo1qWaQ3wSCLe8Uz6effqqOjg51dHRI6p8Y29HRof379ysSiWjRokVavny5XnvtNb3//vv6zne+o9ra2nSlz8UXX6xZs2bpjjvu0LZt2/Tb3/5WCxYs0C233JJTBQ+AAhzrHjw4kfqfH2yEBbbbuPOQ5q/dkRGcSFIsflzz1+7Qxp2HPGoZ4L28R1Deeecd/dmf/Vn6/1Opl3nz5unZZ5/VPffco88++0x33nmnenp6NGPGDG3cuFFlZWXp33n++ee1YMECXXvttSopKdHNN9+sVatW2fB2AMAf+pKWlm3YpYHWebAkRSQt27BL1zVUk+5BKBW1DopXWAflJHLXyMnBDunpq4c+7s5NUu1kp1sDSW17uzVnzZYhj3vhjivUOKHShRYVj88jDCWf729f7maMfuSuAf86fPT40AflcZzX+DyC3XxRZowzkbsG/G3cmLKhD8rjOC/xeQQnEKD40FC5a6k/d92X9F32DgiNafVjVRMtU7YESET9IxDT6se62ay8Fft51Je01La3W692HFDb3m4+t5BGiseHtu07csZfKqeyJB2KH9e2fUd8k7sGwmZYSURLZzdo/todikgZX/CpoGXp7Abj53AU83lEWgiDYQTFh4KWu4YLRlf2r3MymOGl/cfBNbMm1eipWy9XdTQzjVMdLdNTt17uiy/pQj+PSAthKIyg+FCQctdwSUVd/yJsrCRrnFmTanRdQ7Vvq18K+TyixBq5IEDxoVTuOhY/PuANHlH/X2Cm567tQFljHirqCECy8Po6GlYS8W06tpDPI9LUyAUBig8FJXddLPLXsAPXUXEK+TwiTY1cMAfFp4KQuy4G+WvYgevIHvl+HpGmRi5YSdbnvB6a9kJf0tKMla1Zh4hTQ8qb770m8H2BwnEd2S/Xz6NU3w+VFqLvg4eVZEPEz7nrQpG/hh24juyX6+cRaWrkghQPfIf8NezAdeStsKepMTRGUOA75K9hB64j7/m9xBrOIkCB71BmDTtwHZkhjGlqr/htziIBCnyH/DXswHWEMPFjOT1zUOBL5K9hB64jhIFfy+kpM4av+W3IEmbiOkJQmVZOT5kxQoP8NezAdYSg8nM5PSkeAAACys/l9AQoAAAElJ/L6QlQAAAIqFQ5fbbZJRH1V/OYWE5PgAIAQEClyuklnRGkmF5OT4ACAECA+bWcnioeALAJ5cowlR+3FSBAAQAb+HGlToSL38rpSfEAQJH8ulInYDJGUACcgVRF7vqSlpZt2DXghoOW+iciLtuwS9c1VNOH8AVT7n8CFAAZSFXkx88rdQKnM+n+J8UDII1URf78vFIncCrT7n8CFACShk5VSP2pir6k7/YXdZSfV+oEUky8/wlQYIS+pKW2vd16teOA2vZ28yXogXxSFTjJzyt1Aikm3v/MQYHnTMp5hhmpisKkVuqcv3aHIlLGX6Cmr9QJpJh4/zOCAk+ZlvMMM1IVhfPrSp1Aion3PyMo8AzlmWZJpSpi8eMDnpOI+r9wSVUMzI8rdQIpJt7/jKDAMybmPMPMz5uKmSK1UucNk89T44RK+gq+YeL9T4ACz5iY8ww7UhVAeJl2/5PigWdMzHmCVAUQZibd/wQo8IyJOc98mbIktN3c3lQsqP2IM3GuzWfKpoIEKPCM38szKY+2B/0YHpxr5IM5KPCUaTnPXFEebQ/6MTw418hXxLIs3y3ZmUgkFI1GFY/HVV5e7nVzYAM/Dfv2JS3NWNmatQIplZrafO81jr8HP/Xb6UzqRziLc42UfL6/SfHACKbkPHNhyu61fh8uN6Uf4TzONQpBigfIkwnl0UEYLjehH+EOzjUKQYAC5Cnf8mi7N0I0cdfRQlBmHh6caxSCFA+Qp3zKo51IwwRluDwIZebIDecahWAEBchTrktCv7kr5kgaJijD5SYurQ1ncK5RCAIUoABDlUdf11DtWBomSMPlfi0zR/4418gXKR6gQIMtCd22t9uxNEzQhstNWlobzgrbufbzMgAmIEABipCtPNrJNIzfV+AdiJ/KzFGcsJxrvy8DYAJSPIADnE7DMFwOmCsIywCYgBEU2I5hTXfSMGEbLgf8YKhlACLqn392XUM19+oQCFBgK4Y1+7mVhgnLcDngF0FZBsAEpHhgG4Y1M5GGAcInKMsAmIARFNiCYc2BkYYBwiVIywB4jQClSMy36BfWYc1czj9pGMBcdn+GB20ZAC8RoBSB+RYnhXFYk/MP+JsT93AQlwHwCnNQCsR8i0xhG9bk/AP+5uQ9zPwzezCCUgDmW5wpTMOanH/A39y4h5l/VjzbR1D6+vp0//33q76+XqNGjdKECRP0k5/8RJZ18lKwLEsPPPCAampqNGrUKDU1NWnPnj12N8Ux+cy3CIswbQbG+Qf8za17ODX/7IbJ56lxQmUgPv/cZHuAsnLlSj311FN6/PHH9cEHH2jlypV65JFH9Nhjj6WPeeSRR7Rq1SqtXr1aW7du1VlnnaWZM2fq+HF/zE8I43yLXIRlWJPzD/gb97A/2J7i+fd//3fdcMMNuv766yVJF154oV544QVt27ZNUv/oyc9+9jP93d/9nW644QZJ0j//8z+rqqpKr7zyim655Ra7m2S7sM23yEcYhjU5/4C/cQ/7g+0jKFdeeaVaWlr00UcfSZLee+89bd68WV//+tclSfv27VMsFlNTU1P6d6LRqKZPn662trYBX7O3t1eJRCLjx0up+RbZvnIj6p8JHoT5FoUI+rAm5x9O60taatvbrVc7Dqhtb7f6kgPNlkChuIf9wfYRlPvuu0+JREITJ07UsGHD1NfXpwcffFBz586VJMViMUlSVVVVxu9VVVWlnzvdihUrtGzZMrubWjDKyMKN8w8nUb7uPO5hf7B9BOWXv/ylnn/+ea1bt047duzQc889p7//+7/Xc889V/BrLlmyRPF4PP3T2dlpY4sLE5b5FhgY5x9OoHzdPdzD5otYp5bX2KCurk733Xefmpub048tX75ca9eu1YcffqiPP/5YEyZM0LvvvqvJkyenj7n66qs1efJk/fznPx/y30gkEopGo4rH4yovL7ez+XljJdlw4/zDLn1JSzNWtmatLkmV6m++9xquMRsNdA9L4r52SD7f37aneI4dO6aSksyBmWHDhimZTEqS6uvrVV1drZaWlnSAkkgktHXrVs2fP9/u5jiOZczDjfMPu4R1uwivnX4Pk2Izh+0ByuzZs/Xggw9q/Pjx+upXv6p3331Xjz76qL73ve9JkiKRiBYtWqTly5froosuUn19ve6//37V1tbqxhtvtLs5AOALlL56L5ViOz2tkEqxkfpxl+0BymOPPab7779fP/jBD3T48GHV1tbqr/7qr/TAAw+kj7nnnnv02Wef6c4771RPT49mzJihjRs3qqyMki4AZnI6nUfpq7dYIdo8ts9BcYNJc1AABJ8bw/6pOShDbRfBHBRntO3t1pw1W4Y87oU7riDFVoR8vr/ZLBAABuFWZU2YtoswESk28xCgAEAWQw37S/3D/nYtpEbpq3dIsZmH3YxhLEp44TUvKmvCsF2EicK0I7tfEKDASJT6wQReDftTvu4+Vpc1DykeGIfVNGEKhv3DhRSbWRhBgRFS6ZxY/HP95F8/oNQvwPyUumPYP3iGuv5IsZlzjxKgwHMDpXOyYTVNf/Nb6o5h/2DJ9foLc4rNpHuUFA88lS2dMxRK/fzHr6k7hv2Dwa/Xn5tM6yNGUOCZwUo4h0LO31/8vkonw/7+5vfrzw0m9hEBStj1dErHurM/P7pSqqhz5J8eqoRzIOT8/SkIG+HlMuxvSu7eK6a+/yBcf04zsY8IUMKsp1N6fIr0ZW/2Y4aXSgvaHQlS8k3TkPP3rzCs0mlS7t4LJr//MFx/xTKxj5iDEmbHugcPTqT+5wcbYSlCvmkacv7+FfRyXdNy924z/f0H/fqzg4l9xAgKPDNUCackjT1rhO7/P19Vdbk5w8XIX5DLdU3M3bvJq/efTzopyNefXUzsI0ZQ4JmhNkeLSHrom5fom5edp8YJlYH8cA+LIG+El0/uPoi8eP8bdx7SjJWtmrNmixau79CcNVs0Y2Vr1pGaIF9/djGxjwhQ4ClKOMMjqOfaxNy9m9x+/4Wmk4J6/dnJtD4ixQPPUcIZHkE81ybm7t3k5vsvNp0UxOvPbib1EQEKjBDmlRvDZqBzbWp5ai5MzN27yc33b0cpLJ81QzOljwhQAHjK5PLUXIR9OXw333/Y02lhwxyUMBtd2b/OyWCGl/YfBzjA9PLUXJmWu3ebW+8/7Om0sIlYllXISuOeSiQSikajisfjKi8v97o5/ubRSrJ+HtKHPfqSlmasbM06ZJ9KDWy+9xrPylNNem0/cPr9p66ZodJJdl8zubYtzOc+V/l8f5PiCbuKOseWss/G70P6sIcXS2s7fe2Zkrv3itPv39R0Gp9pziDFA1cFZUgfxfNLeSrMYlo6jevKOYygwDVhX3ETmfxUnuoXYUkzOF0Km2s/huW68goBClxj4m6Z8I7fylNNF7Y0g1PppHz6MQzXlZdI8cA1lAjiVG4urR30a480gz3y7cegX1deI0CBaygRxOkoTy3eUGkGqT/N0Jf0XcGmqwrpxyBfVyYgxQPXhH3FTQzMjfkEyaSlilEj1PP5iQGP8fO1R5rBHoX0I59pziJAgWtMLRGE99ycT3A6v197pBnsUUg/8pnmLFI8cJVpJYIIrmzzCU7n92uPNIM9Cu1HPtOcwwgKXGfSbplwnhelr4PNJ0ipGDVCT8y9XFf8QaWvrz3SDPYoph/z+UwLSym4HQhQ4Imwr7gZFl6Vvg41n0CSej4/oZJIxPdfDqQZ7FFsP+bymRa2UvBikeIB4AgvS1/DNi+DNIM9nOxHSsHzxwgKANt5vcJmGOdlkDq1hxP96PX94FcEKABs53Xpa1jnZRSSOmVOxJnsTkF7fT/4FQEKANt5nWJhXkZumBPhDq/vB79iDgoA25mQYmFexuCYE+EeE+4HP2IEBQgQU4brTUmxMC9jYMyJcFe+94Mp97HXCFCAgDBpuN6kFAsl7WdiToS78rkfTLqPvUaKBwgAE4frSbGYizkR7svlfjDxPvYSIyiAz5k8XE+KxUzMifDGYPeDyfexVwhQTkHeD35k+nA9KRbzmDJHKIyy3Q+m38deIED5/8j7wa8Yrke+TJojhH7cx2diDorMzN8DuWK4HoVgjpBZuI/PFPoRFPJ+IdPTKR3rzv786Eqpos699tiA4XoUijlC5uA+PlPoAxTyfiHS0yk9PkX6sjf7McNLpQXtvgpSGK5HMZgjZAbu4zOFPsVD3i9EjnUPHpxI/c8PNsJiKIbrAf/jPs4U+hGUMOT9qE4KB4brkRbAVGZYcB+fFPoAJeh5P6qTwoXhegQ1lRkm3Mf9Qp/iSeX9pJN5vhS/5/2oTgJCKMCpTIRL6AMUKZh5v6Gqk6T+6qS+5EBHAADgrdCneFKClvejOskczAECgPwRoJwiSHk/qpPMwBwgACgMKZ6ACkN1Ut5GV/ZPDhzM8NL+42zAHCAAKBwjKAEV9OqkglTU9VcuuFB+yQrF/kZaDvAeAUpAsSphFhV1rpRWMgfIv0jLAWYgxRNgQaxO8gvmAPlTINJyLqcyAacwghJwQatO8gvmAPlPYNJyLqYyAScRoIRAkKqT/II5QPZzel5IoNJyLqUyh8JcHhTDkRTPgQMHdOutt6qyslKjRo3SJZdconfeeSf9vGVZeuCBB1RTU6NRo0apqalJe/bscaIpgCeCvEKxFzbuPKQZK1s1Z80WLVzfoTlrtmjGylZbUy6k5ezlxjlDsNkeoPzv//6vrrrqKo0YMUK/+tWvtGvXLv3DP/yDzjnnnPQxjzzyiFatWqXVq1dr69atOuusszRz5kwdP86Nj+BgDpA93JoXQlrOPoGYywPPRSzLsnWt8/vuu0+//e1v9Zvf/GbA5y3LUm1tre6++2796Ec/kiTF43FVVVXp2Wef1S233DLkv5FIJBSNRhWPx1VeXm5n843HkKn/cM4K15e0NGNla9bUSypVtvnea4ru09S/NVRazo5/K8jcPGfwn3y+v20fQXnttdc0depUffvb39a4ceN02WWXac2aNenn9+3bp1gspqampvRj0WhU06dPV1tb24Cv2dvbq0QikfETRgyZ+lNqDtANk89T44RKPpTzkM+8kGKRlrOHm+cMwWZ7gPLxxx/rqaee0kUXXaQ33nhD8+fP1w9/+EM999xzkqRYLCZJqqqqyvi9qqqq9HOnW7FihaLRaPqnrs77yV9uY8gUYeT2vBDScsVjLg/sYnsVTzKZ1NSpU/XQQw9Jki677DLt3LlTq1ev1rx58wp6zSVLlmjx4sXp/08kEqEKUgJT/gjkyYt5IZTmF4e5PLCL7SMoNTU1amhoyHjs4osv1v79+yVJ1dXVkqSurq6MY7q6utLPna60tFTl5eUZP2HCkCnCKlWunS00iKh/lVe7y7VJyxXOq3OG4LE9QLnqqqu0e/fujMc++ugjXXDBBZKk+vp6VVdXq6WlJf18IpHQ1q1b1djYaHdzAoEhU4QV80L8h3MGu9geoNx1113asmWLHnroIf3+97/XunXr9PTTT6u5uVmSFIlEtGjRIi1fvlyvvfaa3n//fX3nO99RbW2tbrzxRrubEwgMmSLMmBfiP5wz2MH2MmNJev3117VkyRLt2bNH9fX1Wrx4se64447085ZlaenSpXr66afV09OjGTNm6Mknn9Qf/dEf5fT6YSszpvwRoFy7EF73mdf/PsyTz/e3IwGK08IWoEgnq3ikgXcm5q8SAKdiV2aYyNN1UOAMhkwB5IplCRAEbBboI5Q/AhgKyxIgKAhQfIadiQEMJlC7MiPUSPEAQICwLAGCggAFAAKEZQkQFAQoABAgrOSKoCBAAYAAYSVXBAUBCgAEDMsSIAio4gGAAGJZAvgdAQoABBTLEsDPSPEAAADjEKAAAADjEKAAAADjEKAAAADjEKAAAADjEKAAAADjEKAAAADjEKAAAADjEKAAAADjsJIssupLWiyTbRDORyb6w130N9xGgIIBbdx5SMs27NKh+PH0YzXRMi2d3cBGYx7gfGSiP9xFf8MLEcuyLK8bka9EIqFoNKp4PK7y8nKvmxM4G3ce0vy1O3T6hZH6W4ndUN3F+chEf7iL/oad8vn+Zg4KMvQlLS3bsOuMDyNJ6ceWbdilvqR/4tq+pKW2vd16teOA2vZ2+67tQTsfxaA/TnLjuqa/4SVSPMiwbd+RjGHc01mSDsWPa9u+I77YJdXvQ9NBOx/Foj/6uXVd09/wEiMoyHD4aPYPo0KO81JqaPr0D9hY/Ljmr92hjTsPedSy3AXpfNiB/nD3uqa/4SUCFGQYN6bM1uO8EpSh6aCcD7uEvT/cvq7D3t/wFgEKMkyrH6uaaJmyFQ9G1D+UPK1+rJvNyls+Q9MmC8r5sEvY+8Pt6zrs/Q1vEaAgw7CSiJbObpCkMz6UUv+/dHaD8esfBGVoOijnwy5h7w+3r+uw9ze8RYCCM8yaVKOnbr1c1dHMYdvqaJlvSgqDNDQdhPNhpzD3hxfXdZj7G95iHZQiBXl1RT+/t76kpRkrWxWLHx8wXx9R/wfs5nuv8dV78uv5cILX/eHkv5/ttb28rr3sb6/PNeyTz/c3AUoR/F7CGnSpagdJGR/mLDCFYjl57w/12mG7rvmcDRYCFBewuqI/8OEGuzl57+f62mG5rvmcDR4CFIelhlmzzaYvdJiVYUxn0K/IqqdTOtad/fnRlVJFXfp/nbr3C3ntoF/XTvY1vJPP9zcryRbAidUVw/IXkReGlURY5RJn6umUHp8ifdmb/ZjhpdKC9nSQ4uTKqvm+dtCva1axBVU8BbC71C8IK54CvnOse/DgROp//pQRFifLfINSGm8X+gMEKAWws9QvKCueAmHgZJlvkErj7UB/gAClAHaurhiUFU8BO5m6A7WTK6uyamsm+gMEKAWwc3VFhjGBTBt3HtKMla2as2aLFq7v0Jw1WzRjZasRqU4nV1Zl1dZM9AcIUApk1+qKDGMCJ/lhPpaTK6uyamsm+iPcKDMuUrGlfkFc8RQohOtlpQc7pKevHvq4OzdJtZPPeNiLlWTDiv4IDsqMXVRsqV9qGHP+2h2KaOCVIRnGRBj4razUyTLfoJcQ54v+CCdSPAZgGBPwYD7W6Mr+dU4GM7y0/zgArmMExRCzJtXouoZqhjERWq7Px6qo61+ELY+VZAG4hwDFIAxjIsxSZaVDzceytay0oo4ABDAUKR4ARqCsFMCpCFAAGIP5WABSSPEAMArzsQBIBCgADMR8LACkeAAAgHEYQQEAH2A11WDivGZHgAIAhtu485CWbdiVsdJuTbRMS2c3MHHYxzivgyPFAwAG88MGisgf53VoBCgAYKi+pKVlG3YNuHBd6rFlG3apL+m7PV9DjfOaGwIUADBUPhsowj84r7khQAEAQ7m+gSJcwXnNDQEKABjK9Q0U4QrOa24IUFzQl7TUtrdbr3YcUNve7tDnFQHkJrWBYrai04j6qz5s3UARjuO85sbxAOXhhx9WJBLRokWL0o8dP35czc3Nqqys1Nlnn62bb75ZXV1dTjfFExt3HtKMla2as2aLFq7v0Jw1WzRjZSsztAEMiQ0Ug4nzmhtHA5Tt27frn/7pn/S1r30t4/G77rpLGzZs0IsvvqhNmzbp4MGDuummm5xsiicoIwNQLDZQDCbO69AilmU5km/49NNPdfnll+vJJ5/U8uXLNXnyZP3sZz9TPB7XV77yFa1bt07f+ta3JEkffvihLr74YrW1temKK64Y8rUTiYSi0aji8bjKy8udaH7R+pKWZqxszTpTO6L+C3HzvdeEPkoGMDRWHA2msJ3XfL6/HVtJtrm5Wddff72ampq0fPny9OPt7e06ceKEmpqa0o9NnDhR48ePzxqg9Pb2qre3N/3/iUTCqWbbJp8yMjZFQ1CE7cPWTWygGEyc1+wcCVDWr1+vHTt2aPv27Wc8F4vFNHLkSFVUVGQ8XlVVpVgsNuDrrVixQsuWLXOiqY6hjAxhw7LdAOxk+xyUzs5OLVy4UM8//7zKyuwpkVqyZIni8Xj6p7Oz05bXdRJlZAgT5lsBsJvtIyjt7e06fPiwLr/88vRjfX19evvtt/X444/rjTfe0BdffKGenp6MUZSuri5VV1cP+JqlpaUqLS21u6mOSpWRxeLHB1zOODUHJexlZPC/bMt21+oTnRM5qoikF149oOvO+RMNi5yS7hldKVXUudlUAD5ie4By7bXX6v3338947LbbbtPEiRN17733qq6uTiNGjFBLS4tuvvlmSdLu3bu1f/9+NTY22t0cz6TKyOav3aGIlPHhTRkZgmSg+Va1+kStpXerLHKi/4ETktac9ovDS6UF7QQpAAZke4AyZswYTZo0KeOxs846S5WVlenHb7/9di1evFhjx45VeXm5/vqv/1qNjY05VfD4SaqM7PS8fDV5eQTIQPOozokcPRmcZPNlr3SsmwAFwIAcq+IZzD/+4z+qpKREN998s3p7ezVz5kw9+eSTXjTFcbMm1ei6hmoqGxBYzKMC4ATH1kFxkh/WQQHCIrXmz6nzrb4a2ad/Lf3x0L985yapdrKTzXPMQCXVkvhjBBiEEeugAAiHweZbBdVAJdUVo0dIknqOnUxtUWYNFI7NAgEULduy3UGUraS659iJjOBEoswaKAYjKJLU09k/WS8byiGBIZ0636q3c6T0a69bZL9sJdXZWOqv2lu2YZeua6g2It3Dar/wCwKUnk7p8Sn9FQXZUA4J5CS9bPeorwQyQBlqC4uBmLStBav9wk9I8RzrHjw4kU6WQwLIzejK/sB+MMNL+4/zkWK2pvB6WwtW+4XfMIKCojBcjAFV1PWPOgYsdVpMSbWX5diDpaZMTEMBEgEKisBwMQZVUee7AGQoQ21hMRATtrVgd3X4ESkeFIThYoRRqqRaOrllxWBM2daC3dXhRwQoyNtQw8VS/3BxXzIMK2IgbLKVVJ8zekR6LZSU6miZnrr1cs9HFNldHX5Eigd5Y7gYYZdtCwvJzJVk2V0dfkSAgrwxXAycUlJ9GhODcnZXhx+R4gloOaSTGC4G/CdbasqUNBRwOkZQAloO6SSGiwF/MnF3dZYqQDYEKFIgyyGdxHAx4F/ZUlNeYKkCDIYUDwrCcDGAYrBUAYbCCAoKZuJwMQDzsbItckGAgqKYNFwMwB9YqgC5IMUDAHAVSxUgFwQoAABXsVQBckGAAgBwVWqpgmyzSyLqr+ZhqYJwI0ABALhqsE0XWaoAKQQoAADXsVQBhkIVDwDAEyxVgMEQoAAAPMNSBciGFA8AADAOAQoAADAOAQoAADAOAQoAADAOAQoAADAOVTwA4LG+pEWpLXAaAhQA8NDGnYe0bMOujN19a6JlWjq7gcXKEGqkeADAIxt3HtL8tTsyghNJisWPa/7aHdq485BHLQO8R4ACAB7oS1patmGXrAGeSz22bMMu9SUHOgIIPgIUAPDAtn1Hzhg5OZUl6VD8uLbtO+JeoxBofUlLbXu79WrHAbXt7TY++GUOCgB44PDR7MFJIccBg/HjXCdGUADAA+PGlA19UB7HAdn4da4TAQps57dhRMAL0+rHqiZapmzFxBH1/4U7rX6sm81CwPh5rhMpHtjKj8OIgBeGlUS0dHaD5q/doYiU8QWSClqWzm5gPRQUJZ+5TqbtKs0ICmzj12FEwCuzJtXoqVsvV3U0M41THS3TU7deTlCPovl5rhMjKLDFUMOIEfUPI17XUM1fhMApZk2q0XUN1awkC0f4ea4TAQps4edhRMBrw0oi3BdwRGquUyx+fMA/ICPqH7Ezca4TKR7Yws/DiAAQVKm5TpLOmJBt+lwnAhTYws/DiAAQZH6d60SKB7bw8zAi7MOuvICZ/DjXiQAFtqBkEpSYA2bz21wnUjywjV+HEVE8SswB2I0RFNjKj8OIKA4l5gCcQIAC2/ltGBHFocQcgBNI8QAoCiXmAJxAgAKgKJSYA3ACKR5AlMcWgxJzAE4gQEHoUR5bHErMATiBFA9CjfJYe1BiDsBujKC4gPSBmbwsjw3iNUGJOQA7EaA4jPSBubwqjw3yNUGJOQC7kOJxEOkDs3lRHss1AQC5IUBxyFDpA6k/fdCXHOgIuMHt8liuCQDIHQGKQ/JJH8AbqfLYbDMkIupPvdhVHpvvNdGXtNS2t1uvdhxQ295uApcc0GdAcNg+B2XFihV66aWX9OGHH2rUqFG68sortXLlSv3xH/9x+pjjx4/r7rvv1vr169Xb26uZM2fqySefVFVVld3N8Qyra5rP7fLYfK6JIM9TcQp9BgSL7SMomzZtUnNzs7Zs2aI333xTJ06c0J//+Z/rs88+Sx9z1113acOGDXrxxRe1adMmHTx4UDfddJPdTfEUq2v6g5vlsbme6//85BjzVPLE3B4geCKWZTk6Bvo///M/GjdunDZt2qQ//dM/VTwe11e+8hWtW7dO3/rWtyRJH374oS6++GK1tbXpiiuuGPI1E4mEotGo4vG4ysvLnWx+wfqSlmasbB1ydc3N915DGaYBCi37zef3crkmqspLJUUUSww82sJ1c6ZUv2ZLn9FngDny+f52fA5KPB6XJI0d25/Hb29v14kTJ9TU1JQ+ZuLEiRo/frza2toGfI3e3l4lEomMH9Ol0geSzpjjwOqa5kmVx94w+Tw1TqjM6bxs3HlIM1a2as6aLVq4vkNz1mzRjJWtWf9az+WamDNtfNbgRGLu0kCY7wUEk6MBSjKZ1KJFi3TVVVdp0qRJkqRYLKaRI0eqoqIi49iqqirFYrEBX2fFihWKRqPpn7q6OiebbRtW1wyuQlMKQ10TF557Vk7/PnOXTmK+FxBMji7U1tzcrJ07d2rz5s1Fvc6SJUu0ePHi9P8nEglfBSmsrhksxa5AO9g10ba3O6c2MHfpJOZ7AcHkWICyYMECvf7663r77bd1/vnnpx+vrq7WF198oZ6enoxRlK6uLlVXVw/4WqWlpSotLXWqqY5jdc1gsWMF2mzXBDsD548+A4LJ9hSPZVlasGCBXn75ZbW2tqq+vj7j+SlTpmjEiBFqaWlJP7Z7927t379fjY2NdjcHsJ2TKQXmLuWPPgOCyfYApbm5WWvXrtW6des0ZswYxWIxxWIxff7555KkaDSq22+/XYsXL9Zbb72l9vZ23XbbbWpsbMypggfwmtMpBeYu5Y8+A4LH9jLjSGTgv1KeeeYZffe735V0cqG2F154IWOhtmwpntP5oczYKabtgmtae9zgVgl5GPu2WPQZYLZ8vr8dXwfFCWENUExbKdO09rgpVcUjDbwCLX+1A8CZjFoHBfYwbaVM09rjNlIKAOAsRlB8wLSVMk1rj5dIKQBA7vL5/nZ0HRTYw46y1iC3x0umlZATMAEICgIUHzBtpUzT2oN+YZ4TBCB4mIPiA6atlGlae8CcIADBQ4DiA6mVMrMN1EfU/5eyWytlmtYe0/UlLbXt7darHQfUtrdbfUl7p30NtfS+1L/0vt3/LgA4iRSPD6RWypy/dociGris1c2VMk1rj8ncSLswJwhAEDGC4hOmlbWa1h4TuZV2YU4QgCBiBMVOPZ3SsUF2ox1dKVUUvguzaTsjm9YekxS743E+mBMEYCB+r+ojQLFLT6f0+BTpy97sxwwvlRa0FxWkmFbWalp7TOFm2oXdfAGcLghVfaR47HKse/DgROp/frARFgSGm2kXdvMFcKqgVPURoAAOcDvtwpwgAFKwqvpI8QAO8CLtwpwgIDyyzS8JUlUfAQrgAK9KsZkTBATfYPNLer9M5vQafqjqI8UDOIS0CwC7DTW/5D8/+Syn1/FDVR8jKICDSLsA3vF7me3pclm+4IVt+1VdXqauhP+r+ghQAIeRdgHcF4Qy29PlMr8klujVXU1/pJ/93498v9I3KR67jK7sX+dkMMNL+48DADgmKGW2p8t13siF544ORHqZERS7VNT1L8Lm4EqyAIDBubmKs9vyWb6gcUKl79PLBCh2qqgjAAkQ0/LXTrbHtPcKFCpIZbany3f5Ar+nlwlQgAGYlr92sj2mvVegGEHePDNsO8kzBwU4jWn5ayfbY9p7BYoV9M0zw7R8ASMowClMy1872R7T3itgh6JWcXZ4R3q7hGX5AgIU4BSm5a+dbI9p7xWwQ8FpEJd2pLeL3+eX5IIUD3AK0/LXTrbHtPcK2KWgNAg70huHERTgFKblr51sj2nvFbBTWNIgQUaAApzCiV2IiynhdXJXZC92XAbcFIY0SJCR4gFOkcpfSyfz1SmFlPFt3HlIM1a2as6aLVq4vkNz1mzRjJWtOVfH2N0et14bAIpFgAKcxq4yPrtKeJ0sKwxTySIAf4lYljXQ6K7REomEotGo4vG4ysvLvW4OAqqY1Exf0tKMla1Zq2RS6ZPN916T12uykizgkIMd0tNXD33cnZuk2slOtyaw8vn+Zg4KkEUx+WsnSnidzKeTqwdgGlI8gAMo4QV8hh3pjcMICuAASngN5JNVQuERdqQ3DgEK4ABKeA3js1VC4RF2pDcKKR7AAZTwGoZVQgHfIUABHEIJLwAUjhQP4CCW2wbcQ7l8sBCgAA6jhBdw3sadh7Rsw66M8v6aaJmWzm5gtNKnSPEAAHzNrlWbYRZGUAAEBkP84dOXtLRsw64Bq+Us9U9KX7Zhl65rqHb0WuDasx8BCoBAGHSIn2ruwHJi1eZ8kV5yBikeAL431BD/r/+7j1VCA8rrVZtJLzmHERQAvpbLEP+Slh5tbn5Hwz4/kv2FWCXUl7xctdmU9FJQEaAA8LWch/iPnKXGCePdaxhcUeyqzcXMHTEhvRRkBCgAfM3rIX54K7Vq8/y1OxSRMoKUoVZtLnbuCNees5iDAsDX2JgRhazabMfcEa49ZzGCAsDX2JgRUn6rNts1d4Rrz1mMoADwNTZmREpq1eYbJp+nxgmVWc95PnNHhvr3uPacQ4ACwPfYmBH5sHPuCNeec0jxAAgENmZEruyeO8K15wwCFACBwcaMyIUTc0e49uxHigcAECrMHfEHAhQAQOgwd8R8pHgAAKHE3BGzEaAAAEKLuSPmIsUDAACMwwiKAwrdfKqYTasAAAgSTwOUJ554Qj/96U8Vi8V06aWX6rHHHtO0adO8bFLRCt18qthNqwAACBLPUjz/8i//osWLF2vp0qXasWOHLr30Us2cOVOHDx/2qklFK3TzKTs2rQIAIEg8C1AeffRR3XHHHbrtttvU0NCg1atXa/To0frFL37hVZOKMtTmU1L/5lN9ycwjCv09AACCzJMA5YsvvlB7e7uamppONqSkRE1NTWprazvj+N7eXiUSiYwf0xS6+ZRdm1YBABAkngQon3zyifr6+lRVVZXxeFVVlWKx2BnHr1ixQtFoNP1TV1fnVlNzVujmU3ZuWgUAQFD4osx4yZIlisfj6Z/Ozk6vm3SGQjefsnvTKgAAgsCTKp5zzz1Xw4YNU1dXV8bjXV1dqq6uPuP40tJSlZaWutW8ghS6+ZQTm1YBAOB3noygjBw5UlOmTFFLS0v6sWQyqZaWFjU2NnrRpKIVuvkUm1YBAHAmz1I8ixcv1po1a/Tcc8/pgw8+0Pz58/XZZ5/ptttu86pJRSt08yk2rQIAIFPEsizP6lcff/zx9EJtkydP1qpVqzR9+vQhfy+RSCgajSoej6u8vNyFluaHlWQBADhTPt/fngYohTI9QAEAAGfK5/vbF1U8AAAgXAhQAACAcQhQAACAcQhQAACAcQhQAACAcQhQAACAcQhQAACAcQhQAACAcQhQAACAcTzZzbhYqcVvE4mExy0BAAC5Sn1v57KIvS8DlKNHj0qS6urqPG4JAADI19GjRxWNRgc9xpd78SSTSR08eFBjxoxRJGLvZnqJREJ1dXXq7Oxknx+H0dfuoa/dQ1+7h752j119bVmWjh49qtraWpWUDD7LxJcjKCUlJTr//PMd/TfKy8u54F1CX7uHvnYPfe0e+to9dvT1UCMnKUySBQAAxiFAAQAAxiFAOU1paamWLl2q0tJSr5sSePS1e+hr99DX7qGv3eNFX/tykiwAAAg2RlAAAIBxCFAAAIBxCFAAAIBxCFAAAIBxCFBO8cQTT+jCCy9UWVmZpk+frm3btnndJN9bsWKF/uRP/kRjxozRuHHjdOONN2r37t0Zxxw/flzNzc2qrKzU2WefrZtvvlldXV0etTg4Hn74YUUiES1atCj9GH1tnwMHDujWW29VZWWlRo0apUsuuUTvvPNO+nnLsvTAAw+opqZGo0aNUlNTk/bs2eNhi/2pr69P999/v+rr6zVq1ChNmDBBP/nJTzL2cqGvC/P2229r9uzZqq2tVSQS0SuvvJLxfC79euTIEc2dO1fl5eWqqKjQ7bffrk8//dSeBlqwLMuy1q9fb40cOdL6xS9+Yf3ud7+z7rjjDquiosLq6uryumm+NnPmTOuZZ56xdu7caXV0dFjf+MY3rPHjx1uffvpp+pjvf//7Vl1dndXS0mK988471hVXXGFdeeWVHrba/7Zt22ZdeOGF1te+9jVr4cKF6cfpa3scOXLEuuCCC6zvfve71tatW62PP/7YeuONN6zf//736WMefvhhKxqNWq+88or13nvvWX/xF39h1dfXW59//rmHLfefBx980KqsrLRef/11a9++fdaLL75onX322dbPf/7z9DH0dWH+7d/+zfrxj39svfTSS5Yk6+WXX854Ppd+nTVrlnXppZdaW7ZssX7zm99Yf/iHf2jNmTPHlvYRoPx/06ZNs5qbm9P/39fXZ9XW1lorVqzwsFXBc/jwYUuStWnTJsuyLKunp8caMWKE9eKLL6aP+eCDDyxJVltbm1fN9LWjR49aF110kfXmm29aV199dTpAoa/tc++991ozZszI+nwymbSqq6utn/70p+nHenp6rNLSUuuFF15wo4mBcf3111vf+973Mh676aabrLlz51qWRV/b5fQAJZd+3bVrlyXJ2r59e/qYX/3qV1YkErEOHDhQdJtI8Uj64osv1N7erqampvRjJSUlampqUltbm4ctC554PC5JGjt2rCSpvb1dJ06cyOj7iRMnavz48fR9gZqbm3X99ddn9KlEX9vptdde09SpU/Xtb39b48aN02WXXaY1a9akn9+3b59isVhGX0ejUU2fPp2+ztOVV16plpYWffTRR5Kk9957T5s3b9bXv/51SfS1U3Lp17a2NlVUVGjq1KnpY5qamlRSUqKtW7cW3QZfbhZot08++UR9fX2qqqrKeLyqqkoffvihR60KnmQyqUWLFumqq67SpEmTJEmxWEwjR45URUVFxrFVVVWKxWIetNLf1q9frx07dmj79u1nPEdf2+fjjz/WU089pcWLF+tv//ZvtX37dv3whz/UyJEjNW/evHR/DvSZQl/n57777lMikdDEiRM1bNgw9fX16cEHH9TcuXMlib52SC79GovFNG7cuIznhw8frrFjx9rS9wQocE1zc7N27typzZs3e92UQOrs7NTChQv15ptvqqyszOvmBFoymdTUqVP10EMPSZIuu+wy7dy5U6tXr9a8efM8bl2w/PKXv9Tzzz+vdevW6atf/ao6Ojq0aNEi1dbW0tcBR4pH0rnnnqthw4adUc3Q1dWl6upqj1oVLAsWLNDrr7+ut956S+eff3768erqan3xxRfq6enJOJ6+z197e7sOHz6syy+/XMOHD9fw4cO1adMmrVq1SsOHD1dVVRV9bZOamho1NDRkPHbxxRdr//79kpTuTz5Tivc3f/M3uu+++3TLLbfokksu0V/+5V/qrrvu0ooVKyTR107JpV+rq6t1+PDhjOe//PJLHTlyxJa+J0CRNHLkSE2ZMkUtLS3px5LJpFpaWtTY2Ohhy/zPsiwtWLBAL7/8slpbW1VfX5/x/JQpUzRixIiMvt+9e7f2799P3+fp2muv1fvvv6+Ojo70z9SpUzV37tz0f9PX9rjqqqvOKJf/6KOPdMEFF0iS6uvrVV1dndHXiURCW7dupa/zdOzYMZWUZH5VDRs2TMlkUhJ97ZRc+rWxsVE9PT1qb29PH9Pa2qpkMqnp06cX34iip9kGxPr1663S0lLr2WeftXbt2mXdeeedVkVFhRWLxbxumq/Nnz/fikaj1q9//Wvr0KFD6Z9jx46lj/n+979vjR8/3mptbbXeeecdq7Gx0WpsbPSw1cFxahWPZdHXdtm2bZs1fPhw68EHH7T27NljPf/889bo0aOttWvXpo95+OGHrYqKCuvVV1+1/uM//sO64YYbKH0twLx586zzzjsvXWb80ksvWeeee651zz33pI+hrwtz9OhR691337XeffddS5L16KOPWu+++671X//1X5Zl5davs2bNsi677DJr69at1ubNm62LLrqIMmMnPPbYY9b48eOtkSNHWtOmTbO2bNnidZN8T9KAP88880z6mM8//9z6wQ9+YJ1zzjnW6NGjrW9+85vWoUOHvGt0gJweoNDX9tmwYYM1adIkq7S01Jo4caL19NNPZzyfTCat+++/36qqqrJKS0uta6+91tq9e7dHrfWvRCJhLVy40Bo/frxVVlZm/cEf/IH14x//2Ort7U0fQ18X5q233hrw83nevHmWZeXWr93d3dacOXOss88+2yovL7duu+026+jRo7a0L2JZpyzHBwAAYADmoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOMQoAAAAOP8PzuYtnxd4JKBAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKlUlEQVR4nO3de3hV1Z038O9JQgJBckLikAsGTB3n5aaioJjCaAfjQHUUlKfvwIuVOj5QESwXW5Vp1Xa8ROzUOl5GKq2XqSKtzyPepqWPAy0WJ4AG44hYtIiSAicMiTkHiATIWe8fx3PIOTmXvffZl7X2+n6eh+fRZHOy99pr7Sx+v/VbOyCEECAiIiKSSIHXJ0BERESUihMUIiIikg4nKERERCQdTlCIiIhIOpygEBERkXQ4QSEiIiLpcIJCRERE0uEEhYiIiKRT5PUJWBGNRrF//34MGTIEgUDA69MhIiIiA4QQOHz4MGpra1FQkD1GouQEZf/+/airq/P6NIiIiMiCtrY2nHHGGVmPUXKCMmTIEACxCywrK/P4bIiIiMiISCSCurq6xO/xbJScoMTTOmVlZZygEBERKcbI8gwukiUiIiLpcIJCRERE0uEEhYiIiKTDCQoRERFJhxMUIiIikg4nKERERCQd0xOUN998E1dddRVqa2sRCATw8ssvJ31fCIG77roLNTU1GDRoEBobG/Hxxx8nHdPZ2Ym5c+eirKwM5eXluPHGG3HkyJG8LoSIiIj8w/QE5ejRozjvvPPw+OOPp/3+gw8+iEceeQSrVq3C1q1bMXjwYEybNg3Hjh1LHDN37lx88MEHeOONN/D666/jzTffxIIFC6xfBREREflKQAghLP/lQADr1q3DzJkzAcSiJ7W1tbj11lvx3e9+FwAQDodRVVWFZ555BrNnz8aHH36IMWPG4O2338bEiRMBAOvXr8cVV1yBv/zlL6itrc35cyORCILBIMLhMDdqI/JQb1Rg255OHDx8DMOGDMRF9RUoLHDm/Vhu/ixyD++rXsz8/rZ1J9k9e/YgFAqhsbEx8bVgMIhJkyahubkZs2fPRnNzM8rLyxOTEwBobGxEQUEBtm7dimuuuabf5/b09KCnpyfx/5FIxM7TJiIL1u84gB+9thMHwqeiozXBgbj7qjGYPq5G2Z9F7uF9pWxsXSQbCoUAAFVVVUlfr6qqSnwvFAph2LBhSd8vKipCRUVF4phUTU1NCAaDiT98USCRt9bvOICFz21P+sUCAKHwMSx8bjvW7zig5M8i9/C+Ui5KVPGsWLEC4XA48aetrc3rUyLSVm9U4Eev7US63HD8az96bSd6o5azx578LHIP7ysZYesEpbq6GgDQ3t6e9PX29vbE96qrq3Hw4MGk7588eRKdnZ2JY1KVlJQkXgzo5xcE9kYFmnd34JXWfWje3cHBSVLatqez3796+xIADoSPYdueTqV+FrlH9vvKZ7EcbF2DUl9fj+rqamzYsAHjx48HEFsvsnXrVixcuBAA0NDQgK6uLrS0tGDChAkAgI0bNyIajWLSpEl2no5SmIslVRw8nPkXi5XjZPlZ5B6Z7yufxfIwHUE5cuQIWltb0draCiC2MLa1tRV79+5FIBDA0qVLce+99+LVV1/F+++/j+uvvx61tbWJSp/Ro0dj+vTpmD9/PrZt24a33noLixcvxuzZsw1V8PgRc7GkkmFDBtp6nCw/i9wj633ls1gupiMo77zzDv7u7/4u8f/Lly8HAMybNw/PPPMMbrvtNhw9ehQLFixAV1cXpkyZgvXr12PgwFMd7fnnn8fixYtx2WWXoaCgALNmzcIjjzxiw+WoJ1cuNoBYLvbyMdUsvbOIZYz2uqi+AjXBgQiFj6XttwEA1cFYO6v0s/xAlb4u431V/Vmsyr03I699ULzip31Qmnd3YM7qLTmPe2H+xWg4q9KFM/IXhmudEf+XJoCkB3r8cfjEdRfY1r5u/iyVqdbXZbuvKj+LVbr3Zn5/K1HF42cy52JVx3Ctc6aPq8ET112A6mByCL46OND2Xyxu/ixVqdjXZbuvqj6LVbz3Rtm6SJbMkzUXqzrVw7UqmD6uBpePqXYlrOzmz1KNyn1dpvuq4rNY5XtvBCcoHpMxF+sHZsoYZQvXqqSwIGBL+xnJn9v1s/xG9b6e7r5aXU+RzzoMFZ/Fqt/7XDhB8VhhQQB3XzUGC5/bjgDS52LvvmqMkrNfL6kartWRSvlzGfmtr1vtD/n2IxWfxX6796m4BkUCsuVi/UDFcK2O/Jw/d4uf+rrV/mBXP1LtWeyne58OIyiSkCkXazeGa92jUqmhTPlzldotldm+Luu1Wu0PdvcjlZ7Ffn/OcYIiET/m2BmudY9qqRJZ8ueqtVsqM31d5mu12h+c6EeqPIv9/pxjioccw3Cte1RMlciQP1ex3dIx0tdlv1ar/UGGfuQlPz/nGEHJQtZQqAoYrnWPTKkSM7zOn6vabplk6+sqXKvV/uB1P5KBX59znKBkIHMoVAUM17pHllSJWV7nz1Vtt2wy9XUVrtVqf/C6H8nCj885pnjSkD0UqgKGa92japvF8+fAqXx5nBv5c1XbzQoVrtVqf/C6H5FzOEFJkSsUCsRCob1R5V5h5CqGa92jcpt5mT9Xud3MUuVarfYHP6/D0BlTPClUCIW6xYsyX4ZrzZO9zXL1o+njajB1VBV+2fwpPuvsxsiKUnyz4UwUFzn77yfZ281OKl2r1fUUfl2HYSfV1lVygpJChVCoG7wq8/V72ZwTZG4zI/0o3TE/37zH8fVeMreb3VS7VqvrKfy4DsMuKq6rZIonhSqhUCd5XebLcK15MraZkX7k9XovGdvNKTpdKyXzepxZFRBCKLeYIhKJIBgMIhwOo6yszNbP7o0KTFm5MWcodPPtU6X514ad4tefKc1l5fq92ElWWl1tQHdH5u+XVgLldZY/XpY2M9qPhBAIRXqyHuPGWJOl3dzg9bV6/fN958tnSq8Q+GBfBJ3dx1FRWoyxw8tQGAigd1AFpqz62NZnej7M/P5miieFaqFQu8lU5uu7cG1XG/DYBOBk+l/IAICiEmBxi+VJiixtZrQfZePmei9Z2s0NXl6rimkGqfV5phQCODfNIYGCEgS6fwzg9LQfIfO6SqZ40tA5FMo1OA7q7sg+OQFi388WYVGEnf2Dfc0fVE0zSM3AM6Ug2oOhgcM5P0rGccYISga6rgjnGhyyg5394/TTSmz7LPKGCjvZqqhXCBTa9FkyPtM5QclCp7BvnErliCQvI/1o6OBidB49nvvDlFslR6lk3r7BrjVyE0YORctnn7v6D9oP9kXSpnVSBQcNQKA7/VCS+ZnOCQol0X0NDtnDSD+aOb4WT731ac7POnQ0R1qMpCdr6tjOt60XBIC++3e6sbams9vABB/A1/7PX6H5XSj3TOcaFOpH5zU4ZJ9c/ejyMdWGPkfG0DOZI2Pq2O63raduLu7G2pqK0mJDx11cX6nkM50RFEpL1zU4ZK9cb9hlOtE6lcp1ZUsdO/G2dTOfY5exw41tszF2eBnOHa7eM50TFMpIxzU4ZL9M/YjpROtUK9eV7V479bZ1o59jl8KAsfaKH6faM50pHiK3lFbG9jnJpqgkdpwmmE40T9VyXZnutdNvW7f680zz+TOFERQit5TXxTZhc3AnWRXZmU50JO3h8O6/ZqheritL6tjpt61b/Xmm9XmmZNpJVuVnCicoRG4qr1P2YeEkO0LPjqQ9XNj91wyZy3WNkiHN4NTb1o1+jq2+fKYUAjh3uHM/xgtM8RCR8hxLe0i2+6+s5bqqia+JAU6tgYkz8rb1dH8vFddR5Y8TFCJSWq60BxBLe/Sm1oEqSMZyXVXZ/bb11DkI11HljykeIg9YWSuhUlmpm1RLe+RzH2Ur11Wd1TUx6f6eFzvJ+h0nKEQus7JWQrWyUjeplPbI9z7KVq7rB3a+bV2GCbCfMMVD5CIrayVULSt1iyppD7vuo0zlukROYgSFHMfURIyVElHVy0rdoELaw+77KEu5ri74DPMGJyjkKKYmTrGyVkK19RVeUCHt4cR9lKFcVwd8hnmHKR5yDFMTyayslVBpfYWXHEt72LRTJ++jmvgM8xYjKOQIpib6s7JWQpX1FTJwJO1h0+6/vI/q4TPMe5ygkCPsCGn7Le9rZa2ECusrZOJI2sOG3X95H9XD9Kr3mOIhR+Qb0l6/4wCmrNyIOau3YMnaVsxZvQVTVm5UOqRqZfdKqzteklx4H9XDtJz3OEEhR+QT0vZz3tfKWgmWlfoD76NamJbzXkAIodz+z5FIBMFgEOFwGGVlZV6fDqXRGxWYsnJjzpD25tunJv2rMf73MoVWM/091ei0k6yq5+0UtkcyWdvD6jOMsjPz+5trUMgRVks/dcn7WlkroWJZKUs0+1PxPjpF5v6hQvm63zHFQ46xEtJm3tc//Jyqo/yp0D+YlvMWIyjkKLOln8z7+gNLNCkblfoHd+31Dico5DgzIW2WY/qDLqk6ska1/sG0nDeY4iGpsBzTH5iqo2zYP8gITlBIOsz7qo+pOsqG/YOMYIqHpOR03lfW0kZZ5Ns+TNVRNuwfp/BZlBknKCQtp/K+Mpc2ysCO9mGJJmXD/hHDZ1F2TPGQVlQobfSSne3DVB1lo3v/4LMoN+4kS9pwYpdaP4Vn7WifdO0BwDdtRPbz0xhKlenazI41P7URd5IlSsPu0ka/hWfzbR+/tQe5w68lvNnGQ3BQseGxFv7iuLbjiike0oadpY1+DM/m0z5+bA8iq3KNh//aGTL0Of+1M6T1uOIEhbRhV2ljrl0wgdgumL1RtbKnVtvHr+1BZIWR8bCudZ+hz1rXuk/rccUJSha9UYHm3R14pXUfmnd3+LojuM2Lto2XNmbK3AYQC53mKm00kwpRidX28Wt7EFlhZDx0Hj2BisHFWcda5eBidB49kfVz/D6uuAYlA+bTneNV29pV2ujXXTCtto9f24PICqP9fOb4Wjz91qcZx9qM8bV46q1Pbft5KmIEJQ3m053jddvaUdro510wrbSPn9uDyCyj/fzyMdVZx9rlY6pt/XkqYgQlhUpv2VSNW22bqyQv311q/b4Lptn28Xt7EJlhZjwUFgQyjrXeqNB+XNkeQent7cWdd96J+vp6DBo0CGeddRbuuece9N1uRQiBu+66CzU1NRg0aBAaGxvx8ccf230qljCf7hw32nb9jgOYsnIj5qzegiVrWzFn9RZMWbmxX2QmXto4Y/xwNJxVaWpCpMMLDc20jw7tQWSU2fGQaaxxXDkwQVm5ciWeeOIJPPbYY/jwww+xcuVKPPjgg3j00UcTxzz44IN45JFHsGrVKmzduhWDBw/GtGnTcOyY97k05tOd43Tbupk+0n0XzFRsD6JT7BoPuo8r21M8//3f/40ZM2bgyiuvBACceeaZeOGFF7Bt2zYAsejJww8/jB/84AeYMWMGAOA//uM/UFVVhZdffhmzZ8+2+5RMcSKf7qddAPPh5FoFL1JzfKFhMqfbg0glRseD0ylpldk+QfnqV7+KJ598Eh999BH+5m/+Bu+99x42b96Mhx56CACwZ88ehEIhNDY2Jv5OMBjEpEmT0NzcnHaC0tPTg56ensT/RyIRu087we58OquBTnFyrYLdu8QaxRcaJvPrrqBEVuQaD0bHua7jyvYUzx133IHZs2dj1KhRGDBgAM4//3wsXboUc+fOBQCEQrEd9KqqqpL+XlVVVeJ7qZqamhAMBhN/6urq7D7tBDvzfl5XrMjGyZyqn1Jz7DdE/sdxnpvtE5Rf//rXeP7557FmzRps374dzz77LP71X/8Vzz77rOXPXLFiBcLhcOJPW1ubjWfcnx15P+6umZ5TOVW/lLqy3xD5H8e5MbaneL73ve8loigAcM455+Czzz5DU1MT5s2bh+rqWG13e3s7ampO/TJqb2/H+PHj035mSUkJSkpK7D7VrPLN+3mVclCBEzlVv5S6qtZvVFsnQ+S13qjAM2/tUWqce8X2CUp3dzcKCpIDM4WFhYhGowCA+vp6VFdXY8OGDYkJSSQSwdatW7Fw4UK7Tycv+eT9/JRycILdOVW7don1mkr9RtV1MkReSTdmspFhnHvJ9hTPVVddhfvuuw//+Z//iU8//RTr1q3DQw89hGuuuQYAEAgEsHTpUtx777149dVX8f777+P6669HbW0tZs6caffpeMYvKQeV+KEkT5V+w/w5kTmZxkw2Xo9zr9keQXn00Udx55134uabb8bBgwdRW1uLb3/727jrrrsSx9x22204evQoFixYgK6uLkyZMgXr16/HwIH+uRl+STmoRpWSvEypERX6DXdb9j83U3dupwm9SEtmGzPpeDbOu9qA7g70CoEP9kXQ2X0cFaXFGDu8DIWBAFBaCZQ7V6SSKiD6bvGqiEgkgmAwiHA4jLKyMq9PJ6P4jBlIn3JQ5V/1ZK9cqRHZ+03z7g7MWb0l53EvzL9Y6/y5qtxM3bmdJvQqLWl0zAAejvOuNuCxCcDJnszHFJUAi1vymqSY+f3NlwU6yA8pB7KXkdSI7P1GpXUyZI6bqTu304RepiXNjAXPxnl3R/bJCRD7fneHO+cDvizQcaqkHMh5ZlIjMvcbVdbJkDlupu7cThN6nZY0OhbuvHI0vjW53pNx3isECm08zg6MoLggnxfTkX+YfVmirP0mvk4m09kEEAube7FOpjcq0Ly7A6+07kPz7g7t95Eww80Xpbr9UlavXwJrdMx4NTkBgA/2Gduh3ehxdmAEhcglfkmNyFrSzbLn/LjZP90eC16PPVnHTF+d3cdtPc4OjKAQucRPqRHZ1smw7Dl/bvZPt8eCDGNPtjGTqqK02Nbj7MAICpFLVCghNsOut7Xmy+v1BX7hZv90eyzIMvZkXls2drixilijx9mBExQil6gQ5jXLrre15kO11wPIys3+6fZYkGnsyfpm4sKAsWs3epwdmOIhcpHsYV47uZV28Xp9gZ+42T/dHgs6jT1LSitj+5xkU1QSO84l3KiNyAN+f8leb1RgysqNGSMb8ZD65tun5n3d3DguP+n6IgDuJKsjF3aSNfP7mykeIg/IGua1i5tpF1nWF6hIhsont8eC38deXsrrgPI6FAI4d7jXJ8MUDxE5wM20S3x9AYB++0yourbHDax8ItlxgkJEtnO7rJPrC8zJVfkExCqfuNEdeYkpHh9ijpW85kXaReYSTtmw8ikPX67TyMjlN/76GScoPiNDTpnIq7JOri8whpVPFrn0xl+KYYrHR5hTJpkw7SIvGXZWVZKEb/z1M0ZQfIK7aepJ9nQe0y5yYuUTqYATFJ9gTlk/qqTzmHaRTzwFd9Nz29N+X4CVT+Q9pnh8gjllvTCdR0R+xwmKTzCnrA+WiFK+4n0ok3hKmH2IvMQJSh+9UYHm3R14pXUfmnd3KDU44znlTAHZAGLhf+aU1WcmnUeUDvsQqYBrUL6kSj4/E5ne1knOYjqP8sU+RCpgBAX+yeezrFMPTOdRvtiHLJLwjb9+pn0ExW/luSzr9D+WiFK+JowcioIAkC2LXRCIHUd9lNfFNmHLYydZ2bcGkIn2ExQ/lueyrNPfmM6jfLV89nnWyQkQm7y0fPY5nyWpvnzjrxWqLyVwm/YpHuZiSUVM51E++Nxzn1+WErhJ+whKvrlYhuvIK0znOcfv45prUNzlt6UEbtF+gpJPPp/hOvIa03n202Fccx2Tu/y4lMAN2qd44vl8AP32EMmWz2e4jsh/dBnXVp97ZA1TatZoP0EBzOfzuZMnkf/oNq65jsk9TKlZo32KJ85MPl+mcJ3fc+VEbpFpXLuF65jcwZSaNZyg9GE0ny9LuE6HXDmRW2QZ127jOibncWsAa5jisUCGcJ0uuXIit8gwrsm/mFIzjxEUC7wO17Fkjch+Xo9r8j+m1MxhBMUCr1fA802kRPbzelyTHuIptRnjh6PhrEr2pyw4QbHIy3CdrrlyIqcxDE8kD6Z48uBVuI65ciLnZBrXANC8u4OheZKClQpO1ao+OUHJkxcr4JkrJ3JW6rhmxRzJxEp/VLEPM8WjIObKidzDijmSiZX+qGof5gRFUcyVEzlPt91lSW5W+qPKfZgpHoWxZI3IWTruLkvystIfVe7DnKAojrtAEjmHFXMkEyv9UeU+zBQPEVEGrJgjmVjpjyr3YUZQiIgyYMUcgK42oLsj8/dLK4HyOvfOR2NW+qOVvyNLOTInKEREGWj/kreuNuCxCcDJnszHFJUAi1s4SXGBlf5o9u/IVI7MFA8RURZaV8x1d2SfnACx72eLsJCtrPRHo39HtnLkgBBCvtqiHCKRCILBIMLhMMrKyrw+HSLSgCxhb1ftbwWevDT3cQs2AbXjnT4b6sPunWR7owJTVm7MWPETTwVtvn1qXv3ezO9vpniIiAxgxRzJxEp/zPZ3ZCxHZoqHiIhIczKWI3OCQkREpDkZy5E5QSEiItJcvBw50+qSAGLVPG6W1HOCQkREpDkZX0LLCQoREaVXWhnb5ySbopLYcaQ82UrqWWZMRESZcSdZ7ThZUs8yYyIiskd5HScgmpGlpJ4pHiIiIpIOJyhEREQkHaZ4iIg0puUW/qQERyIo+/btw3XXXYfKykoMGjQI55xzDt55553E94UQuOuuu1BTU4NBgwahsbERH3/8sROnQkREGazfcQBTVm7EnNVbsGRtK+as3oIpKze6/lI4onRsn6B8/vnnmDx5MgYMGIDf/va32LlzJ37yk59g6NChiWMefPBBPPLII1i1ahW2bt2KwYMHY9q0aTh2zL0tdImIdCbbm2uJUtleZnzHHXfgrbfewh//+Me03xdCoLa2Frfeeiu++93vAgDC4TCqqqrwzDPPYPbs2Tl/BsuM7adbmFen6/XdtbLsNS+9UYEtuzuwaM12dH1xIu0xdr25liiVp2XGr776KqZNm4ZvfOMb2LRpE4YPH46bb74Z8+fPBwDs2bMHoVAIjY2Nib8TDAYxadIkNDc3p52g9PT0oKenJ/H/kUjE7tPW2vodB/Cj13Ym/UuqJjgQd181xvWNedyg0/X67lq72oDHJgAnezIfU1QCLG7hJCWNdP0hHS/eXEuUyvYUzyeffIInnngCZ599Nn73u99h4cKF+M53voNnn30WABAKhQAAVVVVSX+vqqoq8b1UTU1NCAaDiT91dXzw2EW3MK9O1+vLa+3uyD45AWLfzxZh0VSm/pCNm2+uJUpl+wQlGo3iggsuwP3334/zzz8fCxYswPz587Fq1SrLn7lixQqEw+HEn7a2NhvPWF+9UYEfvbYT6XJ88a/96LWd6I0qt9lwWjpdr07XSrll6w/ZuPnmWqJUtk9QampqMGbMmKSvjR49Gnv37gUAVFdXAwDa29uTjmlvb098L1VJSQnKysqS/lD+tu3pzPqvqb5hXj/Q6Xp1ulY6pTcq0Ly7A6+07kPz7o7EBDRXf0jlxZtriVLZvgZl8uTJ2LVrV9LXPvroI4wcORIAUF9fj+rqamzYsAHjx48HEFtTsnXrVixcuNDu06EsjIZv/RLm1el6dbpWism23qjnZNTw53j15lqiVLZHUJYtW4YtW7bg/vvvx5///GesWbMGTz75JBYtWgQACAQCWLp0Ke699168+uqreP/993H99dejtrYWM2fOtPt0KAuj4Vu/hHl1ul6drpVyrzf69FC34c/y6s21RKlsj6BceOGFWLduHVasWIF/+Zd/QX19PR5++GHMnTs3ccxtt92Go0ePYsGCBejq6sKUKVOwfv16DBzIhyUA18ooL6qvQE1wIELhY2lz0/FSQ7+EeXW6XtWu1Xel0C7Ktd4oAGDt23tRXVaC9khPxnUo5YMG4PG5F+Dir1Rq1fbp+h6AnP2RfdZ5tu+D4gZf74Pichll/F9eAJIeXPFh5rd/Sel0vapcq6lS6P2twJOX5v7QBZuA2vG2nqesmnd3YM7qLTmPW9Z4Nh7+r9iO3TL3Bzel63vlpQMAAF3dp/aISe2Pvivfd5GZ3998WaBsXC6jnD6uBk9cdwGqg8nRK7+GeXW6XhWu1XQpdGllbIKeTVFJ7DhNGF1HdObpg6XvD27K1Pe6uk8kTU6A5P7oy/J9STGC4pGM4UGP/oWoW7hSp+uV9Vp7owJTVm7MWF2ScTdT7iSbxGgE5YX5F6PhrEpp+0M2dp9zrr6XTgBAVVkJgABCEZN91sL5qXaPjPJ0J1nKLWt40KMlAYUFAa12jNTpemW9VjOl0EnnX16n1QQkF7PrjWTtD5k4kU4xW3YNxPpjKJI9um3HDrxMH53CFI/LcoUH/3v3IY/OjMhdLIW2R2FBAHdfFdt7KvXf2KqXDDuVTnG6T1n9fKaPknGC4iIju3v+7M1P3DwlIs+wFNo+Kqw3MsvJ3ZCd7lNWPp+7P/fHFI+LjIS0Dx05DuRYA0gki3xy5aqVQstu+rgaXD6m2jdrFyynAA3I1ffS6bsGpT1if5918npVxQmKixiqJj/JN1ceT00sfG47Akhf+qpqasIrqq0vycbJFGC2vpdOvAf+8OqxAOBIn2XKsz+meFxkJOz3uRiCaAHLKEluduXK/ZiaIHs4nQLM1PeGlg5I7IUS17c/OtVnmfLsjxEUFxkJaYvgGRA3vQN8keUlbibLKP1cskbuM7Jz6Y9e24nLx1Qb6md+S034gQzPDDdSgJn6HpB9J1kn+ixTnv1xguIiwyHtoTXA0BG2/EyWrJHdnMiV+yk1oTpZnhlupQAz9b1c/dHuPsuUZ39M8bjMzZA2S9bICcyV+5dszwzdUoC6XW8ujKB4wI2Qtt1heKI45sr9SdZnhm4pQN2uNxtOUDzidEibJWvkFObK/cmOZ0Z87crh9k9QXdSNscPLUBhI84vV5Do63VKAul1vJpyg+BTD8OQU5sr9Kd9nRnztSiD8F2wsuRUDAyfSHgfA1jeyk39xDYpPMQxPTmKu3H/yeWb0XbsyNHA4++QEsPWN7ORfjKD4lM5heBlKJHVgNFfu5v3gvbfO6jMj29oVu/C+6okTFJ/SNQwvS4mkLnLlyt28H7z3+bH6zLDyZmAzeF/1xRSPj+kWhpetRFJ3bt4P3nt7WHlmOLmOjfdVb4yg+Nz0cTWYOqoKv2z+FJ91dmNkRSm+2XAmiov8NTeVtURSV27eD957e5ktc3VqHRvvK3GC4nPpwqM/37zHd+FRllXLxc37wXtvPzNlrlbeDGwE7yv565/RlESn8CjLquXi5v3gvfdWfO0KcGqtih14X4kTFJ/KFR4FYuHR3qiTa+/dw7Jqubh5P3jvvdd37crnYgiOiQHZ/4KBN7LzvhJTPD6lW3jUSJi5fNAARIVAb1QYylkfPxm1Ze2OjiWSbpa561xSL5O+a1febB+T906yvK/ECYpP6RYezVYiGdf1xQnM/flWQyWKTb/ZidV/3IO+Aab7fvMh5v9tPVZcMcbweelaIulmmbuuJfUySqxdseEfPbyvxBSPT+kYHs1UIpkq1xqcpt/sxM/eTJ6cAEBUAD97cw+afrPT0PnotAYoHTfL3HUrqdcF76veAkII5RYhRCIRBINBhMNhlJWVeX06UuqNCkxZuTFneHTz7VN99y+Q3qjAlt0dWLRmO7q+SL/ldqbrP34yilF3/rbf5KSvggDwp3u+njXdE2//TGk2U+3f1ZZ9W3CTL15zm12pMiN0TKfpgPfVP8z8/maKx6d0Do8WFgRQUBDIODkBMq/B+WXzp1knJ0AskvLL5k9x499+JeMxtq0B6moDHpsQe3dJJhK/eM3tMne+BdafeF/1xBSPj+kcHrW6Buezzm5Dfy/XcbatAeruyD45AaR98ZruKS4iyg8jKD5ndldIv7C6BmdkRamhv5frOB3XAPXFXUCJKF+MoGggHh6dMX44Gs6q1OIXQrxEMdOVBhCrpkktUfxmw5nI1TwFgdhxTvx8vzCT4iJySm9UoHl3B15p3Yfm3R2+2fdJF5ygkC9l290y2xqc4qICzP/b+qyfPf9v63Mu8rT68/1CtzJ3ks/6HQcwZeVGzFm9BUvWtmLO6i2YsnIjU4sK4QSFfMvqGpwVV4zBty+p7xdJKQgA377E+D4oOq8B0j3FRd7i+id/4BoUyovs5X9W1+CsuGIMbv37UXmXx+q6Boi7gJJXuP7JPzhBIctU2SXVaolicVFB1lJip3++ynQucydv6faaDz9jiocsYQjVJaWVsX1OsjHw4jUv6JziIu9w/ZN/MIJCpjGE6qLyutgmbHnsJOtlGk7XFBd55/TTckzoTR6XDyfHnuzpdTtwgkKmMYTqsvI6y7vEypCG0zHFRR4yWknscMWxk2NPhnHtBqZ4yDSGUNXANBzp6NDRHDsvmzzOCifHnk7jmhMUMo0lpPLLlYYDYmk4blxFfuP188nJsafbuOYEhUzTfZdUFXAnV9KV188nJ8eebuOaExQyTfddUlXANBzpyuvnk5NjT7dxzQkKWcISUrl5HeYm8pKXzycnx55u45pVPGQZS0jdZaaskDu5ku7cfj7Fx2cocgwVgweg8+iJtMflM/Z0G9ecoFBeWELqDrNlhdzJlci951O68ZlOvmNPt3HNFA+R5KyWFTINR+S8TOMzHTvGnk7jOiCEUK4eKRKJIBgMIhwOo6yszOvTIXJMb1RgysqNGR9+8ZDu5tunZvxXkw47ThJ5wcj4rBhcjB9cORrVwUHcSRbmfn8zxUMEeQe7Hbv2Mg1HqlN5fHYcPY7q4CDbx6CVcS1rO2bCCQppT+Zto3UrKyRKxfFpD5nbMROuQSGtyb5ttG5lhUR9cXzaQ/Z2zIQTFNKWtNtGd7UB+1uB/a24aOBeXDpkH8YF9mDsl39qcShxKHftJb+Sdnz24fWutUao0I6ZMMVD2pLyrcxdbcBjE4CTsReZFQJ4FgD6vBn+mBiAqT0/wQGcDsBfZYVEcVKOzxQqlP2q0I6ZMIJC2pIyf9zdkZicZDIwcAJDA4d9WVZIFCfl+ExD9rJfVdoxHUZQSFuq5I/TabrmHIydeAkjJ+RLvVGBQ4ezT9TjZBifMu+qrfJzjhMU0pbK20afe0YQkODhR2Q3M7uyyjQ+ZS3nV/k5xxQPacvrt54SUTKju7JyfBqn8nOOExTSmuz5YyJdZKs2ScXxaY6qzzmmeEh7MuePZaLaLpR20/36nZar2iTuzitH41uT66Vre9n7h4rPOccnKA888ABWrFiBJUuW4OGHHwYAHDt2DLfeeivWrl2Lnp4eTJs2Df/+7/+Oqqoqp0+HKC1Z88eyUHEXSjvpfv1uMFpFcvqQEul+qarSP1R7zjma4nn77bfxs5/9DOeee27S15ctW4bXXnsNL774IjZt2oT9+/fj2muvdfJUiNRQWgkUlWQ/pqgkdpxLVN2F0i66X79bVK02Yf9wjmMRlCNHjmDu3LlYvXo17r333sTXw+EwfvGLX2DNmjWYOnUqAODpp5/G6NGjsWXLFlx88cVOnRKR/MrrgMUtsf1QMimtjB3ngly7UAYQ24Xy8jHV0v2r1g66X382dqc03Ko2sfO82T+c5dgEZdGiRbjyyivR2NiYNEFpaWnBiRMn0NjYmPjaqFGjMGLECDQ3N6edoPT09KCn51RNfCQSceq0ibxXXufaBCQXlXehtIPu15+JEykNN3Zltfu82T+c5UiKZ+3atdi+fTuampr6fS8UCqG4uBjl5eVJX6+qqkIoFEr7eU1NTQgGg4k/dXVyPLyJ/E7lXSjtoPv1p+NkSsPJahMnzpv9w1m2R1Da2tqwZMkSvPHGGxg40J5c4YoVK7B8+fLE/0ciEU5SiFyg6roAu+h+/ancSGk4UW3i1HmzfzjL9ghKS0sLDh48iAsuuABFRUUoKirCpk2b8Mgjj6CoqAhVVVU4fvw4urq6kv5ee3s7qqur035mSUkJysrKkv4QkfNUeFurk3S//r56owLPvLXHcEojH/Fqkxnjh6PhrMq812+YScWk0xsVaN7dgVda96F5d0fizb/sH86yPYJy2WWX4f3330/62g033IBRo0bh9ttvR11dHQYMGIANGzZg1qxZAIBdu3Zh7969aGhosPt0iCgPKryt1Um6X3+c0e3n42RLaeSTism1buXuq8bgpue2p/08AT36h1Nsn6AMGTIE48aNS/ra4MGDUVlZmfj6jTfeiOXLl6OiogJlZWW45ZZb0NDQwAoeIgnF1wWkPqSrJdznwQm6X3987YaRHV7jZEtpWE3FZLr2+LqVJ667wKYzpHQ82Un2pz/9KQoKCjBr1qykjdqISE4q7kJpJ7evX5ZdSc1sPw9YKwV241qtlDAbWbfyw1c/QP833CR/LsuMrQsIIcxMjKUQiUQQDAYRDoe5HoWIfEWmXUmbd3dgzuotho6N//o1U23j5rXGoyFA+lRd6nmbufZcXph/McuMv2Tm9zdfFkhEJAnZdiU1s5bEbCmw29dqtoTZznU0sq3JUQVfFugCWcK1MmGbECWTcVdSo2s3zL7Az6trNZOqs3MdTd/P4rPPOE5QHCZTuFYWbBOi/mTcldTo2g2zbxf28lqNvjDPyLVXlZUACKA9YmxtC5995jDF4yDZwrUyYJsQpSfjrqTxMmug/1LQfMqsZbzWVEau/YdXj8UPrzbWPnz2mccJikNyhTCBWAgzvuGPDtgmRJnJuiupE9vPy3qtqYxcu5Fj+Oyzhikeh8gYrvUa28R/mE+3j1tv87XC7jJrma81lZFrz3UMn33WcILiEBVCmG5jm/gL8+n2kn3XWqNrN4x+lszXmsrItWc7hs8+a5jicYgqIUw3sU38g/l0Zzj5Nl/Z6HStfPZZwwiKQ1QKYbqFbeI8N1IuMpbD+olOu/bqcq189lnDCYpDVAthuoFt4iy3Ui7MpzvPznSK7HS4Vj77rGGKx0E6hTCNYps4w82UC/PpRObx2WceIygO0yWEaQbbxF5up1yYT/c/Vmc5g88+czhBcYEOIUyz2Cb2cTvlwny6v7E6y1l89hnHFA+R4txOuTi1uyh5j9VZJBNOUIgU50XKhfl0/+FupyQbpniIFOdVyoX5dH9hdZaeZF5vxAkKkeK8LGFkPt0/WJ2lH9nXGzHFQ+QDTLlQvlidpRcV1hsxgkKOkzmEmI1q582US3qq3Uev6FKdxf6gzm7QnKCQo2QPIWai6nkz5ZJM1fvoBR12O2V/iFFlvRFTPOQYFUKI6ah63pSM99E8P6cK2R9OUWW9ESMo5AhVQoipVD1vSsb7aJ0fU4XsD8lUWW/ECAo5wkwIUSaqnjcl8+o+9kYFmnd34JXWfWje3aHsniHxVOGM8cPRcFal8r+0Oa6TxdcbZbqrAcRSX16vN2IEhRyhSggxlarnTcm8uI9c3yAvjutkqqw3YgSFHKFKCDGVqudNydy+j1zfIDeO6/5UWG/ECAo5QrWSxXjpYShyDBWDB6Dz6Im0x8l23lZYLbNUqTzTzf7H9Q3yU+155BbZ1xtxgkKOUCWECKQPzacj23lbYTUNoVr6ws3+p0rJps5Ueh65TeatCZjiIceoEELMFJpPR6bztsJqGkLV9IVb/Y/rG9SgwvOIkjGCQo6SOYSYLTQPxP5lVTG4GD+4cjSqg4OkOW8rrKYhVE9fuNH/uL4hM9nSgjI/j6g/TlDIcbKGEI2E5juOHkd1cJCU52+G1TSEH9IXTvc/rm9IT9a0oKzPI+qPKR7Slk6heavXqlMbWRVf3wCg374Suq5vUDUtSHLhBIW0pVNo3uq16tRG+eD6hlNypQWBWFpQ1U3syD1M8ZC2dArNW71WmduI6xvcZbS9/ZAWJDlwgkLa0qn00Oq1ytpGXN/gLjPtzbQg2YUpHtKaTqF5q9cqWxtxfYO7zLY304Jkl4AQQrlEYCQSQTAYRDgcRllZmafnYiTsKVso2u+stLdO90jlnWR7owJTVm7MmEKIp5w23z7Vt/fPTVbaO/53cqUF439Hhn5F7jHz+5spnjwYCXvKGor2K6vt7dfQfDpWr1WGNuL6BndZaW8zaUE+HykbpngsMhL2ZCjaXWxv/+P6BndZbW8jaUGOV8qFERQLjOyu+cNXPwAQUHYHTtWovuMpGcP1De7Kp72zVTVxvJIRnKBYYCTsGYr0ZP0MhqLtxdB/ZrLl+E2fT1cb0N0BALhooMClQ/ah48jxxC+3z8UQ7MfpAPxVGi6DfMvMM6UFOV7NkW0Mu4UTFAvsDB8zFG0Phv7Tky3Hb/p8utqAxyYAJ2MT/kIAzwJAyalDjokBmNrzExz4cpLil9JwGThVZs7xapxsY9hNXINigZ3hY4ai7cHQf3+y5fgtnU93R2JyksnAwAkMDRz2ZWm4DJwoM+d4NUa2Mew2RlAsMBL2rCorARBAe0S+HTj9SOYdT70gW47f6fNpuuYcjJ14CSMnDrF7l1yO19xkG8NeYATFgnjYM9MGMgLAD68eix9ezReIuYUvbEtmJsfvh/M594ygNvfWK/H1JDPGD0fDWZV5tTfHa26yjWEvcILiINl24PQ7tvcpsuX4ZTsf8h7Ha3YcM0zxJDG6Ujoeesukb+ht+rgaTB1VhV82f4rPOrsxsqIU32w4E8VFnBs6we8vbDNKthy/bOdjha6VFE5Sebw63R/8MGbyxQnKl8yslDYTegt/cbzf5/588x4tVmB7RYYdT70mW45ftvMxS+dKCqepOF7d6A+qjxk78J/xML9S2mhI7b92hrRegU3ekS3HL9v5mKF7JQUlc6s/qDxm7KL9BCXXSmkglq7pjZ46wmhIbV3rPlOfS2Qn2XL8ls6ntBIoKun/9b6KSmLHOcDK84H8y+3+INsYdpv2KR4rOxoaCb1VDC5Gx9Hjpj6XqC87ctyy5fhNn095HbC4JbGTbFqllbHjUvXZgdbU3+tD1x1Pud4mPS/6g2xj2E3aT1CsrJQ2srvijPG1eOqtT237+aQXO3PcsuX4TZ9PeV3OiUQ/KTvQplVUEpv8ZPlsHSspuN4mM6/6g2xj2C3ap3isrpTOFXq7fEy1rT+f9ME1DzYwsAMtTvZkj7BAv0oK9r3sdOsPXtM+gpLPSulcb+vUfQW2G2QLRed7PvnuHilbe6hOp0oK7lyam+/7gw1pUTtpP0HJ92VYmUJvTr1ki06RLRRtx/nkk+OWrT38QKdxrOt6GzN83R9sSovaSfsUD+DcSmndV2A7SbZQtF3nYzXHLVt7+Iku41jH9TZW+LY/2JQWtZP2EZQ4p1ZK67wC2ymyhaLtPB8rOW7Z2sOPdBjHXF9hnA79QQa2R1Camppw4YUXYsiQIRg2bBhmzpyJXbt2JR1z7NgxLFq0CJWVlTjttNMwa9YstLe3230qptn5Miw3PldXsr1Ey87ziee4M/WQAGJpm745btnaw6/8Po6t9D2d+b0/yMD2CcqmTZuwaNEibNmyBW+88QZOnDiBv//7v8fRo0cTxyxbtgyvvfYaXnzxRWzatAn79+/Htddea/epkE/JFoq283ys7B4pW3uQmrhzKcnG9hTP+vXrk/7/mWeewbBhw9DS0oJLLrkE4XAYv/jFL7BmzRpMnToVAPD0009j9OjR2LJlCy6++GK7T4l8RrZQtN3nE89xpy54rc6w4FW29pBCfAfaXAv+HNqBVlVm+x6RkxxfgxIOhwEAFRWxsGBLSwtOnDiBxsbGxDGjRo3CiBEj0NzczAmKR1QqTzVc6ldxFNjflvmDbCqZc6L00EyO2/elj1Zk2YG2Vwh8sC+C0MlSDOkoxUVlQtq+7gWuryBZODpBiUajWLp0KSZPnoxx48YBAEKhEIqLi1FeXp50bFVVFUKhUNrP6enpQU/PqX8JRSIRx85ZR6qVpxop9Wu6rByFj090pWTOqdJDo7tH+rr0MR9pdqBN7utHAByUuq97RdedS0kujpYZL1q0CDt27MDatWvz+pympiYEg8HEn7o69zaK8TtVy1Nzlfp97YxCV0vmvC499Prnq0DVvk7kCo9fzJlOQAjhyGs4Fy9ejFdeeQVvvvkm6uvrE1/fuHEjLrvsMnz++edJUZSRI0di6dKlWLZsWb/PShdBqaurQzgcRllZmROnr4XeqMCUlRszVoDEUwObb59qejdUt8LDGX/W/lbgyUtzf8CCTUDteOfPxyVe/3xZOdXXiXzFhZ1kI5EIgsGgod/ftqd4hBC45ZZbsG7dOvzhD39ImpwAwIQJEzBgwABs2LABs2bNAgDs2rULe/fuRUNDQ9rPLCkpQUlJjpkdmebEzpFup4tkC0V7fT5e/3xZcZdUIgOsvJjTQbZPUBYtWoQ1a9bglVdewZAhQxLrSoLBIAYNGoRgMIgbb7wRy5cvR0VFBcrKynDLLbegoaGBC2RdZnd5ajyEnhqSi4fQmWogr7AUm0g9tq9BeeKJJxAOh/G1r30NNTU1iT+/+tWvEsf89Kc/xT/8wz9g1qxZuOSSS1BdXY2XXnrJ7lOhHOwsT821mykQ2820N+pIRpEoK5ZiE6nHkRRPLgMHDsTjjz+Oxx9/3O4frwwZ1grYWZ7KEDrJLFdfB4CKwQMQihxD8+4OQ+NRhjFM5Gd8F48HZCnrtbM8lSF0klm2vh7XefQElv2qFUDu8SjLGCbyM77N2GWylTraVZ4qXQhdwpI58lamvp5OtvEo2xgm8ivHyoydZKZMyWlmwrwylzrmG66OX1uudJGr1+ZCyRypJ97XQ+EvcM9/fojOo8fTHpeuz/qhNN8qFc6R5OdpmbFOzIZ5ZV6nkW95qpS7mUpWMkdyiPf15t0dGScnQPrx6IfSfCtUOEfyH6Z4LLIS5vX7Og3uZkoqsTIenSrNlzldpMI5kj8xgmJBrpLaAGIltZePqU6KGEi3TsMBfNEYqcLKeHSzND/Tc8RNKpwj+RcnKBZYDfPK/NZZO/PLKu5myvy6fqyMR11K8+Pj4a0/H5L2HMn/OEGxwGqYV8p1GmB+Wffr15WV8ahDaX668ZCLqmlpkhvXoFiQT5hXtnUauueXdb9+3VkZj74tzUfm8ZCLymlpkhcjKBZkCvPW4hCGBg4jAKDytGJcNHAvsL/t1AFflrVmWqcBAM27O1xLM+ieX9b9+r1iVzrNrs+xsm7KjrVWsqV8s42HTLxMS5P/cYJiQbowby0OYWPJrRgYOBE76ASA1Sl/sagEWNwClNf1W6fhRZpB5hy4G3S/fi/Y1c/tHi9W1k35rTQ/13hI5WVamvTAFI9FqWHeoYHDpyYnmZzsSbtxmFdpBllz4G7R/frdZlc/91NaTqaUr9l+zu0DyGmMoOShb5i3p60Y+IP5z/AyzSBjDtxNul+/m+zq535My8lSmm+0ny/+u7Mw+a//ipVu5DhGUPIUD/N+7W/+ytLfN5NmsFs8B57pERNALGzu1/yy7tfvJrv6uZfjxUnx58iM8cPRcFalJ7/4jY6HZZf/H8/OkfTCCYrHvEwzxHPgAPo9lHTIL+t+/W6yq58zLeccjgeSDScoHvM6zSBTDtwLul+/W+zq516PF7/jeCCZcA2Kx2QoNZQlB24Xs+Wnfrt+K4y0WT5lvUb6ecXgYoTCX6B5d0fGz5ZhvDhBpp2MOR6Mkeme+RUnKB6TpdRQxe3p07FafuqX67fCSJvlW9abrZ/jy//vOHocy379XtbPlmW82EnGnYx1Hg9GyHjP/CgghDCzL48UIpEIgsEgwuEwysrKvD6dmK424LEJsVLiTPrsg5KKHT5/8fLT1A4d/1XFEHV/RtoMgG3tanQb9Vyf7Zfxwj6rHt6z/Jj5/c0Jip262tLuc5Lw5U6ymTBkaF1vVGDKyo0Zf/HFQ/+bb5/KNv2SkTarKisBEEAoYl+7xvt5KHIM97z+ATqPpt8/KNdnqz5e2GeNk+Ve857lz8zvb6Z47FRel3UCkgvDqtZxV1jzjLRZKJIlIghr7Rrv5827OzJOTox8turjhX3WGJmiZbxn7mIVD/kCy0/Ns7MtrHyW7vdM9+s3QrZdg3nP3MUJCvkCy0/Ns7MtrHyW7vdM9+vPJdeuwUBs1+DeqHurFHjP3MUUD/mCX8tPnWSkzeJrUNoj9rerV/dMlvUM7LPZyZhOMXzPKo4mv8k+VY71iBTDCQr5gh/LT51mpM1+ePVYAHCkXb24ZzKtZ2CfzU7GdIqRe9Z0WTkKH59ouaKTTmGKh3yDu2CaZ6TNnGxXN++ZbOsZAPbZbGRNp+S6Z187ozD75ATI+GZ7SsYyY/IdWUL4KnF6J1mjP/9w+yeoLurG2OFlKAyk+WyLoXHZy0O97LOyjpf4PcuVTpHunu1vBZ68NPcH/L9fA6dVZf6+T9NALDMmralefuoFI23mZLsWFgTQUNkNvHClI6FxGdcz9OVVn5Up5ZVK9hRY3vfsV9cBvcczf59pIKZ4iEgS3R2OhcZlXM/gNRlTXql8nQLLNjkBmAYCIyhEnkgND08YORQtn30uXZjdL2Rdz+CVXCW8AcRKeC8fU+15P+TLC/XFCQqRy9KF1QsCQN/tHGQJs/sFS3qTyZ7ySsW0rZ6Y4iFyUaaweupeUzKF2f0gvp4BOLV+IU6G9QxuY8qLVMAJCpFLsoXVU3m1U6af+Xo9g0lMeTmotDK2wDWbwgHunIvimOKRiKzlfmSPXGH1VLKF2f3A6fUMbpRi2/HZTHk5qLwuVn2TbYHrkXZgzf91/FRU/53CCYokZC73I3tYDZczzG4vp9YzODmG7f5s2Ut4lZfrzfb7Wx0/BT/8TmGKRwIqlPtR/qyGy7UJsxsJjReVxI6TjJNj2KnPZsrLQw73db/8TuFOsh6TfYdLsk+unTHTKQgAf7rn6ygu0uTfEl1t2UPjEu6u6eQYduP5oHoaQFkO9XXZf6dwJ1mFqFbuR9ZlC6tnEhVAy2ef63Pvc4XGJeTkGHbj+cASXo841Nf99DtFk3+WyYvlfnrJFFbPhvdebk6OYT4fyCw/9RlOUDzGcj/9TB9Xg823T8WdV442dDzvvdycHMN8PpBZfuozTPF4TMpyvy9zo71C4IN9EXR2H0dFafGpN8xKuA5ANYUFAXxrcj1+vnmPXPeeTHNyDDvx2Vxz4m9S/k6xiBMUj0lX7tfVBjw2ATjZg0IA56Y7hm/ZtIV0954sid/Hm57bnvb7Atbvo919xA+lp5Sdn54rTPFIQKpyPwffKEv9SXXvSUp29RG/lJ5Sbn55rrDMWCIyhF57972LwtVfy33c/D+gcPj5zp+QJmS492SNW2Wd+fQR2UtPyRkyvjWdZcaKkqHc74N9kfRpnXTHDXf8dLQhw70na9wq68ynj/ip9JSM69tn1u84gEt//Hul0ntM8VCSzu7jth5H5HcqlHWqcI7kHFXTe5ygUJKK0mJTx/VGBZp3d+CV1n1o3t3BN++SdlQo61ThHMkZ2d6iLvtb05nioSRjhxtb0zN2eBkrAoigRlmnCudIzlA5vccICiUpDBhbMLX1kw4lQ4ZEdouXdQKnyjjjZCnrVOEcyRkqp/c4QaFkBt6yKYpK8OAfDykZMiRyggplnSqcI9nv9NNyvDXZ5HFuYoqHkpXXxTZhy7KT7PZDBWhd05bxI2QOGdrNyfJglh6rZfq4Glw+plrqe6bCOZLNjP47UcJ/T3KCQv19+ZbNQiBtKfFfDu4DkHmCEidjyNBOTq7B4foeNalQLq7COZJ9Dh3NsfGmyePcxBQPmcaKAGfL9lQtCSQi+aj8vOYERXHpynydLv2NVwRkCgoHEPvXvl8rApws21O5JJCI5GPleS3L9hFM8SgsXRqgvHQAAKCr+0Tia3anBvz0MiornCzbU7kkkIjkY/Z5LVN6mREURWVKA3R1n0ianADOpAZ0rghwsmxP5ZJAIpKT0ee1bOllRlAUlC0NkI5AbKb8o9d24vIx1bZFNnStCHAyp6tyvthprGoisi7X8zpXetmJ3yG5eDpBefzxx/HjH/8YoVAI5513Hh599FFcdNFFXp6SEnKlAdJxKjWgY0WAk7tycsfP9GQKOxOpKtvzWsb0smcpnl/96ldYvnw57r77bmzfvh3nnXcepk2bhoMHD3p1SsrIJ7zP1ED+nNyVkzt+9idb2JnIj2RML3s2QXnooYcwf/583HDDDRgzZgxWrVqF0tJSPPXUU16dkjLyCe/rmBpwgpNrcHRe35OKVU1E7pAxvexJiuf48eNoaWnBihUrEl8rKChAY2Mjmpub+x3f09ODnp5Tm8hEIhFXzlNWudIA6eiaGnCSk2twdF3fk0rGsDORH8mYXvYkgnLo0CH09vaiqqoq6etVVVUIhUL9jm9qakIwGEz8qaurc+tUpZQtDZCOrqkBN8RzujPGD0fDWZW2tq+Tn60KGcPORH4kY3pZiTLjFStWIBwOJ/60teXeZt3vMqUByksHJPZCidMxNUD+IGPYmcivZEsve5LiOf3001FYWIj29vakr7e3t6O6urrf8SUlJSgpke9Ni17LlAYAoH1qgPxBxrAzkZ/JlF72ZIJSXFyMCRMmYMOGDZg5cyYAIBqNYsOGDVi8eLEXp6SsTGVjzMeTH+i+azGRF2TZPsKzFM/y5cuxevVqPPvss/jwww+xcOFCHD16FDfccINXp0REEpIt7ExE7vBso7Z//Md/xP/+7//irrvuQigUwvjx47F+/fp+C2eJiGQKOxOROwJCCOU2EIhEIggGgwiHwygrK/P6dIiIiMgAM7+/lajiISIiIr1wgkJERETS4QSFiIiIpMMJChEREUmHExQiIiKSDicoREREJB1OUIiIiEg6nKAQERGRdDhBISIiIul4ttV9PuKb30YiEY/PhIiIiIyK/942som9khOUw4cPAwDq6uo8PhMiIiIy6/DhwwgGg1mPUfJdPNFoFPv378eQIUMQCNj7srBIJIK6ujq0tbXxPT8OY1u7h23tHra1e9jW7rGrrYUQOHz4MGpra1FQkH2ViZIRlIKCApxxxhmO/oyysjJ2eJewrd3DtnYP29o9bGv32NHWuSIncVwkS0RERNLhBIWIiIikwwlKipKSEtx9990oKSnx+lR8j23tHra1e9jW7mFbu8eLtlZykSwRERH5GyMoREREJB1OUIiIiEg6nKAQERGRdDhBISIiIulwgtLH448/jjPPPBMDBw7EpEmTsG3bNq9PSXlNTU248MILMWTIEAwbNgwzZ87Erl27ko45duwYFi1ahMrKSpx22mmYNWsW2tvbPTpj/3jggQcQCASwdOnSxNfY1vbZt28frrvuOlRWVmLQoEE455xz8M477yS+L4TAXXfdhZqaGgwaNAiNjY34+OOPPTxjNfX29uLOO+9EfX09Bg0ahLPOOgv33HNP0rtc2NbWvPnmm7jqqqtQW1uLQCCAl19+Oen7Rtq1s7MTc+fORVlZGcrLy3HjjTfiyJEj9pygICGEEGvXrhXFxcXiqaeeEh988IGYP3++KC8vF+3t7V6fmtKmTZsmnn76abFjxw7R2toqrrjiCjFixAhx5MiRxDE33XSTqKurExs2bBDvvPOOuPjii8VXv/pVD89afdu2bRNnnnmmOPfcc8WSJUsSX2db26Ozs1OMHDlSfOtb3xJbt24Vn3zyifjd734n/vznPyeOeeCBB0QwGBQvv/yyeO+998TVV18t6uvrxRdffOHhmavnvvvuE5WVleL1118Xe/bsES+++KI47bTTxL/9278ljmFbW/Ob3/xGfP/73xcvvfSSACDWrVuX9H0j7Tp9+nRx3nnniS1btog//vGP4q//+q/FnDlzbDk/TlC+dNFFF4lFixYl/r+3t1fU1taKpqYmD8/Kfw4ePCgAiE2bNgkhhOjq6hIDBgwQL774YuKYDz/8UAAQzc3NXp2m0g4fPizOPvts8cYbb4hLL700MUFhW9vn9ttvF1OmTMn4/Wg0Kqqrq8WPf/zjxNe6urpESUmJeOGFF9w4Rd+48sorxT/90z8lfe3aa68Vc+fOFUKwre2SOkEx0q47d+4UAMTbb7+dOOa3v/2tCAQCYt++fXmfE1M8AI4fP46WlhY0NjYmvlZQUIDGxkY0Nzd7eGb+Ew6HAQAVFRUAgJaWFpw4cSKp7UeNGoURI0aw7S1atGgRrrzyyqQ2BdjWdnr11VcxceJEfOMb38CwYcNw/vnnY/Xq1Ynv79mzB6FQKKmtg8EgJk2axLY26atf/So2bNiAjz76CADw3nvvYfPmzfj6178OgG3tFCPt2tzcjPLyckycODFxTGNjIwoKCrB169a8z0HJlwXa7dChQ+jt7UVVVVXS16uqqvCnP/3Jo7Pyn2g0iqVLl2Ly5MkYN24cACAUCqG4uBjl5eVJx1ZVVSEUCnlwlmpbu3Yttm/fjrfffrvf99jW9vnkk0/wxBNPYPny5fjnf/5nvP322/jOd76D4uJizJs3L9Ge6Z4pbGtz7rjjDkQiEYwaNQqFhYXo7e3Ffffdh7lz5wIA29ohRto1FAph2LBhSd8vKipCRUWFLW3PCQq5ZtGiRdixYwc2b97s9an4UltbG5YsWYI33ngDAwcO9Pp0fC0ajWLixIm4//77AQDnn38+duzYgVWrVmHevHken52//PrXv8bzzz+PNWvWYOzYsWhtbcXSpUtRW1vLtvY5pngAnH766SgsLOxXzdDe3o7q6mqPzspfFi9ejNdffx2///3vccYZZyS+Xl1djePHj6OrqyvpeLa9eS0tLTh48CAuuOACFBUVoaioCJs2bcIjjzyCoqIiVFVVsa1tUlNTgzFjxiR9bfTo0di7dy8AJNqTz5T8fe9738Mdd9yB2bNn45xzzsE3v/lNLFu2DE1NTQDY1k4x0q7V1dU4ePBg0vdPnjyJzs5OW9qeExQAxcXFmDBhAjZs2JD4WjQaxYYNG9DQ0ODhmalPCIHFixdj3bp12LhxI+rr65O+P2HCBAwYMCCp7Xft2oW9e/ey7U267LLL8P7776O1tTXxZ+LEiZg7d27iv9nW9pg8eXK/cvmPPvoII0eOBADU19ejuro6qa0jkQi2bt3Ktjapu7sbBQXJv6oKCwsRjUYBsK2dYqRdGxoa0NXVhZaWlsQxGzduRDQaxaRJk/I/ibyX2frE2rVrRUlJiXjmmWfEzp07xYIFC0R5ebkIhUJen5rSFi5cKILBoPjDH/4gDhw4kPjT3d2dOOamm24SI0aMEBs3bhTvvPOOaGhoEA0NDR6etX/0reIRgm1tl23btomioiJx3333iY8//lg8//zzorS0VDz33HOJYx544AFRXl4uXnnlFfE///M/YsaMGSx9tWDevHli+PDhiTLjl156SZx++unitttuSxzDtrbm8OHD4t133xXvvvuuACAeeugh8e6774rPPvtMCGGsXadPny7OP/98sXXrVrF582Zx9tlns8zYCY8++qgYMWKEKC4uFhdddJHYsmWL16ekPABp/zz99NOJY7744gtx8803i6FDh4rS0lJxzTXXiAMHDnh30j6SOkFhW9vntddeE+PGjRMlJSVi1KhR4sknn0z6fjQaFXfeeaeoqqoSJSUl4rLLLhO7du3y6GzVFYlExJIlS8SIESPEwIEDxVe+8hXx/e9/X/T09CSOYVtb8/vf/z7t83nevHlCCGPt2tHRIebMmSNOO+00UVZWJm644QZx+PBhW84vIESf7fiIiIiIJMA1KERERCQdTlCIiIhIOpygEBERkXQ4QSEiIiLpcIJCRERE0uEEhYiIiKTDCQoRERFJhxMUIiIikg4nKERERCQdTlCIiIhIOpygEBERkXQ4QSEiIiLp/H+iwc5s5T+3uwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -283,7 +495,9 @@ } ], "source": [ - "installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(10, 100)\n", + "np.random.seed(2023)\n", + "\n", + "installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(20, 200)\n", "ShowFacilityLocation(xC, yC, xF, yF)\n", "\n", "weak = FacilityLocationWeak(installation, service)\n", @@ -292,27 +506,47 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, + "metadata": { + "id": "lBM2isp1zDlF" + }, + "outputs": [], + "source": [ + "solver = pyo.SolverFactory(\"cbc\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PtIa7AkF3I2_" + }, + "outputs": [], + "source": [ + "def Solve(solver, model):\n", + " t = pc()\n", + " _ = solver.solve(model)\n", + " t = pc() - t\n", + " X, Y, v = GetSolution(model)\n", + " title = f\"{model.name} solved by {GetSolverName(solver)} in {t:.2f} seconds {v:.0f}\"\n", + " return X, Y, v, title" + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 487 + "height": 452 }, - "id": "rANO9Y-xUO-E", - "outputId": "1c36358c-2ca2-4b59-fd3e-a3c8d246bbec" + "id": "eD-SBFIkUO-F", + "outputId": "4da09e06-63fe-4861-947b-e1b417ba348c" }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 13.5 ms, sys: 13.1 ms, total: 26.6 ms\n", - "Wall time: 649 ms\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXQUVxuAn92NuycEQgQJBJfi7hLcrTillFJaKC1tKW1p8dICpbi7u1OgWHAChAARAsHixH13vh/77ZYlG4N45jlnD+TOnXvv7I6886pEEAQBEREREREREZEihLSwFyAiIiIiIiIi8i6igCIiIiIiIiJS5BAFFBEREREREZEihyigiIiIiIiIiBQ5RAFFREREREREpMghCigiIiIiIiIiRQ5RQBEREREREREpcogCioiIiIiIiEiRQxRQRERERERERIocooBSCtmwYQMSiYSnT5+Wmrl/+uknJBJJgc75PixYsAA3NzdkMhm1a9fO9f7nz59HIpGwZ8+evF9cEeRDjzc0NJS+fftibW2NRCLhzz//zNsFFgCtWrWiVatWeTpmcbleREo2ooBSBHjw4AFDhw6lbNmy6Ovr4+joyJAhQ3jw4MEHjTt79mwOHDiQN4sUyXdOnTrFtGnTaNq0KevXr2f27NmZ9t22bVuxfJgWNb788ktOnjzJ9OnT2bx5M506dSrsJRUYiYmJ/PTTT5w/f76wl5Itr169YujQobi7u2NqaoqFhQUNGjRg48aNvFutZd++fQwYMAA3NzeMjIxwd3dnypQpREdHa/RTCbeZfX777TeN/qdPn6ZZs2YYGRlhaWlJ3759tb5o7dy5k6FDh1KpUiUkEsl7CY9r166latWqGBgYUKlSJZYuXZrrMUoCOoW9gNLOvn37GDRoEFZWVowePRpXV1eePn3K2rVr2bNnDzt27KBXr17vNfbs2bPp27cvPXv21GgfNmwYAwcORF9fPw+OQCSvOHv2LFKplLVr16Knp5dl323btuHj48PkyZMLZnEllLNnz9KjRw+mTp1a2EspcBITE/n5558BMjxEf/jhB7799ttCWJV2IiIiePHiBX379qV8+fKkpaVx+vRpRowYwePHjzWE+XHjxuHo6MjQoUMpX7489+/f56+//uLYsWPcvn0bQ0NDAKpWrcrmzZszzLV582ZOnTpFhw4d1G1HjhyhR48e1K1bl7lz5xIbG8vixYtp1qwZd+7cwdbWVt13+fLl3Lp1i48++ojIyMhcH+vKlSsZP348ffr04auvvuLixYtMmjSJxMREvvnmm1yPV6wRRAqNgIAAwcjISKhSpYoQFhamsS08PFyoUqWKYGxsLAQGBr7X+MbGxsLw4cPzYKV5x/r16wVACAoKKtB5Z86cKRT1033kyJGCsbFxjvp27dpVcHZ2ztB+7tw5ARB2796dx6srmnzo8UokEuGzzz7Ls/UkJSUJcrk8z8bLCS1bthRatmyZ6/3Cw8MFQJg5c2aer6mg8PT0FIyNjYX09HR127lz5zL027hxowAIq1evznbMihUrCpUqVdJo8/DwECpWrCikpKSo27y9vQWpVCp89dVXGn2Dg4PV50C1atVy9dskJiYK1tbWQteuXTXahwwZIhgbGwtRUVE5HqskIJp4CpEFCxaQmJjIqlWrNCRwABsbG1auXElCQgLz589Xt6tsw48ePaJ///6YmZlhbW3NF198QXJysrqfRCIhISGBjRs3qlWWI0aMALT7gbi4uODp6cn58+epX78+hoaG1KhRQ63+3bdvHzVq1MDAwIB69epx584djfXeu3ePESNG4ObmhoGBAQ4ODowaNeq93iAWLlyIRCLh2bNnGbZNnz4dPT093rx5A8DFixfp168f5cuXR19fHycnJ7788kuSkpKynOPp06dIJBI2bNiQYZtEIuGnn37SaHv58iWjRo3C3t4efX19qlWrxrp163J0POnp6cyaNYsKFSqgr6+Pi4sL3333HSkpKRpzrl+/noSEBPXvpW1toHzbPXr0KM+ePVP3dXFx0eijUCj47bffKFeuHAYGBrRt25aAgIAMY127do1OnTphbm6OkZERLVu25PLly1kejyAI2NjY8NVXX2nMZ2FhgUwm01Clz5s3Dx0dHeLj49Vtjx49om/fvlhZWWFgYED9+vU5dOiQxhxRUVFMnTqVGjVqYGJigpmZGZ07d+bu3btZrg0gJSUFT09PzM3NuXLlitY+qmtAEASWLVum/h5VPHnyhH79+mFlZYWRkRGNGjXi6NGjGmOoTAQ7duzghx9+oGzZshgZGREbG8uIESMwMTEhODgYT09PTExMKFu2LMuWLQPg/v37tGnTBmNjY5ydndm2bZvG2Jn5gOTEhys1NZUff/yRevXqYW5ujrGxMc2bN+fcuXPqPk+fPlXfc37++Wf18avOe23z5+Q8hv/uJZcuXaJBgwYYGBjg5ubGpk2bMqw1MDCQwMDATI8lO1xcXEhMTCQ1NVXdps2kotJCP3z4MMvxrl+/TkBAAEOGDFG3RUVF4evrS69evTQ0m7Vq1aJq1ars2LFDYwwnJyek0vd7tJ47d47IyEgmTJig0f7ZZ5+RkJCQ4Rws6YgCSiFy+PBhXFxcaN68udbtLVq0wMXFRetJ2b9/f5KTk5kzZw5dunRhyZIljBs3Tr198+bN6Ovr07x5czZv3szmzZv55JNPslxPQEAAgwcPplu3bsyZM4c3b97QrVs3tm7dypdffsnQoUP5+eefCQwMpH///igUCvW+p0+f5smTJ4wcOZKlS5cycOBAduzYQZcuXTLYiLOjf//+SCQSdu3alWHbrl276NChA5aWlgDs3r2bxMREPv30U5YuXUrHjh1ZunQpH3/8ca7mzIrQ0FAaNWrEmTNnmDhxIosXL6ZixYqMHj06R34gY8aM4ccff6Ru3br88ccftGzZkjlz5jBw4EB1n82bN9O8eXP09fXVv1eLFi20jvf9999Tu3ZtbGxs1H3fXcfcuXPZv38/U6dOZfr06Vy9elXjpgtK80aLFi2IjY1l5syZzJ49m+joaNq0acP169czPR6JRELTpk25cOGCuu3evXvExMQAaAg4Fy9epE6dOpiYmABKf6tGjRrx8OFDvv32W37//XeMjY3p2bMn+/fvV+/35MkTDhw4gKenJ4sWLeLrr7/m/v37tGzZklevXmW6tqSkJLp168aVK1c4c+YMTZo00dqvRYsWavV++/bt1d8jKH/vJk2acPLkSSZMmMBvv/1GcnIy3bt311ijilmzZnH06FGmTp3K7Nmz1Q8xuVxO586dcXJyYv78+bi4uDBx4kQ2bNhAp06dqF+/PvPmzcPU1JSPP/6YoKCgTI8rN8TGxrJmzRpatWrFvHnz+OmnnwgPD6djx454e3sDYGtry/LlywHlw1t1/L1798503JycxyoCAgLo27cv7du35/fff8fS0pIRI0Zk8Ktr27Ytbdu2zfGxJSUlERERwdOnT9m4cSPr16+ncePGarNNZoSEhADKF7+s2Lp1K4DGtaISwLTNYWRkxKtXr9TjfyiqF7/69etrtNerVw+pVJrhxbDEU8ganFJLdHS0AAg9evTIsl/37t0FQIiNjRUE4T9TRffu3TX6TZgwQQCEu3fvqtsyM/FoM7M4OzsLgHDlyhV128mTJwVAMDQ0FJ49e6ZuX7lypQBoqFITExMzzLN9+3YBEC5cuJDl3Npo3LixUK9ePY2269evC4CwadOmLOedM2eOIJFINNb8roknKChIAIT169dn2J931N6jR48WypQpI0RERGj0GzhwoGBubq51DSq8vb0FQBgzZoxG+9SpUwVAOHv2rLpt+PDheWbiqVq1qoY6evHixQIg3L9/XxAEQVAoFEKlSpWEjh07CgqFQt0vMTFRcHV1Fdq3b5/l/AsWLBBkMpn6vFyyZIng7OwsNGjQQPjmm28EQRAEuVwuWFhYCF9++aV6v7Zt2wo1atQQkpOT1W0KhUJo0qSJhlo9OTk5g6kkKChI0NfXF3755ZcMx7t7924hLi5OaNmypWBjYyPcuXMny/WrADKYeCZPniwAwsWLF9VtcXFxgqurq+Di4qJel2puNze3DOfA8OHDBUCYPXu2uu3NmzeCoaGhIJFIhB07dqjbHz16lOGcy8wkqe36edfEk56ervHbq+a2t7cXRo0apW7LysTz7vy5OY9V95K3r/uwsDBBX19fmDJlisb+zs7OWs/jzJgzZ44AqD9t27YVgoODs91v9OjRgkwmE/z8/DLtk56eLtjb2wsNGjTQaFedx23bttVoj4iIEIyNjQVAuHnzptYxc2vi+eyzzwSZTKZ1m62trTBw4MAcj1USEDUohURcXBwApqamWfZTbY+NjdVo/+yzzzT+/vzzzwE4duzYe6/Jw8ODxo0bq/9u2LAhAG3atKF8+fIZ2p88eaJue/vtIjk5mYiICBo1agTA7du3c72WAQMGcOvWLQ31786dO9HX16dHjx5a501ISCAiIoImTZogCEKevG0IgsDevXvp1q0bgiAQERGh/nTs2JGYmJgsj0/1e7xtDgGYMmUKQL6pbEeOHKmhjlZp6VS/mbe3N/7+/gwePJjIyEj1MSUkJNC2bVsuXLigoSF7l+bNmyOXy9UmlIsXL9K8eXOaN2/OxYsXAfDx8SE6Olo9d1RUFGfPnqV///7ExcWp54yMjKRjx474+/vz8uVLAPT19dVqcrlcTmRkJCYmJri7u2v9vmNiYujQoQOPHj3i/Pnz7xWireLYsWM0aNCAZs2aqdtMTEwYN24cT58+xdfXV6P/8OHDM32DHzNmjPr/FhYWuLu7Y2xsTP/+/dXt7u7uWFhYaFxPH4JMJlP/9gqFgqioKNLT06lfv/57XYuQ+/PYw8NDQzNsa2uLu7t7hmN8+vRprlIODBo0iNOnT7Nt2zYGDx4MkK05d9u2baxdu5YpU6ZQqVKlTPv9888/hIaGZtA0SqVSPvnkE/755x+mT5+Ov78/t27don///mrTUnZryClJSUmZOsgbGBjk2TzFBVFAKSRUgodKUMmMzASZdy+0ChUqIJVKPyi/yNtCCIC5uTmgtKlqa1f5gYDy4fPFF19gb2+PoaEhtra2uLq6AqhV/7mhX79+SKVSdu7cCSgFhd27d9O5c2fMzMzU/YKDgxkxYgRWVlaYmJhga2tLy5Yt33vedwkPDyc6OlrtJ/T2Z+TIkQCEhYVluv+zZ8+QSqVUrFhRo93BwQELCwutfjZ5wbu/pcokpvrN/P39AeXD9d3jWrNmDSkpKVl+f3Xr1sXIyEgtjKgElBYtWnDz5k2Sk5PV21QP+oCAAARBYMaMGRnmnDlzJvDfd6lQKPjjjz+oVKkS+vr62NjYYGtrq2FKepvJkydz48YNzpw5Q7Vq1d77ewPlb+bu7p6hvWrVqurtb6M6z9/FwMAgg2+Zubk55cqVy+DfYW5urnE9fSgbN26kZs2aGBgYYG1tja2tLUePHn3vayK35/G75x8oz8EPPUZnZ2fatWvHoEGD2Lp1K25ubrRr1y7TB/fFixcZPXo0HTt2zBA2/C5bt25FJpMxYMCADNt++eUXRo8ezfz586lcuTL169dHR0eH0aNHA6hNmB+KoaGhhj/N2yQnJ2dryippiGHGhYS5uTllypTh3r17Wfa7d+8eZcuW1XgoayMvkirJZLJctQtv+Zb079+fK1eu8PXXX1O7dm1MTExQKBR06tQpyzfxzHB0dKR58+bs2rWL7777jqtXrxIcHMy8efPUfeRyOe3btycqKopvvvmGKlWqYGxszMuXLxkxYkSW82b2fcnlco2/VWMMHTqU4cOHa92nZs2a2R5PQSe9yu43Ux3XggULMtU2ZHXT1dXVpWHDhly4cIGAgABCQkJo3rw59vb2pKWlce3aNS5evEiVKlXUD2nVnFOnTqVjx45ax1U9AGfPns2MGTMYNWoUs2bNwsrKCqlUyuTJk7X+rj169GDHjh3MnTuXTZs2vbeT4vuQ2UPjQ66nnJ6f2tiyZQsjRoygZ8+efP3119jZ2SGTyZgzZ84HOaRmta53yckx5gV9+/Zl9erVXLhwIcM5dffuXbp370716tXZs2cPOjqZP+6SkpLYv38/7dq1w97ePsN2PT091qxZw2+//Yafnx/29vZUrlyZwYMHaxXc3pcyZcogl8sJCwvDzs5O3Z6amkpkZCSOjo55Mk9xQRRQChFPT09Wr17NpUuXNNTJKi5evMjTp0+1Orf6+/trvLkFBASgUCg0ojkK6qH45s0b/vnnH37++Wd+/PFHjTV+CAMGDGDChAk8fvyYnTt3YmRkRLdu3dTb79+/j5+fHxs3btRwij19+nS2Y6s0Cu8mb3r3TdDW1hZTU1Pkcjnt2rXL9TE4OzujUCjw9/dXv4GD0hEzOjoaZ2fnXI8JH/7bVqhQAQAzM7P3Oi5QmnnmzZvHmTNnsLGxoUqVKkgkEqpVq8bFixe5ePEinp6e6v5ubm6AUrjJbs49e/bQunVr1q5dq9EeHR2t1dGxZ8+edOjQgREjRmBqaqp2AH0fnJ2defz4cYb2R48eqbfnN2+fnxYWFur2nGjc9uzZg5ubG/v27dM4T1RaKhW5OYfy6zz+UFSak3c1Q4GBgXTq1Ak7OzuOHTuWrYbj0KFDxMXFZTDvvIu9vb1agJHL5Zw/f56GDRvmmQZF9bJw8+ZNunTpom6/efMmCoXig0yXxRHRxFOIfP311xgaGvLJJ59kCMeNiopi/PjxGBkZ8fXXX2fYVxWuqEKVabBz587qNmNj4wwP4PxA9bb07tvRh2Y67dOnDzKZjO3bt7N79248PT0xNjbOcl5BEFi8eHG2Y5uZmWFjY6MRiQLw999/a/wtk8no06cPe/fuxcfHJ8M44eHhWc6jusm8+10sWrQIgK5du2a7Vm0YGxt/kAmrXr16VKhQgYULF2qEAKvI7rhAKaCkpKTw559/0qxZM/UDTxU59urVKw0/BDs7O1q1asXKlSt5/fp1lnPKZLIM59Pu3bvVPira+Pjjj1myZAkrVqz4oIRWXbp04fr163h5eanbEhISWLVqFS4uLnh4eLz32DlFJUC+fX6q0gZkh7br4tq1axrHA8oIFMgopGsjv87jnIYZZ3Y+rl27FolEQt26ddVtISEhdOjQAalUysmTJzOY2bSxbds2jIyMcpUUc+HChbx+/Vrth5NbEhMTefToEREREeq2Nm3aYGVllUHAXr58OUZGRu/9PRdXRA1KIVKpUiU2btzIkCFDqFGjRoZMshEREWzfvl19s3qboKAgunfvTqdOnfDy8mLLli0MHjyYWrVqqfvUq1ePM2fOsGjRIhwdHXF1dVU7uOYlZmZmtGjRgvnz55OWlkbZsmU5derUB4dN2tnZ0bp1axYtWkRcXFwG23CVKlWoUKECU6dO5eXLl5iZmbF3794c27nHjBnD3LlzGTNmDPXr1+fChQv4+fll6Dd37lzOnTtHw4YNGTt2LB4eHkRFRXH79m3OnDlDVFRUpnPUqlWL4cOHs2rVKqKjo2nZsiXXr19n48aN9OzZk9atW+fuS/k/9erVY+fOnXz11Vd89NFHmJiYaGiXskMqlbJmzRo6d+5MtWrVGDlyJGXLluXly5ecO3cOMzMzDh8+nOUYjRs3RkdHh8ePH2uEuLdo0UJ9g303hH7ZsmU0a9aMGjVqMHbsWNzc3AgNDcXLy4sXL16o85x4enryyy+/MHLkSJo0acL9+/fVPgdZMXHiRGJjY/n+++8xNzfnu+++y/F3ouLbb79l+/btdO7cmUmTJmFlZcXGjRsJCgpi7969BWI+6tChA+XLl2f06NF8/fXXyGQy1q1bh62tLcHBwVnu6+npyb59++jVqxddu3YlKCiIFStW4OHhoSGMGhoa4uHhwc6dO6lcuTJWVlZUr16d6tWrZxgzv85jVYhxdr5zv/32G5cvX6ZTp06UL1+eqKgo9u7dy40bN/j88881TCydOnXiyZMnTJs2jUuXLnHp0iX1Nnt7e9q3b68xdlRUFMePH6dPnz6ZakK2bNnC3r17adGiBSYmJpw5c4Zdu3YxZswY+vTpo9H3woULasEyPDychIQEfv31V0B5bajSB1y/fp3WrVszc+ZMdf4ZQ0NDZs2axWeffUa/fv3o2LEjFy9eZMuWLfz2229YWVll842WMAojdEhEk3v37gmDBg0SypQpI+jq6goODg7CoEGD1CGhb6MK//P19RX69u0rmJqaCpaWlsLEiROFpKQkjb6PHj0SWrRoIRgaGgqAOuQ4szDjd7MXCoL2MExViO6CBQvUbS9evBB69eolWFhYCObm5kK/fv2EV69eZQhjzG0m2dWrVwuAYGpqmuH4BEEQfH19hXbt2gkmJiaCjY2NMHbsWOHu3bsZQoi1hW0mJiYKo0ePFszNzQVTU1Ohf//+QlhYmNbQy9DQUOGzzz4TnJyc1L9R27ZthVWrVmV7DGlpacLPP/8suLq6Crq6uoKTk5Mwffp0jVBbQchdmHF8fLwwePBgwcLCQgDUoZqZZVbNLKz6zp07Qu/evQVra2tBX19fcHZ2Fvr37y/8888/OVrHRx99JADCtWvX1G0vXrwQAMHJyUnrPoGBgcLHH38sODg4CLq6ukLZsmUFT09PYc+ePeo+ycnJwpQpU4QyZcoIhoaGQtOmTQUvL68MIbWZHe+0adMEQPjrr7+yXL+281u1xr59+woWFhaCgYGB0KBBA+HIkSMafbLKYpvZb9myZUuhWrVqGdq1XX+3bt0SGjZsKOjp6Qnly5cXFi1alKMwY4VCIcyePVtwdnYW9PX1hTp16ghHjhwRhg8fniGk98qVK0K9evUEPT09jfNe2/WS0/M4s3uJtoy3OQ0zPnXqlODp6Sk4OjoKurq6gqmpqdC0aVNh/fr1GmHygiBohCG/+9EW8rtixQoBEA4dOpTp/NeuXRNatGghWFpaCgYGBkKtWrWEFStWZJhbEP777rR93r6vqM4fbWHeq1atEtzd3QU9PT2hQoUKwh9//KF1rpKORBDy2GtJJF/56aef+PnnnwkPD8826ZCIiIiIiEhxRfRBERERERERESlyiAKKiIiIiIiISJFDFFBEREREREREihyiD4qIiIiIiIhIkUPUoIiIiIiIiIgUOUQBRURERERERKTIUSwTtSkUCl69eoWpqWmB1zgREREREREReT8EQSAuLg5HR8dskx4WSwHl1atXGSrsioiIiIiIiBQPnj9/Trly5bLsUywFFFNTU0B5gNlV+RUREREREREpGsTGxuLk5KR+jmdFsRRQVGYdMzMzUUAREREREREpZuTEPUN0khUREREREREpcogCioiIiIiIiEiRQxRQRERERERERIocuRZQLly4QLdu3XB0dEQikXDgwAGN7YIg8OOPP1KmTBkMDQ1p164d/v7+Gn2ioqIYMmQIZmZmWFhYMHr0aOLj4z/oQERERERERERKDrkWUBISEqhVqxbLli3Tun3+/PksWbKEFStWcO3aNYyNjenYsSPJycnqPkOGDOHBgwecPn2aI0eOcOHCBcaNG/f+RyEiIiIiIiJSovigWjwSiYT9+/fTs2dPQKk9cXR0ZMqUKUydOhWAmJgY7O3t2bBhAwMHDuThw4d4eHhw48YN6tevD8CJEyfo0qULL168wNHRMdt5Y2NjMTc3JyYmRoziERERERERKSbk5vmdpz4oQUFBhISE0K5dO3Wbubk5DRs2xMvLCwAvLy8sLCzUwglAu3btkEqlXLt2Teu4KSkpxMbGanxERERERERESi55KqCEhIQAYG9vr9Fub2+v3hYSEoKdnZ3Gdh0dHaysrNR93mXOnDmYm5urP2IWWRERERERkZJNsUjUNn36dL766iv136pMdCIiIrkg+jkkRma+3cgaLMTrqjCQKwSuB0URFpeMnakBDVytkEnFOmMipZs8FVAcHBwACA0NpUyZMur20NBQateure4TFhamsV96ejpRUVHq/d9FX18ffX39vFyqiEjpIvo5/FUP0lMy76OjDxNviUJKAXPC5zU/H/bldcx/gQRlzA2Y2c2DTtXLZLGniEjJJk9NPK6urjg4OPDPP/+o22JjY7l27RqNGzcGoHHjxkRHR3Pr1i11n7Nnz6JQKGjYsGFeLkdERERFYmTWwgkot2elYRHJc074vObTLbc1hBOAkJhkPt1ymxM+rwtpZSIihU+uNSjx8fEEBASo/w4KCsLb2xsrKyvKly/P5MmT+fXXX6lUqRKurq7MmDEDR0dHdaRP1apV6dSpE2PHjmXFihWkpaUxceJEBg4cmKMIHhERkfwjKT0JRWpCYS+jVCBXCMw89ABtYZQCIAF+PuxLew8H0dwjUirJtYBy8+ZNWrdurf5b5RsyfPhwNmzYwLRp00hISGDcuHFER0fTrFkzTpw4gYGBgXqfrVu3MnHiRNq2bYtUKqVPnz4sWbIkDw6n9CHarkXykqbrmnFHoijsZZQK9OU1cEidk+l2AXgdk8z1oCgaV7AuuIV9AOL9SCQv+aA8KIWFmAdFiWi7FnmbdEU6z2Oe8+TNk/8+0cp/TSIDOZcsz3aMusSLAkoBYZTeAtu0adn2WzywNj1qly2AFX0Y4v1IJCfk5vldLKJ4RDKisl2/K12qbNfLh9YVbwolkDdJbzQFkLeEkGfRz5AL2oWQOoIUMHnveXUkOujr6KMn1UNHpoMECUiUyRlT5amkydNIlaeSLqS/9xxFAQkS9GR66o+OVEfjb12prvJfmea/6v6Sd/q/tV1XqqveX0+mx+tIE7ZeyH5NaUIEz6LTtY4rlRSNcmri/UgkPxAFlGKIXCHw82Ff0XZdAkmTpxEcE6xVAHny5gnRydFZ7q8v08fV0hU3SzfcLNyU/1q64ZGeBntG52otEiToynTVgkd6WjoJaPqnyCQy3CzdcLdxp7JVZSpbV8bN0g1XC1csDS1JU6SphZd3P2mKTNpz2f9DxkpXaApUAgIp8hRS5Nk4FOcFgpSyrEWGNRIt8QoCCuRE0u9gd8hEqyWTyDIViLQJVhnaZbroSTO252YsHYku3x+Ie+/7kWgWEskMUUAphlwPisrg9f82xdF2XVoQBIGopKhMtSDBMcEohKxNLA4mDmrB420hxM3SjTKmZTK8VQuCwN+HxlEpB+vb1nsbWyN82P9oPw/CH5AqT1Vvq2hZEWcLZ/Rl+ryOf41fpB8JaQn4R/njH+WfYSxTPVMqWyuFFndrd+W/Nu5Uta2Kid77a3PyEoWg0BBishSCPlTQUmTcFvXmKiEvPPnvUa5C+Xe6yQ7MdEzU/d/VkMkFOUnpSSSlJxXgt6bJh/jSiGYhkawQBZRiSFhc5sLJ+/QTyVtS5ak8i36WqRYkNiXrUg0GOgaZCiAuFi4Y6xnneC3pinQ+OfwJp++sZxQmGJL5m2kSAn7JkcxqM4tZbWbhH+nP/kf72f9oP1dfXCXgTQABb5QRfNXtqvNloy9pVr4ZOlId/KP8eRzxmMeRj/GL9CMoOoi41Dhuvb7Frde3MszlaOr4n9DylvDiYuGCjrTgbktSiRR9HX30dQovz5L2h7Th/x/SJzT6yhVyDYEoM6EpLzVU2QltSXFVeUuOzZR370eiWUgkO0Qn2WKIV2Akg1Zfzbbf9rGNRA1KPiAIAhGJEZlqQZ7HPEfQqvD+D0dTx0yFEHsT+zzxLUhMS2TAngEc8TsCgJMgoYaJI6/jX2NhYMHCDgsZc2gMpnomdK3syV8+2wnV0eXk0JO0cmmlMdaruFccfHSQfY/2cf7peQ3TiIuFCz3de9K7am+aODVBJpWRkp7CkzdP1ALL44jH+EUp/w1PDM90zbpSXSpYVdAUXKzdcbdxx9bIFomkZKr+i7OZ433uR3KFQLN5ZzPVBEsAB3MDLn3Tpth8DyI5IzfPb1FAKYaoLu6QmGStj8HSdHHn1409JT2Fp9FPM9WCxKfGZ7m/ka5RlloQQ13DD15jVkQmRtJteze8XnihI9UhXZGOka4Rfar0YfP9zQyvNZy13dfi8LsDEYkRnP34LH/f/Js9vnsw1zfn0qhLVLerrnXsN0lvOOJ3hP2P9nMi4ISGecHWyJYe7j3oVbUXbV3batVMvEl6oxRaVMLL///1i/QjOT1zrZ+5vrnS1+Ud4aWSdSWMdI0+6PsqzgJCYfM+9yPxJav0IkbxlHBkUgkzu3nw6ZbbSEDrTWFmN48Sf4P9EPu1IAiEJYRlKoC8jH2ZrRaknFm5TIUQO2O7Qnvbfx7znI5bOvIw4iEmeiZqYWpF1xXMPD8TgO7u3ZFJZXSu2JnN9zZzPOA4m3ttJiQ+hEvBl+i8tTNeo70oZ1Yuw/iWhpYMqzWMYbWGkZiWyKnAU+x7uI/DfocJTwxnzZ01rLmzBlM9U7pU6kKvKr3oUqkLpvqm6v0blmtIw3KamaMVgoIXsS+U2pb/Cy4q4eVZ9DNiUmK4/vI6119ez7AmJzOnDOaiytaVcTZ3RiaVZfl9iX4QH0ZW9yPVFfDu/Ug0U4vkBFGDUozRdmO1MBKY27teib+xZma/Vt0Clw+tS0t3iyy1IIlpiVnOYaxrTAWrCloFEGcLZwx0DLLcvzB4EPaAjls68jLuJWVMypCcnsyb5DeMrTuWLxp+QfXl1dGX6RMxLQITPRN2PdjFgD0DqGpTFd/PfIlKiqLZumY8jHhIDbsaXBx5EXMD8xzNnSZP499n/7L/4X4OPD7Aq7hX6m16Mj3aubWjd5XedHfvjq2xba6OKykticA3gRrCi+rfqKSoTPfTk+lR0aqi0kz0jvBiY2STo/OopF9LeUVuBD1Rg1J6EU08pQiVanruhb85GbSbCU3as6jT74W9rHwlO/s1CAjSNwTrjcg0PBOUYbRO5k5aBRA3SzdsjGyKlc/D5eDLeG73JDo5mio2VTDVM+XGqxvUdqiN12gvFnkt4vuz39OlUheODj4KQHRyNDbzbZALcgInBeJm6caz6Gc0XtuY1/Gvae3SmhNDT6An08vVWhSCghsvb7D/0X72PdynEeUjlUhpVr4Zvar0oleVXjhbOH/QcUcmRmr4uqj+7x/lrxGF9C5WBtaYxy1FkW4KWpyHS5OpNK/IqalMNFOXXkQBpRSy5d4Whu0fRsOyDbk6Jvs3k+JMTt++QvSmo2f4NFMtSHnz8oUavZGXHHp8iAF7BpCcnkzjco2pX6Y+S28sxVTPlNuf3KaiVUUarWnEtZfXWOm5knH1xqn3bb2xNeefnmdJpyV83vBzALxDvGmxvgVxqXEMrjGYzb02v7fjriAI+Ib7qiOCbr++rbG9jkMdelXpRe+qvfGw9cgzoVCukBMcE6zVUfd57PNsw2NViG/x+YNKe6VAoZEHRtRelWxEAaUUEvQmCLclbuhKdYn5NibfnTALk4PeL/lih3e2/X7rXZHBH1UuVlqQ92HN7TV8cuQTFIICz8qeDK85nH57+gGwp98e+nj04XXcaxwXKYtxvvzqJY6m/xXm/P3K70w9PZUOFTpwcuhJdfvpwNN02daFdEU605pMY177eXmy3mfRzzjw6AD7H+3nYvBFjbwvlawqKTUrVXvRoGyDfMuUmpCawLor9/j9RObmIRXFJdV8cWTemZMsPfMaHf4z+Yn+PyWb3Dy/i0aeZJEPxsXCBUdTR9IUadx4daOwl5Ov2JnmzPfDzbp4mWhyiyAIzPp3FmMPj0UhKBhVexR/dPyDcUeU2pEvGn5BH48+AOpQ4wZlG2gIJwBdK3cF4PzT8xrRSe0rtGdt97UAzL8yn7+u/5Un63a2cOaLRl9wfsR5QqaEsKbbGrpW6oqeTA//KH/mX5lP47WNcfrDiQlHJ3A68DRp8rQ8mVuFsZ4x9Z0q56hvTs83kdzzIG4rLw1G07CGF4sH1mb72EZc+qaNKJyIAKKAUmKQSCQ0dWoKKH0RSjINXK0oY26QacoxCcq3sAauVgW5rAJFrpAz8dhEfjz/IwDfN/+eZV2WMXjvYN4kv6FB2QbMbz9f3f/g44MAdK/cPcNY7tbuVLCsQKo8lTNPzmhs+7jWx/zW5jcAJh2fxP6H+/P0OGyNbRlddzRHBh8h4usIdvbdycDqAzHVM+VV3CuW31xOhy0dsFtox7D9w9j/cH+2zs05RTyPCpeE1AT2PdwHEgWTW3SlR+2yNK5gLfqc5CNyhYBXYCQHvV/iFRiJXFG0DSiigFKCUAsoz0u2gKIKa4SMro2ZhTWWJJLTkxm4dyB/3/wbCRKWdl7Kr21+ZdqZadx4dQNLA0t29d2ldmxNSE1QCx49qvTIMJ5EIqFrJaUW5ajf0Qzbpzebzvh64xEQGLxvMFeeX8mX4zLVN6V/tf5s77Od8K/DOTb4GGPqjMHWyJbo5Gi23NtC7129sZlvQ6+dvdh0d1OWETzZUdrPo8LmwKMDJKQlUMGyAo3KNSrs5ZR4Tvi8ptm8swxafZUvdngzaPVVms07ywmf14W9tEwRBZQSRNPy/wko2dVzKe50ql6G5UPr4mCuqX53MDco0c51MckxdNrSiT2+e9CT6bGj7w4mNpjI7ge7WXp9KQCbe23WiIw5FXiKFHkKrhauVLOtpnVcz8qeABz1P8q7bmkSiYSlXZbSrXI3ktOT6ba9G48jHufTESrR19Gnc6XOrO6+mtdTXnNhxAW+bPQlLhYuJKUnceDRAYYfGI7dAjvabWrHsuvLeBn7MtfzlNbzqCiw+d5mAIbWHFqiTbFFAZVD8ruRj6qyAkVVSBGdZEsQafI0LOZZkJiWiM+nPlSz0/4wKkmUpgygr+Je0XlrZ+6F3sNUz5SDAw/S2rU1fpF+1F9Vn7jUOL5t+i1z2mlGpow8OJIN3huY3HAyf3T6Q+vYKekpWM+3JiEtgVvjblG3TN0MfRLTEmmzsQ3XXl7DxcIFr9FeOJg45MuxZoYgCNwNvcu+h/vY/2g/PmE+Gtsblm2odrKtbJ0zHxMoXedRUeB13GvK/VEOhaDA/3N/KlpVLOwllViKWlkB0Um2lKIr06VhWWV2zpJu5lEhk0poXMG6xNuv/SL9aLK2CfdC72FvbM+/I/6ltWtrktKS6Le7H3GpcbRwbsGsNrM09pMr5GoH2e7uGf1PVOjr6NOhQgfgP4fadzHSNeLwoMNUtKrI0+indN3WlbiUuDw6wpwhkUio7VCbX1r/wv1P7+P/uT/z282ncbnGAFx7eY1v//kW97/cqfZ3NX44+wO3Xt3KoBV6l9JyHhUVtvtsRyEoaFyusSic5DPXg6KyyBmlWW26qCEKKCWM0uKHUpq4/vI6Tdc15VnMMypaVeTK6CvUKVMHgM+Pf8690HvYGduxvc/2DJWAvV54EZEYgaWBJc3KN8tyHpWZJzMBBZROrSeGnMDWyJbbr2/Tb3e/PI+wyQ0VrSryddOvuTL6Cq++esXyrsvpUKEDOlIdfMN9+e3ib9RfXR+XxS5MPjGZf5/+i1whL7T1iijZcm8LoDTviOQvxbmsgCiglDBUD6GSHslTWjgRcILWG1sTkRhBfcf6XB51GTdLNwA2em9k7Z21SJCwrfe2DOHDAAcfKaN3ulTqgq5MN8u5ulTqAsCNVzcIjQ/NtF8FqwocHXwUI10jTgaeZNyRcdlqKAqCMqZlGF9/PCeHniRsahibe22md9XeGOkaERwTzOJri2m1sRUOvzsw+uBojvgdybI4oUj+8CDsAXdC7qAr1WVAtQGFvZwSj3kO62gWxXB6UUApYTQq1wgJEgLfBGb5kBEp+my+u5lu27uRmJZIe7f2nP34LHbGdgD4hPnw6dFPAfip1U+0dWurdYxDfocA6OGeMXrnXRxMHKjvWB+AY/7Hsuz7UdmP2NV3FzKJjA3eG/jp/E85PawCwdLQkqE1h7K3/17Cvw7nwIADDK81HCtDKyISI1jnvY5u27thu8CW/rv7s/3+dmJTYgt72aUClXNsl0pdsDYSM/TmJwFRAUz6pyvphCOgPXCiKIfTiwJKCcPcwJwa9jUA0cxTnFl4ZSEfH/iYdEU6g2sM5sjgI+pqwPGp8fTd1Zek9CQ6VOjADy1+0DrGo4hH+EX6oSvVpWPFjjmaVx1u7J8x3DhD38pdWd51OQC/XPiF1bdW52iOgsZI14geVXqwoecGQqaEcGbYGT776DPKmpYlPjWe3b67GbxvMDbzbeiytQurb60Whft8QiEo2Hp/KwDDag4r5NWUbA4/Pkz9VfW5H3YXuelOJEiLXTi9KKCUQFR+KJeCLxXySkRyi0JQMOXkFL4+/TUAXzX6is29NqtzmgiCwCdHPuFx5GPKmpZlS68tmaaDP/RYqT1p49oGM/2cRbup/FBOBZ7KstCeirH1xjKjxQwAPj36qdY8KkUJXZkubd3a8leXvwj+MphrY67xbdNvcbd2J02RxvGA44w7Mo4yv5eh+frmLPJaRNCboMJedonh36f/8iL2Beb65uoMxiJ5i1wh54ezP9B9R3diUmJo4tSEW5PWsqIYhtPrZN9FpLjR1Kkpy28uFzUoxYxUeSqjDo5Sv2EuaL+AqU2mavRZeWsl2+5vQyaRsaPvDmyNbbUNBbyVPTaL6J13qVumLvbG9oQmhHLx2cVMTUdv83Orn3kR+4L13uvpv6c/54ef56OyH+V4zsJCKpHSoGwDGpRtwJx2c3gY/lAdvnzr9S0uBV/iUvAlppyaQi37WvSu2pteVXpR3a56pnk7xHDlrFGZd/pX64+BTtHzeSjuRCRGMHjvYE4/OQ3ApAaTWNBhAXoyPRyrQ3sPh2J1fop5UEogT6Of4rrYFR2pDjHfxmCkm0MvKZFCIy4ljr67+3Iq8BQ6Uh3WdV/HsFqaKvDbr2/TeG1jUuWpWoWXtwlLCMNhoQMCAsGTg3Eyd8rxWkYfHM0673VZ5k15lzR5Gt22d+Nk4ElsjWzxGu1FBasKOZ6zqBEcE6wuaHjh2QWNxIcVLCuoc600KtdIrcE64fOanw/7aoR0ioXv/iMxLRGHhQ7EpcZxYcQFmjs3L+wllSiuv7xO3119eR77HCNdI9Z0W8OgGoMKe1kZEKsZl3IEQaDcH+V4FfeK88PP09KlZWEvSSQLwhLC6LqtKzdf3cRI14i9/ffSqWInjT7RydHUW1WPJ2+e0K1yNw4OPJhl9s11d9Yx+tBo6papy61xt3K1nv0P99N7V28qWlXE/3P/HO8XlxJHq42tuP36tjIcetSVLDU8xYXwhHAO+x1m/6P9nA48TYo8Rb3NwcSBHu49cNbvwap/FLx7M1X9QkVZjV5Q7PDZwaC9g3CxcCFwUmC+VaoubQiCwKpbq5h0YhKp8lQqW1dmb/+9VLerXthL04qYqK2UI5FI/gs3Fs08RZonb57QdF1Tbr66iY2RDeeGn8sgnAiCwMiDI3ny5gkuFi5s7Lkx29TgKv8TbcUBs6OdWzt0Jfo8Dzdk5aVbOS4qZqpvytHBR3GxcCEgKkAdgVTcsTW2ZVSdURwedJjwr8PZ1XcXg6oPwkzfjJD4EFbeXM2yf0LJKJ6gbvn5sG+RL8yW36hynwypMUQUTvKIpLQkRh4cyfij40mVp9KrSi9ujL3xwcJJUSkqKPqglFCaOjVl14NdooBShPEO8abTlk6EJoTibO7MqWGntKZn//Pqnxx4dAA9mR67++3G0tAyy3GT0pI4FXgK0F4cMDsu+8dTPnUD6emmzDkSAoTk2FThYOLAiSEnaLKuCddeXmPQ3kHs7b83QwK54oqpvin9qvWjX7V+pKSncO7pOdZevcANn8w1RW9n6mxcoXSG1YYlhHEi4AQgRu/kFU/ePKHPrj54h3gjlUiZ23YuU5tM/eC6RkXJVCmKsSUUVSTPledXSnzhwOLI2aCztFjfgtCEUGra1+TK6CtahROv515MOzMNgEUdFqnzlGTFmSdnSEpPorx5eWrZ18rVulRFxdLTTTTac1NUzN3GncODDmOgY8Chx4f4/NjnRSKRW16jr6NPp4qdGFr9sxz1L4qZOguKHT47kAtyPnL8CHcb98JeTrHniN8R6q2qh3eIN7ZGtpwedpqvm36dJ8JJUSoqKAooJZRaDrUw1jUmOjka33Dfwl6OyFvserCLzls7E5caR0vnllwYcUFrFtiIxAj67+lPuiKd/tX6M+GjCTka/23zTm5uWHKFwM+Hff9vltDcL7emiiZOTdjWexsSJKy4tYI5l+Zku09xJacZOItips6CQhW9I2pPPgy5Qs6P536k2/ZuRCdH06hcI25/cps2rm3yYOy3r39NCstUKQooJRQdqQ4Ny/2/cGAxSHtfVGye+c1f1/9i4J6BpMpT6VO1DyeGnsDcwDxDP4WgYNj+YbyIfUFl68qs6bYmR8KGQlBw2O8wkLvwYsj7omK9qvZiSeclAHx/9ns23d2Uq/UUFxq4WlHG3CBDEiwVRTlTZ0HwKOIRN1/dRCaRMaC6mNr+fYlMjKTLti7MuqAsCDrxo4n8O+JfypmVy5Pxi2JRQVFAKcEUl8KBJ3xe02zeWQatvsoXO7wZtPoqzeadLXB1Yn4iCAI/nP2Bz49/joDAp/U/ZWffnZnmgph7aS4nAk5goGPA7n671Vlks+P6y+uEJoRipm+W6+it/CgqNrHBRKY1UZqoRh8azenA07laU3FAJpUws5sH8K7eqehn6iwIVM6xnSp2UpdqEMkdN1/dpO6qupwKPIWhjiFbem1haZel6gSOeUFRLCooCiglmOIgoBQ1m2d+kK5IZ8yhMfx28TcAfmn1C8u6LEMmlWntfy7oHDPOKbOz/t3lb2ra18zxXKrigJ0rds71zSu/TBVz2s1hUPVBpCvS1U59JY1O1cuwvBhm6sxvFIJCLaCI5p3cIwgCq2+tpum6pgTHBFPRqiLXxlxjSM0heT6PT8SVHPUtSFNlyXCtF9FKY6fGSCVSnrx5Qkh8CA4mDoW9JA2ys3lKUNo823s4FNu3z8S0RAbuGchhv8NIJVJWdF3B2HpjM+0fEh/CoL2DUAgKRtQewcg6I3M1X26KA76LylQREpOs9TeRoHzg5tZUIZVIWd9jPSHxIZx7eo4uW7vgNdoLZwvnXK+xKNOpeplil6kzv7kUfIlnMc8w1TPNtcmxtJOUlsTEYxNZ570OUF7TG3tu1GoS/hCeRj9lwtEJHPc/SVnWooMNGXWB73/9fwiiBqUEY6ZvRg27/xcOLIJ+KEXR5pmXRCVF0W5TOw77KSNa9vbfm6Vwkq5IZ9DeQYQmhFLdrjrLuizL1XwBUQH4hvuiI9Whc6XOuV5vfpoq9HX02T9gPzXsavA6/jWdt3YmKql4/q5ZIZNKaFzBmh61y9K4gnWpFk7gP/NOX4++GOoaFvJqig9Bb4Jouq4p67zXIZVImdN2DvsG7MtT4SRdkc7vV36n2t/VOB5wHD0dHTrUiUWCpMiYKkUBpYRTlM08RdHmmVc8j3lOs3XN8HrhhYWBBaeHnaZnlZ5Z7vPT+Z84//Q8Jnom7Om3J9clClTROy2dW2JhYPFe685PU4W5gTnHhhyjnFk5HkY8pOeOniSnF7/fViRnJKcns+vBLkA07+SGY/7HqLeqHndC7mBjZMOpoaf4ttm3eZrc7tarWzRY3YCpp6eSmJZIC+cW3Bt/j3UDJhUpU6Vo4inhNC3flL9v/l0kKxuX1PDMB2EP6LS1Ey9iX1DWtCwnhp7INrPjcf/jah+VVZ6r3itXxPsUB9RGfpoqypmV4/iQ4zRb14yLwRcZtn8YO/vuFDOLlkCO+B0hJiUGJzMnsdxGDpAr5Pzy7y/MujALAYGGZRuyu9/uXNXRyo741Hh+PPcji68tRiEosDSwZEH7BYysM1J9DRYlU6UooJRwVBqUOyF3SExLLFKFAxu4WuFgpk9IbDJFxeaZW96tXpsue0j3ncocBVVtqnJi6AnKm5fPcoznMc8Ztl/5hvlp/U/fq8BXZGKkWgjNC1u/ylSRH1S3q86BgQfouKUje3z3MOXkFBZ2WFQkbogieYcq98m7qe3Fis8ZiUqKYsi+IepsuxPqT2BRx0Xo6+jn2RxH/Y4y4dgEgmOCARhUfRB/dPwDexP7DH3z8/rPDaKAUsIpb16esqZleRn3kusvr9PKpVVhL0mNTCqhnnsQR26UARRI3rI4FofwTG0poeWSCFJ0q9LIWeDIoCNYG2V9kafKU+m/pz+RSZHUK1OPPzrmrHrwuxz1P4pCUFDTviYuFi7vNUZB0sqlFRt7bmTQ3kGsvHKN01cPEp+sq94uVgEu3kQkRnDM/xgAQ2sOVbcXpTTqRYXbr2/TZ1cfnkY/xVDHkJWeKzNUMv8QQuJD+OLEF2pzm4uFC8u7Ls9Q86soIupVSzgSiYSm5f/vh1LEHGX9I/1Z92gS4XqzMTPUjBsp6uGZmYVHSwUr7FK/49t6O7IVTgCmn5nO1RdXMdc3Z1e/Xe/9xqTyP3mf6J3CYmD1gYyvtgLb1O+IS9Z8VypJYealkV0PdpGuSKeOQx2q2VUDSkdKgdyy9vZamqxtwtPop1SwrIDXaK88E04UgoJVt1ZR5a8q7HqwC5lExtTGU/H51KdYCCcgalBKBc2cmhW5woFyhZyRB0eSnJ5Mu0rGHB/syY2nb4qF2jer8GgJUiTA3OMBeNYsn+Ux7H+4n0VXFwGwoecG3Czd3mstlwJCOPswFn15DbpW6pbrMQoLuULgjn9FJCShLbV+SQgzL628m9q+NKQUyA3J6clMPDaRtXfWAtCtcjc29dr03s7t7/Iw/CHjjoxTm33rlanH6m6rqVOmTp6MX1CIAkopQKVB8XrhhUJQFAmHxL+u/8Xl55cx0TNhTbc16MikRcLmmRNyEx6d2TEFRgUy8qAyx8mUxlOyjfDRxtvqcjO+wAz4YnMsP3V7XWQ1T29zPSiKkBjt/kcgVgEurvhH+nP1xVWkEqnanyovrpmSwtPop/Td1Zdbr28hlUiZ1XpWnkXpJKcnM+fiHOZcmkOaIg1jXWN+a/MbExtMzDQxZFFGFFBKATXta2oUDswuoiS/CYgKYPo/0wFY2H5hsUvY9aHh0cnpyfTf05+YlBgal2vMnLa5L6SnUpe/+0Ya+n91eVE2j6koyWHmpZmt97cC0N6tvTo5pPhbKzkRcIIh+4YQlRSFtaE12/tsp32F9nky9r9P/+WTI5/wOPIxAJ6VPVnWZVm2TvpFmcJ/lRbJd3SkOjQq1wig0MONFYKCUQdHkZSeRDu3doyrN65Q1/M+5DY8+t1CiJOPf8nt17exNrRmZ9+d6Mp0sxlJk6JYdfR9KKlh5qUZQRC0prYv7b+1QlDwy7+/0GVrF6KSovjI8SNuf3I7T4STqKQoxhwaQ6uNrXgc+RgHEwd299vNoYGHirVwAqIGpdTQ1Kkp/wT9w+Xnlxlff3yhreOv639xMfgiJnomrO62OkcVeosauUkJry1qIZ2GGOndY0vvGe+V46CkqMvzK7W+SOHh9cKLwDeBGOsaa5gtVb/165iM/kZQsn/rqKQohu0fpo5q+qTeJyzutPiDQ4gFQWCHzw4mn5xMWEKYeuy57ebmmS9LYSNqUEoJRSGSJyAqgG/PfAvAgvYLikU4rDZymhL+tG+I1qgFGdbYpk6H5FrvNX9JUZeLVYBLHpvvKp1j+3j0wVjPWN0uk0oY3dIcARBQaOxTkn/rO6/vUH9VfY75H8NAx4ANPTawwnPFBwsnQW+C6LKtC4P3DSYsIYyqNlW5OPIiKzxXlBjhBEQBpdTQqFwjpBIpQdFBvI4r+HA+haBg9KHRJKUn0ca1TbE07bxNdinh23s4ZBPpI3lvM0xJUpeLVYBLDqnyVHY+2AnA0BpDM2y/GrGCcL3Z6OkmarSX1N96/Z31NFnXhKDoIFwtXPEa7cXw2sM/aMx0RToLryyk2t/VOBFwAj2ZHr+0+oU7n9yhWflmebTyooNo4iklmOmbUdO+Jt4h3lx+fpm+Hn0LdP6/b/zNhWcXMNY1Zk23NUUikuhDySoltFdgZL6ZYUqaaaQopdYWeX+O+R/jTfIbHE0daePaRmPbq7hXbL63mVRZKhtGLESa7l5if+vk9GS+OP4Fq26vAkFKS8exjKs9laQEa+QK4b2P9earm4w9PBbvEG9AWXNrpefK9yqLUVwQBZRSRFOnpkoBJbhgBZQnb57wzZlvAJjffj6ulq4FNnd+k1lK6Pw0w6hMI59uuY0ENISU4qouLyqptUXeH1Xuk8HVB2cIaV18dTGp8lSalW9GU+cmhbG8AuFZ9DP67u7LzVc3MZI3wUU6ladP9PjuiT/g/15Zc+NT45lxdgZLri9R189Z2GEhI2uPLJY+fLmh+L/GiuSYwqhsrDLtJKYl0sqlVaE66BYk+W2GEU0jIkWJN0lvOOJ3BCBDJtSY5BhW3FoBwLQm0wp8bQXFqcBT1F1Vl5uvbmIn64Bt6nckJOtp9Mlt1twjfkfwWObBn9f+RCEoGFxjMI8mPmJUnVElXjgBUYNSqlA5yt5+fZuE1AQNJ7a85O1iYF6vTnA+6AJGekas7b62RJh2ckJBmGFE04hIUWG3725S5anUsKtBTfuaGttW3VpFbEosHrYedK3ctZBWmH8oBAWzL87mx3M/IiBQr8xHSMK/Ipz0DH1zmjX3ddxrvjjxBbt9dwPK+jkruq6gY8WO+XgkRQ9RQClFlDcvTzmzcryIfcH1l9dp7do6z+fIGFbrQFnW0ruW4r1SuRdXCsoMI5pGRIoC76a2V5GSnsIfV5UFML9u8nWJe0F5k/SGjw98rNYeja07liHuPzN83e1M98nK/0whKFh9azXfnPmGmJQYZBIZXzX+ipktZ+bbC2VRpmSdLSLZkp9mnsyKgelgw+Fr9qWuGJhohhEpDQS9CeJS8CUkSBhcY7DGtq33t/I6/jVlTctm2Fbc8Q7xpv7q+hzxO4K+TJ913dexqtsqohMV2e9MRv+zB2EPaLG+BeOPjicmJYb6jvW5Oe4m89vPL5XCCYgalFJHU6em7HywM88FlKyym6p0BqWpGJgK0QwjUtJRZY5t69aWsmZl1e0KQcGCKwsA+LLRl+jJ9LTuXxzZdHcTnxz5hOT0ZFwsXNjbfy91y9QFID79ZY7GUPmfJacnM/vibOZemlsi6ufkJaKA8oG87W9RHB4+qlh5r+d5WziwpGQ3zS05+f1FM4xISUUQBLbcVwoo7+Y+OeJ3hEcRjzDXN2dsvbGFsbwckZt7eEp6CpNPTFY7/Xau2JktvbdgZWiFIAgsvb6Uaae+xYa/kWGNRIuR4m3/s/NPz/PJkU/wi/QDSkb9nLxEFFA+AG1pzN8njKwgqWFfAxM9E2JSYngQ9oAa9jXyZNySkt00NxTH319EJC+58eoGfpF+GOoY0rtqb41t8y7PA+DT+p9ipm9WGMvLltxcw8ExwfTb3Y/rL68jQcLMljOZ0XIGUomU0PhQRh4cyfGA4wBUcL7Ds2cdMvU/+6pjecYdHsM673XKOU3KsKTzEvpU7VMqonNyiuiD8p5k5m+R2zCygubtwoF5aeYpSdlNc0Jx/f1FRPISVWr7XlV7Yapvqm6/HHyZK8+voCfTY1LDSYW1vCzJzTV85skZ6q6sy/WX17E0sOTYkGPMbDUTqUTKcf/j1FxRk+MBxzHQMWBZl2WcH/8nKzLxPxvUPIHP/mmqFk7G1xuP72e+9PXoKwon7yBqUN6D7KrJ5iSMrDBp6tSUM0/OcCn4Up7lJWngaoWVsYTIBHm2as3iTnH//UVE8oI0eRo7HuwAMkbvzL8yH4DhtYZTxrToaRNzeg23rWrHgivzmHFuBgpBQd0yddnbfy8uFi4kpyfz7ZlvWXxtMQA17Gqwvc92qtlVAzL6n8klUay49zVzbp4EwMPWg1Weq9TpH0QykucaFLlczowZM3B1dcXQ0JAKFSowa9YsBOG/U0EQBH788UfKlCmDoaEh7dq1w9/fP6+Xkm/kxt+iKJIfkTwSBF5KFv//fyW7GFhx//1FRPKCk4EniUiMwN7YnnZu7dTtvuG+HHp8CAkSpjSeUogrzJycXsOd1n3G92e/VyacrDOay6Mu42LhwoOwBzRc01AtnExqMInrY6+rhRMVMqmE+i5m+CVsY+iRhpx+chJ9mT6/tv6VO5/cEYWTbMhzDcq8efNYvnw5GzdupFq1aty8eZORI0dibm7OpElKVd/8+fNZsmQJGzduxNXVlRkzZtCxY0d8fX0xMCj6JoCc+lG8jokHip5zpKpw4NPop7yKe4WjqeMHjzny4EjC5Kcw1IvDXfd73iT8t82hhPlllEZ/GxGRd1HlPhlUfRA60v8eJQuvLASgZ5WeRbZOTE6vzavBD9HX1+evLn8xpu4YBEHg7xt/M+XUFJLTk7EztmNDjw10rtRZ6/43Xt5g7OGx3A29C0Arl1as9FxJZevKeXYsJZk8F1CuXLlCjx496NpVmTHQxcWF7du3c/36dUCpPfnzzz/54Ycf6NGjBwCbNm3C3t6eAwcOMHDgwLxeUp6TUz+KyadH8TKtJ2PqjsFQ1zCfV5VzTPVN/yscGHyZftX6fdB4Xs+92HRvEwDtq9qyb0CXYhXZlFtKm7+NiMi7xCTHcPDRQUAztf3L2JfqsONvmn5TKGvLCXam+jnqZ2uix95hl6nnWI/whHBGHxrNYb/DgDKCZ32P9dib2GfYLy4ljh/O/sBfN/5CISiwMrTi9w6/M7zWcNHPJBfkuYmnSZMm/PPPP/j5KcOm7t69y6VLl+jcWSlhBgUFERISQrt2/6kEzc3NadiwIV5eXlrHTElJITY2VuNTmKjSmGd+mgkI0kieJ51n0olJuCx2Ye6lucSmFO6636aZkzLc+EPNPAqFgm7buwFgomfC7n671WG1PWqXpXEF6xIlnMB/v39mSFBGApQEfxuRwkGuEPAKjOSg90u8AiORK7RnGCos9vjuIUWeQlWbqtRxqKNuX3xtMWmKNFo4t6BhuYaFuMLMSZOnsf7B96QTnsEcrUJAgY5uHNc/2049x3qcDjxNzRU1Oex3GD2ZHos7Lebo4KNahZPDjw/j8beHurjfkBpDePjZQ0bUHiEKJ7kkzwWUb7/9loEDB1KlShV0dXWpU6cOkydPZsiQIQCEhIQAYG+v+cPa29urt73LnDlzMDc3V3+cnJzyetm5QpXGHMggpEgACRKWDmjFcs9luFi4EJYQxvR/puP8pzM/nvuRiMSIAl/zu6hsnx8qoIw+PJrIpEgAdvXdhZ5OyUnGlBn//f5Cife3ESl4Tvi8ptm8swxafZUvdngzaPVVms07W6Qiw1S5T4bVHKZ+6EYnR7PiZtEuChidHE2XbV1YfWcVb/RWI0GS4R4uoECChCX9mmNuYMrUU1PpsKUDIfEheNh6cGPsDSY1nJRB2Hgd95p+u/vRfUd3XsS+wNXClZNDT7Kl9xbsjO0K7iBLEHkuoOzatYutW7eybds2bt++zcaNG1m4cCEbN2587zGnT59OTEyM+vP8+fM8XPH7kV0a8+61yjO+/nj8JvqxqecmqtpUJTo5mlkXZuH8pzNTTk7hVdyrQlr9f46yd17fISE1IZve2rnx8gYbvDcA0LVS10ztsCWRTtXLYF/uMHIiNdrFNPYiH0JxCF8Pjgnm/NPzAAypOUTdvvLmSuJS46hmW61I3gsCowJpvLYxZ56cwVjXmB1DvmXF0HpYvJNF3spYyoqh9XBzjKPx2sb87vU7ABPqT+Dm2JsZiiEqBAUrbq6gyrIq7PHdg0wiY1qTafhM8KFDhQ4FdXglkjz3Qfn666/VWhSAGjVq8OzZM+bMmcPw4cNxcHAAIDQ0lDJl/ruJh4aGUrt2ba1j6uvro6+fM5thQZKTNOa6Ml2G1RrGkJpD2P9wP7Mvzeb269ssurqIv278xcjaI5nWdFqBF9JzMnfCycyJ57HPufbyGm1c2+Rqf4VCQZdtXQClaWdf/335scwiS1RSFLei1iI3WMOennfQwbpE+tuIFBzFJXx9672tgNLhU5XxNCU9hT+v/QnAtKbTilxRwIvPLtJrZy8ikyIpZ1aOI4OOUNO+JvMuz+OeYga6elWpYF6HWe2m0r16NdbeWcuAZStJTzfFzqApK3tPo2fV7hnGfRD2gHFHxnHl+RUAPnL8iNXdVlPLoVZBH2KJJM/PosTERKRSzWFlMhkKhVIV7urqioODA//88496e2xsLNeuXaNx48Z5vZx8J6f+FlKJlD4efbg59ibHhxynWflmpMpTWXlrJZWXVmbY/mH4hvsW6NrVZp7g3Jt5xh4eqzZV7ey7s1SYdt7mqN9R5IKcGvbV6FO7Zon1txEpOIpD+LogCOronbdT22++t5mQ+BDKmZVjYPWiFeiw6e4m2m1uR2RSJPUd63N9zHVcLFzovas30/+ZjoJ0BtWrx81JK2hZyZH2a6Ywa48ulkk/Y5s2DcO46cw7YKyhvUpOT2bG2RnUWVmHK8+vYKJnwuJOi/Ea7SUKJ3lIngso3bp147fffuPo0aM8ffqU/fv3s2jRInr16gWARCJh8uTJ/Prrrxw6dIj79+/z8ccf4+joSM+ePfN6OUUOiURCp4qduDjyIhdGXKBjhY7IBTlb7m2h2t/V6LOrD7de3SqQtbxvPpQbr26osyB2qdiFLpW65PnaijoHHh8AlKGUIiJ5QXEIX78TcoeHEQ8x0DGgr0dfoOgWBVQICn44+wPDDwwnVZ5Kn6p9+HfEv0QkRvDR6o848OgAejI9VnquZF33dVx9cZXaf47gSVBbZNhojPW2ie1c0DlqLq/Jrxd/JU2RRnf37vhO8GVSw0mlvrhfXpPnJp6lS5cyY8YMJkyYQFhYGI6OjnzyySf8+OOP6j7Tpk0jISGBcePGER0dTbNmzThx4kSxyIGSlzR3bs4J5xPcenWL2Zdms+/hPvWnY4WOfNf8O1o4t8i3+VUCitcLL+QKeY4uLoVCQdetyhByY11j9g/Yn2/rK6okpSVxIuAEIAoopYn8LgxaHMLXVantu7t3x9zAHIBDjw/hF+mHhYEFY+sWjaKASWlJDD8wnN2+uwH4rtl3zGozi+33tzPuyDgS0xIpb16ePf32UNuhNt/98x3zLi3AMXnN/51mNX9Xldnti12X8JMOBImCMiZl+KvLX/Sq0kuMzsknJMLbKV6LCbGxsZibmxMTE4OZWdEsQvU++Ib7MvfSXLbd34ZckAPK6sPfN/+ejhU65vlFkK5Ix2qeFXGpcdwdfzeD85c2xh4ay5o7awA4PPAwnu6eebqm4sDhx4fpvqM7TmZOPJv8TLw5lQIKojCkXCHQbN5ZQmKStfqhqMpFXPqmTaGYEtMV6ZRbVI7QhFAODzqMZ2VPBEGgybomXH1xle+afcdvbX8r8HW9S0h8CD129OD6y+voSnVZ3W01g2oMYsrJKfx14y8AOlTowNbeW4lOjmbw3sHceHUDfXkNHFLnZDt+qN50RjVszuy2s9VCmkjOyc3zu2h5MpVyPGw92NRrE36f+zG+3nj0ZHpcCr5E562dqb+6Pnt996IQtMftvw8ahQNz4Idy89VNtXDSqUKnUimcABx4dABQak9E4aTkU1CRNVmlL1C9wxdm+PrpwNOEJoRiY2RDxwodAbgUfImrL66iL9Pn84afF8q63uZe6D0arG7A9ZfXsTK04szHZ2jn1o5WG1qphZMfmv/A0UFHOeJ3hNoranPj1Q0sDSyZ2vCXHM0xq+USlnVdJgonBYAooBRB3CzdWO65nKAvgviq0VcY6Rpx+/Vt+u7uS7W/q7Hp7ibS5Gl5MpfKzHPp+aUs+2Uw7QwsfaYdALlCziG/Q4Bo3ikNZBdZA8rImrxKpJZZ+gKk0fw9pHDD11W5TwZWG4iuTBfQLAroYOJQaGsDpeN603VNeR77nMrWlbk25hpyhZy6q+ri9cILc31zDg08xJQmUxiyfwgjD44kIS2BVi6tuDv+Lvp6KTmap6lLjXw+EhEVooBShHE0deT3jr/zbPIzZrSYgYWBBY8iHjH8wHAq/1WZ5TeWk5z+YQ5zOY3kmXB0AmGJYQBs7b0VA538t4MXxWyaV55fISIxAksDS5qXb17YyxHJZwojsqZT9TJc+qYN28c2Yn7fqkQZzuSZ3nAcbLQnsiwI4lLi2P9Q+VKiSm3/IOwBR/yOIEHC1CZTC21tgiCw+Opiuu/oTnxqPG1c2+A1yot9D/fRbnM7whLCqGVfi1vjbmFhYEGtFbXY9WAXOlId5rSdw+aem5l4fCI/Xh5MOuGgVRwVM0QXBqKAUgywMbLhl9a/8GzyM+a2nYudsR1Po58y4dgE3Ba78fuV34lPjX+vsRuWbYhUIuVZzDNexr7U2sf7tTerbq8CoINbB3pU6fHex5JTimo2TZV5x7Oyp/otUqTkUliRNar0Bf3ru9G+qjNIFGqHz8Jg38N9JKUnUdm6Mh85fgSgjtzpXbU3lawrFcq60uRpfHbsMyafnIxCUDC27lh29d3F2CNj+ebMNygEBcNrDefCyAtsvLuRVhtbERwTTEWrilweeZmypmWpsaIGhx4fQkcqxbbMvwggZoguIogCSjHCTN+Mb5p9Q9AXQSztvBQnMydex79m6umpOP/pzC///kJUUu7e5Ez1Tallr4zb1xZurFAo6LS1EwICRrpGHBx0ME+OJSuKajZNQRDE8OJSRlGIrOnnoSzmudt3N4UV0/B27hOJRMKL2Bdsva9M2PZ1k68LZU3RydF03daV5TeXI0HCwvYLmdRgEk3WNWHfw33oSnVZ0XUFM1rMoOOWjsy6MAuFoGBk7ZEcG3yMWRdn8fGBj4lOjqaCZQWsjazxjt5AuN5s9PU07z1ihujCIc/DjEXyHyNdIyY2mMi4euPYcm8Lcy/NxT/Kn5nnZ7LgygIm1J/AV42/0lrIShvNyjfjTsgdLgdfpn+1/hrbJh6fSGhCKABbem3JN9OOKoQzJCaJWUcfFslsmj5hPjx58wQDHQO1k6BI7snvcN28RFUYMrPIGsh/tb9nZU8MdAwIiArgbuhdajvUzre5tPEy9iVng84CMLSmMjnbn1f/JF2RTkvnloVSFPDJmyd4bvPkYcRDjHSN2NZ7G0npSTRc25DEtETKmZVjT789+Ef5U2dlHeJS4zDXN2el50oSU5NpvHw4SSm6GMtq42ybjm+ED6D0/1vR9WfauLYrNudoflBUrlFRQCnG6Mn0GFVnFMNrDWeP7x5mX5rNvdB7zL8ynyXXlzC6zmi+bvI1zhbOWY7T1KkpS68vzaBBuRd6T138q51rO3pV7ZUvx3HC5zU/HfYlJAtbv4q3bf6NK1jny3oyQ2Xeae/WHmM946w7i2ilIMJ18xJVZM2nW24jQdM7QWkGkPBxc6N8vXmb6JnQuWJn9j/az+4HuwtcQNl2fxsCAs3KN8PV0pXo5GhW3loJwDdNvynQtYDSX67nzp5EJEZQ1rQs+wbsY+u9rSy5vgSAdm7tWNF1BTPPz1RreZqVb8bC9guZengLQc/qYcL3mACkQczzcIz11vB5i+bMaDkDI10jgAK/vxQVitI1Kpp4SgAyqYwB1Qfg/Yk3hwcdplG5RiSnJ7PsxjIqLq3IyIMjeRzxONP9VY6y3iHeal8WhUJBxy0dERAw1DHk4MC8M+0kpSVx4+UNVt9aTe+NvzB+yy1exyTlaozCyKYpmnc+jKJqusuOzCJrdHTiCNebzUyvHjyKeJSvayhMM4/KvDOsptI5dvmN5cSnxlPdrjqdKnYq0LVsvbeVNpvaEJEYQb0y9Tg06BBfnvxSLZx81+w7ZracSbvN7dh6fysyiYxfWv3CiFoj8Fz3PcHPOmbIEquDDTap02npMEktnJRWito1KmpQShASiQTPyp50rdSVc0/PMfvibP4J+ocN3hvY6L2RftX6Mb3Z9AxvYOXMylHevDzBMcFce3GNtm5t+eLEF4TEK6MGNvXahJHe+124EYkReId4c+f1HbxDvfEO8eZRxCNlPhdBStnktchAS9HzrCnobJrBMcHcfn0bqURKt8rdCnTukkBxKYSXGdoKg7qXkdF+y+/cfh1Ou03tuDjyIq6Wrvkyv2dlT/Rl+vhH+XMv9F6B1Xu5G3KX+2H30ZPp0c+jH8npySy+thiAaU2mFVgeIEEQmHl+JrMuzAKUjrlj64yly9YuhCaEYqZvxoYeG/AJ86HVhlbIBTmuFq4s6rCIlbdXcsL/FGWT1wLa7jWSIn/+FQRF8RoVBZQSiEQioY1rG9q4tuHqi6vMuTSHQ48PsevBLnY92EXXSl35vvn3NHZqDNHPITGSITbVORH9gkDffTgnRnPl+nLqIMXdqbG65kZWKAQFQW+CuBNyB+8Qb/XnZZz2yCBrQ2vKG7Qj6pVt7o4NpcNaQYf6HXyk1CA1K98MW+PcrVkkd+G6RVW1roqseZuTQ0/SckNLfMN9abe5HeeHX+BFhEGe2+5N9U3pXKkzBx4dYLfv7gITULbcU+Y+8azsiaWhJatvrSY0IRQnMyetRQHzw3chKS2JkQdHsvPBTkApGNkY2eC53VNZsNOuBks7L+WHcz9wKViZz2lIjSE0KteI4QeHE5sSizG10SHz67Y4nH/5TVG8RkUBpYTTqFwjDg48yL3Qe8y5NIddD3Zx1P8oR/2P0r9cE7a9fIxMkcZsYDYmcHML3NzCLZQ+FsIrP6UQY+GkHjMlPYUH4Q+UWpEQb7xDvbkbcpe41Dita7AwsMBEzwSpREpSWhJRSVFEJkWSFPc6i1tGRgoz1E9t3nHvWaDzlhSKQyG898HGyIbTw07TYn0LXkXY0WL+eQS5hXp7Xtru+3n0Uwsos1rPynfthVwhZ5vPNkBp3pEr5Cz0WgjAV42/yhBmnx++C6HxofTc2ZOrL66iI9VhSaclnH16Vp0gbmjNobR3a0+PHT2ISYnBVM+UWa1ncSzgGJ8fV2a2tTGyITE2ZyVRitv5lxckpydz/ul5Vl26DWQv+BbkdyQKKKWEmvY12d5nO7+0+oV5l+ex6e4m/J9fRaZ0FcsUiTyF6wEnuJQWx42XN7gdcpvAqEB1raCcEJ0cTXRytEabVCLF0lgK0Vp30YpDITlqRSVF8e/TfwEKJAdMSSSnJrl/nx+iddUhmOkXnxpbjqaO/NhwHzP2B//fbfY/VLb7vAhR7Va5G/oyffwi/bgfdj9HtbM+hLNBZ3kV9worQyu6VOrCwccH8Yv0w9LAkjF1x2j0VfkuvGse+JDjvx96H8/tngTHBGNpYMmijouYe2kujyMfoyvVZW67udwPvc/wA8MBZU6n7u7dmXFuBnGpcehKddGT6RGRGIGB5E2O5izMQowFSXBMMMf8j3HU/yj/PPmHpPQkZS2iHAgoBfkdiQJKKaOSdSXWdF/DzJYz2XF6Ovgcznaf8UfGc0eS8xpAejI9ypmVo5xZOcqaltX810z5r4OJAxJkWRZHA7Ay1mWGZzUczAov1O2o31Hkgpya9jVxs3Qr8PlLAtmF6wookBPJH7cmsvbBt4yrO45JDSfhZO6kpXfRQq4QWH42XKsfVV7a7k31TelUsRMHHx9k94Pd+S6gqJxj+3v0R1eqy7zL8wCY8NEETPT+e7HJD9+F4/7HGbBnAHGpcVSyqsRnH33GxGMTSUhLoKxpWX5u/TOzL8zlZaQhJrSiW9UWhKV58f3Z7wEw1zcnJiWGNEUaRrpGJAoPSCccHWzQVumosEzHBUW6Ip0rz6+ohRKfMB+N7WVNy9KlYmOuewvEJEqyLFZZkN+RKKCUUpzMnfi6ydQcCShvY6RjRFmzsrhYuGQUQv4vfFgbWudY/ZxZCKdq79m9ahR6+Klo3vlwsgrXlQASpPRrosPR55V5FPGIhV4L+fPanwyoNoApjadQp0ydQlp59hSk7b6fRz+lgOK7m19a/5JvZp6E1AT2PdwHKFPbXwy+yPWX19GX6TOp4SSNvnl9/EuvLVVnhm3p3JKqNlWZfHIyAK1dWtPEqQmTD2zAPOV7HP5vJL5yF9JxxUQ/iWSdq8SkxCCTyFAIChLTEjHSM6Jr9SRO3ZSo16SipGaJDU8I53jAcY76H+VkwEliUmLU26QSKY3LNaZrpa50rdyVGnY1kEgknHB7neX9uKC/I1FAKcVEJ8dgkYN+/T368VfjSdSwq4GpvmmerkEVwvmu7bqwzDnvkpSWxImAE4AYXvyh5OS3ni8M5rj/cRZ6LeT80/Nsvb+Vrfe30sa1DVMbT6VTxU5FroJ0QfrXdHNXmnkeRz7GJ8yHGvb5U7juwKMDJKQlUMGyAo3LNcZzu7Jy+cjaI7EzttPom1fHn65IZ/KJySy7sQxQFiUMjg1mxS1lLqYJ9SfwIPwBi86fxTb1uwx6EBnWWKV8Q7gwG6nuLVIVqQD09ejLog6LcDJ34kSVjH4yReVe86EoBAW3X99Wa0luvLyB8JaYYW1oTedKnelSsQsdK3bEyjCjJqSo3Y9FAaUUEhIfwiKvRVy+9jeXkWXbf5fvbmY83otnZU9G1h5J54qd87QOjbYQzqKSufHMkzMkpiVS3rx8gSfIKolk91tLJVK6Vla+1d16dYvfvX5n14NdnA06y9mgs1SzrcaUxlMYXGMw+jr6hXw0SgoyHb6ZvhkdK3bk0OND7PbdnW8Cijq1fc2h+IT5cMz/GFKJlClNpmTomxfHH5Mcw8C9AzkRcAIJEsbXH8++h/vUIcTj641n9e3VvEmKoVzauv8LJ5r3BwlSBBRYpY7jpXQ0lW0qs7TzUjpU6KDuU5TvNe9DTHIMp5+c5qj/UY77H1dn/VZRx6EOXSt1pUulLjQo2wCZNPv7fVH6jiRCYRV3+ABiY2MxNzcnJiYGM7Pi40xX2DyPec6CKwtYfXs1yenJ1BGk3M7GSRZgqG15tkb8Z7O0M7ZjaI2hjKg9It9ukEWF0QdHs857HZMaTGJx58WFvZwSS1bhqc+in7Hk2hJW3V6lTiToYOLA5w0+Z3z98VrfBAsSuULI0pdKQIG+bhK+P/VFR/bhuTG33NvCsP3DqGJTBd8JvnmuUXod95pyf5RDISjwm+jHrxd/ZdPdTfTz6Meufrsy9JcrBKr9tJekVH0kWnJ/qnwXLn3TRutDLuhNEN22d+NB+AOMdI0YUG0Am+5uQi7I8bD1oJptNXWhRA+zHiSEjs32GLo1CmSh5ydFRojNKwRB4GHEQ7WW5FLwJdIV6ertJnomtHdrT9dKXelcqTOOpo6FuFrt5Ob5LQoopYDAqEDmXZ7HBu8NpCnSAKXH+4LqQ2l+4vvsBxj3Lz46Omz03sjme5s1pPS6ZeoysvZIBlUfhLVRycofIFfIcfjdgYjECM5+fJbWrq0Le0klkpyGp0YnR7P61moWX1uszq9jpGvEqNqjmNxoMhWsKhT42lWooljg3XT4yr/C9WYzpH41VnVb9cECRUxyDHYL7UiVp3L/0/tUt6v+QeO9yx9ef/DVqa9oVK4Ru/ruwm2JG+mKdK6Puc5HZT/K0H//w/0M2b7g/2aXd7UaSjKL4vF67kWPHT0ITwynjEkZqttV5/ST0wB0qtiJwKhA/KP8AehQoQM3AgXMkr7I9hgWD6xNj9plc3nkRZOktCTOPT2nFkqeRj/V2O5u7U6XSl3oWqkrzZ2boyfTK5yF5hBRQBEB4GH4Q2Zfms22+9uUmVuBVi6t+KH5D7RxbYMk5gXCX/WQpKdkPoiOPky8pc6DkiZP42TgSTZ4b+DQ40NqgUdXqkt39+6MrD2SjhU7oiMt/tbDi88u0mJDCywNLAn7OqxEHFNRI7Pw1KwebKnyVHY92MXvXr/jHeINKE1Dvar0YmqTqTQq1yjf160NbYKWnZkuz4U/CElX+jF92ehLFnVc9MFzdd/encN+h/mxxY/83PrnDx7vbequrMudkDss67KMgKgA/rj6B61dWnN2+NkMfZ/HPKfWilq8SX7DoIrzCAqul+M8KNvvb2fkwZGkyFOoalOVNHkaAW8CkElkdKvcjaP+R0lTpGFvbE8Z0zJ4h3grQ2FT52R7DNvHNirWCdeeRT9T56s6G3SW5PT/vlN9mT6tXFqpTTeFKZi/D6KAUsrxDvHmt4u/sdd3r/oNrnPFznzf/Ht13R0V/97dypf7P1b/fWrYKWwM37qwjaw1krS9TURiBNvvb2e993ruhNxRt9sb2zOs5jBG1B5BNbtqWvctKtUys2LKySksurqIj2t9zMaeGwt7OSUOlWkkswiQ7EwDgiBwNugsC70Wqh2ZQVn8ckrjKXR3767V5p6f5562sV/GPaf2itq8SVbm4pjZciY/tfrpg+bZfHczHx/4mKo2VfH9zDcPVq7kQdgDqi+vjo5Uh0efPaLWilokpCVwfMjxDHV35Ao5bTe15d9n/1LfsT6XR11GJtHN9rsVBIFf/v2Fn/79CYCPHD/CN9yXhLQE7I3tcTJ34uarmwDUsq+Ff5Q/iWmJ/99ZVR7D+r3MSfnJh5xXafI0Lj+/rNaS+IZr/qZOZk5qLUkb1zbFulipKKCUUq6+uMpvF3/jiN8RdVuvKr34vvn31HOsp3WfTls6cTLwJACVrCrh97nfe819N+QuG+9uZMu9LYQnhqvbP3L8iBG1RzCo+iAsDS2BolUtMzMEQaDi0oo8efOEff335Vsl59KMV2Akg1ZfzbZfTt6GfcJ8WOS1iK33t5IqV0ZvVLSqyFeNvmJ47eHqInCFde49efOEOivqEJsaC8DC9gu1OpzmlLfNPD6f+mT6IpBbvj3zLfMuz6O7e3calm3I92e/p6Z9Tbw/8c5gmvr1wq/MODcDEz0Tbo+7TSXrStmOn5yezKiDo9jusx2A+o711cJIdbvqvIp9RVRyFAY6BpQ3K49fVMb7kaG88VtRPP+tKTtzUn7yPudVaHyoOgz4VOApYlNi1dtkEhlNnJqotSTV7aoXuei190UUUEoRgiBw4dkFfr34K2eenAGU6u4B1QbwXfPvsrRPq96WVIyuM5o13dd80HpS5akc9z/Oeu/1HPU/qnbg0pPp0bNKT2qZD2f1P0KuVPqFwf3Q+9RcURMDHQMivo4o1m8sRZWD3i/5Yod3tv3a1XnOzE5dc5S07XXca/66/hfLby5XayysDa2Z8NEEPEwHM31PYKGde36RftRZWUetDVjpuZJx9ca993jdtnfjiN+RPNHIgDJM1flPZ17EvmBL7y18dfIrwhLC2NJrC0NqDtHoe+X5FVqsb4FckLOx50Y+rvVxJqP+R1hCGD139MTrhRc6Uh1cLVzV/iW17WvjHeoNKJOGRSZFapg13sbN0o1RVZZw5JZBkXjJyamZUiEouPXqltp0oxLMVNgY2dC5Yme6VupKhwod1C90JQ1RQCkFCILAycCT/HrhVy4/vwyAjlSHYTWH8W2zb6lsXTnbMcYeGsuaO2uwMrQiKikqxzeanBKWEMa2+9tY772ee6H33lLP2mjNulmY6tl3mfXvLH48/yPd3btzcODBQl1LSSWnGpQQvemkynxo4dyCITWG0Nejb7Y37/jUeNbfWc8fV/8gKDoIBCnlUtYhE6zJKpNofp9790Pv02B1A5Llygfr1t5bGVxj8HuNtenuJoYfGI6HrQcPJjwAPszMcC7oHG02tcFc35xf2/zK58c/p7x5eQI+D9BIKxCdHE3tFbV5FvOMITWGsLnX5mzf7h+EPcBzuydPo59iqmeKrlSXqOQojHSMsDKy4kXsCwDKmZbjRdwLrWPoy/SZ3mw63zT7BgMdgwI31WkbOydmSjMjBbVr7OVE4HHCEsI0ttcrU09tuqnvWD9HYcDFHVFAKcEoBAWHHh/i1wu/cuv1LUCpnRhdZzTTmk7DxcIlR+OEJ4Tj9IcTKfIUZBIZckFO0BdBOd4/t9x5fYeF5w9y+W7GKIB3KQoObvVW1eP269us676OkXVGFupaSirZhedKAFPDdCzL/8mF4PPqdj2ZHl0rdWVIjSF0rdwVA53M82vIFXL2P9rPb2d28+ZV9sJ3QZx7t17dosm6JqTKU5Eg4cDAA3R3757rcaKTo7FbYEeaIo0HEx4QHGr5QearUQdHsd57PaPrjObfZ/8SEBXA4k6LNTLHCoLAwL0D2fVgF26Wbtz55E62dZNOBpyk/57+xKbEYmNkw5ukN8gFOfbG9kQlRZGmSMNMz4zk9GR1crV36VqpK0s6LymQUhO5MdfkRshOkd3HVM+UDhU60LVSVzpV7EQZ08LXFhc0uXl+f3hQvkiBIFfI2eGzg1oratFrZy9uvb6Fka4RXzX6iqAvgvi769+5Ei5W3FxBijwFd2t35IIcJzMnnM2d8239dcrUoX/V7PMXQOFXFA2OCeb269tIJVI8K3sW6lpKMqr095BRp6H6e36fBvw78hzPJj9jbtu51LCrQao8lf2P9tN3d18cFjow5tAYzgWdU0eqac4ho69HX35qnrPImYI49+o51uPc8HPoSHQQEOi1s5faPJsbLAws1EnIFvxzmk+33M7wJq8q1nfC53WWYyWmJbLHdw8AzubOBEQFYGVoxeg6ozX6rfdez64Hu9CR6rCt97ZshZNl15fRZVsXYlNisTWyJSIxArkgp4xJGUITQklTpGFpYElsaqxW4cTFwoVDAw9xZPCRAhNOcvI9psnTOP/0PIsu58wk3r3iUM5+fJaIaRHs6b+HkXVGlkrhJLeIAkoRJ02exgbvDVRdVpVBewfhE+aDqZ4p3zX7jqdfPOX3jr/nOhlPSnqKOp20yrmuhXOLfHfCKsiMmx/CwUdKk06z8s2wNbYt1LWUdFSptR3MNX9zB3MDDZ+Q8ubl+abZN9z79B73xt/jm6bfUM6sHDEpMay9s5Y2m9rg/Kcz005P427IXd5VDNuZ5eycWu29MEMERX7QxKkJp4adQiqRohAUdN7amavPs38Tf5d+Hv1AkHL+vk2mxfpAWaxPrshcWX7o8SHiUuMob1aew37K+lyfffSZhu/Vo4hHfH78cwBmtZ5Fw3INMx0vXZHOpOOTmHh8IgpBgbm+OeGJ4UglUkz0THgd/xodqQ46Eh21r9Db6Ep1mdFiBg8mPKCbe7fsv4g8ILuihwDf7LvJoD1DsFlgQ+uNrTkcsDVHY3/ZdDStXVsX+RwlRQ0xsUMRJTk9mfV31jPv8jyexTwDwMrQiskNJzOxwcQPcqDa7rOd0IRQypmVIzIxEoDm5ZvnybqzIruKtkWloqhYHLBgyW1q7Rr2NZhrP5fZbWdz8dlFtt7fym7f3byIfcGCKwtYcGUB1WyrMbTmUAbXGExZUycUCgELQ12ik9K0jqmqpnz06RKO/v0n7Vzb8VOrnzKE5eclrV1bc2TQETy3e5KuSKflxpZcG3MtVyUVelTpgTE1EeQWmfbJSbG+Lfe2AMoXlS33t2CgY8DEBhPV21PSUxi0dxCJaYm0dW3LtKbTMp0vNiWWgXsGcjzgOKA0ycWkxCirCqclEp8ar/6/NjpV7MTSzkupaFUxm6PPW3JS9DAmUcr+e/dJkSkjblKkyirJ2fnVFfY9rbgiCihFjITUBFbdWsWCKwt4Ha9UJ9oZ2zG18VTG1x//wcX6BEHgj6t/APBp/U+ZdWEWoLwx5TfZVbSFwq8oGpUUxb9P/wWUN3+RgkEmleTa90MqkdLSpSUtXVqytPNSjvkfY+v9rRz2O8yD8AdM/2c6v5w6RBnF58jTMzdFqMJVdSz2Q4rSTHQm6Axngs5Qy74Wv7T+Bc/Knkglea9w7lypM7v77abvrr6kylNpsrYJdz65g7uNe472tzCwoLZtS148z75vZuarsIQwdR4Z1cvQqNqjNIoCfnvmW7xDvLE2tGZTr02ZfhfPop/hud0TnzAfdKQ6pCvSSZWnYqxrTEJaAgBSpFqFk3Km5VjaZSk93HsUeEhtSnoKp/2v5aivTLBEipRm5ZvRtXJXLPBgzmFlaoWieE8rzogCShEhNiWWZdeXsejqIiISIwAoZ1aOb5p+w+g6ozHUNcyTec4GneVe6D2MdI2oV6YeyenJ2BjZUMWmSp6Mnx1FrVrmuxz1O4pckFPTvmaB2LxF8gZ9HX16Ve1Fr6q9iE6OZq/vXlZdvkbIy+6k866Pi6DRojr3OlTrwjH/Y8y6MIvrL68DcDf0Lj129MDJzImfWv7E0FpD81xN37tqbzb12sSw/cNISk+i/qr63J9wP8c+Ze0qNmBDDgSUzEynO3x2qOveXAy+iFQi5avGX6m3H/M/xp/X/gRgQ88NmZqUr764So8dPQhLCENPpqfOR6Mj0SEhLUEtsCjQ9BXSkejwTbNv+K75d+p8NQXBm6Q3HPM/xm7f3ZwMPImQUgkHss9S+0Orz/m06UEsDCzUbeXNS26V5MJEFFAKmcjESJZcW8KS60uITo4GlHH+05tN5+NaH+f5zVClPRlZe6Q6TXhB+J+8TVGqlvkuonkn7ynorMEWBhaMqD2KNSddkKBNayBBQIGuLI3JHU0Y16QlejrKW6FnZU88K3ty69Utfr3wKwcfH0RA4Hnsc0YfHs2U01P4puk3TPhoQrYOorlhaM2hJKQmMP7oeOLT4qm9ojYPP3uYI0fKz5t3Zu35Q0gFqyyzq2ZmZlBVLlYJB309+qrTp7+Oe82IAyOU8zT4PFOn8Z0+Oxl+YDgp8hR0pDqkylPV0YHpQjoSJBpF7VS0d2vPX13+ylFahLwgOCaYg48Ost1nO9deXtN0rFaba7LOUjutdZcM529u7mnFIYt2UUEMMy4kQuJDWOS1iOU3l6srtFaxqcL3zb9nYPWB+VL35XHEY6osq4IECY8nPmbyycnKt6OOf/JFo+wLcJV0ktKSsFlgQ2JaIrfH3aZOmTqFvaRiT2Flbs1N+Ke1RSSDqg9iSI0h1HaorSGsP4t+xsIrC1l9ezUp8v9qVunL9BlfbzzfNv8WBxOHPFu3qlAfKBN3PfrsUY6KcDZf/jnBzzrmOrvqo4hHVF1WFSlSJBIJckHOzbE3qedYD4WgoNOWTpx+cpqa9jW5NuZahpBuQRCYdWEWM8/P/P98EgQEtXCSGQ7GDvzV5S96V+2dry9HgiBwN/Qu+x/uZ7vPdnViuMywoBXmSaoMv3mfpbY4ZNHOb8Qw4yLM85jnTDo+CdfFriy4soD41Hhq2ddid7/dPJjwgKE1h+ZbUbo/r/4JQDf3brhZunEp+BJQMP4nxYHTT06TmJZIefPyuXJUFNFOTkM284Ochgsby8rwKu4Vv3v9Tt1Vdan2dzVmX5ytrhjrbOHM0i5LCZkawuw2s7E0UDqnp8hTWHx9MWUXlWXQnkH4R2b94MspXzb+kl9b/wooa13VXFFTIwV6ZoxuXI9wvdlIZDEa7e9GQ72LyjnW2cIZuSCnrWtbdVmM36/8zuknpzHUMWRHnx0ZhJPk9GSG7R+mFk7gv+rNmQknMomMb5t+S8CkAPp49MkX4SRNnsbZoLN8euRT7BfaU2dlHX658EumwkkFywp83eRrzg0/R9gPp1gxtB5lzDVN6tl9jzmhMK+H4oqoQSkgnrx5wtxLc9ngvUFdAbhh2Yb80OIHulbqmu8mlsjESJz+cCIpPYlzw89hrm9O3VV1MdM3I2paVKnIYJgdqkRVkxpMYnHnxYW9nGLNhxYC/FByo0GRGQRiY2TDq7hXGmaIpk5NGVJjCP2r9VdrMVLlqezw2cFP539SZqh9i1YurZjXbh4Nyjb44PV/9893zLmk9IdwsXDhwYQHWfpnvEl6g/1Ce9Lkcr75aBVLr27CxcqSe1/sz/T7VQgK3Ba78SzmGfoyfVLkKZwcepIOFTpw4+UNmqxrQroinVWeqxhbTzOHUXhCOL129lJnsc4JLZ1bssJzRb74u8WlxHEy8CTb7m/jZODJTCOEQBnC3MqlFT2r9KRLpS5afX3y2gxT2NdDUSI3z2/RByWfeRj+kDmX5rDt/jb1W0Url1b80PwH2ri2KTDfj5W3VpKUnkQdhzq0dG7JkmtLAOVNWBROlHkbDj0+BEDPKj0LdzHFHEEQOOkbkG3IZnahrx9CdiHtAAb6SViaRhCSkEhwTDCgDIlV5ey4/Pwyl59fZtKJSXSu2JkhNYbQzb0bH9f6mGE1h3E26Czfn/2eay+V0R/nn56n4ZqGVLOtxty2c+la+f1fPGa3nU1CagJLri/hafRT6q2qh/cn3ujr6Gvtb2loSTu3dhwPOE667kMSdS7gF69DuiIVmVT7PpeCL/Es5hl6UgNIrYSHeR1MqUt0UiyD9g4iXZFOn6p9GFN3jMZ+vuG+eG7zzCCgZYaVgRXLPZfTz6Nfnt7vQuJDOPDoAJvvbubay2tZmpTsje3pVaUX3dy70dqldbZBB+8TVZYVFwNeFer1UFwRBZR8wjvEm9kXZ7PHd49a7dmpYie+b/49zco3K9C1pMpT+ev6XwB82ehLJBIJF4MvAqJ5R8WV51eITIrE0sCS5s75nxOmJJCYloh/pD+PIx/zOOIxflF+yn8j/UhLqIUtmefKUJFfmVtzEtL+Z7+mdKj2Aq/nXux7uI+9D/fyLOaZuhq3TCLDWM+Y2JRYDvsd5rDfYUz1TOldtTdDagyhjWsbro65ik+YDzPOzeDQ40MoBAUPwh/QbUc3ypqW5ZdWvzCs1jCNWjY5ZXHnxcSnxrPOex2PIh7RaE0jboy7kakJuJ9HP44HHOdU4Cl1fa0H4Q+oW6au1v5b7m3BUN4Y6+RPkAk2JITDoNXX0NNL5BV2OFmmsrrbag2h4nTgafru7psjs5MECV81/oqZLWd+cHoEFY8iHrHzwU623d+GX2TmldclSKjvWJ9+Hv3oWrkrVW2qFsjLYKo8lccRj/EJ8+FB+AN8wnzwCfMhJLwcNnyd7f6FnUW7qCEKKHnMtRfX+PXirxzxO6Ju61mlJ983/576jvULZU27HuzidfxrypiUYUD1AeoKyCAKKCoOPDoAKP1z8ssHqDgiV8h5FvMMv8j/hI/Hkcp/n8dmHttqIMmYHVQb+Zk1OKch7U3LN6Vp+aYs7LCQ269vq4WVx5GP1Q9iCRL0dfSJS41j492NbLy7kTImZRhYfSBDagxhX/99hMSHMPvSbNbcWkOyPJmXcS8ZfXg0X536iqlNpvJloy9zXRV7Tfc1xKfFs+vBLrxDvWmxvgWXRl3SmoekR5Ue6BzR4X7YfRqVbcTVl1fxDvHWKqAkpyez/84TbFO/y7AtJdUAW75jcm1jjYSQK26uYOKxiVlqKlR85PgRG3puwMPWI1fH+y5yhZxrL6+x6e4m9j/an6HY3tuY6pnStXJX+lTtQ3u39pgbmH/Q3NmtK/BNoFoAUQkjfpF+WqOV9CU5C58u7CzaRQ3RByUPUD3wf734q7qmhlQipX+1/nzX7Dtq2Nco1LXVW1WPOyF3+K3Nb3zX/Du1576BjgEx38aU+vTLgiBQYUkFgqKD2Nd/H72q9irsJb0372s7j0iMyCCEPI58TEBUgDqfhTasDK1wt3ansnXl//61ccfF3I32i7yyzRpcEDb39/lOBEHgYcRD9vruZd+jfeqQfBWqnB4q3K3d1Zlr7YztWHZ9GfMuz9NI464v02dUnVH83OrnXJVQEASB7tu7c8Rf+dLT3q09J4ee1KoR6Ly1MycCTtDUqSmXn19m4kcTWdplaYZ+u3z28NWW+EwzoIJAGXNDLn3TBlAw9dRUdS6UrDDVM2Wl50oGVh/43hqLpLQkTj85zbo769SO65nhbu1O/2r96e7enbpl6uZ5Mj1BEAiOCVYLIj7hPjwIe8DDiIckp2vXdpjpm1HdrjrVbatTza4a1e2qU9WmGr3/8snx9VCSQ5HFasYFhCAInAo8xa8Xf1VHxOhIdRhWcxjfNvu2wGL7s+Lfp//SamMrDHUMef7lc6yNrFl1axWfHPmEVi6tODf8XGEvsdC5F3qPWitqYaBjQMTXEbl+yy0qZBfCmJyeTEBUAI8jHqu1IKp/o5KiMh1XT6ZHJatKaiHE3eY/gSSrEFhV1AJoN7F8aFREQRIYFcj+R/vZ+3AvV19oOt+qQmtVNC7XmKE1h9Knah/+CfqHH87+oOGvIZVI6V65O793+B03q5wlAxQEgXab23E26Cyg1Mru678vgxCw7s46Rh8ajZOZE89jn9PUqSmXRl3KMF7b1eMJDMy+xs26ETVZdPtTjvofzbbvp/U+ZW77ue+VHyYyMZJ9j/ax7s46bry8kamWRk+qR2vX1gyqPojOlTprZLv9EARBIDQh9D9B5P8f33Bf4lLjtO5jqGOIh62HUhj5/6eabTXKmZXTKpzl9Hoo6aHIooCSzygEBYcfH+bXi79y89VNQHkTH11nNNOaTstVVeH8pueOnhx8fJBP6n3CCs8VAAzdN5St97fyY4sf+bn1z4W8wsLnl39/Yeb5mXR3787BgQcLeznvherml/Fi/n+LxRqCUw5pPEjfxcnMSSl8WFXWEELKm5d/b0fqknizfRH7ggOPDrD34V4uPLugtYoyKH1YOlXsxODqg7E1tuX7s99z49UNjT6NyzVmcafFfFT2o2znVQgKmq1rhtcLLwCG1RzGpl6bNPpEJUVhv9Berd0x0TMh5tsYDc1CRGIErnP7YZ06Nds5DWy28zgh64J4HjYe7Oy3k+p21bMd722C3gSx6e4mttzfQkBUQKb9HE0c6ePRh74efWni1OSDTbBRSVE8CHugoRXxCfPJVEjXleribuOu1opUt1NqRlwtXHN9XWR3PWR2HRdHoT4zRAEln5Ar5Oz23c1vF3/DJ8wHUErR4+uPZ2qTqbmuKpzfBEQFUHlpZQQEHn72UB3e5/ynM8ExwZwZdoa2bm0LeZWFT92VdbkTcod13dcxss7Iwl5OjniT9EatAXkU4cfu8zVJSzPi3aTu8F8hvJcGozE3MNUQPlRmmUrWlfItzXhJVleHJYRx6PEh9j7cyz9P/lGnEHgXY11jelftTcvyLTnod5Cj/kc1BBt3a3cWtF+AZ2XPLE0jcoWc+qvrq01On9b/lL+7/q3Rp9OWTpwMPKk2Q/lN9KOSdSX19r9v/M1Xh1fgkJp9WvcQvemkyO5r3WYgM2CF5wo+rvVxjsw5giBw69UtVt5eyYGHB4hIitDaT4qU+o71GVpzKN3du+Ns4Zzt2NqIS4nDN9xXw1nVJ8xHXeMsw7wSKRWtKlLNtpqGVqSSVaX3cnLOjMyuh9ISiiwKKO9JZidOmjyNrfe3MufSHLXnuKmeKRMbTOTLRl/myp5ckHx+7HP+uvEXXSp14ehgpYr2WfQzXBa7oCPVIfqb6GJrzsgrVN+HVCIlZEpIkfotU9JTePLmyX9RMm+ZZFSRJgD68ho5etgsH+ZOJ48KBV6IrbQQnRzNEb8j7Hu4j+MBxzP1UbAzsqNnlZ5EJkVyxO+IRoZae2N7Zracybh64zJ9O0+Tp1FzRU0eRTwCYFrTacxrN0+9fe3ttYw5PAZDHUOS0pPY1XcX/ar1U29vvLYxV59fp2zyWnSwITuhFklGDdGg6oNY3nV5to6oqfJUTgWe4u8bf3Pu6bnM/Tb0zOhSqQsf1/qY1q6tMySFy4rk9GQeRTzK4LCqSranDWdzZ7VJRiWIVLGpkmc1z7JDISiISIwgJD5E/bkZFMuhq67Z7rt9bKNiHYos5kF5D7Sp3hzM9Glc7SX7g2aqq3xaGVoxueFkJjaYqOHhXtR4k/SG9d7rAfiq0X+Fv1TRO/Ud65d64QTg4GOlSadZ+WaFIpwIgsDLuJdao2SCooMyNR+8jUzI2XmYmmYoCif5iIWBBUNrDlXX1TkecJx9D/dxxO+Ihh9DWGIYq26vApRZTF0tXLnx6gYxKTGEJoQy4dgEpp2ZxucNPmdGixkZHpq6Ml3ujLuDx98eBEUHMf/yfEx0TZjRcgag9E/55MgnJKUnAXAn5I5aQPGP9Ff60Ejgjd5qbFKnAwqN2jMCCkBClN6qDMJJObNyHB54mNplamf6PcSmxLL9/nZW3FzBvbB7mZ7DlawqMaTGEAZUH4C7tXu252aaPI2AqIAMDqv+Uf6ZzuFg4pDBYdXD1iNP6yipEASB+NR4DaHjdfxrjb9Vn7CEsAx+NkbpLQo1NL8oIgooZG6/fx2bzD4va8L1HLEzS2Jq46mMrz8+z2L685PVt1eTkJZATfuatHFto25XhxeXF8OL4b/w4vwuDhibEqs1SsYv0i/LKIXsMNAxoKyJKanh2fcVQxgLDmM9Y/p69KWvR1+S05P558k/7H24l4OPD2r4OgS+CSTwTSAArhauxCTHEJUcRXxqPHMuzWHhlYUMqj6IRR0XaTgkG+ga4POpD5X/qszLuJf8eP5HTPVNmdxoMtZG1rR1a8upwFMAGhFIW+//50+SpnuDcGZjlfYJOoKNul1OJFF6q0iSeanbZBIZizou4vMGn2sVJF7GvmTZ9WVsvr+ZF7EvtH4nelI9mpVvxth6Y+lSqUumQoJCUPA0+mkGh9XHkY8zjSizNLDM4Kxaza4aNkY2WvvnhlR5KmEJYf8JHXFvCR0JmoJHbq5lCRJsjGwoY1oGBxMHDOQ1uPsw+/1K03Vc6gUUuULg58O+mYR+Kb3zK8i+wevz9pjoF1wp8A8hTZ7G0uvK0MLJDSdr3FAuBCsFlFKbjCz6OSRGKv+bHEPc00vUEaT0s6oMr7zByBosnN5r6DR5Gk/ePHnLN+QR98PuExAVkGWUTFboSfVwtXTFxcJF/XG1+O9vO2M7FAI0m3c22xDGzKrZiuQvBjoGdK3cla6Vu5ImT+PCswvsfbiXfQ/3EZoQqu73dqSPqZ4pcalxpCnS2HRvE5vvbaa9W3uWdVlGReuKABjpGfHws4dUWFKB8MRwvjz5Jca6xoytN5Z+Hv3UAsqdkDuA8g1//Z316jnSFGmkybwY3aoje+4e4GlUFHLJG1KkDzQ0J+3d2rOr3y4sDCzUbYIg4B3izfzL8znmf4zYVO2J22yNbOlTpQ9j6o2hTpk6Gs66Ku2h2mE1/L/Imcwe9Ma6xkpNiG11DYHEwcQhV9pBQRCISorKUsuh+kQmReZ4XFD+dg4mDtl+bI1sNXxbVD4o4nX8H6XeByWnNTuKk91vh88OBu0dhL2xPc8mP1Onxw6JD6HM72WQICFyWmSRNlHlC9HP4a96kJ6SeR8dfZh4K1MhRRAEQuJD8Iv0wzfClzuv7+AT5kPQmyDCEsNyZJJ5G12prlLosHTFxdwlgzBiZ2yXo9wOJSmkt7SgEBR4Pfdi78O97PbdrVXz8G4IM0Adhzos7byUpuWbAsqolIpLKqpzrmzrs432bu2xX2CPAuX5+HrKa568eULTdU01xqplV4vncc+1CtAWBhYcH3KcRuUaAUoH3SN+R5h3eR43X93U6hAslUjxsPFgXL1xDKw+UG02DU8Iz+Aj4hPmQ0xKTIYxQJkzpqpt1QwOq+XNy2d5PSSkJmQubLyl7QiND83UoVkbOlIdTQHDWLvQYW9ij4meSY7HfZfScB2LPii5IKf2vOJi9xMEgUVeiwCY8NEEjdodqlwtNe1rlj7hBJSak6yEE1BuT4wk3siSR+GPuPryKrdf3+ZhxEOeRT8jIjEiVzc2mUSGo6kjFa0qUsmqkobw4WLhgr2JfZ4kl8pp1lSRooNUIlVnsf29w+/qLLbbfbartSnawsLvhNyh2fpmuJi7MKfdHAZUG4DvBF8q/1WZuNQ4huwdwoGBB2jr1pbTT04DSjPPTp+dGuPoS/W5H3ZfLcS8zffNv+eX1r+QlJbE/EvzWXl7JUFvgrSux0jXiDYubZjcaDK1HWrzOFKZ6n3WhVlqYSSzDLAyiYzK1pUzOKxWsKqgDidOV6SrTSy+4b5Zajsyy1mSGdaG1jnSdlgZWuV5EjhtiNexJqIGpYRpUC4HX6bZ+mboy/QJ/jIYO2M7dXTSgksrORa4g7GNWrG0y5LCXmrB88obVrXMtlsjWSrXFDkTSKUSKdaG1pQ3L09l68pUs62moQVxMHEokBubipIc0ltaUGWx3eO7h633tuIXlXnNGVA67n/T9Bv6efSj+vLqJKYl4oyMz6sPVvucTPhoAmvvrCXl/wJ6BALPJRlv/dVsq7Gjzw4WXV2UwV/mbRxMHGjr2pY6DnUIiQ9RO6xmVf7AzdJN7bDqYeuBs4UzpnqmalNLZn4d4QnhWebveRdDHUO1X0d22o6imkW7JF/HYphxLsip3a+4xJ733dWXvQ/3MqbOGFZ3X601OsncSMG83vVLnTSeUwGlLvHc+b8NXoIEEz0T7E3scTF3wcPWgzoOdahkrdSGlDEtU6ACiEjpIzAqkN2+u9novZFHkY8y7WcgM6BP1T5cfbCb+wp9DLWmsFeShIA78WohRUeqQxXrKgS8CdAaCiyVSLE1ssXRxJGY1JhMtSmgDJVWaQct9C3Q19FHLsiJTIzUEDzeDq/ODqlEir2xfZZajjImSqHERM9EjFYrwogCSi4pKXa/oDdBVFxaEYWgwOdTH56HWWWSXVR5bMXluPKMHAoow+1dca3Sk/7V+uNu4/7eWVRFRPKaF7Ev2Omzk7V31vIwQnvIR11Bxi2yTyHwtiCuDSlSreYfFQY6Bpjpm6Er1UWukBOfFk98anz2B/EWFgYWmfp2vK0FsTa0Fq/DEoIooLwHJSEl95cnvuTPa3/SoUIHjg0+USqyEuaG6Cf/YrGpe7b9VDduqURKHYc6tHJpRSuXVjQv3zxfK6SKiOSGsIQwttzbwprbazSElTqClNtk76iZnYDyvujL9LPVcqhMLLlJyCZSMhAFlPekONv9YpJjcPrDibjUOE4MOYGZpH6J8q35UO6H3ue7LV05HKc9auBtfq3agc3h99RZg1VIJVLqlqlLK2elwNKsfLMcCSzF+bwSKR5EJ0ez5vYaVt1chUlUYJ4LKBIk2BrbatV2aPh7mDhgrm8umlhEMkWM4nlPZFJJsX1Yr72zlrjUODxsPehQoQOH7r7K0X7FJTrpQ9j/cD/D9g+jcmoS5ODG/UPz7/nBsTav4l5x/ul59cc/yp+br25y89VNFnotVAssrV1aqwWWd5NPlQTNnEjRQxAEwhLClIneogLVCd+sja0xSoyE5PQcjaMv08fK0IqyZmVxMVf6VL2t5VDn7DC2/eAifSIiuUU840oA6Yp0llxTRuV82ehLJBJJjrMNluSshApBwax/Z/HTvz8BUKV8M4SXj5Fk5Zyno69M1gY4mjoyuMZgBtcYDCizZaoFlmfnCYgKUAssC64sQCqRUq9MPbXAkhxfha92ZkwCGBKTzKdbbpc+HyCRXJGuSCc4Jvg/AeQtQSQwKpCEtASt+9URpOREEDfVM6Ff1e70qdqHDhU65FuxSBGR90U08ZQA9vjuod/uftgY2RA8ORhDXcMSF52UW+JT4xl+YDj7Hu4D4IuGX7Cww0J0Yl9DYiTN1jcnMS2RAwMOUN78raRsucgk+yL2hYaGRZWyHABBStmUdegI1mgrxlbSv//iTkGZ5RJSE3jy5olWAeRZzDPSFZlrQiRIKG9engpWFahg+f+PVQWqp8upsm9ctnO/beIx0jWiS6Uu9K7Sm66Vu+ZLrRoRERBNPKUOVWK2T+t/qi4sJpNKmNnNg0+33EaC9uikmd08SuTDMehNED129OB+2H10pbqs8FzBqDqjlBstnIg3suRyejxIwNKtFbxnbaVyZuXUxeEAnsc8Vwsr5/xeoEjOvA6IALyOSeZ6UFSxNSuWVPLSLCcIApFJkQRGBRIQFaAhgAS+CSQkPiTL/fVl+rhZumUQQipYVsDFwkUjEaOaV945Xl8dhzpEJkUSHBPMHt897PHdg55Mjw4VOtC7Sm+6u3fXqAEkIlKQiBqUYs61F9dotLYRejI9nk1+hoOJg8b20uYDcS7oHP129yMyKRJ7Y3v2DdhHE6cmGn0CowKpuLQiRrpGxE+PzxeHvoPeL/lih3e2/RYPrE2P2mXzfH6R9yOzwqFZpRyQK+S8iH2hVQsS+CaQ2BTtdWpUWBpYahVAKlhVwNHUMfd5dnJQ0uHtPCju1u581/w7Hkc8Zu/DvTyOfKzuJ5PIaO3amv+1d99hTZ5dAId/IewtyFJREbUKqLgF98Bt3XuvOrB1fFVrl7XL2qWte+9d98K9xS0q4sSFylCRvZP3+4OSioAMAwnw3NfFpSTvOHkTkpNnnKdblW50rdo1w/uLIOSWaEEpRmafnw1Av2r9Mn3zaOvmgJeLfZGfRSJJEvMvzWeCzwQUkoLaDrXZ2WcnZczLZNg27Vurg6lDvs02EGOACp/3LRyadtsXO64QEP2AR2/+S0QeRzzOcpXdNGXMy2SagDiXcFb/shOWjqnrScW9Jj4lnoYrGgHQy6UXWwK24GLjwsU3gQQpJAzkBtx9fZdhu4bxVeOvuDH6Bg/ePGBbwDa23d7G9dDrHHl4hCMPj+C93xtPR0+6V+1Ot6rdKGdZTr1xC8I7RAtKIfY08ikV/qqAQlLgN8qPGvY1NB2SRiQpkvDe582ya8uA1GRtWadlqu6ud6WN2Wno2JAzw87kS0zFfQxQfsjvcSE5XfYiRH8aifKb6W7T09HDqYRThiSkolVFnEo4aazeR2xSLKYzUwfM+o/xp/qi6iglJUs7LWXc/nEkKhJxNHdUlaiv7VCbNV3X4GLjAqS2Nm6/vZ1tt7dx4fmFdMeu7VBblax8VPKjTM8vptgL79J4C8rz58+ZOnUqBw4cIC4ujooVK7Jy5Urq1KkDpH7bnT59OkuXLiUiIoKGDRuycOFCKlWqlB/hFFlzL8xFISlo6dSy2CYnoTGhdN/SnbNBZ5EhY1arWXzu+fl7W0bSWlDys7m6OI8Byg8F0VWZ0yn3nqXbUs+5fbpEpIx5Ga2vdFresjxdq3RNTTaeXWBnn5103tSZoKggPB09CQgL4ErwFWotrsXMljMZ32A8zlbOTG44mckNJ/Ms6hk7bu9g+53tnHpyiivBV7gSfIUvj32Jq40r3ap2o3vV7lS3q45MJit23cuC+qm9BeXNmzfUrFmT5s2bM2bMGGxsbLh//z7Ozs44OzsDMGvWLGbOnMnq1atxcnLim2++4ebNmwQEBGBomP03DdGCAtGJ0ZSZXYaoxCj29t1Lh8odNB1SgbsafJUum7oQFBWEhYEFG7tvpF2ldtnu9/Wxr/np9E941/VmXvt5+RqjeJP+cHkZF5IXRW3hUEjfghIzLQa/EL90i4leeHaBblu6kaJMoZdrL6ISovAJ9AGgWflmrOy8kvKW5TMcNyw2jF13drH9znaOPjyaboVv5xLO1LP+hHM3XTPsV9iWDxHULzef32pf5WzWrFk4OjqycuVK6tWrh5OTE61bt1YlJ5IkMWfOHL7++ms6d+5M9erVWbNmDS9evGDnzp3qDqfIUSglfANfM3XPVhLjylHZqkqOPpSLmk3+m2i0ohFBUUFUtq7MhREXcnwdgqODgdQxKPmtrZsDZ6a2YOPIBvzVx52NIxtwZmoL8eacQzkZFzJjTwAK5Yd/z6rnZIWDhWGWS+zJSE0u6zlZffC5NMXT0ZO6peqSqEhk0eVFdPqoE5u6b0Iuk7Pl1hbKWJRhYYeFmOiZcOLxCaovrM7Kayt593usrYktI2uP5ED/A4RNDmNt17V0qdIFQ11DAsMfceqmbaaLCar7OROKNrUnKLt376ZOnTr07NkTW1tbatasydKlS1X3P3r0iJCQEFq1aqW6zcLCgvr16+Pr65vpMRMTE4mKikr3Uxz5+AfTaNYx+i49z/7LdtgnzUQ//BcO3QrVdGgFRqFUMO3INPpu60t8SjztKrbjwogLWfaBZyYkNv+7eN6WVqG4s3tpPJytRbdOLlx8FJ7lelKQfrr2h0rrloOMlWuKSrecTCZjksckAOZfmk9CSgLdXbqztutadGQ6LLu6DP8wf/xG+dHQsSHRSdEM2z2MLpu7EBqT+fuMpaElA6oPYEfvHbya/IqZTbaiiw2yLFI9dT5nQtGm9gTl4cOHqvEkBw8eZMyYMXz22WesXr0agJCQ1A8HOzu7dPvZ2dmp7nvXzJkzsbCwUP04OuaskFZRktbM/e6bdUy8LmPWXcXHP1hDkRWcyIRIOm/qzC9nfwFgiucU9vTdg6WhZa6OUxBjUAT1yOm4EHUt2dDWzYGFA2phb5G+q9newrDIdEt0r9qdMuZlCIsNY+PNjQD0rdaXlZ1XIkPG/EvzWXB5AScGn2BWq1noy/XZfXc3bgvd2HF7x3uPbaJvQlWr+jmKozgssyF8GLUPklUqldSpU4eff/4ZgJo1a+Lv78+iRYsYPHhwno45bdo0Jk2apPo9KiqqWCUp2TVzy0htMvVysS/U3+7e5/7r+3y86WPuvLqDoa4hyzoto3/1/nk6lmqasVnh/7Ap6jQxXbuoT83Xk+vxab1PmXpkKrPPz2aI+xBkMhmDagwiSZHEyD0jmX1+NgZyA35u+TNtK7Zl4I6B3Ai9Qbct3RhUYxB/t/07y4UyxRR7QV3U3oLi4OCAi4tLutuqVq3K06dPAbC3T/3WGhqavrkwNDRUdd+7DAwMMDc3T/dTnBRkM7c2OvjgIPWW1ePOqzuUNivN6aGn85ycKJQKVVO1aEHRfpoaF1LUu+VG1hqJiZ4JN8NucuzRMdXtI2qNYH77+QD8cvYXZpycQXW76lwccZFpjaahI9NhzfU1VFtYjaMPj2Z67OIwlkcoGGpPUBo2bMjdu3fT3Xbv3j3KlUst6uPk5IS9vT1Hj/734o6KiuLChQt4eHioO5wioaCbubWFJEn8ce4P2m9oT0RCBB5lPLj8yWXqlKqT52O+jn+NQlIgQ4atia0aoxXyw/vGhUikriNT2MeFaEIJoxIMdR8KwJ/n/0x339i6Y5ndJrUA5IyTM/j59M8Y6Ka2ppweehrnEs4ERQXRam0rxh8YT1xyXLr9i8NYHqFgqD1BmThxIufPn+fnn3/mwYMHbNiwgSVLluDt7Q2kDtKaMGECP/74I7t37+bmzZsMGjSIUqVK0aVLF3WHUyQUxybThJQEBu8czOeHP0cpKRnmPozjg49/cKtHWveOWD6+8MhqXIiC1zSqfqdIjAvRhPENxiNDxv77+7nz6k66+yY0mMCsVrMA+OrYV/xx7g8gdRbQ9dHXGVNnDAB/X/ybWotrcfH5xXT7F4exPEL+U/s7dN26ddmxYwfTpk3j+++/x8nJiTlz5tC//39N8lOmTCE2NpZPPvmEiIgIGjVqhI+PT45qoBRHaU2m2VUlLSpNps+jntN1c1cuvbiEXCZndpvZjKs3Ti1l6dOmGIvuncLl3XEh995cZsrJ4ex4bMSruMGUNM56YcbiTKGUMFBUQy6V4OKjNzSpZKxquahoVZGPP/qYXXd38df5v1jYcWG6fac0nEJiSiLfnviWzw9/jr5cn0/rf4qJvgkLOiyg80edGbZ7GHdf38VzuSdfNf6Kr5t8jZ5cDyj6Y3mE/CdK3RcSabN4IPOqpEXlW8mFZxfourkrwTHBlDAswdaeW2lZoaXajr/abzVDdg2htXNrDg44qLbjCgVLkiTqLq3LleArTPaczK9ev2o6JK3j4x/M9N23CI36b9HAd4sEnnx8kmarm2Gka0TQxKBMVy5OK2wIsKjDIkbVGaW67038G8YdGMeGmxsAqOVQi7Vd16pK5QvCuzRaqE3IH8WhyXS132qarGpCcEwwrjauXBp5Sa3JCaRfKFAovGQyGd83/x6AeRfnqZ5XIVXaF5q3kxOAkMiEdGUJmpRrQk37msSnxLP4yuJMj/VD8x+Y7DkZgNH7RrPy2krVfSWMSrC+23o299iMlZEVV4OvUmtxLWb7zkYpKfPp0QnFhUhQCpGiWpU0RZnCpIOTGLJrCEmKJDp/1Bnf4b44Wzmr/VyiBkrR0a5iO+qXrk98Sjy/nPlF0+FojdxU3327cNu8i/MyXZVZJktd42p8/fEADN89nHU31qXbppdrL26OuUm7iu1IVCQy6dAkWqxuweOIx2p8ZEJxIxKUQqaoTX98E/+G9uvbM/t86qyBb5t8y/be2zEzMMuX8wXHiDEoRYVMJuOH5j8AsOjyIp5FPdNwRNoht2UJern2wsHUgeCYYDb7b850H5lMxuw2sxlTZwwSEoN3DmbLrS3ptillVop9/faxpOMSTPRMOPnkJNUXVmfFtRUZSuULQk6IBEXQmICXAdRbVo/DDw9jrGfM1p5bmdF8Bjqy/HtZihaUoqVVhVY0LtuYREUiP5/+WdPhaIXcliXQl+szrt44AGafn51lMiGTyZjXfh7Daw5HKSnpt60fO+/szLDNyNojuT76Oo3KNiI6KZrhu4fTeVPnLEvlC0JWRIIiaMSeu3tosKwBD8IfUM6iHOeGnaOHS498P68Yg1K0vN2KsuzqMp5EPNFwRJqXl7IEo2qPwkjXiGsh1zj15FSW++jIdFjccTEDqw9EISnotbUX++7ty7Cds5UzJwaf4NdWv6Iv12fPvT24LXRj++3tuX9AQrElEhShQEmSxM+nf6bzps5EJ0XTtFxTLo28RA37GgVyftHFU/Q0Ld+Ulk4tSVYm8+OpHzUdjsblpZKrtbE1g2ukLkXybuG2d8l15KzovILerr1JVibTbUs3DgUeynS7yQ0nc3nkZWrY1eBV3Cu6b+nOoB2DiEiIyOOjE4oTkaAIBSY2KZY+2/rw1bGvkJAYW2cshwcexsbEpkDOH5ccR1Ri6krYIkEpWtJm9Kz0W0lgeKCGo9GsvFZyndBgApDauvkg/MF7z6Gro8varmvpWqVr6sD2TZ3Tlcx/WzW7alwceZEvG32JjkyHtTfWUm1hNY48PJLbhyYUMyJBEQrE08inNFrZiC23tqCro8vijouZ32G+qqhTQUjrAzfSNcLcoHjUzykuPB09aVuxLQpJwfenvtd0OBqXl7IEH5X8iA6VOiAh8df5v7I9h55cj009NtGxckcSUhLotLETp5+cznRbfbk+P7X8iTNDz1DRqiLPop7htdaLzw58lqFUviCkEYXahHx3+slpum/pzsu4l9gY27Ct1zYal2tc4HH4BvniucITJ0snHo5/WODnF/LXpeeXqLesHjoyHW6NvUWVklU0HZLGKZRSriq5Hn14lFZrW2GsZ8yzic8oYVQi23MkpiTSeVNnDgYexFTflMMDD9OgTIMst49NimXK4SksuLwAgMrWlVnbdS31StfL/QMUCh1RqE3QGkuuLKHFmha8jHtJTfuaXP7kskaSExDjT4q6uqXr8vFHH6OUlHx/UrSiQO7LErRwakF1u+rEJcex9OrSHJ3DQNeAHb130MKpBTFJMbRd15bLLy5nub2JvgnzO8zHp78PpcxKce/1PTyXe/Lt8W9JViTn6vEJRZtIUIR8kaxIxnufN6P2jiJFmUJv196cGXaGshZlNRaTagaPmZjBU1TNaDYDgE3+m/AP89dwNIWPTCZjYoOJAMy9ODfHCYORnhG7++ymcdnGRCZG0npta/xC/N67T5uKbfAf40+/av1QSAp+OPUDDZY34FbYrQ99GEIRIRIUQe1exr7Ea60XCy4vQIaMn1r8xMbuGzHWM9ZoXKoaKCaiBaWocrd3p3vV7khIfHfiO02HUyj1deuLnYkdz6Ke8U/APznez0TfhH399uFRxoM3CW/wWuuVbZKYVip/S48tqlL5tZfU5k/fP0WpfEEkKIJ6XQ+5Tt2ldTn55CRm+mbs6rOLLxt/qZaViD+UWMm4eJjRbAYyZGy7vS3bb/FCRga6BnjX9QbeX7gtM2YGZhzof4A6perwKu4VLde05M6rO9nu19O1J/5j/GlfqT2JikT+d+h/olS+IBIUQX22BWzDc4UnTyKf4FzCmfMjztPpo06aDkslJFZUkS0OXG1d6ePWB4Bvj3+r4WgKp9F1RmMgN+DSi0ucCzqXq30tDC04NOAQ7vbuhMWG0WJ1i2ynLUNq1+vevntZ0nEJpvqmnHxykmoLq4lS+cWYSFCED6aUlHx7/Ft6bO1BXHIcXhW8uDjyotYtuS7GoBQf05tOR0emw557e7j0/JKmwyl0bExsGFh9IJB94bbMlDAqweGBh3GzdSM4JpgWq1vw6M2jbPd7t1R+TFKMqlS+WLG6+BEJivBBohOj6b6lOz+cSi03PrHBRPb334+VkVU2exY8sQ5P8fFRyY9UH7DfnhCtKHmRVrht552dPHyT+2n5JY1LcmTgEaqUrEJQVBAt1rTgaeTTHO1boUSFjKXyF7ixLWBbruMQCi+RoAh5FhgeiMdyD3be2Ym+XJ9VnVfxZ5s/0dXR1XRoGSglpUhQiplvmnyDXCbH54FPrrsphNSusjbObVBKSv6+8HeejmFnasfRQUepaFWRxxGPabG6BS+iX+Ro37dL5bvbu/M6/jU9tvZg4I6BolR+MSESFCFPjj48Sr1l9bj18hYOpg6cGnKKwe6DNR1WlsLjw0lRpgBgZ2Kn4WiEguBs5cxQ96EAfHP8Gw1HUzilTTlefm05kQmReTpGKbNSHBt0DCdLJwLfBNJidYtcrWxcza4aF0Zc4KvGX6Ej02HdjXWiVH4xIRIUIVckSeLvC3/TZl0bwuPDqVe6Hpc/uUz9MvU1Hdp7pbWelDQuWaDl9QXN+rrJ1+jp6HHs0TFOPD6h6XAKndbOrXGxcSEmKYbl15bn+TiOFo4cG3wMR3NH7r6+S8s1LXkZ+zLH++vL9fmxxY+cGXqGSlaVVKXyP93/qSiVX4SJBEXIkkIp4Rv4ml1+z/ENfE1cUgIjdo9gvM94FJKCgdUHcnLISUqZldJ0qNkqClOM330+FMriPbMhJ9ejnGU5RtYaCaTO6BGzQXLn7cJtf53/mzMPwvL8+itvWZ7jg49TyqwUt17ewmutF+Hx4bk6hoejB9dGXVNNg553aR41F9fkwrMLuTqOUDiItXiETPn4BzNjTwDBkQmq23R0owjRmUui7gV+8/qNiQ0makV9k5xYe30tg3YOwquCF4cGZlwaXttl9nw4WBgyvZNLpgu/FXW5uR7Po57j/LcziYpEDg04hJezV0GHW6jFJ8dTYVY35DG90eW/lcfz+vq7++ouTVc1JTQ2lNoOtTky6AiWhpa5jutQ4CGG7RrG8+jn6Mh0+LLRl3zT9Bv05fq5PpZQcMRaPMIH8fEPZsy6q+ne/AEUKabYJH3Jjx57meQxqdAkJ1C4Z/Bk9XyERCYwZt1VfPyDNRSZZuT2epQ2L83oOqOB1LEohfA7mUadvBuBQYw3ckqmuz2vr7+PSn7E0UFHKWlckivBV2i3vh3RidG5jqu1c2tujrlJ/2r9UUpKfjz9Iw2WiVL5RYlIUIR0FEqJGXsCyOwtXIYOMmTsvqxfqLoXFEqJm0EJGKc0QSf5o0IXe1bPR9ptM/YEFKrH9CHyej2+aPQFRrpGXHh+gf339+d7nAWhILr80q43yJCR/gvJh7z+XG1dOTLwCCUMS3D+2Xnab2hPbFJsruMrYVSCdd3WsaXHFqyNrLkWco3aS2rzx7k/UCgVuT6eoF1EgiKkc/FReIZvpu8Kjkzg4qPc9R1rio9/MI1mHeOUXy1skqdw4qo7jWYdKzStDtk9HxKF6/n4UHm9Hvam9oyrNw5IrYtS2FtR0l7XfZeeZ/wmP/ouPZ8vr+v8fP3VsK/B4YGHsTCw4MzTM3Ta2CnPA157uvbk5pibdKjUgURFIp8f/pwWa3JWHE7QXiJBEdIJi35/cpLb7TSpKHSNFKXnQx0+5HpMaTgFU31TrgZfZeednWqOrOAU5Os6v19/tUvV5uCAg5jpm3H88XG6bu5KQkrejuVg5sCevntY2mkppvqmnHpyiuqLqrP86vJCn5AWVyJBEdKxNTNU63aaUlS6RorK86EuOX2cpoYZm/dLGpdkfP3xAEw/Mb1QrpZb0K/rgnj91S9Tn/3992OiZ8KhwEP02NKDJEVSno4lk8kYUWsE10dfp3HZxsQkxTBizwg+3vSxKJVfCIkERUinnpMVDhaGZDX8VUbq6P16TtpXyv5tRaVrJLvnQ0KJoX48dcpbFmRYGpOT65HCS0YdapXpSsaTPCZhbmDOzbCb/BPwT77Gmh/OP3xZoK/rgno/aFS2EXv77cVI14h99/fR+5/eJCuS83y8CiUqcHzwcX7z+g19uT577+0VpfILIZGgCOnIdWRM75S6yN+7b0ppv0/v5IJcR7tn8BSVrpH3PR+pH0cynvInY/aNKpQtArmV3etThg46FtsJfHOfBssasPjy4nTN+1ZGVkxqMAmA7058p/UDKaMSozgceJgZJ2bQZl0bOm8YlKP91PW6Lsj3g2blm7Grzy4M5AbsvLOTATsGqKo/54VcR87nnp9z5ZMrolR+ISUSFCGDtm4OLBxQC3uL9M229haGLBxQq1DU3ShKXSNZPR8OFkb0bxxHou4Fll9bztBdQ7X+A1cd3vf6XDSgFtfGr1QNlhy9bzT9t/dPN411QoMJlDAswe1Xt9nov7Ggw8+SJEk8CH/AmutrGL13NNUXVsfyF0tar2vNdye/41DgIWJScraOjTpf1wX5fuDl7MX23tvR09Fjy60tDNk55INf0262blwYcYGvG3+tKpXvtsCNw4GH1RS1kF9EobYPpFBKXHwUTlh0ArZmqU2d2t66kFOF+bEplBKNZh0jJDIhiynTqW+wZ6a2KFSPKbPnY8utLfTb1g+FpKCvW1/WdF2jlQs2qtv7Xp9KSckf5/5g2tFpKCQFla0rs7XnVqrbVQdg5umZfHnsSypaVeS29+08Xa8P/fuIT47n8ovLnAs6x7ln5/AN8uVl3L/l3yUdDJSuyKUS2JoZ4OlsR8OyHtQv7YH3qteERiUW+Ou6IN8Pdt3ZRY+tPUhRpjDUfSiLOy7l8uOIDz73+WfnGbRjEPfD7wPgXdebWa1mYaJvou6HIGQhN5/fIkH5AKK6p3ZLm+0ApHszT3tbKyytQTmx/fZ2ev/TmxRlCj1cerCh2wax5hBwLugcvf/pzbOoZxjqGjK33VyG1xxObHIsTn858SruFSs+XsHQmkNzddy8/O0/i3qWmoz8+3Mt5FqGLgx9uT6uZv2JD+9AfOJ/LRZvH7u4vK633tpKn219MEipjyOTSEwyUt33Ie+zsUmxTD0ylfmX5gNQyaoSa7quoUGZBmqLXciaSFAKQNqbxLsXr6i9SRR2xSmJ3H13Nz229CBZmUyXKl3Y3GOzKPsNvIp7xaAdgzjw4AAAA6oPYGGHhSy6vIjJhydT3rI8d8fdzfG1ysnffsuqJfEL8UvXOhIUFZThWPam9jR0bIinoyeejp68fF2azzbeyPZ9pbi8rr/ct4X1p40B0hWKU8f77OHAwwzdNVRVKn9ao2l82/Rb8TeTz0SCks/Sug+yGk2f12bWwtylos2K03Xdf38/3TZ3I1GRSMfKHfmn5z8Y6BpoOiyNU0pKfj37K18f+xqFpKBKySqs6bKGMRs6oox9xVeNv6R71e4ZdzS2BktH1a/Z/e2DhFw3mmDDkcQr0ldGlcvk1LCvgWcZTzwcPfB09KScRTnVkhG5fV8p6q/r/65HPJkNEVdHd9ab+Dd85vMZ626sA8Dd3p21XdfiZuv2AZEL7yMSlHzmG/iavkvPZ7vdxpEN8HC2ztExi8s3IiH/HQ48zMebPiYhJYG2Fduyvdd2jPSMst+xGDj95DR9tvXhRfQLKsmN8FcYoP++2U+6BjDuiipJOfsgjP7LLmV7nhD9aRibPMPT0ROPMqnJSN3SdVPviwnJ9OdBiA6PH3bO9ti5eV8pzPLjfTYr/wT8w+i9o3kd/xp9uT4/tfiJiQ0mIteRf9BxhYxy8/ld9EfS5QN1T2HNqsk4rTKk6C4ScsPL2Yv9/fbTcWNHfB740GljJ3b33Y2xnrGmQ9O4xuUa4zfKj4E7BhL24DD6ZDNOJyWRK4GHWfziPCefnORFWCms+Tzb83R07od9yWeExIZw4MEBVvqtJCQmhNjkrNebMU5p8tZawVnT9qnx6lKQpQJ6uPSgUdlGjNwzkr339jL58GR2393N6i6rcSrh9MHHF/JGJCh5oM4prNlVhpSRWhnSy8W+SDXfCvmruVNzfPr70H5De44+Okr79e3Z228vpvqmmg5N42xMbNjffz8r90+AS6uz3X7knpFck6W2shiQs+6yvYEbSHx8M9P7jPWMcTB1wN7UPt1PYlw51p7I/tiFYWq8OhR0qQB7U3t299nNimsrmHBwAqefnqb6ourMbjOb4TWHF6rV24sKkaDkQVp1xeymsOakumJuKp4Wh2ZdQX0al2vMwQEHabuuLSefnKTturbs778fcwPNTs3PifweXxGVGEVDx4Y5SlDelqhzixReIscaWaZlpCT09GLoX7seDmYfZ0hC7E3ts0wSFUqJI9eynxqv7VWc1UWd77M5JZPJGF5rOC2cWjB452BOPz3NyD0j2XlnJ8s+Xoa9qb3aziVkTyQoeZBWXTG1W0aZ7o0qt9UVi0rFU0E7eTp6cmTQEVqvbc3ZoLO0WdcGn/4+WBhaaDq0LKljPFZEQgSPIx5n+ROZGElNSYerZN+iVNaiLCWsK6QmGCb2xEYn4HM580GbIGNu76a0deuTw0f7n7ffV2RkPoW4MFRxVhdNXg+nEk4cH3ycOefn8OWxL9l3fx9uC9xY1HERPVx6qP18QubEINkP8J3PTpadiED3rZ7j3L6RFuRAMKH4uhp8Fa+1XoTHh1OnVB0ODThECaMSmg4rg5xO349MiMyYeET+9/+clDJvaViSI/HZL0q3p9lkvBp9jqHuf10J+TmoXQyYT0/T18M/zJ9BOwZxLeQaAP2r9Wduu7la+fdTGIhZPAWk77a+bLq5hYFVZ9D9o6F5aopOVihw+W4bSclGmTYZF8aKp4J2uh5ynVZrW/Eq7hXu9u4cHniYksYlNR2WSk6m8MrkkUSYfUpE4ptsj2djbEN5y/KUtyyPk6WT6v/lLctTzrIcxi/vwZKm2R6nFjE8NS7B8JrDGV1ntGrQZH52QxX1KcS5penrkaRI4oeTPzDzzEwUkoLSZqVZ2XklXs5eBRZDUSESlAIQnxyPzW82xCbHcn74eeqXqZ+n43x97Gv+PHEMm6Qv0xUiAlH0TVA//zB/Wq5pSVhsGNVsq3Fk0BFsTWw1HRaQ89bEEP1pJMpvUtK4ZIbEQ5WAWJTLvnz5C78cJyhpg2RlyOhQuQPedb1p7dwaHZlYzqw4ufDsAgN3DBSl8j+ASFAKwPbb2+m+pTtlLcryePzjPI3wXnN9DYN3DgZgau2NnLxpI5p1hXx3++VtWqxpQUhMCC42LhwddFQrBv/t8nvO+E1+2W43uX1JBjdw/fAZSRFBMK82pCRmuUmSTIeKUiRBMglDuSEJiv/+PitaVWRMnTEMdR8qmvuLkbjkOKYensq8S/MAUSo/t0SCUgD6buvLJv9NTGowiT/a/JHr/U8/OU3LNS1JVibzZaMv+anlTxpvxhSKj3uv79FidQueRz/nI+uPODb4GKXMSmk0Jo2Mx4oIgrjXql/33d/PN8e/AaBDpQ780GE+R8LvMmrvKB6+eQikfiCFxIQQnZS6QrKRrhH9qvXDu643NR1qqicuQesdeXiEobuG8izqmSiVnwsiQclnb3fv+A73zXXmHBgeSP1l9Xkd/5oeLj3Y3GOzaCoWClxgeCAt1rTgaeRTKlpV5NigYzhaOGa/Yz7RhhWo45PjsfvdTpV83BxzEzdbN+KS45hxYgZ/+P6BQlJgaWhJp8qd8Avx42bYf/VOPMp44F3Xmx4uPcQSA8VAREIEnx34jLU31gKiVH5O5ObzW3wq5oHPAx9ik2NxNHekfuncjT2JSIig48aOvI5/TZ1SdVjdZbVITgSNcLZy5uSQkzhZOvEg/AFNVzXlccRjjcWTNq0UMq68UlDTbI30jBjq/t/Kxl8f+xpILa42y2sWl0ZeopZDLSISIlh7Yy3WRtZs6LaBPm590NXRxfeZLwN2DKDsnLJ8dfQrgiIzLhAoFB2Whpas6bqGf3r+g7WRNX4hftReUpvfzv6GQqnQdHiFnvhkzIOtAVuB1PLIuRl7kqxIptfWXtx5dYcy5mXY3UeUHxc0q7xleU4OOYlzCWceRTyi6aqmBIYHaiyetm4OLBxQC3uL9NVB7S0MC2yw+MjaI1X/33V3F75BvqrfazrU5MKIC/zu9TvGesaceHKCobuGUs22Gg8/e8j3zb6ntFlpwmLD+PnMz5T/qzxdN3fl6MOjFMLGaiGHurt0x3+sPx0rdyRJkcSUI1NotrqZqltQyBvRxZNL8cnx2P5uS0xSDOeGncPD0SNH+0mSxNh9Y1l0ZREmeiacGXYGd3v3/A1WEHLoedRzWqxpwb3X9yhtVprjg49TybqSxuLR9Hishisaci7oHABNyjXhxOATGb6MPHrziNH7RnMo8BAA1WyrsbTTUmo51GL33d3MvzSf44+Pq7avUrIKY+uMZVCNQVpdKE/IO0mSWOm3kvE+44lJisFEz4TZbWYzotYIUSr/X2IMSj7aeWcnXTd3pYx5GZ5MeJLj7pm/zv/FhIMTkCFjZ5+dfPzRx/kcqSDkTkhMCC3XtCTgZQAOpg4cG3yMKiWraDosjVjtt5ohu4aofj/Q/wBtK7bNsJ0kSay/uZ6JByfyKu4VMmR8Wu9TfmzxI2YGZgS8DGDBpQWsvr6amKQYAEz0TBhYfSDe9bzFWIUi6tGbRwzZNYRTT04B0L5Se5Z1WoaDmZiRKcag5CNV907VHjlOTvbd28ekQ5MA+M3rN5GcCFrJ3tSe44OPU822GsExwTRd1RT/MH9Nh6URPV17YmHwXyvHtKPTUErKDNvJZDIGVB/Abe/bDKw+EAmJvy/+jesCV/bd24eLjQvz2s/j+aTnzGs3j6olqxKbHMuiK4uotrAaTVc1ZcutLSQrkgvy4Qn5LK1U/h+t/8BAbsD++/txW+jG1ltbNR1aoSJaUHIhISUB299siU6K5uyws3g6ema7z43QGzRc0ZCYpBhG1hrJ4o6LRVOfoNVexb3Ca60XfiF+lDQuyZGBR6hhX0PTYRW4T/d/yrxL89DV0SVFmcLG7hvpk80aO4cCDzF672geRTwCoI9bH+a0mYOdqR2Q2uJy4vEJ5l+az847O1FIqQMpHUwd+KT2J3xS+5Msp3truttLyJtbYbcYuGOgqlR+v2r9mNdunqp2TnF7XkUXTz7ZdWcXXTZ3obRZaZ5OfJptC0pITAj1l9XnaeRTWji1wKe/D3pyvQKKVhDyLjw+nDbr2nD5xWWsjKw4PPAwtRxqaTqsAnUz9CbVF1VHR6aDUlLiXMKZ2963s/0bjk2K5bsT3/Hn+T9RSkpKGJbgj9Z/MMR9SLovJ8+inrHkyhKWXFlCaGwoALo6unSt0hXvut40KddEtb2m16MRPkySIokfT/3Iz6d/VpXKX9F5Bcr4asXueRUJSj4ZsH0A62+uZ3z98cxpO+e928Ynx9N8dXMuPL9AZevKnB9+XlSbFAqViIQI2q5ry4XnF7A0tOTggIPUK11P02EVKI/lHpx/dh4TPRNik2NZ2GEho+uMztG+V4OvMmL3CNU35xZOLVjccTEVrSqm2y5JkcT229uZf2k+Z56eUd3uZuvG2Dpjsddry6RNAdkuoChovwvPLjBo5yDuvb6HkcID26QveXdSfVF/XkWCkg/e7t45M/QMDcs2zHJbpaSk77a+bLm1BSsjK84PP6/RGRGCkFdRiVG0X9+es0FnMTcwx6e/T45nrhUFK6+tZNjuYZQ0Ksmr+FfYm9oT+FlgjssDpChTmO07m+knphOfEo+hriHTm07nfx7/y7Ql5nrIdRZcWsC6m+uIS44DSYcyiSuRS1ZkrA4jFhMtjFJL5X/BjlO1kFMywxpsULSfVzFINh8cCjxEdFI0pc1KZ/sG/d2J79hyawt6Onps77VdJCdCoWVuYI7PAB+almtKVGIUrde15vST05oOq8D0cu2FuYE5r+JfYWdiR0hMCH9f+DvH++vq6DK54WT8x/rTqkIrElISmHZ0GnWX1uXS80sZtq9hX4PFnRbzfNJz5rSZQ0XTNsglazJLTgAkIDgygYuPwvP4CIWCZqxnTL+PpqOLTabJCYjnNY1IUHIobfZO96rd3zv2ZP2N9fxw6gcAFndcTNPy2a+WKgjazFTflP3999PSqSUxSTG0Xd+W44+OZ79jEWCib8KAagMAKGdZDoBZZ2fxJv5Nro5ToUQFDg04xOouq7E2suZ66HUaLG/ARJ+JqunHb7M0tGR8g/H81nJJjo4fFp2Q/UaC1sjp81Xcn1eRoORAYkoiu+/uBlKnH2bl7NOzDNs9DICpDacytObQLLcVhMLEWM+YPX330Ma5DXHJcbTf0J7DgYc1HVaB+KT2J0DqmJIqJasQkRDBrLOzcn0cmUzGoBqDuO19m/7V+qOUlMy5MAe3BW4cuH8g033szI1ydGxbM8PsNxK0Rk6fr+L+vIoEJQcOBR4iKjGKUmalspxa/OjNI7pu7kqSIomuVbryc8ufVfcplBK+ga/Z5fcc38DXKJSFbtiPIGCkZ8TOPjvpWLkjCSkJdNrYKcsP1qKkhn0N6pWuR4oyhQalUxcG/evCXzyPep6n49mY2LCu2zp8+vtQ3rI8TyKf0H5De/pt60dYbFi6bes5WeFgYZhFR0Bqx4+DRerUVKHwEM9rzuR7gvLLL78gk8mYMGGC6raEhAS8vb2xtrbG1NSU7t27Exoamt+h5Fl23TuRCZF03NiRl3EvqeVQi7Vd16q28/EPptGsY/Rdep7xm/zou/Q8jWYdw8c/uEAfgyCog6GuIdt6baNLlS4kKhLpsrkLe+7u0XRY+W5U7VEAnAk6g2cZTxJSElRduXnVpmIb/Mf4M6nBJHRkOmz030jV+VVZ5bdKtW6PNiygKKifeF5zJl8TlEuXLrF48WKqV6+e7vaJEyeyZ88etm7dysmTJ3nx4gXdunXLz1DyLDElkV13dwHQ0yVj906KMoVe//Qi4GUApcxKsbvPbkz0TYDU5GTMuqvp5rgDhEQmMGbdVZGkCIWSvlyfLT220NOlJ0mKJLpt6cb229s1HVa+6u3aGzN9Mx6EP6CXay8All1dxv3X9z/ouCb6JvzR5g8ujLiAu7074fHhDN01FK+1XqpFG7VhAUVB/cTzmr18m2YcExNDrVq1WLBgAT/++CPu7u7MmTOHyMhIbGxs2LBhAz169ADgzp07VK1aFV9fXxo0aJDtsQtymvHee3vptLETDqYOPJv0LEMLyrj945h/aT7GesacHnpaVcxKoZRoNOtYhuQkTVGeRiYUDynKFAbtGMRG/43IZXLWd1tPb7femg4r34zdN5aFlxfS27U3MUkx7Lu/j96uvdnUY5Najp+sSGb2+dQpyQkpCRjqGvJd0++Y5DEJPblesas4WlwUt+dVK6YZe3t706FDB1q1apXu9itXrpCcnJzu9ipVqlC2bFl8fX3fPQwAiYmJREVFpfspKO/r3pl7YS7zL81Hhoz13danq7R58VF4lskJiGlkQuGnq6PL2q5rGVh9IApJQb/t/Vjrt77IjrdKGyy7/fZ2Pvf8HBkyNt/azNXgq2o5vp5cjykNp+A/xp+WTi1JSEngi6NfUHdpXS6/uIxcR4aHszWd3Uvj4WxdpD/EihPxvGYtXxKUTZs2cfXqVWbOnJnhvpCQEPT19bG0tEx3u52dHSEhIZkeb+bMmVhYWKh+HB0d8yPsDBJTEtl159/unXdm7xy4f4AJBycAMKvVLLpU6ZLufjGNTCgO5DpyVnZeyfCawzFIqc+0TclFdryVu707dUvVJVmZzOUXl+lXrR8AXx79Uq3ncbZy5vDAw6zsvBIrIyuuh16n/rL6TDo4idikWLWeSxC0mdoTlKCgIMaPH8/69esxNFTPFKlp06YRGRmp+gkKClLLcbNz5OERIhMjsTe1p6Hjf5Vj/cP86f1Pb5SSkmHuw/jc8/MM+5ob5eybY3GfRiYUfnIdOd2cvsc26UvklEx3X1Ebb5XWirLkyhJmNJuBno4eBwMPqr0ujEwmY4j7EG5736avW1+UkpLZ52fjusAVnwc+aj2XIGgrtScoV65cISwsjFq1aqGrq4uuri4nT57k77//RldXFzs7O5KSkoiIiEi3X2hoKPb29pke08DAAHNz83Q/BeHt7h25jjw1zphQOm7oSHRSNM3KN2Nhx4XpFgCTJIntt7czeF9DUniJRMYl2kFMIxOKDoVS4oe9twFZusqYpXiFi+wRrrJHbNy1B8Xza/DC77+fiIL5oqFOfdz6YKpvyv3w+wRFBalm90w7Oo38GM5na2LLhu4b2N9vP2UtyvIk8gnt1rej//b+vIx9qfbzCYI2UXuC0rJlS27evImfn5/qp06dOvTv31/1fz09PY4ePara5+7duzx9+hQPD+1Z4yNJkZRh9k5CSgJdNnfhSeQTKllVYluvbejL9VX73H99n3br29F9S3eCop+ia7njnbfsVGIamVCUZDbeqhSvOGbwP/YZfMVeg69YnTwZ+dJmsKTpfz/zahe6JMVU35T+1foDqa0oXzf5GhM9Ey48v6B6v8gP7Sq149bYW0yoPwEdmQ4bbm6g6vyqrLm+Jl8SI0HQBmpPUMzMzHBzc0v3Y2JigrW1NW5ublhYWDB8+HAmTZrE8ePHuXLlCkOHDsXDwyNHM3gKypGHR4hIiMDOxI5GZRshSRLDdg3j/LPzlDAswd5+e7EySm39iEuO4+tjX+O20I2DgQfRl+vzTZNvCPjfRhYNqC2mkQlFWmbjqErIojGUJb9/x5REiHudT1Hln7Runm23tyHXkTOxwUQgdSyKQqnIt/Oa6psyu+1szg8/T3W76ryOf83gnYNps64ND988zLfzCoKm6GripLNnz0ZHR4fu3buTmJhImzZtWLBggSZCydK73TszTsxgo/9GdHV02dZrG5WtKyNJErvu7mKCzwSeRD4BoI1zG+a2m6taILCtmzFeLvbFahqZULwUt3FUtRxqUduhNleCr7Dm+ho+9/ycBZcXcPvVbdbeWMsQ9yH5ev66petyeeRl/vD9gxknZ3D44WHcFrgxo9kMJnpMRFdHI2/rgqB2+VYHJT/ldx2UJEUSdr/bEZEQwfHBxwmODqbf9tQR+8s6LWN4reEEhgfymc9n7L+/H4CyFmWZ02YOXap0STcmRRCKurSaPyGRCaS9mbjKHrHP4Kvsd/7kJJRyz8/w8sWSK0sYtWcMFU3b8nvLJZwI2s2cq+Moa+HImg6+RMQpC+TLyP3X9xm1dxTHH6cO0q1pX5NlHy9LV/JAELRJbj6/RaqdiaMPj6q6d3Rlugzdlbro32TPyfSr1o/px6cz6+wsEhWJ6OnoMdlzMl82/lJVQVYQipO0st1j1l1FBhS6bzx5YKPjRZnEFSQnlGT8Zj+gLGVlG1CGKhi84r+6KA4Whkzv5JJv3bmVrCtxdNBRVvmt4n+H/se1kGvUXVqXiQ0mMqPZDPGeJBRqYrHATKR173hV8KL71u4kKhLp/FFnGjo2xHWBK9+f+p5ERSJeFby4OeYmP7X8SbwRCMVaVmW7s3M1+Fo+RZR/fPyDmbQ5ALlkne52mWSCDum/ERbENGuZTMbQmkO57X2bPm59UEpK/vD9g2oLq3Eo8FC+nVcQ8pvo4oHUmQT/DtZLVqbgtdZLtXrxi+gXlLByxsC6IgcepK7cWsa8DLPbzKZ71e6iO0cQ3nLn5T2Gbv0RneDbnJXfy3b7WsRgXNaDLxp9QYdKHbT+7ym7JSwyU9DLWuy7t48x+8YQFJU6Q2pA9QHMbjObksapNWqKW2l1Qbvk5vNbJCgRQanTHVMSs9wkAYnKxBAsl/M/j//xdZOvMdU3/bDzCkIRkqxI5rdzv/H9ydTWxZqSDlfJ/m+kvjyRi8rUvz03Wze+aPgFvd16a+1AT9/A1/Rdej5P+24c2QAPZ+vsN1SD6MRovj72NXMvzkVCwtrIOjVJ0WnF93sD0iVY+d0NJQhv04q1eAqNuNfvTU4ADJHRvnQ9boy+wS+tfhHJiSC85fyz89RaUouvjn1FoiL1b+kVEvHZjUbRNWD3sLNM9pyMqb4p/mH+DNgxgEpzK7Hg0gLik+MLIPrc+ZClKQpyWQszAzP+avcXvsN9qWZbjdfxrxm1bSFj1l8Rq6sLhYZIUHJoYYeFVLWpqukwtI5CKRXZxeGE94tKjOLT/Z/iudwT/zB/5DK56r4gmcQwx+qkjDxGd8uS1CKGSx3/SJ21k/Yz7gp2pWvzq9evPJ3wlB+b/4iNsQ2PIx7jvd+b8n+VZ+bpmUQkRGjuQb7jQ6ZUa2I6dv0y9bnyyRV+aP4T1smjMk0Z026bsSdA/P0KWkV08bzwS61qmY3RpavywtQWU31TTPRMMNE3yfX/DeQGWt/Hnhs+/sHM2COai4ujXXd24b3fm+fRz4HUImIxSTGq+50snbj8yWWsjKyw/MWSyMRIAsYGZJvkxyXHseLaCn4/97uqtpC5gTlj6oxhQoMJ2JtmvhxGQclsSnV2CnoMSmZy2jVVkN1QQvEkphnng4vPL3FNlvm6Ojkll8kx0TfBRO/fxCWrZOat+3P6/7S1ggqKj38wY9ZdzfAmndZcLCrlFk0vol/w2YHP2HZ7GwCO5o5EJ0Wna+Uw1TdlT989WBlZEZ8cT2RiJAAOZtm/Hoz1jBlXbxyjao9i863N/HLmF269vMWss7OYc34OQ9yHMNlzMs5Wzvny+LKT2ynV2rKshVhdXSiMRIKSQz+1+IlnJtbEJscSkxRDbFLsf/9PjiU2Kev/p/XLKyQFUYlRRCVGqT0+Q13D97fgZJHcZNfyY6hrmKHVR6GUmLEnIMvmYhmpzcVeLvZidkARoZSULL2ylKlHphKZGIlcJqevW1923tlJTHJMum3Xdl2Lq60rAKGxoQAYyA2wMLDI8fn05HoMqD6AftX6se/ePmaemYnvM18WX1nM0qtL6eXaiy8afkEN+xrqe5A5lDal+t3WwxLGekhARNx/Jf7ttaRFMafdS8WtKrCg3USCkkPtKrbNc8XLFGXKexOYLP+f/E4ilMn/lVJqq05CSgIJKQm8jlfv2iY6Mh1V0pKW2OimVOVV5IAs95GA4MgELj4KF83FRUDAywA+2fMJZ4POAlC3VF36V+vP5MOTSVamfhjLkCEhMaPZDLpU6aLaNyQmBAB7U/s8dW/qyHTo9FEnOlbuyOmnp/nlzC8ceHCATf6b2OS/iXYV2zGt0TQalW1UoN2nbd0cMl3CAtDKKbz1nKxwsDDMsmsqrRtKrK4uaBORoBQAXR1dLAwtsDDM+TfInJAkiYSUhBwnPblp+UlISf1mqJSURCdFE50UrTqvcYoFNjmITzQXF26JKYn8fPpnZp6ZSbIyGRM9E35q8RMGugaM3TcW6d+POgO5AYmKRLpW6crXTb5Od4zg6NSZITnp3nkfmUxGk3JNaFKuCX4hfsw6O4stt7Zw4MEBDjw4gKejJ9MaTaN9pfboyApm7L9cR5ZpAq6NSfn7uqa0pRtKEN4lEhRja9A1eP9UY12D1O20jEwmw0jPCCM9I1URJnVRKBWqpOXd5MbvaSwLDmZ/DNFcXHidenKKT/Z8wt3XdwHoUKkD89vPZ8W1FXx/6nvVdpaGlkQkROBm68bqLqszJAdvt6Coi7u9Oxu7b+SH5j/w+7nfWem3knNB5+i0sRNutm5MbTiVPm59tLaWiqZk1TWlLd1QgvAuMYsH0lWSzZSxNVg6fvh5iojsZjJow6wFIW/exL9h6pGpLL26FAA7Ezv+bvc3Xat0Zcy+MSy/tly1bTmLcjyJfIKVkRWXRl6iQokKGY43/fh0vj/1PaNrj2Zhx4X5EnNwdDBzzs9h4eWFqpa+8pbl+dzjc4bVHIaRnlG+nLew0rZKstoWj5C/xCye3LJ0FAlILojm4qJHkiT+CfiHTw98qhrYOrLWSGa1moW+XJ+um7uy7/4+1fbu9u74hfghl8nZ0mNLpskJQHCMerp43sfBzIFZXrOY1ngaCy4tYM75OTyOeMy4A+OYcXIGExpMYGzdsVgaWuZbDIVJVl1TmiBKFQjvIwq1CXmS1eJw9haGYopxIRMUGcTHmz6m1z+9CI0N5SPrjzg55CRLOi0hRZlCizUt0iUnLZxacCP0BgB/tP6DlhVaZnns/OjiyYqloSVfNv6SxxMeM6/dPMpZlONl3Eu+OvYVZWeXZerhqap4BM1LK1UgKtsKWRFdPMIHEc2zhZdCqWD+pfl8dewrYpJi0NPRY1qjaUxrPA1DXUMevXlEm3VtuB9+X7VPl4+6cPLJSd4kvGGI+xBWfLzivbNn6i2tx6UXl9jVZxcff/RxQTwslWRFcrpaKpA6oFfTtVSE7BddFN3ERZdYi0coMGnNxZ3dS+PhbC3eTAqJ6yHX8VjuwXif8cQkxdDQsSF+o/2Y0XwGhrqGXA2+isdyj3TJyYBqA7gffp83CW+oV7oeCzsszHZqb1oXjyYqwKbVUrkx5ga7++zGo4wHiYpEFl9ZTOV5lem7rS/XQ64XeFxC6lTs960I/XapAqH4EgmKIBQj8cnxfHHkC2ovqc2lF5cwNzBnYYeFnBp6ChcbFwAOBx6m6aqmqrEoAMPdhxOTHMOtl7dwMHVgR+8dGOq+f5aWUlISGpN6DAdTzXX5pdVSOTvsLCeHnKRdxXYoJSWb/Dfhvtid9uvbc+rJKQphY3KhJSrbCjkhEhRBKCaOPDxCtYXVmHV2FgpJQbeq3bjtfZvRdUarpgevu7GO9hvap1tXZ3Tt0ZSxKMPOOzvRl+uzvfd2SpmVyvZ8b+LfqAq52ZrY5s+DyoW0Wir7++/Hb5Qffdz6oCPT4cCDAzRd1ZRGKxux5+4eVfFDIf+IyrZCTogERRCKuFdxrxi8czBea70IfBNIabPS7Oi9g229tqkSDUmS+PXsrwzcMZAUZYpq33F1x+Hl7MWMkzMAWNRhEQ3KNMjRedMGpFoZWWGga6DmR/VhatjXYGP3jdwbd49RtUehL9fnXNA5Pt70MTUW1WDdjXUkK5KzP5CQJ2mVbbPqIJSROptHVLYt3kSCIghFlCRJrLuxjqrzq7Lm+hpkyBhXdxwB3gHpytErJSUTfCYw9cjUdPuPrz+eT2p/wqAdg1S/D605NMfnV00x1mD3TnacrZxZ1HERj8c/ZornFMz0zfAP82fgjoFUnleZ+RfnE58cr+kwi5y0UgVAhiRFIrUFS5QqEESCIghF0MM3D2m7vi0DdwzkVdwr3GzdODf8HHPbz8Xc4L+R8wkpCfT5pw9/X/w73f7/8/gf3zT5hi6buxCbHEsLpxb83vr3XMVQkFOMP1RaLZWnE5/yU4ufsDG2UdVSKTenHD+f/jndis3Ch8uqVIGC13SqHypKFQgiQRGEoiRFmcJvZ3/DbYEbhwIPYSA34KcWP3HlkysZumYiEiJou64tWwO2IpfJVbdPbTiVmS1n0mdbHx6+eYiTpRNbemzJden4wpSgpEmrpfJkwpMsa6mkrS8kfLi2bg6cmdqCjSMb8Fcfd/o0CeG54XD2PP0hXVejUDyJBEUQiojLLy5Td2ldphyZQnxKPM3LN+fmmJt82fhL9OX66bZ9HvWcxisbc/LJSQzkBigkBQBfNf6KmS1nMvXIVI48PIKJngm7+uzCOg9rUakWCtTiLp6sGOkZ4V3Pm/uf3mdt17W42rgSnRTNr+d+xekvJ0bvHU1geKCmwywS3i5VMN2rHzYm1jyOeMw/Af9oOjRBw0SCIgiFXExSDBN9JlJ/WX38QvwoYViCFR+v4Oigo1SyrpRh+1tht/BY7oF/mD9m+mYkKlIXypzedDo/NP+BNdfXMPv8bABWd1lNNbtqeYorJLbwtaC86+1aKnv67sHT0TNDLRW/ED9Nh1lkGOkZ8Wm9TwGYdXaWmPpdzIkERRAKsf339+O6wJU5F+aglJT0devLnXF3GFpzaKZF1M48PUOjlY0IigqipHFJ1eJ63zf7nu+afcfF5xcZtXcUAN82+ZbuLt3zHFth7OLJio5Mh46VO3Jm6BlODTlF+0rtVbVUai6uKWqpqNHYumMx1jPGL8SPIw+PaDocQYNEgiIIhVBoTCh9/ulDhw0deBr5lHIW5djfbz8bum/IsubI9tvbabWmFREJEZQxL8OruFcA/NziZ75p+g3B0cF029KNREUinT/qzPRm0z8oRlUXTz4uFFjQZDIZjcs1Zl+/ffiN8qOvW19RS0XNrI2tGVFzBAC/nvtVw9EImiQSFEEoRCRJYvnV5VSZX4XNtzajI9Phfx7/49bYW7Sr1C7L/RZcWkCPLT1IVCRSyaoSz6KeAfCb129MazyNxJREum3pxovoF7jYuLC261pV8ba8KkotKJmpYV+DDd03cG/cPUbXHo2B3EDUUlGTSR6TkMvkHHl4hKvBVzUdjqAhIkERhELi3ut7NF/dnBF7RhCREEFN+5pcHHGR31v/jom+Sab7SJLEV0e/wnu/NxIS7nbuqvV1ZreZzeeenyNJEmP2jeH8s/NYGlqyq88uzAzMPijWxJRE3iS8AYpugpLG2cqZhR0X8mj8I6Y2nJqulkqluZWYd3Eecclxmg6zUClnWY4+bn0A+PWsaEUprkSCIghaLkmRxI+nfqT6wuqcfHISI10jfvf6nYsjL1K7VO0s90tWJDN011B+PvMzAJ6OnviF+gEwt91cJjSYAMC8i/NY6bcSHZkOm3tspqJVxQ+OOa31RF+uTwnDEh98vMLAwcyBX1r9wtOJT/m5xc/YmtjyJPIJnx74lPJzyvPTqZ+yrKWiUEr4Br5ml99zfANfo1CKsSyTPScDsDVgKw/fPNRwNIImyKRCOKorN8s1C0Jhdi7oHCP3jCTgZQAAbZzbsLDDQpxKOL13v5ikGHpu7YnPAx900KG5U3OOPjoKwIL2CxhTdwwAxx4do/Xa1igkBX+0/oNJHpPUEveFZxdosLwBZS3K8mTCE7Ucs7CJT45npd9Kfjv3G48jHgNgpm/G6Dqjmdhgompsjo9/MDP2BKRb3dfBwpDpnVyKfbGyduvb4fPAB++63sxrP0/T4QhqkJvPb9GCIghaKDIhkrH7xtJoRSMCXgZgY2zD+m7rOdD/QLbJSVhsGM1XN8fngQ9Guka0q9ROlZws6bhElZw8evOInlt7opAUDKw+kIkNJqot/qI+/iQnjPSMGFt3LPc/vc+6rutws3UjOima3879Rvm/yjNqzyhWnr/GmHVX0yUnACGRCYxZdxUf/+JdFG6K5xQAVlxbwcvYlxqORihoIkERBC2z4/YOXBa4sPDyQiQkhrgP4bb3bfpV65fp1OG3PQh/gOdyTy6/uIy1kTVtK7Zl3/19yJCx/OPljKw9EkhtYem8qTPh8eHULVWXxR0XZ3vs3BAJyn90dXTpX70/N0b/V0slSZHEkivL+GbXDSQyNmKn3TJjT0Cx7u5pVr4ZdUrVIT4lnnkXRQtKcSMSFEHQEs+jntNtczfVbJqKVhU5OugoKzuvzFEl18svLuO53JPAN4GUtyhPc6fm7LizAxkyVnVZxbCaw4DUgbNDdg7hZthN7Ezs2N57O0Z6Rmp9LIVhocCCJpPJ6Fi5I2eHneX00NM0LTUMXakkGZfLSyUBwZEJXHwUXqBxahOZTKZqRZl3aR6xSbEajqhwK2xjnXK3uIYgCGqnlJQsuryIL458QXRSNLo6ukzxnMLXTb7OceLg88CHHlt6EJscS037mlS2rqyahrymyxr6V++v2van0z+x7fY29HT02N57O2XMy6j9MYkWlPdrVLYRE+s5Mf6hX7bbhkUnZLtNUdatajecSzgT+CaQFddW8Gn9TzUdUqFUGMc6iRYUQdCgW2G3aLSiEd77vYlOiqZ+6fpc+eQKP7X8KcfJyWq/1XTa2InY5Fi8KnipkhO5TM6GbhvSJSe77uzim+PfALCww0I8HT3z5XGJBCV7tmaG2W+Ui+2KKrmOnM89PwfgD98/RG2ZPPDxDy6UY51EgiKoXWFrRtSEhJQEvjn2DTUX18T3mS+m+qbMbTeXs8POUt2ueo6OIUkSP5/+mSG7hpCiTKF/tf5YGVmx+dZmdHV02dRjE73dequ2vxV2iwE7BgAwru44htcani+PDUQXT07Uc7LCwcIwiw6e1I4fBwtD6jlZFWRYWmlwjcGqadtbA7ZqOpxCRaGUmLEnIJORTto/1kkkKIJa+fgH02jWMfouPc/4TX70XXqeRrOOaW2GrgknHp+g+sLq/Hj6R5KVyXSq3ImAsQGMqzcOuY48R8dQKBWM2z+Or459BcBkj8kkKZJUycmWHlvo4dJDtX14fDidN3UmJimGZuWb8WebP/PlsaURLSjZk+vImN7JBcg4CiXt9+mdXJDrqG/wcmFlpGfEZ/U+A1ILtxXC6hgac/FReIaWk7dp81gnkaAIalNYmxELSnh8OCN2j6D56ubcD7+Pvak9//T8h119duFo4Zjj48Qnx9Prn14suLwAGTJmt5lNYEQgWwO2oqejx7Ze2+hatatq+xRlCn239SXwTSDlLMqxtedW9OR6+fEQgdSWHZGg5ExbNwcWDqiFvUX6bhx7C0MWDqiltWMDNGFM3TGY6JlwPfQ6hwIPaTqcQiOnY5i0cayTGCQrqEV2zYgyUpsRvVzsi903QkmS2HJrC5/5fEZYbBgAo2qP4pdWv2BpaJmrY72Jf8PHmz7mzNMz6Mv1WdVlFZv9N7Pr7i705fps77WdDpU7pNtn2pFpHAo8hLGeMbv67KKkcUl1PbTMY0x4Q5IiCQA7U7t8PVdR0NbNAS8Xey4+CicsOgFbs9RuneL2d5IdKyMrRtYayZwLc/j13K+0qdhG0yEVCoV5rJNoQRHUojA3I+anJxFP6LixI3229SEsNoyqJatyeuhpFnVclOvk5GnkUxqtbMSZp2ewMLBgb9+9bLi5gV13d2EgN2BXn10ZkpN1N9bxu+/vAKzqvIoa9jXU9dCylNZ6UsKwBIa62vemp43kOjI8nK3p7F4aD2drkZxkYaLHRHR1dDn26BiXX1zWdDiFQj0nK0wNU5DIfIVtbR7rJBIUQS0KczNifkhRpjDbdzYuC1zYf38/+nJ9ZjSbwbVR12hUtlGuj3cz9Caeyz0JeBlAabPSHB10lNnnZ7P33l4MdQ3Z03cPbSu2TbfP5ReXGbE7ddn6rxp/RU/Xnmp5bNkR3TtCfilrUZa+bn0B+O3cbxqOpnBYf3MtD5WzSE1F0rdxa/tYJ5GgCGrxIvZ2jrbTxmZEdbsWfI0Gyxow6dAk4pLjaFS2EX6j/Pi26bcY6Brk+ngnH5+k8crGPI9+jouNC8cHH2fa0WkceHAAYz1j9vXbh5ezV7p9QmJC6LKpC4mKRDpV7sT3zb9X18PLVnB06lgjkaAI+SFtEcF/Av4hMDxQw9Fotx23dzB011Di5b7Ud72BvUX60gXaPtZJjEERPkhEQgRTDk9h6ZXllGY5ckoiy2TipIzUPwZtbEZUl7jkOL478R1/+v6JQlJgYWDBr16/MqLWCHRkefsusPXWVgbsGECSIonGZRuzsftGBu0cxLFHxzDRM2Ffv300Ld803T6JKYl039Kd59HPqVqyKuu6rcvz+XNLoZS4/DgK45QmGEs1UCglrfxmJhRe1eyq0a5iOw48OMAfvn+woMMCTYeklY48PEKfbX1QSkqGuA9h+cdfIEmyQjXWSaxmLOTZzjs7GbtvrKrmRZdy3+F3pw6QviEx7eWvzZn6hzoUeIjRe0fzKOIRAD1devJX279UK9bmxd8X/maCzwQkJLpX7c6ijovoubUnJx6fwFTflAP9D2ToLpIkiU/2fMKya8uwNLTk4oiLVLKu9EGPLacKY6VKoXA6+fgkzVY3w1DXkCcTnmBrYqvpkLSKb5AvXmu9iE2OpXvV7mzqsQldHe1ojxCrGQv5KiQmhJ5be9J1c1eCY4KpbF2Zk0NOsmPI9GI3ZfJl7EsG7hhIm3VteBTxiDLmZdjdZzdbem7Jc3KilJRMPTyV8T7jkZDwruvNsk7L6La5Gycen8BM34xDAw5lOpZl4eWFLLu2DB2ZDhu7byzQ5ERMMRcKSpNyTahXuh4JKQnMvTBX0+FolRuhN2i/oT2xybG0dm7N+m7rtSY5yS3RgiLkmCRJrL6+mkkHJ/Em4Q1ymZwpDafwbdNv083WUCilQtWMmBeSJLH2xlomHZzE6/jXyJDxab1P+bHFj5gZmOX5uEmKJIbtGsb6m+sBmNlyJmPqjKH9hvacCzqHhYEFBwccpH6Z+hn2PfH4BF5rvUhRpvBrq1+Z3HBynuPIDYVSotGsY1nO4krr3jsztUWRex0ImrMtYBs9tvaghGEJnk58iqm+qaZD0rj7r+/TeGVjQmND8XT05NCAQ5jom2g6rHRy8/ldONMqocA9evOIUXtHcfjhYQBqOdRiWadl1HSomWHbtCmTRdWD8AeM3juao4+OAlDdrjpLOy2lXul6H3Tc6MRoum/pzuGHh9HV0WX5x8vp/FFn2qxrw4XnF7A0tOTwwMPUKVUnw76PIx7Tc2tPUpQp9KvWT7V2SUHIzRTzovy6EApWlypdqGRVifvh91l+dTnjG4zXdEgaFRQZRKu1rQiNDcXd3p19/fZpXXKSW6KLR3gvhVLBbN/ZuC104/DDwxjqGjKr1SwujLiQaXJSlCUrkvnlzC9UW1iNo4+OYqhryMyWM7k88vIHJychMSE0XdWUww8PY6Jnwp6+e+hUuRNea7248PwCVkZWHB10NNPkJDYpli6buvAq7pUqcZTJCq6lQkwxFzTh7UUE/zz/Z7FeRPBl7Eu81nrxNPIpla0rc3DAwVzXWdJGogVFyJJ/mD8jdo/gwvMLADQr34wlHZcU2LgGbXLx+UVG7hnJjdAbALR0asmijouoaFXxg4997/U92q5ry6OIR9ia2LKv3z4qlKhAq7WtuBp8FWsja44OOpppkTVJkhi6ayjXQ69ja2LLzt47c7wKsroU5kqVQuE2qMYgvjn+DU8jn7L51mYGVB+g6ZAKXGRCJG3WteHu67s4mjtyeODhIjNoWLSgCBkkpiQy/fh0ai2uxYXnFzA3MGdJxyUcHXS0yCYnWa3AHJ0YzfgD42mwrAE3Qm9gZWTFqs6rODzwsFqSkwvPLtBwRUMeRTzCuYQz54ado7xleVquacnV4KvYGNtwfPDxLCvA/nLml3Rr8ORmTR91EavyCppiqGvI+PqpXTvFcRHBuOQ4Om7syLWQa9gY23Bk0BHKWpTVdFhqI1pQhHR8g3wZvns4t1+lFl7r/FFn5refT2nz0hqOLP9kNT22Q+14ltwaS1BUEAADqg/gz9Z/YmNio5bz7r23l15bexGfEk+dUnXY128fMmS0WN2Cm2E3sTOx49jgY7jYuGS5f9pqxvPaz8tThVp1SFuVd8y6qxlqVWp7pUqh8BtTZwwzz8zkZthNDgYezFBRuahKUiTRfUt31dIXhwYeorJ1ZU2HpVaiBUUAICYphvEHxtNwRUNuv7qNrYktW3psYUfvHUU+OclsemxwZDxLj8GrN2VwsnTi4ICDrO26Vm3JyfKry+myqQvxKfG0q9iO44OPI0kSzVc352bYTRxMHTgx5ESWycntl7fpt60fEhJj6ozhk9qfqCWuvBKr8gqaUsKoBJ/USn39zzo7S8PRFAyFUsGA7QPweeCjqibtbu+u6bDUTkwzLgDaPu324IODjNo7iieRTwAY4j6EP1r/gZVR0W6Sz256rIQSY4MkLkxrg7mheqYwSpLED6d+YPrxGRgoXWlRrgtfNvGmvK0Cr3UtufPqDqXMSnF88PEsvw1FJERQb2k97offp0m5JhweeBh9ub5a4vtQ2v5aF4qmoMggKvxdgRRlChdGXPjgQevaTJIkRu4ZyfJry9HT0WNvv720dm6t6bByTEwz1iLaXF3zddxrJh6cyNobawEob1mexR0XF6oX+4fIbnqsDB3iEw259TwRD+cPT1BSlCl47/Nm7aWblE5aji42BNyHAfcvgzyCMHkJypQow/HBx7Mc36JQKui7rS/3w+9T1qIsW3tu1ZrkBIr+FHNBOzlaONKvWj/WXF/Db+d+Y2vPrZoOKV9IksTnhz5n+bXlqmKMRfn9WnTx5CNtra4pSRKb/TdTdX5V1t5YiwwZE+pP4OaYm0X6xf6ugpweG5ccR/ct3Vl76SY2SV+iS8l090sKc2ySvuQHjz3vHXz75dEv8Xngg5GuETt77ywyo/UF4UOlLSK4LWAbD8IfaDia/PHT6Z/48/yfACzrtIzuLt01HFH+EglKPlEoJWbsCSCz/rO022bsCVDNFikoz6Ke0XlTZ/ps68PLuJe42rjiO9yX2W1nF7tKjAU1PfZ13GtarWnF7jt7sU4e9e/A0fTdHjJ0kCFj8fHXWb4mNt7cyK/nfgVgZeeVxa4OjSC8j5utGx0qdUBC4vdzv2s6HLWbe2Eu3xz/BoA5beYwtOZQDUeU/0SCkk9yU12zICglJYsuL8Jlvgt77u1BT0ePGc1mcHXU1UzLphcHBTE99nHEYxquaIjvM19K6tZHLpXk3eTkbW+/Jt6e+rz64jmG7RoBwBcNv6C3W+88x1SUZTVdXCgepjScAsAqv1WExoRqOBr1WXN9DZ/5fAbAd02/KzZVc9WeoMycOZO6detiZmaGra0tXbp04e7du+m2SUhIwNvbG2tra0xNTenevTuhoUXnxQTaVV3z3ut7NF/dnDH7xhCdFE2DMg24Nuoa3zb9VqvGLxS0tOmxkDFlUMf0WL8QPzyXe6oKKM1oMidH+4VFJ+DjH0yjWcfou/Q84zf5MX37G6xj5tPIdhw/tvgxT/EUde9es75Lz9No1jGxUGEx0rhsY+qXrk+iIpG5F4vGIoI7bu9g6K7U1pIJ9SfwbdNvNRxRwVF7gnLy5Em8vb05f/48hw8fJjk5mdatWxMbG6vaZuLEiezZs4etW7dy8uRJXrx4Qbdu3dQdikZpQ3XNtNLs1RdW59STU5jomfBX2784M/QMrrau+XbewiS/pscee3SMJiubEBwTTDXbavgO96Vmaecc7fv4VVymY5d0KcmzJ205HBCWp5iKMm0d7yUULJlMxtSGUwGYf2k+0YnRGo7owxwOPEyfbX1QSkqGug/ljzZ/FOgyFpqW79OMX758ia2tLSdPnqRJkyZERkZiY2PDhg0b6NGjBwB37tyhatWq+Pr60qBBg2yPWRimGadNYQ2JTMh0HEp+r/B6Nfgqw3cPxy/ED4A2zm1Y1HER5S3Lq/1cRUFep8dmtt/WgM0M2jGIZGUyzco3Y0fvHVgaWuboNWFnbgDICIkSKwPnlFhNWXibQqnAZYEL917f48/WfzLRY6KmQ8oT3yBfWq1tlTrAvmp3NvXYhK5O4Z94m5vP73wfgxIZGQmAlVVqP/6VK1dITk6mVatWqm2qVKlC2bJl8fX1zfQYiYmJREVFpfvRdm93H7wrP6trxifHM/XwVOotrYdfiB9WRlas6bKGA/0PiOTkPdKmx3Z2L42Hs3WOnpfMuhRqfL+LYVv+JlmZTC/XXvj091Et2pWTLqW+9cpmmZxAwY9dKgy0bbyXoFlyHTmfexTuRQSvh1yn/Yb2xCXH0dq5Neu7rS8SyUlu5WuColQqmTBhAg0bNsTNzQ2AkJAQ9PX1sbS0TLetnZ0dISEhmR5n5syZWFhYqH4cHQt+vZG8SOs+MDNKSXd7flXXPPH4BNUXVefXc7+ikBT0du3Nbe/bDKwxsFg1CxaErLoUohPk2CR9Sc8KP7Gx+0YMdA3S3Z9dl1L5kjlbHl2sDPwfbRrvJWiHgTUGYm9qz7OoZ2zy36TpcHLl/uv7tF7XmoiECDwdPdnea3uG95HiIl9TMm9vb/z9/Tlz5swHHWfatGlMmjRJ9XtUVFShSlK2PdzH2svn6VZ5CJ96DFZ7dc3IhEimHJ7CkqtLAChtVpoFHRbw8Ucfq+0cwn/eN4Vchg4gEfSsPpIky3TCTls3B7xc7DPtUvINfJ2jGMTKwP/RhvFegnZJW0Rw2tFp/HruVwZUH1AovqQFRQbRam0rwmLDcLd3Z1+/fZjo5+xLS1GUby0o48aNY+/evRw/fpwyZcqobre3tycpKYmIiIh024eGhmJvb5/psQwMDDA3N0/3U5hcD/UjUX6TrjUdc9x9kFO77uzCZYGLKjkZXXs0t8beEslJPsquSwFk2XYpZNWlJFYGzj1xzYTMjK4zGlN9U/zD/Dnw4ICmw8lWWGwYXmu9eBr5lMrWlTk44KCqe7i4UnuCIkkS48aNY8eOHRw7dgwnJ6d099euXRs9PT2OHj2quu3u3bs8ffoUDw8PdYejcSnKFG6G3QRQa2Gt0JhQem3tRZfNXXgR/YJKVpU4MfgECzsuxMLQQm3nETLKzy6F/J76XBSJayZkxtLQklG1RwHw69lfNRzN+0UkRNBmXRvuvr5LWYuyHBl4RFSJJh8SFG9vb9atW8eGDRswMzMjJCSEkJAQ4uPjAbCwsGD48OFMmjSJ48ePc+XKFYYOHYqHh0eOZvAUNndf3SUhJQEzfTMqlKjwwceTJIlVfquoOr8qWwO2IpfJ+aLhF1wffZ2m5ZuqIWIhO/ndpSBWBs69rK6ZnbmBuGbF2IQGE9DT0ePkk5NceHZB0+FkKi45jo4bOuIX4oetiS2HBx7G0aJwDGHIb2ofg7Jw4UIAmjVrlu72lStXMmTIEABmz56Njo4O3bt3JzExkTZt2rBgwQJ1h6IVroVcA6CGfQ10ZB+WDz6OeMzI3aM4/SAYuVQNN2trVvb8mjqla6kj1DwpjqvXpnUpZDeF/EO6FN43TkXI3NvXrPfmkYQlPGBln79pXkEkJ8VVGfMy9K/en1V+q/j13K9s67VN0yGlk6RIotvmbpwNOouFgQWHBhzKchXz4kjtCUpOyqoYGhoyf/585s+fr+7Ta51rwakJirude56PoVAqmHtxLjMO7sIkfjD22AAQHQKfrnnD9E7BGvmGqM0rNeentC6FMeuuIoN0SYo6uxTEysC5l3bN6jjDjjs3uRpyheYVmmk6LEGDJntOZpXfKnbc3sG91/e0JgFQKBX0396fg4EHMdYzZn///dSwr6HpsLSKWIsnn/mF+gF5H3/iH+ZPwxUN+XL/Fszj/5dhFVxNVcos7pU7RTeMdqtTqg4Al4MvazgSQdNcbFzoVLkTEhJ/nPtD0+EAqV/kP9nzCf8E/IO+XJ+dvXfi6eip6bC0TvGr/FKAJEn6rwXF3j1X+yamJPLz6Z+ZeWYmyQoFjskrM10FV/r3lhl7AvBysS+QLoDsVmou6Hg0RXTDaK+6peoCcPmFSFCE1EUE99zbw+rrq5nRfAb2ppnPGC0IkiTxv0P/Y4XfCnRkOmzsvhEvZy+NxaPNRAtKPgqKCuJNwht0dXRxtcn52jfnn52n1pJafH/qe5KVybQoPRIdyZqsVsEt6EqZR+48EpU7/5WXCrT5Sazmm6p2qdoAPAh/wJv4NxqORtC0ho4N8SjjQaIikb8v/K3RWH489SOzz88GYPnHy+lWtWitQ6dOogUlH6W1nrjauOaoEmBMUgxfHf2KuRfnIiFha2LL3HZziY2swozAoGz3V3elzNikWAJeBuAf5s/NsJuqf6MiKmPDlAKPR3i/4jomKDNWRlZUKFGBh28eciX4Cq0qtMp+J6HIkslkTGk4ha6bu7Lg0gKmNZqGmYFZgcfx94W/+fZE6mrEc9rMYYj7kAKPoTARCUo+SluoLyfdOwcfHGTU3lE8iXwCwOAagxniPoTl15az/fpMbPgx22PkdVprsiKZ++H3UxOQ0Jv4v0z99+Gbh0iZdOQYyGxydFxRubPgpI0JevfZShsTVBzHxdQpVYeHbx5y+cVlkaAIfPzRx3xk/RF3X99lyZUl/M/zfwV6/tV+qxnvMx6AGc1mML7B+AI9f2EkEpR8lDbFuKZ91gNkX8e9ZuLBiay9sRaA8pblGVFrBMcfHaf56ub/bqWDXDcaRYopmXXz5HRaqyRJPI18mqFF5M6rOyQpkjLdx9bEFjdbN6rZVlP9+5F1VdrNuZSv02yLkvyeii3GBGWubqm6bLm1hUsvLmk6FEEL6Mh0mOw5mRF7RjD7/Gw+rf8p+nL9Ajn39tvbGbZ7GAATG0zkmybfFMh5CzuRoOSjtAQlsxYUSZLYcmsLnx74lJdxL5Eho1WFVjyLesbXx74GQC6T08u1F//z+B8vw0sxZt3V1H3fOk5W01pfxb1KbQ15KxnxD/MnOik601hN9U1xs3XDzcaNanapyYibrVuW1QwLYpptUVAQ3S65Wc23OE1bVs3kEQNlhX8NqD6Ab45/w/Po52y8uZHB7oPz/ZyHAw/Td1tflJKSYe7D+KP1H4ViXSBtIJNyUrhEy0RFRWFhYUFkZKTWrssTHh+O9a+pHwYRUyPSlZ9/FvWMsfvGsufeHiC1lSJFmUJ4fOqgUlN9U0bWGsn4+uMpZ1lOtV9mH3b25gb0b2iAifn9dN0zobGhmcalp6NHlZJV0reK2FWjrEXZXBeSE2Me3i+rbpe0tyZ1dbvs8nvO+E1+2W43uKmSb9u0R64j/+BzFgZRiVFY/mKJhETo56GidLgApJa9n3pkKq42rtwYc+ODC2i+j2+QL63WtiIuOY4eLj3Y1H1Tsfn7y0puPr9FgqJOEUEQl7oa7cUXlxi9dzSlzUqzp+9uAJTGJVj6wIcpR6YQlRiFjkwHuUxOsjIZSF2FeHz98YysPTLDIlHJimTuvb7H9ZCbHLv3lPsvQwmK8edR7BGQKTMNp0KJChm6ZypZV1Jrs2ZxrCSbEwqlRKNZx7Js2UjrBjsztcUHXy/fwNf0XXo+2+1C9KdRyjqGsXXHMqzmMKyMin4XXNX5Vbnz6g77+u2jfaX2mg5H0AKRCZE4znYkOimaPX330LFyx3w5z/WQ6zRb3Sx1nR3nNuzqsytHkyXUSRvfn3Pz+S26eNQlIgjm1YaURADqAVcxhehIWJK6Rk4yMn4iiihZak6olJQoJSU17Grwuefn9HLtha6OLk8jn3L6yel03TN3Xt1RJTLpyMDOxC61W8bGTdUi4mLjgqm+ab4/bFHtNHMF2e2SXel9ACODBIyNnvMoIpzJhyfz7fFv6V+tP+PqjSvS1SvrlKrDnVd3uPziskhQBAAsDC0YXWc0v537jV/P/povCcr91/dpva41EQkRNHRsyLZe2wo8OSkKLdwiQVGXuNeq5CQrBkiUREbQvx8jzcs3p33F9ujJ9Tj5+CTzL83HP8yfmKSYTPc30zdTjQ1JaxVxs3XDxiRns2qEgpPTKdbzz68lRbc2Dco0QE+ul6dz5aT0/uyenjT5KIiNNzcy9+JcrodeZ9m1ZSy7tozGZRszrt44ulbpmucYtFUdhzqsu7FOjEMR0hlffzxzzs/h9NPT+Ab54uHoobZjP418Squ1rQiLDcPd3p29/fZiom+ituPnRFGZ1Se6eNTlhZ+qpeR9ahNLsJktiYpE1ZiTd+np6FHVpmqG7pmyFmXF4KpCIjfdLonym5jpm9HcqTmtK7SmTcU2OJdwzvVzndNvTJIkcTboLPMuzmPb7W2kKFMAKGVWitG1RzOy9kiNVtpUp3NB52i4oiH2pva8mPRC/P0IKsN3DWeF3wq6VOnCjt471HLMsNgwGq9srFrz5/TQ0wU+9qkgu5fzQoxB0YQcJii1iOHav2NGZMgyjhOxq0Ylq0pF7ptscZP2JvG+bhdzYwWuLps58ugQr+JepbvPydKJ1s6tae3cmhZOLTKMSXrfeXPT5/w86jlLrixh8ZXFqoHVejp69HLtxbh646hfun6h/lCPS47DbKYZSknJs4nPKG1eWtMhCVri9svbuCxwQYaMAO8AqpSs8kHHi0iIoPnq5viF+FHWoixnhp7B0cJRTdFmlNXfek6/HG0c2UAj3fMiQdGEXCQoN3V0sDa2prRZaUqZl8LOxC71x/S/f+1N7bEzscPS0LJQf0AUZ2nNrJB5t0taM6tSUuIX4sehwEMcCjzEmadn0o030pHpUL90fVXCUq90PXR11Ns7m6RI4p+Af5h7cS7nn/335lanVB3G1R1Hb7feGOoWzsJ71RdW52bYTXb23knnKp01HY6gRTpv6szuu7sZUXMESz9emufjxCbF0mZdG84GncXWxJbTQ0/n66rJWbWWjm5ekisvrrP7YvaJx1993OnsXvAJu0hQNCEPLSg5oS/Xx9bENn0CY/JvAmOaPrGxMrISyYyWyctAtZikGE49OaVKWG6/up3ufnMDc1o6tVQlLBVKVFBrzJdfXGb+pflsvLmRREXquKqSxiUZWWsko+uMpqxFWbWeL7+lNeV/3fhrfmjxg6bDEbRIWhegvlyfx+Mf42CW+3EZiSmJfLzpYw4FHsLCwIKTQ07m68DzrMaX8G/d7wjddZRIGZjtcUQLSj4pzAlKwrBDhJjbERoTSmhsaIZ/Q2JCVL9HJkbmKgRdHd10yUxaK8y7rTN2JnZYG1vn6/x/4T8fOtXvaeRTDgce5tDDQxx5eCTD2CXnEs60cW5Da+fWNHdqjrmBev4mXsa+ZPm15Sy4tICgqNS1oHRkOnSp0oVxdcfRrHyzQpEQL7y0kLH7x9LGuQ0+A3w0HY5QgHLyt9doRSPOBp1lasOp/NLql1wdP0WZQp9/+rDt9jaM9Yw5PPAwno6e6nwI6SSlpNDgl8OExyjIrKq4hBK5PAZDPUPiEjIvJyHGoOSzwpyg8MlJKOWeo0MmpCQQFhuWLolRJTDvJDdvEnK3YqtcJk9NZt5JXN7+f1orjbWRdbEvLqQtFEoFV4OvprauPDzEuaBzqkGukPq8ejh60LpCautKnVJ1Pvi5S1GmsOfuHuZdmsexR8dUt7vauDKu3jgGVB9QIFPa8+rS80vUW1YPayNrXk5+WSiSKuHD5bT1cvfd3XTe1BlzA3OCJgblOMFXSkpG7B7BSr+V6Mv12dt3L17OXmp/HE8innD44WEOBh7k+J3nmMZ+le0+E1tVZs6Re8D7u5c1QSQomvBOHZRM6RrAuCtgqf6BU0mKJMJiw1ITmHdbZ95poclq9lBWdGQ62BjbZEhmVC00b91uY2wjkpkCFJ0YzYnHJ1QJy73X99LdX8KwBC0rtFQlLG9XJs6LW2G3mH9pPmuuryE2ORZI7XIa6j4U77reVLKu9EHHzw+JKYmYzTQjWZnMo/GPKG9ZXtMhCfksN1WclZIStwVu3H51m9+8fuNzz8+zPb4kSUw6OIk5F+agI9Phn57/0LVqV7XEHpMUo/qb3n9/P4FvAlX3Gac0wSY5+5Xk/+rjjoGujlbWQREJiqb8W0k2PiWehisaqW7+rtl3fFy5Exhb50tyklvJiuTUlplMuphU3Uz//v467nWmKxpnRYaMksYls+1isjO1w9bEVu2DPYu7xxGP03UHRSREpLu/snVlVbLSrHyzPC85H5kQySq/Vcy/NJ/74fdVt7et2JZP631K24pttaoLsc6SOlwJvsKWHlvo6dpT0+EI+Sgv02xXXlvJsN3DKGVWioefPcy2qNr3J79n+onpAKzqvOqD1vRRSkpVq+jee3u5+PwiCkmR6bYGimrYJ83M9php40sKeyVZkaDkg9ikWExn/tfk3cu1F5t7bNZgRHmXokzhZezLjONkMmmdeRn7MtfJjLWxdbZdTHYmqclMQU+91rY/7tzGk6JM4fKLy6rBtuefnU/3xqeno4enoyetnVvT0smLlIRyvIpJztVjVUpKDgUeYt7Feey/v1/1/DuXcMa7rjdDaw7N8RTp/DR672gWX1nMFM8pzPKapelwhHyUl2m2iSmJVPi7Ai+iX7Di4xUMrTk0y/3+Ov8XEw5OSP1/27/4rP5nuY7xWdQzDgUeYvfd3Rx7dCzLRVwBqtlWo1WFVjQr3wzPMo3o9Pe1bFeS19T4kpwQCYqGvZuglDAsQdjksCLfWqBQKngV9yrdQN/MuppCYkJ4GfcSpZTz2UwAVkZW2XYxpf37oesNaVuZaHXEE5kQyfHHx1UJS1rTsZHCA6ukT9Dlv4rENmZ6/NC5Wq4ea2B4IAsuLWCF3wpVy42xnjEDqg1gXL1xVLOrluNjqdvyq8sZsWcELZxacHTQUY3FIeS/nC6e+e4029/O/saUI1OoWrIq/mP9M20BXOW3iqG7UpOX75t9zzdNv8lRTLFJsZx6coqdd3ey794+nkc/z3LbqiWr0sa5Dc3KN6NJuSaUMCqR7v6cli/QViJB0bC3E5QShiV4k/CGs8PO5uvo7sJGoVTwOv51prOZQmLTj6MJiw3LsskzK5aGlhkTmCxqzbzbnFtQqxDnVH7FExgeyLzTZ9jha41EaotWGgklMmTUc73BkAbuNC3XNMflumOTYll/cz3zLs7jZthN1e1NyzXl03qf0rlK5wJP1q+HXMd9sTvmBua8mfpGq7qfBPXKaQvKb71L07Omu+r3qMQoHGc7EpUYxe4+u+n0Uad022+/vZ2eW3uilJRMajCJ31v/nuWAa6Wk5HrIdbbf3s7OOzsJeBWQ5ReyiiUq0rZiW1pWaEmTck1ytIintn2Byg2RoGjY2wlK96rd2XZ7m6jB8AGUkpLw+PBsu5jS/n17VktOWBhYvNWVZI+/fy8SkgzJbBpfQTeh5mfZ6uyOLaFEwWueGw5HX1eXRmUbqcav1LCvke2HvCRJnH56mrkX57Lj9g5VklnGvIyqpH5BlQFPViRj/os5CSkJ3B13N1+LaAmalV0V57TXdbDRSPpX78s3Tb5RDe6eudebrZcX4W7vzoqPl6v28X12nvE+4wlRJtO61jCWdlqaITl5Ef2CbQHb2BKwhSsvrhCfEp9pfGUtytLWuS1tK7alSbkmWBvnrRaJtnVB55RIUDTs7QRlcYfFjNo3itoOtbn8iViwLL8pJSVv4t9k3sWUSa2Zd1eIzu0gtPyW02+DfZuE0d61Iq62rjn6BpabYytL/ElQwrF0t9kY2+Dl7EXrCq3xcvailFmp9x7jWdQzFl1exJIrS3gZ9xJILULY27U3n9b7lLql6+Yo5g/hudwT32e+rO+2nn7V+uX7+QTNeV83iASUK3eIU2F/A6mzFAdUH8CMmiMot6YbMkVSlsdNkukg/8wPeYlyxCXHsffeXtbdWMfZoLNZzo50MHWgpVNLulTpQtPyTSlpXFJNj7JwEgmKhr2doAR+GojzXGcAQv4Xgp2pnSZDE94iSRIRCRHpkpcTt2PYfzn756igykTntD/9pd6vxOmeAsDe1B5XG1dcbFxwtXHF1dYVVxvXDH3ZOT12uMEflLd/RUnjkkQnRRPwMoC45Lh027jZuqlaV5qUa4KRnlGmx0pMSWTLrS3MuzSPi88vqm6vV7oen9b7lJ4uPfNtWfrPDnzG3ItzmdhgIn+2+TNfziFoj+y6Qa68uMJ3J79j7729ANRBj0tS5q/bt31TqSmrw/x4FvUs00kBNsY2NCrbiF6uvWhVoVWxT0jeJRIUDXs7QYmZFkPjlY25FnKN1V1WM6jGIA1HJ7yPti20ldN4yjnt4HH8YZ5GPs1yGwdTB1xtXXEp6YKrrSuypMr8tCs222Onrbj8tlJmpbA2siY6KZrHEY/T3WcgN6BJuSaqUvzVbKtl2ld/8flF5l2cx+Zbm0n691urjbENn9T+hNF1RlPGvEy2seXGmutrGLxzMI3KNuL00NNqPbagnXLSDXL5xWW+O/EdL+4d4CrZFxx8d7kSS0NL6pWqRx+3PnSs3BEbE5v37C2IBEXD3k1Qfj79Mz+f+Zk+bn3Y2H2jhqMT3ie7/uu8jPn4kL7i3MYTnRjN7Ve3uRV2i1sv//0Ju6UqVZ+OpEPphOXIKZlugOy7x14/ypnzz89x5ukZzgad5WbozQzfHE30TLAysiIqMSrDEg12JnaqZKVVhVbYm9qnuz8sNoylV5ay8PJC1ewGuUxO16pd+bTepzQu21gt1V/TVq811jMm6osoUVBQSOfW9Q247hiT7XaN9JTgUIMeLj3o69ZXtIrnkkhQNOzdBOVayDUar2yMlZEVYZ+HiTdGLafOaXzqGG2vjniiEqO4/fK2KmFJS15ev3HEJulLQELGf4NeJZSAjFKO+2jgbKjqJnKxcQHg/LPzqoTlwvMLGbp85DI5ZgZmxCTFZBi0XMOuhiphaVS2kWqV5BRlCrvu7GLuxbmcfHJStX0122qMqzeO/tX653gmUWYUSgWWsyyJSYrBf4w/rraueT6WUATlw3IlQkYiQdGwdxMUA10DbH6zISIhAt/hvjQo00DDEQrZUWdioY7pwfk1rTAqMYpV56+x9EQk0fH/Jc4pvCRcfwnxct8M+5QxL/Pf+BYbVz6y/ogUKQW/ED/OBp3l7NOzBMcEZ9jPQG6gWh05jaGuIU3LNVUlLK42rshkMm6G3mT+pfmsvbFWlfxYGloyzH0YY+uOxdnKOU+Pt+mqppx6coqVnVcyxH1Ino4hFE1xT30xXtE2+w1FgvJBRIKiYe8mKCb6JvTa2outAVv5tsm3zGg+Q8MRCjmhjq6ZrKbwAtia6XHkf56YGZjkqAsjP6cVvnvsjxzk3H2dvsUl4GXAewtMOZo74mLjgouNC3YmdsQnx/M06ikXn1/k1stbGbbXkelkqA1RyqxUarJSIbU7SFdHV1VSP62wnAwZ7Su1Z1y9cbR2bp2rmiafH/qcP3z/wLuuN/Paz8vxfkLRdjP0JtM3dmF7xKvsNxYJygcRCYqGZZagpK31ULdUXS6OvJjNEYTCLqeDW0P0p6HUu4OVkRUljEqk/mv4zr/v3v7W7wVd/j8iIYKAlwHpuokCXgbwIvpFlvuUtShLJatKmBuYk6RI4nn0c26/vJ2hNSUztRxqqZKVmKQYFl9ZzIEHB1T3V7KqhHddb4a4D8HC0CLb423y30TfbX2pX7o+50dk//wIRZskSaz0W8m4/eOokpyYo0GyIkH5MCJB0bDMEpTg6GBK/VkKGTJCPw8VI72LuLxMD84LU33TrBOZ9yQ45gbmaq2m+ib+TWri8k6LS2ZdPWnsTe2xNLAkRUohNCb0veuRQGp3UPPyzallX4ugqCB23t1JVGIUkDpId1CNQXjX9X7v2JIH4Q+oNLcSBnIDoqZFffCSCELhFZsUy9j9Y1lzfQ0AA8s1Z3WQP7L3JM7JMjl6469rxaKvhZVIUDQsswQFwH2RO9dDr7O261oGVB+gyRCFfJbTFpQVQ2tQyV4iPD6cNwlvUv+Nf5P+90xuf3eV4tzSkelgaWiZMZExfH+LjZWRVZY1TjITHh+eaYtLSExIlvuY6psiSRKxye+fAl3SqCQVrSryLPoZz6KeqW5v4dSCcXXH0emjTulL6kcEIcW9otnq5kQnRrOh2waqlPzov/u1ZLVxIf/dCrtFz609uf3qNjoyHX5s/iNTG01FJ/I5q31n89eFv2jh1ILfvX4D4NijY3x+eDKvkPil+zpR6O8D5Obzu2ivXqdl2lVsx/XQ6xx4cEAkKEVcPScrHCwMs50e3LRSaeQ6MhwtcvfBqFAqiEyMzDyh+ff38ITM74tPiVctH5BV9cv3MZAbYGVkleNWGzsTO6q4VGG44XBVwvA67nW6FpeAV6lJTGhsKDFJMTmK41X8K149/2/MgImeCXHJcRx7dIxjj45R1qIsY+qMYUStEZRMiod5tZGlJJI6P8gUtn+S/oC6BjDuikhSirhVfqsYu28s8SnxOJg6sKnHJpqUa5J6p6Uju6Iec02mpF+lNqqunBal3GmX8Jqfz/zMiN0jcLFxwd3eXWOPobgQLSj5IKsWlFNPTtF0VVOsjawJ/TxUTDcu4rR11dGElIQsk5r3tdqEx4fnegXqd5kbmL+31UZPR4+YpBhex78mJCaEp5FPeRD+QFUePy/05fpMq9CO7+4dz35jMb6gyIpLjsN7vzerOfE9sgAAEVVJREFU/FYB4FXBi3Xd1qVbD0qSJEr9WYqQmBBODz1No7KNVPcplAo6buyIzwMfyluW5/LIy3leR6c4Ey0oWsqjjAfmBua8jn/N5ReXqV+mvqZDEvJRWzcHFg6olWF6sL2GVx011DXEwcwBB7PcnV+SJKKTotO30uQwyUkbXxKVGEVUYhSPeZyrc8tlckz1TTHQNUCGjGRlMrFJsTkaaJukSGL3vT18l5MBkEKRdPvlbXpu7cmtl7fQkekwo9kMvmz8ZYZxWE8jnxISE4Kuji61HWqnu0+uI2dDtw3UWVqHh28e0mdbHw70P1DgK3MXJ+LKFiA9uR5eFbzYdnsbPg98RIJSDLR1c8DLxb5Qrjr6LplMhrmBOeYG5pS3LJ+rfZMVyUQkROSp1SZJkYRCSu3SIvt8RCjGMpuKv+HmOkbvG01cchz2pvZs6LaB5k7NM93f91lq3Z+a9jUzHWtVwqgEO3vvpMHyBhx5eISvjn7FLK9Z+fqYijORoBSwdhXbse32Ng48OMD0ZtM1HY5QAOQ6sgJZt0eb6cn1sDGxyfXsNUmSiE+J/6+1JoddU6/jXmcouS8UbZkVMzTQjyOIhcTL42jp1JL13da/tzS9b1BqgvK+YprV7KqxsvNKev/Tm1/P/UrtUrXp5dpLfQ9EUBEJSgFrWzG1UuHF5xd5FfdKrHQpCO8hk8kw1jPGWM8414sHKpQKohKjCI8PJ/HZBdie/TorQuGUVdXmhCRDbPiSljUfsrSnd7bj/tJaUDzKeLx3u16uvbgafJVZZ2cxdNdQqpasSjW7ah/yEIRMqK8QgpAjpc1LU92uOhIShwIPaTocQShSFEoJ38DX7PJ7zsVHEZgbWOJs5czzqKwLyQmFm0IpMWNPQBaz5XSQIeP2Q1ey+7iLT47nWsg1ADwc35+gAPzU4idaO7cmLjmOLpu78DL2teq15xv4GoWy0M0/0TqiBUUD2jq35UboDQ48OCDm0wuCmmTWxG9vbkDpMr48evgdXmKQbJF08VH4e5eUAAiOTODio/D3drVeDb5KijIFOxM7ylmUy/a8ch05G7tvpM6SOgS/ssPjl8OkJJup7lfHWlnFnWhB0YB2ldoBcPDBwQ+etikIwn9N/O9+UIVEJXA5oCYxypoky7KZ1q9rkFqsTShUwqLfn5zkdDtV946jR47WxgKwMrJiSu0N2CR9SXJy+gQ4JDKBMeuu4uOfdTVl4f1EC4oGNHRsiJm+GS/jXnLlxRXqlq6r6ZAEodB6XxN/atUZJSZ6M9AZVw3eV5hOVJItlGzNDNWy3flnqZWfsxt/8jaFUmL16dh/axulT2qkf2+ZsScALxf7QjlzT9NEC4oG6Mn1aFWhFUC6hc8EQci97Jr4ZejwJhYuhpukFmHL6kckJ4VSWtXmrD7+ZaR2t9Rzssr0/tRxS684/yAFA0U16pXKefmH/157mZ9d4r/uJSH3RIKiIe0qpnbz+Dzw0XAkglC4qauJXyic5DoypndyATKmCWm/T+/kkmkLho9/MI1mHaPv0gvoRo3EPmkmUzcm57hbRrz28pdIUDQkbRzKhecX8rQeiiAIqdTVxC8UXmlVm+0t0j/H9haGWS4pkdW4pbCoxByPHRGvvfwlxqBoSBnzMrjZuuEf5s+hwEP0ceuj6ZAEoVDK6cKMWTXxC0VDbqo2v2/cUm7GjojXXv4SLSgalNbNI8ahCELefUgTv1C0pFVt7uxeGg9n6yyf8+zGLeV07Ih47eUvkaBoUFpVWZ8HPmK6sSB8gLw08QvFlzrHjojXXv4RXTwa1KhsI0z1TQmLDeNa8DVql6qd/U6CIGSqKC3MKOQvdY8dEa+9/CESFA3Sl+vT0qklu+7u4sCDAyJBEYQPJBZmFHIiP8aOiNee+okuHg0T41AEQRAKlhg7UjiIBEXD0qYbn392njfxbzQcjSAIQvEgxo5oP9HFo2FlLcriYuNCwMsADj88TC/XXpoOSRAEoVgQY0e0m2hB0QKim0cQBEEzcjo1WSh4IkHRAm+XvRfTjQVBEARBdPHkC4VSwkBRDblUgouP3tCkkvF7s/JGZRthomdCSHQY6y9fxFzPUTQ1CoIgCMWaTJKkzFcp12JRUVFYWFgQGRmJubm5psNJx8c/mOm7bxEalai6zcHCkOmdXN476KrpwvEEPqmJLja52k8QBEEQCovcfH5rtItn/vz5lC9fHkNDQ+rXr8/Fixc1Gc4HS1t86u3kBCAkMuG9i0/5+Afz5IkXckrmaj9BEARBKKo0lqBs3ryZSZMmMX36dK5evUqNGjVo06YNYWFhmgrpg2S3+BSkLj6lUKbfIm0/kCF7Z0b++/YTBEEQhKJMYwnKn3/+yciRIxk6dCguLi4sWrQIY2NjVqxYkWHbxMREoqKi0v1om7wuPqWuRasEQRAEoSjRSIKSlJTElStXaNWq1X+B6OjQqlUrfH19M2w/c+ZMLCwsVD+Ojo4FGW6O5HXxKXUuWiUIgiAIRYVGEpRXr16hUCiws7NLd7udnR0hISEZtp82bRqRkZGqn6CgoIIKNcfyuviUuhetEgRBEISioFBMMzYwMMDAwEDTYbxXXhefyo9FqwRBEAShsNNIC0rJkiWRy+WEhoamuz00NBR7e3tNhPTB8rr4lFi0ShAEQRAy0kiCoq+vT+3atTl69KjqNqVSydGjR/Hw8NBESGqR18WnxKJVgiAIgpCexrp4Jk2axODBg6lTpw716tVjzpw5xMbGMnToUE2FpBZ5XXxKLFolCIIgCP/RWILSu3dvXr58ybfffktISAju7u74+PhkGDhbGKUtPlVQ+wmCIAhCUSNK3QuCIAiCUCAKTal7QRAEQRCEzIgERRAEQRAErSMSFEEQBEEQtI5IUARBEARB0DoiQREEQRAEQeuIBEUQBEEQBK0jEhRBEARBELSOSFAEQRAEQdA6hWI143el1ZaLiorScCSCIAiCIORU2ud2TmrEFsoEJTo6GgBHR0cNRyIIgiAIQm5FR0djYWHx3m0KZal7pVLJixcvMDMzQyZT72J6UVFRODo6EhQUJMro5zNxrQuOuNYFR1zrgiOudcFR17WWJIno6GhKlSqFjs77R5kUyhYUHR0dypQpk6/nMDc3Fy/4AiKudcER17rgiGtdcMS1LjjquNbZtZykEYNkBUEQBEHQOiJBEQRBEARB64gE5R0GBgZMnz4dAwMDTYdS5IlrXXDEtS444loXHHGtC44mrnWhHCQrCIIgCELRJlpQBEEQBEHQOiJBEQRBEARB64gERRAEQRAErSMSFEEQBEEQtI5IUARBEARB0DoiQXnL/PnzKV++PIaGhtSvX5+LFy9qOqRCb+bMmdStWxczMzNsbW3p0qULd+/eTbdNQkIC3t7eWFtbY2pqSvfu3QkNDdVQxEXHL7/8gkwmY8KECarbxLVWn+fPnzNgwACsra0xMjKiWrVqXL58WXW/JEl8++23ODg4YGRkRKtWrbh//74GIy6cFAoF33zzDU5OThgZGeHs7MwPP/yQbrE5ca3z5tSpU3Tq1IlSpUohk8nYuXNnuvtzcl3Dw8Pp378/5ubmWFpaMnz4cGJiYtQToCRIkiRJmzZtkvT19aUVK1ZIt27dkkaOHClZWlpKoaGhmg6tUGvTpo20cuVKyd/fX/Lz85Pat28vlS1bVoqJiVFtM3r0aMnR0VE6evSodPnyZalBgwaSp6enBqMu/C5evCiVL19eql69ujR+/HjV7eJaq0d4eLhUrlw5aciQIdKFCxekhw8fSgcPHpQePHig2uaXX36RLCwspJ07d0rXr1+XPv74Y8nJyUmKj4/XYOSFz08//SRZW1tLe/fulR49eiRt3bpVMjU1lf766y/VNuJa583+/fulr776Stq+fbsESDt27Eh3f06ua9u2baUaNWpI58+fl06fPi1VrFhR6tu3r1riEwnKv+rVqyd5e3urflcoFFKpUqWkmTNnajCqoicsLEwCpJMnT0qSJEkRERGSnp6etHXrVtU2t2/flgDJ19dXU2EWatHR0VKlSpWkw4cPS02bNlUlKOJaq8/UqVOlRo0aZXm/UqmU7O3tpd9++011W0REhGRgYCBt3LixIEIsMjp06CANGzYs3W3dunWT+vfvL0mSuNbq8m6CkpPrGhAQIAHSpUuXVNscOHBAkslk0vPnzz84JtHFAyQlJXHlyhVatWqluk1HR4dWrVrh6+urwciKnsjISACsrKwAuHLlCsnJyemufZUqVShbtqy49nnk7e1Nhw4d0l1TENdanXbv3k2dOnXo2bMntra21KxZk6VLl6ruf/ToESEhIemutYWFBfXr1xfXOpc8PT05evQo9+7dA+D69eucOXOGdu3aAeJa55ecXFdfX18sLS2pU6eOaptWrVqho6PDhQsXPjiGQrmasbq9evUKhUKBnZ1dutvt7Oy4c+eOhqIqepRKJRMmTKBhw4a4ubkBEBISgr6+PpaWlum2tbOzIyQkRANRFm6bNm3i6tWrXLp0KcN94lqrz8OHD1m4cCGTJk3iyy+/5NKlS3z22Wfo6+szePBg1fXM7D1FXOvc+eKLL4iKiqJKlSrI5XIUCgU//fQT/fv3BxDXOp/k5LqGhIRga2ub7n5dXV2srKzUcu1FgiIUGG9vb/z9/Tlz5oymQymSgoKCGD9+PIcPH8bQ0FDT4RRpSqWSOnXq8PPPPwNQs2ZN/P39WbRoEYMHD9ZwdEXLli1bWL9+PRs2bMDV1RU/Pz8mTJhAqVKlxLUu4kQXD1CyZEnkcnmG2QyhoaHY29trKKqiZdy4cezdu5fjx49TpkwZ1e329vYkJSURERGRbntx7XPvypUrhIWFUatWLXR1ddHV1eXkyZP8/fff6OrqYmdnJ661mjg4OODi4pLutqpVq/L06VMA1fUU7ykfbvLkyXzxxRf06dOHatWqMXDgQCZOnMjMmTMBca3zS06uq729PWFhYenuT0lJITw8XC3XXiQogL6+PrVr1+bo0aOq25RKJUePHsXDw0ODkRV+kiQxbtw4duzYwbFjx3Byckp3f+3atdHT00t37e/evcvTp0/Ftc+lli1bcvPmTfz8/FQ/derUoX///qr/i2utHg0bNswwXf7evXuUK1cOACcnJ+zt7dNd66ioKC5cuCCudS7FxcWho5P+o0oul6NUKgFxrfNLTq6rh4cHERERXLlyRbXNsWPHUCqV1K9f/8OD+OBhtkXEpk2bJAMDA2nVqlVSQECA9Mknn0iWlpZSSEiIpkMr1MaMGSNZWFhIJ06ckIKDg1U/cXFxqm1Gjx4tlS1bVjp27Jh0+fJlycPDQ/Lw8NBg1EXH27N4JElca3W5ePGipKurK/3000/S/fv3pfXr10vGxsbSunXrVNv88ssvkqWlpbRr1y7pxo0bUufOncXU1zwYPHiwVLp0adU04+3bt0slS5aUpkyZotpGXOu8iY6Olq5duyZdu3ZNAqQ///xTunbtmvTkyRNJknJ2Xdu2bSvVrFlTunDhgnTmzBmpUqVKYppxfpg7d65UtmxZSV9fX6pXr550/vx5TYdU6AGZ/qxcuVK1TXx8vDR27FipRIkSkrGxsdS1a1cpODhYc0EXIe8mKOJaq8+ePXskNzc3ycDAQKpSpYq0ZMmSdPcrlUrpm2++kezs7CQDAwOpZcuW0t27dzUUbeEVFRUljR8/XipbtqxkaGgoVahQQfrqq6+kxMRE1TbiWufN8ePHM31/Hjx4sCRJObuur1+/lvr27SuZmppK5ubm0tChQ6Xo6Gi1xCeTpLfK8QmCIAiCIGgBMQZFEARBEAStIxIUQRAEQRC0jkhQBEEQBEHQOiJBEQRBEARB64gERRAEQRAErSMSFEEQBEEQtI5IUARBEARB0DoiQREEQRAEQeuIBEUQBEEQBK0jEhRBEARBELSOSFAEQRAEQdA6/wcvYUf6HoBNpgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGzCAYAAAAotsMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1wURxuAn7ujd5AOCogVRbFXBHuPLbbE2HuMNTGmWKImRk2zG0tsUWONvcfeRcXeFWyAAtLr3e33B9+tnrQDqbrP70fM7c7Ozs7Ozr77tpEJgiAgISEhISEhIfGBIS/sBkhISEhISEhIFAaSECQhISEhISHxQSIJQRISEhISEhIfJJIQJCEhISEhIfFBIglBEhISEhISEh8kkhAkISEhISEh8UEiCUESEhISEhISHySSECQhISEhISHxQSIJQRISEhISEhIfJMVeCAoKCkImk7Fy5Upx25QpU5DJZFrl3N3d6du3b763p2/fvri7u+f7eXJLRv31oeHv70/lypULuxm5YuXKlchkMoKCgnJ8bEbPRX7j7++Pv79/gZ4TdB/nmv4MCAgomIZlQd++fTEzM8v3cxTl+Uki50j39N3IFyFIM7Fk9DdhwoT8OGWOuXnzJlOmTMnVy6Q4sG7dOv7444/CboaEhMR7jlqtZtasWXh4eGBkZESVKlVYv369zsdfvHiRdu3a4ejoiJmZGVWqVGHu3LmoVCqtcklJScyYMQMvLy9MTExwcXGha9eu3LhxI68v6YPF3d09w/f20KFDtcqFhIQwYcIEGjdujLm5OTKZjKNHj2ZYZ2pqKj/88AOlS5fG0NCQ0qVLM336dJRKpVa5uLg4Jk+eTKtWrbCxscn0I0atVrNy5Uo++ugjSpYsiampKZUrV2b69OkkJSXl+Jr1cnxEDpg6dSoeHh5a2/L6C9zNzY3ExET09fWzLHfnzh3k8tcy382bN/nhhx/w9/d/L6XodevWcf36dUaPHq21Xdf+kpCQeP9YunQparU6T+v87rvv+Pnnnxk0aBC1atVi+/btfPLJJ8hkMnr06JHlsRcvXqR+/fqULVuWr7/+GhMTE/bu3cuoUaN48OABc+bMEct++umn7Nixg0GDBlG9enWeP3/OggULqFevHteuXcPNzS1Pr+tDxcfHh3HjxmltK1eunNbvO3fuMHPmTMqWLYu3tzdnzpzJtL5evXqxadMm+vfvT82aNTl79iwTJ07k8ePHLFmyRCwXHh7O1KlTKVWqFFWrVs1UqEpISKBfv37UrVuXoUOHYm9vz5kzZ5g8eTL//fcfhw8fzpHGO1+FoNatW1OzZs38PAUymQwjI6NsyxkaGuZrO4oLuvaXhITE+0def/w8e/aMX3/9lc8//5z58+cDMHDgQPz8/Pjqq6/o2rUrCoUi0+P//PNPAI4fP46NjQ0AQ4YMwc/Pj5UrV4pC0LNnz9i6dStffvkls2fPFo/39fWlSZMmbN26lTFjxuTptX2ouLi40KtXryzL1KhRg4iICGxsbNi8eTNdu3bNsNyFCxfYuHEjEydOZOrUqQAMHToUW1tbfvvtN0aMGEGVKlUAcHJyIiQkBEdHRwICAqhVq1aGdRoYGHDq1Cnq168vbhs0aBDu7u6iINSsWTOdr7dQfIKCg4MZPnw45cuXx9jYmBIlStC1a9cMTVNRUVGMGTMGd3d3DA0NcXV1pXfv3oSHhwO62/7f9AlauXKleNMaN24sqvyOHj1Knz59sLW1JTU1NV0dLVq0oHz58jm+3vj4eMaNG0fJkiUxNDSkfPny/PLLLwiCkK7s33//Te3atTExMcHa2ppGjRpx4MABcf/27dtp27Ytzs7OGBoa4unpybRp07RUx/7+/uzevZvg4GDx2jTarsz66/Dhw/j6+mJqaoqVlRUdOnTg1q1bWmU0PiX379+nb9++WFlZYWlpSb9+/UhISMiyD+bOnYtCoSAqKkrc9uuvvyKTyRg7dqy4TaVSYW5uztdffy1uU6vV/PHHH1SqVAkjIyMcHBwYMmQIr1690jqHLn2TGQcOHMDExISePXumU9O+icaf6OrVq/j5+WFiYkKZMmXYvHkzAMeOHaNOnToYGxtTvnx5Dh06lK6Oy5cv07p1aywsLDAzM6Np06acPXs2XbkbN27QpEkTjI2NcXV1Zfr06Zl+xe/du1e8f+bm5rRt2zbXZoJ79+7RpUsXHB0dMTIywtXVlR49ehAdHS2WUSqVTJs2DU9PTwwNDXF3d+fbb78lOTk503rDwsLQ09Pjhx9+SLfvzp07yGQy8UUKac/+6NGjxeemTJkyzJw5M10fREVF0bdvXywtLbGysqJPnz5a40wXEhISGDJkCCVKlMDCwoLevXtrja+8mBfOnTtHmzZtsLa2xtTUlCpVqmhpOjQ8fPiQli1bYmpqirOzM1OnTk03V6jVaubMmYO3tzdGRkbY2dnRqlWrbH2b3vYf0cwHv/zyC0uWLBHvZ61atbhw4UK217R9+3ZSU1MZPny4uE0mkzFs2DCePn2apYYAICYmBiMjI6ysrLS2Ozk5YWxsLP6OjY0FwMHBIV05QKtsRmhMMmXLlsXIyIgSJUrQsGFDDh48qFXu9u3bfPzxx9jY2GBkZETNmjXZsWNHuvqyey8BvHjxggEDBuDg4ICRkRFVq1Zl1apVWvXktP+3bdtG5cqVMTIyonLlyvz7778ZXu8///xDjRo1MDc3x8LCAm9v7wzHWmakpKQQHx+f6X5zc3NRaM2KEydOAKTTCPbo0QNBENiwYYO4zdDQEEdHx2zrNDAw0BKANHTq1Akg3XsrO/JVExQdHa01KABsbW25cOECp0+fpkePHri6uhIUFMSiRYvw9/fn5s2bmJiYAGk2Ql9fX27dukX//v2pXr064eHh7Nixg6dPn2Jra5urdjVq1IiRI0cyd+5cvv32WypWrAhAxYoV+eyzz1i9ejX79++nXbt24jGhoaEcPnyYyZMn5+hcgiDw0UcfceTIEQYMGICPjw/79+/nq6++4tmzZ/z+++9i2R9++IEpU6ZQv359pk6dioGBAefOnePw4cO0aNECSBPgzMzMGDt2LGZmZhw+fJhJkyYRExMjfiF99913REdH8/TpU7H+rBwuDx06ROvWrSldujRTpkwhMTGRefPm0aBBAy5dupTOXNitWzc8PDyYMWMGly5dYtmyZdjb2zNz5sxMz+Hr64tarebkyZNiv544cQK5XC4+KJAmIMTFxdGoUSNx25AhQ1i5ciX9+vVj5MiRPHr0iPnz53P58mVOnTolft3q0jcZsWvXLj7++GO6d+/OX3/9leWXK8CrV69o164dPXr0oGvXrixatIgePXqwdu1aRo8ezdChQ/nkk0+YPXs2H3/8MU+ePMHc3BxIE2x8fX2xsLBg/Pjx6Ovr8+eff+Lv7y8KUJA23ho3boxSqWTChAmYmpqyZMmSDCf7NWvW0KdPH1q2bMnMmTNJSEhg0aJFNGzYkMuXL+fI3JuSkkLLli1JTk7miy++wNHRkWfPnrFr1y6ioqKwtLQE0r72V61axccff8y4ceM4d+4cM2bM4NatW5lOzA4ODvj5+bFx48Z0z9GGDRtQKBTix0lCQgJ+fn48e/aMIUOGUKpUKU6fPs0333xDSEiI6O8mCAIdOnTg5MmTDB06lIoVK/Lvv//Sp08fna8ZYMSIEVhZWTFlyhTu3LnDokWLCA4O5ujRo8hksneeFw4ePEi7du1wcnJi1KhRODo6cuvWLXbt2sWoUaPEciqVilatWlG3bl1mzZrFvn37mDx5MkqlUvySBhgwYAArV66kdevWDBw4EKVSyYkTJzh79myutO/r1q0jNjaWIUOGIJPJmDVrFp07d+bhw4dZao8uX76MqampOIdqqF27tri/YcOGmR7v7+/Phg0bGDJkCGPHjhXNYVu3btV6Zj09PXF1deXXX3+lfPnyVKtWjefPnzN+/Hg8PDyyNbtNmTKFGTNmMHDgQGrXrk1MTAwBAQFcunSJ5s2bA2nPZoMGDXBxcRGfuY0bN9KxY0e2bNkivmR1eS8lJibi7+/P/fv3GTFiBB4eHmzatIm+ffsSFRWldc917f8DBw7QpUsXvLy8mDFjBhEREfTr1w9XV1etug4ePEjPnj1p2rSpOCffunWLU6dOpTtvRhw+fBgTExNUKhVubm6MGTNGp+MyQvNR9Pa8pXnHX7x4MVf1ZkRoaChAzuUCIR9YsWKFAGT4JwiCkJCQkO6YM2fOCICwevVqcdukSZMEQNi6dWu68mq1WhAEQXj06JEACCtWrBD3TZ48WXj70tzc3IQ+ffqIvzdt2iQAwpEjR7TKqVQqwdXVVejevbvW9t9++02QyWTCw4cPs7z2Pn36CG5ubuLvbdu2CYAwffp0rXIff/yxIJPJhPv37wuCIAj37t0T5HK50KlTJ0GlUmV4rYKQcd8NGTJEMDExEZKSksRtbdu21WqHhoz6y8fHR7C3txciIiLEbVeuXBHkcrnQu3dvcZumX/v3769VZ6dOnYQSJUpk0BuvUalUgoWFhTB+/HjxmkqUKCF07dpVUCgUQmxsrCAIaf0sl8uFV69eCYIgCCdOnBAAYe3atVr17du3L912XfvGz89PqFSpkiAIgrBlyxZBX19fGDRoULp+zwg/Pz8BENatWyduu337tgAIcrlcOHv2rLh9//796fq6Y8eOgoGBgfDgwQNx2/PnzwVzc3OhUaNG4rbRo0cLgHDu3Dlx24sXLwRLS0sBEB49eiQIgiDExsYKVlZWwqBBg7TaGRoaKlhaWmptz+i5eJvLly8LgLBp06ZMywQGBgqAMHDgQK3tX375pQAIhw8fFrf5+fkJfn5+4u8///xTAIRr165pHevl5SU0adJE/D1t2jTB1NRUuHv3rla5CRMmCAqFQnj8+LEgCK+fr1mzZolllEql4Ovrm67vM0IzV9WoUUNISUkRt8+aNUsAhO3btwuC8G7zglKpFDw8PAQ3NzdxXGt489nu06ePAAhffPGF1v62bdsKBgYGwsuXLwVBEITDhw8LgDBy5Mh053qzvox4e37SzAclSpQQIiMjxe3bt28XAGHnzp1Z1te2bVuhdOnS6bbHx8cLgDBhwoQsj1cqlcKIESMEfX198R2hUCiERYsWpSt77tw5wdPTU+t9UqNGDSEkJCTLcwiCIFStWlVo27ZtlmWaNm0qeHt7a80VarVaqF+/vlC2bFlxmy7vpT/++EMAhL///lvcl5KSItSrV08wMzMTYmJiBEHIWf/7+PgITk5OQlRUlLjtwIEDAqB1T0eNGiVYWFgISqUyu25JR/v27YWZM2cK27ZtE5YvXy4+R5p5OyMye5cKQtr8Cghr1qzR2r548WIBECpXrpxhnRcuXNDp+X2TZs2aCRYWFumesezIV3PYggULOHjwoNYfaEuFqampREREUKZMGaysrLh06ZK4b8uWLVStWlWUwN8kv0J95XK56ICnUcECrF27lvr166dz9M6OPXv2oFAoGDlypNb2cePGIQgCe/fuBdLUnGq1mkmTJmk5cIP2tb6tIg4PD8fX15eEhARu376do7ZBmpd/YGAgffv21VJvVqlShebNm7Nnz550x7wdKeDr60tERAQxMTGZnkcul1O/fn2OHz8OpH2ZREREMGHCBARBENXmJ06coHLlyqJ6fNOmTVhaWtK8eXPCw8PFvxo1amBmZsaRI0dy3Tfr16+ne/fuDBkyhD///DNdv2eGmZmZ1pdn+fLlsbKyomLFiqImBxD//+HDh0DaV/6BAwfo2LEjpUuXFss5OTnxySefcPLkSbEP9+zZQ926dcUvagA7Ozs+/fRTrbYcPHiQqKgoevbsqdU/CoWCOnXqaPWPLmg0Pfv378/UxKkZE2+aMQHRmXL37t2Z1t+5c2f09PS01ODXr1/n5s2bdO/eXdy2adMmfH19sba21rquZs2aoVKpxHG0Z88e9PT0GDZsmHisQqHgiy++yMllM3jwYC2Nx7Bhw9DT0xOv9V3mhcuXL/Po0SNGjx6dzuyT0Tw2YsQIrf0jRowgJSVFNK1u2bIFmUyWofYpt/Ni9+7dsba2Fn/7+voCr8duZiQmJmbob6nxO0xMTMzyeIVCgaenJy1btmTVqlVs2LCB9u3b88UXX7Bt2zatstbW1vj4+DBhwgS2bdvGL7/8QlBQEF27ds02KsjKyoobN25w7969DPdHRkZy+PBhunXrJs4d4eHhRERE0LJlS+7du8ezZ88A3d5Le/bswdHRkZ49e4r79PX1GTlyJHFxcRw7dkzruOz6XzNP9+nTR3xGAZo3b46Xl1e6a42Pj09n6tOFHTt2MH78eDp06ED//v05duwYLVu25LfffuPp06c5rq9Nmza4ubnx5ZdfsnXrVoKDg9m4cSPfffcdenp62Y4PXfnpp584dOgQP//8c7pnLDvyVQiqXbs2zZo10/qDtAdj0qRJoq3f1tYWOzs7oqKitPwOHjx4UCj5XHr37k1iYqKo1r9z5w4XL17ks88+y3FdwcHBODs7i+YQDRr1cXBwMJB2rXK5PN2AfpsbN27QqVMnLC0tsbCwwM7OTnRie7PvctI+IEOfhooVKxIeHp7ONlyqVCmt35qH920fnbfx9fXl4sWLJCYmcuLECZycnKhevTpVq1YVTWInT54UJwBI80+Jjo7G3t4eOzs7rb+4uDhevHghls1J3zx69IhevXrRpUsX5s2bl6OXh6ura7rylpaWlCxZMt22N/vl5cuXJCQkZNrXarWaJ0+eAGn3pWzZsunKvX2sZlJv0qRJuv45cOCAVv/ogoeHB2PHjmXZsmXY2trSsmVLFixYoNV/wcHByOVyypQpo3Wso6MjVlZW4pjKCFtbW5o2bcrGjRvFbRs2bEBPT4/OnTtrXde+ffvSXZNmDtFcV3BwME5OTunMvTn13Xu7r83MzHByctLyU8ztvPDgwQNAt8hYuVyuJSDD68gcTVsePHiAs7OzTj4ZupLbZ9rY2DhDPzCNUJKdr87PP//MzJkzWb9+Pb1796Zbt278+++/NGzYkM8//1z0z4uOjsbX15d69eoxY8YMOnTowLhx49iyZQsnT55kxYoVWZ5n6tSpREVFUa5cOby9vfnqq6+4evWquP/+/fsIgsDEiRPTjTmNsKkZc7q8lzTP79sfVm/P+xqy639NeV3mhOHDh1OuXDlat26Nq6sr/fv3Z9++fVm2NzNkMhljxoxBqVRmGq2VFUZGRuzevZsSJUrQpUsX3N3d6d27N5MmTcLGxiZP8mJt2LCB77//ngEDBmh9DOlKvvoEZcYXX3zBihUrGD16NPXq1cPS0lIMp8zr8M3c4OXlRY0aNfj777/p3bs3f//9NwYGBnTr1q1Q2xUVFYWfnx8WFhZMnToVT09PjIyMuHTpEl9//XWB9V1mPjNCBo7eb9KwYUNSU1M5c+YMJ06cEIUdX19fTpw4we3bt3n58qWWEKRWq7G3t2ft2rUZ1mlnZwfkvG+cnJxwcnJiz549BAQE5MiPIrPrz22/vAua61qzZk2GToV6ejl/xH/99Vf69u3L9u3bOXDgACNHjmTGjBmcPXtWy/8gt1qHHj160K9fPwIDA/Hx8WHjxo00bdpUy5avVqtp3rw548ePz7COt0N2C4KiOi/kBbkdu05OThw5cgRBELTGQ0hICADOzs5ZHr9w4UKaNGmS7mX40UcfMXbsWIKCgihTpgxbtmwhLCyMjz76SKuc5pk/depUli/ARo0a8eDBA3FML1u2jN9//53FixczcOBA8Tn68ssvadmyZYZ1vC305yV5OXfY29sTGBjI/v372bt3L3v37mXFihX07t07nWO2Lmg+7iIjI3N8LEClSpVEbe+rV6/w8vLC2NiYMWPG4Ofnl6s6NRw8eJDevXvTtm1bFi9enKs6CkUI2rx5M3369OHXX38VtyUlJaWL6PD09OT69ev50obsJvDevXszduxYQkJCWLduHW3bttVSV+qKm5sbhw4dIjY2VksbpDHPaHJbeHp6olaruXnzJj4+PhnWdfToUSIiIti6dauW4/CjR4/SldX1BaU5/507d9Ltu337Nra2tpiamupUV3bUrl0bAwMDTpw4wYkTJ/jqq6+AtAlq6dKl/Pfff+JvDZ6enhw6dIgGDRpk+VWZk76BtC+UXbt20aRJE1q1asWxY8eoVKlSXlxmptjZ2WFiYpJpX8vlcnHCcXNzy1B1//axnp6eQNrEl5Ow0Ozw9vbG29ub77//ntOnT9OgQQMWL17M9OnTcXNzQ61Wc+/ePS2H2LCwMKKiorLN19KxY0eGDBkimsTu3r3LN998k+664uLisr0mNzc3/vvvP+Li4rRepBn1cVbcu3ePxo0bi7/j4uIICQmhTZs2WuVyMy9o7tH169ezvR61Ws3Dhw+1hLy7d+8CiA7unp6e7N+/n8jIyDzVBuUGHx8fli1bxq1bt7S02OfOnRP3Z0VYWFiG0ZuaKDyNJigsLAwgXVlBEFCpVFlGdGqwsbGhX79+9OvXTwy+mDJlCgMHDhS1b/r6+tneI13eS25ubly9ehW1Wq2lDXp73tcVTXld5gRIi6Bq37497du3R61WM3z4cP78808mTpyYY2FOY5LTfHDmBplMpjW/7tmzB7Va/U5z1rlz5+jUqRM1a9Zk48aNufrgg0IKkVcoFOkk3Hnz5qUb4F26dOHKlSsZRpu869e15sWeWShtz549kclkjBo1iocPH2abNyEz2rRpg0ql0gr9Bfj999+RyWS0bt0aSHsxyOVypk6dmk5roblWzdfCm9eekpLCwoULM7w+XcxjTk5O+Pj4sGrVKq2+uH79OgcOHEj3EngXjIyMqFWrFuvXr+fx48damqDExETmzp2Lp6enGPYKaZFoKpWKadOmpatPqVSKbc5J32iwtLRk//792Nvb07x5c9FskV8oFApatGjB9u3btcwsYWFhrFu3joYNG2JhYQGkjZuzZ89y/vx5sdzLly/TacRatmyJhYUFP/30U4bh2y9fvsxRG2NiYtK9ULy9vZHL5aLZQzMm3s5I/ttvvwHQtm3bLM9hZWVFy5Yt2bhxI//88w8GBgZ07NhRq0y3bt04c+YM+/fvT3d8VFSU2MY2bdqgVCpZtGiRuF+lUjFv3rzsL/YNlixZotV/ixYtQqlUis+nhtzMC9WrV8fDw4M//vgj3XyT0Tz25lwhCALz589HX1+fpk2bAmnzoiAIGaYayE+tY0Z06NABfX19redMEAQWL16Mi4uLVihzSEgIt2/f1urncuXKcfDgQSIiIsRtKpWKjRs3Ym5uLgqQGqHwn3/+0Tr/jh07iI+Pp1q1alm28836Ic3cWaZMGXFM29vb4+/vz59//ilqsd7kzedIl/dSmzZtCA0N1fJ9UyqVzJs3DzMzsxxrQN6cp9+c1w8ePMjNmzezvFa5XC7m4skqhUVkZGS6d3Bqaio///wzBgYGWh8J70JiYiITJ07EyclJy2cqJ9y6dYu2bdvi7u7Orl27sjW7ZkWhaILatWvHmjVrsLS0xMvLizNnznDo0CFKlCihVe6rr74SEzH179+fGjVqEBkZyY4dO1i8eDFVq1bNdRt8fHxQKBTMnDmT6OhoDA0NadKkCfb29gBi3o1NmzZhZWWV7cSeGe3bt6dx48Z89913BAUFUbVqVQ4cOMD27dsZPXq0+JCXKVOG7777jmnTpuHr60vnzp0xNDTkwoULODs7M2PGDOrXr4+1tTV9+vRh5MiRyGQy1qxZk+HEV6NGDTZs2MDYsWOpVasWZmZmtG/fPsM2zp49m9atW1OvXj0GDBgghshbWloyZcqUXF13Zvj6+vLzzz9jaWmJt7c3kDYBlS9fnjt37qRb383Pz48hQ4YwY8YMAgMDadGiBfr6+ty7d49NmzYxZ84cPv744xz1zZvY2tpy8OBBGjZsSLNmzTh58iQuLi55es1vMn36dPF8w4cPR09Pjz///JPk5GRmzZollhs/fjxr1qyhVatWjBo1SgyR13xharCwsGDRokV89tlnVK9enR49emBnZ8fjx4/ZvXs3DRo0SCeAZ8Xhw4cZMWIEXbt2pVy5ciiVStasWYNCoaBLly4AVK1alT59+rBkyRLRDHn+/HlWrVpFx44ddZosu3fvTq9evVi4cCEtW7ZM58z41VdfsWPHDtq1a0ffvn2pUaMG8fHxXLt2jc2bNxMUFIStrS3t27enQYMGTJgwgaCgILy8vNi6dWuO/eNSUlJo2rQp3bp1486dOyxcuJCGDRumM7/kZl6Qy+UsWrSI9u3b4+PjQ79+/XBycuL27dvcuHFDS9AzMjJi37599OnThzp16rB37152797Nt99+K36JN27cmM8++4y5c+dy7949WrVqhVqt5sSJEzRu3FjLsTq/cXV1ZfTo0cyePZvU1FRq1arFtm3bOHHiBGvXrtUy83zzzTesWrWKR48eiVqtCRMm0KtXL+rUqcPgwYMxNjZm/fr1XLx4kenTp4vO6u3bt6dSpUpMnTqV4OBg6taty/3795k/fz5OTk4MGDAgy3Z6eXnh7+9PjRo1sLGxISAggM2bN2v11YIFC2jYsCHe3t4MGjSI0qVLExYWxpkzZ3j69ClXrlwBdHsvDR48mD///JO+ffty8eJF3N3d2bx5M6dOneKPP/5I5yOqCzNmzKBt27Y0bNiQ/v37ExkZybx586hUqRJxcXFiuYEDBxIZGUmTJk1wdXUlODiYefPm4ePjky6VwZvs2LGD6dOn8/HHH+Ph4UFkZKS48sBPP/2Uztw+ffp0ADEf2Zo1azh58iQA33//vViuW7duODs74+XlRUxMDH/99RcPHz5k9+7d6fph/vz5REVF8fz5cwB27twpOmR/8cUXWFpaEhsbS8uWLXn16hVfffVVukAMT09P6tWrp3vH5iiWTEc0YacXLlzIcP+rV6+Efv36Cba2toKZmZnQsmVL4fbt2+nC2AVBECIiIoQRI0YILi4ugoGBgeDq6ir06dNHCA8PFwQh9yHygiAIS5cuFUqXLi0oFIoMQ/w2btwoAMLgwYN1vva3Q1AFIS2MecyYMYKzs7Ogr68vlC1bVpg9e3aG4ax//fWXUK1aNcHQ0FCwtrYW/Pz8hIMHD4r7T506JdStW1cwNjYWnJ2dhfHjx4uh2G+2Py4uTvjkk08EKysrrRDKjPpLEATh0KFDQoMGDQRjY2PBwsJCaN++vXDz5k2tMpp+1YTqatDcb03Ydlbs3r1bAITWrVtrbR84cKAACMuXL8/wuCVLlgg1atQQjI2NBXNzc8Hb21sYP3688Pz58xz3zZsh8hru378vODk5CRUrVkx3fW+S0bGCkDa+MgrBBYTPP/9ca9ulS5eEli1bCmZmZoKJiYnQuHFj4fTp0+mOvXr1quDn5ycYGRkJLi4uwrRp04Tly5dn2NdHjhwRWrZsKVhaWgpGRkaCp6en0LdvXyEgIEAso0uI/MOHD4X+/fsLnp6egpGRkWBjYyM0btxYOHTokFa51NRU4YcffhA8PDwEfX19oWTJksI333yjFV6s6a83Q+Q1xMTECMbGxunCiN8kNjZW+Oabb4QyZcoIBgYGgq2trVC/fn3hl19+0Qpnj4iIED777DPBwsJCsLS0FD777DMx1F/XEPljx44JgwcPFqytrQUzMzPh008/1UoZ8Sa5mRcEQRBOnjwpNG/eXDA3NxdMTU2FKlWqCPPmzRP39+nTRzA1NRUePHggtGjRQjAxMREcHByEyZMnp0vfoFQqhdmzZwsVKlQQDAwMBDs7O6F169bCxYsXs2xDZiHys2fPTlcWECZPnpztdalUKuGnn34S3NzcBAMDA6FSpUoZ3lNNCoC3x+6+ffsEPz8/wdbWVjAwMBC8vb2FxYsXpzs+MjJSGDNmjFCuXDnB0NBQsLW1FXr06JFt2hJBEITp06cLtWvXFqysrARjY2OhQoUKwo8//qg1jgRBEB48eCD07t1bcHR0FPT19QUXFxehXbt2wubNm7XKZfdeEgRBCAsLE99zmut6ezzmtP+3bNkiVKxYUTA0NBS8vLyErVu3prunmzdvFlq0aCHY29sLBgYGQqlSpYQhQ4Zkm0ogICBAaN++vXhNZmZmQsOGDYWNGzdmWJ5M0uC8PcfMnDlTqFChgmBkZCRYW1sLH330kXD58uUM63Rzc8u0Ts240fRZZn9vv+ezQ/b/i5HIgO3bt9OxY0eOHz+u5awrISHx4SLNCxIS7w+SEJQF7dq149atW9y/fz/f8hJJSEgUL6R5QULi/aFQfIKKOv/88w9Xr15l9+7dzJkzR5roJCQkpHlBQuI9RNIEZYBMJsPMzIzu3buzePHiXIfeSUhIvD9I84KExPuHJARJSEhISEhIfJAUSp4gCQkJCQkJCYnCRhKCJCQkJCQkJD5IiqVRW61W8/z5c8zNzSXnRAkJCQkJiWKCIAjExsbi7OycboHZwqBYCkHPnz9Pt2K3hISEhISERPHgyZMnWgsyFxbFUgjSpNp+8uSJuNaShISEhISERNEmJiaGkiVL5mrpkPygWApBGhOYhYWFJARJSEhISEgUM4qKK0vhG+QkJCQkJCQkJAoBSQiSkJCQkJCQ+CCRhCAJCQkJCQmJDxJJCJKQkJCQkJD4IJGEIAkJCQkJCYkPEkkIkpCQkJCQkPggybEQdPz4cdq3b4+zszMymYxt27Zp7RcEgUmTJuHk5ISxsTHNmjXj3r17WmUiIyP59NNPsbCwwMrKigEDBhAXF/dOFyIhISEhISEhkRNyLATFx8dTtWpVFixYkOH+WbNmMXfuXBYvXsy5c+cwNTWlZcuWJCUliWU+/fRTbty4wcGDB9m1axfHjx9n8ODBub8KCQkJCQkJCYkcIhMEQcj1wTIZ//77Lx07dgTStEDOzs6MGzeOL7/8EoDo6GgcHBxYuXIlPXr04NatW3h5eXHhwgVq1qwJwL59+2jTpg1Pnz7F2dk52/PGxMRgaWlJdHS0lCxRQqIQUakFzj+K5EVsEvbmRtT2sEEhz58kaAV5LomCQ7qvHxZF7f2dpxmjHz16RGhoKM2aNRO3WVpaUqdOHc6cOUOPHj04c+YMVlZWogAE0KxZM+RyOefOnaNTp07p6k1OTiY5OVn8HRMTk5fNlpCQyAX7rofww86bhES/1vI6WRoxub0XrSo7FdtzSRQc0n2VKGzy1DE6NDQUAAcHB63tDg4O4r7Q0FDs7e219uvp6WFjYyOWeZsZM2ZgaWkp/kmLp0pIFC77rocw7O9LWi8vgNDoJIb9fYl910OK5bkkCg7pvkoUBYpFdNg333xDdHS0+PfkyZPCbpKExAeLSi3ww86bZGRH12z7YedNVOpcW9oL5VwSBYd0XyWKCnkqBDk6OgIQFhamtT0sLEzc5+joyIsXL7T2K5VKIiMjxTJvY2hoKC6W+j4vmqpSC5x5EMH2wGeceRAhTQASRZLzjyLTfb2/iQCERCdx/lFksTqXRMFR1O+rNBd/OOSpT5CHhweOjo78999/+Pj4AGn+O+fOnWPYsGEA1KtXj6ioKC5evEiNGjUAOHz4MGq1mjp16uRlc4oVkm1corjwIjbzl1duyhWVc0kUHLrer1thz6jnWSKfW6ONNBd/WORYExQXF0dgYCCBgYFAmjN0YGAgjx8/RiaTMXr0aKZPn86OHTu4du0avXv3xtnZWYwgq1ixIq1atWLQoEGcP3+eU6dOMWLECHr06KFTZNj7iGQblygOCILA4UeHmXnmO53K25sbvfM5da0jL84lUXDoer+G7+tF5YWV+frg1xwLOkaqKjVf2yXNxR8eOdYEBQQE0LhxY/H32LFjAejTpw8rV65k/PjxxMfHM3jwYKKiomjYsCH79u3DyOj1oF+7di0jRoygadOmyOVyunTpwty5c/Pgcoof2dnGZaTZxpt7OUpho7lECsF9N9SCmh13djDj5AzOPzsPghwXWWP0hBKkjVBtZICjZVo/vyu1PWxwsjQiNDopw2cE0r7S8+Jc7wPFZaxnf18FFHqxpCpuceOlkhsvbzDr9CwsDC1o4dmCNmXa0LpsaxzNMnahyA3FfS4uLve+qPFOeYIKi6KWZ+BdOPMggp5Lz2ZbbmoXGz72qYqJvkkBtOr9QVJt555UVSr/XP+Hn0/9zM2XNwEw0jNiYLWB1C4xiEn/pgUovDmBaKbcRb2q51n/ar7O3z6XgBqQMaqlCWMbN8mTcxVnittYz+y+vjmGansacuDBAfbc28Pe+3sJTwjXqqOGUw3alG1Dm7JtqOVcC4Vckev26DoXrx9Ut8BNdNlRnO59UXt/S0JQIbM98Bmj/gnMttxL/Vkk6p3Aw9oDLzsvKtlVwsvOCy87LyraVsTUwDT/G1vM0Eyybw/w/HhRv08kpiayInAFs0/PJigqCAALQws+r/U5o+uOxt40LcVFYecJ0tOP5blsLnrG1znS5wg1nGvk6TmLE8V1rOdkDKnUKi6GXGT33d3sub+HgOcBWvtLGJegVZlWtC3blhaeLShhkjNBRde5eE4PHzr4uOSo7vykuN37ovb+loSgQkbXr49Ei595kXoy0/3uVu5awlElu0pUtKuImYFZXja32KBSCzSceTjTCBSNyebk100klfH/iUmOYdGFRfx+9nfC4tMiPO1N7RlTdwzDag7D0sgy3TGFmTHa29WYtutbczz4OLYmthzve5yKdhXz5dxFmeI+1nM7hsLiwth3fx977u9h//39RCdHi/vkMjl1XevSpkyalsjH0QeZLOs6dZ2LS3n8y8Rm3WlWulm2deY3xfHeF7X3tyQEFTKaQZyZbfzNQRyZGM6Nlze4+fImN1/eFP//RfyLDI5Mo5RlKS3ByMvOi4p2FbEwLN79lh3FWbVd0LyIf8Gcs3NYcGGB+CJxs3Tjq/pf0b9af4z1jfO9Dbl9EcYkx9B0dVMCngfgbO7MyX4n8bD2yPf2FiXex7Ge0/GQqkrlzNMz7Lq7h13XbxEcGYVK9opk+Q2QqXEycxLNZs1KN8tw/stuLgYBJeE8MxoAMjXe9t6MrTeWnpV7YqhnmGfXnhOK470vau/vPA2Rl8g5CrmMye29GPb3JWRkbBuf3N4LhVyGnakd/qb++Lv7a9URnhD+WjB6cYOb4Wn/hsWH8Tj6MY+jH7P3/l6tY0palExnVvOy88rwa784IoVWZ8/j6Mf8cvoXll1aRqIyEYCKthWZ0HACPSv3RF+hXyDteBezmoWhBXs/3YvfSj9uvrxJ8zXNOdHvBE7mRUf9n9+8b2M9N+NBX6FPQmxZTgQ0JyHaFzvNdv04wvUWExJ3lOWXl7P88nL05Hr4lvKlTdk2tC3blgq2FZDJZDrMxTKmd/Th8qsRLL+8nGsvrtFvez+++e8bRtQawdCaQ3NsgntX3rd7XxhImqAiQn74V0QkRHAr/FaaYPTypigchcRlHubpYu5CJftKeNmmCUWV7NOEJCsjq1y1obDQ9QtpYLM4JjTpgp78w/keuB1+m5mnZvL31b9RqpUA1HKuxbe+3/JR+Y+QywoukXxe+TM8j31Ow78a8ijqEZXsKnGs77ECfyEVFusvBvDNprDsyxUhbUBm5HY8ZHfc0GZ6hCr3sfvebu5F3tMq427lLprNGns05vid6Gzn4leJr1h6aSlzz83lWewzAIz1jOnr05fRdUdTrkS5XPZAzpA0Qe+OJAQVIQrKv+JV4itRc/SmWU3zMGeEk5mTKBxpBCMvOy9sjLMPTc7tdb1Lf2Sn2hZQoyKCZ0YDcLcuxbh64+hfrX+xj77Lqs8uPr/IjJMz2HprK8L/e6WJRxO+bfgtTTyaFLh/Q177Mzx89ZCGfzUkJC6E2i61OfTZIcwNzXVuS3ELL1aqlcw6NYsfjk7DLn4RCkogyyD129v9WFSvNbfjIafH3Yu4x977e9lzbw9Hg46SrHq9OLehwpDGHo1pXaYtrkZ+KASbLPsoRZXCphub+PXMr1wOvfz/88loX749Y+uOpZFbo3x9rnLiTlEU7jEUvfe3JARJiEQlRXHr5S0twejGyxs8jXma6TGOZo7pzGqV7CqJX+G51XDlhWYsuxDcptUfsSN4Ki8TXgJga2LLyNoj+bz25zoJd0WNjPrM0dKIj+sIHHw+mwMPDojbO5TvwDcNv6GOa+Flac+Pr9gbL27gt9KPiMQI/N392fPJnmx9mopTeLGGa2FpppiLIRcB8LX/gsfBLTM1qWs0KEX5WnUdD918Q2hbqSzeDt7YGNvofNwv3V3p4lNFSyiJT4nnSNARMeLscfRjrWPKlygv+hL5lvLN1PdHEASOBR/j1zO/suvuLnF7DacajK03lq5eXfPNvKxLqoHCvrdvUtTe35IQJJEtMckx3Hp5K51T9tsTxpvYm9rjbtiBsGcf/X/L64nnXVXbOXmos5v0NeHgv5z+hUdRjwAw1TdlUPVBjK03lpKWJXU6T2GTWZ/xf53PS4OfSNE7zyfen/B1g6+pZF+p4Bv5FvkVkhzwPIAmq5oQmxJL+3Lt2dJtS6YvoOIWXpyqSuXnkz8z7fg0UtWpWBtZM7f1XD71/pT9N0KzHOtF/Vpzki4kQe84AM7mzrgZdOb501Y6HWdodo3aLrWp41KH2i61qe1SGzvTNA8iQRC4+fIme+7tYfe93Zx8fBKVoBKPNzMwo1npZmKiRlcL1wzPcyf8Dr+f/Z1VV1aRpEy7F64WroysPZJBNQbli2vBvushTN5xg7CY11qtoiLcvk1Re39LQlAWFFW1cVEhNjmWW+G30pnVgqKC0rIKJy1HgS2yDLIKg4C5sYo/eplT2aES9qb2yGSyfAn51OU+KtVKNt/czMxTMwkMDQRAT67HJ96fML7++CIhNGRGdn0moMbYMJldI6tTpkTpAm5d5uj6BT++vQHDGzTPUd3Hgo7Ram0rkpRJ9KzckzWd1qRLpFfcwosDQwPpt72fOD47lO/AoraLtJzAMxvrxeFadR0PpT138CjhgJjDylDljWPKjGyPizCaSJzscrrtHlYe1HGtQ23n2tRxrUM1x2oY6xsTnRTNwYcH2XNvD3vu7RHTRmio4lCFNmXa0LZcW+q61k3nVxieEM7igMXMPz9fPNbMwIwB1QYwqs6oPI9ijEmKw/6n+igEa3b1Wkujsi5FYty+jSQE5QEF0YlFWW1c1IlPiWdT4BWmbH2VbdlQg29IVlyjhHEJvOy8cNRvxPnr9bI9bt2g2tT3tMu2XE4RBIEDDw4w89RMjgQdEbe3L9eerxt8TYNSDfL8nO9KcXSOhJz5bXX26sgvzX/J0Ytj993ddNzQEaVaydAaQ1nYdqGWKaS49FuKKoWfTvzEjyd+RKlWYmNsw/zW8+lRuYfO/ibF4Vpz6t8SkxzDjRc3uBJ2jT922JCUYkRGy7hoxtEr8xG4W7thaWiJUq0kNC6UJzFP0pXXk+tRxaGKKBTVdqlNuRLluBp2VTSbnXt6TvSrA7AysqKlZ0valG1DqzKtxISiAEnKJNZfW89vZ3/j+ovrQFoeo84VOzO27ljqlcx+vtOF+JR4zGak5YWL+yauyCbQlYSgPCC/O7Goq42LA7lRbQOYKBthlzo+2+NijOfgVTKBqg5V8XH0wcfRh8r2lfM0p82FZxeYeWqmliNxg5INmNBwAm3KtinQKKrMiE2OZdS/azgc6JZt2aKW6Ray92eo7nWJbUFTUAtqDBWGfFn/SyY0nKBzEtAN1zfQc0tPBAS+bvA1Pzf7WdxXHDIEXwq5RL/t/bgadhWAzhU7s7DNQhzMHHSuQy2o+fHAPpYfyX6qL+wxklv/lsyO0/yKMvqFaNmxDM9pZWiFjUmaD2B4fDgxKTHpypgbmFPLpZZoRitjU4YroVfYc38P++7vIzIx8o22yqjpXJO2ZdvSpmwbajjXQC6TIwgCBx8e5Nczv2r559VzrcfYemPpVKHTOy37IQlBuUMSgt6iOKiNiwO6fnmmWs7mecrryUlX1bZGg/QmMmSUL1Geak7VtISjnLwwMuJO+B1+Of0Lq6+uJkWVAkAlu0qMbzC+QPPpvEl4Qjg/nfiJRQGLEJLL6tRnha3RyIzstK7Xwq4xev9oDj86DKT5gcxsNpNPvT/VSROy9OJSBu8aDMCMpjOY0HACULS1I8nKZKYdn8bPJ39GJaiwNbFlQZsFdPXqqrP2JywujBWBK1hycQnPI8yKzRjJj2CK5l723I+8z7UX17gWdo1rL65x/cV17kfe19LoaJAhw9LQEoVcQXRytJhK4k1cLVyp41KHms41MTcwJzg6mEMPD4lRYhrsTOxoXbY1bcq0oYVnC6yNrbn+4jq/nfmNtdfWinOKh5UHo+qMon+1/jpHNb6JJATlDkkIegtdJ8b+TWOpUtIIU31TzAzMMDVI+9fMwAxTfVNM9E0KPaX6u5KfIepvCpMJqXHci7zH3Yi73A6/y7rDFUhJMSEr1bYma6su2BrbUt2pupZwVK5EuRx/dT2Pfc6cs3NYFLCI2JRYIC3p5Nh6YxlYfWCBLFHyNOYp3/z3Df9c/+f1xCzIKZm8ErlgTVaruheW4K7LOEpRqllzJojgyATcbEz4rJ47BnqvNW2CILDt9jbGHRgnOrDXc63HnFZzqOVSK9s2/HL6F746+BUAC9osYHit4UU2vDjgeQB9t/XlxssbAHSr1I35reeLDrxZoYlSWhywmK23tpKqTgXAytAah8SlJCUbZXhcYY+RtymotBoJqQncfHlTFIw0QtLb/j8aFDIF+gp90eH5TeQyOZXsKlHJvhIGcgOexT7j/LPz4lyhOb5+yfpixJmdiR0LLyxkUcAiIhIjALA0tGRwjcGMrDMyU+frjNBFCCoKfq6SEJQH5Gcn5taM8zYyZJjom2gJSBqBSdymn8W+N7a9+dvUwLRAzDAFEaKeW9W2QYlVPEraluHXma4YyA2oYFuB2i61qeZUDR9HH7ztvXX6AotKimJxwGL+OPuHOFnaGNswotYIvqjzBbYmtrluV2bcCb/D6H2j2f9gv9aXazmbckxrMg0zVQM+XxcIFK0wWV3GUU7GWpIyid/P/M6PJ34kPjUegH4+/fip6U84mjlm2ZaJhycy/cR0ANZ0WkOvKr2yHGsyZAXab0nKJH44+gOzT89GJaiwN7VnYZuFdPHqku2xkYmRrL6ymsUBi7kTcUfcXselDkNrDqVbpW4cvxNdrEKpC5OX8S9FbdGbmiPNmHsbOXLUpP8oM9YzpoxNGQwVhoTEhaTLxeZq4UqbMm1o6tGUkLgQFgYs5G7EXSDNN6lbpW6MrTtWp8WBsxOCioqfqyQE5QFFQRPk4r4ZQf8OcSlxxKfGp/2bEp/pQ5KXmOibZCggvamJykqYyqyMRjNSkCHquT1OqVbyOPoxdyPuin+3wm9x6+WtLDNiZ4eTmRM+jj7Uda1Ldafq+Dj64GLukqFWL0mZxOorq5l9ejb3I+8DaZPegGoDGFd/HO5W7rluh4ZzT88xYu+IdCtmNyzVkJlNZ1K/VH1xW1GZ5N5sT3bjCMjVWHsW84xv/vuGNVfXAGk+GxMbTWRknZFZ5nIZtW8U887PQyFTsKXbFjpU6JBhv8kUUSzs0YTW3gXTb+eenqPf9n7cCr8FQM/KPZnbem6WArUgCJx7do7FAYvZcGODqJ0w1TelV5VeDKkxhGpO1bSOKWpjpDihFtQERQWl0xrdjbirFUqfHZqP38jESFFTB2CgMMC3lC/ulu5ce3mN88/Oi/v83PwYW28s7cq1y/QjOCshqCj5uUpCUB5QED5BuVWRqwU1CakJxKfEpxOQ4lLiMtwm/k59o0wGx2dku85LjPSMMNM3xzTqN1BbkZFpBQRMDJP5tOldLI3MsxWwTPVNkcv0CjRjdGJqIvcj74vC0e3w21wNu8qDVw+0VNM694vCiLIlylLLuRa+br5Ud6pORduKoi+QSq1i662tzDw1U0xep5Ap6FG5B+MbjKeKQ5XXlUU9gYSIzE9mUgKsSrLz7k7G7R+nleJfIVPQpWIXfm72c6ZRUkVB3a1phy6+dYIgEPpGbpOMymRlojnz5Ayj9o3iwvMLAJSxKcNvLX6jXbl2GQquakFNv+39WH1lNQYKA/Z8soempZuK/RYUGcnwfb2IUgWwr9ceWpZpmavr15XE1EQmH53Mr2d+RS2ocTB1YHG7xXSs0DHTY2KTY1l3bR2LLy4Ww+UhLWR7WM1hfOL9SZYLJBf2GCns8+c1ycpkboff1vI3uvbiWpZJZt9GT66XTrPtau6KqYEp9yPvi0JWWZuyjKk7hj4+fV5nt///nBKXkkizv/qiECz4o82PVC9lh0ImQ2VsQ8PF94qMn6skBOUBBRUdBkVHbSwIAonKxEwFpGyFqCz2qYXXatx3cUzODIVMgYHCAAOFAUZ6RhjrGWOsb5ym0TIwxdzAHDMDMywNLbE0SvuzNrLG2sgaC0OLTE2GBgqDHPdjREKE6H906+UtAkMDuRV+i+exz7W+yrJDhgwbYxsq2VfCt6QvTTyaUM2pGpdCLvHzqZ859PCQWLZ1mdZ83eBrGll5IJtfE5QZv/QBlHI96hrpcTHxhbjNRN+EITWGMMlvUrFZw01XjaouZOesqxbUrLmyhgn/TSA0LhSAlp4t+b3l71S0q5iuvFKtpOumrmy7vQ1TfVMO9T5EXde64v4x+8bwx7k/aF66OQc+O5Du+Lzi9JPT9NveTzR/9KrSizmt5mSarfxK6BUWByzm72t/E5cSB6R9uHSv1J2hNYdSx6VOkfdD/JA0Ua8SX6WZ0zRmtf8LSdHJ0TmuSyFTIJPJREHJxtiGYTWHMbJCZ+z/apXlnKKWG9IwYTbPydpMX1BO8ZIQlAdIeYLyDkEQSFYli8LRrquhzN4Tnu1x2flEFQQyZOjJ9TBQGKCv0MdQYSgKWSb6Jlo+WRaGFlgYWmBpaImVkRXWRtbYGNtgY2yDtbE1JvomxCbH8iz2GQ9ePSDgeQDXwq7xKOoRr5Kyz3ekQV+uj4OpAyUtSpKoTOTqi6uikNnbviqrwh5lW0d14rgsU2NrYst3vt/xea3PCyUC7V3Q1bdOFzrXjeb7lq2yXcokNjmWH0/8yO9nfydFlYJCpmBE7RFM8Z+STnhMVibTbn07Dj08hJWRFcf6HhM1do9ePaLMvDKoBTVXh17F28E7T65DQ0JqAt8f/p4/zv6BgICTmRN/tvuT9uXbpyubmJrIxhsbWXxxMWefvhYqy5coz9CaQ+ldtXexWeKlKJlkCgtBEHga81RLa3Q59DJ3I+7mysexlsyA8+qMnd3fpG3yj9wQss6xVVDpESQhKA+QMkbnH7p+wS/oVZYKzgoSUhMy/ItPiSc2JZaopCiik6OJSY4hNjlW1EAlpCaQmJpIojKRZGUyyapkUlWppKpTc2Rfzy8UMgUKuQJ9uT56Mj0UCgUyZKgEFUqVkhRVCqnq1ByZKKsJci6RfQRZBwsr+rT6nU4VOxX5L/vMyEtNUKj+t6gMbtLUoyldvbrSsULHLFeIvx95n3EHxrHjzg4gbU246Y2nM7D6QK2IwPiUeJqvac6Zp2dwMHXgRL8TlC1RFoBum7qx6eYm+vr0ZUWHFXlyHQAngk/Qf0d/0Yesr09ffmvxG9bG1lrlboff5s+AP1l5ZSVRSVFAmoDduWJnhtYcip+bX7EaG1LqkaxJVaVyN+Iu119c52rYVc49O8fVsKviuoaZUU3Q4xLZL/qsixAkaYKKEUWtE98nikLYsFpQk6RMylTAik6KJiopildJr4hOiiY66f9CVsprIStRmUhCagJJyiSSlcmkqFJIUaWgVCtRqpWFImjpKgQx+Bg4++R7e/ITXcaRubGMmMTspx+Z9TyCkvaLvxUyBU1LN+Xjih/TqWKnTJ2HDzw4wOh9o0Vn46oOVZnTag5+7n5imVeJr2i8qjFXwq5QyrIUJ/udpKRlSc4+PUu95fXQl+sTPDpYa2mK3BCfEs+3/33LvPPzEBBwMXdhSfsltCnbRiyTokrh31v/svjiYo4GHRW3u1u5M7j6YPpX6//OOa8KmoTUBIKjgjlwK4jf92Sf0qIw8hTlVTh+DTdrLga/ytOP5tjkWK6EXeHMkzMceXSEay+vERIbIs5fdVTlOCsPzbaeLuppXEzxzHCf5BMkCUESb1EUfaLyg1RVqpZwFZMcQ2RiJBGJEUQl/l/ISk4TsmJTYtM0WalxJKSklU9UJqYJWapkUpQppKjfELLUqnRaog9JCILsx1G/Bu78dSoo23pe6s9CMLqAm6UbMSkxPI99Lu5TyBQ09mhMV6+udKrQKV0unVRVKosCFjH56GRRo9LVqyuzm8/GzSoty3ZYXBi+K3y5F3mP8iXKc7zfcexN7WnwVwNOPznNd77fMb3J9Nx2A8eCjtF/R38evnoIwIBqA/i1xa9YGlkCaea3JReX8FfgX7yIT/MFk8vktCvXjqE1htLCs8U7ZRLOT+JT4gmODiYoKkj8e/O35np0zQRf0Bmr8zJ6VS4D9RsD/c161IKamOQYXiW+IjIxkldJr8T/j0yMJCw+jOexzwmJC+FF3AsikyKJT4knWZWs5bP5NvWVNTmluJvtdS6puIIZl9OiJgt7Ti9q729JCJLIkA/FJyqveRrzlKNBRzkWdIyjwUdFswd8eEIQZD2OLI0NdDKZZeSEb25gjr5CX2u5ArlMjr+7P129utK5Ymet9ZvCE8KZdGQSf178E7WgxkjPiPH1x/N1w68x0TfhcfRjGv7VkCcxT/Bx9OFInyP89/A/Pt70MTbGNjwZ8+R1NI6OxKXEMeHQBBZcWACkJdZc2n4pLcu0RKlWsvvubhZfXMz++69zPzmZOTGo+iAGVh9IScuSOTpffhCbHKsl1ARHBRMU/VrgCU/I3n/Q3MCckkZNiA8blG3ZgtQE5dRHSRAE4lPj2RYYxPdbgzOoUUA7ojat5jiTP3jFkSyFmdyiqyboapsdPDcpVyTm9KL2/paEIIlM+RB9onLK4+jHaQJP0FGOBR/jwasHmZb9EIUgyH5l88xMZgCmRim4lP6TE0+OZZilV4ORnpHWfrlMjp+bHx97fUznip3FRIpXQq8wat8ojgWnLdXiauHK7Oaz6V6pO/ci79Hwr4a8THhJg5IN2PvpXqoursqjqEcsbLOQYbWG6XzNhx8dZsCOAeJK54OrD2Z2i9nEJsey/PJyll5aqhVC3cKzBUNrDKVduXY6O8HnxfMZkxzzWrjRaHOiXws8mizGWWFlZIW7lTtulm64W7lr/blZumFlZIVaoNDN7G+SnY8SCOjpx2HnNo9XSRGi5iZVpcIlaTkKbJFlmELk7VpynuEewFBhiLmhOSWMS+Bi7kJp69KUsUlz1j/95DT7H+wnVZ2qs0+QatBRFC7VisScXtTe35IQJCGRA4KjgkWB52jQUXEJh8yQIRO/8nUVgqZXbMG4zqvzdDHYooquptdUVSqXQi5xNOgohx4d4uTjk5kKRW/2uQY/Nz9RQ+Ro5siWW1v48sCXBEenfdE3LNWQOa3mpGmTVvoTnRxNS8+WtPBswbgD4yhrU5bbI25nm609NjmW8QfHs/jiYgDcLN1Y0n4JAIsDFrPjzg7Rn8PWxJb+Pv0ZXGMwnjYZ+2tkhq6a2qikKG0B5y1zlS6RjzbGNpkKOG5WbjqnbShKZnZdHfff1kLqmkIks3oMFYZYGlliZ2KHk5kTblZulLEpQ4USFShtUxoXcxdsjG20nN5jk2P5++rfLAxYKK5CD1DXtS7fl2lP2yMzs29AEfqwKmrvb0kIkpDIBEEQCIoK0hJ6NC9NDXKZHCtDK6KSo0R1txw5tqa2oj+ERktRUpBxF3OyCmhNRKA8cVg7erPx442Uty2fX5dXZMiN6VWpVnIp5BLHgo6x78E+Tj8+TZIqc03Rm/iW8qWrV1falG3D+uvrmXFyBgmpCciQMaDaADpW6Ei3zd1ISE2gQ/kOHAs+RlRSFNt7bOej8h9lWu/BBwcZuHMgj6MfA2nLeXhYebDyykrRHwigkVsjhtYYSueKnTPNbp0VmZlxNKKFu/shojhKUFSQTjlpShiXSCfciP9v5ZZl4sXctL0omGR0TeHwma+SZpWssDZOy1t25l4q4zffyvH5vmvnTK86FXL0YXP9xXUWXVjE6qurxbxQxnrGfOr9KcNqDaO6U3WIeoJyrg96WYXX6xnCiItgVfjmVSh6729JCJKQ+D+CIPAo6hFHg46Kgo/mhaZBIVPgZeeFkZ4R9yPva31JV7KrhL2pPScfnyRVnYq+XJ/S1qXFtZy87LyoqG/Ow2cX+Mz7M9ZcS1vyoYl7Y2Y0+5nvD3/P+ocHeCJLeyRN9U1Z3G4xvar0KqAeKDzeVU2vVCsJDA3kv4dH2HrlCndehJIkvCBZfiNLM0Q913q09GxJYFgg225vA8DC0IIelXuwMnAlKaoUmpeoSHj4Hao7VWdZ+6Xp6ohRGPDl+T9Yeiltn5OZExVtK3Li8QkxAaeloSV9qvZhSM0heNl56XRNgiAQmRippb159CqIfWcakJpqiq4LDNuZ2IkCjbvlW9ocK7cCWfj3TYqCSUZXTdDbPkq5Tf2gq6+TJkJwYcBCjge/zsNWrkQ5htccTh+fPlqat7C4MJrOK4dBchwgx5RyTPadjb25KZVcLFDIZGIW+qJCUXt/S0KQxAeLIAg8ePVAS9Pzdqp7PbketZxrUdulNsnKZM48PcOVsCviflsTWz6p/Am2prYsvLBQzFjcyrMVyapkjgQdAdLCs9d2XkvlRZWRy+QEDAyg+tK0tbM8rDx4OOohSrWST7d+ysYbG7VMOv18+jG/zfwcO+Z+aGSkZTA1SkHfaju34/4hWZV5Vl0AT2tPkpRJ4iKXzmbO6MeFcUswwTgL/48koByxPJEJWBtZawnGtV1qM7TGULpX7p7u/gmCQHhCeLroqjf/3l6LUFdzzJg2MppXTNPqZLSa+IdOblOB6OLHpks9b/Mk+glLLi5h6aWl4qLMCpmCDhU6MLzmcJp4NMkwL1T/7f1ZEbgCVwtXnsY8pVnpZhz87KAOLSs8itr7W6+wGyAhUVAIgsC9yHti5NbRoKNa4daQlpCutktt/Nz8aFCqAbHJsfxz4x8WXlgoftXry/VpV64dfX36Ym9iz5gDY8Rsvp7WnvzW8jcWnF8gCkA1nGpwduBZvj74NQBtyrbBxeJ1GPCjqEe8SnyFtbE1azuvRS6T88/1f5DL5KgFNSsCV3Du2Tk2fryRSvaVCqKrih2ZmYgSkgwgtCtbP/kRJ7sX7Lq7i+13tnPtxTVSVClaZd90apch43ncc6oJ8iwFIAAjwA45T1DxKukVpvqmfOL9CUNqDKGkZUmCooLYdXcXD1895E74He6/us/j6MeExoWma0N2KATr7AsB7hZV8bIruFDz4oZCLmNyey+G/X0JGRn7KE1u75VOcMnquLfJqh5Iy4f238P/WBiwkB13dojmdE2E4KAag3C1cM20/jNPzrAiMC2Rp5ulG09jntK8dPMsr1siPZImSOK9RRAE7kbcTTNvBaeFrb+9wry+XJ86rnXwd/PH392fuq51uRtxl5WBK1l3fZ1WCHANpxr0qdqHnt49UQtqvv3vW/66/BcCAqb6pnzf6Hu+qP0F7da142jwUQDquNThZP+TKNVKXH5zITIxkp09d1LbuTYOv75OfHeg1wGae6ZNYEq1kt7/9mb99fUoZArMDc2JSorCWM+YBW0W0Nenb7HKFpzf6JKN2MHCkANj64ovI7Wg5nrYdTbf2sz+B/u5E3Enw2ULdHVmr04cQcaW2JvaoxbURCRGEJ0U/U5JOfVkejiaOeJk7oSjmSMOpg6QUo6DAdmb0woj6WBxpKDyBL3Jq8RXrAxcyaKARVoLJDd2b8zwWsPpUL5DthGCKrWK2stqcynkEn2q9mHLrS3EpcRxafAlqjlV0/XyC4Wi9v6WNEES7w2CIHA7/LaWeUujWtZgoDCgrmtd/N388XP3o65rXUz0TQiLC2PttbWM2T+Gay9eR4M4mjnSy7sXfXz6UNm+MqmqVBZcWMDko5OJSY4B0ha+nNlsJnYmdvit9OPM0zMANCjZgGN9j6GQK/jn+j9EJkZS0qIkrcu05kVcOIYqbxSCNSrZK849uyAKQXpyPVZ3Wo1MJmPdtXXEJsdSxb4KV8OuM+zf39kQ8IDxjYbiV9ZFSlkAnH8UmUWoc9rXemhMMvY/1dd50d/c8CrplU7RVub6Ftjq1cXKwA1nKzMqOuvjbO6Io1nan4OZA45mjlgbWacTdlVqgYb3sjfj1PYoHuuJFTatKjvR3Msxxz5KGR2XXcboi88vsvDCQtZfX0+iMhFI8z/rU7UPQ2sO1dlXDGDppaVcCrmEpaElXSp2YdWVVdia2FLVsWruOuIDRhKCJIotgiBw8+VNUeA5FnxMjMjSYKgwpF7Jevi5+eHv7k8dlzpihEayMpmdd3eyMnAl++7vE7/aDRWGdKjQgb5V+9Lcszl68rTH5OCDg4zaN0pchqG6U3XmtppLg1INSFImUW95PS6GXATSQrL/6/2fmOn3z4t/AjCw+kAO3nzBpO3XtHw7Vh2Mo6ZNiPjVqCfXY3XH1chlcv6++jcPQswpK6wnJdWU2w+g/4MrlDC7zo8dq37wyStfxOoWFaarKSk3yJBhpGeElZEVLuYuuFm64WntSXnb8rhYuIgCzsWHKqbvvk1IZBKRQGQoRIToHh2VWzOOROYo5LJcac0yOu7t35oFcBcGLOT8s/Pi9ioOVfi81ud84v1Jjh3TwxPC+fa/bwGY1ngaAc8DAGjq0TTbFA4S6ZGEIIlig1pQc/PlTTF663jw8XQLDBrpGVHPtR7+7v74uflRx7UORnqvg9IFQeD8s/OsClzF+uvrtb7c67rWpW/VvnSr1E1rQcuHrx4y7sA4MXrI1sSWn5r8RP9q/VHIFcSnxFNveT1Rg9TUoyn7e+0XBaAbL25w8vFJFDIFnsZdMvRdSUk1Zdjfl7RypSjkClZ2WElEpCs37jUgGe14oPC4VIb+fZFFn9agtfeHKwjZm2e/ijbArl5rqe2RsSAkCAIPXz3kv0f/cTjoMMeCjhGbEqtzGwQEkpRJhMaF8iL+BfGp8RjoGWBjYiMKQYFBAiPWBaa796HRSenufVa0quzEol7V05ljHKWM7kWG+5H3WRywmBWBK8Ss5gYKA7p6dWV4reHUc62Xa5P2t/99y6ukV1RxqMKwWsPwW5m2Fp7kD5Q7JCFIIt/JbUisWlBz/cV1UctzLOhYugy2xnrG1C9ZXxR6arvUzjD3yrOYZ/x99W9WXlnJ7fDb4nZXC1c+q/IZfar2SZeTJz4lnp9P/szs07NJViWjkCn4vNbnTPGfIgpJMckx1F5aWwyDb+XZil2f7NJa62nJxbRkee3KfcT8/0IzMWPIEIAfdt6kuZfjG/0jJzKsKTKSeDskWoYcATWjNp2gbpmWWBtbZtun7yO1PWxwsjTK1kTU6C3zYWRiJIcfHebgg4MceHhAzO6cG/pU7YNd/DMCQwN5Ef+C2+G3uR1+m3+u/5NWQJBTMmUlcqx5+z5qFltIf+8zJ7dmHIncocscplKr2H1vNwsvLGT/g9cL/rpZujG05lD6V+uvtZRLbrjw7ALLLi0DYEGbBcSnxHPu6TkAmpVu9k51f6hIQpBEvpITx0O1oOZq2FUxeut48HGttaEATPRNaFCygWjequVSCwOFQYbnTkxNZNvtbay8spJDDw+J0RfGesZ0rtiZvj59aezeON3ilIIgsPHGRr48+KUYMt/EowlzW83Vis6KTIyk1pJaPIxKS4TXtmxbtvfYrlVfYmoiq6+uBqCx8yB+D8zadBMSncT5R5GiWv38o0hCY97WAb1GhpyUFFNqLujB5k9/KvJOkfmBriYilZDKyaAzHHx4kIMPDxLwPEBrPaeMMk3ryqg6Ixn1/4y8oXGhBIYGEhgayJWwKwSGBhIUpo9cnbmfjkD6e58duTXjSOSM7OawF/EvWH5pOYsvLhbzismQ0apMK4bXGk7rMq3zZAFctaBmxN4RCAj0qtKLhqUasv32dlSCirI2ZcUFgSVyhiQESeQbmYUta9T/Cz7xwcnuhRi9dSL4RDrHUlN9UxqUaiA6Mtd0rpmp0ANpAszpJ6dZdWUVG25sEJ2XIS1TcJ+qfehaqWumWXCvhF5h5L6RYqIyN0s3fmv5G50qdNJSX7+If0HNJTV5EvMEgA7lO7C1+9Z0NvmNNzYSlRSVlpjO3Bu4Qna86eOiq79LaHQCdZfX5bcWvzG81vAPLnosMxORrbmCOhWfMv/qID7ecTRd3h0XcxdSVCm8THiZTgCyMbLhu0YTUR6cip46iygvPcO0hHT/x9HMkVZlWtGqTCtx28aAhzplGtb1fksUDFnNYUP/vkR5z+McCf1dTJ9hY2zDgGoDGFJjSI6XQsmOvy7/xfln5zE3MGdWs1kAHHyYlhNIMoXlHkkIksgXVGqBH3bezPC7Wvj/f4euP8QTw/5aGX3NDMxoWKqhKPTUcKqh04KSwVHBrLm6hlVXVmmt3O5u5U7vKr3pXbV3lpNSREIEk45MYvHFxeIq4980/Iav6n+VLtX9s5hn1FpaSwy371KxCxu7bszQKVHjED2o+iAcLHRLmf+mj4uu/i51S1Xk8PPjjNg7giNBR1j20TKd13R6X2hV2QkfNwXLzx3lVPB1rr08SUDSMQKuvR5f9qb2NCjZALVazcknJ8XEiAYKA/TkeiSkJgDQu2pvfm3xK/pyfaod/QH95DimN55Gm7Jt0p9Yh4y8Ja11M1Xqer8l8p/s5jABNTceVCTVSEUd1zoMrzWcrl5d82XNv8jESCYcmgDAD/4/4GSepkU/9PAQIJnC3gVJCJLIF7ILWwYZcsEWa0VN6nnaiuat6k7VxWis7Ozw8SnxbLm1hVVXVnH40WFxu6m+KV0rdaVv1b74uvlmGTGhUqtYcnEJ3x/5XjS9dfXqyuzmszNULwdFBVF7aW3RIbubVzfWf7w+w3NcC7vGmadn0JPr0b9af+xMsvZdEVDjbGmiFd6sq7/L/v4LmXe+PF8f+pott7ZwKeQSGz7eQC2XWple+/tAkjKJU49PceDBAQ4+PMjl0Mta+430jfAt5Uvz0s1xtXBlz709bLixQfxydzRzxMbYhpsvb5KiSqGMTRkWt11M09JNAZh8ZDLXU6Lwsveipe/XkEuzhq73UQptLzpkN4fJkKOHHSvbnKBP7fr52paJhycSkRhBJbtKjKg9AkjLMn0n4g5ymZzGHo3z9fzvM5IQJJEv6KrWX95uM52qpf+KzswOP7FdRUzM77Lqyio23dgkmjdkyGjs0Zi+VfvSuWJnnZYKOBZ0jJH7RnI17CoA3vbezG09F393/wzL3424S91ldUWT3SeVP2FN5zWZClkaLVCH8h1wNHMEyNR3RUANyBja2FZL0NPV30VPIWdMvTE0KNWA7pu78yjqEQ3+asCs5rMYVWfUe2MeEwSBay+uic7Mx4OPp1tN3sfRh+alm9O8dHPqutZl/4P9/HH2D049OSWWqetalwolKrD55mZC40LRk+sxvv54vm/0vfglH54Qzu9nfwdgqv/Ud/LrkELbix+6zmFWBvnri3M55DKLLy4GYH6b+aJmXGMKq+1S+4PT+uYlkhAkkS/oqtZ3tEi/HlZmdviQ6ESGr73EC4OfSFSkJSQsY1OGPlX78FmVz3R2DHwS/YSvDn7FhhsbALA2smZa42kMqTlE1EK9zfUX12mwvAExKWk+Rr2r9GZFxxWZCkDxKfGsuZq2QOqQGkPE7Rrflck7bhAW83otK4UillDFfEzMxwDaCc9yEhJd26U2l4dcZsCOAWy9tZUx+8dwJOgIKzqswMa4eGoZQmJDRGfmgw8OpkuA6WzuTPPSzWnh2YKmHk1xMHMgMjGSZZeWaa3qrifXo1ulbrQp04a55+ey8spKIG0R1SXtl1DZvrJWvbNPzSY2JZZqjtXoVLHTO1+HFNpevNB1DstPE6ZaUPP5ns9RC2p6VO6h9YGmMYVJ/kDvhiQESeQLuVX/Z2WHBxkCamxTh9CyZmX6Veubo3wbScokfjn9Cz+d+IlEZSIyZAypMYRpTaZha2Kb6XGXQi7RaEUjUevUz6cfyz9anuV5NU7Zpa1Li6YVDa0qO1G/jDn2P9VHIVizq9daNtz9kT8vneHC84Z0rdQ1XX05CYm2MrJic9fNLLywkLEHxrLjzg6q/VmNf7r8Q72S9XTqq7wkpykSElITOB58XDRxXX9xXWu/ib4J/u7+ouBT0baieC9uvbzFlKNTWH11tejfY2tiy9AaQ+nr05ell5bSZ1sfVIIKC0MLfm76M0NqDkknzIbGhTLv/DwgLSFdXiWhk0Lb01MUVpXPiKJgwlxzZQ1nnp7BVN+U2c1ni9vVglryB8ojJCFIIl/IrfpfFzu8TLClf6UZ1CupW3iwIAhsv7OdsfvH8ijqEQANSzVkbqu52YaUn3lyhqarm4pp7gdUG8DS9kuzFbw0prDB1Qdn+AJVyGXiEg61Pax5lFCLPy8t5sLzC5nWmZOQaJlMxue1P6deyXp029SNB68e0GhlI35q8hPj6o8rsMyyuqRIUAtqLodc5uDDgxx4cIBTT05pLSwqQ0ZN55ppJi7P5tRzraeVC0otqNl3bx9/nPuDAw8OiNurOFRhVJ1RfOL9CceDj9N8TXPx/nep2IW5refibO6cYbtnnJhBojKRuq51M3aGfgek0PbX5HbtroKgsE2YUUlRjD80HoBJfpO0FlO9GnaVlwkvMdU3pa5r3Xw5/4eCJARJ5Bu5Uf/raofXtdzNlzcZtW+U+NXkYu7C7Oaz6VG5R7aCzJFHR2i1tpX4Qh5SYwiL2i7K9rjA0EDOPzuPvlyfftX66dTOWs5pDswXn19ELajzTEip7lSdS0MuMXjnYDbc2MD4Q+M5GnyUVR1XZan9yguyCy/+uP4rnqbs4tDDQ+mSYLpZuomaniYeTShhkl5oiEuJY1XgKuaen8vdiLtAmsDUoUIHRtUZhZ+bHy8TXjJwx0DWXlsLpCXHXNBmAR+V/yjTdj+JfiL6YExvPP298acqamSXQkPXDNr5SWGaMCcfmcyL+BdUsK3A6LqjtfZp5jN/d/8sU4ZIZI8kBEnkKzlV/+eVHT4qKYofjv7AvPPzUAkqDBQGfFX/KyY0nKDTWj177+3lo38+ElcWH15rOPNbz9fphfhnQJoWqFPFTjpniK1oVxETfRNiU2K5E36HinYVdTpOFywMLVjfZT1NPJowcu9I9tzbg89iH9Z3WY+vm2+enedNdAkv/ue0kmdGm0CmxtzAnCYeTUTBp4xNmUz7OigqiPnn57Ps0jKik6PFaxxQbQAjao+gtHVpBEFgReAKvjr4FZGJkciQMbLOSKY1noa5oXmWbZ9+fDopqhT83f1p4tHkHXtCIiOyGx85zaCdnxSGCfNq2FXmX5gPwNxWc9MJOhqnaMkU9u5IQpBEvpMT9f+72uHVgpoVl1fwzX/fiGHsHcp34NcWv+qcvGzrra103dRVzCY8ovYI5raaq5MAFJcSJ2od3nSIzg49uR7Vnapz8vFJLjy/kKdCEKSZxwbXGExd17p03dSVuxF3abyqMVMbT2VCwwl5bh7TNbx4sPcseteqS22X2lnmgxIEgePBx5lzbg7b72wX700ZmzKMrD2Svj59ReHmTvgdhu4eytGgowBUdajK0vZLdUoX8CDyAX8F/gVIWqD8JLvxkZsM2vlJQZowBUFgxJ4RqAU1XSp2obmntuNzkjJJTOYqOUW/O9KSsxJFCo0dHtIvFJGdHf7MkzPUWVaHgTsH8jLhJeVLlGffp/vY1mObzgLQumvr+Hjjx+JLdlSdUToLQADrr60nNiWWsjZlaeyes9wdNZ1qAmnrA+UXVRyqcHHwRXpV6YVKUPHd4e9o9XcrXsS/yNPz6GqubOPZgwalGmQqACUpk1gZuJLqS6rjv8qff2//i1pQ06x0M3b13MWdEXf4os4XmBuak6xMZuqxqVRZXIWjQUcx1jNmdvPZBAwO0Dlf0g/HfkCpVtK6TGsalGqg6+VK5JC8Nnu/T6y7to4Tj09gom/Cby1/S7f/1ONTJCmTcDZ3xsvOqxBa+H4haYIkihw5tcOHxIYw4b8JrL6StkaXuYE5U/ynMKL2iBzZy5ddWsagnYPE32PqjuHXFr/mSBsgOkTXGJxjLYLmRR0QEpCj43KKmYEZqzuuprF7Y0bsGcHBhwepurgq6zqvy7Oka+9q1gyJDWFRwCIWBywWNXpGekb0rtKbkXVGaq3hBnDy8UkG7xzMrfC0pSlalWnFwjYL8bD20LnNN1/e5O+rfwNpEWES+UdRCD8visQkx/DlwS8B+M73O0pZlkpX5s2oMElT+e5IQpBEkUQXO3yyMpk55+Yw7fg04lLiAOjv05+fmv6Eg5lDlvW/HZZ77uVaxuwfJe7/st6XzGo+K0eTzMXnF7kYchEDhQF9ffrm7IJ57RwdGBpIqipVp+VCcotMJqN/tf7UcalDt83duPnyJs3WNGNSo0l83+h7QP5OPhC5NWsGPA9gzrk5bLj+Oquzq4Urn9f6nEHVB6VzkH6V+IoJhyaw5NISIG1ZjD9a/qGT4/vbTDk6BQGBThU6UcO5Ro6OlcgZ2Y0PATUG+gl4u+b9EhRFjTfnoi13VhAa+4IyJcowrt64DMuL/kAekj9QXiAJQRJFlqzs8Hvu7WH0vtHci7wHQB2XOsxtPZfaLrWzrTejsFwlFhgb1CNRcYav6n/FzGYzc/wS1WiBulTskqvIqzI2ZbAysiIqKYrrL64XyIrwlewrcX7geb7Y+wUrAlcw5dgU9lx/jhDdhRexqWK5nIYt5yS8WKlW8u+tf5lzbo5WVud6rvUYXXc0nSp0SicQCoLAxhsbGbVvlJg8cUC1AcxqPitXSSEDQwPZdHMTMmT84P9Djo+XyBlZjQ+Na/Qz2RxarZ3Hjp47im2iz+xIPxdVw4Xl9Ktgr5UGQkNEQgSXQi4BklN0XiH5BEkUK+5F3KPduna0XdeWe5H3cDB1YGWHlZwecFpnAWjY35fSOWUqKIFdyrd8UnZWrgSgmOQY1l1bB+TMIfpNZLK0fDhAlvmC8hpTA1P+6vAXqzuuxprGhD5tT1hsilYZTdjyvushOterMWs6WmqbNBwtjVjUqzq1PQ2ZeXImpeeUptvmbpx6cgo9uR6fen/K+YHnOT3gNN0qdUsnAAVHBdNufTt6bOlBWHwY5UuU51jfYyz7aFmuX5aTjkwCoEflHng7eOeqDomckdn4cLI0ZmRLYwxNb3HqySka/tVQzPr9PpHZXKSHLUv/EzJ81g4/OoyAQGX7yuIiqhLvhqQJkigWxCbH8uOJH/ntzG+kqlPRk+sxus5oJvpNxMLQQqc6sgrLlSEHBB4GV0ctgEJHGUijyl53ZRfKpNKUt1fSyK2Rztf1NrWca3Ho4SEuPLvA4BqDc11PbvjEuxdzdtoRjpK33dJ1DVt+28zY3MsxnVnTzCyUBRd+oPP21WISSk1W52G1hmWawFCpVjL33FwmHplIQmoCBgoDvmn4Dd80/CbDr2ZdOff0HDvv7kQhUzDFf0qu65HIOVmZvVtVOkmrta24FX6LesvrsffTvVRxqFLYTc4RmWXDzi4zPmg/a5p6Vp+7iaHKm6buTTM8UiLnSEKQRJFGEATWXlvL+IPjCYlL+zJqVaYVv7f8nQq2FXJUly4r2+ckLFdblW2LIzPQC09l/43QXCdR0/gFFaQmSMP5R5GEx6lIH5eXRnZhy1ll/21RyYF99/cx+fQfok8DpIWvj6ozip7ePTHSy9wJ9uLziwzeNVg0BfiW8uXPdn/mSSqBiUcmAtCnah/KlSj3zvVJ5IzMzN6V7Ctxuv9pWq9tzY2XN/Bd4cv2HtszXeC4qJHV82BpbKBzioDoxJQ36qmJIzU5GgD7SoYUejLJ9wFJCJIoslx8fpEv9n7Bmadpi6V6WnvyR6s/aFu2ba6iIvIyLDezbLfxSfrvlO1WYw67/uI6CakJmOinX2A2v3iX/sk6O/RF9Eqs5EHCFiB9Vues7mVcShyTjkxizrk5qAU1VkZWzG4+m/7V+udJbqNjQcc4+PAg+nJ9JvpNfOf6JPKWkpYlOdHvBB3+6cCJxydo+XdLVndcTffK3Qu7aVmSXTbs/g3cdarn0M1Q/joVlK6e6HiKTFbt4o7kEyRR5HgR/4JBOwZRa2ktcfHAGU1ncGP4DdqVa5frsNC8CsvNLtstpKmyVeqMld1Z4WrhioOpAypBxZXQKzk+/l3Ibf9knx1aICmiHRYGloypO4b7I+/zb/d/8Xf3z/Je7r67m0oLK/H72d/FVbRvfX6LgdUH5okAJAgC3x/5HoBB1QfhbuX+znVK5D3WxtYc+OwAXSp2IUWVQo8tPfjj7B+F3axM0WV++DfwmU51/Rv4LF/mGYnXSEJQFqjUAmceRLA98BlnHkRIgy0PyahvU1WpzDk7h3LzyrHs8jIEBD71/pQ7I+4woeGEd/L7gLSwXFOjFATUGe6Xkaauzm5V6Jxku80pMplMzBdU0CYxTdhyZmJJZv2ja3bofztd47eWv1HaunSW7QiJDaHbpm60W9+Ox9GPcbN0Y88ne1jfZT2OZo45vKrMOfDgACcfn8RIz4jvGn2XZ/VK5D1GekZs+HgDI2qNAGDM/jF8deArMalpUUKX+SEyPhUbU4Msn7USpgZExqdmUuLd5hmJ10jmsEwoyqsbF3cy6ltrU0gwXs3d+I0AVHOsxrzW8/I0a++sUz/zSL0TO77ltatvGjlZFTq/s93Wcq7Frru7ClwIyu2q2bpeZ2xS1t9cakHN0otL+frQ10QnR6OQKRhTdwxT/KdgamCq+4XowJtaoOE1h2fqjC1RdFDIFcxtPRcXCxe++e8bfjnzCyFxIfzV4a8itYiors9DRx9nVpwKyvRZ6+DjzF+ngvLsfBIZI2mCMiCz0MXchAlLaJNZ30bGq0kK/wwHRUuWtFvChUEX8lQA+vH4j3x7+FsSFWdoVu0RTpbaSdg0Ydu6CLj5ne1WdI7Ox+UzMiO7sPaM+icv+uPGixs0WtGIobuHEp0cTQ2nGlwYdIHZLWbnuQAEsOPODgKeB2Cqb8rXDb/O8/ol8geZTMaEhhNY1XEVenI91l5bS9t1bYlJjinspono+jw093LM8llr7qWb1vNDy6qd10iaoLcoTqsbFzd0CVF3k4+jf7Vm79S3b4elHny6iMlH05xepzeezneNvsg0dFUX3nWR1+zQmMPuRNwhOikaSyPLXNWTW3K6ava79EeSMokfj//IzFMzSVWnYqpvyo9NfmRE7REo5Iq8vbD/oxbUYkTYqDqjsDe1z5fzSOQfvav2xsHUgS4bu3Do4SH8Vvqx99O9eWouzS05eR4Uclmmz5pKLeTrPCORRp5rglQqFRMnTsTDwwNjY2M8PT2ZNm0agvD6NgqCwKRJk3BycsLY2JhmzZpx7969vG5KrshPf48PHV1C1MNiUt6pb/ddD6HhzMP0XHqWUf8E0nPpWZbsdcVYVY+fmvwk+n5ownI7+LhQz7NEjoSud1nkVRdsTWxFJ92LIRdzVce7kpP+yW1/HHl0hCqLqjD9xHRS1am0K9eOm5/fZFTdUfkmAAFsurGJay+uYWloyZf1v8y380jkLy3LtORo36PYm9oTGBpIveX1uBtxt7CbJT4PaUEB2j5LGT0PmT1r+T3PSKSR50LQzJkzWbRoEfPnz+fWrVvMnDmTWbNmMW/ePLHMrFmzmDt3LosXL+bcuXOYmprSsmVLkpIK37YprW6cf+R332aVDdo+5VuqWffNVb0ZkRuzUU7QmMQCnufvYqp5RU76IyIhgv7b+9NkdRPuRd7DycyJTV03saPHjgwXjMxLlGolk49OBuDL+l9ibWydr+eTyF9qOtfkdP/TeFp7EhQVRP3l9Tn79GxhN4tWlZ3o1iAaFRFa23M6P+T3PCORD+aw06dP06FDB9q2bQuAu7s769ev5/z580CaFuiPP/7g+++/p0OHDgCsXr0aBwcHtm3bRo8ePfK6STkiP/w93sX08j6Rn7402Zna8sOMmVOzUU6o6VyTTTe28N+dJ5Q3fVYsxk12/aFJfDlm/xjCE8IBGFZzGDOazigwk9/fV//mTsQdShiXYFSdUdkfIFHk8bTx5PSA07Rd15aA5wE0WdWEjV030q5cu0Jt18PErTwz+pfB3jNp49kz02c4u/dDfs4zEvkgBNWvX58lS5Zw9+5dypUrx5UrVzh58iS//fYbAI8ePSI0NJRmzV4v/mZpaUmdOnU4c+ZMhkJQcnIyycnJ4u+YmPxzgstrfw8pyuw1+elLkxMzpi7ZoHUlq0Ve3wVZUjVckpZz564do+4GAsVj3GTWHw8iHzBs9zAxW3Qlu0osab+E+iXrF1jbUlQp/HAsbXHUCQ0nYG5oXmDnlshf7E3tOdLnCN02dWPv/b10+KcDf7b7k4HVBxZKe1JUKex/sB9kagbV86ems0uG5XR9P+TXPCORD+awCRMm0KNHDypUqIC+vj7VqlVj9OjRfPrppwCEhoYC4ODgoHWcg4ODuO9tZsyYgaWlpfhXsmTJvG62SFZ2WE0go652WCnKTJv8tHG/T2bMfddDWHgwBQXaK9EXx3GTqkpl5smZVF5UmYMPD2KoMGR64+lcGnKpQAUggL8u/0VQVBCOZo4MrzW8QM8tkf+YGZixvcd2+vr0RS2oGbRzEFOPTdXyRy0ojgUdIy4lDkczR6o7Vc+wjPR+KBrkuRC0ceNG1q5dy7p167h06RKrVq3il19+YdWqVbmu85tvviE6Olr8e/LkSR62OD2Z2WGVhDOihZFOX+L5mVW4OJNfNu78DlsvKN4cN7IMFjGF4jNuzj09R82lNZnw3wSSlEk0dm/MtWHX+K7RdwWe1yUxNZFpx6cB8J3vdwW6HIlEwaGv0Oevj/7iO9+0AIjJRyczZNcQlGplgbZj191dALQt2zbD7ObS+6HokOfmsK+++krUBgF4e3sTHBzMjBkz6NOnD46OaSGMYWFhODm9fuGFhYXh4+OTYZ2GhoYYGr5btuCc8rYdds31+Wy5P4vA6E+A7FfwLSzzTHEgP2zc+R22XlAUt3GTkT9DfGos3/33HQsuLEBAoIRxCX5t8Su9q/bO9ZIn78qfF//keexzSlmWYlD1QYXSBomCQSaTMb3JdJzNnRmxZwRLLy0lLD6M9V3WF4jwKwgCO+/uBKB9ufbp9qvUAitPPSpWz/n7TJ4LQQkJCcjl2pKvQqFArU4LFfTw8MDR0ZH//vtPFHpiYmI4d+4cw4YNy+vmvBNv2mGd7Dqx5cHPbL65mbmt5mYbVfI+mWfyg7y2cec223FRoziNm4z8GaxMBCL0/uRpatqX8GdVPuPXFr9iZ2pXWM0kLiWOGSdnADCp0aR3Xn5FongwvNZwnMyc6LmlJzvu7KDZ6mbs7LmTEib5K1TcCr/Fo6hHGCoMaVpa+4M5o2cmK4rCc/6+k+fmsPbt2/Pjjz+ye/dugoKC+Pfff/ntt9/o1KkTkCaljx49munTp7Njxw6uXbtG7969cXZ2pmPHjnndnDyjlnMtvO29SVImsfba2mzLvy/mmeLE+xBOWlzGTWb+DK8SBOQxQ/Aw6sTBzw6yutPqQhWAAOafn8+L+BeUsSlD76q9C7UtEgVLp4qdONT7EFZGVpx5eoYGfzUgKCooX8+pMYU19miMmYGZuD2zZyYrCvs5/xDIc03QvHnzmDhxIsOHD+fFixc4OzszZMgQJk2aJJYZP3488fHxDB48mKioKBo2bMi+ffswMiq6N1wmkzGo+iBG7hvJ0ktL+bzW51mq9t8X80xxo7iEk6rUAoYqbxSCNecfvaJRWRMUclmxGDe6ZP62Vw+nsXv2ZuP8JjopmlmnZgEwxW8K+gr9Qm5R8aAg03rk97kalmrIqf6naPV3K+5E3KHesvrM8vsXC33XfDmfRgh60xSW1TOTEYX2nEc9gYQIVILAjWcxRCakYGNiQCUXCxQyGZiUAKv8C0wqDGRCYbjOvyMxMTFYWloSHR2NhYVFgZ03MjES51+dSVYlc2HQBWo618yyvEbyh4zNM8VFOyGRt+y7HsLkHTcIi3md9uHNsNiiPm7OPIig59LsE9KtH1S30P0ZJh+ZzNTjU/Gy8+Lq0Kv5mon6faEg03oU5LmexTyj2dIviX3ZEj1eayfz8nwRCRHY/2KPWlATNCoINys3QPdnBgrxOY96AvNrgDI58zJ6hjDi4jsJQoX1/s4MaQHVHGBjbEMXry4ALLu0LNvymZlnrM1khf4ikygcNALOmwIQaIfFFnWzXnHxWwpPCOf3s78DMNV/qiQA6UBBhm0XdIj4tcdykl72Qi8fU0/su78PtaDG295bFIAgZ89CoT3nCRFZC0CQtj8hIusyxQxJCMohA6ulJd9ad20d8Snx2ZZvVdmJk183Yf2guriWPECowTf0a/6o0F9kEgVPTsJi3xw3c3r4sH5QXU5+3aRIjJvi4rc0+9RsYlNiqeZYjU4VOxVqW4oDBRm2XdAh4trny7/UE7vupTeFge7PwsS2FQvtOVfpaBTStVxxQRKCcoifux+e1p7EpsSy8cZGnY7RREI1qmBKsuIa115cyedWShRFcro477ss8pqfaPyWMmuNjDQTQ2H4LanUAmceRLD67E0Wn/4PBDnTGk/LMFeLhDYFuXh0QS9UXRDnS1WlsvfeXoB0S3aUtE1GkEemW1BVg+aZ6dvAo9Ce8+vPonQqd+NZ/q3YUBjkuWP0+45cJmdg9YF88983LLu8jH7V+ul8bFWHqgBcDbuaX82TKMIUFzNSdhTVdARv+5dY8wMl9GKQJ2ecsVdCG13HXdcNA6jiloKPow8+jj5UdahKGZsyOTI36nqudVd24WLb+J0X1tX1fM+j4oDc+bGdenKK6ORobE1sqe1SW9yerEzm402deaknxy7lWwTU/w8gSKOwnhm1oOb6i+scDTrKseBjxNyO4KAOx0UmpOR72woSSQjKBX2q9uH7w99z+slpbr68iZedl07HVXVME4KuvbiGSq2SfBQ+MIqLGUkXNH5Lbzu1OhbS+mYa/5K3FfVqpQXD114qEr5URR1dx1140kP23r/G3vt7xW0m+iZUcahCVYeqonDkbe+NqYHpO51raeCvzL/Wl6oOVWlXrh3tyrWjtkvtHGv2dD3fL+cm0qzSvFwt6PtmlmjN3C4IAsP3DOfcs3OggFeGs/DUm8Cr+NcjtaCeGbWg5mrYVY4FHeNo8FGOBx8nMvG15quOqpxOtiEbk4LN9p7fSEJQLnAyd6JduXZsv7Od5ZeW82vLX3U6rqxNWYz0jEhITeDBqweUK1Eun1sqUZQoDuHvOUHXdAT5HQKtS/jxDztv0tzLsciYFIsiuoxPBwtD1n66mKsvrnAl7AqBoYFcDbtKQmoCZ5+e5ezTs2+Ul1G2RFlRW6QRjpzMnLI9F4CZUQo1Slpy9pmcK2Fp5/vxxI/YmdjRtlxb2pVtR3PP5lgYZh9hlN35BNSoZBGcfbGWRiuvsPfTvTibO+vSbSKaLNFvmsIWByzmr8t/ib+Xdv2cj71aF0j6AZVaxdWwqxwNOsrR4KOcCD7Bq6RXWmVM9U1pWKoh/u7+tDZxhh1fZFtvJZfCj+jKS6QQ+Vyy6+4u2q9vj62JLU/HPNU5C22tpbUIeB7Axo830rVS13xupURRo6iHv+c1BRECXZxC9os6uRmfKrWK+5H3CQwNJDA0UBSOQuIyjrayM7GjqmNVbGXNOHO9Em87Kr99rvCEcPbd38fOuzvZd38fMcmvfVL05fr4u/uLWqLS1qVzfG0gIAAvDX4iVf8CSrUSN0s39vXaRwXbCpnW9yZ3I+5Sfn559OX6hI8Px8LQghPBJ2i8qjEqQQXA7y1/Z3Td0TrVlxtUahWBoYGieet48HGik6O1ypgZmOFbyhd/d3/83Pyo7lT9de6s54GwxC/7Ew0+Bs4+uW5nUXh/v4kkBOUSpVqJ2x9uPI99zoaPN9CtUjedjhu4YyDLLy/nO9/vmN5kej63UqIoUpC5UQqTzExUeS3wbQ98xqh/ArMtN6eHDx18XN75fO87eTU+X8S/4EpomkAUGBbIldAr3A6/LQoFAMaqetikDNbK22NurKRfI3MG1KuRziyVqkrl5OOT7Ly7k513d3I/8r7Wfi87L9qVTROI6pWsh55c29iR2bW1qZ7AH1f6EpkYiVwmRy2osTG2YWfPndQvWT/ba/39zO+MPTCWZqWbcfCzgzyJfkKVxVWISooCYFzdcfzS8hed+04XlGoll0Mucyz4GEeDjnLi8QktARHAwtAC31K++Ln54e/uTzWnaun6ROQDzRMkCUHvwMTDE5l+YjrNSzfnwGcHdDpm3rl5jNw3knbl2rGz5858bqFEUaUgM/IWBiq1QMOZhzONyNGY/k5+3eSdr1vSBL0bGY1FIF/GZ2JqIjde3kjTGIVeSROOQq6SkuSGQrBGJXtFsvwGyP6/1qSVRzpzWinLUmK2/rsRd9l1dxc77+7kRPAJLQHLxtiG1mVa065cO1qVaYWVkVWm16uQy3gS/YQeW3pw+slpsQ5DhSEbu27ko/IfZXldTVY14UjQEf5o+QeDawymxpIa3Aq/BUD3St1Z12XdO0coKtVKLoVcEjU9J4JPEJsSq1XG0tASXzdf/N388Xf3x8fRJ2e+pwWQMbqovL81SELQO/Do1SNKz01Tvz4c+RAPa49sjzkefBy/lX6UsixF8Ojg/G6ihEShUJCCiUbgys7XKi8ErveNoqCVVAtqgqKC0pnTHkc/zrC8lZGVllBU1aEqXnZeJCoT2X9/Pzvv7mTv/b1aTr8KmQJfN1/alW1H+/LtM/XHTFWlMunIJH4+9bO4TYaMxe0WM7jG4AyPiUqKwm62HUq1knsj7jH+0Hj+vf0vAA1KNuBwn8MYKHLuTJyqSuViyEVR6Dn5+CRxKXHp+qKRWyP83fzxc/ejqkPVIh9wU1Te3xokIegdab6mOYceHmJio4lMbTw12/JRSVFYz0xbgT5yfGS2q9FLSBRHCtpE9aH5WuUFBWWuzC2RiZFcDbsqCkeBoYHcfHmTVHVqurJ6cj287LxE4cjb3psUVQrHg4+z694ubr68qVW+rE1Z0Y/It5RvujXl9t3fx2f/fkZ4Qri4bVKjSUzxn5JuzciNNzbSfXN3KtpWpKd3TyYdSVsn09Pak0tDLunkuA2Qokoh4HmAGL116vEp4lO1E/JaG1nj5+4nmre87b2LvNDzNkXp/Q2SEPTObLi+gR5beuBi7kLw6GCdBqT7H+4ERwdztM9R/Nx1cESTkChmFIaJqihoNYoLBWmuzEtSVCncenlLS2MUGBqYLupJg6uFKz6OPrhZuJGgTOBuxF3OPzuvJUhZGFrQqkwr2pVtR5uybShhkjYen8U845Mtn3D88XGxbJ+qfVj20TItv5rP/v2Mv6/+TecKndl6eyuQZoq7MfwGjmaOWV7LhWcXRE3PqSenSEhN0CpTwrhEmqbn/47M3g7exT7xZ1F6f4MkBL0zycpkXH5zISIxgl09d9G2XNtsj+nwTwd23NnBnFZzGFlnZJ636X33N5Eo+hSWiUoa+7qhq5DastZtyjiqMTUwxczADFN9U0wNTMV/3972tkalIBAEgacxT9OZ0x68epBheVN9U1wtXJEh41nsMy2/GrlMTj3XerQr14725dLMZlOPTeXHEz/+P4YMurrUY1WLXzHWM0YlqGm2phnRSdEoZApUgopYhT67hl2hvG15rfMmK5M5/+y8KPScfnKaRGWiVhlbE1tRy+Pn5kcl+0rFXuh5m6L0/gZJCMoTxu4fy+9nf6djhY782/3fbMtrHKr7+/RneYfledoW6WtYoqiQVUiyDGkR4cJEV3PlS/1ZJOgdz7acBgOFgZZQZGZgpiU0iduyKJORsGWqb5pjs09McgzXwq69NqeFBXL9xXWSlBlrvwwVhiSrtCOj3K3caVe2HS4WLvx88mcskmK4gxnGmS4aAyqFPoovLpNkZse5p+fE6K0zT8+kO7ediZ0o8Pi7+1PRruJ7J/S8TVF7f0tCUB5w48UNKi+qjEKm4OnYp1mqQAE239xM101dqeFUg4DBAXnWjqJu45f48MhIKFfoxbCgh780FgsRXTVBtSufwcj0MfGp8cSnxBOfGk9cSpz4//Epab/fjMrKL4z0jDIVlHTRUpkZmGGoZ0h4QjhBUUHcj7jPrYhbXAu7xsuEl9me30BuQG25ISdSs9csDnauwOoXV9IJVQ6mDvi5+4mOzBVtK6bzMXrfKWrvbyljdB5Qyb4S9VzrcebpGVYFruLrhl9nWV6zhtj1F9dRqpWZ523IAdmtyixDypr7PlLUzT9vZpW+8yKEz/f1IkF2DRe7QEASggoLXbOXr/9kWrbjSRAEUlQpWQpKmQlP8anZl9GYoZKUSSQpk4hIjMjz/jDWM8ZAYSDmCEpWJafT2qSoU4hXKQGzbOsLeB5AskyNo5mjlqanfInyH5zQU9SRhKA8YmD1gZx5eoZll5cxvsH4LAe6p40npvqmxKfGcy/iHhXtKr7z+XOySrKUK+X9oLiYPhVyGfU8S1DPswS7n5Zl880rLLiwgMXtFhd20z5YNIvgDv2/ufJtBHRf0FMmk2GoZ4ihniE2xnm75IsgCCQpk7IVlOJS4ohKiiIqKYro5Giik6KJTYkVBa2E1AQSUhNIUiaRrEwmRZWi5RydqExM55/zLnzn+x3ePr0oa1NWEnqKOJIQlEd0q9SNUftGcT/yPseCj+Hv7p9pWblMjreDN2efnuVK2JU8EYLelxXKJXQjM9NnaHQSw/4uuguGfl7rczbf3Myaq2v4udnPYgI7ifcfQRBIViXni7YoITVB1BgVBbpU7AzS2pDFAkkIyiPMDMz4pPInLLm0hGWXlmUpBEGaSezs07NcCb1Cj8o93vn879MK5RJZU5xNn35uflSyq8SNlzdYFbiKUXVHFXaTPkg0YygzZMCkHdcoaR9FkjLhnQUVzTa1oC64i8whxnrGWBtbY21kjZ2pHfYm9jiaOeJs7oyLhQslLUrilhAFG3tnW9fo/WOY2H2zGG4vUXSRhKA3eFf/ioHVB7Lk0hI239zMvNbzskyEqPELuhJ25Z3bDe/fCuUSmVOcTZ8ymYzPa33O8D3DWRiwkC/qfPHeR8MURXQZQy9iUqkxvzvJimt5fn5DhSEm+iYY6xljqGeInlxP9I0UBAGVoCJVlUqyKpnE1ETiU+MzTJKYFQqZIk2YMbXH3tQeB1MH7X/NXv+2M7XDSE+HD8TngTqd+3jwcex/saefTz9+b/k75obmOWq7RMEhCUH/Jy/8K2o616SKQxWuhl1l7bW1jKg9ItOyVRyqAHknBL1p4xdQI+P1i0Ujxulq45co2hR30+dnVT9jwn8TuBtxl0MPD9HCs0VhN+mDQ9exYaHvioFpZObh7Prav/Xl+qgFNanqVJJSk0hUJmr57LxKekV4QjgvE14SnhCeaZLDzDDRN9EWYkxeCzNvCzg2xjaFKmCrBTXLLy9nzdU1jKs3jomNJmKsb1xo7ZHIGEkIIu/8K2QyGQOrDWTkvpEsvbSUz2t9nqlTnEYIeh77nPCEcGxNbN/1MmhV2YkG3jc4ds1ea1VmxyLoLCuRe4q76dPMwIw+Vfsw7/w8FlxYIAlBhYCuY2P7J6sp7yznRfwLXsS/ICwuLO3f+LR/n8c919r+9oKe2SFDRgmTEtlqazTbTA1Mc3O5eYdJibSV1LNYaT1FJiP8jcwzKaoUZpycwbxz8/ih8Q98UfuLQkkqKZExH3yeoLxOHx+ZGInzr84kq5I5P/A8tVxqZVrWc64nD1895L/e/9HEo0luL0GLOsvqcP5pAD/U/5uq9o2KZNi0xLuRXTZmATVyRQxbR1SmmlPVAm+fLtwOv03FBWmJ4R6MfIC7lXthN+mDIkWppsLEvagznf0FBNSEGPcglZxFTRkoDNILMSba5ifNPlsT2zxJEVKg/H+l9UwxKcGyh/sZumtohvmTShjZ8rnPH/jYN8LRwuSDm5+lPEFFjLz2r7AxtuFjr49Ze20tyy4ty1IIqupQlYevHnIl9EqeCEExyTFcfH4RZGr61WlISct3X5hSouihMX0O+/sSMtJnYwYZYYoF1FkWwLTG0/iy/pdFbpHFCrYVaFa6GYceHmJxwGJ+bvZz9gdJ5BkXg19lIQBBmo5GgVxVBhTXsDS0TC/EmL6hpXljn4WhxfsdFm5VMu0vCwZWH0hTj6Y0+KsBIXEhQFpUsKGyDkavBrPqiBWruAqkfWRPkTT1hcYH75GYH/4VA6sPBGDd9XXEpcRlWi6vnaNPPj6JSlDhae1JScusH1KJ4k2ryk4s6lUdR0tts4aTpTGzPi5Dcy87UtWpTPhvAv6r/Hn06lHhNDQLPq/1OQDLLi3LdCkDifxB1/lsUeu1JH2XRNSEKO6MuMOJfifY3G0zC9suZLL/ZIbVGkYXry40LNWQciXKYWlk+X4LQDnAw9qDp2Oe0rlCZwAMlXWwS/kWBdquD6HRiQz9+xJ7r4UURjM/eD54Iehd/StUaoEzDyLYHviMMw8iUKkF/Nz8KGNThriUODbd2JRpnVUd81YIOvLoCEC24fkS7wetKjtx8usmrB9Ulzk9fFg/qC4nv25C95oV2NZ9G8s/Wo6ZgRknH5+kyuIqLL+0nKJk/W5Xrh0lLUoSkRjBxhsbC7s5WmT0XL9P6DrvVbB3xlDPMJ9b8/4il8vZ0n0LKz5ahU3qECBNx6aNDAE1n284womgkwXfyA+cD14I0oSWZ/Xt4pRJaPm+6yE0nHmYnkvPMuqfQHouPUvDmYfZfyOUAdUGALDs8rJM69U4R998eZNUVc7CPzPiaPBRABq7N37nuiSKB5pszB18XKjnWUL0LZDJZPSv1p+rQ6/iW8qXuJQ4Bu4cSId/OhAWF1bIrU5DT67HsJrDAJh/fn4ht+Y1mT3X+66/P1/q2c17MjKf9yRyTnmLtugJthkIQGnIkKNWWtL8r+G0/Lsll0MuF3ALP1w+eCFI418BpBueAmoEBEY0TZ90ThNR9rY/kSaizM3wIxQyBaefnObGixsZntvdyh1zA3NSVCncDr/9TtcRnRTNpZC0FPiSJkhCg4e1B0f6HGFms5kYKAzYeXcn3ou82XZ7W2E3DUgzHRsoDLjw/AIXnl0o7OZk+1y/L4JQVvOelFIj79HV/KgQrDnw4ADVl1Tn440fv/N7QSJ7PnghCDL3r5ArYnhp8BOLrg/R0tRkl7EXYO6hENqV+wiA5ZeXZ3heuUyeZ/mCTjw+gVpQU9amLC4WkkO0xGsUcgXjG4znwqALeNt78zLhJZ02dKLf9n7EJMcUatvsTO3oVqkbAAsuLCjUtujyXP+w8+Z7YxrLbN5ztDQqssuuFFd0NT/amb82PW65tQWvBV703daXoKigfGqZhCQE/Z+M/Cv2jamNvskNTj05xYRDE8SyukaU+TmlmcRWX1lNciZ5JTTO0VfDruaq3RrfhdVnb2Ko8sbPzT9X9Ui8/1RxqMKFQRcYX388MmSsDFxJlUVVOBZ0rFDbNaJWWlLRf67/Q3hCeKG1IyeRou8LmfmVSQJQ3pKd+VFAjZ5+LMcH/8WcVnOwNLT8/3aBVVdWUXZuWUbsGUFI7PuhiSxKSELQG7ztX1HetiyrOq4C4Lezv7H11lZAd9Wmu0UVXMxdiEiMYPud7RmWeRfn6Dd9F87frIRjygzOB7Z/b1T2EnmPoZ4hM5vP5FjfY7hbuRMcHUzjVY356sBXmQrq+U1tl9rUcKpBsiqZ5Zcy1poWBMU9E3duycyvTCLvyMr8qElr8Vw2l3p/1cHH0YdHox4xrt449OVpSRWVgpIFFxZQek5pvj74NRFZ5SmSyBGSEJQNHSt05Mt6XwLQb3s/7kXc01m16WhhQj+ffkBaGHBGiGHyoTkTgjLzXYhOkL9XvgsS+YOvmy9Xh15lQLUBCAj8cuYXai2tleNxmBdo1hMDWBSwCJU6fYK5gqC4Z+KWKNpkldbi23Z2uDm84nnscxqvaszCCwuZ1XwWt0fcpqtXV7FskiqJWadn4THHg6nHpha6Oft94IPPGK0LqapUmqxukhZq7FCFk/1O0+K3s9kuVnry6yY8jg6i9NzSADwc+RAPaw+tsvEp8ZjPMEdAIHRcKA5mDtm2J6+zXEt82Oy4s4OBOwbyMuEl+nL9QkmwmJiaiOvvrkQmRrK9x3Y+Kv9RgZ1bw+vnKpGMvtel50oiL8hsoe64lDg+3/M5q6+sBqB56eas6bQGBzMHTj85zbj94zj77KxWXTZGNnzr+y3Daw0vNuuSFbWM0ZImSAf0Ffps+HgD9qb2XA27yqh9X2QTUfY6ssLD2oPmpZsD8Nflv9LVbWpgShmbMoDuJrEP0XdBIv/4qPxHXB9+nQ7lO2glWHz46mGBtcFY31hMK1FYDtIKuYy+vmYIpD3HbyJFTEnkFZmZH80MzFjVcRUrO6zERN+Egw8P4vOnD4cfHaZ+yfqcHnCaf7r8o7XETGRSJF8e/JIy88qwOGAxKaqUQrqq4oskBOmIs7kz/3T5B7lMzorAFTxP3ZuhalNFBAYlVtHM6/UCppoM0isCV6BUK9PVLfoF6WiK+FB9FyTyD3tTe/7t/i9/ffQX5gbmnHx8kqqLq7Ls0rICS7A4rOYwZMg48OAAdyPuFsg53yRVlcqfN4bx0uAnDPQTtPZJEVMSBUUfnz5cGHSBSnaVCI0LpdnqZkw5OgW1oKZ75e7c+vwWs5rNwsLwtRbleexzhu0eRoX5FVhzZU2hmZSLI5IQlAMaezRmWuNpAHy+53McbcO0IiuW9qlMkvVX3EvYxNKLS8XjOpTvQAnjEjyLfcb++/vT1ZvT5TMk3wWJ/EAmk9GvWj+uDrtKI7dGxKXEMWjnoAJLsOhh7UHbcm0BWHhhYb6f721mnJzB5dDLGJvd4ehXjdJFTDX3cnyvs0hLFB287Lw4P+g8A6sNREDgh2M/0GxNM0JiQzDSM+KrBl9x5/N7dC87ETOVP4YqbxDkPIp6RO9tvamyuApbb21N9wHzvmdCzw2ST1AOUQtqPlr/Ebvv7cbT2pOAwQFYGVmJ+xecX8CIvSOwM7Hj/sj7orQ+dv9Yfj/7Ox0rdOTf7v9q1bnzzk4++ucjvO29uTos+1D57FYRl3wXJN4VlVrF72d/57vD35GiSsHWxJYl7ZbQqWKnfD3vvvv7aL22NZaGljwd+xQzA7N8PZ+GwNBAai2thVKtZF3ndfT07qndrush/LDzppYZ2snSiMnSwpcS+cy6a+sYsmsIcSlx2JnY8Xfnv1Eneqcbj0peEmmwhETFGXFbDaca/NjkR1p4tmD/jdAiMYYln6BijlwmZ3Wn1bhZuvHg1QP6be+nJW0PrjGY8iXK8zLhJTNOzBC3a0xiO+/sTJfrQWMOuxV+S6cw5TfDLSXfBYn8QCFX8GX9LwkYFEBVh6qEJ4TTeWPnfE+w2MKzBWVsyhCdHM3aq2vz7TxvkqJKoe+2vijVSjpX7EyPyj209n8oWaQliiafeH/CxcEXqepQNS3R6aofGPr3xXTjUQ877FO+xVhVD0hbo+xiyEVarW1FrXmDGCqN4QyRhKBcYGNsw+ZumzFQGLDt9jZ+PfOruE9foc/s5rMB+P3s7wRHBQNp6s36JeujElSsurJKq76SFiWxMrJCqVZyK/yWTm1oVdmJWd3KoUI7X4TkuyCRl3g7eHNu4Dm+bvB1gSRYlMvkDK85HEhzkC4IRfWPx3/kStgVShiXYGGbhVqroH9oWaQliiblSpTj7MCzDK0xDOuUQRmOR0gTfMroTcDFzBXh/6VkgoLQ5w3F328ijWFJCMo1NZ1r8kfLPwCYcGgCJ4JPiPvalWtHY/fGJKuS+fbwt+L2gdXStEFvO5vKZLJc5QtK1b/AM6MBhBp8w9SOHlK2V4l8wVDPkJ+b/czxfsfxsPIQEyx+eeBLkpR573zf16cvxnrGXHtxjZOP83dV7Ushl/jxxI8ALGy7MF2KCikSU6KoYKRnRO+K09DDLtOFWAUgJkHB3+3PMtV/Kqb6phiovbI95kMew5IQ9A4MrTmUT70/RSWo6L65u+g8KpPJ+LXFr8iQse7aOs4/Ow9A10pdMTcw58GrBxwL1v6Szs0aYhuubwCZGmPTJ/Su6yVle5XIVxqWasiVoVdEZ81fz/xKraW1CAwNzNPzWBtb06tKLwDmX8i/1eWTlcn02dYHlaCiq1dXcQ2zN5EiMSWKErqOs+gEmOg3kXtf3KOZW+c8rft9QxKC3gGZTMbidovxsvMiJC6Enlt6iqGJ1Zyq0btqbwDGHRiHIAiYGZjRs3Kaw+XbGaRzGiEGcO7ZOQBqOtV852uRkNAFc0Nzln60lB09dmBvas/1F9epvbQ2M07MyNOwXE0G6a23tubbeknTjk/j+ovr2JnYsaBNxrmJpEhMiaJETsejk7kT3/l/kad1v29IQtA7YmZgxuaumzHVN+VI0BEmHZkk7vuxyY8Y6xlz8vFJcd2x/7F31tFNnX0AfpLU3YVSKBQoTnF3d2fAYLAx2MYYG2MbOmYMBoONwT7c3V2KO8ULlOIVKFB3l+R+f2QNlFpa0jZt73NOz0lz3/vKzZXf/WmGg/TuB7uJSopStX07V5A6fhBxKXGEJCg1TwNqqCfpi4hoit5uvbn/xX36V+9PmiKN6Wem02Z9G3wjfTXSfz2HerR0bkm6Ip2Vt1ZqpM+3ufHqBn9c+gOAZT2XYWtsm207qb4fgjQySwBCBhKUETZNKllpfI5aQ3QgvL6T8190YDFOrmyRVyHW7M7HvPYBIcs+ZSmUXhSCNEAN2xqs7qPU7My5NIcjT44A4GTmxPctvgdgyqkppMpTaVSuEfXs65EiT2Hzvc2qPmrZ1kIqkRKRFEFQfN5vvseeHVN9HlhzoCaXIyKiFrbGtuwZsof1fddjqmfKlcAr1Ftej1W3VmnEoXlCE2V1+RW3VpAmT3vv/jJITk9m9IHRyAU5Q2sPzfH6OfT4EB02tiNMZ1m2/hRlIhIzOhD+bQgr2+b8929DURAqInIrxJrT+ZjbPhkVDtJNtuEVfAvIXJj76+13GLbqKq3mnSm1EWSiEKQhhtYeyoTGypv2yH0jCYgOAOD7lt/jYOKAb5Qv/7v+PyQSiUobtOr2m4eFoa4hbtZugHrO0dvvbwfAQt8CO2M7TS9HREQtJBIJo9xHce+Le7St2JaEtATGHR5Hn+19CI4Pfq++B9QYgL2xPUHxQex7tC/vHdTk53M/8yDsAfbG9vzbPXufo/9d/x/9dvQjMS2RNtXM+OuDmji+kx2+TERiJkZAXmk70lOU7USKhJwKseZ2Pua0j7F+GjEGC7gZuYbGqxrTfc20MhdKLyZL1CAp6Sm0Wd+G66+u06hcIy59fAl9HX3W3F7Dp4c+xdLAkmcTnyFBguNCR1LkKVz/9DqNnRoDMGzPMLbf387cjnOZ2mpqrmOVW1iOoPggOrh04PSo00WxPBGRXFEICv72/JvpZ6aTKk/F2tCalb1Xvpe59qezP/HrhV9pXaE1Fz6+8N5zvPbyGi3WtkAhKNj/wX76Vu+babtCUPD9ie/56+pfgDKic2nPpejKdHMsfFmqeX1Hqe3Ji3HnoZx7Yc9G5C0Kcj5mt8+ruEBmnJnB5rtbcUpegwybHDWfmkjCq23Pb1ETpEH0dfTZOWgnVoZW3Hx9k0nHJwHKkN+69nWJSo7it/O/YWloyaCag4DMDtJ17dSLEEtMS1S9ZYv+QCLaglQiZXKLyarEbhFJEQzcOZBR+0cRkxxToD7HNRyHTCLj4ouLeId4v9f8ktKSGH1gNApBwYi6I7IIQElpSQzZNUQlAM3pMIeVvVeiK9MFci58KSJSHBTkfMxunwrmFdjUfxPrelwsk6H0ohCkYSpaVGTLgC1IkLDs5jK23NuCTCpjQecFgDIB3LPIZyqT2Nb7W4lPjQfUL6R6/NlxVeKr7MJ6RUSKk9p2tbk+9jrTWk1TZli/u5G6y+tyLuBcvvtyMnNSlep43+rys87O4lH4IxxNHPmn2z+ZtoUlhNFhYwf2PNyDnkyPLQO2MK31tEyJE0VESjOWehXValfaQulFIagQ6FalGzPbzARg3OFx+IT60Nm1M92rdCdNkcaUU1NoW7EtVayqEJ8az06fncCbMPnHEY9JSkvKsf9t97cBYK5vnmNUi4hIcaIn02NOxzlcGH2BypaVeRHzgvYb2jP5+OR8J1jM8LXbdG8T0cnRBZrPlcArqszuK3uvxMrwTSTMk4gnNFvTjKsvr2JpYMnJkScZXmd4gcYRESmplNV0EKIQVEj81PYnOlXuRGJaIgN3DiQuJY4/O/+JVCJl78O9XHxxMVMGaYBypuWwNrRGISh4EPYgx76vBF4BoIFjg8JfiIjIe9CyQkvufn6XsQ3GAvDX1b9otLIRXkFeavfRpmIbatnWIjEtkQ13NuS9wzskpiUyev9oBARG1RtFr2q9VNsuvbhE8zXN8Yvyo5JFJa6MuUKbim3yPYaISEmnIOH3pQFRCCokZFIZWwdsxcnUiccRjxl3eBw1bWuqHgaTT0xmZL2RyCQyPF964hPqoyyf4ZB70sSU9BRex70GoH/1wq3oLSKiCUz0TFjZeyWHhh3C3tgenzAfmq5uypyLc0hXpOe5v0QiUSVPXHpzKQoh+5w9OTHzzEyeRj6lnGk5FnVbpPp+x/0ddNzYkcikSJo4NeHqp1epblM9X32LiJQWChJ+XxoQhaBCxNbYlh2DdqAj1WH7/e0svbGUX9r9gqmeKTdf3+Ss/1l6u/UGYI3XGoA8a4id9Dup8gfKyD4tIlIS6FWtF95feDOgxgDSFGnMODODNuva8CzyWZ77jqw3EjN9M55EPOGU3ym1x7z4/CKLri4CYHXv1VgYWCAIAvMuzWPonqGkylPpV70fZ0edFVNNZIeRNejo595GR1/ZTqTEU5Dw+5KOGCJfBPzt+TffnvgWXakuFz++yBn/M0w/Mx1nM2cWdVvEwJ0DsTa05tW3r9h+fzujD4ymbcW2nBt9Lktfw3YPY7vPdsz1zYmeGl3kaxEReV8EQWDTvU18dewrYlNiMdY1ZmGXhYxrOC5XR+SJxyay5PoS+rj14cDQA3mOk5CaQL3l9fCN8uUT909Y03cN6Yp0JhydwIpbKwD4puk3LOiyAJlUprH1lTqiA3PPA2RkDRbORTcfkUKnMNNBaNvzW9QEFQHfNPuGgTUGkqZIY/CuwYysO5IK5hUIjA3kYdhDnEydiEiKYP+j/ZkKqWYnn14OvAyAu4N7US5BRERjSCQSPqr3Efc+v0c7l3YkpCXw+ZHP6bWtV651wsY3Hg/A4SeHVclIc2Pa6Wn4RvlS3qw8f3X9i7iUOPps68OKWyuQIOGfbv/wd7e/RQEoLyyclTmAcvoTBaBSR1lKByEKQUWARCJhbd+1VLWqSmBsIGMPj2V2+9kAzLs8jw9qfQDAaq/V1LStiY5Uh+jkaAJjM6eiT1ek8yruFQB93TLnOBERKWlUtKjI6Y9O81eXv9CX6XP06VHqLKvDngd7sm1f3aY6nSp3QiEoWH5zea59nw84z5LrSwBY02cNCWkJtFnfhmPPjmGoY8jeD/YyselEja9JRESkZCEKQUWEmb4Zu4fsxlDHEI9nHvhH+9OoXCPiUuMIjg9GgoRTfqd4Hfda5Zz5rl/QKb9TKqfQkfVGFvkaREQ0jVQiZVLzSdwadwt3B3cikiIYtGsQH+37KNsEixkO0qtvr84x1D4+NZ6PD3wMwLgG43A0caTp6qbcCb6DnbEd50afo1/1foW2JhERkZKDKAQVIXXt67Ks5zJAWb9oeG1lLpLtPttpVr4ZAGu91qqco++F3Mu0f0bBVTN9M2yMbIpq2iIihU4tu1pc+/Qa01tNRyqRsuneJuosq8MZ/zOZ2vWq1gtnM2cikiJU+bXeZcrJKfhH+1PRvCI9qvag5dqWvIx9iZu1G1fHXKWJU5OiWFKJoSxVDBcReZdCEYJevXrFiBEjsLa2xtDQkDp16nDz5k3VdkEQmDVrFo6OjhgaGtKpUyeePn1aGFPROka5j+LT+p8iIDDn0hy6uXZDIShUyRHX3VlHHbs6QNYw+UsvLgHgbu9epHMWESkK9GR6/N7xdy5+fBFXS1cCYwPpuLEjkzwmqa4PHakOXzT6AoB/r2ctfnra7zRLby4FYFDNQQzaNYi41DjaVmzLlTFXqGRZqegWVAIoaxXDRUTeReNCUFRUFC1btkRXV5djx47x4MEDFi5ciKWlparN/PnzWbx4McuXL+fatWsYGxvTtWtXkpNLVzrunFjcfTHuDu6EJ4YTmhCKjkSHOyF3MNc351XcK1LkyqrNbwtBCkGh8hHq49anWOYtIlIUtHBuwZ3P7/BZw88AWHRtEY1WNeJ20G0APm3wKXoyPW68vsH1V9dV+8WlxDHm4BgAGjo2ZKHnQtIV6QyvM5zjI45nyhItohSAvihjFcNFRN5F40LQvHnzcHZ2Zt26dTRp0oRKlSrRpUsXXF1dAaUWaNGiRcycOZO+fftSt25dNm7cyOvXr9m/f7+mp6OVGOoasnvwbsz1zbkdfJs69krNj65UWagxIyP004inJKQmAHDa/7TKH2iU+yiNz6msqcTL0npL4lpN9ExY3ms5R4YfwcHEgQdhD2i6uim/X/gdy9QEfqjUlfqClMPnf1dWOn99h8X7x2AVHYibjjG3gm4BMLP1TDb334x+XrluyhByhcDlp+FM3eNNdmdCxne/HHpQIs4VEZH3QeN5gmrWrEnXrl15+fIl58+fx8nJifHjxzN2rDJTsp+fH66urnh5eeHu7q7ar23btri7u/PPP/9k6TMlJYWUlBTV/7GxsTg7O2tNnoGCcuDRAfrt6AeAsa4xCWlKgUcmkWFpaEl4YjhXx1ylafmmjN4/mg13N2Cmb0bM1IJV5M4Jj/tB/HLoQaY3QkdzA37qXbNUJscqS+stDWsNTwzn88Ofs+fhHpwFCU8xQz/bx7eSJARqSpKY2Xs5YxqMKcKZaj/ZnQ+5sW1sM5q7iokQRTRHqc8T5Ofnx7Jly6hatSrHjx/niy++YOLEiWzYoKz5ExwcDIC9vX2m/ezt7VXb3mXu3LmYm5ur/pydS0deir7V+/J9i+8BVOUDdKW6yAU5FgYWwBuT2IXnFwCoa1dXo3MoayrxsrTe0rJWGyMbdg3excZ+G3HRM81VAAIwRMLW7ktEAegdcjofcqO0VQwXEXkXHU13qFAoaNSoEXPmzAGgfv363L9/n+XLlzNqVMHMONOmTePbb79V/Z+hCSoNzOk4h6svr3LxxUX0ZHqkylMBCEsIA5QRYoIg8CLmBYCqzIYmkCsEfjn0IEeVuASlSrxzTYdSkSyrLK1XnbX+fNCHFlVMS8xaB9QYQCtdU9iZ932k+X/RliJKcjsfcqO0VQwXEXkXjQtBjo6O1KxZM9N3NWrUYM8eZQI0BwcHAEJCQnB0fKOODwkJyWQeext9fX309UunTV9HqsOOQTuov6I+IQkhqu9jUpQmr7shdzkfcB65IAfgY/ePNTb2df/IXN8KBSAoJpnr/pElSiWeJk8jIimC8MRwwhPDCUsIIzwxHO/AZIJiquW4X0ldb3ao89sGx6ZgN6cFKTLvopvYe1JfkHIbk+KehtaSU7mDvM6HdxFQYGqQXuoqhouIvIvGhaCWLVvy+PHjTN89efKEihUrAlCpUiUcHBw4ffq0SuiJjY3l2rVrfPHFF5qeTonA0dSRbQO30WlTpywVsu+F3GPj3Y0AmOqZYmts+97jBUQHcC7gHDtu+gJ5vzEXp0pcISiISop6I9Akhqk+5/SXIUC+i1F6G2z5Ic8xS4MJQN01yATLvBuJlAhy8/9KSVfksue7KHWFfoo/WXbzFROaTND4XEVEtAWNC0GTJk2iRYsWzJkzhyFDhnD9+nVWrlzJypUrAWUJiW+++YbZs2dTtWpVKlWqxI8//ki5cuXo16+fpqdTYmhfqT2z289m+pnpmb6PTYnltP9pAFX+oPwgCAL+0f6cCzjH+efnORdwTmVa05fXwUENIUhTKnFBEIhLjcuiocn0l5T5/8ikyCyCoTpIJVKsDa2xMbJR/UnT3Lh5P+99S4MJQN01HB6xhSaVtF8QSpWnsu3+Ng6dnw3xCcU9Ha0jw9/nXXNXhv/XN51y1oC+i6O5IdVc7rLxiSdfHfPESNeIT+p/otkJi4hoCRoXgho3bsy+ffuYNm0av/76K5UqVWLRokV8+OGHqjY//PADCQkJjBs3jujoaFq1aoWHhwcGBiX/4fM+TGk1hSsvr3D38RFseOOnIY19jbUgZYxDI2U4cC5VmwVBwDfKl/MB5zn3/BznA85nqUGmI9WhcbnGtK7QlhNXITqBbH0FJICDuUGOKvGktCS1tTMZf2mKtAIdGwsDi0wCjY2RDTaGbz7bGttm2mZhYIFUktnvX64QaDXvDMExyQVab0miSSUrHM0N8lxrm6pOWuETlJMZJyguiMXXFvPvjX+JT42nviAF0RyWCXX8v7bfeIGDmT4hsSk5tFOgI0tl+YjGdHBzRirpgM2JV/x19S8+PfgphjqGDKszrHAXUkxkd+4BeVZRL8xK6yJFh8ZD5IsCbQux0yTRId4YLGtFruKgjj5MuAUWzgiCwLPIZ5wLOKcSejKKrGagK9WlsVNj2lVsRzuXdjR3bo6JnvJBkvEGCe8KQsr/Otb3x8TsWRYNTXhiOIlpiQVao7GucVaBJps/WyOlYGNlaIWuTLdAY71LTuvNuHUtG9GgxISO50VJWWt2ZhwrYwmWdqc5F7Iokyawta4ZF1LV6HTceWWF8zKAp28Ew1ZdzbPdpE5VWXRKmZn/3WtdAML05lDeNpydg3fi7uCOIAiMPzKe5beWI5PI2DV4F/1r9C+MJRQb2Z17FkbKe0104psXtnfTSpSG1BPFhbY9v0UhSNt4fQdWts2z2Z7WE9kT7cu5gHMExWcOddaV6tLQsSHuju64WbvhYOJAfGp8zj400S7oJ45Ahzf+RumEEam3kiSZZ67z0JXqZtHCvK2hySTUGNtibWiNoa5hgQ6NpihLNzBtX2tOZhwBBSAhTG8OSTJP7I3t+brp1+y68jeXk5IxJJc37rdeEsoCB+684uvtd/Js9/cHdTHU1cn2fPigmZSFdz7iZexL9GX6/N31bz5v9DkCAh8f+JiNdzeiK9Xl4LCDdKvSrRBXU3TkdO5lx9svDkC2+2nby4W2om3Pb1EIKiZyVKWqKQQ1IB4vifINWSqRYqJngq5UlzRFGnEpcf+92+UDQYqhUBtz3QqYGQrYWcZha2ydp7bGVM8UiaTkqYDLkipbW9eaYZ7MKWpJQAHSaH4dDC0rNqf9hva8jH2JsyDBTiJjbd+11LWrw/wrf7L9/nY+rPMhk5t/m6u5uDSiriZIZvMvP7Trx4i6H3EvMDHL+RCRGMHoA6M5/OQwAINrDmZV71UY6xkzfM9wdj3YhYGOAcc+PEY7l3aFvKrMaPoczuvcyw4JYG+mD0gIjs1+vwwz86UpHd57ftp4zWoCbXt+a9wnSCRvcn07L4A7ikJQEJsSm+V7c33zrP4yOWhpMvxoZFLZ+yytxCCTSkp8GLy6aONaBUFg9dWzuT6EJEhBYYWVjitdNnXhZexLZBIZgcgZ3nIydd1HAmDr2gkvn62YxwcyuYyYwN4mL/8vEFBIInkef4LPj3jw07mf+Lrp13zR+AtVUlYAayNrDg49yN9X/2bKqSnserCLW0G32DFoB5sHbCYpPYnDTw7Ta2svTo48SXPn5kWyvsLQZuY3ZQC8SSuRV5v3TbOh7drb0oaoCSpiclLBZsj4E93vMunRvDz7mVmlNfE2VXIUaKwNrTXmRyMioikS0xLZ6r2VJdeX8OyVBbZpeacs0LXazLOk7ZjomhCfFk9N25rcGncLAx2l59yd4DvUX1EfCwMLIn+ILJGayfclL/+vv4fW4nnyARZ6LlQFSpjqmfJ5o8/5ptk3lDMtl6m/ay+v8cHuD3ge8xxdqS4LuixgbIOx9Nneh1N+pzDXN+fMqDM0cGxQJOvSlOlJEAS8Q72Zf+oMl7yramye7/LPUHf6ujvlez9Nr1cb0bbntygEFSHqqP9rSO7gob8gz778h6ynUs3S5aQoUnoJiA7gf9f/xxqvNUQlRwFgRkMsk37Jc99gvWmYmLwmIikCmUSG5xhPGjs1Vm1PladiMseENEUafhP9qGRZqdDWoc2oo0FIk6ex/f525l+Zz/1QZb4IPZkeI+uO5PsW3+Nm46baNyopik8OfsL+R/sB6Fe9H0u6LWHY3mFcenEJa0Nrzo8+Ty27WoWynrzul+qangRB4G7IXXY/2M2uB7t4EvFEmR4kdW6hzBsKVnNNU+vVdrTt+a3x2mEiOZOXClaCFBnq5WwZsusDxh8ZT2hCqKamJyKSb3KrUC8IAqf9TtNvez8q/1OZBZ4LiEqOopJFJRZ0XoDvdydwNDfIxcVZIJ0wzE1DVT5uU1pOySQAgfIhXtuuNgBewV6FsMqSQbfajlya0oFtY5vxz1B3to1txqUpHTJpDnRluoysN5J7n9/j8LDDtKrQilR5Kmu81lDjfzUYsGMA115eA8DS0JK9Q/ayuNti9GR67H+0n1brWvFL219oXK4xEUkRdNzYkacRTwtlPfnJaJ9lmyDgFeTF9NPTqfZvNeqvqM/vF3/nScQTAFKkPqQT9p8DvroIWBtLcTDTz/GclaAUPPObZkMQBE489C3wekUKjugTVIRoMhOxXJCz7OYyNt/bzIzWM/i62dcq84CISFGQk+bhh+6VCU7z4N8b//Ig7IFqW+fKnfmqyVf0qNpD5Xv2U++afLH5NhKyD9tOM9lGfUd3jvsep7ZdbWa1nZXtXOo71Mcr2AuvIC8G1Big8bWWFNT1/5JIJPSs1pOe1XpyJfAK8y7P4+Djg+x7tI99j/bRzqUdU1pOoatrV75q+hUtnFswZPcQ/KL86LqlK7PazCJFnsK9kHt03NiRCx9fwMXCRaNrUfd+mdFOEARuB91m14Nd7H6wG98o3xz3MTcwRaK/B2I+Q0Ch9D/7DwHhPyHnjaiT8f/v/d0Bsj1nM1r/1LtmtpqaxLRE/KP88Y/2xy/KD78oP9Vn/yh/hKSGZSajvTYhmsOKEHWiOMoRziWj75EqcnbAS0LAjXiCZDJV9fmK5hWZ23EuQ2sPLZM+ESJFS87hxW9yziTJPDHRM2FUvVFMaDKB6jbVc+zrXWEqnTBSjDbzXYfOTD09FZlExrVPr9GwXMNs+/j3+r98dewrelbtyeHhhzWyxrLGg7AHzL88ny3eW1T3lXr29ZjScgqDaw0mITWBsYfGsuvBLgA6VerE85jnPI18SmXLylwYfQEns/z7weTE8Qd+fLbxYZ7tfu5vwcPYg+x8sJOA6IAc25nrm5OYlpgpYauhvDk26V8gVbzR3Fga6SJQsDxBX3a0x9kuIpOAk/E5OD4413UYyOtgr4aJriCmNm1C257fohBUhKibsfjS51VJiXtF67WtERA4OfIk1obKi3SHzw6+vzyPQImyBx2JDmYGZkQmKVWkTZya8FeXv2hZoWWmcUtruKVI0aOOb5tEFsM3vSP5pP5ozPTzvkblCoErviFMPzmPG8Gn0TUIYMfg7YzaP4rwxHB+bPMjv7b/Ncf9L7+4TKt1rXA0ceT15NcFXpsIBMYE8pfn36y/fonUNEPkkigcrRL4rsW3jHYfzaZ7m/jG4xtS5Ck4mjgikUh4Hfea6jbVOT/6PHbGdu81fkp6Cv9e/5fZF37HOPovZFhn0tS8QUCQRvFCbzRIspq1pEhBQpayO3bGdrSt2JZ2LsrksdWsqnMjIEqtjNHRydEqzc2zSD9uBcTwMjqG0ORnvEg8S5qQe/SYub45rlauVLKoRGXLylS2rKz67GTqTMeFl/N+Pog+QRpFNIcVITKpJEf1fyZVqqUjd+Jfclsix9HEEWvXDqp2H5Rz544E/rj8BxIkpAvpRCZF0rpCa24H3eb6q+u0WteKgTUGMq/TPJ6+NhLDLUU0ijq+bcgtaWrbXS0BCEBAzpI7E7kUtgsDfQMODTvGvzf+JTwxnLr2dZnZZmau+9dzqIcECUHxQYTEh2BvYp+vNYm8wSdQh6tePTFP7Kj6Li04jO8Pr+Tn8z8zsclEjo84zthDY3ka+RQpUsz1zXkU/ogum7pwZtQZrAzzn+tDEAR2P9jN1NNT8YvyA8DR9gSJYR9muV+qkmnqLMtWAAJQoAABHEwcVEJP24ptqW5TPYu2PEOzkipPxT/a940GJ8ofv6d++J1Wfs5w6s8JXakuFS0qKgUci8pUssws7Fga5u7zqdbzoQQLQNqIKAQVMd1qO7JsRIMsgonDO4KJV5DSwbO+Y/0sfczpOIfX8a9VWVzTFGlcfHGRzpU7U96sPBvubmDPwz2c8AnFKuUHeMeNL6OoYmkItxQpevLrq5EXCkHBJwc+YdeDXUoH3A/2E5wQzJ6He9CR6rCh3wb0ZHq59mGiZ0JV66o8iXiCV7BXqclqXNTkZObUwQa71OmExs1h1rlZGOsaM9p9NDVta3Lg8QFiUmLQk+lxN+Qu3TZ349RHp9QWgAGuvrzK5BOTuRJ4BQBHE0d+a/8b1ayr8fe5s9x85IJUeGMCkhORY0Z7RxNHlcDTzqUd1ayrqYQeQRAITQjN1lzlF+XHy9iXeRZstje2Vwo1lpWobFH5zWfLyjiZOr1XrjV1nw8imkMUgoqBbrUd6VzTIVcTVUaUS32HrEKQRCJhde/VhMSHcNz3OKZ6piSnJ3PS7yS17WpzZPgRFl1dzP37Q1QFFN8m47tfDj2gc00H8c1CJF+oW6FenXYZ9ak23duETCJj56Cd1HOoR62lyrDrma1n4u7grtZ4DRwbKIWgIFEIKgi5FWIFCRKgqs40BNsf8Q69y/9u/A8dqQ4tyrfgZtBNUuWpSJBw4/UNem3txbEPj2GsZ5zrmAHRAUw9NZUdPjsAlIVaaw8jOT2Z7058R3RKtLKhvhR9RS1kgiVySRQpUh+VBsjJ1Im2Lm1VtREdTRx5HvMcvyg/PJ55sOzmskzCTl41D410jTKZqd42XblYuOS5pvdFneeDiOYQhaBiIq8ojtyEIFCGuu4espt269txK+gW5UzLkS5P537ofUbsHcHvrXby6H5Sjv1rIrOpSNlE3Qr1eYUJC4LA5BOTWXFrBRIkbOq/iT5ufei/oz+RSZG4O7gzvfV0tedV36E+2+9vL9Nh8u+DOiHpMYlStnU5RYxwk3mX53Eu4BxXXiq1NyZ6JsSnJKKvqE2IXxpfLv+QZf2mYaijn6WvWJkev9/bwD/X/iFFrvSjqWBegfDEcNbeWZt1cImCFJk3oBR6mjj1xdXKFWsDa+JT4/GP8WfdnXX8ePZHQhJCcl2nBAnO5s5ZBJyM/+2M7Yo9uEQbs7yXVkQhSAtJk6epEpllZw7LwETPhCPDj9BybUt8o3ypY1eHcqbluBNyh++Pz8aKyXmOJYZbiuQXtX3b8nhznXV2Fn9f/RuA1X1WM6zOMLbc28KBxwfQleqyod+GfGU9z3hhEIWggqHuvWDUnok0dBXo5tqNfm79OO57HI9nHsiT6uCUOo4KSDijPxmDyAew9my2fegB24gjRSIgQYKAwIuYF9m2NdMzw8HEAV2ZLvGp8byKfcW+R/tynaOlgeUbf5x3fHMqmFfI07wqUnYQhSAt5EHYA1LlqZjrm1PJIvfst/Ym9niM8KDFmhZ4h3rToVIHBtUYxKH7j9UaS13ThojI27yv78Lci3OZfXE2AP92/5dP6n/C67jXfHXsKwB+avsTde3r5mtOGS8MzyKfEZsSmy+fFBH17wUv4u/z9L432+9vf7OvrAsGScrfzlISgIEkLafdATAAbJAQiJBnsefY1FhiIzPXRtSV6uJi4ZIlwqqSZSW1HJBFRDIQhSAtJONN1t3BXS21bBWrKhwZfoR2G9pxxv8MI+qMYEr7gaw5HpZjeKm6JouSiJgSoGhQ13fh3d/jauhmpp9RmrnmdZrHl02+RBAEPjv8GVHJUTR0bMiUVlPyPR8bIxvKmzoTFm3B8os3aV2pnvjb5wN1zJy2Zrr8b+AfeIfd407wHe4E3+FJ+DN044f910Zzx9rBxEEl4LhYVEaW5oah1J6a9k50q1kVPR3x8SXy/ohnkRaiigzLwR8oOxo7NWb34N303tabzd6b+aHFD4xpa87685IsGVFLc7ilWIG5aMnLdyH7RIjmGOo154cOXfihpTJD7sa7Gzn85DB6Mj3W91uPjjT/tyaP+0EYRP2JQ5oJS08lsZSr4m+fD9Qxc/7apw7d3Bzp6dZDte3s45d8vO5uvseTIKGcaTlq2daipk1NKltVzuSAbKRrBLx7DqUAfjiavxZ/VxGNINYO00JUTtG5+ANlR/eq3VndZzUA86/Mx9oqkKm9rEEak6mdg7lBqQyPzwjvfde5MyMlgMf9oGKaWdkkp99DhjV2qdNpav0ZAK9iX/G1x9cA/NLuF1UdsIKMlZaWOXJH/O3zR4aZ08E8s2kst3tGbFLBXqQEBF7Hveak30nW3V3H/kf7Oet/lpuvb/Is8hlp8jTxmhYpdERNkJahEBR5Roblxmj30byOe82MMzP4xuMbtg/azqUfOtJz9R+8jEpBIQ3hm/Yd6VqrQ96dlSByC+8VUwIUPbn9HhKkSIBfDz+gc017xh4aS0xKDE2cmvBdi+/ec6zMv6342+ef/IZoa8KvMDYllrMBZzkb8MaRWk9qQLnkNQiYIf6uIoWFqAnSMnwjfYlPjUdfpp9jraW8mNZqGuMbjUdAYOyuf+mzxIvY8C6YyXtjkfYpC/ab0H/DL6TKUzU8++LjfSpOi2gedX+PX09t4dizY+jL9Fnft2BmMPG31zwZZs6+7k40d7XOVcjI8CXStBgiSauKIDcna6YzJeLvKqIJRCFIy8jQAtW1r5uv8OC3kUgkLO6+mPYOk7BI/oHIhMwZUGVY4/WoES2Xfkl4Yvh7z1kb0HQWY5H3Q93jvPTaFgB+a/8bNWxrFOpY4m9fOGT4EkFO4koB+xXUi/ASf1eR90EUgrSMgjhFZ4+UxIgeSMgasaF0khYIetWSxiub4hPq855jFT+azGIs8v6oe5zj01/TrHwzvm3+baGPJf72hcfbvkRRginJQu4vcEkIhOcRGi+X5F6nKwOZTrza8xQReRfRJ0jLKKhT9Ltc948kODaFnN7NJEjRwZagSGOar2nO1oFb6VWt13uNWZzkFd4roEAiScQn1IcmlVqr5UOQmq5gk2cAzyMTqWhlxMjmLujp5P+9oSyG7Of1e4BAOuFI9HxZ3/f2e9Vb0lQGa5H3421fogshNfEJPMSmh3MBBeXNyvMy9qWqbTgCgZLchSCJni/pqTmn+RBQICeC3rv7UOdiLbq4dqGLaxdaV2iNoa6hppcnUkqRCIKQ+5mohcTGxmJubk5MTAxmZqUnIZogCDgsdCA0IZSrY67StHzTAvd14M4rvt5+J892NuUOcStKWbZgXqd5fNfiu2JPGV9QMiJJgFzfMQ31U5g/oDG96znn2Gbu0QesuuiP4q2OpBIY27oS03rUzNecymrIfm6/h4BAmN4cfu8+mEnNJxXaWBlncmmMhtR2OmzowNmAs+hIdejr1pc9D/fkuw9DeXNsU6f/9zu+uS9lVJGP0PuDBNnlTPsY6BjQpmIbulRWCkW17WqX2HtaaUTbnt+iOUyLCIoPIjQhFKlESh37Ou/Vl7qq/7+7/8y4BuMQEPjh1A+MPjCa5PSSaWPPKbz3XRJTdPlq212WXryc7fa5Rx+w4kJmAQhAIcCKC/7MPfpArfmU9fDenH4PmU4sYXpzaOAiZWLTiYU6VmlNB6HtpMnT8AxUVnh3s3ajjt2b+5lMotT66cuy1hR7lySZJ2F6c0gns++inAjC9OZkEoD0ZHoY6RqRnJ7MCd8TfHfyO+our4vTX06M3j+ard5bCU0I1cTyREoRoiZIizjy5Ai9tvWipm1NfMa/n5+OXCHQat6ZPE0El6Z0QCqB/934H994fINckNO8fHP2frAXBxOH95pDcSFXCFz1jeDLrbeJTso+fb+AArkkgjFdnjOzzXSVE3pquoLqPx7LIgC9jVQCj37rnqtpLOP45xS19Pbxz9M0Fh0IiRE5bzeyBouctVrFzdtmxZcJXqx7/AmGerrc/fwuVa2ranSssmh61EYuv7hMq3WtABjXcBydK3dm8K7B6Mn0MkWlZtQNyw0JEgRBoqoiX9OhPF8278rpgJPserBLVYD1bYx1jbEytCIkPoRUReYo2AaODVRaopYVWop1xIoYbXt+iz5BWsT75Ad6l/wWuZzQZAJu1m4M2T0Ez5eeNFnVhANDD7y3b1JxIJNKkEolOQpA8J9PlGDLvLN/cfjpQTb020Btu9ps8gzIVQACpUZok2cAY1pXzrFNfsK2c60WHR0I/zaE9Kw3ehU6+jDhllYKQlnNgVY4sYr+9eQaF4BArL6tLZz0O6n63MChAbVsawFKkz9ARfOKPI95TiWLSvhF+6Ej1SFdkZ5tXwICSATSdHxIERTcDIePD22lm2s3bo27xY3XN1jntY4LLy6o9klISyAhLQFQFlN1sXAhLjWOZ5HPuB10m9tBt/nj8h8Y6xrTzqWdyp/IzdpNNJ2VMURzmBahSSEI8m8i6OzamWufXsPN2o3A2EBarWvFngf5t+NrA+qGzZrrOnM76DYNVzZk3qV5BESoF2nyPDJRI+Pn2S4xIncBCJTbc9MUFRM5mQN1sOHwdYdSbw4sy5z0fSME1XesTxWrKuhKdUlTKF9MQhNC0ZXq4hftR6NyjUhXpGNlmLvjukJQYKBjgFSifGx5+HpQZ1kdjjw5wrZB2/Cb6Mcv7X7JUnQ6KjkKr2AvnkU+w8HEga6uXenm2g07IzsS0hI48vQIX3t8TY3/1cDlHxfGHhzLLp9dRCaJ+YfKAqImSItQhcdrUPuS3+yv1ayrcfXTq3yw+wNO+J5g0K5B/NruV2a2mVmi3pDU9Yma3nYCp1/JOPTkEFNPT6W28WugS577VbQy0sj4pTVsO7eM0Rm6SDHbb+kkNiWWqy+vAkr/nzp2ddCV6eJm48b90PvYG9sTkhBCjyo9OPrsKCnpKTibORMYG0h16+o8iniUbb/6Mn2Vv6KjiSPB8cEICOx+uJu9j/Yyut5o/uj0Bz+2+ZFLLy6x4e4GdtzfQXzamxeb4PhgguODAahgXoGP6n6Eub45D8IfcOnFJV7EvGC112pWe61GKpHSuFxjlZaoqVPTAuduE9FeRE2QlhCVFIV/tD+grB6vSfKT/RXAwsCCI8OP8HVTZT2nWedmMWzPMBLTctd+aBN5ZbEVUJBOGJPO9MbBxIEl3ZZgpm/G/bilCMjJKb5M6b+gYFjT8u81vgRllFhpDdsWsziXXc4FnEOBMkFrdZvqqnD1DJNYDRtlUkyZVIapnineod6MazgOXakujyIe0cEl+5I+KfIUdKW6yCQyguKDMNQ1VGXVVwgK1t5ZS7m/yvGNxzfUsa/D6j6reT05mF9bbKep9Zfoy+uA8OaR9yLmBRvvbWTJjSX4R/szockElnRfwjdNv6GWbS0UgoJrr67x24XfaL2uNTZ/2tB/R3+W3ViGX5RfoR0/kaJFFIK0hDvBdwClrTwvtXBRoCPVYVG3RazstRIdqQ47fHbQZl0bXsW+Ku6pqUVuWWyVCSSl1Kn6GEEiZ9XtVfx0/iemtJxCJ9d2xOrs+08EyhrYDRCjs5dq/1YmMjHnB3hu4wv/PSDe9skqbYhZnMsu75rCMsgQgoz1lEVuT/md4ptm3wCw7s46FnRZAMD55+cZWmuoar+3k72mKdKQC3LsjO1ITEvkUfgj6tjVoZ59PQDSFeksvr4YhwUOjNy6kE4Lr7DmtAnBL7vjkDqXmuzG1WhgpvlKkOAX5cdCz4V8dewrjjw9Qv/q/Tkx8gRreq9haO2hWBtaE5sSy/5H+xl/dDyui12psrgK44+MZ/+j/cSmxGrwCIoUJaIQpCVoKkmiphnbcCynPzqNjZENt4Ju0XhVY66/ul7c01KL3Hyilo9owLExc7kw+gJ17esSmRTJjDMziEyOZGxbW5L0DqqElQykEgkuTs+I1l3Pq7hXVFhUgXsh9/I9vpwIOjTwK9Vh22XdHFiWOeV/SvX5bf/GWnZKISg4PhhXS1eS0pOoYlUFe2N7/KL8kCBhWO1hyAU5F15cYFyDcYBS+/puBFdoQiiOJo4Y6xrjHerNg7AHjKo3SqUZkqY24MI9t/8Sxr4hMVkPecTH/NPuHJ83/BxzffNM0WkSJDyNfMrsi7PpsqkLCzwXUN26Ohc+vsCNsTf4vcPvtK3YFh2pDr5Rviy7uYz+O/pjNc+K1uta89v537j+6jpyhVyzB1Wk0BBD5LWEkftGsvneZn5t9ys/tv2xuKeTBf8of/ps78P90Pvoy/RZ23ctw+sMLxEhyXnNMV2RzrIby/jx7I/EpMQAMKjmIF5Ev+bhcxt0BEdcbczY/tGXuFpXZMm1JXzt8TUCAjKJjF2Dd9G/Rn+1xr8ffpmZl4ZhYWhGwNcBmBuY5z7513dgZdu8FznuPJRzV+NoFA35SdGgbeeLSMF5GfsS57/fRCme+egM7Su1B+Bx+GOq/686RrpGTGwykT8u/8HAGgPpWKkj44+Ox87Yjjuf3aHjxo48DH9IB5cOVLepztKbSwGw0LcgOiUaQBVNZqBjQHWb6ipNupu1G6PrfcLyY+UQFBZZSgZB5nMvTZHCwccHWX9nPcd9j6MQlC8+UqQgQfU/QB27OnxQ6wM+qP0B9sb2nAs4xwnfE5zwO8GTiCeZxrA0sKRT5U4qf6IK5hU0dYhLPNr2/BaFIC2h9tLa+IT5cGjYIa0tXxGXEseHez/k0JNDAIyouoCnz90JLiXZkEMTQpl6airr7qwDwFzfnA6VOnD06VFS5CmY65vzT7d/+KjeR5zyO0XPrT1V0S6/tf+NmW1m5jmGXCGnzrI6PAx/yC/tfmFW21m571BChSAQsziXRdZ5reOTg5+o/o/8IRJLQ2Uh1HRFOsZzjEmVp3Jo2CF6b+uNgY4Br799TZPVTXgW+Yyf2/7MkFpDaLyqMQlpCcxoPYPIpEiW3VyGBAkuFi4q30l9mb4qR1Dbim15GP6Q0IRQ9OV1cEidm+dct41tlimdQlBcEFu8t7D+znp8wt7kadOX6ZOmSMskEDVwbMCQmkMYUmsIlSwrERAdoBSIfE9wyu+U6mUqg+o21VW5idq5tFOZBMsi2vb8FoUgLSApLQnTuabIBTkvJ73EycypuKeUI3KFnJlnZvLPhfPZprMvDQ+4qy+v8uXRL7kdpHyAu1m7IZVIeRj+EIA+bn1Y0WsFCakJNFzZUHXD+6DWB2wftD3P/nfc38HQPUMx1zcn4JsALAwscm5c6vIElWxBWSR3Ptz7IVu9twIoBZav/TNtr7e8HvdC7nHggwN8d/I7nkY+ZdvAbUglUj7Y/QEmeib4TvTltN9phu8dDsDhYYc58PgAq26vQoKE5uWbc+XlFYBMYfdVrapSx64OHvfDsU37Ic+5DmmRwNxeA7PUrRMEgdtBt1l/Zz1b72/NFCpvpm9GfGp8JoGoiVMTlUDkbO5MuiKdG69uqLREV19ezdReV6pLqwqt6OLaha6uXannUE8V9l8W0LbntygEaQHXX12n6eqm2BrZEvJdiNaHossVAvV/O0RMkjRPdXNJNXXIFUqH6emnpxOVrKxm7e7gzv2Q+6QL6VgbWrO051J6VO2B+3J3fKN8VW2ujbmGnk7OWWgVgoK6y+riE+bDz21/5qd2P+U+mffMGF3cJsviHl+kaFAIChwXOqpKU/Sv3p+9H+zN1Gb4nuFsu7+NPzr+QWxKLHMuzaF/9f7sHrKbJquacCvoFhObTOSf7v8w4egE/nfjf1gZWnFz7E1+u/Ab6+6sQyaRMbjmYLb7KF84pBIpZnpmRKdEY6BjwGDXmVy4457nfIN1p+PqmM6v7X5lQI0B2d53U+WpHHlyhPV313P06VFVQkeZRIaVoRURSRGZBJwWzi0YUnMIg2sNppxpOeQKgTOPX3Dez4vHUTe4Eb6N5zGZBUNbI1s6u3ZWaYocTdV7OSip15W2Pb9FIUgLWHFzBZ8f+Zwurl04PuJ4cU8nTzx9Ixi26mqe7d5VN5dEwhPDmXF6Bqtur0JAwFjXGAsDC17FKaPkhtQawpJuSxi5byQn/E4AYGdsh9c4L8qZlcux310+uxiye4h62qD3QNTEiBQVd4Pv4r7CHZlEhlyQZ2si/v3C78w8O5ORdUcyuflk3Fe4oy/TJ+z7MK6/uk6nTZ2UofITHuFk6kTrda258foGjcs15tyoc3xx9As23t2IjlSHb5t9y0LPhcgFpRNyZcvK+EX5oZ9eF4e0OXnON954DhEKpUapvkN9ZneYTfcq3XN8CQ1NCGWr91Y23N2g8kECMNEzwVzfnNdxr1VO1hIkNLT6hOTI3sQlvUnH52BuwLh2liTJPDnhd4Iz/meIT82coLWOXR2VL1HrCq1VKQbepiRf19r2/C47OjgtRtOZogubshT+bGNkw4reK7j26TWaODUhIS2BV3GvsDWyRYqUnT47qbu8Ll82+ZJJzZTV0EMTQnFd4sqNVzdy7HdgzYHUtqtNTEoMf3v+XShzL+sFXEWKloxSGRkP7ezuZxkRYj5hPtS1r0s162qkyFM49OQQHSt3pHPlzqQp0ph1dhb6OvrsGrwLSwNLbry+wQ+nfmBtH2VARroinb+v/s2Czgsw1lX61/hF+VHTtia6qJdiZEm39fzY5kdM9EzwCvai59aetFzbkjP+Z7Jtb2dsxzfNvsHrMy/ufHaHSc0mYWdsR3xqPK/iXiEg4GTqhIuFCwbyZoS+6kdsUmZTW3BMMr8dCMLVaAAHhh4g8odIzo8+z4zWM2hcrjESJHiHerPQcyFdN3fFar4VXTd3ZeGVhXiHeCMIgnhdaxhRCNICSpoQVBbDnxs7NcZzjCere6/GxsiGsMQwFCgw0zcjJCGEvtv7EpEUweJui5EgITk9mWZrmrH57uZs+5NKpPzUVmkGW3RtEVFJURqdb24ZmzO+++XQA+R5FUoTEVGTU37K0PiEVGXNruzSfWTkCnoY9hABgSE1hwCw68EuAP7o9AcAW7y3cCf4DhUtKrJ5gPIa+t+N/7HDZwcb+m1gSK0hpCnSmHJ6Cst7Lqe8mTJ56YOwB9iaqVcQ1cXKil/b/4r/1/583+J7DHUM8XzpSceNHemwoQOXX1zOcd96DvX4q+tfvJz0koNDDzKwxkD0ZHq8intFQNQLrNI++y8fWVatkoDAD3tuEJ4Qia5MlzYV2zC7w2yuj71O6PehbB+4nU/cP8HJ1Ink9GRO+J7gu5PfUXd5XZwWlufrnZeyLTorXtcFQxSCipl0Rboq14y25QjKibKaDVkqkTKmwRgeT3jMl42/RCqREpsSi65UmUp/492NzLs8j/md56Mv00chKBi5fyTTTk3Ltr8BNQZQ174usSmx/OX5l0bnKmZsFilKktOTufBcWcBUQMDO2A5Hk6xmmcqWlTHQMSApPQn/KH+G1FIKQceeHiM2JZYGjg0YWluZKHHaaeV106NqD2a2VprVxh0ax5OIJ2zuv5mBNQaSKk/l00Of8r8e/6OpU1MA/BNOoZBEkFPW93fvTzZGNszvPB/fib581eQr9GR6nA04S6t1reixpQe3Xt/Kcd26Ml16u/Vm95DdBE0O4n89/kc9qwHoCDZkTZP6ZgaxSTJc/uxIz6092Xh3IzHJMaq5fFD7A9b0XUPgpEB8xvvwd9e/6V6lO4Y6hkTGWpOSapRj3+J1nX9EIaiYeRz+mOT0ZEz0TKhiVaW4p6MWeWVjhtKdDdnK0Ip/e/zLrXG3aOHcQhWdoivV5VXcK74/+T0DawxUZf7+4/If9N7aG4Xi3eSLb7RB/1z7R6MFG8uSyVKk+LkSeIWk9CTM9JU+HvUd6mfrWyOTylQJDX3CfKhtV5vqNtWVJrHHytQbs9vPRkeqg8czD876nwXg53Y/06FSBxLSEhi0cxAp8hS2DdxGv+r9SJGn8MHuD/i13a+MqDsCJArCdZfnkPVdSXb3J0dTRxZ3X8zTr54ytsFYZBIZx54do9GqRgzYMYD7ofdzPQZWhlaMbzyeX9osUuuYCXIzjj49yqj9o7BbYEff7X3Z6r2VuJQ4ACQSCTVta/JNs284+uFRIqdEMqvVArX6Fq9r9RGFoGImIwy7nn3JCpPMb4X60oi7gzuXPr7Ehn4bsDe2VwlDAFvvb8VE1wQXCxcADj89TK2ltUhMzVx/rV/1ftSzr0dcahwLryzU2NxsTdUzCZQmk6VI8ZFhCrM3tgdyN+3XtFW+QPmE+iCRSFQmsZ0PdgLgauXKZw0/A2Dq6akIgoBMKmPbwG2UMy3Hw/CHjDs0TlnOZ9AOelfrTXJ6Mv129GNM/THM6TCHJJknYXpzSCc809jpkjB6NQmmay2HHOdXwbwCK3uv5NGER4ysOxIJEvY92kfdZXUZvmd4lsSI76LuNbW2/9/83PZnatjUIFWeysHHB/lw74fYLbBj0M5B7PLZpTItAhjoGNDetaFafYvXtfqUnKduKaWk+QO9Tbfajlya0oFtY5vxz1B3to1txqUpHcqEAJSBRCLho3of8XjCY75p+g0yidIRUoKEF7EvCIgOoLJFZQAeRTzCeZEzz6Ofq/aXSqT83O5nABZfX0xELqHwcoWAp28EB+68wtM3Ike7f1hCGL96jiKdsCylP1TzpnSaLEWKhwyn6IwQ8txM+xl+QRkJCTNMYh7PPFRmoR/b/IixrjHXX11n70NlmL2dsR07B+1EJpGx7f42lt1chp5Mj12Dd9Gjag+S0pPoubUnrSq0Ys+QPaTqXOeVwRiC9aZRu+oNXF0P80p/DP96f8rAnQPz9MOrYlWFjf03cn/8fQbXHIyAwLb726j5v5p8cuATAqIDMrXPuD6DY5OxMs652nzGtTfIvT4/tfsJn/E+3Pv8HjNbz6SqVVWS05PZ83APQ3YPwW6BHUN3D2Xfw30kpSWVWVeEwkQMkS9m2m9oz7mAc6zts5aP639c3NMReU+8Q7yZcGyCyj8iA0sDS1W+IT2ZHsdHHKedSztAmZytwcoG3Am+w7RW05jTMWt4r7ohsReeX2DYnmG8jnuNudAWi+TvkCARMzaLFBoRiRHY/mmLgICBzIBkeTJPJjyhqnXVbNsfeHSAfjv64e7gjtdnypfAWktr8SDsARv7bWRkvZEA/HT2J3698CvVrKvhM94HHaky1Pwvz7+YfGIyulJdLn1yiSZOTUhOT6bv9r6c8D2Bsa4xx0ccx0jXiLbr2xKXqjQvtXdpT4+qPZh+ejppijQqmldkx6AdNC3fVK11egV5MevcLA4/OQwozd+fNviUGa1n4P1CmuX6zI68rj1BELgTfIedPjvZ4bNDlR0blKH4fd364mb8AWvPKvUXJfG61rbnt6gJKkYyTngoOU7RIrlTx74O50adY+uArZQzfZMnKEMAkiAhVZ5Khw0dWHFzhfI7iYSf2/4MwJLrSwhPzKzCVyckVq6QM/vCbNpvaM/ruNdUt6nOpfH/snxEwzJtshQpfM74n0FAwNXSlWR5MqZ6prhauebYPiNM/lH4I1Wh0cE1BwNvTGIAk1tMxsbIhicRT1jrtVb1/aRmkxhQYwBpijQG7xpMRGIEBjoG7P9gPx0rdSQhLYHuW7qTIk/h4ZcPVXW7zgacZfnN5RwcdpDKlpV5HvOcVutasfDKQtTRBdR3rM+hYYfwHONJp8qdSFOksezmMmr99SGfb76VpwAEeV97EomE+o71mdtpLr4Tfbn+6XUmN5+Ms5kz8anxbPHewqyrfYg3+hs9vcR89S2SPaImqBjxj/Kn8uLK6Ep1iZ8en6VSskjJJi4ljt8u/MbfV/9WmQmA/zQzystuQuMJLOmxBEEQaLSqEbeDbjOl5RRVqHBGIdKcbrASwM5MFxOnPzkToPTLGFVvFP/r8T9VfaKSmllWpGTw2aHPWHl7JV0qd+GE3wlaVWjFxY8v5therpBjMteE5PQ3GiOfUB9qL6uNrlSX0O9DVclDF19bzNceX+No4sizic8w0jUCICY5hkarGvEs8hndq3Tn8PDDSCVSEtMS6bm1J+cCzmGmb8apkaeoYVuDLpu64PnSE1DWBDw49CBLbixh94PdAPSq1ov1fddjbaR+ctdzAeeYeWYWAU8+QYZNjtnzrYz1mNmzBg7mhgW+9hSCgmsvr7HDZwe7HuziddxrEKToK2phrutMS5c6fNasAx1dO6g0ZtqKtj2/RU1QMZLhD1TbrrYoABUz6vrb5AdTfVPmd57Pvc/v0bFSR9X3b+f4+PfGv3TY0AFBEFTaoH+v/0tYQhigXqh7SGwal31DMNI1Yn3f9azvtz5TgUaZVEJzV2v6ujvR3NVaFIBENMq7SRIbODTItb1MKqOGTQ3gjV9QLbta1LKtRZoijYOPD6raftbwM1wsXAiKC2HKkdWq69NEz4zdg3djoGPAsWfHmHtRWTDVSNeIw8MO07pCa2JTYumyuQuPwx9z8eOLfFT3IwBiUmLouKkjH9T8gKU9lqIv0+fwk8PUX1E/19xA79LOpR1/tt2LDrbZCkCgvD4jElJxMDd8r2tPKpHS3Lk5i7otInBSIBdGX+DLJl9gYRZKqOIo+/zm0W1rVxwXOvL54c85639WpWV7m8K4z5V0RCGoGPEKKrlO0aUJj/tBtJp3hmGrrvL19jsMW3WVVvPOaCzzag3bGpwceZJdg3fhZJq1OO7ZgLNUWVKFNhXa0KhcIxLSEvjzyp+A+qGuLmZ1uTH2BqPcR2lkziIi6uAb6Yt/tD86Uh0ikpRO/eqY9lWZo0PfVGvPcJDe6fPGJKavo8+wKvNwSl7Doauuma7PoHA7lvZYCsCsc7M47XcaAGM9Y44MP0JL55ZEJ0fTeVNnvEO92dB/A3M7KoWldEU6g3crTWmeYzypalWVwNhA2q5vyx+X/shUDyw3QuNyKWycqZ3mQtalEimtK7bm3x7/8urbV5z56AyfNfwMGyMbwhPDWXFrBR02dqD83+X56uhXXHx+EYWgKPT7XElFFIKKEVVkmOgPVGwUVQp6iUTCoJqDeDzhMdNaTcuisvaP9qfCogp8Wv9TQJkdNzQhVO1Q1+V95qlCj0VEioqM0PhmTs3wDvEG1HupezdCDN74BZ3wPaGK3PK4H8S2i8boYJNp/4zr01G3G2Pqj0EhKBi2ZxivYpU1/Uz1TTn64VGalW9GVHIUnTZ24l7IPaa2msreIXtV19+P535k3uV5eI7xZHid4cgFOdNOT6Pn1p4qbWxuFHf2fJlURvtK7VneazlBk4M4MeIEY+qPwdLAkuD4YP698S9t1reh4ty+2fotiaU2RCGoWCnJ4fGlgbxKSwjArIPeJKelamxMYz1j5nScw4PxD2jv0j7TttjUWCYcnUAb88q4pSaz9fgUmhi8oK3pK2pJ/Kgl8aeWxJ9ymXKfCDiaG9C6Ss7FWkVECosMU1ijco2ISYlBT6anljCenRBUw7YGdezqkKZI48DjA+9cn5nNSG+XiFjUdTH17OsRlhjGB7s/IE2uzNdlpm+Gx4ceNC7XmIikCDpu7Mj90Pv0r9Gfq2OuYqan9EfZ4bODrpu7srjbYlb1XoWBjgEezzxwX+HO+YDzua5Dm0LWdaQ6dHbtzOo+qwn+Lpgjw48wqt4ozPTMEWIHiiV0ckB0jC4mQhNCsV9gjwQJsdNiMdEzKe4plTk8fSMYtupqnu2C9aZhahqEg4kD9sb2OJg4ZPnL+N7ayFrtpJeCIHDg8QHGHhqrighzFiQ8xgTDHG+rkCzo0iFlIa+xQYL2h8SKlE7kCjm2f9oSlRzFnA5zmH5mOg0cG3BrXM5lJjLwi/LDdbErejI9EqYnqDQzsy/M5sezP9K9Snd+bLZJretz29hm2FpG0XBlQ2JTYpncfDILurzJrBydHE2njZ24FXQLO2M7zo06Rw3bGgTGBNJ6XWuexyjzdpUzKcfZ0WdJSU9hyO4hPAp/pMzj1fZnpreejkwqy3b8DG0yaGfI+oUnQXy09nae7baNbUZzV/UdwwuKtj2/tduNvBST4Q9U1bqqKAAVE+ra6WWCJeGJ3oQnhnOf3FPnyyQy7E3sswhH2QlNZvpm9Kvej66uXZl+ejqLri3CBkmuAhCAgSQNS0kcgln5LHmCRESKittBt4lKjsJc31yVi0ddrbaLhQtGukYkpiXiG+mLm40boDSJ/Xj2R076nWRE1ZwTh75NaFwyzV2rsL7vegbsHMBCz4W0cG7BgBoDALAwsODEyBN03NiRO8F36LCxA+dGncPNxo17X9yjx5YeXA68zOv419RfrgyDvzn2Jl8e/ZINdzcw69wszj8/z+YBm3EwyZppOiN7/rt5ghyyyeNVHEQlquvfVDZLbYhCUDGRUS5DNIUVH+ra6fcMXUt52ySC44Oz/QtJCCE4PpjwxHDkgpzXca+VIax5YKBjkEkwGlZrGCHPjkNyep77zu1fh1qN2oiRXiLFRoYprH2l9twNuQuofz+TSqTUsKnBraBb+IT5qIQgNxs36tnX426wN+f8bgF5awoyruP+NfrzXfPvWOC5gI8PfEwduzqqhI1WhlacGnmK9hva4x3qTfsN7Tk/+jxVratybvQ5xhwYw8Z7G0lMT6Tz5s4s67mM9f3W096lPeOPjue0/2ncl7uzZcAWOlbumGUO3Wo70rmmg1amoihuvyVtRxSCignRH6j4ybDnB8ckZ2svl6B8m+tcozIyqYTadrVz7S9NnkZoQmgW4Sg7oSk2JZbk9GQCogMypd+vL0iBvDWDVR30tOIGK1J2yRCCOlfuzOwLs4H8BXnUsqulFIJCfVRaG4DGVmMJDzDmxJ3cBaCM6/Ntf5s5Hedw9dVVLr24xKBdg7g65qoqdN/ayJrTH52m/Yb2+IT50GFjB86PPk9ly8qs77eemrY1mXp6KgpBwWeHP8Mn1Ie/uv5FY6fGDNk1BJ8wHzpv6syPbX5kVttZWcxjGakotA1173NltdSGKAQVE2JkWPEjk0r4qXdNvth8GwnZ2/OzqzadE7oyXZzMnHAyyxoG/y6JaYmExIcQFBfEjdc3uPj8Il4hXsiiAnMqfJ2JVmtbk2BThXoO9XC3d8fdwZ16DvVwNHHMtnq3iIgmSUhNUOXUqe9Qn6D4ICRIqGtfV+0+snOO9rgfxMnbLsjyuAhyuj51ZbrsGLSD+ivqcy/kHhOOTmBN3zWq7bbGtpz+6DTtNrTjUfgjlUbIxcKFKa2mUNWqKh/s+YB0RTqLry/mYfhD9n6wl+tjr/P1sa9Z7bWaXy/8yvnn59k6MHNWeG1F0/e50oboGF0MxKbEYv6HOQCh34Via2xbzDMq26hbl0tTRCdHc8rvFB7PPDjue5yXsS9V2+oLUm6roQlqQDxekqy2flsjW6VAZF8PdwelcORm46b1WWRFShYezzzovqU7FcwrsLzncnps7YGbtRuPJjxSu48jT47Qa1svatvVxvsL7zyzo79NXtfnWf+zdNrUCYWgYE2fNXxS/5NM24Pigmi3oR1PIp7gYuHC+dHnVeU1bry6QadNnYhNiQXAzdqNUx+dorxZebZ6b+Wzw58RnxqPrZEtm/pvomuVrmqvuTgp6vtcTmjb81sUgoqBi88v0mZ9G8qblSdwUmBxT0eEwi0tIVfIuRV0i+PPjuPh68G1l9eQC2+yuerL9Gnn0o6url3pZ+5CpZ2j8+yzr7klTRqNRVeqy53gO9wNucuj8EfZJnnTl+lT2662SiiqZ1+PuvZ1MTcwz+c6ynb5jbK+/reZfHwyf139izH1x1DZsjIzzsxgaO2hbBu4Te0+AqIDqPRPJXSluiRMT+BmQKxa0WA/9qzB6JaV8jz2cy7OYcaZGRjoGOA5xhN3B/dM21/FvqLdhnY8i3xGZcvKnB99nvJm5VVza7+hvcpUbWVoxfERx2lUrhFPIp4wZNcQlR/U1JZT+a3Db0iQaf35oQ3nsLY9vwv99fCPP/5g2rRpfP311yxatAiA5ORkJk+ezPbt20lJSaFr164sXboUe3v7wp6OViD6A2kfmrbnB8UFccL3BB6+Hpz0PanKpptBdZvqdHPtRtcqXWlTsY2qJhKv76jVf2BMIAfPzKRXtV781eUvqlpXJSktifuh97kbcpc7wXe4E3yHeyH3iEuN41bQLW4FZQ5drmxZOZPGqJ59PSqYV8jWnKYtb5HFRVlf/7u87Q+0+6Gy/lZe5TLepYJ5BYx1jUlIS+BZ5DNC49R7INqY6qv14J7aaipXAq9w5OkRBu0cxK1xtzIJ/k5mTpwddZa269viF+WnMo2VMy2Hi4ULXp950WtrLy4HXiYyKZIWa1qwdeBWBtUcxNVPr/Lt8W9ZdnMZf1z+gxM+IUjjhxIWl6bqXxvPD231WypOClUTdOPGDYYMGYKZmRnt27dXCUFffPEFR44cYf369ZibmzNhwgSkUimXL6tXt0XbJMn88vGBj1l/Zz2z2szil/a/FPd0RDRAqjyVyy8uq0xcGW+JGZjpm9Gpcie6unalq2tXKlpUzL6j6ED4tyGk55yOX5DpM7tef369u5Z0RTq6Ul2+afYNM9vMxEw/8/WgEBT4R/mrtEUZwlFgbPYaSAsDiyzmtMBQayZuvZfFS0Nb8qAUNhl5YMrq+t8lOD4Yx4XK9YZ9H0az1c3wjfLl5MiTdKrcKV99NVnVhBuvb7B78G7K6bdTOy+Qug/yyKRIGqxowPOY5/Sv3p89Q/ZkEfJfxLyg7fq2BEQHUM26GudGncPRVLm+NHkaYw6OYdO9Tar2s9vPZnrr6UgkEnb67OSLPSswSZwEkKmGWFk9P/JC257fhSYExcfH06BBA5YuXcrs2bNxd3dn0aJFxMTEYGtry9atWxk0aBAAjx49okaNGnh6etKsWbM8+9a2g5hf3Je7czfkLvs+2Ee/6v2KezoiBcQ30pfjvsfxeObBGf8zJKQlZNreqFwjurp2pVuVbjR1aoquTFe9jqMDIfGN5khAoMPGjsQkx+Bs7syBjy+ChTOPwx8z6fgkjj07BoCdsR1zO85ltPvoPBM2RiZFcjf4P6Eo5A53g+/iE+aTqdq9cnApTilr0RGseTdrL7yJLLk0pYPWqf41QV5+KqV9/dmx5d4WRuwbgbt9A/5su5e+Wz9CLonixQ9nsDOxybuDt8h4Ifyl3S/MaP0jreadyTOKKb/H+ubrm7Rc25JUeSoLOi/gm2bfZjEJBcY+p+36tryIeUENmxqcHXUWexOlZUIQBOZenMuMszNUfQ6vPZy1fdeiI9Wj2dwT/2mAyt71URC07fldaOawL7/8kp49e9KpUydmz56t+v7WrVukpaXRqdObN4bq1atToUKFHIWglJQUUlLevBnHxsYW1rQLnZT0FFU0hGgOK1nEp8ZzLuCcStvzLPJZpu12xnYqoadz5c4Fd3i3cFb+/YcE+LDzfMYeHotX7HNORjyis4UzbjZuHP3wKEefHmXS8Uk8iXjCmINjWHpjKYu7L6aFc4sch7AytKJ9pfa0r/SmdEdKegoPwx9mEo7uB6agk5zzg00AgmKSue4fWSrV7Nf9I3N11C3t68+Ok34nMZQ3JznoOz7dcB9bfgCg75K7+Tb/vB0hVlhRTI3KNWJR10WMPzqenzz2seV0DSIT3vSeYbY689EZ2m1ox8Pwh3Tc2JGzo85ia2yLRCJhepvpVLWuyvA9w0kX0tl6fyvPop7xS4tthMWlk50ABGXz/ChpFErtsO3bt3P79m3mzp2bZVtwcDB6enpYWFhk+t7e3p7g4OBs+5s7dy7m5uaqP2dn52zblQQy3rYtDSxV0Qgi2okgCNwLucf8y/PpuLEjVvOs6L2tN/+78T+eRT5DR6pD24ptmdtxLrfH3SZochAb+29keJ3hGo/4+7Thp9gaKfscd3hcpm09qvbA+wtvFnRegJm+GbeCbtFybUs+3PthpsizvNDX0cfdwZ1R7qP4u9vfnB11ltU9d6m1b2nNNqvuukrr+t9FEAROPQjHNnU6SSn6mbYVpBinSgj6r5p8RvZlB/PMifsczA3ey6z0eaPP6eo0BevUqUQkZA4eyJj309dGnPnoDOVMy+ET5kPHjR1V5WwABtcazIWPL6hMztdfXWfc/slqjV9Wzo+SiMY1QYGBgXz99decPHkSAwPNZKCcNm0a3377rer/2NjYEisIZZTLqO9YX8znooVEJEYow9d9PTj+7DhB8Zlv6JUsKqm0Pe0rtc/ig1OYLOiygFH7RxEQHcDhx4fp5dZLtU1PpsfkFpMZUXcEM8/MZI3XGrZ6b2X/o/1MazWNyc0nq5LG5Qc7s7KdbVbMtpsZn9CHEDso220CSn3IL4ce0Lmmg1oam1p2SiHoScQT0uRp6Mp0CyX7skKAqNCOSEghu2KsGfO+NKWDSiPkHepN502dOf3RaawMlYkEmzs3x+szLzpt7IR/tD+hyb5kLaSRlbJyfpRENK4JunXrFqGhoTRo0AAdHR10dHQ4f/48ixcvRkdHB3t7e1JTU4mOjs60X0hICA4O2Z9O+vr6mJmZZforqYiRYdpFuiIdz0BPfjr7E81WN8P2T1uG7hnK+jvrCYoPwkjXiB5Ve7C422KeTHiC70RflvVaRt/qfYtUAAL4qN5HOBgrr5HxR8dn28bexJ5VfVZxY+wNWjq3JDEtkR/P/kjNpTXZ82AP+XUB1KYq2cVBxvpzorSv/23kCoE/T15HB9tMDsBv87b5Rx2czZwx0TMhTZHG08inqu8zopj6ujvR3NX6vf1prvtHEhKbijpmKzcbN858dAY7YzvuBN+h86bOhCdE4ukbwYE7rwiJNOf6pzdp6dySFKkP6YQhkH19rrJ0fpRUNK4J6tixI97e3pm++/jjj6levTpTpkzB2dkZXV1dTp8+zcCBAwF4/PgxL168oHnz5pqejtYh1gwrfl7GvuT4s+Mc9z3OSb+TRCdHZ9pe2662Kny9VYVWGOhoz1vc393+ZtieYQTGBrLLZxeDaw3Otl3Dcg25+PFFtt/fzg+nfiAgOoBBuwbR3qU9i7otUjuzb1nPNpux/s8330JAQPLWe2NZWH8Gb1IEqGfmVdf8I5FIqGlbk+uvruMT6kNN25rvM833nk9Guxq2Nd74CL3Up8kcDxTyN+H1juYGTO+5jZ0W09lzZyW2qdP/Oz+yapnKwvlRktG4EGRqakrt2plrLBkbG2Ntba36fsyYMXz77bdYWVlhZmbGV199RfPmzdWKDCvJyBXyN4UGxXIZRUZyejKXXlxSOTTfD81cCd7SwJLOrp3p6tqVLq5dVAnTtJGhtYcy+cRkXse95muPrxlUc1COZlWJRMKwOsPo49aH+ZfnM//KfM4GnKX+ivp81vAzfmv/G9ZGeTtranuV7MKmW21HnCsex/95Q3R4IwSUlfXnlCIgN/Jj/qllW0spBIX5MJjshfr3pSBmzVp2tfit+SHmHg5HTmYdUnBMMhO33mPph/PRS9vNKS/Nzlek6CiWXPp///03UqmUgQMHZkqWWNp5GvmUxLREDHUMcbN2K+7plFoEQeBp5FOV0HPW/yxJ6Umq7VKJlCZOTVS+PY3LNc5SDFGbWdJ9CQN3DiQoPkgZrlxvRK7tjfWM+aX9L3xc/2N+OPkDux7sYtnNZWy/v51f2v3C540+zzN8X5urZBc2iWmJ3IxcTbLBUrb0uoqxTrlCX782ZPbNmMcvhx6oLQAVpBhnDZta6MvrcOFxIp7OEYWy1oIUEZUrBDZcTMjW9PfGj8gHqImEJHIKkc+Pj5RI0SOWzShCtnlvY/je4TQr3wzPMZ7FPZ1SRWxKLGf8z6hKU7xdmR2gnGk5ldDTqXInlaNjSaXC3xUIjA3E1siWkO9C8uVkfz7gPF97fK3SSta0rck/3f7Jd6K7ssKhx4fos70PFc0r4v+1f6EHNGhTdmpP3wi1EhhCwZIDetwPYuq+20S/lWKrsNaaodGC7M267847P2vPi/wkeCztaNvzu1BC5EWyR3SK1hwKQYFXkBdzL86l3fp2WM+3pv+O/iy/tZyA6AD0ZHp0rNSR+Z3mc+/ze7yc9JK1fdcypNaQEi8AAfzb418AwhLDWH17db72bevSllvjbrG853KsDa15EPaAzps60297P3wjfQtjuiWaw08OA9CrWq8iEYC+2Hw7S26igoSfa4L8hHbnN4w9Y63RmXOMFtpa8xt+r8mwdjFEXnsRS0sXARmq7QuPE9GX16GevSgEFUTdH5YQxgnfExz3VTo1hyaEZtpe1aqqStvTzqUdxnrGhbmEYqWPWx9cLFwIiA5g6qmpjGkwJs8s0W8jk8r4rNFnDKk1hF/O/8K/1//lwOMDHHt2jG+bfcv01tMx1TctxBWUDARB4PDTN0JQYZKb6akg4eeaQF1fGnWLmmZQXGvNj1lXk2Htx3x30KfeJCQSidaYOkWUiEJQIZNZtd0dB7qz0kNKRYOgUu9QmRPqqvvT5GlcfXlVVZridtBthLdumyZ6JnSo1EEVyVXZsnKRrqO4Wd5zOd22dCMyOZKl15cyoemEfPdhaWjJom6LGNdwHJOOT+KE7wn+uPwHG+5u4I9OfzCi7oh8CVelDa9gL17HvcZY15h2Lu0KdSxtzE6tri9NfgQgKN61qltEVJ2125vpAxJCYrNvAwLphLPC+3tiucnQKn8w9+hTrTB1iigpu3e3IiAn1XZkvKJYVNvaQF7q/k3X7rHy1koG7hyIzZ82tFnfht8v/s6tIGWIsruDO1NbTuXsqLNE/BDBgaEH+KLxF2VOAALoWqUrrpauAMw8OxO5Ql7gvmra1sTjQw8ODj2Iq6UrQfFBjNo/iuZrmnPt5TVNTbnEkWEK6+zaudBTJWhjduqMFAGQ1e33fVIEaONa30Wdtf/cpxY/98m5jQQJQ1vooCOTsv9uABO33dMaU6eIElEIKiTyUveCUt0rV5Q4v/QCk9cxERCYtu82nx36gr0P9xKbEou1oTXD6wxnQ78NBE0OwuszL+Z2mks7l3boyfSKeglax4peKwCISYnh76t/v1dfEomE3m698Rnvw7xO8zDRM+H6q+s0W9OMUftH8TrutSamXKI49OQQAL2qFq4pDLQ3O3VhlLLQ1rW+izprz6vNgj4jODbcA5u0z8XngRYiRocVEupGFpSlqAF1j4mt81b61qlBV9euNHBsUKLC14uD6v9W53HEY0z0TIj8IVL9avV5EBwfzPTT01l3Zx0AxrrGzGg9g0nNJ6m0IqXZvyEoLohyf5VTfp4chIOJOgUSCk66XEHtX/aSlKqfKSljBsVdkVyTv7VcIRRKxfjCQp2159ZGfB68Qdue36JPUCFREtS9RY26a53Zcj593Z0KeTalhxW9VtBuQzviU+OZd3keM9vM1Ei/DiYOrO27li8afcFEj4lcfXmV6Wems9prNQu7LEQ/rSm/HtaOUO7C4OjTowA0Lte40AUggHmX5/KCI9gynTfuwUq0ITu1ur406vZVkjKRq7P23NqIzwPtRTSHFRIlRd1blIjHpHBo69KWmjZKv4S5l+aSnK7ZG2ljp8Zc+eQKm/pvopxpOfyi/Bi+dT5fbLlVqv0bVKawQo4KA1jntY6ZZ2eSJPOkb9NQHM0zF7t93yrq2khhVYzXRsR7n/YiaoIKiYJkKC3tiMek8FjRewWt17UmMTWZCfsX07vKhxo1T0kkEkbUHUG/6v2Yc/EPNp2q+o6uQklxhXJrmuT0ZE76nQSgd7XehTrW0adHGXtoLABTW05lbqdPSrWZ8W3KSiZy8d6nvYiaoEKisKIqSjLiMSk8WlVoRXWToTglr+HUzVp8vf0Ow1ZdpdW8MxrVypjomdDbZRIywUZjlcS1kXMB50hMS6ScaTncHdwLbZzrr64zeNdg5IKcj+p9xJyOcwDNV1HXZsrCWsV7n/YiCkGFSFlS96qLeEwKB4/7QSSFjUCGTabvC8M8VRb8Gw49fhMVVlhZop9GPKXn1p4kpiXS1bUrq3uvLvSM1CLFh3jv005Ec1ghU1bUvflBPCaaJSP1AJBFO1MY5qnS7t/wdpbo3m6FYwoLiQ+h6+auhCeG09CxIbuH7NZYVJ8mKCvmuKJGvPdpH6IQVARoMqqitCAeE81R1Nl3S7t/w/3Q+7yIeYGBjgEdKnXQeP9xKXH02NoD/2h/XC1dOTL8CCZ6Jhofp6BoUwHX0oh479MuRHOYiEgJp6jNU6XdvyEjKqxjpY4Y6RpptO9UeSqDdg3idtBtbI1s8Rjhgb2JvUbHeB+0rYCriEhhIwpBIiIlnOIwT5Vm/4aMUhmajgpTCArGHBzDCd8TGOkacWT4EapYVdHoGO+DmOVepCwimsNEREo4eZmnQGnO0LR5qjT6N4QmhHL1pTKzb89qPTXa97RT09h8bzMyiYzdg3fT2KmxRvt/X7SxgKtI4VPW/b9EIUhEpISTW/ZdAQUSJIVmnipt/g3Hnh5DQKC+Q33Km5XXWL+Lry1m/pX5AKzus5ruVbtrrG9NURai/kQyI/p/ieYwEZFSQU7mKTkRRBn8Se0KBa8wX5bIiArTZJbonT47+cbjGwB+7/A7o91Ha6xvTRGRGMFR321qtS2pUX8imRH9v5SImiCRQqekqltL2ryzmqf0mXJhEBdfXOD3C7+zrNey4p5isaDu75gqT+X4s+OA5oSgcwHnGLlvJAIC4xuNZ1qraRrpV1MExwfzl+dfLL2xlITUJJxYgw42ZHV5L/lRfxmUtOu6MMjL/6s0ZH1XF1EIEilUSqq6taTO+13z1GydX2m7vi2rvVbzQ8sfqGRZqRhnV/Tk53e88PwCcalx2Bvb06hco/ce2zvEm37b+5EqT2VAjQEs7r5Ya5Ihvoh5wZ+X/2S112pVrbl6DvXoU9GMTeeVc9T2oqYFoaRe15pG9P96g2gOEyk0Sqq6taTOOzvaVGxDF9cupCvS+fXCr8U9nSIlv79jRlRYz6o9kUre79b4IuYF3bZ0IyYlhlYVWrG5/2ZkUtl79akJnkU+49ODn+K62JV/b/xLcnoyTZ2acmjYIbw+8+LX7gNKbdRfabqu3xfR/+sNoiZIpFAoqerWkjrv3Pit/W+c8D3BxrsbmdpyKm42bsU9pUInv7+jIAgaqxofmRRJt83deB33mpq2NTk49CCGuoZ571iI+IT6MOfSHLbf345CUADQ3qU9M1rPoEOlDpk0VKUx6q80XtfvQ2nP+p4fRE2QSKGQH3WrNlFS550bTZya0MetDwpBwU/nfiru6RQJ+f0dH4U/wi/KDz2ZHp1dOxd43PiURLqsmcDzYFvK67fnyLBjWBpaFri/9+XW61sM2DGA2stqs9V7KwpBQY+qPbj8yWXOjDpDx8odszXRlbaipqXxun4fMtJqkENSDQmFk1ZDGxGFIJFCoaSqW0vqvPPi13ZKU9gOnx3cC7lXzLMpfPL7O2aYwtq7tC9wCYuj915Rf/Yhwl9+iG3aD8iiJzNs+dNiMbNcenGJbpu70WhVI/Y92ocECQNrDOTWuFscGX6EFs4tinxOxUlpva4LikwqYWQrAwSUaTTeprT4f6mLKASJFAolVd1aUuedF/Uc6jGk1hAAZp2dVcyzKXzy+zu+rynsmHcQ47d6kZpmnOn7ovQ3EQSBk74nabu+La3Xtea473FkEhkj6o7g/vj77B6ymwaODQp9HtpIab2uC4ogCOzxn0WY3hz09ZIybSsN/l/5QfQJEikUiiuLcUHJCJsNjk3GyliXyIS0bNuV5DDhX9r9wu4Huznw6BDrr13GUt8lX/4eJSm0OD9FXiOTIrkceBkomBAkVwh8t+cqArpI3gktLwp/E4Wg4PCTw8y+MJsbr28AoCvVZbT7aKa0nIKrlavGxyxplPaiv/nF45kHZ/zPoKenx7HxjQmNMisR13VhIApBIoVCXlmMQcL4jnZacbFlFzYLAgICkreUpSVdTVzdpjrdyk/l7pOq/LwvGrgDqBciXNJCi3M7/979HT2eeaAQFNS2q42LhUu+x/r15BYSki2zyayjpLDCjeUKObse7GLOxTl4h3oDYKhjyLiG4/iuxXcazXhd0snP+VDakSvk/HDqBwC+avIVrlaVcC0bsl+2iOYwkUIjpyzGMlkcYXpzWHz3E1WOkuIip7BZJZlviCVdTexxPwifJy2QYZPp+7xMNiU1tDjj/LMz08/0/bu/o8oUVjX/WqCjT4/y1+U1arXVlL9JmjyNdV7rqLm0JsP2DMM71BtTPVOmtpxKwDcBLOq2SBSAsiGn+5GJYXqJvq7zy4a7G7gfeh9LA0tmtJ5R3NMpdkRNkEihkl24rZ1lLE1Wf8XN15FMPDaRlb1XFsvccgubVQpACiyNdJnVqxYO5oYlWk2csVYgXyabkh5a3K22Iy2qmGI3pwUywZLDI7bQpqqTaq5p8jQ8nnkA0Nstf1Xjr7+6zuBdg5Gjnrnpff1NktOTWeu1lvmX5/M85jkAlgaWfNPsG75q8lWxRqHlhLaZUN++H2302s+6e/9g7aBPt9o3im1ORUliWiI/nv0RgJltZmrlOVPUiEKQSKGTtcimNdsGbqPb5m6sur2Kpk5NGdNgTJHPK6+wWQlSohLTcTA3LPFZUwuaIbY0ZJaVSSWkyJTmoiaVLDM9hK8EXiE6ORobIxuaOjVVu8+nEU/pubUniWmJuNmlE/8yDBnWmcynGbyvv0l8ajwrbq5ggecCguODAbA3tmdy88l83uhzTPVNC9RvYaOtJtSM+1FVx76sefgFt4PTuBt8l3oO9YptTkXF355/8zruNS4WLnzZ+Mvino5WIJrDRIqFLq5d+K39bwB8efRLbr2+VeRzKEthswVda2k/RhmmsB5Ve6id0TkkPoSum7sSnhiOs5kzjyMeEqm3EkkWHdv7+ZtEJ0cz+8JsXBa58N3J7wiOD8bZzJkl3Zfg/7U/37f8XqsFIG03odoY2dCvej8A1nqtLd7JFAGhCaHMuzwPgDkd5qCvo5/HHmUDUQgSKTamtZ5G72q9SZGnMHDnQCISI4p0/LIUNlvQtaq73/PYewhCTnGA2ktGfiB1/YHiUuLosbUH/tH+WBtaExgbCMA3bdux7MOGGik3EZYQxozTM6i4qCI/nv2RiKQIqlhVYXXv1Tyb+IwJTSYUewbq3MjLhApKE6pcUfznyyf1PwFgs/dmUtJTink2hcuv538lLjWOho4N+aD2B8U9Ha1BNIeJFBtSiZSN/TfSeFVjnkU+Y/je4RwdfrTIaiyVpbDZgq41r/0EFMiJ4OszY9jt25LfO/xO64qtC2MJWXhff5OnEU95HPEYHakOXVy75Nk+VZ7KoF2DuB10G2NdYyKSlEL79FbTmd1hNhKJhC61Cl5u4lXsKxZcWcDK2ytJTEsEoJZtLWa0nsHgWoPRkRbv7Vrd412STKidK3fGydSJV3GvOPj4IINrDS7W+RQWTyKesOLWCgD+7Pzne9fGK02IQpBIsWJhYMHeIXtptqYZJ3xP8NO5n5jdYXaRjP122OwbN98MlP+XlrDZgoYI572flFa1g9kfoMvFFxdps74N3ap0Y3b72TQs17DQ1qMJf5MMLVDbim0xNzDPta0gCHx68FNO+J5AV6pLQloCADNbz+TX9r+qSk9k9X/LG/8of+Zdnse6O+tIlacC0NCxITPbzKSPWx+teGDldbzTFencD73P9VfXOXDnFdAkzz61wYQqk8oY7T6a3y/+zto7a0utEDTt9DTSFen0rNqT9pXaF/d0tIriv7pEyjx17OuwuvdqAH6/+DsHHx8ssrG71XZk9gAX0gnP9L29mX6pC5vNKUQ4L5NNbvstH9GA7SOm8mziM8Y1GIeOVAePZx40WtWIQTsH8SDsgcbXoSl/k8NP/zOFqZEgcdrpaWy6twkJEtIUykSas9rMyiQA5ZdH4Y8YtX8UVZdUZcWtFaTKU2lVoRXHPjzGjbE36Fe9n9YIQNkd76CYJD7ffIuGi8dgNteM+ivq89nhzzj9fJ9a/WqLmXm0+2gAjj87TmBMYPFOphC4/OIyex/uRSqRMq/TvOKejtYhEUqgIT82NhZzc3NiYmIwMzMr1rmooyLWtjBRbeXrY1+z+PpizPTNuDn2JlWtqxaon/we7w13NjB6/yeUN2hLZIKcBk5VODdudan9jQp6Pqqzn2+kLz+f/5kt97YgICCVSBlZdyQ/tf2JSpaVNDL3VvPO5GhuyTDrXZrSQTW3hNQETOYq64HFT4vHWM+YmOQYbP60IV2RztOvnlLFqkqOYy65toSJHhMzffdT25/4ud3PBVrD3eC7/H7xd3Y/2I3wn26tc+XOzGwzkzYV2xSoz8JCrhBo8ccpQmJTs92eYQ59ZTAGMwMTGpdrTONyTTl2pTnRidmfU+/+Rtpwf2y3vh3nn59ndvvZzGhTenLnCIJAy7Ut8Xzpyaf1P2VVn1XFPSWten6DaA57L9RRyWtrmKg28meXP7kVdIvLgZcZsHMAV8dcxVjPOO8d36Igx/uU/ymQKEjV8SFRJ5SPm44qtQIQFMxko+5+rlaubOq/iSktpzDr7Cz2PdrHhrsb2Oq9lbENxjKjzQzKmZYr6NQ15m9y3Pc46Yp0qttUz1UA2uWzi689vs703c9tf+andj/le+5XX17l94u/q8xwAH3c+jCj9QyaOOVtPioKUuWp3A2+y9WXVznhd4JbAXHoxX6fY3sJUnSwZXufGwyu767SXLV1CPrPzJxHtm4tuT+OqT+G88/Ps/bOWqa1nqYVGjhNsPfhXjxfemKka8Qv7X8p7uloJaXjly4G1FHJl4QwUW1CT6bHrsG7cDBx4H7ofcYdHpeviKOCHG9BEDjldwpQhpDqSHVUYbMiBae2XW32frCX659ep4trF9IUaSy9uRTXxa78cPKHAkcCaipkX52osPMB5xmxb4RKWwPK+mv5EYAEQeBcwDk6bexE8zXNOfzkMBIkfFDrA+5+fpcDQw8UmwAkCALPIp+x+d5mpVlucVWMfjeiyeomTPSYyOEnh4lJVO/6M5DaZxIc1DG9atP9cWDNgZjqmeIX5ceF5xeKbNzCJE2extTTUwGY3Hzye718lGZETVABUCeL7s8HfQBJic20W1w4mjqyc9BOOmzswFbvrTR1asrEphPz3K+gmY3vh94nOD4YXakuaYo0OlXuhJVhyY8G0xYaOzXm+IjjnA84z4wzM7gceJk/r/zJ8pvLmdx8MpOaT8JMX32VuCbSGsgVco4+PQrk7A/kHeJN3+19VY7KAL+1/42ZbWaqNb4gCBx7dozfL/7OlcArAOhIdRhZdyRTW02lmnU1tfrRJOGJ4Vx/dZ2Tvic5//w8j8IfkZSelGN7PakeFa0sSAzJu+/sjnd22eIzTF3aloncSNeIYbWHsfL2StZ6raWdS7tCH7OwWXFrBc8in2FnbMf3LXLW5pV1RCGoAKijkg+OzT3nhDaFiWobrSu2ZkHnBXxz/Bsmn5hMA8cGtKrQKtd9CmomOel3EgB9HX3SUtMYUnOIRtagTWiDz0Vbl7Zc/Pgix54dY/rpmTx6nc7802dYevkkk9v146smX+ac+yY6EP7THDUxEGhr+oqI+FTVAzRKMOX1W/XQHPNIa3D15VUikiKwMLCgZYWWWbYHxgTSfUt3YlJiVN/93uF3preenuc6FYKCfQ/38fvF3/EK9gJAX6bPmPpj+KHlD1S0qJhnH5ogKS0Jr2Avzvqf5aTfSe6F3CMqOSrH9jKJDBcLF5qXb06nyp1o4tQENxs3BEFCq3lnCpxGIicTqjaG0X9S/xNW3l7J7ge7WdJ9SZ4Rg0VJfq/h2JRYfjmvNH/93PZnrU2qqQ2IQlAB0GRopzaEiWojE5tO5Oqrq2y/v53BuwZze9xtHE1z9hEoqJkkwxQWnxqPrlS31JnCtMXnAkAikSBNqY9B1J84pP43nzRYfCiMf84PYmbnXoxpMAY9md6bnaID4d+G8F8iOxmwAeCtZLfJgi4dUhbyCiskaqQ1yDCFda/SPUvuncikSLpt6caruFeq7+Z0mMO01tNyXVu6Ip3t97cz99JcVUScka4RXzT6gsnNJ+d67r4vCkHB4/DHnH9+Ho9nHtx8fZPXca8zmfHeRoIER1NHGpVrRJfKXWju3JzadrUzH/c3jQul+ro2ZiJv4tSEmrY1eRD2gB0+OxjXcFyRjZ0bBbmG512aR3hiOG7Wbnza4NOimmqJRBSCCoAmQzu1JUxU25BIJKzqvQrvEG98wnwYsnsIZz46g65MN9v2BTGTpKSncP75edX/nV07l6qCghk+F+8+CjN8Loo6BUBO89HBBiH2CyYfmsOfV/7k53Y/82GdD5VJMxMjVAJQThhI0rCUxPFCEIjSW0U522VAzuvKKTQ+KS2Jvtv7Zgrr/6PjH0xpNSXHvlLSU9h4dyN/XP4Dvyg/AMz1zfmqyVd83exrbIxscty3oATFBXH5xWWOPD2C50tP/KL8VGH72WFtaE1d+7p0rtyZNhXbUN+xPka6RmqPl+Hf8+6D2OE9hGltzNYukUj4xP0Tvjv5HWu91mqFEFSQa/hl7Ev+uvoXAPM6zcvxnimiRBSCCoA62XftzfQBCSGxpT8bcWFhomfC3g/20nhVYy69uMQPJ3/g725/Z9u2IBmRPV96kpiWiI5Eh3QhvVSZwrTN5yK3+Sh1EwK26Z/jH/Uxo/aP4o9Lf/Bb+98YYFE5Sz2u7Jjbvw6/BSxl98MrTD89ncPDD2fb7nnMc+6H3kcmkdGtSre35idn+J7hXHpxSfXd/E7z+b5l9r4UiWmJrL69mvmX56u0RjZGNkxqNokvG3+pMVNKfGo8119d58iTI5x/fp7HEY+JT43Psb2Jngk1bWrStmJbOrt2plG5RhoR7HPz7ykI6mQitzXRLfL748h6I5l6eirXXl3DJ9SHWna1inT8tynoNTzr7CyS05NpVaEVfdz6FNV0SyyiEFQAMrLofv5fCOi7CMDPfZQXj6bVyGWNatbV2NhvI/129GPRtUU0cWrCsDrDsrQrSEbkDFNYupCOrlSXvtX7Ft5Cihh1fS7G7ZlHu2pO1LCtQXWb6pjomRTLfECCRGHNxPr/sOnRLB6GP2TQrkEMt67JFjX6r1venN9df2Pfoz0ceXqEC88vZJtz59jTYwC0rNBS5QAvCAJfHf2K/Y/3q9r92flPvmvxXZb9Y1NiWXZjGQs9FxKWGAZAOdNyfNf8O8Y1HJfvlA5vk65IxyfUh8NPDnPa/zTeod6EJ4bn2F5fpk8Vqyq0cG5Bjyo9aObcDAcThwKPnxcFTa2QU185Xa8Zj/hA/uZeiD31HetrZEx1sDO2o3e13ux7tI+1XmtZ2HVhkY39LgXxm7oXco/1d9YDsKDzggIn8ixLiEJQIZKhRv7xgDdhcW/U1e+jRi6L9K3el+mtpjPn0hw+PfQpdezrUNuudpZ2+VXbZzhFA3St0hULA4tCW0NRo64vxfZ7x1j74E1IsLOZs1Igsq5ODdsa1LCpQQ3bGtga2b7XDVXd+YTEJTYMxwAAXplJREFUJnPsw2McfXqUv67+xcPwR4B6glk162qMbTCW5beWM+XUFK58ciXLnI89UwpBvav1Vn035+Iclt1apvp/YZeFfNv820z7RSZF8s/Vf1h8fTHRydEAuFi4MLXlVEa7j853RW5BEAiMDcTjmQfHnh7jdtBtXsa9RCEosm0vk8ioYF6BxuUa06NqD9pUbIOLhUuJfsjldL3am+mTYrSFuzEn6LjxBqc+OkUDxwZFNq9P6n/Cvkf72HRvE3M7zc3eV6oIKIjf1JRTUxAQGFxzME3LNy2sqZUqRCHoLdT1wM9QU+bE22rKbrUdMTb2o+ea+VjpVuPHDl8wsrkLejpiiqb88Gv7X7n++jqn/E4xYMcAboy9ka3JIUNt//Gu39lz/yS9a7Rly9BfsvyOUUlR3Hx9U/V/aTKFgfq+FD3dWhOaLuFR+CNCEkIIjA0kMDaQE74nMrWzMrRSCkT/CUXVbapTw6YGFS0qqpVYTt357H+6kR1+39O4XGNmtJoBwXfB56ha+wLMajuLjfc2cvXlVfY/2k//Gv0zbc/IAZPhD7TOax0zz74Je/+ry19Maj5J9X9wfDB/ef7FspvLiE9JRF9Riyom3Rjh3psp7QdhoKveAzImOYbT/qc59OQQV19exT/KnxR59r5OEiQ4mDjg7uBOl8pd6FKlC27WbkVWWLgoycnMFp/ahG5bHnP15VU6bezEyZEnC7UWXaY5VemGg4kDwfHBHHlyJMs5lEFhR13m12/qlN8pPJ55oCvVZW7HuRqbR2lHLJvxH/nxwPf0jWDYqqt59rltbDNiklKZsvcmMYlvHhRixuiCEZ4YTsOVDXkR84K+bn3Z+8HeHB/AW+5tYcS+EbRwbsHlTy5n2b734V4G7hwIKJM0hn4XqlUhse9LRnmJvHyk3i4vEZkUyaPwRzwMe8jD8P/+wh4SEB2QY6SRoY4hbjZuWQSkqlZVM2lH1JmPuZFAhaqrOfbsCOmKdACaSPW5JldDyzLuPJRzB2DmmZn8fvF3qttUx/sLb1LSU1RlMwBcLV15+tVTjj09Rq9tvVRrW9R1EV83U2aHfhHzgj8v/8lqr9UkpydjKG+OvXwCgvzNOZLTdZwqT+X6y+vsfbSXiy8u8iTiCbEpsTlO3crQipo2NWlfqT29qvbC3dG92LQP2kRsSizdNnfD86UnFgYWnBx5kkblGhXJ2FNPTWXe5Xn0qtaLQ8MOZdleFFGX+bmGJRKBhisbcif4DhObTOSf7v9oZA6FgbaVzRCFIHL2wM+Q6d/1wD9w5xVfb7+TZ79jWrqw9nLGA+TNG0JO/Yrkzc3XN2m5tiWp8tRcQ5cfhD2g1tJaGOsaEzM1Jstb9BeHv2D5reWA0jRycFjRFW0tKjLOa8jeR0rd8y8pLYnHEY+zCEhPIp5kSib4NjKJjMqWld+Y1GxqEBtTmb+OxeY5n9CEULZ6b2XD3Q1Igu5xWx1z2FtCUExyDK6LXYlIimB179UMrT00kxD0TdNvGFZ7GC3XtVQJW/90+4eJTSfyLPIZf1z6g413N6oiruqZjyI6eBC846Kd8d+MPvaEpB/ntP9p7ofeJzwxPEeh0UTPhKpWVWnl3Io+1fvQvHzz9/IjKu3EpcTRbUs3rgRewcLAghMjTtDYqXGhj/s4/DHV/1cdqURK4KTATNmW8/u8eB887gfx+ebbCCiQvFXg4d2xNt3dxEf7P8JM3wzfib6FEpWoKUQhSANo8iAWpCCjupogK2NdIhOyD13Nrl8R9Vh9ezVjD41FKpHi8aEHnV07Z2kjV8gxnWtKUnoSj758hJuNW6btVRZXwTfKF4BN/Tcxou6IIpl7UVOYb6zpinT8o/xVGqNHEW+EpJw0H4by5timf4FE8Sbqx8pYwvfdKzG0YfUsPi4Pnp6g6tah6AryHOeRhMDsuv35svNc1cPqL8+/mHxiMk6mTtz57A62C2xV7df1Wcf4o+NV2ZIXdV1Ep8qdmHNpDtvvb1f55bR3ac+0ltP5cZeE4BzuD28XEEWS2Z9HX6aPi4ULTZya0KtaLzpXLl0pGIqKuJQ4um/pzuXAy5jrm3Ni5IkiKTXSam0rLgdeZm7HuUxtpSw/UZDnxfvSY+107j2phg5vzuG3r+Hk9GSqLalGYGxgprlqK6IQpAE0eRDzY9rK8MBXR01pZaxHREL2b8k59SuiPmMPjmW112qsDa25Ne5Wtpl4m69pztWXV9k2cBtDaw9Vfe8f5U/lxZUBZWmAsB/C8lW6oajQlM9BUWeMFgSBoPigN1qjt7RHwfHBIEjRV9RCJlgil0SRIvUBiQILAwtq2LzxN8rQIrlIdFAkhOEZeIVDTw5z/vl5lQZHgoQwFARKBAx0DJjQeAJTWk3BRM+E9ourkhL7mvGNx7P0xlIADHUMkEl1iE+NJxyBgc2+5nnMc/Y92qeaf4+qPZjRegb1Heqz+KIHy07kbZoK05+BjUUU9R3r09W1K33d+lLOrOTWatKGLONvE5cSR8+tPbn44iJm+macGHGi0B1/13mt45ODn1DVqiqPJzxGIpEU6HnxPiSmJWK/wJ74lERWdTuDrUGVLL/H/MvzmXJqCuXNyvNkwpOcM69rCdomBJV5x+iCeOCrE97Z170cay8HaGx8kcws6bEEr2AvbgXdYuDOgVz65BIGOpkdCes71Ofqy6t4BXllEoIyQuMBulftrpUCkCY1OJoMbVYHiURCOdNylDMtR8fKHTNti06OzsbvKBH/aH+ik6PxfOmJ50vPTPsY6BhQzbqaUjCq2JJxdYbgF+mnrHIedEvVLjk9mQWeC1h2cxm/1h/LxfhEdDCBGxv5NMOklp7R2oQUoOrVfwiUKK/gNhXaYGVoxf3Q+3TY0IEUeQpG6W2w5Yc817y13xH61ncq6CHTKrQpy3gGpvqmHP3wKD239uTC8wt02dyF4yOO06x8s0Ibc3CtwXx17CueRj7lcuBlWlVoVeSZrg8+Pkh8ajyVLCsxpmmbLJrSiMQI5lycA8Ds9rO1XgDSRsq8EFTQzKU5hXfq6yXxz5BWmBvqqSUEiRmjC4aBjgF7huyh4cqG3Aq6xVdHv2JVn1WZ2tR3UOYXyajhlMHbofFDamlfVJi2ZXrWJBYGFjQr3yzLwys5PZknEU+yCEiPwx+TnJ7MvZB73Au5l2kfqUSKs5kzejI9guKCSExPBCAhLYHN1xbzbR6+RPqADRJeS6TIBTkXXmStHi6X5Fxv623szErHdazN556JnglHhh+h19ZenH9+ni6blIJQc+fmhTbeB7U+YO2dtaz1WkurCq2KPNP15nubAfiwzofZpkOYfWE2MSkx1LOvV2pN+oVNmReCCpJpOIOM8M4rviF03ziUdEkkTVys6FZ7MHKFUOB+RdSjokVFtvTfSr9N37H1xhPs9TbyS5eRKjVxRpK120G3EQQBiUSCXCFXhX/rSnUz5YvRBO9rRnjfTM/aZsZQFwMdA+ra16Wufd1M38sVcgKiAzKZ1R6FP+Jh+EOik6MJjA1877Hl7/gb6cn0KGdSjublm9O3Wn8WHNIhPC491+zwtZz0SUhNeO+5FCdyhcBPB320Jst4dqgEoW29OBdwTqURauHcolDG+6T+J6y9s5adPjv5p9s/7/W8yC9hCWEc9z0OwId1P8yy3TfSl//d+B8A8zvP10wKhbeKFWeLkTVYOL//OFpEmReC1DFt5ZbZWSaV0LqqAybmyjwrL2IrZuo3N89+MWP0+6FU28uwT1XmxNh8Do7d9OD3fu50q+1IbbvayCQyIpIieBn7EmdzZ+4E31FVB+9RtYdGqyu/jxkhI3nephvXCIrJua5TbtW1tdGM8b7IpDJcrVxxtXLNVOtLEARCEkKy9Tt6Hff6vcZMlacSEBNAQEwA23y2KZ25mQ4Ima5jAQUCEu4lz8J8nmfOHZYQ9OV1cEjNOb9McVR2zw5jPWOVRuhswFm6bu6Kx4cetKzQUuNjtXBuQTXrajyJeMKuB7v4pP4nhVJQNjt2+uwkXZFOQ8eGVLepnmX7jDMzSFOk0cW1C11cu7z3eO8WK84WHX2YcKtUCUJixj7emLYczDOrMNMJ59MOqPUAcbFwAZTJ1TJ8zbvVduSbrkbIySxZO5gblGiThjaQobZ/N0ojPF7O55tv43E/CAMdA2ra1gTemMTeTgL4tp9QYc0nw4zgcT8o0/cp6Sl4Bnqy8MpCBu0cRPm/y1NxUUXmnP9XrfHe9TnI7/glHYlEmVCwfaX2jG88niU9lnDqo1O8+vYV0VOi2dh/o8bGSpJ5EqY3J8t1LCeCML05JMlKvgAEIBPUi1zTBj9GI10jDg8/TIdKHYhPjafr5q5cfH5R4+NkFFUFWOO1Bsj5eaHp+/pmb6UpLDsz1/VX19nhswMJEuZ3mq+R8dQpVkx6Su6aohJImdcEZfBu5tJ9T9az4cEs1j2qxOQOHbM43b5LdZvqXHt1jRR5CjEpMaoSDA62IbwyGIO+ohYN7duzoNusEmOi0FZyMxlJ/ns/y1Db13esj3eoN15BXvRx68P+R/sB0JHqZKkiXhjzyTAjzDroTYxwiWuvlY6/t4NuZ8mxI5PIcLWxJVYNeeVtnwNtK5Za3JgbmGNum7/Cl66WrvSo2oOeVXvSrHwzdKRZb41yhcCt59GExaVia6pHw4oWyKSDNTXtYue6fxQfr7ubZztt8WM00jXi0LBD9N3el1N+p+i+pTtHPzyabc249+Gjeh8x48wMrgRe4VH4I6rbVFc9Lw56P2DE7vEgi8Vn8hWM9TTjmOwb6cvVl1eRSqRZXtYEQeD7k9+r5lbPoZ5GxiyriELQW7wdRdOhxkROvlyKb5QvC64sYGabmbnu62b9Jg/Ny9iXKiHoZexLkChIkXnT2LWDGA6vAdQpxpmhtq/vUJ+NdzfiFexFYlqiKpqovUt7jRULVafQYWhsGqN2/UaKzFv1va2RLc2dm9O8fHNaOLegUblG6MsM1coS29jFksikSAJjAjn96AVBMTkrdbXFjKHN+Eb5suT6EpZcX4K1oTU9q/Wkr1tfurh2yXSetHcrnAKz2kCbqkY4mj8uUX6MRrpGHBx6kL7b+3LS7yQ9tvTgyPAjtHVpq7ExHE0d6VG1B4eeHGKd1zrmdZ4HKJ8X/erWxOjEA8ITw7kfek9jYftbvJVlgztV7pSlKO6hJ4e48PwCBjoG/Nb+N42MV5bRuDls7ty5NG7cGFNTU+zs7OjXrx+PHz/O1CY5OZkvv/wSa2trTExMGDhwICEhIZqeynthqm/Kgs4LAGWBxefRz3NtX9mysupzYExgtp+rWVfT8CzLJuqq4489vpwpQuzi84sqJ9gMFXdBEQSBh2EPWXZjGVOO/67WPq7m9fmi0Rds7LeRZ189I+S7EA4MPcDUVlNpU7ENRrpGKl+yHEZFQCBCZznm80yxnm+N+wp3fjy9QK3xtcGMoW1I3soCbahjiJGuERFJEWy8u5GBOwdiM9+Gnlt7suLmivf2NdJ23j733tUXarMfo6GuIQeGHqCLaxcS0hLosbUH5wLOaXSMT+or7xcb7m4gTf4mAa5EIqFxOWUG6xuvb2hkLEEQVFFhI+pkNoWlK9KZcmoKoMx87mxeenxziguNC0Hnz5/nyy+/5OrVq5w8eZK0tDS6dOlCQsKbyIlJkyZx6NAhdu3axfnz53n9+jUDBgzQ9FTem6G1h9K2YluS0pP49sS3ubbNJAS9FbHy9ue3tUUiBUdddfz/bs1RvcW/iHnBWq+1gNLs1Mstf6YwQRDwCfVhybUldN7YGbM/zKi5tCbjj47nevCpvDsAVvf7i6U9lzK09lB0pDpcDrzMVu+tzLs0jwlHJ9BnWx/qr6jPh0drE6L3O+mEZdo/nXBC9ebwNHE3iWnKcHBbI1tcbdRLka8tZowiwcha6cSZCyn/JVoEMNY1Jik9icS0RKwMrWhbsS2VLSuTIk/h6NOjfH7kc5z+cqLJqib8fuF3vEO8KYF5ZvOkqPxdNE2GINStSjcS0xLpsaUHZ/3Paqz/nlV7YmdsR0hCCB7PPDJt07QQdPP1TZ5GPsVQx5B+1ftl2rbm9hoehT/C2tBa6zNDlxQ0bg7z8Mh8gqxfvx47Oztu3bpFmzZtiImJYc2aNWzdupUOHToAsG7dOmrUqMHVq1dp1qzwkl/lF4lEwr89/sV9uTt7H+7lhO+JHL3wXa1cVZ/9o/xVn98WgrRZE1SSQqvzClMVUCBIojCW3+SPXcPoZeLMq7hXBD87Tn1BSm3bWpiEP8s13FMhKHgQ9oBDjw9x+OlhvIK8VGUW3iVV+gCkUaCwIOs7tHJGerqJTDrbm5cHXhAUH6QqzZAjMk9izXwoZ9AGK/1KlDM3pk55I1wsPsPZfDbOZs6UNyuPoa6h2oUWtcmMUehYOCujWN5y4oxLjaPjxk6kKxQ4GjThy5YL6RpykTX3p5GQloCTqRMKQUFQfBDnn5/HzsiO71t8j7GeMceeHuPaq2vceH2DG69vMPPsTCpZVKKPWx/6uvWldcXW2foRlURyquyurfeDDAx0DNj3wT4G7BjAsWfH6Lm1p8p5+n3Rlekysu5IFnouZO2dtfR2e5NaI6OW2Y1XmhGCMrRA/ar3yxS9Gp8az0/nfgJgVttZpargc3FS6GUznj17RtWqVfH29qZ27dqcOXOGjh07EhUVhYWFhapdxYoV+eabb5g0aVKWPlJSUkhJeeO1Hhsbi7Ozc5Gl3Z7kMYlF1xZRzboa3l94Z1vhWRAEjOYYkZyeTL/q/dj3gTINv92fdoQlhqEv0ydxRmKOVc+Lk5IYWp1TcVD+K12pr/czd6VPMMxWKPmPt8I9FYKCO8F32HF/B8d9j/Mw/GGOxUEzakK5WrpibmCOgIDva1NCX/VByCaMGiRZooj0ZHqUNytPBfMKOJs542zmrPxs/uZzfm5ymiqWWtrpv/4XbjyqmKkOk6UxBEv/JTjdA2NdY4bUGsLZgLMERAcAYGesFIYGVB/Aaf/THHxykJO+J0mRv7knWRpY0qNqD/q69aVrla5amYW8rJCcnszAnQM5+vQoBjoGHBp2iE6VO713vz6hPtReVhsdqQ4vJ73E3sQegJD4EBwWOiBBQszUmPdKu5GuSMfpLydCE0I5POwwPav1VG37+dzP/HL+F1wtXXnw5YNsn0Pvxes7sFINX6q3ihUXBG0rm1GoQpBCoaBPnz5ER0dz6dIlALZu3crHH3+cSagBaNKkCe3bt2fevHlZ+vn555/55ZdfsnxfVAcxJjkGt3/dCEkI4Y+OfzCl1ZRs27kscuF5zHPq2dfjzud3SJWnYjDbAAGBmrY18RnvU+hzzS9FWRFZ0+QkvI1qbczxm8PZF513KOfsGp3ZFOaNX5Sfqh7Vu+jJ9NCT6ZGuSCc5PWe/GkN5c6xSx2V6wOrpJtDAzY/mVQwzCTi2xrYaF4hLojBblLypyC1k8gXKyPdiX/4g1yNWAjCq3iialGvCAs8F+EcrNbu2RrZ81+I7xjcejwQJJ3xPcPDJQQ4/OUx4YriqPz2ZHu1d2tPHrQ993PpQ3qx8US5TBGUKioE7B3Lk6REMdAw4OPRgtoWW80uz1c249uoaf3b+k+9afKf6vsLfFQiMDeTcqHPv5ZTt8cyD7lu6Y2Nkw+tvX6Mr0wUgKC6IqkuqkpCWwM5BOxlcqxCiEosoT1CZEoK++OILjh07xqVLlyhfXnkjKIgQVNyaIICNdzcyav8ojHWNeTThUbY3trbr23Lh+QXsjOwI+T6EgOgAKv1TCYCBNQaye8juIpmruhRWReSiNK3lNFbiC0+M1nbLc/8GxOMlycM09Q5WhlZvNDdmzjibv/lczrQ8QRFGRCSkF4sZoSSZNYsSdc/1rs0v89uFX1AICmra1mTLgC14BXkx++Js/KL8ALAxsuG75t/xZZMvMdEzQa6Q4/nSkwOPDnDg8QGeRj7N1HcDxwb0detLX7e+1LWvm235AxHNk5KewuBdgzn05BAGOgYq5+n3YdWtVYw7PI4aNjXwGe+j+i0H7BjAvkf7sghH+WXE3hFs8d7ChMYTWNJjier7zw59xsrbK2nq1BTPMZ6Fdw4VQcZobROCCs2IPWHCBA4fPsyFCxdUAhCAg4MDqampREdHZzKHhYSE4ODgkE1PoK+vj75+7k6Ohc3IuiNZeWsllwMv892J79g+aHuWNm7Wblx4foHI5EhlBuAY7XaKVie0O7+h1UWpjRAEgZiUKMzNQkiSBuMfH4zntWCC44MxCHvMrwXo01DHkArmFbIVcDI0OcZ6xrn24VqMrjdFXSy1pKDuud7V+UvafdSG4XuG8yDsAS3WtODfHv/ycPxDtt7fyuwLs/GN8mXq6an8eeXP/7d3nuFRVG0Dvnc3vSeQSgm9hg4BpCogIFVQpEkoShEQkU9fsKHwIiKK4qsgIhCUKh1CJ3TpJUAghBB6CikkpLfd+X4sWVjSNskmu0nOfV17QWbOnDlzdnbOM09lRvsZTPGeQsfqHelYvSMLX1/IzZib7AzeyY7gHZx+qM4JdSniErOPzsbT3lOjIeri2UXzpi/QP+Ym5mx6exNDNg9hZ/BO+q/vz46hO+hZp2eR+3zH6x2m7ZtGUEwQZ8POamrgtfFow7ab24rlHJ2UkcS2m2o3ihfLZNyIvsGfl/8E4IfXfyhZIdqhWrnKBq0LeheCJEli6tSpbNu2jaNHj1KzZk2t/a1atcLU1BR/f38GDx4MQHBwMA8ePKB9+5IphKcPsp2kW/3Rio3XNzKh1QRerfmqVpvsukdZqizi0+LVOYKeUb+ycQlBWaosDtw6o1NbXUOr9VV8MSkjicikSK3P46TH6v8na2/LVGXm2kcLSc6cAgpoAszsOBPLau00wo6jhaN4Uy+HFKb694DmXQmYGMC7297lQOgBxu0cx+G7h/m97++MbDqSddfUwlDIkxA+O/wZP5z+QSMM2Znb0aByAxpUbsCnHT5V+3bc8mNH8A4Ohh7k/tP7mnxE9ub29K7bmwH1B9C7Tm/h6FoCaAShTUPYEbyDARsGsH3odnrVKVhLnBt25na83fht/rryFysvr3wuBOnBOXrHzR2kZKZQ27E2bas8zzc089BMVJKKgQ0G0rF6xyL3L8gdvZvDPvjgA9atW8eOHTuoX//5wm9vb4+lpTqb5qRJk9izZw++vr7Y2dkxdepUAE6dOqXTOQypTpuyZwq/nf+NRs6NCJgQoPUmd+jOIXr8rbY7X5l4hX2392lyOpwedzpH5WxDcO3xNXwDfFl7bS3xCS751grKZv377QrULuhibnC2NeWXUfZEpTx+LtTkItgkZxauEKWjhSNuNm5an2YqCZ+zKws+uJhOfoKywenQWIYtL1jof/FeV0kqFpxcwJdHvkQpKalXqR7/vPUPzdyakaXKYkPgBuYen8ut2FuA+j78uP3HTPWemqtAk5KZwqE7h9gZvJNdt3YRlRyl2WciN6Frja4MqD+AfvX64engqacrF4C6HtzQzUPZdnMbZgoztr2zjTfqvlGkvo7dO0bX1V2xNbMlYkYE1mbWxKfF47hAXXYk+pNoKlvplrbiRXqv7c2+2/v4qvNXfPPqN1rnUsgUXP/gutG9TBcFYzOH6V0IyustetWqVYwePRpQJ0ucMWMG69evJz09nZ49e7JkyZI8zWEvY8hJjEuNo/6v9YlOieaHHj8w45UZmn134u5Q+xd1qPzOoTvZHbKbZReXARD7aSxOls/tJKXpuxGdHM36wPX4BvhqamgBOFu64JS8hLT03PPHFMYnSNdFJtJsllbW5LywMrXC3cZdS7BxtXbNIey4WLtgnls+mFKKdBCUDQpKIwASTtZmfNm3MW522r/Hkw9OMnTzUMISwzBXmLO412LGtxqPSoIzd6LZceMo226t5nbSPpCpcLBwYHq76UxrOy1P7Y5SpeRc2Dl2BKv9iG7G3NTa39ytOf3r9WdAgwG0cGshtJN6IFOZydAtQ9katBUzhRlbh2zVir7SFUmSqPu/uoTGheI7wBef5j4A1PtfPUKehLB3xN5Ca5oeJz2myqIqKCUlwVOCqVepHipJRds/23Ih/AKTWk9iSZ8lhR6rMVLuhaDSwNCTuPLySsbtHIeNmQ23ptzC3VZt4slSZWE21wwJie+6fcf+0P0cuXcEa1Nrkj5L0hxfGn4zGcoM9oTswTfAl90huzWRT6ZyU/rV74dPMx961+mNf1CMXkKrdwSEMW1DQIHtVHYrcHN+lKdQ42bjhquNa/FLWugoBP23YQ8+H7JJLDIVgLzSCGSnMXgxYuzl32NMSgw+233YE7IHgB4e/8fT6Nd5nPA8jYK9lYpUy78JSdkEgIOFAx+1/Yhp7aZpyujkxa3YW+wM3snO4J38+/BfrTxSVe2qagSirjW66j80ugKRqcxk2JZhbAnagqnclK3vbC1SDcF5x+fxxZEv6OzZmWOjjwEwYusI1l1bx5yuc/iyy5eF6u+Xs78wbd80vKt4c/a9swBsCNzAsC3DsDGz4fbU25qQ/LKOodfvlxFCUBFQSSpeWfEKZ8POMqLJCNYMWqPZZ/+dPQnpCbzb9F3+ffgvd+LuUL9SfW5OUb/plWRIuiRJXI68jG+AL+uurSM29bmXf2uP1vg082GY1zAqWWmbtvQhlBXF3FCi6BDumYpEfZJo23gwG9/aaJQ5nAT6Jbd7PTu31Mth86D9e1RJKhadXsQ3+3fglP6fZ21yHjOycypb783mRvQNAOzN7ZnWdhoftfsIR8uCK7VHJ0ezJ2QPO4J3sD90vyY7OICtmS296/amf73+vFH3DZ36E2iTqcxkxNYRbLqxCVO5KVuGbNFKfqgLjxIe4fmzJypJxa0pt6hbqS4/n/mZ6fun07++2gG7MLT9sy3nws6xuNdiPmz7IelZ6TT8rSF34+8WSagyZgy9fr+MEIKKyIXwC3gv90aSZPz++kHcrOrjYmvBu37tCY0PoUO1Dlx5fIWkjCT61evHzmE7SywkPTIpkjVX17D6ymoCowI1291t3BnZdCQ+zXxo7JJ/Ve3imud0zVpc2GsrFvEPSYy/TxdftUbIf9QhRm4dSURSJAAxSDyUqUfbo2YP/Eb4ibfsCkD2vR75NJW5u4N4kpx7Uszc7lmlSqLNvL3EJqu0hKaXjzn+aVe23dzCnGNzuB6tzg9mZ26nEYZeNI2/OKaXf39pWWn43/FnR/AOdt3aReSzexfU5V86e3ZmQP0B9K/fn5qO2kEo+qY8pV/IVGYycttI/rn+D6ZyUza9vYkBDQYUqo831r7B3tt7+azjZ8zrNo+TD07SaVUn3G3cCZ+he525W7G3qP9rfRQyBWEfh+Fq48pPp3/i4wMf427jTsjUkAIjUssSxrB+v4gQgorBQN+vuXCzhlZyPIVJIhHyX3BxCuf+U3XR1c87fs5/u/1Xr9qStKw0dgXvwveKL/tv79cUBjVXmDOwwUB8mvnQo3aPUk3lb4xZi7MdCz3tPbn30T3mHJvD7KOzsTa1zuGA7V3Fm8OjDperB44gb4ryeyzsMSpJxdagrcw5NodrUWpfOFszWz5s+yHT202nklUlnTWxKknF+bDzmvD7bOEqmyYuTTRlPFp5tNKrZrM8JuLMUmXx7rZ32RC4ARO5CZve3pSjVld+bL6xmbc3vY2HrQcPPnpAWlYadt/ZoZJUPJr+iCp2VXTqZ/aR2cw5PodedXqxd8Re4lLjqP1LbeLS4ljebznvtXyviFdonBjL+p2N0P8XkX2BEQTcbIMC7SgAZZYNzhmfkfD0eUHV5m7NgcKF6eaGJEmcfXSWSX6TcP/RnSGbh7AnZA9KSUn7qu35vc/vRMyIYMNbG+hdt3ep1zIyxuKL2Y7gLdzV1eTHthiLXCYnOTMZE5l6frLf6M+FncN7uTex+SULE5QbivJ7LOwxcpmctxq9RcDEALYM2UJT16YkZiQy78Q8aiyuwbvrfmDimks5tMPZaSX2BUZotsllctpWbcu8bvMI/CCQ21Nvs+j1RXTx7IJcJuda1DXmnZiH95/eVPupGhP9JrI3ZG++Wc51IfvlRpcxliVM5Cb8/ebfDPMaRpYqi7c3vc22oG06H9+vXj8qWVYiPDGcA6EHsDazprGzWuOua74gSZJYe20t8Lxi/PyT84lLi6Oxc2NGNx9duIsSFBohBBUBpUrim11qe39Olbg6Cb9V6iiQ1NObHdaoaxXvl9s9SnjEdye/o+FvDWm3oh2/X/yd+LR4qtpV5bOOn3Fz8k1OjTvFhNYTDO4j0MvLnZP/eY3177dj8dDmrH+/HSf/85rB3hYvRag1Uy3c1EJQVbuq9K7TG4C2VdW5OGxMbTRvzTdibtDqj1Y8ePrAAKMVlCZF+T0W9Tcsl8kZ1HAQlydcZuuQrTR3a05SegpHrlZ+5pGkTfaWb3bdQKnKXVlf26k209tP5+joo0T9XxR/DfyLtxq9hY2ZDeGJ4Sy7uIw31r2B80Jn3vrnLf6+8nehBfzsZ13uhYoLHqOxYyI34a83/2J4k+FkqbIYsnkIW25s0elYcxNzRjZVCy4rA9TpODQV5XXMF3Q27CyhcaFYm1ozsMFA7sff55ezvwCwoPuCclOU15gRQlARKCj7rAw5JjhjrlK/FdRxqgNAAw8TZIqnz6JRcjtOrWL2rulESmYK666t4/W/X6f6T9WZ5T+L4NhgLE0sGdl0JAffPci9afeY122eXnJHKFUSp0Nj2REQxunQ2GI91LKzFg9oXoX2tSsZ1G9Aowl6JgQBvN/yfUBti2/u1pzEzETaerTHUtUUq6zORD6xo/WyNhrHVkH5xLumE+72FnmW2H3x91icY15ELpPzZsM3uTT+Egu7bMME51x9i0A7Y3tBVLKqxLvN3mXT25uI+SSGvSP2MrHVRDxsPUjKSGJL0BZGbR+F6w+udPXtyqLTiwh9Eppnf9nPg58O3tI5q3xZxURuwl8D/2Jk05FkqbJ4Z/M7bL6hW4mjsS3GAupEh9HJ0c+TJuqoCVp7Va0FGthgINZm1nxx5AvSlem8WuPVIucxEhQOIWYWAV1V4grJEStTKyxNLclQZvD2psE8VqTgrPwsR9vsx+CQdnIm+o1n4/WNJGYkavZ39uyMTzMf3mr0lt4rVJdHez9AamYqQdFBwHNzGECfen1wt3EnIimCmR1nEhpuy4PbY3F5wbcr60k0nZZOxW/Mf2lfzXgzmQuKjkIuY3a/Rkxac0lTRDWb7N/j7H6NtIT4ohyTGzKZjLqOrYCAAsep6/MmG3MTc3rV6UWvOr1YIi3hYsRFdtzcwc5bO7n6+CrH7h/j2P1jzDgwg0bOjTSO1d5VvJHL5HlE0OXP9huHqeXaucyGcSvkCnwH+CJDxt9X/2bo5qGsH7y+wEKlTV2b0tqjNRfCL7D22lo6Ve8EqANnJEnKN/VGpjKTDdfV5ZdGNh3JpYhLrLmqjjRe2GOhSNtRSghNUBHQVSWulMXhau2KSlIxevto/O/6o7C8xn/6OOL+kt+MlUUGMscVfHz8Nf68/CeJGYnUdKjJ7C6zCf0wlGOjjzG2xdgSEYDKo70fIDAqEKWkpLJVZarYPndSNJGbMKb5GAA2X7qNU/qnOXy7FFTCJmU6vVbM1OSGEZQ/iuLHpi/ft6Ka1gqDTCajtUdr5r42lysTr3Dnwzss7rWY12q+hkKm4Eb0DeafnE/7Fe3x+NGD/qu+YuKai4USgAAWn5+L249uNF3alOn7puN3y4/E9MSCDzQiFHIFqwasYlSzUSglJcO2DGNj4MYCjxvbXK0NWnl5JV4uXpgpzIhLi9MU3M2LA6EHiEmJwcXahW41u/HJwU8AGN5kOK08WhX/ggQ6IaLDikBe4eAexOAoSwRUKHlKlPkcWrm3oJFzI/6++jfxcgXLRuymR+0ePE1L5Kdju9gTfJKrMSdJl6sjPRwUrWnv0ZP+Dbowrl1XTBWKErmGlMwUopJiGPzbdWKT8jbPlXpYux754+IfTPCbQI9aPTjw7gGtfXfi7lB7cV2qpK3Qiu57EQkVSmKJsHgf3zdX8m6zd0tj2OUefYVa6zNkuyh9lfW0EnGpcey9vZedwTvZe3svCWlJVElbgYLKeZrocsPSPA1z93lceXxZa7uJ3ATvKt50q9mN7rW6065quzKRgkKpUvLervfwDfBFLpOzdtBahnoNzbN9fFo87j+6k5aVxvn3z/PB7g84H36e9YPX53vc8C3DWR+4ng+9P6RXnV68se4NzBRmBE8JpoZDjRK4MuPA0Ov3ywhzWBHITSXuQQyHzWdgIXuxoKcVRARDRDDTsSELE86lxDF6+2g239isCdGWKWS0rTSelNg3SEhWcCMEboSksfr40QJNUipJRXxaPLEpscSmxmr+jUmJeb7the3Z/6ZlpWGubJJv7bCiVJE3Ji5H5PQHyqaWYy1ecRtF2L3cBSB47ttlqmrIqO2jiEqO0iqTIig8+jK96tuEm+3HVtLHvHy8PkxrRcXR0pHhTYYzvMlwMpQZ/HHqCD/sztL5+OxR/fT2K/TyukR0cjRH7h3B/44/h+4e4k7cHU49PMWph6eYe3wuVqZWdKreie61utOtZjeauTUzygSlCrmCFf1XIEPGqoBVjNg6ApWkYniT4bm2d7BwYFDDQay7to6Vl1fSxqMN58PPcz7sfJ5CUGJ6IttvbgdgmNcw3vdT+ylO9Z5argUgY0QIQUUkWyWe/SB2lCW+JADlxESVxZQtw7gsU2te6jjVYXSz0VS36M9XWx/keBuMeJrKxDUX6dHyPnb2d3IVaOLS4rRS7BcGM5luRf4K65NgLLwcHv8ynav2Zf29gvtRSOqIu/87+H88Tn7Mgu4LhL2+COSVLT3b9KqrKUlf/RgDLz9HsnErZZ88M4UZ1Wy90MVHKZuXx+hs7cyQxkMY0ngIAPfi72kEosN3DxOVHMX+0P3sD90PQCXLSrxW8zW61exGt1rdqO1Y22h+V3KZnD/7/4lcJmfF5RW8u+1dJEliRNMRubYf23ws666tY921dXzf43sgf+fobTe3kZqVSl2nulyPvk5gVCAOFg581imnv6igZBFCUDHo5eVOj0ZunLv7hPSHZnC04GPMFGY0cKyBm426WOzGwE08fVQdcMw13F5Cxd5L1oRZ/AyyvIUdGzMbKllWorJVZSpZVaKS5bOPVd7/Xn+UwbDlZwscc3F8EgyFUqXk6uOrQO6aIIDe9V5h/clLBfcli9P8f+GphUQlR7G833JMFab6GWwFoKBQaxnqUOsejdzy1Xzoqx9j4sXniCGzMev6O5/yam061HEucIw1HGowruU4xrUchyRJBEYFcujOIfzv+nPs/jFiU2PZdGMTm26oa6152ntqBKJuNbsZ3MlaLpPzR78/kCHjz8t/Mmr7KCQkTVj8i7xa81U87T25//Q+canq58WliEsoVUoU8pwuDdm5gYY0HsJXR78C4ItOX+TIJC4oeYQQVEw0KnFLZ52EoAxlBjdjb3IzVl1LzFzZBDdV3jd+tklmVMM5NKyiyFWgcbJ0yr2SegF415Rwt7co0Cchr3BfYyY4NpjUrFSsTa2pW6lurm061HHD0jyNlHQzZLnECGRf/7dvfMaI7cM021dfWU1MSgz/vP0PVqZWJXUJ5YqC0kroanrVVz/GRnFNa/ogO/y/oOfB9B71Cy2gyWQymrg2oYlrE6a3n06mMpNzYefwv+uP/11/Tj88zf2n91kZsFKTc8fLxUvjT9TZs7Peg0J0QS6Ts6zfMrVAdOkPRm0bhUpSMarZqBztxjQfw9fHvmZ/6H5NRvqbMTdzlCyKTIrk0J1DgNo3MzwxHE97TyZ7Ty616xI8RwhBBibb1FIQg+qPZkBz3dKw63xuA/sklCTZ/kDN3Zrn6XegkMuY0dOTuTsjkVBpCUIvXn8vL3dUMnWK/Wx2h+ymx9892DVsl3h704HiZkvXdz+CnJTm88BUYUqH6h3oUL0DX3X5iuSMZE48OKExnwVEBhAYFUhgVCCLzy5GIVPgXcVb40/Urmq7Ir34FQW5TM7SvkuRyWQsu7iM0dtHI0kSPs19tNqNbj6ab459w5F7R577BYWfzyEEbQjcgEpS0cq9FX9e+hOAb7t9i4VJ2dO4lweMzyutnHPM5yhJs5I0H7+Ra3U6rqRMUsZY6kIfvJwpOi/ee6U1zh7bUaKdSffl6x/ZdCQr+6/UanPq4Sk6r+rMo4RHehx5+URf4eClEVZekTHU88DazJpedXqx8PWFXJ5wmehPovnnrX8Y33I8tR1ro5SUnH50mrnH59J1dVccFzjSa00vFv67kEsRl4rsF6krcpmcJX2WMKn1JCQkxuwYw6rLq7TaeDp40r1WdwCNCSy3zNHZuYCsTa1JzEiklXurfKPIBCWL0ASVMm+s68P0Qb4MajgIgM51rXC3DzaoScpYfBL0hVIlcSo0GquszjgqvFGqpHyvZVqXLozaNhpPy9f4+fVVuNpZ5nr9Y1qMIUuVxXi/8Zpt16Ov02FlB/aP3E+Dyg1K7JpKGl3CvYsTEq6LqcXJ2ozIp6mcDo3Ns+/sfvIyiZVVE64xVWg3hudBZavKvN34bU2ywmwn62zzWW5O1q/WfFVjPisJJ2u5TM5vb/yGDBlLLixh3I73uRtlQivX1zRzNLbFWA7eOUhIbAiQ0zn6ZsxNLkZcRI6cU49OAerEiMYYJVdREHmC9EV4APzRpcBmLUniskxF2ypt2TF0B642rkZZfb2ssi8wgq933SCyEKHTqZmpeCzyID4tnn0j9tGzTs98z7Hk3BIm79W231eyrMSeEXvwruJd/IsoZXQJN9dHSHpe97mE9Oxef75o5df3vsAIJq65+Oy4nCbMsvZ7Ka8Z20uKbCfrbIHo6L2jJGUkabWpbl9dIxC9VvM1TSCKvs7/9t/zOHOjqlaOMXd7C2a9UReffc2IT4sH1IEwibMSNfmRvjz8Jf898V/crN2ITI6kT90++A3309vYygLGtn4LIUhfxD+EX1tBVnqeTTJlctpZmnIpNRoAhUzBrI6z+ObVbzhw/bF4EBaTvEKndVkcp+6Zyq/nf2Vww8FsHlJw3aDFZxbz0f6PnvUvQ0LC2tSare9s5fXarxf9IkoZXeYMKPK85na+l+/z3ISg/Pq+GXOT1r+8h0PGezkWobL2eynOPStQk6nM5Hz4eY0/0emHp8lUaacraezcWONP1KVGl2I5WT//zrLjEdVk/69lo0tsvfsVZgozMpQZnH//PK09WiNJErV+qcW9+HuAWrN0deLVHD5D5R1jW7+FEKRP4h/CS1Warz6+xugdowF4IpOxY8JF1geu54dTP6CUlAC427izZcgWvKu0MxqVeFkjO/tuQWaSvLLvXnt8jaa/N8VEbsKj6Y90Cs9d+O9CPj306bP+1YJQdjHGYU2GFXC04dFlzlztzAEZkQlFm9e8znvu7hMiE9KYs+s6T1Iycs1QnFffg/8ZzNagrfSt25/P2q4ss7+X4t6zFYnCmAuTM5I5+eCkJhw/IDLgmcCiJtvJOjscv33V9jo7WevynTnZyLmU1ReZTEJCYmmfpUxsPZF/H/xLx1UdkcvkqCQV77V4j+X9lxd6Lso6xrZ+CyGoFOj5d08O3FGXbajlWItrk64RlxpH//X9uRT5PE9N//r9WfPmGmzNbQ011DLL6dBYhi0/U2C79e+3yzMUud2f7TgbdpYF3RfwaYdPdTrv/BPz+eywOsGZHDkq1A6ai3st5sO2H+o4esOg65zpQn7zWtzzv9j32UdnabeiHXKZnCsTr+Dl4lWk8RoCSZKISo7SRD0dD4nk4vWOBR5XlLktTxTXXBiTEsORu0fwv+vPoTuHCI0L1dpvaWJJJ89OGvNZfhGlut6zNm4ruP50G6BOpLhiwAo+2P0BSy8sBcDK1IqQqSF42HoU2Fd5w9jWb+EYXQqsGbQGjx89yJKyuBN3h+n7p7Os7zIuTrjImqtrmOg3keTMZHYG78TlBxd+6vkTE1pNMJrsqWUBfYROv9/yfc6GneXPS3/yySuf6DT/szrNIkOZwdfHvkaFSvOWN23fNB4nPea/r/3XaL9HfYaR7wo6RgvPNwoV5lvY70ySJP5z6D8AjGo2yqgFoPi0eK5HXdcIPIHR6n9jUmI0bayyOuNMwUJQRQ7310d28JedrO/H39f4E/nf8edx8mMOhB7gQKj6RdXJ0olXa7yqMZ/Vcaqj+Q3r+l10rtpXIwSdDz9PhjKDDYEbNPtntJ9RIQUgY0QIQaWAs7Uzn3X6jDnH5wDqwp49a/dkUMNBjGw6kkENB+Gz3YfNNzaTlpXGpN2T+OXsL2x7Zxv1K9c38OjLBvoInX7H6x0+2v8RIU9COHb/GF1rdNWpz9ldZ5OpymTeiXmopOeC0LcnvyUqOYqlfZdiIje+n5o+w8gXnfuapdfHMcxrGD7NfPCu4l2g8FfY72zf7X0cu38Mc4U533T9pthj1gcpmSkERQflEHbySpsgQ0Ydpzp4uXhR2aQ9B/KurKChoob7l1R2cE8HT8a2GMvYFmORJInr0dc1/kTH7h3jSeoTtgRtYUvQFgCq2VXTCEQOJroFPpiYpGh8ggKjAtlxcwdxaepM0i7WLnzyyic6j1dQsghzWCmRqcykyqIqRKeonaIdLBy4OvEq1eyradqcCzvHoI2DCEsMA9QPzAmtJrCo5yIsTS0NMu6ygr4qck/YNYE/Lv3B8CbDWTtItxxO8FxLsfDUQkDtd6CSVEhIDGwwkHWD1hndd6jLnFW2NSEtK53EVDnk4rcDEnKTBJLsphOdGqXZ2qByA3ya+fBu03epYpd7ks/CfGcymUTLZS258vgKM9rP4IfXfyj8Bb9w3sL63mUqM7kVeyuHsBP6JFTL3+RFqtlVw8vFS+vToHIDTZZxQ1eRN3Z0NT291vIajaqa5JlNP7eyFXmRqczkQvgFjT/RqYentJ2sJTk1Mv9CUtqT2+9BQoWSWOQW79Gxcn1uxqgrA7R0a6lxfZjVcRZvt54ADtVyHF8RMLb1WwhBpciu4F3039Bf83cXzy74j/LX+pEqVUq+Pvo180/O1zhOO1g4sKr/KgY2HFjaQy5T6CPVwIXwC7RZ3gZzhTnhM8ILlQ1akiSm75/O4rOLAbUgJJfJyVRl0tmzMzuG7sDBwqEQV1Ty6DJnQB6h7SpARrTZt6QqTmOuMKeSVSWik6M1C4cMGT1q98CnmQ8DGwzMUWYkr/ODhAyZ5jtbe3UtI7eNxM7cjjsf3qGSVdF8ZAryL1FJKu7G3c0h7ATHBOeIOMqmkmUlmrg2wcvZS/2vixeNnBvp9F2L9Bh5syMgjGkbAgpsF236PSkmx/Pc72DhUOi6itn3abaTdbb57HLEZSyU7XDO+AxeStGQ/Q2amX3NFfktLHN9aXiGiTlMuVghBSFjW7+FEFTKvLLiFU4/Oq35e+6rc/mi8xc52j2If8Bbm97SSrbVsXpH1g1ap6U9EmhTXCdKSZJo+UdLAiID+Lnnz0xrN61Q55ckiSl7prDkwhIATOQmmCnMSMlMoalrU/aN2Ie7rXEtakXNE+RqZ8brzZ/yKHM3+27vIzIpUqtfc4U56crnKSPszO0Y0mgIPs196FCtg8ZcllvfWUSzYFAbRng3Jj0rnQa/NeBe/D2+fe1bZnWaVeTrzM2/JHvxsnP9h9DULaRkpuR6vI2ZjVqj46yt3XGxdimW35fIE5Q7umqCOjS7gMw8hNjUWGJTYjX/Pk1/WuRzW5hYqIWmF4UjS7VwFJsaS9BDMyIjOiF7oe5jFtEkWfjSxe4uOxLiCz7J+GPg0bzIYyyrGNv6LYSgUiY4JpiGvzXUqNAVMgUnxpygfbX2ubZfd3UdE/wmkJSpTgZmIjPh806f83nnz0UV8zwobvbdJeeXMHnPZBo7N+bapGuFXuAkSWL8rvH8eVldF8hEboKtmS1xaXHUcKjBgZEH8izqaiiKmzFakiSuRV1j3+197A/dz4n7J/LUnADUcarDqKajGNVsFJ4Onpq+g0KO88epmWTI79C/Xh++7vo16wM3sPDUQpytKrN97AksK9cr1LXFpsRy7XEgU/6KJylVQX5mjDCLcZibmNLQuWEOgae6ffUSc3I3ZMZoY8pW/fK4imMuzFJl8ST1iZZgFJsaS0xKzPNtLwlOsamxZKmydBugJMdc1RiF5IhSFke6/DrIVLSQ5FzCpuDjh/8D+aXisKpULjVFxrZ+CyHIAEzym8TvF3/X/F3DoQYBEwKwt7DPtf3TtKdM9JvIhuvPowuq2FZh7aC1dKlRcJZqQeF4mvYU9x/dSc1K5dTYU3kKqPmhklSM2T6Gv67+BagFIWcrZyKSInC2cmbviL208mil76EbDUkZSRy9d1QjFN1+cjvPth2rdeS9lu/xVpV2WC/rlG/C0fzMCEkZSVyPus6ZsDOcfniawKhA7sffJykzCXNlE9wy5hc47u+HeDCoeROjdGQvCYxdC1UYc6EkSaRlpZGSmVK0T1YKSelJJKQnkJCeQGJGIskZyaRkppCWlUa6Mp1MZaYmDUZe6CwEKcxAmZH3/nJqMjO29VsIQQYgLjWO6j9X10r1PtRrKOsGrcv3TfPUw1MM2TRE4zgNMLDBQJb1XYaLtUuJjrmiMXr7aFZfWc2Y5mNYOWBlwQfkglKl5N1t77I+cD0ApnJTqtlX407cHWzMbNj+zna61eqmz2EbLaFPQtkfup99t/fhf8eflKycJqc2MjPOqQqOhMoYd4jLMhWH7x7mXNg5gmKCCEsMy1E64UWssjrjnFlw7qfFQ5szoHnujtzljdLMVp2lyiqycHI30p6gO43JyLDW9CdXxGPisJ1003OadqmZqXk6qZcEMmRYmVphZWqFpYklZgozzBRmeCmz2PgksuAOdKEcmsyMbf0WQpCBWHp+KR/s+QB4nm141YBVjG4+Ot/jMpWZzD0+l29PfKtxnLYwsWBh94VMajOpUJEQgrzJzu5qZWpFxIyIIqfZz1JlMXzLcDbd2ASoNUKNnBtxNTIQG5oxtfUX9GvYhVaejly8H2d0JomSIEOZwb8P/mV/6H52Bu8kKCYI0P0NOrv+Xn7YmtlS1a4qjZwb4V3FG3NlE37aU3Cl8YqSmLCgzMcAjtbw1eAs0pT5a09y256tQcn+5Gca1Yk8TE95YaYw0wgo+X5MrLA2s9at7Usfc4V57i+tOtaR1AkhBJU4QggyEFmqLBovacyt2Fuabdam1lyacIl6lQr2eQh9EsqwLcO0HKcbVG7A32/+TWuP1iUy5oqEJEk0XtKYoJggTdr7opKpzGTI5iFsv7kdABtVR5yVH6DKen7vymWgeuGXaEwmiZImIjGC/bf3c+bCMn4Pu1Fg+2whSIYMO3M7qthVoalLU16r+RrtqrajtlPtHFFoIhxdG12djiPNZpGuuKa3876oPSnMx9pUd0HF0tTSsOZMPQpByvePoKjSUi99GQvGtn4LIciAHL57mG5/qc0hpnJTMlWZtHJvxalxpzRVh/NDkiT+uvIXk/dMJjkzWbN9XPNx/NDzB6MLxy5r/HT6Jz4+8DEt3VtycfzFYvWVocxg0MZBHL755Fl4LS/Vy8q9GGNFCZFOzkjmyOmf6Xvk+wLb5qcJsjKxwt3WndpOtalqWxV3W3c8bD1wt3HnYZQTi/YmIUOEo+safu7gto1KTndzaE9yCCk6alPy1J6UJ/QoBHWzMKVmo4EMajiIbjW76VzjzJgxtvVbCEEGpv/6/uy6tQt4HlL8f+3/j4WvL9S5j5iUGCbvmcw/1//RbLMzt+PX3r8ysunI8v/QKSFiUmKosqgKGcoMLo6/SEv34r2RpWSk0XTOdjKzbHItGPoy5V07oZJUnLh/At8rvmy+sZm66Sl6M4flhaWyPU4Z47Wqz5ubpeDd4D5t61jgbvNMaLJ1x93GvVwsOrmhj1p7gjyIfwi/tsrXwV+SmyLTwUT44r1ua2ZLn3p9GNRgEL3r9sbGTAfnayPE2NZvIQQZmNAnoTT8raHaZv6C3fu712fxQYeehVr8Dt89zKhto7Qcp9tWacvKAStp5NyoJIZf7hm2ZRgbAjcwsdVElvZdWqy+ilqwtLwtRKFPQvnryl/8dfUv7sXf02zvb+fJjqdxBR7/U9M3WRZ+huDYYK3tL2bpzpdC+Jc4WTppCUYeNs8FpBeFpexs4CUZbq7PvoV5sISJfwgpsXnvT3oM64YU2M25PgtZHXWF7cHbCU8M12w3V5jTs05P3mzwJv3q9cszeagxpj8wtvVbCEFGwMxDM/nl+PEcb6gutqbMGdCkUCr61MxU5hybw/envkclqR/scpmcGe1nMLvLbKzNrAvoQfAi2SZLWzNbwmeEF+vtS1cTxMuUh4ilhPQENt/YjG+ALycenNBstzO3453G7+DTzIdXTKyQ/dG14M6eOYuGxIbgd8sPvxA/jt8/rpXfxcbMBk97T0wVpiSmJxKVHEViRmKBXcuQaWq/FSbSyMHCARfF62TFv4kyy1az3d5KhU8nawY088Td1j2Hr5KulEQou8hWbUB0NJn92KQ/Y95YjIOFA+fCzrE1aCtbg7YSGheqaaOQKehaoyuDGg5iYIOBmsKsxpr+wNjWbyEEGQHbLt/lo43XgZx+Ii+WDigM16Ou47Pdh4sRz31Z3GzcWNpnKQPqDxAmMh1RSSrq/a8eoXGhrOi/grEtxha5r4qmCVKqlBy5dwTfAF+2Bm0lNSsVUAvlPWo9L6Whqammgxkhr9wpT9Oesj90P363/NgTsofY1Odv4QqZgg7VO9Cnbh+8nL14lPCIc2HnCIwO5P7T+8SkxOiUIM9UboqVqRUWJhaYyE3IVGYSnx5PhjIDS2X7XH29Xi4tYm9ur61JelHL9Oxvd1t3LWG7JEPZjXWhLPfocK+nIlGfJJIsHfiy85dM9p6MmcJMk5h0W9A2tt7cytXHV7WOa1e1Hc3sfdh3IWd+IWMQcI1t/RZCkIF5HqqaSl4FKt3tLYukllZJKv64+AczDszQKgXQs3ZPlvRZQi3HWsUbfAXhu5PfMct/Fu2qtuP0uNMFH5AHBZkgckMug5tze2NmIi+4sZEQHBPM6iur+fvq31rV1BtWbohPMx9GNh2ZZ1HVl80IAze+yYOnD1jWdxltPFrrlEVXqVJy5tEZjZYoMCpQa39tx9r0q9ePvvX60smzE6ZyU6JTorkSeYWTD05yKeISt2JvEZ4Unm/uoWxkkoKq6SuRS07k9RtWymJ5ZD4237DuF7E1s30mLFUhPHQiGZlWufatD7OVMZpMKgS5mMwyVZl8ffQb9t7eSwwSD2XPnxS1HWuzoPsCBjUcpPUSe/vJbbYFbWPbzW3qkkySnCppK1BQOVffQ0ObOo1t/RZCkIEpDQfF8MRwJu+ZrAnRBvVb7VddvuKTVz4pt86f+iIyKZJqP1UjS5XFtUnX8HLxKnJfeRcMzZuyoAmKS41j4/WNrL6ymjOPnt/PjhaODPMahk9zH9p4tCm0BrLvur7sDtldrDQFd+PusjtkN363/Dhy7wgZL2TptTWzpWednvSr14/edXrjbO2sdWxKZgohsSFcCL/A6UfqLNT34u8RkxKjydOlazbqBUM8aFrNgoikCCISIwhPDFf/P+nZ/59tezHSU9e+y8I9ItCdE/dPMHDjQJ6kPsmxr2P1jix6fRFtqrTJsS8sIYz/ndzHhuNuBZ7DUPeMsa3fQggyMLr6iXz/VkOGtC6e5mZX8C7G+43XKnRZy7EWy/ouo3ut7sXqu7wzaOMgtt3cxofeH7K49+Ji9ZWbCSI/jNUnKEuVxcHQg/he8WXHzR2aYqkKmYLedXvj08yHfvX6FUvInrF/BovOLGJ6u+ks6rmo2GNOykjiYOhB/G75sTtkN4+TH2v2yZDRrmo7jZbIy8UrT6FNJal48PQBN6JvsP58CCeu1inw3NGm36OwukyDyg1yfOo41dGkxUhMT9QISHuvRbPx34L9iIz1HhEUnfSsdN7f9T5/X/1bs02OXFO2Y3iT4Xz72rd4OnhqHafrmmKoe8bY1m8hBBkYXTVBrb1OsnlkwW+EBZGUkcQXh7/gl7O/aDl+Dmk0hJ96/aRxqhNoszdkL2+sewNHC0fCZ4RjYVJweYf8UKokfP+9y9zdQQW2Nba3/MCoQFYHrGbNtTVaAnUTlyaMbj6a4U2G42ZT8JuoLiy7sIyJuyfSp24f/Ib76aXPbFSSigvhF9Rms1t+XI68rLXf096TvvX60rdeX7rW6Jrnd67rbzja/HNS5Fdy3aeQKajtVFstFFV6LhwlJbnz/urrBfZtbPeIQH+cfHCSgRsGavzcsh33QR0lNr3ddGZ1mqXJam/s6Q+Mbf0WQpCBKdhPRCKLGMIsxrFpyEbeavSWXs57IfwCY3eM5VrU82ywVqZWfPvat0yuPwCT1HiUksT1sASepGTgZGVG4yp2KGSyclvdOD+UKiW1fqnFg6cPWPPmGkY0HaGHPstOmHJsSizrA9fjG+Cr5Wxf2aoyI5qMwKeZD83dmuvd4f7I3SO89tdr1HWqy62ptwo+oBg8SnjE7lu78Qvx49CdQ6RlPdfUWZla0aNWD/rV68cbdd/A3fa5U6mu36P/jA7ce3qHmzE3c3zyjFyT5FTP8EWmckRfPkHCB6jskZ6VzgS/Cay+slqzzdbMVnPfOFs5803Xb3i/1fvIUBj1c8XY1m8hBBkBefmJZEeWNKt/jl0P5uJg4cCViVeobl9dL+fNUmWx+MxivjjyheaBX02SEYIt+Rowyml144KYc2wOs4/OpotnF46OPqqXPo05TDlTmcne23vxDfDF75afpv6TidyEvvX6MrrZaHrX7a1TdvOiEpYQRtWfqqKQKUj9PBVThWmJnetFUjJTOHz3sEZL9GLuLYA2Hm00WqIWbi3Yfz2Sic++x9z4PZ/vUZIkwhPDtQWj2JsERasLwz6PPJOQ8dxBXkJdOqRe7eN0qGtNg8oNaOjckLpOdZ9H3L2EiAYr25x8cJI3N75JTEoMoNYgOlk6EZ0SDaiDDxb2WIg8vSUfrDXO54qxrd9CCDIScns4mZomESZbTIsaMjKVmZwPP0+n6p044nNEr4VS78XfY9LuSey7vU/nIpblsbBfQTxKeITnz56oJBXBU4J1qvGmC8a2MAVEBuAb4Mu6a+s0D1eAlu4tGd1sNMOaDKOyVeVSGYskSdjMtyElM0Wvc17YMQREBmiizc6FndPa72HrQRun9wm42Zrco8PyF4LyIzE9keDYYLZcDmXHOVNS0p+/nmQRzROzP0hVaEcsypBRw6GGls9Rw8oNCY92Yebm26VSNV5QcqRlpfHB7g9YFbBKs83D1oPUzFTi0tTJRrvV7MZbtf7L6hPJRvNcycbY1m8hBBkRL6upXR0TafJ7Y1IyU5jfbT7zTswjKSOJb7p+w1ddvtLruSVJ4p/r//CH32T80wpO5658/yiKKi30OoayQHa00ievfML3PQquc6UrhjZRPE56zLpr6/C94quVd8TV2pWRTUfi08yHJq5NSm08L9JiWQsCIgPYOXQn/er3M8gYXiQyKZI9IXvwu+XHgdADJGeklkpI8ov3SCUbUyrbxxPyJDiH9ih7IdTCyMOmBYXnxIMTDN44WPOiopApaF+1PefCz5GhzECGjNHNxjCozqcos2xwsbWglacjF+/HGdQUamzrtxCCjJwfTv3AJwc/wcnSibmvzmXynsnIZXKOjz5Oh+od9H6+M//upd3BoQW2u/rGTpp666dIYFlix80dDNw4EGcrZx59/KhETUElTXpWOn63/PC94svekL2akG8zhRkD6g9gdPPRvF77dcNW5AaGbh7Kxusb+aHHD8x4ZYZBx/IyaVlp/HHqCIv2FJz/pzQcUSVJIjolOofP0Y2wLHgyzSjGKNAfqZmpTNkzhZUBKzXb6jjVoa5TXfbe3guo/dk+feVTmjn4sGBvqME1Q8a2fhv26SYokGltp/HXlb+4FnWN8+HnGdFkBGuvrWX41uFcmXhF75Xi0zJ1uyWepGQU3Kgc0qdeH9xt3IlIimBn8E69OaqXFpIkcSH8Ar4BvqwPXK+lNWhbpS0+zXx4x+sdnCydDDhKbbJNYLdiS9YxuihYmFjgadcUCCiwbVSibikRioNMJsPF2gUXaxc6e3bWbNc1bLo0xijQH5amlqwYsILRzUcz+B+1Vuj2k9vcibvDmOZjCIoJ4syjMyw4vB/njFbPdIDPNT+RT9OYtOZShTaFlp00tBUUU4Upy/ouA8A3wJfhXsOp5aiOUprgNwF9K/KcrHTTbGS3U6okTofGsiMgjNOhsShVZU6xWChM5CaMaT4GgOWXlht4NLoTlhDGgpMLaLykMd5/erPkwhLi0uKoYluFmR1mEjQ5iDPvnWFSm0lGJQDBC0LQE+MTggBcbHVLl6Bru5KgLIxRUHQ6eXbi3kf3GNtcXdZHJalYFbCK6KRo5ndbgEvWB89aapu+sp/W3+y6Ue6f3XkhhKAyQPtq7RnfcjwA/3fw/1g9cDUmchP+uf6PlnOcPmhcRTf1pMwsjH2BEXRccJhhy88wbUMAw5afoeOCw+wLjNDrmIyNcS3HAXAw9KBWFXRjIzUzlQ2BG+i1phfVf67OTP+ZBMUEYWFiwfAmwzkw8gD3P7rP/O7zaVC5gaGHmyfGrAkC8K7phLu9RR4u0eplx91e7X9hKMrCGAXFw8rUihUDVnDU5yguVi4AhMaH8s2BNaByzNUXDNSCUMTTNM7dzZmduiIghKAywnfdv8PF2oWgmCCO3TvGnK5zAJi6dyrBMcF6O49CxzwvE7f+yMQ1F3NkPc5Wr5ZnQaiWYy261+qOhMSKSysMPRwtJEni1MNTjN81Hvcf3Rm2ZRj7Q/ejklR0rN6R5f2WEzkjkrWD1tKjdg+9RhmWFHWd6gLq8i+J6QVXgi9tFHIZs/s1AnLGhmX/PbtfI4M6HJeFMQr0Q5caXbgz7Q7jWqhf1uSSo07HVVRTqBCCygiOlo4sel1dNuC/J/7L4IaDebXGq6RkpjBsyzDS86u8XRisKqnzAOVDhkxOZsaIXBNxVRT16vst3wdgZcBKnSqQlzQPnj5g3vF51P+1Ph1WdmD5peU8TX+Kp70nX3b+kpCpIZwYc4L3Wr6HvYW9oYdbKBwtHXG2Utf0CnkSYuDR5E4vL3eWjmyJm722OcnN3sJo/C3KwhgF+sHazJo/+//JEZ8j2OWeMioHlW0qZg1JER1WhpAkiR5/98D/rj89a/fkz35/0nxZc2JTY/m43cf82PNH/ZzoWXXjvDJGX4yRM3jdwwK7Kc+RJulZ6VT9qSoxyU/4set2aju01HvIaUFh88kZyWwN2orvFV+O3D2iKYNibWrNW43ewqeZD11qdEEuK/vvOh1XduTfh/+yfvB6hnoVHL1oKAyd6kAXysIYBfrjUNBD3lt9tcB2a8e1pUPdks//ZWzrt4gOK0PIZDKW9FlCk6VN2B+6n1OPTrGi/woGbhzIojOL6FG7B73q9Cr+iRyqgUM1FEDTXOrrPYoKAwoWgsqzetXcxJzu7jM4EejGL/vkZEcH6SvkNK8Eil/2bYi1bQi+V3zZfGMzSRlJmv2v1ngVn2Y+DG40GBszHRJeliHqV6rPvw//NVq/oGwUcpnRC/5lYYwC/ZGcrttLUEyynqwJZYyy/4pYwahXqR6zOs4CYNq+aXSt0ZUPWqs9/322+/A46XF+h+sFEWmiFlJOBzZBgfabkz58orJLabzsbxXxNJUP1l6i98pZ+Ab4kpSRRG3H2szpOoe70+5y2OcwPs19yp0ABMbvHC0QGCvieZ0/QhNUBpnZcSbrrq0j5EkIn/t/wZC6n+Mf9JR7CVfx2T6GXcN2ceFefImpu7MjTQoq0FdeI02UKolvdt0AyBFxIaG+/m923aBHI7dCz3t237nbqGVIqKiUOYGerRozuoUPHap10HvRUmNECEECQdEo6HktocLKPAOvqs+FoIpkMhU+QWWUQ3cO0d/3K5wyxmOCs2a7kqdYm9qQlvk86qcksoIac+HPkuZ0aCzDlp8psF1RfKJKsu+yzPWo63gt9cLO3I74/8RXCMFPINAXeT2veeZJGG32LVWdY/Ad6EvC05olWsvQ2NZvYQ4ro2SlNMYl47Mc5hg5dqRman+tJRG2XpEjTXT1dSqKT1RJ9l2Wqe1UGxkyEtITiEqOMvRwBIIyRV7Pa3d7SyZ0k+Pk8ICQJyH0WP5JhUt9IsxhZZDn5pic6a9yS4hVXBNNXvTycqdHI7cKozbNpiRt7MJ+nzsWJhZUt69B5BMbVp+5TqeaJhXiXhMI9EV+z+sPOgXy0b7pHDrTRbNevEhJrSHGgBCCyiDn7j7JIakXxItZQfVpRqmIkSYl6RNV0f2t8mJfYAQmMd/ilmXLkkOpLOGMQYo/CgRlmbye1w4WDkxo8gNHz+Rtii+pNcTQGNQc9ttvv1GjRg0sLCxo27Yt586dM+RwygzFMYVUNDNKSVCS2XdFZt+cZPszZGVpR72VZxW9QFDaVFRTvMGEoI0bN/Lxxx8ze/ZsLl26RLNmzejZsydRUcLeXxDFMYVUNDNKSVGSPlEV2d/qZbSj5UTxR4GgpKiopniDRYe1bduWNm3a8OuvvwKgUqmoVq0aU6dOZebMmVpt09PTSU9/nsgpISGBatWqGY13eWmjVEl0XHA4T5NJbmSbUU7+57UKpUUoaUoylLQihanmhYiWEwhKh4LWFX2tISI6DMjIyODixYt07979+UDkcrp3787p06dztJ8/fz729vaaT7Vq1UpzuEZHfiaT3KioZpTSINvGPqB5FdrXrqTX+S3JvssKFVVFLxCUNhXVFG8QISgmJgalUomrq6vWdldXVyIjI3O0nzVrFk+fPtV8Hj4suGRDeScvk4mDlSkOVqZa2yqiGUVQPqioKnqBwBBURFN8mYgOMzc3x9y8Yla4zY+8Qh6BCm9GEZQPRLScQFC6VLTUJwYRgipXroxCoeDxY+06V48fP8bNzc0QQyqz5BXyKPwjBOWBbBX9pDWXkJF7dvLyqKIXCAxJRUp9YhBzmJmZGa1atcLf31+zTaVS4e/vT/v27Q0xJIFAYKRURBW9QCAoHQxmDvv444/x8fGhdevWeHt78/PPP5OcnMyYMWMMNSSBQGCkVDQVvUAgKB0MJgS98847REdH89VXXxEZGUnz5s3Zt29fDmdpgUAggIqlohcIBKWDqCIvEAgEAoGgVDC29VtUkRcIBAKBQFAhEUKQQCAQCASCCokQggQCgUAgEFRIhBAkEAgEAoGgQiKEIIFAIBAIBBUSIQQJBAKBQCCokAghSCAQCAQCQYVECEECgUAgEAgqJGWiivzLZOd3TEhIMPBIBAKBQCAQ6Er2um0seZrLpBCUmJgIQLVq1Qw8EoFAIBAIBIUlMTERe3t7Qw+jbJbNUKlUhIeHY2tri0ym3wKKCQkJVKtWjYcPHxpFSu/yjJjr0kPMdekh5rr0EHNdeuhrriVJIjExEQ8PD+Ryw3vklElNkFwup2rVqiV6Djs7O/GjKiXEXJceYq5LDzHXpYeY69JDH3NtDBqgbAwvhgkEAoFAIBAYACEECQQCgUAgqJAIIeglzM3NmT17Nubm5oYeSrlHzHXpIea69BBzXXqIuS49yutcl0nHaIFAIBAIBILiIjRBAoFAIBAIKiRCCBIIBAKBQFAhEUKQQCAQCASCCokQggQCgUAgEFRIhBAkEAgEAoGgQiKEoBf47bffqFGjBhYWFrRt25Zz584Zekhlnvnz59OmTRtsbW1xcXFh4MCBBAcHa7VJS0tj8uTJVKpUCRsbGwYPHszjx48NNOLyw3fffYdMJuOjjz7SbBNzrT/CwsIYOXIklSpVwtLSkiZNmnDhwgXNfkmS+Oqrr3B3d8fS0pLu3bsTEhJiwBGXTZRKJV9++SU1a9bE0tKS2rVrM3fuXK0CnGKui8bx48fp168fHh4eyGQytm/frrVfl3l98uQJI0aMwM7ODgcHB8aNG0dSUlIpXkXxEELQMzZu3MjHH3/M7NmzuXTpEs2aNaNnz55ERUUZemhlmmPHjjF58mTOnDnDwYMHyczM5PXXXyc5OVnTZvr06ezatYtNmzZx7NgxwsPDGTRokAFHXfY5f/48y5Yto2nTplrbxVzrh7i4ODp06ICpqSl79+7lxo0b/Pjjjzg6OmrafP/99/zyyy/8/vvvnD17Fmtra3r27ElaWpoBR172WLBgAUuXLuXXX38lKCiIBQsW8P333/O///1P00bMddFITk6mWbNm/Pbbb7nu12VeR4wYwfXr1zl48CB+fn4cP36c8ePHl9YlFB9JIEmSJHl7e0uTJ0/W/K1UKiUPDw9p/vz5BhxV+SMqKkoCpGPHjkmSJEnx8fGSqamptGnTJk2boKAgCZBOnz5tqGGWaRITE6W6detKBw8elLp06SJNmzZNkiQx1/rkP//5j9SxY8c896tUKsnNzU1auHChZlt8fLxkbm4urV+/vjSGWG7o06ePNHbsWK1tgwYNkkaMGCFJkphrfQFI27Zt0/yty7zeuHFDAqTz589r2uzdu1eSyWRSWFhYqY29OAhNEJCRkcHFixfp3r27ZptcLqd79+6cPn3agCMrfzx9+hQAJycnAC5evEhmZqbW3Ddo0IDq1auLuS8ikydPpk+fPlpzCmKu9cnOnTtp3bo1b7/9Ni4uLrRo0YLly5dr9t+9e5fIyEituba3t6dt27ZirgvJK6+8gr+/P7du3QLgypUrnDx5kt69ewNirksKXeb19OnTODg40Lp1a02b7t27I5fLOXv2bKmPuSiUySry+iYmJgalUomrq6vWdldXV27evGmgUZU/VCoVH330ER06dMDLywuAyMhIzMzMcHBw0Grr6upKZGSkAUZZttmwYQOXLl3i/PnzOfaJudYfd+7cYenSpXz88cd89tlnnD9/ng8//BAzMzN8fHw085nbM0XMdeGYOXMmCQkJNGjQAIVCgVKpZN68eYwYMQJAzHUJocu8RkZG4uLiorXfxMQEJyenMjP3QggSlBqTJ08mMDCQkydPGnoo5ZKHDx8ybdo0Dh48iIWFhaGHU65RqVS0bt2ab7/9FoAWLVoQGBjI77//jo+Pj4FHV774559/WLt2LevWraNx48YEBATw0Ucf4eHhIeZaUGyEOQyoXLkyCoUiR5TM48ePcXNzM9CoyhdTpkzBz8+PI0eOULVqVc12Nzc3MjIyiI+P12ov5r7wXLx4kaioKFq2bImJiQkmJiYcO3aMX375BRMTE1xdXcVc6wl3d3caNWqkta1hw4Y8ePAAQDOf4plSfD755BNmzpzJ0KFDadKkCe+++y7Tp09n/vz5gJjrkkKXeXVzc8sRPJSVlcWTJ0/KzNwLIQgwMzOjVatW+Pv7a7apVCr8/f1p3769AUdW9pEkiSlTprBt2zYOHz5MzZo1tfa3atUKU1NTrbkPDg7mwYMHYu4LSbdu3bh27RoBAQGaT+vWrRkxYoTm/2Ku9UOHDh1ypHq4desWnp6eANSsWRM3NzetuU5ISODs2bNirgtJSkoKcrn2UqVQKFCpVICY65JCl3lt37498fHxXLx4UdPm8OHDqFQq2rZtW+pjLhKG9sw2FjZs2CCZm5tLvr6+0o0bN6Tx48dLDg4OUmRkpKGHVqaZNGmSZG9vLx09elSKiIjQfFJSUjRtJk6cKFWvXl06fPiwdOHCBal9+/ZS+/btDTjq8sOL0WGSJOZaX5w7d04yMTGR5s2bJ4WEhEhr166VrKyspDVr1mjafPfdd5KDg4O0Y8cO6erVq9KAAQOkmjVrSqmpqQYcednDx8dHqlKliuTn5yfdvXtX2rp1q1S5cmXp008/1bQRc100EhMTpcuXL0uXL1+WAGnRokXS5cuXpfv370uSpNu89urVS2rRooV09uxZ6eTJk1LdunWlYcOGGeqSCo0Qgl7gf//7n1S9enXJzMxM8vb2ls6cOWPoIZV5gFw/q1at0rRJTU2VPvjgA8nR0VGysrKS3nzzTSkiIsJwgy5HvCwEibnWH7t27ZK8vLwkc3NzqUGDBtIff/yhtV+lUklffvml5OrqKpmbm0vdunWTgoODDTTasktCQoI0bdo0qXr16pKFhYVUq1Yt6fPPP5fS09M1bcRcF40jR47k+nz28fGRJEm3eY2NjZWGDRsm2djYSHZ2dtKYMWOkxMREA1xN0ZBJ0gtpNwUCgUAgEAgqCMInSCAQCAQCQYVECEECgUAgEAgqJEIIEggEAoFAUCERQpBAIBAIBIIKiRCCBAKBQCAQVEiEECQQCAQCgaBCIoQggUAgEAgEFRIhBAkEAoFAIKiQCCFIIBAIBAJBhUQIQQKBQCAQCCokQggSCAQCgUBQIfl/54hV12SASAgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -322,34 +556,24 @@ } ], "source": [ - "solver = 'cbc'\n", - "%time pyo.SolverFactory(solver).solve(weak)\n", - "ShowFacilityLocation( xC, yC, xF, yF, *GetSolution(weak) )" + "ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, weak))" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 487 + "height": 452 }, - "id": "eD-SBFIkUO-F", - "outputId": "bb69feea-e0d4-4803-c69e-7dfdf8fb96a6" + "id": "1Qmid6MgmSjd", + "outputId": "ac75086e-0cdc-4d63-f17d-6927a49985ff" }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 17.4 ms, sys: 12 ms, total: 29.4 ms\n", - "Wall time: 57.2 ms\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXQUVxuAn92NuycEQgQJBJfi7hLcrTillFJaKC1tKW1p8dICpbi7u1OgWHAChAARAsHixH13vh/77ZYlG4N45jlnD+TOnXvv7I6886pEEAQBEREREREREZEihLSwFyAiIiIiIiIi8i6igCIiIiIiIiJS5BAFFBEREREREZEihyigiIiIiIiIiBQ5RAFFREREREREpMghCigiIiIiIiIiRQ5RQBEREREREREpcogCioiIiIiIiEiRQxRQRERERERERIocooBSCtmwYQMSiYSnT5+Wmrl/+uknJBJJgc75PixYsAA3NzdkMhm1a9fO9f7nz59HIpGwZ8+evF9cEeRDjzc0NJS+fftibW2NRCLhzz//zNsFFgCtWrWiVatWeTpmcbleREo2ooBSBHjw4AFDhw6lbNmy6Ovr4+joyJAhQ3jw4MEHjTt79mwOHDiQN4sUyXdOnTrFtGnTaNq0KevXr2f27NmZ9t22bVuxfJgWNb788ktOnjzJ9OnT2bx5M506dSrsJRUYiYmJ/PTTT5w/f76wl5Itr169YujQobi7u2NqaoqFhQUNGjRg48aNvFutZd++fQwYMAA3NzeMjIxwd3dnypQpREdHa/RTCbeZfX777TeN/qdPn6ZZs2YYGRlhaWlJ3759tb5o7dy5k6FDh1KpUiUkEsl7CY9r166latWqGBgYUKlSJZYuXZrrMUoCOoW9gNLOvn37GDRoEFZWVowePRpXV1eePn3K2rVr2bNnDzt27KBXr17vNfbs2bPp27cvPXv21GgfNmwYAwcORF9fPw+OQCSvOHv2LFKplLVr16Knp5dl323btuHj48PkyZMLZnEllLNnz9KjRw+mTp1a2EspcBITE/n5558BMjxEf/jhB7799ttCWJV2IiIiePHiBX379qV8+fKkpaVx+vRpRowYwePHjzWE+XHjxuHo6MjQoUMpX7489+/f56+//uLYsWPcvn0bQ0NDAKpWrcrmzZszzLV582ZOnTpFhw4d1G1HjhyhR48e1K1bl7lz5xIbG8vixYtp1qwZd+7cwdbWVt13+fLl3Lp1i48++ojIyMhcH+vKlSsZP348ffr04auvvuLixYtMmjSJxMREvvnmm1yPV6wRRAqNgIAAwcjISKhSpYoQFhamsS08PFyoUqWKYGxsLAQGBr7X+MbGxsLw4cPzYKV5x/r16wVACAoKKtB5Z86cKRT1033kyJGCsbFxjvp27dpVcHZ2ztB+7tw5ARB2796dx6srmnzo8UokEuGzzz7Ls/UkJSUJcrk8z8bLCS1bthRatmyZ6/3Cw8MFQJg5c2aer6mg8PT0FIyNjYX09HR127lz5zL027hxowAIq1evznbMihUrCpUqVdJo8/DwECpWrCikpKSo27y9vQWpVCp89dVXGn2Dg4PV50C1atVy9dskJiYK1tbWQteuXTXahwwZIhgbGwtRUVE5HqskIJp4CpEFCxaQmJjIqlWrNCRwABsbG1auXElCQgLz589Xt6tsw48ePaJ///6YmZlhbW3NF198QXJysrqfRCIhISGBjRs3qlWWI0aMALT7gbi4uODp6cn58+epX78+hoaG1KhRQ63+3bdvHzVq1MDAwIB69epx584djfXeu3ePESNG4ObmhoGBAQ4ODowaNeq93iAWLlyIRCLh2bNnGbZNnz4dPT093rx5A8DFixfp168f5cuXR19fHycnJ7788kuSkpKynOPp06dIJBI2bNiQYZtEIuGnn37SaHv58iWjRo3C3t4efX19qlWrxrp163J0POnp6cyaNYsKFSqgr6+Pi4sL3333HSkpKRpzrl+/noSEBPXvpW1toHzbPXr0KM+ePVP3dXFx0eijUCj47bffKFeuHAYGBrRt25aAgIAMY127do1OnTphbm6OkZERLVu25PLly1kejyAI2NjY8NVXX2nMZ2FhgUwm01Clz5s3Dx0dHeLj49Vtjx49om/fvlhZWWFgYED9+vU5dOiQxhxRUVFMnTqVGjVqYGJigpmZGZ07d+bu3btZrg0gJSUFT09PzM3NuXLlitY+qmtAEASWLVum/h5VPHnyhH79+mFlZYWRkRGNGjXi6NGjGmOoTAQ7duzghx9+oGzZshgZGREbG8uIESMwMTEhODgYT09PTExMKFu2LMuWLQPg/v37tGnTBmNjY5ydndm2bZvG2Jn5gOTEhys1NZUff/yRevXqYW5ujrGxMc2bN+fcuXPqPk+fPlXfc37++Wf18avOe23z5+Q8hv/uJZcuXaJBgwYYGBjg5ubGpk2bMqw1MDCQwMDATI8lO1xcXEhMTCQ1NVXdps2kotJCP3z4MMvxrl+/TkBAAEOGDFG3RUVF4evrS69evTQ0m7Vq1aJq1ars2LFDYwwnJyek0vd7tJ47d47IyEgmTJig0f7ZZ5+RkJCQ4Rws6YgCSiFy+PBhXFxcaN68udbtLVq0wMXFRetJ2b9/f5KTk5kzZw5dunRhyZIljBs3Tr198+bN6Ovr07x5czZv3szmzZv55JNPslxPQEAAgwcPplu3bsyZM4c3b97QrVs3tm7dypdffsnQoUP5+eefCQwMpH///igUCvW+p0+f5smTJ4wcOZKlS5cycOBAduzYQZcuXTLYiLOjf//+SCQSdu3alWHbrl276NChA5aWlgDs3r2bxMREPv30U5YuXUrHjh1ZunQpH3/8ca7mzIrQ0FAaNWrEmTNnmDhxIosXL6ZixYqMHj06R34gY8aM4ccff6Ru3br88ccftGzZkjlz5jBw4EB1n82bN9O8eXP09fXVv1eLFi20jvf9999Tu3ZtbGxs1H3fXcfcuXPZv38/U6dOZfr06Vy9elXjpgtK80aLFi2IjY1l5syZzJ49m+joaNq0acP169czPR6JRELTpk25cOGCuu3evXvExMQAaAg4Fy9epE6dOpiYmABKf6tGjRrx8OFDvv32W37//XeMjY3p2bMn+/fvV+/35MkTDhw4gKenJ4sWLeLrr7/m/v37tGzZklevXmW6tqSkJLp168aVK1c4c+YMTZo00dqvRYsWavV++/bt1d8jKH/vJk2acPLkSSZMmMBvv/1GcnIy3bt311ijilmzZnH06FGmTp3K7Nmz1Q8xuVxO586dcXJyYv78+bi4uDBx4kQ2bNhAp06dqF+/PvPmzcPU1JSPP/6YoKCgTI8rN8TGxrJmzRpatWrFvHnz+OmnnwgPD6djx454e3sDYGtry/LlywHlw1t1/L1798503JycxyoCAgLo27cv7du35/fff8fS0pIRI0Zk8Ktr27Ytbdu2zfGxJSUlERERwdOnT9m4cSPr16+ncePGarNNZoSEhADKF7+s2Lp1K4DGtaISwLTNYWRkxKtXr9TjfyiqF7/69etrtNerVw+pVJrhxbDEU8ganFJLdHS0AAg9evTIsl/37t0FQIiNjRUE4T9TRffu3TX6TZgwQQCEu3fvqtsyM/FoM7M4OzsLgHDlyhV128mTJwVAMDQ0FJ49e6ZuX7lypQBoqFITExMzzLN9+3YBEC5cuJDl3Npo3LixUK9ePY2269evC4CwadOmLOedM2eOIJFINNb8roknKChIAIT169dn2J931N6jR48WypQpI0RERGj0GzhwoGBubq51DSq8vb0FQBgzZoxG+9SpUwVAOHv2rLpt+PDheWbiqVq1qoY6evHixQIg3L9/XxAEQVAoFEKlSpWEjh07CgqFQt0vMTFRcHV1Fdq3b5/l/AsWLBBkMpn6vFyyZIng7OwsNGjQQPjmm28EQRAEuVwuWFhYCF9++aV6v7Zt2wo1atQQkpOT1W0KhUJo0qSJhlo9OTk5g6kkKChI0NfXF3755ZcMx7t7924hLi5OaNmypWBjYyPcuXMny/WrADKYeCZPniwAwsWLF9VtcXFxgqurq+Di4qJel2puNze3DOfA8OHDBUCYPXu2uu3NmzeCoaGhIJFIhB07dqjbHz16lOGcy8wkqe36edfEk56ervHbq+a2t7cXRo0apW7LysTz7vy5OY9V95K3r/uwsDBBX19fmDJlisb+zs7OWs/jzJgzZ44AqD9t27YVgoODs91v9OjRgkwmE/z8/DLtk56eLtjb2wsNGjTQaFedx23bttVoj4iIEIyNjQVAuHnzptYxc2vi+eyzzwSZTKZ1m62trTBw4MAcj1USEDUohURcXBwApqamWfZTbY+NjdVo/+yzzzT+/vzzzwE4duzYe6/Jw8ODxo0bq/9u2LAhAG3atKF8+fIZ2p88eaJue/vtIjk5mYiICBo1agTA7du3c72WAQMGcOvWLQ31786dO9HX16dHjx5a501ISCAiIoImTZogCEKevG0IgsDevXvp1q0bgiAQERGh/nTs2JGYmJgsj0/1e7xtDgGYMmUKQL6pbEeOHKmhjlZp6VS/mbe3N/7+/gwePJjIyEj1MSUkJNC2bVsuXLigoSF7l+bNmyOXy9UmlIsXL9K8eXOaN2/OxYsXAfDx8SE6Olo9d1RUFGfPnqV///7ExcWp54yMjKRjx474+/vz8uVLAPT19dVqcrlcTmRkJCYmJri7u2v9vmNiYujQoQOPHj3i/Pnz7xWireLYsWM0aNCAZs2aqdtMTEwYN24cT58+xdfXV6P/8OHDM32DHzNmjPr/FhYWuLu7Y2xsTP/+/dXt7u7uWFhYaFxPH4JMJlP/9gqFgqioKNLT06lfv/57XYuQ+/PYw8NDQzNsa2uLu7t7hmN8+vRprlIODBo0iNOnT7Nt2zYGDx4MkK05d9u2baxdu5YpU6ZQqVKlTPv9888/hIaGZtA0SqVSPvnkE/755x+mT5+Ov78/t27don///mrTUnZryClJSUmZOsgbGBjk2TzFBVFAKSRUgodKUMmMzASZdy+0ChUqIJVKPyi/yNtCCIC5uTmgtKlqa1f5gYDy4fPFF19gb2+PoaEhtra2uLq6AqhV/7mhX79+SKVSdu7cCSgFhd27d9O5c2fMzMzU/YKDgxkxYgRWVlaYmJhga2tLy5Yt33vedwkPDyc6OlrtJ/T2Z+TIkQCEhYVluv+zZ8+QSqVUrFhRo93BwQELCwutfjZ5wbu/pcokpvrN/P39AeXD9d3jWrNmDSkpKVl+f3Xr1sXIyEgtjKgElBYtWnDz5k2Sk5PV21QP+oCAAARBYMaMGRnmnDlzJvDfd6lQKPjjjz+oVKkS+vr62NjYYGtrq2FKepvJkydz48YNzpw5Q7Vq1d77ewPlb+bu7p6hvWrVqurtb6M6z9/FwMAgg2+Zubk55cqVy+DfYW5urnE9fSgbN26kZs2aGBgYYG1tja2tLUePHn3vayK35/G75x8oz8EPPUZnZ2fatWvHoEGD2Lp1K25ubrRr1y7TB/fFixcZPXo0HTt2zBA2/C5bt25FJpMxYMCADNt++eUXRo8ezfz586lcuTL169dHR0eH0aNHA6hNmB+KoaGhhj/N2yQnJ2dryippiGHGhYS5uTllypTh3r17Wfa7d+8eZcuW1XgoayMvkirJZLJctQtv+Zb079+fK1eu8PXXX1O7dm1MTExQKBR06tQpyzfxzHB0dKR58+bs2rWL7777jqtXrxIcHMy8efPUfeRyOe3btycqKopvvvmGKlWqYGxszMuXLxkxYkSW82b2fcnlco2/VWMMHTqU4cOHa92nZs2a2R5PQSe9yu43Ux3XggULMtU2ZHXT1dXVpWHDhly4cIGAgABCQkJo3rw59vb2pKWlce3aNS5evEiVKlXUD2nVnFOnTqVjx45ax1U9AGfPns2MGTMYNWoUs2bNwsrKCqlUyuTJk7X+rj169GDHjh3MnTuXTZs2vbeT4vuQ2UPjQ66nnJ6f2tiyZQsjRoygZ8+efP3119jZ2SGTyZgzZ84HOaRmta53yckx5gV9+/Zl9erVXLhwIcM5dffuXbp370716tXZs2cPOjqZP+6SkpLYv38/7dq1w97ePsN2PT091qxZw2+//Yafnx/29vZUrlyZwYMHaxXc3pcyZcogl8sJCwvDzs5O3Z6amkpkZCSOjo55Mk9xQRRQChFPT09Wr17NpUuXNNTJKi5evMjTp0+1Orf6+/trvLkFBASgUCg0ojkK6qH45s0b/vnnH37++Wd+/PFHjTV+CAMGDGDChAk8fvyYnTt3YmRkRLdu3dTb79+/j5+fHxs3btRwij19+nS2Y6s0Cu8mb3r3TdDW1hZTU1Pkcjnt2rXL9TE4OzujUCjw9/dXv4GD0hEzOjoaZ2fnXI8JH/7bVqhQAQAzM7P3Oi5QmnnmzZvHmTNnsLGxoUqVKkgkEqpVq8bFixe5ePEinp6e6v5ubm6AUrjJbs49e/bQunVr1q5dq9EeHR2t1dGxZ8+edOjQgREjRmBqaqp2AH0fnJ2defz4cYb2R48eqbfnN2+fnxYWFur2nGjc9uzZg5ubG/v27dM4T1RaKhW5OYfy6zz+UFSak3c1Q4GBgXTq1Ak7OzuOHTuWrYbj0KFDxMXFZTDvvIu9vb1agJHL5Zw/f56GDRvmmQZF9bJw8+ZNunTpom6/efMmCoXig0yXxRHRxFOIfP311xgaGvLJJ59kCMeNiopi/PjxGBkZ8fXXX2fYVxWuqEKVabBz587qNmNj4wwP4PxA9bb07tvRh2Y67dOnDzKZjO3bt7N79248PT0xNjbOcl5BEFi8eHG2Y5uZmWFjY6MRiQLw999/a/wtk8no06cPe/fuxcfHJ8M44eHhWc6jusm8+10sWrQIgK5du2a7Vm0YGxt/kAmrXr16VKhQgYULF2qEAKvI7rhAKaCkpKTw559/0qxZM/UDTxU59urVKw0/BDs7O1q1asXKlSt5/fp1lnPKZLIM59Pu3bvVPira+Pjjj1myZAkrVqz4oIRWXbp04fr163h5eanbEhISWLVqFS4uLnh4eLz32DlFJUC+fX6q0gZkh7br4tq1axrHA8oIFMgopGsjv87jnIYZZ3Y+rl27FolEQt26ddVtISEhdOjQAalUysmTJzOY2bSxbds2jIyMcpUUc+HChbx+/Vrth5NbEhMTefToEREREeq2Nm3aYGVllUHAXr58OUZGRu/9PRdXRA1KIVKpUiU2btzIkCFDqFGjRoZMshEREWzfvl19s3qboKAgunfvTqdOnfDy8mLLli0MHjyYWrVqqfvUq1ePM2fOsGjRIhwdHXF1dVU7uOYlZmZmtGjRgvnz55OWlkbZsmU5derUB4dN2tnZ0bp1axYtWkRcXFwG23CVKlWoUKECU6dO5eXLl5iZmbF3794c27nHjBnD3LlzGTNmDPXr1+fChQv4+fll6Dd37lzOnTtHw4YNGTt2LB4eHkRFRXH79m3OnDlDVFRUpnPUqlWL4cOHs2rVKqKjo2nZsiXXr19n48aN9OzZk9atW+fuS/k/9erVY+fOnXz11Vd89NFHmJiYaGiXskMqlbJmzRo6d+5MtWrVGDlyJGXLluXly5ecO3cOMzMzDh8+nOUYjRs3RkdHh8ePH2uEuLdo0UJ9g303hH7ZsmU0a9aMGjVqMHbsWNzc3AgNDcXLy4sXL16o85x4enryyy+/MHLkSJo0acL9+/fVPgdZMXHiRGJjY/n+++8xNzfnu+++y/F3ouLbb79l+/btdO7cmUmTJmFlZcXGjRsJCgpi7969BWI+6tChA+XLl2f06NF8/fXXyGQy1q1bh62tLcHBwVnu6+npyb59++jVqxddu3YlKCiIFStW4OHhoSGMGhoa4uHhwc6dO6lcuTJWVlZUr16d6tWrZxgzv85jVYhxdr5zv/32G5cvX6ZTp06UL1+eqKgo9u7dy40bN/j88881TCydOnXiyZMnTJs2jUuXLnHp0iX1Nnt7e9q3b68xdlRUFMePH6dPnz6ZakK2bNnC3r17adGiBSYmJpw5c4Zdu3YxZswY+vTpo9H3woULasEyPDychIQEfv31V0B5bajSB1y/fp3WrVszc+ZMdf4ZQ0NDZs2axWeffUa/fv3o2LEjFy9eZMuWLfz2229YWVll842WMAojdEhEk3v37gmDBg0SypQpI+jq6goODg7CoEGD1CGhb6MK//P19RX69u0rmJqaCpaWlsLEiROFpKQkjb6PHj0SWrRoIRgaGgqAOuQ4szDjd7MXCoL2MExViO6CBQvUbS9evBB69eolWFhYCObm5kK/fv2EV69eZQhjzG0m2dWrVwuAYGpqmuH4BEEQfH19hXbt2gkmJiaCjY2NMHbsWOHu3bsZQoi1hW0mJiYKo0ePFszNzQVTU1Ohf//+QlhYmNbQy9DQUOGzzz4TnJyc1L9R27ZthVWrVmV7DGlpacLPP/8suLq6Crq6uoKTk5Mwffp0jVBbQchdmHF8fLwwePBgwcLCQgDUoZqZZVbNLKz6zp07Qu/evQVra2tBX19fcHZ2Fvr37y/8888/OVrHRx99JADCtWvX1G0vXrwQAMHJyUnrPoGBgcLHH38sODg4CLq6ukLZsmUFT09PYc+ePeo+ycnJwpQpU4QyZcoIhoaGQtOmTQUvL68MIbWZHe+0adMEQPjrr7+yXL+281u1xr59+woWFhaCgYGB0KBBA+HIkSMafbLKYpvZb9myZUuhWrVqGdq1XX+3bt0SGjZsKOjp6Qnly5cXFi1alKMwY4VCIcyePVtwdnYW9PX1hTp16ghHjhwRhg8fniGk98qVK0K9evUEPT09jfNe2/WS0/M4s3uJtoy3OQ0zPnXqlODp6Sk4OjoKurq6gqmpqdC0aVNh/fr1GmHygiBohCG/+9EW8rtixQoBEA4dOpTp/NeuXRNatGghWFpaCgYGBkKtWrWEFStWZJhbEP777rR93r6vqM4fbWHeq1atEtzd3QU9PT2hQoUKwh9//KF1rpKORBDy2GtJJF/56aef+PnnnwkPD8826ZCIiIiIiEhxRfRBERERERERESlyiAKKiIiIiIiISJFDFFBEREREREREihyiD4qIiIiIiIhIkUPUoIiIiIiIiIgUOUQBRURERERERKTIUSwTtSkUCl69eoWpqWmB1zgREREREREReT8EQSAuLg5HR8dskx4WSwHl1atXGSrsioiIiIiIiBQPnj9/Trly5bLsUywFFFNTU0B5gNlV+RUREREREREpGsTGxuLk5KR+jmdFsRRQVGYdMzMzUUAREREREREpZuTEPUN0khUREREREREpcogCioiIiIiIiEiRQxRQRERERERERIocuRZQLly4QLdu3XB0dEQikXDgwAGN7YIg8OOPP1KmTBkMDQ1p164d/v7+Gn2ioqIYMmQIZmZmWFhYMHr0aOLj4z/oQERERERERERKDrkWUBISEqhVqxbLli3Tun3+/PksWbKEFStWcO3aNYyNjenYsSPJycnqPkOGDOHBgwecPn2aI0eOcOHCBcaNG/f+RyEiIiIiIiJSovigWjwSiYT9+/fTs2dPQKk9cXR0ZMqUKUydOhWAmJgY7O3t2bBhAwMHDuThw4d4eHhw48YN6tevD8CJEyfo0qULL168wNHRMdt5Y2NjMTc3JyYmRoziERERERERKSbk5vmdpz4oQUFBhISE0K5dO3Wbubk5DRs2xMvLCwAvLy8sLCzUwglAu3btkEqlXLt2Teu4KSkpxMbGanxERERERERESi55KqCEhIQAYG9vr9Fub2+v3hYSEoKdnZ3Gdh0dHaysrNR93mXOnDmYm5urP2IWWRERERERkZJNsUjUNn36dL766iv136pMdCIiIrkg+jkkRma+3cgaLMTrqjCQKwSuB0URFpeMnakBDVytkEnFOmMipZs8FVAcHBwACA0NpUyZMur20NBQateure4TFhamsV96ejpRUVHq/d9FX18ffX39vFyqiEjpIvo5/FUP0lMy76OjDxNviUJKAXPC5zU/H/bldcx/gQRlzA2Y2c2DTtXLZLGniEjJJk9NPK6urjg4OPDPP/+o22JjY7l27RqNGzcGoHHjxkRHR3Pr1i11n7Nnz6JQKGjYsGFeLkdERERFYmTWwgkot2elYRHJc074vObTLbc1hBOAkJhkPt1ymxM+rwtpZSIihU+uNSjx8fEEBASo/w4KCsLb2xsrKyvKly/P5MmT+fXXX6lUqRKurq7MmDEDR0dHdaRP1apV6dSpE2PHjmXFihWkpaUxceJEBg4cmKMIHhERkfwjKT0JRWpCYS+jVCBXCMw89ABtYZQCIAF+PuxLew8H0dwjUirJtYBy8+ZNWrdurf5b5RsyfPhwNmzYwLRp00hISGDcuHFER0fTrFkzTpw4gYGBgXqfrVu3MnHiRNq2bYtUKqVPnz4sWbIkDw6n9CHarkXykqbrmnFHoijsZZQK9OU1cEidk+l2AXgdk8z1oCgaV7AuuIV9AOL9SCQv+aA8KIWFmAdFiWi7FnmbdEU6z2Oe8+TNk/8+0cp/TSIDOZcsz3aMusSLAkoBYZTeAtu0adn2WzywNj1qly2AFX0Y4v1IJCfk5vldLKJ4RDKisl2/K12qbNfLh9YVbwolkDdJbzQFkLeEkGfRz5AL2oWQOoIUMHnveXUkOujr6KMn1UNHpoMECUiUyRlT5amkydNIlaeSLqS/9xxFAQkS9GR66o+OVEfjb12prvJfmea/6v6Sd/q/tV1XqqveX0+mx+tIE7ZeyH5NaUIEz6LTtY4rlRSNcmri/UgkPxAFlGKIXCHw82Ff0XZdAkmTpxEcE6xVAHny5gnRydFZ7q8v08fV0hU3SzfcLNyU/1q64ZGeBntG52otEiToynTVgkd6WjoJaPqnyCQy3CzdcLdxp7JVZSpbV8bN0g1XC1csDS1JU6SphZd3P2mKTNpz2f9DxkpXaApUAgIp8hRS5Nk4FOcFgpSyrEWGNRIt8QoCCuRE0u9gd8hEqyWTyDIViLQJVhnaZbroSTO252YsHYku3x+Ie+/7kWgWEskMUUAphlwPisrg9f82xdF2XVoQBIGopKhMtSDBMcEohKxNLA4mDmrB420hxM3SjTKmZTK8VQuCwN+HxlEpB+vb1nsbWyN82P9oPw/CH5AqT1Vvq2hZEWcLZ/Rl+ryOf41fpB8JaQn4R/njH+WfYSxTPVMqWyuFFndrd+W/Nu5Uta2Kid77a3PyEoWg0BBishSCPlTQUmTcFvXmKiEvPPnvUa5C+Xe6yQ7MdEzU/d/VkMkFOUnpSSSlJxXgt6bJh/jSiGYhkawQBZRiSFhc5sLJ+/QTyVtS5ak8i36WqRYkNiXrUg0GOgaZCiAuFi4Y6xnneC3pinQ+OfwJp++sZxQmGJL5m2kSAn7JkcxqM4tZbWbhH+nP/kf72f9oP1dfXCXgTQABb5QRfNXtqvNloy9pVr4ZOlId/KP8eRzxmMeRj/GL9CMoOoi41Dhuvb7Frde3MszlaOr4n9DylvDiYuGCjrTgbktSiRR9HX30dQovz5L2h7Th/x/SJzT6yhVyDYEoM6EpLzVU2QltSXFVeUuOzZR370eiWUgkO0Qn2WKIV2Akg1Zfzbbf9rGNRA1KPiAIAhGJEZlqQZ7HPEfQqvD+D0dTx0yFEHsT+zzxLUhMS2TAngEc8TsCgJMgoYaJI6/jX2NhYMHCDgsZc2gMpnomdK3syV8+2wnV0eXk0JO0cmmlMdaruFccfHSQfY/2cf7peQ3TiIuFCz3de9K7am+aODVBJpWRkp7CkzdP1ALL44jH+EUp/w1PDM90zbpSXSpYVdAUXKzdcbdxx9bIFomkZKr+i7OZ433uR3KFQLN5ZzPVBEsAB3MDLn3Tpth8DyI5IzfPb1FAKYaoLu6QmGStj8HSdHHn1409JT2Fp9FPM9WCxKfGZ7m/ka5RlloQQ13DD15jVkQmRtJteze8XnihI9UhXZGOka4Rfar0YfP9zQyvNZy13dfi8LsDEYkRnP34LH/f/Js9vnsw1zfn0qhLVLerrnXsN0lvOOJ3hP2P9nMi4ISGecHWyJYe7j3oVbUXbV3batVMvEl6oxRaVMLL///1i/QjOT1zrZ+5vrnS1+Ud4aWSdSWMdI0+6PsqzgJCYfM+9yPxJav0IkbxlHBkUgkzu3nw6ZbbSEDrTWFmN48Sf4P9EPu1IAiEJYRlKoC8jH2ZrRaknFm5TIUQO2O7Qnvbfx7znI5bOvIw4iEmeiZqYWpF1xXMPD8TgO7u3ZFJZXSu2JnN9zZzPOA4m3ttJiQ+hEvBl+i8tTNeo70oZ1Yuw/iWhpYMqzWMYbWGkZiWyKnAU+x7uI/DfocJTwxnzZ01rLmzBlM9U7pU6kKvKr3oUqkLpvqm6v0blmtIw3KamaMVgoIXsS+U2pb/Cy4q4eVZ9DNiUmK4/vI6119ez7AmJzOnDOaiytaVcTZ3RiaVZfl9iX4QH0ZW9yPVFfDu/Ug0U4vkBFGDUozRdmO1MBKY27teib+xZma/Vt0Clw+tS0t3iyy1IIlpiVnOYaxrTAWrCloFEGcLZwx0DLLcvzB4EPaAjls68jLuJWVMypCcnsyb5DeMrTuWLxp+QfXl1dGX6RMxLQITPRN2PdjFgD0DqGpTFd/PfIlKiqLZumY8jHhIDbsaXBx5EXMD8xzNnSZP499n/7L/4X4OPD7Aq7hX6m16Mj3aubWjd5XedHfvjq2xba6OKykticA3gRrCi+rfqKSoTPfTk+lR0aqi0kz0jvBiY2STo/OopF9LeUVuBD1Rg1J6EU08pQiVanruhb85GbSbCU3as6jT74W9rHwlO/s1CAjSNwTrjcg0PBOUYbRO5k5aBRA3SzdsjGyKlc/D5eDLeG73JDo5mio2VTDVM+XGqxvUdqiN12gvFnkt4vuz39OlUheODj4KQHRyNDbzbZALcgInBeJm6caz6Gc0XtuY1/Gvae3SmhNDT6An08vVWhSCghsvb7D/0X72PdynEeUjlUhpVr4Zvar0oleVXjhbOH/QcUcmRmr4uqj+7x/lrxGF9C5WBtaYxy1FkW4KWpyHS5OpNK/IqalMNFOXXkQBpRSy5d4Whu0fRsOyDbk6Jvs3k+JMTt++QvSmo2f4NFMtSHnz8oUavZGXHHp8iAF7BpCcnkzjco2pX6Y+S28sxVTPlNuf3KaiVUUarWnEtZfXWOm5knH1xqn3bb2xNeefnmdJpyV83vBzALxDvGmxvgVxqXEMrjGYzb02v7fjriAI+Ib7qiOCbr++rbG9jkMdelXpRe+qvfGw9cgzoVCukBMcE6zVUfd57PNsw2NViG/x+YNKe6VAoZEHRtRelWxEAaUUEvQmCLclbuhKdYn5NibfnTALk4PeL/lih3e2/X7rXZHBH1UuVlqQ92HN7TV8cuQTFIICz8qeDK85nH57+gGwp98e+nj04XXcaxwXKYtxvvzqJY6m/xXm/P3K70w9PZUOFTpwcuhJdfvpwNN02daFdEU605pMY177eXmy3mfRzzjw6AD7H+3nYvBFjbwvlawqKTUrVXvRoGyDfMuUmpCawLor9/j9RObmIRXFJdV8cWTemZMsPfMaHf4z+Yn+PyWb3Dy/i0aeZJEPxsXCBUdTR9IUadx4daOwl5Ov2JnmzPfDzbp4mWhyiyAIzPp3FmMPj0UhKBhVexR/dPyDcUeU2pEvGn5BH48+AOpQ4wZlG2gIJwBdK3cF4PzT8xrRSe0rtGdt97UAzL8yn7+u/5Un63a2cOaLRl9wfsR5QqaEsKbbGrpW6oqeTA//KH/mX5lP47WNcfrDiQlHJ3A68DRp8rQ8mVuFsZ4x9Z0q56hvTs83kdzzIG4rLw1G07CGF4sH1mb72EZc+qaNKJyIAKKAUmKQSCQ0dWoKKH0RSjINXK0oY26QacoxCcq3sAauVgW5rAJFrpAz8dhEfjz/IwDfN/+eZV2WMXjvYN4kv6FB2QbMbz9f3f/g44MAdK/cPcNY7tbuVLCsQKo8lTNPzmhs+7jWx/zW5jcAJh2fxP6H+/P0OGyNbRlddzRHBh8h4usIdvbdycDqAzHVM+VV3CuW31xOhy0dsFtox7D9w9j/cH+2zs05RTyPCpeE1AT2PdwHEgWTW3SlR+2yNK5gLfqc5CNyhYBXYCQHvV/iFRiJXFG0DSiigFKCUAsoz0u2gKIKa4SMro2ZhTWWJJLTkxm4dyB/3/wbCRKWdl7Kr21+ZdqZadx4dQNLA0t29d2ldmxNSE1QCx49qvTIMJ5EIqFrJaUW5ajf0Qzbpzebzvh64xEQGLxvMFeeX8mX4zLVN6V/tf5s77Od8K/DOTb4GGPqjMHWyJbo5Gi23NtC7129sZlvQ6+dvdh0d1OWETzZUdrPo8LmwKMDJKQlUMGyAo3KNSrs5ZR4Tvi8ptm8swxafZUvdngzaPVVms07ywmf14W9tEwRBZQSRNPy/wko2dVzKe50ql6G5UPr4mCuqX53MDco0c51MckxdNrSiT2+e9CT6bGj7w4mNpjI7ge7WXp9KQCbe23WiIw5FXiKFHkKrhauVLOtpnVcz8qeABz1P8q7bmkSiYSlXZbSrXI3ktOT6ba9G48jHufTESrR19Gnc6XOrO6+mtdTXnNhxAW+bPQlLhYuJKUnceDRAYYfGI7dAjvabWrHsuvLeBn7MtfzlNbzqCiw+d5mAIbWHFqiTbFFAZVD8ruRj6qyAkVVSBGdZEsQafI0LOZZkJiWiM+nPlSz0/4wKkmUpgygr+Je0XlrZ+6F3sNUz5SDAw/S2rU1fpF+1F9Vn7jUOL5t+i1z2mlGpow8OJIN3huY3HAyf3T6Q+vYKekpWM+3JiEtgVvjblG3TN0MfRLTEmmzsQ3XXl7DxcIFr9FeOJg45MuxZoYgCNwNvcu+h/vY/2g/PmE+Gtsblm2odrKtbJ0zHxMoXedRUeB13GvK/VEOhaDA/3N/KlpVLOwllViKWlkB0Um2lKIr06VhWWV2zpJu5lEhk0poXMG6xNuv/SL9aLK2CfdC72FvbM+/I/6ltWtrktKS6Le7H3GpcbRwbsGsNrM09pMr5GoH2e7uGf1PVOjr6NOhQgfgP4fadzHSNeLwoMNUtKrI0+indN3WlbiUuDw6wpwhkUio7VCbX1r/wv1P7+P/uT/z282ncbnGAFx7eY1v//kW97/cqfZ3NX44+wO3Xt3KoBV6l9JyHhUVtvtsRyEoaFyusSic5DPXg6KyyBmlWW26qCEKKCWM0uKHUpq4/vI6Tdc15VnMMypaVeTK6CvUKVMHgM+Pf8690HvYGduxvc/2DJWAvV54EZEYgaWBJc3KN8tyHpWZJzMBBZROrSeGnMDWyJbbr2/Tb3e/PI+wyQ0VrSryddOvuTL6Cq++esXyrsvpUKEDOlIdfMN9+e3ib9RfXR+XxS5MPjGZf5/+i1whL7T1iijZcm8LoDTviOQvxbmsgCiglDBUD6GSHslTWjgRcILWG1sTkRhBfcf6XB51GTdLNwA2em9k7Z21SJCwrfe2DOHDAAcfKaN3ulTqgq5MN8u5ulTqAsCNVzcIjQ/NtF8FqwocHXwUI10jTgaeZNyRcdlqKAqCMqZlGF9/PCeHniRsahibe22md9XeGOkaERwTzOJri2m1sRUOvzsw+uBojvgdybI4oUj+8CDsAXdC7qAr1WVAtQGFvZwSj3kO62gWxXB6UUApYTQq1wgJEgLfBGb5kBEp+my+u5lu27uRmJZIe7f2nP34LHbGdgD4hPnw6dFPAfip1U+0dWurdYxDfocA6OGeMXrnXRxMHKjvWB+AY/7Hsuz7UdmP2NV3FzKJjA3eG/jp/E85PawCwdLQkqE1h7K3/17Cvw7nwIADDK81HCtDKyISI1jnvY5u27thu8CW/rv7s/3+dmJTYgt72aUClXNsl0pdsDYSM/TmJwFRAUz6pyvphCOgPXCiKIfTiwJKCcPcwJwa9jUA0cxTnFl4ZSEfH/iYdEU6g2sM5sjgI+pqwPGp8fTd1Zek9CQ6VOjADy1+0DrGo4hH+EX6oSvVpWPFjjmaVx1u7J8x3DhD38pdWd51OQC/XPiF1bdW52iOgsZI14geVXqwoecGQqaEcGbYGT776DPKmpYlPjWe3b67GbxvMDbzbeiytQurb60Whft8QiEo2Hp/KwDDag4r5NWUbA4/Pkz9VfW5H3YXuelOJEiLXTi9KKCUQFR+KJeCLxXySkRyi0JQMOXkFL4+/TUAXzX6is29NqtzmgiCwCdHPuFx5GPKmpZlS68tmaaDP/RYqT1p49oGM/2cRbup/FBOBZ7KstCeirH1xjKjxQwAPj36qdY8KkUJXZkubd3a8leXvwj+MphrY67xbdNvcbd2J02RxvGA44w7Mo4yv5eh+frmLPJaRNCboMJedonh36f/8iL2Beb65uoMxiJ5i1wh54ezP9B9R3diUmJo4tSEW5PWsqIYhtPrZN9FpLjR1Kkpy28uFzUoxYxUeSqjDo5Sv2EuaL+AqU2mavRZeWsl2+5vQyaRsaPvDmyNbbUNBbyVPTaL6J13qVumLvbG9oQmhHLx2cVMTUdv83Orn3kR+4L13uvpv6c/54ef56OyH+V4zsJCKpHSoGwDGpRtwJx2c3gY/lAdvnzr9S0uBV/iUvAlppyaQi37WvSu2pteVXpR3a56pnk7xHDlrFGZd/pX64+BTtHzeSjuRCRGMHjvYE4/OQ3ApAaTWNBhAXoyPRyrQ3sPh2J1fop5UEogT6Of4rrYFR2pDjHfxmCkm0MvKZFCIy4ljr67+3Iq8BQ6Uh3WdV/HsFqaKvDbr2/TeG1jUuWpWoWXtwlLCMNhoQMCAsGTg3Eyd8rxWkYfHM0673VZ5k15lzR5Gt22d+Nk4ElsjWzxGu1FBasKOZ6zqBEcE6wuaHjh2QWNxIcVLCuoc600KtdIrcE64fOanw/7aoR0ioXv/iMxLRGHhQ7EpcZxYcQFmjs3L+wllSiuv7xO3119eR77HCNdI9Z0W8OgGoMKe1kZEKsZl3IEQaDcH+V4FfeK88PP09KlZWEvSSQLwhLC6LqtKzdf3cRI14i9/ffSqWInjT7RydHUW1WPJ2+e0K1yNw4OPJhl9s11d9Yx+tBo6papy61xt3K1nv0P99N7V28qWlXE/3P/HO8XlxJHq42tuP36tjIcetSVLDU8xYXwhHAO+x1m/6P9nA48TYo8Rb3NwcSBHu49cNbvwap/FLx7M1X9QkVZjV5Q7PDZwaC9g3CxcCFwUmC+VaoubQiCwKpbq5h0YhKp8lQqW1dmb/+9VLerXthL04qYqK2UI5FI/gs3Fs08RZonb57QdF1Tbr66iY2RDeeGn8sgnAiCwMiDI3ny5gkuFi5s7Lkx29TgKv8TbcUBs6OdWzt0Jfo8Dzdk5aVbOS4qZqpvytHBR3GxcCEgKkAdgVTcsTW2ZVSdURwedJjwr8PZ1XcXg6oPwkzfjJD4EFbeXM2yf0LJKJ6gbvn5sG+RL8yW36hynwypMUQUTvKIpLQkRh4cyfij40mVp9KrSi9ujL3xwcJJUSkqKPqglFCaOjVl14NdooBShPEO8abTlk6EJoTibO7MqWGntKZn//Pqnxx4dAA9mR67++3G0tAyy3GT0pI4FXgK0F4cMDsu+8dTPnUD6emmzDkSAoTk2FThYOLAiSEnaLKuCddeXmPQ3kHs7b83QwK54oqpvin9qvWjX7V+pKSncO7pOdZevcANn8w1RW9n6mxcoXSG1YYlhHEi4AQgRu/kFU/ePKHPrj54h3gjlUiZ23YuU5tM/eC6RkXJVCmKsSUUVSTPledXSnzhwOLI2aCztFjfgtCEUGra1+TK6CtahROv515MOzMNgEUdFqnzlGTFmSdnSEpPorx5eWrZ18rVulRFxdLTTTTac1NUzN3GncODDmOgY8Chx4f4/NjnRSKRW16jr6NPp4qdGFr9sxz1L4qZOguKHT47kAtyPnL8CHcb98JeTrHniN8R6q2qh3eIN7ZGtpwedpqvm36dJ8JJUSoqKAooJZRaDrUw1jUmOjka33Dfwl6OyFvserCLzls7E5caR0vnllwYcUFrFtiIxAj67+lPuiKd/tX6M+GjCTka/23zTm5uWHKFwM+Hff9vltDcL7emiiZOTdjWexsSJKy4tYI5l+Zku09xJacZOItips6CQhW9I2pPPgy5Qs6P536k2/ZuRCdH06hcI25/cps2rm3yYOy3r39NCstUKQooJRQdqQ4Ny/2/cGAxSHtfVGye+c1f1/9i4J6BpMpT6VO1DyeGnsDcwDxDP4WgYNj+YbyIfUFl68qs6bYmR8KGQlBw2O8wkLvwYsj7omK9qvZiSeclAHx/9ns23d2Uq/UUFxq4WlHG3CBDEiwVRTlTZ0HwKOIRN1/dRCaRMaC6mNr+fYlMjKTLti7MuqAsCDrxo4n8O+JfypmVy5Pxi2JRQVFAKcEUl8KBJ3xe02zeWQatvsoXO7wZtPoqzeadLXB1Yn4iCAI/nP2Bz49/joDAp/U/ZWffnZnmgph7aS4nAk5goGPA7n671Vlks+P6y+uEJoRipm+W6+it/CgqNrHBRKY1UZqoRh8azenA07laU3FAJpUws5sH8K7eqehn6iwIVM6xnSp2UpdqEMkdN1/dpO6qupwKPIWhjiFbem1haZel6gSOeUFRLCooCiglmOIgoBQ1m2d+kK5IZ8yhMfx28TcAfmn1C8u6LEMmlWntfy7oHDPOKbOz/t3lb2ra18zxXKrigJ0rds71zSu/TBVz2s1hUPVBpCvS1U59JY1O1cuwvBhm6sxvFIJCLaCI5p3cIwgCq2+tpum6pgTHBFPRqiLXxlxjSM0heT6PT8SVHPUtSFNlyXCtF9FKY6fGSCVSnrx5Qkh8CA4mDoW9JA2ys3lKUNo823s4FNu3z8S0RAbuGchhv8NIJVJWdF3B2HpjM+0fEh/CoL2DUAgKRtQewcg6I3M1X26KA76LylQREpOs9TeRoHzg5tZUIZVIWd9jPSHxIZx7eo4uW7vgNdoLZwvnXK+xKNOpeplil6kzv7kUfIlnMc8w1TPNtcmxtJOUlsTEYxNZ570OUF7TG3tu1GoS/hCeRj9lwtEJHPc/SVnWooMNGXWB73/9fwiiBqUEY6ZvRg27/xcOLIJ+KEXR5pmXRCVF0W5TOw77KSNa9vbfm6Vwkq5IZ9DeQYQmhFLdrjrLuizL1XwBUQH4hvuiI9Whc6XOuV5vfpoq9HX02T9gPzXsavA6/jWdt3YmKql4/q5ZIZNKaFzBmh61y9K4gnWpFk7gP/NOX4++GOoaFvJqig9Bb4Jouq4p67zXIZVImdN2DvsG7MtT4SRdkc7vV36n2t/VOB5wHD0dHTrUiUWCpMiYKkUBpYRTlM08RdHmmVc8j3lOs3XN8HrhhYWBBaeHnaZnlZ5Z7vPT+Z84//Q8Jnom7Om3J9clClTROy2dW2JhYPFe685PU4W5gTnHhhyjnFk5HkY8pOeOniSnF7/fViRnJKcns+vBLkA07+SGY/7HqLeqHndC7mBjZMOpoaf4ttm3eZrc7tarWzRY3YCpp6eSmJZIC+cW3Bt/j3UDJhUpU6Vo4inhNC3flL9v/l0kKxuX1PDMB2EP6LS1Ey9iX1DWtCwnhp7INrPjcf/jah+VVZ6r3itXxPsUB9RGfpoqypmV4/iQ4zRb14yLwRcZtn8YO/vuFDOLlkCO+B0hJiUGJzMnsdxGDpAr5Pzy7y/MujALAYGGZRuyu9/uXNXRyo741Hh+PPcji68tRiEosDSwZEH7BYysM1J9DRYlU6UooJRwVBqUOyF3SExLLFKFAxu4WuFgpk9IbDJFxeaZW96tXpsue0j3ncocBVVtqnJi6AnKm5fPcoznMc8Ztl/5hvlp/U/fq8BXZGKkWgjNC1u/ylSRH1S3q86BgQfouKUje3z3MOXkFBZ2WFQkbogieYcq98m7qe3Fis8ZiUqKYsi+IepsuxPqT2BRx0Xo6+jn2RxH/Y4y4dgEgmOCARhUfRB/dPwDexP7DH3z8/rPDaKAUsIpb16esqZleRn3kusvr9PKpVVhL0mNTCqhnnsQR26UARRI3rI4FofwTG0poeWSCFJ0q9LIWeDIoCNYG2V9kafKU+m/pz+RSZHUK1OPPzrmrHrwuxz1P4pCUFDTviYuFi7vNUZB0sqlFRt7bmTQ3kGsvHKN01cPEp+sq94uVgEu3kQkRnDM/xgAQ2sOVbcXpTTqRYXbr2/TZ1cfnkY/xVDHkJWeKzNUMv8QQuJD+OLEF2pzm4uFC8u7Ls9Q86soIupVSzgSiYSm5f/vh1LEHGX9I/1Z92gS4XqzMTPUjBsp6uGZmYVHSwUr7FK/49t6O7IVTgCmn5nO1RdXMdc3Z1e/Xe/9xqTyP3mf6J3CYmD1gYyvtgLb1O+IS9Z8VypJYealkV0PdpGuSKeOQx2q2VUDSkdKgdyy9vZamqxtwtPop1SwrIDXaK88E04UgoJVt1ZR5a8q7HqwC5lExtTGU/H51KdYCCcgalBKBc2cmhW5woFyhZyRB0eSnJ5Mu0rGHB/syY2nb4qF2jer8GgJUiTA3OMBeNYsn+Ux7H+4n0VXFwGwoecG3Czd3mstlwJCOPswFn15DbpW6pbrMQoLuULgjn9FJCShLbV+SQgzL628m9q+NKQUyA3J6clMPDaRtXfWAtCtcjc29dr03s7t7/Iw/CHjjoxTm33rlanH6m6rqVOmTp6MX1CIAkopQKVB8XrhhUJQFAmHxL+u/8Xl55cx0TNhTbc16MikRcLmmRNyEx6d2TEFRgUy8qAyx8mUxlOyjfDRxtvqcjO+wAz4YnMsP3V7XWQ1T29zPSiKkBjt/kcgVgEurvhH+nP1xVWkEqnanyovrpmSwtPop/Td1Zdbr28hlUiZ1XpWnkXpJKcnM+fiHOZcmkOaIg1jXWN+a/MbExtMzDQxZFFGFFBKATXta2oUDswuoiS/CYgKYPo/0wFY2H5hsUvY9aHh0cnpyfTf05+YlBgal2vMnLa5L6SnUpe/+0Ya+n91eVE2j6koyWHmpZmt97cC0N6tvTo5pPhbKzkRcIIh+4YQlRSFtaE12/tsp32F9nky9r9P/+WTI5/wOPIxAJ6VPVnWZVm2TvpFmcJ/lRbJd3SkOjQq1wig0MONFYKCUQdHkZSeRDu3doyrN65Q1/M+5DY8+t1CiJOPf8nt17exNrRmZ9+d6Mp0sxlJk6JYdfR9KKlh5qUZQRC0prYv7b+1QlDwy7+/0GVrF6KSovjI8SNuf3I7T4STqKQoxhwaQ6uNrXgc+RgHEwd299vNoYGHirVwAqIGpdTQ1Kkp/wT9w+Xnlxlff3yhreOv639xMfgiJnomrO62OkcVeosauUkJry1qIZ2GGOndY0vvGe+V46CkqMvzK7W+SOHh9cKLwDeBGOsaa5gtVb/165iM/kZQsn/rqKQohu0fpo5q+qTeJyzutPiDQ4gFQWCHzw4mn5xMWEKYeuy57ebmmS9LYSNqUEoJRSGSJyAqgG/PfAvAgvYLikU4rDZymhL+tG+I1qgFGdbYpk6H5FrvNX9JUZeLVYBLHpvvKp1j+3j0wVjPWN0uk0oY3dIcARBQaOxTkn/rO6/vUH9VfY75H8NAx4ANPTawwnPFBwsnQW+C6LKtC4P3DSYsIYyqNlW5OPIiKzxXlBjhBEQBpdTQqFwjpBIpQdFBvI4r+HA+haBg9KHRJKUn0ca1TbE07bxNdinh23s4ZBPpI3lvM0xJUpeLVYBLDqnyVHY+2AnA0BpDM2y/GrGCcL3Z6OkmarSX1N96/Z31NFnXhKDoIFwtXPEa7cXw2sM/aMx0RToLryyk2t/VOBFwAj2ZHr+0+oU7n9yhWflmebTyooNo4iklmOmbUdO+Jt4h3lx+fpm+Hn0LdP6/b/zNhWcXMNY1Zk23NUUikuhDySoltFdgZL6ZYUqaaaQopdYWeX+O+R/jTfIbHE0daePaRmPbq7hXbL63mVRZKhtGLESa7l5if+vk9GS+OP4Fq26vAkFKS8exjKs9laQEa+QK4b2P9earm4w9PBbvEG9AWXNrpefK9yqLUVwQBZRSRFOnpkoBJbhgBZQnb57wzZlvAJjffj6ulq4FNnd+k1lK6Pw0w6hMI59uuY0ENISU4qouLyqptUXeH1Xuk8HVB2cIaV18dTGp8lSalW9GU+cmhbG8AuFZ9DP67u7LzVc3MZI3wUU6ladP9PjuiT/g/15Zc+NT45lxdgZLri9R189Z2GEhI2uPLJY+fLmh+L/GiuSYwqhsrDLtJKYl0sqlVaE66BYk+W2GEU0jIkWJN0lvOOJ3BCBDJtSY5BhW3FoBwLQm0wp8bQXFqcBT1F1Vl5uvbmIn64Bt6nckJOtp9Mlt1twjfkfwWObBn9f+RCEoGFxjMI8mPmJUnVElXjgBUYNSqlA5yt5+fZuE1AQNJ7a85O1iYF6vTnA+6AJGekas7b62RJh2ckJBmGFE04hIUWG3725S5anUsKtBTfuaGttW3VpFbEosHrYedK3ctZBWmH8oBAWzL87mx3M/IiBQr8xHSMK/Ipz0DH1zmjX3ddxrvjjxBbt9dwPK+jkruq6gY8WO+XgkRQ9RQClFlDcvTzmzcryIfcH1l9dp7do6z+fIGFbrQFnW0ruW4r1SuRdXCsoMI5pGRIoC76a2V5GSnsIfV5UFML9u8nWJe0F5k/SGjw98rNYeja07liHuPzN83e1M98nK/0whKFh9azXfnPmGmJQYZBIZXzX+ipktZ+bbC2VRpmSdLSLZkp9mnsyKgelgw+Fr9qWuGJhohhEpDQS9CeJS8CUkSBhcY7DGtq33t/I6/jVlTctm2Fbc8Q7xpv7q+hzxO4K+TJ913dexqtsqohMV2e9MRv+zB2EPaLG+BeOPjicmJYb6jvW5Oe4m89vPL5XCCYgalFJHU6em7HywM88FlKyym6p0BqWpGJgK0QwjUtJRZY5t69aWsmZl1e0KQcGCKwsA+LLRl+jJ9LTuXxzZdHcTnxz5hOT0ZFwsXNjbfy91y9QFID79ZY7GUPmfJacnM/vibOZemlsi6ufkJaKA8oG87W9RHB4+qlh5r+d5WziwpGQ3zS05+f1FM4xISUUQBLbcVwoo7+Y+OeJ3hEcRjzDXN2dsvbGFsbwckZt7eEp6CpNPTFY7/Xau2JktvbdgZWiFIAgsvb6Uaae+xYa/kWGNRIuR4m3/s/NPz/PJkU/wi/QDSkb9nLxEFFA+AG1pzN8njKwgqWFfAxM9E2JSYngQ9oAa9jXyZNySkt00NxTH319EJC+58eoGfpF+GOoY0rtqb41t8y7PA+DT+p9ipm9WGMvLltxcw8ExwfTb3Y/rL68jQcLMljOZ0XIGUomU0PhQRh4cyfGA4wBUcL7Ds2cdMvU/+6pjecYdHsM673XKOU3KsKTzEvpU7VMqonNyiuiD8p5k5m+R2zCygubtwoF5aeYpSdlNc0Jx/f1FRPISVWr7XlV7Yapvqm6/HHyZK8+voCfTY1LDSYW1vCzJzTV85skZ6q6sy/WX17E0sOTYkGPMbDUTqUTKcf/j1FxRk+MBxzHQMWBZl2WcH/8nKzLxPxvUPIHP/mmqFk7G1xuP72e+9PXoKwon7yBqUN6D7KrJ5iSMrDBp6tSUM0/OcCn4Up7lJWngaoWVsYTIBHm2as3iTnH//UVE8oI0eRo7HuwAMkbvzL8yH4DhtYZTxrToaRNzeg23rWrHgivzmHFuBgpBQd0yddnbfy8uFi4kpyfz7ZlvWXxtMQA17Gqwvc92qtlVAzL6n8klUay49zVzbp4EwMPWg1Weq9TpH0QykucaFLlczowZM3B1dcXQ0JAKFSowa9YsBOG/U0EQBH788UfKlCmDoaEh7dq1w9/fP6+Xkm/kxt+iKJIfkTwSBF5KFv//fyW7GFhx//1FRPKCk4EniUiMwN7YnnZu7dTtvuG+HHp8CAkSpjSeUogrzJycXsOd1n3G92e/VyacrDOay6Mu42LhwoOwBzRc01AtnExqMInrY6+rhRMVMqmE+i5m+CVsY+iRhpx+chJ9mT6/tv6VO5/cEYWTbMhzDcq8efNYvnw5GzdupFq1aty8eZORI0dibm7OpElKVd/8+fNZsmQJGzduxNXVlRkzZtCxY0d8fX0xMCj6JoCc+lG8jokHip5zpKpw4NPop7yKe4WjqeMHjzny4EjC5Kcw1IvDXfd73iT8t82hhPlllEZ/GxGRd1HlPhlUfRA60v8eJQuvLASgZ5WeRbZOTE6vzavBD9HX1+evLn8xpu4YBEHg7xt/M+XUFJLTk7EztmNDjw10rtRZ6/43Xt5g7OGx3A29C0Arl1as9FxJZevKeXYsJZk8F1CuXLlCjx496NpVmTHQxcWF7du3c/36dUCpPfnzzz/54Ycf6NGjBwCbNm3C3t6eAwcOMHDgwLxeUp6TUz+KyadH8TKtJ2PqjsFQ1zCfV5VzTPVN/yscGHyZftX6fdB4Xs+92HRvEwDtq9qyb0CXYhXZlFtKm7+NiMi7xCTHcPDRQUAztf3L2JfqsONvmn5TKGvLCXam+jnqZ2uix95hl6nnWI/whHBGHxrNYb/DgDKCZ32P9dib2GfYLy4ljh/O/sBfN/5CISiwMrTi9w6/M7zWcNHPJBfkuYmnSZMm/PPPP/j5KcOm7t69y6VLl+jcWSlhBgUFERISQrt2/6kEzc3NadiwIV5eXlrHTElJITY2VuNTmKjSmGd+mgkI0kieJ51n0olJuCx2Ye6lucSmFO6636aZkzLc+EPNPAqFgm7buwFgomfC7n671WG1PWqXpXEF6xIlnMB/v39mSFBGApQEfxuRwkGuEPAKjOSg90u8AiORK7RnGCos9vjuIUWeQlWbqtRxqKNuX3xtMWmKNFo4t6BhuYaFuMLMSZOnsf7B96QTnsEcrUJAgY5uHNc/2049x3qcDjxNzRU1Oex3GD2ZHos7Lebo4KNahZPDjw/j8beHurjfkBpDePjZQ0bUHiEKJ7kkzwWUb7/9loEDB1KlShV0dXWpU6cOkydPZsiQIQCEhIQAYG+v+cPa29urt73LnDlzMDc3V3+cnJzyetm5QpXGHMggpEgACRKWDmjFcs9luFi4EJYQxvR/puP8pzM/nvuRiMSIAl/zu6hsnx8qoIw+PJrIpEgAdvXdhZ5OyUnGlBn//f5Cife3ESl4Tvi8ptm8swxafZUvdngzaPVVms07W6Qiw1S5T4bVHKZ+6EYnR7PiZtEuChidHE2XbV1YfWcVb/RWI0GS4R4uoECChCX9mmNuYMrUU1PpsKUDIfEheNh6cGPsDSY1nJRB2Hgd95p+u/vRfUd3XsS+wNXClZNDT7Kl9xbsjO0K7iBLEHkuoOzatYutW7eybds2bt++zcaNG1m4cCEbN2587zGnT59OTEyM+vP8+fM8XPH7kV0a8+61yjO+/nj8JvqxqecmqtpUJTo5mlkXZuH8pzNTTk7hVdyrQlr9f46yd17fISE1IZve2rnx8gYbvDcA0LVS10ztsCWRTtXLYF/uMHIiNdrFNPYiH0JxCF8Pjgnm/NPzAAypOUTdvvLmSuJS46hmW61I3gsCowJpvLYxZ56cwVjXmB1DvmXF0HpYvJNF3spYyoqh9XBzjKPx2sb87vU7ABPqT+Dm2JsZiiEqBAUrbq6gyrIq7PHdg0wiY1qTafhM8KFDhQ4FdXglkjz3Qfn666/VWhSAGjVq8OzZM+bMmcPw4cNxcHAAIDQ0lDJl/ruJh4aGUrt2ba1j6uvro6+fM5thQZKTNOa6Ml2G1RrGkJpD2P9wP7Mvzeb269ssurqIv278xcjaI5nWdFqBF9JzMnfCycyJ57HPufbyGm1c2+Rqf4VCQZdtXQClaWdf/335scwiS1RSFLei1iI3WMOennfQwbpE+tuIFBzFJXx9672tgNLhU5XxNCU9hT+v/QnAtKbTilxRwIvPLtJrZy8ikyIpZ1aOI4OOUNO+JvMuz+OeYga6elWpYF6HWe2m0r16NdbeWcuAZStJTzfFzqApK3tPo2fV7hnGfRD2gHFHxnHl+RUAPnL8iNXdVlPLoVZBH2KJJM/PosTERKRSzWFlMhkKhVIV7urqioODA//88496e2xsLNeuXaNx48Z5vZx8J6f+FlKJlD4efbg59ibHhxynWflmpMpTWXlrJZWXVmbY/mH4hvsW6NrVZp7g3Jt5xh4eqzZV7ey7s1SYdt7mqN9R5IKcGvbV6FO7Zon1txEpOIpD+LogCOronbdT22++t5mQ+BDKmZVjYPWiFeiw6e4m2m1uR2RSJPUd63N9zHVcLFzovas30/+ZjoJ0BtWrx81JK2hZyZH2a6Ywa48ulkk/Y5s2DcO46cw7YKyhvUpOT2bG2RnUWVmHK8+vYKJnwuJOi/Ea7SUKJ3lIngso3bp147fffuPo0aM8ffqU/fv3s2jRInr16gWARCJh8uTJ/Prrrxw6dIj79+/z8ccf4+joSM+ePfN6OUUOiURCp4qduDjyIhdGXKBjhY7IBTlb7m2h2t/V6LOrD7de3SqQtbxvPpQbr26osyB2qdiFLpW65PnaijoHHh8AlKGUIiJ5QXEIX78TcoeHEQ8x0DGgr0dfoOgWBVQICn44+wPDDwwnVZ5Kn6p9+HfEv0QkRvDR6o848OgAejI9VnquZF33dVx9cZXaf47gSVBbZNhojPW2ie1c0DlqLq/Jrxd/JU2RRnf37vhO8GVSw0mlvrhfXpPnJp6lS5cyY8YMJkyYQFhYGI6OjnzyySf8+OOP6j7Tpk0jISGBcePGER0dTbNmzThx4kSxyIGSlzR3bs4J5xPcenWL2Zdms+/hPvWnY4WOfNf8O1o4t8i3+VUCitcLL+QKeY4uLoVCQdetyhByY11j9g/Yn2/rK6okpSVxIuAEIAoopYn8LgxaHMLXVantu7t3x9zAHIBDjw/hF+mHhYEFY+sWjaKASWlJDD8wnN2+uwH4rtl3zGozi+33tzPuyDgS0xIpb16ePf32UNuhNt/98x3zLi3AMXnN/51mNX9Xldnti12X8JMOBImCMiZl+KvLX/Sq0kuMzsknJMLbKV6LCbGxsZibmxMTE4OZWdEsQvU++Ib7MvfSXLbd34ZckAPK6sPfN/+ejhU65vlFkK5Ix2qeFXGpcdwdfzeD85c2xh4ay5o7awA4PPAwnu6eebqm4sDhx4fpvqM7TmZOPJv8TLw5lQIKojCkXCHQbN5ZQmKStfqhqMpFXPqmTaGYEtMV6ZRbVI7QhFAODzqMZ2VPBEGgybomXH1xle+afcdvbX8r8HW9S0h8CD129OD6y+voSnVZ3W01g2oMYsrJKfx14y8AOlTowNbeW4lOjmbw3sHceHUDfXkNHFLnZDt+qN50RjVszuy2s9VCmkjOyc3zu2h5MpVyPGw92NRrE36f+zG+3nj0ZHpcCr5E562dqb+6Pnt996IQtMftvw8ahQNz4Idy89VNtXDSqUKnUimcABx4dABQak9E4aTkU1CRNVmlL1C9wxdm+PrpwNOEJoRiY2RDxwodAbgUfImrL66iL9Pn84afF8q63uZe6D0arG7A9ZfXsTK04szHZ2jn1o5WG1qphZMfmv/A0UFHOeJ3hNoranPj1Q0sDSyZ2vCXHM0xq+USlnVdJgonBYAooBRB3CzdWO65nKAvgviq0VcY6Rpx+/Vt+u7uS7W/q7Hp7ibS5Gl5MpfKzHPp+aUs+2Uw7QwsfaYdALlCziG/Q4Bo3ikNZBdZA8rImrxKpJZZ+gKk0fw9pHDD11W5TwZWG4iuTBfQLAroYOJQaGsDpeN603VNeR77nMrWlbk25hpyhZy6q+ri9cILc31zDg08xJQmUxiyfwgjD44kIS2BVi6tuDv+Lvp6KTmap6lLjXw+EhEVooBShHE0deT3jr/zbPIzZrSYgYWBBY8iHjH8wHAq/1WZ5TeWk5z+YQ5zOY3kmXB0AmGJYQBs7b0VA538t4MXxWyaV55fISIxAksDS5qXb17YyxHJZwojsqZT9TJc+qYN28c2Yn7fqkQZzuSZ3nAcbLQnsiwI4lLi2P9Q+VKiSm3/IOwBR/yOIEHC1CZTC21tgiCw+Opiuu/oTnxqPG1c2+A1yot9D/fRbnM7whLCqGVfi1vjbmFhYEGtFbXY9WAXOlId5rSdw+aem5l4fCI/Xh5MOuGgVRwVM0QXBqKAUgywMbLhl9a/8GzyM+a2nYudsR1Po58y4dgE3Ba78fuV34lPjX+vsRuWbYhUIuVZzDNexr7U2sf7tTerbq8CoINbB3pU6fHex5JTimo2TZV5x7Oyp/otUqTkUliRNar0Bf3ru9G+qjNIFGqHz8Jg38N9JKUnUdm6Mh85fgSgjtzpXbU3lawrFcq60uRpfHbsMyafnIxCUDC27lh29d3F2CNj+ebMNygEBcNrDefCyAtsvLuRVhtbERwTTEWrilweeZmypmWpsaIGhx4fQkcqxbbMvwggZoguIogCSjHCTN+Mb5p9Q9AXQSztvBQnMydex79m6umpOP/pzC///kJUUu7e5Ez1Tallr4zb1xZurFAo6LS1EwICRrpGHBx0ME+OJSuKajZNQRDE8OJSRlGIrOnnoSzmudt3N4UV0/B27hOJRMKL2Bdsva9M2PZ1k68LZU3RydF03daV5TeXI0HCwvYLmdRgEk3WNWHfw33oSnVZ0XUFM1rMoOOWjsy6MAuFoGBk7ZEcG3yMWRdn8fGBj4lOjqaCZQWsjazxjt5AuN5s9PU07z1ihujCIc/DjEXyHyNdIyY2mMi4euPYcm8Lcy/NxT/Kn5nnZ7LgygIm1J/AV42/0lrIShvNyjfjTsgdLgdfpn+1/hrbJh6fSGhCKABbem3JN9OOKoQzJCaJWUcfFslsmj5hPjx58wQDHQO1k6BI7snvcN28RFUYMrPIGsh/tb9nZU8MdAwIiArgbuhdajvUzre5tPEy9iVng84CMLSmMjnbn1f/JF2RTkvnloVSFPDJmyd4bvPkYcRDjHSN2NZ7G0npSTRc25DEtETKmZVjT789+Ef5U2dlHeJS4zDXN2el50oSU5NpvHw4SSm6GMtq42ybjm+ED6D0/1vR9WfauLYrNudoflBUrlFRQCnG6Mn0GFVnFMNrDWeP7x5mX5rNvdB7zL8ynyXXlzC6zmi+bvI1zhbOWY7T1KkpS68vzaBBuRd6T138q51rO3pV7ZUvx3HC5zU/HfYlJAtbv4q3bf6NK1jny3oyQ2Xeae/WHmM946w7i2ilIMJ18xJVZM2nW24jQdM7QWkGkPBxc6N8vXmb6JnQuWJn9j/az+4HuwtcQNl2fxsCAs3KN8PV0pXo5GhW3loJwDdNvynQtYDSX67nzp5EJEZQ1rQs+wbsY+u9rSy5vgSAdm7tWNF1BTPPz1RreZqVb8bC9guZengLQc/qYcL3mACkQczzcIz11vB5i+bMaDkDI10jgAK/vxQVitI1Kpp4SgAyqYwB1Qfg/Yk3hwcdplG5RiSnJ7PsxjIqLq3IyIMjeRzxONP9VY6y3iHeal8WhUJBxy0dERAw1DHk4MC8M+0kpSVx4+UNVt9aTe+NvzB+yy1exyTlaozCyKYpmnc+jKJqusuOzCJrdHTiCNebzUyvHjyKeJSvayhMM4/KvDOsptI5dvmN5cSnxlPdrjqdKnYq0LVsvbeVNpvaEJEYQb0y9Tg06BBfnvxSLZx81+w7ZracSbvN7dh6fysyiYxfWv3CiFoj8Fz3PcHPOmbIEquDDTap02npMEktnJRWito1KmpQShASiQTPyp50rdSVc0/PMfvibP4J+ocN3hvY6L2RftX6Mb3Z9AxvYOXMylHevDzBMcFce3GNtm5t+eLEF4TEK6MGNvXahJHe+124EYkReId4c+f1HbxDvfEO8eZRxCNlPhdBStnktchAS9HzrCnobJrBMcHcfn0bqURKt8rdCnTukkBxKYSXGdoKg7qXkdF+y+/cfh1Ou03tuDjyIq6Wrvkyv2dlT/Rl+vhH+XMv9F6B1Xu5G3KX+2H30ZPp0c+jH8npySy+thiAaU2mFVgeIEEQmHl+JrMuzAKUjrlj64yly9YuhCaEYqZvxoYeG/AJ86HVhlbIBTmuFq4s6rCIlbdXcsL/FGWT1wLa7jWSIn/+FQRF8RoVBZQSiEQioY1rG9q4tuHqi6vMuTSHQ48PsevBLnY92EXXSl35vvn3NHZqDNHPITGSITbVORH9gkDffTgnRnPl+nLqIMXdqbG65kZWKAQFQW+CuBNyB+8Qb/XnZZz2yCBrQ2vKG7Qj6pVt7o4NpcNaQYf6HXyk1CA1K98MW+PcrVkkd+G6RVW1roqseZuTQ0/SckNLfMN9abe5HeeHX+BFhEGe2+5N9U3pXKkzBx4dYLfv7gITULbcU+Y+8azsiaWhJatvrSY0IRQnMyetRQHzw3chKS2JkQdHsvPBTkApGNkY2eC53VNZsNOuBks7L+WHcz9wKViZz2lIjSE0KteI4QeHE5sSizG10SHz67Y4nH/5TVG8RkUBpYTTqFwjDg48yL3Qe8y5NIddD3Zx1P8oR/2P0r9cE7a9fIxMkcZsYDYmcHML3NzCLZQ+FsIrP6UQY+GkHjMlPYUH4Q+UWpEQb7xDvbkbcpe41Dita7AwsMBEzwSpREpSWhJRSVFEJkWSFPc6i1tGRgoz1E9t3nHvWaDzlhSKQyG898HGyIbTw07TYn0LXkXY0WL+eQS5hXp7Xtru+3n0Uwsos1rPynfthVwhZ5vPNkBp3pEr5Cz0WgjAV42/yhBmnx++C6HxofTc2ZOrL66iI9VhSaclnH16Vp0gbmjNobR3a0+PHT2ISYnBVM+UWa1ncSzgGJ8fV2a2tTGyITE2ZyVRitv5lxckpydz/ul5Vl26DWQv+BbkdyQKKKWEmvY12d5nO7+0+oV5l+ex6e4m/J9fRaZ0FcsUiTyF6wEnuJQWx42XN7gdcpvAqEB1raCcEJ0cTXRytEabVCLF0lgK0Vp30YpDITlqRSVF8e/TfwEKJAdMSSSnJrl/nx+iddUhmOkXnxpbjqaO/NhwHzP2B//fbfY/VLb7vAhR7Va5G/oyffwi/bgfdj9HtbM+hLNBZ3kV9worQyu6VOrCwccH8Yv0w9LAkjF1x2j0VfkuvGse+JDjvx96H8/tngTHBGNpYMmijouYe2kujyMfoyvVZW67udwPvc/wA8MBZU6n7u7dmXFuBnGpcehKddGT6RGRGIGB5E2O5izMQowFSXBMMMf8j3HU/yj/PPmHpPQkZS2iHAgoBfkdiQJKKaOSdSXWdF/DzJYz2XF6Ovgcznaf8UfGc0eS8xpAejI9ypmVo5xZOcqaltX810z5r4OJAxJkWRZHA7Ay1mWGZzUczAov1O2o31Hkgpya9jVxs3Qr8PlLAtmF6wookBPJH7cmsvbBt4yrO45JDSfhZO6kpXfRQq4QWH42XKsfVV7a7k31TelUsRMHHx9k94Pd+S6gqJxj+3v0R1eqy7zL8wCY8NEETPT+e7HJD9+F4/7HGbBnAHGpcVSyqsRnH33GxGMTSUhLoKxpWX5u/TOzL8zlZaQhJrSiW9UWhKV58f3Z7wEw1zcnJiWGNEUaRrpGJAoPSCccHWzQVumosEzHBUW6Ip0rz6+ohRKfMB+N7WVNy9KlYmOuewvEJEqyLFZZkN+RKKCUUpzMnfi6ydQcCShvY6RjRFmzsrhYuGQUQv4vfFgbWudY/ZxZCKdq79m9ahR6+Klo3vlwsgrXlQASpPRrosPR55V5FPGIhV4L+fPanwyoNoApjadQp0ydQlp59hSk7b6fRz+lgOK7m19a/5JvZp6E1AT2PdwHKFPbXwy+yPWX19GX6TOp4SSNvnl9/EuvLVVnhm3p3JKqNlWZfHIyAK1dWtPEqQmTD2zAPOV7HP5vJL5yF9JxxUQ/iWSdq8SkxCCTyFAIChLTEjHSM6Jr9SRO3ZSo16SipGaJDU8I53jAcY76H+VkwEliUmLU26QSKY3LNaZrpa50rdyVGnY1kEgknHB7neX9uKC/I1FAKcVEJ8dgkYN+/T368VfjSdSwq4GpvmmerkEVwvmu7bqwzDnvkpSWxImAE4AYXvyh5OS3ni8M5rj/cRZ6LeT80/Nsvb+Vrfe30sa1DVMbT6VTxU5FroJ0QfrXdHNXmnkeRz7GJ8yHGvb5U7juwKMDJKQlUMGyAo3LNcZzu7Jy+cjaI7EzttPom1fHn65IZ/KJySy7sQxQFiUMjg1mxS1lLqYJ9SfwIPwBi86fxTb1uwx6EBnWWKV8Q7gwG6nuLVIVqQD09ejLog6LcDJ34kSVjH4yReVe86EoBAW3X99Wa0luvLyB8JaYYW1oTedKnelSsQsdK3bEyjCjJqSo3Y9FAaUUEhIfwiKvRVy+9jeXkWXbf5fvbmY83otnZU9G1h5J54qd87QOjbYQzqKSufHMkzMkpiVS3rx8gSfIKolk91tLJVK6Vla+1d16dYvfvX5n14NdnA06y9mgs1SzrcaUxlMYXGMw+jr6hXw0SgoyHb6ZvhkdK3bk0OND7PbdnW8Cijq1fc2h+IT5cMz/GFKJlClNpmTomxfHH5Mcw8C9AzkRcAIJEsbXH8++h/vUIcTj641n9e3VvEmKoVzauv8LJ5r3BwlSBBRYpY7jpXQ0lW0qs7TzUjpU6KDuU5TvNe9DTHIMp5+c5qj/UY77H1dn/VZRx6EOXSt1pUulLjQo2wCZNPv7fVH6jiRCYRV3+ABiY2MxNzcnJiYGM7Pi40xX2DyPec6CKwtYfXs1yenJ1BGk3M7GSRZgqG15tkb8Z7O0M7ZjaI2hjKg9It9ukEWF0QdHs857HZMaTGJx58WFvZwSS1bhqc+in7Hk2hJW3V6lTiToYOLA5w0+Z3z98VrfBAsSuULI0pdKQIG+bhK+P/VFR/bhuTG33NvCsP3DqGJTBd8JvnmuUXod95pyf5RDISjwm+jHrxd/ZdPdTfTz6Meufrsy9JcrBKr9tJekVH0kWnJ/qnwXLn3TRutDLuhNEN22d+NB+AOMdI0YUG0Am+5uQi7I8bD1oJptNXWhRA+zHiSEjs32GLo1CmSh5ydFRojNKwRB4GHEQ7WW5FLwJdIV6ertJnomtHdrT9dKXelcqTOOpo6FuFrt5Ob5LQoopYDAqEDmXZ7HBu8NpCnSAKXH+4LqQ2l+4vvsBxj3Lz46Omz03sjme5s1pPS6ZeoysvZIBlUfhLVRycofIFfIcfjdgYjECM5+fJbWrq0Le0klkpyGp0YnR7P61moWX1uszq9jpGvEqNqjmNxoMhWsKhT42lWooljg3XT4yr/C9WYzpH41VnVb9cECRUxyDHYL7UiVp3L/0/tUt6v+QeO9yx9ef/DVqa9oVK4Ru/ruwm2JG+mKdK6Puc5HZT/K0H//w/0M2b7g/2aXd7UaSjKL4vF67kWPHT0ITwynjEkZqttV5/ST0wB0qtiJwKhA/KP8AehQoQM3AgXMkr7I9hgWD6xNj9plc3nkRZOktCTOPT2nFkqeRj/V2O5u7U6XSl3oWqkrzZ2boyfTK5yF5hBRQBEB4GH4Q2Zfms22+9uUmVuBVi6t+KH5D7RxbYMk5gXCX/WQpKdkPoiOPky8pc6DkiZP42TgSTZ4b+DQ40NqgUdXqkt39+6MrD2SjhU7oiMt/tbDi88u0mJDCywNLAn7OqxEHFNRI7Pw1KwebKnyVHY92MXvXr/jHeINKE1Dvar0YmqTqTQq1yjf160NbYKWnZkuz4U/CElX+jF92ehLFnVc9MFzdd/encN+h/mxxY/83PrnDx7vbequrMudkDss67KMgKgA/rj6B61dWnN2+NkMfZ/HPKfWilq8SX7DoIrzCAqul+M8KNvvb2fkwZGkyFOoalOVNHkaAW8CkElkdKvcjaP+R0lTpGFvbE8Z0zJ4h3grQ2FT52R7DNvHNirWCdeeRT9T56s6G3SW5PT/vlN9mT6tXFqpTTeFKZi/D6KAUsrxDvHmt4u/sdd3r/oNrnPFznzf/Ht13R0V/97dypf7P1b/fWrYKWwM37qwjaw1krS9TURiBNvvb2e993ruhNxRt9sb2zOs5jBG1B5BNbtqWvctKtUys2LKySksurqIj2t9zMaeGwt7OSUOlWkkswiQ7EwDgiBwNugsC70Wqh2ZQVn8ckrjKXR3767V5p6f5562sV/GPaf2itq8SVbm4pjZciY/tfrpg+bZfHczHx/4mKo2VfH9zDcPVq7kQdgDqi+vjo5Uh0efPaLWilokpCVwfMjxDHV35Ao5bTe15d9n/1LfsT6XR11GJtHN9rsVBIFf/v2Fn/79CYCPHD/CN9yXhLQE7I3tcTJ34uarmwDUsq+Ff5Q/iWmJ/99ZVR7D+r3MSfnJh5xXafI0Lj+/rNaS+IZr/qZOZk5qLUkb1zbFulipKKCUUq6+uMpvF3/jiN8RdVuvKr34vvn31HOsp3WfTls6cTLwJACVrCrh97nfe819N+QuG+9uZMu9LYQnhqvbP3L8iBG1RzCo+iAsDS2BolUtMzMEQaDi0oo8efOEff335Vsl59KMV2Akg1ZfzbZfTt6GfcJ8WOS1iK33t5IqV0ZvVLSqyFeNvmJ47eHqInCFde49efOEOivqEJsaC8DC9gu1OpzmlLfNPD6f+mT6IpBbvj3zLfMuz6O7e3calm3I92e/p6Z9Tbw/8c5gmvr1wq/MODcDEz0Tbo+7TSXrStmOn5yezKiDo9jusx2A+o711cJIdbvqvIp9RVRyFAY6BpQ3K49fVMb7kaG88VtRPP+tKTtzUn7yPudVaHyoOgz4VOApYlNi1dtkEhlNnJqotSTV7aoXuei190UUUEoRgiBw4dkFfr34K2eenAGU6u4B1QbwXfPvsrRPq96WVIyuM5o13dd80HpS5akc9z/Oeu/1HPU/qnbg0pPp0bNKT2qZD2f1P0KuVPqFwf3Q+9RcURMDHQMivo4o1m8sRZWD3i/5Yod3tv3a1XnOzE5dc5S07XXca/66/hfLby5XayysDa2Z8NEEPEwHM31PYKGde36RftRZWUetDVjpuZJx9ca993jdtnfjiN+RPNHIgDJM1flPZ17EvmBL7y18dfIrwhLC2NJrC0NqDtHoe+X5FVqsb4FckLOx50Y+rvVxJqP+R1hCGD139MTrhRc6Uh1cLVzV/iW17WvjHeoNKJOGRSZFapg13sbN0o1RVZZw5JZBkXjJyamZUiEouPXqltp0oxLMVNgY2dC5Yme6VupKhwod1C90JQ1RQCkFCILAycCT/HrhVy4/vwyAjlSHYTWH8W2zb6lsXTnbMcYeGsuaO2uwMrQiKikqxzeanBKWEMa2+9tY772ee6H33lLP2mjNulmY6tl3mfXvLH48/yPd3btzcODBQl1LSSWnGpQQvemkynxo4dyCITWG0Nejb7Y37/jUeNbfWc8fV/8gKDoIBCnlUtYhE6zJKpNofp9790Pv02B1A5Llygfr1t5bGVxj8HuNtenuJoYfGI6HrQcPJjwAPszMcC7oHG02tcFc35xf2/zK58c/p7x5eQI+D9BIKxCdHE3tFbV5FvOMITWGsLnX5mzf7h+EPcBzuydPo59iqmeKrlSXqOQojHSMsDKy4kXsCwDKmZbjRdwLrWPoy/SZ3mw63zT7BgMdgwI31WkbOydmSjMjBbVr7OVE4HHCEsI0ttcrU09tuqnvWD9HYcDFHVFAKcEoBAWHHh/i1wu/cuv1LUCpnRhdZzTTmk7DxcIlR+OEJ4Tj9IcTKfIUZBIZckFO0BdBOd4/t9x5fYeF5w9y+W7GKIB3KQoObvVW1eP269us676OkXVGFupaSirZhedKAFPDdCzL/8mF4PPqdj2ZHl0rdWVIjSF0rdwVA53M82vIFXL2P9rPb2d28+ZV9sJ3QZx7t17dosm6JqTKU5Eg4cDAA3R3757rcaKTo7FbYEeaIo0HEx4QHGr5QearUQdHsd57PaPrjObfZ/8SEBXA4k6LNTLHCoLAwL0D2fVgF26Wbtz55E62dZNOBpyk/57+xKbEYmNkw5ukN8gFOfbG9kQlRZGmSMNMz4zk9GR1crV36VqpK0s6LymQUhO5MdfkRshOkd3HVM+UDhU60LVSVzpV7EQZ08LXFhc0uXl+f3hQvkiBIFfI2eGzg1oratFrZy9uvb6Fka4RXzX6iqAvgvi769+5Ei5W3FxBijwFd2t35IIcJzMnnM2d8239dcrUoX/V7PMXQOFXFA2OCeb269tIJVI8K3sW6lpKMqr095BRp6H6e36fBvw78hzPJj9jbtu51LCrQao8lf2P9tN3d18cFjow5tAYzgWdU0eqac4ho69HX35qnrPImYI49+o51uPc8HPoSHQQEOi1s5faPJsbLAws1EnIFvxzmk+33M7wJq8q1nfC53WWYyWmJbLHdw8AzubOBEQFYGVoxeg6ozX6rfdez64Hu9CR6rCt97ZshZNl15fRZVsXYlNisTWyJSIxArkgp4xJGUITQklTpGFpYElsaqxW4cTFwoVDAw9xZPCRAhNOcvI9psnTOP/0PIsu58wk3r3iUM5+fJaIaRHs6b+HkXVGlkrhJLeIAkoRJ02exgbvDVRdVpVBewfhE+aDqZ4p3zX7jqdfPOX3jr/nOhlPSnqKOp20yrmuhXOLfHfCKsiMmx/CwUdKk06z8s2wNbYt1LWUdFSptR3MNX9zB3MDDZ+Q8ubl+abZN9z79B73xt/jm6bfUM6sHDEpMay9s5Y2m9rg/Kcz005P427IXd5VDNuZ5eycWu29MEMERX7QxKkJp4adQiqRohAUdN7amavPs38Tf5d+Hv1AkHL+vk2mxfpAWaxPrshcWX7o8SHiUuMob1aew37K+lyfffSZhu/Vo4hHfH78cwBmtZ5Fw3INMx0vXZHOpOOTmHh8IgpBgbm+OeGJ4UglUkz0THgd/xodqQ46Eh21r9Db6Ep1mdFiBg8mPKCbe7fsv4g8ILuihwDf7LvJoD1DsFlgQ+uNrTkcsDVHY3/ZdDStXVsX+RwlRQ0xsUMRJTk9mfV31jPv8jyexTwDwMrQiskNJzOxwcQPcqDa7rOd0IRQypmVIzIxEoDm5ZvnybqzIruKtkWloqhYHLBgyW1q7Rr2NZhrP5fZbWdz8dlFtt7fym7f3byIfcGCKwtYcGUB1WyrMbTmUAbXGExZUycUCgELQ12ik9K0jqmqpnz06RKO/v0n7Vzb8VOrnzKE5eclrV1bc2TQETy3e5KuSKflxpZcG3MtVyUVelTpgTE1EeQWmfbJSbG+Lfe2AMoXlS33t2CgY8DEBhPV21PSUxi0dxCJaYm0dW3LtKbTMp0vNiWWgXsGcjzgOKA0ycWkxCirCqclEp8ar/6/NjpV7MTSzkupaFUxm6PPW3JS9DAmUcr+e/dJkSkjblKkyirJ2fnVFfY9rbgiCihFjITUBFbdWsWCKwt4Ha9UJ9oZ2zG18VTG1x//wcX6BEHgj6t/APBp/U+ZdWEWoLwx5TfZVbSFwq8oGpUUxb9P/wWUN3+RgkEmleTa90MqkdLSpSUtXVqytPNSjvkfY+v9rRz2O8yD8AdM/2c6v5w6RBnF58jTMzdFqMJVdSz2Q4rSTHQm6Axngs5Qy74Wv7T+Bc/Knkglea9w7lypM7v77abvrr6kylNpsrYJdz65g7uNe472tzCwoLZtS148z75vZuarsIQwdR4Z1cvQqNqjNIoCfnvmW7xDvLE2tGZTr02ZfhfPop/hud0TnzAfdKQ6pCvSSZWnYqxrTEJaAgBSpFqFk3Km5VjaZSk93HsUeEhtSnoKp/2v5aivTLBEipRm5ZvRtXJXLPBgzmFlaoWieE8rzogCShEhNiWWZdeXsejqIiISIwAoZ1aOb5p+w+g6ozHUNcyTec4GneVe6D2MdI2oV6YeyenJ2BjZUMWmSp6Mnx1FrVrmuxz1O4pckFPTvmaB2LxF8gZ9HX16Ve1Fr6q9iE6OZq/vXlZdvkbIy+6k866Pi6DRojr3OlTrwjH/Y8y6MIvrL68DcDf0Lj129MDJzImfWv7E0FpD81xN37tqbzb12sSw/cNISk+i/qr63J9wP8c+Ze0qNmBDDgSUzEynO3x2qOveXAy+iFQi5avGX6m3H/M/xp/X/gRgQ88NmZqUr764So8dPQhLCENPpqfOR6Mj0SEhLUEtsCjQ9BXSkejwTbNv+K75d+p8NQXBm6Q3HPM/xm7f3ZwMPImQUgkHss9S+0Orz/m06UEsDCzUbeXNS26V5MJEFFAKmcjESJZcW8KS60uITo4GlHH+05tN5+NaH+f5zVClPRlZe6Q6TXhB+J+8TVGqlvkuonkn7ynorMEWBhaMqD2KNSddkKBNayBBQIGuLI3JHU0Y16QlejrKW6FnZU88K3ty69Utfr3wKwcfH0RA4Hnsc0YfHs2U01P4puk3TPhoQrYOorlhaM2hJKQmMP7oeOLT4qm9ojYPP3uYI0fKz5t3Zu35Q0gFqyyzq2ZmZlBVLlYJB309+qrTp7+Oe82IAyOU8zT4PFOn8Z0+Oxl+YDgp8hR0pDqkylPV0YHpQjoSJBpF7VS0d2vPX13+ylFahLwgOCaYg48Ost1nO9deXtN0rFaba7LOUjutdZcM529u7mnFIYt2UUEMMy4kQuJDWOS1iOU3l6srtFaxqcL3zb9nYPWB+VL35XHEY6osq4IECY8nPmbyycnKt6OOf/JFo+wLcJV0ktKSsFlgQ2JaIrfH3aZOmTqFvaRiT2Flbs1N+Ke1RSSDqg9iSI0h1HaorSGsP4t+xsIrC1l9ezUp8v9qVunL9BlfbzzfNv8WBxOHPFu3qlAfKBN3PfrsUY6KcDZf/jnBzzrmOrvqo4hHVF1WFSlSJBIJckHOzbE3qedYD4WgoNOWTpx+cpqa9jW5NuZahpBuQRCYdWEWM8/P/P98EgQEtXCSGQ7GDvzV5S96V+2dry9HgiBwN/Qu+x/uZ7vPdnViuMywoBXmSaoMv3mfpbY4ZNHOb8Qw4yLM85jnTDo+CdfFriy4soD41Hhq2ddid7/dPJjwgKE1h+ZbUbo/r/4JQDf3brhZunEp+BJQMP4nxYHTT06TmJZIefPyuXJUFNFOTkM284Ochgsby8rwKu4Vv3v9Tt1Vdan2dzVmX5ytrhjrbOHM0i5LCZkawuw2s7E0UDqnp8hTWHx9MWUXlWXQnkH4R2b94MspXzb+kl9b/wooa13VXFFTIwV6ZoxuXI9wvdlIZDEa7e9GQ72LyjnW2cIZuSCnrWtbdVmM36/8zuknpzHUMWRHnx0ZhJPk9GSG7R+mFk7gv+rNmQknMomMb5t+S8CkAPp49MkX4SRNnsbZoLN8euRT7BfaU2dlHX658EumwkkFywp83eRrzg0/R9gPp1gxtB5lzDVN6tl9jzmhMK+H4oqoQSkgnrx5wtxLc9ngvUFdAbhh2Yb80OIHulbqmu8mlsjESJz+cCIpPYlzw89hrm9O3VV1MdM3I2paVKnIYJgdqkRVkxpMYnHnxYW9nGLNhxYC/FByo0GRGQRiY2TDq7hXGmaIpk5NGVJjCP2r9VdrMVLlqezw2cFP539SZqh9i1YurZjXbh4Nyjb44PV/9893zLmk9IdwsXDhwYQHWfpnvEl6g/1Ce9Lkcr75aBVLr27CxcqSe1/sz/T7VQgK3Ba78SzmGfoyfVLkKZwcepIOFTpw4+UNmqxrQroinVWeqxhbTzOHUXhCOL129lJnsc4JLZ1bssJzRb74u8WlxHEy8CTb7m/jZODJTCOEQBnC3MqlFT2r9KRLpS5afX3y2gxT2NdDUSI3z2/RByWfeRj+kDmX5rDt/jb1W0Url1b80PwH2ri2KTDfj5W3VpKUnkQdhzq0dG7JkmtLAOVNWBROlHkbDj0+BEDPKj0LdzHFHEEQOOkbkG3IZnahrx9CdiHtAAb6SViaRhCSkEhwTDCgDIlV5ey4/Pwyl59fZtKJSXSu2JkhNYbQzb0bH9f6mGE1h3E26Czfn/2eay+V0R/nn56n4ZqGVLOtxty2c+la+f1fPGa3nU1CagJLri/hafRT6q2qh/cn3ujr6Gvtb2loSTu3dhwPOE667kMSdS7gF69DuiIVmVT7PpeCL/Es5hl6UgNIrYSHeR1MqUt0UiyD9g4iXZFOn6p9GFN3jMZ+vuG+eG7zzCCgZYaVgRXLPZfTz6Nfnt7vQuJDOPDoAJvvbubay2tZmpTsje3pVaUX3dy70dqldbZBB+8TVZYVFwNeFer1UFwRBZR8wjvEm9kXZ7PHd49a7dmpYie+b/49zco3K9C1pMpT+ev6XwB82ehLJBIJF4MvAqJ5R8WV51eITIrE0sCS5s75nxOmJJCYloh/pD+PIx/zOOIxflF+yn8j/UhLqIUtmefKUJFfmVtzEtL+Z7+mdKj2Aq/nXux7uI+9D/fyLOaZuhq3TCLDWM+Y2JRYDvsd5rDfYUz1TOldtTdDagyhjWsbro65ik+YDzPOzeDQ40MoBAUPwh/QbUc3ypqW5ZdWvzCs1jCNWjY5ZXHnxcSnxrPOex2PIh7RaE0jboy7kakJuJ9HP44HHOdU4Cl1fa0H4Q+oW6au1v5b7m3BUN4Y6+RPkAk2JITDoNXX0NNL5BV2OFmmsrrbag2h4nTgafru7psjs5MECV81/oqZLWd+cHoEFY8iHrHzwU623d+GX2TmldclSKjvWJ9+Hv3oWrkrVW2qFsjLYKo8lccRj/EJ8+FB+AN8wnzwCfMhJLwcNnyd7f6FnUW7qCEKKHnMtRfX+PXirxzxO6Ju61mlJ983/576jvULZU27HuzidfxrypiUYUD1AeoKyCAKKCoOPDoAKP1z8ssHqDgiV8h5FvMMv8j/hI/Hkcp/n8dmHttqIMmYHVQb+Zk1OKch7U3LN6Vp+aYs7LCQ269vq4WVx5GP1Q9iCRL0dfSJS41j492NbLy7kTImZRhYfSBDagxhX/99hMSHMPvSbNbcWkOyPJmXcS8ZfXg0X536iqlNpvJloy9zXRV7Tfc1xKfFs+vBLrxDvWmxvgWXRl3SmoekR5Ue6BzR4X7YfRqVbcTVl1fxDvHWKqAkpyez/84TbFO/y7AtJdUAW75jcm1jjYSQK26uYOKxiVlqKlR85PgRG3puwMPWI1fH+y5yhZxrL6+x6e4m9j/an6HY3tuY6pnStXJX+lTtQ3u39pgbmH/Q3NmtK/BNoFoAUQkjfpF+WqOV9CU5C58u7CzaRQ3RByUPUD3wf734q7qmhlQipX+1/nzX7Dtq2Nco1LXVW1WPOyF3+K3Nb3zX/Du1576BjgEx38aU+vTLgiBQYUkFgqKD2Nd/H72q9irsJb0372s7j0iMyCCEPI58TEBUgDqfhTasDK1wt3ansnXl//61ccfF3I32i7yyzRpcEDb39/lOBEHgYcRD9vruZd+jfeqQfBWqnB4q3K3d1Zlr7YztWHZ9GfMuz9NI464v02dUnVH83OrnXJVQEASB7tu7c8Rf+dLT3q09J4ee1KoR6Ly1MycCTtDUqSmXn19m4kcTWdplaYZ+u3z28NWW+EwzoIJAGXNDLn3TBlAw9dRUdS6UrDDVM2Wl50oGVh/43hqLpLQkTj85zbo769SO65nhbu1O/2r96e7enbpl6uZ5Mj1BEAiOCVYLIj7hPjwIe8DDiIckp2vXdpjpm1HdrjrVbatTza4a1e2qU9WmGr3/8snx9VCSQ5HFasYFhCAInAo8xa8Xf1VHxOhIdRhWcxjfNvu2wGL7s+Lfp//SamMrDHUMef7lc6yNrFl1axWfHPmEVi6tODf8XGEvsdC5F3qPWitqYaBjQMTXEbl+yy0qZBfCmJyeTEBUAI8jHqu1IKp/o5KiMh1XT6ZHJatKaiHE3eY/gSSrEFhV1AJoN7F8aFREQRIYFcj+R/vZ+3AvV19oOt+qQmtVNC7XmKE1h9Knah/+CfqHH87+oOGvIZVI6V65O793+B03q5wlAxQEgXab23E26Cyg1Mru678vgxCw7s46Rh8ajZOZE89jn9PUqSmXRl3KMF7b1eMJDMy+xs26ETVZdPtTjvofzbbvp/U+ZW77ue+VHyYyMZJ9j/ax7s46bry8kamWRk+qR2vX1gyqPojOlTprZLv9EARBIDQh9D9B5P8f33Bf4lLjtO5jqGOIh62HUhj5/6eabTXKmZXTKpzl9Hoo6aHIooCSzygEBYcfH+bXi79y89VNQHkTH11nNNOaTstVVeH8pueOnhx8fJBP6n3CCs8VAAzdN5St97fyY4sf+bn1z4W8wsLnl39/Yeb5mXR3787BgQcLeznvherml/Fi/n+LxRqCUw5pPEjfxcnMSSl8WFXWEELKm5d/b0fqknizfRH7ggOPDrD34V4uPLugtYoyKH1YOlXsxODqg7E1tuX7s99z49UNjT6NyzVmcafFfFT2o2znVQgKmq1rhtcLLwCG1RzGpl6bNPpEJUVhv9Berd0x0TMh5tsYDc1CRGIErnP7YZ06Nds5DWy28zgh64J4HjYe7Oy3k+p21bMd722C3gSx6e4mttzfQkBUQKb9HE0c6ePRh74efWni1OSDTbBRSVE8CHugoRXxCfPJVEjXleribuOu1opUt1NqRlwtXHN9XWR3PWR2HRdHoT4zRAEln5Ar5Oz23c1vF3/DJ8wHUErR4+uPZ2qTqbmuKpzfBEQFUHlpZQQEHn72UB3e5/ynM8ExwZwZdoa2bm0LeZWFT92VdbkTcod13dcxss7Iwl5OjniT9EatAXkU4cfu8zVJSzPi3aTu8F8hvJcGozE3MNUQPlRmmUrWlfItzXhJVleHJYRx6PEh9j7cyz9P/lGnEHgXY11jelftTcvyLTnod5Cj/kc1BBt3a3cWtF+AZ2XPLE0jcoWc+qvrq01On9b/lL+7/q3Rp9OWTpwMPKk2Q/lN9KOSdSX19r9v/M1Xh1fgkJp9WvcQvemkyO5r3WYgM2CF5wo+rvVxjsw5giBw69UtVt5eyYGHB4hIitDaT4qU+o71GVpzKN3du+Ns4Zzt2NqIS4nDN9xXw1nVJ8xHXeMsw7wSKRWtKlLNtpqGVqSSVaX3cnLOjMyuh9ISiiwKKO9JZidOmjyNrfe3MufSHLXnuKmeKRMbTOTLRl/myp5ckHx+7HP+uvEXXSp14ehgpYr2WfQzXBa7oCPVIfqb6GJrzsgrVN+HVCIlZEpIkfotU9JTePLmyX9RMm+ZZFSRJgD68ho5etgsH+ZOJ48KBV6IrbQQnRzNEb8j7Hu4j+MBxzP1UbAzsqNnlZ5EJkVyxO+IRoZae2N7Zracybh64zJ9O0+Tp1FzRU0eRTwCYFrTacxrN0+9fe3ttYw5PAZDHUOS0pPY1XcX/ar1U29vvLYxV59fp2zyWnSwITuhFklGDdGg6oNY3nV5to6oqfJUTgWe4u8bf3Pu6bnM/Tb0zOhSqQsf1/qY1q6tMySFy4rk9GQeRTzK4LCqSranDWdzZ7VJRiWIVLGpkmc1z7JDISiISIwgJD5E/bkZFMuhq67Z7rt9bKNiHYos5kF5D7Sp3hzM9Glc7SX7g2aqq3xaGVoxueFkJjaYqOHhXtR4k/SG9d7rAfiq0X+Fv1TRO/Ud65d64QTg4GOlSadZ+WaFIpwIgsDLuJdao2SCooMyNR+8jUzI2XmYmmYoCif5iIWBBUNrDlXX1TkecJx9D/dxxO+Ihh9DWGIYq26vApRZTF0tXLnx6gYxKTGEJoQy4dgEpp2ZxucNPmdGixkZHpq6Ml3ujLuDx98eBEUHMf/yfEx0TZjRcgag9E/55MgnJKUnAXAn5I5aQPGP9Ff60Ejgjd5qbFKnAwqN2jMCCkBClN6qDMJJObNyHB54mNplamf6PcSmxLL9/nZW3FzBvbB7mZ7DlawqMaTGEAZUH4C7tXu252aaPI2AqIAMDqv+Uf6ZzuFg4pDBYdXD1iNP6yipEASB+NR4DaHjdfxrjb9Vn7CEsAx+NkbpLQo1NL8oIgooZG6/fx2bzD4va8L1HLEzS2Jq46mMrz8+z2L685PVt1eTkJZATfuatHFto25XhxeXF8OL4b/w4vwuDhibEqs1SsYv0i/LKIXsMNAxoKyJKanh2fcVQxgLDmM9Y/p69KWvR1+S05P558k/7H24l4OPD2r4OgS+CSTwTSAArhauxCTHEJUcRXxqPHMuzWHhlYUMqj6IRR0XaTgkG+ga4POpD5X/qszLuJf8eP5HTPVNmdxoMtZG1rR1a8upwFMAGhFIW+//50+SpnuDcGZjlfYJOoKNul1OJFF6q0iSeanbZBIZizou4vMGn2sVJF7GvmTZ9WVsvr+ZF7EvtH4nelI9mpVvxth6Y+lSqUumQoJCUPA0+mkGh9XHkY8zjSizNLDM4Kxaza4aNkY2WvvnhlR5KmEJYf8JHXFvCR0JmoJHbq5lCRJsjGwoY1oGBxMHDOQ1uPsw+/1K03Vc6gUUuULg58O+mYR+Kb3zK8i+wevz9pjoF1wp8A8hTZ7G0uvK0MLJDSdr3FAuBCsFlFKbjCz6OSRGKv+bHEPc00vUEaT0s6oMr7zByBosnN5r6DR5Gk/ePHnLN+QR98PuExAVkGWUTFboSfVwtXTFxcJF/XG1+O9vO2M7FAI0m3c22xDGzKrZiuQvBjoGdK3cla6Vu5ImT+PCswvsfbiXfQ/3EZoQqu73dqSPqZ4pcalxpCnS2HRvE5vvbaa9W3uWdVlGReuKABjpGfHws4dUWFKB8MRwvjz5Jca6xoytN5Z+Hv3UAsqdkDuA8g1//Z316jnSFGmkybwY3aoje+4e4GlUFHLJG1KkDzQ0J+3d2rOr3y4sDCzUbYIg4B3izfzL8znmf4zYVO2J22yNbOlTpQ9j6o2hTpk6Gs66Ku2h2mE1/L/Imcwe9Ma6xkpNiG11DYHEwcQhV9pBQRCISorKUsuh+kQmReZ4XFD+dg4mDtl+bI1sNXxbVD4o4nX8H6XeByWnNTuKk91vh88OBu0dhL2xPc8mP1Onxw6JD6HM72WQICFyWmSRNlHlC9HP4a96kJ6SeR8dfZh4K1MhRRAEQuJD8Iv0wzfClzuv7+AT5kPQmyDCEsNyZJJ5G12prlLosHTFxdwlgzBiZ2yXo9wOJSmkt7SgEBR4Pfdi78O97PbdrVXz8G4IM0Adhzos7byUpuWbAsqolIpLKqpzrmzrs432bu2xX2CPAuX5+HrKa568eULTdU01xqplV4vncc+1CtAWBhYcH3KcRuUaAUoH3SN+R5h3eR43X93U6hAslUjxsPFgXL1xDKw+UG02DU8Iz+Aj4hPmQ0xKTIYxQJkzpqpt1QwOq+XNy2d5PSSkJmQubLyl7QiND83UoVkbOlIdTQHDWLvQYW9ij4meSY7HfZfScB2LPii5IKf2vOJi9xMEgUVeiwCY8NEEjdodqlwtNe1rlj7hBJSak6yEE1BuT4wk3siSR+GPuPryKrdf3+ZhxEOeRT8jIjEiVzc2mUSGo6kjFa0qUsmqkobw4WLhgr2JfZ4kl8pp1lSRooNUIlVnsf29w+/qLLbbfbartSnawsLvhNyh2fpmuJi7MKfdHAZUG4DvBF8q/1WZuNQ4huwdwoGBB2jr1pbTT04DSjPPTp+dGuPoS/W5H3ZfLcS8zffNv+eX1r+QlJbE/EvzWXl7JUFvgrSux0jXiDYubZjcaDK1HWrzOFKZ6n3WhVlqYSSzDLAyiYzK1pUzOKxWsKqgDidOV6SrTSy+4b5Zajsyy1mSGdaG1jnSdlgZWuV5EjhtiNexJqIGpYRpUC4HX6bZ+mboy/QJ/jIYO2M7dXTSgksrORa4g7GNWrG0y5LCXmrB88obVrXMtlsjWSrXFDkTSKUSKdaG1pQ3L09l68pUs62moQVxMHEokBubipIc0ltaUGWx3eO7h633tuIXlXnNGVA67n/T9Bv6efSj+vLqJKYl4oyMz6sPVvucTPhoAmvvrCXl/wJ6BALPJRlv/dVsq7Gjzw4WXV2UwV/mbRxMHGjr2pY6DnUIiQ9RO6xmVf7AzdJN7bDqYeuBs4UzpnqmalNLZn4d4QnhWebveRdDHUO1X0d22o6imkW7JF/HYphxLsip3a+4xJ733dWXvQ/3MqbOGFZ3X601OsncSMG83vVLnTSeUwGlLvHc+b8NXoIEEz0T7E3scTF3wcPWgzoOdahkrdSGlDEtU6ACiEjpIzAqkN2+u9novZFHkY8y7WcgM6BP1T5cfbCb+wp9DLWmsFeShIA78WohRUeqQxXrKgS8CdAaCiyVSLE1ssXRxJGY1JhMtSmgDJVWaQct9C3Q19FHLsiJTIzUEDzeDq/ODqlEir2xfZZajjImSqHERM9EjFYrwogCSi4pKXa/oDdBVFxaEYWgwOdTH56HWWWSXVR5bMXluPKMHAoow+1dca3Sk/7V+uNu4/7eWVRFRPKaF7Ev2Omzk7V31vIwQnvIR11Bxi2yTyHwtiCuDSlSreYfFQY6Bpjpm6Er1UWukBOfFk98anz2B/EWFgYWmfp2vK0FsTa0Fq/DEoIooLwHJSEl95cnvuTPa3/SoUIHjg0+USqyEuaG6Cf/YrGpe7b9VDduqURKHYc6tHJpRSuXVjQv3zxfK6SKiOSGsIQwttzbwprbazSElTqClNtk76iZnYDyvujL9LPVcqhMLLlJyCZSMhAFlPekONv9YpJjcPrDibjUOE4MOYGZpH6J8q35UO6H3ue7LV05HKc9auBtfq3agc3h99RZg1VIJVLqlqlLK2elwNKsfLMcCSzF+bwSKR5EJ0ez5vYaVt1chUlUYJ4LKBIk2BrbatV2aPh7mDhgrm8umlhEMkWM4nlPZFJJsX1Yr72zlrjUODxsPehQoQOH7r7K0X7FJTrpQ9j/cD/D9g+jcmoS5ODG/UPz7/nBsTav4l5x/ul59cc/yp+br25y89VNFnotVAssrV1aqwWWd5NPlQTNnEjRQxAEwhLClIneogLVCd+sja0xSoyE5PQcjaMv08fK0IqyZmVxMVf6VL2t5VDn7DC2/eAifSIiuUU840oA6Yp0llxTRuV82ehLJBJJjrMNluSshApBwax/Z/HTvz8BUKV8M4SXj5Fk5Zyno69M1gY4mjoyuMZgBtcYDCizZaoFlmfnCYgKUAssC64sQCqRUq9MPbXAkhxfha92ZkwCGBKTzKdbbpc+HyCRXJGuSCc4Jvg/AeQtQSQwKpCEtASt+9URpOREEDfVM6Ff1e70qdqHDhU65FuxSBGR90U08ZQA9vjuod/uftgY2RA8ORhDXcMSF52UW+JT4xl+YDj7Hu4D4IuGX7Cww0J0Yl9DYiTN1jcnMS2RAwMOUN78raRsucgk+yL2hYaGRZWyHABBStmUdegI1mgrxlbSv//iTkGZ5RJSE3jy5olWAeRZzDPSFZlrQiRIKG9engpWFahg+f+PVQWqp8upsm9ctnO/beIx0jWiS6Uu9K7Sm66Vu+ZLrRoRERBNPKUOVWK2T+t/qi4sJpNKmNnNg0+33EaC9uikmd08SuTDMehNED129OB+2H10pbqs8FzBqDqjlBstnIg3suRyejxIwNKtFbxnbaVyZuXUxeEAnsc8Vwsr5/xeoEjOvA6IALyOSeZ6UFSxNSuWVPLSLCcIApFJkQRGBRIQFaAhgAS+CSQkPiTL/fVl+rhZumUQQipYVsDFwkUjEaOaV945Xl8dhzpEJkUSHBPMHt897PHdg55Mjw4VOtC7Sm+6u3fXqAEkIlKQiBqUYs61F9dotLYRejI9nk1+hoOJg8b20uYDcS7oHP129yMyKRJ7Y3v2DdhHE6cmGn0CowKpuLQiRrpGxE+PzxeHvoPeL/lih3e2/RYPrE2P2mXzfH6R9yOzwqFZpRyQK+S8iH2hVQsS+CaQ2BTtdWpUWBpYahVAKlhVwNHUMfd5dnJQ0uHtPCju1u581/w7Hkc8Zu/DvTyOfKzuJ5PIaO3amv+1d99hTZ5dAId/IewtyFJREbUKqLgF98Bt3XuvOrB1fFVrl7XL2qWte+9d98K9xS0q4sSFylCRvZP3+4OSioAMAwnw3NfFpSTvOHkTkpNnnKdblW50rdo1w/uLIOSWaEEpRmafnw1Av2r9Mn3zaOvmgJeLfZGfRSJJEvMvzWeCzwQUkoLaDrXZ2WcnZczLZNg27Vurg6lDvs02EGOACp/3LRyadtsXO64QEP2AR2/+S0QeRzzOcpXdNGXMy2SagDiXcFb/shOWjqnrScW9Jj4lnoYrGgHQy6UXWwK24GLjwsU3gQQpJAzkBtx9fZdhu4bxVeOvuDH6Bg/ePGBbwDa23d7G9dDrHHl4hCMPj+C93xtPR0+6V+1Ot6rdKGdZTr1xC8I7RAtKIfY08ikV/qqAQlLgN8qPGvY1NB2SRiQpkvDe582ya8uA1GRtWadlqu6ud6WN2Wno2JAzw87kS0zFfQxQfsjvcSE5XfYiRH8aifKb6W7T09HDqYRThiSkolVFnEo4aazeR2xSLKYzUwfM+o/xp/qi6iglJUs7LWXc/nEkKhJxNHdUlaiv7VCbNV3X4GLjAqS2Nm6/vZ1tt7dx4fmFdMeu7VBblax8VPKjTM8vptgL79J4C8rz58+ZOnUqBw4cIC4ujooVK7Jy5Urq1KkDpH7bnT59OkuXLiUiIoKGDRuycOFCKlWqlB/hFFlzL8xFISlo6dSy2CYnoTGhdN/SnbNBZ5EhY1arWXzu+fl7W0bSWlDys7m6OI8Byg8F0VWZ0yn3nqXbUs+5fbpEpIx5Ga2vdFresjxdq3RNTTaeXWBnn5103tSZoKggPB09CQgL4ErwFWotrsXMljMZ32A8zlbOTG44mckNJ/Ms6hk7bu9g+53tnHpyiivBV7gSfIUvj32Jq40r3ap2o3vV7lS3q45MJit23cuC+qm9BeXNmzfUrFmT5s2bM2bMGGxsbLh//z7Ozs44OzsDMGvWLGbOnMnq1atxcnLim2++4ebNmwQEBGBomP03DdGCAtGJ0ZSZXYaoxCj29t1Lh8odNB1SgbsafJUum7oQFBWEhYEFG7tvpF2ldtnu9/Wxr/np9E941/VmXvt5+RqjeJP+cHkZF5IXRW3hUEjfghIzLQa/EL90i4leeHaBblu6kaJMoZdrL6ISovAJ9AGgWflmrOy8kvKW5TMcNyw2jF13drH9znaOPjyaboVv5xLO1LP+hHM3XTPsV9iWDxHULzef32pf5WzWrFk4OjqycuVK6tWrh5OTE61bt1YlJ5IkMWfOHL7++ms6d+5M9erVWbNmDS9evGDnzp3qDqfIUSglfANfM3XPVhLjylHZqkqOPpSLmk3+m2i0ohFBUUFUtq7MhREXcnwdgqODgdQxKPmtrZsDZ6a2YOPIBvzVx52NIxtwZmoL8eacQzkZFzJjTwAK5Yd/z6rnZIWDhWGWS+zJSE0u6zlZffC5NMXT0ZO6peqSqEhk0eVFdPqoE5u6b0Iuk7Pl1hbKWJRhYYeFmOiZcOLxCaovrM7Kayt593usrYktI2uP5ED/A4RNDmNt17V0qdIFQ11DAsMfceqmbaaLCar7OROKNrUnKLt376ZOnTr07NkTW1tbatasydKlS1X3P3r0iJCQEFq1aqW6zcLCgvr16+Pr65vpMRMTE4mKikr3Uxz5+AfTaNYx+i49z/7LdtgnzUQ//BcO3QrVdGgFRqFUMO3INPpu60t8SjztKrbjwogLWfaBZyYkNv+7eN6WVqG4s3tpPJytRbdOLlx8FJ7lelKQfrr2h0rrloOMlWuKSrecTCZjksckAOZfmk9CSgLdXbqztutadGQ6LLu6DP8wf/xG+dHQsSHRSdEM2z2MLpu7EBqT+fuMpaElA6oPYEfvHbya/IqZTbaiiw2yLFI9dT5nQtGm9gTl4cOHqvEkBw8eZMyYMXz22WesXr0agJCQ1A8HOzu7dPvZ2dmp7nvXzJkzsbCwUP04OuaskFZRktbM/e6bdUy8LmPWXcXHP1hDkRWcyIRIOm/qzC9nfwFgiucU9vTdg6WhZa6OUxBjUAT1yOm4EHUt2dDWzYGFA2phb5G+q9newrDIdEt0r9qdMuZlCIsNY+PNjQD0rdaXlZ1XIkPG/EvzWXB5AScGn2BWq1noy/XZfXc3bgvd2HF7x3uPbaJvQlWr+jmKozgssyF8GLUPklUqldSpU4eff/4ZgJo1a+Lv78+iRYsYPHhwno45bdo0Jk2apPo9KiqqWCUp2TVzy0htMvVysS/U3+7e5/7r+3y86WPuvLqDoa4hyzoto3/1/nk6lmqasVnh/7Ap6jQxXbuoT83Xk+vxab1PmXpkKrPPz2aI+xBkMhmDagwiSZHEyD0jmX1+NgZyA35u+TNtK7Zl4I6B3Ai9Qbct3RhUYxB/t/07y4UyxRR7QV3U3oLi4OCAi4tLutuqVq3K06dPAbC3T/3WGhqavrkwNDRUdd+7DAwMMDc3T/dTnBRkM7c2OvjgIPWW1ePOqzuUNivN6aGn85ycKJQKVVO1aEHRfpoaF1LUu+VG1hqJiZ4JN8NucuzRMdXtI2qNYH77+QD8cvYXZpycQXW76lwccZFpjaahI9NhzfU1VFtYjaMPj2Z67OIwlkcoGGpPUBo2bMjdu3fT3Xbv3j3KlUst6uPk5IS9vT1Hj/734o6KiuLChQt4eHioO5wioaCbubWFJEn8ce4P2m9oT0RCBB5lPLj8yWXqlKqT52O+jn+NQlIgQ4atia0aoxXyw/vGhUikriNT2MeFaEIJoxIMdR8KwJ/n/0x339i6Y5ndJrUA5IyTM/j59M8Y6Ka2ppweehrnEs4ERQXRam0rxh8YT1xyXLr9i8NYHqFgqD1BmThxIufPn+fnn3/mwYMHbNiwgSVLluDt7Q2kDtKaMGECP/74I7t37+bmzZsMGjSIUqVK0aVLF3WHUyQUxybThJQEBu8czOeHP0cpKRnmPozjg49/cKtHWveOWD6+8MhqXIiC1zSqfqdIjAvRhPENxiNDxv77+7nz6k66+yY0mMCsVrMA+OrYV/xx7g8gdRbQ9dHXGVNnDAB/X/ybWotrcfH5xXT7F4exPEL+U/s7dN26ddmxYwfTpk3j+++/x8nJiTlz5tC//39N8lOmTCE2NpZPPvmEiIgIGjVqhI+PT45qoBRHaU2m2VUlLSpNps+jntN1c1cuvbiEXCZndpvZjKs3Ti1l6dOmGIvuncLl3XEh995cZsrJ4ex4bMSruMGUNM56YcbiTKGUMFBUQy6V4OKjNzSpZKxquahoVZGPP/qYXXd38df5v1jYcWG6fac0nEJiSiLfnviWzw9/jr5cn0/rf4qJvgkLOiyg80edGbZ7GHdf38VzuSdfNf6Kr5t8jZ5cDyj6Y3mE/CdK3RcSabN4IPOqpEXlW8mFZxfourkrwTHBlDAswdaeW2lZoaXajr/abzVDdg2htXNrDg44qLbjCgVLkiTqLq3LleArTPaczK9ev2o6JK3j4x/M9N23CI36b9HAd4sEnnx8kmarm2Gka0TQxKBMVy5OK2wIsKjDIkbVGaW67038G8YdGMeGmxsAqOVQi7Vd16pK5QvCuzRaqE3IH8WhyXS132qarGpCcEwwrjauXBp5Sa3JCaRfKFAovGQyGd83/x6AeRfnqZ5XIVXaF5q3kxOAkMiEdGUJmpRrQk37msSnxLP4yuJMj/VD8x+Y7DkZgNH7RrPy2krVfSWMSrC+23o299iMlZEVV4OvUmtxLWb7zkYpKfPp0QnFhUhQCpGiWpU0RZnCpIOTGLJrCEmKJDp/1Bnf4b44Wzmr/VyiBkrR0a5iO+qXrk98Sjy/nPlF0+FojdxU3327cNu8i/MyXZVZJktd42p8/fEADN89nHU31qXbppdrL26OuUm7iu1IVCQy6dAkWqxuweOIx2p8ZEJxIxKUQqaoTX98E/+G9uvbM/t86qyBb5t8y/be2zEzMMuX8wXHiDEoRYVMJuOH5j8AsOjyIp5FPdNwRNoht2UJern2wsHUgeCYYDb7b850H5lMxuw2sxlTZwwSEoN3DmbLrS3ptillVop9/faxpOMSTPRMOPnkJNUXVmfFtRUZSuULQk6IBEXQmICXAdRbVo/DDw9jrGfM1p5bmdF8Bjqy/HtZihaUoqVVhVY0LtuYREUiP5/+WdPhaIXcliXQl+szrt44AGafn51lMiGTyZjXfh7Daw5HKSnpt60fO+/szLDNyNojuT76Oo3KNiI6KZrhu4fTeVPnLEvlC0JWRIIiaMSeu3tosKwBD8IfUM6iHOeGnaOHS498P68Yg1K0vN2KsuzqMp5EPNFwRJqXl7IEo2qPwkjXiGsh1zj15FSW++jIdFjccTEDqw9EISnotbUX++7ty7Cds5UzJwaf4NdWv6Iv12fPvT24LXRj++3tuX9AQrElEhShQEmSxM+nf6bzps5EJ0XTtFxTLo28RA37GgVyftHFU/Q0Ld+Ulk4tSVYm8+OpHzUdjsblpZKrtbE1g2ukLkXybuG2d8l15KzovILerr1JVibTbUs3DgUeynS7yQ0nc3nkZWrY1eBV3Cu6b+nOoB2DiEiIyOOjE4oTkaAIBSY2KZY+2/rw1bGvkJAYW2cshwcexsbEpkDOH5ccR1Ri6krYIkEpWtJm9Kz0W0lgeKCGo9GsvFZyndBgApDauvkg/MF7z6Gro8varmvpWqVr6sD2TZ3Tlcx/WzW7alwceZEvG32JjkyHtTfWUm1hNY48PJLbhyYUMyJBEQrE08inNFrZiC23tqCro8vijouZ32G+qqhTQUjrAzfSNcLcoHjUzykuPB09aVuxLQpJwfenvtd0OBqXl7IEH5X8iA6VOiAh8df5v7I9h55cj009NtGxckcSUhLotLETp5+cznRbfbk+P7X8iTNDz1DRqiLPop7htdaLzw58lqFUviCkEYXahHx3+slpum/pzsu4l9gY27Ct1zYal2tc4HH4BvniucITJ0snHo5/WODnF/LXpeeXqLesHjoyHW6NvUWVklU0HZLGKZRSriq5Hn14lFZrW2GsZ8yzic8oYVQi23MkpiTSeVNnDgYexFTflMMDD9OgTIMst49NimXK4SksuLwAgMrWlVnbdS31StfL/QMUCh1RqE3QGkuuLKHFmha8jHtJTfuaXP7kskaSExDjT4q6uqXr8vFHH6OUlHx/UrSiQO7LErRwakF1u+rEJcex9OrSHJ3DQNeAHb130MKpBTFJMbRd15bLLy5nub2JvgnzO8zHp78PpcxKce/1PTyXe/Lt8W9JViTn6vEJRZtIUIR8kaxIxnufN6P2jiJFmUJv196cGXaGshZlNRaTagaPmZjBU1TNaDYDgE3+m/AP89dwNIWPTCZjYoOJAMy9ODfHCYORnhG7++ymcdnGRCZG0npta/xC/N67T5uKbfAf40+/av1QSAp+OPUDDZY34FbYrQ99GEIRIRIUQe1exr7Ea60XCy4vQIaMn1r8xMbuGzHWM9ZoXKoaKCaiBaWocrd3p3vV7khIfHfiO02HUyj1deuLnYkdz6Ke8U/APznez0TfhH399uFRxoM3CW/wWuuVbZKYVip/S48tqlL5tZfU5k/fP0WpfEEkKIJ6XQ+5Tt2ldTn55CRm+mbs6rOLLxt/qZaViD+UWMm4eJjRbAYyZGy7vS3bb/FCRga6BnjX9QbeX7gtM2YGZhzof4A6perwKu4VLde05M6rO9nu19O1J/5j/GlfqT2JikT+d+h/olS+IBIUQX22BWzDc4UnTyKf4FzCmfMjztPpo06aDkslJFZUkS0OXG1d6ePWB4Bvj3+r4WgKp9F1RmMgN+DSi0ucCzqXq30tDC04NOAQ7vbuhMWG0WJ1i2ynLUNq1+vevntZ0nEJpvqmnHxykmoLq4lS+cWYSFCED6aUlHx7/Ft6bO1BXHIcXhW8uDjyotYtuS7GoBQf05tOR0emw557e7j0/JKmwyl0bExsGFh9IJB94bbMlDAqweGBh3GzdSM4JpgWq1vw6M2jbPd7t1R+TFKMqlS+WLG6+BEJivBBohOj6b6lOz+cSi03PrHBRPb334+VkVU2exY8sQ5P8fFRyY9UH7DfnhCtKHmRVrht552dPHyT+2n5JY1LcmTgEaqUrEJQVBAt1rTgaeTTHO1boUSFjKXyF7ixLWBbruMQCi+RoAh5FhgeiMdyD3be2Ym+XJ9VnVfxZ5s/0dXR1XRoGSglpUhQiplvmnyDXCbH54FPrrsphNSusjbObVBKSv6+8HeejmFnasfRQUepaFWRxxGPabG6BS+iX+Ro37dL5bvbu/M6/jU9tvZg4I6BolR+MSESFCFPjj48Sr1l9bj18hYOpg6cGnKKwe6DNR1WlsLjw0lRpgBgZ2Kn4WiEguBs5cxQ96EAfHP8Gw1HUzilTTlefm05kQmReTpGKbNSHBt0DCdLJwLfBNJidYtcrWxcza4aF0Zc4KvGX6Ej02HdjXWiVH4xIRIUIVckSeLvC3/TZl0bwuPDqVe6Hpc/uUz9MvU1Hdp7pbWelDQuWaDl9QXN+rrJ1+jp6HHs0TFOPD6h6XAKndbOrXGxcSEmKYbl15bn+TiOFo4cG3wMR3NH7r6+S8s1LXkZ+zLH++vL9fmxxY+cGXqGSlaVVKXyP93/qSiVX4SJBEXIkkIp4Rv4ml1+z/ENfE1cUgIjdo9gvM94FJKCgdUHcnLISUqZldJ0qNkqClOM330+FMriPbMhJ9ejnGU5RtYaCaTO6BGzQXLn7cJtf53/mzMPwvL8+itvWZ7jg49TyqwUt17ewmutF+Hx4bk6hoejB9dGXVNNg553aR41F9fkwrMLuTqOUDiItXiETPn4BzNjTwDBkQmq23R0owjRmUui7gV+8/qNiQ0makV9k5xYe30tg3YOwquCF4cGZlwaXttl9nw4WBgyvZNLpgu/FXW5uR7Po57j/LcziYpEDg04hJezV0GHW6jFJ8dTYVY35DG90eW/lcfz+vq7++ouTVc1JTQ2lNoOtTky6AiWhpa5jutQ4CGG7RrG8+jn6Mh0+LLRl3zT9Bv05fq5PpZQcMRaPMIH8fEPZsy6q+ne/AEUKabYJH3Jjx57meQxqdAkJ1C4Z/Bk9XyERCYwZt1VfPyDNRSZZuT2epQ2L83oOqOB1LEohfA7mUadvBuBQYw3ckqmuz2vr7+PSn7E0UFHKWlckivBV2i3vh3RidG5jqu1c2tujrlJ/2r9UUpKfjz9Iw2WiVL5RYlIUIR0FEqJGXsCyOwtXIYOMmTsvqxfqLoXFEqJm0EJGKc0QSf5o0IXe1bPR9ptM/YEFKrH9CHyej2+aPQFRrpGXHh+gf339+d7nAWhILr80q43yJCR/gvJh7z+XG1dOTLwCCUMS3D+2Xnab2hPbFJsruMrYVSCdd3WsaXHFqyNrLkWco3aS2rzx7k/UCgVuT6eoF1EgiKkc/FReIZvpu8Kjkzg4qPc9R1rio9/MI1mHeOUXy1skqdw4qo7jWYdKzStDtk9HxKF6/n4UHm9Hvam9oyrNw5IrYtS2FtR0l7XfZeeZ/wmP/ouPZ8vr+v8fP3VsK/B4YGHsTCw4MzTM3Ta2CnPA157uvbk5pibdKjUgURFIp8f/pwWa3JWHE7QXiJBEdIJi35/cpLb7TSpKHSNFKXnQx0+5HpMaTgFU31TrgZfZeednWqOrOAU5Os6v19/tUvV5uCAg5jpm3H88XG6bu5KQkrejuVg5sCevntY2mkppvqmnHpyiuqLqrP86vJCn5AWVyJBEdKxNTNU63aaUlS6RorK86EuOX2cpoYZm/dLGpdkfP3xAEw/Mb1QrpZb0K/rgnj91S9Tn/3992OiZ8KhwEP02NKDJEVSno4lk8kYUWsE10dfp3HZxsQkxTBizwg+3vSxKJVfCIkERUinnpMVDhaGZDX8VUbq6P16TtpXyv5tRaVrJLvnQ0KJoX48dcpbFmRYGpOT65HCS0YdapXpSsaTPCZhbmDOzbCb/BPwT77Gmh/OP3xZoK/rgno/aFS2EXv77cVI14h99/fR+5/eJCuS83y8CiUqcHzwcX7z+g19uT577+0VpfILIZGgCOnIdWRM75S6yN+7b0ppv0/v5IJcR7tn8BSVrpH3PR+pH0cynvInY/aNKpQtArmV3etThg46FtsJfHOfBssasPjy4nTN+1ZGVkxqMAmA7058p/UDKaMSozgceJgZJ2bQZl0bOm8YlKP91PW6Lsj3g2blm7Grzy4M5AbsvLOTATsGqKo/54VcR87nnp9z5ZMrolR+ISUSFCGDtm4OLBxQC3uL9M229haGLBxQq1DU3ShKXSNZPR8OFkb0bxxHou4Fll9bztBdQ7X+A1cd3vf6XDSgFtfGr1QNlhy9bzT9t/dPN411QoMJlDAswe1Xt9nov7Ggw8+SJEk8CH/AmutrGL13NNUXVsfyF0tar2vNdye/41DgIWJScraOjTpf1wX5fuDl7MX23tvR09Fjy60tDNk55INf0262blwYcYGvG3+tKpXvtsCNw4GH1RS1kF9EobYPpFBKXHwUTlh0ArZmqU2d2t66kFOF+bEplBKNZh0jJDIhiynTqW+wZ6a2KFSPKbPnY8utLfTb1g+FpKCvW1/WdF2jlQs2qtv7Xp9KSckf5/5g2tFpKCQFla0rs7XnVqrbVQdg5umZfHnsSypaVeS29+08Xa8P/fuIT47n8ovLnAs6x7ln5/AN8uVl3L/l3yUdDJSuyKUS2JoZ4OlsR8OyHtQv7YH3qteERiUW+Ou6IN8Pdt3ZRY+tPUhRpjDUfSiLOy7l8uOIDz73+WfnGbRjEPfD7wPgXdebWa1mYaJvou6HIGQhN5/fIkH5AKK6p3ZLm+0ApHszT3tbKyytQTmx/fZ2ev/TmxRlCj1cerCh2wax5hBwLugcvf/pzbOoZxjqGjK33VyG1xxObHIsTn858SruFSs+XsHQmkNzddy8/O0/i3qWmoz8+3Mt5FqGLgx9uT6uZv2JD+9AfOJ/LRZvH7u4vK633tpKn219MEipjyOTSEwyUt33Ie+zsUmxTD0ylfmX5gNQyaoSa7quoUGZBmqLXciaSFAKQNqbxLsXr6i9SRR2xSmJ3H13Nz229CBZmUyXKl3Y3GOzKPsNvIp7xaAdgzjw4AAAA6oPYGGHhSy6vIjJhydT3rI8d8fdzfG1ysnffsuqJfEL8UvXOhIUFZThWPam9jR0bIinoyeejp68fF2azzbeyPZ9pbi8rr/ct4X1p40B0hWKU8f77OHAwwzdNVRVKn9ao2l82/Rb8TeTz0SCks/Sug+yGk2f12bWwtylos2K03Xdf38/3TZ3I1GRSMfKHfmn5z8Y6BpoOiyNU0pKfj37K18f+xqFpKBKySqs6bKGMRs6oox9xVeNv6R71e4ZdzS2BktH1a/Z/e2DhFw3mmDDkcQr0ldGlcvk1LCvgWcZTzwcPfB09KScRTnVkhG5fV8p6q/r/65HPJkNEVdHd9ab+Dd85vMZ626sA8Dd3p21XdfiZuv2AZEL7yMSlHzmG/iavkvPZ7vdxpEN8HC2ztExi8s3IiH/HQ48zMebPiYhJYG2Fduyvdd2jPSMst+xGDj95DR9tvXhRfQLKsmN8FcYoP++2U+6BjDuiipJOfsgjP7LLmV7nhD9aRibPMPT0ROPMqnJSN3SdVPviwnJ9OdBiA6PH3bO9ti5eV8pzPLjfTYr/wT8w+i9o3kd/xp9uT4/tfiJiQ0mIteRf9BxhYxy8/ld9EfS5QN1T2HNqsk4rTKk6C4ScsPL2Yv9/fbTcWNHfB740GljJ3b33Y2xnrGmQ9O4xuUa4zfKj4E7BhL24DD6ZDNOJyWRK4GHWfziPCefnORFWCms+Tzb83R07od9yWeExIZw4MEBVvqtJCQmhNjkrNebMU5p8tZawVnT9qnx6lKQpQJ6uPSgUdlGjNwzkr339jL58GR2393N6i6rcSrh9MHHF/JGJCh5oM4prNlVhpSRWhnSy8W+SDXfCvmruVNzfPr70H5De44+Okr79e3Z228vpvqmmg5N42xMbNjffz8r90+AS6uz3X7knpFck6W2shiQs+6yvYEbSHx8M9P7jPWMcTB1wN7UPt1PYlw51p7I/tiFYWq8OhR0qQB7U3t299nNimsrmHBwAqefnqb6ourMbjOb4TWHF6rV24sKkaDkQVp1xeymsOakumJuKp4Wh2ZdQX0al2vMwQEHabuuLSefnKTturbs778fcwPNTs3PifweXxGVGEVDx4Y5SlDelqhzixReIscaWaZlpCT09GLoX7seDmYfZ0hC7E3ts0wSFUqJI9eynxqv7VWc1UWd77M5JZPJGF5rOC2cWjB452BOPz3NyD0j2XlnJ8s+Xoa9qb3aziVkTyQoeZBWXTG1W0aZ7o0qt9UVi0rFU0E7eTp6cmTQEVqvbc3ZoLO0WdcGn/4+WBhaaDq0LKljPFZEQgSPIx5n+ROZGElNSYerZN+iVNaiLCWsK6QmGCb2xEYn4HM580GbIGNu76a0deuTw0f7n7ffV2RkPoW4MFRxVhdNXg+nEk4cH3ycOefn8OWxL9l3fx9uC9xY1HERPVx6qP18QubEINkP8J3PTpadiED3rZ7j3L6RFuRAMKH4uhp8Fa+1XoTHh1OnVB0ODThECaMSmg4rg5xO349MiMyYeET+9/+clDJvaViSI/HZL0q3p9lkvBp9jqHuf10J+TmoXQyYT0/T18M/zJ9BOwZxLeQaAP2r9Wduu7la+fdTGIhZPAWk77a+bLq5hYFVZ9D9o6F5aopOVihw+W4bSclGmTYZF8aKp4J2uh5ynVZrW/Eq7hXu9u4cHniYksYlNR2WSk6m8MrkkUSYfUpE4ptsj2djbEN5y/KUtyyPk6WT6v/lLctTzrIcxi/vwZKm2R6nFjE8NS7B8JrDGV1ntGrQZH52QxX1KcS5penrkaRI4oeTPzDzzEwUkoLSZqVZ2XklXs5eBRZDUSESlAIQnxyPzW82xCbHcn74eeqXqZ+n43x97Gv+PHEMm6Qv0xUiAlH0TVA//zB/Wq5pSVhsGNVsq3Fk0BFsTWw1HRaQ89bEEP1pJMpvUtK4ZIbEQ5WAWJTLvnz5C78cJyhpg2RlyOhQuQPedb1p7dwaHZlYzqw4ufDsAgN3DBSl8j+ASFAKwPbb2+m+pTtlLcryePzjPI3wXnN9DYN3DgZgau2NnLxpI5p1hXx3++VtWqxpQUhMCC42LhwddFQrBv/t8nvO+E1+2W43uX1JBjdw/fAZSRFBMK82pCRmuUmSTIeKUiRBMglDuSEJiv/+PitaVWRMnTEMdR8qmvuLkbjkOKYensq8S/MAUSo/t0SCUgD6buvLJv9NTGowiT/a/JHr/U8/OU3LNS1JVibzZaMv+anlTxpvxhSKj3uv79FidQueRz/nI+uPODb4GKXMSmk0Jo2Mx4oIgrjXql/33d/PN8e/AaBDpQ780GE+R8LvMmrvKB6+eQikfiCFxIQQnZS6QrKRrhH9qvXDu643NR1qqicuQesdeXiEobuG8izqmSiVnwsiQclnb3fv+A73zXXmHBgeSP1l9Xkd/5oeLj3Y3GOzaCoWClxgeCAt1rTgaeRTKlpV5NigYzhaOGa/Yz7RhhWo45PjsfvdTpV83BxzEzdbN+KS45hxYgZ/+P6BQlJgaWhJp8qd8Avx42bYf/VOPMp44F3Xmx4uPcQSA8VAREIEnx34jLU31gKiVH5O5ObzW3wq5oHPAx9ik2NxNHekfuncjT2JSIig48aOvI5/TZ1SdVjdZbVITgSNcLZy5uSQkzhZOvEg/AFNVzXlccRjjcWTNq0UMq68UlDTbI30jBjq/t/Kxl8f+xpILa42y2sWl0ZeopZDLSISIlh7Yy3WRtZs6LaBPm590NXRxfeZLwN2DKDsnLJ8dfQrgiIzLhAoFB2Whpas6bqGf3r+g7WRNX4hftReUpvfzv6GQqnQdHiFnvhkzIOtAVuB1PLIuRl7kqxIptfWXtx5dYcy5mXY3UeUHxc0q7xleU4OOYlzCWceRTyi6aqmBIYHaiyetm4OLBxQC3uL9NVB7S0MC2yw+MjaI1X/33V3F75BvqrfazrU5MKIC/zu9TvGesaceHKCobuGUs22Gg8/e8j3zb6ntFlpwmLD+PnMz5T/qzxdN3fl6MOjFMLGaiGHurt0x3+sPx0rdyRJkcSUI1NotrqZqltQyBvRxZNL8cnx2P5uS0xSDOeGncPD0SNH+0mSxNh9Y1l0ZREmeiacGXYGd3v3/A1WEHLoedRzWqxpwb3X9yhtVprjg49TybqSxuLR9Hishisaci7oHABNyjXhxOATGb6MPHrziNH7RnMo8BAA1WyrsbTTUmo51GL33d3MvzSf44+Pq7avUrIKY+uMZVCNQVpdKE/IO0mSWOm3kvE+44lJisFEz4TZbWYzotYIUSr/X2IMSj7aeWcnXTd3pYx5GZ5MeJLj7pm/zv/FhIMTkCFjZ5+dfPzRx/kcqSDkTkhMCC3XtCTgZQAOpg4cG3yMKiWraDosjVjtt5ohu4aofj/Q/wBtK7bNsJ0kSay/uZ6JByfyKu4VMmR8Wu9TfmzxI2YGZgS8DGDBpQWsvr6amKQYAEz0TBhYfSDe9bzFWIUi6tGbRwzZNYRTT04B0L5Se5Z1WoaDmZiRKcag5CNV907VHjlOTvbd28ekQ5MA+M3rN5GcCFrJ3tSe44OPU822GsExwTRd1RT/MH9Nh6URPV17YmHwXyvHtKPTUErKDNvJZDIGVB/Abe/bDKw+EAmJvy/+jesCV/bd24eLjQvz2s/j+aTnzGs3j6olqxKbHMuiK4uotrAaTVc1ZcutLSQrkgvy4Qn5LK1U/h+t/8BAbsD++/txW+jG1ltbNR1aoSJaUHIhISUB299siU6K5uyws3g6ema7z43QGzRc0ZCYpBhG1hrJ4o6LRVOfoNVexb3Ca60XfiF+lDQuyZGBR6hhX0PTYRW4T/d/yrxL89DV0SVFmcLG7hvpk80aO4cCDzF672geRTwCoI9bH+a0mYOdqR2Q2uJy4vEJ5l+az847O1FIqQMpHUwd+KT2J3xS+5Msp3truttLyJtbYbcYuGOgqlR+v2r9mNdunqp2TnF7XkUXTz7ZdWcXXTZ3obRZaZ5OfJptC0pITAj1l9XnaeRTWji1wKe/D3pyvQKKVhDyLjw+nDbr2nD5xWWsjKw4PPAwtRxqaTqsAnUz9CbVF1VHR6aDUlLiXMKZ2963s/0bjk2K5bsT3/Hn+T9RSkpKGJbgj9Z/MMR9SLovJ8+inrHkyhKWXFlCaGwoALo6unSt0hXvut40KddEtb2m16MRPkySIokfT/3Iz6d/VpXKX9F5Bcr4asXueRUJSj4ZsH0A62+uZ3z98cxpO+e928Ynx9N8dXMuPL9AZevKnB9+XlSbFAqViIQI2q5ry4XnF7A0tOTggIPUK11P02EVKI/lHpx/dh4TPRNik2NZ2GEho+uMztG+V4OvMmL3CNU35xZOLVjccTEVrSqm2y5JkcT229uZf2k+Z56eUd3uZuvG2Dpjsddry6RNAdkuoChovwvPLjBo5yDuvb6HkcID26QveXdSfVF/XkWCkg/e7t45M/QMDcs2zHJbpaSk77a+bLm1BSsjK84PP6/RGRGCkFdRiVG0X9+es0FnMTcwx6e/T45nrhUFK6+tZNjuYZQ0Ksmr+FfYm9oT+FlgjssDpChTmO07m+knphOfEo+hriHTm07nfx7/y7Ql5nrIdRZcWsC6m+uIS44DSYcyiSuRS1ZkrA4jFhMtjFJL5X/BjlO1kFMywxpsULSfVzFINh8cCjxEdFI0pc1KZ/sG/d2J79hyawt6Onps77VdJCdCoWVuYI7PAB+almtKVGIUrde15vST05oOq8D0cu2FuYE5r+JfYWdiR0hMCH9f+DvH++vq6DK54WT8x/rTqkIrElISmHZ0GnWX1uXS80sZtq9hX4PFnRbzfNJz5rSZQ0XTNsglazJLTgAkIDgygYuPwvP4CIWCZqxnTL+PpqOLTabJCYjnNY1IUHIobfZO96rd3zv2ZP2N9fxw6gcAFndcTNPy2a+WKgjazFTflP3999PSqSUxSTG0Xd+W44+OZ79jEWCib8KAagMAKGdZDoBZZ2fxJv5Nro5ToUQFDg04xOouq7E2suZ66HUaLG/ARJ+JqunHb7M0tGR8g/H81nJJjo4fFp2Q/UaC1sjp81Xcn1eRoORAYkoiu+/uBlKnH2bl7NOzDNs9DICpDacytObQLLcVhMLEWM+YPX330Ma5DXHJcbTf0J7DgYc1HVaB+KT2J0DqmJIqJasQkRDBrLOzcn0cmUzGoBqDuO19m/7V+qOUlMy5MAe3BW4cuH8g033szI1ydGxbM8PsNxK0Rk6fr+L+vIoEJQcOBR4iKjGKUmalspxa/OjNI7pu7kqSIomuVbryc8ufVfcplBK+ga/Z5fcc38DXKJSFbtiPIGCkZ8TOPjvpWLkjCSkJdNrYKcsP1qKkhn0N6pWuR4oyhQalUxcG/evCXzyPep6n49mY2LCu2zp8+vtQ3rI8TyKf0H5De/pt60dYbFi6bes5WeFgYZhFR0Bqx4+DRerUVKHwEM9rzuR7gvLLL78gk8mYMGGC6raEhAS8vb2xtrbG1NSU7t27Exoamt+h5Fl23TuRCZF03NiRl3EvqeVQi7Vd16q28/EPptGsY/Rdep7xm/zou/Q8jWYdw8c/uEAfgyCog6GuIdt6baNLlS4kKhLpsrkLe+7u0XRY+W5U7VEAnAk6g2cZTxJSElRduXnVpmIb/Mf4M6nBJHRkOmz030jV+VVZ5bdKtW6PNiygKKifeF5zJl8TlEuXLrF48WKqV6+e7vaJEyeyZ88etm7dysmTJ3nx4gXdunXLz1DyLDElkV13dwHQ0yVj906KMoVe//Qi4GUApcxKsbvPbkz0TYDU5GTMuqvp5rgDhEQmMGbdVZGkCIWSvlyfLT220NOlJ0mKJLpt6cb229s1HVa+6u3aGzN9Mx6EP6CXay8All1dxv3X9z/ouCb6JvzR5g8ujLiAu7074fHhDN01FK+1XqpFG7VhAUVB/cTzmr18m2YcExNDrVq1WLBgAT/++CPu7u7MmTOHyMhIbGxs2LBhAz169ADgzp07VK1aFV9fXxo0aJDtsQtymvHee3vptLETDqYOPJv0LEMLyrj945h/aT7GesacHnpaVcxKoZRoNOtYhuQkTVGeRiYUDynKFAbtGMRG/43IZXLWd1tPb7femg4r34zdN5aFlxfS27U3MUkx7Lu/j96uvdnUY5Najp+sSGb2+dQpyQkpCRjqGvJd0++Y5DEJPblesas4WlwUt+dVK6YZe3t706FDB1q1apXu9itXrpCcnJzu9ipVqlC2bFl8fX3fPQwAiYmJREVFpfspKO/r3pl7YS7zL81Hhoz13danq7R58VF4lskJiGlkQuGnq6PL2q5rGVh9IApJQb/t/Vjrt77IjrdKGyy7/fZ2Pvf8HBkyNt/azNXgq2o5vp5cjykNp+A/xp+WTi1JSEngi6NfUHdpXS6/uIxcR4aHszWd3Uvj4WxdpD/EihPxvGYtXxKUTZs2cfXqVWbOnJnhvpCQEPT19bG0tEx3u52dHSEhIZkeb+bMmVhYWKh+HB0d8yPsDBJTEtl159/unXdm7xy4f4AJBycAMKvVLLpU6ZLufjGNTCgO5DpyVnZeyfCawzFIqc+0TclFdryVu707dUvVJVmZzOUXl+lXrR8AXx79Uq3ncbZy5vDAw6zsvBIrIyuuh16n/rL6TDo4idikWLWeSxC0mdoTlKCgIMaPH8/69esxNFTPFKlp06YRGRmp+gkKClLLcbNz5OERIhMjsTe1p6Hjf5Vj/cP86f1Pb5SSkmHuw/jc8/MM+5ob5eybY3GfRiYUfnIdOd2cvsc26UvklEx3X1Ebb5XWirLkyhJmNJuBno4eBwMPqr0ujEwmY4j7EG5736avW1+UkpLZ52fjusAVnwc+aj2XIGgrtScoV65cISwsjFq1aqGrq4uuri4nT57k77//RldXFzs7O5KSkoiIiEi3X2hoKPb29pke08DAAHNz83Q/BeHt7h25jjw1zphQOm7oSHRSNM3KN2Nhx4XpFgCTJIntt7czeF9DUniJRMYl2kFMIxOKDoVS4oe9twFZusqYpXiFi+wRrrJHbNy1B8Xza/DC77+fiIL5oqFOfdz6YKpvyv3w+wRFBalm90w7Oo38GM5na2LLhu4b2N9vP2UtyvIk8gnt1rej//b+vIx9qfbzCYI2UXuC0rJlS27evImfn5/qp06dOvTv31/1fz09PY4ePara5+7duzx9+hQPD+1Z4yNJkZRh9k5CSgJdNnfhSeQTKllVYluvbejL9VX73H99n3br29F9S3eCop+ia7njnbfsVGIamVCUZDbeqhSvOGbwP/YZfMVeg69YnTwZ+dJmsKTpfz/zahe6JMVU35T+1foDqa0oXzf5GhM9Ey48v6B6v8gP7Sq149bYW0yoPwEdmQ4bbm6g6vyqrLm+Jl8SI0HQBmpPUMzMzHBzc0v3Y2JigrW1NW5ublhYWDB8+HAmTZrE8ePHuXLlCkOHDsXDwyNHM3gKypGHR4hIiMDOxI5GZRshSRLDdg3j/LPzlDAswd5+e7EySm39iEuO4+tjX+O20I2DgQfRl+vzTZNvCPjfRhYNqC2mkQlFWmbjqErIojGUJb9/x5REiHudT1Hln7Runm23tyHXkTOxwUQgdSyKQqnIt/Oa6psyu+1szg8/T3W76ryOf83gnYNps64ND988zLfzCoKm6GripLNnz0ZHR4fu3buTmJhImzZtWLBggSZCydK73TszTsxgo/9GdHV02dZrG5WtKyNJErvu7mKCzwSeRD4BoI1zG+a2m6taILCtmzFeLvbFahqZULwUt3FUtRxqUduhNleCr7Dm+ho+9/ycBZcXcPvVbdbeWMsQ9yH5ev66petyeeRl/vD9gxknZ3D44WHcFrgxo9kMJnpMRFdHI2/rgqB2+VYHJT/ldx2UJEUSdr/bEZEQwfHBxwmODqbf9tQR+8s6LWN4reEEhgfymc9n7L+/H4CyFmWZ02YOXap0STcmRRCKurSaPyGRCaS9mbjKHrHP4Kvsd/7kJJRyz8/w8sWSK0sYtWcMFU3b8nvLJZwI2s2cq+Moa+HImg6+RMQpC+TLyP3X9xm1dxTHH6cO0q1pX5NlHy9LV/JAELRJbj6/RaqdiaMPj6q6d3Rlugzdlbro32TPyfSr1o/px6cz6+wsEhWJ6OnoMdlzMl82/lJVQVYQipO0st1j1l1FBhS6bzx5YKPjRZnEFSQnlGT8Zj+gLGVlG1CGKhi84r+6KA4Whkzv5JJv3bmVrCtxdNBRVvmt4n+H/se1kGvUXVqXiQ0mMqPZDPGeJBRqYrHATKR173hV8KL71u4kKhLp/FFnGjo2xHWBK9+f+p5ERSJeFby4OeYmP7X8SbwRCMVaVmW7s3M1+Fo+RZR/fPyDmbQ5ALlkne52mWSCDum/ERbENGuZTMbQmkO57X2bPm59UEpK/vD9g2oLq3Eo8FC+nVcQ8pvo4oHUmQT/DtZLVqbgtdZLtXrxi+gXlLByxsC6IgcepK7cWsa8DLPbzKZ71e6iO0cQ3nLn5T2Gbv0RneDbnJXfy3b7WsRgXNaDLxp9QYdKHbT+7ym7JSwyU9DLWuy7t48x+8YQFJU6Q2pA9QHMbjObksapNWqKW2l1Qbvk5vNbJCgRQanTHVMSs9wkAYnKxBAsl/M/j//xdZOvMdU3/bDzCkIRkqxI5rdzv/H9ydTWxZqSDlfJ/m+kvjyRi8rUvz03Wze+aPgFvd16a+1AT9/A1/Rdej5P+24c2QAPZ+vsN1SD6MRovj72NXMvzkVCwtrIOjVJ0WnF93sD0iVY+d0NJQhv04q1eAqNuNfvTU4ADJHRvnQ9boy+wS+tfhHJiSC85fyz89RaUouvjn1FoiL1b+kVEvHZjUbRNWD3sLNM9pyMqb4p/mH+DNgxgEpzK7Hg0gLik+MLIPrc+ZClKQpyWQszAzP+avcXvsN9qWZbjdfxrxm1bSFj1l8Rq6sLhYZIUHJoYYeFVLWpqukwtI5CKRXZxeGE94tKjOLT/Z/iudwT/zB/5DK56r4gmcQwx+qkjDxGd8uS1CKGSx3/SJ21k/Yz7gp2pWvzq9evPJ3wlB+b/4iNsQ2PIx7jvd+b8n+VZ+bpmUQkRGjuQb7jQ6ZUa2I6dv0y9bnyyRV+aP4T1smjMk0Z026bsSdA/P0KWkV08bzwS61qmY3RpavywtQWU31TTPRMMNE3yfX/DeQGWt/Hnhs+/sHM2COai4ujXXd24b3fm+fRz4HUImIxSTGq+50snbj8yWWsjKyw/MWSyMRIAsYGZJvkxyXHseLaCn4/97uqtpC5gTlj6oxhQoMJ2JtmvhxGQclsSnV2CnoMSmZy2jVVkN1QQvEkphnng4vPL3FNlvm6Ojkll8kx0TfBRO/fxCWrZOat+3P6/7S1ggqKj38wY9ZdzfAmndZcLCrlFk0vol/w2YHP2HZ7GwCO5o5EJ0Wna+Uw1TdlT989WBlZEZ8cT2RiJAAOZtm/Hoz1jBlXbxyjao9i863N/HLmF269vMWss7OYc34OQ9yHMNlzMs5Wzvny+LKT2ynV2rKshVhdXSiMRIKSQz+1+IlnJtbEJscSkxRDbFLsf/9PjiU2Kev/p/XLKyQFUYlRRCVGqT0+Q13D97fgZJHcZNfyY6hrmKHVR6GUmLEnIMvmYhmpzcVeLvZidkARoZSULL2ylKlHphKZGIlcJqevW1923tlJTHJMum3Xdl2Lq60rAKGxoQAYyA2wMLDI8fn05HoMqD6AftX6se/ePmaemYnvM18WX1nM0qtL6eXaiy8afkEN+xrqe5A5lDal+t3WwxLGekhARNx/Jf7ttaRFMafdS8WtKrCg3USCkkPtKrbNc8XLFGXKexOYLP+f/E4ilMn/lVJqq05CSgIJKQm8jlfv2iY6Mh1V0pKW2OimVOVV5IAs95GA4MgELj4KF83FRUDAywA+2fMJZ4POAlC3VF36V+vP5MOTSVamfhjLkCEhMaPZDLpU6aLaNyQmBAB7U/s8dW/qyHTo9FEnOlbuyOmnp/nlzC8ceHCATf6b2OS/iXYV2zGt0TQalW1UoN2nbd0cMl3CAtDKKbz1nKxwsDDMsmsqrRtKrK4uaBORoBQAXR1dLAwtsDDM+TfInJAkiYSUhBwnPblp+UlISf1mqJSURCdFE50UrTqvcYoFNjmITzQXF26JKYn8fPpnZp6ZSbIyGRM9E35q8RMGugaM3TcW6d+POgO5AYmKRLpW6crXTb5Od4zg6NSZITnp3nkfmUxGk3JNaFKuCX4hfsw6O4stt7Zw4MEBDjw4gKejJ9MaTaN9pfboyApm7L9cR5ZpAq6NSfn7uqa0pRtKEN4lEhRja9A1eP9UY12D1O20jEwmw0jPCCM9I1URJnVRKBWqpOXd5MbvaSwLDmZ/DNFcXHidenKKT/Z8wt3XdwHoUKkD89vPZ8W1FXx/6nvVdpaGlkQkROBm68bqLqszJAdvt6Coi7u9Oxu7b+SH5j/w+7nfWem3knNB5+i0sRNutm5MbTiVPm59tLaWiqZk1TWlLd1QgvAuMYsH0lWSzZSxNVg6fvh5iojsZjJow6wFIW/exL9h6pGpLL26FAA7Ezv+bvc3Xat0Zcy+MSy/tly1bTmLcjyJfIKVkRWXRl6iQokKGY43/fh0vj/1PaNrj2Zhx4X5EnNwdDBzzs9h4eWFqpa+8pbl+dzjc4bVHIaRnlG+nLew0rZKstoWj5C/xCye3LJ0FAlILojm4qJHkiT+CfiHTw98qhrYOrLWSGa1moW+XJ+um7uy7/4+1fbu9u74hfghl8nZ0mNLpskJQHCMerp43sfBzIFZXrOY1ngaCy4tYM75OTyOeMy4A+OYcXIGExpMYGzdsVgaWuZbDIVJVl1TmiBKFQjvIwq1CXmS1eJw9haGYopxIRMUGcTHmz6m1z+9CI0N5SPrjzg55CRLOi0hRZlCizUt0iUnLZxacCP0BgB/tP6DlhVaZnns/OjiyYqloSVfNv6SxxMeM6/dPMpZlONl3Eu+OvYVZWeXZerhqap4BM1LK1UgKtsKWRFdPMIHEc2zhZdCqWD+pfl8dewrYpJi0NPRY1qjaUxrPA1DXUMevXlEm3VtuB9+X7VPl4+6cPLJSd4kvGGI+xBWfLzivbNn6i2tx6UXl9jVZxcff/RxQTwslWRFcrpaKpA6oFfTtVSE7BddFN3ERZdYi0coMGnNxZ3dS+PhbC3eTAqJ6yHX8VjuwXif8cQkxdDQsSF+o/2Y0XwGhrqGXA2+isdyj3TJyYBqA7gffp83CW+oV7oeCzsszHZqb1oXjyYqwKbVUrkx5ga7++zGo4wHiYpEFl9ZTOV5lem7rS/XQ64XeFxC6lTs960I/XapAqH4EgmKIBQj8cnxfHHkC2ovqc2lF5cwNzBnYYeFnBp6ChcbFwAOBx6m6aqmqrEoAMPdhxOTHMOtl7dwMHVgR+8dGOq+f5aWUlISGpN6DAdTzXX5pdVSOTvsLCeHnKRdxXYoJSWb/Dfhvtid9uvbc+rJKQphY3KhJSrbCjkhEhRBKCaOPDxCtYXVmHV2FgpJQbeq3bjtfZvRdUarpgevu7GO9hvap1tXZ3Tt0ZSxKMPOOzvRl+uzvfd2SpmVyvZ8b+LfqAq52ZrY5s+DyoW0Wir7++/Hb5Qffdz6oCPT4cCDAzRd1ZRGKxux5+4eVfFDIf+IyrZCTogERRCKuFdxrxi8czBea70IfBNIabPS7Oi9g229tqkSDUmS+PXsrwzcMZAUZYpq33F1x+Hl7MWMkzMAWNRhEQ3KNMjRedMGpFoZWWGga6DmR/VhatjXYGP3jdwbd49RtUehL9fnXNA5Pt70MTUW1WDdjXUkK5KzP5CQJ2mVbbPqIJSROptHVLYt3kSCIghFlCRJrLuxjqrzq7Lm+hpkyBhXdxwB3gHpytErJSUTfCYw9cjUdPuPrz+eT2p/wqAdg1S/D605NMfnV00x1mD3TnacrZxZ1HERj8c/ZornFMz0zfAP82fgjoFUnleZ+RfnE58cr+kwi5y0UgVAhiRFIrUFS5QqEESCIghF0MM3D2m7vi0DdwzkVdwr3GzdODf8HHPbz8Xc4L+R8wkpCfT5pw9/X/w73f7/8/gf3zT5hi6buxCbHEsLpxb83vr3XMVQkFOMP1RaLZWnE5/yU4ufsDG2UdVSKTenHD+f/jndis3Ch8uqVIGC13SqHypKFQgiQRGEoiRFmcJvZ3/DbYEbhwIPYSA34KcWP3HlkysZumYiEiJou64tWwO2IpfJVbdPbTiVmS1n0mdbHx6+eYiTpRNbemzJden4wpSgpEmrpfJkwpMsa6mkrS8kfLi2bg6cmdqCjSMb8Fcfd/o0CeG54XD2PP0hXVejUDyJBEUQiojLLy5Td2ldphyZQnxKPM3LN+fmmJt82fhL9OX66bZ9HvWcxisbc/LJSQzkBigkBQBfNf6KmS1nMvXIVI48PIKJngm7+uzCOg9rUakWCtTiLp6sGOkZ4V3Pm/uf3mdt17W42rgSnRTNr+d+xekvJ0bvHU1geKCmwywS3i5VMN2rHzYm1jyOeMw/Af9oOjRBw0SCIgiFXExSDBN9JlJ/WX38QvwoYViCFR+v4Oigo1SyrpRh+1tht/BY7oF/mD9m+mYkKlIXypzedDo/NP+BNdfXMPv8bABWd1lNNbtqeYorJLbwtaC86+1aKnv67sHT0TNDLRW/ED9Nh1lkGOkZ8Wm9TwGYdXaWmPpdzIkERRAKsf339+O6wJU5F+aglJT0devLnXF3GFpzaKZF1M48PUOjlY0IigqipHFJ1eJ63zf7nu+afcfF5xcZtXcUAN82+ZbuLt3zHFth7OLJio5Mh46VO3Jm6BlODTlF+0rtVbVUai6uKWqpqNHYumMx1jPGL8SPIw+PaDocQYNEgiIIhVBoTCh9/ulDhw0deBr5lHIW5djfbz8bum/IsubI9tvbabWmFREJEZQxL8OruFcA/NziZ75p+g3B0cF029KNREUinT/qzPRm0z8oRlUXTz4uFFjQZDIZjcs1Zl+/ffiN8qOvW19RS0XNrI2tGVFzBAC/nvtVw9EImiQSFEEoRCRJYvnV5VSZX4XNtzajI9Phfx7/49bYW7Sr1C7L/RZcWkCPLT1IVCRSyaoSz6KeAfCb129MazyNxJREum3pxovoF7jYuLC261pV8ba8KkotKJmpYV+DDd03cG/cPUbXHo2B3EDUUlGTSR6TkMvkHHl4hKvBVzUdjqAhIkERhELi3ut7NF/dnBF7RhCREEFN+5pcHHGR31v/jom+Sab7SJLEV0e/wnu/NxIS7nbuqvV1ZreZzeeenyNJEmP2jeH8s/NYGlqyq88uzAzMPijWxJRE3iS8AYpugpLG2cqZhR0X8mj8I6Y2nJqulkqluZWYd3Eecclxmg6zUClnWY4+bn0A+PWsaEUprkSCIghaLkmRxI+nfqT6wuqcfHISI10jfvf6nYsjL1K7VO0s90tWJDN011B+PvMzAJ6OnviF+gEwt91cJjSYAMC8i/NY6bcSHZkOm3tspqJVxQ+OOa31RF+uTwnDEh98vMLAwcyBX1r9wtOJT/m5xc/YmtjyJPIJnx74lPJzyvPTqZ+yrKWiUEr4Br5ml99zfANfo1CKsSyTPScDsDVgKw/fPNRwNIImyKRCOKorN8s1C0Jhdi7oHCP3jCTgZQAAbZzbsLDDQpxKOL13v5ikGHpu7YnPAx900KG5U3OOPjoKwIL2CxhTdwwAxx4do/Xa1igkBX+0/oNJHpPUEveFZxdosLwBZS3K8mTCE7Ucs7CJT45npd9Kfjv3G48jHgNgpm/G6Dqjmdhgompsjo9/MDP2BKRb3dfBwpDpnVyKfbGyduvb4fPAB++63sxrP0/T4QhqkJvPb9GCIghaKDIhkrH7xtJoRSMCXgZgY2zD+m7rOdD/QLbJSVhsGM1XN8fngQ9Guka0q9ROlZws6bhElZw8evOInlt7opAUDKw+kIkNJqot/qI+/iQnjPSMGFt3LPc/vc+6rutws3UjOima3879Rvm/yjNqzyhWnr/GmHVX0yUnACGRCYxZdxUf/+JdFG6K5xQAVlxbwcvYlxqORihoIkERBC2z4/YOXBa4sPDyQiQkhrgP4bb3bfpV65fp1OG3PQh/gOdyTy6/uIy1kTVtK7Zl3/19yJCx/OPljKw9EkhtYem8qTPh8eHULVWXxR0XZ3vs3BAJyn90dXTpX70/N0b/V0slSZHEkivL+GbXDSQyNmKn3TJjT0Cx7u5pVr4ZdUrVIT4lnnkXRQtKcSMSFEHQEs+jntNtczfVbJqKVhU5OugoKzuvzFEl18svLuO53JPAN4GUtyhPc6fm7LizAxkyVnVZxbCaw4DUgbNDdg7hZthN7Ezs2N57O0Z6Rmp9LIVhocCCJpPJ6Fi5I2eHneX00NM0LTUMXakkGZfLSyUBwZEJXHwUXqBxahOZTKZqRZl3aR6xSbEajqhwK2xjnXK3uIYgCGqnlJQsuryIL458QXRSNLo6ukzxnMLXTb7OceLg88CHHlt6EJscS037mlS2rqyahrymyxr6V++v2van0z+x7fY29HT02N57O2XMy6j9MYkWlPdrVLYRE+s5Mf6hX7bbhkUnZLtNUdatajecSzgT+CaQFddW8Gn9TzUdUqFUGMc6iRYUQdCgW2G3aLSiEd77vYlOiqZ+6fpc+eQKP7X8KcfJyWq/1XTa2InY5Fi8KnipkhO5TM6GbhvSJSe77uzim+PfALCww0I8HT3z5XGJBCV7tmaG2W+Ui+2KKrmOnM89PwfgD98/RG2ZPPDxDy6UY51EgiKoXWFrRtSEhJQEvjn2DTUX18T3mS+m+qbMbTeXs8POUt2ueo6OIUkSP5/+mSG7hpCiTKF/tf5YGVmx+dZmdHV02dRjE73dequ2vxV2iwE7BgAwru44htcani+PDUQXT07Uc7LCwcIwiw6e1I4fBwtD6jlZFWRYWmlwjcGqadtbA7ZqOpxCRaGUmLEnIJORTto/1kkkKIJa+fgH02jWMfouPc/4TX70XXqeRrOOaW2GrgknHp+g+sLq/Hj6R5KVyXSq3ImAsQGMqzcOuY48R8dQKBWM2z+Or459BcBkj8kkKZJUycmWHlvo4dJDtX14fDidN3UmJimGZuWb8WebP/PlsaURLSjZk+vImN7JBcg4CiXt9+mdXJDrqG/wcmFlpGfEZ/U+A1ILtxXC6hgac/FReIaWk7dp81gnkaAIalNYmxELSnh8OCN2j6D56ubcD7+Pvak9//T8h119duFo4Zjj48Qnx9Prn14suLwAGTJmt5lNYEQgWwO2oqejx7Ze2+hatatq+xRlCn239SXwTSDlLMqxtedW9OR6+fEQgdSWHZGg5ExbNwcWDqiFvUX6bhx7C0MWDqiltWMDNGFM3TGY6JlwPfQ6hwIPaTqcQiOnY5i0cayTGCQrqEV2zYgyUpsRvVzsi903QkmS2HJrC5/5fEZYbBgAo2qP4pdWv2BpaJmrY72Jf8PHmz7mzNMz6Mv1WdVlFZv9N7Pr7i705fps77WdDpU7pNtn2pFpHAo8hLGeMbv67KKkcUl1PbTMY0x4Q5IiCQA7U7t8PVdR0NbNAS8Xey4+CicsOgFbs9RuneL2d5IdKyMrRtYayZwLc/j13K+0qdhG0yEVCoV5rJNoQRHUojA3I+anJxFP6LixI3229SEsNoyqJatyeuhpFnVclOvk5GnkUxqtbMSZp2ewMLBgb9+9bLi5gV13d2EgN2BXn10ZkpN1N9bxu+/vAKzqvIoa9jXU9dCylNZ6UsKwBIa62vemp43kOjI8nK3p7F4aD2drkZxkYaLHRHR1dDn26BiXX1zWdDiFQj0nK0wNU5DIfIVtbR7rJBIUQS0KczNifkhRpjDbdzYuC1zYf38/+nJ9ZjSbwbVR12hUtlGuj3cz9Caeyz0JeBlAabPSHB10lNnnZ7P33l4MdQ3Z03cPbSu2TbfP5ReXGbE7ddn6rxp/RU/Xnmp5bNkR3TtCfilrUZa+bn0B+O3cbxqOpnBYf3MtD5WzSE1F0rdxa/tYJ5GgCGrxIvZ2jrbTxmZEdbsWfI0Gyxow6dAk4pLjaFS2EX6j/Pi26bcY6Brk+ngnH5+k8crGPI9+jouNC8cHH2fa0WkceHAAYz1j9vXbh5ezV7p9QmJC6LKpC4mKRDpV7sT3zb9X18PLVnB06lgjkaAI+SFtEcF/Av4hMDxQw9Fotx23dzB011Di5b7Ud72BvUX60gXaPtZJjEERPkhEQgRTDk9h6ZXllGY5ckoiy2TipIzUPwZtbEZUl7jkOL478R1/+v6JQlJgYWDBr16/MqLWCHRkefsusPXWVgbsGECSIonGZRuzsftGBu0cxLFHxzDRM2Ffv300Ld803T6JKYl039Kd59HPqVqyKuu6rcvz+XNLoZS4/DgK45QmGEs1UCglrfxmJhRe1eyq0a5iOw48OMAfvn+woMMCTYeklY48PEKfbX1QSkqGuA9h+cdfIEmyQjXWSaxmLOTZzjs7GbtvrKrmRZdy3+F3pw6QviEx7eWvzZn6hzoUeIjRe0fzKOIRAD1devJX279UK9bmxd8X/maCzwQkJLpX7c6ijovoubUnJx6fwFTflAP9D2ToLpIkiU/2fMKya8uwNLTk4oiLVLKu9EGPLacKY6VKoXA6+fgkzVY3w1DXkCcTnmBrYqvpkLSKb5AvXmu9iE2OpXvV7mzqsQldHe1ojxCrGQv5KiQmhJ5be9J1c1eCY4KpbF2Zk0NOsmPI9GI3ZfJl7EsG7hhIm3VteBTxiDLmZdjdZzdbem7Jc3KilJRMPTyV8T7jkZDwruvNsk7L6La5Gycen8BM34xDAw5lOpZl4eWFLLu2DB2ZDhu7byzQ5ERMMRcKSpNyTahXuh4JKQnMvTBX0+FolRuhN2i/oT2xybG0dm7N+m7rtSY5yS3RgiLkmCRJrL6+mkkHJ/Em4Q1ymZwpDafwbdNv083WUCilQtWMmBeSJLH2xlomHZzE6/jXyJDxab1P+bHFj5gZmOX5uEmKJIbtGsb6m+sBmNlyJmPqjKH9hvacCzqHhYEFBwccpH6Z+hn2PfH4BF5rvUhRpvBrq1+Z3HBynuPIDYVSotGsY1nO4krr3jsztUWRex0ImrMtYBs9tvaghGEJnk58iqm+qaZD0rj7r+/TeGVjQmND8XT05NCAQ5jom2g6rHRy8/ldONMqocA9evOIUXtHcfjhYQBqOdRiWadl1HSomWHbtCmTRdWD8AeM3juao4+OAlDdrjpLOy2lXul6H3Tc6MRoum/pzuGHh9HV0WX5x8vp/FFn2qxrw4XnF7A0tOTwwMPUKVUnw76PIx7Tc2tPUpQp9KvWT7V2SUHIzRTzovy6EApWlypdqGRVifvh91l+dTnjG4zXdEgaFRQZRKu1rQiNDcXd3p19/fZpXXKSW6KLR3gvhVLBbN/ZuC104/DDwxjqGjKr1SwujLiQaXJSlCUrkvnlzC9UW1iNo4+OYqhryMyWM7k88vIHJychMSE0XdWUww8PY6Jnwp6+e+hUuRNea7248PwCVkZWHB10NNPkJDYpli6buvAq7pUqcZTJCq6lQkwxFzTh7UUE/zz/Z7FeRPBl7Eu81nrxNPIpla0rc3DAwVzXWdJGogVFyJJ/mD8jdo/gwvMLADQr34wlHZcU2LgGbXLx+UVG7hnJjdAbALR0asmijouoaFXxg4997/U92q5ry6OIR9ia2LKv3z4qlKhAq7WtuBp8FWsja44OOpppkTVJkhi6ayjXQ69ja2LLzt47c7wKsroU5kqVQuE2qMYgvjn+DU8jn7L51mYGVB+g6ZAKXGRCJG3WteHu67s4mjtyeODhIjNoWLSgCBkkpiQy/fh0ai2uxYXnFzA3MGdJxyUcHXS0yCYnWa3AHJ0YzfgD42mwrAE3Qm9gZWTFqs6rODzwsFqSkwvPLtBwRUMeRTzCuYQz54ado7xleVquacnV4KvYGNtwfPDxLCvA/nLml3Rr8ORmTR91EavyCppiqGvI+PqpXTvFcRHBuOQ4Om7syLWQa9gY23Bk0BHKWpTVdFhqI1pQhHR8g3wZvns4t1+lFl7r/FFn5refT2nz0hqOLP9kNT22Q+14ltwaS1BUEAADqg/gz9Z/YmNio5bz7r23l15bexGfEk+dUnXY128fMmS0WN2Cm2E3sTOx49jgY7jYuGS5f9pqxvPaz8tThVp1SFuVd8y6qxlqVWp7pUqh8BtTZwwzz8zkZthNDgYezFBRuahKUiTRfUt31dIXhwYeorJ1ZU2HpVaiBUUAICYphvEHxtNwRUNuv7qNrYktW3psYUfvHUU+OclsemxwZDxLj8GrN2VwsnTi4ICDrO26Vm3JyfKry+myqQvxKfG0q9iO44OPI0kSzVc352bYTRxMHTgx5ESWycntl7fpt60fEhJj6ozhk9qfqCWuvBKr8gqaUsKoBJ/USn39zzo7S8PRFAyFUsGA7QPweeCjqibtbu+u6bDUTkwzLgDaPu324IODjNo7iieRTwAY4j6EP1r/gZVR0W6Sz256rIQSY4MkLkxrg7mheqYwSpLED6d+YPrxGRgoXWlRrgtfNvGmvK0Cr3UtufPqDqXMSnF88PEsvw1FJERQb2k97offp0m5JhweeBh9ub5a4vtQ2v5aF4qmoMggKvxdgRRlChdGXPjgQevaTJIkRu4ZyfJry9HT0WNvv720dm6t6bByTEwz1iLaXF3zddxrJh6cyNobawEob1mexR0XF6oX+4fIbnqsDB3iEw259TwRD+cPT1BSlCl47/Nm7aWblE5aji42BNyHAfcvgzyCMHkJypQow/HBx7Mc36JQKui7rS/3w+9T1qIsW3tu1ZrkBIr+FHNBOzlaONKvWj/WXF/Db+d+Y2vPrZoOKV9IksTnhz5n+bXlqmKMRfn9WnTx5CNtra4pSRKb/TdTdX5V1t5YiwwZE+pP4OaYm0X6xf6ugpweG5ccR/ct3Vl76SY2SV+iS8l090sKc2ySvuQHjz3vHXz75dEv8Xngg5GuETt77ywyo/UF4UOlLSK4LWAbD8IfaDia/PHT6Z/48/yfACzrtIzuLt01HFH+EglKPlEoJWbsCSCz/rO022bsCVDNFikoz6Ke0XlTZ/ps68PLuJe42rjiO9yX2W1nF7tKjAU1PfZ13GtarWnF7jt7sU4e9e/A0fTdHjJ0kCFj8fHXWb4mNt7cyK/nfgVgZeeVxa4OjSC8j5utGx0qdUBC4vdzv2s6HLWbe2Eu3xz/BoA5beYwtOZQDUeU/0SCkk9yU12zICglJYsuL8Jlvgt77u1BT0ePGc1mcHXU1UzLphcHBTE99nHEYxquaIjvM19K6tZHLpXk3eTkbW+/Jt6e+rz64jmG7RoBwBcNv6C3W+88x1SUZTVdXCgepjScAsAqv1WExoRqOBr1WXN9DZ/5fAbAd02/KzZVc9WeoMycOZO6detiZmaGra0tXbp04e7du+m2SUhIwNvbG2tra0xNTenevTuhoUXnxQTaVV3z3ut7NF/dnDH7xhCdFE2DMg24Nuoa3zb9VqvGLxS0tOmxkDFlUMf0WL8QPzyXe6oKKM1oMidH+4VFJ+DjH0yjWcfou/Q84zf5MX37G6xj5tPIdhw/tvgxT/EUde9es75Lz9No1jGxUGEx0rhsY+qXrk+iIpG5F4vGIoI7bu9g6K7U1pIJ9SfwbdNvNRxRwVF7gnLy5Em8vb05f/48hw8fJjk5mdatWxMbG6vaZuLEiezZs4etW7dy8uRJXrx4Qbdu3dQdikZpQ3XNtNLs1RdW59STU5jomfBX2784M/QMrrau+XbewiS/pscee3SMJiubEBwTTDXbavgO96Vmaecc7fv4VVymY5d0KcmzJ205HBCWp5iKMm0d7yUULJlMxtSGUwGYf2k+0YnRGo7owxwOPEyfbX1QSkqGug/ljzZ/FOgyFpqW79OMX758ia2tLSdPnqRJkyZERkZiY2PDhg0b6NGjBwB37tyhatWq+Pr60qBBg2yPWRimGadNYQ2JTMh0HEp+r/B6Nfgqw3cPxy/ED4A2zm1Y1HER5S3Lq/1cRUFep8dmtt/WgM0M2jGIZGUyzco3Y0fvHVgaWuboNWFnbgDICIkSKwPnlFhNWXibQqnAZYEL917f48/WfzLRY6KmQ8oT3yBfWq1tlTrAvmp3NvXYhK5O4Z94m5vP73wfgxIZGQmAlVVqP/6VK1dITk6mVatWqm2qVKlC2bJl8fX1zfQYiYmJREVFpfvRdm93H7wrP6trxifHM/XwVOotrYdfiB9WRlas6bKGA/0PiOTkPdKmx3Z2L42Hs3WOnpfMuhRqfL+LYVv+JlmZTC/XXvj091Et2pWTLqW+9cpmmZxAwY9dKgy0bbyXoFlyHTmfexTuRQSvh1yn/Yb2xCXH0dq5Neu7rS8SyUlu5WuColQqmTBhAg0bNsTNzQ2AkJAQ9PX1sbS0TLetnZ0dISEhmR5n5syZWFhYqH4cHQt+vZG8SOs+MDNKSXd7flXXPPH4BNUXVefXc7+ikBT0du3Nbe/bDKwxsFg1CxaErLoUohPk2CR9Sc8KP7Gx+0YMdA3S3Z9dl1L5kjlbHl2sDPwfbRrvJWiHgTUGYm9qz7OoZ2zy36TpcHLl/uv7tF7XmoiECDwdPdnea3uG95HiIl9TMm9vb/z9/Tlz5swHHWfatGlMmjRJ9XtUVFShSlK2PdzH2svn6VZ5CJ96DFZ7dc3IhEimHJ7CkqtLAChtVpoFHRbw8Ucfq+0cwn/eN4Vchg4gEfSsPpIky3TCTls3B7xc7DPtUvINfJ2jGMTKwP/RhvFegnZJW0Rw2tFp/HruVwZUH1AovqQFRQbRam0rwmLDcLd3Z1+/fZjo5+xLS1GUby0o48aNY+/evRw/fpwyZcqobre3tycpKYmIiIh024eGhmJvb5/psQwMDDA3N0/3U5hcD/UjUX6TrjUdc9x9kFO77uzCZYGLKjkZXXs0t8beEslJPsquSwFk2XYpZNWlJFYGzj1xzYTMjK4zGlN9U/zD/Dnw4ICmw8lWWGwYXmu9eBr5lMrWlTk44KCqe7i4UnuCIkkS48aNY8eOHRw7dgwnJ6d099euXRs9PT2OHj2quu3u3bs8ffoUDw8PdYejcSnKFG6G3QRQa2Gt0JhQem3tRZfNXXgR/YJKVpU4MfgECzsuxMLQQm3nETLKzy6F/J76XBSJayZkxtLQklG1RwHw69lfNRzN+0UkRNBmXRvuvr5LWYuyHBl4RFSJJh8SFG9vb9atW8eGDRswMzMjJCSEkJAQ4uPjAbCwsGD48OFMmjSJ48ePc+XKFYYOHYqHh0eOZvAUNndf3SUhJQEzfTMqlKjwwceTJIlVfquoOr8qWwO2IpfJ+aLhF1wffZ2m5ZuqIWIhO/ndpSBWBs69rK6ZnbmBuGbF2IQGE9DT0ePkk5NceHZB0+FkKi45jo4bOuIX4oetiS2HBx7G0aJwDGHIb2ofg7Jw4UIAmjVrlu72lStXMmTIEABmz56Njo4O3bt3JzExkTZt2rBgwQJ1h6IVroVcA6CGfQ10ZB+WDz6OeMzI3aM4/SAYuVQNN2trVvb8mjqla6kj1DwpjqvXpnUpZDeF/EO6FN43TkXI3NvXrPfmkYQlPGBln79pXkEkJ8VVGfMy9K/en1V+q/j13K9s67VN0yGlk6RIotvmbpwNOouFgQWHBhzKchXz4kjtCUpOyqoYGhoyf/585s+fr+7Ta51rwakJirude56PoVAqmHtxLjMO7sIkfjD22AAQHQKfrnnD9E7BGvmGqM0rNeentC6FMeuuIoN0SYo6uxTEysC5l3bN6jjDjjs3uRpyheYVmmk6LEGDJntOZpXfKnbc3sG91/e0JgFQKBX0396fg4EHMdYzZn///dSwr6HpsLSKWIsnn/mF+gF5H3/iH+ZPwxUN+XL/Fszj/5dhFVxNVcos7pU7RTeMdqtTqg4Al4MvazgSQdNcbFzoVLkTEhJ/nPtD0+EAqV/kP9nzCf8E/IO+XJ+dvXfi6eip6bC0TvGr/FKAJEn6rwXF3j1X+yamJPLz6Z+ZeWYmyQoFjskrM10FV/r3lhl7AvBysS+QLoDsVmou6Hg0RXTDaK+6peoCcPmFSFCE1EUE99zbw+rrq5nRfAb2ppnPGC0IkiTxv0P/Y4XfCnRkOmzsvhEvZy+NxaPNRAtKPgqKCuJNwht0dXRxtcn52jfnn52n1pJafH/qe5KVybQoPRIdyZqsVsEt6EqZR+48EpU7/5WXCrT5Sazmm6p2qdoAPAh/wJv4NxqORtC0ho4N8SjjQaIikb8v/K3RWH489SOzz88GYPnHy+lWtWitQ6dOogUlH6W1nrjauOaoEmBMUgxfHf2KuRfnIiFha2LL3HZziY2swozAoGz3V3elzNikWAJeBuAf5s/NsJuqf6MiKmPDlAKPR3i/4jomKDNWRlZUKFGBh28eciX4Cq0qtMp+J6HIkslkTGk4ha6bu7Lg0gKmNZqGmYFZgcfx94W/+fZE6mrEc9rMYYj7kAKPoTARCUo+SluoLyfdOwcfHGTU3lE8iXwCwOAagxniPoTl15az/fpMbPgx22PkdVprsiKZ++H3UxOQ0Jv4v0z99+Gbh0iZdOQYyGxydFxRubPgpI0JevfZShsTVBzHxdQpVYeHbx5y+cVlkaAIfPzRx3xk/RF3X99lyZUl/M/zfwV6/tV+qxnvMx6AGc1mML7B+AI9f2EkEpR8lDbFuKZ91gNkX8e9ZuLBiay9sRaA8pblGVFrBMcfHaf56ub/bqWDXDcaRYopmXXz5HRaqyRJPI18mqFF5M6rOyQpkjLdx9bEFjdbN6rZVlP9+5F1VdrNuZSv02yLkvyeii3GBGWubqm6bLm1hUsvLmk6FEEL6Mh0mOw5mRF7RjD7/Gw+rf8p+nL9Ajn39tvbGbZ7GAATG0zkmybfFMh5CzuRoOSjtAQlsxYUSZLYcmsLnx74lJdxL5Eho1WFVjyLesbXx74GQC6T08u1F//z+B8vw0sxZt3V1H3fOk5W01pfxb1KbQ15KxnxD/MnOik601hN9U1xs3XDzcaNanapyYibrVuW1QwLYpptUVAQ3S65Wc23OE1bVs3kEQNlhX8NqD6Ab45/w/Po52y8uZHB7oPz/ZyHAw/Td1tflJKSYe7D+KP1H4ViXSBtIJNyUrhEy0RFRWFhYUFkZKTWrssTHh+O9a+pHwYRUyPSlZ9/FvWMsfvGsufeHiC1lSJFmUJ4fOqgUlN9U0bWGsn4+uMpZ1lOtV9mH3b25gb0b2iAifn9dN0zobGhmcalp6NHlZJV0reK2FWjrEXZXBeSE2Me3i+rbpe0tyZ1dbvs8nvO+E1+2W43uKmSb9u0R64j/+BzFgZRiVFY/mKJhETo56GidLgApJa9n3pkKq42rtwYc+ODC2i+j2+QL63WtiIuOY4eLj3Y1H1Tsfn7y0puPr9FgqJOEUEQl7oa7cUXlxi9dzSlzUqzp+9uAJTGJVj6wIcpR6YQlRiFjkwHuUxOsjIZSF2FeHz98YysPTLDIlHJimTuvb7H9ZCbHLv3lPsvQwmK8edR7BGQKTMNp0KJChm6ZypZV1Jrs2ZxrCSbEwqlRKNZx7Js2UjrBjsztcUHXy/fwNf0XXo+2+1C9KdRyjqGsXXHMqzmMKyMin4XXNX5Vbnz6g77+u2jfaX2mg5H0AKRCZE4znYkOimaPX330LFyx3w5z/WQ6zRb3Sx1nR3nNuzqsytHkyXUSRvfn3Pz+S26eNQlIgjm1YaURADqAVcxhehIWJK6Rk4yMn4iiihZak6olJQoJSU17Grwuefn9HLtha6OLk8jn3L6yel03TN3Xt1RJTLpyMDOxC61W8bGTdUi4mLjgqm+ab4/bFHtNHMF2e2SXel9ACODBIyNnvMoIpzJhyfz7fFv6V+tP+PqjSvS1SvrlKrDnVd3uPziskhQBAAsDC0YXWc0v537jV/P/povCcr91/dpva41EQkRNHRsyLZe2wo8OSkKLdwiQVGXuNeq5CQrBkiUREbQvx8jzcs3p33F9ujJ9Tj5+CTzL83HP8yfmKSYTPc30zdTjQ1JaxVxs3XDxiRns2qEgpPTKdbzz68lRbc2Dco0QE+ul6dz5aT0/uyenjT5KIiNNzcy9+JcrodeZ9m1ZSy7tozGZRszrt44ulbpmucYtFUdhzqsu7FOjEMR0hlffzxzzs/h9NPT+Ab54uHoobZjP418Squ1rQiLDcPd3p29/fZiom+ituPnRFGZ1Se6eNTlhZ+qpeR9ahNLsJktiYpE1ZiTd+np6FHVpmqG7pmyFmXF4KpCIjfdLonym5jpm9HcqTmtK7SmTcU2OJdwzvVzndNvTJIkcTboLPMuzmPb7W2kKFMAKGVWitG1RzOy9kiNVtpUp3NB52i4oiH2pva8mPRC/P0IKsN3DWeF3wq6VOnCjt471HLMsNgwGq9srFrz5/TQ0wU+9qkgu5fzQoxB0YQcJii1iOHav2NGZMgyjhOxq0Ylq0pF7ptscZP2JvG+bhdzYwWuLps58ugQr+JepbvPydKJ1s6tae3cmhZOLTKMSXrfeXPT5/w86jlLrixh8ZXFqoHVejp69HLtxbh646hfun6h/lCPS47DbKYZSknJs4nPKG1eWtMhCVri9svbuCxwQYaMAO8AqpSs8kHHi0iIoPnq5viF+FHWoixnhp7B0cJRTdFmlNXfek6/HG0c2UAj3fMiQdGEXCQoN3V0sDa2prRZaUqZl8LOxC71x/S/f+1N7bEzscPS0LJQf0AUZ2nNrJB5t0taM6tSUuIX4sehwEMcCjzEmadn0o030pHpUL90fVXCUq90PXR11Ns7m6RI4p+Af5h7cS7nn/335lanVB3G1R1Hb7feGOoWzsJ71RdW52bYTXb23knnKp01HY6gRTpv6szuu7sZUXMESz9emufjxCbF0mZdG84GncXWxJbTQ0/n66rJWbWWjm5ekisvrrP7YvaJx1993OnsXvAJu0hQNCEPLSg5oS/Xx9bENn0CY/JvAmOaPrGxMrISyYyWyctAtZikGE49OaVKWG6/up3ufnMDc1o6tVQlLBVKVFBrzJdfXGb+pflsvLmRREXquKqSxiUZWWsko+uMpqxFWbWeL7+lNeV/3fhrfmjxg6bDEbRIWhegvlyfx+Mf42CW+3EZiSmJfLzpYw4FHsLCwIKTQ07m68DzrMaX8G/d7wjddZRIGZjtcUQLSj4pzAlKwrBDhJjbERoTSmhsaIZ/Q2JCVL9HJkbmKgRdHd10yUxaK8y7rTN2JnZYG1vn6/x/4T8fOtXvaeRTDgce5tDDQxx5eCTD2CXnEs60cW5Da+fWNHdqjrmBev4mXsa+ZPm15Sy4tICgqNS1oHRkOnSp0oVxdcfRrHyzQpEQL7y0kLH7x9LGuQ0+A3w0HY5QgHLyt9doRSPOBp1lasOp/NLql1wdP0WZQp9/+rDt9jaM9Yw5PPAwno6e6nwI6SSlpNDgl8OExyjIrKq4hBK5PAZDPUPiEjIvJyHGoOSzwpyg8MlJKOWeo0MmpCQQFhuWLolRJTDvJDdvEnK3YqtcJk9NZt5JXN7+f1orjbWRdbEvLqQtFEoFV4OvprauPDzEuaBzqkGukPq8ejh60LpCautKnVJ1Pvi5S1GmsOfuHuZdmsexR8dUt7vauDKu3jgGVB9QIFPa8+rS80vUW1YPayNrXk5+WSiSKuHD5bT1cvfd3XTe1BlzA3OCJgblOMFXSkpG7B7BSr+V6Mv12dt3L17OXmp/HE8innD44WEOBh7k+J3nmMZ+le0+E1tVZs6Re8D7u5c1QSQomvBOHZRM6RrAuCtgqf6BU0mKJMJiw1ITmHdbZ95poclq9lBWdGQ62BjbZEhmVC00b91uY2wjkpkCFJ0YzYnHJ1QJy73X99LdX8KwBC0rtFQlLG9XJs6LW2G3mH9pPmuuryE2ORZI7XIa6j4U77reVLKu9EHHzw+JKYmYzTQjWZnMo/GPKG9ZXtMhCfksN1WclZIStwVu3H51m9+8fuNzz8+zPb4kSUw6OIk5F+agI9Phn57/0LVqV7XEHpMUo/qb3n9/P4FvAlX3Gac0wSY5+5Xk/+rjjoGujlbWQREJiqb8W0k2PiWehisaqW7+rtl3fFy5Exhb50tyklvJiuTUlplMuphU3Uz//v467nWmKxpnRYaMksYls+1isjO1w9bEVu2DPYu7xxGP03UHRSREpLu/snVlVbLSrHyzPC85H5kQySq/Vcy/NJ/74fdVt7et2JZP631K24pttaoLsc6SOlwJvsKWHlvo6dpT0+EI+Sgv02xXXlvJsN3DKGVWioefPcy2qNr3J79n+onpAKzqvOqD1vRRSkpVq+jee3u5+PwiCkmR6bYGimrYJ83M9php40sKeyVZkaDkg9ikWExn/tfk3cu1F5t7bNZgRHmXokzhZezLjONkMmmdeRn7MtfJjLWxdbZdTHYmqclMQU+91rY/7tzGk6JM4fKLy6rBtuefnU/3xqeno4enoyetnVvT0smLlIRyvIpJztVjVUpKDgUeYt7Feey/v1/1/DuXcMa7rjdDaw7N8RTp/DR672gWX1nMFM8pzPKapelwhHyUl2m2iSmJVPi7Ai+iX7Di4xUMrTk0y/3+Ov8XEw5OSP1/27/4rP5nuY7xWdQzDgUeYvfd3Rx7dCzLRVwBqtlWo1WFVjQr3wzPMo3o9Pe1bFeS19T4kpwQCYqGvZuglDAsQdjksCLfWqBQKngV9yrdQN/MuppCYkJ4GfcSpZTz2UwAVkZW2XYxpf37oesNaVuZaHXEE5kQyfHHx1UJS1rTsZHCA6ukT9Dlv4rENmZ6/NC5Wq4ea2B4IAsuLWCF3wpVy42xnjEDqg1gXL1xVLOrluNjqdvyq8sZsWcELZxacHTQUY3FIeS/nC6e+e4029/O/saUI1OoWrIq/mP9M20BXOW3iqG7UpOX75t9zzdNv8lRTLFJsZx6coqdd3ey794+nkc/z3LbqiWr0sa5Dc3KN6NJuSaUMCqR7v6cli/QViJB0bC3E5QShiV4k/CGs8PO5uvo7sJGoVTwOv51prOZQmLTj6MJiw3LsskzK5aGlhkTmCxqzbzbnFtQqxDnVH7FExgeyLzTZ9jha41EaotWGgklMmTUc73BkAbuNC3XNMflumOTYll/cz3zLs7jZthN1e1NyzXl03qf0rlK5wJP1q+HXMd9sTvmBua8mfpGq7qfBPXKaQvKb71L07Omu+r3qMQoHGc7EpUYxe4+u+n0Uad022+/vZ2eW3uilJRMajCJ31v/nuWAa6Wk5HrIdbbf3s7OOzsJeBWQ5ReyiiUq0rZiW1pWaEmTck1ytIintn2Byg2RoGjY2wlK96rd2XZ7m6jB8AGUkpLw+PBsu5jS/n17VktOWBhYvNWVZI+/fy8SkgzJbBpfQTeh5mfZ6uyOLaFEwWueGw5HX1eXRmUbqcav1LCvke2HvCRJnH56mrkX57Lj9g5VklnGvIyqpH5BlQFPViRj/os5CSkJ3B13N1+LaAmalV0V57TXdbDRSPpX78s3Tb5RDe6eudebrZcX4W7vzoqPl6v28X12nvE+4wlRJtO61jCWdlqaITl5Ef2CbQHb2BKwhSsvrhCfEp9pfGUtytLWuS1tK7alSbkmWBvnrRaJtnVB55RIUDTs7QRlcYfFjNo3itoOtbn8iViwLL8pJSVv4t9k3sWUSa2Zd1eIzu0gtPyW02+DfZuE0d61Iq62rjn6BpabYytL/ElQwrF0t9kY2+Dl7EXrCq3xcvailFmp9x7jWdQzFl1exJIrS3gZ9xJILULY27U3n9b7lLql6+Yo5g/hudwT32e+rO+2nn7V+uX7+QTNeV83iASUK3eIU2F/A6mzFAdUH8CMmiMot6YbMkVSlsdNkukg/8wPeYlyxCXHsffeXtbdWMfZoLNZzo50MHWgpVNLulTpQtPyTSlpXFJNj7JwEgmKhr2doAR+GojzXGcAQv4Xgp2pnSZDE94iSRIRCRHpkpcTt2PYfzn756igykTntD/9pd6vxOmeAsDe1B5XG1dcbFxwtXHF1dYVVxvXDH3ZOT12uMEflLd/RUnjkkQnRRPwMoC45Lh027jZuqlaV5qUa4KRnlGmx0pMSWTLrS3MuzSPi88vqm6vV7oen9b7lJ4uPfNtWfrPDnzG3ItzmdhgIn+2+TNfziFoj+y6Qa68uMJ3J79j7729ANRBj0tS5q/bt31TqSmrw/x4FvUs00kBNsY2NCrbiF6uvWhVoVWxT0jeJRIUDXs7QYmZFkPjlY25FnKN1V1WM6jGIA1HJ7yPti20ldN4yjnt4HH8YZ5GPs1yGwdTB1xtXXEp6YKrrSuypMr8tCs222Onrbj8tlJmpbA2siY6KZrHEY/T3WcgN6BJuSaqUvzVbKtl2ld/8flF5l2cx+Zbm0n691urjbENn9T+hNF1RlPGvEy2seXGmutrGLxzMI3KNuL00NNqPbagnXLSDXL5xWW+O/EdL+4d4CrZFxx8d7kSS0NL6pWqRx+3PnSs3BEbE5v37C2IBEXD3k1Qfj79Mz+f+Zk+bn3Y2H2jhqMT3ie7/uu8jPn4kL7i3MYTnRjN7Ve3uRV2i1sv//0Ju6UqVZ+OpEPphOXIKZlugOy7x14/ypnzz89x5ukZzgad5WbozQzfHE30TLAysiIqMSrDEg12JnaqZKVVhVbYm9qnuz8sNoylV5ay8PJC1ewGuUxO16pd+bTepzQu21gt1V/TVq811jMm6osoUVBQSOfW9Q247hiT7XaN9JTgUIMeLj3o69ZXtIrnkkhQNOzdBOVayDUar2yMlZEVYZ+HiTdGLafOaXzqGG2vjniiEqO4/fK2KmFJS15ev3HEJulLQELGf4NeJZSAjFKO+2jgbKjqJnKxcQHg/LPzqoTlwvMLGbp85DI5ZgZmxCTFZBi0XMOuhiphaVS2kWqV5BRlCrvu7GLuxbmcfHJStX0122qMqzeO/tX653gmUWYUSgWWsyyJSYrBf4w/rraueT6WUATlw3IlQkYiQdGwdxMUA10DbH6zISIhAt/hvjQo00DDEQrZUWdioY7pwfk1rTAqMYpV56+x9EQk0fH/Jc4pvCRcfwnxct8M+5QxL/Pf+BYbVz6y/ogUKQW/ED/OBp3l7NOzBMcEZ9jPQG6gWh05jaGuIU3LNVUlLK42rshkMm6G3mT+pfmsvbFWlfxYGloyzH0YY+uOxdnKOU+Pt+mqppx6coqVnVcyxH1Ino4hFE1xT30xXtE2+w1FgvJBRIKiYe8mKCb6JvTa2outAVv5tsm3zGg+Q8MRCjmhjq6ZrKbwAtia6XHkf56YGZjkqAsjP6cVvnvsjxzk3H2dvsUl4GXAewtMOZo74mLjgouNC3YmdsQnx/M06ikXn1/k1stbGbbXkelkqA1RyqxUarJSIbU7SFdHV1VSP62wnAwZ7Su1Z1y9cbR2bp2rmiafH/qcP3z/wLuuN/Paz8vxfkLRdjP0JtM3dmF7xKvsNxYJygcRCYqGZZagpK31ULdUXS6OvJjNEYTCLqeDW0P0p6HUu4OVkRUljEqk/mv4zr/v3v7W7wVd/j8iIYKAlwHpuokCXgbwIvpFlvuUtShLJatKmBuYk6RI4nn0c26/vJ2hNSUztRxqqZKVmKQYFl9ZzIEHB1T3V7KqhHddb4a4D8HC0CLb423y30TfbX2pX7o+50dk//wIRZskSaz0W8m4/eOokpyYo0GyIkH5MCJB0bDMEpTg6GBK/VkKGTJCPw8VI72LuLxMD84LU33TrBOZ9yQ45gbmaq2m+ib+TWri8k6LS2ZdPWnsTe2xNLAkRUohNCb0veuRQGp3UPPyzallX4ugqCB23t1JVGIUkDpId1CNQXjX9X7v2JIH4Q+oNLcSBnIDoqZFffCSCELhFZsUy9j9Y1lzfQ0AA8s1Z3WQP7L3JM7JMjl6469rxaKvhZVIUDQsswQFwH2RO9dDr7O261oGVB+gyRCFfJbTFpQVQ2tQyV4iPD6cNwlvUv+Nf5P+90xuf3eV4tzSkelgaWiZMZExfH+LjZWRVZY1TjITHh+eaYtLSExIlvuY6psiSRKxye+fAl3SqCQVrSryLPoZz6KeqW5v4dSCcXXH0emjTulL6kcEIcW9otnq5kQnRrOh2waqlPzov/u1ZLVxIf/dCrtFz609uf3qNjoyHX5s/iNTG01FJ/I5q31n89eFv2jh1ILfvX4D4NijY3x+eDKvkPil+zpR6O8D5Obzu2ivXqdl2lVsx/XQ6xx4cEAkKEVcPScrHCwMs50e3LRSaeQ6MhwtcvfBqFAqiEyMzDyh+ff38ITM74tPiVctH5BV9cv3MZAbYGVkleNWGzsTO6q4VGG44XBVwvA67nW6FpeAV6lJTGhsKDFJMTmK41X8K149/2/MgImeCXHJcRx7dIxjj45R1qIsY+qMYUStEZRMiod5tZGlJJI6P8gUtn+S/oC6BjDuikhSirhVfqsYu28s8SnxOJg6sKnHJpqUa5J6p6Uju6Iec02mpF+lNqqunBal3GmX8Jqfz/zMiN0jcLFxwd3eXWOPobgQLSj5IKsWlFNPTtF0VVOsjawJ/TxUTDcu4rR11dGElIQsk5r3tdqEx4fnegXqd5kbmL+31UZPR4+YpBhex78mJCaEp5FPeRD+QFUePy/05fpMq9CO7+4dz35jMb6gyIpLjsN7vzerOfE9sgAAEVVJREFU/FYB4FXBi3Xd1qVbD0qSJEr9WYqQmBBODz1No7KNVPcplAo6buyIzwMfyluW5/LIy3leR6c4Ey0oWsqjjAfmBua8jn/N5ReXqV+mvqZDEvJRWzcHFg6olWF6sL2GVx011DXEwcwBB7PcnV+SJKKTotO30uQwyUkbXxKVGEVUYhSPeZyrc8tlckz1TTHQNUCGjGRlMrFJsTkaaJukSGL3vT18l5MBkEKRdPvlbXpu7cmtl7fQkekwo9kMvmz8ZYZxWE8jnxISE4Kuji61HWqnu0+uI2dDtw3UWVqHh28e0mdbHw70P1DgK3MXJ+LKFiA9uR5eFbzYdnsbPg98RIJSDLR1c8DLxb5Qrjr6LplMhrmBOeYG5pS3LJ+rfZMVyUQkROSp1SZJkYRCSu3SIvt8RCjGMpuKv+HmOkbvG01cchz2pvZs6LaB5k7NM93f91lq3Z+a9jUzHWtVwqgEO3vvpMHyBhx5eISvjn7FLK9Z+fqYijORoBSwdhXbse32Ng48OMD0ZtM1HY5QAOQ6sgJZt0eb6cn1sDGxyfXsNUmSiE+J/6+1JoddU6/jXmcouS8UbZkVMzTQjyOIhcTL42jp1JL13da/tzS9b1BqgvK+YprV7KqxsvNKev/Tm1/P/UrtUrXp5dpLfQ9EUBEJSgFrWzG1UuHF5xd5FfdKrHQpCO8hk8kw1jPGWM8414sHKpQKohKjCI8PJ/HZBdie/TorQuGUVdXmhCRDbPiSljUfsrSnd7bj/tJaUDzKeLx3u16uvbgafJVZZ2cxdNdQqpasSjW7ah/yEIRMqK8QgpAjpc1LU92uOhIShwIPaTocQShSFEoJ38DX7PJ7zsVHEZgbWOJs5czzqKwLyQmFm0IpMWNPQBaz5XSQIeP2Q1ey+7iLT47nWsg1ADwc35+gAPzU4idaO7cmLjmOLpu78DL2teq15xv4GoWy0M0/0TqiBUUD2jq35UboDQ48OCDm0wuCmmTWxG9vbkDpMr48evgdXmKQbJF08VH4e5eUAAiOTODio/D3drVeDb5KijIFOxM7ylmUy/a8ch05G7tvpM6SOgS/ssPjl8OkJJup7lfHWlnFnWhB0YB2ldoBcPDBwQ+etikIwn9N/O9+UIVEJXA5oCYxypoky7KZ1q9rkFqsTShUwqLfn5zkdDtV946jR47WxgKwMrJiSu0N2CR9SXJy+gQ4JDKBMeuu4uOfdTVl4f1EC4oGNHRsiJm+GS/jXnLlxRXqlq6r6ZAEodB6XxN/atUZJSZ6M9AZVw3eV5hOVJItlGzNDNWy3flnqZWfsxt/8jaFUmL16dh/axulT2qkf2+ZsScALxf7QjlzT9NEC4oG6Mn1aFWhFUC6hc8EQci97Jr4ZejwJhYuhpukFmHL6kckJ4VSWtXmrD7+ZaR2t9Rzssr0/tRxS684/yAFA0U16pXKefmH/157mZ9d4r/uJSH3RIKiIe0qpnbz+Dzw0XAkglC4qauJXyic5DoypndyATKmCWm/T+/kkmkLho9/MI1mHaPv0gvoRo3EPmkmUzcm57hbRrz28pdIUDQkbRzKhecX8rQeiiAIqdTVxC8UXmlVm+0t0j/H9haGWS4pkdW4pbCoxByPHRGvvfwlxqBoSBnzMrjZuuEf5s+hwEP0ceuj6ZAEoVDK6cKMWTXxC0VDbqo2v2/cUm7GjojXXv4SLSgalNbNI8ahCELefUgTv1C0pFVt7uxeGg9n6yyf8+zGLeV07Ih47eUvkaBoUFpVWZ8HPmK6sSB8gLw08QvFlzrHjojXXv4RXTwa1KhsI0z1TQmLDeNa8DVql6qd/U6CIGSqKC3MKOQvdY8dEa+9/CESFA3Sl+vT0qklu+7u4sCDAyJBEYQPJBZmFHIiP8aOiNee+okuHg0T41AEQRAKlhg7UjiIBEXD0qYbn392njfxbzQcjSAIQvEgxo5oP9HFo2FlLcriYuNCwMsADj88TC/XXpoOSRAEoVgQY0e0m2hB0QKim0cQBEEzcjo1WSh4IkHRAm+XvRfTjQVBEARBdPHkC4VSwkBRDblUgouP3tCkkvF7s/JGZRthomdCSHQY6y9fxFzPUTQ1CoIgCMWaTJKkzFcp12JRUVFYWFgQGRmJubm5psNJx8c/mOm7bxEalai6zcHCkOmdXN476KrpwvEEPqmJLja52k8QBEEQCovcfH5rtItn/vz5lC9fHkNDQ+rXr8/Fixc1Gc4HS1t86u3kBCAkMuG9i0/5+Afz5IkXckrmaj9BEARBKKo0lqBs3ryZSZMmMX36dK5evUqNGjVo06YNYWFhmgrpg2S3+BSkLj6lUKbfIm0/kCF7Z0b++/YTBEEQhKJMYwnKn3/+yciRIxk6dCguLi4sWrQIY2NjVqxYkWHbxMREoqKi0v1om7wuPqWuRasEQRAEoSjRSIKSlJTElStXaNWq1X+B6OjQqlUrfH19M2w/c+ZMLCwsVD+Ojo4FGW6O5HXxKXUuWiUIgiAIRYVGEpRXr16hUCiws7NLd7udnR0hISEZtp82bRqRkZGqn6CgoIIKNcfyuviUuhetEgRBEISioFBMMzYwMMDAwEDTYbxXXhefyo9FqwRBEAShsNNIC0rJkiWRy+WEhoamuz00NBR7e3tNhPTB8rr4lFi0ShAEQRAy0kiCoq+vT+3atTl69KjqNqVSydGjR/Hw8NBESGqR18WnxKJVgiAIgpCexrp4Jk2axODBg6lTpw716tVjzpw5xMbGMnToUE2FpBZ5XXxKLFolCIIgCP/RWILSu3dvXr58ybfffktISAju7u74+PhkGDhbGKUtPlVQ+wmCIAhCUSNK3QuCIAiCUCAKTal7QRAEQRCEzIgERRAEQRAErSMSFEEQBEEQtI5IUARBEARB0DoiQREEQRAEQeuIBEUQBEEQBK0jEhRBEARBELSOSFAEQRAEQdA6hWI143el1ZaLiorScCSCIAiCIORU2ud2TmrEFsoEJTo6GgBHR0cNRyIIgiAIQm5FR0djYWHx3m0KZal7pVLJixcvMDMzQyZT72J6UVFRODo6EhQUJMro5zNxrQuOuNYFR1zrgiOudcFR17WWJIno6GhKlSqFjs77R5kUyhYUHR0dypQpk6/nMDc3Fy/4AiKudcER17rgiGtdcMS1LjjquNbZtZykEYNkBUEQBEHQOiJBEQRBEARB64gE5R0GBgZMnz4dAwMDTYdS5IlrXXDEtS444loXHHGtC44mrnWhHCQrCIIgCELRJlpQBEEQBEHQOiJBEQRBEARB64gERRAEQRAErSMSFEEQBEEQtI5IUARBEARB0DoiQXnL/PnzKV++PIaGhtSvX5+LFy9qOqRCb+bMmdStWxczMzNsbW3p0qULd+/eTbdNQkIC3t7eWFtbY2pqSvfu3QkNDdVQxEXHL7/8gkwmY8KECarbxLVWn+fPnzNgwACsra0xMjKiWrVqXL58WXW/JEl8++23ODg4YGRkRKtWrbh//74GIy6cFAoF33zzDU5OThgZGeHs7MwPP/yQbrE5ca3z5tSpU3Tq1IlSpUohk8nYuXNnuvtzcl3Dw8Pp378/5ubmWFpaMnz4cGJiYtQToCRIkiRJmzZtkvT19aUVK1ZIt27dkkaOHClZWlpKoaGhmg6tUGvTpo20cuVKyd/fX/Lz85Pat28vlS1bVoqJiVFtM3r0aMnR0VE6evSodPnyZalBgwaSp6enBqMu/C5evCiVL19eql69ujR+/HjV7eJaq0d4eLhUrlw5aciQIdKFCxekhw8fSgcPHpQePHig2uaXX36RLCwspJ07d0rXr1+XPv74Y8nJyUmKj4/XYOSFz08//SRZW1tLe/fulR49eiRt3bpVMjU1lf766y/VNuJa583+/fulr776Stq+fbsESDt27Eh3f06ua9u2baUaNWpI58+fl06fPi1VrFhR6tu3r1riEwnKv+rVqyd5e3urflcoFFKpUqWkmTNnajCqoicsLEwCpJMnT0qSJEkRERGSnp6etHXrVtU2t2/flgDJ19dXU2EWatHR0VKlSpWkw4cPS02bNlUlKOJaq8/UqVOlRo0aZXm/UqmU7O3tpd9++011W0REhGRgYCBt3LixIEIsMjp06CANGzYs3W3dunWT+vfvL0mSuNbq8m6CkpPrGhAQIAHSpUuXVNscOHBAkslk0vPnzz84JtHFAyQlJXHlyhVatWqluk1HR4dWrVrh6+urwciKnsjISACsrKwAuHLlCsnJyemufZUqVShbtqy49nnk7e1Nhw4d0l1TENdanXbv3k2dOnXo2bMntra21KxZk6VLl6ruf/ToESEhIemutYWFBfXr1xfXOpc8PT05evQo9+7dA+D69eucOXOGdu3aAeJa55ecXFdfX18sLS2pU6eOaptWrVqho6PDhQsXPjiGQrmasbq9evUKhUKBnZ1dutvt7Oy4c+eOhqIqepRKJRMmTKBhw4a4ubkBEBISgr6+PpaWlum2tbOzIyQkRANRFm6bNm3i6tWrXLp0KcN94lqrz8OHD1m4cCGTJk3iyy+/5NKlS3z22Wfo6+szePBg1fXM7D1FXOvc+eKLL4iKiqJKlSrI5XIUCgU//fQT/fv3BxDXOp/k5LqGhIRga2ub7n5dXV2srKzUcu1FgiIUGG9vb/z9/Tlz5oymQymSgoKCGD9+PIcPH8bQ0FDT4RRpSqWSOnXq8PPPPwNQs2ZN/P39WbRoEYMHD9ZwdEXLli1bWL9+PRs2bMDV1RU/Pz8mTJhAqVKlxLUu4kQXD1CyZEnkcnmG2QyhoaHY29trKKqiZdy4cezdu5fjx49TpkwZ1e329vYkJSURERGRbntx7XPvypUrhIWFUatWLXR1ddHV1eXkyZP8/fff6OrqYmdnJ661mjg4OODi4pLutqpVq/L06VMA1fUU7ykfbvLkyXzxxRf06dOHatWqMXDgQCZOnMjMmTMBca3zS06uq729PWFhYenuT0lJITw8XC3XXiQogL6+PrVr1+bo0aOq25RKJUePHsXDw0ODkRV+kiQxbtw4duzYwbFjx3Byckp3f+3atdHT00t37e/evcvTp0/Ftc+lli1bcvPmTfz8/FQ/derUoX///qr/i2utHg0bNswwXf7evXuUK1cOACcnJ+zt7dNd66ioKC5cuCCudS7FxcWho5P+o0oul6NUKgFxrfNLTq6rh4cHERERXLlyRbXNsWPHUCqV1K9f/8OD+OBhtkXEpk2bJAMDA2nVqlVSQECA9Mknn0iWlpZSSEiIpkMr1MaMGSNZWFhIJ06ckIKDg1U/cXFxqm1Gjx4tlS1bVjp27Jh0+fJlycPDQ/Lw8NBg1EXH27N4JElca3W5ePGipKurK/3000/S/fv3pfXr10vGxsbSunXrVNv88ssvkqWlpbRr1y7pxo0bUufOncXU1zwYPHiwVLp0adU04+3bt0slS5aUpkyZotpGXOu8iY6Olq5duyZdu3ZNAqQ///xTunbtmvTkyRNJknJ2Xdu2bSvVrFlTunDhgnTmzBmpUqVKYppxfpg7d65UtmxZSV9fX6pXr550/vx5TYdU6AGZ/qxcuVK1TXx8vDR27FipRIkSkrGxsdS1a1cpODhYc0EXIe8mKOJaq8+ePXskNzc3ycDAQKpSpYq0ZMmSdPcrlUrpm2++kezs7CQDAwOpZcuW0t27dzUUbeEVFRUljR8/XipbtqxkaGgoVahQQfrqq6+kxMRE1TbiWufN8ePHM31/Hjx4sCRJObuur1+/lvr27SuZmppK5ubm0tChQ6Xo6Gi1xCeTpLfK8QmCIAiCIGgBMQZFEARBEAStIxIUQRAEQRC0jkhQBEEQBEHQOiJBEQRBEARB64gERRAEQRAErSMSFEEQBEEQtI5IUARBEARB0DoiQREEQRAEQeuIBEUQBEEQBK0jEhRBEARBELSOSFAEQRAEQdA6/wcvYUf6HoBNpgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGzCAYAAADKathbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwURxuAn7uLe0ISYpCEoIFAsODu7t7iDkVbpP0KpZRSSluKU9yttMWKu0uAAMEtwSLE3e72+yO9hSN2CVHY5/dL6c3Ozs7uzs6++9rIBEEQkJCQkJCQkJCQQF7QHZCQkJCQkJCQKCxIgpGEhISEhISExH9IgpGEhISEhISExH9IgpGEhISEhISExH9IgpGEhISEhISExH9IgpGEhISEhISExH9IgpGEhISEhISExH9IgpGEhISEhISExH9IgpGEhISEhISExH8UOcHIz88PmUzG+vXrxbLvvvsOmUymUc/FxYWBAwfmeX8GDhyIi4tLnh8np6R3vSQ+Lk6dOoVMJuPUqVPZ3nf9+vXIZDL8/PxyvV8ZUZDPjEwm47vvvsu0jvp67tq1K386lQnquS0kJCTPjyHx8VAQz/XHRK4IRuqbkN7ftGnTcuMQH8zdu3f57rvvPtqBsnXrVn7//feC7ka2+fHHH9m9e3dBd0NCQiKXWbNmDRUqVMDAwIAyZcqwePFirfYbOHBghu8TmUzGq1evAIiLi2Pp0qW0bNkSe3t7TE1NqVq1KsuXL0epVOblqX1SZHQ/ypcvn6bunDlz6NixI8WLF8/yI2T79u1Uq1YNAwMDbGxsGDJkSLofAMuXL6dHjx6ULFkSmUyWocLj+PHjDB48mLJly2JkZESpUqUYOnQoAQEB2T5nnWzvkQnff/89rq6uGmWVKlXKzUPg7OxMfHw8urq6mdZ78OABcvlbue/u3bvMmjWLxo0bF2oNT07ZunUrvr6+TJgwQaNc2+tVUPz44490796dzp07F3RXJCQ+Sf73v//l+gfsH3/8wciRI+nWrRuTJk3i7NmzjBs3jri4OKZOnZrpviNGjKB58+YaZYIgMHLkSFxcXHB0dATg6dOnfPHFFzRr1oxJkyZhZmbG4cOHGT16NJcuXWLDhg25ek6fMvr6+qxevVqjzNzcPE29//3vf9jZ2VG1alUOHz6cYXvLly9n9OjRNGvWjN9++42XL1+ycOFCvL29uXz5MgYGBmLdefPmER0djZeXV6ZCztSpUwkLC6NHjx6UKVOGp0+fsmTJEvbv34+Pjw92dnZan2+uCkZt2rShRo0audlkGmQymcZFywh9ff087UdRQdvrVRSIjY3F2Ni4oLshIfFRoaOjg45O7r0K4uPj+eabb2jXrp1ojhw2bBgqlYrZs2czfPhwLC0tM9y/Tp061KlTR6Ps3LlzxMXF0a9fP7HMzs6O27dvU7FiRbFsxIgRDB48mHXr1vHtt99SunTpXDuvTxkdHR0+++yzLOs9e/YMFxcXQkJCsLGxSbdOUlISX3/9NQ0bNuTo0aOiGbdu3bp06NCBVatW8cUXX4j1T58+LWqLTExMMjz2b7/9Rv369TUUIq1bt6ZRo0YsWbKEH374QdvTzR8fI39/f0aPHk25cuUwNDSkWLFi9OjRI12zVkREBBMnTsTFxQV9fX2cnJzo37+/qGLT1mfmXR+j9evX06NHDwCaNGkiqgJPnTrFgAEDsLa2Jjk5OU0bLVu2pFy5ctk+39jYWCZPnkyJEiXQ19enXLly/PLLLwiCkKbu5s2b8fLywsjICEtLSxo2bMiRI0fE7Xv27KFdu3Y4ODigr6+Pm5sbs2fP1lAVN27cmH///Rd/f3/x3NRasYyu14kTJ2jQoAHGxsZYWFjQqVMn7t27p1FH7Xvw+PFjBg4ciIWFBebm5gwaNIi4uLgsr8OjR4/o1q0bdnZ2GBgY4OTkRO/evYmMjARShbbY2Fg2bNgg9lt9z9THvnv3Ln379sXS0pL69esDkJKSwuzZs3Fzc0NfXx8XFxe+/vprEhMTNY7v4uJC+/btOXfuHF5eXhgYGFCqVCk2btyYpq+3bt2iUaNGGBoa4uTkxA8//MC6deu0stMPHDgQExMTnj9/Tvv27TExMcHR0ZGlS5cCcPv2bZo2bYqxsTHOzs5s3bo1TRtPnz6lR48eWFlZYWRkRO3atfn333/T1Hv58iWdO3fG2NgYW1tbJk6cmOa81Vy+fJnWrVtjbm6OkZERjRo14vz585meS0YEBgYyaNAgnJyc0NfXx97enk6dOqW5NsuWLaNixYro6+vj4ODAmDFjiIiIyLDd5ORkrKysGDRoUJptUVFRGBgY8OWXX4pliYmJzJw5k9KlS6Ovr0+JEiWYMmVKmmuQmJjIxIkTsbGxwdTUlI4dO/Ly5ctsnbNSqeTrr7/Gzs4OY2NjOnbsyIsXL8TtM2fORFdXlzdv3qTZd/jw4VhYWJCQkJDpMe7fv0/Pnj2xsbHB0NCQcuXK8c0336SpFxISQs+ePTEzM6NYsWKMHz8+3bazmk/SIz0fI5lMxtixY9m9ezeVKlVCX1+fihUrcujQoUzbAjh58iShoaGMHj1ao3zMmDHExsamO66zYuvWrchkMvr27SuWWVtbawhFarp06QKQZj5Lj+3bt1O9enVMTU0xMzPDw8ODhQsXatSJiIhgwoQJ4nxeunRp5s2bh0ql0qinUqlYuHAhHh4eonmodevWeHt7i3XyYu66c+cOTZs21Zi73u8bgLe3N61atcLa2hpDQ0NcXV0ZPHhwltdIjVKpJCoqKtM62lhjfH19iYiIoFevXhrjTj13bt++XaO+s7OzVj5wDRs21BCK1GVWVlZajYV3yVWNUWRkZBobobW1NVevXuXChQv07t0bJycn/Pz8WL58OY0bN+bu3bsYGRkBEBMTQ4MGDbh37x6DBw+mWrVqhISEsHfvXl6+fIm1tXWO+tWwYUPGjRvHokWL+Prrr6lQoQIAFSpU4PPPP2fjxo0cPnyY9u3bi/sEBgZy4sQJZs6cma1jCYJAx44dOXnyJEOGDMHT05PDhw/z1Vdf8erVKxYsWCDWnTVrFt999x1169bl+++/R09Pj8uXL3PixAlatmwJpAp1JiYmTJo0CRMTE06cOMGMGTOIiopi/vz5AHzzzTdERkby8uVLsf3MJOtjx47Rpk0bSpUqxXfffUd8fDyLFy+mXr16XL9+Pc3g7tmzJ66ursydO5fr16+zevVqbG1tmTdvXobHSEpKolWrViQmJvLFF19gZ2fHq1ev2L9/PxEREZibm7Np0yaGDh2Kl5cXw4cPB8DNzU2jHbVa9McffxQFy6FDh7Jhwwa6d+/O5MmTuXz5MnPnzuXevXv8888/Gvs/fvyY7t27M2TIEAYMGMDatWsZOHAg1atXFyfVV69eiQLz9OnTMTY2ZvXq1dnSOiqVStq0aUPDhg35+eef2bJlC2PHjsXY2JhvvvmGfv360bVrV1asWEH//v2pU6eOaHYOCgqibt26xMXFMW7cOIoVK8aGDRvo2LEju3btEif6+Ph4mjVrxvPnzxk3bhwODg5s2rSJEydOpOnPiRMnaNOmDdWrV2fmzJnI5XLWrVtH06ZNOXv2LF5eXlqfG0C3bt24c+cOX3zxBS4uLgQHB3P06FGeP38ujpfvvvuOWbNm0bx5c0aNGsWDBw9Yvnw5V69e5fz58+mac3V1denSpQt///03f/zxB3p6euK23bt3k5iYSO/evYHUF0/Hjh05d+4cw4cPp0KFCty+fZsFCxbw8OFDDV+1oUOHsnnzZvr27UvdunU5ceIE7dq1y9Y5z5kzB5lMxtSpUwkODub333+nefPm+Pj4YGhoyOeff87333/Pjh07GDt2rLhfUlISu3btolu3bplqa2/dukWDBg3Q1dVl+PDhuLi48OTJE/bt28ecOXM06vbs2RMXFxfmzp3LpUuXWLRoEeHh4RovSm3mk+xw7tw5/v77b0aPHo2pqSmLFi2iW7duPH/+nGLFimW4340bNwDSWA+qV6+OXC7nxo0bWmkf1CQnJ7Nz507q1q2r1Ys3MDAQIMv3xdGjR+nTpw/NmjUT57J79+5x/vx5xo8fD6T6MTVq1IhXr14xYsQISpYsyYULF5g+fToBAQEafp1Dhgxh/fr1tGnThqFDh5KSksLZs2e5dOmSeC1ye+4KDAykSZMmpKSkMG3aNIyNjVm5ciWGhoYabQUHB9OyZUtsbGyYNm0aFhYW+Pn58ffff2d5PdXXwczMjLi4OCwtLenTpw/z5s3L9D2TEWoh8P0+qstu3LiBSqVKI+TkhJiYGGJiYrIvOwi5wLp16wQg3T9BEIS4uLg0+1y8eFEAhI0bN4plM2bMEADh77//TlNfpVIJgiAIz549EwBh3bp14raZM2cK75+Ks7OzMGDAAPH3n3/+KQDCyZMnNeoplUrByclJ6NWrl0b5b7/9JshkMuHp06eZnvuAAQMEZ2dn8ffu3bsFQPjhhx806nXv3l2QyWTC48ePBUEQhEePHglyuVzo0qWLoFQq0z1XQUj/2o0YMUIwMjISEhISxLJ27dpp9ENNetfL09NTsLW1FUJDQ8WymzdvCnK5XOjfv79Ypr6ugwcP1mizS5cuQrFixdK5Gm+5ceOGAAh//vlnpvWMjY017tP7x+7Tp49GuY+PjwAIQ4cO1Sj/8ssvBUA4ceKEWObs7CwAwpkzZ8Sy4OBgQV9fX5g8ebJY9sUXXwgymUy4ceOGWBYaGipYWVkJgPDs2bNMz2HAgAECIPz4449iWXh4uGBoaCjIZDJh+/btYvn9+/cFQJg5c6ZYNmHCBAEQzp49K5ZFR0cLrq6ugouLizg+fv/9dwEQdu7cKdaLjY0VSpcurTG2VSqVUKZMGaFVq1ZpxpKrq6vQokULsUz97GZ2juHh4QIgzJ8/P8M6wcHBgp6entCyZUuN8bxkyRIBENauXatxvd4dq4cPHxYAYd++fRpttm3bVihVqpT4e9OmTYJcLte4ToIgCCtWrBAA4fz584IgvB0jo0eP1qjXt2/fNNc+PU6ePCkAgqOjoxAVFSWW79y5UwCEhQsXimV16tQRatWqpbH/33//ne5c8z4NGzYUTE1NBX9/f43yd++Z+jno2LGjRp3Ro0cLgHDz5k1BELSfT9IjvfkTEPT09MT5ShBS5whAWLx4cabtjRkzRlAoFOlus7GxEXr37p3p/u+zb98+ARCWLVuWZd3ExETB3d1dcHV1FZKTkzOtO378eMHMzExISUnJsM7s2bMFY2Nj4eHDhxrl06ZNExQKhfD8+XNBEAThxIkTAiCMGzcuTRvq658Xc5d67rh8+bJGPXNzc43n+p9//hEA4erVq5lek/SYNm2aMHXqVGHHjh3Ctm3bxPmuXr16GV7jN2/eZPisvXnzRpDJZMKQIUM0ytVzIyCEhISk225G74uMmD17tgAIx48f13ofQRCEXDWlLV26lKNHj2r8gaZkmJycTGhoKKVLl8bCwoLr16+L2/766y+qVKkifiG/S16Fk8rlcvr168fevXuJjo4Wy7ds2ULdunXTOJNnxYEDB1AoFIwbN06jfPLkyQiCwMGDB4HUr2GVSsWMGTPSSMbvnuu71y46OpqQkBAaNGhAXFwc9+/fz1bfAAICAvDx8WHgwIFYWVmJ5ZUrV6ZFixYcOHAgzT4jR47U+N2gQQNCQ0MzVauqHfMOHz6sldktI94/trp/kyZN0iifPHkyQBo1vbu7Ow0aNBB/29jYUK5cOZ4+fSqWHTp0iDp16uDp6SmWWVlZafgzaMPQoUPF/7ewsKBcuXIYGxvTs2dPsbxcuXJYWFhoHP/AgQN4eXmJpkJI1fgNHz4cPz8/7t69K9azt7ene/fuYj0jIyNR26bGx8eHR48e0bdvX0JDQwkJCSEkJITY2FiaNWvGmTNn0lW1Z4ShoSF6enqcOnWK8PDwdOscO3aMpKQkJkyYoDGehw0bhpmZWabmk6ZNm2Jtbc2OHTvEsvDwcI4ePUqvXr3Esj///JMKFSpQvnx58ZxCQkJo2rQpkGrCUV8nIM0z+H5gQlb0798fU1NT8Xf37t2xt7fXeEb69+/P5cuXefLkiVi2ZcsWSpQoQaNGjTJs+82bN5w5c4bBgwdTsmRJjW3pzXVjxozR+K32wVD3Rdv5JDs0b95cQ4NbuXJlzMzMNMZuesTHx2to/t7FwMCA+Pj4bPVj69at6OrqajxHGTF27Fju3r3LkiVLsvSbsrCwIDY2VnxPpceff/5JgwYNsLS01BhzzZs3R6lUcubMGSD13SWTydK1MKivf17MXQcOHKB27doaGmAbG5s0c5eFhQUA+/fvT9dtJDPmzp3LTz/9RM+ePenduzfr169nzpw5nD9/PkcpLaytrenZsycbNmzg119/5enTp5w9e5ZevXqJWuXsjpH0OHPmDLNmzaJnz57iHKEtuSoYeXl50bx5c40/SD3JGTNmiDZaa2trbGxsiIiIEP1NAJ48eZLrUWza0L9/f+Lj40VV5oMHD7h27Rqff/55ttvy9/fHwcFBY0IFRPOdv78/kHqucrkcd3f3TNu7c+cOXbp0wdzcHDMzM2xsbEQ19LvXLjv9A9L1napQoYL4An2X9yduteNkRi9JAFdXVyZNmsTq1auxtramVatWLF26NNt9fl8w9ff3Ry6Xp3GqtLOzw8LCQjy/jPqu7v+7fff390/XSTM7jptqn4J3MTc3x8nJKc2LydzcPM3xM7of6u3v9vP99t7f99GjRwAMGDAAGxsbjb/Vq1eTmJiYrfugr6/PvHnzOHjwIMWLFxfNhWqTxbt9fL8venp6lCpVKs19eRcdHR26devGnj17RDX733//TXJysoZg9OjRI+7cuZPmnMqWLQukmgvUfZHL5WnMstn1FyxTpozGb5lMRunSpTX8qnr16oW+vj5btmwBUp/J/fv3069fv0wFEvXLTdv57v2+uLm5IZfLxb5oO59kB22enfQwNDQkKSkp3W0JCQnpmlAyIiYmhj179tCqVatMzXcA8+fPZ9WqVcyePZu2bdtm2fbo0aMpW7Ysbdq0wcnJicGDB6fxoXr06BGHDh1KM+bU7zb1mHvy5AkODg4aH5vvk1dz1/tjA9KO9UaNGtGtWzdmzZqFtbU1nTp1Yt26dRn6J2bFxIkTkcvlHDt2LEf7//HHH7Rt25Yvv/wSNzc3GjZsiIeHBx06dAAydwXRhvv379OlSxcqVaqUJppOG3LVxygjvvjiC9atW8eECROoU6cO5ubmyGQyevfuna0v17zC3d2d6tWrs3nzZvr378/mzZvR09PT6gslL4mIiKBRo0aYmZnx/fff4+bmhoGBAdevX2fq1Kn5du0UCkW65UI6zuTv8uuvvzJw4ED27NnDkSNHGDdunOgj4eTkpNWxM5pEtf0Kzmnfs0tGx8mv47+LelzMnz9fQwv2LtmdeCZMmECHDh3YvXs3hw8f5ttvv2Xu3LmcOHGCqlWrfmiX6d27N3/88QcHDx6kc+fO7Ny5k/Lly1OlShWxjkqlwsPDg99++y3dNkqUKPHB/cgulpaWtG/fni1btjBjxgx27dpFYmJitnxockJ+JGTM6di1t7dHqVQSHByMra2tWJ6UlERoaCgODg5a92H37t1potHSY/369UydOpWRI0fyv//9T6u2bW1t8fHx4fDhwxw8eJCDBw+ybt06+vfvL4b6q1QqWrRowZQpU9JtQy2UZ4eCmLvUCUsvXbrEvn37OHz4MIMHD+bXX3/l0qVL2Z4P1EFUYWFh2e4LpH4c7tmzh+fPn+Pn54ezszPOzs7UrVsXGxsbUcOVE168eEHLli0xNzfnwIEDaZQU2pAvgtGuXbsYMGAAv/76q1iWkJCQJlrFzc0NX1/fPOlDVoOxf//+TJo0iYCAALZu3Uq7du0yDSnNCGdnZ44dO0Z0dLTGDVGbvZydnYHUc1WpVNy9ezfDl9epU6cIDQ3l77//pmHDhmL5s2fP0tTV9mFTH//Bgwdptt2/fx9ra+tcDYn38PDAw8OD//3vf1y4cIF69eqxYsUKMXQyuxO8s7MzKpWKR48eiRoVSHVgjoiIEM8vu20+fvw4TXl6ZXmBs7NzhvdDvV39r6+vL4IgaFy39/dVa0rMzMzS5IP5ENzc3Jg8eTKTJ0/m0aNHeHp68uuvv7J582aNcVWqVClxn6SkJJ49e5ZlPxo2bIi9vT07duygfv36nDhxIk10lpubGzdv3qRZs2aZjhv1GHny5InGl3N61zgz1Jo3NYIg8PjxYypXrqxR3r9/fzp16sTVq1fZsmULVatWTTda6l3U10jb+e7Ro0ca2tPHjx+jUqlEZ2Rt5pP8Qn18b29vDc2Nt7c3KpUqW/3bsmULJiYmdOzYMcM6e/bsYejQoXTt2lWMBNUWPT09OnToQIcOHVCpVIwePZo//vhDDPV3c3MjJiYmy/Hr5ubG4cOHCQsLy1BrlFdz1/vjFDIe67Vr16Z27drMmTOHrVu30q9fP7Zv367hBqANareOjELytaVkyZKiZiwiIoJr167RrVu3HLcXGhpKy5YtSUxM5Pjx49jb2+eonXwJ11coFGmk3MWLF6fJTtqtWzdu3ryZxjsfPvwLW/2yzyh0uE+fPshkMsaPH8/Tp09z/MXXtm1blEolS5Ys0ShfsGABMpmMNm3aANC5c2fkcjnff/99Gs2P+lzVXwzvnntSUhLLli1L9/y0MY/Y29vj6enJhg0bNK6Fr68vR44c0UoFrQ1RUVGkpKRolHl4eCCXyzXUt8bGxpmGc7+Pun/vZ/lWaxGyG3kE0KpVKy5evIiPj49YFhYWJppH8pq2bdty5coVLl68KJbFxsaycuVKXFxcRPNI27Ztef36tYZdPy4ujpUrV2q0V716ddzc3Pjll1+IiYlJc7z0wsszIy4uLk1ouJubG6ampuK9bN68OXp6eixatEhjvK5Zs4bIyMgs74tcLqd79+7s27ePTZs2kZKSomFGg9TIrFevXrFq1ao0+8fHx4smYPUztmjRIo062c0Mv3HjRg2/w127dhEQECC2r6ZNmzZYW1szb948Tp8+rdXcYWNjQ8OGDVm7di3Pnz/X2JbeXPf+C1+dRTo780l+0bRpU6ysrFi+fLlG+fLlyzEyMtIYCyEhIdy/fz9dP8Q3b95w7NgxunTpIkYuv8+ZM2fo3bs3DRs2ZMuWLdmKZAoNDdX4LZfLRaFXPa579uzJxYsX001WGBERIc5x3bp1QxAEZs2alaae+vrnxdzVtm1bLl26xJUrV8SyN2/epJm7wsPD04wDtYCamTktISFB4xlQM3v2bARBoHXr1tnuc0ZMnz6dlJQUJk6cmKP9Y2Njadu2La9eveLAgQPpmhi1JV80Ru3bt2fTpk2Ym5vj7u7OxYsXOXbsWBqb8VdffcWuXbvo0aMHgwcPpnr16oSFhbF3715WrFihoVbPLp6enigUCubNm0dkZCT6+vo0bdpUVPWqc078+eefWFhY5GiQAnTo0IEmTZrwzTff4OfnR5UqVThy5Ah79uxhwoQJ4td86dKl+eabb5g9ezYNGjSga9eu6Ovrc/XqVRwcHJg7dy5169bF0tKSAQMGMG7cOGQyGZs2bUp3oqtevTo7duxg0qRJ1KxZExMTE9Fe+z7z58+nTZs21KlThyFDhojh+ubm5lmuI6UtJ06cYOzYsfTo0YOyZcuSkpLCpk2bUCgUGl8E1atX59ixY/z22284ODjg6upKrVq1Mmy3SpUqDBgwgJUrV4qmxitXrrBhwwY6d+5MkyZNst3XKVOmsHnzZlq0aMEXX3whhuuXLFmSsLCwPDdbTJs2jW3bttGmTRvGjRuHlZUVGzZs4NmzZ/z111/iZD9s2DCWLFlC//79uXbtGvb29mzatCnNS0Mul7N69WratGlDxYoVGTRoEI6Ojrx69YqTJ09iZmbGvn37tO7fw4cPadasGT179sTd3R0dHR3++ecfgoKCxFB6Gxsbpk+fzqxZs2jdujUdO3bkwYMHLFu2jJo1a2olLPTq1YvFixczc+ZMPDw8NL6qAT7//HN27tzJyJEjOXnyJPXq1UOpVHL//n127tzJ4cOHqVGjBp6envTp04dly5YRGRlJ3bp1OX78eLY1gFZWVtSvX59BgwYRFBTE77//TunSpRk2bJhGPV1dXXr37s2SJUtQKBT06dNHq/YXLVpE/fr1qVatGsOHD8fV1RU/Pz/+/fdfDSEdUrXEHTt2pHXr1ly8eFFMRaCeE7WZT/ILQ0NDZs+ezZgxY+jRowetWrXi7NmzbN68mTlz5mhoVJYsWcKsWbM4efIkjRs31mhnx44dpKSkZGhG8/f3p2PHjshkMrp3786ff/6psb1y5cpptHvvMnToUMLCwmjatClOTk74+/uzePFiPD09xbH31VdfsXfvXtq3by+GysfGxnL79m127dqFn58f1tbWNGnShM8//5xFixbx6NEjWrdujUql4uzZszRp0oSxY8fm2dy1adMmWrduzfjx48VwfWdnZ27duiXW27BhA8uWLaNLly64ubkRHR3NqlWrMDMzy/RjODAwkKpVq9KnTx9xCZDDhw9z4MABWrduTadOnTTqb9q0CX9/f1HQPXPmjGgd+Pzzz0Wt2E8//YSvry+1atVCR0eH3bt3c+TIEX744Qdq1qyp0ea+ffu4efMmkBq8devWLbHNjh07ive4X79+XLlyhcGDB3Pv3j2N3EUmJibZW10hWzFsGaAO+c0oFDA8PFwYNGiQYG1tLZiYmAitWrUS7t+/nyakXhBSw6THjh0rODo6Cnp6eoKTk5MwYMAAMXwvp+H6giAIq1atEkqVKiUoFIp0w2nV4bjDhw/X+tzfDz0WhNRQ64kTJwoODg6Crq6uUKZMGWH+/Pnphs2uXbtWqFq1qqCvry9YWloKjRo1Eo4ePSpuP3/+vFC7dm3B0NBQcHBwEKZMmSKGN7/b/5iYGKFv376ChYWFAIh9Su96CYIgHDt2TKhXr55gaGgomJmZCR06dBDu3r2rUUd9Xd+8eaNRrk2I99OnT4XBgwcLbm5ugoGBgWBlZSU0adJEOHbsmEa9+/fvCw0bNhQMDQ0FQLxnGR1bEAQhOTlZmDVrluDq6iro6uoKJUqUEKZPn66RvkAQUsdAu3bt0uzfqFEjoVGjRhplN27cEBo0aCDo6+sLTk5Owty5c4VFixYJgBAYGJjheQpC6hgwNjZO9zgVK1ZMU55ev548eSJ0795dsLCwEAwMDAQvLy9h//79afb19/cXOnbsKBgZGQnW1tbC+PHjhUOHDqU7nm/cuCF07dpVKFasmKCvry84OzsLPXv21Ahd1eZehoSECGPGjBHKly8vGBsbC+bm5kKtWrU00gaoWbJkiVC+fHlBV1dXKF68uDBq1CghPDw8zfVKL7WESqUSSpQokW66CzVJSUnCvHnzhIoVK4rPTPXq1YVZs2YJkZGRYr34+Hhh3LhxQrFixQRjY2OhQ4cOwosXL7IVrr9t2zZh+vTpgq2trWBoaCi0a9cuTWi9mitXrgiA0LJly0zbfh9fX1+hS5cu4n0vV66c8O2334rb1c/B3bt3he7duwumpqaCpaWlMHbsWCE+Pj5Ne1nNJ+mRUbj+mDFj0tRNb17NiJUrVwrlypUT9PT0BDc3N2HBggVp5kD1sdNLbVC7dm3B1tY2w3B69X3K6C+r+7xr1y6hZcuWgq2traCnpyeULFlSGDFihBAQEKBRLzo6Wpg+fbpQunRpQU9PT7C2thbq1q0r/PLLL0JSUpJYLyUlRZg/f75Qvnx5QU9PT7CxsRHatGkjXLt2TayTF3PXrVu3hEaNGgkGBgaCo6OjMHv2bGHNmjUaz/X169eFPn36CCVLlhT09fUFW1tboX379oK3t3em1yg8PFz47LPPhNKlSwtGRkaCvr6+ULFiReHHH3/UOPd3+5fR/Xj3Hu/fv1/w8vISTE1NBSMjI6F27drpzieC8DYdSnp/777X1CkO0vtLb77JDJkg5LOetRCzZ88eOnfuzJkzZzTCJCU+TSZMmMAff/xBTExMho6QEhIAN2/exNPTk40bN+YomlVCQqLwkC8+RkWFVatWUapUKY18MhKfBu/nzQgNDWXTpk3Ur19fEooksmTVqlWYmJjQtWvXgu6KhITEB5IvPkaFne3bt3Pr1i3+/fdfFi5cmC+hsBKFizp16tC4cWMqVKhAUFAQa9asISoqim+//baguyZRiNm3bx93795l5cqV4hIwEhISRRvJlAbiqr29evVixYoVubrStETR4Ouvv2bXrl28fPkSmUxGtWrVmDlzZq6Gu0t8fLi4uBAUFESrVq3YtGlTjnKmSEhIFC4kwUhCQkJCQkJC4j8kHyMJCQkJCQkJif+QBCMJCQkJCQkJif8oks40KpWK169fY2pqKjlKS0hISEhIFBEEQSA6OhoHB4dsZSrPT4qkYPT69esCWTBSQkJCQkJC4sN58eKF1ouJ5zdFUjBSR368ePECMzOzAu6NhISEhISEhDZERUVRokSJQh3BWSQFI7X5zMzMTBKMJCQkJCQkihiF2Q2mcBr4JCQkJCQkJCQKAEkwkpCQkJCQkJD4D0kwkpCQkJCQkJD4D0kwkpCQkJCQkJD4D0kwkpCQkJCQkJD4D0kwkpCQkJCQkJD4j2wLRmfOnKFDhw44ODggk8nYvXu3xnZBEJgxYwb29vYYGhrSvHlzHj16pFEnLCyMfv36YWZmhoWFBUOGDCEmJuaDTkRCQkJCQkJC4kPJtmAUGxtLlSpVWLp0abrbf/75ZxYtWsSKFSu4fPkyxsbGtGrVioSEBLFOv379uHPnDkePHmX//v2cOXOG4cOH5/wsJCQkJCQkJCRyAZkgCEKOd5bJ+Oeff+jcuTOQqi1ycHBg8uTJfPnllwBERkZSvHhx1q9fT+/evbl37x7u7u5cvXqVGjVqAHDo0CHatm3Ly5cvcXBwyPK4UVFRmJubExkZKSV4lJAoQJQqgSvPwgiOTsDW1AAvVysU8rxJ3Jafx5LIP6T7+mlRFN7fuZr5+tmzZwQGBtK8eXOxzNzcnFq1anHx4kV69+7NxYsXsbCwEIUigObNmyOXy7l8+TJdunRJ025iYiKJiYni76ioqNzstoSERA445BvArH13CYh8qw22NzdgZgd3WleyL7LHksg/pPsqURjJVefrwMBAAIoXL65RXrx4cXFbYGAgtra2Gtt1dHSwsrIS67zP3LlzMTc3F/+kBWQlJAqWQ74BjNp8XeOFBhAYmcCozdc55BtQJI8lkX9I91WisFIkotKmT59OZGSk+PfixYuC7pKExCeLUiUwa99d0rPBq8tm7buLUpVjK32BHEsi/5Duq0RhJlcFIzs7OwCCgoI0yoOCgsRtdnZ2BAcHa2xPSUkhLCxMrPM++vr64oKxH/PCsUqVwMUnoezxecXFJ6HSpCBRKLnyLCzNV/67CEBAZAJXnoUVqWNJ5B+F/b5Kc/GnTa76GLm6umJnZ8fx48fx9PQEUv2BLl++zKhRowCoU6cOERERXLt2jerVqwNw4sQJVCoVtWrVys3uFCkkW7tEUSE4OuMXWk7qFZZjSeQf2t6ve0GvqONWLI97o4k0F0tkW2MUExODj48PPj4+QKrDtY+PD8+fP0cmkzFhwgR++OEH9u7dy+3bt+nfvz8ODg5i5FqFChVo3bo1w4YN48qVK5w/f56xY8fSu3dvrSLSPkYkW7tEUUAQBE48O8G8i99oVd/W1OCDj6ltG7lxLIn8Q9v7NfrQZ1RaVompR6dy2u80ycrkPO2XNBdLQA40Rt7e3jRp0kT8PWnSJAAGDBjA+vXrmTJlCrGxsQwfPpyIiAjq16/PoUOHMDB4+yBs2bKFsWPH0qxZM+RyOd26dWPRokW5cDpFj6xs7TJSbe0t3O2kENYcIoUDfxgqQcXeB3uZe24uV15dAUGOo6wJOkIxUkeoJjLAzjz1On8oXq5W2JsbEBiZkO4zAqlf87lxrI+BojLWs76vAgqdaJIV97jzJoU7b+7w84WfMdM3o6VbS9qWbkubMm2wM0nf/SInFPW5uKjc+6LAB+UxKiiKQh4Ebbn4JJQ+qy5lWe/7blZ096yCka5RPvTq40FSi+ecZGUy232389P5n7j75i4ABjoGDK06FK9iw5jxT2oQxLsTiHoaXv5ZtVy7vuqv+PePJaACZIxvZcSkJk1z5VhFmaI21jO6r++OIS83fY48OcKBRwc4+PggIXEhGm1Ut69O2zJtaVumLTUdaqKQK3LcH23n4m3Daue7eS8ritK9Lwrvb0kwKmD2+Lxi/HafLOu90f2ZeJ2zuFq64m7jTkWbirjbuONu404F6woY6xnnfWeLGOqJ9/0Bnhcv74+J+OR41vmsY/6F+fhF+AFgpm/GmJpjmFB7ArbGqek2CjqPkY5uNK9li9Ax9OXkgJNUd6ieq8csShTVsZ6dMaRUKbkWcI1/H/7LgccH8H7trbG9mGExWpduTbsy7Wjp1pJiRtkTXrSdixf29qSTp2O22s5Litq9Lwrvb0kwKmC0/UqJN/uJ4ORzGW53sXDREJgq2lSkgk0FTPRMcrO7RQalSqD+vBMZRr6ozT3npjaV1M3/EZUYxfKry1lwaQFBsamRpbbGtkysPZFRNUZhbmCeZp+CzHzt4WRIu21tOON/Bmsja84MPEMFmwp5cuzCTFEf6zkdQ0ExQRx6fIgDjw9w+PFhIhMjxW1ymZzaTrVpWzpVm+Rp54lMlnmb2s7FJV3/4dvmvWheqnmWbeY1RfHeF4X3tyQYFTDqgZ2Rrf3dgR0WH8KdN3e4++Yud9/cFf8/ODY4nT1TKWleUkNYcrdxp4JNBcz0i/Z1y4qirBbPb4Jjg1l4aSFLry4VXy7O5s58VfcrBlcdjKGuYZ73Iacvx6jEKJptbIb3a28cTB04N+gcrpaued7fwsTHONazOx6SlclcfHmR/Q8PsN/3Hv5hEShl4STK74BMhb2JvWhya16qebrzX1ZzMQikEMIrgyEgU+Fh68GkOpPoU6kP+jr6uXbu2aEo3vui8P7O1XB9ieyjkMuY2cGdUZuvIyN9W/vMDu4o5DJsjG1obNyYxi6NNdoIiQt5KywF3+FuSOq/QbFBPI98zvPI5xx8fFBjnxJmJdKY5Nxt3NPVChRFpDDvrHke+ZxfLvzC6uuriU+JB6CCdQWm1Z9Gn0p90FXo5ks/PsQkZ6ZvxsF+B2m0vhF339ylxaYWnB10FnvTwmM6yGs+trGek/Ggq9AlLroMZ71bEBfZABt1uW4MITorCIg5xZoba1hzYw06ch0alGxA2zJtaVemHeWtyyOTybSYi2X80NmTG+FjWXNjDbeDbzNozyCmH5/O2JpjGVljZLbNdx/Kx3bvCwuSxqiQkBf+GqFxodwLuZcqLL25KwpMATEZh5w6mjpS0bYi7tapglJF21TBycLAIkd9KCi0/ZIa2jyGaU27oSP/dL4R7ofcZ975eWy+tZkUVQoANR1q8nWDr+lYriNyWf4lxM8t/4jX0a+pv7Y+zyKeUdGmIqcHns73l1RBse2aN9P/DMq6XiHSGmRETsdDVvuNbK5DYMoh/n30L4/CHmnUcbFwEU1uTVybcOZBZJZzcXh8OKuur2LR5UW8in4FgKGOIQM9BzKh9gTKFiubwyuQPSSNUd4gCUaFiPzy1wiPDxc1TO+a5NQPeHrYm9iLApNaWHK3ccfKMOsw6Zye14dcj6zU4gIqlITyymAILpYlmVxnMoOrDi7yUX+ZXbNrr68x99xc/r73N8J/V6Wpa1O+rv81TV2b5ru/RG77RzwNf0r9tfUJiAnAy9GLY58fw1TfVOu+FLVQ5xRVCj+f/5lZp2ZjE7scBcWQpZOa7v3rWFjPNafjIbv7PQp9xMHHBznw6ACn/E6RqHy7QLm+Qp8mrk1oU7odTgaNUAhWmV6jJGUSf975k18v/sqNwBv/HU9Gh3IdmFR7Eg2dG+bpc5UdV4zCcI+haLy/JcFIQiQiIYJ7b+5pCEt33tzhZdTLDPexM7FLY5KraFNR/FrPqSYsNzRoWYUDN6v2jL3+3/Mm7g0A1kbWjPMaxxivMVoJfIWN9K6ZnbkB3WsJHH09nyNPjojlncp1Ynr96dRyKrhs83nxtXsn+A6N1jciND6Uxi6NOdD3QJY+UkUp1FnN7aBUM861gGsANLD9guf+rTI0x6s1LYX5XLUdDz0bBNCuYhk8intgZWil9X6/9HKim2dlDUElNimWk34nxUi355HPNfYpV6yc6JvUoGSDDH2JBEHgtP9pfr34K/sf7hfLq9tXZ1KdSfRw75Fnpmlt0h4U9L19l6Lw/pYEI4ksiUqM4t6be2kcv9+fRN7F1tgWF/1OBL3q+F/J28noQ9Xi2XnQs3oRqEPTf7nwC88ingFgrGvMsGrDmFRnEiXMS2h1nIImo2vGf7qhN3o/kqRzhb4efZlabyoVbSvmfyffI6/Co71fe9N0Q1Oik6LpULYDf/X8K8OXUlELdU5WJvPTuZ+YfWY2yapkLA0sWdRmEf08+nH4TmCmY72wn2t2UpfE6ZwBwMHUAWe9rrx+2Vqr/fRNbuPl6EUtx1p4OXrh5eiFjXGqR5IgCNx9c5cDjw7w76N/Off8HEpBKe5vomdC81LNxeSSTmZO6R7nQcgDFlxawIabG0hISb0XTmZOjPMax7Dqw/LELeGQbwAz994hKOqt9quwCLzvUxTe35JglAmFVeVcWIhOjOZeyL00Jjm/CL/U7MgJa1BgjSyd7MggYGqo5PfPTKlUvCK2xrbIZLI8CT/V5j6mqFLYdXcX887PwyfQBwAduQ59Pfoype6UQiFIZERW10xAhaF+IvvHVaN0sVL53LuM0fZLf0oHPUbXa5Gttk/7nab1ltYkpCTQp1IfNnXZlCb5X1ELdfYJ9GHQnkHi+OxUrhPL2y3XcDTPaKwXhXPVdjyUctvLs7gjYo4tfaUHdklzs9wv1OBbYmQ30pS7WrhSy6kWXg5e1HKqRVW7qhjqGhKZEMnRp0c58OgABx4dEFNYqKlcvDJtS7elXdl21HaqncZPMSQuhBXeK1hyZYm4r4meCUOqDmF8rfG5Hj0ZlRCD7Y91UQiW7P9sCw3LOBaKcfs+kmCUR+THhS3MKufCTmxSLH/63OS7v8OzrBuoN51ExW2KGRbD3cYdO92GXPGtk+V+W4d5UdfNJst62UUQBI48OcK88/M46XdSLO9QtgNT602lXsl6uX7MD6UoOmBC9vzAurp35pcWv2TrZfLvw3/pvKMzKaoURlYfybJ2yzTMKEXluiUpk/jx7I/MOTuHFFUKVoZWLGmzhN6Vemvtv1IUzjW7/jJRiVHcCb7DzaDb/L7XioQkA9JbokY9jsJNx+Ji6Yy5vjkpqhQCYwJ5EfUiTX0duQ6Vi1cWBSUvRy/KFivLraBbosnt8svLop8egIWBBa3cWtG2TFtal24tJkEFSEhJYNvtbfx26Td8g32B1DxLXSt0ZVLtSdQpkfV8pw2xSbGYzE3NWxczPabQJv2VBKM8Iq8vbGFXORcFcqIWBzBKaYhN8pQs94syXIh7iTiqFK+Cp50nnnaeVLKtlKs5d66+usq88/M0nJXrlajHtPrTaFumbb5Gb2VEdGI04//ZxAkf5yzrFraMvZC1f0Q19+vs9vsOlaBCX6HPl3W/ZFr9aVonLt3hu4M+f/VBQGBqvan81PwncVtRyHR8PeA6g/YM4lbQLQC6VujKsrbLKG5SXOs2VIKKOUcOseZk1lN9QY+RnPrLZLSf+leEwS9Eyk6ne0wLfQusjFJ9CkNiQ4hKikpTx1TPlJqONUUTXGmr0twMvMmBxwc49PgQYfFh7/RVRg2HGrQr0462ZdpS3aE6cpkcQRA4+vQov178VcPfr45THSbVmUSX8l0+aEkTSTDKPSTB6D2Kgsq5KKDtF2qy+XxeJ72dsLRVi6s1Te8iQ0a5YuWoal9VQ2DKzkskPR6EPOCXC7+w8dZGkpRJAFS0qciUelPyNd/Pu4TEhfDj2R9Z7r0cIbGMVtesoDUfGZGVdvZ20G0mHJ7AiWcngFS/knnN59HPo59WGpNV11YxfP9wAOY2m8u0+tOAwq1FSUxJZPaZ2fx07ieUghJrI2uWtl1KD/ceWmuJgmKCWOezjpXXVvI61KTIjJG8CNho4W7L47DH3A6+ze2g29wOvo1vsC+Pwx5raH7UyJBhrm+OQq4gMjFSTGvxLk5mTtRyrEUNhxqY6pniH+nPsafHxOg0NTZGNrQp04a2pdvS0q0lloaW+Ab78tvF39hye4s4p7hauDK+1ngGVx2sdTTlu0iCUe4hCUbvoe1kObhZNJVLGGCsa4yJngnGeqn/muiZYKxrjJGuUYGni/9Q8jJc/l0BMy45hkdhj3gY+pD7IQ/ZeqI8SUlGZKYWV2ef1QZrQ2uq2VfTEJjKFiub7a+z19GvWXhpIcu9lxOdFA2kJsqcVGcSQ6sNzZflV15GvWT68els993+drIW5JRIXI9csCSz1e4LSpjXZhwlpajYdNEP/7A4nK2M+LyOC3o6bzVygiCw+/5uJh+ZLDrJ13Gqw8LWC6npWDPLPvxy4Re+OvoVAEvbLmV0zdGFNtTZ+7U3A3cP5M6bOwD0rNiTJW2WiE7CmaGOjlrhvYK/7/1NsioZAAt9S4rHryIh0SDd/Qp6jLxPfqX4iEuO4+6bu6KwpBac3vcnUqOQKdBV6IpO1e8il8mpaFORirYV0ZPr8Sr6FVdeXRHnCvX+dUvUFSPdbIxsWHZ1Gcu9lxMaHwqAub45w6sPZ1ytcRk6eKeHNoJRYfCblQSjPCIvL2xOTUDvI0OGka6RhtCkFqLEMt1Mtr1T9u5vYz3jfDHh5Ee4fE7V4nrFNvAsYXe6X3HaoifXo7x1ebwcvahqXxVPO088bD20+lKLSIhghfcKfr/0uziBWhlaMbbmWL6o9QXWRtY57ldGPAh5wIRDEzj85LDGF25Zq7LMbjobE2U9xmz1AQpXyK424yg7Yy0hJYEFFxcw5+wcYpNjARjkOYgfm/2InYldpn359sS3/HD2BwA2ddnEZ5U/y3SsyZDl63VLSElg1qlZzL8wH6WgxNbYlmVtl9HNvVuW+4bFh7Hx5kZWeK/gQegDsbyWYy1G1hhJz4o9OfMgskiFdRckb2LfiFqldzVM6jH3PnLkqEj7oWaoY0hpq9LoK/QJiAlIkyvOycyJtqXb0sy1GQExASzzXsbD0IdAqq9Tz4o9mVR7klYLJGclGBUWv1lJMMojCoPGyNFlF4LuA2KSYohNjk39Nyk2wwcnNzHSNUpXaHpXY5WZgJVRHbUGJT/D5XO6X4oqheeRz3kY+lD8uxdyj3tv7mWa2Tsr7E3s8bTzpLZTbarZV8PTzhNHU8d0tX8JKQlsvLmR+Rfm8zjsMZA6EQ6pOoTJdSfjYuGS436oufzyMmMPjk2zknj9kvWZ12wedUvWFcsKy8T3bn+yGkdAjsbaq6hXTD8+nU23NgGpPiDfNvyWcbXGZZprZvyh8Sy+shiFTMFfPf+iU/lO6V43mSKCZb2b0sYjf67b5ZeXGbRnEPdC7gHQp1IfFrVZlKmQLQgCl19dZoX3Cnbc2SFqMYx1jfms8meMqD6CqvZVNfYpbGOkKKESVPhF+KXRLj0MfagR1p8V6g/isPgwUaMHoKfQo0HJBriYu3D7zW2uvLoibmvk3IhJdSbRvmz7DD+MMxOMCpPfrCQY5RH54WOUU/W6SlARlxxHbFJsGqEpJikm3TLxd/I7ddLZPz1beG5ioGOAia4pxhG/gcqC9MwyIGCkn0i/Zg8xNzDNUugy1jVGLtPJ18zX8cnxPA57LApM90PucyvoFk/Cn2iotbW+LgoDyhQrQ02HmjRwbkA1+2pUsK4g+hYpVUr+vvc3887PExPuKWQKelfqzZR6U6hcvPLbxiJeQFxoxgczKgYWJdj3cB+TD0/WWL5AIVPQrUI3fmr+U4bRWYVBVa7uhza+eoIgEPhO7pX06mRm3rn44iLjD43n6uurAJS2Ks1vLX+jfdn26QqzKkHFoD2D2HhzI3oKPQ70PUCzUs3E6+YXFsboQ58RofTm0GcHaFW6VY7OX1vik+OZeWomv178FZWgorhxcVa0X0Hn8p0z3Cc6MZqtt7ey4toKMXQfUsPHR9UYRV+PvpkuEl3QY6Sgj5/bJKYkcj/kvob/0u3g25kmxn0fHblOGg24k6kTxnrGPA57LApeZazKMLH2RAZ4Dnibpf+/OSUmKZ7maweiEMz4ve0cqpW0QSGToTS0ov6KR4XGb1YSjPKI/IpKg8KjchYEgfiU+AyFpiwFq0y2qYS3KuAPcX7OCIVMgZ5CDz2FHgY6BhjqGGKoa5iq+dIzxlTPFBM9E8z1zTE3SP2zNLDE0sASM32zDM2Negq9bF/H0LhQ0Z/p3pt7+AT6cC/kHq+jX2t8vWWFDBlWhlZUtK1IgxINaOralKr2VbkecJ2fzv/EsafHxLptSrdhar2pNLRwRbakBqSkLwgApMh1qG2gw7X4YLHMSNeIEdVHMKPRjCKzZp22mldtyMohWCWo2HRzE9OOTyMwJhCAVm6tWNBqARVsKqSpn6JKocefPdh9fzfGusYc63+M2k61xe0TD03k98u/06JUC458fiTN/rnFhRcXGLRnkGg6+azyZyxsvTDDrOs3A2+ywnsFm29vJiYpBkj9mOlVsRcja4yklmOtQu/X+ClprMLjw1NNcWqT3H+CU2RiZLbbUsgUyGQyUXiyMrRiVI1RjCvfFdu1rTOdU1RyferHzec1mZv488vxXhKM8ggpj1HuIQgCicpEUWDafyuQ+QdCstwvKx+r/ECGDB25DnoKPXQVuugr9EXBy0jXSMPHy0zfDDN9M8z1zbEwsMDSwBIrQyusDK2wNLTESNeI6MRoXkW/4kn4E7xfe3M76DbPIp4RnpB1PiY1unJdihsXp4RZCeJT4rkVfEsUPPvbVmFD0LMs26hGDDdkKqyNrPmmwTeMqTmmQCLfPgRtffW0oWvtSP7XqnWWy7REJ0Yz5+wcFlxaQJIyCYVMwVivsXzX+Ls0AmViSiLtt7Xn2NNjWBhYcHrgaVGz9yz8GaUXl0YlqLg18hYexT1y5TzUxCXH8b8T/+P3S78jIGBvYs8f7f+gQ7kOaerGJ8ez885OVlxbwaWXbwXNcsXKMbLGSPpX6V9klq8pTOacgkIQBF5GvdTQLt0IvMHD0Ic58pmsKdPjiip9h/p3aZc4hztC5jnA8itVgyQY5RFS5uu8Q9sv/aWflaG8g4K45Lh0/2KTYolOiiYiIYLIxEiiEqOITowWNVVxyXHEJ8cTnxJPYkoiicpEkpXJJKuSs2WvzysUMgUKuQJduS46Mh0UCgUyZCgFJSnKFJKUSSSrkrNl3qwqyLlO1pFrncwsGNB6AV0qdCn0GoCMyE2NUaDu1yj17tLMtRk93HvQuXxncS2+9Hgc9pjJRyaz98FeIHUNvB+a/MDQakM1IhFjk2JpsakFF19epLhxcc4OOkuZYmUA6PlnT/68+ycDPQeyrtO6XDkPgLP+Zxm8d7DokzbQcyC/tfwNS0NLjXr3Q+7zh/cfrL+5noiECCBV6O5aoSsja4ykkXOjIjU2pDQomZOsTOZh6EN8g325FXSLy68ucyvolriOY0ZUFXS4TtYLX2sjGEkao7dIgpGEBoUhhFklqEhISchQ6IpMiCQiIYLwhHAiEyKJTPhP8Ep6K3jFp8QTlxxHQkoCiSmJJCmTSFImkaJKIUWVUiDCl7aCEcNPg4NnnvcnL9FmHJkayoiKz3r6kVkuxi/hsPhbIVPQrFQzulfoTpcKXTJ0UD7y5AgTDk0QHZqrFK/CwtYLaeTSSKwTHh9Okw1NuBl0k5LmJTk36BwlzEtw6eUl6qypg65cF/8J/hrLbuSE2KRYvj7+NYuvLEZAwNHUkZUdVtK2TFuxTpIyiX/u/cOKays45XdKLHexcGF4teEMrjr4g3Ny5TdxyXH4R/hz5J4fCw5knV6jIPIo5VZqgOrOllzzD8/VD+noxGhuBt3k4ouLnHx2kttvbhMQHSDOX7WUZbkkD8yynW6q2VxLckt3m+RjlBZJMJJIQ2H0scoLkpXJGgJXVGIUYfFhhMaHEhH/n+CVmCp4RSdFp2q8kmOIS0qtH58Snyp4KRNJSkkiSfWO4KVSptEmfUqCEWQ9jgbVc2Hteb8s23mj+zOCwVWczZ2JSoridfRrcZtCpqCJaxN6uPegS/kuaXL9JCuTWe69nJmnZoqalx7uPZjfYj7OFqnZwoNigmiwrgGPwh5Rrlg5zgw6g62xLfXW1uPCiwt80+Abfmj6Q04vA6f9TjN472Cehj8FYEjVIfza8lfMDcyBVNPdymsrWeuzluDYVN8yuUxO+7LtGVl9JC3dWn5QRuS8JDYpFv9If/wi/MS/d3+rz0fbjPb5nXk7N6Nm5TJQvTPQ321HJaiISowiPD6csPgwwhPCxf8Piw8jKDaI19GvCYgJIDgmmLCEMGKTYklUJmr4gL5P3ZQanFc8zPI8V1ZYx9wbqdGaBT2nF4X3tyQYSaTLp+Jjldu8jHrJKb9TnPY7zSn/U6LJBD49wQgyH0fmhnpamdvSc/Q31TNFV6GrsRSDXCansUtjerj3oGuFrhrrVYXEhTDj5Az+uPYHKkGFgY4BU+pOYWr9qRjpGvE88jn119bnRdQLPO08OTngJMefHqf7n92xMrTixcQXb6OAtCQmKYZpx6ax9OpSIDUZ6KoOq2hVuhUpqhT+ffgvK66t4PDjt7mp7E3sGVZtGEOrDaWEeYlsHS8viE6M1hB0/CP88Yt8KwSFxGXtj2iqZ0oJg6bEBg3Lsm5+aoyy6/MkCAKxybHs9vHjf3/7p9OigGYkb2rLMUa/E87JTAWcnKKtxuhW2728NipbKOb0ovD+lgQjiQz5FH2sssvzyOepQpDfKU77n+ZJ+JMM636KghFkveJ7RuY2AGODJBxL/cHZF6fTzTasxkDHQGO7XCankXMjurt3p2uFrmLyx5uBNxl/aDyn/VOXoXEyc2J+i/n0qtiLR2GPqL+2Pm/i3lCvRD0O9jtIlRVVeBbxjGVtlzGq5iitz/nEsxMM2TtEXAF+eLXhzG85n+jEaNbcWMOq66s0wrlburVkZPWRtC/bXmtH+9x4PqMSo94KPGqtT+RbIUidjTkzLAwscLFwwdncGRcLF40/Z3NnLAwsUAkUuIn+XbLyeQIBHd0YbJwXE54QKmp4kpVKHBPWoMAaWbrpTN5vJfuZ+gH0FfqY6ptSzLAYjqaOlLIsRWmr1ICACy8ucPjJYZJVyVr7GCmHnULhWLVQzOlF4f0tCUYSEtnAP8JfFIJO+Z0Sl6fICBkyURugrWD0Q4WWTO66MVcXxC2saGu2TVYmcz3gOqf8TnHs2THOPT+XoaD07jVX08i5kahJsjOx4697f/HlkS/xj0z98q9fsj4LWy9M1Tqtb0xkYiSt3FrR0q0lk49MpoxVGe6PvZ9l1vnoxGimHJ3CimsrAHA2d2Zlh5UArPBewd4He0X/EGsjawZ7DmZ49eG4WaXv/5ER2mp0IxIiNIWe90xd2kRcWhlaZSj0OFs4a51CojCZ6LUNDnhfW6ltOpOM2tFX6GNuYI6NkQ32JvY4WzhT2qo05YuVp5RVKRxNHbEytNJwrI9OjGbzrc0s816Gb7CvWF7bqTb/K92BdifnZd2BQvSxVRTe35JgJCGRAYIg4BfhpyEIqV+kauQyORb6FkQkRoiqcjlyrI2tRf8KtTajhCDjIaZkFlwbj0A5YrC082Bn952Usy6XV6dXaMiJ2TZFlcL1gOuc9jvNoSeHuPD8AgnKjDVK79KgZAN6uPegbZm2bPPdxtxzc4lLjkOGjCFVh9C5fGd67upJXHIcncp14rT/aSISItjTew8dy3XMsN2jT44ydN9Qnkc+B1KXKnG1cGX9zfWifxFAQ+eGjKw+kq4VumaYpTszMjIBqcUNF5djRHAKvwg/rXLmFDMslkbgEf/fwjnTZJE56XthMOdom07i8wYpNK9ogaVhal61i4+SmbLrXraP9017Bz6rVT5bHzu+wb4sv7qcjbc2inmrDHUM6efRj1E1R1HNvhpEvCBlkSc6mYX66+jD2GtgUfCmWSga729JMJKQ+A9BEHgW8YxTfqdEYUj9klOjkClwt3HHQMeAx2GPNb64K9pUxNbYlnPPz5GsSkZXrkspy1Li2lXuNu5U0DXl6aurfO7xOZtupy5n0dSlCXOb/8T/TvyPbU+P8EKW+kga6xqzov0KPqv8WT5dgYLjQ1X8KaoUfAJ9OP70JH/fvMmD4EAShGAS5XcyNWHUcapDK7dW+AT5sPv+bgDM9M3oXak3633Wk6RMokWxCoSEPKCafTVWd1iVpo0ohR5fXvmdVddTt9mb2FPBugJnn58Vk4aa65szoMoARtQYgbuNu1bnJAgCYfFhGlqeZ+F+HLpYj+RkY7RdZNnGyEYUclzM39P6WDjny+LH71IYzDnaaoze93nKaRoKbX2n1JGJy7yXccb/bZ64ssXKMrrGaAZ4DtDQ0AXFBNFscVn0EmMAOcaUZWaD+diaGlPR0QyFTCZm0y8sFIX3tyQYSXyyCILAk/AnGhqh99P468h1qOlQEy9HLxJTErn48iI3g26K262NrOlbqS/WxtYsu7pMzLzc2q01icpETvqdBFJDxbd03UKl5ZWQy+R4D/Wm2qrUtcJcLVx5Ov4pKaoU+v3dj513dmqYgwZ5DmJJ2yXZdv791EhPG2FskISuxR7ux2wnUZlxdmAAN0s3ElISxIU+HUwc0I0J4p5ghGEm/iQJQFmieSETsDSw1BCWvRy9GFl9JL0q9Upz/wRBICQuJE1U17t/76+9qK0pZ2JbGS0qpGp/0ltl/VMnp2lJtPGL06ad93kR+YKV11ay6voqcWFqhUxBp/KdGF1jNE1dm6abt2rwnsGs81mHk5kTL6Ne0rxUc45+flSLnhUcReH9rVPQHZCQyC8EQeBR2CMxYuyU3ymN0G9ITaLn5ehFI+dG1CtZj+jEaLbf2c6yq8vEr39duS7ty7ZnoOdAbI1smXhkopiV2M3Sjd9a/cbSK0tFoai6fXUuDb3E1KNTAWhbpi2OZm9Dkp9FPCM8PhxLQ0u2dN2CXCZnu+925DI5KkHFOp91XH51mZ3dd1LRtmJ+XKoiR0bmpbgEPQjswd9952BvE8z+h/vZ82APt4Nvk6RM0qj7ruO8DBmvY15TVZBnKhQBGAA2yHmBkvCEcIx1jenr0ZcR1UdQwrwEfhF+7H+4n6fhT3kQ8oDH4Y95HvmcwJjANH3ICoVgmXUlwMWsCu42+Rf2XtRQyGXM7ODOqM3XkZG+z9PMDu5phJnM9nufzNqB1Hxtx58eZ5n3MvY+2Cua4tWRicOqD8PJzCnD9i++uMg6n9Tko87mzryMekmLUi0yPW8J7ZA0RhIfLYIg8DD0YappzD81hD4gJkCjjq5cl1pOtWjs3JjGLo2p7VSbh6EPWe+znq2+WzXCkavbV2dAlQH08eiDSlDx9fGvWXtjLQICxrrG/K/h//jC6wvab23PKf9TANRyrMW5wedIUaXg+JsjYfFh7OuzDy8HL4r/+jZZ35HPjtDCLXVSS1Gl0P+f/mzz3YZCpsBU35SIhAgMdQxZ2nYpAz0HFqmsx3mNNlmVi5vpc2RSbfEFpRJU+Ab5suveLg4/OcyD0AfpLsmgrcN8NWLwMzTH1tgWlaAiND6UyITID0okqiPTwc7EDntTe+xM7ChuXBySynLUO2tTXEEkSiyK5Fceo3cJjw9nvc96lnsv11gkuolLE0bXHE2ncp2yjExUqpR4rfbiesB1BlQZwF/3/iImKYbrw69T1b6qtqdfIBSF97ekMZL4aBAEgfsh9zVMY2q1tBo9hR61nWrT2LkxjVwaUdupNka6RgTFBLHl9hYmHp7I7eC3USh2JnZ85vEZAzwHUMm2EsnKZJZeXcrMUzOJSowCUhf/nNd8HjZGNjRa34iLLy8CUK9EPU4PPI1CrmC773bC4sMoYVaCNqXbEBwTgr7SA4VgiVIWzuVXV0XBSEeuw8YuG5HJZGy9vZXoxGgq21bmVpAvo/5ZwA7vJ0xpOJJGZRyl9AnAlWdhmYRdp37VB0YlYvtjXa0XPs4J4QnhWkV5meqaYa1TGws9ZxwsTKjgoIuDqR12Jql/xU2KY2dih6WBZRoBWKkSqP8oaxOQl2vRWD+toGldyZ4W7nbZ9nlKb7+sMl9fe32NZVeXsc13G/Ep8UCqP9uAKgMYWWOk1r5nAKuur+J6wHXM9c3pVqEbG25uwNrImip2VXJ2ISQ0kAQjiSKLIAjcfXNXFIJO+58WI8HU6Cv0qVOiDo2cG9HYpTG1HGuJkSGJKYnse7iP9T7rOfT4kPh1r6/Qp1P5TgysMpAWbi3Qkac+JkefHGX8ofHiEhPV7KuxqPUi6pWsR0JKAnXW1OFawDUgNTz8eP/jYsbiP679AcDQakM5ejeYGXtua/iKbDgaQw2rAPHrUkeuw8bOG5HL5Gy+tZknAaaUEbaRlGzM/Scw+MlNipn4MqdzlU8+4WZwtHbRaNqaoXKCDBkGOgZYGFjgaOqIs7kzbpZulLMuh6OZoyj0XHuq5Id/7xMQlkAYEBYIoQHaR2Xl1AQkkTEKuSxH2rX09nv/t3oR4GXey7jy6opYXrl4ZcbUHENfj77Zdn4PiQvh6+NfAzC7yWy8X3sD0My1WZbpJCS0QxKMJIoMKkHF3Td3xaixM/5n0iyyaKBjQB2nOjR2aUwj50bUcqqFgc7bAHlBELjy6gobfDawzXebxhd+bafaDKwykJ4Ve2os6vk0/CmTj0wWo5asjaz5semPDK46GIVcQWxSLHXW1BE1Tc1cm3H4s8OiUHQn+A7nnp9DIVPgZtgtXV+YpGRjRm2+rpHLRSFXsL7TekLDnLjzqB6JaMYhhcQkM3LzNZb3q04bj09XOLI1zXp1cYD9n23ByzV94UgQBJ6GP+X4s+Oc8DvBab/TRCdFa90HAYGElAQCYwIJjg0mNjkWPR09rIysRMHIx09g7FafNPc+MDIhzb3PjNaV7Fn+WbU0phw7KTN9oeFx2GNWeK9gnc86MTu7nkKPHu49GF1zNHWc6uTYHP718a8JTwincvHKjKo5ikbrU9f+k/yLcg9JMJLIc3IanqsSVPgG+4raoNN+p9Nk4jXUMaRuibqiIOTl6JVubphXUa/YfGsz62+u537IfbHcycyJzyt/zoAqA9LkDIpNiuWncz8x/8J8EpWJKGQKxtQcw3eNvxMFp6jEKLxWeYkh+a3dWrO/736Nta1WXktN8Ne+bEeWHA/MwAQiQwBm7btLC3e7d66PnLCgZshI4P3wbBlyBFSM//MstUu3wtLQPMtr+jHi5WqFvblBlualhu+ZHsPiwzjx7ARHnxzlyNMjYpbqnDCgygBsYl/hE+hDcGww90Pucz/kPtt9t6dWEOSUSFqPHEvev4/qhSTS3vuMyakJSCJnaDOHKVVK/n30L8uuLuPwk7eLHjubOzOyxkgGVx2ssUxNTrj66iqrr68GYGnbpcQmxXL55WUAmpdq/kFtS7xFEowk8pTsODeqBBW3gm6JUWNn/M9orIUFYKRrRL0S9UTTWE3Hmugp9NI9dnxyPLvv72b9zfUce3pMjPow1DGka4WuDPQcSBOXJmkW6BQEgZ13dvLl0S/F8P2mrk1Z1HqRRlRYWHwYNVfW5GlEavK+dmXasaf3Ho324pPj2XhrIwBNHIaxwCdzs09AZAJXnoWJKvkrz8IIjHpfV/QWGXKSkoypsbQ3u/r9WOgdL/MCbc1LSiGZc34XOfr0KEefHsX7tbfG+lXpZczWlvG1xjH+v8zCgTGB+AT64BPow82gm/gE+uAXpItclbHfj0Dae58VOTUBSWSPrOaw4Nhg1lxfw4prK8S8ZzJktC7dmtE1R9OmdJtcWQRYJagYe3AsAgKfVf6M+iXrs+f+HpSCkjJWZcRFkSU+HEkwksgzMgqhVpsOlvb1xN4mWIwaO+t/No3zqrGuMfVK1hOdpWs41MhQEIJUoebCiwtsuLmBHXd2iA7SkJrxeECVAfSo2CPDbL43A28y7tA4Mbmas7kzv7X6jS7lu2iovoNjg6mxsgYvol4A0KlcJ/7u9XcaG//OOzuJSIhITaZn6gHcJCve9ZnR1n8mMDKO2mtq81vL3xhdc/QnF7WWkXnJ2lRBrQovWXJrGN33nkqTF8jR1JEkZRJv4t6kEYqsDKz4puG3pBz9Hh1VJtFlOvqpSfT+w87EjtalW9O6dGuxbKf3U60yJmt7vyXyh8zmsJGbr1PO7QwnAxeIqTysDK0YUnUII6qPyPYyL1mx9sZarry6gqmeKT83/xmAo09TcxZJZrTcRRKMJPIEpUpg1r676X5/C//9d+S2Y7zQH6yRmdhEz4T6JeuLglB1++paLarpH+HPplub2HBzg8aK9i4WLvSv3J/+VfpnOlGFxoUy4+QMVlxbIa6+Pr3+dL6q+1WaNP6vol5Rc1VNMfS/W4Vu7OyxM13HR7XT9bBqwyhupt1yAO/6zGjrP1O7ZAVOvD7D2INjOel3ktUdV2u9htXHQutK9ng6K1hz+RTn/X25/eYc3gmn8b79dnzZGttSr0Q9VCoV516cE5M56in00JHrEJccB0D/Kv35teWv6Mp1qXpqFrqJMfzQZDZty7RNe2AtMguXsNTOzKnt/ZbIe7KawwRU3HlSgWQDJbWcajG65mh6uPfIkzUOw+LDmHZsGgCzGs/C3jRV237s6TFAMqPlNpJgJJEnZBVCDTLkgjWWihrUcbMWTWPV7KuJUWBZ2fVjk2L5695fbLi5gRPPTojlxrrG9KjYg4FVBtLAuUGmkRpKlZKV11byv5P/E812Pdx7ML/F/HRV034Rfnit8hKdvnu692Rb923pHuN20G0uvryIjlyHwVUHY2OUuS+MgAoHcyONUGtt/WcOD17G4ivlmHpsKn/d+4vrAdfZ0X0HNR1rZnjuHwMJKQmcf36eI0+OcPTpUW4E3tDYbqBrQIOSDWhRqgVOZk4ceHSAHXd2iF/4diZ2WBlacffNXZKUSZS2Ks2KditoVqoZADNPzsQ3KQJ3W3daNZgKOTSJaHsfpTD7wkNWc5gMOTrYsL7tWQZ41c3Tvnx74ltC40OpaFORsV5jgdRs2Q9CHyCXyWni2iRPj/+pIQlGEnmCtiaBNe130aVq2q/tjOz637avgJHpQzbc3MCfd/4UTSMyZDRxbcLAKgPpWqGrVssgnPY7zbhD47gVdAsAD1sPFrVZRGOXxunWfxj6kNqra4vmvr6V+rKp66YMBS+1tqhTuU7YmdgBZOgLI6ACZIxsYq0h/GnrP6OjkDOxzkTqlaxHr129eBbxjHpr6/Fzi58ZX2v8R2NaEwSB28G3RYfpM/5nSEjRHGuedp60KNWCFqVaUNupNoefHOb3S79z/sV5sU5tp9qUL1aeXXd3ERgTiI5chyl1p/C/hv8Tv/hD4kJYcGkBAN83/v6D/ESkMPuih7ZzmIVe3vr23Ai4wYprKwBY0naJqEFXm9G8HL0+Oe1wXiMJRhJ5grYmATuztOt/ZWTXD4iMZ/SW6wTr/Ui8IjWJYmmr0gyoMoDPK3+utfPhi8gXfHX0K3bc2QGApYEls5vMZkSNEaK26n18g32pt6YeUUmpPkv9K/dnXed1GQpFsUmxbLqVukjsiOojxHK1L8zMvXcIinq7dpdCEU2gYglGphMBzSRt2QnP9nL04saIGwzZO4S/7/3NxMMTOel3knWd1mFlWDS1EQHRAaLD9NEnR9Mk7XQwdaBFqRa0dGtJM9dmFDcpTlh8GKuvr9ZY7V5HrkPPij1pW7oti64sYv3N9UDqQrIrO6ykkm0ljXbnn59PdFI0Ve2q0qVClw8+DynMvmih7RyWl+ZPlaBizIExqAQVvSv11vhoU5vRJP+i3EcSjCTyhJyaDjKz64MMARXWySNoVaMSg6oOzFY+kISUBH658As/nv2R+JR4ZMgYUX0Es5vOxtrIOsP9rgdcp+G6hqJ2apDnINZ0XJPpcdWO36UsS4lmGTWtK9lTt7Qptj/WRSFYsv+zLex4OIc/rl/k6uv69KjYI0172QnPtjCwYFePXSy7uoxJRyax98Feqv5Rle3dtlOnRB2trlVukt10DXHJcZzxPyOax3yDfTW2G+ka0dilsSgMVbCuIN6Le2/u8d2p79h4a6PoL2RtZM3I6iMZ6DmQVddXMWD3AJSCEjN9M35q9hMjaoxII+AGxgSy+MpiIDWJXm4lzpPC7NOS03QeeU1hMH9uurmJiy8vYqxrzPwW88VylaCS/IvyEEkwksgTcmo60MauLxOsGVxxLnVKaBeqLAgCex7sYdLhSTyLeAZA/ZL1WdR6UZbh7RdfXKTZxmZiCv8hVYewqsOqLIUxtRlteLXh6b5UFXKZuDyFl6slz+Jq8sf1FVx9fTXDNrMTni2TyRjjNYY6JerQ88+ePAl/QsP1Dfmx6Y9Mrjs53zLkapOuQSWouBFwg6NPj3LkyRHOvzivsbiqDBk1HGqkmsfcWlDHqY5GriqVoOLQo0P8fvl3jjw5IpZXLl6Z8bXG09ejL2f8z9BiUwvx/ner0I1FbRbhYOqQbr/nnp1LfEo8tZ1qp+9w/QFIYfZvyelaZflBQZs/IxIimHJsCgAzGs3QWFD2VtAt3sS9wVjXmNpOtfPk+J8ykmAkkWfkxHSgrV1f23p339xl/KHx4teVo6kj81vMp3el3lkKNyefnaT1ltbiS3pE9REsb7c8y/18An248uoKunJdBlUdpFU/azqkOklfe30NlaDKNcGlmn01ro+4zvB9w9lxZwdTjk3hlP8pNnTekKmWLDfIKtS5e91wXibt59jTY2kSdzqbO4saoaauTSlmlFaQiEmKYYPPBhZdWcTD0IdAqhDVqXwnxtcaTyPnRryJe8PQvUPZcnsLkJrQc2nbpXQs1zHDfr+IfCH6dPzQ5IePxj+rsJFVOg9tM4HnJQVp/px5cibBscGUty7PhNoTNLap57PGLo0zTV8ikTMkwUgiT8mu6SC37PoRCRHMOjWLxVcWoxSU6Cn0+KruV0yrP02rtYkOPjpIx+0dxRXXR9cczZI2S7R6Sf7hnaot6lKhi9aZbivYVMBI14jopGgehDyggk0FrfbTBjN9M7Z120ZT16aMOziOA48O4LnCk23dttHAuUGuHeddtAl13n4hhVcGf4JMhameKU1dm4rCUGmr0hlea78IP5ZcWcLq66uJTIwUz3FI1SGM9RpLKctSCILAOp91fHX0K8Liw5AhY1ytccxuMhtTfdNM+/7DmR9IUibR2KUxTV2bfuCVkEiPrMZHdjOB5yUFYf68FXSLJVeXALCo9aI0wo/a8Voyo+UNkmAkkedkx3TwoXZ9laBi3Y11TD8+XQyp71SuE7+2/FXrhGt/3/ubHn/2ELMij/Uay6LWi7QSimKSYkTtxLtO11mhI9ehmn01zj0/x9XXV3NVMIJU09rw6sOp7VSbHn/24GHoQ5psaML3Tb5nWv1puW5a0zbUebjHz/SvWRsvR69M81UJgsAZ/zMsvLyQPQ/2iPemtFVpxnmNY6DnQFHgeRDygJH/juSU3ykAqhSvwqoOq7RKXfAk7AlrfdYCkrYoL8lqfOQkE3hekp/mT0EQGHtgLCpBRbcK3WjhpulcnZCSICaglRyv8wZpKV6JQoXarg9pF8HIyq5/8cVFaq2uxdB9Q3kT94ZyxcpxqN8hdvferbVQtPX2Vrrv7C6+eMfXGq+1UASw7fY2opOiKWNVhiYu2cstUsO+BpC6HlJeUbl4Za4Nv8ZnlT9DKSj55sQ3tN7cmuDY4Fw9jramzrZuvalXsl6GQlFCSgLrfdZTbWU1Gm9ozD/3/0ElqGheqjn7++znwdgHfFHrC0z1TUlMSeT7099TeUVlTvmdwlDHkPkt5uM93FvrfE6zTs8iRZVCm9JtqFeynranK5FNcttk/jGx9fZWzj4/i5GuEb+1+i3N9vPPz5OQkoCDqQPuNu4F0MOPH0ljJFHoyK5dPyA6gGnHp7HxZuqaZKZ6pnzX+DvGeo3Nlv199fXVDNs3TPw9sfZEfm35a7a0BqLTdfXh2dY2qF/e3gHe2dovu5jombCx80aauDRh7IGxHH16lCorqrC169ZcSxT3oSbRgOgAlnsvZ4X3ClHzZ6BjQP/K/RlXa5zGmnUA556fY/i+4dwLSV12o3Xp1ixruwxXS1et+3z3zV0239oMpEaiSeQdhSEUvjASlRjFl0e/BOCbBt9Q0rxkmjrvRqNJGs28QRKMJAol2tj1E1MSWXh5IbPPzCYmKQaAwZ6D+bHZjxQ3KZ5p+++HCF9+s4WJh8eL27+s8yU/t/g5WxPPtdfXuBZwDT2FHgM9B2bvhHnrgO0T6EOyMlmrpVByikwmY3DVwdRyrEXPXT25++YuzTc1Z0bDGfyv4f8A+Qf5VOTUJOr92puFlxeyw/dtdmonMyfG1BzDsGrD0jhhh8eHM+3YNFZeXwmkLvnxe6vftXKuf5/vTn2HgECX8l2o7lA9W/tKZI+sxoeACj3dODyccn95jcLGu3PRXw/WERgdTOlipZlcZ3K69UX/IlfJvyivkAQjiUJLZnb9A48OMOHQBB6FPQKglmMtFrVZhJejV5btphcinIIZhnp1iFdc5Ku6XzGv+bxsv1jV2qJuFbrlKOKrtFVpLAwsiEiIwDfYN8tUArlBRduKXBl6hS8OfsE6n3V8d/o7Dvi+RojsRnB0slgvuyHU2Ql1TlGl8M+9f1h4eaFGduo6TnWYUHsCXcp3SSMkCoLAzjs7GX9ovJjwcUjVIfzc4uccJbL0CfThz7t/IkPGrMazsr2/RPbIbHyo3a9fyRbSesti9vbZW2STk2ZF2rmoKo6sYVB5W42UFGpC40K5HnAdkByv8xLJx0iiSPEo9BHtt7an3dZ2PAp7RHHj4qzvtJ4LQy5oLRSN2nw9jeOngmLYJH1N3zI/50goikqMYuvtrUD2nK7fRSZLzdcDZJrPKLcx1jNmbae1bOy8EUuaEPiyA0HRSRp11CHUh3wDtG5XbRK1M9c0h9iZG7D8s2p4uekz79w8Si0sRc9dPTn/4jw6ch36efTjytArXBhygZ4Ve6YRivwj/Gm/rT29/+pNUGwQ5YqV4/TA06zuuDrHL9AZJ2cA0LtSbzyKe+SoDYnskdH4sDc3ZFwrQ/SN73H+xXnqr60vZi//mMhoLtLBmlXHhXSftRPPTiAgUMm2kriQrETuI2mMJIoE0YnRzDk7h98u/kayKhkduQ4Tak3g20bfYqZvplUbmYUIy5ADAk/9q6ESQKGlXKRWg2+9uZ+UhFKUs02hoXNDrc/rfWo61OTY02NcfXWV4dWH57idnNDX4zMW7rMhhBTed33XNoT6fRNlC3e7NCZRE5NAll6dRdc9G8XEmers1KNqjsow6WKKKoVFlxfx7clviUuOQ0+hx/T605lef3q6X9facvnlZfY93IdCpuC7xt/luB2J7JOZybx1xXO03tKaeyH3qLOmDgf7HaRy8coF3eVskVFW76wy/IPms6ZuZ+Plu+grPWjm0izdPSVyB0kwkijUCILAlttbmHJ0CgExqV9QrUu3ZkGrBZS3Lp+ttrIKEQZZtkKENdXg1tgxF52QZA7fCcxx4je1n1F+aozUXHkWRkiMkrTxgKlkFUKdWRbjlhWLc+jxIWZe+F30kYDUUPrxtcbTx6MPBjoZO9pee32N4fuHi2aEBiUb8Ef7P3IlrcG3J78FYECVAZQtVvaD25PIHhmZzCvaVuTC4Au02dKGO2/u0GBdA/b03pPhIs+FjcyeB3NDPa3TFUTGJ73TTg3sqMEpbzhUIqDAE2B+rEiCkUSh5drra3xx8AsuvkxdMNbN0o3fW/9OuzLtchSNkZshwhll7Y1N0P2grL1qU5pvsC9xyXEY6aZdZDev+JDrk3mW62voFFvPk7i/gLTZqTO7lzFJMcw4OYOFlxeiElRYGFgwv8V8BlcdnCu5l077nebo06PoynX5ttG3H9yeRO5SwrwEZwedpdP2Tpx9fpZWm1uxsfNGelXqVdBdy5SssnoPrueiVTvH7gay9rxfmnYiYyk02cE/RiQfI4lCR3BsMMP2DqPmqpriAopzm83lzug7tC/bPschqrkVIpxV1l5IVYMrVekryjPDycyJ4sbFUQpKbgbezPb+H0JOr0/WWa4FEkLbY6ZnzsTaE3k87jH/9PqHxi6NM72X/z78l4rLKrLg0gJxdfF7Y+4xtNrQXBGKBEHgfyf/B8CwasNwsXD54DYlch9LQ0uOfH6EbhW6kaRMovdfvfn90u8F3a0M0WZ++MfnlVZt/ePzKk/mGYnMkQSjTFCqBC4+CWWPzysuPgmVBmAukt61TVYms/DSQsouLsvqG6sREOjn0Y8HYx8wrf60D/IjgdQQYWODJARU6W6Xkarqzmq17Oxk7c0uMplMzGeU3+Y0dQh1RqJKRtdH2yzX/3S5zW+tfqOUZalM+xEQHUDPP3vSflt7nkc+x9ncmQN9D7Ct2zbsTOyyeVYZc+TJEc49P4eBjgHfNPwm19qVyH0MdAzY0X0HY2uOBWDi4Yl8deQrMRFrYUKb+SEsNhkrY71Mn7VixnqExSZnUOPD5hmJzJFMaRlQmFd9Luqkd20tjSHOcCMPY3cCUNWuKovbLM7V7MM/n/+JZ6p92PA1b92JU8nOatl5nbW3pkNN9j/cn++CUU5XE9f2PKMTMv8OUwkqVl1bxdRjU4lMjEQhUzCx9kS+a/wdxnrG2p+IFryrLRpdY3SGDt8ShQeFXMGiNotwNHNk+vHp/HLxFwJiAljbaW2hWkhV2+ehs6cD6877ZfisdfJ0YO15v1w7noT2SBqjdMgojDInIcsSmmR0bcNiVSSEfE5xRStWtl/J1WFXc1UomnNmDl+f+Jp4xUWaV32Gvblm4jh1CLk2Qm9eZ+0VHbDzcGmQjMgqxD6965Mb1+NO8B0armvIyH9HEpkYSXX76lwddpX5LefnulAEsPfBXrxfe2Osa8zU+lNzvX2JvEEmkzGt/jQ2dN6AjlyHLbe30G5rO6ISowq6ayLaPg8t3O0yfdZauGunHf3UsoPnB5LG6D2K0qrPRQ1twuWd5ZMZXLX5B13b90Nkj75czsxTqY61PzT5gW8afpFhGK02fOhCt1mhNqU9CH1AZEIk5gbmOWonp2R3NfEPuR4JKQnMOTOHeefnkaxKxljXmDlN5zDWaywKuSJ3T+w/VIJKjEQbX2s8tsa2eXIcibyjf5X+FDcuTred3Tj29BiN1jfiYL+DuWpqzSnZeR4UclmGz5pSJeTpPCORMbmuMVIqlXz77be4urpiaGiIm5sbs2fPRhDe3lpBEJgxYwb29vYYGhrSvHlzHj16lNtdyRF56T/yqaNNuHxQVNIHXdtDvgHUn3eCPqsuMX67D31WXWLlQScMlXX4semPoi+JOkS4k6cjddyKZUsQ+5CFbrXB2shadAS+FnAtR218KNm5Pjm9HiefnaTy8sr8cPYHklXJtC/bnrtj7jK+9vg8E4oA/rzzJ7eDb2Oub86Xdb/Ms+NI5C2tSrfi1MBT2Brb4hPoQ501dXgY+rCguyU+D6mBB5o+UOk9Dxk9a3k9z0hkTK4LRvPmzWP58uUsWbKEe/fuMW/ePH7++WcWL14s1vn5559ZtGgRK1as4PLlyxgbG9OqVSsSEgreViqt+px35PW1zSyrtW3S11S1HJijdtMjJyan7KA2p3m/ztsFZXOL7FyP0LhQBu8ZTNONTXkU9gh7E3v+7PEne3vvTXfRzNwkRZXCzFMzAfiy7pdYGlrm6fEk8pYaDjW4MPgCbpZu+EX4UXdNXS69vFTQ3aJ1JXt61otESahGeXbnh7yeZyTSJ9dNaRcuXKBTp060a9cOABcXF7Zt28aVK1eAVG3R77//zv/+9z86deoEwMaNGylevDi7d++md+/eud2lbJEX/iMfYrb5mMhL35yszHR5YQLNrskpO9RwqMGfd/7i+IMXlDN+VSTGTVbXQ52sc+LhiYTEhQAwqsYo5jabm2/mws23NvMg9AHFDIsxvtb4rHeQKPS4WblxYcgF2m1th/drb5puaMrOHjtpX7Z9gfbrafzfvDL4h+Ee82jr1ifDZzir90NezjMS6ZPrglHdunVZuXIlDx8+pGzZsty8eZNz587x22+/AfDs2TMCAwNp3vztAnjm5ubUqlWLixcvpisYJSYmkpiYKP6Oiso7R7vc9h+Rotvekpe+OdkxgWqT1VpbMlvo9kOQJVTFMWENDx7aMP6hD1A0xk1G1+NJ2BNG/TtKzHpd0aYiKzuspG6JuvnWtyRlErNOpy4QO63+NEz1TfPt2BJ5i62xLScHnKTnnz05+PggnbZ34o/2fzC02tAC6U+SMonDTw6DTMWwOo2p4eCYbj1t3w95Nc9IpE+um9KmTZtG7969KV++PLq6ulStWpUJEybQr18/AAIDAwEoXry4xn7FixcXt73P3LlzMTc3F/9KlCiR290Wycyuqw6q1NauK0W3aZKXNvOPyQR6yDeAZUeTUGCtUV4Ux02yMpl55+ZRaXkljj49ir5Cnx+a/MD1EdfzVSgCWHtjLX4RftiZ2DG65uh8PbZE3mOiZ8Ke3nsY6DkQlaBi2L5hfH/6ew3/1vzitN9pYpJisDOxo5p9tXTrSO+HwkuuC0Y7d+5ky5YtbN26levXr7NhwwZ++eUXNmzYkOM2p0+fTmRkpPj34sWLXOxxWjKy66YQwtiWBlp9sedlduSiTF7ZzPM6hD6/eHfcyNJZyBWKzri5/PIyNVbVYNrxaSSkJNDEpQm3R93mm4bf5HvemfjkeGafmQ3ANw2+ydelViTyD12FLms7ruWbBqlBFjNPzWTE/hGkqFLytR/7H+4HoF2ZdulmaZfeD4WbXDelffXVV6LWCMDDwwN/f3/mzp3LgAEDsLNLDacMCgrC3v7tSzAoKAhPT89029TX10df/8OyHmeX9+26m3yX8Nfjn/GJ7AtkvbJxQZl2igJ5YTPP6xD6/KKojZv0/CNik6P55vg3LL26FAGBYobF+LXlr/Sv0j/Hy7l8KH9c+4PX0a8paV6SYdWGFUgfJPIHmUzGD01/wMHUgbEHxrLq+iqCYoPY1m1bvgjEgiCw7+E+ADqU7ZBmu1IlsP78syL1nH9q5LpgFBcXh1yuKSErFApUqtSwRVdXV+zs7Dh+/LgoCEVFRXH58mVGjRqV2935IN6169rbdOGvJz+x6+4uFrVelGU0y8dk2skLcttmntOszYWNojRu0vOPsDASCNX5g5fJqV/Mn1f+nF9b/oqNsU1BdZOYpBjmnpsLwIyGMz54aRmJosHomqOxN7Gnz1992PtgL803Nmdfn30UM8pbQeNeyD2eRTxDX6FPs1KaH9HpPTOZURie80+RXDeldejQgTlz5vDvv//i5+fHP//8w2+//UaXLl2AVGl+woQJ/PDDD+zdu5fbt2/Tv39/HBwc6Ny5c253J9eo6VATD1sPElIS2HJ7S5b1PxbTTlHiYwhtLSrjJiP/iPA4AXnUCFwNunD086Ns7LKxQIUigCVXlhAcG0xpq9L0r9K/QPsikb90qdCFY/2PYWFgwcWXF6m3th5+EX55eky1Ga2JaxNM9EzE8oyemcwo6Of8UyXXNUaLFy/m22+/ZfTo0QQHB+Pg4MCIESOYMWOGWGfKlCnExsYyfPhwIiIiqF+/PocOHcLAoPAOAplMxrBqwxh3aByrrq9iTM0xmZoFPhbTTlGjqIS2KlUC+koPFIIlV56F07CMEQq5rEiMG20ymNuqRtPEJWuTc14TmRDJz+d/BuC7Rt+hq9At4B4VDfIzxUheH6t+yfqcH3ye1ptb8yD0AXVW1+XnRv9gpuuUJ8dTC0bvmtEye2bSo8Ce84gXEBeKUhC48yqKsLgkrIz0qOhohkImA6NiYJF3wU+FBZlQEC77H0hUVBTm5uZERkZiZmaWb8cNiw/D4VcHEpWJXB12lRoONTKtr/5CgPRNO0VFiyGRuxzyDWDm3jsERb1NQfFuiG5hHzcXn4TSZ1XWSfS2Datd4P4RM0/O5Psz3+Nu486tkbfyNKP2x0J+phjJz2O9inpF81VfEv2mFTq81WLm5vFC40Kx/cUWlaDCb7wfzhbOgPbPDBTgcx7xApZUh5TEjOvo6MPYax8kHBXU+zs7SIvIZgMrQyu6uXcDYPX11VnWz8i0Y2kiK/CXm0TBoBZ63hWKQDNEt7CbBIuKH1RIXAgLLi0A4PvG30tCkRbkZwh5foer334uJ+HNZ+jkYRqMQ48PoRJUeNh6iEIRZO9ZKLDnPC40c6EIUrfHhWZe5yNAEoyyydCqqQnDtt7eSmxSbJb1W1ey59zUpmwbVhunEkcI1JvOoBbPCvzlJpH/ZCdE991xs7C3J9uG1ebc1KaFYtwUFT+o+efnE50UTVW7qnSp0KVA+1IUyM8Q8vwOV9c8Xt6lwdj/KK0ZDbR/Fr5tV6HAnnOllsYjbesVZSTBKJs0cmmEm6Ub0UnR7LyzU6t91BFYDcsbk6i4ze3gm3ncS4nCSHYXKP6QhW7zErUfVEa9kZFqnigIPyilSuDik1A2XrrLigvHQZAzu8nsdHPJSGiSnwto5/di3flxvGRlMgcfHQRIsxxJCetEBHlYmkVl1aifmYH1XAvsOfd9FaFVvTuv8m7licJCrjtff+zIZXKGVhvK9OPTWX1jNYOqDtJ63yrFqwBwK+hWXnVPohBTVExQWVFYUyO8769iySyK6UQhT0w/87CEJtqOux47hlDZOQlPO0887TypUrwKpa1KZ8tUqe2xtt7cj6N1kw9eXFjb472OiAFy5hd3/sV5IhMjsTayxsvRSyxPTEmk+59deaMjxybpawRU/wUppFJQz4xKUOEb7Mspv1Oc9j9N1P1QjmqxX1hcUp73raCRBKMcMKDKAP534n9ceHGBu2/u4m7jrtV+VexSBaPbwbdRqpSSz8MnRlExQWmD2g/qfcdZuwJaz03tr/K+kl+VYsboLdcLhW9WYUfbcReS8JSDj29z8PFBscxI14jKxStTpXgVUWDysPXAWM/4g461yudXltweSJXiVWhftj3ty7bHy9Er2xpAbY/3y+VvaV5xcY4WNX4327V6bhcEgdEHRnP51WVQQLj+z7jpTCM89u1Iza9nRiWouBV0i9N+pznlf4oz/mcIi3+rIaulLKuVDcnKKH+z1hcEkmCUA+xN7Wlftj17HuxhzfU1/NrqV632K2NVBgMdA+KS43gS/oSyxcrmcU8lChNFIRQ/O2ibGiGvw7G1CYWete8uLdztCo05sjCizfgsbqbPln4ruBV8k5tBN/EJ9OFW0C3ikuO49PISl15eeqe+jDLFyohaJbXAZG9in+WxAEwMkqhewpxLr+TcDEo93pyzc7AxsqFd2Xa0L9OeFm4tMNPPOrIpq+MJqFDKQrkUvIWG629ysN9BHEwdtLlsIups1++a0VZ4r2DtjbXi71U9xtDdvU2+pEJQqpTcCrrFKb9TnPI/xVn/s4QnhGvUMdY1pn7J+jR2aUwbIwfY+0WW7VZ0LJyRZLmJFK6fQ/Y/3E+HbR2wNrLm5cSXWmfTrbmqJt6vvdnZfSc9KvbI415KFDYKeyh+bpMf4dhFKX1AYScn41OpUvI47DE+gT74BPqIAlNATPpRXjZGNlSxq4K1rDkXfSvyvjP0+8cKiQvh0OND7Hu4j0OPDxGV+NbHRVeuS2OXxqI2qZRlqWyfGwgIwBu9H0nWvUqKKgVnc2cOfXaI8tblM2zvXR6GPqTcknLoynUJmRKCmb4ZZ/3P0mRDE5SCEoAFrRYwofYErdrLCUqVEp9AH9E0dsb/DJGJkRp1TPRMaFCyAY1dGtPIuRHV7Ku9ze312gdWNsr6QMNPg4NnjvtZGN7fWSEJRjkkRZWC8+/OvI5+zY7uO+hZsadW+w3dO5Q1N9bwTYNv+KHpD3ncS4nCSH7mbilIMjJv5bYQuMfnFeO3+2RZb2FvTzp5On7w8T52cmt8BscGczMwVUjyCfLhZuBN7ofcFwUFAENlHayShmvkFTI1TGFQQ1OG1KmexqSVrEzm3PNz7Hu4j30P9/E47LHGdncbd9qXSRWS6pSog45c0yiS0bm1rRbH7zcHEhYfhlwmRyWosDK0Yl+ffdQtUTfLc11wcQGTjkyieanmHP38KC8iX1B5RWUiEiIAmFx7Mr+0+kXra6cNKaoUbgTc4LT/aU75neLs87MaQiOAmb4ZDUo2oJFzIxq7NKaqfdU010REymMkIglGH8C3J77lh7M/0KJUC458fkSrfRZfXsy4Q+NoX7Y9+/rsy+MeShRW8jOzcEGgVAnUn3ciw0ggtdnw3NSmH3zeksbow0hvLAJ5Mj7jk+O58+ZOqmYp8GaqwBRwi6QEZxSCJUpZOInyOyD7b21NC9c0priS5iXFVQcehj5k/8P97Hu4j7P+ZzWELitDK9qUbkP7su1pXbo1FgYWGZ6vQi7jReQLev/VmwsvLoht6Cv02dljJx3Ldcz0vJpuaMpJv5P83up3hlcfTvWV1bkXcg+AXhV7sbXb1g+OjExRpXA94LqoETrrf5bopGiNOub65jRwbkBj58Y0dmmMp51n9nxZ8yHzdWF5f2eGJBh9AM/Cn1FqUarq9um4p7hauma5zxn/MzRa34iS5iXxn+Cf112UkCgQ8lNYUQthWflu5YYQ9rFRGLSXKkGFX4RfGlPc88jn6da3MLDQEJSqFK+Cu4078SnxHH58mH0P93Hw8UENx2KFTEED5wa0L9OeDuU6ZOjfmaxMZsbJGfx0/iexTIaMFe1XMLz68HT3iUiIwGa+DSmqFB6NfcSUY1P45/4/ANQrUY8TA06gp8i+w3KyMplrAddEQejc83PEJMWkuRYNnRvS2LkxjVwaUaV4lUIf1FNY3t+ZIQlGH0iLTS049vQY3zb8lu+bfJ9l/YiECCznWQIQNiUMS0PLvO6ihES+k9/mrU/Ndys3yC9TZ04Jiw/jVtAtUWDyCfTh7pu7JKuS09TVkevgbuMuCkweth4kKZM443+G/Y/2c/fNXY36ZazKiH5JDUo2SLOG3qHHh/j8n88JiQsRy2Y0nMF3jb9Ls0bmzjs76bWrFxWsK9DHow8zTqauC+pm6cb1Ede1cg4HSFIm4f3aW4waO//8PLHJmkmELQ0saeTSSDSNedh6FHpB6H0K0/s7IyTB6APZ4buD3n/1xtHUEf8J/loNUpffXfCP9OfUgFM0ctHC2U1CoohREOatwqD9KCrkp6kzN0lSJnHvzT0NzZJPoE+aaCs1TmZOeNp54mzmTFxKHA9DH3Ll1RUN4cpM34zWpVvTvkx72pZpSzGj1PH4KuoVff/qy5nnZ8S6A6oMYHXH1Rp+Op//8zmbb22ma/mu/H3/byDVjHdn9B3sTOwyPZerr66KGqHzL84TlxynUaeYYbFUjdB/ztIexT2KfLLSwvT+zghJMPpAElMScfzNkdD4UPb32U+7su2y3KfT9k7sfbCXha0XMq7WuFzv08fuvyJR+Cko85Y09rVDW8G1Vc37lLZTYaxnjImeCca6xhjrGYv/vl/2vuYlPxAEgZdRL9OY4p6EP0m3vrGuMU5mTsiQ8Sr6lYafjlwmp45THdqXbU+Hsqkmt+9Pf8+cs3P+i12DHo512NDyVwx1DFEKKppvak5kQiQKmQKloCRaocv+UTcpZ11O47iJKYlceXVFFIQuvLhAfEq8Rh1rI2tRG9TIuREVbSsWeUHofQrT+zsjJMEoF5h0eBILLi2gc/nO/NPrnyzrq522B3sOZk2nNbnaF+mrWaKwkFl4tAxpIeWCRFtT5xvdn4nTOZNlPTV6Cj0NQclEz0RDkBLLMqmTngBmrGucbZNRVGIUt4NuvzXFBfngG+xLQkr6WjJ9hT6JSs2ILBcLF9qXaY+jmSM/nfsJs4QoHmCCYYYL4oBSoYviixskmNhw+eVlMWrs4suLaY5tY2QjCkGNXRpTwabCRycIvU9he3+nhyQY5QJ3gu9QaXklFDIFLye9zFR9CrDr7i56/NmD6vbV8R7unWv9KOw+AxKfHukJ6gqdKJb2biyNxQJEW42RV6WLGBg/JzY5ltikWGKTY4lJihH/PzYp9fe70WB5hYGOQYbCkzbaLBM9E/R19AmJC8Evwo/HoY+5F3qP20G3eRP3Jsvj68n18JLrczY5aw3kcIfybAy+mUbQKm5cnEYujURn6QrWFdL4LH3sFLb3d3pIma9zgYq2FanjVIeLLy+ywWcDU+tPzbS+es0032BfUlQpGeeVyAZZrVYtQ8r++zFS2E1H72bHfhAcwJhDnxEnu42jjQ8gCUYFhbZZ2Lf1nZ3leBIEgSRlUqbCU0YCVWxy1nXUJqyElAQSUhIIjQ/N9ethqGOInkJPzGGUqExMo91JUiURq0wBTLJsz/u1N4kyFXYmdhoaoXLFyn1yglBRRBKMcomh1YZy8eVFVt9YzZR6UzId/G5WbhjrGhObHMuj0EdUsKnwwcfPzurRUi6Xj4OiYjZVyGXUcStGHbdi/PuyDLvu3mTp1aWsaL+ioLv2yaJeCHjkf6bO9xHQflFTmUyGvo4++jr6WBnm7nI2giCQkJKQpfAUkxRDREIEEQkRRCZGEpkQSXRStCh8xSXHEZccR0JKAokpiSQpkzQcsONT4tP4+3wI3zT4Bg/PzyhjVUYShIogkmCUS/Ss2JPxh8bzOOwxp/1P09ilcYZ15TI5HsU9uPTyEjeDbuaKYPSxrNwuoR0ZmU0DIxMYtbnwLpo6puYYdt3dxaZbm/ip+U9i0j2Jjx9BEEhUJuaJVikuOU7ULBUGulXoCtJamEUWSTDKJUz0TOhbqS8rr69k9fXVmQpGkGpOu/TyEjcDb9K7Uu8PPv7HtHK7ROYUZbNpI+dGVLSpyJ03d9jgs4HxtccXdJc+SdRjKCNkwIy9tylhG0FCStwHCy/qMpWgyr+TzCaGOoZYGlpiaWCJjbENtka22JnY4WDqgKOZIyXMSuAcFwE7+2fZ1oTDE/m21y4x9F+iaCEJRu/wof4aQ6sNZeX1ley6u4vFbRZnmrxR7Wd0M+jmB/cbPr6V2yUypiibTWUyGWNqjmH0gdEs817GF7W++OijcAoj2oyh4Khkqi/pRaLidq4fX1+hj5GuEYY6hujr6KMj1xF9LQVBQCkoSVYmk6hMJD45ntjk2HQTO2aGQqZIFXCMbbE1tqW4cXHNf03e/rYxtsFAR4uPxtc+Wh37jP8ZbH+xZZDnIBa0WoCpvmm2+i5RsEiC0X/khr9GDYcaVC5emVtBt9hyewtjvcZmWLdy8cpA7glG7/oMCKiQ8fZloxbttPUZkCjcFHWz6edVPmfa8Wk8DH3IsafHaOnWsqC79Mmh7dgw03VCzzgs49B6Xc3funJdVIKKZFUyCckJxKfEa/gAhSeEExIXwpu4N4TEhWSYmDEjjHSNNAUbo7cCzvtCj5WhVYEK3SpBxZoba9h0axOT60zm24bfYqhrWGD9kdAeSTAi9/w1ZDIZQ6sOZdyhcay6vooxNcdk6HinFoxeR78mJC4EayPrDz0NWleyp57HHU7fttVYrdquEDrkSuScom42NdEzYUCVASy+spilV5dKglEBoO3Y2NN3I+Uc5ATHBhMcG0xQTFDqv7Gp/76Oea1R/v6iplkhQ0Yxo2JZanXUZcZ6xjk53dzDqFjqCvOZrECfJJMR8k4WnCRlEnPPzWXx5cXMajKLL7y+KJBEmBLa88nnMcrt1Phh8WE4/OpAojKRK0OvUNOxZoZ13Ra58TT8Kcf7H6epa9OcnoIGtVbX4spLb2bV3UwV24aFMoRb4sPIKqu0gAq5Ioq/x1aiqn2VfO+fNtwPuU+FpanJ7J6Me4KLhUtBd+mTIilFRflvD6LKcPYXEFARYNibZLIXraWn0Esr2Bhpmq7U26yNrHMlXUm+8t8K9BliVIzVTw8zcv/IdPM7FTOwZozn73jaNsTOzOiTm5+lPEZFgNz217AytKK7e3e23N7C6uurMxWMqhSvwtPwp9wMvJkrglFUYhTXXl8DmYpBtepTwvzDF+eUKHyozaajNl9HRtqs0iAjSLGUWqu9md1kNl/W/bLQLTRZ3ro8zUs159jTY6zwXsFPzX/KeieJXOOaf3gmQhGk6nIUyJWlQXEbc33ztIKN8TvanHe2membfdwh6hYlUv8yYWi1oTRzbUa9tfUIiAkAUqOR9VNqYRA+nA0nLdjALSD1w/s7SaNfqPjkvR7zwl9jaLWhAGz13UpMUkyG9XLbAfvc83MoBSVulm6UMM/8wZUo2rSuZM/yz6phZ65pErE3N+Tn7qVp4W5DsiqZacen0XhDY56FPyuYjmbCmJpjAFh9fXWGyzRI5A3azmfL22wh4ZsEIqZF8GDsA84OOsuunrtY1m4ZMxvPZFTNUXRz70b9kvUpW6ws5gbmH7dQlA1cLV15OfElXct3BUA/pRY2SV+jQNNtIjAynpGbr3PwdkBBdFMiHT55wehD/TWUKoGLT0LZ4/OKi09CUaoEGjk3orRVaWKSYvjzzp8ZtlnFLncFo5PPTgJkmSpA4uOgdSV7zk1tyrZhtVnY25Ntw2pzbmpTetUoz+5eu1nTcQ0meiace36Oyisqs+b6GgqT5bx92faUMCtBaHwoO+/sLOjuaJDec/0xoe28V97WAX0d/TzuzceLXC7nr15/sa7jBqySRwCpujhNZAioGLPjJGf9zuV/JyXS8MkLRuow98y+cewzCHM/5BtA/Xkn6LPqEuO3+9Bn1SXqzzvB4TuBDKk6BIDVN1Zn2K7aAfvum7skK7MXipoep/xPAdDEpckHtyVRNFBnle7k6Ugdt2Kir4JMJmNw1cHcGnmLBiUbEJMUw9B9Q+m0vRNBMUEF3OtUdOQ6jKoxCoAlV5YUcG/ektFzfcj34/miz2rek5HxvCeRfcqZtUNHsE5HKEpFhhxVijkt1o6m1eZW3Ai4kc89lHiXT14wUvtrAGmGrIAKAYGxzdImylNHsr3vn6SOZHPW74hCpuDCiwvcCb6T7rFdLFww1TMlSZnE/ZD7H3QekQmRXA9ITe8vaYwk1LhaunJywEnmNZ+HnkKPfQ/34bHcg933dxd014BUs7OeQo+rr69y9dXVgu5Ols/1xyIcZTbvSek9ch9tTZcKwZIjT45QbWU1uu/s/sHvBYmc8ckLRpCxv4ZcEcUbvR9Z7jtCQ6OTVeZhgEXHAmhftiMAa26sSfe4cpk81/IZnX1+FpWgooxVGRzNJKdribco5Aqm1JvC1WFX8bD14E3cG7rs6MKgPYOISowq0L7ZGNvQs2JPAJZeXVqgfdHmuZ617+5HY1bLaN6zMzcotEvKFFW0NV3amL41W/517y/cl7ozcPdA/CL88qhnEukhCUb/kZ6/xqGJXuga3eH8i/NMOzZNrKttJFsj+1Rz2sabG0nMIO+F2gH7VtCtHPVb7Qux8dJd9JUeNHJunKN2JD5+KhevzNVhV5lSdwoyZKz3WU/l5ZU57Xe6QPs1tmZqItTtvtsJiQspsH5kJ0L1YyEjPzVJKMpdsjJdCqjQ0Y3mzPC1LGy9EHN98//KBTbc3ECZRWUYe2AsAdEfh8aysCMJRu/wvr9GOesybOi8AYDfLv3G3/f+BrRXi7qYVcbR1JHQ+FD2PNiTbp0PccB+1xfiyt2K2CXN5YpPh49G3S+R++jr6DOvxTxODzyNi4UL/pH+NNnQhK+OfJWh8J7XeDl6Ud2+OonKRNZcT1+7mh8U9YziOSUjPzWJ3CMz06U6xcZr2SLqrK2Fp50nz8Y/Y3KdyejKUxNBpggpLL26lFILSzH16FRCM8ujJPHBSIJRFnQu35kv63wJwKA9g3gU+khrtaidmRGDPAcBqSHJ6SGG7AdmTzDKyBciMk7+UflCSOQNDZwbcGvkLYZUHYKAwC8Xf6HmqprZHoe5gXr9NIDl3stRqtImxcsPinpGcYnCTWYpNr5ub4Nz8XBeR7+myYYmLLu6jJ9b/Mz9sffp4d5DrJugTODnCz/jutCV709/X+Cm8I+VTz7ztTYkK5NpurFpathz8cqcG3SBlr9dynLB1nNTm/I80o9Si0oB8HTcU1wtXTXqxibFYjrXFAGBwMmBFDcpnmV/cjtbt8Snzd4Hexm6dyhv4t6gK9ctkKSQ8cnxOC1wIiw+jD2999CxXMd8O7aat89VPOl910vPlURukNFi5TFJMYw5MIaNNzcC0KJUCzZ12URxk+JceHGByYcnc+nVJY22rAys+LrB14yuObrIrMNWFDJfSxojLdBV6LKj+w5sjW25FXSL8Ye+yCKS7W1Eh6ulKy1KtQBg7Y21ado21jOmtFVpQHtz2qfoCyGRd3Qs1xHf0b50KtdJIynk0/Cn+dYHQ11DMcVFQTlhK+QyBjYwQSD1OX4XKVJLIrfIyHRpomfChs4bWN9pPUa6Rhx9ehTPPzw58ewEdUvU5cKQC2zvtl1j+ZywhDC+PPolpReXZoX3CpKUSQV0Vh8XkmCkJQ6mDmzvth25TM46n3W8Tj6YrlpUSSh6xTbQ3P3tIq7qTNjrfNaRokpJ07boZ6SlGeNT9YWQyDtsjW35p9c/rO24FlM9U849P0eVFVVYfX11viWFHFVjFDJkHHlyhIehD/PlmO+SrEzmjzujeKP3I3q6cRrbpEgtifxigOcArg67SkWbigTGBNJ8Y3O+O/UdKkFFr0q9uDfmHj83/xkz/bfaltfRrxn17yjKLynPppubCswc/bEgCUbZoIlrE2Y3mQ3AmANjsLMO0ojoWDWgEgmWX/Eo7k9WXVsl7tepXCeKGRbjVfQrDj8+nKbd7C4NIvlCSOQFMpmMQVUHcWvULRo6NyQmKYZh+4blW1JIV0tX2pVtB8Cyq8vy/HjvM/fcXG4E3sDQ5AGnvmqYJlKrhbvdR50NW6Lw4G7jzpVhVxhadSgCArNOz6L5puYERAdgoGPAV/W+4sGYR/Qq8y0mysboKz1AkPMs4hn9d/en8orK/H3v7zQfNR97RvfcQvIxyiYqQUXHbR3599G/uFm64T3cGwsDC3H70itLGXtwLDZGNjwe91iU6icdnsSCSwvoXL4z//T6R6PNfQ/20XF7RzxsPbg1Kuuw/axWV5d8ISQ+FKVKyYJLC/jmxDckKZOwNrJmZfuVdKnQJU+Pe+jxIdpsaYO5vjkvJ73ERM8kT4+nxifQh5qrapKiSmFr16308eij2S/fAGbtu6thwrY3N2CmtPinRB6z9fZWRuwfQUxSDDZGNmzuuhlVvEea8ZjCG8L0VhKvuCiWVbevzpymc2jp1pLDdwILxRiWfIw+QuQyORu7bMTZ3Jkn4U8YtGeQhlQ+vPpwyhUrx5u4N8w9O1csV5vT9j3YlyYXhdqUdi/knlYh0++Gfkq+EBJ5gUKu4Mu6X+I9zJsqxasQEhdC151d8zwpZEu3lpS2Kk1kYiRbbm3Js+O8S5IyiYG7B5KiSqFrha70rtRbY/unkg1bonDS16Mv14Zfo0rxKqnJWTfMYuTma2nGow422CZ9jaGyDpC6Jtu1gGu03tKamouHMVIaw1ojCUY5wMrQil09d6Gn0GP3/d38evFXcZuuQpf5LeYDsODSAvwj/IFU1WjdEnVRCko23Nyg0V4JsxJYGFiQokrhXsg9rfrQupI9P/csixLNfBaSL4REbuJR3IPLQy8ztd7UfEkKKZfJGV1jNJDqhJ0fCu05Z+ZwM+gmxQyLsaztMo3V4T+1bNgShZOyxcpyaeglRlYfhWXSsHTHI6QKQ6V1puFo4oTwXy2ZoCDwdX3x97tIYzh9JMEoh9RwqMHvrX4HYNqxaZz1Pytua1+2PU1cmpCoTOTrE1+L5UOrpmqN3ndolclkOcpnlKx7lVcGQwjUm873nV2lrLUSeYK+jj4/Nf+JM4PO4GrhKiaF/PLIlySk5L6D/0DPgRjqGHI7+DbnnuftauPXA64z5+wcAJa1W5YmXYYUASpRWDDQMaB/hdnoYJPhYrQCEBWnYHOHS3zf+HuMdY3RU7lnuY80hjWRBKMPYGSNkfTz6IdSUNJrVy/RQVUmk/Fry1+RIWPr7a1ceXUFgB4Ve2CqZ8qT8Cec9tf84s7Jmmk7fHeATIWh8Qv613aXstZK5Cn1S9bn5sibokPorxd/peaqmvgE+uTqcSwNLfms8mcALLm6JFfbfpfElEQG7B6AUlDSw72HuGbbu0gRoBKFCW3HWWQcfNvoWx598Yjmzl1zte1PAUkw+gBkMhkr2q/A3cadgJgA+vzVRwyTrGpflf5V+gMw+chkBEHARM+EPpVSnTrfz4Sd3cg0gMuvLgNQw77GB5+LhIQ2mOqbsqrjKvb23outsS2+wb54rfJi7tm5uRoirM6E/fe9v/NsfajZZ2bjG+yLjZENS9umnztJigCVKExkdzzam9rzTeMvcrXtTwFJMPpATPRM2NVjF8a6xpz0O8mMkzPEbXOazsFQx5Bzz8+J66ypnbB33d1FeHy4WPfdXEba+FVEJ0YTFJuqoepaQbsvAgmJ3KJDuQ74jvKlS/kuJP+fvbOOjuLs4vCzu3F3AQKBAMEJ7u7uFCgUWgptKaXloy1aahQKhZZCi7u7S3AneIAQPAIB4u6yO98f2yyE2CbZJJtknnM4J+zOvPO+uzszd678riKVGWdn0HZDW3wifDQyfn2H+rRyakWaIo1Vt1dpZMx3ufn6Jr9f/h2A5b2WY2tsm+V2Un1fBGlEpiKHdCQoK3uaVrbS+By1hqgAeHM3+39RAcU4ubJFbs1os/o95rYPCJn2Ketl/aJhpAFq2tZkTV+lB2ju5bkcfXoUgPJm5fmu5XcATD09lRR5Co3LNaa+fX2S5clsub9FNUZt29pIJVLCE8MJjMv9Cfn48+OqvwfVGqTJ5YiIqIWtsS17h+5lQ78NmOqZcjXgKvVX1Gf17dUaSZqe2HQiACtvryRVnlrg8dJJSktizMExyAU5w+oMy/b8OfzkMB03tSdUZ3mW+RllogI0KgD+aQSr2mX/759GonFUROTUjDa732NO+6R3akgz2Y5n0G0gY3Pyr3fcZfjqa7Sef7ZMVa6JhpGGGFZnGBObKC/ko/aPwj/KH4DvWn2Hg4kDPpE+/HvjXyQSicprtPrO2xuIoa4hrtaugHoJ2Dse7ADAQt8CO2M7TS9HREQtJBIJo91Gc/+L+7Sr1I741HjGHxlP3x19CYoLKtDYA2sOxN7YnsC4QPY/3p/7Dmry0/mfeBj6EHtje/7pkXUO0783/qX/zv4kpCbQtroZf35QC8f3VO7LRAVoQjjkJiGSlqzcTqRIyK4ZbU6/x+z2MdZPJdpgIbci1tJkdRN6rJ0ulvUjCjxqlOS0ZNpuaMuN1zdoXK4xlz++jL6OPmvvrOXTw59iaWDJ80nPkSDBcZEjyfJkbnx6gyblmwAwfO9wdjzYwbxO85jWelqOxyq3qByBcYF0dO7ImdFnimJ5IiI5ohAU/OXxFzPOziBFnoK1oTWr+qwqUKj3x3M/8svFX2hTsQ0XP75Y4Dlef3WdlutaohAUHPjgAP1q9MvwvkJQ8N3J7/jz2p+AspJ0Wa9l6Mp0s23+Wap5c1fpFcqN8RegnFthz0bkHfLze8xqn9exAcw8O5Mt97ZRPmktMmyy9ZBqQjhYW+/f7yJ6jDSIvo4+uwbvwsrQiltvbjH5xGRAWX5cz74ekUmR/HrhVywNLRlcazCQMQm7np16lWkJqQmqp3Exv0hEW5BKpExpOUUlRheeGM6gXYMYfWA00UnR+RpzfKPxyCQyLr28hFewV4Hml5iayJiDY1AICkbWG5nJKEpMTWTo7qEqo2hux7ms6rMKXZkukH3zTxGR4iA/v8es9qloXpHNAzazvuclsaz/P0TDSMNUsqjE1oFbkSBh+a3lbL2/FZlUxsIuCwGlaN3ziOeqcNq2B9uIS4kD1G8me+L5CZVYV1YlxiIixUkduzrcGHeD6a2nK5Xi722i3op6nPc/n+exypuVV7Uh+fdm1pVj6jL73Gwehz3G0cSRv7v/neG90PhQOm7qyN5He9GT6bF14Famt5meQexRRKQ0Y6lXSa3tykJZv2gYFQLdq3ZnVttZAIw/Mh7vEG+6uHShR9UepCpSmXp6Ku0qtaOqVVXiUuLY5b0LeFuy/yT8CYmpidmOv/3BdgDM9c2zraYRESlO9GR6zO00l4tjLlLFsgovo1/SYWMHppyYkmdRyPTcvc33NxOVFJWv+VwNuKpSqF/VZxVWhm8rcJ6GP6X52uZce3UNSwNLTo06xYi6I/J1HBGRkoooTfEW0TAqJH5s9yOdq3QmITWBQbsGEZscyx9d/kAqkbLv0T4uvbyUQQkboJxpOawNrVEICh6GPsx27KsBVwFo6Niw8BciIlIAWlVsxb3P7zGu4TgA/rz2J41XNcYz0FPtMdpWaktt29okpCaw8e7G3Hd4j4TUBMYcGIOAwOj6o+ldvbfqvcsvL9NibQt8I32pbFGZq2Ov0rZS2zwfQ0SkpJMfKYDSimgYFRIyqYxtA7dR3rQ8T8KfMP7IeGrZ1lLdIKacnMKo+qOQSWR4vPLAO8Rb2RrEIWehx+S0ZN7EvgFgQI3C7XQuIqIJTPRMWNVnFYeHH8be2B7vUG+arWnG3EtzSVOk5bq/RCJRCT4uu7UMhZC1plB2zDo7i2cRzyhnWo7F3RerXt/5YCedNnUiIjGCpuWbcu3Ta9SwqZGnsUVESgv5kQIorYiGUSFia2zLzsE70ZHqsOPBDpbdXMbP7X/GVM+UW29ucc7vHH1c+wCw1nMtQK490075nlLlF6WraIuIlAR6V++N1xdeDKw5kFRFKjPPzqTt+rY8j3ie676j6o/CTN+Mp+FPOe17Wu1jXnpxicXXFgOwps8aLAwsEASB+ZfnM2zvMFLkKfSv0Z9zo8+JshdZYWQNOvo5b6Ojr9xOpMSTHymA0ohYrl8E/OXxF/87+T90pbpc+vgSZ/3OMuPsDJzMnFjcfTGDdg3C2tCa1/97zY4HOxhzcAztKrXj/JjzmcYavmc4O7x3YK5vTtS0qCJfi4hIQREEgc33N/PV8a+ISY7BWNeYRV0XMb7R+ByTnScdn8TSG0vp69qXg8MO5nqc+JR46q+oj0+kD5+4fcLafmtJU6Qx8dhEVt5eCcA3zb5hYdeFyKQyja2v1BEVkLNOkZE1WDgV3XxECp3ClKYoCfdv0WNUBHzT/BsG1RxEqiKVIbuHMKreKCqaVyQgJoBHoY8ob1qe8MRwDjw+kKGZbFY265WAKwC4ObgV5RJERDSGRCLho/ofcf/z+7R3bk98ajyfH/2c3tt759gXbUKTCQAceXpEJaCaE9PPTMcn0ocKZhX4s9ufxCbH0nd7X1beXokECX93/5u/uv8lGkW5YeGk1CjK7p9oFJU6yro0hWgYFQESiYR1/dZRzaoaATEBjDsyjjkd5gAw/8p8Pqj9AQBrPNdQy7YWOlIdopKiCIjJKLOfpkjjdexrAPq5ZtRgEREpaVSyqMSZj87wZ9c/0Zfpc+zZMeour8veh3uz3L6GTQ06V+mMQlCw4taKHMe+4H+BpTeWArC271riU+Npu6Etx58fx1DHkH0f7GNSs0kaX5OIiEjJRzSMiggzfTP2DN2DoY4h7s/d8Yvyo3G5xsSmxBIUF4QECad9T/Mm9o0qAfT9PKPTvqdViaej6o8q8jWIiGgaqUTK5BaTuT3+Nm4OboQnhjN492A+2v9RlqKQ6UnYa+6sybbsPy4ljo8PfgzA+IbjcTRxpNmaZtwNuoudsR3nx5ynf43+hbYmERGRko1oGBUh9ezrsbzXckDZr2lEHaVWyg7vHTSv0ByAdZ7rVAnY94PvZ9g/vemsmb4ZNkY2RTVtEZFCp7Zdba5/ep0ZrWcglUjZfH8zdZfX5azf2Qzb9a7eGyczJ8ITw1X6X+8z9dRU/KL8qGReiZ7VetJqXStexbzC1dqVa2Ov0bR806JYUomhrHdSFxF5n0IxjF6/fs3IkSOxtrbG0NCQunXrcuvWLdX7giAwe/ZsHB0dMTQ0pHPnzjx79qwwpqJ1jHYbzacNPkVAYO7luXR36Y5CUKgEHdffXU9du7pA5pL9yy8vA+Bm71akcxYRKQr0ZHr81uk3Ln18CRdLFwJiAui0qROT3Serzg8dqQ5fNP4CgH9uZG4Ae8b3DMtuLQNgcK3BDN49mNiUWNpVasfVsVepbFm56BZUAhA7qYuIZEbjhlFkZCStWrVCV1eX48eP8/DhQxYtWoSlpaVqmwULFrBkyRJWrFjB9evXMTY2plu3biQllX6pcYAlPZbg5uBGWEIYIfEh6Eh0uBt8F3N9c17HviZZruxm/a5hpBAUqpyjvq59i2XeIiJFQUunltz9/C6fNfoMgMXXF9N4dWPuBN4B4NOGn6In0+Pmm5vceH1DtV9scixjD40FoJFjIxZ5LCJNkcaIuiM4MfJEBrVrEaVR9IXYSV1EJBMaN4zmz5+Pk5MT69evp2nTplSuXJmuXbvi4uICKL1FixcvZtasWfTr14969eqxadMm3rx5w4EDBzQ9Ha3EUNeQPUP2YK5vzp2gO9S1V3qIdKXKZpXpytbPwp8RnxIPwBm/M6r8otFuozU+p7LmTi9L6y2JazXRM2FF7xUcHXEUBxMHHoY+pNmaZvx28TcsU+L5vnI3GghSjlz4TdkB/s1dlhwYi1VUAK46xtwOvA3ArDaz2DJgC/q5afGUIeQKgSvPwpi214usfgnpr/18+GGJ+K2IiGgajesY1apVi27duvHq1SsuXLhA+fLlmTBhAuPGKRWffX19cXFxwdPTEzc3N9V+7dq1w83Njb///jvTmMnJySQnJ6v+HxMTg5OTk1brIKjDwccH6b+zPwDGusbEpyqNIJlEhqWhJWEJYVwbe41mFZox5sAYNt7biJm+GdHT8tepPDvcHwTy8+GHGZ4cHc0N+LFPrVIp6FWW1lsa1hqWEMbnRz5n76O9OAkSnmGGfpa3dCWJCNSSJDKrzwrGNhxbhDPVfrL6PeTE9nHNaeEiijeKaI4yqWPk6+vL8uXLqVatGidOnOCLL75g0qRJbNyo7HEUFBQEgL29fYb97O3tVe+9z7x58zA3N1f9c3IqHboZ/Wr047uW3wGoWiPoSnWRC3IsDCyAt+G0iy8uAlDPrp5G51DW3Ollab2lZa02RjbsHrKbTf034axnmqNRBGCIhG09lopG0Xtk93vIibLQSV1E5H10ND2gQqGgcePGzJ07F4AGDRrw4MEDVqxYwejR+QsBTZ8+nf/973+q/6d7jEoDczvN5dqra1x6eQk9mR4p8hQAQuNDAWVlmiAIvIx+CaBqIaIJ5AqBnw8/zNadLkHpTu9Sy6FUCHyVpfWqs9afDnnTsqppiVnrwJoDaa1rCrtyv460+K/KU0RJTr+HnCgLndRFRN5H44aRo6MjtWrVyvBazZo12btXKdrm4OAAQHBwMI6Ob135wcHBGUJr76Kvr4++funMEdCR6rBz8E4arGxAcHyw6vXoZGW47F7wPS74X0AuyAH42O1jjR37hl9Ejk+PAhAYncQNv4gS5U5PlacSnhhOWEIYYQlhhMaHEpYQhldAEoHR1bPdr6SuNyvU+W6DYpKxm9uSZJlX0U2sgDQQpNzBpLinobVk18oht9/D+wgoMDVIKxOd1EVE3kfjhlGrVq148uRJhteePn1KpUqVAKhcuTIODg6cOXNGZQjFxMRw/fp1vvjiC01Pp0TgaOrI9kHb6by5c6bO4feD77Pp3iYATPVMsTW2LfDx/KP8Oe9/np23fIDcn6yL052uEBREJka+NXISQlV/Z/cv3ah8H6O0ttjyfa7HLA3hA3XXIBMsc99IpESQUz5Zcpoihz3fR+lT9FX8wfJbr5nYdKLG5yoios1o3DCaPHkyLVu2ZO7cuQwdOpQbN26watUqVq1aBSjbY3zzzTfMmTOHatWqUblyZX744QfKlStH//79NT2dEkOHyh2Y02EOM87OyPB6THIMZ/zOAKj0jfKCIAj4Rflx3v88F15c4Lz/eVVYTl9eFwc1DCNNudMFQSA2JTaTJyfDv8SM/49IjMhkLKqDVCLF2tAaGyMb1T9pqiu3HuS+b2kIH6i7hiMjt9K0svYbRynyFLY/2M7hC3MgLr64p6N1pOcPvR8qS88n+6Zz9p7S93E0N6S68z02PfXgq+MeGOka8UmDTzQ7YRERLUbjhlGTJk3Yv38/06dP55dffqFy5cosXryYDz/8ULXN999/T3x8POPHjycqKorWrVvj7u6OgUHJvyEVhKmtp3L11VXuPTmKDW/zPqQxb7AWpIx1aKwsTc6hm7UgCPhE+nDB/wLnX5zngv+FTD3XdKQ6NCnXhDYV23HyGkTFk2XugQRwMDfI1p2emJqothcn/V+qIjVfn42FgUUGI8fGyAYbw7d/2xrbZnjPwsACqSRjbYFcIdB6/lmCopPytd6SRNPKVjiaG+S61rbVymtFjlF2IaDA2ECWXF/CPzf/IS4ljgaCFMRQWgbUySfbcfMlDmb6BMckZ7OdAh1ZCitGNqGjqxNSSUdsTr7mz2t/8umhTzHUMWR43eGFu5BiIqvfHpBrd/nC7EAvUrxovFy/KCgJ5X75JSrYC4PlrcnRRNTRh4m3wcIJQRB4HvGc8/7nVYZQeqPZdHSlujQp34T2ldrT3rk9LZxaYKKnvLmkP2nC+8aR8n+dGvhhYvY8kycnLCGMhNSEfK3RWNc4s5GTxT9bI6WxY2Voha5MN1/Hep/s1pt+OVs+smGJKWPPjZKy1qxCQFbGEiztznA+eHEGj2EbXTMupqgx6PgLys7vZQAPn3CGr76W63aTO1dj8Wllh4H3z3UBCNWbSwXbMHYN2YWbgxuCIDDh6ARW3F6BTCJj95DdDKg5oDCWUGxk9duzMFJea6IS3j7EvS9xURpkMIqLknD/Fg0jbePNXVjVLtfN9raZxN4oH877nycwLmPZta5Ul0aOjXBzdMPV2hUHEwfiUuKyz8mJckY/YSQ6vM1fSiOUCL1VJMo8cpyHrlQ3k7fmXU9OBkPH2BZrQ2sMdQ3z9dFoirJ0UdP2tWYXAhJQABJC9eaSKPPA3tier5t9ze6rf3ElMQlDcngyf+fBoSxw8O5rvt5xN9ft/vqgHoa6Oln+Hj5oLmXR3Y94FfMKfZk+f3X7i88bf46AwMcHP2bTvU3oSnU5NPwQ3at2L8TVFB3Z/fay4t2HCSDL/bTtgUNbKQn3b9EwKiaydcOqaRg1JA5PifJJWiqRYqJngq5Ul1RFKrHJsf89A+YBQYqhUAdz3YqYGQrYWcZia2ydq1fHVM8UiaTkuY/LkhtcW9eaHtrMrlpKQAHSKH4ZAq0qtaDDxg68inmFkyDBTiJjXb911LOry4Krf7DjwQ4+rPshU1r8L8dQc2lEXY+RzOYfvm/fn5H1PuJ+QEKm30N4QjhjDo7hyNMjAAypNYTVfVZjrGfMiL0j2P1wNwY6Bhz/8DjtndsX8qoyounfcG6/vayQAPZm+oCEoJis90sPUV+e2rHA89PGc1YTlIT7t8ZzjERyJ8en+HyktygEBTHJMZleN9c3z5x/k403Jz0vRyaVFWRpJQaZVFLiS/LVRRvXKggCa66dy/HGJEEKCiusdFzourkrr2JeIZPICEDOiFZTqOc2CgBbl854em/DPC6AKWUkfPYuueWTgYBCEsGLuJN8ftSdH8//yNfNvuaLJl+ohGQBrI2sOTTsEH9d+4upp6ey++FubgfeZufgnWwZuIXEtESOPD1C7229OTXqFC2cWhTJ+grD65lX+QJ4K3GR2zYFlfzQdi9vWUD0GBUx2blv058FJrndY/Lj+bmOM6tqG+JsqmZr5FgbWmssL0dERFMkpCawzWsbS28s5flrC2xTc5dP0LXawvPEHZjomhCXGkct21rcHn8bAx1lJt7doLs0WNkACwMLIr6PKJEezIKSWz7ZX8Nq8yLpIIs8FqmKMUz1TPm88ed80/wbypmWyzDe9VfX+WDPB7yIfoGuVJeFXRcyruE4+u7oy2nf05jrm3N29FkaOjYsknVpKmwlCAJeIV4sOH2Wy17VNDbP9/l7mBv93MrneT9Nr1cbKQn3b9EwKkLUCR3UlNzFXX9hrmP5Dd1A5VqlKxFSpPTiH+XPvzf+Za3nWiKTIgEwoxGWiT/num+Q3nRMTN4QnhiOTCLDY6wHTco3Ub2fIk/BZK4JqYpUfCf5UtmycqGtQ5tRx9OQKk9lx4MdLLi6gAchSu0KPZkeo+qN4ruW3+Fq46raNzIxkk8OfcKBxwcA6F+jP0u7L2X4vuFcfnkZa0NrLoy5QG272oWyntyul+qGrQRB4F7wPfY83MPuh7t5Gv5UKVWSMq9Q5g356zGnqfVqOyXh/q3xXmki2ZOb+1aCFBnqacoM3f0BE45OICQ+RFPTExHJM3KFgIdPOAfvvsbDJzxDN3ZBEDjje4b+O/pT5e8qLPRYSGRSJJUtKrOwy0J8vj2Jo7lBDmnUAmmEYm4aosqZm9pqagajCJQ39jp2dQDwDPIshFWWDLrXceTy1I5sH9ecv4e5sX1ccy5P7ZjBw6Ar02VU/VHc//w+R4YfoXXF1qTIU1jruZaa/9Zk4M6BXH91HQBLQ0v2Dd3Hku5L0JPpceDxAVqvb83P7X6mSbkmhCeG02lTJ56FPyuU9eRFmT/Te4KAZ6AnM87MoPo/1WmwsgG/XfqNp+FPAUiWepNG6H9J/uoiYG0sxcFMP9vfrASlMZpXyQ9BEDj5yCff6xXRLGKOURGiSUVluSBn+a3lbLm/hZltZvJ1869VoQURkaIgOw/F9z2qEJTqzj83/+Fh6EPVe12qdOGrpl/Rs1pPVS7bj31q8cWWO0jIuoQ81WQ7DRzdOOFzgjp2dZjdbnaWc2ng0ADPIE88Az0ZWHOgxtdaUlA3n0wikdCrei96Ve/F1YCrzL8yn0NPDrH/8X72P95Pe+f2TG01lW4u3fiq2Ve0dGrJ0D1D8Y30pdvWbsxuO5tkeTL3g+/TaVMnLn58EWcLZ42uRd3rZfp2giBwJ/AOux/uZs/DPfhE+mS7j7mBKRL9vRD9GQIKZT7bfwgI/xk+b82f9P//NsANIMvfbPrWP/aplaVHJyE1Ab9IP/yi/PCN9MU30lf1t1+kH0JiozKjzK/tiKG0IkSd6pFyhHHZ6DukiuyT/BIRcCWOQJmMNEUaAJXMKzGv0zyG1RlWJnMsRIqW7Eud32riJMo8MNEzYXT90UxsOpEaNjWyHet9AyuNUJKNtvBtxy5MOzMNmUTG9U+v06hcoyzH+OfGP3x1/Ct6VevFkRFHNLLGssbD0IcsuLKArV5bVdeV+vb1mdpqKkNqDyE+JZ5xh8ex++FuADpX7syL6Bc8i3hGFcsqXBxzkfJmec+ryY4TD335bNOjXLf7aYAFj2IOsevhLvyj/LPdzlzfnITUhAwis4byFtikfYFU8dbDY2mki0D+dIy+7GSPk114BqMn/e+guKAc12Egr4u9GuG9/ITptImScP8WDaMiRF3l5cufVyM59jVt1rVBQODUqFNYGypP3J3eO/nuynwCJMoRdCQ6mBmYEZGodK82Ld+UP7v+SauKrTIct7SWfooUPerkyklk0XzTJ4JPGozBTD/3c1SuELjqE8yMU/O5GXQGXQN/dg7ZwegDowlLCOOHtj/wS4dfst3/yssrtF7fGkcTR95MeZPvtYlAQHQAf3r8xYYbl0lJNUQuicTRKp5vW/6PMW5j2Hx/M9+4f0OyPBlHE0ckEglvYt9Qw6YGF8ZcwM7YrkDHT05L5p8b/zDn4m8YR/2JDOsMHp23CAjSSF7qjQFJ5pCYFClIyNRSyM7YjnaV2tHeWSl4W92qBjf9I9VSvo5KilJ5eJ5H+HLbP5pXUdGEJD3nZcI5UoWcq9bM9c1xsXKhskVlqlhWoYplFdXf5U2d6LToSu73BzHHqNARQ2lFiEwqyTZ0kMENa+nI3bhX3JHIcTRxxNqlo2q7D8q5cVcCv1/5HQkS0oQ0IhIjaFOxDXcC73Dj9Q1ar2/NoJqDmN95Ps/eGImlnyIaRZ1cOeSWNLPtoZZRBCAgZ+ndSVwO3Y2BvgGHhx/nn5v/EJYQRj37esxqOyvH/es71EeChMC4QILjgrE3sc/TmkTe4h2gwzXPXpgndFK9lhoUyndHVvHThZ+Y1HQSJ0aeYNzhcTyLeIYUKeb65jwOe0zXzV05O/osVoZ51x0RBIE9D/cw7cw0fCN9AXC0PUlC6IeZrpcqAVCd5VkaRQAKFCCAg4mDyhBqV6kdNWxqZPKqp3tgUuQp+EX5vPX0RPrh+8wX3zPKv9MLB7JDV6pLJYtKSqPHogqVLTMaQJaGOeeQqnV/KMFGUUlBNIyKmO51HFk+smEmY8XhPWPFM1CZRNrAsUGmMeZ2msubuDcqNdpURSqXXl6iS5UuVDCrwMZ7G9n7aC8nvUOwSv4e3ksVTG8sWRpKP0WKnrzmfuSGQlDwycFP2P1wtzLJ94MDBMUHsffRXnSkOmzsvxE9mV6OY5jomVDNuhpPw5/iGeRZatSZi5rsQqQ62GCXMoOQ2LnMPj8bY11jxriNoZZtLQ4+OUh0cjR6Mj3uBd+j+5bunP7otNpGMcC1V9eYcnIKVwOuAuBo4sivHX6lunV1/jp/jluPnZEKb8NHcsKzVeZ3NHFUGUHtndtT3bq6yhASBIGQ+JAsQ12+kb68inmVa9Nqe2N7paFjWZkqFlXe/m1ZhfKm5QukBafu/UGkcBENo2Kgex1HutRyyDG8lV5d08Ahs2EkkUhY02cNwXHBnPA5gameKUlpSZzyPUUduzocHXGUxdeW8ODBUFUTyXdJf+3nww/pUstBfAIRyRN2puol+auzXXo/rs33NyOTyNg1eBf1HepTe5myBHxWm1m4ObipdbyGjg2VhlGgaBjlh5ya0YIECVBNZzqC7Q94hdzj35v/oiPVoWWFltwKvEWKPAUJEm6+uUnvbb05/uFxjPWMczymf5Q/005PY6f3TgBls9o6w0lKS+Lbk98SlRyl3FBfir6iNjLBErkkkmSpt8pTVN60PO2c26l6QTqaOPIi+gW+kb64P3dn+a3lGQyg3Ho8GukaZQhxvRv2crZwznVNBUWd+4NI4SIaRsVEbtUjORlGoCy73TN0D+03tOd24G3KmZYjTZ7Gg5AHjNw3kt9a7+Lxg8Rsx9eEQqtI2SQ3peX0XIjcSpYFQWDKySmsvL0SCRI2D9hMX9e+DNg5gIjECNwc3JjRZoba82rg0IAdD3aU6ZL9gqBOeXx0gpTtXU8TLdxi/pX5nPc/z9VXSi+PiZ4JcckJ6CvqEOybypcrPmR5/+kY6uhnGitGpsdv9zfy9/W/SZYr83IqmlckLCGMdXfXZT64REGyzAtQGkJNy/fDxcoFawNr4lLi8Iv2Y/3d9fxw7geC44NzXKcECU7mTpmMnvT/2xnbFXsBizaq1ZclRMNIC0mVp6rE17IKpaVjomfC0RFHabWuFT6RPtS1q0s503LcDb7LdyfmYMWUXI8lln6K5BW1c+VyecKdfW42f137C4A1fdcwvO5wtt7fysEnB9GV6rKx/8Y8qbenP0SIhlH+UPdaMHrvJBq5CHR36U5/1/6c8DmB+3N35Il1KZ8ynopIOKs/BYOIh7DuXJZj6AHbiSVZIiBBgoDAy+iXWW5rpmeGg4kDujJd4lLieB3zmv2P9+c4R0sDy7f5Pe/l+lQ0r5hraFakbCMaRlrIw9CHpMhTMNc3p7JFziq+9ib2uI90p+XalniFeNGxckcG1xzM4QdP1DqWumEREZF3KWguxLxL85hzaQ4A//T4h08afMKb2Dd8dfwrAH5s9yP17OvlaU7pDxHPI54TkxyTpxwXEfWvBS/jHvDsgRc7Hux4u6+sKwaJyu/OUuKPgSQ1u90BMABskBCAkGvD65iUGGIiMvaC1JXq4mzhnKmyq7JlZbWSnEVEckI0jLSQ9CdeNwc3tVy6Va2qcnTEUdpvbM9Zv7OMrDuSqR0GsfZEaLalruqGO0oiojxB0aBuLsT738e1kC3MOKsMkc3vPJ8vm36JIAh8duQzIpMiaeTYiKmtp+Z5PjZGNlQwdSI0yoIVl27RpnJ98bvPA+qESG3NdPl30O94hd7nbtBd7gbd5WnYc3Tjhv+3jeY+awcTB5XR42xRBVmqK4ZSe2rZl6d7rWro6Yi3L5HCQfxlaSGqirRs8ouyokn5JuwZsoc+2/uwxWsL37f8nrHtzNlwQZJJ2bU0l36KnamLltxyIbIWbzTHUK8F33fsyvetlEq/m+5t4sjTI+jJ9NjQfwM60rxfmtwfBGIQ+QcOqSYsO53IMq6J330eUCdE+kvfunR3daSXa0/Ve+eevOLj9ffyfDwJEsqZlqO2bW1q2dSiilWVDEnORrpGwPu/oWTAF0fzN+L3KlJoiL3StBBV4nUO+UVZ0aNaD9b0XQPAgqsLsLYKYFpva5BGZ9jOwdygVJbqp5cav59Ami5P4P4gsJhmVjbJ7vuQYY1dygyaWX8GwOuY13zt/jUAP7f/WdX3LD/HSk3NWDEkfvd5Iz1E6mCeMayW0zUjJjF/D1cCAm9i33DK9xTr763nwOMDnPM7x603t3ge8ZxUeap4TosUC6LHSMtQCIpcK9JyYozbGN7EvmHm2Zl84/4NOwbv4PL3nei15ndeRSajkAbzTYdOdKvdMffBShA5lRqL8gRFT07fhwQpEuCXIw/pUsuecYfHEZ0cTdPyTfm25bcFPFbG71b87vNOXsvFNZGnGJMcwzn/c5zzf5usrSc1oFzSWgTMEL9XkaJE9BhpGT4RPsSlxKEv08+2t1RuTG89nQmNJyAgMG73P/Rd6klMWFfM5H2wSP2UhQdMGLDxZ1LkKRqeffFRkE7cIppH3e/jl9NbOf78OPoyfTb0y18ITfzuNU96iLSfW3lauFjnaHik5yZp2jSRpFZDkJuTWYlNifi9ihQWomGkZaR7i+rZ18tTqfK7SCQSlvRYQgeHyVgkfU9EfEYlVxnWeD5uTKtlXxKWEFbgOWsDmlZjFikY6n7Oy65vBeDXDr9S07ZmoR5L/O4Lh/TcJMjOhMnnuIJ6lWXi9yqiaUTDSMvIT+J11khJCO+JhMyVIspEbIHA161osqoZ3iHeBTxW8aNJNWaRgqPu5xyX9obmFZrzvxb/K/Rjid994fFublKkYEqSkPNDXSICYbmU6cslOfclS0emE6f2PEVE1EHMMdIy8pt4/T43/CIIikkmu2c4CVJ0sCUwwpgWa1uwbdA2elfvXaBjFie5lRoLKJBIEvAO8aZp5TZq5SSkpCnY7OHPi4gEKlkZMaqFM3o6eX+WKIvyAbl9HyCQRhgSPR829LtToP5SmlLiFikY7+YmXQyuhXfAYTY/mgcoqGBWgVcxr1TbhiEQIMnZMJLo+ZCWkr3kiIACOeH02dOXupdq09WlK11dutKmYhsMdQ01vTyRMoREEIScf51aSExMDObm5kRHR2NmVnpE3ARBwGGRAyHxIVwbe41mFZrle6yDd1/z9Y67uW5nU+4wtyOVLRnmd57Pty2/LXY5/PySXsEC5PgsaqifzIKBTehT3ynbbeYde8jqS34o3hlIKoFxbSozvWetPM2prMoH5PR9CAiE6s3ltx5DmNxicqEdK/2XXBqrMLWdjhs7cs7/HDpSHfq59mPvo715HsNQ3gLblBn/fY9vr0sCCkBCuN7vxMuuZNjHQMeAtpXa0rWK0lCqY1enxF7TSiMl4f4thtK0iMC4QELiQ5BKpNS1r1ugsdQNG/zV4yfGNxyPgMD3p79nzMExJKWVzJh9dqXG75OQrMtX2++x7NKVLN+fd+whKy9mNIoAFAKsvOjHvGMP1ZpPWS81zu77kOnEEKo3l4bOUiY1m1Soxyqt0hTaTqo8FY8ADwBcrV2pa/f2eiaTKL2D+rLMPdTeJ1HmQajeXNLImAspJ5xQvbkZjCI9mR5GukYkpSVx0uck3576lnor6lH+z/KMOTCGbV7bCIkP0cTyREo5osdIizj69Ci9t/emlm0tvCcULO9HrhBoPf9sruGFy1M7IpXAvzf/5Rv3b5ALclpUaMG+D/bhYOJQoDkUF3KFwDWfcL7cdoeoxKxbEwgokEvCGdv1BbPazlAluqekKajxw/FMRtG7SCXw+NceOYbV0j//7Kql3v38cw2rRQVAQnj27xtZg0X23q/i5t2Q5Kt4T9Y/+QRDPV3ufX6PatbVNHqsshi21EauvLxC6/WtARjfaDxdqnRhyO4h6Mn0MlTDpvdJywkJEgRBgr6iNjLBkloOFfiyRTfO+J9i98Pdqia072Ksa4yVoRXBccGkKDJW3zZ0bKjyJrWq2Ersm1bElIT7t5hjpEUURL/offLa6HNi04m4WrsydM9QPF550HR1Uw4OO1jgXKfiQCaVIJVKsjWK4L8cK8GW+ef+5MizQ2zsv5E6dnXY7OGfo1EESs/RZg9/xrapku02eSkhz7GLdlQA/NMI0jJf/FXo6MPE21ppHGUOJVpRntUMqC/XuFEEYldybeGU7ynV3w0dGlLbtjagTBcAqGReiRfRL6hsURnfKF90pDqkKdKyHEtAAIlAqo43yYKCW2Hw8eFtdHfpzu3xt7n55ibrPddz8eVF1T7xqfHEp8YDyoayzhbOxKbE8jziOXcC73An8A6/X/kdY11j2ju3V+UnuVq7imE3ETGUpk1o0jCCvIcXurh04fqn13G1diUgJoDW61uz92He8wK0AXVLeM11nbgTeIdGqxox//J8/MPVq3B5EZGgkePnul1CeM5GESjfz8mjVExkF0rUwYYjNxxKfSixLHPK561h1MCxAVWtqqIr1SVVoXxYCYkPQVeqi2+UL43LNSZNkYaVYc7J8QpBgYGOAVKJ8rbl7uNO3eV1Ofr0KNsHb8d3ki8/t/85U+PtyKRIPIM8eR7xHAcTB7q5dKO7S3fsjOyIT43n6LOjfO3+NTX/rYnz386MOzSO3d67iUgU9ZHKKqLHSItQlepr0EuTVxXb6tbVufbpNT7Y8wEnfU4yePdgfmn/C7PazipRT1Lq5ljNaDeRM69lHH56mGlnplHH+A3QNdf9KlkZaeT4pbWEPCfl63SfpahaXDqJSY7h2qtrgDKfqK5dXXRlurjauPIg5AH2xvYExwfTs2pPjj0/RnJaMk5mTgTEBFDDugaPwx9nOa6+TF+V/+ho4khQXBACAnse7WHf432MqT+G3zv/zg9tf+Dyy8tsvLeRnQ92Epf69mEnKC6IoLggACqaV+Sjeh9hrm/Ow7CHXH55mZfRL1njuYY1nmuQSqQ0KddE5U1qVr5ZvrXlREoWosdIS4hMjMQvyg8ANwc3jY6dFxVbAAsDC46OOMrXzZT9q2afn83wvcNJSM3ZS6JN5KbGK6AgjVAmn+2Dg4kDS7svxUzfjAexyxCQk11dmzIfQsHwZhUKdHwJyuq00lpCLqpRl13O+59HgVJUtoZNDVXpfHo4raaNUshTJpVhqmeKV4gX4xuNR1eqy+Pwx3R0zrpdUbI8GV2pLjKJjMC4QAx1DVXdARSCgnV311Huz3J84/4Nde3rsqbvGt5MCeKXljtoZv0l+vK6ILy95b2Mfsmm+5tYenMpflF+TGw6kaU9lvJNs2+obVsbhaDg+uvr/HrxV9qsb4PNHzYM2DmA5TeX4xvpW2ifn0jxIxpGWsLdoLuAMvaem0u5KNCR6rC4+2JW9V6FjlSHnd47abu+La9jXhf31NQiJzVepeillLrVniBI5Ky+s5ofL/zI1FZT6ezSnhid/f+ZRZmLzAGidfZR/Z8qRCRkf1PP6fjCfzeNd3O8ShuiGnXZ5f0wWjrphpGxnrLR72nf03zT/BsA1t9dz8KuCwG48OICw2oPU+33rkBtqiIVuSDHztiOhNQEHoc9pq5dXerb1wcgTZHGkhtLcFjowKhti+i86Cprz5gQ9KoHDinzqMUeXIwGZZivBAm+kb4s8ljEV8e/4uizowyoMYCTo06yts9ahtUZhrWhNTHJMRx4fIAJxybgssSFqkuqMuHoBA48PkBMcowGP0GR4kY0jLQETQk7appxjcZx5qMz2BjZcDvwNk1WN+HG6xvFPS21yCnHasXIhhwfO4+LYy5Sz74eEYkRzDw7k4ikCMa1syVR75DKgElHKpHgXP45UbobeB37moqLK3I/+H6ejy8nnI4NfUt1CXlZDyWWZU77nVb9/W6+ZG07pWEUFBeEi6ULiWmJVLWqir2xPb6RvkiQMLzOcOSCnIsvLzK+4XhA6aV9v3IsJD4ERxNHjHWN8Qrx4mHoQ0bXH63yIElTGnLxvut/IrdvSUjSQx7+MX+3P8/njT7HXN88Q1WcBAnPIp4x59Icum7uykKPhdSwrsHFjy9yc9xNfuv4G+0qtUNHqoNPpA/Lby1nwM4BWM23os36Nvx64VduvL6BXCHX7IcqUqSI5fpawqj9o9hyfwu/tP+FH9r9UNzTyYRfpB99d/TlQcgD9GX6rOu3jhF1R5SI8ujc5pimSGP5zeX8cO4HopOjARhcazAvo97w6IUNOoIjLjZm7PjoS1ysK7H0+lK+dv8aAQGZRMbuIbsZUHOAWsd/EHaFWZeHY2Fohv/X/pgbmOc8+Td3YVW73Bc5/gKUc1Pj0yga8iIXoW2/F5H88yrmFU5/va2OPPvRWTpU7gDAk7An1Pi3Bka6RkxqOonfr/zOoJqD6FS5ExOOTcDO2I67n92l06ZOPAp7REfnjtSwqcGyW8sAsNC3ICo5CkBVxWagY0ANmxoqj7urtStj6n/CiuPlEBQWmdohQcbfXqoimUNPDrHh7gZO+JxAISgfhqRIQYLq/wB17eryQe0P+KDOB9gb23Pe/zwnfU5y0vckT8OfZjiGpYElnat0VuUnVTSvqKmPuMRTEu7fomGkJdRZVgfvUG8ODz+sta05YpNj+XDfhxx+ehiAkdUW8uyFG0GlRNU5JD6Eaaensf7uegDM9c3pWLkjx54dI1mejLm+OX93/5uP6n/Ead/T9NrWS1Vl82uHX5nVdlaux5Ar5NRdXpdHYY/4uf3PzG43O+cdSqhhBKIadVlkved6Pjn0ier/Ed9HYGmobAabpkjDeK4xKfIUDg8/TJ/tfTDQMeDN/97QdE1Tnkc856d2PzG09lCarG5CfGo8M9vMJCIxguW3liNBgrOFsyoXU1+mr9IwalepHY/CHhESH4K+vC4OKfNynev2cc0zSDsExgay1WsrG+5uwDv0rY6cvkyfVEVqBiOpoWNDhtYaytDaQ6lsWRn/KH+lkeRzktO+p1UPWOnUsKmh0k5q79xeFU4si5SE+7doGGkBiamJmM4zRS7IeTX5FeXNyhf3lLJFrpAz6+ws/r54IUup/tJw07v26hpfHvuSO4HKm7qrtStSiZRHYY8A6Oval5W9VxKfEk+jVY1UF8EPan/AjsE7ch1/54OdDNs7DHN9c/y/8cfCwCL7jUudjlHJNp5FcubDfR+yzWsbgNKI+dovw/v1V9TnfvB9Dn5wkG9PfcuziGdsH7QdqUTKB3s+wETPBJ9JPpzxPcOIfSMAODL8CAefHGT1ndVIkNCiQguuvroKkEECoJpVNera1cX9QRi2qd/nOtehLeOZ13tQpj59giBwJ/AOG+5uYNuDbRnK9s30zYhLictgJDUt31RlJDmZO5GmSOPm65sqb9K1V9cybK8r1aV1xdZ0delKN5du1Heor5IgKAuUhPu3aBhpATde36DZmmbYGtkS/G2w1pfFyxUCDX49THSiNFdXdUkNk8gVyqTsGWdmEJmk7PLt5uDGg+AHpAlpWBtas6zXMnpW64nbCjd8In1U21wfex09nezVdBWCgnrL6+Ed6s1P7X7ix/Y/5jyZAipfF3e4s7iPL1I0KAQFjoscVW03BtQYwL4P9mXYZsTeEWx/sJ3fO/1OTHIMcy/PZUCNAewZuoemq5tyO/A2k5pO4u8efzPx2ET+vfkvVoZW3Bp3i18v/sr6u+uRSWQMqTWEHd7KhxCpRIqZnhlRyVEY6BgwxGUWF++65TrfIN0ZuDim8Uv7XxhYc2CW190UeQpHnx5lw70NHHt2TCVCKZPIsDK0IjwxPIPR09KpJUNrDWVI7SGUMy2HXCFw9slLLvh68iTyJjfDtvMiOqOxaGtkSxeXLiqPkqOpeg8MJfW8Kgn3b9Ew0gJW3lrJ50c/p6tLV06MPFHc08kVD59whq++lut277uqSyJhCWHMPDOT1XdWIyBgrGuMhYEFr2OV1XlDaw9lafeljNo/ipO+JwGwM7bDc7wn5czKZTvubu/dDN0zVD2vUQEQPTYiRcW9oHu4rXRDJpEhF+RZhpd/u/gbs87NYlS9UUxpMQW3lW7oy/QJ/S6UG69v0HlzZ2XZ/sTHlDctT5v1bbj55iZNyjXh/OjzfHHsCzbd24SOVIf/Nf8fizwWIReUic5VLKvgG+mLflo9HFLn5jrfOOO5hCuUnqcGDg2Y03EOPar2yPbBNCQ+hG1e29h4b6MqpwnARM8Ec31z3sS+USVyS5DQyOoTkiL6EJv4Vi7QwdyA8e0tSZR5cNL3JGf9zhKXklFUtq5dXVVuUpuKbVRyB+9Sks/rknD/Ljv+Oy1G04rXhU1ZKsW2MbJhZZ+VXP/0Ok3LNyU+NZ7Xsa+xNbJFipRd3ruot6IeXzb9ksnNlV3iQ+JDcFnqws3XN7Mdd1CtQdSxq0N0cjR/efxVKHMv601sRYqW9DYg6TfyrK5n6ZVp3qHe1LOvR3Xr6iTLkzn89DCdqnSiS5UupCpSmX1uNvo6+uweshtLA0tuvrnJ96e/Z11fZdFHmiKNv679xcIuCzHWVebr+Eb6Usu2FrqoJ3eytPsGfmj7AyZ6JngGedJrWy9arWvFWb+zWW5vZ2zHN82/wfMzT+5+dpfJzSdjZ2xHXEocr2NfIyBQ3rQ8zhbOGMibE/K6PzGJGcN0QdFJ/HowEBejgRwcdpCI7yO4MOYCM9vMpEm5JkiQ4BXixSKPRXTb0g2rBVZ029KNRVcX4RXshSAI4nldBIiGkRZQ0gyjsliK3aR8EzzGerCmzxpsjGwITQhFgQIzfTOC44Ppt6Mf4YnhLOm+BAkSktKSaL62OVvubclyPKlEyo/tlCG0xdcXE5kYqdH55qQ8nf7az4cfIs+tMZyIiJqc9lWW6cenKHuUZSU9kq5l9Cj0EQICQ2sNBWD3w90A/N75dwC2em3lbtBdKllUYstA5Tn0781/2em9k439NzK09lBSFalMPTOVFb1WUMFMKbj6MPQhtmbqNYV1trLilw6/4Pe1H9+1/A5DHUM8XnnQaVMnOm7syJWXV7Ldt75Dff7s9ievJr/i0LBDDKo5CD2ZHq9jX+Mf+RKr1M/+00vL7H0SEPh+703C4iPQlenStlJb5nScw41xNwj5LoQdg3bwidsnlDctT1JaEid9TvLtqW+pt6Ie5RdV4Otdl7NsvCue15pDNIyKmTRFmkoLR9s0jLKjrKo6SyVSxjYcy5OJT/iyyZdIJVJikmPQlSrbBGy6t4n5V+azoMsC9GX6KAQFow6MYvrp6VmON7DmQOrZ1yMmOYY/Pf7U6FxF5WmRoiQpLYmLL5RNXAUE7IztcDTJHNKpYlkFAx0DEtMS8Yv0Y2htpWF0/NlxYpJjaOjYkGF1lOKO088oz5ue1Xoyq40yJDf+8Hiehj9ly4AtDKo5iBR5Cp8e/pR/e/5Ls/LNAPCLP41CEk526vXvX59sjGxY0GUBPpN8+KrpV+jJ9Djnf47W61vTc2tPbr+5ne26dWW69HHtw56hewicEsi/Pf+lvtVAdAQbMku7vp1BTKIM5z860WtbLzbd20R0UrRqLh/U+YC1/dYSMDkA7wne/NXtL3pU7YGhjiERMdYkpxhlO7Z4XmsG0TAqZp6EPSEpLQkTPROqWlUt7umoRW6q0lC6VZ2tDK34p+c/3B5/m5ZOLVVVMbpSXV7Hvua7U98xqOYglYL571d+p8+2PigU7wtGvvUa/X39b402rSxL4U6R4udqwFUS0xIx01fmjDRwaJBlro5MKlOJMHqHelPHrg41bGoow2lPlDIgczrMQUeqg/tzd875nQPgp/Y/0bFyR+JT4xm8azDJ8mS2D9pO/xr9SZYn88GeD/il/S+MrDcSJArCdFdko16vJKvrk6OpI0t6LOHZV88Y13AcMomM48+P03h1YwbuHMiDkAc5fgZWhlZMaDKBn9suVuszE+RmHHt2jNEHRmO30I5+O/qxzWsbscmxAEgkEmrZ1uKb5t9w7MNjREyNYHbrhWqNLZ7XBUM0jIqZ9JLw+vYlq2QzJ1XpklyqnxfcHNy4/PFlNvbfiL2xvcpAAtj2YBsmuiY4WzgDcOTZEWovq01CSsZ+c/1r9Ke+fX1iU2JZdHWRxuZma6peOKE0hTtFio/0MJq9sT2Qc1pALVvlQ5V3iDcSiUQVTtv1cBcALlYufNboMwCmnZmGIAjIpDK2D9pOOdNyPAp7xPjD45WtigbvpE/1PiSlJdF/Z3/GNhjL3I5zSZR5EKo3lzTCMhw7TRJK76ZBdKvtkO38KppXZFWfVTye+JhR9UYhQcL+x/upt7weI/aOyCTm+D7qnlPrBvzFT+1+oqZNTVLkKRx6cogP932I3UI7Bu8azG7v3aqwJICBjgEdXBqpNbZ4XheMknMnLqWUtPyid+lex5HLUzuyfVxz/h7mxvZxzbk8tWOZMIrSkUgkfFT/I55MfMI3zb5BJlEmW0qQ8DLmJf5R/lSxqALA4/DHOC124kXUC9X+UomUn9r/BMCSG0sIz6EsX64Q8PAJ5+Dd13j4hGebRxAaH8ovHqNJIzRTWxPVvCmd4U6R4iE98Tq9nD2ntID0PKN0EcX0cJr7c3dVSOmHtj9grGvMjdc32PdIWfJvZ2zHrsG7kElkbH+wneW3lqMn02P3kN30rNaTxLREem3rReuKrdk7dC8pOjd4bTCWIL3p1Kl2ExeXI7zWH8s/Xp8yaNegXPP6qlpVZdOATTyY8IAhtYYgILD9wXZq/VuLTw5+gn+Uf4bt08/PoJgkrIx1sx03/dwb7NaAH9v/iPcEb+5/fp9ZbWZRzaoaSWlJ7H20l6F7hmK30I5he4ax/9F+ElMTy2waQ1EjlusXMx02duC8/3nW9V3Hxw0+Lu7piBQQr2AvJh6fqMq3SMfSwFKlh6Qn0+PEyBO0d24PKAXlGq5qyN2gu0xvPZ25nTKXGqtbnnvxxUWG7x3Om9g3mAvtsEj6FgkSUXlapNAITwjH9g9bBAQMZAYkyZN4OvEp1ayrZbn9wccH6b+zP24Obnh+pnwwrL2sNg9DH7Kp/yZG1R8FwI/nfuSXi79Q3bo63hO80ZEqy97/9PiTKSenoCvV5fInl2lavilJaUn029GPkz4nMdY15sTIExjpGtFuQztiU5ShqQ7OHehZrSczzswgVZFKJfNK7By8k2YVmqm1Ts9AT2afn82Rp0cAZej804afMrPNTLxeSjOdn1mR27knCAJ3g+6yy3sXO713qlS+QSkL0M+1H67GH7DunNKnURLP65Jw/xY9RsVI+kkAJSfxWiRn6trX5fzo82wbuI1ypm91jNKNIgkSUuQpdNzYkZW3Vipfk0j4qd1PACy9sZSwhIzuf3XKc+UKOXMuzqHDxg68iX1DDZsaXJ7wDytGNirT4U6Rwues31kEBFwsXUiSJ2GqZ4qLlUu226eX7D8Oe6xqtjqk1hDgbTgNYErLKdgY2fA0/CnrPNepXp/cfDIDaw4kVZHKkN1DCE8Ix0DHgAMfHKBT5U7Ep8bTY2sPkuXJPPrykapP2Tn/c6y4tYJDww9RxbIKL6Jf0Hp9axZdXYQ6/oEGjg04PPwwHmM96FylM6mKVJbfWk7tPz/k8y23czWKIPdzTyKR0MCxAfM6z8Nnkg83Pr3BlBZTcDJzIi4ljq1eW5l9rS9xRn+hp5eQp7FF1Ef0GBUjfpF+VFlSBV2pLnEz4jJ1kBYp2cQmx/LrxV/569pfqhAD8J8HR3naTWwykaU9lyIIAo1XN+ZO4B2mtpqqKltOb8aa3UVXAtiZ6WJS/g/O+ivzPEbXH82/Pf9V9WMqqQq5IiWDzw5/xqo7q+hapSsnfU/SumJrLn18Kdvt5Qo5JvNMSEp761nyDvGmzvI66Ep1CfkuRCV4uuT6Er52/xpHE0eeT3qOka4RANFJ0TRe3ZjnEc/pUbUHR0YcQSqRkpCaQK9tvTjvfx4zfTNOjzpNTduadN3cFY9XHoCyB+KhYYdYenMpex7uAaB39d5s6LcBayP1BWnP+59n1tnZ+D/9BBk22XYBsDLWY1avmjiYG+b73FMICq6/us5O753sfribN7FvQJCir6iNua4TrZzr8lnzjnRy6ajyrGkrJeH+LXqMipH0/KI6dnVEo6iYUTd/Jy+Y6puyoMsC7n9+n06VO6lef1eD5J+b/9BxY0cEQVB5jf658Q+h8aGAemX3wTGpXPEJxkjXiA39NrCh/4YMTSplUgktXKzp51aeFi7WolEkolHeF3Zs6NAwx+1lUhk1bWoCb/OMatvVprZtbVIVqRx6cki17WeNPsPZwpnA2GCmHl2jOj9N9MzYM2QPBjoGHH9+nHmXlE1jjXSNODL8CG0qtiEmOYauW7ryJOwJlz6+xEf1PgIgOjmaTps78UGtD1jWcxn6Mn2OPD1Cg5UNctQuep/2zu35o90+dLDN0igC5fkZHp+Cg7lhgc49qURKC6cWLO6+mIDJAVwcc5Evm36BhVkIIYpj7PedT/dt3XBc5MjnRz7nnN85lTfuXQrjOlcaEQ2jYsQzsOQmXpcm3B8E0nr+WYavvsbXO+4yfPU1Ws8/qzEF2Zq2NTk16hS7h+ymvGnmBsHn/M9RdWlV2lZsS+NyjYlPjeePq38A6pfdOpvV4+a4m4x2G62ROYuIqINPhA9+UX7oSHUIT1QWDqiTFqBSwA5528U+PQl7l/fbcJq+jj7Dq86nfNJaDl9zyXB+BobZsaznMgBmn5/NGd8zABjrGXN0xFFaObUiKimKLpu74BXixcYBG5nXSWlApSnSGLJHGYbzGOtBNatqBMQE0G5DO36//HuG/mc5ERKbQ3PnDNtprnxeKpHSplIb/un5D6//95qzH53ls0afYWNkQ1hCGCtvr6Tjpo5U+KsCXx37iksvLqEQFIV+nStNiIZRMaKqSBPzi4qNopLXl0gkDK41mCcTnzC99fRM7m6/KD8qLq7Ipw0+BZQqvyHxIWqX3a7oO19VBi0iUlSkl+k3L98cr2AvQL0Hvfcr0+BtntFJn5OqijH3B4Fsv2SMDjYZ9k8/Px11uzO2wVgUgoLhe4fzOkbZw9BU35RjHx6jeYXmRCZF0nlTZ+4H32da62nsG7pPdf79cP4H5l+Zj8dYD0bUHYFckDP9zHR6beul8trmRHF3AZBJZXSo3IEVvVcQOCWQkyNPMrbBWCwNLAmKC+Kfm//QdkNbKs3rl2UelNhGJGtEw6gYKcml+qWB3NpmCMDsQ14kpaZo7JjGesbM7TSXhxMe0sG5Q4b3YlJimHhsIm3Nq+CaksS2E1NpavCSdqavqS3xpbbEj9oSP8pl0GYRcDQ3oE3V7BvWiogUFulhtMblGhOdHI2eTE8tAz0rw6imbU3q2tUlVZHKwScH3zs/M4ag3m1/sbjbEurb1yc0IZQP9nxAqlypJ2amb4b7h+40KdeE8MRwOm3qxIOQBwyoOYBrY69hpqfMb9npvZNuW7qxpPsSVvdZjYGOAe7P3XFb6cYF/ws5rkObyud1pDp0cenCmr5rCPo2iKMjjjK6/mjM9MwRYgaJ7YHygJh8XUyExIdgv9AeCRJipsdgomdS3FMqc3j4hDN89bVctwvSm46paSAOJg7YG9vjYOKQ6V/669ZG1moLdQqCwMEnBxl3eJyqEs1JkPAEEwyzvdRCkqBLx+RFvMEGCdpfnitSOpEr5Nj+YUtkUiRzO85lxtkZNHRsyO3x2bfQSMc30heXJS7oyfSInxGv8uDMuTiHH879QI+qPfih+Wa1zs/t45pjaxlJo1WNiEmOYUqLKSzs+lYhOiopis6bOnM78DZ2xnacH32emrY1CYgOoM36NryIVuqKlTMpx7kx50hOS2bonqE8Dnus1Blr9xMz2sxAJpVlefx0rzNoZ/n8xaeBfLTuTq7bbR/XnBYu6ief55eScP/W7vT1Ukx6flE162qiUVRMqBv3lwmWhCV4EZYQxgNybgsgk8iwN7HPZDBlZUiZ6ZvRv0Z/url0Y8aZGSy+vhgbJDkaRQAGklQsJbEIZhUy6RiJiBQVdwLvEJkUibm+uUorSF3vt7OFM0a6RiSkJuAT4YOrjSugDKf9cO4HTvmeYmS17MVO3yUkNokWLlXZ0G8DA3cNZJHHIlo6tWRgzYEAWBhYcHLUSTpt6sTdoLt03NSR86PP42rjyv0v7tNza0+uBFzhTdwbGqxQluTfGneLL499ycZ7G5l9fjYXXlxgy8AtOJhkVsxO7wLwvo6RQxY6Y8VBZIK6+VJiG5F0RMOomEhvBSKG0YoPdeP+e4eto4JtIkFxQVn+C44PJiguiLCEMOSCnDexb5TltLlgoGOQwVgaXns4wc9PQFJarvvOG1CX2o3bihVmIsVGehitQ+UO3Au+B6h/PZNKpNS0qcntwNt4h3qrDCNXG1fq29fnXpAX531vA7l7FNLP4wE1B/Bti29Z6LGQjw9+TF27uiqRSStDK06POk2HjR3wCvGiw8YOXBhzgWrW1Tg/5jxjD45l0/1NJKQl0GVLF5b3Ws6G/hvo4NyBCccmcMbvDG4r3Ng6cCudqnTKNIfudRzpUstBK2UxijsPqiQiGkbFhJhfVPyk5wcERSdlGX+XoHzq61KzCjKphDp2dXIcL1WeSkh8SCaDKStDKiY5hqS0JPyj/DO0FmggSIHcPYjVHPS04qIrUnZJN4y6VOnCnItzgLwVktS2q600jEK8Vd4dgCZW4wjzN+bk3ZyNovTz8938nbmd5nLt9TUuv7zM4N2DuTb2mkpGwNrImjMfnaHDxg54h3rTcVNHLoy5QBXLKmzov4FatrWYdmYaCkHBZ0c+wzvEmz+7/UmT8k0Yunso3qHedNnchR/a/sDsdrMzhdbSZTG0DXWvc2IbkbeIhlExIVakFT8yqYQf+9Tiiy13kJB1fkBWXbizQ1emS3mz8pQ3y1yS/z4JqQkExwUTGBvIzTc3ufTiEp7BnsgiA7JrCJ6B1uvaEG9TlfoO9XGzd8PNwY36DvVxNHHMsqu5iIgmiU+JV2n+NHBoQGBcIBIk1LOvp/YYWSVguz8I5NQdZ2S5nATZnZ+6Ml12Dt5Jg5UNuB98n4nHJrK231rV+7bGtpz56AztN7bncdhjlefI2cKZqa2nUs2qGh/s/YA0RRpLbizhUdgj9n2wjxvjbvD18a9Z47mGXy7+woUXF9g2KKO6vbai6etcWUBMvi4GYpJjMP/dHICQb0OwNbYt5hmVbdTtQ6YpopKiOO17Gvfn7pzwOcGrmFeq9xoIUu6o4TFqSByeksy5A7ZGtkojyb4+bg5Kg8nVxlXr1XBFShbuz93psbUHFc0rsqLXCnpu64mrtSuPJz5We4yjT4/Se3tv6tjVwesLr1xV3t8lt/PznN85Om/ujEJQsLbvWj5p8EmG9wNjA2m/sT1Pw5/ibOHMhTEXVK1Dbr6+SefNnYlJjgHA1dqV0x+dpoJZBbZ5beOzI58RlxKHrZEtmwdsplvVbmqvuTgp6utcdpSE+7doGBUDl15cou2GtlQwq0DA5IDino4Ihds2Q66QczvwNieen8Ddx53rr64jF96q0urL9Gnv3J5uLt3ob+5M5V1jch2zn7klTRuPQ1eqy92gu9wLvsfjsMdZCtPpy/SpY1dHZSjVt69PPft6mBuY53EdZbu1SFlf/7tMOTGFP6/9ydgGY6liWYWZZ2cyrM4wtg/arvYY/lH+VP67MrpSXeJnxHPLP0atKrQfetVkTKvKuX72cy/NZebZmRjoGOAx1gM3B7cM77+OeU37je15HvGcKpZVuDDmAhXMKqjm1mFjB1WY28rQihMjT9C4XGOehj9l6O6hqryqaa2m8WvHX5Eg0/rfhzb8hkvC/bvQHyN///13pk+fztdff83ixYsBSEpKYsqUKezYsYPk5GS6devGsmXLsLe3L+zpaAVifpH2oen8gMDYQE76nMTdx51TPqdUqsDp1LCpQXeX7nSr2o22ldqqekDx5q5a4wdEB3Do7Cx6V+/Nn13/pJp1NRJTE3kQ8oB7wfe4G3SXu0F3uR98n9iUWG4H3uZ2YMYy6iqWVTJ4lurb16eiecUsQ3Ha8rRZXJT19b/Pu/lFex4p+43l1grkfSqaV8RY15j41HieRzwnJFa9m6SNqb5aN/NpradxNeAqR58dZfCuwdwefzvDw0B5s/KcG32Odhva4RvpqwqrlTMth7OFM56fedJ7W2+uBFwhIjGClmtbsm3QNgbXGsy1T6/xvxP/Y/mt5fx+5XdOegcjjRtGaGyqanxt/H1oax6UtlGoHqObN28ydOhQzMzM6NChg8ow+uKLLzh69CgbNmzA3NyciRMnIpVKuXJFvT41JcHizImPD37MhrsbmN12Nj93+Lm4pyOiAVLkKVx5eUUVHkt/mkzHTN+MzlU6082lG91culHJolLWA0UFwD+NIC37VgOCTJ859Qfwy711pCnS0JXq8k3zb5jVdhZm+hnPB4WgwC/ST+VVSjeYAmKy9lRaGFhkCsUFhFgzadv9TFkf2qLTUtik69SU1fW/T1BcEI6LlOsN/S6U5mua4xPpw6lRp+hcpXOexmq6uik339xkz5A9lNNvr7Zukbo394jECBqubMiL6BcMqDGAvUP3ZjL8X0a/pN2GdvhH+VPdujrnR5/H0VS5vlR5KmMPjWXz/c2q7ed0mMOMNjOQSCTs8t7FF3tXYpIwGSBDz7Sy+vvIjZJw/y40wyguLo6GDRuybNky5syZg5ubG4sXLyY6OhpbW1u2bdvG4MGDAXj8+DE1a9bEw8OD5s2b5zp2Sfhgc8JthRv3gu+x/4P99K/Rv7inI5JPfCJ8OOFzAvfn7pz1O0t8anyG9xuXa0w3l250r9qdZuWboSvTVW/gqABIeOthEhDouKkT0UnROJk7cfDjS2DhxJOwJ0w+MZnjz48DYGdsx7xO8xjjNiZXkcmIxAjuBf1nKAXf5V7QPbxDvUlTvCcVIEgpn7wOHcGa99WH4W1Fy+WpHbUubKAJcst7Ke3rz4qt97cycv9I3Owb8ke7ffTb9hFySSQvvz+LnYlN7gO8Q/pD4s/tf2Zmmx9oPf9srtVTef2sb725Rat1rUiRp7Cwy0K+af6/TOGkgJgXtNvQjpfRL6lpU5Nzo89hb6KMYAiCwLxL85h5bqZqzBF1RrCu3zp0pHo0n3fyP09R2Ts/8kNJuH8XWijtyy+/pFevXnTu3Jk5c+aoXr99+zapqal07vz2yaJGjRpUrFgxW8MoOTmZ5OS3T9AxMTGFNe1CJzktWVWFIYbSShZxKXGc9z+v8go9j3ie4X07YzuVIdSlSpf8J9VbOCn//YcE+LDLAsYdGYdnzAtOhT+mi4UTrjauHPvwGMeeHWPyick8DX/K2ENjWXZzGUt6LKGlU8tsD2FlaEWHyh3oUPltW5LktGQehT3KYDA9CEhGJyn7m50ABEYnccMvolS66G/4ReSYDFza158Vp3xPYShvQVLgt3y68QG2fA9Av6X38hw6ercyrbCqpxqXa8zibouZcGwCP7rvZ+uZmkTEvx09PeR19qOztN/Ynkdhj+i0qRPnRp/D1tgWiUTCjLYzqGZdjRF7R5AmpLHtwTaeRz7n55bbCY1NIyujCMrm76M0UCi90nbs2MGdO3eYN29epveCgoLQ09PDwsIiw+v29vYEBQVlOd68efMwNzdX/XNycspyu5JA+lO5pYGlqgpCRDsRBIH7wfdZcGUBnTZ1wmq+FX229+Hfm//yPOI5OlId2lVqx7xO87gz/g6BUwLZNGATI+qO0Hil4aeNPsXWSDnm+CPjM7zXs1pPvL7wYmGXhZjpm3E78Dat1rXiw30fZqh4yw19HX3cHNwY7Taav7r/xbnR51jTa7da+5ZW1Vx111Va1/8+giBw+mEYtikzSEzWz/BefhqSqgyjEOXDYrqKtIN5RrFBB3ODAoWkPm/8Od3KT8U6ZRrh8RkLFNLn/eyNEWc/Oks503J4h3rTaVMnVasegCG1h3Dx44uqcPWN1zcYf2CKWscvK7+P0oLGPUYBAQF8/fXXnDp1CgMDzShpTp8+nf/973+q/8fExJRY4yi9FUgDxwai3owWEp4Qriyl93HnxPMTBMZlvMhXtqis8gp1qNwhU05PYbKw60JGHxiNf5Q/R54cobdrb9V7ejI9prScwsh6I5l1dhZrPdeyzWsbBx4fYHrr6UxpMUUldJcX7MzKtmquqBqcEe+QRxAzOMv3BJR+k58PP6RLLQe1PDu17ZSG0dPwp6TKU9GV6RaKirRCgMiQTkhIJquGtOnzvjy1o8pz5BXiRZfNXTjz0RmsDJXihy2cWuD5mSedN3XGL8qPkCQfMjcJyUxZ+X2UFjTuMbp9+zYhISE0bNgQHR0ddHR0uHDhAkuWLEFHRwd7e3tSUlKIiorKsF9wcDAODln/xPT19TEzM8vwr6QiVqRpF2mKNDwCPPjx3I80X9Mc2z9sGbZ3GBvubiAwLhAjXSN6VuvJku5LeDrxKT6TfFjeezn9avQrUqMI4KP6H+FgrDxHJhybkOU29ib2rO67mpvjbtLKqRUJqQn8cO4Hai2rxd6He8lrSqE2dQ8vDtLXnx2lff3vIlcI/HHqBjrYZkgyfpd3Q0fq4GTmhImeCamKVJ5FPFO9nl491c+tPC1crAucn3PDL4LgmBTUCXm52rhy9qOz2BnbcTfoLl02dyEsPgIPn3AO3n1NcIQ5Nz69RSunViRLvUkjFIGs+5GVpd9HaULjHqNOnTrh5eWV4bWPP/6YGjVqMHXqVJycnNDV1eXMmTMMGjQIgCdPnvDy5UtatGih6eloHWKPtOLnVcwrTjw/wQmfE5zyPUVUUlSG9+vY1VGV0reu2BoDHe152vur+18M3zucgJgAdnvvZkjtIVlu16hcIy59fIkdD3bw/env8Y/yZ/DuwXRw7sDi7ovVVigu66q56ev/fMttBAQk7zxLloX1p/NWrkC9ELG6oSOJREIt21rceH0D7xBvatnWKsg0Czyf9O1q2tZ8m3P0Sp+mc91RyN+W+juaGzCj13Z2Wcxg791V2KbM+O/3kdkbVRZ+H6UNjRtGpqam1KmTsaeUsbEx1tbWqtfHjh3L//73P6ysrDAzM+Orr76iRYsWalWklWTkCvnbZotiK5AiIykticsvL6uSph+EPMjwvqWBJV1cutDNpRtdXbqqRN60kWF1hjHl5BTexL7ha/evGVxrcLYhWYlEwvC6w+nr2pcFVxaw4OoCzvmfo8HKBnzW6DN+7fAr1ka5J4Rqe/fwwqZ7HUecKp3A70UjdHhrGJSV9WcnV5ATeQkd1batrTSMQr0ZQtaGfkHJT0i0tl1tfm1xmHlHwpCT0dcUFJ3EpG33WfbhAvRS93DaU7PzFSleiqVPwF9//YVUKmXQoEEZBB5LO88inpGQmoChjiGu1q7FPZ1SiyAIPIt4pjKEzvmdIzEtUfW+VCKlafmmqlyhJuWaZGoIqc0s7bGUQbsGERgXqCydrj8yx+2N9Yz5ucPPfNzgY74/9T27H+5m+a3l7Hiwg5/b/8znjT/PVUpAm7uHFzYJqQncilhDksEytva+hrFOuUJfvzYoFKfP4+fDD9U2ivLTkLSmTW305XW5+CQBD6fwQllrfhqpyhUCGy/FZxk2fJuX5A3UQkIi2ZXr5yXnSkQ7EFuCFCHbvbYzYt8ImldojsdYj+KeTqkiJjmGs35nVW033u1YD1DOtJzKEOpcpbMqmbKkUvGvigTEBGBrZEvwt8F5SuS/4H+Br92/Vnkva9nW4u/uf+dZnK+scPjJYfru6Esl80r4fe1X6EUT2qSy7eETrpboIuRP0ND9QSDT9t8h6h0JsMJaa7rnC7IOCb8/77ysPTfyIkpZ2ikJ9+9CKdcXyRox8VpzKAQFnoGezLs0j/Yb2mO9wJoBOwew4vYK/KP80ZPp0alyJxZ0XsD9z+/zavIr1vVbx9DaQ0u8UQTwT89/AAhNCGXNnTV52redcztuj7/Nil4rsDa05mHoQ7ps7kL/Hf3xifApjOmWaI48PQJA7+q9i8Qo+mLLnUzaSfkphdcEeSkzz2tJffpaozLqohbaWvMqBaDJEnuxXL9kIbbcLgLS3eIXnySgL69LfXvRMMpPqCA0PpSTPic54aNMnA6JD8nwfjWraiqvUHvn9hjrGRfmEoqVvq59cbZwxj/Kn2mnpzG24dhc1a7fRSaV8Vnjzxhaeyg/X/iZf278w8EnBzn+/Dj/a/4/ZrSZgam+aSGuoGQgCAJHnr01jAqTnMJW+SmF1wTq5uao29g1neJaa15CwpossT/us5O+9ScjkUi0Jkwqkj2iYVTIZHSL98CBHqxyl1LJILDUJ21mh7qhglR5KtdeXVO13bgTeAfhnUupiZ4JHSt3VFWQVbGsUqTrKG5W9FpB963diUiKYNmNZUxsNjHPY1gaWrK4+2LGNxrP5BOTOelzkt+v/M7Gexv5vfPvjKw3Mk8GV2nDM8iTN7FvMNY1pr1z+0I9ljaqbKubm5MXowiKd63qNlJVZ+32ZvqAhOCYrLcBgTTCWOn1HTHcYljV35l37JlWhElFsqfsXvGKgOzc4hFximJxi2sDuYUKNl+/z6rbqxi0axA2f9jQdkNbfrv0G7cDleXSbg5uTGs1jXOjzxH+fTgHhx3kiyZflDmjCKBb1W64WLoAMOvcLOQKeb7HqmVbC/cP3Tk07BAuli4ExgUy+sBoWqxtwfVX1zU15RJHehiti0uXQpdt0EaV7XS5AsicWlwQuQJtXOv7qLP2n/rW5qe+2W8jQcKwljroyKQcuOfPpO33tSZMKpI9omFUSOTmKgalq1iuKHG57/kmt89EQGD6/jt8dvgL9j3aR0xyDNaG1oyoO4KN/TcSOCUQz888mdd5Hu2d26Mn0yvqJWgdK3uvBCA6OZq/rv1VoLEkEgl9XPvgPcGb+Z3nY6Jnwo3XN2i+tjmjD4zmTewbTUy5RHH46WEAelcr3DAaaK/KdmG06dDWtb6POmvPbZuFfUdyfIQ7Nqmfi/eDEoJYlVZIqFvRUJaqFdT9TGydttGvbk26uXSjoWPDElVKXxzU+KcGT8KfYKJnQsT3EbmW3qtLUFwQM87MYP3d9QAY6xozs81MJreYrPKelOZ8icDYQMr9WU7595RAHEzUaf6Qf9LkCur8vI/EFP0MQpLpFHendk1+13KFQOv5Z3MN0WlLV3p11p7TNuL94C0l4f4t5hgVEiXBVVzUqLvWWa0W0M+tfCHPpvSwsvdK2m9sT1xKHPOvzGdW21kaGdfBxIF1/dbxReMvmOQ+iWuvrjHj7AzWeK5hUddF6Kc245cj2lFWXhgce3YMgCblmhS6UQQw/8o8XnIUW2bwNgVZiTaobKubm6PuWCVJUV2dtee0jXg/KFmIobRCoqS4iosS8TMpHNo5t6OWjTLPYd7leSSlafbi2qR8E65+cpXNAzZTzrQcvpG+jNi2gC+23i7V+RKqMFohV6MBrPdcz6xzs0iUedCvWQiO5hkb/ha0u7w2UhghOm1FvPaVLESPUSGRH6XV0o74mRQeK/uspM36NiSkJDHxwBL6VP1Qo6EtiUTCyHoj6V+jP3Mv/c7m09Xe82koKa6yck2TlJbEKd9TAPSp3qdQj3Xs2THGHR4HwLRW05jX+ZNSHaJ8l7KiqC5e+0oWoseokCisao6SjPiZFB6tK7amhskwyiet5fSt2ny94y7DV1+j9fyzGvXemOiZ0Md5MjLBRmMd1rWR8/7nSUhNoJxpOdwc3ArtODde32DI7iHIBTkf1f+IuZ3mAprvLq/NlIW1ite+koVoGBUiZclVrC7iZ1I4uD8IJDF0JDJsMrxeGKGtspAvcfjJ22q0wlK7fhb+jF7bepGQmkA3l26s6bOm0JW1RYoP8dpXchBDaYVMWXEV5wXxM9Es6TIIQCYvTmGEtkp7vsS7atd9XAsnjBYcF0y3Ld0ISwijkWMj9gzdo7FqQk1QVkJ5RY147SsZiIZREaDJao7SgviZaI6iVhEu7fkSD0Ie8DL6JQY6BnSs3FHj48cmx9JzW0/8ovxwsXTh6IijmOiZaPw4+UWbmtiWRsRrn/YjhtJEREo4RR3aKu35EunVaJ0qd8JI10ijY6fIUxi8ezB3Au9ga2SL+0h37E3sNXqMgqBtTWxFRIoD0TASESnhFEdoqzTnS6S3AdF0NZpCUDD20FhO+pzESNeIoyOOUtWqqkaPURBEtX4RESViKE1EpISTW2gLlKEQTYe2SmO+REh8CNdeKRWKe1XvpdGxp5+ezpb7W5BJZOwZsocm5ZtodPyCoo1NbEUKHzGfLDOiYSQiUsLJSUVYQIEESaGFtkpbvsTxZ8cREGjg0IAKZhU0Nu6S60tYcHUBAGv6rqFHtR4aG1tTlIVqQ5GMiPlkWSOG0kRESgHZhbbkhBNp8Ad1KsqLaWYli/RqNE2qXe/y3sU37t8A8FvH3xjjNkZjY2uK8IRwjvlsV2vbklptKJIRMZ8se0SPkUihU1JdtSVt3plDW/pMvTiYSy8v8tvF31jee3lxT7FYUPd7TJGncOL5CUBzhtF5//OM2j8KAYEJjScwvfV0jYyrKYLigvjT40+W3VxGfEoi5VmLDjZkTqsv+dWG6ZS087owyC2frDSo1xcE0TASKVRKqqu2pM77/dDWHJ1faLehHWs81/B9q++pbFm5GGdX9OTle7z44iKxKbHYG9vTuFzjAh/bK9iL/jv6kyJPYWDNgSzpsURrBBxfRr/kjyt/sMZzjaq3Xn2H+vStZMbmC8o5antj1/xQUs9rTSPmk+WMGEoTKTRKqqu2pM47K9pWaktXl66kKdL45eIvxT2dIiWv32N6NVqvar2QSgp2aXwZ/ZLuW7sTnRxN64qt2TJgCzKprEBjaoLnEc/59NCnuCxx4Z+b/5CUlkSz8s04PPwwnp958kuPgaW22rA0ndcFRcwnyxnRYyRSKJRUV21JnXdO/NrhV076nGTTvU1MazUNVxvX4p5SoZPX71EQBJV+UUHDaBGJEXTf0p03sW+oZVuLQ8MOYahrWKAxC4p3iDdzL89lx4MdKAQFAB2cOzCzzUw6Vu6YwZNVGqsNS+N5XRBKu3p9QRE9RiKFQl5ctdpESZ13TjQt35S+rn1RCAp+PP9jcU+nSMjr9/g47DG+kb7oyfTo4tIl38eNS06g69qJvAiypYJ+B44OP46loWW+xysot9/cZuDOgdRZXodtXttQCAp6VuvJlU+ucHb0WTpV6ZRleK+0NXYtjed1QUiX+CAbgQ8JhSPxUVIQDSORQqGkumpL6rxz45f2yjDaTu+d3A++X8yzKXzy+j2mh9E6OHfId3uOY/df02DOYcJefYht6vfIoqYwfMWzYgnRXH55me5butN4dWP2P96PBAmDag7i9vjbHB1xlJZOLYt8TsVJaT2v84tMKmFUawMElJIe71Ja8skKgmgYiRQKJdVVW1LnnRv1HeoztPZQAGafm13Msyl88vo9FjSMdtwrkAnbPElJNc7welHmrwiCwCmfU7Tb0I4269twwucEMomMkfVG8mDCA/YM3UNDx4aFPg9tpLSe1/lFEAT2+s0mVG8u+nqJGd4rDflkBUXMMRIpFIpLjTm/pJfwBsUkYWWsS0R8apbbleSS5Z/b/8yeh3s4+PgwG65fwVLfOU/5IyWpzDkvjW4jEiO4EnAFyJ9hJFcIfLv3GgK6SN4rcy+K/BWFoODI0yPMuTiHm29uAqAr1WWM2ximtpqKi5WLxo9Z0ijtjY/zivtzd876nUVPT4/jE5oQEmlWIs7rokI0jEQKhdzUmEHChE52WnECZlXCCwICApJ3nKol3cVcw6YG3StM497Tavy0Pwq4C6hXrlzSypxz+v29/z26P3dHISioY1cHZwvnPB/rl1NbiU+yzEL5R0lhlT7LFXJ2P9zN3Etz8QrxAsBQx5DxjcbzbctvNarcXdLJy++htCNXyPn+9PcAfNX0K1ysKuNSNuxBtRFDaSKFRnZqzDJZLKF6c1ly7xOVhkpxkV0Jr5KMF8mS7mJ2fxCI99OWyLDJ8Hpu4Z6SWuac/vuzM9PP8Pr736MqjFYt796iY8+O8eeVtWptq6n8lVR5Kus911NrWS2G7x2OV4gXpnqmTGs1Df9v/FncfbFoFGVBdtcjE8O0En1e55WN9zbyIOQBlgaWzGwzs7ino5WIHiORQiWr0l87yxiarvmKW28imHR8Eqv6rCqWueVUwqs0ihRYGukyu3dtHMwNS7SLOX2tQJ7CPSW9zLl7HUdaVjXFbm5LZIIlR0ZupW218qq5pspTcX/uDkAf1z55GvvG6xsM2T0EOeqFqgqav5KUlsQ6z3UsuLKAF9EvALA0sOSb5t/wVdOvirX6LTu0Lfz67vVok+cB1t//G2sHfbrXuVlscypKElIT+OHcDwDMajtLK38z2oBoGIkUOpkbjVqzfdB2um/pzuo7q2lWvhljG44t8nnlVsIrQUpkQhoO5oYlXv01v0q3pUEhVyaVkCxThpqaVrbMcGO+GnCVqKQobIxsaFa+mdpjPgt/Rq9tvUhITcDVLo24V6HIsM4Qek2noPkrcSlxrLy1koUeCwmKCwLA3tieKS2m8HnjzzHVN83XuIWNtoZf069H1Rz7sfbRF9wJSuVe0D3qO9QvtjkVFX95/MWb2Dc4WzjzZZMvi3s6WosYShMpFrq6dOXXDr8C8OWxL7n95naRz6EslfDmd62l/TNKD6P1rNZTbWXq4Lhgum3pRlhCGE5mTjwJf0SE3iokmXxxBctfiUqKYs7FOTgvdubbU98SFBeEk5kTS3ssxe9rP75r9Z1WG0XaHn61MbKhf43+AKzzXFe8kykCQuJDmH9lPgBzO85FX0c/lz3KLqJhJFJsTG8znT7V+5AsT2bQrkGEJ4QX6fHLUglvfteq7n4vYu4jCNnVH2ov6fpF6uYXxSbH0nNbT/yi/LA2tCYgJgCAb9q1Z/mHjTTSSiM0PpSZZ2ZSaXElfjj3A+GJ4VS1qsqaPmt4Puk5E5tOLHYl7ZzILfwKyvCrXFH8v5dPGnwCwBavLSSnJRfzbAqXXy78QmxKLI0cG/FBnQ+KezpajRhKEyk2pBIpmwZsosnqJjyPeM6IfSM4NuJYkfWUKkslvPlda277CSiQE87XZ8eyx6cVv3X8jTaV2hTGEjJR0PyVZ+HPeBL+BB2pDl1duua6fYo8hcG7B3Mn8A7GusaEJyoN+RmtZzCn4xwkEglda+e/lcbrmNcsvLqQVXdWkZCaAEBt29rMbDOTIbWHoCMt3su1up93SQq/dqnShfKm5Xkd+5pDTw4xpPaQYp1PYfE0/Ckrb68E4I8ufxS4F2BpRzSMRIoVCwML9g3dR/O1zTnpc5Ifz//InI5ziuTY75bwvk0lTkf5/9JSwpvfcuXc95PSuk4QB/x1ufTyEm03tKV71e7M6TCHRuUaFdp6NJG/ku4talepHeYG5jluKwgCnx76lJM+J9GV6hKfGg/ArDaz+KXDL6q2Gpnz6XLHL9KP+Vfms/7uelLkKQA0cmzErLaz6OvaVytuYrl93mmKNB6EPODG6xscvPsaaJrrmNoQfpVJZYxxG8Nvl35j3d11pdYwmn5mOmmKNHpV60WHyh2KezpaT/GfcSJlnrr2dVnTZw0Av136jUNPDhXZsbvXcWTOQGfSCMvwur2Zfqkr4c2uXDm3cE9O+60Y2ZAdI6fxfNJzxjccj45UB/fn7jRe3ZjBuwbzMPShxtehqfyVI8/+C6OpIeo4/cx0Nt/fjAQJqQql+OfstrMzGEV55XHYY0YfGE21pdVYeXslKfIUWldszfEPj3Nz3E361+ivNUZRVp93YHQin2+5TaMlYzGbZ0aDlQ347MhnnHmxX61xtSVEPcZtDAAnnp8gIDqgeCdTCFx5eYV9j/YhlUiZ33l+cU+nRCARSmBiQExMDObm5kRHR2NmZlasc1HHvaxtJavaytfHv2bJjSWY6Ztxa9wtqllXy9c4ef28N97dyJgDn1DBoB0R8XIalq/K+fFrSu13lN/fozr7+UT48NOFn9h6fysCAlKJlFH1RvFjux+pbFlZI3NvPf9stqGa9JDg5akdVXOLT4nHZJ6y/1nc9DiM9YyJTorG5g8b0hRpPPvqGVWtqmZ7zKXXlzLJfVKG135s9yM/tf8pX2u4F3SP3y79xp6HexD+88F1qdKFWW1n0bZS23yNWVjIFQItfz9NcExKlu+nh1JfG4zFzMCEJuWa0KRcM45fbUFUQta/qfe/I224Prbf0J4LLy4wp8McZrYtPdo+giDQal0rPF558GmDT1ndd3VxT0mr7t/ZIYbSCoA67nxtLVnVRv7o+ge3A29zJeAKA3cN5NrYaxjrGee+4zvk5/M+7XcaJApSdLxJ0Anh42ajS61RBPkL96i7n4uVC5sHbGZqq6nMPjeb/Y/3s/HeRrZ5bWNcw3HMbDuTcqbl8jt1jeWvnPA5QZoijRo2NXI0inZ77+Zr968zvPZTu5/4sf2PeZ77tVfX+O3Sb6oQHkBf177MbDOTpuVzDz0VBSnyFO4F3ePaq2uc9D3Jbf9Y9GK+y3Z7CVJ0sGVH35sMaeCm8nC1cwj8L0Sdi+q4llwfxzYYy4UXF1h3dx3T20zXCk+dJtj3aB8erzww0jXi5w4/F/d0Sgyl49svBtRx55eEklVtQk+mx+4hu3EwceBByAPGHxmfp0qn/HzegiBw2vc0oCxn1ZHqqEp4RfJPHbs67PtgHzc+vUFXl66kKlJZdmsZLktc+P7U9/muQNSUfIA61WgX/C8wcv9IlVcHlP3m8mIUCYLAef/zdN7UmRZrW3Dk6REkSPig9gfc+/weB4cdLDajSBAEnkc8Z8v9LcqQ3pJqGP1mRNM1TZnkPokjT48QnaDe+Wcgtc9gTKgTttWm6+OgWoMw1TPFN9KXiy8uFtlxC5NUeSrTzkwDYEqLKQV6IClriB6jfKCOGvBPh7wBSYlVDC4uHE0d2TV4Fx03dWSb1zaalW/GpGaTct0vvwrND0IeEBQXhK5Ul1RFKp2rdMbKsORXoWkLTco34cTIE1zwv8DMszO5EnCFP67+wYpbK5jSYgqTW0zGTF99d7omJBbkCjnHnh0Dss8v8gr2ot+OfqpkaIBfO/zKrLaz1Dq+IAgcf36c3y79xtWAqwDoSHUYVW8U01pPo7p1dbXG0SRhCWHceH2DUz6nuPDiAo/DHpOYlpjt9npSPSpZWZAQnPvYWX3eWanep4fJtE1R3UjXiOF1hrPqzirWea6jvXP7Qj9mYbPy9kqeRzzHztiO71pm7/UTyYxoGOUDddz5QTE5a2JoU8mqttGmUhsWdlnINye+YcrJKTR0bEjriq1z3Ce/IZZTvqcA0NfRJzUllaG1hmpkDdqENuRwtHNux6WPL3H8+XFmnJnF4zdpLDhzlmVXTjGlfX++avpl9to8UQHwn4epqYFAO9PXhMelqG6qkYIpb97p/+aYi8TCtVfXCE8Mx8LAglYVW2V6PyA6gB5bexCdHK167beOvzGjzYxc16kQFOx/tJ/fLv2GZ5AnAPoyfcY2GMv3rb6nkkWlXMfQBImpiXgGeXLO7xynfE9xP/g+kUmR2W4vk8hwtnCmRYUWdK7Smablm+Jq44ogSGg9/2y+JS2yC79qY0n/Jw0+YdWdVex5uIelPZbmWqlYlOT1HI5JjuHnC8rQ2U/tftJaIVBtRTSM8oEmy0y1oWRVG5nUbBLXXl9jx4MdDNk9hDvj7+Bomn3OQX5DLOlhtLiUOHSluqUujKYtORwAEokEaXIDDCL/wCHlv/mkwpLDofx9YTCzuvRmbMOx6Mn03u4UFQD/NIL/xPdkwEaAd0R7kwRdOiYv4jVWSNSQWEgPo/Wo2iOTNlBEYgTdt3bndexr1WtzO85lepvpOa4tTZHGjgc7mHd5nqoSz0jXiC8af8GUFlNy/O0WFIWg4EnYEy68uID7c3duvbnFm9g3GUKA7yJBgqOpI43LNaZrla60cGpBHbs6GT/3txsXSld6bVRUb1q+KbVsa/Ew9CE7vXcyvtH4Ijt2TuTnHJ5/eT5hCWG4WrvyacNPi2qqpQbRMMoHmiwz1ZaSVW1DIpGwus9qvIK98A71ZuieoZz96Cy6Mt0st89PiCU5LZkLLy6o/t/FpUupaqqYnsPx/u0xPYejqOUIspuPDjYIMV8w5fBc/rj6Bz+1/4kP636oFPpMCFcZRdlhIEnFUhLLS0EgUm815WyXA9mvK7sy/cTURPrt6JdBYuD3Tr8ztfXUbMdKTktm071N/H7ld3wjfQEw1zfnq6Zf8XXzr7Exssl23/wSGBvIlZdXOPrsKB6vPPCN9FVJCGSFtaE19ezr0aVKF9pWaksDxwYY6Rqpfbz0fKH3b84OBTCwtVF1XiKR8InbJ3x76lvWea7TCsMoP+fwq5hX/HntTwDmd56f7TVTJHtEwygfqKMibG+mD0gIjin9qsqFhYmeCfs+2EeT1U24/PIy35/6nr+6/5XltvlRdvZ45UFCagI6Eh3ShLRSFUbTthyOnOaj9GEI2KZ9jl/kx4w+MJrfL//Orx1+ZaBFlUz9x7Ji3oC6/Oq/jD2PrjLjzAyOjDiS5XYvol/wIOQBMomM7lW7vzM/OSP2juDyy8uq1xZ0XsB3rbLOzUhITWDNnTUsuLJA5V2yMbJhcvPJfNnkS42FYeJS4rjx+gZHnx7lwosLPAl/QlxKXLbbm+iZUMumFu0qtaOLSxcal2usEWM/p3yh/KCOorqtiW6RXx9H1R/FtDPTuP76Ot4h3tS2q12kx3+X/J7Ds8/NJiktidYVW9PXtW9RTbdUIRpG+SBdDfjz/8pR30cAfuqrPKE07YIua1S3rs6m/pvov7M/i68vpmn5pgyvOzzTdvlRdk4Po6UJaehKdelXo1/hLaSIUTeHY/ze+bSvXp6atjWpYVMDEz2TYpkPSJAorJnU4G82P57No7BHDN49mBHWtdiqxvj1Kpjzm8uv7H+8l6PPjnLxxcUsNYGOPzsOQKuKrVRJ9oIg8NWxrzjw5IBquz+6/MG3Lb/NtH9McgzLby5nkcciQhNCAShnWo5vW3zL+Ebj8ywv8S5pijS8Q7w58vQIZ/zO4BXiRVhCWLbb68v0qWpVlZZOLelZtSfNnZrjYOKQ7+PnRn5lHrIbK7vzNf22H8Bf3A+2p4FjA40cUx3sjO3oU70P+x/vZ53nOhZ1W1Rkx36f/ORh3Q++z4a7GwBY2GVhvsVHyzqiYVSIpLugfzjoRWjsW1d3QVzQZZF+h0MIzwAAXw1JREFUNfoxo/UM5l6ey6eHP6WufV3q2NXJtF1eXf7pidcA3ap2w8LAotDWUNSom5ux4/5x1j18W57sZOakNJKsa1DTtiY1bWpS07Ymtka2BbrIqjuf4Jgkjn94nGPPjvHntT95FPYYUM9Yq25dnXENx7Hi9gqmnp7K1U+uZprz8edKw6hP9T6q1+Zemsvy28tV/1/UdRH/a/G/DPtFJEbw97W/WXJjCVFJUQA4WzgzrdU0xriNyXOnckEQCIgJwP25O8efHedO4B1exb5CISiy3F4mkVHRvCJNyjWhZ7WetK3UFmcL5xJ948vufLU30yfZaCv3ok/SadNNTn90moaODYtsXp80+IT9j/ez+f5m5nWel3XuVRGQnzysqaenIiAwpNYQmlVoVlhTK/WIhtE7qJv5n+7izI53XZzd6zhibOxLr7ULsNKtzg8dv2BUC2f0dEQJqbzwS4dfuPHmBqd9TzNw50BujruZZbgi3eX/8e7f2PvgFH1qtmPrsJ8zfY+RiZHcenNL9f/SFEYD9XMzerm2ISRNwuOwxwTHBxMQE0BATAAnfU5m2M7K0EppJP1nKNWwqUFNm5pUsqiklhieuvM58GwTO32/o0m5JsxsPROC7oH3MbX2BZjdbjab7m/i2qtrHHh8gAE1B2R4P12jJj2/aL3nemade1uC/2fXP5ncYrLq/0FxQfzp8SfLby0nLjkBfUVtqpp0Z6RbH6Z2GIyBrno3zeikaM74neHw08Nce3UNv0g/kuVZ505JkOBg4oCbgxtdq3Sla9WuuFq7Fllz5aIkuxBdXEpTum99wrVX1+i8qTOnRp0q1N57GeZUtTsOJg4ExQVx9OnRTL+hdAq72jOveVinfU/j/twdXaku8zrN09g8yiJiS5D/yEvmv4dPOMNXX8t1zO3jmhOdmMLUfbeITnh78xCVr/NHWEIYjVY14mX0S/q59mPfB/uyvSlvvb+VkftH0tKpJVc+uZLp/X2P9jFo1yBAKSwZ8m2IVpXnFpT01hm55Vy92zojIjGCx2GPeRT6iEdh//0LfYR/lH+2FU6GOoa42rhmMpqqWVXL4EVRZz7mRgIVq63h+POjpCnSAGgq1ee6XA1vzPgLUM4NgFlnZ/Hbpd+oYVMDry+8SE5LVrUEAXCxdOHZV884/uw4vbf3Vq1tcbfFfN1cqXL9Mvolf1z5gzWea0hKS8JQ3gJ7+UQE+dvfSHbncYo8hRuvbrDv8T4uvbzE0/CnxCTHZDt1K0MratnUokPlDvSu1hs3R7di81JoEzHJMXTf0h2PVx5YGFhwatQpGpdrXCTHnnZ6GvOvzKd39d4cHn440/tFUe2Zl3NYIhFotKoRd4PuMqnpJP7u8bdG5lAYlISWIKJhRPaZ/+m2//uZ/wfvvubrHXdzHXdsK2fWXUm/qbx9kshuXJHcufXmFq3WtSJFnpJjGfXD0IfUXlYbY11joqdFZ3ra/uLIF6y4vQJQhlUODS+6xrVFRfrvGrLOuVL395eYmsiT8CeZjKan4U8zCCC+i0wio4pllbfhOJuaxERX4c/jMbnOJyQ+hG1e29h4byOSwPvcUSeU9o5hFJ0UjcsSF8ITw1nTZw3D6gzLYBh90+wbhtcZTqv1rVQG2N/d/2ZSs0k8j3jO75d/Z9O9TapKr/rmo4kKGgzvpYGn/29mX3uC005wxu8MD0IeEJYQlq0haaJnQjWrarR2ak3fGn1pUaFFgfKSSjuxybF039qdqwFXsTCw4OTIkzQp36TQj/sk7Ak1/q2BVCIlYHJABtXovN4vCoL7g0A+33IHAQWSdxpVvH+szfc289GBjzDTN8Nnkk+hVENqCtEwKiQ0+cHmpymluh4jK2NdIuKzLqPNalwR9VhzZw3jDo9DKpHi/qE7XVy6ZNpGrpBjOs+UxLREHn/5GFcb1wzvV11SFZ9IHwA2D9jMyHoji2TuRU1hPtmmKdLwi/RTeZYeh781nLLzkBjKW2Cb9gUSxdtqIytjCd/1qMywRjUy5cw8fHaSatuGoSvIs51HIgJz6g3gyy7zVDewPz3+ZMrJKZQ3Lc/dz+5iu9BWtf36vuuZcGyCSvV5cbfFdK7SmbmX57LjwQ5Vnk8H5w5MbzWDH3ZLCMrm+vBuE1UkGfOD9GX6OFs407R8U3pX702XKqVLDqKoiE2OpcfWHlwJuIK5vjknR50skjYqrde15krAFeZ1mse01srWGvm5XxSUnutmcP9pdXR4+xt+9xxOSkui+tLqBMQEZJirtiIaRoWEJj/YvITF0jP/1XFxWhnrER6f9dN0duOKqM+4Q+NY47kGa0Nrbo+/naWicIu1Lbj26hrbB21nWJ1hqtf9Iv2osqQKoGx7EPp9aJ7aUhQVmsphKGrla0EQCIwLfOtdesfLFBQXBIIUfUVtZIIlckkkyVJvkCiwMLCgps3b/KV0b5OzRAdFfCgeAVc5/PQIF15cUHl6JEgIRUGARMBAx4CJTSYytfVUTPRM6LCkGskxb5jQZALLbi4DwFDHAJlUh7iUOMIQGNT8a15Ev2D/4/2q+fes1pOZbWbSwKEBSy65s/xk7mGtUP2Z2FhE0sCxAd1cutHPtR/lzEpubyptUEt/l9jkWHpt68Wll5cw0zfj5MiThZ5cvN5zPZ8c+oRqVtV4MvEJEokkX/eLgpCQmoD9QnvikhNY3f0stgZVM30fC64sYOrpqVQwq8DTiU+zV5DXEkqCYVTmk6/zk/mvTqlpP7dyrLvir7Hji2Rkac+leAZ5cjvwNoN2DeLyJ5cx0MmYrNjAoQHXXl3DM9Azg2GUXqYP0KNaD600ijTp6dFkmbU6SCQSypmWo5xpOTpV6ZThvaikqCzymBLwi/IjKikKj1ceeLzyyLCPgY4B1a2rK42lSq0YX3covhG+yu7vgbdV2yWlJbHQYyHLby3nlwbjuBSXgA4mcHMTn6aH49LStzYhGah27W8CJMozuG3FtlgZWvEg5AEdN3YkWZ6MUVpbbPk+1zVv63+Ufg3K5/cj0yq0SS09HVN9U459eIxe23px8cVFum7pyomRJ2heoXmhHXNI7SF8dfwrnkU840rAFVpXbF3kit2HnhwiLiWOypaVGdusbSaPanhCOHMvzQVgToc5Wm8UlRTKvGGUXwXW7EpN9fUS+Xtoa8wN9dQyjETl6/xhoGPA3qF7abSqEbcDb/PVsa9Y3Xd1hm0aOCj1T9J7VqXzbpn+0NraV42mbYrVmsTCwILmFZpnuqElpSXxNPxpJqPpSdgTktKSuB98n/vB9zPsI5VIcTJzQk+mR2BsIAlpCQDEp8az5foS/pdLbpI+YIOENxIpckHOxZeZu6rLJdn3F3sXO7PScR5r82/PRM+EoyOO0ntbby68uEDXzUrjqIVTi0I73ge1P2Dd3XWs81xH64qti1yxe8v9LQB8WPfDLKUZ5lycQ3RyNPXt65fadIDioMwbRvlRTE4nvdT0qk8wPTYNI00SQVNnK7rXGYJcIeR7XBH1qGRRia0DttF/87dsu/kUe71N/Nx1lMrFnC4MdyfwDoIgIJFIkCvkqlJ0XaluBj0bTVDQEERBFau1LQSiLgY6BtSzr0c9+3oZXpcr5PhH+WcIyT0Oe8yjsEdEJUUREBNQ4GPL38tf0pPpUc6kHC0qtKBf9QEsPKxDWGxajir3tcvrE58SX+C5FCdyhcCPh7y1Ri09K1TG0fbenPc/r/IctXRqWSjH+6TBJ6y7u45d3rv4u/vfBbpf5JXQ+FBO+JwA4MN6H2Z63yfCh39v/gvAgi4LNCPn8E7D5iwxsgYLp4IfR8sp84aROmGxnBSqZVIJbao5YGKu1IF5GVMpw7g5VRSIytcFQ+nyl2GfotTs2HIejt9y57f+bnSv40gduzrIJDLCE8N5FfMKJ3Mn7gbdVXVN71mtp0a7ThckBJEu+Lf55nUCo7PvY5VT13FtDIEUFJlUhouVCy5WLhl6mwmCQHB8cJZ5TG9i3xTomCnyFPyj/fGP9me793ZlwjgzACHDeSygQEDC/aTZmM/3yH7AEoK+vC4OKdnr3xRHx/usMNYzVnmOzvmfo9uWbrh/6E6riq00fqyWTi2pbl2dp+FP2f1wN580+KRQmupmxS7vXaQp0mjk2IgaNjUyvT/z7ExSFal0delKV5euBT7e+w2bs0RHHybeLvXGkagyyNuwmIN5RvdnGmF82hG1birOFs6AUhAuPZ+9ex1HvulmhJyMFriDuUGJDodoA+ku//erQ8Li5Hy+5Q7uDwIx0DGglm0t4G047V3hwnfzjgprPukhCPcHgRleT05LxiPAg0VXFzF412Aq/FWBSosrMffCP2od7/0chrwev6QjkShFEDtU7sCEJhNY2nMppz86zev/vSZqahSbBmzS2LESZR6E6s3NdB7LCSdUby6JspJvFAHIBPUq5rQhL9JI14gjI47QsXJH4lLi6LalG5deXNL4cdIbywKs9VwLZH+/0PR1fYuXMoyWVYjsxusb7PTeiQQJCzov0Mjx1GnYTFpyzh6lUkKZ9xil874C6/6nG9j4cDbrH1dmSsdOmRJ736eGTQ2uv75OsjyZ6ORoVXsJB9tgXhuMRV9Rm0b2HVjYfXaJCW9oKzmFmyT/Pcelu/wbODbAK8QLz0BP+rr25cDjAwDoSHUydVcvjPmkhyBmH/IiWrjM9TfK5OI7gXcyaQDJJDJcbGyJUcOGeTeHQdsaxhY35gbmmNvmrfmni6ULPav1pFe1XjSv0BwdaeZLo1whcPtFFKGxKdia6tGokgUy6RBNTbvYueEXycfr7+W6nbbkRRrpGnF4+GH67ejHad/T9Njag2MfHsuyR15B+Kj+R8w8O5OrAVd5HPaYGjY1VPeLQ14PGblnAshi8J5yFWM9zSQ/+0T4cO3VNaQSaaYHOEEQ+O7Ud6q51Xeor5FjirxFNIze4d3qnY41J3Hq1TJ8In1YeHUhs9rOynFfV+u3OjmvYl6pDKNXMa9AoiBZ5kUTl45iab4GUKchabrLv4FDAzbd24RnkCcJqQmqKqYOzh001jBVnWaPITGpjN79K8kyL9Xrtka2tHBqQYsKLWjp1JLG5RqjLzNUS+22ibMlEYkRBEQHcObxSwKjs3f+aksIRJvxifRh6Y2lLL2xFGtDa3pV70U/1350dema4XfSwbVwmuxqA22rGeFo/qRE5UUa6RpxaNgh+u3oxynfU/Tc2pOjI47Szrmdxo7haOpIz2o9Ofz0MOs91zO/y3xAeb/oX68WRicfEpYQxoOQ+xqTENjqpWyd3LlK50yNgQ8/PczFFxcx0DHg1w6/auR4IhnReCht3rx5NGnSBFNTU+zs7Ojfvz9PnjzJsE1SUhJffvkl1tbWmJiYMGjQIIKDgzU9lQJhqm/Kwi4LAWWTyRdRL3LcvoplFdXfAdEBWf5d3bq6hmdZNlHXlX/8yZUMlWmXXlxSJdqmu8fziyAIPAp9xPKby5l64je19nExb8AXjb9gU/9NPP/qOcHfBnNw2EGmtZ5G20ptMdI1UuWmZXNUBATCdVZgPt8U6wXWuK1044czC9U6vjaEQLQNyTtq1oY6hhjpGhGeGM6me5sYtGsQNgts6LWtFytvrSxw7pK28+5v732/ojbnRRrqGnJw2EG6unQlPjWentt6ct7/vEaP8UkD5fVi472NpMrfivZKJBKalFMqcd98c1MjxxIEQVWNNrJuxjBamiKNqaenAkoFdyfz0p3rU1xo3DC6cOECX375JdeuXePUqVOkpqbStWtX4uPfVmxMnjyZw4cPs3v3bi5cuMCbN28YOHCgpqdSYIbVGUa7Su1ITEvkfyf/l+O2GQyjdypl3v37Xa+SSP5R15X/7+25qqf9l9EvWee5DlCGrHq75i2MJggC3iHeLL2+lC6bumD2uxm1ltViwrEJ3Ag6nfsAwJr+f7Ks1zKG1RmGjlSHKwFX2Oa1jfmX5zPx2ET6bu9Lg5UN+PBYHYL1fiON0Az7pxFGiN5cniXsISFVWZpua2SLi4168v/aEgIpEoyslYmiOZD8nzgkgLGuMYlpiSSkJmBlaEW7Su2oYlmFZHkyx54d4/Ojn1P+z/I0Xd2U3y7+hlewFyVQGzdXiip/RtOkG0fdq3YnITWBnlt7cs7vnMbG71WtF3bGdgTHB+P+3D3De5o2jG69ucWziGcY6hjSv0b/DO+tvbOWx2GPsTa01nqF65KMxkNp7u4ZfzQbNmzAzs6O27dv07ZtW6Kjo1m7di3btm2jY8eOAKxfv56aNWty7do1mjcvPMGuvCKRSPin5z+4rXBj36N9nPQ5mW32v4uVi+pvv0g/1d/vGkba7DEqSWXeuZXMCigQJJEYy2/x++7h9DZx4nXsa4Ken6CBIKWObW1Mwp7nWHqqEBQ8DH3I4SeHOfLsCJ6BnqoWEu+TIn0I0khQWJD5WVs5Iz3dBCaf68Orgy8JjAtUtZ3IFpkHMWbelDNoi5V+ZcqZG1O3ghHOFp/hZD4HJzMnKphVwFDXUO1mk9oUAil0LJyU1TPvJIrGpsTSaVNn0hQKHA2a8mWrRXQLvsTaB9OJT42nvGl5FIKCwLhALry4gJ2RHd+1/A5jPWOOPzvO9dfXufnmJjff3GTWuVlUtqhMX9e+9HPtR5tKbbLMSyqJZNfxXluvB+kY6Biw/4P9DNw5kOPPj9NrWy9VgnZB0ZXpMqreKBZ5LGLd3XX0cX0r85Heu+3ma80YRuneov41+meomo1LiePH8z8CMLvd7FLV9FrbKPSWIM+fP6datWp4eXlRp04dzp49S6dOnYiMjMTCwkK1XaVKlfjmm2+YPHlypjGSk5NJTn6bLR8TE4OTk1ORSYpPdp/M4uuLqW5dHa8vvLLsfC0IAkZzjUhKS6J/jf7s/0DZYsDuDztCE0LRl+mTMDMh227wxUlJLPPOrkEq/7Xv1Nf7iXvSpxhmaaj8xzulpwpBwd2gu+x8sJMTPid4FPYo2wap6T2wXCxdMDcwR0DA540pIa/7ImRR0g2STNVLejI9KphVoKJ5RZzMnHAyc1L+bf7277xc+DTVMLa0M2DDz9x8XClD3ylLYwiS/kNQmjvGusYMrT2Uc/7n8I/yB8DOWGkgDawxkDN+Zzj09BCnfE6RLH97TbI0sKRntZ70c+1Ht6rdtFJNvayQlJbEoF2DOPbsGAY6BhwefpjOVToXeFzvEG/qLK+DjlSHV5NfYW9iD0BwXDAOixyQICF6WnSBJEDSFGmU/7M8IfEhHBl+hF7Ve6ne++n8T/x84WdcLF14+OXDLO9DBeLNXVilRm7WOw2b80NJaAlSqIaRQqGgb9++REVFcfnyZQC2bdvGxx9/nMHQAWjatCkdOnRg/vz5mcb56aef+PnnnzO9XlQfbHRSNK7/uBIcH8zvnX5nauupWW7nvNiZF9EvqG9fn7uf3yVFnoLBHAMEBGrZ1sJ7gnehzzWvFGWnaE2TnUE3uo0xJ26NYH9U7mWlc2p2YXOoF76Rvqr+W++jJ9NDT6ZHmiKNpLTs83QM5S2wShmf4aarpxtPQ1dfWlQ1zGD02BrbatxILokGblHytlO5kCG3KF2Pxr7CIW6ErwJgdP3RNC3XlIUeC/GLUnqAbY1s+bblt0xoMgEJEk76nOTQ00MceXqEsIQw1Xh6Mj06OHegr2tf+rr2pYJZhaJcpghKOYxBuwZx9NlRDHQMODTsUJbNpvNK8zXNuf76On90+YNvW36rer3iXxUJiAng/OjzBUr8dn/uTo+tPbAxsuHN/96gK9MFIDA2kGpLqxGfGs+uwbsYUrsQqiGLSMeozBtGX3zxBcePH+fy5ctUqKC8OOTHMCpujxHApnubGH1gNMa6xjye+DjLi127De24+OIidkZ2BH8XjH+UP5X/rgzAoJqD2DN0T5HMVV0Kq1N0UYblsjtWwksPjNZ1z3X/hsThKcklrPUeVoZWbz08Zk44mb/9u5xpBQLDjQiPTyuWEERJCokWJer+1ru1uMKvF39GISioZVuLrQO34hnoyZxLc/CN9AXAxsiGb1t8y5dNv8REzwS5Qo7HKw8OPj7IwScHeRbxLMPYDR0b0s+1H/1c+1HPvl6WrR1ENE9yWjJDdg/h8NPDGOgYqBK0C8Lq26sZf2Q8NW1q4j3BW/VdDtw5kP2P92cymPLKyH0j2eq1lYlNJrK051LV658d/oxVd1bRrHwzPMZ6FN5vqAiUr0uCYVRoQfGJEydy5MgRLl68qDKKABwcHEhJSSEqKipDKC04OBgHB4csRgJ9fX309XNOpCxsRtUbxarbq7gScIVvT37LjsE7Mm3jau3KxRcXiUiKUCoZR2t34rU6ZeZ5LfMuSq+FIAhEJ0dibhZMojQIv7ggPK4HERQXhEHoE37Jx5iGOoZUNK+YpdGT7vEx1jPOcQyXYkzl+X975xkeRdU24Ht303sCCUkooffekaqAgFRBkSahKEVERD59wYbii4goiq+CiEBQqnQIndCllwCBEELoKaSQkN525/uxySZL2ibZZHfDua9rL8jMmTNnzs7Oeeap5V0w1lTQ9V7vU30aPcZ2Y9TWUdyMuslLK1/i19d+JfC9QNYHrOe/J/5LSGwIs/1ms+j0ImZ1msX77d+nS40udKnRhUWvLuJW9C12Be1iZ9BOzjxS56y6HH6Zucfm4uXopdEkdffqrtEICPSPpZklm9/czPAtw9kVtItBGwaxc8RO+tTtU+I+32r6FjP2zyAwOpBzoec0Nf/aebZj+63tpXLATkxPZPsttQtG7hIgN6Nu8ueVPwH44dUfylawdqpe4bNa64LeBSNJkpg+fTrbt2/n2LFj1KpVS2t/mzZtMDc3x8/Pj2HDhgEQFBTEw4cP6dSpbIoB6oNsR+w2f7Rh041NTG4zmZdrvazVJrvOU6Yqk7jUOHUOoywaVDYuwShTlcnB22d1aqtrmLe+ClAmpicSkRih9XmS+ET9/yTtbRmqjHz7aCXJmVdEEVGA2V1mY129o0YAcrZyFm/0FZDiVEUf3LIH/lP8eXv72xwMOcjEXRM5cu8Ivw/4nTHNx7D+ulpACn4azKdHPuWHMz9oBCQHSwcaVm5Iw8oN+aTzJ2pfkdu+7AzayaGQQzx49kCTL8nR0pF+9foxuMFg+tXtJ5xpywCNcLR5ODuDdjJ442B2jNhB37pFa5Pzw8HSgTebvMlfV/9i1ZVVOYKRHhywd97aSXJGMnWc69Chak4+pNmHZ6OSVAxpOIQuNbqUuH+B7ujdlPbee++xfv16du7cSYMGOcKAo6Mj1tbqrKBTp05l7969+Pj44ODgwPTp0wE4ffq0TucwpCru/b3v89uF32js2hj/yf5ab3yH7x6m999qO/bVKVfZf2e/JufEmYln8lQUNwTXn1zHx9+HddfXERfvVmhtpGw2vNuxSC2ELqYKV3tzfhnrSGTykxxBJx9hJymjeMU4na2ccbdz1/q0UEl4n1tV9MGldCQUmAZnQmIYuaLoF4Hc97pKUrHw1EK+OPoFSklJ/Ur1+eeNf2jh3oJMVSYbAzbyzYlvuB1zG1Dfhx91+ojp7afnK+QkZyRz+O5hdgXtYvft3UQmRWr2mcnN6FGzB4MbDGZg/YF4OXnp6coFoK5/N2LLCLbf2o6FwoLtb23ntXqvlaiv4/eP02NND+wt7AmfFY6thS1xqXE4L1SXVIn6OIrKNrql0MhNv3X92H9nP192+5KvX/5a61wKmYIb790wuhfskmAKpjS9C0YFvW2vXr2acePGAeoEj7NmzWLDhg2kpaXRp08fli5dWqAp7XkMObGxKbE0+LUBUclR/ND7B2a9NEuz727sXer8og7b3zViF3uC97D80nIAYj6JwcU6x8ZSnr4gUUlRbAjYgI+/j6ZmGICrtRsuSUtJTcs/v01xfIx0XXgiLOZoZX8uCBtzGzzsPLSEnSq2VfIIQG62bljml6+mnCIsBKZBUSkNQMLF1oIvBjTB3UH793jq4SlGbBlBaEIolgpLlvRdwqQ2k1BJcPZuFDtvHmP77TXcSdwPMhVOVk7M7DiTGR1mFKgFUqqUnA89z84gtV/SrehbWvtburdkUP1BDG44mFburYQWUw9kKDMYsXUE2wK3YaGwYNvwbVpRX7oiSRL1/lePkNgQfAb74N3SG4D6/6tP8NNg9o3eV2yN1JPEJ1RdXBWlpCTo/SDqV6qPSlLR4c8OXAy7yNS2U1naf2mxx2qMvJCCUXlg6IlddWUVE3dNxM7Cjtvv38bDXm0eylRlYvGNBRIS3/X8jgMhBzh6/yi25rYkfpqoOb48/HDSlensDd6Lj78Pe4L3aCKuzOXmDGwwEO8W3vSr2w+/wGi9hHnv9A9lxkb/ItupHFbi7vq4QEHH3c6dKnZVSl+uQ0fB6L+NevPZ8M1i4XkBKCilQXZKhdyRas//HqOTo/He4c3e4L0A9Pb8P55FvcqT+JyUDo42KlKs/yY4eTMATlZOfNjhQ2Z0nKEpEVQQt2NusytoF7uCdvHvo3+18lxVc6imEZJ61Oyh/zDtF4gMZQYjt45ka+BWzOXmbHtrW4lqJs4/MZ/Pj35ON69uHB93HIDR20az/vp65vWYxxfdvyhWf7+c+4UZ+2fQvmp7zr1zDoCNARsZuXUkdhZ23Jl+R5MewNQx9PqtC0IwKgEqScVLK1/iXOg5RjcbzdqhazX7HL9zJD4tnrebv82/j/7lbuxdGlRqwK331W+EZRkeL0kSVyKu4OPvw/rr64lJyYkuaOvZFu8W3oxsOpJKNtpmMX0IaiUxVZQpOoSepiDRgEQ6NBnGpjc2GWWOKYF+ye9ez8599XwIP2j/HlWSisVnFvP1gZ24pP0nq03eY8Z0S2Hb/bncjLoJgKOlIzM6zODDjh/ibF10BfuopCj2Bu9lZ9BODoQc0GQ5B7C3sKdfvX4Mqj+I1+q9plN/Am0ylBmM3jaazTc3Yy43Z+vwrVoJG3XhcfxjvH72QiWpuP3+bepVqsfPZ39m5oGZDGqgdvIuDh3+7MD50PMs6buEDzp8QFpmGo1+a8S9uHslErSMGUOv37ogBKMScjHsIu1XtEeSZPz+6iHcbRrgZm/F276dCIkLpnP1zlx9cpXE9EQG1h/IrpG7yiw8PiIxgrXX1rLm6hoCIgM02z3sPBjTfAzeLbxp4lZ4tfHSmvZ0zb5c3GsrFXGPSIh7QHcftebIb+xhxmwbQ3hiBADRSDySqUfbu1ZvfEf7irfxF4Dsez3iWQrf7AnkaVL+iTzzu2eVKol28/cRk6TSEqSeP+bEJz3Yfmsr847P40aUOn+Zg6WDRkDKbVbPPabnf3+pman43fVjZ9BOdt/eTUTWvQvq0jbdvLoxuMFgBjUYRC1n7UAXfVORUkFkKDMYs30M/9z4B3O5OZvf3MzghoOL1cdr615j3519fNrlU+b3nM+ph6fourorHnYehM3Sva7e7ZjbNPi1AQqZgtCPQqliV4WfzvzERwc/wsPOg+DpwUVGwpoSxrB+F4UQjErBEJ+vuHirplZCP4VZAuHyX3BzCePBM3Xh2c+6fMZ/e/5Xr1qV1MxUdgftxueqDwfuHNAUR7VUWDKk4RC8W3jTu07vci1TYIzZl7OdF70cvbj/4X3mHZ/H3GNzsTW3zePk3b5qe46MPVKhHkKCginJ77G4x6gkFdsCtzHv+DyuR6p96+wt7PmgwwfM7DiTSjaVdNbYqiQVF0IvaFIBZAtc2TRza6YpUdLGs41eNaAVMXlopiqTt7e/zcaAjZjJzdj85uY8tckKY8vNLby5+U087T15+OFDUjNTcfjOAZWk4vHMx1R1qKpTP3OPzmXeiXn0rduXfaP3EZsSS51f6hCbGsuKgSt4p/U7JbxC48RY1u/CELaDErI/IBz/W+1QoB19oMy0wzX9U+Kf5RSVbeneEiheyHB+SJLEucfnmOo7FY8fPRi+ZTh7g/eilJR0qtaJ3/v/TviscDa+sZF+9fqVe+0mYyxAme1s3sqjFaCuki2XyUnKSMJMpp6f7Df/86Hnab+iPTGFJTgTVBhK8nss7jFymZw3Gr+B/xR/tg7fSvMqzUlIT2D+yfnUXFKTt9f/wJS1l/NokbNTXOwPCNdsk8vkdKjWgfk95xPwXgB3pt9h8auL6e7VHblMzvXI68w/OZ/2f7an+k/VmeI7hX3B+wrN1q4L2S88uozRlDCTm/H3638zsulIMlWZvLn5TbYHbtf5+IH1B1LJuhJhCWEcDDmIrYUtTVzVmnld8xlJksS66+sAGNNsDAALTi0gNjWWJq5NGNdyXPEuSqAXhGBUApQqia93q/0H8qrT1QUGbFLGgqSe3uwQS12rmz/f7nH8Y7479R2NfmtEx5Ud+f3S78SlxlHNoRqfdvmUW9NucXriaSa3nWxwn4O+TT049Z9X2PBuR5aMaMmGdzty6j+vGOyt8nK4WoPVyl0tGFVzqEa/uv0A6FBNnSvEztxO83Z9M/ombf5ow8NnDw0wWkF5UpLfY0l/w3KZnKGNhnJl8hW2Dd9GS/eWJKYlc/Ra5SwPJ22yt3y9+yZKVf5K/ToudZjZaSbHxh0j8v8i+WvIX7zR+A3sLOwISwhj+aXlvLb+NVwXufLGP2/w99W/iy30Zz/r8i/WXPQYjR0zuRl/vf4Xo5qNIlOVyfAtw9l6c6tOx1qaWTKmuVqYWeWvTg3SzrN4+YzOhZ4jJDYEW3NbhjQcwoO4B/xy7hcAFvZaWGEKE5saQjAqAUVl0ZUhxwxXLFXqt4e6LnUBaOhphkzxLCsKJr/j1Orp9rVcSM5IZv319bz696vU+KkGc/zmEBQThLWZNWOaj+HQ24e4P+M+83vO10tuC6VK4kxIDDv9QzkTElOqB1129uXBLavSqU4lg/ohaDRGWYIRwLut3wXUtv2W7i1JyEigg2cnrFXNscnsRsRTB9oub6dxnhVUTNrXcsHD0arAMsO5f4+lOSY3cpmc1xu9zuVJl1nUfTtmuObrqwTameeLopJNJd5u8Tab39xM9MfR7Bu9jyltpuBp70lieiJbA7cydsdYqvxQhR4+PVh8ZjEhT0MK7C/7efDTods6Z8c3VczkZvw15C/GNB9DpiqTt7a8xZabupVvmtBqAqBOzhiVFJWT6FFHjdG6a2pt0ZCGQ7C1sOXzo5+Tpkzj5ZovlzjPkqD0CHG0BOiqTldIztiY22Btbk26Mp03Nw/jiSIZV+WnedpmPxqHd5QzxXcSm25sIiE9QbO/m1c3vFt480bjN/Reubsi+g8ApGSkEBgVCOSY0gD61++Ph50H4YnhzO4ym5Awex7emYBbLl+xzKdRdF02Hd/x/6VTdePNyC4oOQq5jLkDGzN17WVNIdlssn+Pcwc21hLsS3JMfshkMuo5twH8ixynrs+bbCzNLOlbty996/ZlqbSUS+GX2HlrJ7tu7+Lak2scf3Cc4w+OM+vgLBq7NtY4b7ev2h65TF5A5F7h7Lh5hNpVuplsSLlCrsBnsA8yZPx97W9GbBnBhmEbiizW2rxKc9p6tuVi2EXWXV9H1xpdAXVwjiRJhaYByVBmsPGGurTUmOZjuBx+mbXX1BHOi3ovEilEDIjQGJUAXdXpSlksVWyroJJUjNsxDr97fiisr/Of/s54POeHY2OVjsx5JR+deIU/r/xJQnoCtZxqMbf7XEI+COH4uONMaDWhTISiiug/ABAQGYBSUlLZpjJV7XMcIc3kZoxvOR6ALZfv4JL2SR5fMQWVsEueSd+VszW5awQVj5L4xenLl66kZrniIJPJaOvZlm9e+YarU65y94O7LOm7hFdqvYJCpuBm1E0WnFpAp5Wd8PzRk0Grv2TK2kvFEooAllz4Bvcf3Wm+rDkz98/E97YvCWkJRR9oRCjkClYPXs3YFmNRSkpGbh3JpoBNRR43oaVaa7TqyiqaujXFQmFBbGqspuhwQRwMOUh0cjRutm70rNWTjw99DMCoZqNo49mm9BckKDEiKq0EFBSa7kk0zrIEQIWSZ0RazqONRysauzbm72t/EydXsHz0HnrX6c2z1AR+Or6bvUGnuBZ9ijS5OsLESdGWTp59GNSwOxM79sBcoSiTa0jOSCYyMZphv90gJrFg0165h9jrkT8u/cFk38n0rt2bg28f1Np3N/YudZbUo2rqSq2owtxIqFASQ7jVu/i8voq3W7xdHsOu8Ogr7Fuf4eMl6cvUU1zEpsSy784+dgXtYt+dfcSnJlI1dSUKKhdo3ssPa8tULD3mc/XJFa3tZnIz2ldtT89aPelVuxcdq3U0iXQYSpWSd3a/g4+/D3KZnHVD1zGi6YgC28elxuHxowepmalcePcC7+15jwthF9gwbEOhx43aOooNARv4oP0H9K3bl9fWv4aFwoKg94Oo6VSzDK7MODD0+q0LwpRWAvJTp3sSzRHLWVjJchc1tYHwIAgPYiZ2ZGLG+eRYxu0Yx5abWzTh4jKFjA6VJpEc8xrxSQpuBsPN4FTWnDhWpDlLJamIS40jJjmGmJQYzb/RydE523Jtz/43NTMVS2WzQmul5fYfMMWK7VfC8/oXZVPbuTYvuY8l9H7+QhHk+IqZqxoxdsdYIpMitUrACIqPvsy2+jb/ZvvFlfUxzx+vD7NcSXG2dmZUs1GMajaKdGU6f5w+yg97MnU+PntUP735En2bXiYqKYqj94/id9ePw/cOczf2Lqcfneb0o9N8c+IbbMxt6FqjK71q96JnrZ60cG9hlElVFXIFKwetRIaM1f6rGb1tNCpJxahmo/Jt72TlxNBGQ1l/fT2rrqyinWc7LoRd4ELohQIFo4S0BHbc2gHAyKYjeddX7fc4vf30Ci0UmQpCMCoh2er07IezsyzhOaEoL2aqTN7fOpIrMrWGpq5LXca1GEcNq0F8ue1hnrfG8GcpTFl7id6tH+DgeDdfISc2NVarfEBxsJDpVuiwuD4OxsLzofrP063aADbcL7ofhaSO9Pu/Q//Hk6QnLOy1UNj/S0BBWd+zzba6mqH01Y8x8PxzJBv3cvbxs1BYUN2+Kbr4PGXz/BhdbV0Z3mQ4w5sMB+B+3H2NkHTk3hEikyI5EHKAAyEHAKhkXYlXar1Cz1o96Vm7J3Wc6xjN70ouk/PnoD+Ry+SsvLKSt7e/jSRJjG4+Ot/2E1pOYP319ay/vp7ve38PFO6Avf3WdlIyU6jnUo8bUTcIiAzAycqJT7vm9T8VlD9CMCoFfZt60LuxO+fvPSXtkQUcK/oYC4UFDZ1r4m6nLpi7KWAzzx7XAJzzDf2XULHvsi2hVj+DrGAByM7CjkrWlahsU5lKNpWoZJ31sSn43xuP0xm54lyRYy6Nj4OhUKqUXHtyDchfYwTQr/5LbDh1uei+ZLGa/y86vYjIpEhWDFyBucJcP4N9ASgq7FuGOuy7d2P3QjUk+urHmMj9HDFkVmldf+fvv1yHznVdixxjTaeaTGw9kYmtJyJJEgGRARy+exi/e34cf3CcmJQYNt/czOab6tpyXo5eGiGpZ62eBnfklsvk/DHwD2TI+PPKn4zdMRYJSROin5uXa72Ml6MXD549IDZF/by4HH4ZpUqJQp7XHSI7d9HwJsP58tiXAHze9fM8GdEFhkEIRqVEo063dtVJMEpXpnMr5ha3YtS10yyVzXBXFfxjyDbnjG00j0ZVFfkKOS7WLvlXmC+C9rUkPBytivRxKCj02JgJigkiJTMFW3Nb6lWql2+bznXdsbZMJTnNAlk+cQjZ1//ta58yesdIzfY1V9cQnRzNP2/+g425TVldQoWiqBQXuppt9dWPsVFas5w+yE5FUNTzYGbvBsUW2mQyGc2qNKNZlWbM7DSTDGUG50PP43fPD797fpx5dIYHzx6wyn+VJidQU7emGv+kbl7d9B54ogtymZzlA5erhaTLfzB2+1hUkoqxLcbmaTe+5Xi+Ov4VB0IOaDLr34q+laccU0RiBIfvHgbUvp5hCWF4OXoxrf20crsuQeEIwcjAZJtpimJog3EMbqlbinmdz21gH4eyJNu/qKV7ywL9GBRyGbP6ePHNrggkVFrCUe7r79vUA5VMXT4gmz3Be+j9d292j9wt3vJ0oLRZ3/XdjyAv5fk8MFeY07lGZzrX6MyX3b8kKT2Jkw9Pakxv/hH+BEQGEBAZwJJzS1DIFLSv2l7jn9SxWscSvQyWBLlMzrIBy5DJZCy/tJxxO8YhSRLeLb212o1rOY6vj3/N0ftHc/yMwi7kEYw2BmxEJalo49GGPy//CcC3Pb/Fysz0NPMVFePzfKvgHPc+RuKcRM3Hd8w6nY4rK3OWMZbx0AfPZ7wuiHdeaour5w6UaGcEfv76xzQfw6pBq7TanH50mm6ru/E4/rEeR14x0VdoenmEuL/IGOp5YGthS9+6fVn06iKuTL5C1MdR/PPGP0xqPYk6znVQSkrOPD7DNye+oceaHjgvdKbv2r4s+ncRl8Mvl9jPUlfkMjlL+y9latupSEiM3zme1VdWa7XxcvKiV+1eABrzWX4ZsLNzFdma25KQnkAbjzaFRq8Jyh+hMSpnXlvfn5lDfRjaaCgA3erZ4OEYZFBzlrH4OOgLpUridEgUNpndcFa0R6mSCr2WGd27M3b7OLysX+HnV1dTxcE63+sf32o8mapMJvlO0my7EXWDzqs6c2DMARpWblhm11TW6BJ6XprwdF3MNC62FkQ8S+FMSEyBfWf3U5A5zVTNv8ZUud4YngeVbSrzZpM3NQkWsx25s01v+Tlyv1zrZY3prSwcueUyOb+99hsyZCy9uJSJO9/lXqQZbaq8opmjCa0mcOjuIYJjgoG8Dti3om9xKfwScuScfnwaUCdzNMbovBcZkcdIX4T5wx/di2zWmkSuyFR0qNqBnSN2UsWuilFWpTdV9geE89Xum0QUI4w7JSMFz8WexKXGsX/0fvrU7VPoOZaeX8q0fdr+AJWsK7F39F7aV21f+osoZ3QJfddHeHxB97mElHWv5yxkhfW9PyCcKWsvZR2X1/xpar+Xipp5vqzIduTOFpKO3T9GYnqiVpsajjU0QtIrtV7RBLvo6/xv/j2fszeraeVA83C0Ys5r9fDe34K41DhAHWyTMCdBk7/piyNf8N+T/8Xd1p2IpAj61+uP7yhfvY3NFDDK9fs5hGCkL+Iewa9tIDOtwCYZMjkdrc25nBIFgEKmYE6XOXz98tccvPFEPBxLSUFh3LosmNP3TufXC78yrNEwtgwvuk7SkrNL+PDAh1n9y5CQsDW3Zdtb23i1zqslv4hyRpc5A0o8r/md7/n7PD/BqLC+b0Xfou0v7+CU/k6ehcnUfi+luWcFajKUGVwIu6DxTzrz6AwZKu3UKU1cm2j8k7rX7F4qR+6c7yw7DlJN9v9aN77MtntfYqGwIF2ZzoV3L9DWsy2SJFH7l9rcj7sPqDVQ16Zcy+ODVNExyvX7OYRgpE/iHsFz1auvPbnOuJ3jAHgqk7Fz8iU2BGzgh9M/oJSUAHjYebB1+FbaV+1oNOp0UyM7i3BRJpaCsghff3Kd5r83x0xuxuOZj3UKFV707yI+OfxJVv9q4Si7IOXIZiOLONrw6DJnVRwsARkR8SWb14LOe/7eUyLiU5m3+wZPk9PzzbRcUN/D/hnGtsBtDKg3iE87rDLZ30tp79kXieKYGpPSkzj18JQmNYB/hH+WEKMm25E7OzVAp2qddHbk1uU7c7GTczlzADKZhITEsv7LmNJ2Cv8+/Jcuq7sgl8lRSSreafUOKwatKPZcmDpGu37nQghG5UCfv/tw8K66JEVt59pcn3qd2JRYBm0YxOWInDw6gxoMYu3ra7G3tDfUUE2WMyExjFxxtsh2G97tWGBYdMc/O3Iu9BwLey3kk86f6HTeBScX8OkRdVI2OXJUqJ1Al/RdwgcdPtBx9IZB1znThcLmtbTnz933ucfn6LiyI3KZnKtTrtLUrWmJxmsIJEkiMilSE211IjiCSze6FHlcSea2IlFaU2N0cjRH7x3F754fh+8eJiQ2RGu/tZk1Xb26akxvhUWy6nrP2rmv5Maz7YA6+ePKwSt5b897LLu4DAAbcxuCpwfjae9ZZF8VDVNYv4XzdTmwduhaPH/0JFPK5G7sXWYemMnyAcu5NPkSa6+tZYrvFJIyktgVtAu3H9z4qc9PTG4z2WiywJoC+gjjfrf1u5wLPcefl//k45c+1mn+53SdQ7oyna+Of4UKleZtcMb+GTxJfMJ/X/mv0X6P+gxp3x14nFZerxUr5Li435kkSfzn8H8AGNtirFELRXGpcdyIvKERggKi1P9GJ0dr2thkdsOVogWjFzn1gD6ynD/vyP0g7oHGP8nvrh9Pkp5wMOQgB0PUL68u1i68XPNljemtrktdzW9Y1++iW7UBGsHoQtgF0pXpbAzYqNk/q9OsF1IoMhWEYFQOuNq68mnXT5l3Yh6gLm7ap04fhjYaypjmYxjaaCjeO7zZcnMLqZmpTN0zlV/O/cL2t7bToHIDA4/eNNBHGPdbTd/iwwMfEvw0mOMPjtOjZg+d+pzbYy4Zqgzmn5yPSsoRjr499S2RSZEsG7AMM7nx/dT0GdK++PxXLLsxkZFNR+Ldwpv2VdsXKRAW9zvbf2c/xx8cx1Jhydc9vi71mPVBckYygVGBeQSgglI4yJBR16UuTd2aUtmsEwcLrhqh4UVNPVBWWc69nLyY0GoCE1pNQJIkbkTd0PgnHb9/nKcpT9kauJWtgVsBqO5QXSMkOZnpFlxhZpas8TEKiAxg562dxKaqM2K72brx8Usf6zxeQfkjTGnlRIYyg6qLqxKVrHa8drJy4tqUa1R3rK5pcz70PEM3DSU0IRRQP0Qnt5nM4j6LsTa3Nsi4TQV9VSqfvHsyf1z+g1HNRrFuqG45piBHm7Ho9CJA7cegklRISAxpOIT1Q9cb3Xeoy5xVtjcjNTONhBQ55OMHBBJys3gSHWYSlRKp2dqwckO8W3jzdvO3qeqQf2LS4nxnMplE6+WtufrkKrM6zeKHV38o/gXnOm9xffkylBncjrmdRwAKeRqi5b+Sm+oO1Wnq1lTr07ByQ022dH3dsxUVXc1Wr7S+TuNqZgVWBcivJEdBZCgzuBh2UeOfdPrRaW1HbklOzYy/kJSO5Pd7kFChJAa51Tt0qdyAW9HqCget3Vtr3CbmdJnDm20ng1P1PMe/CJjC+i0Eo3Jkd9BuBm0cpPm7u1d3/Mb6af1wlSolXx37igWnFmics52snFg9aDVDGg0p7yGbFPpIe3Ax7CLtVrTDUmFJ2KywYmW1liSJmQdmsuTcEkAtHMllcjJUGXTz6sbOETtxsnIqxhWVPbrMGVBAmL0KkBFl8S0pijNYKiypZFOJqKQozWIiQ0bvOr3xbuHNkIZD8pRQKej8ICFDpvnO1l1bx5jtY3CwdODuB3epZFMyn5ui/FVUkop7sffyCEBB0UF5Ip2yqWRdiWZVmtHUtan6X7emNHZtrNN3LVJ1FMxO/1BmbPQvsl2U+fckm50ocL+TlVOx60hm36fZjtzZprcr4VewUnbENf1TeC5dRPY3aGHxFVflt7HO90UiCzNLeP/SCykcmcL6LQSjcuallS9x5vEZzd/fvPwNn3f7PE+7h3EPeWPzG1oJwrrU6ML6oeu1tEwCbUrrqClJEq3/aI1/hD8/9/mZGR1nFOv8kiTx/t73WXpxKQBmcjMsFBYkZyTTvEpz9o/ej4e9cS10Jc1jVMXBgldbPuNxxh7239lPRGKEVr+WCkvSlDnpKxwsHRjeeDjeLb3pXL2zxtSWX9+ZRLFwaDtGt29CWmYaDX9ryP24+3z7yrfM6TqnxNeZn79K9oLmUOUfQlK2kpyRnO/xdhZ2as2Pq7YWyM3WrVR+ZCKPUf7oqjHq3OIiMstgYlJiiEmO0fz7LO1Zic9tZWalFqRyC0zWaoEpJiWGwEcWRIR3RZarzmUmUSRa+dDd4R474+OKPsmk4+DZssRjNFVMYf0WglE5ExQdRKPfGmnU7wqZgpPjT9Kpeqd826+/tp7JvpNJzFAnMDOTmfFZ18/4rNtnorp7AZQ2i/DSC0uZtncaTVybcH3q9WIvepIkMWn3JP68oq6DZCY3w97CntjUWGo61eTgmIMFFrY1FKXNfC1JEtcjr7P/zn4OhBzg5IOTBWpYAOq61GVs87GMbTEWLycvTd+BwSf44/Rs0uV3GVS/P1/1+IoNARtZdHoRrjaV2THhJNaV6xfr2mKSY7j+JID3/4ojMUVBYSaQUKuJWJqZ08i1UR4hqIZjjTJzpDdk5mtjyrr9/LhKY2rMVGXyNOWplrAUkxJDdHJ0zrbnhKmYlBgyVZm6DVCSY6lqgkJyRimLJU1+A2QqWklyLmNX9PGj/oHC0oLYVKqQGiVTWL+FYGQApvpO5fdLv2v+rulUE//J/jhaOebb/lnqM6b4TmHjjZyohqr2VVk3dB3daxadbVtQPJ6lPsPjRw9SMlM4PeF0gUJrYagkFeN3jOeva38BauHI1caV8MRwXG1c2Td6H2082+h76EZDYnoix+4f0whKd57eKbBtl+pdeKf1O7xRtSO2y7sWmiS1MBNEYnoiNyJvcDb0LGcenSEgMoAHcQ9IzEjEUtkM9/QFRY77++GeDG3ZzCid5csCY9dWFcfUKEkSqZmpJGckl+yTmUxiWiLxafHEp8WTkJ5AUnoSyRnJpGamkqZMI0OZoUnJURA6C0YKC1CmF7y/gprbTGH9FoKRAYhNiaXGzzW00tiPaDqC9UPXF/pGevrRaYZvHq5xzgYY0nAIywcsx83WrUzH/KIxbsc41lxdw/iW41k1eFXRB+SDUqXk7e1vsyFgAwDmcnOqO1bnbuxd7Czs2PHWDnrW7qnPYRstIU9DOBBygP139uN314/kzLzmqnYyC86rio7ASp94mCsyFUfuHeF86HkCowMJTQjNUxYiNzaZ3XDNKDo31ZIRLRncMn9n8YpGeWbdzlRlllhguRfhSODdJqSn22r6kyviMHPaQZr5eU27lIyUAh3hywIZMmzMbbAxt8HazBoLhQUWCguaKjPZ9DSi6A50oQKa20xh/RaCkYFYdmEZ7+19D8jJmrx68GrGtRxX6HEZygy+OfEN3578VuOcbWVmxaJei5jabmqxIjAEBZOdpdbG3IbwWeElLiGQqcpk1NZRbL65GVBrjhq7NuZaRAB2tGB6288Z2Kg7bbycufQg1ujMGWVBujKdfx/+y4GQA+wK2kVgdCCg+5t2dr3BwrC3sKeaQzUauzamfdX2WCqb8dPeoiuwvyjJFIvK4AzgbAtfDsskVVm4liW/7dmaluxPYWZVnSjAbFUQFgoLjdBS6MfMBlsLW93aPvexVFjm/yKrY91MnRCCkUEQgpGByFRl0mRpE27H3NZsszW35fLky9SvVLQPRcjTEEZuHanlnN2wckP+fv1v2nq2LZMxv0hIkkSTpU0IjA7UpPQvKRnKDIZvGc6OWzsAsFN1wVX5HqrMnHtXLgNVrl+iMZkzyprwhHAO3DnA2YvL+T30ZpHtswUjGTIcLB2o6lCV5m7NeaXWK3Ss1pE6LnXyRL+J0HhtdHVsjrCYQ5riut7Om1vLUpyPrbnuwou1ubVhTaF6FIyU7x5FUbW1XvoyFkxh/RaCkQE5cu8IPf9Sm1LM5eZkqDJo49GG0xNPa6oxF4YkSfx19S+m7Z1GUkaSZvvElhP5oc8PRhcabmr8dOYnPjr4Ea09WnNp0qVS9ZWuTGfopqEcufU0K9SX5+qD5V+Q8kUJ105KT+LomZ8ZcPT7ItsWpjGyMbPBw96DOi51qGZfDQ97DzztPfGw8+BRpAuL9yUiQ4TG6xoK7+S+nUou9/JoWfIILjpqXQrUslQk9CgY9bQyp1bjIQxtNJSetXrqXNPNmDGF9VsIRgZm0IZB7L69G8gJb/6/Tv/HolcX6dxHdHI00/ZO458b/2i2OVg68Gu/XxnTfEzFfxCVEdHJ0VRdXJV0ZTqXJl2itUfp3tyS01NpPm8HGZl2+RZNfZ6KrsVQSSpOPjiJz1UfttzcQr20ZL2Z0grCWtkJl/RJmOGq2WZpkUz7hg/oUNcKD7ssQcreAw87jwqxEOWHPmoLCgog7hH82qbQIAJJbo5MB/Ni7nvd3sKe/vX7M7ThUPrV64edhQ4O3kaIKazfQjAyMCFPQ2j0WyO1DT6XHf27V+fwXuc+xVoQj9w7wtjtY7WcsztU7cCqwato7Nq4LIZf4Rm5dSQbAzYypc0Ulg1YVqq+Slq0taItTiFPQ/jr6l/8de0v7sfd12wf5ODFzmexRR7/U/PXWR52lqCYIK3tubONF0ox/FVcrF20hCVPuxyhKbcAlZ3VvCxD3/XZtzAtljFxjyA5puD9iU9g/fAiuznffxFrIq+yI2gHYQlhmu2WCkv61O3D6w1fZ2D9gQUmPDXGVAymsH4LwcgImH14Nr+cOJHnTdbN3px5g5sVS72fkpHCvOPz+P7096gk9cNeLpMzq9Ms5nafi62FbRE9CHKTbe60t7AnbFZYqd7SdDVfPE9FiJSKT4tny80t+Pj7cPLhSc12B0sH3mryFt4tvHnJzAbZHz2K7izLITU4Jhjf2774Bvty4sEJrfwzdhZ2eDl6Ya4wJyEtgcikSBLSE4rsWoZMU+uuOBFOTlZOuCleJTPudZSZ9prtjjYqvLvaMriFFx72Hnl8n3SlLMLqRdZtA6Kjue3HZoMY/9oSnKycOB96nm2B29gWuI2Q2BBNG4VMQY+aPRjaaChDGg7RFKc11lQMprB+C8HICNh+5R4fbroB5PU7yV0WoTjciLyB9w5vLoXn+Ma427mzrP8yBjcYLMxrOqKSVNT/X31CYkNYOWglE1pNKHFfL5rGSKlScvT+UXz8fdgWuI2UzBRALaj3rp1TJkRTQ04HE0RBuV2epT7jQMgBfG/7sjd4LzEpOW/rCpmCzjU6079ef5q6NuVx/GPOh54nICqAB88eEJ0crVNSP3O5OTbmNliZWWEmNyNDmUFcWhzpynSslZ3y9R17vmyKo6WjtsYptzYq628Pew8tAbwsw+qNdfGs8Ohwr6cg0YBEEq2d+KLbF0xrPw0LhYUmmer2wO1su7WNa0+uaR3XsVpHWjh6s/9i3vxHxiD0msL6LQQjA5MTNptCQUU6PRytS6TSVkkq/rj0B7MOztIqc9CnTh+W9l9KbefapRv8C8J3p75jjt8cOlbryJmJZ4o+oACKMl/kh1wGt77ph4WZvOjGRkJQdBBrrq7h72t/a1WZb1S5Ed4tvBnTfEyBhWWfN0EM2fQ6D589ZPmA5bTzbKtTNmClSsnZx2c12qSAyACt/XWc6zCw/kAG1B9AV6+umMvNiUqO4mrEVU49PMXl8MvcjrlNWGJYobmRspFJCqqlrUIuuVDQb1gpi+Gx5YRCQ8xzY29hnyVAVSUsZArpGTb59q0Pk5cxmlteCPIxt2WoMvjq2Nfsu7OPaCQeyXKeFHWc67Cw10KGNhqq9WJ75+kdtgduZ/ut7epyU5KcqqkrUVA5X19GQ5tJTWH9FoKRgSkPJ8iwhDCm7Z2mCRcH9dvvl92/5OOXPq6wDqb6IiIxguo/VSdTlcn1qddp6ta0xH0VXDS1YExBYxSbEsumG5tYc3UNZx/n3M/OVs6MbDoS75betPNsV2xN5YD1A9gTvKdUKRPuxd5jT/AefG/7cvT+UdJzZRu2t7CnT90+DKw/kH51++Fq66p1bHJGMsExwVwMu8iZx+ps2vfj7hOdHK3JI6ZrVu2Fwz1pXt2K8MRwwhPCCUsIU/8/Mev/WdtyR5jq2rcp3CMC3Tn54CRDNg3hacrTPPu61OjC4lcX065quzz7QuND+d+p/Ww84V7kOQx1z5jC+i0EIwOjq9/J9280Ynjb0ml4dgftZpLvJK1in7Wda7N8wHJ61e5Vqr4rOkM3DWX7re180P4DlvRbUqq+8jNfFIax+hhlqjI5FHIIn6s+7Ly1U1MwViFT0K9eP7xbeDOw/sBSCd6zDsxi8dnFzOw4k8V9Fpd6zInpiRwKOYTvbV/2BO/hSdITzT4ZMjpW66jRJjV1a1qgIKeSVDx89pCbUTfZcCGYk9fqFnnuKPPvUdhcoWHlhnk+dV3qalJ0JKQlaISmfdej2PRv0X5JxnqPCEpOWmYa7+5+l7+v/a3ZJkeuKUkyqtkovn3lW7ycvLSO03VNMdQ9YwrrtxCMDIyuGqO2TU+xZUzRb45FkZieyOdHPueXc79oOZcObzycn/r+pHHcE2izL3gfr61/DWcrZ8JmhWFlVnTpisJQqiR8/r3HN3sCi2xrbNqAgMgA1vivYe31tVpCdjO3ZoxrOY5RzUbhblf0G6suLL+4nCl7ptC/Xn98R/nqpc9sVJKKi2EX1Sa3275cibiitd/L0YsB9QcwoP4AetTsUeB3rutvOMryM5LlV/Pdp5ApqONSRy0oVcoRmBITPXh3zY0i+za2e0SgP049PMWQjUM0fnPZwQGgjk6b2XEmc7rO0WTnN/ZUDKawfgvByMAU7XcikUk0oVYT2Tx8E280fkMv570YdpEJOydwPTInq62NuQ3fvvIt0xoMxiwlDqUkcSM0nqfJ6bjYWNCkqgMKmazCVn0uDKVKSe1favPw2UPWvr6W0c1H66FP0wmZjkmOYUPABnz8fbQc+ivbVGZ0s9F4t/CmpXtLvTv1H713lFf+eoV6LvW4Pf120QeUgsfxj9lzew++wb4cvnuY1MwcjZ6NuQ29a/dmYP2BvFbvNTzscxxXdf0e/WZ15v6zu9yKvpXnU2DEnCSnRroPMpUz+vIxEj5FpkdaZhqTfSez5uoazTZ7C3vNfeNq48rXPb7m3TbvIkNh1M8VU1i/hWBkBBTkd5Id0dKiwXl2P/wGJysnrk65Sg3HGno5b6YqkyVnl/D50c81i0B1SUYw9hRq/KigVZ+LYt7xecw9NpfuXt05Nu6YXvo05pDpDGUG++7sw8ffB9/bvpp6V2ZyMwbUH8C4FuPoV6+fTlnaS0pofCjVfqqGQqYg5bMUzBXmZXau3CRnJHPk3hGNNil3bjCAdp7tNNqkVu6tOHAjgilZ32N+/F7I9yhJEmEJYdrCUswtAqPUxXFzIt4kZOQ44Uuoy6LUr3OCzvVsaVi5IY1cG1HPpV5OpN9ziCg00+bUw1O8vul1opOjAbWm0cXahajkKEAd4LCo9yLkaa15b51xPldMYf0WgpGRkN8Dy9w8kVDZElrVlJGhzOBC2AW61ujKUe+jei0Wez/uPlP3TGX/nf06F/KsiMUNi+Jx/GO8fvZCJakIej9Ip5p2umBsi5V/hD8+/j6sv75e88AFaO3RmnEtxjGy2Ugq21Qul7FIkoTdAjuSM5L1OufFHYN/hL8myu186Hmt/Z72nrRzeRf/W23JPyqtcMGoMBLSEgiKCWLrlRB2njcnOS3nlSWTKJ5a/EGKQjtSUoaMmk41tXyYGlVuRFiUG7O33CmTsH9B+ZGamcp7e95jtf9qzTZPe09SMlKITVUnSO1Zqydv1P4va04mGc1zJRtTWL+FYGREPK/iruKcQLPfm5CckcyCnguYf3I+iemJfN3ja77s/qVezy1JEv/c+Ic/fKfhl1p0qnrlu8dQVG2l1zGYAtlRUh+/9DHf9y66rpeuGNq88STxCeuvr8fnqo9WXpQqtlUY03wM3i28aValWbmNJzetlrfCP8KfXSN2MbDBQIOMITcRiRHsDd6L721fDoYcJCk9pVzCo3PfI5XszKnsGEfw06A8WqbsxVELIw/hFhSfkw9PMmzTMM3Li0KmoFO1TpwPO0+6Mh0ZMsa1GM/Qup+gzLTDzd6KNl7OXHoQa1Azqims30IwMnJ+OP0DHx/6GBdrF755+Rum7Z2GXCbnxLgTdK7RWe/nO/vvPjoeGlFku2uv7aJ5e/0USjQldt7ayZBNQ3C1ceXxR4/L1IxU1qRlpuF72xefqz7sC96nCT+3UFgwuMFgxrUcx6t1XjVspXJgxJYRbLqxiR96/8Csl2YZdCzPk5qZyh+nj7J4b9H5icrD2VWSJKKSo/L4MN0MzYSnM4xijAL9kZKRwvt732eV/yrNtroudannUo99d/YBav+4T176hBZO3izcF2JwDZIprN+GfeIJimRGhxn8dfUvrkde50LYBUY3G8266+sYtW0UV6dcxcnKSa/nS83Q7ZZ4mpxedKMKSP/6/fGw8yA8MZxdQbv05gxfXkiSxMWwi/j4+7AhYIOWdqFD1Q54t/DmraZv4WLtYsBRapNtPrsdU7bO1yXByswKL4fmgH+RbSMTdEvPUBpkMhlutm642brRzaubZruuIdzlMUaB/rA2t2bl4JWMazmOYf+otUd3nt7hbuxdxrccT2B0IGcfn2XhkQO4prfJ0hXmaIginqUyde1lYUZ9DtNJp/uCYq4wZ/mA5QD4+Pswqukoajuro6Mm+05G3wo/FxvdNCDZ7ZQqiTMhMez0D+VMSAxKlckpIIuFmdyM8S3HA7Di8goDj0Z3QuNDWXhqIU2WNqH9n+1ZenEpsamxVLWvyuzOswmcFsjZd84ytd1UoxKKIJdg9NT4BCMAN3vdUjfo2q4sMIUxCkpOV6+u3P/wPhNaqksWqSQVq/1XE5UYxYKeC3HLfC+rpbbZLPtp/fXumxX+2V0chGBkAnSq3olJrScB8H+H/o81Q9ZgJjfjnxv/aDng6YMmVXVTbcosQtkfEE6XhUcYueIsMzb6M3LFWbosPML+gHC9jsnYmNh6IgCHQg5pVYc3NlIyUtgYsJG+a/tS4+cazPabTWB0IFZmVoxqNoqDYw7y4MMHLOi1gIaVGxp6uAVizBojgPa1XPBwtCrA7Vq9FHk4qv05DIUpjFFQOmzMbVg5eCXHvI/hZuMGQEhcCF8fXAsq53x9y0AtHIU/S+X8vbxZtl9UhGBkInzX6zvcbN0IjA7k+P3jzOsxD4Dp+6YTFB2kt/ModMxDM2Xbj0xZeylP9uZs1WxFFo5qO9emV+1eSEisvLzS0MPRQpIkTj86zaTdk/D40YORW0dyIOQAKklFlxpdWDFwBRGzIlg3dB296/TWa3RjWVHPpR6gLm2TkFZAvh8DopDLmDuwMZA3Ji3777kDGxvUqdkUxijQD91rdufujLtMbKV+gZNLzjodJ8yoOQjByERwtnZm8avqkgj/PflfhjUaxss1XyY5I5mRW0eSVlhF8uJgU0mdp6gQ0mVyMtJH55s87EVRzb7b+l0AVvmv0qkye1nz8NlD5p+YT4NfG9B5VWdWXF7Bs7RneDl68UW3LwieHszJ8Sd5p/U7OFo5Gnq4xcLZ2hlXG3UNs+CnwQYeTf70berBsjGtcXfUNkW5O1oZjf+GKYxRoB9sLWz5c9CfHPU+ikP+Ka3yUNlO1MzMRkSlmRCSJNH779743fOjT50+/DnwT1oub0lMSgwfdfyIH/v8qJ8TZVV9Lijz9aVoOcPWPyqym4oc4ZKWmUa1n6oRnfSUH3vsoI5Ta72HvxYVwp+UnsS2wG34XPXh6L2jmhIvtua2vNH4DbxbeNO9ZnfkMtN//+myqgv/PvqXDcM2MKJp0VGThsLQaRd0wRTGKNAfhwMf8c6aa0W2WzexA53rlX1+MlNYv0VUmgkhk8lY2n8pzZY140DIAU4/Ps3KQSsZsmkIi88upned3vSt27f0J3KqDk7VUQDN86kx+DgyFChaMKrIqllLM0t6ecziZIA7v+yXkx2VpK/w14KSPn4xoBG29sH4XPVhy80tJKYnava/XPNlvFt4M6zxMOwsdEjSaUI0qNSAfx/9a7R+Rtko5DKjfxkwhTEK9EdSmm4vRtFJerI6VABM/1XyBaN+pfrM6TIHgBn7Z9CjZg/ea6uOOPDe4c2TxCeFHa4XRISLWnA5E9AMBdpvWPrwscouE/K8/1b4sxTeW3eZfqvm4OPvQ2J6InWc6zCvxzzuzbjHEe8jeLf0rnBCERi/A7ZAYKyI53XxERojE2R2l9msv76e4KfBfOb3OcPrfYZf4DPux1/De8d4do/czcX7cWWmKs+OcCmqSGFFjXBRqiS+3n0TIE+kh4T6+r/efZPejd2LPe/Zfedv35YhoaJSxmT6tGnCuFbedK7eWe+FW40RIRgJBCWjqOe1hAoby3SaVssRjF50c6vwMTJRDt89zCCfL3FJn4QZrprtSp5ha25HakZOtFFZZDc15uKnZc2ZkBhGrjhbZLuS+FiVZd+mzI3IGzRd1hQHSwfi/hP3QgiDAoG+KOh5TZZnYpTFt1RzjcZniA/xz2qVae1GU1i/hSnNRMlMboJb+qd5TDlyHEjJ0P5ayyKE/kWOcNHVd6okPlZl2bcpU8elDjJkxKfFE5kUaejhCAQmRUHPaw9Hayb3lOPi9JDgp8H0XvHxC5uGJTfClGaC5Jhy8qbsyi+JV2nNOwXRt6kHvRu7v3Aq17K02Qt/gPyxMrOihmNNIp7asebsDbrWMnsh7jWBQF8U9rx+r2sAH+6fyeGz3TXrRW7Kag0xVoRgZIKcv/c0j0RfFLmzm+rTBPMiRriUpY/Vi+6/VRD7A8Ixi/4W90x7lh5OYSlnDVIAUyAwZQp6XjtZOTG52Q8cO1uwGb+s1hBjxKCmtN9++42aNWtiZWVFhw4dOH/+vCGHYzKUxozyoplgyoKyzCIsMhTnJds/IjNTO9ruRVPvCwRliTDj52AwwWjTpk189NFHzJ07l8uXL9OiRQv69OlDZKTwHyiK0phRXjQTTFlRlj5WL7L/1vNoR+mJApgCQVkhzPg5GCwqrUOHDrRr145ff/0VAJVKRfXq1Zk+fTqzZ8/WapuWlkZaWk7yqfj4eKpXr27UXu1liVIl0WXhkQLNLfmRbYI59Z9XXihtQ1lTlmGtL3rILIgoPYGgvChqXdHXGiKi0gogPT2dS5cu0atXr5yByOX06tWLM2fO5Gm/YMECHB0dNZ/q1auX53CNjsLMLfnxoppgyoNsm/3gllXpVKeSXue3LPs2FYR6XyAoH4QZPweDCEbR0dEolUqqVKmitb1KlSpERETkaT9nzhyePXum+Tx6VHQ5iopOQeYWJxtznGzMtba9iCYYQcVAqPcFgvJDmPHVmERUmqWlJZaWovLv8xQUfgm88CYYQcVAROkJBOXLi5qGJTcGEYwqV66MQqHgyRPtul5PnjzB3d3dEEMyWQoKvxT+FoKKQLZ6f+ray8jIP8v6i6LeFwjKixcxDUtuDGJKs7CwoE2bNvj5+Wm2qVQq/Pz86NSpkyGGJBAIjBSh3hcIBOWJwUxpH330Ed7e3rRt25b27dvz888/k5SUxPjx4w01JIFAYKQI9b5AICgvDCYYvfXWW0RFRfHll18SERFBy5Yt2b9/fx6HbIFAIACh3hcIBOWDwfIYlQZTyIMgEAgEAoFAG1NYvw1aEkQgEAgEAoHAmBCCkUAgEAgEAkEWQjASCAQCgUAgyEIIRgKBQCAQCARZCMFIIBAIBAKBIAshGAkEAoFAIBBkIQQjgUAgEAgEgiyEYCQQCAQCgUCQhcEyX5eG7JyU8fHxBh6JQCAQCAQCXclet405t7RJCkYJCQkAVK9e3cAjEQgEAoFAUFwSEhJwdHQ09DDyxSRLgqhUKsLCwrC3t0cm028Ryfj4eKpXr86jR4+MNl15RUHMdfkh5rr8EHNdfoi5Lj/0NdeSJJGQkICnpydyuXF685ikxkgul1OtWrUyPYeDg4P4oZUTYq7LDzHX5YeY6/JDzHX5oY+5NlZNUTbGKa4JBAKBQCAQGAAhGAkEAoFAIBBkIQSj57C0tGTu3LlYWloaeigVHjHX5YeY6/JDzHX5Iea6/HiR5tokna8FAoFAIBAIygKhMRIIBAKBQCDIQghGAoFAIBAIBFkIwUggEAgEAoEgCyEYCQQCgUAgEGQhBCOBQCAQCASCLIRglIvffvuNmjVrYmVlRYcOHTh//ryhh2TyLFiwgHbt2mFvb4+bmxtDhgwhKChIq01qairTpk2jUqVK2NnZMWzYMJ48eWKgEVccvvvuO2QyGR9++KFmm5hr/REaGsqYMWOoVKkS1tbWNGvWjIsXL2r2S5LEl19+iYeHB9bW1vTq1Yvg4GADjtg0USqVfPHFF9SqVQtra2vq1KnDN998o1WEVMx1yThx4gQDBw7E09MTmUzGjh07tPbrMq9Pnz5l9OjRODg44OTkxMSJE0lMTCzHq9A/QjDKYtOmTXz00UfMnTuXy5cv06JFC/r06UNkZKShh2bSHD9+nGnTpnH27FkOHTpERkYGr776KklJSZo2M2fOZPfu3WzevJnjx48TFhbG0KFDDThq0+fChQssX76c5s2ba20Xc60fYmNj6dy5M+bm5uzbt4+bN2/y448/4uzsrGnz/fff88svv/D7779z7tw5bG1t6dOnD6mpqQYcuemxcOFCli1bxq+//kpgYCALFy7k+++/53//+5+mjZjrkpGUlESLFi347bff8t2vy7yOHj2aGzducOjQIXx9fTlx4gSTJk0qr0soGySBJEmS1L59e2natGmav5VKpeTp6SktWLDAgKOqeERGRkqAdPz4cUmSJCkuLk4yNzeXNm/erGkTGBgoAdKZM2cMNUyTJiEhQapXr5506NAhqXv37tKMGTMkSRJzrU/+85//SF26dClwv0qlktzd3aVFixZptsXFxUmWlpbShg0bymOIFYb+/ftLEyZM0No2dOhQafTo0ZIkibnWF4C0fft2zd+6zOvNmzclQLpw4YKmzb59+ySZTCaFhoaW29j1jdAYAenp6Vy6dIlevXpptsnlcnr16sWZM2cMOLKKx7NnzwBwcXEB4NKlS2RkZGjNfcOGDalRo4aY+xIybdo0+vfvrzWnIOZan+zatYu2bdvy5ptv4ubmRqtWrVixYoVm/71794iIiNCaa0dHRzp06CDmupi89NJL+Pn5cfv2bQCuXr3KqVOn6NevHyDmuqzQZV7PnDmDk5MTbdu21bTp1asXcrmcc+fOlfuY9YWZoQdgDERHR6NUKqlSpYrW9ipVqnDr1i0DjarioVKp+PDDD+ncuTNNmzYFICIiAgsLC5ycnLTaVqlShYiICAOM0rTZuHEjly9f5sKFC3n2ibnWH3fv3mXZsmV89NFHfPrpp1y4cIEPPvgACwsLvL29NfOZ3zNFzHXxmD17NvHx8TRs2BCFQoFSqWT+/PmMHj0aQMx1GaHLvEZERODm5qa138zMDBcXF5OeeyEYCcqNadOmERAQwKlTpww9lArJo0ePmDFjBocOHcLKysrQw6nQqFQq2rZty7fffgtAq1atCAgI4Pfff8fb29vAo6tY/PPPP6xbt47169fTpEkT/P39+fDDD/H09BRzLSgThCkNqFy5MgqFIk90zpMnT3B3dzfQqCoW77//Pr6+vhw9epRq1apptru7u5Oenk5cXJxWezH3xefSpUtERkbSunVrzMzMMDMz4/jx4/zyyy+YmZlRpUoVMdd6wsPDg8aNG2tta9SoEQ8fPgTQzKd4ppSejz/+mNmzZzNixAiaNWvG22+/zcyZM1mwYAEg5rqs0GVe3d3d8wQoZWZm8vTpU5OeeyEYARYWFrRp0wY/Pz/NNpVKhZ+fH506dTLgyEwfSZJ4//332b59O0eOHKFWrVpa+9u0aYO5ubnW3AcFBfHw4UMx98WkZ8+eXL9+HX9/f82nbdu2jB49WvN/Mdf6oXPnznnSTty+fRsvLy8AatWqhbu7u9Zcx8fHc+7cOTHXxSQ5ORm5XHupUigUqFQqQMx1WaHLvHbq1Im4uDguXbqkaXPkyBFUKhUdOnQo9zHrDUN7fxsLGzdulCwtLSUfHx/p5s2b0qRJkyQnJycpIiLC0EMzaaZOnSo5OjpKx44dk8LDwzWf5ORkTZspU6ZINWrUkI4cOSJdvHhR6tSpk9SpUycDjrrikDsqTZLEXOuL8+fPS2ZmZtL8+fOl4OBgad26dZKNjY20du1aTZvvvvtOcnJyknbu3Cldu3ZNGjx4sFSrVi0pJSXFgCM3Pby9vaWqVatKvr6+0r1796Rt27ZJlStXlj755BNNGzHXJSMhIUG6cuWKdOXKFQmQFi9eLF25ckV68OCBJEm6zWvfvn2lVq1aSefOnZNOnTol1atXTxo5cqShLkkvCMEoF//73/+kGjVqSBYWFlL79u2ls2fPGnpIJg+Q72f16tWaNikpKdJ7770nOTs7SzY2NtLrr78uhYeHG27QFYjnBSMx1/pj9+7dUtOmTSVLS0upYcOG0h9//KG1X6VSSV988YVUpUoVydLSUurZs6cUFBRkoNGaLvHx8dKMGTOkGjVqSFZWVlLt2rWlzz77TEpLS9O0EXNdMo4ePZrv89nb21uSJN3mNSYmRho5cqRkZ2cnOTg4SOPHj5cSEhIMcDX6QyZJudKHCgQCgUAgELzACB8jgUAgEAgEgiyEYCQQCAQCgUCQhRCMBAKBQCAQCLIQgpFAIBAIBAJBFkIwEggEAoFAIMhCCEYCgUAgEAgEWQjBSCAQCAQCgSALIRgJBAKBQCAQZCEEI4FAIBAIBIIshGAkEAgEAoFAkIUQjAQCgUAgEAiy+H8TWyTQdULaVwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -359,9 +583,7 @@ } ], "source": [ - "solver = 'cbc'\n", - "%time pyo.SolverFactory(solver).solve(strong)\n", - "ShowFacilityLocation( xC, yC, xF, yF, *GetSolution(strong) )" + "ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, strong))" ] }, { @@ -375,83 +597,106 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 + "base_uri": "https://localhost:8080/" }, "id": "ctxap_Z3jv0B", - "outputId": "1758fc86-a00d-43a9-8ec3-617674aff797" + "outputId": "43d932b5-58e8-4587-9ab8-a608689b5bb7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Weak formulation solved with gurobi_direct in 0.01959 seconds.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhURxeH392NOwkhAiSE4O4aXIK7O6U4tFCgSIVSQVugFKctLgFa3IMUD+4OQQIkQDzEd+f7I18WljjEM+/z7AOZO/feM1fPPTPnNwohhEAikUgkEokkG6HMagMkEolEIpFIPkQ6KBKJRCKRSLId0kGRSCQSiUSS7ZAOikQikUgkkmyHdFAkEolEIpFkO6SDIpFIJBKJJNshHRSJRCKRSCTZDumgSCQSiUQiyXZIB0UikUgkEkm2QzooeZBVq1ahUCh4/Phxntn3Dz/8gEKhyNR9fgxz5syhaNGiqFQqKlWqlOb1jx07hkKhYOvWrelvXDbkU9vr5+dHly5dsLGxQaFQMH/+/PQ1MBNo2LAhDRs2TNdt5pT7RZK7kQ5KNuDmzZv06dOHggULYmhoiKOjI7179+bmzZuftN3p06ezffv29DFSkuEcPHiQr7/+mrp167Jy5UqmT5+eZN0NGzbkyJdpdmPs2LEcOHCAyZMns3btWlq0aJHVJmUa4eHh/PDDDxw7diyrTUkz69evR6FQYGZmplOu0WhYtWoV7dq1o3DhwpiamlKuXDl+/vlnIiMjE2zHz8+PgQMHUqBAAYyNjalSpQpbtmxJdJ+bNm2iSpUqGBkZYWtry6BBg3jz5k2idf/66y9Kly6NkZERxYsX548//kh126Kiopg4cSKOjo4YGxtTs2ZNDh06lOr1cxVCkqX8888/wsDAQNjb24tvvvlG/Pnnn+Lbb78VDg4OwsDAQPz7778fvW1TU1PRv3//BOWxsbEiIiJCaDSaT7D841i5cqUAhLe3d6bud+rUqSK7X+4TJ04USqVSREVFpVi3devWwtnZOUH50aNHBSC2bNmSARZmPz61vXZ2dqJ3797pbFXm0qBBA9GgQYM0r/f69WsBiKlTpyZYFhMTIyIiIj7duAwgNDRUODo6ClNTU2FqappgGSBq1aolfv75Z7F8+XIxcOBAoVQqRcOGDXWeecHBwaJYsWLC3NxcfPvtt2LhwoWifv36AhDr16/X2e7ixYsFIJo0aSIWLVokJk+eLExMTESFChUSHKelS5cKQHTu3FksX75c9O3bVwBi5syZqWpfjx49hJ6enhg/frxYtmyZqF27ttDT0xMnTpz4yCOWc8neT+xczoMHD4SJiYkoVaqUePXqlc6y169fi1KlSglTU1Px8OHDj9p+Ug5KViIdlKQZOHBgggduUkgHJY5Pba9CoRAjR45MN3siIiKEWq1Ot+2lhoxwULIzEydOFCVLlhS9e/dOcL9ERUWJU6dOJVhn2rRpAhCHDh3Sls2ePVsA4vDhw9oytVotqlevLuzt7bUfClFRUcLKykrUr19fx8HZtWuXAMSCBQu0ZeHh4cLGxka0bt1aZ//xtgYEBCTbNi8vLwGIOXPmaMsiIiKEq6urqF27drLr5kay9xM7lzN06FABiOPHjye6/L///hOAGDp0qLYs/kV7+/Zt0bVrV2Fubi6sra3FF198oePJAwl+8c5KYk6Cs7OzaN26tTh69KioWrWqMDIyEuXKlRNHjx4VQsRFesqVKycMDQ1FlSpVxKVLl3RsvXr1qujfv79wcXERhoaGws7OTgwcOFC8efNGp15qHJQ5c+YIQDx+/DjBskmTJgl9fX3tjX78+HHRpUsXUbhwYWFgYCAKFSokxowZI8LDw3XW+9BB8fb2FoBYuXJlgn0k9tD28fERAwcOFAUKFBAGBgaiTJky4q+//kqyDe8TExMjfvzxR1G0aFFhYGAgnJ2dxeTJk0VkZKTOPj/8JWabEHEvpA/rxjsr8S9sDw8P8fPPP4uCBQsKQ0ND0bhxY3H//v0E2zp79qxwd3cXFhYWwtjYWNSvX1+cPHky2fZoNBphY2Mjxo4dqy1Tq9XC0tJSKJVKERgYqC2fOXOmUKlUIjQ0VFt2+/Zt0blzZ5EvXz5haGgoqlatKnbs2KGzD39/fzFu3DhRrlw5YWpqKszNzUWLFi3ElStXdOol5qBERkaK1q1bCwsLi0RfVkK8uw4//MXz8OFD0aVLF5EvXz5hbGwsatasKXbv3p3ovjdu3Ci++eYb4ejoKBQKhQgMDBT9+/cXpqam4smTJ6J169bC1NRUODo6ioULFwohhLh27Zpo1KiRMDExEU5OTgm+2JNyqBO7fz50UKKiosR3330nqlSpIiwsLISJiYlwc3MTR44c0daJv/4//MVf94ntPzXXsRDvniUnTpwQ1atXF4aGhsLFxUWsXr06QXsePHggHjx4kMgZSpx79+4JAwMDsWfPHu0xTg3Xrl1L4Ey0bdtW2NraJqgb//w5ePCgEEKIixcvCkAsWrQoQV0zMzNRp04d7d979uwRgNizZ49OvdOnTwtArF27Nlk7J0yYIFQqlQgODtYpnz59ugDE06dPU25sLkKOQclCdu3aRZEiRahXr16iy+vXr0+RIkXYs2dPgmXdunUjMjKSGTNm0KpVKxYsWMCQIUO0y9euXYuhoSH16tVj7dq1rF27lqFDhyZrz4MHD+jVqxdt27ZlxowZBAYG0rZtW9avX8/YsWPp06cP06ZN4+HDh3Tr1g2NRqNd99ChQzx69IiBAwfyxx9/0KNHDzZt2kSrVq0QQqTpuHTr1g2FQsHmzZsTLNu8eTPNmzcnX758AGzZsoXw8HCGDx/OH3/8gbu7O3/88Qf9+vVL0z6Tw8/Pj1q1auHp6cmoUaP4/fffKVasGIMGDUrVOJDPP/+c77//nipVqjBv3jwaNGjAjBkz6NGjh7bO2rVrqVevHoaGhtrzVb9+/US3980331CpUiXy58+vrfuhHTNnzmTbtm2MHz+eyZMnc/bsWXr37q1T58iRI9SvX5+QkBCmTp3K9OnTCQoKonHjxpw7dy7J9igUCurWrcvx48e1ZdeuXSM4OBiAU6dOactPnDhB5cqVtWMFbt68Sa1atbh9+zaTJk3it99+w9TUlA4dOrBt2zbteo8ePWL79u20adOGuXPnMmHCBK5fv06DBg148eJFkrZFRETQtm1bTp8+jaenJ3Xq1Em0Xv369Vm7di0AzZo10x5HiDvfderU4cCBA4wYMYJffvmFyMhI2rVrp2NjPD/99BN79uxh/PjxTJ8+HQMDAwDUajUtW7akcOHCzJ49myJFijBq1ChWrVpFixYtqFatGrNmzcLc3Jx+/frh7e2dZLvSQkhICH/++ScNGzZk1qxZ/PDDD7x+/Rp3d3euXLkCgK2tLUuWLAGgY8eO2vZ36tQpye2m5jqO58GDB3Tp0oVmzZrx22+/kS9fPgYMGJBgXF2TJk1o0qRJqts2ZswYGjVqRKtWrVK9DoCvry8A+fPn15ZFRUVhbGycoK6JiQkAFy9e1NYDEq1rbGzM5cuXtc/Cy5cvA1CtWjWdelWrVkWpVGqXJ8Xly5cpUaIEFhYWOuU1atQA0J6/PENWe0h5laCgIAGI9u3bJ1uvXbt2AhAhISFCiHdfNu3atdOpN2LECAGIq1evasuS6uJJKoICiNOnT2vLDhw4IABhbGwsnjx5oi1ftmyZALTRFSFEgoiFEEJs3LgxQYQotV08tWvXFlWrVtUpO3funADEmjVrkt3vjBkzhEKh0LH5UyIogwYNEg4ODgmiQT169BCWlpaJ2hDPlStXBCA+//xznfLx48cLQOerNi1fhCl18ZQuXVpnLMvvv/8uAHH9+nUhRFwUpHjx4sLd3V0nbB0eHi5cXFxEs2bNkt3/nDlzhEql0l6XCxYsEM7OzqJGjRpi4sSJQoi4qIqVlZVOpKVJkyaifPnyOl/dGo1G1KlTRxQvXlxbFhkZmaCrxNvbWxgaGooff/wxQXu3bNkiQkNDRYMGDUT+/PnF5cuXk7U/HiBBF8+YMWMEoNPnHxoaKlxcXESRIkW0dsXvu2jRogmugf79+wtATJ8+XVsWGBgojI2NhUKhEJs2bdKW37lzJ8E19ykRlNjY2ATjmAIDA4WdnZ347LPPtGXJdfF8uP+0XMfxz5L37/tXr14JQ0NDMW7cOJ31nZ2dE72OE2P37t1CT09P3Lx5UwiRtvuladOmwsLCQie6N3r0aKFUKhNEanv06CEAMWrUKCFE3HFSKBRi0KBBOvXizxugfTaMHDlSqFSqRG2wtbUVPXr0SNbOsmXLisaNGycov3nzpgDE0qVLU2xrbkJGULKI0NBQAMzNzZOtF788JCREp3zkyJE6f48ePRqAvXv3frRNZcqUoXbt2tq/a9asCUDjxo1xcnJKUP7o0SNt2ftfF5GRkbx584ZatWoBcOnSpTTb0r17dy5evMjDhw+1ZR4eHhgaGtK+fftE9/v27VvevHlDnTp1EEKk+LWSGoQQ/PPPP7Rt2xYhBG/evNH+3N3dCQ4OTrZ98efjq6++0ikfN24cQKLRsfRg4MCB2i95QBuliz9nV65c4f79+/Tq1Qt/f39tm96+fUuTJk04fvy4ToTsQ+rVq4dareb06dNAXKSkXr161KtXjxMnTgBw48YNgoKCtPsOCAjgyJEjdOvWjdDQUO0+/f39cXd35/79+zx//hwAQ0NDlMq4x5Narcbf3x8zMzNKliyZ6PEODg6mefPm3Llzh2PHjn1UinY8e/fupUaNGri5uWnLzMzMGDJkCI8fP+bWrVs69fv375/o1zXERR3isbKyomTJkpiamtKtWzdtecmSJbGystK5nz4FlUqlPfcajYaAgABiY2OpVq3aR92LkPbruEyZMjqRYVtbW0qWLJmgjY8fP06V5EB0dDRjx45l2LBhlClTJk22T58+HU9PT2bOnImVlZW2/PPPP0elUtGtWzdOnz7Nw4cPmTFjhjZKFhERAcRFXbp168bq1av57bffePToESdOnKB79+7o6+vr1I2IiNC5797HyMhIWy8pIiIiMDQ0THTd9/eTV5AOShYR73jEOypJkZQjU7x4cZ2/XV1dUSqVn6Qv8r4TAmBpaQlA4cKFEy0PDAzUlgUEBPDll19iZ2eHsbExtra2uLi4AGhD/2mha9euKJVKPDw8gDhHYcuWLbRs2VIn/Pn06VMGDBiAtbU1ZmZm2Nra0qBBg4/e74e8fv2aoKAgli9fjq2trc5v4MCBALx69SrJ9Z88eYJSqaRYsWI65fb29lhZWfHkyZNPtjExPjyX8V1i8efs/v37QNzL9cN2/fnnn0RFRSV7/KpUqYKJiYnWGYl3UOrXr8+FCxeIjIzULot/0T948AAhBN99912CfU6dOhV4dyw1Gg3z5s2jePHiGBoakj9/fmxtbXW6kt5nzJgxnD9/Hk9PT8qWLfvRxw3izlnJkiUTlJcuXVq7/H3ir/MPiU9HfR9LS0sKFSqUQGPE0tJS5376VFavXk2FChUwMjLCxsYGW1tb9uzZ89H3RFqv4w+vP4i7Bj+2jfPmzePNmzdMmzYtTet5eHjw7bffMmjQIIYPH66zrEKFCmzYsIGHDx9St25dihUrxoIFC7Tdpe+nMC9btoxWrVoxfvx4XF1dqV+/PuXLl6dt27Y6dY2NjYmOjk7UlsjIyCQd2XiMjY21XUofrhu/PC+hl9UG5FUsLS1xcHDg2rVryda7du0aBQsWTNAn+SHpIaqkUqnSVC7eG1sS/xUyYcIEKlWqhJmZGRqNhhYtWiT7JZ4Ujo6O1KtXj82bNzNlyhTOnj3L06dPmTVrlraOWq2mWbNmBAQEMHHiREqVKoWpqSnPnz9nwIABye43qeOlVqt1/o7fRp8+fejfv3+i61SoUCHF9mS26FVK5yy+XXPmzEky2vChxsT76OvrU7NmTY4fP86DBw/w9fWlXr162NnZERMTg5eXFydOnKBUqVLal3T8PsePH4+7u3ui241/AU6fPp3vvvuOzz77jJ9++glra2uUSiVjxoxJ9Ly2b9+eTZs2MXPmTNasWaONvmQGSb00PuV+Su31mRjr1q1jwIABdOjQgQkTJlCgQAFUKhUzZszQiUh+DKm9jlPTxtQSHBzMzz//zIgRIwgJCdFGk8PCwhBC8PjxY0xMTChQoIDOeocOHaJfv360bt2apUuXJrrtLl260K5dO65evYparaZKlSpaXZgSJUpo61laWrJjxw6ePn3K48ePcXZ2xtnZmTp16mBra6uNzDg4OKBWq3n16pWOPdHR0fj7++Po6JhsWx0cHLRRxPd5+fIlQIrr5zakg5KFtGnThhUrVnDy5EmdcHI8J06c4PHjx4kObr1//77Ol9uDBw/QaDQUKVJEW5ZZL8XAwEAOHz7MtGnT+P7773Vs/BS6d+/OiBEjuHv3Lh4eHpiYmGi/WACuX7/OvXv3WL16tc6g2NSIGsVHFIKCgnTKP/wStLW1xdzcHLVaTdOmTdPcBmdnZzQaDffv39d+gUPcQMygoCCcnZ3TvE349HPr6uoKgIWFxUe1C+K6eWbNmoWnpyf58+enVKlSKBQKypYty4kTJzhx4gRt2rTR1i9atCgQ59yktM+tW7fSqFEj/vrrL53yoKAgnYGO8XTo0IHmzZszYMAAzM3NtQNAPwZnZ2fu3r2boPzOnTva5RnN+9fn+90SqYm4bd26laJFi/Lvv//qXCfxUap40nINZdR1nBoCAwMJCwtj9uzZzJ49O8FyFxcX2rdvryNK6eXlRceOHalWrRqbN29GTy/pV52BgQHVq1fX/u3p6QmQ6DXq5OSkjQ4FBQVx8eJFOnfurF0e7+xfuHBBZyDvhQsX0Gg0KXY9VqpUiaNHjxISEqLzUerl5aWz/byC7OLJQiZMmICxsTFDhw7F399fZ1lAQADDhg3DxMSECRMmJFh30aJFOn/HKxW2bNlSW2ZqaprgBZwRxH8tffh19KlKp507d0alUrFx40a2bNlCmzZtMDU1TXa/Qgh+//33FLdtYWFB/vz5dTJRABYvXqzzt0qlonPnzvzzzz/cuHEjwXZev36d7H7iH1IfHou5c+cC0Lp16xRtTQxTU9NP6sKqWrUqrq6u/Prrr4SFhSVYnlK7IM5BiYqKYv78+bi5uWlfePGZYy9evNAZh1CgQAEaNmzIsmXLtF+ESe1TpVIluJ62bNmS6NdlPP369WPBggUsXbqUiRMnpmh/UrRq1Ypz585x5swZbdnbt29Zvnw5RYoUSfMYiI8h3oF8//p8+/Ytq1evTnHdxO4LLy8vnfbAu2yV1DwjMuo6fvjwYYpRnQIFCrBt27YEv0aNGmFkZMS2bduYPHmytv7t27dp3bo1RYoUYffu3WnqFrl//z5Lly6lTZs2OhGUxJg8eTKxsbGMHTtWW9a4cWOsra0TOMhLlizBxMRE5zi9efOGO3fuEB4eri3r0qULarWa5cuXa8uioqJYuXIlNWvWTNDdntuREZQspHjx4qxevZrevXtTvnx5Bg0ahIuLC48fP+avv/7izZs3bNy4Ufuweh9vb2/atWtHixYtOHPmDOvWraNXr15UrFhRW6dq1ap4enoyd+5cHB0dcXFx0Q5wTU8sLCyoX78+s2fPJiYmhoIFC3Lw4MFPTpssUKAAjRo1Yu7cuYSGhtK9e3ed5aVKlcLV1ZXx48fz/PlzLCws+Oeff1Ldz/35558zc+ZMPv/8c6pVq8bx48e5d+9egnozZ87k6NGj1KxZk8GDB1OmTBkCAgK4dOkSnp6eBAQEJLmPihUr0r9/f5YvX05QUBANGjTg3LlzrF69mg4dOtCoUaO0HZT/U7VqVTw8PPjqq6+oXr06ZmZmOtGllFAqlfz555+0bNmSsmXLMnDgQAoWLMjz5885evQoFhYW7Nq1K9lt1K5dGz09Pe7evauT4l6/fn3tA/rDFPpFixbh5uZG+fLlGTx4MEWLFsXPz48zZ87g4+PD1atXgbjo4o8//sjAgQOpU6cO169fZ/369dooTFKMGjWKkJAQvvnmGywtLZkyZUqqj0k8kyZNYuPGjbRs2ZIvvvgCa2trVq9ejbe3N//880+mdB81b94cJycnBg0axIQJE1CpVPz999/Y2try9OnTZNdt06YN//77Lx07dqR169Z4e3uzdOlSypQpo+OMGhsbU6ZMGTw8PChRogTW1taUK1eOcuXKJdhmRl3H8SnGyY2dMzExoUOHDgnKt2/fzrlz53SWhYaG4u7uTmBgIBMmTEgweNfV1VUnEaBMmTJ07doVJycnvL29WbJkCdbW1gm6hGbOnMmNGzeoWbMmenp6bN++nYMHD/Lzzz/rRF+MjY356aefGDlyJF27dsXd3Z0TJ06wbt06fvnlF6ytrbV1Fy5cyLRp0zh69Kh2LqWaNWvStWtXJk+ezKtXryhWrBirV6/WvhPyHFmQOST5gGvXromePXsKBwcHoa+vL+zt7UXPnj21KaHvE5/+d+vWLdGlSxdhbm4u8uXLJ0aNGpVAcvnOnTuifv36wtjYONVCbR9CImmY8Sm676sd+vj4iI4dOworKythaWkpunbtKl68eJEgjTGtSrIrVqwQgDA3N09UevvWrVuiadOmwszMTOTPn18MHjxYXL16NUEKcWJpm+Hh4WLQoEHC0tJSmJubi27duolXr14lmnrp5+cnRo4cKQoXLqw9R02aNBHLly9PsQ0xMTFi2rRpwsXFRejr64vChQsnKnCVlrTJsLAw0atXL2FlZZWoUNuHyqpJpVVfvnxZdOrUSdjY2AhDQ0Ph7OwsunXrpqOumRzVq1cXgPDy8tKW+fj4CEAULlw40XUePnwo+vXrJ+zt7YW+vr4oWLCgaNOmjdi6dau2TmRkpBg3bpxwcHAQxsbGom7duuLMmTMJUmqTau/XX38tAK0wWlIkdn3H29ilSxdhZWUljIyMRI0aNZIUaktMxTapc9mgQQNRtmzZBOWJ3X8XL14UNWvWFAYGBsLJyUnMnTs3VWnGGo1GTJ8+XTg7OwtDQ0NRuXJlsXv3btG/f/8EKb2nT58WVatWFQYGBqkSakvNdZzUsyQxxdu0pBl/SGLHOCkBuvjfh7ILPXr00Io8Ojo6imHDhgk/P78E+9q9e7eoUaOGMDc3FyYmJqJWrVpi8+bNSdq2fPlyUbJkSWFgYCBcXV3FvHnzEkwtEn+M35drECJOOXb8+PHC3t5eGBoaiurVq4v9+/en7eDkEhRCfMSoJUmW8cMPPzBt2jRev36daF+8RCKRSCS5ATkGRSKRSCQSSbZDOigSiUQikUiyHdJBkUgkEolEku2QY1AkEolEIpFkO2QERSKRSCQSSbZDOigSiUQikUiyHTlSqE2j0fDixQvMzc0zfY4TiUQikUgkH4cQgtDQUBwdHVMUPcyRDsqLFy/ynOSvRCKRSCS5hWfPnlGoUKFk6+RIB8Xc3ByIa2BKs/xKJBKJRCLJHoSEhFC4cGHtezw5cqSDEt+tY2FhIR0UiUQikUhyGKkZniEHyUokEolEIsl2SAdFIpFIJBJJtkM6KBKJRCKRSLId0kGRSCQSiUSS7ZAOikQikUgkkmyHdFAkEolEIpFkO9LsoBw/fpy2bdvi6OiIQqFg+/btOsuFEHz//fc4ODhgbGxM06ZNuX//vk6dgIAAevfujYWFBVZWVgwaNIiwsLBPaohEIpFIJJLcQ5odlLdv31KxYkUWLVqU6PLZs2ezYMECli5dipeXF6ampri7uxMZGamt07t3b27evMmhQ4fYvXs3x48fZ8iQIR/fColEIpFIJLkKhRBCfPTKCgXbtm2jQ4cOQFz0xNHRkXHjxjF+/HgAgoODsbOzY9WqVfTo0YPbt29TpkwZzp8/T7Vq1QDYv38/rVq1wsfHB0dHxxT3GxISgqWlJcHBwVKoTSKRSCS5BrVGcM47gFehkRQwN6KGizUqZe6Zcy4t7+90VZL19vbG19eXpk2basssLS2pWbMmZ86coUePHpw5cwYrKyutcwLQtGlTlEolXl5edOzYMcF2o6KiiIqK0v4dEhKSnmZLJBKJRJLl7L/xkmm7bvEy+F2Pg4OlEVPblqFFOYcstCxrSNdBsr6+vgDY2dnplNvZ2WmX+fr6UqBAAZ3lenp6WFtba+t8yIwZM7C0tNT+5ESBEolEIslN7L/xkuHrLuk4JwC+wZEMX3eJ/TdeZpFlWUeOyOKZPHkywcHB2t+zZ8+y2iSJRCKRSNIFtUYwbdctEhtvEV82bdct1JqPHpGRI0lXB8Xe3h4APz8/nXI/Pz/tMnt7e169eqWzPDY2loCAAG2dDzE0NNRODCgnCJRIJBJJbuKcd0CCyMn7COBlcCTnvAMyz6hsQLo6KC4uLtjb23P48GFtWUhICF5eXtSuXRuA2rVrExQUxMWLF7V1jhw5gkajoWbNmulpjkQikUgk2Z5XoUk7Jx9TL7eQ5kGyYWFhPHjwQPu3t7c3V65cwdraGicnJ8aMGcPPP/9M8eLFcXFx4bvvvsPR0VGb6VO6dGlatGjB4MGDWbp0KTExMYwaNYoePXqkKoNHIpFIJJLcRAFzo3Stl1tIs4Ny4cIFGjVqpP37q6++AqB///6sWrWKr7/+mrdv3zJkyBCCgoJwc3Nj//79GBm9O7Dr169n1KhRNGnSBKVSSefOnVmwYEE6NEcikUgkkpxFDRdrHCyN8A2OTHQcigKwt4xLOc5LfJIOSlYhdVAkEolEkpuIz+IBdJwUgQYlSpb0qZIrUo3T8v7OEVk8EolEIpHkZlqUc2BJnyrYW+p246jxp7jrsVzhnKSVdBVqk0gkEolE8nG0KOdAszL2WiXZoOgnDNrXkecvYth8szrdynbLahMzFemgSCQSSQ4kt0ui51VUSgW1XW3+/1dBHr2dzI/Hf2TEnhHUd66PvZl9njn3cgyKRCKR5DCkJHreIVodTc0/a3LF9wrtSrZjWNml/Lg75557OQZFIpFIcilSEj1vYaAyYE2HNegr9Tl06zXD11/MM+deOigSiUSSQ5CS6HmT8nblmdpgGtbRQ/LUuZcOikQikeQQpCR63qWB4yD0sEVB4mNNcuO5lw6KRCKR5BCkJHrexT8sJlX1ctO5lw6KRCKR5BCkJHreJS+ee5lmLJFIJDmElCTRBRqsTZU6kuh5JSU1PcjOxyovyuFLB0UikUhyCCqlgqltyzB83SUU8MGLSgAKvNVzOPHUlIZFGsp05DSQ3Y/V++f+QwQaIG55dnGo0gPZxSORSCQ5iKQk0R0sjXB2Pkiw4j/abGjD/KNHZTpyKskpqdvx594hETn8KPNF1ClumkWWZQxSqE0ikeQugp5BuH/Sy01swKpw5tmTQSTWHRGjiaL9pvYcfOBJoaiVqIRNouvGdwecnNg4V31xfwxqjcBt1pEks6Oy47GKO/f+fLVvGpdf/YfC4CGR6nDG1x7PnOZzstq8ZEnL+1s6KBKJJPcQ9AwWVoXYqKTr6BnCqIu5wklJjPCYcBqvGIbv0+4p1t04uNZ7sup5kzMP/em54myK9bLjsXoW/IzyS8oTHBUMgL5SnxsjblDCpkQWW5Y0UklWIpHkTcL9k3dOIG55chGWHI6Jvglf1fghVXVzU0rqx5KTU7cLWxbm9xa/A6BAQYwmhrEHxmaxVemHdFAkEokkl1E4n2Wq6uWmlNSPpYC5YSrrZc9j1a9iP9qVbIf4/5Dpvff3svf+3iy2Kn2QDopEIsnxxKhjuPfmHntyyYP5U4lPSU1uxIRDLktJ/Rg0QsOGuz8Sy+v/Z8IkREH2PlYKhYJlbZZhY/yu+2nsgbFEq6Oz0Kr0QaYZSySSbE9UbBRPg5/yKPARV/yucN3vOvf97/M89Dn+Ef5ExsaF3ysLJa0xy2Jrs57UpKSObuqQbQZ9ZgVqjZrPd33OqiurMDGog2305ASp2/FHJ7un79qb2bO49WK6b40bd3TP/x5/eP3BuDrjstiyT0MOkpVIJFlOeEw4T4Ke8DjoMY+DHnP7zW1uvb7F46DH+IX5ERYTlqrtVBZKLqXGQRnyHzhW+jSjcwCJaXvEKl4ToL+cCk4ajg04hpFe9uy6yEii1dH0+bcPW25tQaVQsarDKvIrm2RrHZTU0GNrDzxuegBgbmDO/dH3sTOzy2KrdJFZPBKJJFsREhXC46DHWifkSfATHgQ84L7/fXxCfQiJCvnkfShQUF/fkmPRiYfqdcgjDgq8S0e+++olP54ch/dbT5TKuO6N/hX7s7L9ShSK7BsdSG8iYiLosqULe+/vRV+pj0cXDzqW7ghkbyXZ1OAf7k/ZxWXxe+sHwKDKg/iz3Z9ZbJUu0kGRSCSZhhCCwMjABA5IfDTEO9CbkOi0OyBWRlaYG5gTFRtFUGQQ0ZqEfeq2JrbUd65P9zLd+eP8H4Q9OSUjKMnwJOgJ9VfV52nwU23ZPPd5jKk1JuuMykRCo0Jpt6kdxx4fw1jPmG3dt+FezD2rzUpXdt7dSftN7bV/Xxh8gaqOVbPQIl2kgyKRSNINIQSv3r7SOh0fOiFPgp8QFp26LpgPsTS0xCWfC2Xzl6WcXTlM9E04/ew0Z33O8jT4qTYzIR4DlQHlbMvRpWwXhlUdRj7jfJx7fo5OHp14Hvqc0vrmXI81QKVJZubXXK6DkhIPAh7QYFUDXoS+AECpUHKgzwGaFm2axZZlLAERAbRc35Jzz89hbmDOnl57qOdcL6vNyhAGbB/A6qurAahZsCZnBp3JNlEy6aBIJJJUoxEaXoa+TNIBeRr8lIjYiI/evqm+KSVsSlAqfylK2JTQ/opbF8dIz4hVV1ex/tp6Lr28xNuYtwnWdzBzoJFLI4ZXG46bk5vOspWXVzJ8z3Ci1FGUyl+Kbd23UUrPFML9+Xzn51zyvcyMJjNwd23+bqVcoiT7Kdx5c4f6K+vzOvw1EBetujD4Aq7WrllsWcbgF+ZH83XNueZ3DWtjaw70OUA1x2pZbVaGERQZRJlFZXgZFifRv67jOnpX6J3FVsUhHRSJJI+Qmj7zWE0sz0Oe60Y9gp7wODju32chzz45JdFAaUBxm+IJHJASNiUoYFpA5+vt8svLLDy3kEOPDuET4pMgSmKkZ0RFu4r0KNeDwVUGY2qQcH6RaHU0Xx34ikXnFwHQrmQ71nZci4Xhu+eBy+8uPA56zMmBJ6nrVPeT2pcbufHqBg1WNiAgMgCA0vlL4/W5F+aG5um+r6wc2/Es+BlN1zblnv897M3sOdT3EOUKlMuUfWclBx8exH1dXPeVjbENj8c8xswg6zPcpIMikeQBEsvQsDBWU7nkQzC6onVEfEJ8UAt1ittTKpRoRNIDTJUKJS5WLjrOR/yvkEUhVEpVouu9jX7Liksr2HRjE1f9rmpTguNRoKCQRSGaFW3GyOojqeJYJVk7/cL86LKlCyefngRgWsNpfFv/W5SKd7JOGqHB6GcjYjQxPBnzBCdLpxTbnxe59PISjVY30g5SblOiDTt67NA5lp9KVs4S/CDgAU3XNOVJcNw1cLjfYYpZF8vQfWYnhuwawopLKwCyzTw90kGRSHIRETERPAl+otP1cvGRmrsP6yGIe8HHE69x8dpgOhGqM9pypUKJocoQjdAQpU5eCr6gecG4aIj1e9EQm+IUzVcUA5VBqmw+9fQUi88v5ujjo9ow8/uY6ptSxaEKvcv3ZkClARjqpU7N08vHi86bO/M89DkWhhas67iOtiXbJqj3MvQljnMdUSqURH0bhZ5SSj4lhZePF41XNyY8NhyAKW5T+KXJL+my7fhZgj98ycRfsUv6VMkwJ+XGqxs0W9sM3zBfStiUwLOvJ4Ut81bXXlh0GMUWFMPvrR9KhZL7o+9TNF/RLLUpLe9veddKJFlMaFRoAgfk/X9fvX2lu4JQUjDyL1ToOicACpQINFhHD+G5kRco4iIiGqHRGUdibWz9LgJiXULbPVPMuthHhYGDIoJYcmEJW29t5cbrGwm6jBQoKGJVhJbFWzK6xmhK5S+V5n38fflvhu8ZTrQ6mlL5S7G9+3ZK5i+ZaN1nIc+AuPEr0jlJnpqFarK/z36arm1KtDqatSdm0MDAkubvj9t5n1SO4VFrBNN23UrgnAD/d6xh2q5bNCtjn+7dPRdeXMB9nTsBEQGUL1CeQ30PZTs9kMzAzMAMjy4e9F3ViPwCftzUmVXtVyasmE3HZck7VyLJQIQQBEUGJZsBExARkOJ2zA3MKWJVBGcrZ8xEFc5cs02yrgIlethiqayCi11sgi6Z4tbFsTH5tFlZhRAc9j7M0gtLOf7kuHaw5ftYGFpQw7EG/Sv2p0f5Hh/tKESroxmzfwxLLiwBoEOpDqzusFpnvMmHPAuOc1Dy2hfzx1LPuR77eu9j0Bp3bmGM8eFf4HASUZQksqCEEPiE+HDF9wpX/a5y4oEfL4NbJLlPAbwMjuScd0C6zhJ84skJWm9oTWh0KDUK1mBf731YG2dPmfrMoIFVUR4oLDEQGvB7BMsbJKyUTTPbpIMikXwCQgjehL/ROhuJOSCpESHLZ5RP64AUsfz/v1ZFcLaM+9fKyEo70HTHleecuXYlxW2ubrud9pULfmoTtfiF+bHw/EK239nOnTd3iNXE6ixXKpQUsy5GmxJtGF1jNEWsinzyPn3DfOmyuQunnp1CgYJpDafxTf1vUhwjER9BKWyRvR642ZnGLo1Z4z4P4/3fJF8xNoroUF9uRLzmqu9Vrvr9/+d7lcDIQG01k9j62JK0gxJPes4SfPDhQTps6kBEbAQNizRkZ4+dGTLoN0cR7h/nnCRH/Azf0kGRSHIOGqHBL8wvyQyYJ8FPCI8JT3E7BUwLaJ0N7b9WzjhbOuNs5ZxsNCDBtlI5q2oBi0+TMNdoNOy6t4s/L/3JqWendF4+8VgZWVGnUB0GVRlEh5IdUCrTb3Cll48XnTZ34kXoCywMLVjfaT1tSrRJ1braCIp0UNJEvQ/SuJPCbWVdzouEWjN6Sj1K5y9NRfuK2Khqs/10yttKr1mCt93eRo9/ehCtjqZlsZb80+0fjPWN02XbkqxBOiiSHEFGpSmqNWqehz7XiXx86ICklIKrQIGDuUOiDkgRqyI4WTphom/yybbGEz9TrW9wZKL9+wrA/iNnX30a/JQ/zv3Brru7eBDwIEH2j55Sj5I2JelQqgMjq4/EwTxjBjj+dekvRuwdQbQ6mtL5S7O9x3ZK2JRI9fo+oT6A7OLJKGI1avIZ56OifUUq2VWion1FKtpVpIxtGe2AZ7VG4HXzSIZcpx+y7to6BmwfgFqo6VKmC+s7rU/1gG5J9kU6KJJsz6ekKcaoY3gW8izJAag+IT4Juio+RKlQUsiikK7z8Z4TUtiicKqzUNKD92eq/dTZV9UaNR43PVh1ZRVez70S7Y7Kb5Kfek71GFJ1CO6u7hmqSBmtjubLfV+y9OJSADqW6sjqDqvTHKaXEZSMZW+vvdgVb57stZCe12lyLL2wlBF7RiAQDKg0gBVtV8iB0bkEeRYl2Zqk0hR9gyMZvu4Sv/csT6lCkQkGoMY7IC9CXySr7QGgr9THydJJ2+XyoQNS0Lwg+ir9jGvkR9CinANL+lRJ4LjZp8Jxu/fmHn+c+4O9D/byOPAxGnSPj4HKgDL5y2jl5D91QG1qeRn6ki5bunD62WkUKPip0U9Mrjf5ozQ5tGNQZAQl1cRqYvG4vp7U6I3am9lBKhzVT7lOU8OcU3P42vNrAEZVH8XvLX9PVw0XSdYiHRRJtiWlNEWBhhEbj/DcaJA2nTYxjPSMtGM9EhuAam9mn6TIWHamRTkHmpWxT7HrK1odzdqra1l7bS0XXlxIVE7e3tSehi4NGV5tOPWd62dSC95x1ucsnTd35kXoCywNLVnfaT2tS7T+qG3FamK188zICErquPzyMoN3DUbz4jK9UzPZYhpI7XWaFoQQTD02lZ+O/wTApLqTmN5keraZb0aSPkgHRZJtOecdoPPV9SHx6bRWyqoUzB+udTo+dEA+lFrPTaiUikRTNK/6XmXhuYUcfHSQZ8HPEpWTr1CgAt3LdWdwlcFZmumw4uIKRu4dSYwmhjK2ZdjefTvFbYp/9PZehr5EIzToKfXypPZFWngb/Zapx6Yy/+x81EJNFTLGUU/qOv0YhBB8deAr5nvNB2B64+lMrjc5XbYtyV5IB0WSbUlt+uGqttvSNZ02J/I2+i1/X/6bjTc2csX3SqKT+xWyKETTok0ZWX1ktpgoLSo2ii/3f8myi8sA6FS6E6var/pkZym+e6egeUEZ7k+Gfff3MXzPcJ4EPwHAUGXI69hoolBgmGjc8v/oGcYJe2UBao2aYbuH8eflPwFY0GIBo2uOzhJbcgwmNnHnLDYZBeksPKfJIR0USbYls9Jpcypnfc6y+NxiDj8+rO3SeB8TfROq2FehV/leDKw0ECP97HOcXoa+pPPmzpzxOYMCBT83/pnJbpPTJdIlRdqSxy/Mj7EHxrLxxkYAHM0diYiJIDAyEGv7ioR3WIOhJplxW1mkOhqjjqHf9n5surEJpULJn23/ZGDlgZluR47DqjCMusjATe256nuV8bXH06t8T906UklWIkkbGZlOmxMJigxi2YVlbLm1heuvricqJ+9s5UwL1xaMqjGKsgXKZpGlyXPm2Rk6b+7My7CXWBpasqHzBloVb5Vu25cibYkjhODvy38z4dAEAiMDUSqUDKg4gH0P9hEYGUj5AuXx7OdJPpP8WW1qAiJjI+m2pRu77u1CT6nHhk4b6Fq2a1ablWN4poBVfpdRKBQ0rPMlmDtmtUmpQjookmxLZqUpZleEEBzxPsKyi8v478l/CefkIU4Cv7pjdfpV7Eev8r2yXbbRhyy/uJxRe0cRo4mhrG1ZtvfYnu6zy8oU44TcfXOXobuH8t+T/wCobF+ZqQ2nMmrvKF6GvaSMbRk8+3mSPxs6J2HRYXTY1IHD3ocx0jPin27/pKtDmxfYfHMzEDelgWMOcU5AOiiSbE5GpylmN16/fc2i84vYdnsbt9/cJkajq9apVChxzedK6+KtGVVjFK7WrllkadqIio1i9L7R2qnfO5fuzMr2KzNkcK5MMX5HtDqaWSdn8fOJn4lWR2Oib8KPDX+kfan2NFnTBJ8QH0rlL8WRfkcoYFogq81NQFBkEK3Wt+KMzxnMDMzY1XMXDYs0zGqzchweNz0A6FamWxZbkjakgyLJ9mREmmJ2QQihIyef2MSBVoZW1C5Um4GVB9KpdKcclxL9IvQFnTd35qzPWRQo+KXxL0xym5RhmVWyiyeOU09PMWT3EG69vgVAi2ItWNJ6CUqFkgarGvA0+CklbEpwpN+RrM12CnoWNw/MBwRGBjJi70h83tzBytiK/b33U7NQzSwwMGcSr7590/cZ155FolTp0aVMl6w2K01IB0WSI0jPNMWs5lnwMxaeX8jOuzu5738/gZy8SqGiZP6StC/ZnhHVRlDIslAWWfrpnH52ms6bO+Mb5ouVkRUbOm2gZfGWGbrPvD5INigyiEmek7TZUQVMC/B7i9/pXrY7PiE+NFzdkMdBjyluXZyj/Y9m2HQFqTP2GSysmmiGST5gIxCJOd6dN1NaOiep5kP1bXtmoNIL5fJjDS3KZbFxaUA6KBJJBqPWqNl6aysrr6zkrM9ZgqOCE9SxMbahnlM9Pq/yOa2Kt8rxui1CCJZfXM7ofaOJ0cRQrkA5tnXflu7jTT4kKjYKv7d+QN6LoAgh+Of2P4zeNxrfMF8ABlUexOxms7E2tuZ5yHMar2nMo8BHFM1XlCP9j2T9eIRw/+TTXwEjoLSJbebYkwtISn1bHWvG8HWXWNKnSo7pGpcOikSSATwIeMACrwXsvb8X7yDvBHL7+kp9ytiWoVPpToyoNoL8ptlvcOLHEhUbxai9o7RaFV3KdGFl+5WYGaSvQmliPA99DsQJ0WXHAZ8ZxbPgZ4zcO5Jd93YBUMKmBMvbLKdBkQZAXFp34zWNeRDwABcrF472P0ohi5wbmZMkTnLq2/GpBdN23aJZGfsc0UUuHRSJJB2IUcew7to61lxdw4WXFwiLDktQp4BpARo6x8nJNyjSIMdHSRLjechzOm/ujNdzLxQomN5kOhPrTsy0tsZ37xSyKJQrj++HqDVqFp5byLdHvyUsOgx9pT6T3SYzud5kjPTidG98w3xpvKYx9/zv4WzpzNH+R3GydMpiyyUZQUrq2wJ4GRzJOe+AHNFlLh0UieQjuf7qOgu9FnLg4QGeBj9NICdvqDKkfIHyWjl5SyPLLLI0czj19BRdtnTRjjfZ2HkjLYq1yFQb8tIA2Su+VxiyawjnX5wHoG7huixvu5wytmW0dV69fUWTNU248+YOhS0Kc7T/UZytnLPKZEkGk1r17dTWy2qkgyKRpJLw6HBWXlnJhusbuOx7OVE5+YLmBWni0oQR1UfkmYwDIQRLLyzli/1fEKuJpVyBcmzvvj1LUqDzwgDZ8Jhwph2bxm9nfkMt1FgaWjKr6SwGVx2sI+3/+u1rmqxpwq3XtyhoXpCj/Y/iks8lCy1PiE/oc1LT0bTu+no65i+OqYFphtuUk0m1+nYq62U10kGRSJLhnM85Fp1fxGHvw9rxDe9jrGdMZfvKWjl5EwOTLLAy64iMjWTU3lH8dfkvALqV7cZf7f7KlPEmiZFbIijxKaIfptUffHiQYbuH4R3kDUDXMl35vcXvCTJx3oS/oenaptx4dQNHc0eO9j+a7TRzttzcwh87Pud4KurOPTOXr66tZnyd8YyoPkLn+krqWOVFcpv6tnRQJJL3CIkKYfnF5Xjc9OC633Wi1LoZBgoUOFk64e7qzsjqI6lgXyGLLM16noc8p9PmTpx7fg6lQsmMJjOYUGdClo798AnxAXK2g/JhiihAAXMDbOyPsN9nJhDXvkWtFtG2ZNsE6wdEBNBsbTOu+V3D3syeI/2OfNLs0OlNREwEYw+MZdnFZVQWSiBlZ7ageUEuhz1joudEZp+azVe1v2JUjVGcvv82wbFyyKUijqkht6lvK4QQyUxbmT0JCQnB0tKS4OBgLCwsstocSQ5GCMGxx8dYemEpx54cS1RO3szAjGoO1ehboS99KvTBQM8gCyzNXpx8epIum7vg99aPfEb52NRlE81dm2e1WVReVpkrvlfY02tPjpRDTypFVKABFLwxmMHgOtX5qdFPiarwBkYE0nRtUy69vISdqR1H+x+ltG3pTLE9Ndx+fZvuW7tz/dV1FCiYWW0UEy5vQpHCTLsxI7zY8PQ4v5z4hfsB9wHIr2yK6dsveffqjSP+r5yUTpveJObkZhfHLS3vb+mgSPIcr9++ZsmFJfx7+19uvb6VqJy8i5WLVk4+O319ZjVCCJZcWMKX+78kVhNL+QLl2dZ9W7bpPsg/Oz/+Ef5cG3aN8nbls9qcNKHWCNxmHUkmC0NgY6bi3JQWiX4BB0UG0WxtMy68uICtiS1H+x/NNhNGCiFYeWUlo/eNJjwmHDtTO9Z1WkfTok0h6BkTdw7m0KNDAKzusJqw6DBG7h2JnlKPrf2P4uRcB4BYTSweNzz46fgvhPl8jYr8KEh4LOK7Mk5ObJxjogXpTXbt+krL+1t28UhyPUII9t3fx/JLyzn59CT+EQlltS0NLalVqBYDKg2gS+ku6KnkrfEhkbGRjNgzgpVXVgJx403+bvd3thm4GB4Trj23OXGQbEopoqDAP0yTaIpoSFQILda14MKLC+Q3yc/hfoezjXMSEhXC8D3D2XB9AwDNijZjbce1Wnl9tYUjK16eI1ARpxXkUKIF+U3yY3P3HzwfeTLl4mLW/d9B0VPq0btCb4qYNKP3n+eT3GdOS6fNCHKD+rZ8CktyJc9DnrPw3EJ23N3BPf97icrJF7cpTrsS7RhZfSROVlIXIjl8Qnzo5NGJ8y/Oo1QomdlkJuPrjM9WWiPx40/MDMywNMx5Kd0fmyIaGhVKy/Ut8XruhbWxNZ59PbNN9Ojii4v0+KcHDwIeoFKo+Lnxz3xd92udbKNLLy8RGBkIgJm+GTbGcS/VmU1mUu1RNdZfX8+42uOo7FBZu86bMN2oZ1LklHRaSeJIB0WSK4hVx7Ltzjb+vvw3Z5+fJSgyKEEdayNr3JzcGFRlEG1KtNF5SEqS5sSTE3TZ0oVXb1+RzygfHl08aObaLKvNSkBOF2n7mBTRsOgwWm1oxelnp8lnlA/Pvp5UtK+YUSamGiEEC7wWMOHQBGI0MThZOrGx80bqFK6ToO7Bhwe1/y9mU0x77qo6VqVnuZ5svLGRiZ4TOdj3Xb3clk4rSRzpoEhyLI8CH/GH1x/svr+bR4GPEsjJ6yn1KJ2/tFZOvoBZ9ptOPjsjhGDx+cWMOTCGWE0sFewqsK37NormK5rVpiVArREcv++LSWx9bFRFUWtEtuhvTwtpTRF9G/2W1htac/LpSSwNLTnU95BOlCGr8A/357Odn7Hz7k4AOpTqwF/t/sLaOPHU1vixJwCu+XTHMv3S+Be23trKoUeHOPTwkNYxzm3ptJLEkQ6KJMcQo45h/fX1rL26lvMvzhMaHZqgjq2JLQ2cGzC02lCauDTJkV/S2YEPx5v0KNeDP9v+mW3Gm7zPu4wFK2z5Gp/H4DbrSLbIWEgLaUkRDY8Jp+3Gthx/chwLQwsO9j1IVceqWWC1LiefnqTnPz3xCfHBQGXAb81/Y2T1kUneh2HRYZx+dlr794fOr0s+F0ZUH8HvXr8z0XMiTYo2QalQ5rp0WkniyCweSbbmxqsbLDq3iP0P9/Mk6EkCOXkDlQHlC5Sna9muDKkyhHzG+bLI0tzDs+BndNrciQsvLqBUKJnVdBbjao/Lls5eUmm5OTnVNKUU0YiYCNptaofnI0/MDcw52PcgtQrVykKL4+YEmnlyJlOPTUUt1BS3Lo5HF48UIzp77u2hzcY2GOsZExEbwdLWSxlabahOnTfhb3Bd4EpIVAjrOq6jd4Xe2mXZOZ1Wkjgyi0eSLfiYNLeImAhWXVnF+uvruex7mfCY8AR1HMwctHLytQrVypYvzpxAYufn1LMTdN3SlVdvX2FtbI1HF4+4VNBsSHIztwrinJScNHNrPC3KOdCsjH2i905kbCQdPDrg+cgTMwMz9vfZn+XOycvQl/Td1pfD3ocB6FuhL4taLUpUpyWe+Gtv5ZnrGKrLY2joQ0RsRKLp6vlN8jOx7kS+OfIN3xz5jsJGjQkM11DA3IhmZeyTPFaSnE+6OyhqtZoffviBdevW4evri6OjIwMGDODbb7/VvkiEEEydOpUVK1YQFBRE3bp1WbJkCcWLS72J3EJavmwuvLjAwnML8XzkmaScfEW7ivQs15PPKn+GmWHWyKjnJhI7P2ZGsTwRvxKmfEVFu4ps674t283d8j65bebW90ksRTQqNopOHp04+PAgpvqm7O21N9FBp5nJgQcH6Le9H6/evsJE34TFrRbTv1L/ZNfRvfbKY88MYmPeEKW/LMEYlHjG1BrDohOniPXtSr+/L2nLZbQkd5PuDsqsWbNYsmQJq1evpmzZsly4cIGBAwdiaWnJF198AcDs2bNZsGABq1evxsXFhe+++w53d3du3bqFkZEcdZ3TSSrs7hscyfB1l5jbvQyPIv5l883NXPW7mqicfCGLQri7ujOi+ohsMfAvN5HU+QmNVGLNROq41mHbgKmY6GfveYVy28ytyREVG0XnzZ3Z92AfxnrG7Om1h3rO9bLMnhh1DN8e+ZbZp2cDUMGuAh5dPCiVv1Sy6yV17amENbbRU7j1zACXRHppj98NRj9keJLPlJzYlSdJmXR3UE6fPk379u1p3bo1AEWKFGHjxo2cO3cOiIuezJ8/n2+//Zb27dsDsGbNGuzs7Ni+fTs9evRIb5MkmUhKYXeBhtEe//Hc6GtQvMu6MdU3pZpDNfpU6EPfin0x1DPMNJvzEsmdHwVKQBDypjmGKuPMNi3N5JVU02h1NN22dmPP/T0Y6Rmxu9duGhRpkGX2PA56TM9/enLW5ywAI6qN4Nfmv2Ksn/w1k5pr7+c9d2hRzlGniyZ+PRLRjM3JXXmSlEl3IYg6depw+PBh7t27B8DVq1c5efIkLVu2BMDb2xtfX1+aNn3Xr21paUnNmjU5c+ZMotuMiooiJCRE5yfJnqQUdlegRA9bjDRlKZqvKCOrj+T2iNuETQnj2MBjfF71c+mcZCCpUSuN7xbJ7sSnmib1SlIQ1wWQk1NNY9Qx9Njag513d2KkZ8Sunrto7NI4y+z59/a/VF5WmbM+Z7E0tGRr160sar0oRecEPv7aS0tXniR3ke4RlEmTJhESEkKpUqVQqVSo1Wp++eUXeveOG3nt6+sLgJ2dnc56dnZ22mUfMmPGDKZNm5bepkrSmafBT/G4dhxIOZNmfYfddKoi1Vszm9zULZLbU01j1DH0+rcX2+5sw1BlyPbu27NswHJkbCTjDoxj8YXFANQqVIuNnTdSxKpIqrfxsddebrpmJWkj3SMomzdvZv369WzYsIFLly6xevVqfv31V1avXv3R25w8eTLBwcHa37Nnz9LRYsnHEhUbhecjT8YdGEfZxWVxnu/M0suzU7Wug2X209PIC+S2bpEW5RxY0qcK9pa69tpbGuXocQmxmlj6buvL1ltbMVAZ8G/3f3Ev5p4lttx9c5daf9bSOicT607k+IDjaXJO4OOvvdx2zUpST7pHUCZMmMCkSZO0Y0nKly/PkydPmDFjBv3798fe3h4APz8/HBzePTz8/PyoVKlSots0NDTE0FCG/bMDDwMesv/BfvY92MfRx0d10oCVCiVVnC0IfhbN20iDRNeXCo9ZS25U4EwuLTcn8GG6d1VnSwbu7I/HTQ/0lfr80+0fWhVvlSW2rb6ympF7R/I25i22Jras7bj2ox2llK49EDhYGie49nLjNStJHenuoISHh6NU6gZmVCoVGk3cgEgXFxfs7e05fPiw1iEJCQnBy8uL4cOHp7c5kk8kPCacY4+PaZ2SBwEPdJY7mDnQolgLWhRrQdOiTbE2ttaO1IfcF3bP6eTWbpGcOnNrYuneBgbh+OCNnr4eW7puoU2JNpluV1h0GCP2jGDttbUANHZpzLqO63Aw//iIVHLXnkCDAmWi115uvWYlKZPuSrIDBgzA09OTZcuWUbZsWS5fvsyQIUP47LPPmDVrFhCXijxz5kydNONr166lOs1YKslmHEII7ry5o3VIjj85rpMGrKfUo27hurQs1pIWxVpQwa5CokJpUuExeyPPT9aTVMqtQAMoGNgwlh9adMh0u674XqH71u7c87+HUqFkWsNpTHabjEqpSpftJ3btxfKaP7o3oGPlpHV35DWbO0jL+zvdHZTQ0FC+++47tm3bxqtXr3B0dKRnz558//33GBjEhf3jhdqWL19OUFAQbm5uLF68mBIlSqRqH9JBSV9CokI44n2E/Q/2s//Bfp4EP9FZ7mTpRAvXFrQs3pLGLo2xMEzdMf8YJVlJ5iHPT9ah1gjcZh1JJjslrrvj5MTGmXZOhBAsOr+IcQfHEa2OppBFITZ02pAheivx1975Z3f4+shwLM1f4Tch8SSJxNaT12zOJUsdlMxAOiifhhCCa37X4hySh/s5+fQksZpY7XIDlQENnBvQolgLWhZrSan8paScvESSjpx56E/PFWdTrLdxcK1077pK7CUfEhXEoJ2D2HZnGwBtS7RlZfuV2JhkbLfZ1ltb6bqlK7UL1eb0oNMpryDJ8ci5eCQJCIwI5NCjQ9ooycuwlzrLi1kXo4Vr3FiShkUaZstZayWS3EJWpc4m1k1ibarAX38ZT6N2oq/UZ06zOXxR84tM+Sh5GPAQSDiLsUQC0kHJtWiEhosvLmqjJGd9zqIR75RbjfWMaezSWDvAtZh1sSy0ViLJW2RF6mxSY17836qBwbjkU7Gl7zdUdayabvtMiYeBcQ5KUnPwSPI20kHJRbx6+4qDDw+y/8F+Djw8wJvwNzrLy9iW0UZJ6jnXw0hP6gZIJFlBZqfOpkZmvoB6BJXsq6TL/lLLo8BHAInOYiyRSAclBxOricXLx0sbJbn44iLivUeQuYE5TYs2pUWxFri7uuNs5ZyF1kokkngyO3U2NTLzviFRmT7zs4ygSJJDOig5jBehL7TjSA49OkRQZJDO8kr2lbRRkjqF66Cv0s8aQyUSSbLEq+B+OCbEPgNSZ7OjXHy0OpqnwU8BOQZFkjjSQcnmRKujOfX0lDZKcs3vms7yfEb5aO7aXBsl+RQhJYlEkrlklgpudpSLfxr8FI3QYKJvgr2ZfabtV5JzkA5KJpGW/P0nQU/Y92Af+x/s57D3YcKiw7TLFCioXrC6NkpSvWB19JTyNEoyhtymO5Ed25MZKrjZTS5erRHsvXEfk9j6OFlYoRGgyrmXlSSDkG+2TCAlBcTI2EiOPznOvvv72P9wP3fe3NFZ39bEVptt06xoM2xNbTO7CZI8SG5T7sxt7UkL2Uku/t150GDL10T4gdusI3niPEjShhRqy2CSSu2LQ1DIaT+XAv8mIjZCW6pUKKldqLZWTr6yQ2WUinSfeFoiSZKkrtv411dOmyk4t7XnY8lqJ02eB4lUks0mpCRnLdCgxp/nRoNwtLDXysk3cWlCPuN8mWytRBJHStdtfHdAZsqwfwq5rT2fSlZ1c8nzIAGpJJttSCm1T4ESPWxZ3+YsPatWk3LykmxBStetAF4GR2Z6SurHktva86lk1czP8jxI0orsN8hAUpuyZ6rnKJ0TSbYhO6akfgq5rT05FXkeJGlFOigZSHZM7ZNIUiK11+Op5/uIUcdksDWfjrwPswfyPEjSinRQMpD41L6kYiMK4gaoZVZqn0SSGlK6bkGgJohFZ9dTbn5H9tzdm4nWpR15H2YP5HmQpBXpoGQg8al9QIKbMrNT+ySS1JLcdcv/S1VYYRsznqjXwxm68hV1F43k5qubmWlmqpH3YfZAngdJWpEOSgYTL2dtb6kbtrS3NJIpdZJsS1LXbWKosMHnWUtqLhzKiD0jeP32dSZYmDaSao+dpaG8DzMR+TyUpAWZZpxJZHRqX3ZUyJTkfOKvK9/gCH7ac5uAt9FJ1BTE8obnRoOwNDLnu/rfMbrmaAxUBplqb0rEtcefLpsG4R/lze7+82jq2iSrzUo3cspzIKfYKUl/ZJpxNiQjU/uyWnxJknuJv27PPPRPxjkBUKCHLWWt2nMzeBvjD41nyYUl/Nr8V9qXbJ9tstTi2pOfJmUsWXvtOp7eh3KNg5KTngNZleosyVnILp4cTrwy44f6Ar7BkQxfd4n9N15mkWWS3ERqUz9/avA7f7X7C3szex4GPqSjR0car2nMFd8rGWtgGmnu2hyAQ48OZbEl6YN8DkhyI9JByYGoNYIzD/3ZdsmHKdtuJCqjH182bdct1Joc14snyWakNvXzN6/vKW5dnHuj7vFNvW8w0jPi2ONjVFlWhUE7BvEyNHu8KJsWbQrApZeXPmrMTPw9uOPKc8489M/Se0ytEUzbdUs+ByS5Dumg5DD233iJ26wj9FxxlrGbryYbdn9fmVEi+RRSk3ocq3jNKd811F9Vn3ab2tHEpQm3R9ymR7keCAR/X/mb4n8UZ/qJ6UTERCS5pczA3sye8gXKA3DY+3Ca1n3/Hvxy0xV6rjiL26wjWRalSItCq0SSk5AOSg4iqTBuSkhlRsmnklKKqAIF0ztUYWi1wegr9Tn2+BiN1zSm7/a+fFbpM04NPEXNgjV5G/OWb458Q6lFpdh0YxNZOUZf283zMPXdPNmxK0UqtEpyK9JBySEkF8ZNCanMKEkPUkoR7VezAkvbLOXhFw8ZWX0kBioDTj49SfN1zRl3aBzf1f+OtR3WUsiiEE+Dn9Lzn57U/bsuXj5eWdKeZkWbAXDw0cFUOUrZtStFKrRKcisyzTiHcOahPz1XnE3TOgINKAP5va8VHUq3yyDLJHmND1NEqzrn4+KTwAQpo89DnjPn9ByWXVxGZGzc13s1x2p8Xedrbr++zazTswiPCQegd/nezGgyg8KWhVPcX3qlpIbHhGM9y5oodRS3R96mVP5Sye4vtffgxsG1MjVDJX6WYN/gyCQ+YAT2lkacmthEpvJKshyZZpwL+ZjwrAIFr/SW0nHzGfpW6MvvLX4nn3G+DLBOkpd4P0V0/42XNJhzNInU1oLMbzGfSW6T+O30byy+sJgLLy7QbWs3KtlX4vcWv3Py6UlWX13N+uvr+ff2v4yvM56v636NmYGZdvsZlTprom+Cm5Mbh70Pc/DhQUrlL5Xs/qJiNanabmZ3pcR3vw1fdwkF6DgpAg2gwNh6DxrRABX6mWqbRPIpyC6eHEJaw7MOlkYs6FmB0fXqoVQoWXttLWUXl2X3vd0ZZKEkr5Ha8Rj2ZvbMaT6Hx18+ZlLdSZgZmHHF9wqDdw3m4suLzGg8A7fCbkTERvDT8Z8oubAkq6+sZu/1Fxk+3uP9dOOU2vP4TXiqtpkVXSlJdb/ZmCoJMprDMd/5DNwxEI1InZMlkWQHZBdPDiGlMK5Ag0L5lsENrGlcrKpOGPysz1kGbB/AXf+7APSv2J/5LeZjZWT10eFzqQSZt4m/HpMasK0gbmzKyYmNE1wX/uH+zD87nwXnFhASFQJA6fylaVa0GTvv7uRx8GMQSlxi1qJRW6Z5+2nh8svLVFleBTN9c8ryL74hUcnuTwiBX0hUovdgetn0KSR2X+57sIeOHh2J1cQytOpQlrRekm2E8yR5j7S8v6WDkoOI/8IDPnhACgTw2mA6Eaoz9K/Yn1+b/0p+k/zaGhExEXx39DvmnpmLQFDQvCAjyi9n1wXDNIfPc5JipSRjSI/xGEGRQSzwWsC8s/MIigwCoJh1MarYV+Hg7cdYhn//SdtPDRqhwf5Xe0JC7bGPnpFi/bFNizPP837cB8F7Aej41312nU/G44YHvf7thUZoGFd7HHOazZFOiiRLSMv7W3bx5CCSCuM6WBozt1tpPqtVBQUKVl9dTamFpVhzdY02O8FY35hfm//KiYEnKG5dnIAgJ5Yd1vAyWFePIqXweXZMs5RkPqkdZ7H28g5ehL5IdJmVkRXfN/ieJ2Oe8EvjX7A2tuZBwAM239qMpX6hdLUjKZQKJU2LNkUlUjc2q0h+UyqVOo8af53y7D7ZXfdy3VnRdgUAv535jR//+zGLLZJIUkZGUHIgyXWvnPU5y5BdQ7j+6joATVyasKT1EorbFNeuHxr1lhrT9xMeZYgiEemtpELVnxLWl+QuUhtB8TWYTLTqBm5ObnQr243OpTvjYJ74Szw0KjRu/p7Tv6Y6orFhcA3quNqm2f73WXl5JcO3zUvV/pb0LUnHbeWIio1hWXNP7ExK5KguzgVeC/hy/5cA/Nb8N76q/VUWWyTJa8gISi4nPouifaWC1Ha10Xkw1ipUi4tDLjKzyUyM9Iw47H2Y8kvK88vxX4hWx6nO3vCJJCLKKFHnBJJWnpSKlZJ4UlaWBTPjGKo4WyAQnHh6gtH7RlNwbkEarGrAonOL8A3z1alvbmjO13W/xvtLb35uMQChDPh/FkpCBBpiec1XR9t/8jw/zVybEaW8SaziTZLtURDXjXnm1Tqi1FHUKFSNwbUbJnoPZme+qPkFPzf6GYBxB8ex/OLyLLZIIkka6aDkQvRV+kx0m8iN4TdoVrQZUeoovj36LVWWVeHU01MfrTwpFSsl8aSsLAu/dq7J6UEneTrmKXObz6VWoVoIBMefHGfUvlE4/uZIo9WNWHJ+CX5hftr1TQ1MGV/nKxZ0q48Cxf9HWL0jPnU2wGA5Xs/PUHV5VcbuH0toVOhHtaWQRSFK25YkQH8ZApFoewAmtSzGkguLABhXe1yOHcMxpd4UJtadCMCw3cNYf219FlskkSSOdFByMa7Wrhzoc4B1Hddha2LLzdc3cVvpxvobS1K1vrmR7terVKyUvE9KyrLx4zEKWxZmbO2xnBl0hidjnvBb89+oWbAmAsGxx8cYsXcEjnMdaby6MUsvLOXV21cAtK/kzNI+VXGw0N2+Gn9CjH4lUhXXxaQRGuZ7zafkwpJsvbX1o+TzmxVtRoTqDJVKXaCAhWGi7XkZu4834W8oYlWETqU7pXkf2QWFQsGMJjMYWX0kAkH/7f3Zfmd7VpslkSRAjkHJI/iH+/P1oa/5+8rfIJQ4Ra9CoclHwu/fuC9UNf4oC0xldcdVNHJpBKQu1dncWM2Vb9uhp5K+b17hY1POHwc9ZuutrWy+uZnzL85ry5UKJY2KNKJb2W50LNURa+P8/+9eDOOS3zHW3Z3Gk2BvAAxUBtquy3jcXd1Z1GoRrtauqW7Dnnt7aLOxDUWsinBlyDXsZtRFJfKxu8966hcviEIhKLWwFPcD7vN7i9/5ouYXqd52dkUjNHy24zNWX12NgcqA3T1308y1WVabJcnlyDRjSZL89/g/hu4eytNX1thGT/m/e/L+y0Q3ZRlgRLURzGo2CzMDs1SlOjcrY8vf7f7GxiTz5L4lORvvQO84Z+XWZi68uKAtVylUNHJpRLcy3ehYuiP5TfITo45h/fX1/HLiFx4EPNDWUwu1dj0DlQHf1vuWr+t+jaGeYYL9fUhYdBjWs6yJ0cRwdehVKi6rGFc+OQxTA1N23NlBB48OWBlZ8WzsM63SbU4nVhNLj609+Of2PxjrGXOw70HcnNyy2ixJLkYOkpUkSYMiDbg67CpfN25OkNFsYnmjs9zB0piJra0p5hCmLVt8YTFlF5fl+JPjyaY6t6/hh9rgIjvv7qTSskqcfHoyU9okyfm45HNhQt0JnB98nodfPGRmk5lUdaiKWqjxfOTJkN1DsP/VHvd17qy+upq2Jdpye+Rt1nZcS0mbklrnJH7gd7Q6mu+PfU+pRaU44n0kxf2bGZhRp3AdAI48Tlj/1zO/AjCs6rBc45wA6Cn12NB5Ay2LtSQiNoLWG1pz8cXFrDZLIgFkBCVPc+fNHYbsGsY57wBUIh+u+fPzZ+fJ1ChUjWh1NDNPzuTH/37U+TIdXX00M5rOwEjPJNGw/qWXl+i+tTsPAh6gUqiY1nAak9wmoVKqsrClkpzKw4CHbLm1hc03N3PZ97K2XE+pRxOXJnQr2422Jdpy2PswPx3/iVuvbyW6nc6lO7Oo1SLszOyS3Ncvx3/h26Pf0rZEW3bd2wXERVBuvLpBrb9qoa/U5/GYxziaO6ZvI7MBETERtFzfkv+e/IeNsQ3/DfiPsgXKZrVZklyI7OKRpBqN0LDy8komHJpAYGQgSoWSL2p8wU+Nf8LMwIyrvlfpt70f1/yuadcpYlWEtR3XJhkKDo0KZfie4ay/Hpcd0MSlCWs7rk1S/0IiSQ33/e+z5dYWttzaopNarKfUo2nRpnQp0wWVQsW8s/N0rtd4jPSMmN10NiOqj0jUYT7//Dw1/qyBhaGFVoI/bHIYA3cMZMutLQyoNICV7VdmWPuymtCoUJqubcq55+ewN7PnxMATFLMultVmSXIZ0kGRpBm/MD++OvgVG65vAKCwRWEWtVpE25JtiVHHMOvULKb9N41YTax2nTE1x/BLk18w0TdJsD0hBKuurGLUvlGEx4RTwLQAazqswb2Ye6a1SZJ7ued/jy03t7D51mYdZ0RfqU/Tok0pbl2cY0+OJeqoFMtXjE1dNlHVsapOuVqjxnaOLYGRgdqy68OvU3FpRTRCw/Xh1ylXoFzGNSobEBARQKPVjbjmdw0nSydODjxJYcvCWW2WJBchHRTJR3PgwQGG7xmOd1BclkTn0p1Z0HIBjuaOXPe7Tt9tfbnqd1Vb38XKhXWd1mn77z/k9uvbdN/aXatsO7HuRH5q9BP6KjntuyR9uPvmrrYbKP46gzhnpZJ9JfzD/XkU9CjBej3K9mBZ22VYGL57hnTd0pWtt7Zq/x5WdRhLLy7F3dWd/X32Z2xDsgl+YX7UX1Wfe/73KGFTguMDjifbNSaRpAXpoEg+ifCYcH7870d+Pf0raqHGwtCCGU1mMKzaMNQaNXNOz2Hqsak60ZRxtcbxU+OfMNY3TrC9iJgIxh0cx5ILcfortQrVYmPnjRSxKpJZTZLkEW6/vq11Vm6+vqkt11fqY2pgqp2UMB5DlSHzWsxjWNVhKIJ9+Pfin/x84mftciM9QyJjo1jSegk1i7cEq7wRTXgW/Ay3lW48DX5K+QLlOTbgGNbG1lltliQXIB0USbpw1fcqQ3YP4dzzc0CcY7G8zXLK25Xnxqsb9NvWT2fgYlGroqzvvJ5ahWolur2tt7by+c7PCY4KxsrIir/a/ZWjBa8k2Ztbr2+x5eYWPG56cPvNbW15Yuq0tcwKcSo8EuUHmio66BnCqIt5xkl5EPCAeivr4RvmS42CNfDs64m5oXlWmyXJ4UgHRZJuqDVqllxYwpTDUwiNDkVPqcf42uP5vsH36Kv0+fX0r3x39DttNEWBggl1JjCt0TSM9BIqynoHetPzn554PfcC4jRWfnP/LdG6Ekl6cfPVTTbf3MzmW5u58+ZOguWVhZJLpCJ9eMh/4Fgp/Q3Mptx4dYMGqxoQEBFAA+cG7O29N9ExZxJJapEOiiTdeR7ynNH7RrPtzjYAiuYrytLWS2nm2oxbr2/Rd1tfLr28pK1f3Lo46zutp3rB6gm2FaOO4Zsj3zDn9BwAKtpVxKOLByXzl8ycxkjyLEIIbr7+v7NyczN3/e8C0kFJjgsvLtB4dWNCo0NpWawl23tsx0BlkNVmSXIo0kGRZBg77uxg1L5R+IT4ANC7fG/mus/F2tiaeWfm8c2Rb4jRxABx0ZRJdScxteHURNU8993fR7/t/XgT/gZTfVMWtVpE/0r9M7U9kryLEILrr66z5eYWLlz6i31hb1NeKQ86KAAnnpzAfZ07EbERdC7dmU1dNqGn1Mvw/X7sNAqS7It0UCQZSmhUKN8e+ZY/zv2BQGBtbM2cZnMYWGkgd/3v0vffvlx4+U6uvIRNCTZ02pAgrRPgRegL+vzbh6OPjwLQt0JfFrdenKvUOiXZl5ehL/F85MnZ88tY5HM95RXyqIMCcPDhQdpubEu0Opp+Ffuxsv1KlIqMEyPff+Ml03bd4mXwu9nRHSyNmNq2jHYiSknOQzookkzh/PPzDNk9RCua1cC5AcvaLKOYdTHmn53PlCNTtBO5KVAwxW0K3zf8PkF4WK1RM/3EdH747wc0QkMJmxJ4dPGgkn2lTG6RJLcTFh3G8SfHOfTwEHsf7OWe/z1AdvGklu13ttNlcxfUQs2IaiNY2GohCkX6RzTi5/z68OUUv6f3Z8uW5CykgyLJNGI1scw/O5+px6YSHhOOgcqAKW5TmOQ2icdBj+m7ra/OTLWl8pdiQ6cNVHaonGBbx58cp9c/vXge+hxDlSG/Nf+NEdVHZMgDUJI3iNXEcvHFRQ49OsShR4c4/fQ0sSI2QT3poKSe9dfW03dbXwSCiXUnMqPJjHS9R+NnTX8/cvI+CsDe0oiTExvL7p4ciJwsUJJp6Cn1GF9nPDdH3KRlsZZEq6P54b8fqLSsEn5v/Tgz6Axzm89FXxknzHbnzR2qrajGD0d/IEYdo7Ot+s71uTrsKm1KtCFKHcWofaPovLkzgRGBie1aIkmAEIL7/vdZcn4JnTw6kX92fmr9VYvvjn7H8SfHE3VOClsUZorblFRt3zvocTpbnPPoXaE3S9ssBWDWqVlMPzE9Xbfv5f0mSecE4mZRfxkcyTnvgHTdryT7ISMoknRDCMHmm5v5cv+X+L31A2BQ5UHMbjYb/3B/+m7rq00vBiidvzQbO2+kon3FBNv53et3vj70NTGaGJwsndjYeWOSarWSvM2b8DccfnQYz0eeHHp0iCfBT3SWJ6Z7AnFzRH1T7xsaFmnIrQcHKbq+K8Yk/UUegaCWkT5/9t2faHZaXuO3078x/tB4AOa7z+fLWl9+0vbu+99nzdU1rPW6BcGfpVj/9x6VaF+p4CftU5L5yC4eSZYSGBHIJM9JLL+0HIACpgWY5z6P7mW788e5P5joOVE7NkWpUPJ9/e+ZUm9KAvn7Cy8u0GNrDx4GPkSlUPFz45/5uu7XGTowT5L9iYyN5OTTkxx6eAhPb08uv7ys44AoFUpM9U0JjQ5NsK6hypDPKn3GmNpjKGFTAoCo2Ciqr6hOkN8Nurs0ZXazWSg+cFQCIwPpe2Ase15dxczAjO3dt9OkaJOMbWgO4IdjPzDtv2kA/NXuLz6rnLJj8T6BEYF43PRgzdU1nPE5A4Chujz20TNSXHfj4FrUdrVJu9GSLEU6KJJswcmnJxm6eyi3Xt8CwN3VncWtF6MRGvr820cnmlLWtiybumxKMBlbSFQIQ3cPZdONTQA0K9qMtR3XyrlB8hAaoeGK7xVthOTkk9OIaFdUIh9qRSBRyps4WRXCQGnA4+DHOlMwxONo5sgXNb9gcNXBCSTbvzn8DdNPTsfWxJabI25ia2qbqB2hUaF08OjAEe8jGKgM2Nh5Y55XQhZCMP7geOaenYuTULKiyQyauzZPvLKJDVgVJkYdw/4H+1lzbQ077+7UfqyoFCrci7nTp1w/ft9tg19IVCJxLzkGJacjHRRJtiFaHc3sU7P5+fjPRKmjMNYzZmqDqYypNYblF5cz4dAEotRRQNyX77SG05jkNklHY0EIwV+X/+KLfV8QERuBnakd6zqto2nRplnVLEkG8yToCYceHcLzkSeHvQ/zJvwNAMbq2lhHD0GPd06ERuHPG/2lRKjOJNhONcdqjK01lq5luiY6QaWXjxd1/q6DRmj4p9s/KTocUbFR9Pq3F//e/helQsmyNsv4vMrnn9janI0Qgsn/9mXq9Z3JdpFpVAb8WKE9i+/t5HX4a215BbsK9K/Yn17le2FvZg+8y+IBdJwUmcWT85EOiiTbcc//HsN2D9PqnVSwq8DyNsuxNbWl7799Oe1zWlu3XIFyeHTxoIxtGZ1t3Hx1k+5bu3Pz9U0UKJjsNplpjaZlimCUJGMJigziqPdRrVNyP+C+znIzAzMqWw3k6ZP4r/N3L0KBBlDw2mA6EaozKFDQoVQHvqr9FXUL100ywyQiJoLKyypz1/8uvcv3Zl2ndamyVa1RM2z3MP68/CcAM5vMZKLbxDS3OTehfn4J1YpGKdarQhiXFRrsTO3oXb43/Sr2SzAGLR6pg5I7kQ6KJFsihGDN1TWMOzgO/wh/FCgYUX0EPzf+mfXX1jPu4DhtNEWlUPFTo5+YUHeCjgMSHhPOmP1jWHFpBQB1C9dlQ+cNOFk6ZUmbJB+n9hmtjuasz1kOPYxL/z3/4jwaodEuVylU1CxUk2ZFm1G3cF2eBvkwY5sxMbFmCcaHQJyTolEE0Kn+Zb6s9QVF8xVN0e6vDnzFvLPzcDR35MbwG+QzzpfqNgshmHJ4CjNPzQRgfO3xzG42O++mxL+4AssbpFhtkmsd6tcaTXPX5qn6sMi1SrJBzyDcP+nl/+8Oy41IB0WSrXkT/oZxB8ex5uoaABzNHVnYciGV7CvRZ1sfTj97F02paFeRTV02USp/KZ1teNzwYMjuIYREhZDPKB9/t/+bDqU6ZGYzJKT+Kzd+Dpz4cST/Pf6PtzG60vIlbUrSrGgzmrk2o55TPa74XmH11dVsvbWV2Mii6Tpw8viT4zRc1RCBYG+vvbQs3jINrX7H+5ksAysNZHnb5XkzopdKB0XqyBDnnCysCrFRSdfJxTNnSwdFkiM4/Ogww/YM40HAAwDal2zP7y1+Z+/9vXx14Csi1XEvPZVCxfQm0xlXexwqpUq7/qPAR3Tf2p0LL+Jk9UfXGM2cZnMSnfdHkv6kpPb5S2cXYg0u4PnIE89HnrwMe6lTz9bElqZFm9KsaDOaFm1KYcvC3H1zlzVX17Du+jqeBj/V1nUx7IomKOV5mlKTehoWHUaFJRXwDvLm88qfs6LditQ0N0lWXl7J57s+RyM0tC/Znk1dNuW92bmlg5J68vixkg6KJMcQERPBLyd+YdapWcRqYjEzMOOXxr/QunhrBmwfwMlnJ7V1K9lVwqOrhzY9FOK6CiZ7Tmbu2bkAVLavzKYum3TqSNKflNQ+QRDLG54bDQJFXNeNsZ4x9Z3ra52S8nblUSqUBEQE4HHDg9VXV+tkdlkaWtK9bHf6V+qPIroEPVd4JbGvd6QmgjJ893CWXlyKk6UT14dfx8Lw058h2+9sp8fWHkSpo2hYpCE7euxIl+3mGPL4SzdN5PFjJR0USbqSGf3AN1/dZMjuIdruneqO1VnWZhnnnp9jzIExRMbGvQj1lHrMbDKTMbXG6ERT9tzbQ//t/fGP8MfMwIwlrZfQp0KfdLVR8o4zD/3pueJsivUsHVfRumxxmhZtSp3CdbSRhRh1DPse7GP11dXsvrdbJ9W0RbEW9K/Yn7Yl22rrxztEvsGRn5R6evDhQdzXuQNwuN9hGrs0TlvDk+HY42O029iO0OhQqjhUYV/vfdgY2+bOMRQfksqX7soaA+nfcm7e1jKSDkrWOijPnz9n4sSJ7Nu3j/DwcIoVK8bKlSupVq0aENcfPXXqVFasWEFQUBB169ZlyZIlFC9ePFXblw5K5pGZI+k1QsOKiyuY6DmR4KhgVAoVY2uNZVDlQQzdPZTjT49r61a2r4xHFw+K27y7ZnxCfOj9b2+OP4mrN6DSABa2XIipgWm62imBHVee8+WmKynWe7/LRQjBpZeXWHN1DRtubNCmDgNUsq9Evwr96FW+V5IaN5+aehoUGUT5JeXxCfFhdI3RLGi5IEX708qll5dosa4Fr8Nf42rciXwxQ3gd+k6XJddmoaTypVuFMGyLNWVNhzV5V8tIOihZNxdPYGAgdevWRV9fn3379nHr1i1+++038uV7N0J+9uzZLFiwgKVLl+Ll5YWpqSnu7u5ERiY9/4Ik84l/IXwYxvcNjmT4ukvsv/EyiTU/DqVCydBqQ7k98jbdynZDLdT8euZXWqxvwcS6E1nRdoX2i/qy72XKLC7D/LPztdkfhSwKcaTfEaY2mIoCBauurKLaimpc87uWrnZKoIB56sZYFDA34nnIc2afmk35JeWptqIaC84t4E34G+zN7BlXexxXh13l8tDLjK09NtmXVotyDizpUwV7S91921sapUoXY8z+MfiE+FDMuhgzmqQ84PZjqOJQhZOfncTJsB0xAQN5Fao731RG3TtZjokNQpX82K9YpR5heoYcfHiQSssqcfjR4UwyTpJTSfcIyqRJkzh16hQnTpxIdLkQAkdHR8aNG8f48XGj34ODg7Gzs2PVqlX06NEjxX3ICErGkx1mFN1zbw8j9o7QDpbsXrY7E+pMYNzBcfz35D9tvWqO1fDo4qGTWnrs8TF6/dOLl2EvMVQZMr/FfIZWHZp300DTmdR0uViYaChQZCGHvQ9ppeiN9IzoUKoD/Sr0o5lrs4/KePmYLsedd3fSflN7lAolJwaeyNB5ndQaQa0Zh3gdGg2JpETnViXU9Sdm8tvhbyhuXYz7/x/4fuqzkxjrGcdVMLHhZnSIjpbRlHpT+KHhD3kr80lGULIugrJz506qVatG165dKVCgAJUrV2bFinej5L29vfH19aVp03cqoJaWltSsWZMzZxIqQQJERUUREhKi85NkLOe8A7J8RtHWJVpzc8RNvqr1FUqFEo+bHjRd25Se5XryZ9s/tQ++Cy8uUGphKRacXaCNpjQs0pCrw67SslhLotRRDN8znG5buxEUGZRh9uYlVEoFU9vGCeklrkoiuB87A0/vgwgE9ZzqsaLtCnzH+bKx80ZaFm/50S8llVJBbVcb2lcqSG1XmxRf8v7h/gzZNQSAcbXHZfikk+e8A3gdGkNiRwZy72y8S+7v5rJCQ8XK/bms0HBZoUFjXyHuJetYCawKU7ZAWc4NPseQKkMQCH458QsNVzXUydiSSOJJdwfl0aNH2vEkBw4cYPjw4XzxxResXr0aAF9fXwDs7HRDuXZ2dtplHzJjxgwsLS21v8KFc19ueHbjVWjqutu8/ZMRG0oHzAzM+M39N84PPk9Vh6oERQYxbM8wVl5Zye5eu2lYpCEAMZoYvjzwJbX+rIV3oDcAtqa27O61m1+b/YqeUo+tt7ZSeVllvHxSzgaRpEx8l4uNma6jEcsbXhtMxyG/Hz80+IGHXzzk+MDjfF7lcyyNLDPdzpF7R+L31o8ytmX4sdGPGb6/1N47qa2XE3gU+IhTz06hQEG3Mt2SrWuib8KytsvY1HkTFoYWnHp2ikpLK7Hjzo5MsjaLMbGJ0zlJDj3DuHp5nHTv4jEwMKBatWqcPv1ObOuLL77g/PnznDlzhtOnT1O3bl1evHiBg8O7PuNu3bqhUCjw8PBIsM2oqCiiot6J2oSEhFC4cGHZxZOBpDZLI9hkGoNq1eer2l/haO6YoTbFamJZeG4h3x75lrcxb9FX6vN1na9xsnJizP4xRMRGAKCv1Gdu87mMqDFCmy1w7vk5emztgXeQN3pKPaY3ns64OuPydjbBB6Sl60RnFtpnXhhqyqIS+TAyiKJTxQr0r9QvWZn5zMLjhgc9/umBSqHC63MvqjpWzfB9pvbeyU2z8f703098f+x7mhZtyvbu2zGbYQZA2OSwZAepPwp8RI+tPTj/4jyQh7SMpJJs1nTxODg4UKaM7hwqpUuX5unTuBCevX3cZFB+fn46dfz8/LTLPsTQ0BALCwudnyRjqeFijYOlUTJTfwkUqiCCNBf57cxvuPzuwtBdQ3kY8DDDbNJT6jGm1hhujbxF2xJtidHE8MvJX/j19K+s7LCSRkXi5gKJ0cQwev9o6vxVhydBT+LaU7AGl4depmuZrsRqYvna82tab2jNq7evMszenMT+Gy9xm3WEnivO8uWmK/RccRa3WUd0BnPGqGPYdXcXXbd0xf43e4bvGc4ZnzMoldC4ZCH+7j4Cn0lHWdFuOW5OblnunPiG+TJi7wgAvqn3TaY4J5DyvaMgLpunhot1EjVyFkII1l5bC0DfCn3TtG7RfEU5+dlJxtUeB8Af5/6g9l+1ue9/P4U1czhWhd91fSX2y6XOSVpJdwelbt263L17V6fs3r17ODs7A+Di4oK9vT2HD78bwR0SEoKXlxe1a9dOb3MkH0lyYwwUgAIFi3s0Zm/v3dRzqke0Oprll5ZTYmEJev7TM0MzZ5wsndjRYwdbu27FwcyB+wH36bG1B4UtCrOo1SJM9E0A8HruRYmFJVhyfglCCCyNLPHo4sGyNssw0jNi/4P9VFpaiSPeRzLM1pxAStlai0+cZsz+MRScW5B2m9qx9dZWotXRVLCrwG/Nf+P5V8/Z23sv3ct1x1jfOItaoYsQgqG7hxIQEUAl+0p8U/+bTNt3SvcOwNS2ZXLNANnzL85zP+A+xnrGdCzVMc3rG6gM+LX5r+zuuRsbYxsu+16myvIqrL+2PgOsleQk0r2L5/z589SpU4dp06bRrVs3zp07x+DBg1m+fDm9e/cGYNasWcycOZPVq1fj4uLCd999x7Vr17h16xZGRimnL8osnswjtTooJ5+eZMbJGey9v1db1rp4aya7TaauU90Msy84Mpgph6ew5MISBAIbYxumNpjK9jvbOfL4neNRq2AtNnfdTGHLuC+T637X6b61O7ff3EaBgm/rf8v3Db7PW9kEpF0RNjWz0GYHVl9ZzYAdA9BX6nNxyEXK25XPdBvyymy8o/eOZuH5hfQq34v1ndbzNvptqrt4PuR5yHN6/9tbm6U3sNJA/mj5h9QyykVkuVDb7t27mTx5Mvfv38fFxYWvvvqKwYMHa5fHC7UtX76coKAg3NzcWLx4MSVKpE6eXDooCclItde0bPuK7xVmnpzJlltbtBk19Z3rM9ltMu6u7hkW9j/z7AxDdg/hxqsbADQu0piWxVsy9dhUwmPCATBUGfJ7i98ZUnUICoWCt9Fv+WLfF/x95W8A6jnVY0PnDRSyKJQhNmZHUjteonSJA4yu1yLVs9BmJc+Cn1F+SXmCo4KZ0WQGk9wmZZktuXY23v8To47Bca4jb8LfsK/3PloUa/FJDgqAWqPmp+M/8dPxn9AIDaXzl8ajiwfl7crn+uOZF8hyByWjkQ6KLtnxS+2+/31mn5rN6quridHEiVVVtq/MZLfJdCrdSUemPr2IUcfw25nfmPbfNCJjIzHSM2JMzTGce3FOpxunTuE6eHTx0DoiG65vYOjuoYRFh2FtbM2q9qtoW7JtutuXHfkYRdjsjBAC93XuHHp0iJoFa3Lys5PZ3qHKyey+t5u2G9tiZ2qHz1c+6Cn1PtlBiefY42P0/rc3L0JfYKRnxLBySzlzqxC+2eg5J0k7WTpIVpK5ZLbaa2opblOcFe1W8OjLR4ytNRYTfRMu+16m29ZulFlchr8v/62dfyW90FfpM8ltEjeG36BZ0WZExkYy89RMfEN9mVp/qnZsyulnpym2oBh/XvoTIQS9yvfi0pBLVHGoQkBEAO02tWPs/rFEJTcdei4hLYqwOYFlF5dx6NEhjPSMWN1htXROMpj4wbE9y/VM92PdsEhDrgy9QqvirVBEVebfMzb4Bkfo1Mnq55wkY5EOSg5GrRFM23UrUSXP+LJpu26h1mRdkKyQRSHmus/l6ZinTG0wlXxG+bjnf49BOwfhusCV+Wfn8zb6bbru09XalQN9DrCu4zpsTWy59eYW045Po0vpLlrdlCh1FIN3Dab+yvq8CH1BcZvinP7sNF/W/BKA+V7zqft3XR78XxEzt5KbMk4eBT5i/ME4deoZTWZQMn/JLLYodxMcGczOuzsBMmxiTltTW7Z330lR5df/L9G9UrPLc06SMUgHJQeTHdReU4uNiQ0/NPyBJ2Oe8GuzX3Ewc8AnxIexB8biPN+Zn/77icCIwHTbn0KhoHeF3tweeZvPKn0GwJpra7j9+jZf1PgCU/24sPPJZycp+ntR/r70NwYqA+a3mM+OHjuwNrbm4suLVFlWhY3XN6abXdmN3JJxohEaBu4YyNuYtzRwbsAXNb/IapNyPf/c/ofI2EhK5y9NFYcqGbafC4+DCIvUR5HHlHkl0kHJ0aRWifLy84zTJkkr5obmjKszDu8vvVnWZhmu+Vzxj/Dn+2Pf4zTfia8Pfc3L0PQL19qY2PBX+7841v8YJW1K4vfWjwXnFlC7UG0aOMfNhxGljmLQrkE0XN0Q3zBf2pVsx5WhV3BzciM0OpRe//bi852fawfb5jY+dRK+7MACrwUcf3IcU31T/m7/txTgywTWXVsHxGmfZKTmTV5U5pXEIQfJ5mBSm4HhazCZYvYaupXtRtcyXSltWzoTrEsdsZpYtt7ayoyTM7TaKYYqQwZUGsDXdb/WmQDwU4mKjWLGyRnMODmDaHU0JvomdCrViW13tvE2Jq6byUjPiKWtl9KvYj/UQs20Y9P45cQvCARlbMvg0cWDcgXKpZtN2YmcmiFx981dKi2rRGRsJEtbL2VotaFZbVKu51nwM5znOyMQPP7yMc5Wztpl6TVINp68qMybm5FZPHmElGaUBYG+/lue6PcnRrwb8FmuQDm6lelGt7Ldsk0/vRCCvff3Mv3kdE4/i5smQalQ0qNcDybVnZSuOhZ33txh6O6hHH9yHIDyBcpjbmDOaZ930zM0dG7Ipi6bsDOz4/Cjw/TZ1gffMF+M9IxY0GIBn1f5PMuVUvMq7ztSNmb6jDvannMvztLctTn7e++X5yUTmHVyFpMOT6KBcwOODTimsyy9HZTUzJydG2eHzq1IByUPEZ/FA+jcvPG36ZI+VahVzJidd3ey+eZmDj48qE37BahgV4FuZbrRtWxXStikTocmIxFCcOLpCWacnMH+B/u15W1LtGWy22RqF04ftWGN0LDy8komHJpAYGQgSoUS96LuHH96XCeasrzNcvpU6MOrt6/ot70fBx8eBKB72e4sa7MsSya/y8skllIfy2uiTNZx6cuVWiE+ScYhhKD8kvLcfH2TFW1X8HmVz3WWp7eDAql7zuWErkiJdFDyHGnRQQmMCIxzVm7FOSuxmljtsop2FbXdQMVtimea/Ulx6eUlZp6cydZbWxH/fyw1LNKQyW6TaVa0Wbp8KfuF+fHVwa/YcH0DAI5mjjiYO3Dx5UVtnUZFGrGpyybym+Tn19O/8s2Rb4jVxFI0X1E2dd5E9YLVP9kOScrEv6Q+fGAJNChQsLRPVfmSygQuv4yTojdUGeI73hcrIyud5RnhoED21HuSpB3poORBPhw/UNU5HxefBCY7niAgIoAdd3aw+dZmPB95xjkrQomhpiyulpVp7FqVUW4tKZk/obOSmeMV7r65y+xTs1l7ba02+lPVoSqT3SbTsXTHdBkQeeDBAYbvGY53kDcANQvW5Pqr69qBscZ6xqxou4LeFXpz1ucsPbb24EnwE/SUesxsMpOxtcfKgZkZSEqS/DLMn3mMOzCOuWfn0rVMVzZ33ZxgeUY5KJBzx0lJ3iEdlDzOx3xpBEQEMMNzH9u8VMTGmmvLY3mNlZ0nfauXp2vZrhTNVzTLvmSeBT9j7pm5LL+0XOs4lLQpycS6E+ldoTcGKoNP2n54TDg//vcjv57+FbVQY25gjpOlEzdf39TWaeLShE1dNqFSqPh81+f8e/tfAFoVb8XqDqvJb5L/k2yQJI4cKJk9iNXEUnheYXzDfNnRYwftSrZLUCcjHRRJzkcqyeZhPlZZ9tzDKLaestJxTgBU2BDq14NpB3fgusCVCvP6MWzdxSxRri1sWZh5LebxZMwTvqv/HVZGVtz1v8tnOz+j2IJiLPBa8EmpwCb6JsxsOpOLQy5So2ANQqNDufn6JsWti2tVaA97H8ZpnhMHHhxga9etLG61GEOVIXvv76Xi0or89/i/9Gqu5D1kqmn24Ij3EXzDfLExtqFFsRZZbY4klyMdlFzExyrLJreeAiUKwFHzBUphQIBf4yxXrs1vkp8fG/3IkzFPmN10NvZm9jwLecaX+7/Eeb4zvxz/haDIoI/efkX7ipz+7DR/tPwDcwNz7gfcJyo2Ctd8rgBExEbQ89+eNF/bnG5lu+H1uRclbUryIvQFjdc0Ztqxaag16nRqrQRynyR/TiVe2r572e6fHLGUSFJCOii5iI9Vlk1pPVAQG2vO3Hrn0cM22yg6WhhaMKHuBLy/9GZJ6yW4WLnwJvwN3x79Fqd5TkzynIRvmO9HbVulVDGqxihuj7xNx1IdUQs1DwMfYmdqh7GeMQCe3p44zXPi7pu7XBhygf4V+6PRwIwj/1Br4Sh237gr5bfTidwkyZ9TCYsO03Zp9q3YN4utkeQFpIOSi0htePvgvbM689+kdr27r1LneAzfOZF5Z+bxLPhZqup/KkZ6RgyrNox7o++xvtN6yhUoR2h0KLNOzaLI/CKM2DMC70Dvj9p2QYuC/Nv9X7Z3304hi0L4vfUjIjaCguZxM/uGx4bT/Z/udN7cmdZO31BesQ376Bm8ftGGUeseUPWXvXIis3Qgt0jy52S239lOeEw4xayLUbNgzaw2R5IHkA5KLiK14e0ZZyZjPduaJmuaMPvUbEJifFK13rqb81JV707gOb46+BVO852o81cd5p+dj09I6vbxKegp9ehVvhdXh11lZ4+d1CpUiyh1FEsuLKH4H8Xpu60vN1/dTHlDidC+VHtujbjFFzW+QIGC56HPMdM3w1BlCMCJe6GM33yXkAjdWyrwrYZh6y6y61rmOGu5mdwgyZ+TiZe271O+jxTDk2QKMosnF5EaZVkjgwgirSfyJPi9iIJQ4hS9CoUmHwm/T+PW09d/y3ODz7F++wcqbFAk6tsK1Ap/fAw/A4UmwdK6hevSrWw3OpfuTEGLgh/VxrQghOC/J/8x4+QMrcAaQPuS7ZnsNpmahT7uK/D88/MM2T2EK75XALAxyo9R4BxU5E+0+0ugQaUK5cBXNSlu4/pR+5S8Q6aaZj4vQ19SaF4hNELDg9EPcLVO+joOiQyjwPQ6qEQ+dvdZT/3iBeX5kWiRacZ5mNQoLrqXted+wH0OPDjAgYcHOPr4KCKyIrbRUwCRwPlQ/H+9+iUt+e2IJ38dVSI+qBcvltWimg8VnePUYHfc3ZFoVo0CBXUK16F72e50LtMZR3PH9D0IiXDxxUVmnJzBv7f/1Yq+NXZpzGS3yTRxaZLmL8JYTSzzz85n6rGpqCNdsY+ekeI6oaY/saTTV3Qr2+2j2iCRZBVzz8xl3MFx1C5Um9ODTidZb/+Nl0zdeRO/kHdTa0gxNcn7SAclj5NWnZKo2ChOPzvNn2cucPpmQYT6nXx7LK+JMFlD3eJmNHdtjrurOw9emDFt9y18P5AbDzBYToTqDBA3v02r4q3Ib5Kfa37X2H5nO6HRoQn2rUCBm5Ob1lmxN7NPz0ORgDtv7jDr1CzWXVunVdGt5liNKW5TaF+qfZrF1h4HPab3+nk8f9Y8xbqv9WcTrnecIVWGML/FfIz1jT+qDRJJZlNlWRUu+15mcavFDK8+PNE6SSn9Sjl6yftIB0Xy0WFwtUaw/9YDjj28xJ2gc5x7tZ5X4X46dVysXGhe1B1XM3cKm5XD2TofNpaB7H2wmx13d3DiyQnU4l2arb2ZPa2KtaKwZWG8g7zZeXdnomnAChTUc6pH93Ld6Vy6M3Zmdp98HJLiafBTfjv9GysurSAiNgKA0vlLM7HuRHqV74W+Sj/V2zrz8A09V3ilWK9BlSusvf0dAkG5AuXw6OJBGdsyH90GiSQzuPnqJuWWlENfqc/LcS+xMUkohCeVfiWpRTooknRDIzRc9b3KgYcHOPjwICefntSZbFClUFG7cG3cXd1xd3WnikMVgqOC2Xd/Hzvv7WTf/X06kRNjPWOaFm1KcevivA5/zZ57ewiITJgdpFQoqedUjx7letCpdCcKmBbIkPa9fvua371+Z+G5hQRHBQPgZOnEhDoTGFR5UKqiHCmN/RFoUONPoPkovmvwLfPOzuPV21cY6xmzsNVCBlYaKAcdSrItkz0nM/PUTNqXbM/2HtsTrSOVfiWpRTookgwjLDqMY4+PceDBAQ4+Osg9/3s6y22MbWhatCnuru40d22Orakt/z3+jx13d7Dz7k6ehbzLZlGgoFahWpQrUI630W859OgQr8NfJ9hnvLPSs1xPOpXuhK2pbbq3KyQqhCXnlzDv7Dz83sZFjGxNbBlbaywjqo9IcdbipMb+CDSAgtcG07XdXy2LtSRKHcUR7yMA9CrfiyWtl2BhKK9lSfZCIzQUmV+EZyHP2Np1K53LdE603o4rz/ly05UUt/d7j0q0r5TxA+Ql2RfpoEgyDe9Abw4+PMiBhwc47H2YkKgQneXlCpTTOituhd24F3CPnXd3svPuTp0ZgwFc87lSzaEasSKWk09Pah2F91GgoGGRhtrISnrPfRMRE8HKKyuZc3oOj4MeA3GCcCOqjWBMrTHJdjslNvZHrXiDv/4yolReaHiX2WSqb0rPcj1ZeWUlaqGmmHUxNnXeRFXHqunaHonkUzj2+BiNVjfC0tAS3/G+GOklLmUgIyiS1CIdFEmWEKOOweu5l9ZhOf/8vDZjBuIE1Ro4N9A6LBaGFuy5v4edd3dy2Psw0epobV0rQytqFqqJgcqAiy8u8iLsRYL9KRVKGjg3oFf5XnQs1THRvvFPaYvHTQ9mnJzBrde3tPYPqjyICXUm4GzlnOh6H479sbJ4w8i9wzn6+CgQ52C9f0waFWnEg4AHPAt5hr5SnznN5vBFzS9kl48kWzBoxyD+vvI3g6sMZnnb5UnWS6mbU45BkcQjHRRJtsA/3B/PR55ah+V56HOd5YUsCtG8aHPci7lTs2BNLry4wM57O9lzbw/+Ef7aevpKfao6VMXc0Jybr2/yIjRpZ6V3+d50KNUh3ZwVjdCw6+4upp+czrnn54B3gnAT605M1SBXIQSrr65m3MFxBEQkHG9jpm9GFYcqHH96HIC2Jdqysv3KdHW4JJK0EhETgf1v9oREhfDfgP+o71w/2fqpkTiQWTwS6aBIsh1CCG69vsWBh3HaK8efHCcy9l1XiFKhpLpjdZq7NqdJ0SZoNBr23t/Ljrs7uB9wX2dbJW1KYmdqx8OAhzwPe/7hrlApVDQo0oA+5fvQoVQH8hnnSxf7jz4+yoyTM/B85Kkt71iqI5PdJlO9YPUUt/H67WvGHRynnXDtQ6o5VOPaq2tEq6MpZFGIDZ02UM+53ifbLpF8DJtvbqb71u44Wzrz6MtHqUrBT6vEgSTvIR0USbYnIiaCE09PaMXibr7WlaC3NLSkSdEmNC/anGLWxbj08hI77+3k1NNTOl0kdqZ2OFk68SLkRbLOSt8KfWlfsn26OCvnn59nxskZbLuzTVvWxKUJU+pNoVGRRil2z3g+8mTY7mE8DHyYYJmZvhnWxtY8DXmKUqFkWsNpTHabjEqp+mS7JZK00HZjW3bf280Utyn80uSXVK8nlX4lySEdlByCvJHf4RPiw6GHhzjw8ACHHh1K0BVSwqYE7q7u1CpYi5DoEG230ftKtSb6JrhYuRAQEcDLsIQT9KkUKhoWaUi/iv1oV7IdVkZWn2Tzrde3mHVqFuuvrdfqvtQoWIPJbpNpV7Jdsl+cETER/Hz8Z2afnq0VjHsfVytXHgbFOTCNXRqzruM6HMzlF6gkc3j99jWOcx2J1cRye+RtSuUvldUmSXIJ0kHJAchQaNKoNWouvryoTWU+8+yMjvCbvlIfNyc3Grs0xtLIkht+N9h1b5eOU6JEibOVMxExEfi+9U2wj3hnpX/F/rQr2S7FNOLkeBL0hF9P/8qfl//UdluVsS3DpLqT6FGuR7Kibzde3WDo7qGcfpZQPtxEzwQNGiJjI7E1sWVtx7W4F3P/aDslktSy8NxCRu8bTTXHapwffD6rzZHkIqSDks2RktBpIzgymCPeR7TjV+LTf+OxM7WjadGmlLAuQVBkEIcfH+aa3zWdOgVMCyCESFRnRaVQ0ahIIwZUGkDbkm0/Wo/EL8yP371+Z9H5Rdp06yJWRZhQZwIDKw1MUvRNIzQsv7icSZ6TtGJx72NtZK0Vs/u6ztf83PjnNCndSiRppdaftfB67sV89/l8WevLrDZHkouQDko2RkpCfxpCCB4EPNA6K0e9j/I25q1Oncr2lalZsCZ6Sj1uvbnF8SfHdbpRTPVNMdIz0skUikdPqUcD5wZ8Vvkz2pZoi7mheZptDI4MZvH5xcw7Oy/OIRJKHAzcaOXak54VW9GwROFEz+3L0Jd8uf9LttzakmCZocqQKHXcBGy1CtViY+eNFLEqkmbbciuyuzT9uOd/j5ILS6JSqHj+1fMMnXJCkveQDko2RgoapS/xEx3Gj0m57HtZZ7mpviluTm44mDnwJvwNx58cJyT6nZicnlIPU33TRCMXeko9Gjo3ZFCVQbQp0QYzA7M02RYRE8Gk3ZvYfl4fhebd4FwTwyimti1D92qJ9+vvubeHEXtH8DT4aYJlBkoDojXRWBpa8le7v5JU9sxLyO7S9OX7o9/z0/GfaFmsJXt7781qcyS5DOmgZGOkJHTG4hfmx6FHh7RzB716+0pneRHLIpSzK4cQguuvridwAkz1TRNEZOBdZOXzKp+n2llJqisvXv6+epkrzG3fDydLpwTrhkWHMfXoVOadnaeTtRRvS3xEaHi14cx1n5ukwmduR3aXpi9CCFwXuOId5M2GThvoWb5nVpskyWVIByUbIyMomYdGaLjmd02bypzYRIcV7CpgbWyNb5hvglTn97tV3ic+shLvrJgamCaok1JXXvwEgn4mQ+lTMU70LbFMiUsvLzFk15AE0wK8TwW7Cnh08chzmRayuzT9OfX0FG4r3TAzMMNvvB8m+iZZbZIklyEdlI8kM/qxpSR01hEWHcZ/j//Tjl/5cKLDfEb5cLV2JVodzd03d3WcE5VCpZNJFI+ewoDqtj1pWLgdzUvUpF4xR1RKRaodUV+DyUSprqMQKpoWHkaroj2o6VRa59qL1cSy8NxCvjn8DeGx4TrrK1GiQYOJvgmLWy2mf6X+H3Nosg1puQels59+xB/3mccXc8B7C90rV2F1x1VZbZYkFyIdlI8gM/uxk5KEBoEChQxLZxKPgx6/m+jw0eEE41CcLJwwNzTHJ8Qn0TEqxuraWEcPQY93syur9ELpXdeA8gUqM2HLrRRt+KK5OTvv/cuDx5V0tpPPVMH0DpVpWf7ddfA0+Cmj9o5i171dSW6vb4W+LGq16KMG92Y1ab0HZXdp+pDYcc9nCjM6yueQJP2RDkoayYp+7MQeCrG8ZkILF75s2CBd9yVJmVhNLF4+XtroyocTHRqoDHA0dyQ8JpxXb19hrK6NbfQUIG4CwHjix5eE6m/EIqZXivu1zH+C4DdugG6UQKBBgYJBjTR807yNVvRNCMG/t/9l1N5Rieq7ABS3Ls7mrpupZF8pbQchC0nrPRgZG8nEPX+y44xLituWEZSkkWN4JJmNdFDSQFb2Y78fzl59/Q+2PZxD+1Jt2d5je7ruR5J2AiIC8HzkqR2/ojPRoVBSOGolCmGt45xoF/9/fAmAChsUJKYoK4jlzf/r5E92O1ZOc5nsNpHu5bqjp9QD4lKZpxyewuILixO130BlwG/Nf2Nk9ZHZfmbktNyDCoVg4/WNTDkyhadBPhSM/As98vOhg/fherK7NCFyDI8kK0jL+zvl2Z9yOee8A5K8QSGuC+ZlcCTnvBPOQvupqJQKarva0L5SQWa0HIhCIdhxdwe3XqfcNSDJWKyNrelWtht/tf+LZ2OfcXPETeY2n4u7qzvmisoohU2iTgWAAiV62BKqtx9Q/D+q8j5x3wSD6pZCD9sUt/PAF/ps60OJP0qw9MJSImMjsTSyZFHrRZz+7HSiMypHq6MZvW80nTZ3SnQG5exEau/B5WcOU31Fdfps68PT4KcUsnSkj5sRikSOYPzfU9uWkS/XJMjKZ59EkhryvIPyKjTpG/Rj6n0sJfOXpEOpDgDMOT0nQ/clSRsKhYIytmUYW3ss+/vs5+82CYXUEiNW8ZLXBtO10RRtOW94ZTCd+RempGo7FfK7YWNsg3eQN8P3DMfldxfmnJpDaFQotQvX5srQK8xoMgM9hV6Cdbff2U7lZZUTldLPLqT23hq//ycuvbyEuYE50xtP596oe8xs04Mlfapgb6mbZm1vaSS7J1Iguzz7JJKkSPhEy2MUME+dfkRq630KE+tOZNudbay/tp4fG/5IYcvCGb5PSdopaJW6bkW1IpAo1XWeG3lhqCmLSuSLK1PeBIUGjbp8qrZz7c1JYlSBlLQpSVBkEL5hvnzt+TXTT05nVPVRfFnrSya5TaJrma4M2TWEI4+P6Kz/NPgp9f6ux8+Nf2ai28RkJzHMCu4FXiBVjyJlMCOrj+T7Bt9TwLSAtrhFOQealbGXSrJpJDs9+ySSxMheT6osoIaLNQ6WRkkE2eNwsIx74GU0NQvVpGGRhsRoYph3dl6G70/ycaTmmjE2jMQpf3Rc54NCQ5TqOuF6x4lSXQdFXJdPlPImsbxOpAsoHgGqOIdGg4a7/nfxe+uHlZEVtia2BEUG8fOJn3Ge78yY/WMwUBng2c+TdR3XYWGg60Rp0DDlyBRarGuBX5hf+hyITyQqNoov9n3B1/91IpbXfJjTFo9Ag75+GOdHbmJhq4U6zkk8/2PvrOOiyP84/OzSjbSoGNiJ3XF2d3efHXfGmRfenXF6Z5xxdne3othii4piASoqIN21u/P7Y3+sIg0LCzjP64W4uzPf+c4wO/OeT37pLq3vaCmKkwyQ3nksIfeufSIiKfHNCxQtqYSfOyl9+F9/UQUUCAj80Noh1y54MxvOBGD9/fV5PnbgWyWtc0by/59/ejXg5aTnhMwM4VCvQ3Qr3w1zffOvFlYQrLuelOJUlOceBGuvp27R2jQu1hg9LT0AQmNDCYgOQCqRYqZnRnRCNCtur8BxpSMjj4+kdpHaeE32YnCVwcnm7uzlTJW1VXD2dFbHocgyL4NeUn9TfVbdWQUSBY0r+/0/kiR53V0JUlb1aUJFm2+rEF1Ok955DGIMj4hm+eazeBJJKe0XrRA+aa2haTkzTvU/lSumcUEQqP5fdR75P2LBdwuY22Rujm9TJGtktm5HYqPDQ88Osf/Zfp58eoJMIUuxnoqMAIJ11xOj5ap6T0eqQ0nzkoTFheEfldQKoq+tT6xMOQ8JEnpU7MGsRrOIiIug/+H+fIz4mGw+sxrN4rfvflNlBuUWOx/vZOypsUTGR2JpYMm2rtvQ0dJhytGthAe0TnIcxJ46OY/Yy0gkNxHTjLPI11Us9Q3f03BzfWJkMfzW7DfmNZ2ntm2lxZ4ne+h/uD9Whla8nfJWLDedh8lO9eF4eTzX311n+6PtnH/tTHC4ZbI4ldTQlmpjrmdOSGxIkgq3iZVlE2nj2IZpDaZxyesSC28sTNbXp459HQ70PpBiPyB1ExUfxYQzE9jqthWApsWbMqfxHJa5LuOc5zkAzPUKMbTiHzQq0h57c+NsxZKIHY4zjnisRHILUaCokW1u2xh6bCgSJJwbeI5Wjq1ydHugLBpWdlVZvEO9+bfdv4yvMz7HtymieT5FfeKwx2F2P9nN3Y93VRaR9JBKpOhIdVLsG5RIg2INGFh1IP/e/pdngUnT2A20DdjdY7cqiywneOz/mD4H+/A88DlSiZQpdacQHBPMtkfbEBDQkeowoc4E5jSeg6Vh9ouqiVYBEZG8iShQ1Myo46PY+HAjVoZWPBj9IFeya9bcXcP40+MpYV6CVxNf5boZXkSzKAQFbn5ubHPbxslXJ/EO8U5m/UgJCZI0l6tqW5VahWux7dG2ZL2Fvq/xPcvbLVdrZ2RBEFh3bx1Tz00lTh5HYePCtCrVigPPDhAjiwGgd6Xe/Nn8TxwtHNWyTbE6qohI3kUUKGomVhZLg00NeOj3kHpF63Fl6BV0tXRzdJsxCTEUX16cgOgAdnXfRf8q6ZdNVweiqTdvEhUfxclXJ9nmto2bPjdT7A2UGYqbFUdbqo1niGeS94uZFuPC4AuUtSybrfFBGcw78vhIDnkcAqCyTWX8I/0JiA4AlFadpa2WUr9Y/WxvKxGxOqqISN5GFCg5gFeIFzXX1yQ0NpTJdSezvO3yHN/m71d/Z96leVSzrcbD7x/meMly0Syef/AO8WaL2xaOeBzBI9AjxU7LGcFcz5yI+Igk60uQsLHTRobXGJ7l+d1+f5u+h/ryJvQN2lJtLAws+BT1CYDSFqVZ3HIx3cp3U9s5HSuL5UXgC066v2DDBaN0lxf784iIaAZRoOQQx18cp8veLgDs67mP3pV65+j2QmJCcFjuQGR8JGcGnKFt6bY5ti3RLJ5/kSlkXPK+xMaHG3HxdiEwOjDTY2hJtJKJnAZFG3Bu0DmMdY0zPI5CULDs5jJmu8xGppAlyS6yNLBkftP5jKk1JssWyKj4KJ4HPudZwDPlT6Dyt1eIFwpBgaGsCdYJM9IdR+xwLCKiGUSBkoP8dOEnFt9YjLGuMXdH3aW8Vc7WZvjx3I/8fetvmhZvyuWhl3NkG6JZvGARFB3Etkfb2OO+h0d+j0hQJGR5LB2pDjeH36RWkVrpLvsp6hNDjg7h7OuzSd7X09Jjct3JzGo8K3ktmFQIjwvHI8AjmRB5E/om1XUK6ReilFFbAt8PSHd80YIiIqIZRIGSg8gUMlrtaMXlN5epZF2J2yNvY6Sbvkk5q7wPf0+pFaVIUCRwa8Qt6hatq/ZtuHoG0W/DrXSXEy/q+Q9BELjve59199Zx6tUp/CL9sjTOgCoD2NH8TyTRKRcPvPPxLuMuzeV+9Kdk6/3R/A+KmxdPcb3gmOAUhcj78PepzsXGyIaK1hWpaFWRCtYVlP+3roitkS0KARotdsEvLDbFUGFRbIvkBAUtdi8n90cUKDmMX6Qf1f+rjl+kHwOrDmR71+05Gh8y/NhwtrhtoVv5bhzuc1jt4x9z+8DkvW7pLieaxfM/MQkx7HXfy8YHG7n78W6GrSvFBAkvMSatAv8xCJQjEh+JQLMSzfir1V/Usq+FIAgERAd8FiEBz/AIVIqStASTvYm9SogkipAK1hWwMrRKc66J7kpIWpdWdFeK5AQFLXYvp/dHFCi5wNW3V2m+rTlyQc7aDmsZU2tMjm3LI8CDimsqIkHCs/HP1O5WEi0o3y6ewZ4sv7Wc/U/38+kr68eXVBekPCD9WJROJmbUqTUKUz1TlQh5FvCMoJigVNdxMHNIUYhk1B2UEgXtpiGSNylosXu5sT+iQMkl/rrxFzMuzEBXqs9/bS5SSLd4jpn3uu7tyrEXxxjuNJxNXTapdezEGBTRLP5tI1fIOeJxhMU3FvPQ72GSoNmMCpQaRPIwhQq4EiSULFQymRApb1UeEz0Tte5HIgXN7C6St8iPsXtpfSdya39EgZJLCIJA8/U/8Mq7Wo73D7n1/hb1N9VHR6qD92Rvipiq19UimsVFBEEgLC6MD+Ef+BDxAY8AD7Y/2s5j/8dUUSgyJFBqEU1IIQeq2lalkk0lpTXEqgLlrMqJLRtEChT5zfKcnlUxt/YnM/dvsTxpNjj31I833i3R/sru4BcWy9idD9R6U69XtB5Nijfh6turLL+1nL9a/6WWcRNpW7kwawfWSHYC25jq8mvnyqI4yeckyBPwjfRViY/E3x8jPiZ5HZ0QncoIGWuUqUCBV6gXHyM/8jrkNR6BHpS1KEsZyzKUtSxLWcuyWBta53hNHxGRnOZTRMZaUWR0uZwkNddN4r1qXpfCnH11AaiU7li5uT+iQMkicoXAryee/f8PnvRiK/z/nV9PPKNVRTu1mfdmNpzJ1bdXWXd/HbMbz6aQQSG1jJtI28qFaVXRjjvewfQ/MAbf6Bds7beKZiVFcZJX+drqkez3////KepThkrlgzJdt4hpEeyM7fCN8OVF4AsQUm9c+CUlzEvgHuFDrCwW90/uuH9yT7aMmZ7ZZ8FiUVYlXMpYlsFUT3MWURGRzGBjkrGWEBldLqdIeq9KivD/f+cfe0ygzi7s+DPd8XJzf0SBkkXueAen6qsD5R/eNyyWO97BajPvtSvdjio2VXjy6Qlr761lduPZahn3S7SkEuo7WlKhWBRvXj/hZfALmpVsqvbtiKRPgjwBv0i/NIVH2laPpOhIdbA3saeIaRGKmPz/xzTpb3sTe6Lio5juPJ1dT3Z9keWTMQvK2g5r2e/YnLehb3kZ9JKXQS95FfxK9f93Ye8Iiwvj3sd73Pt4L9n6tka2nwWLxWeri6OFo1p7BInkHN9K7I9toQgEaQgozJCk8P1IjNmoU9Ii9yf3Bendq0CCNtbUK1qPUH8IiybNWMTc3J8cFyiLFi1i1qxZTJ48meXLlwMQGxvLjz/+yN69e4mLi6NNmzasWbMGW1vbnJ6O2tCEeU8ikTCz4UwGHhnIitsrmFpvKgY6Bmob/0vKW5XnzOszPA98niPjf8skWj0+RnxMU3j4R/pn2uqRmvAoYloEK0MrpJLUhYZ3iDf9D/Xn+MvjKDJoMfmafof68UP3bXQs2xFHC0falWmX5PNYWSyewZ4qwfIy6CUvg1/yKugV/lH+qp9r764lWU+CBAczB5Vg+VLAFDcvLjbTzCN8K9lTvhG+tNnVigBta2zikz8oJsqxnztV1Lg4+xSesXvQ1Lrz0dOWMnbnAySkHIuY2/uTo9/qu3fv8t9//1G1atUk70+dOpVTp05x4MABzMzMmDBhAt27d+fGjRs5OR21oinzXp/KfZjjMoe3YW/Z6raVsbXHqnX8RBJTmUWBkjlkChm+Eb5pWj0+RnwkKiEqQ+NpS7WVVo8vxcZXwsPexD5bAagPfR8y9dxUrry9kuLnUomUMY3mgOs6kMWlOk4cEl7HhtBpTyem1J3C4laLk5W019fWp5JNJSrZJPd1h8WGqawtr4Je8TL4s4gJjwvnbdhb3oa9xdnLOcl6OlIdHC0ck1hcEgWMvYm9GO+SS6QX51BQAu2DooNotaMVr4NfU8JSxu/1S/DvRf8koswuD4iyyPhI1t9fz7LLx9FherrL25joU9/RMsVYRE3tT45l8URGRlKjRg3WrFnD77//jpOTE8uXLycsLAxra2t2795Nz549AXj+/DkVKlTA1dWVevXqpTt2XsjiSS81V0CBoV487j93V7vi/PfOv0w8M5FShUrxYsKLHHl6vPr2Kk23NqWkeUm8JnupffzMommzsSAIhMeFp+tuyY7VI4n75f+/rY2s07R6ZGd/LnpdZJrzNB75P1K9L5VI0dPSI0YWAyj751wZekUpKEJ9IFpZz6Th5obEyGLpVr4b85rMBSBOz4Sf7v7L8tvLAahZuCb7eu7D0cIx23MNiA5IYnX5UsjEyVMXTUY6Rqp4l68FjIWBek3Vmj5HNUl+TLnNCuFx4bTY3oJ7H+9hb2LPtWHXKFWoVJ7623sEeDD/8nyOPT+mdNEKUorEbkILyzRdUV/+bfJKJdkcs6CMHz+eDh060LJlS37//XfV+/fv3ychIYGWLVuq3itfvjwODg6pCpS4uDji4j5fhMLDw3Nq2hlGSyrh504VUzSHCSgACW+FZRx9Dj0q9lDrtodXH86vV37FK8SLQ88O0adyH7WOD58tKG9C3xCTEJNjrqSMkNNmY5lCpoz1SEN4fAj/kKesHllFppBx4OkB5rjMwTvUW/W+lkSLukXqcvvDbZU4aV+6Pcf6HfssgM2LKX+At4aF+BDxAeOYT8yzdwJAD/in7T80L9mcoceGct/3PtX/q876TuvpW7lvlucskUiwMbLBxsiGRg6NknymEBT4hPkkiXNJFDDeId5EJUTh5ueGm59bsnEtDCw+CxaLz4G6ZSzKZLp9xbfi2kgNTcTk5TbRCdF03N2Rex/vYWVoxYVBFyhVqBTwOXZPUyTIE9j/dD8Lri7gRdCLJJ8VMS1M16oyTt1RipOMuG40vT+J5IhA2bt3Lw8ePODu3bvJPvPz80NXVxdzc/Mk79va2uLnl3LZ64ULF/Lrr7/mxFSzRWqpuXKCCNZdT4yWK8OODaOKbRXKWpZV23YNdQyZWGciP1/+mUU3FtG7Um+1m7GtDa0ppF+IkNgQXgW/oqpt1fRXygGyYzZOy+rxZXqtf5R/hmMuzPXN0xQeOWn1yA7RCdFserCJBVcXEBAdoHpfR6rDcKfhvAl9wzmvc4BSYK3tsJaRNUamOl5hk8J8iPiQYvO+TuU68WjMI/of6s+1d9fod6gfF70usqLdCrWLMqlESnHz4hQ3L07LUi2TfBYvj8c7xDtZoO7LoJd8iPhAcEwwt97f4tb75LUfipgUSdHqUrJQyWRuq2/FtZEW+SnlNivEyeLotq8b195dw0zPjPMDz1PBuoKmp8XHiI/8cfUPtj3aluQBSiqR0qJkC3777jfqFqmLRCKhY9nkIjovuKLSQu0CxcfHh8mTJ+Ps7Iy+vnriL2bNmsUPP/ygeh0eHk6xYsXUMnZ2+TI1N9Ectv/VHyy/7YqWRIuI+Ah67u/JrZG31HpxHl97PItvLMbNzw1nL2daO7ZW29igfGotb1Ue1/euPA98rhGBkn56HMw56kakxBXfyOxbPQobF0430DS/FRsLjA5k5e2V/OP6D5EJkar39bT0mFBnAj0r9qTLni6qMvdFTIpwY/iNVJv7JVLSvCT3Pt7DL9IPQRCSCeSipkVxGeLCb1d+4/erv7Px4UZuvr/Jvp77qGxTWf07mgK6WrqUsypHOatyyT6Lio/idfDrZIG6L4NeEhQTpDqXLr25lGQ9LYkWJcxLfM4uKlSGzedLpHqO5kS5gbxIfkm5zQoyhYx+h/px3vM8RjpGnB5wmuqFq2tsPoIg4OzlzLxL87j74W4Sl7KFgQXja41nSv0pyVyYKd2r8robUu0C5f79+3z69IkaNWqo3pPL5Vy9epV///2Xc+fOER8fT2hoaBIrir+/P3Z2dimOqaenh56enrqnqja+NofVLrkEN/+HXH5zGS2JFk8+PWHsqbFs7bI105aO1HyBloaWjK4xmuW3l7P4xmK1CxSAClYVcH3vikeAh9rHzgjpp8dBUKSCgft+IU7rSarL5FerR0ZI7fzwDvHmrxt/sfHhxiQNAQ20Dfix/o/82OBHtj/aTsPNDVXWo76V+rKr+y6k0vSPQxmLMgAkKBL4EPGBoqZFky2jLdXmt+9+o1mJZgw4PIBnAc+ovaE2K9uuZGSNkRoNXjXSNaKaXTWq2VVL9llQdBCvgl+pBEtisO6roFdEJUThGeKJZ4gnZ16fQU9eBbv4haluJ7ddG5qKhahT0oLCZvppxOQJ2JjoaDzlNrMoBAXDjg3jyPMj6GnpcazvMRoUa6CRuYTHhfO369/8e+ffZL2t6hSpw6/NfqWNY5s0v1d5xXWTUdQuUFq0aMGTJ0lvFsOGDaN8+fLMnDmTYsWKoaOjw8WLF+nRQxmb8eLFC969e0f9+vXVPR2NoC3VZl/PfdRcX1PVNn77o+00KtaIUTVHZXic9PzaP9T/gX/v/ouLtwt3P9yldpHaat0PVSZPkGYyeTJqDi5vUYfS9mVTreuR2XiC/EJK54elsRRz6wtc8vsnyZOVsa4xMxvOZFLdSehr6dNmVxsuv7kMgK5Ulx3dd9C7Uu8Mb/tLQfIi8EWKAiWR5iWb82jMIwYfGcw5z3OMPjmai94X+a/jf5jpm2Vij3MHS0NLLA0tqVc0aTycIAj4Rvp+jnMJesVtTznv3qY/Zm64NjQZB5NWTF7iKz/pv3iHOlLaonSOzkVdCILA+FPj2fl4J9pSbQ70OkCLUi1yfR5uvm7McpmFs6dzkv5YRjpGDKk2hLlN5lLYJG+6aLKL2gWKiYkJlSsnNeEaGRlhaWmpen/EiBH88MMPWFhYYGpqysSJE6lfv36GMnjyCzZGNhzqfYjGWxoTL48HYOKZidS0r0mNwjXSWTujfu1i9K/Sn+2PtrP4xmIO9j6o1n3QdKpxRs3BazstzldPBeogtfMjMFJGYOR36Ou6EqPlirm+OT81/IlxtcdhomfCA98HtNjegtDYUABKW5TmxrAb2BjbZGr7dsafrZ0vg16me+G2MbLh9IDTLLu5jNkus9n3dB93P95lb4+9ahfWOYVEIsHexB57E3ualWgGZLwfS067NvJCHExa7TJCdTbyKvokTbc+4NKQS2qNycsJBEFghvMM1t1fhwQJO7rtoFO5Trm2/Xh5PJsebGLxjcW8DUuqgMtblWde43n0rty7wNf/0YhN+59//qFjx4706NGDJk2aYGdnx+HDhzUxlRylTpE6rG6/WvU6Th5Hz/09CYkJSXO9jMRe/HriGXKFwIwGMwA47HGYl0Ev1TRzJYkC5UXgiywX7soOiWbj1AyWEpRPiPnNbJxR5AoBV88gjrl9wNUzCLlCUL2f2vmhTCMUsJKN4a9Wy3g/9T0zG83ERM+E3678Rq31tVTiZEzNMbya+CrT4gRI8sT2ddZAakglUqY3nM61YdcoYV4CrxAvGm5uyN+uf5MPe5YCeeMczcz1IqdpW7kw12c2Z8+oeqzo68SeUfVw/akV18auopJ1JT5GfKTp1qYacxtnlAVXF7DUdSkAGzptyFYWWmZ4G/qWAYcHYLrQlHGnx6nEia5Ulz6V+vBqwis8xnvQv2r/Ai9OQOxmnCt8f+J71j9Yj1QiRSEo6FS2E0f7Hk015iGzXSU77+nMiZcnGFl9JBs6b1DbvGUKGYZ/GJKgSODN5DfpBk7mBN9ql+W0zPV6OnKGbXmUxtpKEs+PyPhImm1txn3f+4AyDuVInyO0Kd0my/N7G/qWEitKANDWsS1nBp7J1PqhsaGMPD6SQx6HAOhQpgNbu27FytAqy3PSFJo+R/NLV92AqABabG/Bk09PsDGywWWwS4oF+zTNP67/8MN5ZVLG8jbLmVxvco5uTyEoOOJxhF+u/JKsd1Ux02LMaDCDkTVHFphWD5m5f+e/qMB8yMp2K6lbpC4KQYEECSdenmDJjSWpLp/ZlL2ZDWcCsP3xdnwjfLM/4f+jLdWmjKUyGFJTbp5Es7GdWdIvp52ZfoEWJ2N3PkgWIOwbFsuYnfcZsHtxhsb5FBHL5TeXsVtqpxInVW2r4vejX7bECSR18XgEZv5p2FzfnAO9DrC2w1r0tPQ49eoU1dZV48qblKvZ5mU0fY5m9Hqx7eERPoR/yNG5pIW1kTUuQ1xwsnPiU9Qnmm1rxmP/xxqbT0psuL9BJU4WfLcgR8VJSEwIU89OpdDiQvQ80FMlTrQkWrR2bM29Ufd4N/UdE+pOKDDiJLOIFpRc4n34e2qur8mnKGU6pwQJLkNcVL7sL8nKE1HjLY25/u46MxrMYHGrjN3AMkKP/T047HE4V54k0iIvVWrMSdKryCmgQEE4WpinO1Zjp/vsfPEzoDzfZjacycKWqWecZBaLxRaExIYgQULMnBj0tLOWaffY/zF9DvbheeBzpBIp85vMZ26TuWhJtdQ219xAU+doRq8XfrqziNdyp5FDI/pU6kPPij2xNc79/mfBMcG03tGa+773sTSw5MLgCzjZOeX6PL5m95PdDDw8EAGl63xRy0U5kml2/e11frr4Ezd9biYJZLc0sGR87fFMazANEz0TtW83ryBaUPIgRU2Lsr/nfrQkyouugEDfg31TtHik59eG5H7tRCvK2ntrVTEG6qC8Zd7oyZOYHtfFqQj1HS0LpDiB9FOrJUjRwhwLI5004x4kWiHsfK4sbmiia8KN4TfUKk7gcxyKgIBniGeWx6lqW5V7o+4x1GkoCkHBL1d+oeWOlnyM+KiuqeYKmjpHM3K9MDGQUbO4GQIC195dY8KZCdj/bU/L7S3ZcH8DQdFBaaytXiwMLLgw+AJ1itQhKCaI5tuac//j/Vzbfkoce36MwUcGIyAwrtY4lThJLQ4ss8TKYll4bSF2S+1ovLUxN3xuICAgQULdInVxHuRMwPQAfv3u1wItTjKLKFBykaYlmrKs9TLVa/8of/oc7EOCPCHJcokpe0Cyi46yjL6QrDRx+zLtqWRdiYj4CNbdW6e2OWs61fhbI6Pm+q5ORYDk54fyDBHw11oDEgUNijbA70c/6hdTfwp/YePProvsBmgb6RqxpcsWdnTbgbGuMZffXKbaumqceZW52JZvkbSuF5L///zVow43Rlzj3ZR3LG21lNr2tVEICi56X2T0ydHYLbOj3a52bHXbqtYHnNQw1zfn/MDz1C9an5DYEFpsb8GdD3dyfLsp4ezpTO+DvZELcgZXG8yq9quQSCScdfel0WIX+m24xeS9bvTbcItGi104655xN/rzwOd03tMZk4UmzHaZjX+UP6BM+x9Xexz+0/y5NfIWLUu1FJtapoAoUHKZSXUn0b9Kf0Bpdr/27hqzLyZv152aX1tOEIG6iyhs9SnJ+1KJVGVFWX5rObEy9dRd0HSq8bdGRtNRW1W0S/H8kBFIgO6fxGnfZmGLhdwYcQND3ZypfpskkycwY5k86TGw6kDuj75PdbvqBEYH0n53e6adn6ZK1RdJmYzGwRQzK8aPDX7kzqg7eE7yZGGLhTjZOSFTyDj7+izDjg3Ddqktnfd0ZveT3UTEReTYnM30zTg38ByNHBoRFhdGqx2tcPVxzbHtpcT1d9fpuq8r8fJ4elTowabOm5BKpKnGgSWmbaclUuQKOVsebqH0ytJUWF2BEy9PIFPIAKhoXZF9PfcR9lMYq9uvxtrIOkf3L78jxqBogOiEaBpsapCki+zh3ofpVqFbsmW/9mv/fX8cBz3206xEM1wGuyRR3QnyBEqvKs27sHes67CO72t9n+25hseFY7ZIWUwrZGYI5vrm2R5TJHXS65ItASyMdJnboQJ2ZgbULF6Icx4vmXhyDn4xr4iTPsXC0JzLQy5TxbZKjs51hvMM/rr5FwDDnIaxuctmtY0dJ4tjuvN0Vt1ZBShT9vf02KNqziaSMlmNg3kR+IJ9T/ex7+k+ngU8U72vr61PhzId6FOpDx3KdsiRVg+R8ZF02N2Bq2+vYqxrzJkBZ5I1hcwJ7n+8T/PtzQmPC6dt6bYc63sMXS3dLHdm9ovwY9bFWex7uk/VcBOUbSW6lu/K4paL1ZYJmZ9j8jJz/xYFiobwCvGi1vpahMQqa6KY6plyf/T9dKssvg19S/nV5YmVxXKg1wF6VuyZ5PMVt1Yw5dwUSluU5vn452oJNCzydxE+Rnzk1ohb1C1aN9vjiaRNammrKWFqoOCN4i8ipNcAaOPYhpP9T+ZKjYQv0zEbFmvI9eHX1b6No8+PMvzYcEJiQzDVM2Vjp430qtRL7dsR+Yz7J3f2uSvFyqvgV6r3jXSM6FSuE30q9aFt6bZqzSyJio+i897OuHi7YKRjxKn+p2haoqnaxv+ap5+e0nRrU4JigmhavCmnB5xWia/MJCnUK2XB6denmXtxLm7+bkk+dzBzYEaDGYyuORodLR21zT2/d84Wg2TzAaUKlWJ3j91I/u81Do8Lp+f+nsQkxKS5XnHz4qribNPOT0u2/MgaI7EwsOB18GsOe6in+J3o5sldUjPXp0RYDBSKm4GRvCHrOqzj7MCzuVbA6ctU44wWa8ssXct3xW2MGw2LNSQ8LpzeB3vz/Ynv0/2eiGSdyjaVWdB8AS8mvODB6AfMbDiTEuYliEqIYq/7Xrrt64btUluGHB3C6Ven1eJ+M9I14kS/E7Qq1YqohCja7WqHi7eLGvYmOZ7BnrTa0YqgmCDqFKnDiX4nkliGMhoHtuLmZiyXWNJxd0eVONGSaNGmVBsejXnE2ylvGV9nvNrFSVZdT/kRUaBokLal27LguwWq14/8HzHh9IR015vZaCbFTIvxNuytysSeiJGuERPrTARg0Y1FaqnQmVcyeb4lvqzI+U8fJyyMUr7IJVaOraA3j5E1RufqHL+MQQmMDiQ4JjhHtuNg5sDloZeZ3Wg2EiSsf7CeOhvrJHFFiKgfiURC9cLVWdRyEV6TvLg14hZT602liEkRwuPC2f5oOx12d8BuqR0jj4/E2dNZFWuRFQx1DDnW9xhtS7clRhZDh90dcPZ0VuMegU+YDy22t8A30peqtlU5M+BMkqyZ0NhQ9ntkrNjl0Vc7VBZwK0Mr5jeZT8SsCM4OOpsj3d/zUsXg3EIUKBpmVuNZdC3fVfV6s9tmNj9M25dvqGPIX62UwmTR9UX4hPkk+XxCnQkYaBvwwPcBF70vZnuOYiaPZkhMW7Uz1Sc4KiHV5SRICYiQccc7ZwRCaiRm8SRaAdXdauFLtKXa/NHiD84POo+tkS3un9yptb4Wmx9uzrdl8vMTEomEukXr8nebv3k39R3Xhl1jQu0J2BrZEhIbwqaHm2i9szX2y+wZd2ocV95cQa6Qpz/wVxjoKKscdyjTgVhZLJ32dOLs67Nq2Qf/SH9a7mjJ27C3lLUsy/mB57EwUJZqUAgKNj3YRNlVZdn9YgEyAkjNwSqgQEYA8dJn1C1SF5fBLqoUYQMdA7XMNdk2BYFT7s/TLEHwZefsgoIoUDSMVCJlW9dtlLMsp3pv3KlxuPm5pble70q9aVK8CTGyGGZcmJHkMytDK0bVUHZNXnwj+0XbRBePZslsZeHc4ss6KJCzAiWRlqVa8mjMI1qVakWMLIYRx0cw8MhAwuPCc3zbIkqkEimNHBqxqv0qPvzwgYuDLzK6xmgsDSwJiA5g7b21NNvWjGL/FGPymcnc9LmZqV5e+tr6HOp9iC7luhAnj6PL3i6cenkqW3MOjgmm9c7WvAx6SXGz4lwYdEFVpO7OhzvU21iPkSdGEhAdQHnrskxsWRhS7MusACTUqfCOoJkB3Bp5i+9KfpetuSUZXxDwi/TjotdFVtxawegTo2mwqQHmi83pd2BMhsbI7etATiIGyeYRPAI8qLOxDpHxkQA4FnLk3uh7aWbNuPm5UeO/GggIXB16lcbFG6s+exv6FseVjsgFOfdG3aOmfc0sz80nzAeH5Q5oS7WJnh2tVp+qSPqccn/J+J2v0l0ut3utCIKA0Z9GqoyF2Y1m80eLP3Jl2wpBwZIbS5jrMhe5IKe0RWn29tibrfNcJHskyBNw8XZh39N9HHl+JEk9lWKmxehTqQ99KvehZuGaGar5ES+Pp9+hfhz2OIyOVIeDvQ/SuVznTM8rIi6CljtacufDHeyM7bg27BqlLUrjH+nPrIuz2OK2BVAWNJzfZD5WRlYsvLYQnwBLLOJHo83nVGAzQwWLutWiXZXsB6MGxwTj/smdp5+eKn8HKH8HxaRcNM9QcMI69vd0x9V0z6X0ELN48imHPQ7TY38P1euu5btyuPfhNL/MiY0IneycuDfqXpKsnUFHBrHz8U56VezF/l77szwvhaDAdKEpUQlRPB//nHJW5dJfKRPk55S5nObc63MMPjIEnaBFaGH5/5iTpKSW9pgbOK50xCvEC4AeFXpwsPfBXN3+TZ+b9DvUj3dh79CR6vBXq7+YVHeSWPRKw8TJ4jjveZ59T/dx7MUx1YMXKBME+lTqQ59KfahqWzXNv1WCPIEBhwdw4NkBtKXa7Ou5j+4Vumd4HjEJMbTf3Z7Lby5jaWDJlaFXKGtZltV3V/Pz5Z9VlrfeFXujLdXm2ItjRCVEqdbXkxrwXZGR9C4/kvK2RbJ0bQqPC+dZwLPPYiTAHfdP7vhF+qW4vAQJpS1KU9mmMpWsKyl/21TCsVAZmi+9nmYJAk1dBzKDKFDyMbMvzmbh9c8lyZe0XML0htNTXT4gKoAyq8oQFhfGfx3/Y3TNz4GST/yfUHVdVaQSKc/HP1c1/ssKNdfX5IHvA472OUqX8l2yPM7X5PeUuZwiQZ7AvEvzVC66Csb9iA4YkMzorOmuzo02N+KGzw0AqthU4fHY3G/+FhwTzIjjIzj6/CgAncp2YkuXLVga5t2nyG+JmIQYzrw+w76n+zj58iTRCdGqz8pZllNZVipaV0xxfZlCxuAjg9njvgctiRZ7euzJUKp5vDyernu7cub1GUz1THEZ7EJYXBiTzkziacBTAMpYlEEqkfIy6GWSvjgOZg5MazCNcbXGZbhUQ3RCNB4BHkmsIU8DnvIu7F2q65QwL/FZhPz/d3mr8qnGsmi6c7Y6EAVKPkaukNN+d3vOe54HQIqUS0Mv0aR4k1TXSax9YmVoxauJr5K4hTru7sipV6cYXWM0/3X6L8vzGnB4ALuf7GZRi0XMbDQzy+N8SeKX7esTMD992XKCN6Fv6HeoH7feK2sxjKs1jqWtl3LlRWieE3O9DvTi4DOl1URfW5+o2VFIJbkf2iYIAqvvrubH8z8SL4+nqGlRdnffncTtKaJ5ouKjOPnyJPue7uP0q9PEyeNUn1WxqaISK1/Xg5Ir5Aw7Nowdj3egJdFiR7cd9KvSL9XtyBQy+h3qx8FnBzHQNmBHtx3sfbpXda4aaBsglUiTWEu0JFq0KNmCv1r/lWYWTpwsjhdBL5K5ZrxCvJKInC+xN7FPIkIq21SmglWFLPXdye8PdaJAyecERQdRa0Mt3oS+AcDWyBa3MW5J6k58SYI8gWrrquER6MGUulP4p+0/qs+uvb1Gk61N0NPS482UN6mOkR4Lrixg/uX5DHUaypYuW7I0xpdktVpjQeewx2FGHB9BaGwoZnpmbOq8iR4VP7v98po7bNKZSay6swopUhQoeDP5jdqqZWYFNz83+hzsw8ugl0glUn5t9iuzGs3Kd52RvwXC48I59vwY+57u47zneRIUnzPVahSuQZ9KfehdqTclzEsASpEy8sRItrptVSUXDKw6MNm4CkHB8GPD2fZoG7pauvSt1JcDzw6oYqUkSJIICStDK8bWGsucxnOSdOSWKWS8Dn6dzDXzKugVciHlDCUrQyulALGurHLNVLKuRCGDQuo4ZCry2nUgM4gCRU1o8iR46PuQBpsbqHrqNC3elAuDL6RahOu853na7GyDtlSbx2MeU8G6AqB8smy0pRE3fW7yU8OfstzR9sDTA/Q+2Jt6RevhOiL7/TIyU60xLwd8qYtYWSw/nvuRNffWAFCvaD329NijujjnVf689idzXOZgpmdGWFwY5waeo7Vja43OKTI+knGnxrHj8Q4Ampdszs5uO5PUbRHJW4TEhHDk+RH2Pd3HRa+LSQRAvaL16FOpD70q9qKwSWG+P/E9Gx9uxEGQsqrZL3Qu20m1rIDA4htL2P90P8ESCdGGFgREByTbngQJte1rs7jlYpqUaIJ3iLfKEpJoFXke+DzVInRmemYqS8iXcSI2RjbqPzgFDFGgqIG8YEbb+Xgng44MUr2e2XAmi1ouSnX5Lnu7cPzFcVo7tubsgLOq4LPjL47TZW8XTPVMeTflHWb6Zpmei/snd6qsrYKZnhkhM0OyHYR4zO0Dk/e6pbvcir5OdPl/596CyovAF/Q52EfVm2lmw5ks+G5BvsiW2vJwC8OPD8fGyIZPUZ9Y1W4VE+qkX2wwN9j+aDvjTo0jKiEKa0NrdnTbQZvSbTQ9LZF0CIgK4LDHYfY+3cuVN1dU1g4JEho5NKJXxV54vb3Kn8/OYZBCP+9EYhAoRyQ+ks+3OCMdI5oWb0rdonXxCvHC/ZM7HoEeSeJivsRIx0hlBflSjNib2IuB2FlEFCjZJC/FRiSa0BM51vdYqql2nsGeVFxTkXh5PMf7HqdTOeWThUJQUGVtFZ4FPGNxy8XMaDgjxfXTIlYWi9GfRigEBb4/+mbZVZSIaEFRss1tG+NPj8+3N9Gzr8/Sblc7bAxt+BT9iQm1J7Cq/ar0V8wlXgS+oPfB3jz2Vwbvzmgwg9+b/54vxJ8I+Eb4cvDZQfY93acKxgaoIWhxH6N0169BJA8lCvS19ZEgSdLE70v0tPSoYF0hqUXEuhLFzYtrJKaqICMKlGyQ12IjEuQJtNjegmvvlM3gTHVNeTjmYapdXWddmMWiG4twLOTI03FPVT7VbW7bGHpsKIWNC+M92TuJrzWjlF5ZGs8QTy4NuUSzEs2yvE+Qt46zJlx5BcUN8cjvEU7/OWGia0JEfAStSrXi/KDzmp5WEvKr+0wkKT5hPhx4doB9T/eR8P4eDzBOd51EgZKItlSbcpblqGRTicrWSrdMZZvKlCpUKtd6WH3riAIlG+TFJ3u/SD9qrq/Jx4iPADjZOuE60jXFbqIRcRGU+7ccvpG+STJu4uXxOK505H34ezZ02sDIGiMzPY/EjKC1HdYyplbGqhqmxVl3X8bsvI+AkKS+R25aqjThyitIgZyfoj5hu9RWFXhY3Kw4b6a80fS0UuTQs0OMOD6CsLiwFAOQRfIP71+couie/uku197YmFjrctSwq0HTEk1pXrI5RrrpW15Ecg6xm3E2yItlxe2M7TjY6yA6UqVZ2s3fjYmnJ6a4rImeiSpO5fdrv+Mboexuqaulyw/1fgBgyY0lWeqToe6S920rF6Zy2VvISVo50c5MP9fESW52BhUEgdV3VlNvYz1eBr2kqGlRLg+5zNwmc/OlOAFl1oKWREsVJ/Au7F2e7TTco2IP3Ma4Ua9oPcLiwuh5oCfjTo1TBaKL5B/sTewztJxfpB+X3lxi2a1ldN7bGfPF5lRYXYFu+7ox++Jstj/azt0Pd8VWCXkUUaB8hY1J+i3uAaLkudvWun6x+qxst1L1euPDjWx125risgOrDqRukbpExkfy08WfVO+PqjmKQvqFeBX8SlXUKjPkRE+epxG7+KA/gqntpazo68SeUfW4PrN5jouTnOoMKlcIuHoGccztA66eQar1Q2JC6LG/BxPOTCBOHkfncp1x+94t39fpkEqkqp4mxrrGCAi8Dn6t4VmlTgnzElwdepWZDZWWxbX31lJ3Y12xz1Q+wiPAgxHHR2Ro2Z4VejKgygBqFq6JkY4RMoWM54HPOfr8KAuvL2TI0SHU2VgHs0VmFP27KC23t2Ti6YmsvrMaF28XPkZ8FJtRahDRxfMVibERqZUTFlAgJ4gAo7H82eJ3ptafmmtBVIIgMPL4SDa7Kbsd62rpcnfU3RSLCt35cIe6G+sCcGvELeoWVf5//qX5LLi6gNr2tbk98namItGvv7tO4y2N1WbGfxP6hpIrSqIt1SZkZgjGuun7lNVFTrjyUnMX9amvxT9uQwpsOfZa62tx3/c+ZS3K8jL4JQd6HaBnxZ6anla6nHt9jkFHBhEQHYChjiFr2q9hiNMQTU9LJBXi5fEsubGEBVcXUEkmy3AMSuO6E/i9+e8Y6RrxIfwDHoEePA98zvPA56r/p1Z2HsBUz5TyVuUpb1WeClYVVL9LFSolBltngczcv8WooK/Qkkr4uVNFxu58kEpZcSkli9/nw6dYpjlP48TLE2ztujVXAu4kEgmrO6zm8afH3Pt4j3h5PN32dePB6AfJUofrFKnDUKehbHXbyqSzk3Ad4YpUImVinYksvbmUux/vcunNJZqXbJ7h7SdaUN6GvSU6IRpDHcNs7c8l70sA1LavnaviBNTvykst88s3LIZ/zkKAbhFKW+sWyIZ2hU0Kgy+q1vW50dVYHbQp3YZHYx4x6MggLnpfZOixoVz0vsjq9quzVOFTJOe4++EuI46P4MmnJwBoS3S+bjScKivvrOSQxyHWdFhD53KdKWZWLFmtnpCYEF4EvcAjwCOJcPEM8SQ8Lpw7H+5w58OdJOvoSHUobVE6qXCxrkA5y3Li+aMmRIGSAm0rF2btwBrJnobt/h882aZSezY+qMrUc1O58vYKVddWZWW7lQypNiTHn4oTW5HX+K8GQTFBeIV4MezYMA71PpRs2382/5ODzw5y58MddjzawRCnIVgbWTOi+gj+vfsvi28szpRAsTK0wtLAkqCYIF4GvcTJzilb+3LpjVKgfFdCfe3KM0pGXXkZWS4td5FS1iooyhRuj2xDIYPM16DJ6xQ2VrrjEgXri6AXmpxOpihsUphzA8+x6Poi5l+ez47HO7j1/hb7e+3P9vktkn2iE6KZf2k+/9z6B4WgUIlgv+gQYhDSrYMS+P9v5YeID3TZ24UeFXqwst3KZDEshQwKUa9oPeoVrZfk/ThZHK+DX6sEy5fWl+iEaDwCPfAI9OAIR5KsV9S0qNLqYqkULYkixs7YrsBYTnMD0cWTBumln3oGezL46GBu+twElN2H13dcj7WRdWpDqg0Xbxda7WiFQlCm0C1rvYwf6v+QbLklN5Yw88JM7IzteDnhJSZ6JrwJfUPplaWRC3IejH5A9cLVM7zdxOZwe3rsoW/lvlmevyAIOCx34H34e5wHOdOyVMssj5UV5AoBpwXHCY+RZrtDcF7M/MpNEt2GrUq1wtnLWW3VhnOb6++u0+9QP96Hv0dXS5dlrZcxvvZ48YaiIS56XWT0ydFJumU/9Huoel1MkGD1lUDR09YjThbHzu47EQwsqH+wFxHxEUmWMdUzZXHLxYyuOTrL7nmFoOB9+HulaPnK6uIf5Z/qemZ6ZsndRdYV1JLmnF/K34suHjWhJZWkeUNxtHDk6tCr/HXzL+Zfms/R50e56XOTjZ02qoqk5RTNSzZnScslTHOeBsD089OpU6QOjRwaJVluct3JbHiwgdfBr/nj2h8sarmIEuYl6FO5D7uf7GbxjcXs7bk3w9stb1WeGz43sh1U6Bniyfvw9+hIdWhQrEG2xsoKOx9vx0u+HitmobQVf/4iJ/7v504VM/QFz4uZX7lJogVFppAByuJogiDkuxt7I4dGuH3vxvDjwzn+4jgTz0zkovdFNnXepHpyF8l5QmJCmHZ+mirWrphpMZa1XsbC6wvxCvFSpbT7SAR8vrJbdi/bjsMeh9nke49lbZbx8PuHNNrcCL8oZYyJtlSb8Lhwxp4ay47HO1jfcT2VbCpleo5SiRQHMwcczBySuYuCY4J5EfgimdXFK8SLsLgwbn+4ze0Pt5OsoyPVoYxlmWRWl/JW5TPk/s4Llc9zAtGCoibc/NwYdGQQ7p/cARhRfQT/tPknR32RgiDQ71A/9j3dB4CNoQ2Pxz5WZVUkcvLlSTrt6YSuli5Pxz2ltEVpHvs/ptq6aspW4xNe4mjhmKFtLr25lOnO0+lTqU+mhM3XbLi/gdEnR9PYoTFXh13N8jhZYa/7XgYcHoBCUNCj5ALef6iPXza+2N+6BeXo86N029eN2va1ufvxLgCfpn3KFUtiTiAIAitvr2S683QSFAk4mDmwp8cejQjpb41Dzw4x4cwEVdDq+Nrjmd9kPr0O9uLq26voaekl6YD8NXt77KXvob7Ym9jzbso7tKRafIz4yHfbvlPFRmlJtNCWahMnj0NHqsPMhjOZ02ROinWl1EmsLJbXwa8/W12ClL9fBL1ItdQ+KN1FXwbnJlpdbI1skUgkearyeUYQC7VpiFhZLPNc5rHMdRkCAiXNS7Kt67YcTSWNio+izsY6PAt4BkCzEs24MOhCkroagiDQblc7znmeo1PZThzvdxyA9rvac+b1GcbWGsuaDmsytL1EsVPNthpuY9yyPO/+h/qzx30P85vM59fvfs3yOJnliMcReh3ohVyQM6rGKNZ1XIcgSLJlGk0v86ugd2a+/f429TbVw8HMAVDWQrk+7DoNHRpqeGbZ4/7H+/Q91JfXwa/Rkmix4LsFzGw0E6lEmm/M6fkF3whfJpyZwGGPw4DSUrux00bqFKlDj/09OPHyBAbaBqmWqk8kaHoQjqscCY0NxWWwC9+VVMa3hcSE0G5XuySWi1KFSqncRWUsyrC+0/psV8jOCgpBgU+YTxJrS+LvT1GfUl1P6S6qSMi7qcTFG0AK8Th58dojChQNc+XNFYYcHcLbsLdIkDC9wXR+++63LJWXzwivg19T478aKl/r7Eaz+aPFH0mWeR74nCprqyBTyDg74CxtSrfhypsrNNvWDD0tPd5OeZvM8pLatsqsKoO+tj5Rs6Oy5MMVBAH7v+3xi/Tj8pDLNC3RNNNjZIXTr07TdW9XEhQJDKo6iK1dt6otRTzxKQZSyvzKe08x6uRd2DuKLy+OrpYuTRyacMH7Aps6b2J49eGanlq2SXQH7H6yG4BWpVoxvMJKVjh/KHDmdE0gCAKbH25mmvM0QmND0ZZqM7PhTOY2mYuuli5Djg5h5+Od6Gnpoaetl25BtchZkUw5O4WNDzcysvpINnTeoPosKj6Knvt7ctbzrOo9JzsnfCN8VXEjw52G81frv/KMSy84JvhzSvQXVhfvUG8UggI9eRXs4tPvUJ+XrLdiJVkN07REUx6Pfcwwp2EICCy5uYQ6G+uoGpapm9IWpdnTY4/q9Z/X/+Tky5NJlilvVZ6JdZTVZ6ecm0KCPIEmxZtQr2g94uRxrLy9koxQwrwEulq6xMpieRf2LkvzTaw7oK+tnyxqPqe44HWB7vu6k6BIoE+lPmzuslmt9WsSM7/szJKaiXOrKq4msTVSCtt4eTzFzYsD+SfVOD1M9UzZ2W0nmztvxlDHkOuvIpl58HWuVR8uyHgGe9JyR0tGnhhJaGwotexrcX/0fX5v/jt6WnpMOTuFnY93oiXRoqZ9zQxXe+1fRVkC/6DHQeJkn91BRrpGHO93XPU5KF3zJnom9KvcDwkSNrttpvy/5dn9ZHeeKNBmYWBBg2INGF5dKZxO9DvB60mviZodxeMxj/mhzi8ZGie/xr+JAiWHMNUzZXOXzRzpcwRrQ2se+z+m1vpaLL6+OEtl5tOjQ9kO/NL0F9Xrfof64R3inWSZ+U3nY21ozfPA56y+uxqJRKKqqLnm3poMXQC0pdqUsSgDZL2ibGJ6cYNiDXLMqvQlV99epfOezsTJ4+havis7uu3IkcZgbSsX5vrM5uwZVS9Xq+JqGj1tPdUTp42hDZC/Uo3TQyKRMKz6MG6PuIutfHyKy2Sn+vC3hkwhY9nNZVRZWwUXbxcMtA1Y2mopriNcVUUnf7vym6qL+/c1v1dlSmaEJsWbYG9iT2hsKGdfn03ymY6WDju67WBC7Qmq914Hv+b0q9P81eovKllXIiA6gAGHB9BuV7tk19C8gr62PlVsq9CpQsaszxktq5DXEAVKDtO1fFfcx7nTuVxnEhQJ/HTxJ5pta5YjJ/68pvNoX6Y9oOyW221ftyR9Rsz1zfmzxZ8A/HL5FwKiAuhcrjPlrcoTGhvK+vvrM7Sd7Ja8z836J64+rnTY3YEYWQzty7Rnb4+9OVr9MTHzq4tTEeo7WuYZv29Ok5jJY6qvNNkWFAvKl0RE2iLIzZGkUntDAHzDYrnjHZy7E8tHPPZ/TP1N9ZnmPI0YWQzNSzbnydgn/NjgR9VDw6rbq/jlyi8A/P7d7+xx35PGiKhinxLRkmrRt5KyBMJu993JlpdKpKxstzLJA11YXBgzLsxgYNWBLGi2AD0tPc55nqPSmkosvblUlaGW16hT0oLCZvqpVoORoHQ/1imZN1xWmUUUKLmAjZENR/scZVPnTRjrGnP93XWqrqvKpgeb1GpGlEqk7Oq+i5LmJQF45P+ISWcmJVlmmNMwqttVJywujDkuc5BKpExvMB2Af279k8QkmhrZESgKQcHlN5eBnBco9z7eo+2utkTGR9KyVEsO9T6UKxabb5HCJkqBoqulCyifSnPCUqhJvvV08uwQK4tlrstcaq6vyb2P9zDTM2Njp41cGHQhSQbhzsc7mXRWec36pekvuL53JSQ2JMUxDbQNAKhoXTHZZ4lunOMvjhMRF5Hsc4lEws/NfmZVu1Wq9xSCglkXZ/Ey+CV3R92lWYlmxMhimO48ndobanPv472sH4AcIrHyOSQPkc1suYS8iChQcgmJRMLw6sN5POYxjR0aExkfycgTI+mytwv+kakX9sks5vrmHO93XJUyt+HBBnY82qH6XEuqpWo6uPHBRh74PmBAlQEUMSnCx4iP7HqyK91tZEegPP30lMDoQAx1DKldpHam188oj/we0XpHa8LjwmlSvAlH+xzN8TTCb5lEC0qCPAE9LT3i5fG8CX2j2UmpGXVWH/6WuP7uOtX/q84f1/5AppDRvUJ3PMZ7MKLGiCS1ck68OMHQo0MBZf2moqZFOfXqVJKxvrReJVaDrWBVIdk2axSuQVnLssTKYtNsjDqhzgR2dd+FlkRLNf6OxzsYeWKkKvaokH4h3PzcqLuxLlPPTiUyPjKrhyJHKMjxb6JAyWVKFirJpSGXWNJyCbpaupx4eYLKaytzxONI+itnkMo2ldnWdZvq9cjjI1X1WUBZkKpf5X4ICEw+OxldLV2m1psKKCvPJlanTY3sCJRE904jh0aqp2118yzgGa12tCIkNoR6Retxst9JjHSNcmRbIkrsjO0AZXv7MpbKGKWC5uYp6OZ0dRMRF8GE0xNovKUxzwOfY2dsx8FeBznU+5DK4pbI1bdX6X2wN3JBzqCqg5hcdzJTz01NNqbwRY6cia6yxlRKFhSJREL/ykorSkpuni/pX6U/J/op05gFBLSl2tz5cIfaG2pTyaYSzyc8p3+V/igEBctvL6fSmkqceplUOKXWxTy3KKjxb6JA0QBaUi2mN5yu6kQcGB1I9/3dGXZsWIYj1dOjd6Xe/Fj/RwDiFfF03N0xydhLWi1RZiW8u86+p/sYXXM05vrmvAh6wbHnx9Icu5xlOQD8o/wJiUnZ/JoaOR1/8iroFS22tyAgOoCahWtyZsAZsXFXLpBoQfGL8lOdHwUpUBYKvjldnZx+dZpKayqx+u5qQJm++2zcM3pU7JFs2Qe+D+i0pxOxslg6l+vMhk4bGHliZLIS9UY6nx8yDLQNeBeuzCKsaJVcoAD0q9IPAGdP5zTriQC0K9OOC4MvYK5vjkwhQ09LD99IX5psacJ5z/Ps6r6LswPOUsK8BO/C3tFxT0f6HOyDX6QfZ919abTYhX4bbjF5rxv9Ntyi0WKXXM/oKojxb6JA0SBVbatyZ+QdZjaciQQJW922UnVtVa68uaKW8Re1XEQThyaAsgPx4CODVTEvRU2L8lPDnwCY7jwdqUTK+NrKDIVFNxalGRtjomdCEZMiQOZuQgpBodq3nBAo3iHeNN/eHL9IP6raVuXcwHOY65urfTsiyUl8IvaN8KWsZVmg4FlQoGCb09VBQJQyA6bD7g74hPtQqlApLgy6wKYumyhkUCjZ8i+DXtJ2Z1vC48JpWrwp+3ruY+ODjbh4uyQrAxCVEKX6f63CtQiOCUYqkarOt68pa1mWWva1kAtyDjw9kO7cGxRrwNWhVylsXJg4eRyG2obEyeMYdGQQM51n0rJUS9zHujO9wXS0JFrsf7qfKn8PZMzO+2LaeQ4hChQNo6etx6KWi7g67ColzUvyNuwt3237jmnnpyXJwMkK2lJtDvY+iJ2R0vx+7MUxlt9arvp8WoNplDAvwfvw9yy+sZhJdSehr63PnQ93uPI2bZGU6ObxCPDI8Hwe+T0iJDYEE10TatrXzPwOpYFPmA/Ntzfnffh7KlhVwHmQM5aGeaMw0bdAogXFN9K3wFpQEimo5vTsIAgCu5/spuKaiux+shupRMqP9X/kydgntCjVIsV1fMJ8aLWjFQHRAdQoXIPj/Y7zPvw9My7MAEjiak58IEokcUzHQo4Y6BikOq+MunkSqWJbhevDr+NYyJFoWbTKarPk5hI67+2MTCFjSasl3B11lxp2tdCLHphi9Wgx7Vw9iAIlj9DIoRGPxjxiZPWRCAgsc11GrfW1eOj7MFvjWhtZc7L/SVUK3zTnaaqaAgY6yvoDAH/d/IvohGiGOQ0DYPGNxWmOmxiYlpk4lET3TuPijdVah8Q3wpfm25sruzRblObi4IvYGNmobXyR9EmMQfGN8KWclVKgFEQLSiIF0ZyeVXzCfOi4pyMDDg8gMDqQKjZVuDXiFktbL8VQxzDFdQKjA2m9szXvwt5RzrIcZwecxUjHiKFHhxKdEI2ONGkpgLDYMNX/taXaKrdteo3++lTugwQJN31uZri0Q6lCpbg+/DrVbKsRlRCFgbYBulq6nH51mnqb6vEy6CXVC1dnZYtTaGMtpp3nIKJAyUOY6JmwofMGjvc9jo2RDU8DnlJ3Y10WXluYrZTNmvY1Wd9RWeNEISjovKezyifbvUJ3vivxHbGyWKY7T2dag2lIJVLOvj7LI79HqY6pCpQNyrxAaV6ieVZ3JRmfoj7RYnsLXge/poR5CVwGuyQLwBPJeRKPeUR8hOpp9334e6Lio9JaTSQfoxAUrL6zmoprKnL61Wl0tXRZ8N0C7o2+l2aGXnhcOO12teN54HOKmRbj/KDzWBtZs/zWcm743EBXS5cERYJq+ao2VYlM+Jw542TnpHowqmSdtkCxN7FX9ePZ657x5qZ2xnZcHnqZRg6NVP1/LA0seR74nLob63Le8zyBkQnpjKJETDvPOqJAyYN0KtcJ97HudCvfjQRFArNdZtNkaxNeB7/O8pjDqg9jRPURAATFBNFtXzfkCjkSiYTlbZcjlUg5+Owgb0Pf0rtSbyBtK0pmM3lkChlX3yq7FideMLJLUHQQLbe3xCPQg6KmRXEZ7EIxs2JqGVskc5jomqieluPl8VgZWgEF24ryLfM88DlNtjRhwpkJRMZH0qBYA9y+d1P10EmNWFksXfd25d7He1gZWuE8yBkHMweeBTxjjsscgGQPY1/HooyoPoKnAU8BZcZiemTWzZOIub455waeo2PZjsTL4wmJCcGxkLIRYbtd7bjqcyJD44hp51lHFCg5gDpSzqyNrDnU+xBbu2zFRNeEmz43cVrnxH/3/stycbc1HdZQzbYaADd9bqouCFVtqzKm5hgAJp+dzA/1fgBg39N9qZpFEwWKZ7An8fL4dLf90Pch4XHhmOubq+aQHUJjQ2mzsw1PPj3BztiOi4MvUrJQyWyPK5I1JBJJkjiUMhbl0JNXYf89L42kXYrkDAnyBP64+gfV1lXjhs8NjHWNWdVuFdeGXaOCdfJ6JF8iU8joe7Avl95cwkTXhLMDzlLOqhwyhYwhR4cQJ4/DxsgGufBZoNQvWj9JDzOJoEVpo3a8eG+CnrwK5S0rIlcI6MmrYChrwh3vkGTnWvcK3dHV0sX9kztP/J9kan8NdQw53Pswg6oOQoECzxBP6tjXQSEo+Pv+ePR0o8W08xxEFChqRp0pZxKJhCFOQ3gy9gnNSjQjKiGKMafG0HFPR3wjMj+erpYupwecxkzPDFBaSE6/PA3Ab9/9RiH9Qjz59IS7H+/SxrENCkHBMtdlKY5lb2KPsa4xckGOZ7Bnutt28XYBoGnxpmhJtTI99y+JiIug3a523Pe9j5WhFRcHX0w1kl8k90h085x/+omgt5Oxi1/Inhv6Gku7FFEv9z7eo9aGWsy9NJd4eTztSrfj6binTKgzId3GmwpBwcjjIzn24hh6Wnqc6HdCFSi/6Poi7n28h7GucbJ04Kq2VVGgDJY1kNfHIX4bI7e5Yxw9Ebv4hQxd70uTxTewi1+IdcIMhm15lOxcK2RQSNUCJLErdWbQ0dJha9etTKk7BYA7H+/QqlQrpFLw4Z8ktVkSEdPO1YMoUNTIWXdfxu58oPaUs+Lmxbk4+CLLWi9DT0uP069OU2VtFQ49O5TpsexN7DnZ/6TqgtLzQE/ehr7F0tCSBd8tAGDepXmMrTUWgE0PN6VYQ0AikWTKzaOu+ifRCdF03NORW+9vUUi/EBcGXUixUJNI7mNnbIeBvD7br+gSF580s0JMu8y/RCdEM+38NOpurMtj/8dYGliys9tOTvU/lawPTkoIgsCP535k26NtyvTcXvtpWkLZ5M7Nz43frvwGJK1zAsq03zOvzgBKcWIdPxsUZkmWCY2RERqTtE9OSudaoptnj/uedAtRpoRUIuXvNn/z+3e/A+Ds5Uy70u3QM/Lgk+6fCNKkgbBi2rl6EAWKmpArBH498SzHUs6kEik/1P+Be6Pv4WTnRFBMED0P9GTwkcGExoZmaqxGDo1Y1kppGYmRxdBmZxviZHF8X+t7KttUJjgmGGcvZ2rb1yZWFsuq26tSHCejAiVBnsD1d9eB7MWfxMpi6bK3C1ffXsVUz5Tzg85TzS777iIR9WBnVBiL+NH/f5X0qVFMu8yfuHi7UGVtFZa5LkMhKOhfpT8e4z0YUHVAkjL1afHHtT9Yfns5AFu6bKFzuc4AxMniGHJ0CAmKBKrYVME/KmnLj2FOw5TF2ARpqudVSqR0rnUs2xFjXWPehr3F1cc1Q/P+GolEwpwmc1jbYS0SJJx6dYr6RetTzCaId7pDCTb4mb4NY8S0czUiChQ1ccc7OJnl5EvUlXJW2aYyt0feZnaj2UglUnY83kHVtVVVLpSMMrneZLpX6A4o61WMOjEKbak2K9quAGDdvXWqhlur765OseFWecuMZfLc/XiXqIQoLA0sMxTUlhLx8nh67O/BBa8LGOkYcXbAWWrZ18rSWCI5RHxptLEmtZuImHaZfwiNDWXk8ZG02N4CrxAvipoW5WS/k+zqvgtrI+sMj7Pm7hrmXZoHwPI2yxlUbZDqs9+u/MZj/8dYGFjgGZLUTVy/aH1VU1E9RaU003lT4utzzUDHQHW9y4qb50vG1BrD3p570ZHqcOb1GYqYFKF16ZZEcJ/FD3px4s0yJBJRhKsDUaCoiQx3Og3PfsqZrpYuf7T4g2vDruFYyBGfcB9abG/B1LNTiUmIydAYEomEnd124lhI2Ul0x+MdbHXbSvOSzeleoTtyQc7xF8cpY1GGkNgQNjzYkGyMjFpQLnkr3TvNSjRL11edEgnyBPoe7MvpV6cx0DbgVP9T1C9WP9PjiOQsupKM3bjEtMu8zWGPw1RYXYFNDzcBMK7WOJ6Oe0qHsh0yNc7uJ7uZcHoCAPObzGdyvcmqz26/v82iG4sAqGZbjeiEaOBzM8DZjWdz2OMwAFpC8gq0GeXLcy3RzbP/2X4S5BlLEU6N3pV6c7L/SQx1DLn05hKhMaFMrDMRgIXXF9J1b1e1tS35lhEFiprIaCrZdJfv+cf1H4Kig7K9zQbFGuA2xo3va34PwPLby6m5viYPfB9kaH0DHQMuDL6gals+8vhInn56ytJWS9HT0uPSm0u0LNUSgL9d/06WrfOlQEkrsyg78SdyhZxBRwZx5PkR9LT0ON7vuMp/LZK3KF7IPEPLiWmXeRO/SD967u9Jj/098ItU9lS6NuwaqzusxlTPNFNjnX51miFHhyAgMKH2BH5p9ovqs5iEGIYcHYJCUNDGsY3q+gDKZoB1i9QlIi5CVX9ELslcv68v+fJca1GqBdaG1gRGB3LB60KWx0yktWNrLg6+iIWBBXc+3uGi90VWtF2hDAJ+eYL6m+pnqzSEiChQ1EZ6nU5BQC4J5FXEGX44/wP2f9vT/1B/Lr+5nOW0YQBjXWPWdVzHqf6nsDO2wyPQg7ob6/L71d+RKZIGj6WU/lzCvASH+yifVOSCnJY7WmJlaMX0BtMBOPP6DHZGdnyI+JDMNFraojRSiZTwuHD8Iv1SnF+cLI4bPjeAzMefKAQFw48PZ9/TfehIdTjU+5BKMInkPRqVLoyMAARSDkIU0y7zJoIgsPnhZiqsrsAhj0NoS7WZ3Wg2bmPcaOTQKNPjXXt7jR77eyBTyBhQZQAr2q1IEq8y12UuL4JeUNi4cJK4Ey2JMrvvl2a/sPSmssK1FClx0qcoJEGZcPCkfK5pS7XpU6kPkPmaKKlRr2g9rg69ir2JPc8CnvG369/s7L5T+frTc+qvGcyf58+LqfZZRBQoaiK9TqcSJKzo3Zi1HVdT3a468fJ49rjv4btt31Hu33L8deOvdDtupkX7Mu15MvYJPSooLwzzLs2j0eZGqkJZaaU/ty3dlrmN5wLKp6hu+7oxs+FMipgU4U3oG1Ug6uIbi5NEwOtp61GqUCkgdTfP7Q+3iZXFYmtkqyqPnxEEQWDMyTFsf7QdLYkW+3ruy7SJWSR3KWpmT7DuekghWkBMu8ybeIV40WpHK0YcH0FobCg1C9fk3qh7/NHiD/S1M2/pcvNzo+OejsTKYulQpgNbumxJ4ta99vYa/9z6B1C6Sdz83ADlGSMX5NQpUoeKVhV54Ke0AgsIIFFQtuTj/y+XPmmda4lxdUc8jqjcStmlkk0lbgy/QRmLMrwNe8u4U+OYUGUjJRN2YBQ5h/UuCfTbcIuGYqp9phEFihpJr9Np9+qlGFNrDA++f8C9UfcYXWM0xrrGvAp+xYwLMyj6d1F6H+jNBa8LWUqFszK04kCvA+zotgMzPTNuf7hN9f+qM+Xo1nTTn3/77jealWgGwEXvi6y8s5IlrZYAcO3dNUx0TXge+JwTL5JWT0wvDiUx/uS7kt9lOOpfEAQmn53MhgcbkEqk7Oq+i24VumX4OIhoBitDKxJ07hKg+ydWJkl7qYhpl3kLuULO365/U3lNZS56X8RA24C/Wv3FrZG3spwZ9yroFW12tiE8LpzGDo050OsAOlqfz4PI+EiGHhuKgMCgqoOSWGQTayP93PRn1txbo3o/scbIrJbtUry2mhvqYG6Y8XOtXtF6lDAvQVRCVLJrWXYoYV6C68OvU92uOpERpVl3UY5CnjQl2i8sRky1zyQSITv+BQ0RHh6OmZkZYWFhmJpmzjeaG8gVAne8g/kUEYuNidLMmNpTY2R8JHvd97L+/nrufryrer9UoVKMrD6SYdWHqRqxZQafMB+GHhuKi9dlisRuQhsrUnr+kKD8Ql+f2ZzohEjKrCqDf5Q/EiRcGXqFWRdnccPnBpWsK/E04Cn1itbj5vCbKrEx/fx0lrouZVKdSaxotyLZ+M22NuPK2yv81/E/RtccnezzrxEEgRnOM1jquhQJErZ23crgaoMzvf8imqHo30X5EPGBWyPuoIgrlaHvgEju8sT/CSOOj1Bdb74r8R0bOm3A0cIxy2O+D39Po82NeBv2Fic7Jy4PuYyZftIb9LhT41h7by0OZg50KN2BtffXAqAr1SVeEU8t+1rcGnELm6U2BMcEY6BtQIwsBl0tXaJmR6Et1U7x2gpk+HoLMOfiHP68/iedy3XmWN9jWd7nlAiJCaPWH6eRyUxSyToSsDXV4+ZPLb/Z70Nm7t+iBSUHyEynU2NdY0bWGMmdUXd4+P1DxtUah6meKV4hXsx2mU2xf4rRY38Pzr4+m6mGgcXMiuE8yJkfa67NcOqniZ4Jl4dcRluqjYBA+93t+fW7X5Eg4WnAU3SkOtx6f4tr766p1k+raWBMQgyu75U1BzIaIPvz5Z9Z6qr0P6/ruE4UJ/mMxGqyn6L8xG6/eYw4WRzzXOZRY30N7n68i5meGRs6beDi4IvZEieB0YG03tGat2FvKWNRhnMDzyUTJ86ezqy9pxQkPzf5mfUP1icb55emv3DpzSWCY5SpwYmZNo0dPnc/T+namtnO0olunjOvzqi2pS6ef5Qhl5mmkRItwT88nt33b6t1uwUVUaDkIZzsnFjdYTUff/jIli5bqF+0PjKFjMMeh2m3qx2OKx35/ervfAj/kKHxpBIpjYtlLG4jMR2vvHV5tnfdDiitO1POTmF49eEAqovOl00E03LxuL53JV4eTxGTIpS2KJ3uHP64+gcLriqr2a5suzJDFheRvEWitc83UjRj5yVu+tyk+n/V+f2aMni+W/luPBv/jJE1RmbY9ZoSEXERtN/VHo9AD4qYFMF5kDM2RjZJlgmLDWP4ceU1ZHzt8ex2363qt2OmZ6aynrQv055lN5UFJCVIkAnKIP+RNUZmeX4pUcmmElVtq5KgSMhSNe60yGgK/aRT8zjw9IBat10QEQVKHsRI14ihTkO5OeImT8Y+YVKdSZjrm/M27C3zLs3DYbkDXfZ24dTLU+laVTKa0vnlcv2q9GN0DaU4cP/kToI8AVM9UwKjA5Eg4fSr06oGXokC5V3YO6Lio5KMmZn4k2U3lzH3kjJQd0nLJUysOzFD8xbJW6gaBmahV5SI+omIi2Di6Yk02twIj0APbI1sOdjrIIf7HMbexD5bY8fKYum6ryt3P97F0sAS50HOFDcvnmy5Keem8D78PaUtSlO/aH0uel9MMgYo66SExIbg7OUMgK2xLaB8yOpQRv3B8VntcJweGb3exij86X2wN/Nc5mUp3vBbQRQoeZzKNpVZ0W4FH3/4yPau22ns0BiFoOD4i+N03NOREitK8MvlX3gX9i7F9dNLfxZQINUOw84iMsn7azqsoaptVQC2P95Ol3JdAFSt1JfcUAbQWhpaYmVoBaDKGErE5Y2yum167p3Vd1YzzXkaAL81+43pDaenubxI3iVRoKSWdi6Se5x5dYZKayrx791/ERAY5jSMZ+Of0aNij2yPLVPI6H+oPy7eLhjrGnNmwBlVN+Mvyxn8ffkEWx9uR4KEdR3WMdtltmqMwsaFiZPHUaNwDTqW7cj2R9tVlpXwWGWRMydbJ0z0TLI936/pW7kvAFfeXOF9+Hu1jZve9TYx/Xl8w9YA/H7td7rv655ipW6RHBAoCxcupHbt2piYmGBjY0PXrl158eJFkmViY2MZP348lpaWGBsb06NHD/z9/VMZUQSURdUGVRvE1WFXeTbuGVPrTcXCwIL34e/59cqvlFxRkg67O3Ds+bEk9U/SSn9W1quQ4Cf9l2rrqnD0+dEv1tPi8pDLmOgqLw573fdSyrwUcfI41es3oW+AlN08kfGR3PlwB0hboGx8sJEJZ5TVJmc3ms3cJnMzfWxE8g6JMSiii0dzBEYHMujIINrvbo9PuA8lzUviPMiZzV02Y2GQ/Ro0giAw+sRojjw/gq6WLsf6HqN2kdpA8nIGK89KKRK7ib6lF3H93fUkD1KJPcR+bvozACtvrwTAQNuAaJkyBXiI05BszzclipsXp5FDIwQE9rnvU9u46ZWbAGX687I2S9naZavy+L04RoPNDfAK8VLbPAoKahcoV65cYfz48dy6dQtnZ2cSEhJo3bo1UVGfzf9Tp07lxIkTHDhwgCtXrvDx40e6d++u7qkUWCpYV+DvNn/z4YcP7O6+m2YlmqEQFJx+dZqu+7ri8I8Dc13mqgREaunPFkZS4k1WE6PlSkR8BN32dWP8qfHEyZQipJBBIS4OvogECQmKBELjQoHPNQv+dv0b+KInzxcC5ca7G8gUMoqbFadkoZIp7seORzsYfULpSvqh3g/83vz3bPnDRTSPysUjCpRcRxAE9jzZQ4XVFdj5eKeywWi9H3gy9onaChwKgsB05+lscVPWN9nXcx/NSzYHUu/mro0VN59U4p/LnyvGlrUsS4wshup21elUthMPfB/gHeoNQBmLMqrlelbsqZZ5p0ROuXnSKzeRmP48xGkIV4Zewc7YDvdP7tTeUFvlFhdRkuNpxgEBAdjY2HDlyhWaNGlCWFgY1tbW7N69m549lSff8+fPqVChAq6urtSrVy/dMfN6mrEmeBn0ko0PNrLVbSsB0QGAUki0dmzNqBqj6FyuM1KJdrJ0vLC4EMacHMOBZ58DtipYVeBo36OUtSwLwIpbK5hybgoA1obWqvENtA14N/Ud29y2Mc15Gr0r9WZfT+XTyE8XfmLxjcUMdRrKli5bks13/9P99DvUD4WgYFytcfzb/l9RnBQAbr+/Tb1N9ShmWox3U1N2O4qoH58wH8aeGsupV6cApWt4U+dN1ClSR63bWXhtocpNs6XLFoY6DQWUbp1Gi13SaJgqICOQD/ojkEpAX0ef6IRojvQ5QtfyXRl2dBhbH20FPl9jSpmXwnOyZyrjZZ/A6EAKLyuMTCHDY7yHyhKsLjJabuJ9+Hu67u3Kfd/7aEm0WNluJeNqj1PrXPISeSrNOCwsDAALC6Vp8f79+yQkJNCy5WdFX758eRwcHHB1TbkNdlxcHOHh4Ul+RJJS1rIsS1ot4f0P79nfcz8tS7VEQOCc5zl6HuhJsX+KMcdlFtaFQpKk41kYWLC/1352d9+NkY4RAB6BHlRZW4Xtj5TZPJPrTVbFoAREByD9/2kTI4th1e1Vqi+2R4CHaj5p9d859vwY/Q/1RyEoGFF9BKvarxLFSQEh0cXjF+mXrRYOIhlDIShYe3ctldZU4tSrU+hq6fJbs9+4P/q+2sXJunufY0j+bv23SpxA+t3cQYI21ugpKlG9cHWiE6JxsnOiS7kuRCdEs/fpXgAcTB1UD0D9KvdT6/y/xsrQitaOyliQPU/2qH38jKY/FzUtyrVh1+hfpT9yQc740+MZc3JMst5n3yI5KlAUCgVTpkyhYcOGVK5cGQA/Pz90dXUxNzdPsqytrS1+fikH1i1cuBAzMzPVT7FixXJy2vkaXS1delXqhfMgZ15PfM2sRrOwNbLFP8qfxTcWU2ZVGVpub8n+p/tVrhxQZu48n/CcJg5NAIiXxzPk6BB6H+hNVHwUB3odwMHUAQDFF71WVt1ZRXEzZeT+y6CXyBVywuPCuf/xPpBcoJx5dYZeB3ohF+QMrDqQ/zr+l6UOxyJ5k8Q04wRFgtprTIgk5UXgC5ptbca40+OIiI+gQbEGPPz+IfOazlMFs6uLfe77GHdK+VQ/p/EcptafmuTzjKbXGmkV5kWQMiZxfpP5SCQSDj07pMrmqWhdUbVs3yp91TH1NPnSzaNJQW2gY8DObjtZ1GIREiT8d/8/Wu1oRUBUgMbmlBfI0TvD+PHjcXd3Z+/evdkaZ9asWYSFhal+fHx81DTDgo2jhSN/tvgTn6k+HO59mLal2yJBwkXvi/Q52Iei/xRl+vnpquyboqZFuTT0EivarlAVRjrw7ABl/y2LR6AHriNd0dPSS7KNxNRAPS094uRxvA17y7W315ALckpblKaY2WcxedHrIt33dydBkUCvir3Y0mWLqsS1SMFAV0sXSwNLQIxDySkS5An8ee1Pqq2rxrV31zDSMWJVu1VcG3YtyQ1eXZx9fZaBRwYiIDC21lgWfLcg2TIZTa8ta21LZHwkVW2r0qW80iqbGBwrlUhV4sXK0IpK1pXUtAep06V8Fwy0DXgd/Jp7H+/l+PbSQiKRMLPRTI73O46JrglX316l9obaPPJ7pNF5aZIcEygTJkzg5MmTXLp0iaJFi6ret7OzIz4+ntDQ0CTL+/v7Y2eXckl3PT09TE1Nk/yIZBwdLR26VejGmQFn8Jrsxbwm87A3sScwOpClrksp9285mm1txu4nu4mXxzOp7iTcx7qrgl8/Rnyk+n/V2fNkD0d6H0k2/tKbSyljqQxsex74PEX3zrW31+i8tzOxsli6lOvCru67VCJIJOOk1JE6r6Eq1ibWQskyqf2d73+8T+0NtZnjMoc4eRxtS7fl6binTKgzIUcskTfe3aD7vu7IFDL6Vu6baqxYRsoZCNJgnoUdB2Be45+57RXCf9fv8+R9HAhSGjk0UgXKdi/fPVfcvsa6xiqh9HW3dk3RsWxHbo28hWMhR96GvaXB5gZqLyiXX1B7kKwgCEycOJEjR45w+fJlypQpk+TzxCDZPXv20KOHMh//xYsXlC9fXgySzUVkChmnX51mw4MNnH51WlUsyMLAgsFVBzOq5ijKWJRhjssclt5cqmra1cihETXsarDyzsok49W2r83dj3dZ1noZu57s4oHvA3Z3302/Kv249f4WrXa0IjI+kral23K0z1H0tPWSzUkkbc66+/LriWdJfP2FzfT5uVPFPNWEr9WOVlzwusC2rtvEVgVZIKW/s62pHo7FH7DPcxYKQYGlgSXL2y5nQJUBOXYjf+z/mKZbmxIaG0q70u042vdomq6jxCwegC9vKonlDEqWuMAV/xWUN+6LWfxI/L7YPxkB1CjnxYl3SuvM5SGXaVqiaU7sVjJOvDhB572dsTO24/3U93nGqhscE0yfg3244HUBUKZjz286P9+7xDNz/1a7QBk3bhy7d+/m2LFjlCtXTvW+mZkZBgYGAIwdO5bTp0+zdetWTE1NmThRWTX05s2bGdqGKFDUi0+YD5sfbmbTw034hH92nzUs1pDRNUdT3Kw4vQ70UgWvmeiaUNS0KB6Bn4NizfXMCY0LZXDVwex4vAMBgY8/fMQ30pfm25oTFhdG85LNOdnvJAY6Brm+j/mdxIv/11/WxFtTXuoUPPiI8hxY1GIRMxvN1PR08hWp/Z0T+/oG6P5J12olWN52ebKS8urkdfBrGm1uhH+UPw2LNeT8oPMY6himu15K4kpGAMbWZ/FLOEt8dEVs4mfzdZUQAQUSJHzS/ROJ/iPCfgrLNQtrvDweu6V2hMSGcGHQBVqUapEr280IMoWMaeenseK2shFr9wrd2dZ1G8a6xhqeWdbRaBbP2rVrCQsLo1mzZhQuXFj1s2/f52I4//zzDx07dqRHjx40adIEOzs7Dh8+rO6piGSQYmbF+LnZz3hP9uZU/1N0KdcFLYkWN3xuMOToELru60qPCj1oXUoZ8R4RH4FHoEeSeJTEGin3fO8hIFDeqjyB0YG02tGKsLgwGjk04njf46I4yQJyhcCvJ56lcNP6/KT664lnecbdI1aTzRpp/Z0Tb+hldWazo9uuHBUnHyM+0mpHK/yj/KlmW42T/U9mSJyAsgbI1RnNKGS/nQCdJfjrzuKD/gjqlNIlLDYCW/l4Uu6qLkVAwCJ+NK1Ltc1V96+uli69KvYC8o6bJxFtqTbL2y5nU+dN6Eh1OOxxmIabG6pqXBV0crwOSk4gWlByno8RH9nycAsbHmzgbdhb1ftlLcviHeJNgkLZabSYIMHqiwuOvrYesbI42ji24c6HO7yKDca+aB3ODzqPqV7B/1vJFXKiE6JVPzGymCSvs/ITHmFH7Kfv0932nlH1qO9omQt7mTbLby1n6rmp9KnUh709sxcg/y3h6hlEvw230l0uJ//OwTHBNNnShKcBT3Es5Mj14ddVMUUZZavbVoYdG4a2VBuZQkbLki25+/EusdEO2MUvTHf9sa3jmdm8W1Z3IUtceXOFZtuaYaZnht80P/S1Mxb0m5vceHeD7vu78ynqE1aGVhzqfYgmxZtoelqZJjP3bzFKUSRF7E3smdNkDrMaz+KC1wXW31/PsRfHVBk/WhIt7BUKXmCMwZdPRDIAHfC8AUAcpsR22qRxcaIQFMTKYjMlDGISvhAXsoytkxO1CwxlTbDOwHIZTfXMacSOxlkjo3+/nPo7R8ZH0n5Xe54GPMXexB7nQc6ZFidhsWH8dOEnQOmekEqklLUqywXvC5Q1qUJcUPpjlDStlpXpZ4vGxRtTxKQIHyI+cObVGbpVyF2BlBEaOjTk7qi7dN3blYd+D2mxvQWr268u0F3fRYEikiZSiZTWjq1p7dga/0h/trptZcODDXiGeGKFNKk4SQE9BPTkCal+LggCcfK4lEVBRn9SEA9fjxMji1H3oUkXQx1D1Y+BtkGS15n5eRegx5IT6QufjKZ65jRiR+OskZXO4+oiThZH933duf3hNhYGFpwfeD7VFhVp8duV3/CP8kdfW59YWSwDqwxUuU2GVO/G+gvpj1GskFmmt5tdpBIp/Sr3Y6nrUna7786TAgXAwcyB68OvM+zYMPY/3c/3J7/nkd8jlrddjo6Wjqanp3ZEgSKSYWyNbZnZaCbTG07n8pvLnL/+F3imH9jc51Bf3KVaJCgSiJfHEy+PJ1YWS6wsViPCQU9LL1MCISviQl9bX23ZFfLSAjuuuuAXFptKfAKYG+igEATkCiHVipW5hdgwMGskpuqm9neWoOznUqdk9hv+fYlcIWfgkYE4ezljpGPE6f6nqWST+RokHgEequy+WFkshjqG2BrbEhobSgWrCkxr1pUTd6+kun8CCkwNFGrfv4zSv0p/lrou5cSLE4THhWvc6psahjqG7O2xl6o2VZl7aS5r7q3hWeAzDvQ6oOosX1AQBYpIppFKpDQv2ZzmehbgmX4q4KugVzyTKNJd7svxpRIpWhIttKXaaEu10dXSVf3oa+ujr62PgbYBBjoGGOkYYaRrhLGOMSZ6JpjommCqb4qZnhmmeqYUMiiEub45lgaWFNIvhLGecb6qwZLYIXXszgdIIMWLe2hMAgM23s4TaceJFpTI+Egi4yPzdcZBbpLW3/nLTrjqFKCCIDDm5BgOPjuIrpYuR/sepW7RulkaZ8q5KcgUMgx1DIlOiGZSnUn8d/8/AOY3nY+utrZq/5R793k/ElORZ7cvozGB7WTnRHmr8jwPfM4RjyM51klZHUgkEuY0mUNlm8oMPDKQy28uU2dDHY71PUYV2yqanp7ayD9XaZF8SzHTokTo6CJTyIiXx5MgTyBOHkesLDbFmA2FoEAhKJAhI04el8KI2UdHqqO0jugYqCwkBjoGSSwmST5LYZmUlk9pfXWYXhM7pH6dwvk1fmGxjN35QKNpxyZ6JhjpGBGVEIVfpB+lLUprZB75kdT+znY5JDx/uvATGx9uRCqRsqfHnix3PT724hjnPc+jJdEiOiEaO2M7dLV0CYkNobxVeVWWTNvKhfm3vxPj9rogUXy2lMgJwtjqDP1q70ttEzmORCKhf+X+zL88n93uu/O0QEmkS/kuuI5wpfOezniHelN/U312dt9J1/JdNT01tSAKFJEs4+x1gVYZWO5jhC+NnQYyt8lcShUqleQzhaAgJiFGle3y9f+/zIT58nWyzzKwfmK/D1D2igmLCyMsLkzNRyU52lLtjAmclITRV8vM66HP2wB9Vp+PIzIupWoZyufSX088o1VFO409jdoZ2+EZ4olvhK8oUDJJ28qFaVXRLkOdcLPD4uuLWXJzCQDrO66ne4XuWRonJiGGqeeUvXl0tHSQy+TMajiLX678AsC8JvOSFD+TGjzmnc5w7KS9aO7QhxOem4nQOs0fdX7N3g6pgX5V+jH/8nwueF3AP9IfW2NbTU8pXSrbVObuqLv0OtCLS28u0W1fNxZ8t4A5jefk+yasokARyTQhMSFMODMBj8d7aUX65nu5IGeL2xZ2PN7BkGpDmNtkLiXMSwBKd46RrtJFk9MoBAVxsrhURU9GBFJKgii1ZRKRKWRExEcQER+hlv3Qk1dJM11TAHzDYrnjHayxtOPCJoWVAkWMQ8kSiZ1wc4oN9zfw00Vlts1frf5iRI0RWR5r6c2lvAl9g7GuMZHxkVS0rkh4fDghsSGUsyxHn0p9kiz/92UXisRtQBtrbrwAC0ZjKuuGtXbO995Jj9IWpalTpA53Ptxh/9P9TKw7UdNTyhCWhpacG3iOH879wL93/2XepXk8+fSEzZ0358q1NacQBYpIpjj3+hzDjw/nY8RHakl0Ug6I+IqtXbcyw30X5zzPsenhJrY92sZwp+HMaTIHBzOHnJ/0/5FKpErrRC4Ui/syOylNy08GrUJfLhMRVo6EDDQK1mTasZjJk3c58PQA359U1tX5qeFPTGswLctjvQt7x8LrSrEcm6A8335p+gtjTo0BkltPDj54zUvPpnxdTF4LK/48/olipr4ar4jcv3J/7ny4w2733flGoIDSerWq/Sqq2FZh/Onx7H+6n1dBrzja92iuXmfViShQRDJEZHwk089PZ939dQCUsyzHhlZL4cBwkKURJ6KtR9USzTjrNAhXH1d+vvwzzl7OrH+wni1uWxhRfQSzG89O0vW4ICCRSFTBvKhZD2W0oJcm047FarJ5k/Oe5xlweAACAqNrjObPFn9ma7xp56cRI4vBxsiGT1GfaF6yOa+DXxMcE0xZy7L0rdxXtayyUu5TQAvJV+UJEl9r2jUJ0LtSb344/wO33t/CK8QrmVs6rzO65mjKW5Wnx/4ePPR7SO0NtTnU+xCNHBppemqZJn93HRLJFa6/u061ddVU4mRy3ck8+P4BTuU6woT7MPpK6j8T7oO5UnzUL1af84POc23YNZqXbE6CIoF199dRelVpxp8az/vw95rczXxDep1jJSibCGoqXRPA1rgwevIquL3RzrNdl781XH1c6bavGwmKBHpX6s2aDmuyFaNwyfsSB54dQCqR8inqEwC/NvuVZa7LAJjbeG4S68kd72AiYrSTiZNEvnRNapLCJoVpXrI5AHue7NHoXLJKk+JNuDfqHlVtqyqF47bmbHqwSdPTyjSiQBFJlVhZLDOcZ9BkSxO8QrxwMHPg4uCLLG+7/HNvDvNiYO+U+o95cstII4dGXBx8kStDr9CsRDPi5fGsubcGx5WOTDoziY8RH3NrF/MliemokLyrSU6lo2aGs+6+7HWpiF38Qjxe16Pfhls0WuzCWXfR3aMp3D+502F3B6ITomnt2Jod3XZkq2uvTCFj0tlJwOfKwYOqDuLGuxsExQRRxqIM/ar0S7KO2wevDI2dFyoi96/cH4BdT3aRD7vBAFDcvDg3h9+kR4UeJCgSGHliJJPOTEKmkGl6ahlGFCgiKfLQ9yG11tfir5t/ISAw1Gkoj8c8Vj1ZqIMmxZtwacglLg25RJPiTYiXx7PqziocVzoy5ewUMX4hDRLTUe3Mkrpx7Mz0NZpinNiNNzwm6c0vMf1ZFCm5j1eIF613tCYkNoT6RetzuPdhdLV0szXm2rtrcf/kjomuCR8jPqKnpcesRrNY6roUgLlN5iarNXTHLwNlZMkbFZG7V+iOnpYeHoEePPZ/rOnpZBkjXSP299rPr82UGVKr7qyi7c62BMdo1kqVUcRmgSJJkClkLLq+iF+v/IpMIcPGyIYNnTbQuVznHN2uIAi4eLvw8+WfueGj7OOjr63P2FpjmdlwZr5I99MEcoWQ4+momZlLo8UuqdZpSayEen1mc41Xuy2ofH0+FLOKo+m2xniFeFHFpgpXhl6hkEGhbG0jICqAsv+WJTQ2FFsjW/yj/Pmp4U8UMijEzAszKW1RGo/xHkkEilwhx+Gf4kgCfkcbK1LuaJy3zo8e+3tw2OMwMxrMYHGrxZqeTrY57HGYwUcGE5UQhWMhR473O05F64q5Po/M3L9FgSKi4kXgC4YcHcLtD7cB5VPEug7rsDbKSKs69SAIAhe8LvDz5Z9xfe8KgIG2AeNrj2d6w+k52mZeJHvkhW683zJn3X2TFXiTaIXir7Wawlb+XB92XdWGIDuMPjGaDQ82UMy0GD7hPlgZWvHo+0c4/edEQHQAW7tsTVbk7Nzrc7Td1RYbrdYYRk5KlvyXKEc0af37mkPPDtHzQE+KmRbjzZQ3SCX53+Hw2P8xnfd05m3YW0x0TdjVfRedynXK1Tlk5v6d/4+4SLZRCApW3l5J9f+qc/vDbcz0zNjRbQcHex3MVXECyuyXVo6tuDH8BmcHnKVukbrEyGJY6rqUkitKMtN5JoHRgbk6J5GMoeluvN8yia61r61XCrkp1vGzmVfnkFrEyf2P99n4YCOAqq7P/CbKyqsB0QE4FnJkQNUBydbb+mgrAL1rlGXtwBoY6SetIK1p12RKtC/THlM9U3zCfbjx7oamp6MWqtpW5e6ouzQp3oSI+Ai67O3CouuL8mycjShQvnHehb2j1Y5WTD47mRhZDK1KtcJ9nDsDqw7UaBVCiURCm9JtcB3hyqn+p6hlX4vohGiW3FxCieUlmHVhFkHRGejdLpJraLIb77eMMn33WSoNBqVIkPDfpexnUgmCwMQzExEQqGxdmdDYUMpYlGFg1YEsuaGsSDun8ZxksSehsaEc8TgCwBCnIbStXBgD+4X46c6ia70Q9oyqx/WZzfOUOAEw0DFQVddN7MhcELA2ssZ5kDNjao5BQGDWxVkMODwgSXHJvIIoUL5RBEFgq9tWqqytgou3C4Y6hqxuv5pzA89R1LSopqenQiKR0L5Me+6MvMOJfieoUbgGUQlRLLqxiBIrSjDXZW6+Cfgq6OSH9OeCyB3v4DT7M4F60nd3Pt6J63tXDHUMeR38GoBFLRex+eFmAqIDKGlekoFVByZbb//T/cTJ46hkXYmahWvyIfwD933vEq/lzk8tW1Lf0TJPxJykRGI2z/5n+1PsG5Zf0dXSZW3HtaxpvwZtqTZ73PfQZEsTVakHuULA1TOIY24fNFomQBQo3yD+kf503deVYceGER4XTv2i9XH73o1xtcfl2d4NEomEjmU7cm/UPY71PYaTnROR8ZH8ce0PSq4oyfxL8wmJCdH0NL9p8nr6c0ElN1xrEXERzLgwA4AKVhWIlcfSsFhD2ji2UfXzmdtkboqNMbe6bQVgqNNQJBIJx18cB6Bu0bqqFOW8ynclv8PWyJbgmGCcPZ01PR21M7b2WJwHOWNpYMl93/vUWl+LFZev0GixC/023GLyXjeNlgkQBco3xmGPw1ReW5njL46jI9VhYYuFXBt2jTKWZTQ9tQwhkUjoXK4zD0Y/4HDvw1S1rUp4XDgLri6g5IqS/HL5F0JjQzU9zW+WvJr+XJDJDdfagqsL8Iv0w8HUgfu+9wFY2nop6++v51PUJ0qal2RQ1UHJ1nsR+ALX965oSbQYUEUZm3L8pVKgdCnXJcvzyS20pdqqXkK73QuOm+dLmpVoxt1Rd6lsU5nw8FL8fTYC37CYJMtoqkyAKFC+EUJjQxl8ZDA99vcgMDqQqrZVuTf6Hj81+ilbBZs0hUQioVuFbjz8/iEHex2ksk1lwuLC+PXKr5RcUZIFVxYQHheu6Wl+k7StXJjrM5uzZ1Q9VvR1yrMxBgWFnHatvQh8wfJbywGwMrQClOXgq9pWZfENZfrt7MazU7SebHu0DYC2pdtS2KQwEXERuHi7APlDoAD0r6J08xx9fpSo+CgNzyZnKFmoJNeG3qCIMPn/7yQ9mxIdPL+eeJar7h5RoHwDOHs6U2VtFXY83oFUImV2o9ncHXWXqrZVNT21bCOVSOlRsQePxjxif8/9VLSuSGhsKPMvz6fE8hL8cfUPIuLU00VYJOMkduPt4lQkT8cYFARy0rUmCAJTzk0hQZFAHfs6PPB7oLK8rr+/Hv8of4qbFWdwtcHJ1pUr5Ox4vAOAIdWUacdnX58lXh5PGYsylLcqn+n5aII6RepQqlApohOiVe6pgojHxwQSEozzVCsCUaAUYKLioxh/ajytd7bmffh7yliU4fqw6/zR4o9sV5LMa0glUnpV6sXjMY/Z02MP5a3KExIbwtxLcymxogQLry0kMj5S09MUEckRcsq1dvLlSc6+PouOVIewuDAAxtceT2HjwirryZzGppXoPgAAGxRJREFUc1K8nrh4u/A+/D2F9Aupam0ce3EMUFpP8mq829dIJBJVsGxBdfNA3iwTIAqUAspNn5s4/efEmntrAOVF5eH3D6lfrL6GZ5azaEm16Fu5L+5j3dnVfRflLMsRHBPMbJfZlFxRkiU3lhRYM63It426XWuxslimnJsCQKtSrXgR9AJzfXPmNpnL+vvrlTEpZg7JirIlklj7pF/lfuhr65MgT+DUq1MAdCmfP9w7iSS6ec6+PltgyxvkxTIBokApYMTJ4ph1YRaNtzTmdfBripoWxXmQM/+2/xcjXSNNTy/X0JJq0b9Kf56Oe8qObjsobVGawOhAZl6YSckVJVl6c2mezPsXEckO6nSt/e36N14hXhQ2LswDvweA0lpipGv0Ofak0ewUrSdhsWEc9jgMKLN35AqBDbcuEx9ZFVudRtSxr5fleWmCCtYVcLJzQqaQcfDZQU1PJ0fIi2UCRIFSgHjk94g6G+uw6MYiFIKCwdUG82TsE1qWaqnpqWkMLakWA6sOxGO8B1u7bMWxkCMB0QFMd55OyRUl+cf1H2ISYtIfSETkG+J9+Hv+uPYHAA2LNcQv0o8S5iWYUGcCG+5vwDfSl2KmxRhWfViK6x94doBYWSwVrCoQGFyURotdWHIiHuuEGeiH/0TTv67ku8aRBd3NkxfLBIgCpQAgU8hYeG0htTfU5rH/Y6wNrTnc+zDbum7DXN9c09PLE2hLtRniNITnE56zufNmSpqX5FPUJ344/wOlVpZixa0VolAREfk/052nE50QTR37Opx5fQaAP5v/CcCiG4sAZeZOarFsibVPGttOZNyu5CX482N3676V+wJw9e1VfMJ8NDybnCGvlQkQmwXmc14FvWLI0SGqxnpdy3flv47/iU310iFBnsD2R9tZcHUBb8PeAlDYuDCzGs1iVM1R6GuL5dhFvk2uvr1K061NkSChR8UeHHx2kNr2tbk18hZr7q5h4pmJFDUtyuuJr9HT1ku2/qugV5T9tyxStKmpfYpPEQkpbievdS/OCE22NOHau2ssabmE6Q2na3o6OUZOdkkXmwV+AygEBavvrMbpPydc37tiqmfKtq7bONz7sChOMoCOlg4jaozg5cSX/NfxPxzMHPCN9GXS2UmUXlmaNXfXECeL0/Q0RURyFZlCxsQzEwFlrZPEHjpLWy8lQZ7AoutK68msRrNSFCfwufZJI7shqYoT0EzaanZJDJYtqG6eRPJKmQBRoORDfMJ8aLOzDRPOTCA6IZoWJVvwZOwTBlcbnG9S9/IKulq6jK45mlcTX7G2w1qKmhblQ8QHxp8eT5lVZVh3b12B6sEhIpIW6++v57H/YwrpFyI0NhS5IKdzuc40Kd6ETQ838SHiA0VMijCi+ogU11cICrY/2g5AA/t2Gdpmfupu3bNiT7Sl2rj5ufEs4Jmmp1PgEQVKPkIQBHY82kGVtVW44HUBA20DVrZdyflB53Ewc9D09PI1ulq6jKk1htcTX7O6/WrsTezxCfdh7KmxlFlVhvX314tCRaRAExQdxFyXuQAMrjaYc57n0JJosbjlYuJkcSy8vhBI23pyyfsSPuE+mOmZ0bZcgwxtNz91t7YytKKNYxsA9jzZo+HZFHxEgZJPCIgKoMf+Hgw+OpiwuDDqFqmL2xg3JtadiFQi/hnVhZ62HuNqj8Nzkicr266ksHFh3oW94/uT31Pu33JserCJBHnqZmsRkfzKXJe5hMSGUNW2KtffXQdgdM3RlLcqz+aHm3kf/h57E3tG1EjZegJJa580Km2X59JW1cGXbp58GMKZrxDvbPmAY8+PUWlNJY48P4KOVIc/mv/B9eHXKWtZVtNTK7Doa+szse5EPCd5srzNcuyM7XgT+oaRJ0ZSfnV5tjzcgkwh0/Q0RUTUwkPfh/x3/z8AupTtwn3f+5jomvBLs1+SWE9+avhTqgHk4XHhHHp2CFDWPsmLaavqoHO5zhjqGOIV4sWdD3c0PZ0CjShQ8jBhsWEMPTqUrvu6EhAdQGWbytwZdYfZjWejLdXW9PS+CQx0DJhcbzKekzz5u/Xf2BjZ4BXixfDjwyn/b3m2uW0ThYpIvkYQBCadnYSAQM+KPdn+WBlDMrPhTGyMbNjqthWfcB8KGxdmVM1RqY5z4OkBYmQxlLMsR50idYC8l7aqDox1jVWNDnc/KdjBsppGFCh5FBdvF6qsrcK2R9uQSqTMbDiTe6Pu4WTnpOmpfZMY6hgytf5UvCZ58Verv7A2tMYzxJOhx4ZScXVFdj7eiVwh1/Q0RUQyzR73PVx/dx1DHUPKWZbjbdhbipgUYWr9qcTL4/nzurL+yU+NUreewOfsnaFOQ5ME6xfE7taJbp59T/eJDyg5iChQ8hjRCdFMOjOJFttb4BPug2MhR64OvcqilotSDUwTyT2MdI2Y1mAa3pO9WdxyMZYGlrwKfsWgI4OotKYSu5/sFoWKSL4hMj6S6c7Keh5T6k5h9d3VAPze/HcMdQzZ6raVd2HvsDO2Y1SN1K0nr4Nfc+3dNaQSKYOqDkr2eV5JW1UXrR1bY2FggX+UP5ffXNb0dAosokDJQ9x+f5vq/1Vn1Z1VAIytNRa3MW40dGio4ZmJfI2RrhEzGs7Ae7I3fzb/EwsDC14EvWDA4QFUWVuFve57UQgKTU9TRCRN/rj6Bx8jPlKqUCnC48IJjQ2lqm1VBlUdpLSeXPu/9aThTxjoGKQ6TmJqcatSrShiWiRX5q5JdLV06VWxFyC6eXISUaDkAeLl8cx1mUuDzQ14GfQSexN7zg44y5oOazDWNdb09ETSwETPhFmNZ+E92Zvfv/udQvqF8Aj0oN+hflRdW5UDTw+IQkUkT/Iq6BV/3/obgBkNZqiCZJe2WoqWVIttbtt4G/YWO2M7Rtccneo4CkGhcu8MqZZyZ+OCSKKb55DHIWJl+aeWS35CFCga5on/E+purMsf1/5AISgYUGUA7mPdaVO6jaanJpIJTPVMmdNkDt6Tvfmt2W+Y65vzNOApvQ/2xmmdE4eeHRKFikieYuo5ZYxJ29JtueB1gQRFAm0c29DKsRUJ8gRV7MmMBjPStJ5ceXOFd2HvMNUzpWv5rrk0e83TyKERRU2LEh4XzulXpzU9nQKJKFA0hFwhZ8mNJdTaUAs3PzcsDSw50OsAO7vvpJBBIU1PTySLmOmbMa/pPLwne/Nz058x1TPlyacn9DzQkxr/1eCIxxGxdoKIxjn18hSnXp1CW6rN0GpDOehxEKlEyl+t/gKULps3oW+wNbLl+1rfpzlWYu2TvpX6pilkChpSiZR+lfsBopsnpxAFigbwDPak6damzLwwk3h5PJ3KdsJ9nDs9K/bU9NRE1IS5vjm/NPuFN5PfMK/JPEx0TXjk/4ju+7tTc31Njr84LgoVEY0QJ4tjyrkpAEyuO1kV8za02lCq2FYhQZ7A79d+B2BGwxkY6himOlZEXAQHnx1Uru80NEfnnRdJdPOcfHmSsNgwDc+m4CEKlFxEEATW3VtHtXXVuOFzAxNdEzZ33syxvsewM7bT9PREcoBCBoX47bvfeDPlDXMaz8FY15iHfg/psrcLtTfU5uTLk6JQEclV/nZdjk+AAfbanTGV1OLGO1cMdQz57bvfANjxeAdvQt9gY2TDmFpj0hzr4LODRCdEU8aiDPWK1suN6ecpqtlWo4JVBeJkCfx95STH3D7g6hmEXCF+p9WBRMiHV8fMtGvOK3wI/8CI4yM453kOgGYlmrGlyxZKmJfQ7MREcpXA6ECW3VzGqjuriEqIAqC2fW1+afYL7Uq3E5s9iuQou+8+Y+bhu2gJVqr3ZATQwimEbX2nkiBPoPzq8niFKOv9TGswLc3xmm1txpW3V/ij+R/Mbjw7p6efJxmxfxXnHpigjbXqvcJm+vzcqWK+rvWSU2Tm/i0KlBxGEAR2P9nNhDMTCI0NRV9bn0UtFok9dL5xAqICWHpzKf/e/ZfohGgA6hapy6/NfqW1Y2tRqIionbPuvozZeR8BkHxRfF5AgRQpawfWwE92jmHHhmFtaI33ZG+MdI1SHc8rxAvHlY5IkPB2yluKmRXLhb3IWyiP6QMEhCTHNPF/+bVabk6Smfu3eIfMQQKjA+l9sDcDjwwkNDaU2va1efj9QybXmyyKk28cayNrFrdajPdkb6bVn4aBtgG3P9ym7a62NNzcEGdPZ9H1I6I25AqB2UceJhMnAJL/3wZ+PfGMBVf+AGB6g+lpihP4XPukZamW36Q4kSsEfj3xDEh+TBO/ub+eeCa6e7KBeJdUA3KFgKtnUBL/48mXJ6m8pjIHnx1EW6rNb81+4+aIm5S3Kq/p6YrkIWyMbPir9V94TfZiar2p6Gvr4/reldY7W9N4S2Muel1MIlRSOtdERNLjllcAwVFCshtpIgLgGxbLhyADrAytGFd7XJrjfau1T77kjncwvmGp1z9JPKZ3vINzb1IFDLHjXDY56+7LryeeJTlR9XSj8eEfYrT8qWhdkR3ddlCjcA0NzlIkr2NnbMffbf5meoPpLL6xmHX31nHD5wYtd7SkSfEm/NrsV2IjyyU710Rft0hG2Pf4LGCZ7nJaQiGm1R+QrvXk2ttrvAl9g4muCd0qdFPTLPMXnyIyVpwto8uJJEe0oGSDs+6+jN35IJmKjo3Xxzp+Nn0dF3F/9H1RnIhkmMImhVnedjlek72YWGciulq6XH17lfabZzNm5/1k55pfWCxjdz7grLuvhmYsktcJjglmn8f6DC1rrC9nfJ3x6S6XWPukT6U+aaYhF2RsTFJvnJiV5USSIwqULJLof0zJwC5BigQJb3xqoSMVG/yJZB57E3tWtluJ5yRPxtYch2XC9ymea6KvWyQ95l+az6cEVyRaoak4eAAEZAQwuUnHVNtrJLoX99/z4uijpyBIv8naJ4nUKWlBYTP9VI+pBKWFs05Ji9ycVoFCFChZJD3/I4j+R5HsU9S0KIMq/IaWYJVu/IB4rol8zWP/x6y9txYkCsY1twFI4SwSEIAE4z1MTMV6ctbdl0aLXei34RYzDnpgFv0zxeO3ER5WKienn6fRkkr4uVNFIPkxTXz9c6eK+b5zsyYRBUoWEf2PIrmFeK6JZAVBEJh4ZiIKQUGvir2Y3qIVawfWwM7sK5eDVigBun8yuWlTTPRMko2TmisbhTnjdn3b7sW2lQuneEztzPTFFGM1IAbJZhHR/yiSW4jnmkhGkSsE7ngH8ykilqeBrlx9cx0DHQOWtl4KKG+ozcvbssP1DW+DowmMe87ap8OwMDJlQp2zKY6Xmis70U7w64lntKpo981aCtpWLkyrinaq425jonTrfKvHQ52IAiWLJPof/cJiU4lDUapo0f8okl3Ec00kIyTPKDSgCJtoUyECBzOHNJbZQNtKkZjqJS+alZlU2vqO6WcJFVS0pJJvev9zCtHFk0VE/6NIbiGeayLpkZobRhsrXB6W4qy7b6rLaGHJxQclU3TViO5FEU0iCpRsIPofRXIL8VwTSY2MumF+Of401azDxGW+zgQT3YsimkR08WQT0f8okluI55pISmTUDZMWqblqRPeiiCYRBYoaEP2PIrmFeK6JfI063Stfj5XoXhy78wESSCJSRPeiSE4junhERERE8jHqdK+kNJboXhTRFKIFRURERCQfk1E3jCAI+IfHZclVI7oXRTSBKFBERERE8jEZdcMA2XLViO5FkdxGoy6e1atXU6JECfT19albty537tzR5HRERERE8iUZccOIrhqR/IZEEASNdBjbt28fgwcPZt26ddStW5fly5dz4MABXrx4gY2NTZrrhoeHY2ZmRlhYGKamyYsLiYiIiHyLfFlJNjU3TEaWERHJKTJz/9aYQKlbty61a9fm33//BUChUFCsWDEmTpzITz/9lGTZuLg44uLiVK/Dw8MpVqyYKFBERERERETyEZkRKBpx8cTHx3P//n1atmz5eSJSKS1btsTV1TXZ8gsXLsTMzEz1U6xYsdycroiIiIiIiEguoxGBEhgYiFwux9bWNsn7tra2+Pn5JVt+1qxZhIWFqX58fHxya6oiIiIiIiIiGiBfZPHo6emhp6en6WmIiIiIiIiI5BIasaBYWVmhpaWFv79/kvf9/f2xs7PTxJRERERERERE8hAaESi6urrUrFmTixcvqt5TKBRcvHiR+vXra2JKIiIiIiIiInkIjbl4fvjhB4YMGUKtWrWoU6cOy5cvJyoqimHDhmlqSiIiIiIiIiJ5BI0JlD59+hAQEMD8+fPx8/PDycmJs2fPJgucFREREREREfn20FgdlOwgFmoTERERERHJf+T5OigiIiIiIiIiImmRL9KMvybR6BMeHq7hmYiIiIiIiIhklMT7dkacN/lSoERERACIFWVFRERERETyIREREZiZmaW5TL6MQVEoFHz8+BETExMkkow1uUrs3+Pj4yPGreQi4nHXDOJx1wzicdcM4nHXDFk57oIgEBERgb29PVJp2lEm+dKCIpVKKVq0aJbWNTU1FU9gDSAed80gHnfNIB53zSAed82Q2eOenuUkETFIVkRERERERCTPIQoUERERERERkTzHNyNQ9PT0+Pnnn8Wmg7mMeNw1g3jcNYN43DWDeNw1Q04f93wZJCsiIiIiIiJSsPlmLCgiIiIiIiIi+QdRoIiIiIiIiIjkOUSBIiIiIiIiIpLnEAWKiIiIiIiISJ5DFCgiIiIiIiIieY5vRqCsXr2aEiVKoK+vT926dblz546mp1RgWLhwIbVr18bExAQbGxu6du3KixcvkiwTGxvL+PHjsbS0xNjYmB49euDv76+hGRdMFi1ahEQiYcqUKar3xOOeM3z48IGBAwdiaWmJgYEBVapU4d69e6rPBUFg/vz5FC5cGAMDA1q2bMmrV680OOP8j1wuZ968eZQsWRIDAwMcHR1ZsGBBkqZz4nHPPlevXqVTp07Y29sjkUg4evRoks8zcoyDg4MZMGAApqammJubM2LECCIjIzM/GeEbYO/evYKurq6wefNm4enTp8KoUaMEc3Nzwd/fX9NTKxC0adNG2LJli+Du7i64ubkJ7du3FxwcHITIyEjVMmPGjBGKFSsmXLx4Ubh3755Qr149oUGDBhqcdcHizv/au7+QpvowDuBf3dxEpC0Ttyxmi4RVViyHsgy6cBeGUBQEyYhVF1FNmgWVJF0uhSCoLoq6qIssSdD+SBGymTSYc61piaWFkhGuUbI2ULJ2nvfu0Kr3Rd+pm6fnAwf093vgPHx/MB/YzuztpVWrVtHGjRvJ4XCI65z73JuYmKCioiLav38/+Xw+GhkZoSdPntC7d+/EmqamJlKpVHTv3j3q7++nHTt2kF6vp6mpqRR2vrg5nU5atmwZdXR00OjoKLW2tlJubi5dvHhRrOHck/fo0SNqaGigtrY2AkDt7e0J+zPJuKqqijZt2kQ9PT307NkzWrNmDdXU1My6l79iQCkrKyO73S7+Ho/HqbCwkBobG1PYlXSFw2ECQN3d3UREFIlEKCsri1pbW8Wa169fEwDyer2palMyYrEYFRcXU2dnJ23btk0cUDj3+XH69GnaunXrv+4LgkBarZbOnz8vrkUiEVIqlXTnzp2FaFGSqqur6eDBgwlru3fvJqvVSkSc+3z4dUCZScaDg4MEgPx+v1jz+PFjysjIoI8fP87q/pJ/i2d6ehqBQAAWi0Vcy8zMhMVigdfrTWFn0vX161cAQF5eHgAgEAjg+/fvCWdgMBig0+n4DOaA3W5HdXV1Qr4A5z5fHjx4AJPJhD179qCgoABGoxHXr18X90dHRxEKhRJyV6lUKC8v59yTsGXLFrhcLgwPDwMA+vv74fF4sH37dgCc+0KYScZerxdqtRomk0mssVgsyMzMhM/nm9X9FuV/M56Nz58/Ix6PQ6PRJKxrNBq8efMmRV1JlyAIqKurQ0VFBUpKSgAAoVAICoUCarU6oVaj0SAUCqWgS+loaWnBixcv4Pf7f9vj3OfHyMgIrly5ghMnTuDMmTPw+/04duwYFAoFbDabmO2fXnM49/+vvr4e0WgUBoMBMpkM8XgcTqcTVqsVADj3BTCTjEOhEAoKChL25XI58vLyZn0Okh9Q2MKy2+0YGBiAx+NJdSuS9+HDBzgcDnR2diI7OzvV7fw1BEGAyWTCuXPnAABGoxEDAwO4evUqbDZbiruTrrt376K5uRm3b9/G+vXr0dfXh7q6OhQWFnLuEiX5t3jy8/Mhk8l+e3Lh06dP0Gq1KepKmmpra9HR0YGuri6sXLlSXNdqtZienkYkEkmo5zNITiAQQDgcxubNmyGXyyGXy9Hd3Y1Lly5BLpdDo9Fw7vNg+fLlWLduXcLa2rVrMTY2BgBitvyaM7dOnjyJ+vp67N27Fxs2bMC+fftw/PhxNDY2AuDcF8JMMtZqtQiHwwn7P378wMTExKzPQfIDikKhQGlpKVwul7gmCAJcLhfMZnMKO5MOIkJtbS3a29vhdruh1+sT9ktLS5GVlZVwBkNDQxgbG+MzSEJlZSVevXqFvr4+8TKZTLBareLPnPvcq6io+O0x+uHhYRQVFQEA9Ho9tFptQu7RaBQ+n49zT8Lk5CQyMxP/ZMlkMgiCAIBzXwgzydhsNiMSiSAQCIg1brcbgiCgvLx8djdM6iO+i0RLSwsplUq6efMmDQ4O0qFDh0itVlMoFEp1a5Jw5MgRUqlU9PTpUxofHxevyclJsebw4cOk0+nI7XbT8+fPyWw2k9lsTmHX0vTzUzxEnPt86O3tJblcTk6nk96+fUvNzc2Uk5NDt27dEmuamppIrVbT/fv36eXLl7Rz505+3DVJNpuNVqxYIT5m3NbWRvn5+XTq1CmxhnNPXiwWo2AwSMFgkADQhQsXKBgM0vv374loZhlXVVWR0Wgkn89HHo+HiouL+THj/3L58mXS6XSkUCiorKyMenp6Ut2SZAD443Xjxg2xZmpqio4ePUpLly6lnJwc2rVrF42Pj6euaYn6dUDh3OfHw4cPqaSkhJRKJRkMBrp27VrCviAIdPbsWdJoNKRUKqmyspKGhoZS1K00RKNRcjgcpNPpKDs7m1avXk0NDQ307ds3sYZzT15XV9cfX89tNhsRzSzjL1++UE1NDeXm5tKSJUvowIEDFIvFZt1LBtFPX8PHGGOMMZYGJP8ZFMYYY4wtPjygMMYYYyzt8IDCGGOMsbTDAwpjjDHG0g4PKIwxxhhLOzygMMYYYyzt8IDCGGOMsbTDAwpjjDHG0g4PKIwxxhhLOzygMMYYYyzt8IDCGGOMsbTzD01E95d8ICoqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Strong formulation solved with gurobi_direct in 0.08160 seconds.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhT1xvA8W+SutNSKmgpWtyGu5Ux3GXIsOE2bMbYhgzGBvyGj+EOw93d3bVAC7RInXpyfn90CYRaWuo9n+fps3Hvyb3nJjfJmyPvUQghBJIkSZIkSZmIMqMrIEmSJEmS9DEZoEiSJEmSlOnIAEWSJEmSpExHBiiSJEmSJGU6MkCRJEmSJCnTkQGKJEmSJEmZjgxQJEmSJEnKdGSAIkmSJElSpiMDFEmSJEmSMh0ZoOQAy5YtQ6FQ8OTJkxxz7p9++gmFQpGu50yJGTNmULhwYVQqFeXLl0/2448ePYpCoWDTpk2pX7kcKjQ0lL59++Ls7IxCoWDEiBEZXaVk69WrF4UKFUrVY2bk54iUM8kAJQPcunWL7t27kzdvXkxNTXF1daVbt27cunXrk447ZcoUtm7dmjqVlNLc/v37GTt2LDVr1mTp0qVMmTIlwbJr1qxh1qxZ6Ve5FDh9+jQ//fQTgYGBGV2VTzJlyhSWLVvGwIEDWblyJV9++WVGVyldZdXPkZMnT6JQKFAoFLx580Zv37///kunTp0oXLgwFhYWFC9enNGjR8d7r4aGhjJixAjy5cuHqakpJUuWZP78+fGe88CBA9SqVQsLCwty5cpF+/btEwzgtm/fTsWKFTEzM6NAgQJMnDiRmJgYg65No9Ewffp03NzcMDMzo2zZsqxdu9agx2ZpQkpXmzdvFiYmJsLZ2Vl899134u+//xbff/+9cHFxESYmJuLff/9N8bEtLS1Fz54942yPiYkR4eHhQqPRfELNU2bp0qUCEF5eXul63okTJ4rMfnuPGzdOKJVKERkZmWTZ5s2bi4IFC8bZfuTIEQGIjRs3pkENk2fGjBkZ8lqntqpVq4qaNWtmdDU+Sc+ePeO9XwyRGT9HkqJWq0X58uWFpaWlAMTr16/19js4OIgyZcqIH374QSxevFgMGzZMmJiYiBIlSoiwsDBduZiYGFGjRg1hYmIiRo4cKebNmydatWolADF58mS9Y+7YsUMolUpRuXJlMXv2bPHLL7+I3Llzi7x584pXr17pld29e7dQKBSifv36YtGiRWLo0KFCqVSKr7/+2qDrGz9+vABEv379xKJFi0Tz5s0FINauXZvCZyxryNyf4NnMw4cPhYWFhShRokScG/j169eiRIkSwtLSUjx69ChFx0/ogyUjyQAlYb179xaWlpYGlc1uAYparRbh4eFpX6kUcHNzE82bN0+140VHRxsUhKamtAhQMrP58+cLBwcHMXz48HgDlCNHjsR5zPLlywUgFi9erNu2YcMGAYglS5bolW3Xrp0wMzMTfn5+um0eHh6iSJEieq/t1atXhVKpFKNGjdJ7vIeHhyhXrpyIjo7Wbfvuu++EQqEQd+7cSfTafHx8hLGxsRg8eLBum0ajEbVr1xb58uUTMTExiT4+K8vcn+DZzIABAwQgjh8/Hu/+Y8eOCUAMGDBAt037RXvnzh3RoUMHYW1tLezt7cWwYcP0PuCBOH/aD5n4goSCBQuK5s2biyNHjohKlSoJMzMzUbp0ad0befPmzaJ06dLC1NRUVKxYUVy+fFmvrteuXRM9e/YUbm5uwtTUVDg5OYnevXuLN2/e6JUzJEDRfrE9efIkzr7x48cLY2Nj4e/vL4QQ4vjx46J9+/Yif/78wsTEROTLl0+MGDFC71fQh8+blpeXlwDE0qVL45wDEBMnTtTb5uPjI3r37i3y5MkjTExMhIeHR5wPrYRER0eLn3/+WRQuXFiYmJiIggULigkTJoiIiAi9c378F1/dhBCibt26ccpqv3y0Acr69evFr7/+KvLmzStMTU1FgwYNxIMHD+Ic6+zZs6Jp06bCxsZGmJubizp16oiTJ08adF1z5swRHh4ewtzcXNjZ2YlKlSqJ1atXCyHeP98f/2lfd0AMHjxYrFq1Snh4eAgjIyOxZcsWIYQQly9fFp6ensLa2lpYWlqKBg0aiDNnzuidW3sfnTx5UowcOVLkzp1bWFhYiNatW8cJ9tVqtZg4caJwcXER5ubmol69euLWrVuiYMGCiX7xap/LhK7Bz89PfPXVVyJPnjzC1NRUlC1bVixbtkzvGNr7bMaMGeLPP/8UhQsXFkqlUly5ckX3HN27d09069ZN2NjYiNy5c4vvv/9eaDQa8ezZM9GyZUthbW0tnJycxO+//x7vc/Dxe0lb7w+/hOMLUGbMmCGqV68u7O3thZmZmahYsWKcwDa5nyNCCDF37lzh4eEhTExMhIuLixg0aJAICAjQK1O3bl1RqlQpcevWLVGvXj1hbm4uXF1dxW+//RbndXj69GmSX9ofevv2rXBwcBBz587VPccfByjxCQ4OFoBeMDF06FABiHfv3umV3bhxowDEokWLdOcExJgxY+Ict1SpUsLV1VX371u3bglAzJ07V6/c8+fPBSB++eWXROs5d+5cAYhbt27pbV+zZo0AxIkTJ5K81qzK6FO6h6Tk2bFjB4UKFaJ27drx7q9Tpw6FChVi165dcfZ17NiRQoUKMXXqVM6ePcucOXMICAhgxYoVAKxcuZK+ffvy2Wef0b9/fwDc3d0Trc/Dhw/p2rUrAwYMoHv37vz++++0aNGCBQsW8O233zJo0CAApk6dSseOHbl37x5KZeywpQMHDvD48WN69+6Ns7Mzt27dYtGiRdy6dYuzZ88ma4Bqx44dGTt2LBs2bGDMmDF6+zZs2ECTJk3IlSsXABs3biQsLIyBAwfi4ODA+fPn+d///oePjw8bN240+JyJ8fPzo1q1aigUCoYMGYKjoyN79uyhT58+BAcHJzlosm/fvixfvpz27dszevRozp07x9SpU7lz5w5btmwBYl+vRYsWcf78ef7++28AatSoEe/xvvvuO4KCgvDx8eHPP/8EwMrKSq/MtGnTUCqVfPPNNwQFBTF9+nS6devGuXPndGUOHz5Ms2bNqFSpEhMnTkSpVLJ06VIaNGjAiRMn+OyzzxK8psWLFzNs2DDat2/P8OHDiYiI4Pr165w7d46uXbvStm1b7t+/z9q1a/nzzz/JnTs3AI6Ojnrn37BhA0OGDCF37twUKlSIW7duUbt2bWxsbBg7dizGxsYsXLiQevXqcezYMapWrapXj6FDh5IrVy4mTpzIkydPmDVrFkOGDGH9+vW6MhMmTGD69Om0aNGCpk2bcu3aNZo2bUpERESir1vJkiVZuXIlI0eOJF++fIwePVp3DeHh4dSrV4+HDx8yZMgQ3Nzc2LhxI7169SIwMJDhw4frHWvp0qVERETQv39/TE1Nsbe31+3r1KkTJUuWZNq0aezatYtff/0Ve3t7Fi5cSIMGDfjtt99YvXo133zzDVWqVKFOnTqJ1ttQs2fPpmXLlnTr1o2oqCjWrVtHhw4d2LlzJ82bNweS/zny008/MWnSJBo1asTAgQO5d+8e8+fP58KFC5w6dQpjY2Nd2YCAADw9PWnbti0dO3Zk06ZNjBs3jjJlytCsWTNduR49enDs2DGEEAZd1w8//ICzszMDBgzgl19+Mfj58PX1BdDdqwCRkZGoVCpMTEz0ylpYWABw6dIl+vXrR2RkJADm5uZxjmthYcGtW7fw9fXF2dmZK1euAFC5cmW9cq6uruTLl0+3PyFXrlzB0tKSkiVL6m3Xvl+vXLlCrVq1krzeLCmjI6ScIjAwUACiVatWiZZr2bKlAERwcLAQ4v0v05YtW+qVGzRokADEtWvXdNsSappNqAUFEKdPn9Zt27dvnwCEubm5ePr0qW77woUL4/xC+7jFQggh1q5dG6eFyNAunurVq4tKlSrpbTt//rwAxIoVKxI979SpU4VCodCr86e0oPTp00e4uLjEaQ3q3LmzsLW1jbcOWlevXhWA6Nu3r972b775RgDi8OHDum09e/ZMtS6ekiVL6jU1z549WwDixo0bQojYJuGiRYuKpk2b6o0hCAsLE25ubqJx48aJnr9Vq1aiVKlSiZZJrIsHEEqlMs6vwNatWwsTExO9bs0XL14Ia2trUadOHd027X3UqFEjvfqPHDlSqFQqERgYKIQQwtfXVxgZGYnWrVvrneenn37Saw1IjLZ18UOzZs0SgFi1apVuW1RUlKhevbqwsrLSvV+195mNjU2clh3tPdm/f3/dtpiYGJEvXz6hUCjEtGnTdNsDAgKEubm5Xn0/tQXl4/s2KipKlC5dWjRo0EBvu6GfI69evRImJiaiSZMmQq1W68r99ddfAhD//POPbpu2FfDD93JkZKRwdnYW7dq10zuPtqwhrl27JlQqldi3b58QQiSrBaVPnz5CpVKJ+/fv67bNnDkz3lYJ7RiQL774QggR20pnZ2cnGjZsqFfuzZs3unEwFy9eFEK8f188e/YsTh2qVKkiqlWrlmg9mzdvLgoXLhxn+7t37wQgxo8fn+S1ZlVyFk86CQkJAcDa2jrRctr9wcHBetsHDx6s9++hQ4cCsHv37hTXycPDg+rVq+v+rf212qBBAwoUKBBn++PHj3XbPvzlEBERwZs3b6hWrRoAly9fTnZdOnXqxKVLl3j06JFu2/r16zE1NaVVq1bxnvfdu3e8efOGGjVqIIRI8peIIYQQbN68mRYtWiCE4M2bN7q/pk2bEhQUlOj1aV+PUaNG6W3X/hqPr3UsNfTu3VvvV5+2lU77ml29epUHDx7QtWtX3r59q7umd+/e0bBhQ44fP45Go0nw+HZ2dvj4+HDhwoUU17Fu3bp4eHjo/q1Wq9m/fz+tW7emcOHCuu0uLi507dqVkydPxnkf9O/fX691rnbt2qjVap4+fQrAoUOHiImJ0bX+aWnfLym1e/dunJ2d6dKli26bsbExw4YNIzQ0lGPHjumVb9eunV7r0Yf69u2r+3+VSkXlypURQtCnTx/ddjs7O4oXL673nvtUH753AgICCAoKonbt2il6vwIcPHiQqKgoRowYoWtZBejXrx82NjZx7nUrKyu6d++u+7eJiQmfffZZnGs8evSowa0nw4YNo1mzZjRp0iRZdV+zZg1Llixh9OjRFC1aVLe9a9eu2Nra8tVXX3HgwAGePHnCokWLmDdvHgDh4eEAKJVKBgwYwKFDh5gwYQIPHjzg0qVLdOzYkaioKL2y2v+amprGqYeZmZluf0LCw8MTfOyHx8+OZICSTrSBhzZQSUhCgcyHbyKIbXZVKpWflJPgwyAEwNbWFoD8+fPHuz0gIEC3zd/fn+HDh+Pk5IS5uTmOjo64ubkBEBQUlOy6dOjQAaVSqWuqF0KwceNGmjVrho2Nja7cs2fP6NWrF/b29lhZWeHo6EjdunVTfN6PvX79msDAQBYtWoSjo6PeX+/evQF49epVgo9/+vQpSqWSIkWK6G13dnbGzs5O90Wa2j5+LbVdYtrX7MGDBwD07NkzznX9/fffREZGJvr8jRs3DisrKz777DOKFi3K4MGDOXXqVLLqqL0/tF6/fk1YWBjFixePU7ZkyZJoNBq8vb2TdZ3a5/fj59/e3l5XNiWePn1K0aJF9b6ItfX88LxaH1/rh+J735mZmel1NWi3f/ie+1Q7d+6kWrVqmJmZYW9vj6OjI/Pnz0/x+0Z7zR+/fiYmJhQuXDjOc5IvX744Xb+5cuVK8TWuX7+e06dPM3PmzGQ97sSJE/Tp04emTZsyefJkvX3Ozs5s376dyMhImjRpgpubG2PGjOF///sfoN+1+vPPP9OnTx+mT59OsWLFqFy5MkZGRrpAU1tWGxhqu4U+FBEREW830YfMzc0TfOyHx8+O5BiUdGJra4uLiwvXr19PtNz169fJmzev3pdyfFIjCZlKpUrW9g9/1XTs2JHTp08zZswYypcvj5WVFRqNBk9Pz0R/iSfE1dWV2rVrs2HDBr799lvOnj3Ls2fP+O2333Rl1Go1jRs3xt/fn3HjxlGiRAksLS15/vw5vXr1SvS8CT1farVa79/aY3Tv3p2ePXvG+5iyZcsmeT3pnSQuqddMe10zZsxIMCHcx+NaPlSyZEnu3bvHzp072bt3L5s3b2bevHn8+OOPTJo0yaA6psYHqSH3ZmaQ2LXGdw2GXJeh93B8Tpw4QcuWLalTpw7z5s3DxcUFY2Njli5dypo1a5J8fGpI7dduzJgxdOjQARMTE90PNW1eE29vb6KionB1ddV7zLVr12jZsiWlS5dm06ZNGBnF/QqsU6cOjx8/5saNG7x7945y5crx4sULAIoVK6YrZ2Jiwt9//83kyZO5f/8+Tk5OFCtWjK5du+r9SHFxcQHg5cuXcX78vXz5MtGxX9rHHzlyBCGE3j3w8uVLgDjXmJ3IACUdffHFFyxevJiTJ0/GO6jpxIkTPHnyhAEDBsTZ9+DBA71fZQ8fPkSj0ehli0yvL8WAgAAOHTrEpEmT+PHHH/Xq+Ck6derEoEGDuHfvHuvXr8fCwoIWLVro9t+4cYP79++zfPlyevToodt+4MCBJI+t/fX8cWKmj3/lOTo6Ym1tjVqtplGjRsm+hoIFC6LRaHjw4IHeoDY/Pz8CAwMpWLBgso8Jn/7aagc62tjYpOi6ACwtLenUqROdOnUiKiqKtm3bMnnyZCZMmICZmVmy6+jo6IiFhQX37t2Ls+/u3bsolco4H+hJ0T6/Dx8+1Hu/vH379pNaIwoWLMj169fRaDR6rSh3797VO29aMvQejs/mzZsxMzNj3759et0FS5cujVPW0NdRe8337t3T66KLiorCy8srxfeZoby9vVmzZk28AVbFihUpV64cV69e1W179OgRnp6e5MmTh927dycakH+c2fngwYMA8V6Tk5MTTk5OQGywePToUapWrao7vvY4Fy9e1AtGXrx4gY+Pj24wckLKly/P33//zZ07d/S6SLUD4FOSgTqrkF086WjMmDGYm5szYMAA3r59q7fP39+fr7/+GgsLizgzWQDmzp2r929tk+OHo98tLS3TJYun9pfQx798PjXTabt27VCpVKxdu5aNGzfyxRdfYGlpmeh5hRDMnj07yWPb2NiQO3dujh8/rrdd27f84TnatWvH5s2buXnzZpzjvH79OtHzfP7550Dc5+KPP/4A0M2WSC5LS8tP6sKqVKkS7u7u/P7774SGhsbZn9R1fXy/mpiY4OHhgRCC6OhoXR0h7hdoQlQqFU2aNGHbtm16XZV+fn6sWbOGWrVqJdmS+LGGDRtiZGQUJ/PnX3/9lazjfOzzzz/H19dXb7ZQTEwM//vf/7CystJ1M6YlbZD54T2sVqtZtGhRko9VqVQoFAq91pYnT57EmzHW0M+RRo0aYWJiwpw5c/Tek0uWLCEoKCjF9/qzZ890gV9itmzZEuevU6dOAKxYsUI34w1iZ+w0adIEpVLJvn37EhwfFJ/Xr1/z22+/UbZs2SSDrt9//52XL1/qxpwBlCpVihIlSrBo0SK953/+/PkoFArat2+v2xYUFMTdu3f13uutWrXC2NhY77NKCMGCBQvImzdvgrP/sgPZgpKOihYtyvLly+nWrRtlypShT58+uLm58eTJE5YsWcKbN29Yu3ZtvNP6vLy8aNmyJZ6enpw5c4ZVq1bRtWtXypUrpytTqVIlDh48yB9//IGrqytubm5xpmmmBhsbG+rUqcP06dOJjo4mb9687N+/Hy8vr086bp48eahfvz5//PEHISEhug8brRIlSuDu7s4333zD8+fPsbGxYfPmzQb/Mu7bty/Tpk2jb9++VK5cmePHj3P//v045aZNm8aRI0eoWrUq/fr1w8PDA39/fy5fvszBgwfx9/dP8BzlypWjZ8+eLFq0iMDAQOrWrcv58+dZvnw5rVu3pn79+sl7Uv5TqVIl1q9fz6hRo6hSpQpWVlZ6rUtJUSqV/P333zRr1oxSpUrRu3dv8ubNy/Pnzzly5Ag2Njbs2LEjwcc3adIEZ2dnatasiZOTE3fu3OGvv/6iefPmuvFSlSpVAmKnRXfu3BljY2NatGihF2R+7Ndff9WlCx80aBBGRkYsXLiQyMhIpk+fbvD1aTk5OTF8+HBmzpype79cu3aNPXv2kDt37hS3RPXv35+FCxfSq1cvLl26RKFChdi0aROnTp1i1qxZSQ5+Tw2lSpWiWrVqTJgwAX9/f+zt7Vm3bp1B6dKbN2/OH3/8gaenJ127duXVq1fMnTuXIkWKxOl2NvRzxNHRkQkTJjBp0iQ8PT1p2bIl9+7dY968eVSpUkVvQGxyGDrNuHXr1nG2aVtMmjVrpjemx9PTk8ePHzN27FhOnjzJyZMndfucnJxo3Lix7t9169alevXqFClSBF9fXxYtWkRoaCg7d+7Uaz1btWoVmzdvpk6dOlhZWXHw4EE2bNhA3759adeunV69ZsyYQcuWLWnSpAmdO3fm5s2b/PXXX/Tt21evpXXLli307t2bpUuX0qtXLyB27M6IESOYMWMG0dHRVKlSha1bt3LixAlWr16dYNdZtpDOs4YkIcT169dFly5dhIuLizA2NhbOzs6iS5cuuimhH9JOm7t9+7Zo3769sLa2Frly5RJDhgyJk4nz7t27ok6dOsLc3NzgRG0f47+EWh/6MPmUlo+Pj2jTpo2ws7MTtra2okOHDuLFixdxpuwmN5Ps4sWLBSCsra3jzTR6+/Zt0ahRI2FlZSVy584t+vXrJ65duxZnCnF8mWTDwsJEnz59hK2trbC2thYdO3YUr169ijdRm5+fnxg8eLDInz+/7jVq2LChLlFTYqKjo8WkSZOEm5ubMDY2Fvnz54+TqE2I5E0zDg0NFV27dhV2dnbxJmr7OOFWQtOqr1y5Itq2bSscHByEqampKFiwoOjYsaM4dOhQoudfuHChqFOnju5x7u7uYsyYMSIoKEiv3C+//CLy5s0rlEplvIna4nP58mXRtGlTYWVlJSwsLET9+vX1pr8L8f4+unDhgt72+KbYxsTEiB9++EE4OzsLc3Nz0aBBA3Hnzh3h4OBgUGrxhN4bfn5+onfv3iJ37tzCxMRElClTJs7zG997RSuhKbAJ3Qfa5GYfevTokWjUqJEuOeK3334rDhw4YNA04yVLloiiRYsKU1NTUaJECbF06dJ43yfJ+RwRInZacYkSJYSxsbFwcnISAwcOTDBR28fiq2dyphl/LKHnmHgS0Gn/6tatq1d25MiRonDhwsLU1FQ4OjqKrl27xpvd+9y5c6JOnToiV65cwszMTJQrV04sWLAgwaUAtmzZIsqXLy9MTU1Fvnz5xPfffy+ioqL0ymif44/vK7VaLaZMmSIKFiwoTExMRKlSpfSmvGdXCiEy2egySY82EdLr16/jjPKXJMkwgYGB5MqVi19//ZXvvvsuo6sjSZIB5BgUSZKylfjyQmjHBNWrVy99KyNJUorJMSiSJGUr69evZ9myZXz++edYWVlx8uRJ1q5dS5MmTahZs2ZGV0+SJAPJAEWSpGylbNmyGBkZMX36dIKDg3UDZ3/99deMrpokSckgx6BIkiRJkpTpyDEokiRJkiRlOjJAkSRJkiQp08mSY1A0Gg0vXrzA2to63dc8kSRJkiQpZYQQhISE4OrqGmfxzY9lyQDlxYsXyV6jQ5IkSZKkzMHb25t8+fIlWiZLBijatNLe3t7JXqtDkiRJkqSMERwcTP78+Q1aHiJLBijabh0bGxsZoEiSJElSFmPI8Aw5SFaSJEmSpExHBiiSJEmSJGU6MkCRJEmSJCnTkQGKJEmSJEmZjgxQJEmSJEnKdGSAIkmSJElSppPsAOX48eO0aNECV1dXFAoFW7du1dsvhODHH3/ExcUFc3NzGjVqxIMHD/TK+Pv7061bN2xsbLCzs6NPnz6EhoZ+0oVIkiRJkpR9JDtAeffuHeXKlWPu3Lnx7p8+fTpz5sxhwYIFnDt3DktLS5o2bUpERISuTLdu3bh16xYHDhxg586dHD9+nP79+6f8KiRJkiRJylYUQgiR4gcrFGzZsoXWrVsDsa0nrq6ujB49mm+++QaAoKAgnJycWLZsGZ07d+bOnTt4eHhw4cIFKleuDMDevXv5/PPP8fHxwdXVNcnzBgcHY2trS1BQkEzUJkmSJGUbao3gvJc/r0IiyGNtxmdu9qiU2WfNueR8f6dqJlkvLy98fX1p1KiRbputrS1Vq1blzJkzdO7cmTNnzmBnZ6cLTgAaNWqEUqnk3LlztGnTJs5xIyMjiYyM1P07ODg4NastSZIkSRlu782XTNpxm5dB73scXGzNmNjCA8/SLhlYs4yRqoNkfX19AXByctLb7uTkpNvn6+tLnjx59PYbGRlhb2+vK/OxqVOnYmtrq/uTCwVKkiRJ2cnemy8ZuOqyXnAC4BsUwcBVl9l782UG1SzjZIlZPBMmTCAoKEj35+3tndFVkiRJkqRUodYIJu24TXzjLbTbJu24jVqT4hEZWVKqBijOzs4A+Pn56W338/PT7XN2dubVq1d6+2NiYvD399eV+ZipqaluYUC5QKAkSZKUnZz38o/TcvIhAbwMiuC8l3/6VSoTSNUAxc3NDWdnZw4dOqTbFhwczLlz56hevToA1atXJzAwkEuXLunKHD58GI1GQ9WqVVOzOpIkSZKU6b0KSTg4SUm57CLZg2RDQ0N5+PCh7t9eXl5cvXoVe3t7ChQowIgRI/j1118pWrQobm5u/PDDD7i6uupm+pQsWRJPT0/69evHggULiI6OZsiQIXTu3NmgGTySJEmSlJ3ksTZL1XLZRbIDlIsXL1K/fn3dv0eNGgVAz549WbZsGWPHjuXdu3f079+fwMBAatWqxd69ezEze//Erl69miFDhtCwYUOUSiXt2rVjzpw5qXA5kiRJkpS1fOZmj4utGb5BEfGOQ1EAzraxU45zkk/Kg5JRZB4USZIkKTvRzuIB9IIUgQYlSuZ3r5gtphon5/s7S8zikSRJkqTszLO0C/O7V8TZVr8bR81birofzRbBSXKlaqI2SZIkSZJSxrO0C409nHWZZAOjntJnTxuev4hmw60qdCzVMaOrmK5kgCJJkpQFZfeU6DmVSqmgurvDf//Ky+N3E/j5+M8M2jWIOgXr4GzlnGNeezkGRZIkKYuRKdFzjih1FFX/rspV36u0LN6Sr0st4OedWfe1l2NQJEmSsimZEj1nMVGZsKL1CoyVxhy4/ZqBqy/lmNdeBiiSJElZhEyJnjOVcSrDxLqTsI/qn6NeexmgSJIkZREyJXrOVde1D0Y4oiD+sSbZ8bWXAYokSVIWIVOi51xvQ6MNKpedXnsZoEiSJGURMiV6zpUTX3s5zViSJCmLSColukCDvaVSLyV6TpmSmhoy83OVE9PhywBFkiQpi1ApFUxs4cHAVZdRwEdfVAJQ4KWewYlnltQrVE9OR06GzP5cffjaf0ygAWL3Z5aAKjXILh5JkqQsJKGU6C62ZhQsuJ8gxTG+WPMFs44ckdORDZRVpm5rX3uXeNLhR1rPpUZRywyqWdqQidokScpeAr0h7G3C+y0cwC5/+tUnjcTXHRGtiaTVulbsf3iQfJFLUQmHeB+r7Q44Oa5BtvrFnRJqjaDWb4cTnB2VGZ+r2Nf+LaP2TOLKq2MoTB4RoQ7jm+rfMKPJjIyuXqKS8/0tAxRJkrKPQG/4qxLERCZcxsgUhlzKFkFKfMKiw2iw+Gt8n3VKsuzaftU+SKueM5159JYui88mWS4zPlfeQd6UmV+GoMggAIyVxtwcdJNiDsUyuGYJk5lkJUnKmcLeJh6cQOz+xFpYsjgLYwtGffaTQWWz05TUlMrKU7fz2+ZntudsABQoiNZEM3LfyAyuVeqRAYokSVI2kz+XrUHlstOU1JTKY21qYLnM+Vz1KNeDlsVbIv4bMr37wW52P9idwbVKHTJAkSQpy4tWR3P/zX12ZZMP5k+lnZKa2IgJl2w2JTUlNELDmns/E8Pr/2bCxKUgcz9XCoWChV8sxMH8fffTyH0jiVJHZWCtUoecZixJUqYXGRPJs6BnPA54zFW/q9zwu8GDtw94HvKct+FviYiJbX6vIJQ0xyqDa5vxDJmSOrSRS6YZ9JkR1Bo1fXf0ZdnVZViY1MAxakKcqdvaZyezT991tnJmXvN5dNoUO+7o/tv7/O/c/xhdY3QG1+zTyEGykiRluLDoMJ4GPuVJ4BOeBD7hzps73H59myeBT/AL9SM0OtSg41QQSi4bEqD0Pwau5T+t0llAfLk9YhSv8TdeRNkCGo72OoqZUebsukhLUeoouv/bnY23N6JSqFjWehm5lQ0zdR4UQ3Te1Jn1t9YDYG1izYOhD3CycsrgWumTs3gkScpUgiODeRL4RBeEPA16ykP/hzx4+wCfEB+CI4OTdTwFCl2fu1Y+63xUV1mwIcA36QPkkAAF3k9HvvfqJT+fHI3Xu4MolbHdGz3L9WRpq6UoFJm3dSC1hUeH035je3Y/2I2x0pj17dfTpmQbIHNnkjXE27C3lJpXCr93fgD0qdCHv1v+ncG10icDFEmS0o0QgoCIgDgBiLY1xCvAi+Co5AUgAHZmduS2yI2pypSQyBC8g731ghJzI3Pqu9WnWZFmVHatzNgDYwl9ekq2oCTiaeBT6iyrw7OgZ7ptfzb9kxHVRmRcpdJRSGQILde15OiTo5gbmbOl0xaaFmma0dVKVdvvbafVula6f1/sd5FKrpUysEb6ZIAiSVKqEULw6t0rXdDxcRDyNOgpoVGGdcF8zNbUFrdcbpTKXYrSTqVxsnTC750fV32vctjrMK/DXuuV93D0wNPdE88intQuWBszIzPOPz9P2/VteR7ynJLG1tyIMUGlSWTl12yeByUpD/0fUndZXV6EvABAqVCyr/s+GhVulME1S1v+4f40W92M88/PY21iza6uu6hdsHZGVytN9Nrai+XXlgNQNW9VzvQ5k2layWSAIkmSwTRCw8uQlwkGIM+CnhEeE57i41saW1LMoRglcpegmEMx3V9R+6JYmlhyzuccex/uZe+jvVx6cUmvlcTaxJpGhRvhWcSTpu5NKWhXUO/YS68sZeCugUSqIymRuwRbOm2hhJElhL2l7/a+XPa9wtSGU2nq3uT9g7JJJtlPcffNXeosraMLAO3M7LjY7yLu9u4ZXLO04RfqR5NVTbjudx17c3v2dd9HZdfKGV2tNBMYEYjHXA9ehsam6F/VZhXdynbL4FrFkgGKJOUQhvSZx2hieB78XL/VI/ApT4Ji/+sd7P3JUxJNlCYUdSgaJwAp5lCMPJZ59H69PQ9+zr5H+9j7cC8HHh8gMCJQ71jlncvj6e5Js6LNqJ6vOsYq4zjni1JHMWrfKOZemAtAy+ItWdlmJTam7z8P3Ga78STwCSd7n6RmgZqfdH3Z0c1XN6m7tC7+Ef4AlMxdknN9z2Ftap3q58rIsR3eQd40WtmI+2/v42zlzIEvD1A6T+l0OXdG2v9oP01XxXZfOZg78GTEE6xMMn6GmwxQJCkHiG+Gho25mgrFH4HZVV0g4hPsg1qokzyeUqFEI+LPBaHd72bnphd8aP/y2eRDpVTF+7godRSnnp1iz8M97H24lxuvbujttze3p4l7EzzdPWni3gQX68RnTPiF+tF+Y3tOPjsJwKR6k/i+zvcoFe/TOmmEBrNfzYjWRPN0xFMK2BZI8vpzossvL1N/eX3dIOUvin3Bts7b9J7LT5WRqwQ/9H9IoxWNeBoUew8c6nGIIvZF0vScmUn/Hf1ZfHkxQKZZp0cGKJKUjYRHh/M06Kle18ulx2ruPaqNIHZGi5Y2x8VrkymEq87otisVSkxVpmiEhkh14qng81rnjW0Nsf+gNcShKIVzFcZEZWJQnb0CvHTdNoe9DuuNUVGg4LO8n+FZJHYsSRXXKgkGNx8753OOdhva8TzkOTamNqxqs4oWxVvEKfcy5CWuf7iiVCiJ/D4SI6VM+ZSQcz7naLC8AWExYQB8W+tbJjecnCrH1q4S/PGXjPaOnd+9YpoFKTdf3aTxysb4hvpSzKEYB788SH7bnNW1FxoVSpE5RfB754dSoeTB0AcUzlU4Q+uUnO9v+a6VpAwWEhkSJwD58L+v3r3Sf4BQkjdiCSr0gxMABUoEGuyj+vPc7BwoYltENEKjN47E3tz+fQuIfTFd90wR+yIpagYOjw7n2NNjsUHJw73ce3tPb7+TpRNNizSlWZFmNC7cGAeL5C+69s+Vfxi4ayBR6ihK5C7B1k5bKZ67eLxlvYO9AXCxcpHBSRKq5qvK3u57abSyEVHqKFaemEpdE1uafDhu50MGjuFRawSTdtyOE5wA/wXWMGnHbRp7OKd6d8/FFxdpuqop/uH+lMlThgNfHsh0+UDSg5WJFevbr+fLZfXJLeDnde1Y1mpp3IKZdFyWfOdKUhoSQhAYEZjoDBj/cP8kj2NtYk0hu0IUtCuIlajImeuOCZZVoMQIR2yVFXFzionTJVPUvmiKAoSPr+v+2/vsfbiXPQ/3cOzpMV02VwCVQkXNAjV1M27KOZdLcbdBlDqKEXtHMP/ifABal2jN8tbL9cabfMw7KDZAyWm/mFOqdsHa7Om2hz4rmnIbc8wPTYZDCbSiJDALSgiBT7APV32vcs3vGice+vEyyDPBcwrgZVAE5738U3WV4BNPT9B8TXNCokL4LO9n7Om2B3vzzJmmPj3UtSvMQ4UtJkIDfo9hUd24hTLpzDYZoEjSJxBC8CbsjS7YiC8AMSQJWS6zXLoApJDtf/+1K0RB29j/2pnZ6Qaabrv6nDPXryZ5zOUtttKqQt5PvUSdkMgQDnsd1nXdPAl8orc/v01+XbdNQ7eG2JoZtmBdYnxDfWm/oT2nvE+hQMGkepP4rs53SQY72haU/DaZ6wM3M2vg1oAVTf/EfO93iReMiSQqxJeb4a+55nuNa37//fleIyAiQFfMIqYOjiQcoGil5irB+x/tp/W61oTHhFOvUD22d96eJoN+s5Swt7HBSWK0K3zLAEWSsg6N0OAX6pfgDJinQU8Jiw5L8jh5LPPogg3df+0KUtC2IAXtCibaGhDnWAauqprH5tNSmAshuPHqhq7b5uSzk0R/kF/ERGVCnYJ1dDNuSuYumaq5Fs75nKPthra8CHmBjakNq9uu5otiXxj0WF0LigxQkqV2gVoGlau1tCYXRNxcM0ZKI0rmLkk553I4qKqz9XTSx0qtVYK33NlC582diVJH0axIMzZ33Iy5sXmqHFvKGDJAkbKEtJqmqNaoeR7yXK/l4+MAJKkpuAoUuFi7xBuAFLIrRAHbAlgYW3xyXbW0K9X6BkXE27+vAJxTuPpqQHgABx8fZM/DPex7tE+XzEvLPZc7zYo0w7OIJ/UK1cPSxDJlF5GEJZeXMGj3IKLUUZTMXZKtnbdSzKGYwY/3CfEBZBdPWonRqMllnotyzuUo71Secs7lKOdUDg9HD0yNTIHY9+y5W4fT5D792Krrq+i1tRdqoaa9R3tWt11t8IBuKfOSAYqU6X3KNMVodTTewd4JDkD1CfYhRhOT6DGUCiX5bPLpBx8fBCH5bfLrPpTTw4cr1X7q6qsaoeHSi0u6bpuzPmf1phqbG5nTwK2BrusmradoRqmjGL5nOAsuLQCgTYk2LG+9PNnN9LIFJW3t7robp6JNEm0xS837NDELLi5g0K5BCAS9yvdicYvFcmB0NiFfRSlTS2iaom9QBANXXWZ2lzKUyBcRZwCqNgB5EfIi0dweAMZKYwrYFtB1uXwcgOS1zhtvsrCM5FnahfndK8YJ3JwNCNxevXvF/kf72ftwL/se7eNN2Bu9/dp08s2KNqNWgVrpttrty5CXtN/YntPep1Gg4Jf6vzCh9oQUDa7VjUGRLSgGi9HEsP7GagzJN+ps5QQGdOd9yn1qiBmnZjD24FgAhlQZwuxms1M1h4uUsWSAImVaSU1TFGgYtPYwz8366KbTxsfMyEw31iO+AajOVs4G5+HITDxLu9DYw9mgTLLadPJ7Hu7h0stLevttTG1i08m7e9K0SNMMSWp21ucs7Ta040XIC2xNbVnddjXNizVP0bFiNDG6rinZgmKYKy+v0G9HPzQvrtDNkMUWk8HQ+zQ5hBBMPDqRX47/AsD4muOZ0nBKpllvRkodMkCRMq3zXv56v7o+pp1Oa6esRN7cYbqg4+MA5ONU69mJSqmId4qmT7AP+x7uY++jvRx4dICgyCC9/RWcK+i6bRJKJ59eFl9azODdg4nWROPh6MHWTlsp6lA0xcd7GfISjdBgpDTKkbkvkuNd1DsmHp3IrLOzUAs1FUmbQD2h+zQlhBCM2jeKWedmATClwRQm1J6QKseWMhcZoEiZlqHTD5e12JKq02mzosiYSE55n9LNuIkvnXxT96Z4FolNJ+9s5ZxBNX0vMiaS4XuHs/DSQgDalmzLslbLPnlaqLZ7J691Xtncn4g9D/YwcNdAngY9BcBUZcrrmCgiUWAab7vlf4xMYxN7ZQC1Rs3XO7/m7yt/AzDHcw5Dqw7NkLpkGRYOsa9ZTCIZpDPwNU2MDFCkTCu9ptNmVdp08nse7uGw12HeRb/T7VOgoGq+qrpEaZVdK2eqbqyXIS9pt6EdZ3zOoEDBrw1+ZUKtCanS0iWTtCXOL9SPkftGsvbmWgBcrV0Jjw4nICIAe+dyhLVegakmkXFbGZR1NFodTY+tPVh3cx1KhZK/W/xN7wq9070eWY5dfhhyid7rWnHN9xrfVP+GrmW66JeRmWQlKXnScjptVhQWHcaxJ8d0M27uv72vt9/J0knXbZPSdPLp4Yz3GdptaMfL0JfYmtqypt0aPi/6eaodXyZpi58Qgn+u/MOYA2MIiAhAqVDSq1wv9jzcQ0BEAGXylOFgj4Pkssid0VWNIyImgo4bO7Lj/g6MlEasabuGDqU6ZHS1sgxvBSzzu4JCoaBejeFg7ZrRVTKIDFCkTCu9pilmVkII7r29p+u2+TidvJHSiBr5a+hm3JR1KpvpuzQWXVrEkN1DiNZEU8qxFFs7b031qctyinFc997cY8DOARx7egyIHYM0sd5EhuwewsvQl3g4enCwx0FyZ8LgJDQqlNbrWnPI6xBmRmZs7rg5VQPanGDDrQ1A7JIGrlkkOAEZoEiZXFpPU8xsDEknr02U1sCtQaqkk08PkTGRDN0zVLf0e7uS7VjaammapCGXU4zfi1JH8dvJ3/j1xK9EqaOwMLbg53o/06pEKxquaIhPsA8lcpfgcI/D5LHMk9HVjSMwIpDPV3/OGZ8zWJlYsaPLDuoVqpfR1cpy1t9aD0BHj44ZXJPkkQGKlOmlxTTFzEIIwXW/67qA5OSzk3qJ40xUJtQtWFfXdZPa6eTTw4uQF7Tb0I6zPmdRoGByg8mMrzU+za5DdvHEOvXsFP139uf269sAeBbxZH7z+SgVSuouq8uzoGcUcyjG4R6HM3a2U6B37DowHwmICGDQ7sH4vLmLnbkde7vtpWq+qhlQwaxJm337lq83170jUKqMaO/RPqOrlSwyQJGyhNScppjR/MP9Ofj4oK7r5mXoS739ReyL6FpJ6hasm2bp5NPDae/TtNvQDt9QX+zM7FjTdg3NijZL03Pm9EGygRGBjD84Xjc7Ko9lHmZ7zqZTqU74BPtQb3k9ngQ+oah9UY70PIKLdQa2QgZ6w1+V4p1hkgtYC0RgjVe7DZSUwYnBPs6+7cxUVEYhXHmiwbN0BlcuGWSAIklp7MN08nse7uHc83N62W0tjC1i08n/lygtrdPJpwchBIsuLWLonqFEa6Ipnac0WzptSfNri4yJxO+dH5DzWlCEEGy+s5mhe4biG+oLQJ8KfZjeeDr25vY8D35OgxUNeBzwmMK5CnO45+GMH48Q9jbx6a+AGVDSwjF96pMNJJR9Wx1jxcBVl5nfvWKW6RqXAYokpQG/UL/YdPKP9rL/0f446eRLOZbSddvULlA7XdfySWuRMZEM2T1El6uivUd7lrZaipVJ6mYojc/zkOdAbPbgzDjgM614B3kzePdgdtzfAUAxh2Is+mIRdQvVBWKndTdY0YCH/g9xs3PjSM8j5LPJl5FVltJAYtm3tVMLJu24TWMP5yzRRS4DFElKBTGaGM76nNV12ySWTt6ziGe27X54Hvycdhvace75ORQomNJwCuNqjku3cTPa7p18Nvmy3FidlFBr1Px1/i++P/I9oVGhGCuNmVBrAhNqT9CtoeQb6kuDFQ24//Y+BW0LcqTnkQxZzkBKe0ll3xbAy6AIznv5Z4kucxmgSFIKadPJ73m4h4OPD8ZJJ1/RpaIuIKmWr1qmW3AwtZ16dor2G9vrxpusbbcWzyKe6VqHnDRA9qrvVfrv6M+FFxcAqJm/JotaLMLD0UNX5tW7VzRc0ZC7b+6S3yY/R3oeoaBdwYyqspTGDM2+bWi5jCYDFEkyUGRMJCefndTNuLn56qbefgdzB5q4N8lU6eTTgxCCBRcXMGzvMGI0MZTOU5qtnbbibu+e7nXJCQNkw6LDmHR0EjPPzEQt1Nia2vJbo9/oV6mfXh6c1+9e03BFQ26/vk1e67wc6XkEt1xuGVjzuHxCnmNIR9OqG6tpk7tolh4wnh4Mzr5tYLmMJgMUSUrE44DHum6bj9PJKxVKPsv7mW7GTSWXSpkqnXx6iIiJYMjuISy5sgSAjqU6sqTlknQZbxKf7NKCop0i+vG0+v2P9vP1zq/xCvQCoINHB2Z7zo4zE+dN2BsarWzEzVc3cbV25UjPIxkSMCZm462N/G9bX44bUPaPM38w6vpyvqnxDYOqDNK7vxJ6rnKi7JZ9WwYokvQBbTr5PQ/3sPfhXh74P9Db72zlHDu41d2TRoUbZdp08unhefBz2m5oy/nn51EqlExtOJUxNcZk6NgPn2AfIGsHKB9PEQXIY22Cg/Nh9vpMA2Kvb+7nc2lRvEWcx/uH+9N4ZWOu+13H2cqZwz0Of9Lq0KktPDqckftGsvDSQioIJZB0MJvXOi9XQr0Zd3Ac009NZ1T1UQz5bAinH7yL81y5ZNMkjobIbtm3FUKIRJatzJyCg4OxtbUlKCgIGxubjK6OlIUJIbj75q6u2+bYk2NEqt9PezRSGlEzf03djJtyTuVyxODLpJx8dpL2G9rj986PXGa5WNd+HU3cm2R0taiwsAJXfa+yq+uuLJkOPaEpogINoOCNyVT61ajCL/V/iTcLb0B4AI1WNuLyy8s4WTpxpOcRSjqWTJe6G+LO6zt02tSJG69uoEDBtMpDGHNlHYokVtqNHnSONc+OM/nEZN2PhtzKRli+G877r95Y2n9lpem0qS2+IDezBG7J+f6WAYqU4wRHBr9PJ/9wr265ea0CtgV069s0cGuAjam8x7SEEMy/OJ/he4cTo4mhTJ4ybOm0JdN0H+Senpu34W+5/vV1yjiVyejqJItaI6j12+FEZmEIHKxUnP/WM95fwIERgTRe2ZiLLy7iaOHIkZ5HKJWnVNpW2kBCCJZeXcrQPUMJiw7DydKJVW1X0ahwIwj0Ztz2fhx4fACA5a2XExoVyuDdgzFSGrGp5xEKFKwBxM6WW39zPb8cn0yoz1hU5EZB3OdC25VxclyDLNNakNoya9dXcr6/ZRePlO1p08lru21OeZ/SSydvqjKlbqG6uhk3JXKXkK0k8YiIiWDQrkEsvboUiB1v8k/LfzLNwMWw6DDehsemTM+Kg2STmiIKCt6GauKdIhocGYznKk8uvrhIbovcHOpxKNMEJ8GRwQzcNZA1N9YA0LhwY1a2WalLr6+2cWXxy/MEKGKTF7oU8yS3RW4c7m3m4OODfHtpHqv+C1CMlEZ0K9uNQhaN6fb3hQTPmdWm06aF7JB9WwYoUrbkH+7PgUcH2PsotpVEm1lTq6h9UV23TVZPJ58efIJ9aLu+LRdeXECpUDKt4TS+qfFNpgrktONPrEyssDXNGosofiilU0RDIkNotroZ556fw97cnoNfHsw0rUeXXlyi8+bOPPR/iEqh4tcGvzK25li92UaXX14mICIAACtjKxzMY79UpzWcRuXHlVl9YzWjq4+mgksF3WPehEYbdP6sMp1Wip8MUKRsQa1Rc+nlJV23TULp5JsVaUZT96aZpksiKzjx9ATtN7bn1btX5DLLxfr262ns3jijqxVHVk/SlpIpoqFRoXy+5nNOe58ml1kuDn55kHLO5dKqigYTQjDn3BzGHBhDtCaaArYFWNtuLTXy14hTdv+j/br/L+JQRPfaVXKtRJfSXVh7cy3jDo5j/5fvy2W36bRS/GSAImVZ2nTyex7uYf+j/brmfa3SeUrrum1qFaiVrdLJpwchBPMuzGPEvhHEaGIo61SWLZ22UDhX4YyuWhxqjeD4A18sYurgoCqMWiMyRX97ciR3iui7qHc0X9Ock89OYmtqy4EvD+i1MmSUt2Fv+Wr7V2y/tx2A1iVas6TlEuzN45/aqh17AuCeS/+Hw+QGk9l0exMHHh/gwKMDusA4u02nleInAxQpy4jRxHDG+4xuxs3ll5f19tuY2tC4cGM8i3jS1L1plhyHkFl8PN6kc+nO/N3i70zZFfZ+xoIdjozF5wnU+u1wppixkBzJmSIaFh1Gi7UtOP70ODamNuz/cj+VXCtlQK31nXx2ki6bu+AT7IOJyoSZTWYyuMrgBFu0QqNCOe19Wvfvj4Nft1xuDKoyiNnnZjPu4DgaFm6IUqHMdtNppfjJWTxSpuYd5M2+R/vY+3BvgunktYnSquatmu3TyacH7yBv2m5oy8UXF1EqlPzW6DdGVx+dKbtNEpqWm5WnmiY1RTQ8OpyW61py8PFBrE2s2f/lfqrlq5aBNY7tYp12choTj05ELdQUtS/K+vbrk2zR2XV/F1+s/QJzI3PCY8JZ0HwBAyoP0CvzJuwN7nPcCY4MZlWbVXQr2023LzNPp5XiJ2fxSJlCSqa5adPJa2fc3Hp9S2+/g7kDTYs0xdM9Np28diaAlHzxvT6nvE/QYWMHXr17hb25Pevbr4+dCpoJJbZyqyA2SMlKK7dqeZZ2obGHc7zvnYiYCFqvb83BxwexMrFib/e9GR6cvAx5yZdbvuSQ1yEAviz7JXM/nxtvnhYt7b239MwNTNVlMDX1ITwmPN6xYbktcjOu5ji+O/wd3x3+gfxmDQgI05DH2ozGHs4JPldS1pfqAYpareann35i1apV+Pr64urqSq9evfj+++91v8CEEEycOJHFixcTGBhIzZo1mT9/PkWLZp5sh9KnSc4vm8cBj9nzYA97H8Wmkw+LDtPtUyqUVM1bVTfjJiemk08L8b0+VmYxPBW/E6p8RTmncmzptCXTrd3yoey2cuuH4psiGhkTSdv1bdn/aD+Wxpbs7ro73kGn6Wnfw3302NqDV+9eYWFswbzP59GzfM9EH6N/75XBmanERL8h0nhhnDEoWiOqjWDuiVPE+Hagxz/vu3Zla0n2luoBym+//cb8+fNZvnw5pUqV4uLFi/Tu3RtbW1uGDRsGwPTp05kzZw7Lly/Hzc2NH374gaZNm3L79m3MzOSo66wuoWZ336AIBq66zKzOpTG2vKWbcZNQOvlmRZrRqHCjBAfXSSmT0OsTEqHEnnHUcK/Bll4TsTC2yJD6GSq7rdyamMiYSNptaMeeh3swNzJnV9dd1C5YO8PqE62O5vvD3zP99HQAyjqVZX379ZTIXSLRxyV076mEPY5R33Lb2wS3XHEfd/xeEMbBAxP8TMmKXXlS0lI9QDl9+jStWrWiefPmABQqVIi1a9dy/vx5ILb1ZNasWXz//fe0atUKgBUrVuDk5MTWrVvp3LlzaldJSkdJNbuDYMj6o/iYfgX/JWYyUhpRq0At3Yybsk5lM+V4h+wgsddHgRIQBL9pgqnKPL2rlmw5ZapplDqKjps6suvBLsyMzNjZdSd1C9XNsPo8CXxCl81dOOtzFoBBlQfxe5PfMTdO/J4x5N77ddddPEu76nXRaB9HPDljs3JXnpQ0ZdJFkqdGjRocOnSI+/fvA3Dt2jVOnjxJs2bNAPDy8sLX15dGjd73a9va2lK1alXOnDkT7zEjIyMJDg7W+5MyJ0OyYapEbgqY12dApQFs6bSFt2PfcqTnEcbVGkc5Z7nWTVoy5PXRdotkdtqppgndLQpiuwCy8lTTaHU0nTd1Zvu97ZgZmbGjyw4auDXIsPr8e+dfKiyswFmfs9ia2rKpwybmNp+bZHACKb/3ktOVJ2Uvqd6CMn78eIKDgylRogQqlQq1Ws3kyZPp1i125LWvb2xGTycn/cGNTk5Oun0fmzp1KpMmTUrtqkppwNDm9DlNltOqQt40ro30sezULZLdp5pGq6Pp+m9XttzdgqnKlK2dtmbYgOWImAhG7xvNvIvzAKiWrxpr262lkF0hg4+R0nsvO92zUvKkegvKhg0bWL16NWvWrOHy5cssX76c33//neXLl6f4mBMmTCAoKEj35+3tnYo1llKTwc3uNlm72T2rym7dIp6lXZjfvSLOtvr1dbY1y9LjEmI0MXy55Us23d6EicqEfzv9S9MiTTOkLvfe3KPa39V0wcm4muM43ut4soITSPm9l93uWclwqd6CMmbMGMaPH68bS1KmTBmePn3K1KlT6dmzJ87OzgD4+fnh4vL+w8PPz4/y5cvHe0xTU1NMTWUW0KxAZnjM3LLj65PYtNys4OPp3pUK2tJ7e0/W31qPsdKYzR0383nRzzOkbsuvLmfw7sG8i36Ho4UjK9usTHGglNS9BwIXW/M49152vGclw6R6gBIWFoZSqd8wo1Kp0GhiB0S6ubnh7OzMoUOHdAFJcHAw586dY+DAgaldHSmdZfdm96wuu74+WXXl1vime5uYhOGDF0bGRmzssJEvin2R7vUKjQpl0K5BrLy+EoAGbg1Y1WYVLtYpb5FK7N4TaFCgjPfey673rJS0VO/iadGiBZMnT2bXrl08efKELVu28Mcff9CmTRsAFAoFI0aM4Ndff2X79u3cuHGDHj164OrqSuvWrVO7OlIGyK7N7tmFfH0yB+2U248HgEZGmeEY9S3fVdlIqxKt0r1eV32vUmlRJVZeX4lSoeSX+r+wv/v+TwpOtBK699S85c9OCeczkfdszpTqqe5DQkL44Ycf2LJlC69evcLV1ZUuXbrw448/YmJiArxP1LZo0SICAwOpVasW8+bNo1ixYgadQ6a6zxpSkklWSj/y9ck4ao2g1m+HE5mdEtvdcXJcg3R7TYQQzL0wl9H7RxOljiKfTT7WtF2TJvlWtPfeBe+7jD08EFvrV/iNiX+SRHyPk/ds1pWc72+5Fo8kSVI6O/PoLV0Wn02y3Np+1VK96yq+L/ngyED6bO/DlrtbAGhRrAVLWy3FwSJtu8023d5Eh40dqJ6vOqf7nE76AVKWJ9fikSRJysQyaupsfGNe7C0VvDVeyLPI7RgrjZnReAbDqg5Ll3xEj/wfAXFXMZYkkAGKJElSusuIqbMJpZl/+04N9MMtl4qNX35HJddKqXbOpDwKiA1QElqDR8rZUn2QrCRJkpS49M6Cm1SaeQWQRz2I8s4VU+V8hnoc8Bgg3lWMJUkGKJIkSelMO3UWiBOkpMXUWUPSzPsGR6Z7unjZgiIlRgYokiRJGSA9p85mxnTxUeoongU9A+QYFCl+cgyKJElSBkmvLLiZMV38s6BnaIQGC2MLnK2c0+28UtYhA5R0IufvS1lRdrtvM+P1pEcW3MyWLl6tEey++QCLmDoUsLFDI0CVdW8rKY3IACUdxDe1z8XWjIktEs6cKEkZLbvdt9ntepIjM6WLf/86aHBkLOF+UOu3wznidZCSRyZqS2MJTe3TfgzINM1SZpTd7tvsdj0pldFBmnwdJJlJNpNIKp21tlk1PdNZS1JSstt9m92u51NlVDeXfB0kSN73t5zFk4aSmtongJdBEek+tU+SEpPd7tvsdj2fSjvmpVX5vFR3d0i3YEC+DlJyyQAlDWXGqX2SlJTsdt9mt+vJquTrICWXDFDSkKFT9gKinqZxTSTJcIbet6ee7yFaHZ3Gtfl0mXGKbU4kXwcpuWSAkoaSSmct0BDDa/rsqcs3+7/hXdS7dK2fJMUnqfsWBGoCmXt2NaVntWHXvd3pWLvkS++08lL85OsgJZcMUNJQUumsFSgp5X4HDTHMPDOTMvPLcODRgXSvpyR9KLH7lv+2qrDDMfobIl8PZMDSV9ScO5hbr26lZzUNlt5p5aX4yddBSi4ZoKSxxNJZL+hekX39fmNnl53kt8mPV6AXTVY1odfWXrwNe5tBNZakhO/b+KhwwMe7GVX/GsCgXYN4/e51OtQweRK6HidbUzm1NR2lZ3p/KeuT04zTSVJT+0IiQ/ju8Hf8df4vBAJHC0fmNJtDp1KdUCiS/kWRGTNkSlmf9r7yDQrnl1138H8XlUBJQQxveG7WB1sza36o8wNDqw7FRGWSrvVNSuz1vKX9uj68jfRiZ88/aeTeMKOrlWqyyudAVqmnlPpkHpQs7Iz3Gfru6Mvt17cBaF60OfOaz6OAbYEEH5PRyZek7O/Mo7d0WXw2yXJWzku4FbQFiF2h9vcmv9OqeCuDguz01GNLD1ZeX8m4muOY1mhaRlcnVcjPASkrkHlQsrDq+atzZcAVJtWbhInKhF0PdlFqXin+Ov8Xao06TnltZsaP8wv4BkUwcNVl9t58mV5Vl7IxQ6d+/lJ3NktaLsHZyplHAY9os74NDVY04Krv1bStYDI1cW8CwIHH2WPMl/wckLIjGaBkQiYqE36s+yNXB1ylZv6ahEaFMnTPUGovrc2tV7dQawRnHr1ly2Ufvt1yM97Fv7TbJu24jVqT5RrJpEzG0KmfM8/9SFH7otwfcp/van+HmZEZR58cpeLCivTZ1oeXIZnji7JR4UYAXH55OUVjZrTvwW1Xn3Pm0dsMfY+pNYJJO27LzwEp25FdPJmcRmhYeHEh4w6OIyQqBGtNbfIxgrBIU4OPsbZftTRfLVXK3rRpyhNaDRcEMYo3PDftAwoN9QrV48c6P+Jm58aEwxNYd3MdAJbGlnxb+1tGVhuJubF5el5CHGXnl+XGqxusbbeWzqU7G/y4zNaVYmj3m/wckDID2cWTjSgVSgZWGcitQbeok2cYuSLH8i4yeQMPZWZG6VMlPWVewZTWFRlQuR/GSmOOPjlKgxUN+HLrl3xV/itO9T5F1bxVeRf9ju8Of0eJuSVYd3MdGfn7SNfNk4yp/ZmxK0VmaJWyKxmgZBGu1vmIDGyp+zJIDpmZUUoNSU0R7VG1LAu+WMCjYY8YXGUwJioTTj47SZNVTRh9YDQ/1PmBla1Xks8mH8+CntFlcxdq/lOTcz7nMuR6GhduDMD+x/sNCpQya1eKzNAqZVeyiyeLMLQZ90MCDSgDmP2lHa1Ltkyjmkk5zcdTRCsVzMWlpwFxpow+D37OjNMzWHhpIRExsb/eK7tWZmyNsdx5fYffTv9GWHQYAN3KdGNqw6nkt82f5PlSa0pqWHQY9r/ZE6mO5M7gO5TIXSLR82XWrhRDut+cbc04Na6hnMorZbjkfH8bpVOdpE+UkuZZBQpeGS2gzYYzfFn2S2Z7ziaXea40qJ2Uk2hXw4XYLo+6M44kMB4jL7M8ZzG+1nhmnp7JvIvzuPjiIh03daS8c3lme87m5LOTLL+2nNU3VvPvnX/5psY3jK05FisTK93x02q8h4WxBbUK1OKQ1yH2P9pPidwlEj1fZIzGoOOmd1eKtvtt4KrLKEAvSBFoAAXm9rvQiLqoME7XuknSp5BdPFlEcptnXWzNmNOlLENr10apULLy+kpKzSvFzvs706iGUk5j6HgMZytnZjSZwZPhTxhfczxWJlZc9b1Kvx39uPTyElMbTKVW/lqEx4Tzy/FfKP5XcZZfXc7uGy/SfLzHh9ONk7qeJ2/CDDpmRnSlJNT95mCpJNBsBkd9Z9F7W280wrAgS5IyA9nFk0Uk1Ywr0KAhBH/jxagVb6np7sSiFgtwt3fnrM9Zem3txb239wDoWa4nszxnYWdml+Lmc5kJMmfT3o8ff5lrKYgdm3JyXIM498XbsLfMOjuLOefnEBwZDEDJ3CVpXLgx2+9t50nQExBK3KJXolHbJvv4yXHl5RUqLqqIlbE1pfgX3+DIRM8nhMAvODLe92Bq1elTxPe+3PNwF23WtyFGE8OASgOY33x+pkucJ+UcMpNsNqX9hQd89AEpEMBrkymEq86gUqhQCzXmRuZMqjeJkdVHEq2O5ocjP/DHmT8QCPJa52VQmUXsuGia7ObzzDbNUkp/qTEeIzAikDnn5vDn2T8JjAgEoIh9ESo6V2T/nSfYhv34Scc3hEZocP7dmeAQZ5yjpiZZfmSjovx58AECDYoPGqC1X/eZdT2Z9TfX0/XfrmiEhtHVRzOj8QwZpEgZQk4zzqYSasZ1sTXnj44l+apaRRQoUAs1RkojwmPCGXtwLFX/rsrdN3f5vcnvnOh9gqL2RfEPLMDCQxpeBoXrHSup5vPMOM1SSn+GjrNYeWUbL0JexLvPzsyOH+v+yNMRT5ncYDL25vY89H/IhtsbsDXOl6r1SIhSoaRR4UaohGFjswrltqR8iQuo0V/MM7MvdtepdCcWt1gMwMwzM/n52M8ZXCNJSppsQcmCEuteOetzlv47+nPj1Q0AjJRGxGhiUClUjK4+mon1JqLWCD6bspewSNN4pywn1FT9Kc36UvZiaAuKr8kEolQ3qVWgFh1LdaRdyXa4WMf/JR4SGcL8i/P5/fTvBrdorOn3GTXcHZNd/w8tvbKUgVv+NOh8878sTpstpYmMiWZhk4M4WRTLUl2cc87NYfje4QDMbDKTUdVHZXCNpJxGtqBkc9pZFK3K56W6u4PeB2O1fNW41P8S0xpOw8zIjBhNDEqFErVQM/30dMrOL8vKi6cJjzRLMJ+KAF4GRXDey19v+3kv/wSDk8QeJ2U/n7nZ42JrlmhGHivzaCoWtEEgOPHsBEP3DCXvH3mpu6wuc8/PxTfUV6+8tak1Y2uOxWu4F7969kIo/f+bhRKXQEMMrxl1pNUnr/PT2L0xkcpbxCjeJHg9CmK7Mc+8WkWkOpLP8lWmX/V68b4HM7NhVYfxa/1fARi9fzSLLi3K4BpJUsJkgJINGauMGVdrHDcH3qRx4ca6kftGSiMeBTxizN5fDTrOx83nMmOlpJV0Zln4vV1VTvc5ybMRz/ijyR9Uy1cNgeD40+MM2TME15mu1F9en/kX5uMX6qd7vKWJJd/UGMWcjnVQoPhvhNV72qmz/iaLOPf8DJUWVWLk3pGERIak6Fry2eSjpGNx/I0XIhDxXg/A+GZFmH9xLgCjq4/OsmM4vq39LeNqjgPg651fs/r66gyukSTFTwYo2Zi7vTv7uu9jVZtVOFo4EqOJAUCtCDDo8dZm+r9eZcZK6UNJZZbVjsfIb5ufkdVHcqbPGZ6OeMrMJjOpmrcqAsHRJ0cZtHsQrn+40mB5AxZcXMCrd68AaFW+IAu6V8LFRv/4at4SbPY7EarYLiaN0DDr3CyK/1WcTbc3pSh9fuPCjQlXnaF8iYvksdFf50p7PS9j9vAm7A2F7ArRtmTbZJ8js1AoFExtOJXBVQYjEPTc2pOtd7dmdLUkKQ45BiWHeBv2lrEHxvLP1X9AKMkb+Q8qYa83E0FLoEHNW5R5JrK8zTLqu9UHDJvqbG2u5ur3LTFSydg3p0jplPMngU/YdHsTG25t4MKLC7rtSoWS+oXq07FUR9qUaIO9ee7/uhdDuex3lFX3JvE0yAuIXfk7Sh2ld9ym7k2Z+/lc3O3dDb6GXfd38cXaLyhkV4ir/a/jNLUmKpGLnd1XU6doXhQKQYm/SvDA/wGzPWczrOowg4+dWWmEhq+2fcXya8sxUZmws8tOGrs3zuhqSdmcnGYsJejYk2MM2DmAZ6/scYz6FhAfBSn6U5YBBlUexG+Nf8PKxMqgqc6NPRz5p+U/OFjIlVMlw3gFeMUGK7c3cPHFRd12lUJFfbf6dPToSJuSbchtkZtodTSrb6xm8onJPPR/qCunFmrd40xUJnxf+3vG1hyLqVHSK3+HRoVi/5s90Zporg24RrmF5WK3TwjF0sSSbXe30Xp9a+zM7PAe6a3LdJvVxWhi6LypM5vvbMbcyJz9X+6nVoFaGV0tKRuTg2SlBNUtVJdrX19jbIMmBJpNjzNdUmUUTK+60RRxCdVtm3dxHqXmleL40+OJTnVu9ZkfapNLbL+3nfILy3Py2cl0uSYp63PL5caYmmO40O8Cj4Y9YlrDaVRyqYRaqDn4+CD9d/bH+Xdnmq5qyvJry2lRrAV3Bt9hZZuVFHcorgtOtAO/o9RR/Hj0R0rMLcFhr8NJnt/KxIoa+WsAcPhJ3PK/n/kdgK8rfZ1tghOIHZe2pt0amhVpRnhMOM3XNOfSi0sZXS1JAmQLSo52981d+u/4mvNe/qhELoQykHDFTUyMjBhfczwAk09M1vtlOrTKUKY2moqZkUW8zfqXX16m06ZOPPR/iEqhYlK9SYyvNR6VUpVRlyllYY/8H7Hx9kY23NrAFd8ruu1GSiMaujWkY6mOtCjWgkNeh/jl+C/cfn073uO0K9mOuZ/PxcnKKcFzTT4+me+PfE+LYi3YcX8HENuCcvPVTaotqYax0pgnI57gau2auheZCYRHh9NsdTOOPT2Gg7kDx3odo1SeUhldLSkbkl08ksE0QsPSK0sZc2AMARH6g2dLOZZibI2xzDw7k+t+13XbC9kVYmWblQk2BYdEhjBw10BW34idHdDQrSEr26xMMP+FJBniwdsHbLy9kY23N+pNLTZSGtGocCPae7RHpVDx59k/9e5XLTMjM6Y3ms6gKoPiDZgvPL/AZ39/ho2pjS4Ff+iEUHpv683G2xvpVb4XS1stTbPry2ghkSE0WtmI88/P42zlzIneJyhiXySjqyVlMzJAkZLNL9SPUftHsebGGiB2oKJGaFCgYGDlgdib2zPt1DTdTCCAEVVHMLnhZCyMLeIcTwjBsqvLGLJnCGHRYeSxzMOK1itoWqRpul2TlH3df3ufjbc2suH2Br1gxFhpTKPCjShqX5SjT4/GG6gUyVWEde3XUcm1kt52tUaN4wxHvUD9xsAblFtQDo3QcGPgDUrnKZ12F5UJ+If7U395fa77XaeAbQFO9j5Jftv8GV0tKRuRAYqUYvse7mPgroF4BXrpbS9gW4BxNcex6NIirvld0213s3NjVdtVuv77j915fYdOmzrpMtuOqzmOX+r/grFKLvsupY57b+7puoG09xnEBivlncvzNuwtjwMfx3lc51KdWdhiITam7z9DOmzswKbbm3T//rrS1yy4tICm7k3Z231v2l5IJuEX6kedZXW4//Y+xRyKcbzX8US7xiQpOWSAIn2SsOgwfj72M7+f/h21UOsly+pUqhOFcxVmxukZeq0po6uN5pcGv2BubB7neOHR4YzeP5r5F+cDsdlu17ZbSyG7QulyPVLOcef1HV2wcuv1Ld12Y6UxliaWukUJtUxVpvzp+SdfV/oaRZAP/176m19PvE9kaGZkSkRMJPObz6dq0WZglzNaE7yDvKm1tBbPgp5RJk8ZjvY6ir25fUZXS8oGZIAipYprvtfov7M/55+f19tub27P6Oqj44wFKGxXmNXtVlMtX7V4j7fp9ib6bu9LUGQQdmZ2LGm5JEsnvJIyt9uvb7Px1kbW31rPnTd3dNvjy05bzSofp8IiUH6UU0WPkSkMuZRjgpSH/g+pvbQ2vqG+fJb3Mw5+eRBrU+uMrpaUxckARUo1ao2a+Rfn8+2hbwmJ0k8l3tCtIRVdKvLn2T91rSkKFIypMYZJ9SdhZhQ3o6xXgBddNnfh3PNzQGyOlZlNZ8ZbVpJSy61Xt9hwawMbbm/g7pu7cfZXEEouY8D04f7HwLV86lcwk7r56iZ1l9XFP9yfugXrsrvb7njHnEmSoWSAIqW658HPGbpnKFvubgHe/wq1MLZgcJXBHHx8UG8aaFH7oqxuu5oqeavEOVa0OprvDn/HjNMzACjnVI717ddTPHfx9LkYKccSQnDr9X/Byq0N3Ht7D5ABSmIuvrhIg+UNCIkKoVmRZmztvBUTlUlGV0vKomSAIqWZbXe3MWTPEHyCffS2V3KpRO0CtZl7YS7RmmggNogZX3M8E+tNjDeb554He+ixtQdvwt5gaWzJ3M/n0rN8z3S5DkkSQnDj1Q023trIxctL2BP6LukH5cAABeDE0xM0XdWU8Jhw2pVsx7r26zBSGqX5eVO6jIKUeckARUpTIZEhfH/4e+acnwO8b01RKVT0qdCHiy8uctn3sq58MYdirGm7Js60ToAXIS/o/m93jjw5AsCXZb9kXvN52Spbp5R5vQx5ycHHBzl7YSFzfW4k/YAcGqAA7H+0nxZrWxCljqJHuR4sbbUUpSLtkpHvvfmSSTtu8zLo/eroLrZmTGzhoVuIUsp6ZIAipYsLzy/Qf2d/vYGyEJtnorF7Y5ZcWaJbyE2Bgm9rfcuP9X6M0zys1qiZcmIKPx37CY3QUMyhGOvbr6e8c/l0uhIppwiNCuX40+MceHSA3Q93c//tfUB28Rhq692ttN/QHrVQM6jyIP76/C8UitRv0dCu+fXxl5P2TB+uli1lLTJAkdJNjCaGWWdnMfHoRMKiw/T2dfDowKOAR1x++b41pUTuEqxpu4YKLhXiHOv40+N03dyV5yHPMVWZMrPJTAZVGZQmH4BSzhCjieHSi0sceHyAA48PcPrZaWJETJxyMkAx3Orrq/lyy5cIBONqjmNqw6mp+h7Vrpr+YcvJhxSAs60ZJ8c1kN09WZBcLFBKN0ZKI76p8Q23Bt2iWZFmevs23t7I8+Dn9CrXC2NlbGK2u2/uUnlxZX468hPR6mi98nUK1uHa19f4otgXRKojGbJnCO02tCMgXD8FvyQlRAjBg7cPmH9hPm3XtyX39NxUW1KNH478wPGnx+MNTvLb5OfbWt8adHyvwCepXOOsp1vZbiz4YgEAv536jSknpqTq8c95vUkwOIHYVdRfBkVw3ss/Vc8rZT6yBUVKNUIINtzawPC9w/F756e3r3HhxrwJe6M306dk7pKsbbeWcs7l4hxn9rnZjD0wlmhNNAVsC7C23doEs9VKOdubsDccenyIg48PcuDxAZ4GPdXbH1/eE4idJv9d7e+oV6getx/up/DqDpiT8C/ycATVzIz5+8u98c5Oy2lmnp7JNwe+AWBW01kMrzb8k4734O0DVlxbwcpztyHoqyTLz+5cnlbl837SOaX0J7t4pAwVEB7A+IPjWXR5kd52axNrPIt4su3eNt3YFKVCyY91fuTb2t/GSX9/8cVFOm/qzKOAR6gUKn5t8Ctja45N04F5UuYXERPByWcnOfDoAAe9DnLl5RW9AESpUGJpbBknbw/EZo79qvxXjKg+gmIOxQCIjImkyuIqBPrdpJNbI6Y3/g3FR4FKQEQAX+4bya5X17AysWJrp600LNwwbS80C/jp6E9MOjYJgCUtl/BVhaQDiw8FhAew/tZ6VlxbwRmfMwCYqsvgHDU1yceu7VeN6u4Oya+0lKFkgCJlCiefnWTAzgHcfn1bb3sV1ypEqaP01vQp5ViKde3XxVmMLTgymAE7B7Du5jogtiVmZZuVcm2QHEQjNFz1vaprITn59DQiyh2VyIVaEUCk8hYF7PJhojThSdATvSUYtFytXBlWdRj9KvWLk7L9u0PfMeXkFBwtHLk16BaOlo7x1iMkMoTW61tz2OswJioT1rZbm+MzIQsh+Gb/N/xx9g8KCCWLG06liXuT+AtbOIBdfqLV0ex9uJcV11ew/d523Y8VlUJF0yJN6V66B7N3OuAXHBlPu5ccg5LVyQBFyjSi1FFMPzWdX479QpTmfRpxE6UJjQs35oDXAb3WlEn1JjG+1ni9HAtCCJZcWcKwPcMIjwnHydKJVW1X0ahwo3S/Hil9PA18yoHHBzj4+CCHvA7xJuwNAObq6thH9ceI90GERvGWN8YLCFediXOcyq6VGVltJB08OsS7QOU5n3PU+KcGGqFhc8fNSQYckTGRdP23K//e+RelQsnCLxbSt2LfT7zarE0IwYR/v2Tije2JdpFpVCb8XLYV8+5v53XYa932sk5l6VmuJ13LdMXZyhl4P4sH0AtS5CyerE8GKFKmc//tfb7e+bUu34lWcYfimKhM9FahLZ2nNOvbr8fD0UOv7K1Xt+i0qRO3Xt9CgYIJtSYwqf6kdEkYJaWtwIhAjngd0QUlD/wf6O23MrGigl1vnj3V/jp//0Uo0AAKXptMIVx1BgUKWpdozajqo6iZv2aCM0zCo8OpsLAC997eo1uZbqxqu8qguqo1ar7e+TV/X/kbgGkNpzGu1rhkX3N2on5+GdXi+kmWq0goVxQanCyd6FamGz3K9YgzBk1L5kHJnmSAImVKQghWXFvBqH2j8I94PwJfgYK6BetyxucMkepIILa595f6vzCm5hi9ACQsOowRe0ew+PJiAGrmr8madmsoYFsgfS9G0klJts8odRRnfc5y4FHs9N8LLy6gERrdfpVCRdV8VWlcuDE189fkWaAPU7eYEx1jFWd8CMQGKRqFP23rXGF4tWEUzlU4yXqP2jeKP8/+iau1KzcH3iSXeS6Dr1kIwbeHvmXaqWkAfFP9G6Y3np5zp8S/uAqL6iZZbLx7DepUG0oT9yYG/bDItplkA70h7G3C+//rDsuOZIAiZWpvwt4wev9oVlxbobfd1doVO1M7br95P2alnFM51rVfR4ncJfTKrr+5nv47+xMcGUwus1z80+ofWpdonR7Vlz5g6K9c7Ro42nEkx54c4120fmr54g7FaVy4MY3dG1O7QG2u+l5l+bXlbLq9iZiIwqk6cPL40+PUW1YPgWB31900K9osycfE58OZLL3L92ZRi0U5s0XPwABF5pEhNjj5qxLERCZcJhuvnC0DFClLOPT4EF/v+pqH/g/1tldxrcJ1v+t6rSlTGk5hdPXRqJQqXbnHAY/ptKkTF19cBGDoZ0OZ0XhGvOv+SKkvqWyfk9u5EWNykYOPD3Lw8UFehr7UK+do4Uijwo1oXLgxjQo3Ir9tfu69uceKaytYdWMVz4Ke6cq6mXZAE5j0Ok2GTD0NjQql7PyyeAV60bdCXxa3XGzI5SZo6ZWl9N3RF43Q0Kp4K9a1X5fzVueWAYrhcvhzJQMUKcsIjw5n8onJTDs5DbVQ67bnMsuFo6WjLhU5QHmn8qzvsF43PRRiuwomHJzAH2f/AKCCcwXWtV+nV0ZKfUll+wRBDG94btYHFLFdN+ZG5tQpWEcXlJRxKoNSocQ/3J/1N9ez/Npyzj0/pzuCraktnUp1omf5niiiitFl8bkEzvWeIS0oA3cOZMGlBRSwLcCNgTewMf30z5Ctd7fSeVNnItWR1CtUj22dt6XKcbOMHP6lmyw5/LmSAYqUqtKjH/jWq1v039mf096n9bZ7OHrwyP+RrjXFSGnEtIbTGFFthF5ryq77u+i5tSdvw99iZWLF/Obz6V62e6rWUXrvzKO3dFl8Nslytq7LaF6qKI0KN6JG/hq6loVodTR7Hu5h+bXl7Ly/U2+qqWcRT3qW60mL4i105bUBkW9QxCdNPd3/aD9NVzUF4FCPQzRwa5C8C0/E0SdHabm2JSFRIVR0qciebntwMHfMnmMoPmbgl+7Sz3rTs9kfOTuXkQxQMjZAef78OePGjWPPnj2EhYVRpEgRli5dSuXKlYHY/uiJEyeyePFiAgMDqVmzJvPnz6do0aIGHV8GKOknPUfSa4SGxZcWM/bAWIKjgnXbzY3McbV25VHAI922Cs4VWN9+PUUd3t8zPsE+dPu3G8efHgegV/le/NXsLyxNLFO1nhJsu/qc4euuJlnuwy4XIQSXX15mxbUVrLm5Rjd1GKC8c3l6lO1B1zJdE8xx86lTTwMjAikzvww+wT4M/Wwoc5rNSbL+yXX55WU8V3nyOuw17uZtyRXdn9ch7/OyZNtZKAZ+6VYkFMcijVjRekXOzWUkA5SMW4snICCAmjVrYmxszJ49e7h9+zYzZ84kV673I+SnT5/OnDlzWLBgAefOncPS0pKmTZsSEZHw+gtS+tN+IXzcjO8bFMHAVZfZe/NlAo9MGaVCyYDKA7g75C4dS3XUbQ+PCedRwCMK2RbCVBU7vuSK7xU85nkw6+ws3eyPfDb5ONzjMBPrTkSBgmVXl1F5cWWu+11P1XpKkMfasDEWeazNeB78nOmnplNmfhkqL67MnPNzeBP2BmcrZ0ZXH821r69xZcAVRlYfmeiXlmdpF+Z3r4izrf65nW3NDMqLMWLvCHyCfShiX4SpDZMecJsSFV0qcvKrkxQwbUm0f29eheivN5VW750MZ+GAUCU+9itGaUSokSn7H+2n/MLyHHp8KJ0qJ2VVqd6CMn78eE6dOsWJEyfi3S+EwNXVldGjR/PNN7Gj34OCgnBycmLZsmV07tw5yXPIFpS0lxlWFN11fxcDdw3EO9hbt02lUJHXJq/eAMrKrpVZ33693tTSo0+O0nVzV16GvsRUZcosz1kMqDQg504DTWWGdLnYWGjIU+gvDnkd0KWiNzMyo3WJ1vQo24PG7o1TNOMlJV2O2+9tp9W6VigVSk70PpGm6zqpNYJqUw/wOiQK4pkSnV0zoa4+MY2Zh76jqH0RHvw38P3UVycxNzKPLWDhwK2oYL1cRt/W/paf6v2Us2Y+yRaUjGtB2b59O5UrV6ZDhw7kyZOHChUqsHjx+1HyXl5e+Pr60qjR+yygtra2VK1alTNn4maCBIiMjCQ4OFjvT0pb5738M3xF0ebFmnN78G1GVRuly32hFmqeBT3DydJJ15py8cVFSvxVgjln5+haU+oVqse1r6/RrEgzItWRDNw1kI6bOhIYEZhm9c1JVEoFE1vEJtKLPyuJ4EHMVA567UcgqF2gNotbLMZ3tC9r262lWdFmKf5SUikVVHd3oFX5vFR3d0jyS/5t2Fv67+gPwOjqo9N80cnzXv68DokmvmcGsu9qvPMf7OSKQkO5Cj25otBwRaFB41w29kvWtTzY5adUnlKc73ee/hX7IxBMPjGZesvq6f3gkCStVA9QHj9+rBtPsm/fPgYOHMiwYcNYvnw5AL6+vgA4Oek35To5Oen2fWzq1KnY2trq/vLnz35zwzObVyGGdbd5vU0k2VAqsDKxYmbTmVzsf5FKLpV02/3e+RGpjsTVyhWAaE00w/cNp9rf1fAK8ALA0dKRnV138nvj3zFSGrHp9iYqLKzAOZ+kZ4NISdN2uThY6QcaMbzhtckUXHL78VPdn3g07BHHex+nb8W+2JrZpns9B+8ejN87PzwcPfi5/s9pfj5D3zuGlssKHgc85pT3KRQo6OjRMdGyFsYWLGyxkHXt1mFjasMp71OUX1CebXe3pVNtM5iFQ2yek8QYmcaWy+FSvV1No9FQuXJlpkyZAkCFChW4efMmCxYsoGfPpPMYxGfChAmMGjVK9+/g4GAZpKQxQ8cYDN7bncuBdRhVfRSu1q5pVp+KLhU52/csf53/i+8OfUdYTBgAL0JfYGtiS7g6nCh1FBdeXKD4X8X5o8kfDPpsEEqFktE1RlO7YG06b+qMV6AXtZbWYkqDKYyuMTpnzyb4SHK6Tj5chfZSzDlMTUqhErkwM4mkbbmy9Cw/PdE08+ll/c31rL+1HpVCxYrWK9IlP0lyxudkF6uvrwagYeGGuFgbNgC4U+lOVMlbhc6bOnPhxQVar2+dM3IZ2eWPTcKWQzPJJkeqfzq7uLjg4aG/hkrJkiV59iy2Cc/ZOXYxKD8/P70yfn5+un0fMzU1xcbGRu9PSlufudnjYmuWyNJfAoUqkEDNJWaemYnbbDcG7BjAI/9HCT7iUxkpjRhRbQR3htyhRbEWuu1BUUFEqaNwtIhdQC5aE83QvUOpsaQGTwOfxl5P3s+4MuAKHTw6EKOJYezBsTRf05xX716lWX2zkr03X1Lrt8N0WXyW4euu0mXxWWr9dlhvMGe0Opod93bQYWMHnGc6M3DXQM74nEGphAbF8/FPp0H4jD/C4paLqFWgVoYHJ76hvgzaPQiA72p/RyXXSkk8InUk9d5REDub5zM3+wRKZC1CCFZeXwnAl2W/TNZjC+cqzMmvTjK6+mgA/nf+f1RfUp0Hbx8k8cgszi7/+66v+P5kcAKkQYBSs2ZN7t27p7ft/v37FCxYEAA3NzecnZ05dOj9CO7g4GDOnTtH9erVU7s6UgolNsZAQez6OfM6N2B3t53ULlCbKHUUiy4vothfxeiyuUuazpwpYFuAbZ23sanDJpwt3we1r8NeY6Yyw0RlAsC55+co9lcx5l+YjxACWzNb1rdfz8IvFmJmZMbeh3spv6A8h70Op1lds4KkZmvNO3GaEXtHkPePvLRc15JNtzcRpY6irFNZZjaZyfNRz9ndbTedSnfC3Ng8g65CnxCCATsH4B/uT3nn8nxX57t0O3dS7x2AiS08ss0A2QsvLvDA/wHmRua0KdEm2Y83UZnwe5Pf2dllJw7mDlzxvULFRRV1rTJSzpXqAcrIkSM5e/YsU6ZM4eHDh6xZs4ZFixYxePBgABQKBSNGjODXX39l+/bt3Lhxgx49euDq6krr1q1TuzrSJ0hqWmezMi40K9qM472Pc6L3CT4v+jkaoWHdzXWUW1COL9Z8walnp9KkbgqFgnYe7bg75C6DKg/SbY9QRxCljsLOzA6IzTQ7aPcgaiypgXeQNwqFgv6V+nO+73lK5i7Jy9CXNFrRiB+P/EiMJiaBs2Vfao1g0o7b8c7EEYBAMGXXfWaf/R+vw17jZOnEqGqjuDrgKte+vsao6qNwtoq/5TMjrbi2gu33tmOsNGZF6xW6oDW9fOqU6Kxk5bXY1pM2JdtgbWqd4uM0L9aca19fo27BuoRGhdJ9S3e+2vYV76LeJf1gKVtKk0RtO3fuZMKECTx48AA3NzdGjRpFv379dPu1idoWLVpEYGAgtWrVYt68eRQrZlh6cjnNOK60zPaanGNf9b3KtJPT2Hh7o25GTZ2CdZhQawJN3ZumWbP/Ge8z9NvRj1uvb+m2qRQqlAol0ZrYXBSmKlNme86mf6X+KBQK3kW9Y9ieYfxz9R8AaheozZp2a8hnky9N6pgZGZoRtmSxfQyt7WnwKrQZyTvImzLzyxAUGcTUhlMZX2t8htUl267G+59odTSuf7jyJuwNe7rtwbOIJ++i3mE11QqA0AmhyU6UqNao+eX4L/xy/Bc0QkPJ3CVZ3349ZZzKZPvnMyfI8EyyaU0GKPrSM9uroR68fcD0U9NZfm25LkCo4FyBCbUm0LZkW7009aklWh3NzDMzmXh0oi51OoClsaXeyrk18tdgffv1ukBkzY01DNg5gNCoUOzN7VnWahktireIc/zsKCUZYTMzIQRNVzXlwOMDVM1blZNfncz0AVVWtvP+TlqsbYGTpRM+o3wwUhp9coCidfTJUbr9240XIS8wMzLj69ILOHM7H76Z6HNOSr4MzYMipa/0zvZqqKIORVnccjGPhz9mZLWRWBhbcMX3Ch03dcRjngf/XPlHL4hIDcYqY8bXGs/tQbdp5PY+z442ONF+UZ32Pk2ROUX4+/LfCCHoWqYrl/tfpqJLRfzD/Wm5riUj944kMrHl0LOJ7DbjZOGlhRx4fAAzIzOWt14ug5M0ph0c26V0l1R/rusVqsfVAVf5vOjnKCIr8O8ZB3yDwvXKZPTnnJS2ZICShSU1fgBg0o7bqDUZ10iWzyYffzT9g2cjnjGx7kRymeXi/tv79NneB/c57sw6OyvV+5jd7d3Z/+V+VrVZhYP5+1wCMZoYzFSxX7SR6kj67ehHnaV1eBHygqIORTn91WmGVx0OwKxzs6j5T00e/pcRM7vKTjNOHgc85pv9sdmppzacSvHcxTO4RtlbUEQQ2+9tB0izhTkdLR3Z2mk7hZVj/9uif6dmls85KW3IACULywzZXg3lYOHAT/V+4umIp/ze+HdcrFzwCfZh5L6RFJxVkF+O/UJAeECqnU+hUNCtbDfuDbnHV+W/0m2PUMc+X9pfeye9T1J4dmH+ufwPJioTZnnOYlvnbdib23Pp5SUqLqzI2htrU61emU12mXGiERp6b+vNu+h31C1Yl2FVh2V0lbK9zXc2ExETQcncJanoUjHNznPxSSChEca6bNIfy0yfc1LqkgFKFmZoJsorz9MuN0lyWZtaM7rGaLyGe7Hwi4W453Lnbfhbfjz6IwVmFWDsgbG8DEm95loHCweWtFrC0Z5HKWr/fuXjGE0MxkpjILY1pc+OPtRbXg/fUF9aFm/J1QFXqVWgFiFRIXT9tyt9t/clLDos1eqVmWSHGSdzzs3h+NPjWBpb8k+rf2QCvnSw6voqIDb3SVrmvMmJmXmlWHKQbBZm6AwMX5MJFHHW0LFURzp4dKCkY8l0qJ1hYjQxbLq9iaknp+pyp5iqTOlVvhdja47VWwDwU0XGRDL15FQmn5isN6VYpVChFmogdjG7Bc0X0KNcD9RCzaSjk5h8YjICgYejB+vbr6d0ntKpVqfMJKvOkLj35h7lF5YnIiaCBc0XMKDygIyuUrbnHeRNwVkFEQieDH9CQbuCun2pNUhWy9DPubX9qlHdXaaHz+zkLJ4cIqkVZUFgbPyOp8Y9iRbvB3yWzlOajh4d6ViqY6bppxdCsPvBbqacnMJp79MAKBVKOpfuzPia4ynjVCbVznX3zV367ejHyWcndduUCqVuWjRAvYL1WNd+HU5WThx6fIjuW7rjG+qLmZEZczzn0Ldi3wzPlJpTfRhIOVgZM/pIK86/OEsT9ybs7bZXvi7p4LeTvzH+0HjqFqzL0V5H9faldoBiyMrZ2XF16OxKBig5iHYWD6D35tW+Ted3r0i1IuZsv7edDbc2sP/Rft20X4CyTmXp6NGRDqU6UMzBsDw0aUkIwYlnJ5h6cip7H+7VbW9RrAUTak2gev7UyTasERqWXlnKqH2jCI56vzr2h4GKmZEZi75YRPey3Xn17hU9tvZg/6P9AHQq1YmFXyzMkMXvcrL4ptTH8JpIi1VcHr6U/LYyRXhaE0JQZn4Zbr2+xeIWi+lbsa/e/tQOUMCwz7ms0BUpyQAlx0lOHpSA8IDYYOV2bLDyYVdHOadyum6gog5FyWiXX15m2slpbLq9CfHfx1K9QvWYUGsCjQs3TpVfyn6hfozcN5K1N98PhFWg0J0PoH6h+qxrv47cFrn5/fTvfHf4O2I0MRTOVZh17dZRJW+VT66HlDTtl9THH1gCDQoULOheSX5JpYMrL2NT0ZuqTPH9xleXtVkrLQIUyJz5nqTkkwFKDvTx+IFKBXNx6WlAouMJ/MP92XZ3Gxtub+Dg44OxwYpQYqophbttBRq4V2JIrWYUzx03WEnP8Qr33txj+qnprLy+Utf6U8mlEhNqTaBNyTapMiBy38N99NvRD+9gb922DwMVcyNzFrdYTLey3Tjrc5bOmzrzNOgpRkojpjWcxsjqI+XAzDSkbeZPaNaabOZPP6P3jeaPs3/QwaMDGzpsiLM/rQIUyLrjpKT3ZICSw6Xkl4Z/uD9TD+5hyzkVMTHv19OI4TV2Tgf5skoZOpTqQOFchTPsl4x3kDd/nPmDRZcX6WbUFHcozria4+hWttsnr7cSFh3GpKOT+P3072jQxFumoVtD1rVfh0qhou+Ovvx7518APi/6OctbLye3Re5PqoMUPzlQMnOI0cSQ/8/8+Ib6sq3zNloWbxmnTFoGKFLWJzPJ5mApzSx7/lEkm07Z6QUnACocCPHrzKT923Cf407ZP3vw9apLGZK5Nr9tfv70/JOnI57yQ50fsDOz497be3y1/SuKzCnCnHNzPmkqsIWxBb81/o3LAy7HyeugzcFwyOsQBf4swL6H+9jUYRPzPp+HqcqU3Q92U25BOY49OfZJ1yjFT041zRwOex3GN9QXB3MHPIt4ZnR1pGxOBijZSEozyyb2OAVKFICrZhhKYYK/X4MMz1yb2yI3P9f/macjnjK90XScrZzxDvZm+N7hFJxVkMnHJxMYEZji45dzLsf5vuf5X7P/YW5kDqA3JiU8Jpwu/3ahycomdCzVkXN9z1HcoTgvQl7QYEUDJh2dhFqj/tTLlD6Q3VLyZ1Xa1PadSnVK9xWipZxHBijZSEozyyb1OFAQE2PNH7UvYIRjpsnoaGNqw5iaY/Aa7sX85vNxs3PjTdgbvj/yPQX+LMD4g+PxDfVN0bFVShVDPhvCg6EPaFEs/oUDD3odpMCfBbj35h4X+1+kZ7meaDQw9fBmqv01hJ0378n026kkO6Xkz6pCo0J1XZpflvsyg2sj5QQyQMlGDG3e3n//rN76N4Y+7t4rwwKPgdvH8eeZP/EO8k66cCowMzLj68pfc3/ofVa3XU3pPKUJiQrht1O/UWhWIQbtGoRXgFeKjp3XJi/bu2xna6et5LHME2d/WEwYnTZ3ot2GdjQv8B1lFFtwjprK6xdfMGTVQypN3i0XMksF2SUlf1a29e5WwqLDKGJfhKp5q2Z0daQcQAYo2YihzdtTz0zAfro9DVc0ZPqp6QRH+xj0uFW3/jSo3N2A84zaP4oCswpQY0kNZp2dhU+wYef4FEZKI7qW6cq1r6+xvfN2quWrRqQ6kvkX51P0f0X5csuX3Hp1K0XHblWiFQ+HPmRIlSHx7j9xP4RvNtwjOFz/LRXwTsPXqy6x43r6BGvZWXZIyZ+VaVPbdy/TXSbDk9KFnMWTjRiSWdbMJJwI+3E8DfqgRUEoKRC1DIUmF3F/n8Y+ztj4Hc9N+mL/7n+ocEARb2wrUCve4mP6FSjizoKpmb8mHUt1pF3JduS1yZuia0wOIQTHnh5j6smpugRrAK2Kt2JCrQlUzZeyX4EXnl+g59ae3Hlz578TKckbsQQVuePt/hJoUKlC2DeqKkUd3FN0Tuk9OdU0/b0MeUm+P/OhERoeDn2Iu33C93FwRCh5ptRAJXKxs/tq6hTNK18fSUdOM87BDMm42LSUMw/8H7Dv4T72PdrHkSdHEBHlcIz6FhBxgg/Ff4+rU9yWmYcPsuSIEvFROW2yLM/KPpQrGJsNdtu9bfHOqlGgoEb+GnQq1Yl2Hu1wtXZN3SchHpdeXGLqyan8e+df3YDXBm4NmFBrAg3dGib7F2GMJoY/z/zJ90e+RxFVHOeoqUk+JsTyF+a3HUXHUh1TdA2SlFH+OPMHo/ePpnq+6pzuczrBcntvvmTi9lv4Bb9fWkMmU5M+JAOUHC65eUoiYyI57X2av89c5PStvAj1+/TtMbwm3GIFNYta0cS9CU3dm/LwhRWTdt7G96N04/4miwhXnQGgTJ4yfF70c3Jb5Oa633W23t1KSFRInHMrUFCrQC1dsOJs5ZyaT0Ucd9/c5bdTv7Hq+ipdFt3KrpX5tta3tCrRKtnJ1p4EPqHjium8etE8ybKvjacTZnSc/hX7M8tzFubG5im6BklKbxUXVuSK7xXmfT6PgVUGxlsmoUy/Mh299CEZoEgpbgZXawR7bz/k6KPL3A08z/lXq3kV5qdXxs3OjSaFm+Ju1ZT8VqUpaJ8LB9sAdj/cybZ72zjx9IRudWAAZytnPi/yOflt8+MV6MX2e9vjnQasQEHtArXpVLoT7Uq2w8nK6ZOfh4Q8C3rGzNMzWXx5MeEx4QCUzF2ScTXH0bVMV4xVxgYf68yjN3RZfC7JcnUrXmXlnR8QCErnKc369uvxcPRI8TVIUnq49eoWpeeXxlhpzMvRL3GwiJsIT2b6lQwlAxQp1WiEhmu+19j3aB/7H+3n5LOTeosNqhQqquevTlP3pjR1b0pFl4oERQax58Eett/fzp4He/RaTsyNzGlUuBFF7YvyOuw1u+7vwj8i7uwgpUJJ7QK16Vy6M21Lto13Bk1qeP3uNbPPzeav838RFBkEQAHbAoypMYY+FfoY1MqR1NgfgQY1bwmwHsIPdb/nz7N/8urdK8yNzPnr87/oXb63HHQoZVoTDk5g2qlptCreiq2dt8ZbRmb6lQwlAxQpzYRGhXL0yVH2PdzH/sf7uf/2vt5+B3MHGhVuRFP3pjRxb4KjpSPHnhxj271tbL+3Pc5aN9XyVaN0ntK8i3rHgccHeB32Os45tcFKl9JdaFuyLY6Wjql+XcGRwcy/MJ8/z/6J37vYFiNHC0dGVhvJoCqDkly1OKGxPwINoOC1yRRd91ezIs2IVEdy2OswAF3LdGV+8/nYmMp7WcpcNEJDoVmF8A72ZlOHTbTzaBdvuW1XnzN83dUkjze7c3lalU/7AfJS5iUDFCndeAV4sf/RfvY92schr0MERwbr7S+dp7QuWKmVvxb3/e+z/d52tt/bzqWXl/TKuudyp7JLZWJEDCefndQFCh9SoKBeoXq6lpXUXvsmPDqcpVeXMuP0DJ4EPgFiE8INqjyIEdVGJNrtFN/YnxjFa/yN34/N0bI0tqRL6S4svboUtVBTxL4I69qto5JrpVS9Hkn6FEefHKX+8vrYmtri+40vZkbxpzKQLSiSoWSAImWIaHU0556f0wUsF55f0EsRb2ZkRt2CdXUBi42pDbse7GL7ve0c8jpElDpKV9bO1I6q+apiojLh0otLvAh9Eed8SoWSugXr0rVMV9qUaBNv3/inXMv6W+uZenIqt1/f1tW/T4U+jKkxhoJ2BeN93Mdjf+xs3tBraw/Ovzgfb/n6herz0P8h3sHeGCuNmdF4BsOqDpNdPlKm0GdbH/65+g/9KvZjUYtFCZZLqptTjkGRtGSAImUKb8PecvDxQV3A8jzkud7+fDb5aFK4CU2LNKVq3qpcfHGR7fe3s+v+Lt6Gv9WVM1YaU8mlEtam1tx6fYsXIQkHK93KdKN1idapFqxohIYd93Yw5eQUzj+PDTK0CeHG1Rxn0CBXIQRLry5l6J6h8U67tjK2oqJLRY4/Ow5Ai2ItWNpqaaoGXJKUXOHR4TjPdCY4MphjvY5Rp2CdRMsbkuJAzuKRZIAiZTpCCG6/vs2+R7G5V44/PU5EzPuuEKVCSRXXKjRxb0LDwg3RaDTsfrCbbfe28cD/gd6xijsUx8nSiUf+j3ge+vzjU6FSqKhbqC7dy3SndYnW5DLPlSr1P/LkCFNPTuXg44O67W1KtGFCrQlUyVslyWO8fvear3d+zb93/413f2WXylx/dZ0odRT5bPKxpu0aahes/cl1l6SU2HBrA502daKgbUEeD39s0BT85KY4kHIeGaBImV54dDgnnp3QJYu79Vo/Bb2tqS0NCzekSeEmFLEvwuWXl9l+fzunnp3S6zZysnSigG0BXgS/SDRY+bLsl7Qq3ipVgpULzy8w9eRUttzdotvW0K0h39b+lvqF6ifZPXPg0QG6b+nOq3ev4uyzMrbC3tyeZ8HPUCqUTKo3iQm1JqBSqj653pKUHC3WtmDn/Z18W+tbJjecbPDjZKZfKTEyQMki5Bv5PZ9gHw48OsC+R/s48PgA/uH6U4+LORSjqXtTquWtRnBUsK7b6MMuEwtjC9zs3PAP9+dlaNwF+lQKFfUK1aNHuR60LN4SOzO7T6rz7de3+e3Ub6y+vlqX9+WzvJ8xodYEWhZvmegvzvDocL499C2zz83WC7i03O3ceRT4CIjNeLuqzSpcrOUvUCl9vH73Gtc/XInRxHBn8B1K5C6R0VWSsgkZoGQBsik0YWqNmksvL+mmMp/xPqOX+M1YaUytArVo4NYAWzNbbvrdZMf9HXpBiRIlBe0KEh4dju873zjn0AYrPcv1pGXxlklOI07M08Cn/H76d/6+8reu28rD0YPxNcfTuXTnRJO+3Xx1k06bOukG4n7IwsgCDRoiYiJwtHBkZZuVNC3SNMX1lCRD/XX+L4buGUpl18pc6Hcho6sjZSMyQMnkZEro5AmKCOKw12Hd+BXt9F8tJ0snGhVuRDH7YgRGBHLoySGu+13XK5PHMg9CiHjzrKgUKuoXqk+v8r1oUbxFivOR+IX6MfvcbOZemKubbl3IrhBjaoyhd/neCSZ90wgN/zv3P8YeHKs3k0nL3sxel8xubI2x/Nrg12RlupWk5Kr2dzXOPT/HrKazGF5teEZXR8pGZICSicmU0J9GCMFD/4e6YOWI1xHeRb/TK1PBuQJV81bFSGnE7Te3Of70uG7dHYjNQWJmZKY3U0jLSGlE3YJ1+arCV7Qo1gJrU+tk1zEoIoh5F+bx59k/YwMiocTFpBafu3ehS7nPqVcsf7yv7cuQl3y55UsOeR2Ks89UZUqkOnYBtmr5qrG23VoK2RVKdt2yK9ldmnruv71P8b+Ko1KoeD7qeZouOSHlPDJAycRkQqPUpV3oUDsm5YrvFb39lsaW1CpQCxcrF96EveH40+MER71PJmekNMLS2FKX5v5DRkoj6hWsR5+Kffii2BdYmVglq27h0eGM37mOrReMUWjeD861MI1kYgsPOlWOv19/291t9NrWK971ikyUJkRporA1tWVJyyUJZvbMSWR3aer68ciP/HL8F5oVacbubrszujpSNiMDlExMpoROW36hfhx4fEC3dtDHM2UK2RaitFNphBDceHWDZ0HP9PZbGlvGaZGB9y0rfSv2NThYSagrT5v+vorHVf5o1YMCtgXiPDY0KpRhu4ex9NrSeOuibREaWHkgfzT9I8EMn9md7C5NXUII3Oe44xXoxZq2a+hSpktGV0nKZmSAkonJFpT0oxEarvtd101ljm+hw7JOZbE3t8c31DfOVOcPu1U+pG1Z0QYrliaWccok1ZWnXUDQz2IA3cvFJn2Lb6bEpReXaLehHU+DniZ4nWWdyrK+/focN9NCdpemvlPPTlFraS2sTKzw+8YPC2OLjK6SlM3IACWF0qMfW6aEzjihUaEce3JMN37l44UOc5nlwt3enSh1FPfe3NMLTlQKld5MIi0jhQlVHLtQL39LmhSrSu0irqiUCoMDUV+TCUSqbqAQKhrl/5rPC3emaoGSevdejCaGyScm8/PRn9Gg0Xu8EiUaNFgYWzDv83n0LN8zJU9NppGc96AM9lOP9nmfdnwe+7w20qlCRZa3WZbR1ZKyIRmgpEB69mMnlBIaBAoUslk6nTwJfPJ+ocPHh+KMQylgUwBrU2t8gn3iHaNirq6OfVR/jHi/urLKKIRuNU0ok6cCYzbGnTr8sWFNrNl+/18ePimvd5xclgqmtK5AszLv74NnQc9ot6EdF19cTPB4X5b9krmfz03R4N6Mltz3oOwuTR3xPe+5LGFqG/k5JKU+GaAkU0b0Y8e78i2vGePpxvB6dVP1XFLSYjQxnPM5p2td+XihQxOVCa7WroRFh/Hq3SvM1dVxjPoWiF1hWUs7viTEeC020V2TPK9t7hMEvakF6LcSCDQoUNCnvobvmnyhS/omhGDl9ZV8veNrwtXh8R6zqH1RNnTYQHnn8sl7EjJQct+DETERjNv1N9vOuCV5bNmCkjA5hkdKbzJASYaM7Mf+sDl7+Y3/seXRDFqVaMHWzltT9TxS8vmH+3Pw8UHd+BW9hQ6FkvyRS1EIe73gRLf7v/ElACocUBBfRllBDG/+K5M70ePYFfiDCbXG0al0J4yURkDsVOZeW3ux9d7WeOtvojJhZpOZDK4yONOvjJyc96BCIVh7Yy3fHv6WZ4E+5I1YghG5+TjA+/hxsrs0LjmGR8oIyfn+Tnr1p2zuvJd/gm9QiO2CeRkUwXkv/wTLpJRKqaC6uwOtyudlarPeKBSCbfe2xZtVVEpf9ub2dCzVkSWtluA90ptbg27xR5M/aOreFGtFBZTCId6gAkCBEiMcCTHaCyj+a1X5UOxvgj41S2CEY5LHeegL3bd0p9j/irHg4gIiYiKwNbNlS+ctHOlxhNzmueM8NkodxdA9Q2m7oW2cZQMyG0Pfg4vOHKLK4ip039KdZ0HPyGfrSvdaZijieQa1/57YwkN+uSYgIz/7JMkQOT5AeRWS8Bs0JeVSqnju4rQu0RqAGadnpOm5pORRKBR4OHowsvpI9nbfyz9fbDTocTGKl7w2maJrTdFt5w2vTKYw6+K3Bh2nbO5aOJg74BXoxcBdA3Gb7caMUzMIiQyhnls9Xox+wfCq8Wf73Hp3KxUWVuC092mDzpURDH1vfbP3Fy6/vIy1iTVTGkzh/pD7TPuiM/O7V8TZVn+atbOtmeyeSEJm+eyTpIQYZXQFMloea8PyRxha7lOMqzmOLXe3sPr6an6u9zP5bfOn+Tml5MtrZ1i3oloRQKTqBs/NzmGqKYVK5IrdprwFCg0adRmDjnP9zUmiVQEUdyhOYEQgvqG+jD04liknpzCkyhCGVxvOLM9ZDKo8iC/WfMGDgAd6j38W9Iza/9Tm1wa/Mq7WuEQXMcwI9wMuYtBHkTKIwVUG82PdH8ljmUe32bO0C409nGUm2WTKTJ99khSfzPVJlQE+c7PHxdYsgUb2WC62sR94aa1qvqrUK1SPaE00f579M83PJ6WMIfeMuWkEBXJHxXY+KDREqm4QZnScSNUNUMR2+UQqbxHD63i6gLQEqGIDGg0a7r29h987P+zM7HC0cCQwIpBfT/xKwVkFGbF3BObG5twbeo8/m/yJCpXekTRo+Pbwt3iu8sQv1C91nohPFBkTybA9wxh7rC0xvObjOW1aAg3GxqFcGLyOvz7/Sy840fqwu7S6u4MMTgyQ1H2sIP0++yQpPjk+QFEpFUxs4QHEHWYn0CAQjGpSIN0+8MbVHAfAokuLMv3YgZwqsXtG8d/fnx1qcH/YXQLGBbC5w2balGiDnZndR4U1+JssIr5xKrH3HvgbLaJqvirUzl8bU5UpAIERgbwOe41SocTW1Jaw6DBmn5uN+xx3+m7vy+fFPsf3G19q5a8Vp+4HHh+gzPwyHHh0IDWeihS7//Y+1ZdU53/n/wcKDbVL+/43kiRu3l0FSv7XqQ4eeXJWIrq0ltR9DHIMj5SxcvwsHq34pv2iCuCVah51i9uyq+uudGkaF0JQYWEFrvld45f6v/B9ne/T/JxSyiQ3b4d2ocPNtzez4fYGbry6QYwmJt58KjG8xt9kEeGqM7ptxkpj3OzcCIoMwu+dfiuImZEZETGx9VCgoJ1HOybUmoB3kDedN3fW7fvQhFoT+Ln+z7qZQell1fVVDNw1kNCoUBzMHVjeejnGKmNGbF1G8Osmes+DXFMn7cm1jKT0JKcZp9DHWSzNLHyo+U91wmPC+bnez/xQ94dUO1di1t5YS9d/u5LbIjdPRzyV6aYzsU/JPhyljuLks5OsuLaC/Q8P4B/sEGecSkKMlEbYmdoREBGgl+FWm1lWq6l7U76p8Q1/X/qb9bfXxznOZ66fsbHjxnjXA0pt76LeMWTPEJZdXQZA3YJ1+a72d8w8M5N9j/YBYGeai14ek6mV93Nc7aw+aSyJXOHYcPK5ktKLDFBS0fKry+m1rRcKFOzrvo/G7o3T9HwQmzSs2P+K4RXoxV/N/mLwZ4PT/JxSxnv17hX/3vmXNTfWcOHFhXhbPeKjVCgxVhrHu26QVo38NehQsgM/H/uZgMgAvX3mRuasabdGN4ssLVz3u06nTZ24++YuSoWSEVVH4B/uz/JryxEIjJXGDPlsCN/V/g4Hi09PqiZbBSQpc5IBSirrt70ff1/5m9wWubnc/3K6zK6Zd2Eeg3cPppBdIR4MfZDuzfBSxtIIDVd9r7L86nJ2PtiJV4CXXmbbhChQJFqurFNZCtgUYOeDnXH2Dag4gFnNZqXqyshCCBZcXMDIfSOJVEfiYuVC48KN2Xh7I+ExsZlwO5bqyJQGU3C3d0+Vc8rsqJKUeckAJZVFxERQY0kNrvheoVq+ahzrdQwTlUmanjM8OpyCswryOuw1q9uupmuZpNOmpwbZ1Js5vYt6x84HO1l+dTmnvU/HuzZQchSwLUBo5P/ZO+u4KNI3gH936UZaVGzFxu44u7u7z4474/Q8Lz31zrszzji7u1tRbLFQVBQTVFRAumt35/fH/lhdaVhYwPl+Pog78847z8wOM888GU1ovHogdnHz4pwfep4K1hVyND8og3lHHx3NAe8DAFS1q0pgdCBBsUGA0qqzpM0SGpZomON9JSNWRxURyd+ICkou4BPmQ+21tQmPD2dqfWXdidzmt8u/8cOFH6hhX4N7X9/L9ZLlolm84OAb5ssmz00c8j6Ed7B3qp2WM4OZvhlRiVFqyyRIWN9lPSNrjcy2fDff3qT/gf68Cn+FrlQXKyMrPsR8AKCcVTkWt15MD+ceGrum42XxPA1+ynGvp6w7Z5LheLE/j4iIdhAVlFzi6NOjdNvdDYA9vffQt0rfXN1fWFwYTkudiE6M5tSgU7Qv1z7X9iWaxQsuMoWMC74XWH9vPW6+bgTHBmd5jtRcQw2KNcB1qCum+qaZnkchKPjr+l/MdZuLTCFTyy6yNrJmfvP5jKszLtsWyJjEGJ4EP+Fx0GPlT7Dyt0+YDwpBgbGsGbZJszKcR+xwLCKiHUQFJRf57tx3LL62GFN9U26PuY2zTe7WZvj2zLf8feNvmpdszsXhF3NlH6JZvHAREhvClvtb2OW1i/sB90lSJGV7Ll2JLu6j3KlTrE6GYz/EfGDY4WGcfnFabbmBjgFT609lTtM5KWvBpEFkQiTeQd4pFJFX4a/S3KaIYRHKmLQn+O2gDOcXLSgiItpBVFByEZlCRpttbbj46iJVbKtwc/RNTPQzNilnl7eRbymzrAxJiiRujLpB/eL1Nb4P95chDFh3I8Nx4k294CEIAh7+Hqy5s4YTz08QEB2QrXn6Vu7L7jZ/IolNvXjgrfe3mXBhHh6xH9SWD6o2iAUtF1DSsmSq24XGhaaqiLyNfJumLHYmdlS2rUxlm8pUsq2k/L9tZexN7FEI0GSxGwER8amGCovKtkhuUNhi93LzeEQFJZcJiA6g5n81CYgOYHD1wWztvjVX40NGHhnJJs9N9HDuwcF+BzU+/xHPd0zd7ZnhONEsXvCJS4pjt9du1t9dz+33tzNtXSkhSHiGKekV+I9DoCLR+EkEWpRqwZ9t/qSOYx0EQSAoNuijEhL0GO9gpVKSnsLkaOaoUkSSlZBKtpWwMU7ZvflTkt2VoF6XVnRXiuQGhS12L7ePR1RQ8oDLry/TcktL5IKc1Z1WM67OuFzbl3eQN5VXVUaChMcTH2vcrSRaUL5cXoa+ZOmNpex9tJcPn1k/PqWmIOUuGceidDGzoF6dMZgbmKuUkMdBjwmJC0lzGycLp1QVkcy6g1KjsD00RPInhS12Ly+OR1RQ8og/r/3JrHOz0Jca8l+78xTRL5lr5r3uu7tz5OkRRrqMZEO3DRqdOzkGRTSLf9nIFXIOeR9i8bXF3Au4p5YZlFkFpRbR3EulAq4ECaWLlE6hiDjbOGNmYKbR40imsJndRfIXBTF2L72/ibw6HlFBySMEQaDl2m947lsj1/uH3Hh7g4YbGqIn1cN3qi/FzDXrahHN4iKCIBCREMG7yHe8i3qHd5A3W+9v5UHgA6opFJlSUOoQS1gRJ6rbV6eKXRWlNcSmEhVtKootG0QKFQXN8pyRVTGvjicrz2+xPGkOOPMogFe+rdH9zO4QEBHP+O13NfpQb1C8Ac1KNuPy68ssvbGUP9v+qZF5k2lftSirB9dKcQHbmevzc9eqonJSwEmSJ+Ef7a9SPpJ/v496r/Y5Nik2jRky1yhTgQKfcB/eR7/nRdgLvIO9qWBVgfLW5algXYEK1hWwNbbN9Zo+IiK5zYeozLWiyOy43CQt103ys+qHbkU5/fwcUCXDufLyeEQFJZvIFQI/H3v8/y9c/WYr/H/Jz8ce06ayg8bMe7Mbz+by68us8VjD3KZzKWJURCPzJtO+alHaVHbglm8oA/eNwz/2KZsHrKBFaVE5ya98bvVI8fv///8Q8yFTpfJBma5bzLwYDqYO+Ef58zT4KQhpNy78lFKWpfCK8iNeFo/XBy+8PnilGGNhYPFRYbGqoFJcyluXx9xAexZREZGsYGeWuZYQmR2XW6g/q9QR/v/v/CMPCNbbgQO/ZzhfXh6PqKBkk1u+oWn66kD5xftHxHPLN1Rj5r0O5TpQza4aDz88ZPWd1cxtOlcj836KjlRCw7LWVCoRw6sXD3kW+pQWpZtrfD8iGZMkTyIgOiBdxSN9q4c6elI9HM0cKWZejGJm//8xV//taOZITGIMM11nsuPhjk+yfDJnQVndaTV7y7bkdfhrnoU841nIM56HPlf9/03EGyISIrjz/g533t9Jsb29if1HhcXqo9WlrFVZjfYIEsk9vpTYH/siUQjSMFBYIEnl7yM5ZqNeaau8F+4TMnpWgQRdbGlQvAHhgRARS7qxiHl5PLmuoCxatIg5c+YwdepUli5dCkB8fDzffvstu3fvJiEhgXbt2rFq1Srs7e1zWxyNoQ3znkQiYXbj2Qw+NJhlN5cxvcF0jPSMNDb/pzjbOHPqxSmeBD/Jlfm/ZJKtHu+j3qereARGB2bZ6pGW4lHMvBg2xjZIJWkrGr5hvgw8MJCjz46iyKTF5HMGHBjANz230LlCZ8palaVD+Q5q6+Nl8bwMfalSWJ6FPONZ6DOehzwnMCZQ9XPlzRW17SRIcLJwUiksnyowJS1Lis008wlfSvaUf5Q/7Xa0IUjXFrvElC+KyerYj10qa105+xCZuWfQ9PrzMdCVMn77XSSkHouY18eTq3/Vt2/f5r///qN69epqy6dPn86JEyfYt28fFhYWTJo0iZ49e3Lt2rXcFEejaMu8169qP753+57XEa/Z7LmZ8XXHa3T+ZJJTmUUFJWvIFDL8o/zTtXq8j3pPTFJMpubTleoqrR6fKhufKR6OZo45CkC953+P6Wemc+n1pVTXSyVSxjX5HtzXgCwhzXkSkPAiPowuu7owrf40FrdZnKKkvaGuIVXsqlDFLqWvOyI+QmVteR7ynGehH5WYyIRIXke85nXEa1x9XNW205PqUdaqrJrFJVmBcTRzFONd8oiM4hwKS6B9SGwIbba14UXoC0pZy/itYSn+PR+oppQ55AOlLDoxmrUea/nr4lH0mJnheDszQxqWtU41FlFbx5NrWTzR0dHUqlWLVatW8dtvv+Hi4sLSpUuJiIjA1taWnTt30rt3bwCePHlCpUqVcHd3p0GDBhnOnR+yeDJKzRVQYGyQiNePPTWucf57618mn5pMmSJleDrpaa68PV5+fZnmm5tT2rI0PlN9ND5/VtG22VgQBCITIjN0t+TE6qHmfvn/b1sT23StHjk5nvM+55nhOoP7gfdVy6USKQY6BsTJ4gBl/5xLwy8pFYpwP4hV1jNpvLExcbJ4ejj34Idm8wBIMDDju9v/svTmUgBqF63Nnt57KGtVNseyBsUGqVldPlVkEuRpK00meiaqeJfPFRgrI82aqrV9jWqTgphymx0iEyJptbUVd97fwdHMkSsjrlCmSJl89d17B3kz/+J8jjw5onTRClKKxW9AB+t0XVGffjf5pZJsrllQJk6cSKdOnWjdujW//fabarmHhwdJSUm0bt1atczZ2RknJ6c0FZSEhAQSEj7ehCIjI3NL7EyjI5XwY5fKqZrDBBSAhNfCXxx+Ar0q99LovkfWHMnPl37GJ8yHA48P0K9qP43ODx8tKK/CXxGXFJdrrqTMkNtmY5lCpoz1SEfxeBf5Ll9ZPbKLTCFj36N9fO/2Pb7hvqrlOhId6herz813N1XKScdyHTky4MhHBdiyhPIHeG1chHdR7zCN+8APji4AGAD/tP+HlqVbMvzIcDz8Paj5X03WdllL/6r9sy2zRCLBzsQOOxM7mjg1UVunEBT4RfipxbkkKzC+Yb7EJMXgGeCJZ4BninmtjKw+KixWHwN1y1uVz3L7ii/FtZEW2ojJy2tik2LpvLMzd97fwcbYhnNDzlGmSBngY+yetkiSJ7H30V5+vfwrT0Oeqq0rZl6U7tVlnLilVE4y47rR9vEkkysKyu7du7l79y63b99OsS4gIAB9fX0sLS3Vltvb2xMQkHrZ64ULF/Lzzz/nhqg5Iq3UXDkhhOqvJU7HnRFHRlDNvhoVrCtobL/GesZMrjeZHy/+yKJri+hbpa/Gzdi2xrYUMSxCWHwYz0OfU92+esYb5QI5MRunZ/X4NL02MCYw0zEXloaW6SoeuWn1yAmxSbFsuLuBXy//SlBskGq5nlSPkS4jeRX+ijM+ZwClgrW602pG1xqd5nxFzYryLupdqs37ulTswv1x9xl4YCBX3lxhwIEBnPc5z7IOyzSulEklUkpalqSkZUlal2mtti5RnohvmG+KQN1nIc94F/WO0LhQbry9wY23KWs/FDMrlqrVpXSR0incVl+KayM9ClLKbXZIkCXQY08Prry5goWBBWcHn6WSbSVti8X7qPcsuLyALfe3qL1ASSVSWpVuxS9f/UL9YvWRSCR0rpBSic4Prqj00LiC4ufnx9SpU3F1dcXQUDPxF3PmzOGbb75RfY6MjKREiRIamTunfJqam2wO2/t8AUtvuqMj0SEqMYree3tzY/QNjd6cJ9adyOJri/EM8MTVx5W2ZdtqbG5QvrU62zjj/tadJ8FPtKKgZJweB98f9iRa4o5/dM6tHkVNi2YYaFrQio0Fxwaz/OZy/nH/h+ikaNVyAx0DJtWbRO/Kvem2q5uqzH0xs2JcG3ktzeZ+yZS2LM2d93cIiA5AEIQUCnJx8+K4DXPjl0u/8Nvl31h/bz3X315nT+89VLWrqvkDTQV9HX0q2lSkok3FFOtiEmN4EfoiRaDus5BnhMSFqK6lC68uqG2nI9GhlGWpj9lFRcqz8WypNK/R3Cg3kB8pKCm32UGmkDHgwADOvjyLiZ4JJwedpGbRmlqTRxAEXH1c+eHCD9x+d1vNpWxlZMXEOhOZ1nBaChdmas+q/O6G1LiC4uHhwYcPH6hVq5ZqmVwu5/Lly/z777+cOXOGxMREwsPD1awogYGBODg4pDqngYEBBgYGmhZVY3xuDqtb+g88A+9x8dVFdCQ6PPzwkPEnxrO52+YsWzrS8gVaG1szttZYlt5cyuJrizWuoABUsqmE+1t3vIO8NT53Zsg4PQ5CohUM3vMTCToP0xxTUK0emSGt68M3zJc/r/3J+nvr1RoCGuka8W3Db/m20bdsvb+Vxhsbq6xH/av0Z0fPHUilGZ+H8lblAUhSJPEu6h3FzYunGKMr1eWXr36hRakWDDo4iMdBj6m7ri7L2y9ndK3RWg1eNdE3oYZDDWo41EixLiQ2hOehz1UKS3Kw7vOQ58QkxfAy7CUvw15y6sUpDOTVcEhcmOZ+8tq1oa1YiHqlrShqYZhOTJ6AnZme1lNus4pCUDDiyAgOPTmEgY4BR/ofoVGJRlqRJTIhkr/d/+bfW/+m6G1Vr1g9fm7xM+3Ktkv37yq/uG4yi8YVlFatWvHwofrDYsSIETg7OzN79mxKlCiBnp4e58+fp1cvZWzG06dPefPmDQ0bNtS0OFpBV6rLnt57qL22tqpt/Nb7W2lSogljao/J9DwZ+bW/afgN/97+FzdfN26/u03dYnU1ehyqTJ4Q7WTyZNYc7GxVj3KOFdKs65HVeIKCQmrXh7WpFEvbc1wI+EftzcpU35TZjWczpf4UDHUMabejHRdfXQRAX6rPtp7b6Fulb6b3/alC8jT4aaoKSjItS7fk/rj7DD00lDMvzzD2+FjO+57nv87/YWFokYUjzhusja2xNramQXH1eDhBEPCP9v8Y5xLynJsv5bx5nfGceeHa0GYcTHoxecmfAqT/4htelnJW5XJVFk0hCAITT0xk+4Pt6Ep12ddnH63KtMpzOTz9PZnjNgfXl65q/bFM9EwYVmMY85rNo6hZ/nTR5BSNKyhmZmZUrapuwjUxMcHa2lq1fNSoUXzzzTdYWVlhbm7O5MmTadiwYaYyeAoKdiZ2HOh7gKabmpIoTwRg8qnJ1HasTa2itTLYOrN+7RIMrDaQrfe3svjaYvb33a/RY9B2qnFmzcGruywuUG8FmiCt6yM4WkZw9FcY6rsTp+OOpaEl3zX+jgl1J2BmYMZd/7u02tqK8PhwAMpZlePaiGvYmdplaf8Oph+tnc9CnmV447YzsePkoJP8df0v5rrNZc+jPdx+f5vdvXZrXLHOLSQSCY5mjjiaOdKiVAsg8/1Yctu1kR/iYNJrlxGut57nscdpvvkuF4Zd0GhMXm4gCAKzXGexxmMNEiRs67GNLhW75Nn+E+WJbLi7gcXXFvM6Ql0DdrZx5oemP9C3at9CX/9HKzbtf/75h86dO9OrVy+aNWuGg4MDBw8e1IYouUq9YvVY2XGl6nOCPIHee3sTFheW7naZib34+dhj5AqBWY1mAXDQ+yDPQp5pSHIlyQrK0+Cn2S7clROSzcZpGSwlKN8QC5rZOLPIFQLuL0M44vkO95chyBWCanla14cyjVDARjaOP9v8xdvpb5ndZDZmBmb8cukX6qyto1JOxtUex/PJz7OsnABqb2yfZw2khVQiZWbjmVwZcYVSlqXwCfOh8cbG/O3+NwWwZymQP67RrNwvcpv2VYtydXZLdo1pwLL+Luwa0wD379pwZfwKqthW4X3Ue5pvbq41t3Fm+fXyryxxXwLAui7rcpSFlhVeh79m0MFBmC80Z8LJCSrlRF+qT78q/Xg+6TneE70ZWH1goVdOQOxmnCd8fexr1t5di1QiRSEo6FKhC4f7H04z5iGrXSW77urKsWfHGF1zNOu6rtOY3DKFDOMFxiQpkng19VWGgZO5wZfaZTk9c72BnpwRm+6ns7WS5OsjOjGaFptb4OHvASjjUA71O0S7cu2yLd/r8NeUWlYKgPZl23Nq8KksbR8eH87oo6M54H0AgE7lO7G5+2ZsjG2yLZO20PY1WlC66gbFBNFqaysefniInYkdbkPdUi3Yp23+cf+Hb84qkzKWtlvK1AZTc3V/CkHBIe9D/HTppxS9q0qYl2BWo1mMrj260LR6yMrzu+BFBRZAlndYTv1i9VEICiRIOPbsGH9c+yPN8VlN2ZvdeDYAWx9sxT/KP+cC/x9dqS7lrZXBkNpy8ySbjR0s1P84HSwMC7VyMn773RQBwv4R8Yzb7sGgnYszNc+HqHguvrqIwxIHlXJS3b46Ad8G5Eg5AXUXj3dw1t+GLQ0t2ddnH6s7rcZAx4ATz09QY00NLr1KvZptfkbb12hm7xdb7h3iXeS7XJUlPWxNbHEb5oaLgwsfYj7QYksLHgQ+0Jo8qbHOY51KOfn1q19zVTkJiwtj+unpFFlchN77equUEx2JDm3LtuXOmDu8mf6GSfUnFRrlJKuIFpQ84m3kW2qvrc2HGGU6pwQJbsPcVL7sT8nOG1HTTU25+uYqsxrNYnGbzD3AMkOvvb046H0wT94k0iM/VWrMTTKqyCmgQEEkOlhmOFdTFw+2P/0RUF5vsxvPZmHrtDNOsorVYivC4sOQICHu+zgMdLOXafcg8AH99vfjSfATpBIp85vNZ16zeehIdTQma16grWs0s/eLAP05JOp40cSpCf2q9KN35d7Ym+Z9/7PQuFDabmuLh78H1kbWnBt6DhcHlzyX43N2PtzJ4IODEVC6zhe1XpQrmWZXX1/lu/Pfcd3vulogu7WRNRPrTmRGoxmYGZhpfL/5BdGCkg8pbl6cvb33oiNR3nQFBPrv75+qxSMjvzak9GsnW1FW31mtijHQBM7W+aMnT3J6XDeXYjQsa10olRPIOLVaghQdLLEy0Us37kGiE8b2J8rihmb6ZlwbeU2jygl8jEMREHgZ9jLb81S3r86dMXcY7jIchaDgp0s/0Xpba95HvdeUqHmCtq7RzNwvzIxk1C5pgYDAlTdXmHRqEo5/O9J6a2vWeawjJDYkna01i5WRFeeGnqNesXqExIXQcktLPN575Nn+U+PIkyMMPTQUAYEJdSaolJO04sCySrwsnoVXFuKwxIGmm5tyze8aAgISJNQvVh/XIa4EzQzi569+LtTKSVYRFZQ8pHmp5vzV9i/V58CYQPrt70eSPEltXHLKHpDipqMsoy+kKE3csXxHqthWISoxijV31mhMZm2nGn9pZNZc392lGJDy+lBeIQKBOqtAoqBR8UYEfBtAwxKaT+EvavrRdZHTAG0TfRM2ddvEth7bMNU35eKri9RYU4NTz7MW2/Ilkt79QvL/nz971ePaqCu8mfaGJW2WUNexLgpBwXnf84w9PhaHvxzosKMDmz03a/QFJy0sDS05O/gsDYs3JCw+jFZbW3Hr3a1c329quL50pe/+vsgFOUNrDGVFxxVIJBJOe/nTZLEbA9bdYOpuTwasu0GTxW6c9sq8G/1J8BO67uqK2UIz5rrNJTAmEFCm/U+oO4HAGYHcGH2D1mVai00tU0FUUPKYKfWnMLDaQEBpdr/y5gpzz6ds152WX1tOCMH6iyhq80FtuVQiVVlRlt5YSrxMM3UXtJ1q/KWR2XTUNpUdUr0+ZAQTpP87Cbo3WdhqIddGXcNYP3eq36pl8gRnLpMnIwZXH4zHWA9qOtQkODaYjjs7MuPsDFWqvkjqZDYOpoRFCb5t9C23xtzi5ZSXLGy1EBcHF2QKGadfnGbEkRHYL7Gn666u7Hy4k6iEqFyT2cLQgjODz9DEqQkRCRG02dYGdz/3XNtfalx9c5Xue7qTKE+kV6VebOi6AalEmmYcWHLadnpKilwhZ9O9TZRbXo5KKytx7NkxZAoZAJVtK7On9x4ivotgZceV2JrY5urxFXTEGBQtEJsUS6MNjdS6yB7se5AelXqkGPu5X/tvjwns995Li1ItcBvqpqZ1J8mTKLeiHG8i3rCm0xq+rvN1jmWNTIjEYpGymFbY7DAsDS1zPKdI2mTUJVsCWJnoM69TJRwsjKhdsghnvJ8x+fj3BMQ9J0H6CCtjSy4Ou0g1+2q5Kuss11n8ef1PAEa4jGBjt40amztBlsBM15msuLUCUKbs7+q1S9WcTSR1shsH8zT4KXse7WHPoz08DnqsWm6oa0in8p3oV6UfnSp0ypVWD9GJ0XTa2YnLry9jqm/KqUGnUjSFzA083nvQcmtLIhMiaV+uPUf6H0FfRz/bnZkDogKYc34Oex7tUTXcBGVbie7O3VncerHGMiELckxeVp7fooKiJXzCfKiztg5h8cqaKOYG5niM9ciwyuLr8Nc4r3QmXhbPvj776F25t9r6ZTeWMe3MNMpZlePJxCcaCTQs9ncx3ke958aoG9QvXj/H84mkT1ppq6lhbqTgleJPoqRXAGhXth3HBx7PkxoJn6ZjNi7RmKsjr2p8H4efHGbkkZGExYdhbmDO+i7r6VOlj8b3I/IRrw9e7PFSKivPQ5+rlpvomdClYhf6VelH+3LtNZpZEpMYQ9fdXXHzdcNEz4QTA0/QvFRzjc3/OY8+PKL55uaExIXQvGRzTg46qVK+spKk0KCMFSdfnGTe+Xl4BnqqrXeycGJWo1mMrT0WPR09jcle0Dtni0GyBYAyRcqws9dOJP/3GkcmRNJ7b2/ikuLS3a6kZUlVcbYZZ2ekGD+61misjKx4EfqCg96aKX4nunnylrTM9akREQdFEmZhIm/Mmk5rOD34dJ4VcPo01TizxdqySnfn7niO86RxicZEJkTSd39fvj72dYZ/JyLZp6pdVX5t+StPJz3l7ti7zG48m1KWpYhJimG312567OmB/RJ7hh0exsnnJzXifjPRN+HYgGO0KdOGmKQYOuzogJuvmwaOJiUvQ1/SZlsbQuJCqFesHscGHFOzDGU2DmzZ9Y1Y/2FN552dVcqJjkSHdmXacX/cfV5Pe83EehM1rpxk1/VUEBEVFC3Svlx7fv3qV9Xn+4H3mXRyUobbzW4ymxLmJXgd8VplYk/GRN+EyfUmA7Do2iKNVOjML5k8XxKfVuT8p58LViap3+SSK8dWMviB0bXG5qmMn8agBMcGExoXmiv7cbJw4uLwi8xtMhcJEtbeXUu99fXUXBEimkcikVCzaE0WtV6EzxQfboy6wfQG0ylmVozIhEi23t9Kp52dcFjiwOijo3F96aqKtcgOxnrGHOl/hPbl2hMni6PTzk64vnTV4BGBX4Qfrba2wj/an+r21Tk16JRa1kx4fDh7vTNX7PLw820qC7iNsQ3zm80nak4Up4eczpXu7/mpYnBeISooWmZO0zl0d+6u+rzRcyMb76XvyzfWM+bPNkrFZNHVRfhF+Kmtn1RvEka6Rtz1v8t53/M5llHM5NEOyWmrDuaGhMYkpTlOgpSgKBm3fHNHQUiL5CyeZCugplstfIquVJcFrRZwdshZ7E3s8frgRZ21ddh4b2OBLZNfkJBIJNQvXp+/2/3Nm+lvuDLiCpPqTsLexJ6w+DA23NtA2+1tcfzLkQknJnDp1SXkCnnGE3+GkZ6yynGn8p2Il8XTZVcXTr84rZFjCIwOpPW21ryOeE0F6wqcHXwWKyNlqQaFoGDD3Q1UWFGBnU9/RUYQaTlYBRTICCJR+pj6xerjNtRNlSJspGekEVlT7FMQOOH1JN0SBJ92zi4siAqKlpFKpGzpvoWK1hVVyyacmIBngGe62/Wt0pdmJZsRJ4tj1rlZautsjG0YU0vZNXnxtZwXbRNdPNolq5WF84pP66BA7iooybQu05r74+7Tpkwb4mRxjDo6isGHBhOZEJnr+xZRIpVIaeLUhBUdV/Dum3ecH3qesbXGYm1kTVBsEKvvrKbFlhaU+KcEU09N5brf9Sz18jLUNeRA3wN0q9iNBHkC3XZ348SzEzmSOTQulLbb2/Is5BklLUpybsg5VZG6W+9u0WB9A0YfG01QbBDOthWY3LoopNqXWQFIqFfpDSGzg7gx+gZflf4qR7KpzS8IBEQHcN7nPMtuLGPssbE02tAIy8WWDNg3LlNz5PV9IDcRg2TzCd5B3tRbX4/oxGgAyhYpy52xd9LNmvEM8KTWf7UQELg8/DJNSzZVrXsd/pqyy8siF+TcGXOH2o61sy2bX4QfTkud0JXqEjs3VqM+VZGMOeH1jInbn2c4Lq97rQiCgMnvJqqMhblN5rKg1YI82bdCUPDHtT+Y5zYPuSCnnFU5dvfanaPrXCRnJMmTcPN1Y8+jPRx6ckitnkoJ8xL0q9KPflX7Ubto7UzV/EiUJzLgwAAOeh9ET6rH/r776Vqxa5blikqIovW21tx6dwsHUweujLhCOatyBEYHMuf8HDZ5bgKUBQ3nN5uPjYkNC68sxC/IGqvEsejyMRXYwljBoh516FAt58GooXGheH3w4tGHR8rfQcrfIXGpF80zFlywjf8tw3m13XMpI8QsngLKQe+D9NrbS/W5u3N3DvY9mO4fc3IjQhcHF+6MuaOWtTPk0BC2P9hOn8p92Ntnb7blUggKzBeaE5MUw5OJT6hoUzHjjbJAQU6Zy23OvDjD0EPD0AtZhA7W/485USettMe8oOzysviE+QDQq1Iv9vfdn6f7v+53nQEHBvAm4g16Uj3+bPMnU+pPEYteaZkEWQJnX55lz6M9HHl6RPXiBcoEgX5V+tGvSj+q21dP97tKkicx6OAg9j3eh65Ulz2999CzUs9MyxGXFEfHnR25+Ooi1kbWXBp+iQrWFVh5eyU/XvxRZXnrW7kvulJdjjw9QkxSjGp7A6kRXxUbTV/n0TjbF8vWvSkyIZLHQY8/KiNBXnh98CIgOiDV8RIklLMqR1W7qlSxraL8bVeFskXK03LJ1XRLEGjrPpAVRAWlADP3/FwWXv1YkvyP1n8ws/HMNMcHxQRRfkV5IhIi+K/zf4yt/TFQ8mHgQ6qvqY5UIuXJxCeqxn/Zofba2tz1v8vhfofp5twt2/N8TkFPmcstkuRJ/HDhB5WLrpLpAGKDBqUwOmu7q3OTjU245ncNgGp21XgwPu+bv4XGhTLq6CgOPzkMQJcKXdjUbRPWxvn3LfJLIi4pjlMvTrHn0R6OPztObFKsal1F64oqy0pl28qpbi9TyBh6aCi7vHahI9FhV69dmUo1T5Qn0n13d069OIW5gTluQ92ISIhgyqkpPAp6BEB5q/JIJVKehTxT64vjZOHEjEYzmFBnQqZLNcQmxeId5K1mDXkU9Ig3EW/S3KaUZamPSsj/fzvbOKcZy6LtztmaQFRQCjByhZyOOzty9uVZAKRIuTD8As1KNktzm+TaJzbGNjyf/FzNLdR5Z2dOPD/B2Fpj+a/Lf9mWa9DBQex8uJNFrRYxu8nsbM/zKcl/bJ9fgAXpjy03eBX+igEHBnDjrbIWw4Q6E1jSdgmXnobnO2Wuz74+7H+stJoY6hoSMzcGqSTvQ9sEQWDl7ZV8e/ZbEuWJFDcvzs6eO9XcniLaJyYxhuPPjrPn0R5OPj9JgjxBta6aXTWVsvJ5PSi5Qs6IIyPY9mAbOhIdtvXYxoBqA9Lcj0whY8CBAex/vB8jXSO29djG7ke7Vdeqka4RUolUzVqiI9GhVelW/Nn2z3SzcBJkCTwNeZrCNeMT5qOm5HyKo5mjmhJS1a4qlWwqZavvTkF/qRMVlAJOSGwIddbV4VX4KwDsTezxHOepVnfiU5LkSdRYUwPvYG+m1Z/GP+3/Ua278voKzTY3w0DHgFfTXqU5R0b8eulX5l+cz3CX4Wzqtilbc3xKdqs1FnYOeh9k1NFRhMeHY2FgwYauG+hV+aPbL7+5w6acmsKKWyuQIkWBgldTX2msWmZ28AzwpN/+fjwLeYZUIuXnFj8zp8mcAtcZ+UsgMiGSI0+OsOfRHs6+PEuS4mOmWq2itehXpR99q/SllGUpQKmkjD42ms2em1XJBYOrD04xr0JQMPLISLbc34K+jj79q/Rn3+N9qlgpCRI1RcLG2IbxdcbzfdPv1TpyyxQyXoS+SOGaeR7yHLmQeoaSjbGNUgGxrapyzVSxrUIRoyKaOGUq8tt9ICuICoqG0OZFcM//Ho02NlL11Glesjnnhp5LswjX2Zdnabe9HbpSXR6Me0Al20qA8s2yyaYmXPe7zneNv8t2R9t9j/bRd39fGhRvgPuonPfLyEq1xvwc8KUp4mXxfHvmW1bdWQVAg+IN2NVrl+rmnF/5/crvfO/2PRYGFkQkRHBm8Bnalm2rVZmiE6OZcGIC2x5sA6Bl6ZZs77FdrW6LSP4iLC6MQ08OsefRHs77nFdTABoUb0C/Kv3oU7kPRc2K8vWxr1l/bz1OgpQVLX6ia4UuqrECAouv/cHeR3sJlUiINbYiKDYoxf4kSKjrWJfFrRfTrFQzfMN8VZaQZKvIk+AnaRahszCwUFlCPo0TsTOx0/zJKWSICooGyA9mtO0PtjPk0BDV59mNZ7Oo9aI0x3fb3Y2jT4/StmxbTg86rQo+O/r0KN12d8PcwJw3095gYWiRZVm8PnhRbXU1LAwsCJsdluMgxCOe75i62zPDccv6u9Dt/517CytPg5/Sb38/VW+m2Y1n8+tXvxaIbKlN9zYx8uhI7Ezs+BDzgRUdVjCpXsbFBvOCrfe3MuHEBGKSYrA1tmVbj220K9dO22KJZEBQTBAHvQ+y+9FuLr26pLJ2SJDQxKkJfSr3wef1ZX5/fAajVPp5JxOHQEWi8ZN8fMSZ6JnQvGRz6hevj0+YD14fvPAO9laLi/kUEz0TlRXkU2XE0cxRDMTOJqKCkkPyU2xEsgk9mSP9j6SZavcy9CWVV1UmUZ7I0f5H6VJR+WahEBRUW12Nx0GPWdx6MbMaz0p1+/SIl8Vj8rsJCkGB/7f+2XYVJSNaUJRs8dzCxJMTC+xD9PSL03TY0QE7Yzs+xH5gUt1JrOi4IuMN84inwU/pu78vDwKVwbuzGs3it5a/FQjlTwT8o/zZ/3g/ex7tUQVjA9QSdPDAJMPtaxHNPYkCQ11DJEjUmvh9ioGOAZVsK6lbRGyrUNKypFZiqgozooKSA/JbbESSPIlWW1tx5Y2yGZy5vjn3xt1Ls6vrnHNzWHRtEWWLlOXRhEcqn+oWzy0MPzKcoqZF8Z3qq+ZrzSzllpfjZdhLLgy7QItSLbJ9TJC/zrM2XHmFxQ1xP+A+Lv+5YKZvRlRiFG3KtOHskLPaFkuNguo+E1HHL8KPfY/3sefRHpLe3uEuphluk6ygJKMr1aWidUWq2FWhqq3SLVPVriplipTJsx5WXzqigpID8uObfUB0ALXX1uZ91HsAXOxdcB/tnmo30aiEKCr+WxH/aH+1jJtEeSJll5flbeRb1nVZx+hao7MsR3JG0OpOqxlXJ3NVDdPjtJc/47Z7ICCo1ffIS0uVNlx5hSmQ80PMB+yX2KsCD0talOTVtFfaFitVDjw+wKijo4hIiEg1AFmk4PD26QmK7xqY4biOpqbE21aklkMtmpdqTsvSLTHRz9jyIpJ7iN2Mc0B+LCvuYOrA/j770ZMqzdKegZ5MPjk51bFmBmaqOJXfrvyGf5Syu6W+jj7fNPgGgD+u/ZGtPhmaLnnfvmpRqla4gRz1yokOFoZ5ppzkZWdQQRBYeWslDdY34FnIM4qbF+fisIvMazavQConoMxa0JHoqOIE3kS8ybedhntV7oXnOE8aFG9AREIEvff1ZsKJCapAdJGCg6OZY6bGBUQHcOHVBf668Rddd3fFcrEllVZWoseeHsw9P5et97dy+91tsVVCPkVUUD7DzizjFvcAMfK8bWvdsERDlndYrvq8/t56NntuTnXs4OqDqV+sPtGJ0Xx3/jvV8jG1x1DEsAjPQ5+rilplhdzoyfMoagfvDEcxvaOUZf1d2DWmAVdnt8x15SS3OoPKFQLuL0M44vkO95chqu3D4sLotbcXk05NIkGeQNeKXfH82rPA1+mQSqSqniam+qYICLwIfaFlqdKmlGUpLg+/zOzGSsvi6jurqb++vthnqgDhHeTNqKOjMjW2d6XeDKo2iNpFa2OiZ4JMIeNJ8BMOPznMwqsLGXZ4GPXW18NikQXF/y5O662tmXxyMitvrcTN1433Ue/FZpRaRHTxfEZybERa5YQFFMgJIchkPL+3+o3pDafnWRCVIAiMPjqajZ7Kbsf6OvrcHnM71aJCt97dov76+gDcGHWD+sWV/59/YT6/Xv6Vuo51uTn6ZpYi0a++uUrTTU01ZsZ/Ff6K0stKoyvVJWx2GKb6GfuUNUVuuPLSchf1a6jDP57DCm059jpr6+Dh70EFqwo8C33Gvj776F25t7bFypAzL84w5NAQgmKDMNYzZlXHVQxzGaZtsUTSIFGeyB/X/uDXy79SRSbLdAxK0/qT+K3lb5jom/Au8h3ewd48CX7Ck+Anqv+nVXYewNzAHGcbZ5xtnKlkU0n1u0yRMmKwdTbIyvNbjAr6DB2phB+7VGb89rtplBWXUrqkB+8+xDPDdQbHnh1jc/fNeRJwJ5FIWNlpJQ8+PODO+zskyhPpsacHd8feTZE6XK9YPYa7DGez52amnJ6C+yh3pBIpk+tNZsn1Jdx+f5sLry7QsnTLTO8/2YLyOuI1sUmxGOsZ5+h4LvheAKCuY908VU5A8668tDK//CPi+Oc0BOkXo5ytfqFsaFfUrCj4o2pdnxddjTVBu3LtuD/uPkMODeG873mGHxnOed/zrOy4MlsVPkVyj9vvbjPq6CgefngIgK5E7/NGw2my/NZyDngfYFWnVXSt2JUSFiVS1OoJiwvjachTvIO81RSXl2EviUyI5Na7W9x6d0ttGz2pHuWsyqkrLraVqGhdUbx+NISooKRC+6pFWT24Voq3YYf/B0+2q9KR9XerM/3MdC69vkT11dVZ3mE5w2oMy/W34uRW5LX+q0VIXAg+YT6MODKCA30PpNj37y1/Z//j/dx6d4tt97cxzGUYtia2jKo5in9v/8via4uzpKDYGNtgbWRNSFwIz0Ke4eLgkqNjufBKqaB8VUpz7cozS2ZdeZkZl567SKnWKijONG6ObkcRo6zXoMnvFDVVuuOSFdanIU+1KU6WKGpWlDODz7Do6iLmX5zPtgfbuPH2Bnv77M3x9S2Sc2KTYpl/YT7/3PgHhaBQKcEBsWHEIWRYByX4/3+V76Le0W13N3pV6sXyDstTxLAUMSpCg+INaFC8gdryBFkCL0JfqBSWT60vsUmxeAd74x3szSEOqW1X3Ly40upirVRakpUYB1OHQmM5zQtEF086ZJR++jL0JUMPD+W633VA2X14bee12JrYpjWlxnDzdaPNtjYoBGUK3V9t/+Kbht+kGPfHtT+YfW42DqYOPJv0DDMDM16Fv6Lc8nLIBTl3x96lZtGamd5vcnO4Xb120b9q/2zLLwgCTkudeBv5FtchrrQu0zrbc2UHuULA5dejRMZJc9whOD9mfuUlyW7DNmXa4OrjqrFqw3nN1TdXGXBgAG8j36Kvo89fbf9iYt2J4gNFS5z3Oc/Y42PVumXfC7in+lxCkGDzmYJioGtAgiyB7T23IxhZ0XB/H6ISo9TGmBuYs7j1YsbWHptt97xCUPA28q1SafnM6hIYE5jmdhYGFindRbaVNJLmXFDK34suHg2hI5Wk+0Apa1WWy8Mv8+f1P5l/YT6Hnxzmut911ndZryqSllu0LN2SP1r/wQzXGQDMPDuTesXq0cSpidq4qfWnsu7uOl6EvmDBlQUsar2IUpal6Fe1Hzsf7mTxtcXs7r070/t1tnHmmt+1HAcVvgx7ydvIt+hJ9WhUolGO5soO2x9sxUe+FhvmoLQVf/xDTv7fj10qZ+oPPD9mfuUlyRYUmUIGKIujCYJQ4B7sTZya4Pm1JyOPjuTo06NMPjWZ877n2dB1g+rNXST3CYsLY8bZGapYuxLmJfir7V8svLoQnzAfVUq7n0TA7zO7Zc8KHTjofZAN/nf4q91f3Pv6Hk02NiEgRhljoivVJTIhkvEnxrPtwTbWdl5LFbsqWZZRKpHiZOGEk4VTCndRaFwoT4OfprC6+IT5EJEQwc13N7n57qbaNnpSPcpbl09hdXG2cc6U+zs/VD7PDUQLiobwDPBkyKEheH3wAmBUzVH80+6fXPVFCoLAgAMD2PNoDwB2xnY8GP9AlVWRzPFnx+myqwv6Ovo8mvCIclbleBD4gBpraihbjU96Rlmrspna55LrS5jpOpN+VfplSbH5nHUe6xh7fCxNnZpyecTlbM+THXZ77WbQwUEoBAW9Sv/K23cNCcjBH/aXbkE5/OQwPfb0oK5jXW6/vw3Ahxkf8sSSmBsIgsDym8uZ6TqTJEUSThZO7Oq1SyuK9JfGgccHmHRqkipodWLdicxvNp8++/tw+fVlDHQM1Dogf87uXrvpf6A/jmaOvJn2Bh2pDu+j3vPVlq9UsVE6Eh10pbokyBPQk+oxu/Fsvm/2fap1pTRJvCyeF6EvPlpdQpS/n4Y8TbPUPijdRZ8G5yZbXexN7JFIJPmq8nlmEAu1aYl4WTw/uP3AX+5/ISBQ2rI0W7pvydVU0pjEGOqtr8fjoMcAtCjVgnNDzqnV1RAEgQ47OnDm5Rm6VOjC0QFHAei4oyOnXpxifJ3xrOq0KlP7S1Z2atjXwHOcZ7blHnhgILu8djG/2Xx+/urnbM+TVQ55H6LPvj7IBTljao1hTec1CIIkR6bRjDK/Cntn5ptvb9JgQwOcLJwAZS2UqyOu0tipsZYlyxke7z3of6A/L0JfoCPR4devfmV2k9lIJdICY04vKPhH+TPp1CQOeh8ElJba9V3WU69YPXrt7cWxZ8cw0jVKs1R9MiEzQyi7oizh8eG4DXXjq9LK+LawuDA67OigZrkoU6SMyl1U3qo8a7uszXGF7OygEBT4RfipWVuSf3+I+ZDmdkp3UWXC3kwnIdEIUonHyY/3HlFB0TKXXl1i2OFhvI54jQQJMxvN5JevfslWefnM8CL0BbX+q6Xytc5tMpcFrRaojXkS/IRqq6shU8g4Peg07cq149KrS7TY0gIDHQNeT3udwvKS1r7KryiPoa4hMXNjsuXDFQQBx78dCYgO4OKwizQv1TzLc2SHk89P0n13d5IUSQypPoTN3TdrLEU8+S0GUsv8yn9vMZrkTcQbSi4tib6OPs2cmnHO9xwbum5gZM2R2hYtxyS7A3Y+3AlAmzJtGFlpOctc3xU6c7o2EASBjfc2MsN1BuHx4ehKdZndeDbzms1DX0efYYeHsf3Bdgx0DDDQNciwoFr0nGimnZ7G+nvrGV1zNOu6rlOti0mMoffe3px+eVq1zMXBBf8of1XcyEiXkfzZ9s9849ILjQv9mBL9idXFN9wXhaDAQF4Nh8SMO9TnJ+utWElWyzQv1ZwH4x8wwmUEAgJ/XP+DeuvrqRqWaZpyVuXY1WuX6vPvV3/n+LPjamOcbZyZXE9ZfXbamWkkyZNoVrIZDYo3IEGewPKby8kMpSxLoa+jT7wsnjcRb7Ilb3LdAUNdwxRR87nFOZ9z9NzTkyRFEv2q9GNjt40arV+TnPnlYKFuJs6rqrjaxN5EqdgmyhMpaVkSKDipxhlhbmDO9h7b2dh1I8Z6xlx9Hs3s/S/yrPpwYeZl6Etab2vN6GOjCY8Pp45jHTzGevBby98w0DFg2ulpbH+wHR2JDrUda2e62uvAasoS+Pu995Mg++gOMtE34eiAo6r1oHTNmxmYMaDqACRI2Oi5Eed/ndn5cGe+KNBmZWRFoxKNGFlTqTgdG3CMF1NeEDM3hgfjHvBNvZ8yNU9BjX8TFZRcwtzAnI3dNnKo3yFsjW15EPiAOmvrsPjq4myVmc+IThU68VPzn1SfBxwYgG+Yr9qY+c3nY2tsy5PgJ6y8vRKJRKKqqLnqzqpM3QB0pbqUtyoPZL+ibHJ6caMSjXLNqvQpl19fpuuuriTIE+ju3J1tPbblSmOw9lWLcnV2S3aNaZCnVXG1jYGugeqN087YDihYqcYZIZFIGFFzBDdH3cZePjHVMTmpPvylIVPI+Ov6X1RbXQ03XzeMdI1Y0mYJ7qPcVUUnf7n0i6qL+9e1v1ZlSmaGZiWb4WjmSHh8OKdfnFZbp6ejx7Ye25hUd5Jq2YvQF5x8fpI/2/xJFdsqBMUGMejgIDrs6JDiHppfMNQ1pJp9NbpUypz1ObNlFfIbooKSy3R37o7XBC+6VuxKkiKJ785/R4stLXLlwv+h+Q90LN8RUHbL7bGnh1qfEUtDS35v9TsAP138iaCYILpW7IqzjTPh8eGs9Vibqf3ktOR9XtY/cfdzp9POTsTJ4uhYviO7e+3O1eqPyZlf3VyK0bCsdb7x++Y2yZk85oZKk21hsaB8SlS0PYLcEkkatTcEwD8inlu+oXkrWAHiQeADGm5oyAzXGcTJ4mhZuiUPxz/k20bfql4aVtxcwU+XfgLgt69+Y5fXrnRmRBX7lIyOVIf+VZQlEHZ67UwxXiqRsrzDcrUXuoiECGadm8Xg6oP5tcWvGOgYcOblGaqsqsKS60tUGWr5jXqlrShqYZhmNRgJSvdjvdL5w2WVVUQFJQ+wM7HjcL/DbOi6AVN9U66+uUr1NdXZcHeDRs2IUomUHT13UNqyNAD3A+8z5dQUtTEjXEZQ06EmEQkRfO/2PVKJlJmNZgLwz41/1EyiaZETBUUhKLj46iKQ+wrKnfd3aL+jPdGJ0bQu05oDfQ/kicXmS6SomVJB0dfRB5RvpblhKdQmX3o6eU6Il8Uzz20etdfW5s77O1gYWLC+y3rODTmnlkG4/cF2ppxW3rN+av4T7m/dCYsPS3VOI10jACrbVk6xLtmNc/TpUaISolKsl0gk/NjiR1Z0WKFaphAUzDk/h2ehz7g95jYtSrUgThbHTNeZ1F1Xlzvv72T/BOQSyZXPIWWIbFbLJeRHRAUlj5BIJIysOZIH4x7Q1Kkp0YnRjD42mm67uxEYnXZhn6xiaWjJ0QFHVSlz6+6uY9v9bar1OlIdVdPB9XfXc9f/LoOqDaKYWTHeR71nx8MdGe4jJwrKow+PCI4NxljPmLrF6mZ5+8xyP+A+bbe1JTIhkmYlm3G43+FcTyP8kkm2oCTJkzDQMSBRnsir8FfaFUrDaLL68JfE1TdXqflfTRZcWYBMIaNnpZ54T/RmVK1RarVyjj09xvDDwwFl/abi5sU58fyE2lyfWq+Sq8FWsqmUYp+1itaignUF4mXx6TZGnVRvEjt67kBHoqOaf9uDbYw+NloVe1TEsAieAZ7UX1+f6aenE50Ynd1TkSsU5vg3UUHJY0oXKc2FYRf4o/Uf6Ovoc+zZMaqursoh70MZb5xJqtpVZUv3LarPo4+OVtVnAWVBqgFVByAgMPX0VPR19JneYDqgrDybXJ02LXKioCS7d5o4NVG9bWuax0GPabOtDWHxYTQo3oDjA45jom+SK/sSUeJg6gAo29uXt1bGKBU2N09hN6drmqiEKCadnETTTU15EvwEB1MH9vfZz4G+B1QWt2Quv75M3/19kQtyhlQfwtT6U5l+ZnqKOYVPcuTM9JU1plKzoEgkEgZWVVpRUnPzfMrAagM5NkCZxiwgoCvV5da7W9RdV5cqdlV4MukJA6sNRCEoWHpzKVVWVeHEM3XFKa0u5nlFYY1/ExUULaAj1WFm45mqTsTBscH03NuTEUdGZDpSPSP6VunLtw2/BSBRkUjnnZ3V5v6jzR/KrIQ3V9nzaA9ja4/F0tCSpyFPOfLkSLpzV7SuCEBgTCBhcambX9Mit+NPnoc8p9XWVgTFBlG7aG1ODTolNu7KA5ItKAExAarrozAFykLhN6drkpPPT1JlVRVW3l4JKNN3H094TK/KvVKMvet/ly67uhAvi6drxa6s67KO0cdGpyhRb6L38SXDSNeIN5HKLMLKNikVFIAB1QYA4PrSNd16IgAdynfg3NBzWBpaIlPIMNAxwD/an2abmnH25Vl29NzB6UGnKWVZijcRb+i8qzP99vcjIDqA017+NFnsxoB1N5i625MB627QZLFbnmd0Fcb4N1FB0SLV7atza/QtZjeejQQJmz03U311dS69uqSR+Re1XkQzp2aAsgPx0ENDVTEvxc2L813j7wCY6ToTqUTKxLrKDIVF1xalGxtjZmBGMbNiQNYeQgpBoTq23FBQfMN8abm1JQHRAVS3r86ZwWewNLTU+H5EUpL8Ruwf5U8F6wpA4bOgQOE2p2uCoBhlBkynnZ3wi/SjTJEynBtyjg3dNlDEqEiK8c9CntF+e3siEyJpXrI5e3rvYf3d9bj5uqUoAxCTFKP6f52idQiNC0Uqkaqut8+pYF2BOo51kAty9j3al6HsjUo04vLwyxQ1LUqCPAFjXWMS5AkMOTSE2a6zaV2mNV7jvZjZaCY6Eh32PtpLtb8HM267h5h2nkuICoqWMdA1YFHrRVwecZnSlqV5HfGar7Z8xYyzM9QycLKDrlSX/X3342CiNL8feXqEpTeWqtbPaDSDUpaleBv5lsXXFjOl/hQMdQ259e4Wl16nryQlu3m8g7wzLc/9gPuExYdhpm9GbcfaWT+gdPCL8KPl1pa8jXxLJZtKuA5xxdo4fxQm+hJItqD4R/sXWgtKMoXVnJ4TBEFg58OdVF5VmZ0PdyKVSPm24bc8HP+QVmVapbqNX4Qfbba1ISg2iFpFa3F0wFHeRr5l1rlZAGqu5uQXomSS5yxbpCxGekZpypVZN08y1eyrcXXkVcoWKUusLFZltfnj+h903d0VmULGH23+4PaY29RyqINB7OBUq0eLaeeaQVRQ8glNnJpwf9x9RtccjYDAX+5/UWdtHe7538vRvLYmthwfeFyVwjfDdYaqpoCRnrL+AMCf1/8kNimWES4jAFh8bXG68yYHpmUlDiXZvdO0ZFON1iHxj/Kn5daWyi7NVuU4P/Q8diZ2GptfJGOSY1D8o/ypaKNUUAqjBSWZwmhOzy5+EX503tWZQQcHERwbTDW7atwYdYMlbZdgrGec6jbBscG03d6WNxFvqGhdkdODTmOiZ8Lww8OJTYpFT6peCiAiPkL1f12prsptm1Gjv35V+yFBwnW/65ku7VCmSBmujrxKDfsaxCTFYKRrhL6OPiefn6TBhgY8C3lGzaI1Wd7qBLrYimnnuYiooOQjzAzMWNd1HUf7H8XOxI5HQY+ov74+C68szFHKZm3H2qztrKxxohAUdN3VVeWT7VmpJ1+V+op4WTwzXWcyo9EMpBIpp1+c5n7A/TTnVAXKhmRdQWlZqmV2DyUFH2I+0GprK16EvqCUZSnchrqlCMATyX2Sz3lUYpTqbfdt5FtiEmPS20ykAKMQFKy8tZLKqypz8vlJ9HX0+fWrX7kz9k66GXqRCZF02NGBJ8FPKGFegrNDzmJrYsvSG0u55ncNfR19khRJqvHV7aoTnfQxc8bFwUX1YlTFNn0FxdHMUdWPZ7dX5pubOpg6cHH4RZo4NVH1/7E2suZJ8BPqr6/P2ZdnCY5OymAWJWLaefYRFZR8SJeKXfAa70UP5x4kKZKY6zaXZpub8SL0RbbnHFFzBKNqjgIgJC6EHnt6IFfIkUgkLG2/FKlEyv7H+3kd/pq+VfoC6VtRsprJI1PIuPxa2bU4+YaRU0JiQ2i9tTXewd4UNy+O21A3SliU0MjcIlnDTN9M9bacKE/ExtgGKNxWlC+ZJ8FPaLapGZNOTSI6MZpGJRrh+bWnqodOWsTL4um+uzt33t/BxtgG1yGuOFk48TjoMd+7fQ+Q4mXs81iUUTVH8SjoEaDMWMyIrLp5krE0tOTM4DN0rtCZRHkiYXFhlC2ibETYYUcHLvsdy9Q8Ytp59hEVlFxAEylntia2HOh7gM3dNmOmb8Z1v+u4rHHhvzv/Zbu426pOq6hhXwOA637XVTeE6vbVGVd7HABTT0/lmwbfALDn0Z40zaLJCsrL0JckyhMz3Pc9/3tEJkRiaWipkiEnhMeH0257Ox5+eIiDqQPnh56ndJHSOZ5XJHtIJBK1OJTyVhUxkFdj7x0fraRdiuQOSfIkFlxeQI01Nbjmdw1TfVNWdFjBlRFXqGSbsh7Jp8gUMvrv78+FVxcw0zfj9KDTVLSpiEwhY9jhYSTIE7AzsUMufFRQGhZvqNbDTCLoUM6kA0/fmmEgr4azdWXkCgEDeTWMZc245RuW4lrrWakn+jr6eH3w4mHgwywdr7GeMQf7HmRI9SEoUPAy7CX1HOuhEBT87TERA/1YMe08FxEVFA2jyZQziUTCMJdhPBz/kBalWhCTFMO4E+PovKsz/lFZn09fR5+Tg05iYWABKC0kJ5+dBOCXr36hiGERHn54yO33t2lXth0KQcFf7n+lOpejmSOm+qbIBTkvQ19muG83XzcAmpdsjo5UJ8uyf0pUQhQddnTAw98DG2Mbzg89n2Ykv0jekezmOfvoAyGvp+KQuJBd1wy1lnYpolnuvL9DnXV1mHdhHonyRDqU68CjCY+YVG9Sho03FYKC0UdHc+TpEQx0DDg24JgqUH7R1UXceX8HU33TFOnA1e2ro0AZLGskb4hT4hZGb/HCNHYyDokLGb7Wn2aLr+GQuBDbpFmM2HQ/xbVWxKiIqgVIclfqrKCno8fm7puZVn8aALfe36JNmTZIpeDHP2q1WZIR0841g6igaJDTXv6M335X4ylnJS1Lcn7oef5q+xcGOgacfH6SaqurceDxgSzP5WjmyPGBx1U3lN77evM6/DXWxtb8+tWvAPxw4QfG1xkPwIZ7G1KtISCRSLLk5tFU/ZPYpFg67+rMjbc3KGJYhHNDzqVaqEkk73EwdcBI3pCtl/RJSFTPrBDTLgsusUmxzDg7g/rr6/Mg8AHWRtZs77GdEwNPpOiDkxqCIPDtmW/Zcn+LMj23z16al1I2ufMM8OSXS78A6nVOQJn2e+r5KUCpnNgmzgWFhdqY8DgZ4XHqfXJSu9aS3Ty7vHZlWIgyNaQSKX+3+5vfvvoNAFcfVzqU64CBiTcf9H9HkKoHwopp55pBVFA0hFwh8POxx7mWciaVSPmm4TfcGXsHFwcXQuJC6L2vN0MPDSU8PjxLczVxasJfbZSWkThZHO22tyNBlsDXdb6mql1VQuNCcfVxpa5jXeJl8ay4uSLVeTKroCTJk7j65iqQs/iTeFk83XZ34/Lry5gbmHN2yFlqOOTcXSSiGRxMimKVOPb/n9TfGsW0y4KJm68b1VZX4y/3v1AICgZWG4j3RG8GVR+kVqY+PRZcWcDSm0sB2NRtE10rdgUgQZbAsMPDSFIkUc2uGoEx6i0/RriMUBZjE6RpXlepkdq11rlCZ0z1TXkd8Rp3P/dMyf05EomE75t9z+pOq5Eg4cTzEzQs3pASdiG80R9OqNGP9G8cJ6adaxBRQdEQt3xDU1hOPkVTKWdV7apyc/RN5jaZi1QiZduDbVRfXV3lQsksUxtMpWelnoCyXsWYY2PQleqyrP0yANbcWaNquLXy9spUG245W2cuk+f2+9vEJMVgbWSdqaC21EiUJ9Jrby/O+ZzDRM+E04NOU8exTrbmEsklEsuhiy1pPUTEtMuCQ3h8OKOPjqbV1lb4hPlQ3Lw4xwccZ0fPHdia2GZ6nlW3V/HDhR8AWNpuKUNqDFGt++XSLzwIfICVkRUvw9TdxA2LN1Q1FTVQVEk3nTc1Pr/WjPSMVPe77Lh5PmVcnXHs7r0bPakep16cophZMdqWa00UHiy+24djr/5CIhGVcE0gKigaItOdTiNznnKmr6PPglYLuDLiCmWLlMUv0o9WW1sx/fR04pLiMjWHRCJhe4/tlC2i7CS67cE2NntupmXplvSs1BO5IOfo06OUtypPWHwY6+6uSzFHZi0oF3yV7p0WpVpk6KtOjSR5Ev339+fk85MY6RpxYuAJGpZomOV5RHIXfUnmHlxi2mX+5qD3QSqtrMSGexsAmFBnAo8mPKJThU5Zmmfnw51MOjkJgPnN5jO1wVTVuptvb7Lo2iIAatjXIDYpFvjYDHBu07kc9D4IgI6QsgJtZvn0Wkt28+x9vJckeeZShNOib5W+HB94HGM9Yy68ukB4XDiT600GYOHVhXTf3V1jbUu+ZEQFRUNkNpVsptvX/OP+DyGxITneZ6MSjfAc58nXtb8GYOnNpdReW5u7/ncztb2RnhHnhp5TtS0ffXQ0jz48YkmbJRjoGHDh1QVal2kNwN/uf6fI1vlUQUkvsygn8SdyhZwhh4Zw6MkhDHQMODrgqMp/LZK/KFnEMlPjxLTL/ElAdAC99/am195eBEQreypdGXGFlZ1WYm5gnqW5Tj4/ybDDwxAQmFR3Ej+1+Em1Li4pjmGHh6EQFLQr2051fwBlM8D6xeoTlRClqj8il2St39enfHqttSrTCltjW4Jjgznncy7bcybTtmxbzg89j5WRFbfe3+K873mWtV+mDAJ+doyGGxrmqDSEiKigaIyMOp2CgFwSzPOoU3xz9hsc/3Zk4IGBXHx1MdtpwwCm+qas6byGEwNP4GDqgHewN/XX1+e3y78hU6gHj6WW/lzKshQH+ynfVOSCnNbbWmNjbMPMRjMBOPXiFA4mDryLepfCNFrOqhxSiZTIhEgCogNSlS9BlsA1v2tA1uNPFIKCkUdHsufRHvSkehzoe0ClMInkP5qUK4qMIARSD0IU0y7zJ4IgsPHeRiqtrMQB7wPoSnWZ22QunuM8aeLUJMvzXXl9hV57eyFTyBhUbRDLOixTi1eZ5zaPpyFPKWpaVC3uREeizO77qcVPLLmurHAtRUqC9BEKSUgWHDypX2u6Ul36VekHZL0mSlo0KN6Ay8Mv42jmyOOgx/zt/jfbe25Xfv7whIarhvL72bNiqn02ERUUDZFRp1MJEpb1bcrqziup6VCTRHkiu7x28dWWr6j4b0X+vPZnhh0306Nj+Y48HP+QXpWUN4YfLvxAk41NVIWy0kt/bl+uPfOazgOUb1E99vRgduPZFDMrxqvwV6pA1MXXFqtFwBvoGlCmSBkgbTfPzXc3iZfFY29iryqPnxkEQWDc8XFsvb8VHYkOe3rvybKJWSRvKW7hSKj+WkglWkBMu8yf+IT50GZbG0YdHUV4fDi1i9bmzpg7LGi1AEPdrFu6PAM86byrM/GyeDqV78SmbpvU3LpXXl/hnxv/AEo3iWeAJ6C8YuSCnHrF6lHZpjJ3A5RWYAEBJAoqlH7w/3EZk961lhxXd8j7kMqtlFOq2FXh2shrlLcqz+uI10w4MYFJ1dZTOmkbJtHfs9YtiQHrbtBYTLXPMqKCokEy6nTas2YZxtUZx92v73JnzB3G1hqLqb4pz0OfM+vcLIr/XZy++/pyzudctlLhbIxt2NdnH9t6bMPCwIKb725S87+aTDu8OcP051+++oUWpVoAcN73PMtvLeePNn8AcOXNFcz0zXgS/IRjT9WrJ2YUh5Icf/JV6a8yHfUvCAJTT09l3d11SCVSdvTcQY9KPTJ9HkS0g42xDUl6twnS/x0bM/VeKmLaZf5CrpDzt/vfVF1VlfO+5zHSNeLPNn9yY/SNbGfGPQ95Trvt7YhMiKSpU1P29dmHns7H6yA6MZrhR4YjIDCk+hA1i2xybaQfm//IqjurVMuTa4zMad0h1XurpbEelsaZv9YaFG9AKctSxCTFpLiX5YRSlqW4OvIqNR1qEh1VjjXn5Sjk6inRARFxYqp9FpEIOfEvaInIyEgsLCyIiIjA3DxrvtG8QK4QuOUbyoeoeOzMlGbGtN4aoxOj2e21m7Uea7n9/rZqeZkiZRhdczQjao5QNWLLCn4Rfgw/Mhw3n4sUi9+ALjak9v4hQfkHfXV2S2KToim/ojyBMYFIkHBp+CXmnJ/DNb9rVLGtwqOgRzQo3oDrI6+rlI2ZZ2eyxH0JU+pNYVmHZSnmb7G5BZdeX+K/zv8xtvbYFOs/RxAEZrnOYon7EiRI2Nx9M0NrDM3y8Ytoh+J/F+dd1DtujLqFIqFMpv4GRPKWh4EPGXV0lOp+81Wpr1jXZR1lrcpme863kW9psrEJryNe4+LgwsVhF7EwVH9ATzgxgdV3VuNk4USncp1Y7bEaAH2pPomKROo41uHGqBvYLbEjNC4UI10j4mRx6OvoEzM3Bl2pbqr3ViDT91uA789/z+9Xf6drxa4c6X8k28ecGmFxEdRZcBKZzCyNrCMBe3MDrn/X+ov9e8jK81u0oOQCWel0aqpvyuhao7k15hb3vr7HhDoTMDcwxyfMh7lucynxTwl67e3F6Rens9QwsIRFCVyHuPJt7dWZTv00MzDj4rCL6Ep1ERDouLMjP3/1MxIkPAp6hJ5Ujxtvb3DlzRXV9uk1DYxLisP9rbLmQGYDZH+8+CNL3JX+5zWd14jKSQEjuZrsh5gAsdtvPiNBlsAPbj9Qa20tbr+/jYWBBeu6rOP80PM5Uk6CY4Npu60tryNeU96qPGcGn0mhnLi+dGX1HaVC8mOzH1l7d22KeX5q/hMXXl0gNE6ZGpycadPU6WP389TurVntLJ3s5jn1/JRqX5riyXsZcpl5OinREgIjE9npcVOj+y2siApKPsLFwYWVnVby/pv3bOq2iYbFGyJTyDjofZAOOzpQdnlZfrv8G+8i32VqPqlEStMSmYvbSE7Hc7Z1Zmv3rYDSujPt9DRG1hwJoLrpfNpEMD0Xj/tbdxLliRQzK0Y5q3IZyrDg8gJ+vaysZru8/fJMWVxE8hfJ1j7/aNGMnZ+47nedmv/V5LcryuD5Hs49eDzxMaNrjc606zU1ohKi6LijI97B3hQzK4brEFfsTOzUxkTERzDyqPIeMrHuRHZ67VT127EwsFBZTzqW78hf15UFJCVIkAnKIP/RtUZnW77UqGJXher21UlSJGWrGnd6ZDaFfsqJH9j3aJ9G910YERWUfIiJvgnDXYZzfdR1Ho5/yJR6U7A0tOR1xGt+uPADTkud6La7GyeencjQqpLZlM5Pxw2oNoCxtZTKgdcHL5LkSZgbmBMcG4wECSefn1Q18EpWUN5EvCEmMUZtzqzEn/x1/S/mXVAG6v7R+g8m15+cKblF8heqhoHZ6BUlonmiEqKYfHIyTTY2wTvYG3sTe/b32c/BfgdxNHPM0dzxsni67+nO7fe3sTayxnWIKyUtS6YYN+3MNN5GvqWcVTkaFm/Ied/zanOAsk5KWHwYrj6uANib2gPKl6xO5TUfHJ/dDscZkdn7bZwikL77+/KD2w/Zijf8UhAVlHxOVbuqLOuwjPffvGdr9600dWqKQlBw9OlROu/qTKllpfjp4k+8iXiT6vYZpT8LKJDqRuBgFa22fFWnVVS3rw7A1gdb6VaxG4Cqlfof15QBtNbG1tgY2wCoMoaScXulrG6bkXtn5a2VzHCdAcAvLX5hZuOZ6Y4Xyb8kKyhppZ2L5B2nnp+iyqoq/Hv7XwQERriM4PHEx/Sq3CvHc8sUMgYeGIibrxum+qacGnRK1c3403IGf188xuZ7W5EgYU2nNcx1m6uao6hpURLkCdQqWovOFTqz9f5WlWUlMl5Z5MzF3gUzA7Mcy/s5/av2B+DSq0u8jXyrsXkzut8mpz9PbNwWgN+u/EbPPT1TrdQtkgsKysKFC6lbty5mZmbY2dnRvXt3nj59qjYmPj6eiRMnYm1tjampKb169SIwMDCNGUVAWVRtSI0hXB5xmccTHjO9wXSsjKx4G/mWny/9TOllpem0sxNHnhxRq3+SXvqzsl6FhADpv9RYU43DTw5/sp0OF4ddxExfeXPY7bWbMpZlSJAnqD6/Cn8FpO7miU6M5ta7W0D6Csr6u+uZdEpZbXJuk7nMazYvy+dGJP+QHIMiuni0R3BsMEMODaHjzo74RfpR2rI0rkNc2dhtI1ZGOa9BIwgCY4+N5dCTQ+jr6HOk/xHqFqsLpCxnsPy0lGLxG+hfbhFX31xVe5FK7iH2Y/MfAVh+czkARrpGxMqUKcDDXIblWN7UKGlZkiZOTRAQ2OO1R2PzZlRuApTpz3+1W8LmbpuV5+/pERptbIRPmI/G5CgsaFxBuXTpEhMnTuTGjRu4urqSlJRE27ZtiYn5aP6fPn06x44dY9++fVy6dIn379/Ts2dPTYtSaKlkW4m/2/3Nu2/esbPnTlqUaoFCUHDy+Um67+mO0z9OzHObp1Ig0kp/tjKRkmi2kjgdd6ISo+ixpwcTT0wkQaZUQooYFeH80PNIkJCkSCI8IRz4WLPgb/e/gU968nyioFx7cw2ZQkZJi5KULlI61ePYdn8bY48pXUnfNPiG31r+liN/uIj2Ubl4RAUlzxEEgV0Pd1FpZSW2P9iubDDa4Bsejn+osQKHgiAw03UmmzyV9U329N5Dy9ItgbS7uetiw/WHVfjn4seKsRWsKxAni6OmQ026VOjCXf+7+Ib7AlDeqrxqXO/KvTUid2rklpsno3ITyenPw1yGcWn4JRxMHfD64EXddXVVbnERJbmeZhwUFISdnR2XLl2iWbNmREREYGtry86dO+ndW3nxPXnyhEqVKuHu7k6DBg0ynDO/pxlrg2chz1h/dz2bPTcTFBsEKBWJtmXbMqbWGLpW7IpUopsiHS8iIYxxx8ex7/HHgK1KNpU43P8wFawrALDsxjKmnZkGgK2xrWp+I10j3kx/wxbPLcxwnUHfKn3Z01v5NvLdue9YfG0xw12Gs6nbphTy7n20lwEHBqAQFEyoM4F/O/4rKieFgJtvb9JgQwNKmJfgzfTU3Y4imscvwo/xJ8Zz4vkJQOka3tB1A/WK1dPofhZeWahy02zqtonhLsMBpVunyWK3dBqmCsgI5p3hKKQSMNQzJDYplkP9DtHduTsjDo9g8/3NwMd7TBnLMryc+jKN+XJOcGwwRf8qikwhw3uit8oSrCkyW27ibeRbuu/ujoe/BzoSHZZ3WM6EuhM0Kkt+Il+lGUdERABgZaU0LXp4eJCUlETr1h81emdnZ5ycnHB3T70NdkJCApGRkWo/IupUsK7AH23+4O03b9nbey+ty7RGQODMyzP03tebEv+U4Hu3OdgWCVNLx7MysmJvn73s7LkTEz0TALyDvam2uhpb7yuzeaY2mKqKQQmKDUL6/8smThbHipsrVH/Y3kHeKnnS679z5MkRBh4YiEJQMKrmKFZ0XCEqJ4WEZBdPQHRAjlo4iGQOhaBg9e3VVFlVhRPPT6Cvo88vLX7BY6yHxpWTNXc+xpD83fZvlXICGXdzBwm62GKgqELNojWJTYrFxcGFbhW7EZsUy+5HuwFwMndSvQANqDpAo/J/jo2xDW3LKmNBdj3cpfH5M5v+XNy8OFdGXGFgtYHIBTkTT05k3PFxKXqffYnkqoKiUCiYNm0ajRs3pmrVqgAEBASgr6+PpaWl2lh7e3sCAlIPrFu4cCEWFhaqnxIlSuSm2AUafR19+lTpg+sQV15MfsGcJnOwN7EnMCaQxdcWU35FeVpvbc3eR3tVrhxQZu48mfSEZk7NAEiUJzLs8DD67utLTGIM+/rsw8ncCQDFJ71WVtxaQUkLZeT+s5BnyBVyIhMi8XjvAaRUUE49P0WffX2QC3IGVx/Mf53/y1aHY5H8SXKacZIiSeM1JkTUeRr8lBabWzDh5ASiEqNoVKIR976+xw/Nf1AFs2uKPV57mHBC+Vb/fdPvmd5wutr6zKbXmugU5WmIMiZxfrP5SCQSDjw+oMrmqWxbWTW2f7X+mhA9XT5182hToTbSM2J7j+0sarUICRL+8/iPNtvaEBQTpDWZ8gO5+mSYOHEiXl5e7N69O0fzzJkzh4iICNWPn5+fhiQs3JS1KsvvrX7Hb7ofB/sepH259kiQcN73PP3296P4P8WZeXamKvumuHlxLgy/wLL2y1SFkfY93keFfyvgHeyN+2h3DHQM1PaRnBpooGNAgjyB1xGvufL6CnJBTjmrcpSw+KhMnvc5T8+9PUlSJNGnch82ddukKnEtUjjQ19HH2sgaEONQcoskeRK/X/mdGmtqcOXNFUz0TFjRYQVXRlxRe8BritMvTjP40GAEBMbXGc+vX/2aYkxm02sr2NoTnRhNdfvqdHNWWmWTg2OlEqlKebExtqGKbRUNHUHadHPuhpGuES9CX3Dn/Z1c3196SCQSZjeZzdEBRzHTN+Py68vUXVeX+wH3tSqXNsk1BWXSpEkcP36cCxcuULx4cdVyBwcHEhMTCQ8PVxsfGBiIg0PqJd0NDAwwNzdX+xHJPHo6evSo1INTg07hM9WHH5r9gKOZI8GxwSxxX0LFfyvSYnMLdj7cSaI8kSn1p+A13ksV/Po+6j01/6vJroe7ONT3UIr5l1xfQnlrZWDbk+Anqbp3rry+QtfdXYmXxdOtYjd29NyhUoJEMk9qHanzG6pibWItlGyT1vfs8d6Duuvq8r3b9yTIE2hfrj2PJjxiUr1JuWKJvPbmGj339ESmkNG/av80Y8UyU85AkIbyOOIoAD80/ZGbPmH8d9WDh28TQJDSxKmJKlC2p3PPPHH7muqbqhSlz7u1a4vOFTpzY/QNyhYpy+uI1zTa2EjjBeUKChoPkhUEgcmTJ3Po0CEuXrxI+fLl1dYnB8nu2rWLXr2U+fhPnz7F2dlZDJLNQ2QKGSefn2Td3XWcfH5SVSzIysiKodWHMqb2GMpbled7t+9Zcn2JqmlXE6cm1HKoxfJby9Xmq+tYl9vvb/NX27/Y8XAHd/3vsrPnTgZUG8CNtzdos60N0YnRtC/XnsP9DmOga5BCJpH0Oe3lz8/HHqv5+otaGPJjl8r5qglfm21tOOdzji3dt4itCrJBat+zvbkBZUveZc/LOSgEBdZG1ixtv5RB1Qbl2oP8QeADmm9uTnh8OB3KdeBw/8Ppuo6Ss3gAPn2oJJczKF3qHJcCl+Fs2h+LxNEEfHJ8MoKoVdGHY2+U1pmLwy7SvFTz3DisFBx7eoyuu7viYOrA2+lv841VNzQulH77+3HO5xygTMee33x+gXeJZ+X5rXEFZcKECezcuZMjR45QsWJF1XILCwuMjIwAGD9+PCdPnmTz5s2Ym5szebKyauj169cztQ9RQdEsfhF+bLy3kQ33NuAX+dF91rhEY8bWHktJi5L02ddHFbxmpm9GcfPieAd/DIq1NLAkPCGcodWHsu3BNgQE3n/zHv9of1puaUlEQgQtS7fk+IDjGOkZ5fkxFnSSb/6f/7EmP5ryU6fgoYeU18CiVouY3WS2tsUpUKT1PSf39Q3S/53uNUqxtP3SFCXlNcmL0Bc02diEwJhAGpdozNkhZzHWM85wu9SUKxlBmNqeJiDpNImxlbFLnMvnVUIEFEiQ8EH/dySG94n4LiLPLKyJ8kQcljgQFh/GuSHnaFWmVZ7sNzPIFDJmnJ3BspvKRqw9K/VkS/ctmOqbalmy7KPVLJ7Vq1cTERFBixYtKFq0qOpnz56PxXD++ecfOnfuTK9evWjWrBkODg4cPHhQ06KIZJISFiX4scWP+E715cTAE3Sr2A0diQ7X/K4x7PAwuu/pTq9KvWhbRhnxHpUYhXewt1o8SnKNlDv+dxAQcLZxJjg2mDbb2hCREEETpyYc7X9UVE6ygVwh8POxx6k8tD6+qf587HG+cfeI1WSzR3rfc/IDvYLeXLb12JGrysn7qPe02daGwJhAatjX4PjA45lSTkBZA+TyrBYUcdxKkN4fBOrP4Z3hKOqV0SciPgp7+URS76ouRUDAKnEsbcu0z1P3r76OPn0q9wHyj5snGV2pLkvbL2VD1w3oSfU46H2Qxhsbq2pcFXZyvQ5KbiBaUHKf91Hv2XRvE+vuruN1xGvV8grWFfAN8yVJoew0WkKQYPPJDcdQ14B4WQLtyrbj1rtbPI8PxbF4Pc4OOYu5QeH/ruQKObFJsaqfOFmc2ufs/ERGORD/4esM971rTAMalrXOg6NMn6U3ljL9zHT6VenH7t45C5D/knB/GcKAdTcyHJeb33NoXCjNNjXjUdAjyhYpy9WRV1UxRZlls+dmRhwZga5UF5lCRuvSrbn9/jbxsU44JC7McPvxbROZ3bJHdg8hW1x6dYkWW1pgYWBBwIwADHUzF/Sbl1x7c42ee3vyIeYDNsY2HOh7gGYlm2lbrCyTlee3GKUokiqOZo583+x75jSdwzmfc6z1WMuRp0dUGT86Eh0cFQqeYorRp29EMgA9eHkNgATMie+yQevKiUJQEC+Lz5JiEJf0iXIhy9w2uVG7wFjWDNtMjMtsqmduI3Y0zh6Z/f5y63uOToym446OPAp6hKOZI65DXLOsnETER/Ddue8ApXtCKpFSwaYC53zPUcGsGgkhGc9R2rxGdsTPEU1LNqWYWTHeRb3j1PNT9KiUtwpSZmjs1JjbY27TfXd37gXco9XWVqzsuLJQd30XFRSRdJFKpLQt25a2ZdsSGB3IZs/NrLu7jpdhL7FBqq6cpIIBAgbypDTXC4JAgjwhdaUgsz+pKA+fzxMni9P0qckQYz1j1Y+RrpHa56z8vAky4I9jGSs+mU31zG3EjsbZIzudxzVFgiyBnnt6cvPdTayMrDg7+GyaLSrS45dLvxAYE4ihriHxsngGVxuscpsMq9mDtecynqNEEYss7zenSCVSBlQdwBL3Jez02pkvFRQAJwsnro68yogjI9j7aC9fH/+a+wH3Wdp+KXo6etoWT+OICopIprE3tWd2k9nMbDyTi68ucvbqn/Ay48Dmfgf64yXVIUmRRKI8kUR5IvGyeOJl8VpRHAx0DLKkIGRHuTDUNdRYdoW8nMC2y24ERMSnEZ8AlkZ6KAQBuUJIs2JlXiE2DMweyam6aX3PEpT9XOqVznnDv0+RK+QMPjQYVx9XTPRMODnwJFXssl6DxDvIW5XdFy+Lx1jPGHtTe8Ljw6lkU4kZLbpz7PalNI9PQIG5kULjx5dZBlYbyBL3JRx7eozIhEitW33TwljPmN29dlPdrjrzLsxj1Z1VPA5+zL4++1Sd5QsLooIikmWkEiktS7ekpYEVvMw4FfB5yHMeSxQZjvt0fqlEio5EB12pLrpSXfR19FU/hrqGGOoaYqRrhJGeESZ6Jpjom2CqZ4qZgRlm+maYG5pjYWCBuYE5RYyKYGloibWRNUUMi2BqYFqgarAkd0gdv/0uEkj15h4el8Sg9TfzRdpxsgUlOjGa6MToAp1xkJek9z1/2glXkwqoIAiMOz6O/Y/3o6+jz+H+h6lfvH625pl2ZhoyhQxjPWNik2KZUm8K/3n8B8D85vPR19VVHZ/y6D4eR3Iq8tyO5bWmYLs4uOBs48yT4Ccc8j6Ua52UNYFEIuH7Zt9T1a4qgw8N5uKri9RbV48j/Y9Qzb6atsXTGAXnLi1SYClhXpwoPX1kChmJ8kSS5EkkyBOIl8WnGrOhEBQoBAUyZCTIE1KZMefoSfWU1hE9I5WFxEjPSM1iorYulTGpjU9te02YXpM7pH6ewvk5ARHxjN9+V6tpx2YGZpjomRCTFENAdADlrMppRY6CSFrfs0MuKZ7fnfuO9ffWI5VI2dVrV7a7Hh95eoSzL8+iI9EhNikWB1MH9HX0CYsPw9nGWZUl075qUf4d6MKE3W5IFB8tJXJCMLU5xYC6e9LaRa4jkUgYWHUg8y/OZ6fXznytoCTTzbkb7qPc6bqrK77hvjTc0JDtPbfT3bm7tkXTCKKCIpJtXH3O0SYT495H+dPUZTDzms2jTJEyausUgoK4pDhVtsvn//80E+bTzynWZWL75H4foOwVE5EQQURChIbPSkp0pbqZU3BSU4w+G/NDL0NeBxmy8mwC0QmpVctQvpf+fOwxbSo7aO1t1MHUgZdhL/GP8hcVlCzSvmpR2lR2yFQn3Jyw+Opi/rj+BwBrO6+lZ6We2ZonLimO6WeUvXn0dPSQy+TMaTyHny79BMAPzX5QK34mNXrAG72ROEj70NKpH8debiRK5yQL6v2cswPSAAOqDWD+xfmc8zlHYHQg9qb22hYpQ6raVeX2mNv02deHC68u0GNPD3796le+b/p9gW/CKiooIlkmLC6MSacm4f1gN23I2HwvF+Rs8tzEtgfbGFZjGPOazaOUZSlA6c4x0Ve6aHIbhaAgQZaQptKTGQUpNYUorTHJyBQyohKjiEqM0shxGMirpZuuKQD+EfHc8g3VWtpxUbOiSgVFjEPJFsmdcHOLdR7r+O68MtvmzzZ/MqrWqGzPteT6El6Fv8JU35ToxGgq21YmMjGSsPgwKlpXpF+Vfmrj/77oRrGEdehiy7WnYMVYzGU9sNXN/d47GVHOqhz1itXj1rtb7H20l8n1J2tbpExhbWzNmcFn+ObMN/x7+19+uPADDz88ZGPXjXlyb80tRAVFJEuceXGGkUdH8j7qPXUkeqkHRHzG5u6bmeW1gzMvz7Dh3ga23N/CSJeRfN/se5wsnHJf6P8jlUiV1ok8KBb3aXZSupafTFqFPh0TFVGRpEw0CtZm2rGYyZN/2fdoH18fV9bV+a7xd8xoNCPbc72JeMPCq0plOT5Jeb391Pwnxp0YB6S0nuy/+4JnL5vzeTF5HWz4/egHSpj7a70i8sCqA7n17hY7vXYWGAUFlNarFR1XUM2+GhNPTmTvo708D3nO4f6H8/Q+q0lEBUUkU0QnRjPz7EzWeKwBoKJ1Rda1WQL7RoIsnTgRXQOql2rBaZchuPu58+PFH3H1cWXt3bVs8tzEqJqjmNt0rlrX48KARCJRBfOiYX0oswW9tJl2LFaTzZ+cfXmWQQcHISAwttZYfm/1e47mm3F2BnGyOOxM7PgQ84GWpVvyIvQFoXGhVLCuQP+q/VVjlZVyHwE6SD4rT5D8WduuSYC+VfryzdlvuPH2Bj5hPinc0vmdsbXH4mzjTK+9vbgXcI+66+pyoO8Bmjg10bZoWaZgdx0SyROuvrlKjTU1VMrJ1PpTufv1XVwqdoZJHjD2Uto/kzzAUql8NCzRkLNDznJlxBValm5JkiKJNR5rKLeiHBNPTORt5FttHmaBIaPOsRKUTQS1la4JYG9aFAN5NTxf6ebbrstfGu5+7vTY04MkRRJ9q/RlVadVOYpRuOB7gX2P9yGVSPkQ8wGAn1v8zF/ufwEwr+k8NevJLd9QouJ0UygnyXzqmtQmRc2K0rJ0SwB2PdylVVmyS7OSzbgz5g7V7asrFcctLdlwd4O2xcoyooIikibxsnhmuc6i2aZm+IT54GThxPmh51nafunH3hyWJcDRJe0fy5SWkSZOTTg/9DyXhl+iRakWJMoTWXVnFWWXl2XKqSm8j3qfV4dYIElOR4WUXU1yKx01K5z28me3W2UcEhfi/aIBA9bdoMliN057ie4ebeH1wYtOOzsRmxRL27Jt2dZjW4669soUMqacngJ8rBw8pPoQrr25RkhcCOWtyjOg2gC1bTzf+WRq7vxQEXlg1YEA7Hi4gwLYDQaAkpYluT7yOr0q9SJJkcToY6OZcmoKMoVM26JlGlFBEUmVe/73qLO2Dn9e/xMBgeEuw3kw7oHqzUITNCvZjAvDLnBh2AWalWxGojyRFbdWUHZ5WaadnibGL6RDcjqqg4W6G8fBwlCrKcbJ3Xgj49Qffsnpz6KSkvf4hPnQdltbwuLDaFi8IQf7HkRfRz9Hc66+vRqvD16Y6ZvxPuo9BjoGzGkyhyXuSwCY12xeilpDtwIyUUaW/FERuWelnhjoGOAd7M2DwAfaFifbmOibsLfPXn5uocyQWnFrBe23tyc0TrtWqswiNgsUUUOmkLHo6iJ+vvQzMoUMOxM71nVZR9eKXXN1v4Ig4Obrxo8Xf+San7KPj6GuIePrjGd249kFIt1PG8gVQq6no2ZFliaL3dKs05JcCfXq7JZar3ZbWPn8eihhk0DzLU3xCfOhml01Lg2/RBGjIjnaR1BMEBX+rUB4fDj2JvYExgTyXePvKGJUhNnnZlPOqhzeE73VFBS5Qo7TPyWRBP2GLjak3tE4f10fvfb24qD3QWY1msXiNou1LU6OOeh9kKGHhhKTFEPZImU5OuAolW0r57kcWXl+iwqKiIqnwU8ZdngYN9/dBJRvEWs6rcHWJDOt6jSDIAic8znHjxd/xP2tOwBGukZMrDuRmY1n5mqbeZGckR+68X7JnPbyT1HgTaITTqDOSoraBHJ1xFVVG4KcMPbYWNbdXUcJ8xL4RfphY2zD/a/v4/KfC0GxQWzutjlFkbMzL87Qfkd77HTaYhw9JUXyX7I6ok3r3+cceHyA3vt6U8K8BK+mvUIqKfgOhweBD+i6qyuvI15jpm/Gjp476FKxS57KkJXnd8E/4yI5RiEoWH5zOTX/q8nNdzexMLBgW49t7O+zP0+VE1Bmv7Qp24ZrI69xetBp6herT5wsjiXuSyi9rDSzXWcTHBucpzKJZA5td+P9kkl2rX1uvVLIzbFNnMsP9Q5oRDnxeO/B+rvrAVR1feY3U1ZeDYoNomyRsgyqPijFdpvvbwagb60KrB5cCxND9QrS2nZNpkbH8h0xNzDHL9KPa2+uaVscjVDdvjq3x9ymWclmRCVG0W13NxZdXZRv42xEBeUL503EG9psa8PU01OJk8XRpkwbvCZ4Mbj6YK1WIZRIJLQr1w73Ue6cGHiCOo51iE2K5Y/rf1BqaSnmnJtDSGwmereL5Bna7Mb7JaNM332cRoNBKRIk/Hch55lUgiAw+dRkBASq2lYlPD6c8lblGVx9MH9cU1ak/b7p9yliT8LjwznkfQiAYS7DaF+1KEaOCwnQn0P3BmHsGtOAq7Nb5ivlBMBIz0hVXTe5I3NhwNbEFtchroyrPQ4BgTnn5zDo4CC14pL5BVFB+UIRBIHNnpuptroabr5uGOsZs7LjSs4MPkNx8+LaFk+FRCKhY/mO3Bp9i2MDjlGraC1ikmJYdG0RpZaVYp7bvAIT8FXYKQjpz4WRW76h6fZnAs2k725/sB33t+4Y6xnzIvQFAItaL2LjvY0ExQZR2rI0g6sPTrHd3kd7SZAnUMW2CrWL1uZd5Ds8/G+TqOPFd61b07Csdb6IOUmN5GyevY/3pto3rKCir6PP6s6rWdVxFbpSXXZ57aLZpmaqUg9yhYD7yxCOeL7TapkAUUH5AgmMDqT7nu6MODKCyIRIGhZviOfXnkyoOyHf9m6QSCR0rtCZO2PucKT/EVwcXIhOjGbBlQWUXlaa+RfmExYXpm0xv2jye/pzYSUvXGtRCVHMOjcLgEo2lYiXx9O4RGPalW2n6uczr9m8VBtjbvbcDMBwl+FIJBKOPj0KQP3i9VUpyvmVr0p/hb2JPaFxobi+dNW2OBpnfN3xuA5xxdrIGg9/D+qsrcOyi5dostiNAetuMHW3p1bLBIgKyhfGQe+DVF1dlaNPj6In1WNhq4VcGXGF8tbltS1appBIJHSt2JW7Y+9ysO9BqttXJzIhkl8v/0rpZaX56eJPhMeHa1vML5b8mv5cmMkL19qvl38lIDoAJ3MnPPw9AFjSdglrPdbyIeYDpS1LM6T6kBTbPQ1+ivtbd3QkOgyqpoxNOfpMqaB0q9gt2/LkFbpSXVUvoZ1ehcfN8yktSrXg9pjbVLWrSmRkGf4+HYV/RJzaGG2VCRAVlC+E8Phwhh4aSq+9vQiODaa6fXXujL3Dd02+y1HBJm0hkUjoUakH976+x/4++6lqV5WIhAh+vvQzpZeV5tdLvxKZEKltMb9I2lctytXZLdk1pgHL+rvk2xiDwkJuu9aeBj9l6Y2lANgY2wDKcvDV7auz+Joy/XZu07mpWk+23N8CQPty7SlqVpSohCjcfN2AgqGgAAyspnTzHH5ymJjEGC1LkzuULlKaK8OvUUyY+v8l6ldTsoPn52OP89TdIyooXwCuL12ptroa2x5sQyqRMrfJXG6PuU11++raFi3HSCVSelXuxf1x99nbey+VbSsTHh/O/IvzKbW0FAsuLyAqQTNdhEUyT3I33m4uxfJ1jEFhIDdda4IgMO3MNJIUSdRzrMfdgLsqy+taj7UExgRS0qIkQ2sMTbGtXCFn24NtAAyroUw7Pv3iNInyRMpblcfZxjnL8miDesXqUaZIGWKTYlXuqcKI9/skkpJM81UrAlFBKcTEJMYw8cRE2m5vy9vIt5S3Ks/VEVdZ0GpBjitJ5jekEil9qvThwbgH7Oq1C2cbZ8Liw5h3YR6llpVi4ZWFRCdGa1tMEZFcIbdca8efHef0i9PoSfWISIgAYGLdiRQ1Laqynnzf9PtU7yduvm68jXxLEcMiqlobR54eAZTWk/wa7/Y5EolEFSxbWN08kD/LBIgKSiHlut91XP5zYdWdVYDypnLv63s0LNFQy5LlLjpSHfpX7Y/XeC929NxBReuKhMaFMtdtLqWXleaPa38UWjOtyJeNpl1r8bJ4pp2ZBkCbMm14GvIUS0NL5jWbx1qPtcqYFAunFEXZkkmufTKg6gAMdQ1Jkidx4vkJALo5Fwz3TjLJbp7TL04X2vIG+bFMgKigFDISZAnMOTeHppua8iL0BcXNi+M6xJV/O/6Lib6JtsXLM3SkOgysNpBHEx6xrcc2ylmVIzg2mNnnZlN6WWmWXF+SL/P+RURygiZda3+7/41PmA9FTYtyN+AuoLSWmOibfIw9aTI3VetJRHwEB70PAsrsHblCYN2NiyRGV8derwn1HBtkWy5tUMm2Ei4OLsgUMvY/3q9tcXKF/FgmQFRQChH3A+5Tb309Fl1bhEJQMLTGUB6Of0jrMq21LZrW0JHqMLj6YLwnerO522bKFilLUGwQM11nUnpZaf5x/4e4pLiMJxIR+YJ4G/mWBVcWANC4RGMCogMoZVmKSfUmsc5jHf7R/pQwL8GImiNS3X7f433Ey+KpZFOJ4NDiNFnsxh/HErFNmoVh5Hc0//NSgWscWdjdPPmxTICooBQCZAoZC68spO66ujwIfICtsS0H+x5kS/ctWBpaalu8fIGuVJdhLsN4MukJG7tupLRlaT7EfOCbs99QZnkZlt1YJioqIiL/Z6brTGKTYqnnWI9TL04B8HvL3wFYdG0RoMzcSSuWLbn2SVP7yUzYkbIEf0Hsbt2/an8ALr++jF+En5alyR3yW5kAsVlgAed5yHOGHR6maqzX9BpKUAAAGI5JREFU3bk7/3X+T2yqlwFJ8iS23t/Kr5d/5XXEawCKmhZlTpM5jKk9BkNdsRy7yJfJ5deXab65ORIk9Krci/2P91PXsS43Rt9g1e1VTD41meLmxXkx+QUGugYptn8e8pwK/1ZAii61dU/wISop1f3kt+7FmaHZpmZceXOFP1r/wczGM7UtTq6Rm13SxWaBXwAKQcHKWytx+c8F97fumBuYs6X7Fg72PSgqJ5lAT0ePUbVG8WzyM/7r/B9OFk74R/sz5fQUyi0vx6rbq0iQJWhbTBGRPEWmkDH51GRAWeskuYfOkrZLSJInseiq0noyp8mcVJUT+Fj7pInDsDSVE9BO2mpOSQ6WLaxunmTyS5kAUUEpgPhF+NFuezsmnZpEbFIsrUq34uH4hwytMbTApO7lF/R19BlbeyzPJz9ndafVFDcvzruod0w8OZHyK8qz5s6aQtWDQ0QkPdZ6rOVB4AOKGBYhPD4cuSCna8WuNCvZjA33NvAu6h3FzIoxquaoVLdXCAq23t8KQCPHDpnaZ0Hqbt27cm90pbp4BnjyOOixtsUp9IgKSgFCEAS23d9GtdXVOOdzDiNdI5a3X87ZIWdxsnDStngFGn0dfcbVGceLyS9Y2XEljmaO+EX6Mf7EeMqvKM9aj7WioiJSqAmJDWGe2zwAhtYYypmXZ9CR6LC49WISZAksvLoQSN96csH3An6RflgYWNC+YqNM7bcgdbe2MbahXdl2AOx6uEvL0hR+RAWlgBAUE0Svvb0YengoEQkR1C9WH89xnkyuPxmpRPwaNYWBrgET6k7g5ZSXLG+/nKKmRXkT8Yavj39NxX8rsuHuBpLkaZutRUQKKvPc5hEWH0Z1++pcfXMVgLG1x+Js48zGext5G/kWRzNHRtVK3XoC6rVPmpRzyHdpq5rgUzdPAQzhLFCIT7YCwJEnR6iyqgqHnhxCT6rHgpYLuDryKhWsK2hbtEKLoa4hk+tP5uWUlyxttxQHUwdehb9i9LHROK90ZtO9TcgUMm2LKSKiEe753+M/j/8A6FahGx7+Hpjpm/FTi5/UrCffNf4uzQDyyIRIDjw+AChrn+THtFVN0LViV4z1jPEJ8+HWu1vaFqdQIyoo+ZiI+AiGHx5O9z3dCYoNoqpdVW6NucXcpnPRlepqW7wvAiM9I6Y2mMrLKS/5u+3f2JnY4RPmw8ijI3H+15ktnltERUWkQCMIAlNOT0FAoHfl3mx9oIwhmd14NnYmdmz23IxfpB9FTYsypvaYNOfZ92gfcbI4KlpXpF6xekD+S1vVBKb6pqpGhzsfFu5gWW0jKij5FDdfN6qtrsaW+1uQSqTMbjybO2Pu4OLgom3RvkiM9YyZ3nA6PlN8+LPNn9ga2/Iy7CXDjwyn8srKbH+wHblCrm0xRUSyzC6vXVx9cxVjPWMqWlfkdcRripkVY3rD6STKE/n9qrL+yXdN0raewMfsneEuw9WC9Qtjd+tkN8+eR3vEF5RcRFRQ8hmxSbFMOTWFVltb4RfpR9kiZbk8/DKLWi9KMzBNJO8w0TdhRqMZ+E71ZXHrxVgbWfM89DlDDg2hyqoq7Hy4U1RURAoM0YnRzHRV1vOYVn8aK2+vBOC3lr9hrGfMZs/NvIl4g4OpA2NqpW09eRH6gitvriCVSBlSfUiK9fklbVVTtC3bFisjKwJjArn46qK2xSm0iApKPuLm25vU/K8mK26tAGB8nfF4jvOksVNjLUsm8jkm+ibMajwL36m+/N7yd6yMrHga8pRBBwdRbXU1dnvtRiEotC2miEi6LLi8gPdR7ylTpAyRCZGEx4dT3b46Q6oPUVpPrvzfetL4O4z0jNKcJzm1uE2ZNhQzL5YnsmsTfR19+lTuA4huntxEVFDyAYnyROa5zaPRxkY8C3mGo5kjpwedZlWnVZjqm2pbPJF0MDMwY07TOfhO9eW3r36jiGERvIO9GXBgANVXV2ffo32ioiKSL3ke8py/b/wNwKxGs1RBskvaLEFHqsMWzy28jniNg6kDY2uPTXMehaBQuXeG1Ui9s3FhJNnNc8D7APGyglPLpSAhKiha5mHgQ+qvr8+CKwtQCAoGVRuE13gv2pVrp23RRLKAuYE53zf7Ht+pvvzS4hcsDS15FPSIvvv74rLGhQOPD4iKiki+YvoZZYxJ+3LtOedzjiRFEu3KtqNN2TYkyZNUsSezGs1K13py6dUl3kS8wdzAnO7O3fNIeu3TxKkJxc2LE5kQycnnJ7UtTqFEVFC0hFwh549rf1BnXR08AzyxNrJmX599bO+5nSJGRbQtnkg2sTC04IfmP+A71Zcfm/+IuYE5Dz88pPe+3tT6rxaHvA+JtRNEtM6JZyc48fwEulJdhtcYzn7v/UglUv5s8yegdNm8Cn+FvYk9X9f5Ot25kmuf9K/SP11FprAhlUgZUHUAILp5cgtRQdECL0Nf0nxzc2afm02iPJEuFbrgNcGL3pV7a1s0EQ1haWjJTy1+4tXUV/zQ7AfM9M24H3ifnnt7UnttbY4+PSoqKiJaIUGWwLQz0wCYWn+qKuZteI3hVLOvRpI8id+u/AbArMazMNYzTnOuqIQo9j/er9zeZXiuyp0fSXbzHH92nIj4CC1LU/gQFZQ8RBAE1txZQ401Nbjmdw0zfTM2dt3Ikf5HcDB10LZ4IrlAEaMi/PLVL7ya9orvm36Pqb4p9wLu0W13N+quq8vxZ8dFRUUkT/nbfSl+QUY46nbFXFKHa2/cMdYz5pevfgFg24NtvAp/hZ2JHePqjEt3rv2P9xObFEt5q/I0KN4gL8TPV9Swr0Elm0okyJL4+9Jxjni+w/1lCHKF+DetCSRCAbw7ZqVdc37hXeQ7Rh0dxZmXZwBoUaoFm7ptopRlKe0KJpKnBMcG89f1v1hxawUxSTEA1HWsy08tfqJDuQ5is0eRXGXn7cfMPngbHcFGtUxGEK1cwtjSfzpJ8iScVzrjE6as9zOj0Yx052uxuQWXXl9iQcsFzG06N7fFz5eM2ruCM3fN0MVWtayohSE/dqlcoGu95BZZeX6LCkouIwgCOx/uZNKpSYTHh2Ooa8iiVovEHjpfOEExQSy5voR/b/9LbFIsAPWL1efnFj/TtmxbUVER0TinvfwZt90DAZB8UnxeQIEUKasH1yJAdoYRR0Zga2yL71RfTPRN0pzPJ8yHssvLIkHC62mvKWFRIg+OIn+hPKd3ERDUzmny/wpqtdzcJCvPb/EJmYsExwbTd39fBh8aTHh8OHUd63Lv63tMbTBVVE6+cGxNbFncZjG+U32Z0XAGRrpG3Hx3k/Y72tN4Y2NcX7qKrh8RjSFXCMw9dC+FcgIg+f9j4Odjj/n10gIAZjaama5yAh9rn7Qu0/qLVE7kCoGfjz0GUp7T5L/cn489Ft09OUB8SmoAuULA/WWImv/x+LPjVF1Vlf2P96Mr1eWXFr9wfdR1nG2ctS2uSD7CzsSOP9v+ic9UH6Y3mI6hriHub91pu70tTTc15bzPeTVFJbVrTUQkI274BBEaI6R4kCYjAP4R8bwLMcLG2IYJdSekO9+XWvvkU275huIfkXb9k+Rzess3NO+EKmSIHedyyGkvf34+9ljtQjXQj8WPf4jTCaSybWW29dhGraK1tCilSH7HwdSBv9v9zcxGM1l8bTFr7qzhmt81Wm9rTbOSzfi5xc/ER1dMca2Jvm6RzLDnwWnAOsNxOkIRZjQclKH15MrrK7wKf4WZvhk9KvXQkJQFiw9RmSvOltlxIikRLSg54LSXP+O3302hRccnGmKbOJf+ZRfhMdZDVE5EMk1Rs6Isbb8Un6k+TK43GX0dfS6/vkzHjXMZt90jxbUWEBHP+O13Oe3lryWJRfI7oXGh7PFem6mxpoZyJtabmOG45Non/ar0SzcNuTBjZ5Z248TsjBNJiaigZJNk/2NqBnYJUiRIeOVXBz2p2OBPJOs4mjmyvMNyXk55yfjaE7BO+jrVa030dYtkxPwL8/mQ5I5EJzwNBw+AgIwgpjbrnGZ7jWT34t47Phy+/wgE6RdZ+ySZeqWtKGphmOY5laC0cNYrbZWXYhUqRAUlm2TkfwTR/yiSc4qbF2dIpV/QEWwyjB8QrzWRz3kQ+IDVd1aDRMGElnYAqVxFAgKQZLqLyWlYT057+dNksRsD1t1g1n5vLGJ/pGTiFiIjyuSm+PkaHamEH7tUBlKe0+TPP3apXOA7N2sTUUHJJqL/USSvEK81kewgCAKTT01GISjoU7kPM1u1YfXgWjhYfOZy0AknSP93pjZvjpmBWYp50nJlo7Bkwo4v273YvmrRVM+pg4WhmGKsAcQg2Wwi+h9F8grxWhPJLHKFwC3fUD5ExfMo2J3Lr65ipGfEkrZLAOUDtaWzPdvcX/E6NJbghCesfjQCKxNzJtU7nep8abmyk+0EPx97TJvKDl+spaB91aK0qeygOu92Zkq3zpd6PjSJqKBkk2T/Y0BEfBpxKEotWvQ/iuQU8VoTyQwpMwqNKMYG2lWKwsnCKZ0x62hfJRpzg5RFs7KSStuwbMZZQoUVHankiz7+3EJ08WQT0f8okleI15pIRqTlhtHFBrd7ZTjt5Z/mGB2sOX+3dKquGtG9KKJNRAUlB4j+R5G8QrzWRNIis26Yn44+SjPrMHnM55lgontRRJuILp4cIvofRfIK8VoTSY3MumHSIy1XjeheFNEmooKiAUT/o0heIV5rIp+jSffK53MluxfHb7+LBNSUFNG9KJLbiC4eERERkQKMJt0rqc0luhdFtIVoQREREREpwGTWDSMIAoGRCdly1YjuRRFtICooIiIiIgWYzLphgBy5akT3okheo1UXz8qVKylVqhSGhobUr1+fW7duaVMcERERkQJJZtwwoqtGpKAhEQRBKx3G9uzZw9ChQ1mzZg3169dn6dKl7Nu3j6dPn2JnZ5futpGRkVhYWBAREYG5ecriQiIiIiJfIp9Wkk3LDZOZMSIiuUVWnt9aU1Dq169P3bp1+ffffwFQKBSUKFGCyZMn891336mNTUhIICEhQfU5MjKSEiVKiAqKiIiIiIhIASIrCopWXDyJiYl4eHjQunXrj4JIpbRu3Rp3d/cU4xcuXIiFhYXqp0SJEnkproiIiIiIiEgeoxUFJTg4GLlcjr29vdpye3t7AgICUoyfM2cOERERqh8/P7+8ElVERERERERECxSILB4DAwMMDAy0LYaIiIiIiIhIHqEVC4qNjQ06OjoEBgaqLQ8MDMTBwUEbIomIiIiIiIjkI7SioOjr61O7dm3Onz+vWqZQKDh//jwNGzbUhkgiIiIiIiIi+QituXi++eYbhg0bRp06dahXrx5Lly4lJiaGESNGaEskERERERERkXyC1hSUfv36ERQUxPz58wkICMDFxYXTp0+nCJwVERERERER+fLQWh2UnCAWahMRERERESl45Ps6KCIiIiIiIiIi6VEg0ow/J9noExkZqWVJRERERERERDJL8nM7M86bAqmgREVFAYgVZUVERERERAogUVFRWFhYpDumQMagKBQK3r9/j5mZGRJJ5ppcJffv8fPzE+NW8hDxvGsH8bxrB/G8awfxvGuH7Jx3QRCIiorC0dERqTT9KJMCaUGRSqUUL148W9uam5uLF7AWEM+7dhDPu3YQz7t2EM+7dsjqec/IcpKMGCQrIiIiIiIiku8QFRQRERERERGRfMcXo6AYGBjw448/ik0H8xjxvGsH8bxrB/G8awfxvGuH3D7vBTJIVkRERERERKRw88VYUEREREREREQKDqKCIiIiIiIiIpLvEBUUERERERERkXyHqKCIiIiIiIiI5DtEBUVEREREREQk3/HFKCgrV66kVKlSGBoaUr9+fW7duqVtkQoNCxcupG7dupiZmWFnZ0f37t15+vSp2pj4+HgmTpyItbU1pqam9OrVi8DAQC1JXDhZtGgREomEadOmqZaJ5z13ePfuHYMHD8ba2hojIyOqVavGnTt3VOsFQWD+/PkULVoUIyMjWrduzfPnz7UoccFHLpfzww8/ULp0aYyMjChbtiy//vqrWtM58bznnMuXL9OlSxccHR2RSCQcPnxYbX1mznFoaCiDBg3C3NwcS0tLRo0aRXR0dNaFEb4Adu/eLejr6wsbN24UHj16JIwZM0awtLQUAgMDtS1aoaBdu3bCpk2bBC8vL8HT01Po2LGj4OTkJERHR6vGjBs3TihRooRw/vx54c6dO0KDBg2ERo0aaVHqwsWtW7eEUqVKCdWrVxemTp2qWi6ed80TGhoqlCxZUhg+fLhw8+ZNwcfHRzhz5ozw4sUL1ZhFixYJFhYWwuHDh4X79+8LXbt2FUqXLi3ExcVpUfKCzYIFCwRra2vh+PHjgq+vr7Bv3z7B1NRUWLZsmWqMeN5zzsmTJ4Xvv/9eOHjwoAAIhw4dUlufmXPcvn17oUaNGsKNGzeEK1euCOXKlRMGDBiQZVm+CAWlXr16wsSJE1Wf5XK54OjoKCxcuFCLUhVePnz4IADCpUuXBEEQhPDwcEFPT0/Yt2+faoy3t7cACO7u7toSs9AQFRUllC9fXnB1dRWaN2+uUlDE8547zJ49W2jSpEma6xUKheDg4CD8+eefqmXh4eGCgYGBsGvXrrwQsVDSqVMnYeTIkWrLevbsKQwaNEgQBPG85wafKyiZOcePHz8WAOH27duqMadOnRIkEonw7t27LO2/0Lt4EhMT8fDwoHXr1qplUqmU1q1b4+7urkXJCi8REREAWFlZAeDh4UFSUpLad+Ds7IyTk5P4HWiAiRMn0qlTJ7XzC+J5zy2OHj1KnTp16NOnD3Z2dtSsWZN169ap1vv6+hIQEKB23i0sLKhfv7543nNAo0aNOH/+PM+ePQPg/v37XL16lQ4dOgDiec8LMnOO3d3dsbS0pE6dOqoxrVu3RiqVcvPmzSztr0B2M84KwcHByOVy7O3t1Zbb29vz5MkTLUlVeFEoFEybNo3GjRtTtWpVAAICAtDX18fS0lJtrL29PQEBAVqQsvCwe/du7t69y+3bt1OsE8977uDj48Pq1av55ptvmDt3Lrdv32bKlCno6+szbNgw1blN7Z4jnvfs89133xEZGYmzszM6OjrI5XIWLFjAoEGDAMTzngdk5hwHBARgZ2entl5XVxcrK6ssfw+FXkERyVsmTpyIl5cXV69e1bYohR4/Pz+mTp2Kq6srhoaG2hbni0GhUFCnTh1+//13AGrWrImXlxdr1qxh2LBhWpau8LJ371527NjBzp07qVKlCp6enkybNg1HR0fxvBdSCr2Lx8bGBh0dnRSZC4GBgTg4OGhJqsLJpEmTOH78OBcuXKB48eKq5Q4ODiQmJhIeHq42XvwOcoaHhwcfPnygVq1a6Orqoqury6VLl1i+fDm6urrY29uL5z0XKFq0KJUrV1ZbVqlSJd68eQOgOrfiPUezzJw5k++++47+/ftTrVo1hgwZwvTp01m4cCEgnvf/tXPHIMmEYRzAny/LE4kyCBKCC4OgoSUU42h0aYvGaJAWqQjaWqIxaGppa6lBwckI57saHFSMi4JAnXIxgiIUjCDu/21Hfl98GH7ldfx/8IL4PuDD/wV9hnv9Dp1kHAwG5eHhoW3/7e1Nnp6ePn0Orh9QvF6vhMNh0XXdfs+yLNF1XTRN62Fn7gFANjc35fT0VAzDkFAo1LYfDodlYGCg7QzK5bLUajWeQRdisZjc3NzI1dWVvSKRiKysrNivmfv/Nz8//9c1+kqlIhMTEyIiEgqFJBgMtuXeaDSkUCgw9y60Wi3p62v/yfJ4PGJZlogw9+/QScaapsnz87NcXl7aNYZhiGVZMjc397kP7OoR3x8inU5DURScnJzg9vYWiUQCgUAA9/f3vW7NFdbX1zE8PIyLiwvU63V7tVotu2ZtbQ2qqsIwDJRKJWiaBk3Teti1O72/xQMw969QLBbR39+Pvb09VKtVpFIp+P1+JJNJu2Z/fx+BQABnZ2e4vr7G4uIir7t2KR6PY3x83L5mnMlkMDo6iu3tbbuGuXev2WzCNE2YpgkRwcHBAUzTxN3dHYDOMl5YWMDs7CwKhQJyuRympqZ4zfhfDg8PoaoqvF4votEo8vl8r1tyDRH5cB0fH9s1Ly8v2NjYwMjICPx+P5aWllCv13vXtEv9OaAw96+RzWYxMzMDRVEwPT2No6Ojtn3LsrC7u4uxsTEoioJYLIZyudyjbt2h0Whga2sLqqrC5/NhcnISOzs7eH19tWuYe/fOz88//D6Px+MAOsv48fERy8vLGBwcxNDQEFZXV9FsNj/dyy/g3d/wERERETmA659BISIiop+HAwoRERE5DgcUIiIichwOKEREROQ4HFCIiIjIcTigEBERkeNwQCEiIiLH4YBCREREjsMBhYiIiByHAwoRERE5DgcUIiIicpzfWitjoqVrsVcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", - "Copyright (c) 2023 HiGHS under MIT licence terms\n", - "Weak formulation solved with appsi_highs in 0.03061 seconds.\n" + "Collecting gurobipy\n", + " Downloading gurobipy-10.0.3-cp310-cp310-manylinux2014_x86_64.whl (12.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.7/12.7 MB\u001b[0m \u001b[31m48.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: gurobipy\n", + "Successfully installed gurobipy-10.0.3\n", + "Collecting cplex\n", + " Downloading cplex-22.1.1.0-cp310-cp310-manylinux1_x86_64.whl (44.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.2/44.2 MB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: cplex\n", + "Successfully installed cplex-22.1.1.0\n", + "Collecting xpress\n", + " Downloading xpress-9.2.2-cp310-cp310-manylinux1_x86_64.whl (72.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.8/72.8 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy<2.0a0,>=1.21 in /usr/local/lib/python3.10/dist-packages (from xpress) (1.23.5)\n", + "Installing collected packages: xpress\n", + "Successfully installed xpress-9.2.2\n" ] + } + ], + "source": [ + "if 'google.colab' in sys.modules:\n", + " %pip install gurobipy\n", + " %pip install cplex\n", + " %pip install xpress" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "0DuduTwSoEGM", + "outputId": "b7b5c294-7760-441a-a8d4-af575bead6be" + }, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhURxeH392NOwkhAiSE4O4aXIK7O6U4tFCgSIVSQVugFKctLgFa3IMUD+4OQQIkQDzEd+f7I18WljjEM+/z7AOZO/feM1fPPTPnNwohhEAikUgkEokkG6HMagMkEolEIpFIPkQ6KBKJRCKRSLId0kGRSCQSiUSS7ZAOikQikUgkkmyHdFAkEolEIpFkO6SDIpFIJBKJJNshHRSJRCKRSCTZDumgSCQSiUQiyXZIB0UikUgkEkm2QzooeZBVq1ahUCh4/Phxntn3Dz/8gEKhyNR9fgxz5syhaNGiqFQqKlWqlOb1jx07hkKhYOvWrelvXDbkU9vr5+dHly5dsLGxQaFQMH/+/PQ1MBNo2LAhDRs2TNdt5pT7RZK7kQ5KNuDmzZv06dOHggULYmhoiKOjI7179+bmzZuftN3p06ezffv29DFSkuEcPHiQr7/+mrp167Jy5UqmT5+eZN0NGzbkyJdpdmPs2LEcOHCAyZMns3btWlq0aJHVJmUa4eHh/PDDDxw7diyrTUkz69evR6FQYGZmplOu0WhYtWoV7dq1o3DhwpiamlKuXDl+/vlnIiMjE2zHz8+PgQMHUqBAAYyNjalSpQpbtmxJdJ+bNm2iSpUqGBkZYWtry6BBg3jz5k2idf/66y9Kly6NkZERxYsX548//kh126Kiopg4cSKOjo4YGxtTs2ZNDh06lOr1cxVCkqX8888/wsDAQNjb24tvvvlG/Pnnn+Lbb78VDg4OwsDAQPz7778fvW1TU1PRv3//BOWxsbEiIiJCaDSaT7D841i5cqUAhLe3d6bud+rUqSK7X+4TJ04USqVSREVFpVi3devWwtnZOUH50aNHBSC2bNmSARZmPz61vXZ2dqJ3797pbFXm0qBBA9GgQYM0r/f69WsBiKlTpyZYFhMTIyIiIj7duAwgNDRUODo6ClNTU2FqappgGSBq1aolfv75Z7F8+XIxcOBAoVQqRcOGDXWeecHBwaJYsWLC3NxcfPvtt2LhwoWifv36AhDr16/X2e7ixYsFIJo0aSIWLVokJk+eLExMTESFChUSHKelS5cKQHTu3FksX75c9O3bVwBi5syZqWpfjx49hJ6enhg/frxYtmyZqF27ttDT0xMnTpz4yCOWc8neT+xczoMHD4SJiYkoVaqUePXqlc6y169fi1KlSglTU1Px8OHDj9p+Ug5KViIdlKQZOHBgggduUkgHJY5Pba9CoRAjR45MN3siIiKEWq1Ot+2lhoxwULIzEydOFCVLlhS9e/dOcL9ERUWJU6dOJVhn2rRpAhCHDh3Sls2ePVsA4vDhw9oytVotqlevLuzt7bUfClFRUcLKykrUr19fx8HZtWuXAMSCBQu0ZeHh4cLGxka0bt1aZ//xtgYEBCTbNi8vLwGIOXPmaMsiIiKEq6urqF27drLr5kay9xM7lzN06FABiOPHjye6/L///hOAGDp0qLYs/kV7+/Zt0bVrV2Fubi6sra3FF198oePJAwl+8c5KYk6Cs7OzaN26tTh69KioWrWqMDIyEuXKlRNHjx4VQsRFesqVKycMDQ1FlSpVxKVLl3RsvXr1qujfv79wcXERhoaGws7OTgwcOFC8efNGp15qHJQ5c+YIQDx+/DjBskmTJgl9fX3tjX78+HHRpUsXUbhwYWFgYCAKFSokxowZI8LDw3XW+9BB8fb2FoBYuXJlgn0k9tD28fERAwcOFAUKFBAGBgaiTJky4q+//kqyDe8TExMjfvzxR1G0aFFhYGAgnJ2dxeTJk0VkZKTOPj/8JWabEHEvpA/rxjsr8S9sDw8P8fPPP4uCBQsKQ0ND0bhxY3H//v0E2zp79qxwd3cXFhYWwtjYWNSvX1+cPHky2fZoNBphY2Mjxo4dqy1Tq9XC0tJSKJVKERgYqC2fOXOmUKlUIjQ0VFt2+/Zt0blzZ5EvXz5haGgoqlatKnbs2KGzD39/fzFu3DhRrlw5YWpqKszNzUWLFi3ElStXdOol5qBERkaK1q1bCwsLi0RfVkK8uw4//MXz8OFD0aVLF5EvXz5hbGwsatasKXbv3p3ovjdu3Ci++eYb4ejoKBQKhQgMDBT9+/cXpqam4smTJ6J169bC1NRUODo6ioULFwohhLh27Zpo1KiRMDExEU5OTgm+2JNyqBO7fz50UKKiosR3330nqlSpIiwsLISJiYlwc3MTR44c0daJv/4//MVf94ntPzXXsRDvniUnTpwQ1atXF4aGhsLFxUWsXr06QXsePHggHjx4kMgZSpx79+4JAwMDsWfPHu0xTg3Xrl1L4Ey0bdtW2NraJqgb//w5ePCgEEKIixcvCkAsWrQoQV0zMzNRp04d7d979uwRgNizZ49OvdOnTwtArF27Nlk7J0yYIFQqlQgODtYpnz59ugDE06dPU25sLkKOQclCdu3aRZEiRahXr16iy+vXr0+RIkXYs2dPgmXdunUjMjKSGTNm0KpVKxYsWMCQIUO0y9euXYuhoSH16tVj7dq1rF27lqFDhyZrz4MHD+jVqxdt27ZlxowZBAYG0rZtW9avX8/YsWPp06cP06ZN4+HDh3Tr1g2NRqNd99ChQzx69IiBAwfyxx9/0KNHDzZt2kSrVq0QQqTpuHTr1g2FQsHmzZsTLNu8eTPNmzcnX758AGzZsoXw8HCGDx/OH3/8gbu7O3/88Qf9+vVL0z6Tw8/Pj1q1auHp6cmoUaP4/fffKVasGIMGDUrVOJDPP/+c77//nipVqjBv3jwaNGjAjBkz6NGjh7bO2rVrqVevHoaGhtrzVb9+/US3980331CpUiXy58+vrfuhHTNnzmTbtm2MHz+eyZMnc/bsWXr37q1T58iRI9SvX5+QkBCmTp3K9OnTCQoKonHjxpw7dy7J9igUCurWrcvx48e1ZdeuXSM4OBiAU6dOactPnDhB5cqVtWMFbt68Sa1atbh9+zaTJk3it99+w9TUlA4dOrBt2zbteo8ePWL79u20adOGuXPnMmHCBK5fv06DBg148eJFkrZFRETQtm1bTp8+jaenJ3Xq1Em0Xv369Vm7di0AzZo10x5HiDvfderU4cCBA4wYMYJffvmFyMhI2rVrp2NjPD/99BN79uxh/PjxTJ8+HQMDAwDUajUtW7akcOHCzJ49myJFijBq1ChWrVpFixYtqFatGrNmzcLc3Jx+/frh7e2dZLvSQkhICH/++ScNGzZk1qxZ/PDDD7x+/Rp3d3euXLkCgK2tLUuWLAGgY8eO2vZ36tQpye2m5jqO58GDB3Tp0oVmzZrx22+/kS9fPgYMGJBgXF2TJk1o0qRJqts2ZswYGjVqRKtWrVK9DoCvry8A+fPn15ZFRUVhbGycoK6JiQkAFy9e1NYDEq1rbGzM5cuXtc/Cy5cvA1CtWjWdelWrVkWpVGqXJ8Xly5cpUaIEFhYWOuU1atQA0J6/PENWe0h5laCgIAGI9u3bJ1uvXbt2AhAhISFCiHdfNu3atdOpN2LECAGIq1evasuS6uJJKoICiNOnT2vLDhw4IABhbGwsnjx5oi1ftmyZALTRFSFEgoiFEEJs3LgxQYQotV08tWvXFlWrVtUpO3funADEmjVrkt3vjBkzhEKh0LH5UyIogwYNEg4ODgmiQT169BCWlpaJ2hDPlStXBCA+//xznfLx48cLQOerNi1fhCl18ZQuXVpnLMvvv/8uAHH9+nUhRFwUpHjx4sLd3V0nbB0eHi5cXFxEs2bNkt3/nDlzhEql0l6XCxYsEM7OzqJGjRpi4sSJQoi4qIqVlZVOpKVJkyaifPnyOl/dGo1G1KlTRxQvXlxbFhkZmaCrxNvbWxgaGooff/wxQXu3bNkiQkNDRYMGDUT+/PnF5cuXk7U/HiBBF8+YMWMEoNPnHxoaKlxcXESRIkW0dsXvu2jRogmugf79+wtATJ8+XVsWGBgojI2NhUKhEJs2bdKW37lzJ8E19ykRlNjY2ATjmAIDA4WdnZ347LPPtGXJdfF8uP+0XMfxz5L37/tXr14JQ0NDMW7cOJ31nZ2dE72OE2P37t1CT09P3Lx5UwiRtvuladOmwsLCQie6N3r0aKFUKhNEanv06CEAMWrUKCFE3HFSKBRi0KBBOvXizxugfTaMHDlSqFSqRG2wtbUVPXr0SNbOsmXLisaNGycov3nzpgDE0qVLU2xrbkJGULKI0NBQAMzNzZOtF788JCREp3zkyJE6f48ePRqAvXv3frRNZcqUoXbt2tq/a9asCUDjxo1xcnJKUP7o0SNt2ftfF5GRkbx584ZatWoBcOnSpTTb0r17dy5evMjDhw+1ZR4eHhgaGtK+fftE9/v27VvevHlDnTp1EEKk+LWSGoQQ/PPPP7Rt2xYhBG/evNH+3N3dCQ4OTrZ98efjq6++0ikfN24cQKLRsfRg4MCB2i95QBuliz9nV65c4f79+/Tq1Qt/f39tm96+fUuTJk04fvy4ToTsQ+rVq4dareb06dNAXKSkXr161KtXjxMnTgBw48YNgoKCtPsOCAjgyJEjdOvWjdDQUO0+/f39cXd35/79+zx//hwAQ0NDlMq4x5Narcbf3x8zMzNKliyZ6PEODg6mefPm3Llzh2PHjn1UinY8e/fupUaNGri5uWnLzMzMGDJkCI8fP+bWrVs69fv375/o1zXERR3isbKyomTJkpiamtKtWzdtecmSJbGystK5nz4FlUqlPfcajYaAgABiY2OpVq3aR92LkPbruEyZMjqRYVtbW0qWLJmgjY8fP06V5EB0dDRjx45l2LBhlClTJk22T58+HU9PT2bOnImVlZW2/PPPP0elUtGtWzdOnz7Nw4cPmTFjhjZKFhERAcRFXbp168bq1av57bffePToESdOnKB79+7o6+vr1I2IiNC5797HyMhIWy8pIiIiMDQ0THTd9/eTV5AOShYR73jEOypJkZQjU7x4cZ2/XV1dUSqVn6Qv8r4TAmBpaQlA4cKFEy0PDAzUlgUEBPDll19iZ2eHsbExtra2uLi4AGhD/2mha9euKJVKPDw8gDhHYcuWLbRs2VIn/Pn06VMGDBiAtbU1ZmZm2Nra0qBBg4/e74e8fv2aoKAgli9fjq2trc5v4MCBALx69SrJ9Z88eYJSqaRYsWI65fb29lhZWfHkyZNPtjExPjyX8V1i8efs/v37QNzL9cN2/fnnn0RFRSV7/KpUqYKJiYnWGYl3UOrXr8+FCxeIjIzULot/0T948AAhBN99912CfU6dOhV4dyw1Gg3z5s2jePHiGBoakj9/fmxtbXW6kt5nzJgxnD9/Hk9PT8qWLfvRxw3izlnJkiUTlJcuXVq7/H3ir/MPiU9HfR9LS0sKFSqUQGPE0tJS5376VFavXk2FChUwMjLCxsYGW1tb9uzZ89H3RFqv4w+vP4i7Bj+2jfPmzePNmzdMmzYtTet5eHjw7bffMmjQIIYPH66zrEKFCmzYsIGHDx9St25dihUrxoIFC7Tdpe+nMC9btoxWrVoxfvx4XF1dqV+/PuXLl6dt27Y6dY2NjYmOjk7UlsjIyCQd2XiMjY21XUofrhu/PC+hl9UG5FUsLS1xcHDg2rVryda7du0aBQsWTNAn+SHpIaqkUqnSVC7eG1sS/xUyYcIEKlWqhJmZGRqNhhYtWiT7JZ4Ujo6O1KtXj82bNzNlyhTOnj3L06dPmTVrlraOWq2mWbNmBAQEMHHiREqVKoWpqSnPnz9nwIABye43qeOlVqt1/o7fRp8+fejfv3+i61SoUCHF9mS26FVK5yy+XXPmzEky2vChxsT76OvrU7NmTY4fP86DBw/w9fWlXr162NnZERMTg5eXFydOnKBUqVLal3T8PsePH4+7u3ui241/AU6fPp3vvvuOzz77jJ9++glra2uUSiVjxoxJ9Ly2b9+eTZs2MXPmTNasWaONvmQGSb00PuV+Su31mRjr1q1jwIABdOjQgQkTJlCgQAFUKhUzZszQiUh+DKm9jlPTxtQSHBzMzz//zIgRIwgJCdFGk8PCwhBC8PjxY0xMTChQoIDOeocOHaJfv360bt2apUuXJrrtLl260K5dO65evYparaZKlSpaXZgSJUpo61laWrJjxw6ePn3K48ePcXZ2xtnZmTp16mBra6uNzDg4OKBWq3n16pWOPdHR0fj7++Po6JhsWx0cHLRRxPd5+fIlQIrr5zakg5KFtGnThhUrVnDy5EmdcHI8J06c4PHjx4kObr1//77Ol9uDBw/QaDQUKVJEW5ZZL8XAwEAOHz7MtGnT+P7773Vs/BS6d+/OiBEjuHv3Lh4eHpiYmGi/WACuX7/OvXv3WL16tc6g2NSIGsVHFIKCgnTKP/wStLW1xdzcHLVaTdOmTdPcBmdnZzQaDffv39d+gUPcQMygoCCcnZ3TvE349HPr6uoKgIWFxUe1C+K6eWbNmoWnpyf58+enVKlSKBQKypYty4kTJzhx4gRt2rTR1i9atCgQ59yktM+tW7fSqFEj/vrrL53yoKAgnYGO8XTo0IHmzZszYMAAzM3NtQNAPwZnZ2fu3r2boPzOnTva5RnN+9fn+90SqYm4bd26laJFi/Lvv//qXCfxUap40nINZdR1nBoCAwMJCwtj9uzZzJ49O8FyFxcX2rdvryNK6eXlRceOHalWrRqbN29GTy/pV52BgQHVq1fX/u3p6QmQ6DXq5OSkjQ4FBQVx8eJFOnfurF0e7+xfuHBBZyDvhQsX0Gg0KXY9VqpUiaNHjxISEqLzUerl5aWz/byC7OLJQiZMmICxsTFDhw7F399fZ1lAQADDhg3DxMSECRMmJFh30aJFOn/HKxW2bNlSW2ZqaprgBZwRxH8tffh19KlKp507d0alUrFx40a2bNlCmzZtMDU1TXa/Qgh+//33FLdtYWFB/vz5dTJRABYvXqzzt0qlonPnzvzzzz/cuHEjwXZev36d7H7iH1IfHou5c+cC0Lp16xRtTQxTU9NP6sKqWrUqrq6u/Prrr4SFhSVYnlK7IM5BiYqKYv78+bi5uWlfePGZYy9evNAZh1CgQAEaNmzIsmXLtF+ESe1TpVIluJ62bNmS6NdlPP369WPBggUsXbqUiRMnpmh/UrRq1Ypz585x5swZbdnbt29Zvnw5RYoUSfMYiI8h3oF8//p8+/Ytq1evTnHdxO4LLy8vnfbAu2yV1DwjMuo6fvjwYYpRnQIFCrBt27YEv0aNGmFkZMS2bduYPHmytv7t27dp3bo1RYoUYffu3WnqFrl//z5Lly6lTZs2OhGUxJg8eTKxsbGMHTtWW9a4cWOsra0TOMhLlizBxMRE5zi9efOGO3fuEB4eri3r0qULarWa5cuXa8uioqJYuXIlNWvWTNDdntuREZQspHjx4qxevZrevXtTvnx5Bg0ahIuLC48fP+avv/7izZs3bNy4Ufuweh9vb2/atWtHixYtOHPmDOvWraNXr15UrFhRW6dq1ap4enoyd+5cHB0dcXFx0Q5wTU8sLCyoX78+s2fPJiYmhoIFC3Lw4MFPTpssUKAAjRo1Yu7cuYSGhtK9e3ed5aVKlcLV1ZXx48fz/PlzLCws+Oeff1Ldz/35558zc+ZMPv/8c6pVq8bx48e5d+9egnozZ87k6NGj1KxZk8GDB1OmTBkCAgK4dOkSnp6eBAQEJLmPihUr0r9/f5YvX05QUBANGjTg3LlzrF69mg4dOtCoUaO0HZT/U7VqVTw8PPjqq6+oXr06ZmZmOtGllFAqlfz555+0bNmSsmXLMnDgQAoWLMjz5885evQoFhYW7Nq1K9lt1K5dGz09Pe7evauT4l6/fn3tA/rDFPpFixbh5uZG+fLlGTx4MEWLFsXPz48zZ87g4+PD1atXgbjo4o8//sjAgQOpU6cO169fZ/369dooTFKMGjWKkJAQvvnmGywtLZkyZUqqj0k8kyZNYuPGjbRs2ZIvvvgCa2trVq9ejbe3N//880+mdB81b94cJycnBg0axIQJE1CpVPz999/Y2try9OnTZNdt06YN//77Lx07dqR169Z4e3uzdOlSypQpo+OMGhsbU6ZMGTw8PChRogTW1taUK1eOcuXKJdhmRl3H8SnGyY2dMzExoUOHDgnKt2/fzrlz53SWhYaG4u7uTmBgIBMmTEgweNfV1VUnEaBMmTJ07doVJycnvL29WbJkCdbW1gm6hGbOnMmNGzeoWbMmenp6bN++nYMHD/Lzzz/rRF+MjY356aefGDlyJF27dsXd3Z0TJ06wbt06fvnlF6ytrbV1Fy5cyLRp0zh69Kh2LqWaNWvStWtXJk+ezKtXryhWrBirV6/WvhPyHFmQOST5gGvXromePXsKBwcHoa+vL+zt7UXPnj21KaHvE5/+d+vWLdGlSxdhbm4u8uXLJ0aNGpVAcvnOnTuifv36wtjYONVCbR9CImmY8Sm676sd+vj4iI4dOworKythaWkpunbtKl68eJEgjTGtSrIrVqwQgDA3N09UevvWrVuiadOmwszMTOTPn18MHjxYXL16NUEKcWJpm+Hh4WLQoEHC0tJSmJubi27duolXr14lmnrp5+cnRo4cKQoXLqw9R02aNBHLly9PsQ0xMTFi2rRpwsXFRejr64vChQsnKnCVlrTJsLAw0atXL2FlZZWoUNuHyqpJpVVfvnxZdOrUSdjY2AhDQ0Ph7OwsunXrpqOumRzVq1cXgPDy8tKW+fj4CEAULlw40XUePnwo+vXrJ+zt7YW+vr4oWLCgaNOmjdi6dau2TmRkpBg3bpxwcHAQxsbGom7duuLMmTMJUmqTau/XX38tAK0wWlIkdn3H29ilSxdhZWUljIyMRI0aNZIUaktMxTapc9mgQQNRtmzZBOWJ3X8XL14UNWvWFAYGBsLJyUnMnTs3VWnGGo1GTJ8+XTg7OwtDQ0NRuXJlsXv3btG/f/8EKb2nT58WVatWFQYGBqkSakvNdZzUsyQxxdu0pBl/SGLHOCkBuvjfh7ILPXr00Io8Ojo6imHDhgk/P78E+9q9e7eoUaOGMDc3FyYmJqJWrVpi8+bNSdq2fPlyUbJkSWFgYCBcXV3FvHnzEkwtEn+M35drECJOOXb8+PHC3t5eGBoaiurVq4v9+/en7eDkEhRCfMSoJUmW8cMPPzBt2jRev36daF+8RCKRSCS5ATkGRSKRSCQSSbZDOigSiUQikUiyHdJBkUgkEolEku2QY1AkEolEIpFkO2QERSKRSCQSSbZDOigSiUQikUiyHTlSqE2j0fDixQvMzc0zfY4TiUQikUgkH4cQgtDQUBwdHVMUPcyRDsqLFy/ynOSvRCKRSCS5hWfPnlGoUKFk6+RIB8Xc3ByIa2BKs/xKJBKJRCLJHoSEhFC4cGHtezw5cqSDEt+tY2FhIR0UiUQikUhyGKkZniEHyUokEolEIsl2SAdFIpFIJBJJtkM6KBKJRCKRSLId0kGRSCQSiUSS7ZAOikQikUgkkmyHdFAkEolEIpFkO9LsoBw/fpy2bdvi6OiIQqFg+/btOsuFEHz//fc4ODhgbGxM06ZNuX//vk6dgIAAevfujYWFBVZWVgwaNIiwsLBPaohEIpFIJJLcQ5odlLdv31KxYkUWLVqU6PLZs2ezYMECli5dipeXF6ampri7uxMZGamt07t3b27evMmhQ4fYvXs3x48fZ8iQIR/fColEIpFIJLkKhRBCfPTKCgXbtm2jQ4cOQFz0xNHRkXHjxjF+/HgAgoODsbOzY9WqVfTo0YPbt29TpkwZzp8/T7Vq1QDYv38/rVq1wsfHB0dHxxT3GxISgqWlJcHBwVKoTSKRSCS5BrVGcM47gFehkRQwN6KGizUqZe6Zcy4t7+90VZL19vbG19eXpk2basssLS2pWbMmZ86coUePHpw5cwYrKyutcwLQtGlTlEolXl5edOzYMcF2o6KiiIqK0v4dEhKSnmZLJBKJRJLl7L/xkmm7bvEy+F2Pg4OlEVPblqFFOYcstCxrSNdBsr6+vgDY2dnplNvZ2WmX+fr6UqBAAZ3lenp6WFtba+t8yIwZM7C0tNT+5ESBEolEIslN7L/xkuHrLuk4JwC+wZEMX3eJ/TdeZpFlWUeOyOKZPHkywcHB2t+zZ8+y2iSJRCKRSNIFtUYwbdctEhtvEV82bdct1JqPHpGRI0lXB8Xe3h4APz8/nXI/Pz/tMnt7e169eqWzPDY2loCAAG2dDzE0NNRODCgnCJRIJBJJbuKcd0CCyMn7COBlcCTnvAMyz6hsQLo6KC4uLtjb23P48GFtWUhICF5eXtSuXRuA2rVrExQUxMWLF7V1jhw5gkajoWbNmulpjkQikUgk2Z5XoUk7Jx9TL7eQ5kGyYWFhPHjwQPu3t7c3V65cwdraGicnJ8aMGcPPP/9M8eLFcXFx4bvvvsPR0VGb6VO6dGlatGjB4MGDWbp0KTExMYwaNYoePXqkKoNHIpFIJJLcRAFzo3Stl1tIs4Ny4cIFGjVqpP37q6++AqB///6sWrWKr7/+mrdv3zJkyBCCgoJwc3Nj//79GBm9O7Dr169n1KhRNGnSBKVSSefOnVmwYEE6NEcikUgkkpxFDRdrHCyN8A2OTHQcigKwt4xLOc5LfJIOSlYhdVAkEolEkpuIz+IBdJwUgQYlSpb0qZIrUo3T8v7OEVk8EolEIpHkZlqUc2BJnyrYW+p246jxp7jrsVzhnKSVdBVqk0gkEolE8nG0KOdAszL2WiXZoOgnDNrXkecvYth8szrdynbLahMzFemgSCQSSQ4kt0ui51VUSgW1XW3+/1dBHr2dzI/Hf2TEnhHUd66PvZl9njn3cgyKRCKR5DCkJHreIVodTc0/a3LF9wrtSrZjWNml/Lg75557OQZFIpFIcilSEj1vYaAyYE2HNegr9Tl06zXD11/MM+deOigSiUSSQ5CS6HmT8nblmdpgGtbRQ/LUuZcOikQikeQQpCR63qWB4yD0sEVB4mNNcuO5lw6KRCKR5BCkJHrexT8sJlX1ctO5lw6KRCKR5BCkJHreJS+ee5lmLJFIJDmElCTRBRqsTZU6kuh5JSU1PcjOxyovyuFLB0UikUhyCCqlgqltyzB83SUU8MGLSgAKvNVzOPHUlIZFGsp05DSQ3Y/V++f+QwQaIG55dnGo0gPZxSORSCQ5iKQk0R0sjXB2Pkiw4j/abGjD/KNHZTpyKskpqdvx594hETn8KPNF1ClumkWWZQxSqE0ikeQugp5BuH/Sy01swKpw5tmTQSTWHRGjiaL9pvYcfOBJoaiVqIRNouvGdwecnNg4V31xfwxqjcBt1pEks6Oy47GKO/f+fLVvGpdf/YfC4CGR6nDG1x7PnOZzstq8ZEnL+1s6KBKJJPcQ9AwWVoXYqKTr6BnCqIu5wklJjPCYcBqvGIbv0+4p1t04uNZ7sup5kzMP/em54myK9bLjsXoW/IzyS8oTHBUMgL5SnxsjblDCpkQWW5Y0UklWIpHkTcL9k3dOIG55chGWHI6Jvglf1fghVXVzU0rqx5KTU7cLWxbm9xa/A6BAQYwmhrEHxmaxVemHdFAkEokkl1E4n2Wq6uWmlNSPpYC5YSrrZc9j1a9iP9qVbIf4/5Dpvff3svf+3iy2Kn2QDopEIsnxxKhjuPfmHntyyYP5U4lPSU1uxIRDLktJ/Rg0QsOGuz8Sy+v/Z8IkREH2PlYKhYJlbZZhY/yu+2nsgbFEq6Oz0Kr0QaYZSySSbE9UbBRPg5/yKPARV/yucN3vOvf97/M89Dn+Ef5ExsaF3ysLJa0xy2Jrs57UpKSObuqQbQZ9ZgVqjZrPd33OqiurMDGog2305ASp2/FHJ7un79qb2bO49WK6b40bd3TP/x5/eP3BuDrjstiyT0MOkpVIJFlOeEw4T4Ke8DjoMY+DHnP7zW1uvb7F46DH+IX5ERYTlqrtVBZKLqXGQRnyHzhW+jSjcwCJaXvEKl4ToL+cCk4ajg04hpFe9uy6yEii1dH0+bcPW25tQaVQsarDKvIrm2RrHZTU0GNrDzxuegBgbmDO/dH3sTOzy2KrdJFZPBKJJFsREhXC46DHWifkSfATHgQ84L7/fXxCfQiJCvnkfShQUF/fkmPRiYfqdcgjDgq8S0e+++olP54ch/dbT5TKuO6N/hX7s7L9ShSK7BsdSG8iYiLosqULe+/vRV+pj0cXDzqW7ghkbyXZ1OAf7k/ZxWXxe+sHwKDKg/iz3Z9ZbJUu0kGRSCSZhhCCwMjABA5IfDTEO9CbkOi0OyBWRlaYG5gTFRtFUGQQ0ZqEfeq2JrbUd65P9zLd+eP8H4Q9OSUjKMnwJOgJ9VfV52nwU23ZPPd5jKk1JuuMykRCo0Jpt6kdxx4fw1jPmG3dt+FezD2rzUpXdt7dSftN7bV/Xxh8gaqOVbPQIl2kgyKRSNINIQSv3r7SOh0fOiFPgp8QFp26LpgPsTS0xCWfC2Xzl6WcXTlM9E04/ew0Z33O8jT4qTYzIR4DlQHlbMvRpWwXhlUdRj7jfJx7fo5OHp14Hvqc0vrmXI81QKVJZubXXK6DkhIPAh7QYFUDXoS+AECpUHKgzwGaFm2axZZlLAERAbRc35Jzz89hbmDOnl57qOdcL6vNyhAGbB/A6qurAahZsCZnBp3JNlEy6aBIJJJUoxEaXoa+TNIBeRr8lIjYiI/evqm+KSVsSlAqfylK2JTQ/opbF8dIz4hVV1ex/tp6Lr28xNuYtwnWdzBzoJFLI4ZXG46bk5vOspWXVzJ8z3Ci1FGUyl+Kbd23UUrPFML9+Xzn51zyvcyMJjNwd23+bqVcoiT7Kdx5c4f6K+vzOvw1EBetujD4Aq7WrllsWcbgF+ZH83XNueZ3DWtjaw70OUA1x2pZbVaGERQZRJlFZXgZFifRv67jOnpX6J3FVsUhHRSJJI+Qmj7zWE0sz0Oe60Y9gp7wODju32chzz45JdFAaUBxm+IJHJASNiUoYFpA5+vt8svLLDy3kEOPDuET4pMgSmKkZ0RFu4r0KNeDwVUGY2qQcH6RaHU0Xx34ikXnFwHQrmQ71nZci4Xhu+eBy+8uPA56zMmBJ6nrVPeT2pcbufHqBg1WNiAgMgCA0vlL4/W5F+aG5um+r6wc2/Es+BlN1zblnv897M3sOdT3EOUKlMuUfWclBx8exH1dXPeVjbENj8c8xswg6zPcpIMikeQBEsvQsDBWU7nkQzC6onVEfEJ8UAt1ittTKpRoRNIDTJUKJS5WLjrOR/yvkEUhVEpVouu9jX7Liksr2HRjE1f9rmpTguNRoKCQRSGaFW3GyOojqeJYJVk7/cL86LKlCyefngRgWsNpfFv/W5SKd7JOGqHB6GcjYjQxPBnzBCdLpxTbnxe59PISjVY30g5SblOiDTt67NA5lp9KVs4S/CDgAU3XNOVJcNw1cLjfYYpZF8vQfWYnhuwawopLKwCyzTw90kGRSHIRETERPAl+otP1cvGRmrsP6yGIe8HHE69x8dpgOhGqM9pypUKJocoQjdAQpU5eCr6gecG4aIj1e9EQm+IUzVcUA5VBqmw+9fQUi88v5ujjo9ow8/uY6ptSxaEKvcv3ZkClARjqpU7N08vHi86bO/M89DkWhhas67iOtiXbJqj3MvQljnMdUSqURH0bhZ5SSj4lhZePF41XNyY8NhyAKW5T+KXJL+my7fhZgj98ycRfsUv6VMkwJ+XGqxs0W9sM3zBfStiUwLOvJ4Ut81bXXlh0GMUWFMPvrR9KhZL7o+9TNF/RLLUpLe9veddKJFlMaFRoAgfk/X9fvX2lu4JQUjDyL1ToOicACpQINFhHD+G5kRco4iIiGqHRGUdibWz9LgJiXULbPVPMuthHhYGDIoJYcmEJW29t5cbrGwm6jBQoKGJVhJbFWzK6xmhK5S+V5n38fflvhu8ZTrQ6mlL5S7G9+3ZK5i+ZaN1nIc+AuPEr0jlJnpqFarK/z36arm1KtDqatSdm0MDAkubvj9t5n1SO4VFrBNN23UrgnAD/d6xh2q5bNCtjn+7dPRdeXMB9nTsBEQGUL1CeQ30PZTs9kMzAzMAMjy4e9F3ViPwCftzUmVXtVyasmE3HZck7VyLJQIQQBEUGJZsBExARkOJ2zA3MKWJVBGcrZ8xEFc5cs02yrgIlethiqayCi11sgi6Z4tbFsTH5tFlZhRAc9j7M0gtLOf7kuHaw5ftYGFpQw7EG/Sv2p0f5Hh/tKESroxmzfwxLLiwBoEOpDqzusFpnvMmHPAuOc1Dy2hfzx1LPuR77eu9j0Bp3bmGM8eFf4HASUZQksqCEEPiE+HDF9wpX/a5y4oEfL4NbJLlPAbwMjuScd0C6zhJ84skJWm9oTWh0KDUK1mBf731YG2dPmfrMoIFVUR4oLDEQGvB7BMsbJKyUTTPbpIMikXwCQgjehL/ROhuJOSCpESHLZ5RP64AUsfz/v1ZFcLaM+9fKyEo70HTHleecuXYlxW2ubrud9pULfmoTtfiF+bHw/EK239nOnTd3iNXE6ixXKpQUsy5GmxJtGF1jNEWsinzyPn3DfOmyuQunnp1CgYJpDafxTf1vUhwjER9BKWyRvR642ZnGLo1Z4z4P4/3fJF8xNoroUF9uRLzmqu9Vrvr9/+d7lcDIQG01k9j62JK0gxJPes4SfPDhQTps6kBEbAQNizRkZ4+dGTLoN0cR7h/nnCRH/Azf0kGRSHIOGqHBL8wvyQyYJ8FPCI8JT3E7BUwLaJ0N7b9WzjhbOuNs5ZxsNCDBtlI5q2oBi0+TMNdoNOy6t4s/L/3JqWendF4+8VgZWVGnUB0GVRlEh5IdUCrTb3Cll48XnTZ34kXoCywMLVjfaT1tSrRJ1braCIp0UNJEvQ/SuJPCbWVdzouEWjN6Sj1K5y9NRfuK2Khqs/10yttKr1mCt93eRo9/ehCtjqZlsZb80+0fjPWN02XbkqxBOiiSHEFGpSmqNWqehz7XiXx86ICklIKrQIGDuUOiDkgRqyI4WTphom/yybbGEz9TrW9wZKL9+wrA/iNnX30a/JQ/zv3Brru7eBDwIEH2j55Sj5I2JelQqgMjq4/EwTxjBjj+dekvRuwdQbQ6mtL5S7O9x3ZK2JRI9fo+oT6A7OLJKGI1avIZ56OifUUq2VWion1FKtpVpIxtGe2AZ7VG4HXzSIZcpx+y7to6BmwfgFqo6VKmC+s7rU/1gG5J9kU6KJJsz6ekKcaoY3gW8izJAag+IT4Juio+RKlQUsiikK7z8Z4TUtiicKqzUNKD92eq/dTZV9UaNR43PVh1ZRVez70S7Y7Kb5Kfek71GFJ1CO6u7hmqSBmtjubLfV+y9OJSADqW6sjqDqvTHKaXEZSMZW+vvdgVb57stZCe12lyLL2wlBF7RiAQDKg0gBVtV8iB0bkEeRYl2Zqk0hR9gyMZvu4Sv/csT6lCkQkGoMY7IC9CXySr7QGgr9THydJJ2+XyoQNS0Lwg+ir9jGvkR9CinANL+lRJ4LjZp8Jxu/fmHn+c+4O9D/byOPAxGnSPj4HKgDL5y2jl5D91QG1qeRn6ki5bunD62WkUKPip0U9Mrjf5ozQ5tGNQZAQl1cRqYvG4vp7U6I3am9lBKhzVT7lOU8OcU3P42vNrAEZVH8XvLX9PVw0XSdYiHRRJtiWlNEWBhhEbj/DcaJA2nTYxjPSMtGM9EhuAam9mn6TIWHamRTkHmpWxT7HrK1odzdqra1l7bS0XXlxIVE7e3tSehi4NGV5tOPWd62dSC95x1ucsnTd35kXoCywNLVnfaT2tS7T+qG3FamK188zICErquPzyMoN3DUbz4jK9UzPZYhpI7XWaFoQQTD02lZ+O/wTApLqTmN5keraZb0aSPkgHRZJtOecdoPPV9SHx6bRWyqoUzB+udTo+dEA+lFrPTaiUikRTNK/6XmXhuYUcfHSQZ8HPEpWTr1CgAt3LdWdwlcFZmumw4uIKRu4dSYwmhjK2ZdjefTvFbYp/9PZehr5EIzToKfXypPZFWngb/Zapx6Yy/+x81EJNFTLGUU/qOv0YhBB8deAr5nvNB2B64+lMrjc5XbYtyV5IB0WSbUlt+uGqttvSNZ02J/I2+i1/X/6bjTc2csX3SqKT+xWyKETTok0ZWX1ktpgoLSo2ii/3f8myi8sA6FS6E6var/pkZym+e6egeUEZ7k+Gfff3MXzPcJ4EPwHAUGXI69hoolBgmGjc8v/oGcYJe2UBao2aYbuH8eflPwFY0GIBo2uOzhJbcgwmNnHnLDYZBeksPKfJIR0USbYls9Jpcypnfc6y+NxiDj8+rO3SeB8TfROq2FehV/leDKw0ECP97HOcXoa+pPPmzpzxOYMCBT83/pnJbpPTJdIlRdqSxy/Mj7EHxrLxxkYAHM0diYiJIDAyEGv7ioR3WIOhJplxW1mkOhqjjqHf9n5surEJpULJn23/ZGDlgZluR47DqjCMusjATe256nuV8bXH06t8T906UklWIkkbGZlOmxMJigxi2YVlbLm1heuvricqJ+9s5UwL1xaMqjGKsgXKZpGlyXPm2Rk6b+7My7CXWBpasqHzBloVb5Vu25cibYkjhODvy38z4dAEAiMDUSqUDKg4gH0P9hEYGUj5AuXx7OdJPpP8WW1qAiJjI+m2pRu77u1CT6nHhk4b6Fq2a1ablWN4poBVfpdRKBQ0rPMlmDtmtUmpQjookmxLZqUpZleEEBzxPsKyi8v478l/CefkIU4Cv7pjdfpV7Eev8r2yXbbRhyy/uJxRe0cRo4mhrG1ZtvfYnu6zy8oU44TcfXOXobuH8t+T/wCobF+ZqQ2nMmrvKF6GvaSMbRk8+3mSPxs6J2HRYXTY1IHD3ocx0jPin27/pKtDmxfYfHMzEDelgWMOcU5AOiiSbE5GpylmN16/fc2i84vYdnsbt9/cJkajq9apVChxzedK6+KtGVVjFK7WrllkadqIio1i9L7R2qnfO5fuzMr2KzNkcK5MMX5HtDqaWSdn8fOJn4lWR2Oib8KPDX+kfan2NFnTBJ8QH0rlL8WRfkcoYFogq81NQFBkEK3Wt+KMzxnMDMzY1XMXDYs0zGqzchweNz0A6FamWxZbkjakgyLJ9mREmmJ2QQihIyef2MSBVoZW1C5Um4GVB9KpdKcclxL9IvQFnTd35qzPWRQo+KXxL0xym5RhmVWyiyeOU09PMWT3EG69vgVAi2ItWNJ6CUqFkgarGvA0+CklbEpwpN+RrM12CnoWNw/MBwRGBjJi70h83tzBytiK/b33U7NQzSwwMGcSr7590/cZ155FolTp0aVMl6w2K01IB0WSI0jPNMWs5lnwMxaeX8jOuzu5738/gZy8SqGiZP6StC/ZnhHVRlDIslAWWfrpnH52ms6bO+Mb5ouVkRUbOm2gZfGWGbrPvD5INigyiEmek7TZUQVMC/B7i9/pXrY7PiE+NFzdkMdBjyluXZyj/Y9m2HQFqTP2GSysmmiGST5gIxCJOd6dN1NaOiep5kP1bXtmoNIL5fJjDS3KZbFxaUA6KBJJBqPWqNl6aysrr6zkrM9ZgqOCE9SxMbahnlM9Pq/yOa2Kt8rxui1CCJZfXM7ofaOJ0cRQrkA5tnXflu7jTT4kKjYKv7d+QN6LoAgh+Of2P4zeNxrfMF8ABlUexOxms7E2tuZ5yHMar2nMo8BHFM1XlCP9j2T9eIRw/+TTXwEjoLSJbebYkwtISn1bHWvG8HWXWNKnSo7pGpcOikSSATwIeMACrwXsvb8X7yDvBHL7+kp9ytiWoVPpToyoNoL8ptlvcOLHEhUbxai9o7RaFV3KdGFl+5WYGaSvQmliPA99DsQJ0WXHAZ8ZxbPgZ4zcO5Jd93YBUMKmBMvbLKdBkQZAXFp34zWNeRDwABcrF472P0ohi5wbmZMkTnLq2/GpBdN23aJZGfsc0UUuHRSJJB2IUcew7to61lxdw4WXFwiLDktQp4BpARo6x8nJNyjSIMdHSRLjechzOm/ujNdzLxQomN5kOhPrTsy0tsZ37xSyKJQrj++HqDVqFp5byLdHvyUsOgx9pT6T3SYzud5kjPTidG98w3xpvKYx9/zv4WzpzNH+R3GydMpiyyUZQUrq2wJ4GRzJOe+AHNFlLh0UieQjuf7qOgu9FnLg4QGeBj9NICdvqDKkfIHyWjl5SyPLLLI0czj19BRdtnTRjjfZ2HkjLYq1yFQb8tIA2Su+VxiyawjnX5wHoG7huixvu5wytmW0dV69fUWTNU248+YOhS0Kc7T/UZytnLPKZEkGk1r17dTWy2qkgyKRpJLw6HBWXlnJhusbuOx7OVE5+YLmBWni0oQR1UfkmYwDIQRLLyzli/1fEKuJpVyBcmzvvj1LUqDzwgDZ8Jhwph2bxm9nfkMt1FgaWjKr6SwGVx2sI+3/+u1rmqxpwq3XtyhoXpCj/Y/iks8lCy1PiE/oc1LT0bTu+no65i+OqYFphtuUk0m1+nYq62U10kGRSJLhnM85Fp1fxGHvw9rxDe9jrGdMZfvKWjl5EwOTLLAy64iMjWTU3lH8dfkvALqV7cZf7f7KlPEmiZFbIijxKaIfptUffHiQYbuH4R3kDUDXMl35vcXvCTJx3oS/oenaptx4dQNHc0eO9j+a7TRzttzcwh87Pud4KurOPTOXr66tZnyd8YyoPkLn+krqWOVFcpv6tnRQJJL3CIkKYfnF5Xjc9OC633Wi1LoZBgoUOFk64e7qzsjqI6lgXyGLLM16noc8p9PmTpx7fg6lQsmMJjOYUGdClo798AnxAXK2g/JhiihAAXMDbOyPsN9nJhDXvkWtFtG2ZNsE6wdEBNBsbTOu+V3D3syeI/2OfNLs0OlNREwEYw+MZdnFZVQWSiBlZ7ageUEuhz1joudEZp+azVe1v2JUjVGcvv82wbFyyKUijqkht6lvK4QQyUxbmT0JCQnB0tKS4OBgLCwsstocSQ5GCMGxx8dYemEpx54cS1RO3szAjGoO1ehboS99KvTBQM8gCyzNXpx8epIum7vg99aPfEb52NRlE81dm2e1WVReVpkrvlfY02tPjpRDTypFVKABFLwxmMHgOtX5qdFPiarwBkYE0nRtUy69vISdqR1H+x+ltG3pTLE9Ndx+fZvuW7tz/dV1FCiYWW0UEy5vQpHCTLsxI7zY8PQ4v5z4hfsB9wHIr2yK6dsveffqjSP+r5yUTpveJObkZhfHLS3vb+mgSPIcr9++ZsmFJfx7+19uvb6VqJy8i5WLVk4+O319ZjVCCJZcWMKX+78kVhNL+QLl2dZ9W7bpPsg/Oz/+Ef5cG3aN8nbls9qcNKHWCNxmHUkmC0NgY6bi3JQWiX4BB0UG0WxtMy68uICtiS1H+x/NNhNGCiFYeWUlo/eNJjwmHDtTO9Z1WkfTok0h6BkTdw7m0KNDAKzusJqw6DBG7h2JnlKPrf2P4uRcB4BYTSweNzz46fgvhPl8jYr8KEh4LOK7Mk5ObJxjogXpTXbt+krL+1t28UhyPUII9t3fx/JLyzn59CT+EQlltS0NLalVqBYDKg2gS+ku6KnkrfEhkbGRjNgzgpVXVgJx403+bvd3thm4GB4Trj23OXGQbEopoqDAP0yTaIpoSFQILda14MKLC+Q3yc/hfoezjXMSEhXC8D3D2XB9AwDNijZjbce1Wnl9tYUjK16eI1ARpxXkUKIF+U3yY3P3HzwfeTLl4mLW/d9B0VPq0btCb4qYNKP3n+eT3GdOS6fNCHKD+rZ8CktyJc9DnrPw3EJ23N3BPf97icrJF7cpTrsS7RhZfSROVlIXIjl8Qnzo5NGJ8y/Oo1QomdlkJuPrjM9WWiPx40/MDMywNMx5Kd0fmyIaGhVKy/Ut8XruhbWxNZ59PbNN9Ojii4v0+KcHDwIeoFKo+Lnxz3xd92udbKNLLy8RGBkIgJm+GTbGcS/VmU1mUu1RNdZfX8+42uOo7FBZu86bMN2oZ1LklHRaSeJIB0WSK4hVx7Ltzjb+vvw3Z5+fJSgyKEEdayNr3JzcGFRlEG1KtNF5SEqS5sSTE3TZ0oVXb1+RzygfHl08aObaLKvNSkBOF2n7mBTRsOgwWm1oxelnp8lnlA/Pvp5UtK+YUSamGiEEC7wWMOHQBGI0MThZOrGx80bqFK6ToO7Bhwe1/y9mU0x77qo6VqVnuZ5svLGRiZ4TOdj3Xb3clk4rSRzpoEhyLI8CH/GH1x/svr+bR4GPEsjJ6yn1KJ2/tFZOvoBZ9ptOPjsjhGDx+cWMOTCGWE0sFewqsK37NormK5rVpiVArREcv++LSWx9bFRFUWtEtuhvTwtpTRF9G/2W1htac/LpSSwNLTnU95BOlCGr8A/357Odn7Hz7k4AOpTqwF/t/sLaOPHU1vixJwCu+XTHMv3S+Be23trKoUeHOPTwkNYxzm3ptJLEkQ6KJMcQo45h/fX1rL26lvMvzhMaHZqgjq2JLQ2cGzC02lCauDTJkV/S2YEPx5v0KNeDP9v+mW3Gm7zPu4wFK2z5Gp/H4DbrSLbIWEgLaUkRDY8Jp+3Gthx/chwLQwsO9j1IVceqWWC1LiefnqTnPz3xCfHBQGXAb81/Y2T1kUneh2HRYZx+dlr794fOr0s+F0ZUH8HvXr8z0XMiTYo2QalQ5rp0WkniyCweSbbmxqsbLDq3iP0P9/Mk6EkCOXkDlQHlC5Sna9muDKkyhHzG+bLI0tzDs+BndNrciQsvLqBUKJnVdBbjao/Lls5eUmm5OTnVNKUU0YiYCNptaofnI0/MDcw52PcgtQrVykKL4+YEmnlyJlOPTUUt1BS3Lo5HF48UIzp77u2hzcY2GOsZExEbwdLWSxlabahOnTfhb3Bd4EpIVAjrOq6jd4Xe2mXZOZ1Wkjgyi0eSLfiYNLeImAhWXVnF+uvruex7mfCY8AR1HMwctHLytQrVypYvzpxAYufn1LMTdN3SlVdvX2FtbI1HF4+4VNBsSHIztwrinJScNHNrPC3KOdCsjH2i905kbCQdPDrg+cgTMwMz9vfZn+XOycvQl/Td1pfD3ocB6FuhL4taLUpUpyWe+Gtv5ZnrGKrLY2joQ0RsRKLp6vlN8jOx7kS+OfIN3xz5jsJGjQkM11DA3IhmZeyTPFaSnE+6OyhqtZoffviBdevW4evri6OjIwMGDODbb7/VvkiEEEydOpUVK1YQFBRE3bp1WbJkCcWLS72J3EJavmwuvLjAwnML8XzkmaScfEW7ivQs15PPKn+GmWHWyKjnJhI7P2ZGsTwRvxKmfEVFu4ps674t283d8j65bebW90ksRTQqNopOHp04+PAgpvqm7O21N9FBp5nJgQcH6Le9H6/evsJE34TFrRbTv1L/ZNfRvfbKY88MYmPeEKW/LMEYlHjG1BrDohOniPXtSr+/L2nLZbQkd5PuDsqsWbNYsmQJq1evpmzZsly4cIGBAwdiaWnJF198AcDs2bNZsGABq1evxsXFhe+++w53d3du3bqFkZEcdZ3TSSrs7hscyfB1l5jbvQyPIv5l883NXPW7mqicfCGLQri7ujOi+ohsMfAvN5HU+QmNVGLNROq41mHbgKmY6GfveYVy28ytyREVG0XnzZ3Z92AfxnrG7Om1h3rO9bLMnhh1DN8e+ZbZp2cDUMGuAh5dPCiVv1Sy6yV17amENbbRU7j1zACXRHppj98NRj9keJLPlJzYlSdJmXR3UE6fPk379u1p3bo1AEWKFGHjxo2cO3cOiIuezJ8/n2+//Zb27dsDsGbNGuzs7Ni+fTs9evRIb5MkmUhKYXeBhtEe//Hc6GtQvMu6MdU3pZpDNfpU6EPfin0x1DPMNJvzEsmdHwVKQBDypjmGKuPMNi3N5JVU02h1NN22dmPP/T0Y6Rmxu9duGhRpkGX2PA56TM9/enLW5ywAI6qN4Nfmv2Ksn/w1k5pr7+c9d2hRzlGniyZ+PRLRjM3JXXmSlEl3IYg6depw+PBh7t27B8DVq1c5efIkLVu2BMDb2xtfX1+aNn3Xr21paUnNmjU5c+ZMotuMiooiJCRE5yfJnqQUdlegRA9bjDRlKZqvKCOrj+T2iNuETQnj2MBjfF71c+mcZCCpUSuN7xbJ7sSnmib1SlIQ1wWQk1NNY9Qx9Njag513d2KkZ8Sunrto7NI4y+z59/a/VF5WmbM+Z7E0tGRr160sar0oRecEPv7aS0tXniR3ke4RlEmTJhESEkKpUqVQqVSo1Wp++eUXeveOG3nt6+sLgJ2dnc56dnZ22mUfMmPGDKZNm5bepkrSmafBT/G4dhxIOZNmfYfddKoi1Vszm9zULZLbU01j1DH0+rcX2+5sw1BlyPbu27NswHJkbCTjDoxj8YXFANQqVIuNnTdSxKpIqrfxsddebrpmJWkj3SMomzdvZv369WzYsIFLly6xevVqfv31V1avXv3R25w8eTLBwcHa37Nnz9LRYsnHEhUbhecjT8YdGEfZxWVxnu/M0suzU7Wug2X209PIC+S2bpEW5RxY0qcK9pa69tpbGuXocQmxmlj6buvL1ltbMVAZ8G/3f3Ev5p4lttx9c5daf9bSOicT607k+IDjaXJO4OOvvdx2zUpST7pHUCZMmMCkSZO0Y0nKly/PkydPmDFjBv3798fe3h4APz8/HBzePTz8/PyoVKlSots0NDTE0FCG/bMDDwMesv/BfvY92MfRx0d10oCVCiVVnC0IfhbN20iDRNeXCo9ZS25U4EwuLTcn8GG6d1VnSwbu7I/HTQ/0lfr80+0fWhVvlSW2rb6ympF7R/I25i22Jras7bj2ox2llK49EDhYGie49nLjNStJHenuoISHh6NU6gZmVCoVGk3cgEgXFxfs7e05fPiw1iEJCQnBy8uL4cOHp7c5kk8kPCacY4+PaZ2SBwEPdJY7mDnQolgLWhRrQdOiTbE2ttaO1IfcF3bP6eTWbpGcOnNrYuneBgbh+OCNnr4eW7puoU2JNpluV1h0GCP2jGDttbUANHZpzLqO63Aw//iIVHLXnkCDAmWi115uvWYlKZPuSrIDBgzA09OTZcuWUbZsWS5fvsyQIUP47LPPmDVrFhCXijxz5kydNONr166lOs1YKslmHEII7ry5o3VIjj85rpMGrKfUo27hurQs1pIWxVpQwa5CokJpUuExeyPPT9aTVMqtQAMoGNgwlh9adMh0u674XqH71u7c87+HUqFkWsNpTHabjEqpSpftJ3btxfKaP7o3oGPlpHV35DWbO0jL+zvdHZTQ0FC+++47tm3bxqtXr3B0dKRnz558//33GBjEhf3jhdqWL19OUFAQbm5uLF68mBIlSqRqH9JBSV9CokI44n2E/Q/2s//Bfp4EP9FZ7mTpRAvXFrQs3pLGLo2xMEzdMf8YJVlJ5iHPT9ah1gjcZh1JJjslrrvj5MTGmXZOhBAsOr+IcQfHEa2OppBFITZ02pAheivx1975Z3f4+shwLM1f4Tch8SSJxNaT12zOJUsdlMxAOiifhhCCa37X4hySh/s5+fQksZpY7XIDlQENnBvQolgLWhZrSan8paScvESSjpx56E/PFWdTrLdxcK1077pK7CUfEhXEoJ2D2HZnGwBtS7RlZfuV2JhkbLfZ1ltb6bqlK7UL1eb0oNMpryDJ8ci5eCQJCIwI5NCjQ9ooycuwlzrLi1kXo4Vr3FiShkUaZstZayWS3EJWpc4m1k1ibarAX38ZT6N2oq/UZ06zOXxR84tM+Sh5GPAQSDiLsUQC0kHJtWiEhosvLmqjJGd9zqIR75RbjfWMaezSWDvAtZh1sSy0ViLJW2RF6mxSY17836qBwbjkU7Gl7zdUdayabvtMiYeBcQ5KUnPwSPI20kHJRbx6+4qDDw+y/8F+Djw8wJvwNzrLy9iW0UZJ6jnXw0hP6gZIJFlBZqfOpkZmvoB6BJXsq6TL/lLLo8BHAInOYiyRSAclBxOricXLx0sbJbn44iLivUeQuYE5TYs2pUWxFri7uuNs5ZyF1kokkngyO3U2NTLzviFRmT7zs4ygSJJDOig5jBehL7TjSA49OkRQZJDO8kr2lbRRkjqF66Cv0s8aQyUSSbLEq+B+OCbEPgNSZ7OjXHy0OpqnwU8BOQZFkjjSQcnmRKujOfX0lDZKcs3vms7yfEb5aO7aXBsl+RQhJYlEkrlklgpudpSLfxr8FI3QYKJvgr2ZfabtV5JzkA5KJpGW/P0nQU/Y92Af+x/s57D3YcKiw7TLFCioXrC6NkpSvWB19JTyNEoyhtymO5Ed25MZKrjZTS5erRHsvXEfk9j6OFlYoRGgyrmXlSSDkG+2TCAlBcTI2EiOPznOvvv72P9wP3fe3NFZ39bEVptt06xoM2xNbTO7CZI8SG5T7sxt7UkL2Uku/t150GDL10T4gdusI3niPEjShhRqy2CSSu2LQ1DIaT+XAv8mIjZCW6pUKKldqLZWTr6yQ2WUinSfeFoiSZKkrtv411dOmyk4t7XnY8lqJ02eB4lUks0mpCRnLdCgxp/nRoNwtLDXysk3cWlCPuN8mWytRBJHStdtfHdAZsqwfwq5rT2fSlZ1c8nzIAGpJJttSCm1T4ESPWxZ3+YsPatWk3LykmxBStetAF4GR2Z6SurHktva86lk1czP8jxI0orsN8hAUpuyZ6rnKJ0TSbYhO6akfgq5rT05FXkeJGlFOigZSHZM7ZNIUiK11+Op5/uIUcdksDWfjrwPswfyPEjSinRQMpD41L6kYiMK4gaoZVZqn0SSGlK6bkGgJohFZ9dTbn5H9tzdm4nWpR15H2YP5HmQpBXpoGQg8al9QIKbMrNT+ySS1JLcdcv/S1VYYRsznqjXwxm68hV1F43k5qubmWlmqpH3YfZAngdJWpEOSgYTL2dtb6kbtrS3NJIpdZJsS1LXbWKosMHnWUtqLhzKiD0jeP32dSZYmDaSao+dpaG8DzMR+TyUpAWZZpxJZHRqX3ZUyJTkfOKvK9/gCH7ac5uAt9FJ1BTE8obnRoOwNDLnu/rfMbrmaAxUBplqb0rEtcefLpsG4R/lze7+82jq2iSrzUo3cspzIKfYKUl/ZJpxNiQjU/uyWnxJknuJv27PPPRPxjkBUKCHLWWt2nMzeBvjD41nyYUl/Nr8V9qXbJ9tstTi2pOfJmUsWXvtOp7eh3KNg5KTngNZleosyVnILp4cTrwy44f6Ar7BkQxfd4n9N15mkWWS3ERqUz9/avA7f7X7C3szex4GPqSjR0car2nMFd8rGWtgGmnu2hyAQ48OZbEl6YN8DkhyI9JByYGoNYIzD/3ZdsmHKdtuJCqjH182bdct1Joc14snyWakNvXzN6/vKW5dnHuj7vFNvW8w0jPi2ONjVFlWhUE7BvEyNHu8KJsWbQrApZeXPmrMTPw9uOPKc8489M/Se0ytEUzbdUs+ByS5Dumg5DD233iJ26wj9FxxlrGbryYbdn9fmVEi+RRSk3ocq3jNKd811F9Vn3ab2tHEpQm3R9ymR7keCAR/X/mb4n8UZ/qJ6UTERCS5pczA3sye8gXKA3DY+3Ca1n3/Hvxy0xV6rjiL26wjWRalSItCq0SSk5AOSg4iqTBuSkhlRsmnklKKqAIF0ztUYWi1wegr9Tn2+BiN1zSm7/a+fFbpM04NPEXNgjV5G/OWb458Q6lFpdh0YxNZOUZf283zMPXdPNmxK0UqtEpyK9JBySEkF8ZNCanMKEkPUkoR7VezAkvbLOXhFw8ZWX0kBioDTj49SfN1zRl3aBzf1f+OtR3WUsiiEE+Dn9Lzn57U/bsuXj5eWdKeZkWbAXDw0cFUOUrZtStFKrRKcisyzTiHcOahPz1XnE3TOgINKAP5va8VHUq3yyDLJHmND1NEqzrn4+KTwAQpo89DnjPn9ByWXVxGZGzc13s1x2p8Xedrbr++zazTswiPCQegd/nezGgyg8KWhVPcX3qlpIbHhGM9y5oodRS3R96mVP5Sye4vtffgxsG1MjVDJX6WYN/gyCQ+YAT2lkacmthEpvJKshyZZpwL+ZjwrAIFr/SW0nHzGfpW6MvvLX4nn3G+DLBOkpd4P0V0/42XNJhzNInU1oLMbzGfSW6T+O30byy+sJgLLy7QbWs3KtlX4vcWv3Py6UlWX13N+uvr+ff2v4yvM56v636NmYGZdvsZlTprom+Cm5Mbh70Pc/DhQUrlL5Xs/qJiNanabmZ3pcR3vw1fdwkF6DgpAg2gwNh6DxrRABX6mWqbRPIpyC6eHEJaw7MOlkYs6FmB0fXqoVQoWXttLWUXl2X3vd0ZZKEkr5Ha8Rj2ZvbMaT6Hx18+ZlLdSZgZmHHF9wqDdw3m4suLzGg8A7fCbkTERvDT8Z8oubAkq6+sZu/1Fxk+3uP9dOOU2vP4TXiqtpkVXSlJdb/ZmCoJMprDMd/5DNwxEI1InZMlkWQHZBdPDiGlMK5Ag0L5lsENrGlcrKpOGPysz1kGbB/AXf+7APSv2J/5LeZjZWT10eFzqQSZt4m/HpMasK0gbmzKyYmNE1wX/uH+zD87nwXnFhASFQJA6fylaVa0GTvv7uRx8GMQSlxi1qJRW6Z5+2nh8svLVFleBTN9c8ryL74hUcnuTwiBX0hUovdgetn0KSR2X+57sIeOHh2J1cQytOpQlrRekm2E8yR5j7S8v6WDkoOI/8IDPnhACgTw2mA6Eaoz9K/Yn1+b/0p+k/zaGhExEXx39DvmnpmLQFDQvCAjyi9n1wXDNIfPc5JipSRjSI/xGEGRQSzwWsC8s/MIigwCoJh1MarYV+Hg7cdYhn//SdtPDRqhwf5Xe0JC7bGPnpFi/bFNizPP837cB8F7Aej41312nU/G44YHvf7thUZoGFd7HHOazZFOiiRLSMv7W3bx5CCSCuM6WBozt1tpPqtVBQUKVl9dTamFpVhzdY02O8FY35hfm//KiYEnKG5dnIAgJ5Yd1vAyWFePIqXweXZMs5RkPqkdZ7H28g5ehL5IdJmVkRXfN/ieJ2Oe8EvjX7A2tuZBwAM239qMpX6hdLUjKZQKJU2LNkUlUjc2q0h+UyqVOo8af53y7D7ZXfdy3VnRdgUAv535jR//+zGLLZJIUkZGUHIgyXWvnPU5y5BdQ7j+6joATVyasKT1EorbFNeuHxr1lhrT9xMeZYgiEemtpELVnxLWl+QuUhtB8TWYTLTqBm5ObnQr243OpTvjYJ74Szw0KjRu/p7Tv6Y6orFhcA3quNqm2f73WXl5JcO3zUvV/pb0LUnHbeWIio1hWXNP7ExK5KguzgVeC/hy/5cA/Nb8N76q/VUWWyTJa8gISi4nPouifaWC1Ha10Xkw1ipUi4tDLjKzyUyM9Iw47H2Y8kvK88vxX4hWx6nO3vCJJCLKKFHnBJJWnpSKlZJ4UlaWBTPjGKo4WyAQnHh6gtH7RlNwbkEarGrAonOL8A3z1alvbmjO13W/xvtLb35uMQChDPh/FkpCBBpiec1XR9t/8jw/zVybEaW8SaziTZLtURDXjXnm1Tqi1FHUKFSNwbUbJnoPZme+qPkFPzf6GYBxB8ex/OLyLLZIIkka6aDkQvRV+kx0m8iN4TdoVrQZUeoovj36LVWWVeHU01MfrTwpFSsl8aSsLAu/dq7J6UEneTrmKXObz6VWoVoIBMefHGfUvlE4/uZIo9WNWHJ+CX5hftr1TQ1MGV/nKxZ0q48Cxf9HWL0jPnU2wGA5Xs/PUHV5VcbuH0toVOhHtaWQRSFK25YkQH8ZApFoewAmtSzGkguLABhXe1yOHcMxpd4UJtadCMCw3cNYf219FlskkSSOdFByMa7Wrhzoc4B1Hddha2LLzdc3cVvpxvobS1K1vrmR7terVKyUvE9KyrLx4zEKWxZmbO2xnBl0hidjnvBb89+oWbAmAsGxx8cYsXcEjnMdaby6MUsvLOXV21cAtK/kzNI+VXGw0N2+Gn9CjH4lUhXXxaQRGuZ7zafkwpJsvbX1o+TzmxVtRoTqDJVKXaCAhWGi7XkZu4834W8oYlWETqU7pXkf2QWFQsGMJjMYWX0kAkH/7f3Zfmd7VpslkSRAjkHJI/iH+/P1oa/5+8rfIJQ4Ra9CoclHwu/fuC9UNf4oC0xldcdVNHJpBKQu1dncWM2Vb9uhp5K+b17hY1POHwc9ZuutrWy+uZnzL85ry5UKJY2KNKJb2W50LNURa+P8/+9eDOOS3zHW3Z3Gk2BvAAxUBtquy3jcXd1Z1GoRrtauqW7Dnnt7aLOxDUWsinBlyDXsZtRFJfKxu8966hcviEIhKLWwFPcD7vN7i9/5ouYXqd52dkUjNHy24zNWX12NgcqA3T1308y1WVabJcnlyDRjSZL89/g/hu4eytNX1thGT/m/e/L+y0Q3ZRlgRLURzGo2CzMDs1SlOjcrY8vf7f7GxiTz5L4lORvvQO84Z+XWZi68uKAtVylUNHJpRLcy3ehYuiP5TfITo45h/fX1/HLiFx4EPNDWUwu1dj0DlQHf1vuWr+t+jaGeYYL9fUhYdBjWs6yJ0cRwdehVKi6rGFc+OQxTA1N23NlBB48OWBlZ8WzsM63SbU4nVhNLj609+Of2PxjrGXOw70HcnNyy2ixJLkYOkpUkSYMiDbg67CpfN25OkNFsYnmjs9zB0piJra0p5hCmLVt8YTFlF5fl+JPjyaY6t6/hh9rgIjvv7qTSskqcfHoyU9okyfm45HNhQt0JnB98nodfPGRmk5lUdaiKWqjxfOTJkN1DsP/VHvd17qy+upq2Jdpye+Rt1nZcS0mbklrnJH7gd7Q6mu+PfU+pRaU44n0kxf2bGZhRp3AdAI48Tlj/1zO/AjCs6rBc45wA6Cn12NB5Ay2LtSQiNoLWG1pz8cXFrDZLIgFkBCVPc+fNHYbsGsY57wBUIh+u+fPzZ+fJ1ChUjWh1NDNPzuTH/37U+TIdXX00M5rOwEjPJNGw/qWXl+i+tTsPAh6gUqiY1nAak9wmoVKqsrClkpzKw4CHbLm1hc03N3PZ97K2XE+pRxOXJnQr2422Jdpy2PswPx3/iVuvbyW6nc6lO7Oo1SLszOyS3Ncvx3/h26Pf0rZEW3bd2wXERVBuvLpBrb9qoa/U5/GYxziaO6ZvI7MBETERtFzfkv+e/IeNsQ3/DfiPsgXKZrVZklyI7OKRpBqN0LDy8komHJpAYGQgSoWSL2p8wU+Nf8LMwIyrvlfpt70f1/yuadcpYlWEtR3XJhkKDo0KZfie4ay/Hpcd0MSlCWs7rk1S/0IiSQ33/e+z5dYWttzaopNarKfUo2nRpnQp0wWVQsW8s/N0rtd4jPSMmN10NiOqj0jUYT7//Dw1/qyBhaGFVoI/bHIYA3cMZMutLQyoNICV7VdmWPuymtCoUJqubcq55+ewN7PnxMATFLMultVmSXIZ0kGRpBm/MD++OvgVG65vAKCwRWEWtVpE25JtiVHHMOvULKb9N41YTax2nTE1x/BLk18w0TdJsD0hBKuurGLUvlGEx4RTwLQAazqswb2Ye6a1SZJ7ued/jy03t7D51mYdZ0RfqU/Tok0pbl2cY0+OJeqoFMtXjE1dNlHVsapOuVqjxnaOLYGRgdqy68OvU3FpRTRCw/Xh1ylXoFzGNSobEBARQKPVjbjmdw0nSydODjxJYcvCWW2WJBchHRTJR3PgwQGG7xmOd1BclkTn0p1Z0HIBjuaOXPe7Tt9tfbnqd1Vb38XKhXWd1mn77z/k9uvbdN/aXatsO7HuRH5q9BP6KjntuyR9uPvmrrYbKP46gzhnpZJ9JfzD/XkU9CjBej3K9mBZ22VYGL57hnTd0pWtt7Zq/x5WdRhLLy7F3dWd/X32Z2xDsgl+YX7UX1Wfe/73KGFTguMDjifbNSaRpAXpoEg+ifCYcH7870d+Pf0raqHGwtCCGU1mMKzaMNQaNXNOz2Hqsak60ZRxtcbxU+OfMNY3TrC9iJgIxh0cx5ILcfortQrVYmPnjRSxKpJZTZLkEW6/vq11Vm6+vqkt11fqY2pgqp2UMB5DlSHzWsxjWNVhKIJ9+Pfin/x84mftciM9QyJjo1jSegk1i7cEq7wRTXgW/Ay3lW48DX5K+QLlOTbgGNbG1lltliQXIB0USbpw1fcqQ3YP4dzzc0CcY7G8zXLK25Xnxqsb9NvWT2fgYlGroqzvvJ5ahWolur2tt7by+c7PCY4KxsrIir/a/ZWjBa8k2Ztbr2+x5eYWPG56cPvNbW15Yuq0tcwKcSo8EuUHmio66BnCqIt5xkl5EPCAeivr4RvmS42CNfDs64m5oXlWmyXJ4UgHRZJuqDVqllxYwpTDUwiNDkVPqcf42uP5vsH36Kv0+fX0r3x39DttNEWBggl1JjCt0TSM9BIqynoHetPzn554PfcC4jRWfnP/LdG6Ekl6cfPVTTbf3MzmW5u58+ZOguWVhZJLpCJ9eMh/4Fgp/Q3Mptx4dYMGqxoQEBFAA+cG7O29N9ExZxJJapEOiiTdeR7ynNH7RrPtzjYAiuYrytLWS2nm2oxbr2/Rd1tfLr28pK1f3Lo46zutp3rB6gm2FaOO4Zsj3zDn9BwAKtpVxKOLByXzl8ycxkjyLEIIbr7+v7NyczN3/e8C0kFJjgsvLtB4dWNCo0NpWawl23tsx0BlkNVmSXIo0kGRZBg77uxg1L5R+IT4ANC7fG/mus/F2tiaeWfm8c2Rb4jRxABx0ZRJdScxteHURNU8993fR7/t/XgT/gZTfVMWtVpE/0r9M7U9kryLEILrr66z5eYWLlz6i31hb1NeKQ86KAAnnpzAfZ07EbERdC7dmU1dNqGn1Mvw/X7sNAqS7It0UCQZSmhUKN8e+ZY/zv2BQGBtbM2cZnMYWGkgd/3v0vffvlx4+U6uvIRNCTZ02pAgrRPgRegL+vzbh6OPjwLQt0JfFrdenKvUOiXZl5ehL/F85MnZ88tY5HM95RXyqIMCcPDhQdpubEu0Opp+Ffuxsv1KlIqMEyPff+Ml03bd4mXwu9nRHSyNmNq2jHYiSknOQzookkzh/PPzDNk9RCua1cC5AcvaLKOYdTHmn53PlCNTtBO5KVAwxW0K3zf8PkF4WK1RM/3EdH747wc0QkMJmxJ4dPGgkn2lTG6RJLcTFh3G8SfHOfTwEHsf7OWe/z1AdvGklu13ttNlcxfUQs2IaiNY2GohCkX6RzTi5/z68OUUv6f3Z8uW5CykgyLJNGI1scw/O5+px6YSHhOOgcqAKW5TmOQ2icdBj+m7ra/OTLWl8pdiQ6cNVHaonGBbx58cp9c/vXge+hxDlSG/Nf+NEdVHZMgDUJI3iNXEcvHFRQ49OsShR4c4/fQ0sSI2QT3poKSe9dfW03dbXwSCiXUnMqPJjHS9R+NnTX8/cvI+CsDe0oiTExvL7p4ciJwsUJJp6Cn1GF9nPDdH3KRlsZZEq6P54b8fqLSsEn5v/Tgz6Axzm89FXxknzHbnzR2qrajGD0d/IEYdo7Ot+s71uTrsKm1KtCFKHcWofaPovLkzgRGBie1aIkmAEIL7/vdZcn4JnTw6kX92fmr9VYvvjn7H8SfHE3VOClsUZorblFRt3zvocTpbnPPoXaE3S9ssBWDWqVlMPzE9Xbfv5f0mSecE4mZRfxkcyTnvgHTdryT7ISMoknRDCMHmm5v5cv+X+L31A2BQ5UHMbjYb/3B/+m7rq00vBiidvzQbO2+kon3FBNv53et3vj70NTGaGJwsndjYeWOSarWSvM2b8DccfnQYz0eeHHp0iCfBT3SWJ6Z7AnFzRH1T7xsaFmnIrQcHKbq+K8Yk/UUegaCWkT5/9t2faHZaXuO3078x/tB4AOa7z+fLWl9+0vbu+99nzdU1rPW6BcGfpVj/9x6VaF+p4CftU5L5yC4eSZYSGBHIJM9JLL+0HIACpgWY5z6P7mW788e5P5joOVE7NkWpUPJ9/e+ZUm9KAvn7Cy8u0GNrDx4GPkSlUPFz45/5uu7XGTowT5L9iYyN5OTTkxx6eAhPb08uv7ys44AoFUpM9U0JjQ5NsK6hypDPKn3GmNpjKGFTAoCo2Ciqr6hOkN8Nurs0ZXazWSg+cFQCIwPpe2Ase15dxczAjO3dt9OkaJOMbWgO4IdjPzDtv2kA/NXuLz6rnLJj8T6BEYF43PRgzdU1nPE5A4Chujz20TNSXHfj4FrUdrVJu9GSLEU6KJJswcmnJxm6eyi3Xt8CwN3VncWtF6MRGvr820cnmlLWtiybumxKMBlbSFQIQ3cPZdONTQA0K9qMtR3XyrlB8hAaoeGK7xVthOTkk9OIaFdUIh9qRSBRyps4WRXCQGnA4+DHOlMwxONo5sgXNb9gcNXBCSTbvzn8DdNPTsfWxJabI25ia2qbqB2hUaF08OjAEe8jGKgM2Nh5Y55XQhZCMP7geOaenYuTULKiyQyauzZPvLKJDVgVJkYdw/4H+1lzbQ077+7UfqyoFCrci7nTp1w/ft9tg19IVCJxLzkGJacjHRRJtiFaHc3sU7P5+fjPRKmjMNYzZmqDqYypNYblF5cz4dAEotRRQNyX77SG05jkNklHY0EIwV+X/+KLfV8QERuBnakd6zqto2nRplnVLEkG8yToCYceHcLzkSeHvQ/zJvwNAMbq2lhHD0GPd06ERuHPG/2lRKjOJNhONcdqjK01lq5luiY6QaWXjxd1/q6DRmj4p9s/KTocUbFR9Pq3F//e/helQsmyNsv4vMrnn9janI0Qgsn/9mXq9Z3JdpFpVAb8WKE9i+/t5HX4a215BbsK9K/Yn17le2FvZg+8y+IBdJwUmcWT85EOiiTbcc//HsN2D9PqnVSwq8DyNsuxNbWl7799Oe1zWlu3XIFyeHTxoIxtGZ1t3Hx1k+5bu3Pz9U0UKJjsNplpjaZlimCUJGMJigziqPdRrVNyP+C+znIzAzMqWw3k6ZP4r/N3L0KBBlDw2mA6EaozKFDQoVQHvqr9FXUL100ywyQiJoLKyypz1/8uvcv3Zl2ndamyVa1RM2z3MP68/CcAM5vMZKLbxDS3OTehfn4J1YpGKdarQhiXFRrsTO3oXb43/Sr2SzAGLR6pg5I7kQ6KJFsihGDN1TWMOzgO/wh/FCgYUX0EPzf+mfXX1jPu4DhtNEWlUPFTo5+YUHeCjgMSHhPOmP1jWHFpBQB1C9dlQ+cNOFk6ZUmbJB+n9hmtjuasz1kOPYxL/z3/4jwaodEuVylU1CxUk2ZFm1G3cF2eBvkwY5sxMbFmCcaHQJyTolEE0Kn+Zb6s9QVF8xVN0e6vDnzFvLPzcDR35MbwG+QzzpfqNgshmHJ4CjNPzQRgfO3xzG42O++mxL+4AssbpFhtkmsd6tcaTXPX5qn6sMi1SrJBzyDcP+nl/+8Oy41IB0WSrXkT/oZxB8ex5uoaABzNHVnYciGV7CvRZ1sfTj97F02paFeRTV02USp/KZ1teNzwYMjuIYREhZDPKB9/t/+bDqU6ZGYzJKT+Kzd+Dpz4cST/Pf6PtzG60vIlbUrSrGgzmrk2o55TPa74XmH11dVsvbWV2Mii6Tpw8viT4zRc1RCBYG+vvbQs3jINrX7H+5ksAysNZHnb5XkzopdKB0XqyBDnnCysCrFRSdfJxTNnSwdFkiM4/Ogww/YM40HAAwDal2zP7y1+Z+/9vXx14Csi1XEvPZVCxfQm0xlXexwqpUq7/qPAR3Tf2p0LL+Jk9UfXGM2cZnMSnfdHkv6kpPb5S2cXYg0u4PnIE89HnrwMe6lTz9bElqZFm9KsaDOaFm1KYcvC3H1zlzVX17Du+jqeBj/V1nUx7IomKOV5mlKTehoWHUaFJRXwDvLm88qfs6LditQ0N0lWXl7J57s+RyM0tC/Znk1dNuW92bmlg5J68vixkg6KJMcQERPBLyd+YdapWcRqYjEzMOOXxr/QunhrBmwfwMlnJ7V1K9lVwqOrhzY9FOK6CiZ7Tmbu2bkAVLavzKYum3TqSNKflNQ+QRDLG54bDQJFXNeNsZ4x9Z3ra52S8nblUSqUBEQE4HHDg9VXV+tkdlkaWtK9bHf6V+qPIroEPVd4JbGvd6QmgjJ893CWXlyKk6UT14dfx8Lw058h2+9sp8fWHkSpo2hYpCE7euxIl+3mGPL4SzdN5PFjJR0USbqSGf3AN1/dZMjuIdruneqO1VnWZhnnnp9jzIExRMbGvQj1lHrMbDKTMbXG6ERT9tzbQ//t/fGP8MfMwIwlrZfQp0KfdLVR8o4zD/3pueJsivUsHVfRumxxmhZtSp3CdbSRhRh1DPse7GP11dXsvrdbJ9W0RbEW9K/Yn7Yl22rrxztEvsGRn5R6evDhQdzXuQNwuN9hGrs0TlvDk+HY42O029iO0OhQqjhUYV/vfdgY2+bOMRQfksqX7soaA+nfcm7e1jKSDkrWOijPnz9n4sSJ7Nu3j/DwcIoVK8bKlSupVq0aENcfPXXqVFasWEFQUBB169ZlyZIlFC9ePFXblw5K5pGZI+k1QsOKiyuY6DmR4KhgVAoVY2uNZVDlQQzdPZTjT49r61a2r4xHFw+K27y7ZnxCfOj9b2+OP4mrN6DSABa2XIipgWm62imBHVee8+WmKynWe7/LRQjBpZeXWHN1DRtubNCmDgNUsq9Evwr96FW+V5IaN5+aehoUGUT5JeXxCfFhdI3RLGi5IEX708qll5dosa4Fr8Nf42rciXwxQ3gd+k6XJddmoaTypVuFMGyLNWVNhzV5V8tIOihZNxdPYGAgdevWRV9fn3379nHr1i1+++038uV7N0J+9uzZLFiwgKVLl+Ll5YWpqSnu7u5ERiY9/4Ik84l/IXwYxvcNjmT4ukvsv/EyiTU/DqVCydBqQ7k98jbdynZDLdT8euZXWqxvwcS6E1nRdoX2i/qy72XKLC7D/LPztdkfhSwKcaTfEaY2mIoCBauurKLaimpc87uWrnZKoIB56sZYFDA34nnIc2afmk35JeWptqIaC84t4E34G+zN7BlXexxXh13l8tDLjK09NtmXVotyDizpUwV7S91921sapUoXY8z+MfiE+FDMuhgzmqQ84PZjqOJQhZOfncTJsB0xAQN5Fao731RG3TtZjokNQpX82K9YpR5heoYcfHiQSssqcfjR4UwyTpJTSfcIyqRJkzh16hQnTpxIdLkQAkdHR8aNG8f48XGj34ODg7Gzs2PVqlX06NEjxX3ICErGkx1mFN1zbw8j9o7QDpbsXrY7E+pMYNzBcfz35D9tvWqO1fDo4qGTWnrs8TF6/dOLl2EvMVQZMr/FfIZWHZp300DTmdR0uViYaChQZCGHvQ9ppeiN9IzoUKoD/Sr0o5lrs4/KePmYLsedd3fSflN7lAolJwaeyNB5ndQaQa0Zh3gdGg2JpETnViXU9Sdm8tvhbyhuXYz7/x/4fuqzkxjrGcdVMLHhZnSIjpbRlHpT+KHhD3kr80lGULIugrJz506qVatG165dKVCgAJUrV2bFinej5L29vfH19aVp03cqoJaWltSsWZMzZxIqQQJERUUREhKi85NkLOe8A7J8RtHWJVpzc8RNvqr1FUqFEo+bHjRd25Se5XryZ9s/tQ++Cy8uUGphKRacXaCNpjQs0pCrw67SslhLotRRDN8znG5buxEUGZRh9uYlVEoFU9vGCeklrkoiuB87A0/vgwgE9ZzqsaLtCnzH+bKx80ZaFm/50S8llVJBbVcb2lcqSG1XmxRf8v7h/gzZNQSAcbXHZfikk+e8A3gdGkNiRwZy72y8S+7v5rJCQ8XK/bms0HBZoUFjXyHuJetYCawKU7ZAWc4NPseQKkMQCH458QsNVzXUydiSSOJJdwfl0aNH2vEkBw4cYPjw4XzxxResXr0aAF9fXwDs7HRDuXZ2dtplHzJjxgwsLS21v8KFc19ueHbjVWjqutu8/ZMRG0oHzAzM+M39N84PPk9Vh6oERQYxbM8wVl5Zye5eu2lYpCEAMZoYvjzwJbX+rIV3oDcAtqa27O61m1+b/YqeUo+tt7ZSeVllvHxSzgaRpEx8l4uNma6jEcsbXhtMxyG/Hz80+IGHXzzk+MDjfF7lcyyNLDPdzpF7R+L31o8ytmX4sdGPGb6/1N47qa2XE3gU+IhTz06hQEG3Mt2SrWuib8KytsvY1HkTFoYWnHp2ikpLK7Hjzo5MsjaLMbGJ0zlJDj3DuHp5nHTv4jEwMKBatWqcPv1ObOuLL77g/PnznDlzhtOnT1O3bl1evHiBg8O7PuNu3bqhUCjw8PBIsM2oqCiiot6J2oSEhFC4cGHZxZOBpDZLI9hkGoNq1eer2l/haO6YoTbFamJZeG4h3x75lrcxb9FX6vN1na9xsnJizP4xRMRGAKCv1Gdu87mMqDFCmy1w7vk5emztgXeQN3pKPaY3ns64OuPydjbBB6Sl60RnFtpnXhhqyqIS+TAyiKJTxQr0r9QvWZn5zMLjhgc9/umBSqHC63MvqjpWzfB9pvbeyU2z8f703098f+x7mhZtyvbu2zGbYQZA2OSwZAepPwp8RI+tPTj/4jyQh7SMpJJs1nTxODg4UKaM7hwqpUuX5unTuBCevX3cZFB+fn46dfz8/LTLPsTQ0BALCwudnyRjqeFijYOlUTJTfwkUqiCCNBf57cxvuPzuwtBdQ3kY8DDDbNJT6jGm1hhujbxF2xJtidHE8MvJX/j19K+s7LCSRkXi5gKJ0cQwev9o6vxVhydBT+LaU7AGl4depmuZrsRqYvna82tab2jNq7evMszenMT+Gy9xm3WEnivO8uWmK/RccRa3WUd0BnPGqGPYdXcXXbd0xf43e4bvGc4ZnzMoldC4ZCH+7j4Cn0lHWdFuOW5OblnunPiG+TJi7wgAvqn3TaY4J5DyvaMgLpunhot1EjVyFkII1l5bC0DfCn3TtG7RfEU5+dlJxtUeB8Af5/6g9l+1ue9/P4U1czhWhd91fSX2y6XOSVpJdwelbt263L17V6fs3r17ODs7A+Di4oK9vT2HD78bwR0SEoKXlxe1a9dOb3MkH0lyYwwUgAIFi3s0Zm/v3dRzqke0Oprll5ZTYmEJev7TM0MzZ5wsndjRYwdbu27FwcyB+wH36bG1B4UtCrOo1SJM9E0A8HruRYmFJVhyfglCCCyNLPHo4sGyNssw0jNi/4P9VFpaiSPeRzLM1pxAStlai0+cZsz+MRScW5B2m9qx9dZWotXRVLCrwG/Nf+P5V8/Z23sv3ct1x1jfOItaoYsQgqG7hxIQEUAl+0p8U/+bTNt3SvcOwNS2ZXLNANnzL85zP+A+xnrGdCzVMc3rG6gM+LX5r+zuuRsbYxsu+16myvIqrL+2PgOsleQk0r2L5/z589SpU4dp06bRrVs3zp07x+DBg1m+fDm9e/cGYNasWcycOZPVq1fj4uLCd999x7Vr17h16xZGRimnL8osnswjtTooJ5+eZMbJGey9v1db1rp4aya7TaauU90Msy84Mpgph6ew5MISBAIbYxumNpjK9jvbOfL4neNRq2AtNnfdTGHLuC+T637X6b61O7ff3EaBgm/rf8v3Db7PW9kEpF0RNjWz0GYHVl9ZzYAdA9BX6nNxyEXK25XPdBvyymy8o/eOZuH5hfQq34v1ndbzNvptqrt4PuR5yHN6/9tbm6U3sNJA/mj5h9QyykVkuVDb7t27mTx5Mvfv38fFxYWvvvqKwYMHa5fHC7UtX76coKAg3NzcWLx4MSVKpE6eXDooCclItde0bPuK7xVmnpzJlltbtBk19Z3rM9ltMu6u7hkW9j/z7AxDdg/hxqsbADQu0piWxVsy9dhUwmPCATBUGfJ7i98ZUnUICoWCt9Fv+WLfF/x95W8A6jnVY0PnDRSyKJQhNmZHUjteonSJA4yu1yLVs9BmJc+Cn1F+SXmCo4KZ0WQGk9wmZZktuXY23v8To47Bca4jb8LfsK/3PloUa/FJDgqAWqPmp+M/8dPxn9AIDaXzl8ajiwfl7crn+uOZF8hyByWjkQ6KLtnxS+2+/31mn5rN6quridHEiVVVtq/MZLfJdCrdSUemPr2IUcfw25nfmPbfNCJjIzHSM2JMzTGce3FOpxunTuE6eHTx0DoiG65vYOjuoYRFh2FtbM2q9qtoW7JtutuXHfkYRdjsjBAC93XuHHp0iJoFa3Lys5PZ3qHKyey+t5u2G9tiZ2qHz1c+6Cn1PtlBiefY42P0/rc3L0JfYKRnxLBySzlzqxC+2eg5J0k7WTpIVpK5ZLbaa2opblOcFe1W8OjLR4ytNRYTfRMu+16m29ZulFlchr8v/62dfyW90FfpM8ltEjeG36BZ0WZExkYy89RMfEN9mVp/qnZsyulnpym2oBh/XvoTIQS9yvfi0pBLVHGoQkBEAO02tWPs/rFEJTcdei4hLYqwOYFlF5dx6NEhjPSMWN1htXROMpj4wbE9y/VM92PdsEhDrgy9QqvirVBEVebfMzb4Bkfo1Mnq55wkY5EOSg5GrRFM23UrUSXP+LJpu26h1mRdkKyQRSHmus/l6ZinTG0wlXxG+bjnf49BOwfhusCV+Wfn8zb6bbru09XalQN9DrCu4zpsTWy59eYW045Po0vpLlrdlCh1FIN3Dab+yvq8CH1BcZvinP7sNF/W/BKA+V7zqft3XR78XxEzt5KbMk4eBT5i/ME4deoZTWZQMn/JLLYodxMcGczOuzsBMmxiTltTW7Z330lR5df/L9G9UrPLc06SMUgHJQeTHdReU4uNiQ0/NPyBJ2Oe8GuzX3Ewc8AnxIexB8biPN+Zn/77icCIwHTbn0KhoHeF3tweeZvPKn0GwJpra7j9+jZf1PgCU/24sPPJZycp+ntR/r70NwYqA+a3mM+OHjuwNrbm4suLVFlWhY3XN6abXdmN3JJxohEaBu4YyNuYtzRwbsAXNb/IapNyPf/c/ofI2EhK5y9NFYcqGbafC4+DCIvUR5HHlHkl0kHJ0aRWifLy84zTJkkr5obmjKszDu8vvVnWZhmu+Vzxj/Dn+2Pf4zTfia8Pfc3L0PQL19qY2PBX+7841v8YJW1K4vfWjwXnFlC7UG0aOMfNhxGljmLQrkE0XN0Q3zBf2pVsx5WhV3BzciM0OpRe//bi852fawfb5jY+dRK+7MACrwUcf3IcU31T/m7/txTgywTWXVsHxGmfZKTmTV5U5pXEIQfJ5mBSm4HhazCZYvYaupXtRtcyXSltWzoTrEsdsZpYtt7ayoyTM7TaKYYqQwZUGsDXdb/WmQDwU4mKjWLGyRnMODmDaHU0JvomdCrViW13tvE2Jq6byUjPiKWtl9KvYj/UQs20Y9P45cQvCARlbMvg0cWDcgXKpZtN2YmcmiFx981dKi2rRGRsJEtbL2VotaFZbVKu51nwM5znOyMQPP7yMc5Wztpl6TVINp68qMybm5FZPHmElGaUBYG+/lue6PcnRrwb8FmuQDm6lelGt7Ldsk0/vRCCvff3Mv3kdE4/i5smQalQ0qNcDybVnZSuOhZ33txh6O6hHH9yHIDyBcpjbmDOaZ930zM0dG7Ipi6bsDOz4/Cjw/TZ1gffMF+M9IxY0GIBn1f5PMuVUvMq7ztSNmb6jDvannMvztLctTn7e++X5yUTmHVyFpMOT6KBcwOODTimsyy9HZTUzJydG2eHzq1IByUPEZ/FA+jcvPG36ZI+VahVzJidd3ey+eZmDj48qE37BahgV4FuZbrRtWxXStikTocmIxFCcOLpCWacnMH+B/u15W1LtGWy22RqF04ftWGN0LDy8komHJpAYGQgSoUS96LuHH96XCeasrzNcvpU6MOrt6/ot70fBx8eBKB72e4sa7MsSya/y8skllIfy2uiTNZx6cuVWiE+ScYhhKD8kvLcfH2TFW1X8HmVz3WWp7eDAql7zuWErkiJdFDyHGnRQQmMCIxzVm7FOSuxmljtsop2FbXdQMVtimea/Ulx6eUlZp6cydZbWxH/fyw1LNKQyW6TaVa0Wbp8KfuF+fHVwa/YcH0DAI5mjjiYO3Dx5UVtnUZFGrGpyybym+Tn19O/8s2Rb4jVxFI0X1E2dd5E9YLVP9kOScrEv6Q+fGAJNChQsLRPVfmSygQuv4yTojdUGeI73hcrIyud5RnhoED21HuSpB3poORBPhw/UNU5HxefBCY7niAgIoAdd3aw+dZmPB95xjkrQomhpiyulpVp7FqVUW4tKZk/obOSmeMV7r65y+xTs1l7ba02+lPVoSqT3SbTsXTHdBkQeeDBAYbvGY53kDcANQvW5Pqr69qBscZ6xqxou4LeFXpz1ucsPbb24EnwE/SUesxsMpOxtcfKgZkZSEqS/DLMn3mMOzCOuWfn0rVMVzZ33ZxgeUY5KJBzx0lJ3iEdlDzOx3xpBEQEMMNzH9u8VMTGmmvLY3mNlZ0nfauXp2vZrhTNVzTLvmSeBT9j7pm5LL+0XOs4lLQpycS6E+ldoTcGKoNP2n54TDg//vcjv57+FbVQY25gjpOlEzdf39TWaeLShE1dNqFSqPh81+f8e/tfAFoVb8XqDqvJb5L/k2yQJI4cKJk9iNXEUnheYXzDfNnRYwftSrZLUCcjHRRJzkcqyeZhPlZZ9tzDKLaestJxTgBU2BDq14NpB3fgusCVCvP6MWzdxSxRri1sWZh5LebxZMwTvqv/HVZGVtz1v8tnOz+j2IJiLPBa8EmpwCb6JsxsOpOLQy5So2ANQqNDufn6JsWti2tVaA97H8ZpnhMHHhxga9etLG61GEOVIXvv76Xi0or89/i/9Gqu5D1kqmn24Ij3EXzDfLExtqFFsRZZbY4klyMdlFzExyrLJreeAiUKwFHzBUphQIBf4yxXrs1vkp8fG/3IkzFPmN10NvZm9jwLecaX+7/Eeb4zvxz/haDIoI/efkX7ipz+7DR/tPwDcwNz7gfcJyo2Ctd8rgBExEbQ89+eNF/bnG5lu+H1uRclbUryIvQFjdc0Ztqxaag16nRqrQRynyR/TiVe2r572e6fHLGUSFJCOii5iI9Vlk1pPVAQG2vO3Hrn0cM22yg6WhhaMKHuBLy/9GZJ6yW4WLnwJvwN3x79Fqd5TkzynIRvmO9HbVulVDGqxihuj7xNx1IdUQs1DwMfYmdqh7GeMQCe3p44zXPi7pu7XBhygf4V+6PRwIwj/1Br4Sh237gr5bfTidwkyZ9TCYsO03Zp9q3YN4utkeQFpIOSi0htePvgvbM689+kdr27r1LneAzfOZF5Z+bxLPhZqup/KkZ6RgyrNox7o++xvtN6yhUoR2h0KLNOzaLI/CKM2DMC70Dvj9p2QYuC/Nv9X7Z3304hi0L4vfUjIjaCguZxM/uGx4bT/Z/udN7cmdZO31BesQ376Bm8ftGGUeseUPWXvXIis3Qgt0jy52S239lOeEw4xayLUbNgzaw2R5IHkA5KLiK14e0ZZyZjPduaJmuaMPvUbEJifFK13rqb81JV707gOb46+BVO852o81cd5p+dj09I6vbxKegp9ehVvhdXh11lZ4+d1CpUiyh1FEsuLKH4H8Xpu60vN1/dTHlDidC+VHtujbjFFzW+QIGC56HPMdM3w1BlCMCJe6GM33yXkAjdWyrwrYZh6y6y61rmOGu5mdwgyZ+TiZe271O+jxTDk2QKMosnF5EaZVkjgwgirSfyJPi9iIJQ4hS9CoUmHwm/T+PW09d/y3ODz7F++wcqbFAk6tsK1Ap/fAw/A4UmwdK6hevSrWw3OpfuTEGLgh/VxrQghOC/J/8x4+QMrcAaQPuS7ZnsNpmahT7uK/D88/MM2T2EK75XALAxyo9R4BxU5E+0+0ugQaUK5cBXNSlu4/pR+5S8Q6aaZj4vQ19SaF4hNELDg9EPcLVO+joOiQyjwPQ6qEQ+dvdZT/3iBeX5kWiRacZ5mNQoLrqXted+wH0OPDjAgYcHOPr4KCKyIrbRUwCRwPlQ/H+9+iUt+e2IJ38dVSI+qBcvltWimg8VnePUYHfc3ZFoVo0CBXUK16F72e50LtMZR3PH9D0IiXDxxUVmnJzBv7f/1Yq+NXZpzGS3yTRxaZLmL8JYTSzzz85n6rGpqCNdsY+ekeI6oaY/saTTV3Qr2+2j2iCRZBVzz8xl3MFx1C5Um9ODTidZb/+Nl0zdeRO/kHdTa0gxNcn7SAclj5NWnZKo2ChOPzvNn2cucPpmQYT6nXx7LK+JMFlD3eJmNHdtjrurOw9emDFt9y18P5AbDzBYToTqDBA3v02r4q3Ib5Kfa37X2H5nO6HRoQn2rUCBm5Ob1lmxN7NPz0ORgDtv7jDr1CzWXVunVdGt5liNKW5TaF+qfZrF1h4HPab3+nk8f9Y8xbqv9WcTrnecIVWGML/FfIz1jT+qDRJJZlNlWRUu+15mcavFDK8+PNE6SSn9Sjl6yftIB0Xy0WFwtUaw/9YDjj28xJ2gc5x7tZ5X4X46dVysXGhe1B1XM3cKm5XD2TofNpaB7H2wmx13d3DiyQnU4l2arb2ZPa2KtaKwZWG8g7zZeXdnomnAChTUc6pH93Ld6Vy6M3Zmdp98HJLiafBTfjv9GysurSAiNgKA0vlLM7HuRHqV74W+Sj/V2zrz8A09V3ilWK9BlSusvf0dAkG5AuXw6OJBGdsyH90GiSQzuPnqJuWWlENfqc/LcS+xMUkohCeVfiWpRTooknRDIzRc9b3KgYcHOPjwICefntSZbFClUFG7cG3cXd1xd3WnikMVgqOC2Xd/Hzvv7WTf/X06kRNjPWOaFm1KcevivA5/zZ57ewiITJgdpFQoqedUjx7letCpdCcKmBbIkPa9fvua371+Z+G5hQRHBQPgZOnEhDoTGFR5UKqiHCmN/RFoUONPoPkovmvwLfPOzuPV21cY6xmzsNVCBlYaKAcdSrItkz0nM/PUTNqXbM/2HtsTrSOVfiWpRTookgwjLDqMY4+PceDBAQ4+Osg9/3s6y22MbWhatCnuru40d22Orakt/z3+jx13d7Dz7k6ehbzLZlGgoFahWpQrUI630W859OgQr8NfJ9hnvLPSs1xPOpXuhK2pbbq3KyQqhCXnlzDv7Dz83sZFjGxNbBlbaywjqo9IcdbipMb+CDSAgtcG07XdXy2LtSRKHcUR7yMA9CrfiyWtl2BhKK9lSfZCIzQUmV+EZyHP2Np1K53LdE603o4rz/ly05UUt/d7j0q0r5TxA+Ql2RfpoEgyDe9Abw4+PMiBhwc47H2YkKgQneXlCpTTOituhd24F3CPnXd3svPuTp0ZgwFc87lSzaEasSKWk09Pah2F91GgoGGRhtrISnrPfRMRE8HKKyuZc3oOj4MeA3GCcCOqjWBMrTHJdjslNvZHrXiDv/4yolReaHiX2WSqb0rPcj1ZeWUlaqGmmHUxNnXeRFXHqunaHonkUzj2+BiNVjfC0tAS3/G+GOklLmUgIyiS1CIdFEmWEKOOweu5l9ZhOf/8vDZjBuIE1Ro4N9A6LBaGFuy5v4edd3dy2Psw0epobV0rQytqFqqJgcqAiy8u8iLsRYL9KRVKGjg3oFf5XnQs1THRvvFPaYvHTQ9mnJzBrde3tPYPqjyICXUm4GzlnOh6H479sbJ4w8i9wzn6+CgQ52C9f0waFWnEg4AHPAt5hr5SnznN5vBFzS9kl48kWzBoxyD+vvI3g6sMZnnb5UnWS6mbU45BkcQjHRRJtsA/3B/PR55ah+V56HOd5YUsCtG8aHPci7lTs2BNLry4wM57O9lzbw/+Ef7aevpKfao6VMXc0Jybr2/yIjRpZ6V3+d50KNUh3ZwVjdCw6+4upp+czrnn54B3gnAT605M1SBXIQSrr65m3MFxBEQkHG9jpm9GFYcqHH96HIC2Jdqysv3KdHW4JJK0EhETgf1v9oREhfDfgP+o71w/2fqpkTiQWTwS6aBIsh1CCG69vsWBh3HaK8efHCcy9l1XiFKhpLpjdZq7NqdJ0SZoNBr23t/Ljrs7uB9wX2dbJW1KYmdqx8OAhzwPe/7hrlApVDQo0oA+5fvQoVQH8hnnSxf7jz4+yoyTM/B85Kkt71iqI5PdJlO9YPUUt/H67WvGHRynnXDtQ6o5VOPaq2tEq6MpZFGIDZ02UM+53ifbLpF8DJtvbqb71u44Wzrz6MtHqUrBT6vEgSTvIR0USbYnIiaCE09PaMXibr7WlaC3NLSkSdEmNC/anGLWxbj08hI77+3k1NNTOl0kdqZ2OFk68SLkRbLOSt8KfWlfsn26OCvnn59nxskZbLuzTVvWxKUJU+pNoVGRRil2z3g+8mTY7mE8DHyYYJmZvhnWxtY8DXmKUqFkWsNpTHabjEqp+mS7JZK00HZjW3bf280Utyn80uSXVK8nlX4lySEdlByCvJHf4RPiw6GHhzjw8ACHHh1K0BVSwqYE7q7u1CpYi5DoEG230ftKtSb6JrhYuRAQEcDLsIQT9KkUKhoWaUi/iv1oV7IdVkZWn2Tzrde3mHVqFuuvrdfqvtQoWIPJbpNpV7Jdsl+cETER/Hz8Z2afnq0VjHsfVytXHgbFOTCNXRqzruM6HMzlF6gkc3j99jWOcx2J1cRye+RtSuUvldUmSXIJ0kHJAchQaNKoNWouvryoTWU+8+yMjvCbvlIfNyc3Grs0xtLIkht+N9h1b5eOU6JEibOVMxExEfi+9U2wj3hnpX/F/rQr2S7FNOLkeBL0hF9P/8qfl//UdluVsS3DpLqT6FGuR7Kibzde3WDo7qGcfpZQPtxEzwQNGiJjI7E1sWVtx7W4F3P/aDslktSy8NxCRu8bTTXHapwffD6rzZHkIqSDks2RktBpIzgymCPeR7TjV+LTf+OxM7WjadGmlLAuQVBkEIcfH+aa3zWdOgVMCyCESFRnRaVQ0ahIIwZUGkDbkm0/Wo/EL8yP371+Z9H5Rdp06yJWRZhQZwIDKw1MUvRNIzQsv7icSZ6TtGJx72NtZK0Vs/u6ztf83PjnNCndSiRppdaftfB67sV89/l8WevLrDZHkouQDko2RkpCfxpCCB4EPNA6K0e9j/I25q1Oncr2lalZsCZ6Sj1uvbnF8SfHdbpRTPVNMdIz0skUikdPqUcD5wZ8Vvkz2pZoi7mheZptDI4MZvH5xcw7Oy/OIRJKHAzcaOXak54VW9GwROFEz+3L0Jd8uf9LttzakmCZocqQKHXcBGy1CtViY+eNFLEqkmbbciuyuzT9uOd/j5ILS6JSqHj+1fMMnXJCkveQDko2RgoapS/xEx3Gj0m57HtZZ7mpviluTm44mDnwJvwNx58cJyT6nZicnlIPU33TRCMXeko9Gjo3ZFCVQbQp0QYzA7M02RYRE8Gk3ZvYfl4fhebd4FwTwyimti1D92qJ9+vvubeHEXtH8DT4aYJlBkoDojXRWBpa8le7v5JU9sxLyO7S9OX7o9/z0/GfaFmsJXt7781qcyS5DOmgZGOkJHTG4hfmx6FHh7RzB716+0pneRHLIpSzK4cQguuvridwAkz1TRNEZOBdZOXzKp+n2llJqisvXv6+epkrzG3fDydLpwTrhkWHMfXoVOadnaeTtRRvS3xEaHi14cx1n5ukwmduR3aXpi9CCFwXuOId5M2GThvoWb5nVpskyWVIByUbIyMomYdGaLjmd02bypzYRIcV7CpgbWyNb5hvglTn97tV3ic+shLvrJgamCaok1JXXvwEgn4mQ+lTMU70LbFMiUsvLzFk15AE0wK8TwW7Cnh08chzmRayuzT9OfX0FG4r3TAzMMNvvB8m+iZZbZIklyEdlI8kM/qxpSR01hEWHcZ/j//Tjl/5cKLDfEb5cLV2JVodzd03d3WcE5VCpZNJFI+ewoDqtj1pWLgdzUvUpF4xR1RKRaodUV+DyUSprqMQKpoWHkaroj2o6VRa59qL1cSy8NxCvjn8DeGx4TrrK1GiQYOJvgmLWy2mf6X+H3Nosg1puQels59+xB/3mccXc8B7C90rV2F1x1VZbZYkFyIdlI8gM/uxk5KEBoEChQxLZxKPgx6/m+jw0eEE41CcLJwwNzTHJ8Qn0TEqxuraWEcPQY93syur9ELpXdeA8gUqM2HLrRRt+KK5OTvv/cuDx5V0tpPPVMH0DpVpWf7ddfA0+Cmj9o5i171dSW6vb4W+LGq16KMG92Y1ab0HZXdp+pDYcc9nCjM6yueQJP2RDkoayYp+7MQeCrG8ZkILF75s2CBd9yVJmVhNLF4+XtroyocTHRqoDHA0dyQ8JpxXb19hrK6NbfQUIG4CwHjix5eE6m/EIqZXivu1zH+C4DdugG6UQKBBgYJBjTR807yNVvRNCMG/t/9l1N5Rieq7ABS3Ls7mrpupZF8pbQchC0nrPRgZG8nEPX+y44xLituWEZSkkWN4JJmNdFDSQFb2Y78fzl59/Q+2PZxD+1Jt2d5je7ruR5J2AiIC8HzkqR2/ojPRoVBSOGolCmGt45xoF/9/fAmAChsUJKYoK4jlzf/r5E92O1ZOc5nsNpHu5bqjp9QD4lKZpxyewuILixO130BlwG/Nf2Nk9ZHZfmbktNyDCoVg4/WNTDkyhadBPhSM/As98vOhg/fherK7NCFyDI8kK0jL+zvl2Z9yOee8A5K8QSGuC+ZlcCTnvBPOQvupqJQKarva0L5SQWa0HIhCIdhxdwe3XqfcNSDJWKyNrelWtht/tf+LZ2OfcXPETeY2n4u7qzvmisoohU2iTgWAAiV62BKqtx9Q/D+q8j5x3wSD6pZCD9sUt/PAF/ps60OJP0qw9MJSImMjsTSyZFHrRZz+7HSiMypHq6MZvW80nTZ3SnQG5exEau/B5WcOU31Fdfps68PT4KcUsnSkj5sRikSOYPzfU9uWkS/XJMjKZ59EkhryvIPyKjTpG/Rj6n0sJfOXpEOpDgDMOT0nQ/clSRsKhYIytmUYW3ss+/vs5+82CYXUEiNW8ZLXBtO10RRtOW94ZTCd+RempGo7FfK7YWNsg3eQN8P3DMfldxfmnJpDaFQotQvX5srQK8xoMgM9hV6Cdbff2U7lZZUTldLPLqT23hq//ycuvbyEuYE50xtP596oe8xs04Mlfapgb6mbZm1vaSS7J1Iguzz7JJKkSPhEy2MUME+dfkRq630KE+tOZNudbay/tp4fG/5IYcvCGb5PSdopaJW6bkW1IpAo1XWeG3lhqCmLSuSLK1PeBIUGjbp8qrZz7c1JYlSBlLQpSVBkEL5hvnzt+TXTT05nVPVRfFnrSya5TaJrma4M2TWEI4+P6Kz/NPgp9f6ux8+Nf2ai28RkJzHMCu4FXiBVjyJlMCOrj+T7Bt9TwLSAtrhFOQealbGXSrJpJDs9+ySSxMheT6osoIaLNQ6WRkkE2eNwsIx74GU0NQvVpGGRhsRoYph3dl6G70/ycaTmmjE2jMQpf3Rc54NCQ5TqOuF6x4lSXQdFXJdPlPImsbxOpAsoHgGqOIdGg4a7/nfxe+uHlZEVtia2BEUG8fOJn3Ge78yY/WMwUBng2c+TdR3XYWGg60Rp0DDlyBRarGuBX5hf+hyITyQqNoov9n3B1/91IpbXfJjTFo9Ag75+GOdHbmJhq4U6zkk8/2PvrOOiyP84/OzSjbSoGNiJ3XF2d3efHXfGmRfenXF6Z5xxdne3othii4piASoqIN21u/P7Y3+sIg0LCzjP64W4uzPf+c4wO/OeT37pLq3vaCmKkwyQ3nksIfeufSIiKfHNCxQtqYSfOyl9+F9/UQUUCAj80Noh1y54MxvOBGD9/fV5PnbgWyWtc0by/59/ejXg5aTnhMwM4VCvQ3Qr3w1zffOvFlYQrLuelOJUlOceBGuvp27R2jQu1hg9LT0AQmNDCYgOQCqRYqZnRnRCNCtur8BxpSMjj4+kdpHaeE32YnCVwcnm7uzlTJW1VXD2dFbHocgyL4NeUn9TfVbdWQUSBY0r+/0/kiR53V0JUlb1aUJFm2+rEF1Ok955DGIMj4hm+eazeBJJKe0XrRA+aa2haTkzTvU/lSumcUEQqP5fdR75P2LBdwuY22Rujm9TJGtktm5HYqPDQ88Osf/Zfp58eoJMIUuxnoqMAIJ11xOj5ap6T0eqQ0nzkoTFheEfldQKoq+tT6xMOQ8JEnpU7MGsRrOIiIug/+H+fIz4mGw+sxrN4rfvflNlBuUWOx/vZOypsUTGR2JpYMm2rtvQ0dJhytGthAe0TnIcxJ46OY/Yy0gkNxHTjLPI11Us9Q3f03BzfWJkMfzW7DfmNZ2ntm2lxZ4ne+h/uD9Whla8nfJWLDedh8lO9eF4eTzX311n+6PtnH/tTHC4ZbI4ldTQlmpjrmdOSGxIkgq3iZVlE2nj2IZpDaZxyesSC28sTNbXp459HQ70PpBiPyB1ExUfxYQzE9jqthWApsWbMqfxHJa5LuOc5zkAzPUKMbTiHzQq0h57c+NsxZKIHY4zjnisRHILUaCokW1u2xh6bCgSJJwbeI5Wjq1ydHugLBpWdlVZvEO9+bfdv4yvMz7HtymieT5FfeKwx2F2P9nN3Y93VRaR9JBKpOhIdVLsG5RIg2INGFh1IP/e/pdngUnT2A20DdjdY7cqiywneOz/mD4H+/A88DlSiZQpdacQHBPMtkfbEBDQkeowoc4E5jSeg6Vh9ouqiVYBEZG8iShQ1Myo46PY+HAjVoZWPBj9IFeya9bcXcP40+MpYV6CVxNf5boZXkSzKAQFbn5ubHPbxslXJ/EO8U5m/UgJCZI0l6tqW5VahWux7dG2ZL2Fvq/xPcvbLVdrZ2RBEFh3bx1Tz00lTh5HYePCtCrVigPPDhAjiwGgd6Xe/Nn8TxwtHNWyTbE6qohI3kUUKGomVhZLg00NeOj3kHpF63Fl6BV0tXRzdJsxCTEUX16cgOgAdnXfRf8q6ZdNVweiqTdvEhUfxclXJ9nmto2bPjdT7A2UGYqbFUdbqo1niGeS94uZFuPC4AuUtSybrfFBGcw78vhIDnkcAqCyTWX8I/0JiA4AlFadpa2WUr9Y/WxvKxGxOqqISN5GFCg5gFeIFzXX1yQ0NpTJdSezvO3yHN/m71d/Z96leVSzrcbD7x/meMly0Syef/AO8WaL2xaOeBzBI9AjxU7LGcFcz5yI+Igk60uQsLHTRobXGJ7l+d1+f5u+h/ryJvQN2lJtLAws+BT1CYDSFqVZ3HIx3cp3U9s5HSuL5UXgC066v2DDBaN0lxf784iIaAZRoOQQx18cp8veLgDs67mP3pV65+j2QmJCcFjuQGR8JGcGnKFt6bY5ti3RLJ5/kSlkXPK+xMaHG3HxdiEwOjDTY2hJtJKJnAZFG3Bu0DmMdY0zPI5CULDs5jJmu8xGppAlyS6yNLBkftP5jKk1JssWyKj4KJ4HPudZwDPlT6Dyt1eIFwpBgaGsCdYJM9IdR+xwLCKiGUSBkoP8dOEnFt9YjLGuMXdH3aW8Vc7WZvjx3I/8fetvmhZvyuWhl3NkG6JZvGARFB3Etkfb2OO+h0d+j0hQJGR5LB2pDjeH36RWkVrpLvsp6hNDjg7h7OuzSd7X09Jjct3JzGo8K3ktmFQIjwvHI8AjmRB5E/om1XUK6ReilFFbAt8PSHd80YIiIqIZRIGSg8gUMlrtaMXlN5epZF2J2yNvY6Sbvkk5q7wPf0+pFaVIUCRwa8Qt6hatq/ZtuHoG0W/DrXSXEy/q+Q9BELjve59199Zx6tUp/CL9sjTOgCoD2NH8TyTRKRcPvPPxLuMuzeV+9Kdk6/3R/A+KmxdPcb3gmOAUhcj78PepzsXGyIaK1hWpaFWRCtYVlP+3roitkS0KARotdsEvLDbFUGFRbIvkBAUtdi8n90cUKDmMX6Qf1f+rjl+kHwOrDmR71+05Gh8y/NhwtrhtoVv5bhzuc1jt4x9z+8DkvW7pLieaxfM/MQkx7HXfy8YHG7n78W6GrSvFBAkvMSatAv8xCJQjEh+JQLMSzfir1V/Usq+FIAgERAd8FiEBz/AIVIqStASTvYm9SogkipAK1hWwMrRKc66J7kpIWpdWdFeK5AQFLXYvp/dHFCi5wNW3V2m+rTlyQc7aDmsZU2tMjm3LI8CDimsqIkHCs/HP1O5WEi0o3y6ewZ4sv7Wc/U/38+kr68eXVBekPCD9WJROJmbUqTUKUz1TlQh5FvCMoJigVNdxMHNIUYhk1B2UEgXtpiGSNylosXu5sT+iQMkl/rrxFzMuzEBXqs9/bS5SSLd4jpn3uu7tyrEXxxjuNJxNXTapdezEGBTRLP5tI1fIOeJxhMU3FvPQ72GSoNmMCpQaRPIwhQq4EiSULFQymRApb1UeEz0Tte5HIgXN7C6St8iPsXtpfSdya39EgZJLCIJA8/U/8Mq7Wo73D7n1/hb1N9VHR6qD92Rvipiq19UimsVFBEEgLC6MD+Ef+BDxAY8AD7Y/2s5j/8dUUSgyJFBqEU1IIQeq2lalkk0lpTXEqgLlrMqJLRtEChT5zfKcnlUxt/YnM/dvsTxpNjj31I833i3R/sru4BcWy9idD9R6U69XtB5Nijfh6turLL+1nL9a/6WWcRNpW7kwawfWSHYC25jq8mvnyqI4yeckyBPwjfRViY/E3x8jPiZ5HZ0QncoIGWuUqUCBV6gXHyM/8jrkNR6BHpS1KEsZyzKUtSxLWcuyWBta53hNHxGRnOZTRMZaUWR0uZwkNddN4r1qXpfCnH11AaiU7li5uT+iQMkicoXAryee/f8PnvRiK/z/nV9PPKNVRTu1mfdmNpzJ1bdXWXd/HbMbz6aQQSG1jJtI28qFaVXRjjvewfQ/MAbf6Bds7beKZiVFcZJX+drqkez3////KepThkrlgzJdt4hpEeyM7fCN8OVF4AsQUm9c+CUlzEvgHuFDrCwW90/uuH9yT7aMmZ7ZZ8FiUVYlXMpYlsFUT3MWURGRzGBjkrGWEBldLqdIeq9KivD/f+cfe0ygzi7s+DPd8XJzf0SBkkXueAen6qsD5R/eNyyWO97BajPvtSvdjio2VXjy6Qlr761lduPZahn3S7SkEuo7WlKhWBRvXj/hZfALmpVsqvbtiKRPgjwBv0i/NIVH2laPpOhIdbA3saeIaRGKmPz/xzTpb3sTe6Lio5juPJ1dT3Z9keWTMQvK2g5r2e/YnLehb3kZ9JKXQS95FfxK9f93Ye8Iiwvj3sd73Pt4L9n6tka2nwWLxWeri6OFo1p7BInkHN9K7I9toQgEaQgozJCk8P1IjNmoU9Ii9yf3Bendq0CCNtbUK1qPUH8IiybNWMTc3J8cFyiLFi1i1qxZTJ48meXLlwMQGxvLjz/+yN69e4mLi6NNmzasWbMGW1vbnJ6O2tCEeU8ikTCz4UwGHhnIitsrmFpvKgY6Bmob/0vKW5XnzOszPA98niPjf8skWj0+RnxMU3j4R/pn2uqRmvAoYloEK0MrpJLUhYZ3iDf9D/Xn+MvjKDJoMfmafof68UP3bXQs2xFHC0falWmX5PNYWSyewZ4qwfIy6CUvg1/yKugV/lH+qp9r764lWU+CBAczB5Vg+VLAFDcvLjbTzCN8K9lTvhG+tNnVigBta2zikz8oJsqxnztV1Lg4+xSesXvQ1Lrz0dOWMnbnAySkHIuY2/uTo9/qu3fv8t9//1G1atUk70+dOpVTp05x4MABzMzMmDBhAt27d+fGjRs5OR21oinzXp/KfZjjMoe3YW/Z6raVsbXHqnX8RBJTmUWBkjlkChm+Eb5pWj0+RnwkKiEqQ+NpS7WVVo8vxcZXwsPexD5bAagPfR8y9dxUrry9kuLnUomUMY3mgOs6kMWlOk4cEl7HhtBpTyem1J3C4laLk5W019fWp5JNJSrZJPd1h8WGqawtr4Je8TL4s4gJjwvnbdhb3oa9xdnLOcl6OlIdHC0ck1hcEgWMvYm9GO+SS6QX51BQAu2DooNotaMVr4NfU8JSxu/1S/DvRf8koswuD4iyyPhI1t9fz7LLx9FherrL25joU9/RMsVYRE3tT45l8URGRlKjRg3WrFnD77//jpOTE8uXLycsLAxra2t2795Nz549AXj+/DkVKlTA1dWVevXqpTt2XsjiSS81V0CBoV487j93V7vi/PfOv0w8M5FShUrxYsKLHHl6vPr2Kk23NqWkeUm8JnupffzMommzsSAIhMeFp+tuyY7VI4n75f+/rY2s07R6ZGd/LnpdZJrzNB75P1K9L5VI0dPSI0YWAyj751wZekUpKEJ9IFpZz6Th5obEyGLpVr4b85rMBSBOz4Sf7v7L8tvLAahZuCb7eu7D0cIx23MNiA5IYnX5UsjEyVMXTUY6Rqp4l68FjIWBek3Vmj5HNUl+TLnNCuFx4bTY3oJ7H+9hb2LPtWHXKFWoVJ7623sEeDD/8nyOPT+mdNEKUorEbkILyzRdUV/+bfJKJdkcs6CMHz+eDh060LJlS37//XfV+/fv3ychIYGWLVuq3itfvjwODg6pCpS4uDji4j5fhMLDw3Nq2hlGSyrh504VUzSHCSgACW+FZRx9Dj0q9lDrtodXH86vV37FK8SLQ88O0adyH7WOD58tKG9C3xCTEJNjrqSMkNNmY5lCpoz1SEN4fAj/kKesHllFppBx4OkB5rjMwTvUW/W+lkSLukXqcvvDbZU4aV+6Pcf6HfssgM2LKX+At4aF+BDxAeOYT8yzdwJAD/in7T80L9mcoceGct/3PtX/q876TuvpW7lvlucskUiwMbLBxsiGRg6NknymEBT4hPkkiXNJFDDeId5EJUTh5ueGm59bsnEtDCw+CxaLz4G6ZSzKZLp9xbfi2kgNTcTk5TbRCdF03N2Rex/vYWVoxYVBFyhVqBTwOXZPUyTIE9j/dD8Lri7gRdCLJJ8VMS1M16oyTt1RipOMuG40vT+J5IhA2bt3Lw8ePODu3bvJPvPz80NXVxdzc/Mk79va2uLnl3LZ64ULF/Lrr7/mxFSzRWqpuXKCCNZdT4yWK8OODaOKbRXKWpZV23YNdQyZWGciP1/+mUU3FtG7Um+1m7GtDa0ppF+IkNgQXgW/oqpt1fRXygGyYzZOy+rxZXqtf5R/hmMuzPXN0xQeOWn1yA7RCdFserCJBVcXEBAdoHpfR6rDcKfhvAl9wzmvc4BSYK3tsJaRNUamOl5hk8J8iPiQYvO+TuU68WjMI/of6s+1d9fod6gfF70usqLdCrWLMqlESnHz4hQ3L07LUi2TfBYvj8c7xDtZoO7LoJd8iPhAcEwwt97f4tb75LUfipgUSdHqUrJQyWRuq2/FtZEW+SnlNivEyeLotq8b195dw0zPjPMDz1PBuoKmp8XHiI/8cfUPtj3aluQBSiqR0qJkC3777jfqFqmLRCKhY9nkIjovuKLSQu0CxcfHh8mTJ+Ps7Iy+vnriL2bNmsUPP/ygeh0eHk6xYsXUMnZ2+TI1N9Ectv/VHyy/7YqWRIuI+Ah67u/JrZG31HpxHl97PItvLMbNzw1nL2daO7ZW29igfGotb1Ue1/euPA98rhGBkn56HMw56kakxBXfyOxbPQobF0430DS/FRsLjA5k5e2V/OP6D5EJkar39bT0mFBnAj0r9qTLni6qMvdFTIpwY/iNVJv7JVLSvCT3Pt7DL9IPQRCSCeSipkVxGeLCb1d+4/erv7Px4UZuvr/Jvp77qGxTWf07mgK6WrqUsypHOatyyT6Lio/idfDrZIG6L4NeEhQTpDqXLr25lGQ9LYkWJcxLfM4uKlSGzedLpHqO5kS5gbxIfkm5zQoyhYx+h/px3vM8RjpGnB5wmuqFq2tsPoIg4OzlzLxL87j74W4Sl7KFgQXja41nSv0pyVyYKd2r8robUu0C5f79+3z69IkaNWqo3pPL5Vy9epV///2Xc+fOER8fT2hoaBIrir+/P3Z2dimOqaenh56enrqnqja+NofVLrkEN/+HXH5zGS2JFk8+PWHsqbFs7bI105aO1HyBloaWjK4xmuW3l7P4xmK1CxSAClYVcH3vikeAh9rHzgjpp8dBUKSCgft+IU7rSarL5FerR0ZI7fzwDvHmrxt/sfHhxiQNAQ20Dfix/o/82OBHtj/aTsPNDVXWo76V+rKr+y6k0vSPQxmLMgAkKBL4EPGBoqZFky2jLdXmt+9+o1mJZgw4PIBnAc+ovaE2K9uuZGSNkRoNXjXSNaKaXTWq2VVL9llQdBCvgl+pBEtisO6roFdEJUThGeKJZ4gnZ16fQU9eBbv4haluJ7ddG5qKhahT0oLCZvppxOQJ2JjoaDzlNrMoBAXDjg3jyPMj6GnpcazvMRoUa6CRuYTHhfO369/8e+ffZL2t6hSpw6/NfqWNY5s0v1d5xXWTUdQuUFq0aMGTJ0lvFsOGDaN8+fLMnDmTYsWKoaOjw8WLF+nRQxmb8eLFC969e0f9+vXVPR2NoC3VZl/PfdRcX1PVNn77o+00KtaIUTVHZXic9PzaP9T/gX/v/ouLtwt3P9yldpHaat0PVSZPkGYyeTJqDi5vUYfS9mVTreuR2XiC/EJK54elsRRz6wtc8vsnyZOVsa4xMxvOZFLdSehr6dNmVxsuv7kMgK5Ulx3dd9C7Uu8Mb/tLQfIi8EWKAiWR5iWb82jMIwYfGcw5z3OMPjmai94X+a/jf5jpm2Vij3MHS0NLLA0tqVc0aTycIAj4Rvp+jnMJesVtTznv3qY/Zm64NjQZB5NWTF7iKz/pv3iHOlLaonSOzkVdCILA+FPj2fl4J9pSbQ70OkCLUi1yfR5uvm7McpmFs6dzkv5YRjpGDKk2hLlN5lLYJG+6aLKL2gWKiYkJlSsnNeEaGRlhaWmpen/EiBH88MMPWFhYYGpqysSJE6lfv36GMnjyCzZGNhzqfYjGWxoTL48HYOKZidS0r0mNwjXSWTujfu1i9K/Sn+2PtrP4xmIO9j6o1n3QdKpxRs3BazstzldPBeogtfMjMFJGYOR36Ou6EqPlirm+OT81/IlxtcdhomfCA98HtNjegtDYUABKW5TmxrAb2BjbZGr7dsafrZ0vg16me+G2MbLh9IDTLLu5jNkus9n3dB93P95lb4+9ahfWOYVEIsHexB57E3ualWgGZLwfS067NvJCHExa7TJCdTbyKvokTbc+4NKQS2qNycsJBEFghvMM1t1fhwQJO7rtoFO5Trm2/Xh5PJsebGLxjcW8DUuqgMtblWde43n0rty7wNf/0YhN+59//qFjx4706NGDJk2aYGdnx+HDhzUxlRylTpE6rG6/WvU6Th5Hz/09CYkJSXO9jMRe/HriGXKFwIwGMwA47HGYl0Ev1TRzJYkC5UXgiywX7soOiWbj1AyWEpRPiPnNbJxR5AoBV88gjrl9wNUzCLlCUL2f2vmhTCMUsJKN4a9Wy3g/9T0zG83ERM+E3678Rq31tVTiZEzNMbya+CrT4gRI8sT2ddZAakglUqY3nM61YdcoYV4CrxAvGm5uyN+uf5MPe5YCeeMczcz1IqdpW7kw12c2Z8+oeqzo68SeUfVw/akV18auopJ1JT5GfKTp1qYacxtnlAVXF7DUdSkAGzptyFYWWmZ4G/qWAYcHYLrQlHGnx6nEia5Ulz6V+vBqwis8xnvQv2r/Ai9OQOxmnCt8f+J71j9Yj1QiRSEo6FS2E0f7Hk015iGzXSU77+nMiZcnGFl9JBs6b1DbvGUKGYZ/GJKgSODN5DfpBk7mBN9ql+W0zPV6OnKGbXmUxtpKEs+PyPhImm1txn3f+4AyDuVInyO0Kd0my/N7G/qWEitKANDWsS1nBp7J1PqhsaGMPD6SQx6HAOhQpgNbu27FytAqy3PSFJo+R/NLV92AqABabG/Bk09PsDGywWWwS4oF+zTNP67/8MN5ZVLG8jbLmVxvco5uTyEoOOJxhF+u/JKsd1Ux02LMaDCDkTVHFphWD5m5f+e/qMB8yMp2K6lbpC4KQYEECSdenmDJjSWpLp/ZlL2ZDWcCsP3xdnwjfLM/4f+jLdWmjKUyGFJTbp5Es7GdWdIvp52ZfoEWJ2N3PkgWIOwbFsuYnfcZsHtxhsb5FBHL5TeXsVtqpxInVW2r4vejX7bECSR18XgEZv5p2FzfnAO9DrC2w1r0tPQ49eoU1dZV48qblKvZ5mU0fY5m9Hqx7eERPoR/yNG5pIW1kTUuQ1xwsnPiU9Qnmm1rxmP/xxqbT0psuL9BJU4WfLcgR8VJSEwIU89OpdDiQvQ80FMlTrQkWrR2bM29Ufd4N/UdE+pOKDDiJLOIFpRc4n34e2qur8mnKGU6pwQJLkNcVL7sL8nKE1HjLY25/u46MxrMYHGrjN3AMkKP/T047HE4V54k0iIvVWrMSdKryCmgQEE4WpinO1Zjp/vsfPEzoDzfZjacycKWqWecZBaLxRaExIYgQULMnBj0tLOWaffY/zF9DvbheeBzpBIp85vMZ26TuWhJtdQ219xAU+doRq8XfrqziNdyp5FDI/pU6kPPij2xNc79/mfBMcG03tGa+773sTSw5MLgCzjZOeX6PL5m95PdDDw8EAGl63xRy0U5kml2/e11frr4Ezd9biYJZLc0sGR87fFMazANEz0TtW83ryBaUPIgRU2Lsr/nfrQkyouugEDfg31TtHik59eG5H7tRCvK2ntrVTEG6qC8Zd7oyZOYHtfFqQj1HS0LpDiB9FOrJUjRwhwLI5004x4kWiHsfK4sbmiia8KN4TfUKk7gcxyKgIBniGeWx6lqW5V7o+4x1GkoCkHBL1d+oeWOlnyM+KiuqeYKmjpHM3K9MDGQUbO4GQIC195dY8KZCdj/bU/L7S3ZcH8DQdFBaaytXiwMLLgw+AJ1itQhKCaI5tuac//j/Vzbfkoce36MwUcGIyAwrtY4lThJLQ4ss8TKYll4bSF2S+1ovLUxN3xuICAgQULdInVxHuRMwPQAfv3u1wItTjKLKFBykaYlmrKs9TLVa/8of/oc7EOCPCHJcokpe0Cyi46yjL6QrDRx+zLtqWRdiYj4CNbdW6e2OWs61fhbI6Pm+q5ORYDk54fyDBHw11oDEgUNijbA70c/6hdTfwp/YePProvsBmgb6RqxpcsWdnTbgbGuMZffXKbaumqceZW52JZvkbSuF5L///zVow43Rlzj3ZR3LG21lNr2tVEICi56X2T0ydHYLbOj3a52bHXbqtYHnNQw1zfn/MDz1C9an5DYEFpsb8GdD3dyfLsp4ezpTO+DvZELcgZXG8yq9quQSCScdfel0WIX+m24xeS9bvTbcItGi104655xN/rzwOd03tMZk4UmzHaZjX+UP6BM+x9Xexz+0/y5NfIWLUu1FJtapoAoUHKZSXUn0b9Kf0Bpdr/27hqzLyZv152aX1tOEIG6iyhs9SnJ+1KJVGVFWX5rObEy9dRd0HSq8bdGRtNRW1W0S/H8kBFIgO6fxGnfZmGLhdwYcQND3ZypfpskkycwY5k86TGw6kDuj75PdbvqBEYH0n53e6adn6ZK1RdJmYzGwRQzK8aPDX7kzqg7eE7yZGGLhTjZOSFTyDj7+izDjg3Ddqktnfd0ZveT3UTEReTYnM30zTg38ByNHBoRFhdGqx2tcPVxzbHtpcT1d9fpuq8r8fJ4elTowabOm5BKpKnGgSWmbaclUuQKOVsebqH0ytJUWF2BEy9PIFPIAKhoXZF9PfcR9lMYq9uvxtrIOkf3L78jxqBogOiEaBpsapCki+zh3ofpVqFbsmW/9mv/fX8cBz3206xEM1wGuyRR3QnyBEqvKs27sHes67CO72t9n+25hseFY7ZIWUwrZGYI5vrm2R5TJHXS65ItASyMdJnboQJ2ZgbULF6Icx4vmXhyDn4xr4iTPsXC0JzLQy5TxbZKjs51hvMM/rr5FwDDnIaxuctmtY0dJ4tjuvN0Vt1ZBShT9vf02KNqziaSMlmNg3kR+IJ9T/ex7+k+ngU8U72vr61PhzId6FOpDx3KdsiRVg+R8ZF02N2Bq2+vYqxrzJkBZ5I1hcwJ7n+8T/PtzQmPC6dt6bYc63sMXS3dLHdm9ovwY9bFWex7uk/VcBOUbSW6lu/K4paL1ZYJmZ9j8jJz/xYFiobwCvGi1vpahMQqa6KY6plyf/T9dKssvg19S/nV5YmVxXKg1wF6VuyZ5PMVt1Yw5dwUSluU5vn452oJNCzydxE+Rnzk1ohb1C1aN9vjiaRNammrKWFqoOCN4i8ipNcAaOPYhpP9T+ZKjYQv0zEbFmvI9eHX1b6No8+PMvzYcEJiQzDVM2Vjp430qtRL7dsR+Yz7J3f2uSvFyqvgV6r3jXSM6FSuE30q9aFt6bZqzSyJio+i897OuHi7YKRjxKn+p2haoqnaxv+ap5+e0nRrU4JigmhavCmnB5xWia/MJCnUK2XB6denmXtxLm7+bkk+dzBzYEaDGYyuORodLR21zT2/d84Wg2TzAaUKlWJ3j91I/u81Do8Lp+f+nsQkxKS5XnHz4qribNPOT0u2/MgaI7EwsOB18GsOe6in+J3o5sldUjPXp0RYDBSKm4GRvCHrOqzj7MCzuVbA6ctU44wWa8ssXct3xW2MGw2LNSQ8LpzeB3vz/Ynv0/2eiGSdyjaVWdB8AS8mvODB6AfMbDiTEuYliEqIYq/7Xrrt64btUluGHB3C6Ven1eJ+M9I14kS/E7Qq1YqohCja7WqHi7eLGvYmOZ7BnrTa0YqgmCDqFKnDiX4nkliGMhoHtuLmZiyXWNJxd0eVONGSaNGmVBsejXnE2ylvGV9nvNrFSVZdT/kRUaBokLal27LguwWq14/8HzHh9IR015vZaCbFTIvxNuytysSeiJGuERPrTARg0Y1FaqnQmVcyeb4lvqzI+U8fJyyMUr7IJVaOraA3j5E1RufqHL+MQQmMDiQ4JjhHtuNg5sDloZeZ3Wg2EiSsf7CeOhvrJHFFiKgfiURC9cLVWdRyEV6TvLg14hZT602liEkRwuPC2f5oOx12d8BuqR0jj4/E2dNZFWuRFQx1DDnW9xhtS7clRhZDh90dcPZ0VuMegU+YDy22t8A30peqtlU5M+BMkqyZ0NhQ9ntkrNjl0Vc7VBZwK0Mr5jeZT8SsCM4OOpsj3d/zUsXg3EIUKBpmVuNZdC3fVfV6s9tmNj9M25dvqGPIX62UwmTR9UX4hPkk+XxCnQkYaBvwwPcBF70vZnuOYiaPZkhMW7Uz1Sc4KiHV5SRICYiQccc7ZwRCaiRm8SRaAdXdauFLtKXa/NHiD84POo+tkS3un9yptb4Wmx9uzrdl8vMTEomEukXr8nebv3k39R3Xhl1jQu0J2BrZEhIbwqaHm2i9szX2y+wZd2ocV95cQa6Qpz/wVxjoKKscdyjTgVhZLJ32dOLs67Nq2Qf/SH9a7mjJ27C3lLUsy/mB57EwUJZqUAgKNj3YRNlVZdn9YgEyAkjNwSqgQEYA8dJn1C1SF5fBLqoUYQMdA7XMNdk2BYFT7s/TLEHwZefsgoIoUDSMVCJlW9dtlLMsp3pv3KlxuPm5pble70q9aVK8CTGyGGZcmJHkMytDK0bVUHZNXnwj+0XbRBePZslsZeHc4ss6KJCzAiWRlqVa8mjMI1qVakWMLIYRx0cw8MhAwuPCc3zbIkqkEimNHBqxqv0qPvzwgYuDLzK6xmgsDSwJiA5g7b21NNvWjGL/FGPymcnc9LmZqV5e+tr6HOp9iC7luhAnj6PL3i6cenkqW3MOjgmm9c7WvAx6SXGz4lwYdEFVpO7OhzvU21iPkSdGEhAdQHnrskxsWRhS7MusACTUqfCOoJkB3Bp5i+9KfpetuSUZXxDwi/TjotdFVtxawegTo2mwqQHmi83pd2BMhsbI7etATiIGyeYRPAI8qLOxDpHxkQA4FnLk3uh7aWbNuPm5UeO/GggIXB16lcbFG6s+exv6FseVjsgFOfdG3aOmfc0sz80nzAeH5Q5oS7WJnh2tVp+qSPqccn/J+J2v0l0ut3utCIKA0Z9GqoyF2Y1m80eLP3Jl2wpBwZIbS5jrMhe5IKe0RWn29tibrfNcJHskyBNw8XZh39N9HHl+JEk9lWKmxehTqQ99KvehZuGaGar5ES+Pp9+hfhz2OIyOVIeDvQ/SuVznTM8rIi6CljtacufDHeyM7bg27BqlLUrjH+nPrIuz2OK2BVAWNJzfZD5WRlYsvLYQnwBLLOJHo83nVGAzQwWLutWiXZXsB6MGxwTj/smdp5+eKn8HKH8HxaRcNM9QcMI69vd0x9V0z6X0ELN48imHPQ7TY38P1euu5btyuPfhNL/MiY0IneycuDfqXpKsnUFHBrHz8U56VezF/l77szwvhaDAdKEpUQlRPB//nHJW5dJfKRPk55S5nObc63MMPjIEnaBFaGH5/5iTpKSW9pgbOK50xCvEC4AeFXpwsPfBXN3+TZ+b9DvUj3dh79CR6vBXq7+YVHeSWPRKw8TJ4jjveZ59T/dx7MUx1YMXKBME+lTqQ59KfahqWzXNv1WCPIEBhwdw4NkBtKXa7Ou5j+4Vumd4HjEJMbTf3Z7Lby5jaWDJlaFXKGtZltV3V/Pz5Z9VlrfeFXujLdXm2ItjRCVEqdbXkxrwXZGR9C4/kvK2RbJ0bQqPC+dZwLPPYiTAHfdP7vhF+qW4vAQJpS1KU9mmMpWsKyl/21TCsVAZmi+9nmYJAk1dBzKDKFDyMbMvzmbh9c8lyZe0XML0htNTXT4gKoAyq8oQFhfGfx3/Y3TNz4GST/yfUHVdVaQSKc/HP1c1/ssKNdfX5IHvA472OUqX8l2yPM7X5PeUuZwiQZ7AvEvzVC66Csb9iA4YkMzorOmuzo02N+KGzw0AqthU4fHY3G/+FhwTzIjjIzj6/CgAncp2YkuXLVga5t2nyG+JmIQYzrw+w76n+zj58iTRCdGqz8pZllNZVipaV0xxfZlCxuAjg9njvgctiRZ7euzJUKp5vDyernu7cub1GUz1THEZ7EJYXBiTzkziacBTAMpYlEEqkfIy6GWSvjgOZg5MazCNcbXGZbhUQ3RCNB4BHkmsIU8DnvIu7F2q65QwL/FZhPz/d3mr8qnGsmi6c7Y6EAVKPkaukNN+d3vOe54HQIqUS0Mv0aR4k1TXSax9YmVoxauJr5K4hTru7sipV6cYXWM0/3X6L8vzGnB4ALuf7GZRi0XMbDQzy+N8SeKX7esTMD992XKCN6Fv6HeoH7feK2sxjKs1jqWtl3LlRWieE3O9DvTi4DOl1URfW5+o2VFIJbkf2iYIAqvvrubH8z8SL4+nqGlRdnffncTtKaJ5ouKjOPnyJPue7uP0q9PEyeNUn1WxqaISK1/Xg5Ir5Aw7Nowdj3egJdFiR7cd9KvSL9XtyBQy+h3qx8FnBzHQNmBHtx3sfbpXda4aaBsglUiTWEu0JFq0KNmCv1r/lWYWTpwsjhdBL5K5ZrxCvJKInC+xN7FPIkIq21SmglWFLPXdye8PdaJAyecERQdRa0Mt3oS+AcDWyBa3MW5J6k58SYI8gWrrquER6MGUulP4p+0/qs+uvb1Gk61N0NPS482UN6mOkR4Lrixg/uX5DHUaypYuW7I0xpdktVpjQeewx2FGHB9BaGwoZnpmbOq8iR4VP7v98po7bNKZSay6swopUhQoeDP5jdqqZWYFNz83+hzsw8ugl0glUn5t9iuzGs3Kd52RvwXC48I59vwY+57u47zneRIUnzPVahSuQZ9KfehdqTclzEsASpEy8sRItrptVSUXDKw6MNm4CkHB8GPD2fZoG7pauvSt1JcDzw6oYqUkSJIICStDK8bWGsucxnOSdOSWKWS8Dn6dzDXzKugVciHlDCUrQyulALGurHLNVLKuRCGDQuo4ZCry2nUgM4gCRU1o8iR46PuQBpsbqHrqNC3elAuDL6RahOu853na7GyDtlSbx2MeU8G6AqB8smy0pRE3fW7yU8OfstzR9sDTA/Q+2Jt6RevhOiL7/TIyU60xLwd8qYtYWSw/nvuRNffWAFCvaD329NijujjnVf689idzXOZgpmdGWFwY5waeo7Vja43OKTI+knGnxrHj8Q4Ampdszs5uO5PUbRHJW4TEhHDk+RH2Pd3HRa+LSQRAvaL16FOpD70q9qKwSWG+P/E9Gx9uxEGQsqrZL3Qu20m1rIDA4htL2P90P8ESCdGGFgREByTbngQJte1rs7jlYpqUaIJ3iLfKEpJoFXke+DzVInRmemYqS8iXcSI2RjbqPzgFDFGgqIG8YEbb+Xgng44MUr2e2XAmi1ouSnX5Lnu7cPzFcVo7tubsgLOq4LPjL47TZW8XTPVMeTflHWb6Zpmei/snd6qsrYKZnhkhM0OyHYR4zO0Dk/e6pbvcir5OdPl/596CyovAF/Q52EfVm2lmw5ks+G5BvsiW2vJwC8OPD8fGyIZPUZ9Y1W4VE+qkX2wwN9j+aDvjTo0jKiEKa0NrdnTbQZvSbTQ9LZF0CIgK4LDHYfY+3cuVN1dU1g4JEho5NKJXxV54vb3Kn8/OYZBCP+9EYhAoRyQ+ks+3OCMdI5oWb0rdonXxCvHC/ZM7HoEeSeJivsRIx0hlBflSjNib2IuB2FlEFCjZJC/FRiSa0BM51vdYqql2nsGeVFxTkXh5PMf7HqdTOeWThUJQUGVtFZ4FPGNxy8XMaDgjxfXTIlYWi9GfRigEBb4/+mbZVZSIaEFRss1tG+NPj8+3N9Gzr8/Sblc7bAxt+BT9iQm1J7Cq/ar0V8wlXgS+oPfB3jz2Vwbvzmgwg9+b/54vxJ8I+Eb4cvDZQfY93acKxgaoIWhxH6N0169BJA8lCvS19ZEgSdLE70v0tPSoYF0hqUXEuhLFzYtrJKaqICMKlGyQ12IjEuQJtNjegmvvlM3gTHVNeTjmYapdXWddmMWiG4twLOTI03FPVT7VbW7bGHpsKIWNC+M92TuJrzWjlF5ZGs8QTy4NuUSzEs2yvE+Qt46zJlx5BcUN8cjvEU7/OWGia0JEfAStSrXi/KDzmp5WEvKr+0wkKT5hPhx4doB9T/eR8P4eDzBOd51EgZKItlSbcpblqGRTicrWSrdMZZvKlCpUKtd6WH3riAIlG+TFJ3u/SD9qrq/Jx4iPADjZOuE60jXFbqIRcRGU+7ccvpG+STJu4uXxOK505H34ezZ02sDIGiMzPY/EjKC1HdYyplbGqhqmxVl3X8bsvI+AkKS+R25aqjThyitIgZyfoj5hu9RWFXhY3Kw4b6a80fS0UuTQs0OMOD6CsLiwFAOQRfIP71+couie/uku197YmFjrctSwq0HTEk1pXrI5RrrpW15Ecg6xm3E2yItlxe2M7TjY6yA6UqVZ2s3fjYmnJ6a4rImeiSpO5fdrv+Mboexuqaulyw/1fgBgyY0lWeqToe6S920rF6Zy2VvISVo50c5MP9fESW52BhUEgdV3VlNvYz1eBr2kqGlRLg+5zNwmc/OlOAFl1oKWREsVJ/Au7F2e7TTco2IP3Ma4Ua9oPcLiwuh5oCfjTo1TBaKL5B/sTewztJxfpB+X3lxi2a1ldN7bGfPF5lRYXYFu+7ox++Jstj/azt0Pd8VWCXkUUaB8hY1J+i3uAaLkudvWun6x+qxst1L1euPDjWx125risgOrDqRukbpExkfy08WfVO+PqjmKQvqFeBX8SlXUKjPkRE+epxG7+KA/gqntpazo68SeUfW4PrN5jouTnOoMKlcIuHoGccztA66eQar1Q2JC6LG/BxPOTCBOHkfncp1x+94t39fpkEqkqp4mxrrGCAi8Dn6t4VmlTgnzElwdepWZDZWWxbX31lJ3Y12xz1Q+wiPAgxHHR2Ro2Z4VejKgygBqFq6JkY4RMoWM54HPOfr8KAuvL2TI0SHU2VgHs0VmFP27KC23t2Ti6YmsvrMaF28XPkZ8FJtRahDRxfMVibERqZUTFlAgJ4gAo7H82eJ3ptafmmtBVIIgMPL4SDa7Kbsd62rpcnfU3RSLCt35cIe6G+sCcGvELeoWVf5//qX5LLi6gNr2tbk98namItGvv7tO4y2N1WbGfxP6hpIrSqIt1SZkZgjGuun7lNVFTrjyUnMX9amvxT9uQwpsOfZa62tx3/c+ZS3K8jL4JQd6HaBnxZ6anla6nHt9jkFHBhEQHYChjiFr2q9hiNMQTU9LJBXi5fEsubGEBVcXUEkmy3AMSuO6E/i9+e8Y6RrxIfwDHoEePA98zvPA56r/p1Z2HsBUz5TyVuUpb1WeClYVVL9LFSolBltngczcv8WooK/Qkkr4uVNFxu58kEpZcSkli9/nw6dYpjlP48TLE2ztujVXAu4kEgmrO6zm8afH3Pt4j3h5PN32dePB6AfJUofrFKnDUKehbHXbyqSzk3Ad4YpUImVinYksvbmUux/vcunNJZqXbJ7h7SdaUN6GvSU6IRpDHcNs7c8l70sA1LavnaviBNTvykst88s3LIZ/zkKAbhFKW+sWyIZ2hU0Kgy+q1vW50dVYHbQp3YZHYx4x6MggLnpfZOixoVz0vsjq9quzVOFTJOe4++EuI46P4MmnJwBoS3S+bjScKivvrOSQxyHWdFhD53KdKWZWLFmtnpCYEF4EvcAjwCOJcPEM8SQ8Lpw7H+5w58OdJOvoSHUobVE6qXCxrkA5y3Li+aMmRIGSAm0rF2btwBrJnobt/h882aZSezY+qMrUc1O58vYKVddWZWW7lQypNiTHn4oTW5HX+K8GQTFBeIV4MezYMA71PpRs2382/5ODzw5y58MddjzawRCnIVgbWTOi+gj+vfsvi28szpRAsTK0wtLAkqCYIF4GvcTJzilb+3LpjVKgfFdCfe3KM0pGXXkZWS4td5FS1iooyhRuj2xDIYPM16DJ6xQ2VrrjEgXri6AXmpxOpihsUphzA8+x6Poi5l+ez47HO7j1/hb7e+3P9vktkn2iE6KZf2k+/9z6B4WgUIlgv+gQYhDSrYMS+P9v5YeID3TZ24UeFXqwst3KZDEshQwKUa9oPeoVrZfk/ThZHK+DX6sEy5fWl+iEaDwCPfAI9OAIR5KsV9S0qNLqYqkULYkixs7YrsBYTnMD0cWTBumln3oGezL46GBu+twElN2H13dcj7WRdWpDqg0Xbxda7WiFQlCm0C1rvYwf6v+QbLklN5Yw88JM7IzteDnhJSZ6JrwJfUPplaWRC3IejH5A9cLVM7zdxOZwe3rsoW/lvlmevyAIOCx34H34e5wHOdOyVMssj5UV5AoBpwXHCY+RZrtDcF7M/MpNEt2GrUq1wtnLWW3VhnOb6++u0+9QP96Hv0dXS5dlrZcxvvZ48YaiIS56XWT0ydFJumU/9Huoel1MkGD1lUDR09YjThbHzu47EQwsqH+wFxHxEUmWMdUzZXHLxYyuOTrL7nmFoOB9+HulaPnK6uIf5Z/qemZ6ZsndRdYV1JLmnF/K34suHjWhJZWkeUNxtHDk6tCr/HXzL+Zfms/R50e56XOTjZ02qoqk5RTNSzZnScslTHOeBsD089OpU6QOjRwaJVluct3JbHiwgdfBr/nj2h8sarmIEuYl6FO5D7uf7GbxjcXs7bk3w9stb1WeGz43sh1U6Bniyfvw9+hIdWhQrEG2xsoKOx9vx0u+HitmobQVf/4iJ/7v504VM/QFz4uZX7lJogVFppAByuJogiDkuxt7I4dGuH3vxvDjwzn+4jgTz0zkovdFNnXepHpyF8l5QmJCmHZ+mirWrphpMZa1XsbC6wvxCvFSpbT7SAR8vrJbdi/bjsMeh9nke49lbZbx8PuHNNrcCL8oZYyJtlSb8Lhwxp4ay47HO1jfcT2VbCpleo5SiRQHMwcczBySuYuCY4J5EfgimdXFK8SLsLgwbn+4ze0Pt5OsoyPVoYxlmWRWl/JW5TPk/s4Llc9zAtGCoibc/NwYdGQQ7p/cARhRfQT/tPknR32RgiDQ71A/9j3dB4CNoQ2Pxz5WZVUkcvLlSTrt6YSuli5Pxz2ltEVpHvs/ptq6aspW4xNe4mjhmKFtLr25lOnO0+lTqU+mhM3XbLi/gdEnR9PYoTFXh13N8jhZYa/7XgYcHoBCUNCj5ALef6iPXza+2N+6BeXo86N029eN2va1ufvxLgCfpn3KFUtiTiAIAitvr2S683QSFAk4mDmwp8cejQjpb41Dzw4x4cwEVdDq+Nrjmd9kPr0O9uLq26voaekl6YD8NXt77KXvob7Ym9jzbso7tKRafIz4yHfbvlPFRmlJtNCWahMnj0NHqsPMhjOZ02ROinWl1EmsLJbXwa8/W12ClL9fBL1ItdQ+KN1FXwbnJlpdbI1skUgkearyeUYQC7VpiFhZLPNc5rHMdRkCAiXNS7Kt67YcTSWNio+izsY6PAt4BkCzEs24MOhCkroagiDQblc7znmeo1PZThzvdxyA9rvac+b1GcbWGsuaDmsytL1EsVPNthpuY9yyPO/+h/qzx30P85vM59fvfs3yOJnliMcReh3ohVyQM6rGKNZ1XIcgSLJlGk0v86ugd2a+/f429TbVw8HMAVDWQrk+7DoNHRpqeGbZ4/7H+/Q91JfXwa/Rkmix4LsFzGw0E6lEmm/M6fkF3whfJpyZwGGPw4DSUrux00bqFKlDj/09OPHyBAbaBqmWqk8kaHoQjqscCY0NxWWwC9+VVMa3hcSE0G5XuySWi1KFSqncRWUsyrC+0/psV8jOCgpBgU+YTxJrS+LvT1GfUl1P6S6qSMi7qcTFG0AK8Th58dojChQNc+XNFYYcHcLbsLdIkDC9wXR+++63LJWXzwivg19T478aKl/r7Eaz+aPFH0mWeR74nCprqyBTyDg74CxtSrfhypsrNNvWDD0tPd5OeZvM8pLatsqsKoO+tj5Rs6Oy5MMVBAH7v+3xi/Tj8pDLNC3RNNNjZIXTr07TdW9XEhQJDKo6iK1dt6otRTzxKQZSyvzKe08x6uRd2DuKLy+OrpYuTRyacMH7Aps6b2J49eGanlq2SXQH7H6yG4BWpVoxvMJKVjh/KHDmdE0gCAKbH25mmvM0QmND0ZZqM7PhTOY2mYuuli5Djg5h5+Od6Gnpoaetl25BtchZkUw5O4WNDzcysvpINnTeoPosKj6Knvt7ctbzrOo9JzsnfCN8VXEjw52G81frv/KMSy84JvhzSvQXVhfvUG8UggI9eRXs4tPvUJ+XrLdiJVkN07REUx6Pfcwwp2EICCy5uYQ6G+uoGpapm9IWpdnTY4/q9Z/X/+Tky5NJlilvVZ6JdZTVZ6ecm0KCPIEmxZtQr2g94uRxrLy9koxQwrwEulq6xMpieRf2LkvzTaw7oK+tnyxqPqe44HWB7vu6k6BIoE+lPmzuslmt9WsSM7/szJKaiXOrKq4msTVSCtt4eTzFzYsD+SfVOD1M9UzZ2W0nmztvxlDHkOuvIpl58HWuVR8uyHgGe9JyR0tGnhhJaGwotexrcX/0fX5v/jt6WnpMOTuFnY93oiXRoqZ9zQxXe+1fRVkC/6DHQeJkn91BRrpGHO93XPU5KF3zJnom9KvcDwkSNrttpvy/5dn9ZHeeKNBmYWBBg2INGF5dKZxO9DvB60mviZodxeMxj/mhzi8ZGie/xr+JAiWHMNUzZXOXzRzpcwRrQ2se+z+m1vpaLL6+OEtl5tOjQ9kO/NL0F9Xrfof64R3inWSZ+U3nY21ozfPA56y+uxqJRKKqqLnm3poMXQC0pdqUsSgDZL2ibGJ6cYNiDXLMqvQlV99epfOezsTJ4+havis7uu3IkcZgbSsX5vrM5uwZVS9Xq+JqGj1tPdUTp42hDZC/Uo3TQyKRMKz6MG6PuIutfHyKy2Sn+vC3hkwhY9nNZVRZWwUXbxcMtA1Y2mopriNcVUUnf7vym6qL+/c1v1dlSmaEJsWbYG9iT2hsKGdfn03ymY6WDju67WBC7Qmq914Hv+b0q9P81eovKllXIiA6gAGHB9BuV7tk19C8gr62PlVsq9CpQsaszxktq5DXEAVKDtO1fFfcx7nTuVxnEhQJ/HTxJ5pta5YjJ/68pvNoX6Y9oOyW221ftyR9Rsz1zfmzxZ8A/HL5FwKiAuhcrjPlrcoTGhvK+vvrM7Sd7Ja8z836J64+rnTY3YEYWQzty7Rnb4+9OVr9MTHzq4tTEeo7WuYZv29Ok5jJY6qvNNkWFAvKl0RE2iLIzZGkUntDAHzDYrnjHZy7E8tHPPZ/TP1N9ZnmPI0YWQzNSzbnydgn/NjgR9VDw6rbq/jlyi8A/P7d7+xx35PGiKhinxLRkmrRt5KyBMJu993JlpdKpKxstzLJA11YXBgzLsxgYNWBLGi2AD0tPc55nqPSmkosvblUlaGW16hT0oLCZvqpVoORoHQ/1imZN1xWmUUUKLmAjZENR/scZVPnTRjrGnP93XWqrqvKpgeb1GpGlEqk7Oq+i5LmJQF45P+ISWcmJVlmmNMwqttVJywujDkuc5BKpExvMB2Af279k8QkmhrZESgKQcHlN5eBnBco9z7eo+2utkTGR9KyVEsO9T6UKxabb5HCJkqBoqulCyifSnPCUqhJvvV08uwQK4tlrstcaq6vyb2P9zDTM2Njp41cGHQhSQbhzsc7mXRWec36pekvuL53JSQ2JMUxDbQNAKhoXTHZZ4lunOMvjhMRF5Hsc4lEws/NfmZVu1Wq9xSCglkXZ/Ey+CV3R92lWYlmxMhimO48ndobanPv472sH4AcIrHyOSQPkc1suYS8iChQcgmJRMLw6sN5POYxjR0aExkfycgTI+mytwv+kakX9sks5vrmHO93XJUyt+HBBnY82qH6XEuqpWo6uPHBRh74PmBAlQEUMSnCx4iP7HqyK91tZEegPP30lMDoQAx1DKldpHam188oj/we0XpHa8LjwmlSvAlH+xzN8TTCb5lEC0qCPAE9LT3i5fG8CX2j2UmpGXVWH/6WuP7uOtX/q84f1/5AppDRvUJ3PMZ7MKLGiCS1ck68OMHQo0MBZf2moqZFOfXqVJKxvrReJVaDrWBVIdk2axSuQVnLssTKYtNsjDqhzgR2dd+FlkRLNf6OxzsYeWKkKvaokH4h3PzcqLuxLlPPTiUyPjKrhyJHKMjxb6JAyWVKFirJpSGXWNJyCbpaupx4eYLKaytzxONI+itnkMo2ldnWdZvq9cjjI1X1WUBZkKpf5X4ICEw+OxldLV2m1psKKCvPJlanTY3sCJRE904jh0aqp2118yzgGa12tCIkNoR6Retxst9JjHSNcmRbIkrsjO0AZXv7MpbKGKWC5uYp6OZ0dRMRF8GE0xNovKUxzwOfY2dsx8FeBznU+5DK4pbI1bdX6X2wN3JBzqCqg5hcdzJTz01NNqbwRY6cia6yxlRKFhSJREL/ykorSkpuni/pX6U/J/op05gFBLSl2tz5cIfaG2pTyaYSzyc8p3+V/igEBctvL6fSmkqceplUOKXWxTy3KKjxb6JA0QBaUi2mN5yu6kQcGB1I9/3dGXZsWIYj1dOjd6Xe/Fj/RwDiFfF03N0xydhLWi1RZiW8u86+p/sYXXM05vrmvAh6wbHnx9Icu5xlOQD8o/wJiUnZ/JoaOR1/8iroFS22tyAgOoCahWtyZsAZsXFXLpBoQfGL8lOdHwUpUBYKvjldnZx+dZpKayqx+u5qQJm++2zcM3pU7JFs2Qe+D+i0pxOxslg6l+vMhk4bGHliZLIS9UY6nx8yDLQNeBeuzCKsaJVcoAD0q9IPAGdP5zTriQC0K9OOC4MvYK5vjkwhQ09LD99IX5psacJ5z/Ps6r6LswPOUsK8BO/C3tFxT0f6HOyDX6QfZ919abTYhX4bbjF5rxv9Ntyi0WKXXM/oKojxb6JA0SBVbatyZ+QdZjaciQQJW922UnVtVa68uaKW8Re1XEQThyaAsgPx4CODVTEvRU2L8lPDnwCY7jwdqUTK+NrKDIVFNxalGRtjomdCEZMiQOZuQgpBodq3nBAo3iHeNN/eHL9IP6raVuXcwHOY65urfTsiyUl8IvaN8KWsZVmg4FlQoGCb09VBQJQyA6bD7g74hPtQqlApLgy6wKYumyhkUCjZ8i+DXtJ2Z1vC48JpWrwp+3ruY+ODjbh4uyQrAxCVEKX6f63CtQiOCUYqkarOt68pa1mWWva1kAtyDjw9kO7cGxRrwNWhVylsXJg4eRyG2obEyeMYdGQQM51n0rJUS9zHujO9wXS0JFrsf7qfKn8PZMzO+2LaeQ4hChQNo6etx6KWi7g67ColzUvyNuwt3237jmnnpyXJwMkK2lJtDvY+iJ2R0vx+7MUxlt9arvp8WoNplDAvwfvw9yy+sZhJdSehr63PnQ93uPI2bZGU6ObxCPDI8Hwe+T0iJDYEE10TatrXzPwOpYFPmA/Ntzfnffh7KlhVwHmQM5aGeaMw0bdAogXFN9K3wFpQEimo5vTsIAgCu5/spuKaiux+shupRMqP9X/kydgntCjVIsV1fMJ8aLWjFQHRAdQoXIPj/Y7zPvw9My7MAEjiak58IEokcUzHQo4Y6BikOq+MunkSqWJbhevDr+NYyJFoWbTKarPk5hI67+2MTCFjSasl3B11lxp2tdCLHphi9Wgx7Vw9iAIlj9DIoRGPxjxiZPWRCAgsc11GrfW1eOj7MFvjWhtZc7L/SVUK3zTnaaqaAgY6yvoDAH/d/IvohGiGOQ0DYPGNxWmOmxiYlpk4lET3TuPijdVah8Q3wpfm25sruzRblObi4IvYGNmobXyR9EmMQfGN8KWclVKgFEQLSiIF0ZyeVXzCfOi4pyMDDg8gMDqQKjZVuDXiFktbL8VQxzDFdQKjA2m9szXvwt5RzrIcZwecxUjHiKFHhxKdEI2ONGkpgLDYMNX/taXaKrdteo3++lTugwQJN31uZri0Q6lCpbg+/DrVbKsRlRCFgbYBulq6nH51mnqb6vEy6CXVC1dnZYtTaGMtpp3nIKJAyUOY6JmwofMGjvc9jo2RDU8DnlJ3Y10WXluYrZTNmvY1Wd9RWeNEISjovKezyifbvUJ3vivxHbGyWKY7T2dag2lIJVLOvj7LI79HqY6pCpQNyrxAaV6ieVZ3JRmfoj7RYnsLXge/poR5CVwGuyQLwBPJeRKPeUR8hOpp9334e6Lio9JaTSQfoxAUrL6zmoprKnL61Wl0tXRZ8N0C7o2+l2aGXnhcOO12teN54HOKmRbj/KDzWBtZs/zWcm743EBXS5cERYJq+ao2VYlM+Jw542TnpHowqmSdtkCxN7FX9ePZ657x5qZ2xnZcHnqZRg6NVP1/LA0seR74nLob63Le8zyBkQnpjKJETDvPOqJAyYN0KtcJ97HudCvfjQRFArNdZtNkaxNeB7/O8pjDqg9jRPURAATFBNFtXzfkCjkSiYTlbZcjlUg5+Owgb0Pf0rtSbyBtK0pmM3lkChlX3yq7FideMLJLUHQQLbe3xCPQg6KmRXEZ7EIxs2JqGVskc5jomqieluPl8VgZWgEF24ryLfM88DlNtjRhwpkJRMZH0qBYA9y+d1P10EmNWFksXfd25d7He1gZWuE8yBkHMweeBTxjjsscgGQPY1/HooyoPoKnAU8BZcZiemTWzZOIub455waeo2PZjsTL4wmJCcGxkLIRYbtd7bjqcyJD44hp51lHFCg5gDpSzqyNrDnU+xBbu2zFRNeEmz43cVrnxH/3/stycbc1HdZQzbYaADd9bqouCFVtqzKm5hgAJp+dzA/1fgBg39N9qZpFEwWKZ7An8fL4dLf90Pch4XHhmOubq+aQHUJjQ2mzsw1PPj3BztiOi4MvUrJQyWyPK5I1JBJJkjiUMhbl0JNXYf89L42kXYrkDAnyBP64+gfV1lXjhs8NjHWNWdVuFdeGXaOCdfJ6JF8iU8joe7Avl95cwkTXhLMDzlLOqhwyhYwhR4cQJ4/DxsgGufBZoNQvWj9JDzOJoEVpo3a8eG+CnrwK5S0rIlcI6MmrYChrwh3vkGTnWvcK3dHV0sX9kztP/J9kan8NdQw53Pswg6oOQoECzxBP6tjXQSEo+Pv+ePR0o8W08xxEFChqRp0pZxKJhCFOQ3gy9gnNSjQjKiGKMafG0HFPR3wjMj+erpYupwecxkzPDFBaSE6/PA3Ab9/9RiH9Qjz59IS7H+/SxrENCkHBMtdlKY5lb2KPsa4xckGOZ7Bnutt28XYBoGnxpmhJtTI99y+JiIug3a523Pe9j5WhFRcHX0w1kl8k90h085x/+omgt5Oxi1/Inhv6Gku7FFEv9z7eo9aGWsy9NJd4eTztSrfj6binTKgzId3GmwpBwcjjIzn24hh6Wnqc6HdCFSi/6Poi7n28h7GucbJ04Kq2VVGgDJY1kNfHIX4bI7e5Yxw9Ebv4hQxd70uTxTewi1+IdcIMhm15lOxcK2RQSNUCJLErdWbQ0dJha9etTKk7BYA7H+/QqlQrpFLw4Z8ktVkSEdPO1YMoUNTIWXdfxu58oPaUs+Lmxbk4+CLLWi9DT0uP069OU2VtFQ49O5TpsexN7DnZ/6TqgtLzQE/ehr7F0tCSBd8tAGDepXmMrTUWgE0PN6VYQ0AikWTKzaOu+ifRCdF03NORW+9vUUi/EBcGXUixUJNI7mNnbIeBvD7br+gSF580s0JMu8y/RCdEM+38NOpurMtj/8dYGliys9tOTvU/lawPTkoIgsCP535k26NtyvTcXvtpWkLZ5M7Nz43frvwGJK1zAsq03zOvzgBKcWIdPxsUZkmWCY2RERqTtE9OSudaoptnj/uedAtRpoRUIuXvNn/z+3e/A+Ds5Uy70u3QM/Lgk+6fCNKkgbBi2rl6EAWKmpArBH498SzHUs6kEik/1P+Be6Pv4WTnRFBMED0P9GTwkcGExoZmaqxGDo1Y1kppGYmRxdBmZxviZHF8X+t7KttUJjgmGGcvZ2rb1yZWFsuq26tSHCejAiVBnsD1d9eB7MWfxMpi6bK3C1ffXsVUz5Tzg85TzS777iIR9WBnVBiL+NH/f5X0qVFMu8yfuHi7UGVtFZa5LkMhKOhfpT8e4z0YUHVAkjL1afHHtT9Yfns5AFu6bKFzuc4AxMniGHJ0CAmKBKrYVME/KmnLj2FOw5TF2ARpqudVSqR0rnUs2xFjXWPehr3F1cc1Q/P+GolEwpwmc1jbYS0SJJx6dYr6RetTzCaId7pDCTb4mb4NY8S0czUiChQ1ccc7OJnl5EvUlXJW2aYyt0feZnaj2UglUnY83kHVtVVVLpSMMrneZLpX6A4o61WMOjEKbak2K9quAGDdvXWqhlur765OseFWecuMZfLc/XiXqIQoLA0sMxTUlhLx8nh67O/BBa8LGOkYcXbAWWrZ18rSWCI5RHxptLEmtZuImHaZfwiNDWXk8ZG02N4CrxAvipoW5WS/k+zqvgtrI+sMj7Pm7hrmXZoHwPI2yxlUbZDqs9+u/MZj/8dYGFjgGZLUTVy/aH1VU1E9RaU003lT4utzzUDHQHW9y4qb50vG1BrD3p570ZHqcOb1GYqYFKF16ZZEcJ/FD3px4s0yJBJRhKsDUaCoiQx3Og3PfsqZrpYuf7T4g2vDruFYyBGfcB9abG/B1LNTiUmIydAYEomEnd124lhI2Ul0x+MdbHXbSvOSzeleoTtyQc7xF8cpY1GGkNgQNjzYkGyMjFpQLnkr3TvNSjRL11edEgnyBPoe7MvpV6cx0DbgVP9T1C9WP9PjiOQsupKM3bjEtMu8zWGPw1RYXYFNDzcBMK7WOJ6Oe0qHsh0yNc7uJ7uZcHoCAPObzGdyvcmqz26/v82iG4sAqGZbjeiEaOBzM8DZjWdz2OMwAFpC8gq0GeXLcy3RzbP/2X4S5BlLEU6N3pV6c7L/SQx1DLn05hKhMaFMrDMRgIXXF9J1b1e1tS35lhEFiprIaCrZdJfv+cf1H4Kig7K9zQbFGuA2xo3va34PwPLby6m5viYPfB9kaH0DHQMuDL6gals+8vhInn56ytJWS9HT0uPSm0u0LNUSgL9d/06WrfOlQEkrsyg78SdyhZxBRwZx5PkR9LT0ON7vuMp/LZK3KF7IPEPLiWmXeRO/SD967u9Jj/098ItU9lS6NuwaqzusxlTPNFNjnX51miFHhyAgMKH2BH5p9ovqs5iEGIYcHYJCUNDGsY3q+gDKZoB1i9QlIi5CVX9ELslcv68v+fJca1GqBdaG1gRGB3LB60KWx0yktWNrLg6+iIWBBXc+3uGi90VWtF2hDAJ+eYL6m+pnqzSEiChQ1EZ6nU5BQC4J5FXEGX44/wP2f9vT/1B/Lr+5nOW0YQBjXWPWdVzHqf6nsDO2wyPQg7ob6/L71d+RKZIGj6WU/lzCvASH+yifVOSCnJY7WmJlaMX0BtMBOPP6DHZGdnyI+JDMNFraojRSiZTwuHD8Iv1SnF+cLI4bPjeAzMefKAQFw48PZ9/TfehIdTjU+5BKMInkPRqVLoyMAARSDkIU0y7zJoIgsPnhZiqsrsAhj0NoS7WZ3Wg2bmPcaOTQKNPjXXt7jR77eyBTyBhQZQAr2q1IEq8y12UuL4JeUNi4cJK4Ey2JMrvvl2a/sPSmssK1FClx0qcoJEGZcPCkfK5pS7XpU6kPkPmaKKlRr2g9rg69ir2JPc8CnvG369/s7L5T+frTc+qvGcyf58+LqfZZRBQoaiK9TqcSJKzo3Zi1HVdT3a468fJ49rjv4btt31Hu33L8deOvdDtupkX7Mu15MvYJPSooLwzzLs2j0eZGqkJZaaU/ty3dlrmN5wLKp6hu+7oxs+FMipgU4U3oG1Ug6uIbi5NEwOtp61GqUCkgdTfP7Q+3iZXFYmtkqyqPnxEEQWDMyTFsf7QdLYkW+3ruy7SJWSR3KWpmT7DuekghWkBMu8ybeIV40WpHK0YcH0FobCg1C9fk3qh7/NHiD/S1M2/pcvNzo+OejsTKYulQpgNbumxJ4ta99vYa/9z6B1C6Sdz83ADlGSMX5NQpUoeKVhV54Ke0AgsIIFFQtuTj/y+XPmmda4lxdUc8jqjcStmlkk0lbgy/QRmLMrwNe8u4U+OYUGUjJRN2YBQ5h/UuCfTbcIuGYqp9phEFihpJr9Np9+qlGFNrDA++f8C9UfcYXWM0xrrGvAp+xYwLMyj6d1F6H+jNBa8LWUqFszK04kCvA+zotgMzPTNuf7hN9f+qM+Xo1nTTn3/77jealWgGwEXvi6y8s5IlrZYAcO3dNUx0TXge+JwTL5JWT0wvDiUx/uS7kt9lOOpfEAQmn53MhgcbkEqk7Oq+i24VumX4OIhoBitDKxJ07hKg+ydWJkl7qYhpl3kLuULO365/U3lNZS56X8RA24C/Wv3FrZG3spwZ9yroFW12tiE8LpzGDo050OsAOlqfz4PI+EiGHhuKgMCgqoOSWGQTayP93PRn1txbo3o/scbIrJbtUry2mhvqYG6Y8XOtXtF6lDAvQVRCVLJrWXYoYV6C68OvU92uOpERpVl3UY5CnjQl2i8sRky1zyQSITv+BQ0RHh6OmZkZYWFhmJpmzjeaG8gVAne8g/kUEYuNidLMmNpTY2R8JHvd97L+/nrufryrer9UoVKMrD6SYdWHqRqxZQafMB+GHhuKi9dlisRuQhsrUnr+kKD8Ql+f2ZzohEjKrCqDf5Q/EiRcGXqFWRdnccPnBpWsK/E04Cn1itbj5vCbKrEx/fx0lrouZVKdSaxotyLZ+M22NuPK2yv81/E/RtccnezzrxEEgRnOM1jquhQJErZ23crgaoMzvf8imqHo30X5EPGBWyPuoIgrlaHvgEju8sT/CSOOj1Bdb74r8R0bOm3A0cIxy2O+D39Po82NeBv2Fic7Jy4PuYyZftIb9LhT41h7by0OZg50KN2BtffXAqAr1SVeEU8t+1rcGnELm6U2BMcEY6BtQIwsBl0tXaJmR6Et1U7x2gpk+HoLMOfiHP68/iedy3XmWN9jWd7nlAiJCaPWH6eRyUxSyToSsDXV4+ZPLb/Z70Nm7t+iBSUHyEynU2NdY0bWGMmdUXd4+P1DxtUah6meKV4hXsx2mU2xf4rRY38Pzr4+m6mGgcXMiuE8yJkfa67NcOqniZ4Jl4dcRluqjYBA+93t+fW7X5Eg4WnAU3SkOtx6f4tr766p1k+raWBMQgyu75U1BzIaIPvz5Z9Z6qr0P6/ruE4UJ/mMxGqyn6L8xG6/eYw4WRzzXOZRY30N7n68i5meGRs6beDi4IvZEieB0YG03tGat2FvKWNRhnMDzyUTJ86ezqy9pxQkPzf5mfUP1icb55emv3DpzSWCY5SpwYmZNo0dPnc/T+namtnO0olunjOvzqi2pS6ef5Qhl5mmkRItwT88nt33b6t1uwUVUaDkIZzsnFjdYTUff/jIli5bqF+0PjKFjMMeh2m3qx2OKx35/ervfAj/kKHxpBIpjYtlLG4jMR2vvHV5tnfdDiitO1POTmF49eEAqovOl00E03LxuL53JV4eTxGTIpS2KJ3uHP64+gcLriqr2a5suzJDFheRvEWitc83UjRj5yVu+tyk+n/V+f2aMni+W/luPBv/jJE1RmbY9ZoSEXERtN/VHo9AD4qYFMF5kDM2RjZJlgmLDWP4ceU1ZHzt8ex2363qt2OmZ6aynrQv055lN5UFJCVIkAnKIP+RNUZmeX4pUcmmElVtq5KgSMhSNe60yGgK/aRT8zjw9IBat10QEQVKHsRI14ihTkO5OeImT8Y+YVKdSZjrm/M27C3zLs3DYbkDXfZ24dTLU+laVTKa0vnlcv2q9GN0DaU4cP/kToI8AVM9UwKjA5Eg4fSr06oGXokC5V3YO6Lio5KMmZn4k2U3lzH3kjJQd0nLJUysOzFD8xbJW6gaBmahV5SI+omIi2Di6Yk02twIj0APbI1sOdjrIIf7HMbexD5bY8fKYum6ryt3P97F0sAS50HOFDcvnmy5Keem8D78PaUtSlO/aH0uel9MMgYo66SExIbg7OUMgK2xLaB8yOpQRv3B8VntcJweGb3exij86X2wN/Nc5mUp3vBbQRQoeZzKNpVZ0W4FH3/4yPau22ns0BiFoOD4i+N03NOREitK8MvlX3gX9i7F9dNLfxZQINUOw84iMsn7azqsoaptVQC2P95Ol3JdAFSt1JfcUAbQWhpaYmVoBaDKGErE5Y2yum167p3Vd1YzzXkaAL81+43pDaenubxI3iVRoKSWdi6Se5x5dYZKayrx791/ERAY5jSMZ+Of0aNij2yPLVPI6H+oPy7eLhjrGnNmwBlVN+Mvyxn8ffkEWx9uR4KEdR3WMdtltmqMwsaFiZPHUaNwDTqW7cj2R9tVlpXwWGWRMydbJ0z0TLI936/pW7kvAFfeXOF9+Hu1jZve9TYx/Xl8w9YA/H7td7rv655ipW6RHBAoCxcupHbt2piYmGBjY0PXrl158eJFkmViY2MZP348lpaWGBsb06NHD/z9/VMZUQSURdUGVRvE1WFXeTbuGVPrTcXCwIL34e/59cqvlFxRkg67O3Ds+bEk9U/SSn9W1quQ4Cf9l2rrqnD0+dEv1tPi8pDLmOgqLw573fdSyrwUcfI41es3oW+AlN08kfGR3PlwB0hboGx8sJEJZ5TVJmc3ms3cJnMzfWxE8g6JMSiii0dzBEYHMujIINrvbo9PuA8lzUviPMiZzV02Y2GQ/Ro0giAw+sRojjw/gq6WLsf6HqN2kdpA8nIGK89KKRK7ib6lF3H93fUkD1KJPcR+bvozACtvrwTAQNuAaJkyBXiI05BszzclipsXp5FDIwQE9rnvU9u46ZWbAGX687I2S9naZavy+L04RoPNDfAK8VLbPAoKahcoV65cYfz48dy6dQtnZ2cSEhJo3bo1UVGfzf9Tp07lxIkTHDhwgCtXrvDx40e6d++u7qkUWCpYV+DvNn/z4YcP7O6+m2YlmqEQFJx+dZqu+7ri8I8Dc13mqgREaunPFkZS4k1WE6PlSkR8BN32dWP8qfHEyZQipJBBIS4OvogECQmKBELjQoHPNQv+dv0b+KInzxcC5ca7G8gUMoqbFadkoZIp7seORzsYfULpSvqh3g/83vz3bPnDRTSPysUjCpRcRxAE9jzZQ4XVFdj5eKeywWi9H3gy9onaChwKgsB05+lscVPWN9nXcx/NSzYHUu/mro0VN59U4p/LnyvGlrUsS4wshup21elUthMPfB/gHeoNQBmLMqrlelbsqZZ5p0ROuXnSKzeRmP48xGkIV4Zewc7YDvdP7tTeUFvlFhdRkuNpxgEBAdjY2HDlyhWaNGlCWFgY1tbW7N69m549lSff8+fPqVChAq6urtSrVy/dMfN6mrEmeBn0ko0PNrLVbSsB0QGAUki0dmzNqBqj6FyuM1KJdrJ0vLC4EMacHMOBZ58DtipYVeBo36OUtSwLwIpbK5hybgoA1obWqvENtA14N/Ud29y2Mc15Gr0r9WZfT+XTyE8XfmLxjcUMdRrKli5bks13/9P99DvUD4WgYFytcfzb/l9RnBQAbr+/Tb1N9ShmWox3U1N2O4qoH58wH8aeGsupV6cApWt4U+dN1ClSR63bWXhtocpNs6XLFoY6DQWUbp1Gi13SaJgqICOQD/ojkEpAX0ef6IRojvQ5QtfyXRl2dBhbH20FPl9jSpmXwnOyZyrjZZ/A6EAKLyuMTCHDY7yHyhKsLjJabuJ9+Hu67u3Kfd/7aEm0WNluJeNqj1PrXPISeSrNOCwsDAALC6Vp8f79+yQkJNCy5WdFX758eRwcHHB1TbkNdlxcHOHh4Ul+RJJS1rIsS1ot4f0P79nfcz8tS7VEQOCc5zl6HuhJsX+KMcdlFtaFQpKk41kYWLC/1352d9+NkY4RAB6BHlRZW4Xtj5TZPJPrTVbFoAREByD9/2kTI4th1e1Vqi+2R4CHaj5p9d859vwY/Q/1RyEoGFF9BKvarxLFSQEh0cXjF+mXrRYOIhlDIShYe3ctldZU4tSrU+hq6fJbs9+4P/q+2sXJunufY0j+bv23SpxA+t3cQYI21ugpKlG9cHWiE6JxsnOiS7kuRCdEs/fpXgAcTB1UD0D9KvdT6/y/xsrQitaOyliQPU/2qH38jKY/FzUtyrVh1+hfpT9yQc740+MZc3JMst5n3yI5KlAUCgVTpkyhYcOGVK5cGQA/Pz90dXUxNzdPsqytrS1+fikH1i1cuBAzMzPVT7FixXJy2vkaXS1delXqhfMgZ15PfM2sRrOwNbLFP8qfxTcWU2ZVGVpub8n+p/tVrhxQZu48n/CcJg5NAIiXxzPk6BB6H+hNVHwUB3odwMHUAQDFF71WVt1ZRXEzZeT+y6CXyBVywuPCuf/xPpBcoJx5dYZeB3ohF+QMrDqQ/zr+l6UOxyJ5k8Q04wRFgtprTIgk5UXgC5ptbca40+OIiI+gQbEGPPz+IfOazlMFs6uLfe77GHdK+VQ/p/EcptafmuTzjKbXGmkV5kWQMiZxfpP5SCQSDj07pMrmqWhdUbVs3yp91TH1NPnSzaNJQW2gY8DObjtZ1GIREiT8d/8/Wu1oRUBUgMbmlBfI0TvD+PHjcXd3Z+/evdkaZ9asWYSFhal+fHx81DTDgo2jhSN/tvgTn6k+HO59mLal2yJBwkXvi/Q52Iei/xRl+vnpquyboqZFuTT0EivarlAVRjrw7ABl/y2LR6AHriNd0dPSS7KNxNRAPS094uRxvA17y7W315ALckpblKaY2WcxedHrIt33dydBkUCvir3Y0mWLqsS1SMFAV0sXSwNLQIxDySkS5An8ee1Pqq2rxrV31zDSMWJVu1VcG3YtyQ1eXZx9fZaBRwYiIDC21lgWfLcg2TIZTa8ta21LZHwkVW2r0qW80iqbGBwrlUhV4sXK0IpK1pXUtAep06V8Fwy0DXgd/Jp7H+/l+PbSQiKRMLPRTI73O46JrglX316l9obaPPJ7pNF5aZIcEygTJkzg5MmTXLp0iaJFi6ret7OzIz4+ntDQ0CTL+/v7Y2eXckl3PT09TE1Nk/yIZBwdLR26VejGmQFn8Jrsxbwm87A3sScwOpClrksp9285mm1txu4nu4mXxzOp7iTcx7qrgl8/Rnyk+n/V2fNkD0d6H0k2/tKbSyljqQxsex74PEX3zrW31+i8tzOxsli6lOvCru67VCJIJOOk1JE6r6Eq1ibWQskyqf2d73+8T+0NtZnjMoc4eRxtS7fl6binTKgzIUcskTfe3aD7vu7IFDL6Vu6baqxYRsoZCNJgnoUdB2Be45+57RXCf9fv8+R9HAhSGjk0UgXKdi/fPVfcvsa6xiqh9HW3dk3RsWxHbo28hWMhR96GvaXB5gZqLyiXX1B7kKwgCEycOJEjR45w+fJlypQpk+TzxCDZPXv20KOHMh//xYsXlC9fXgySzUVkChmnX51mw4MNnH51WlUsyMLAgsFVBzOq5ijKWJRhjssclt5cqmra1cihETXsarDyzsok49W2r83dj3dZ1noZu57s4oHvA3Z3302/Kv249f4WrXa0IjI+kral23K0z1H0tPWSzUkkbc66+/LriWdJfP2FzfT5uVPFPNWEr9WOVlzwusC2rtvEVgVZIKW/s62pHo7FH7DPcxYKQYGlgSXL2y5nQJUBOXYjf+z/mKZbmxIaG0q70u042vdomq6jxCwegC9vKonlDEqWuMAV/xWUN+6LWfxI/L7YPxkB1CjnxYl3SuvM5SGXaVqiaU7sVjJOvDhB572dsTO24/3U93nGqhscE0yfg3244HUBUKZjz286P9+7xDNz/1a7QBk3bhy7d+/m2LFjlCtXTvW+mZkZBgYGAIwdO5bTp0+zdetWTE1NmThRWTX05s2bGdqGKFDUi0+YD5sfbmbTw034hH92nzUs1pDRNUdT3Kw4vQ70UgWvmeiaUNS0KB6Bn4NizfXMCY0LZXDVwex4vAMBgY8/fMQ30pfm25oTFhdG85LNOdnvJAY6Brm+j/mdxIv/11/WxFtTXuoUPPiI8hxY1GIRMxvN1PR08hWp/Z0T+/oG6P5J12olWN52ebKS8urkdfBrGm1uhH+UPw2LNeT8oPMY6himu15K4kpGAMbWZ/FLOEt8dEVs4mfzdZUQAQUSJHzS/ROJ/iPCfgrLNQtrvDweu6V2hMSGcGHQBVqUapEr280IMoWMaeenseK2shFr9wrd2dZ1G8a6xhqeWdbRaBbP2rVrCQsLo1mzZhQuXFj1s2/f52I4//zzDx07dqRHjx40adIEOzs7Dh8+rO6piGSQYmbF+LnZz3hP9uZU/1N0KdcFLYkWN3xuMOToELru60qPCj1oXUoZ8R4RH4FHoEeSeJTEGin3fO8hIFDeqjyB0YG02tGKsLgwGjk04njf46I4yQJyhcCvJ56lcNP6/KT664lnecbdI1aTzRpp/Z0Tb+hldWazo9uuHBUnHyM+0mpHK/yj/KlmW42T/U9mSJyAsgbI1RnNKGS/nQCdJfjrzuKD/gjqlNIlLDYCW/l4Uu6qLkVAwCJ+NK1Ltc1V96+uli69KvYC8o6bJxFtqTbL2y5nU+dN6Eh1OOxxmIabG6pqXBV0crwOSk4gWlByno8RH9nycAsbHmzgbdhb1ftlLcviHeJNgkLZabSYIMHqiwuOvrYesbI42ji24c6HO7yKDca+aB3ODzqPqV7B/1vJFXKiE6JVPzGymCSvs/ITHmFH7Kfv0932nlH1qO9omQt7mTbLby1n6rmp9KnUh709sxcg/y3h6hlEvw230l0uJ//OwTHBNNnShKcBT3Es5Mj14ddVMUUZZavbVoYdG4a2VBuZQkbLki25+/EusdEO2MUvTHf9sa3jmdm8W1Z3IUtceXOFZtuaYaZnht80P/S1Mxb0m5vceHeD7vu78ynqE1aGVhzqfYgmxZtoelqZJjP3bzFKUSRF7E3smdNkDrMaz+KC1wXW31/PsRfHVBk/WhIt7BUKXmCMwZdPRDIAHfC8AUAcpsR22qRxcaIQFMTKYjMlDGISvhAXsoytkxO1CwxlTbDOwHIZTfXMacSOxlkjo3+/nPo7R8ZH0n5Xe54GPMXexB7nQc6ZFidhsWH8dOEnQOmekEqklLUqywXvC5Q1qUJcUPpjlDStlpXpZ4vGxRtTxKQIHyI+cObVGbpVyF2BlBEaOjTk7qi7dN3blYd+D2mxvQWr268u0F3fRYEikiZSiZTWjq1p7dga/0h/trptZcODDXiGeGKFNKk4SQE9BPTkCal+LggCcfK4lEVBRn9SEA9fjxMji1H3oUkXQx1D1Y+BtkGS15n5eRegx5IT6QufjKZ65jRiR+OskZXO4+oiThZH933duf3hNhYGFpwfeD7VFhVp8duV3/CP8kdfW59YWSwDqwxUuU2GVO/G+gvpj1GskFmmt5tdpBIp/Sr3Y6nrUna7786TAgXAwcyB68OvM+zYMPY/3c/3J7/nkd8jlrddjo6Wjqanp3ZEgSKSYWyNbZnZaCbTG07n8pvLnL/+F3imH9jc51Bf3KVaJCgSiJfHEy+PJ1YWS6wsViPCQU9LL1MCISviQl9bX23ZFfLSAjuuuuAXFptKfAKYG+igEATkCiHVipW5hdgwMGskpuqm9neWoOznUqdk9hv+fYlcIWfgkYE4ezljpGPE6f6nqWST+RokHgEequy+WFkshjqG2BrbEhobSgWrCkxr1pUTd6+kun8CCkwNFGrfv4zSv0p/lrou5cSLE4THhWvc6psahjqG7O2xl6o2VZl7aS5r7q3hWeAzDvQ6oOosX1AQBYpIppFKpDQv2ZzmehbgmX4q4KugVzyTKNJd7svxpRIpWhIttKXaaEu10dXSVf3oa+ujr62PgbYBBjoGGOkYYaRrhLGOMSZ6JpjommCqb4qZnhmmeqYUMiiEub45lgaWFNIvhLGecb6qwZLYIXXszgdIIMWLe2hMAgM23s4TaceJFpTI+Egi4yPzdcZBbpLW3/nLTrjqFKCCIDDm5BgOPjuIrpYuR/sepW7RulkaZ8q5KcgUMgx1DIlOiGZSnUn8d/8/AOY3nY+utrZq/5R793k/ElORZ7cvozGB7WTnRHmr8jwPfM4RjyM51klZHUgkEuY0mUNlm8oMPDKQy28uU2dDHY71PUYV2yqanp7ayD9XaZF8SzHTokTo6CJTyIiXx5MgTyBOHkesLDbFmA2FoEAhKJAhI04el8KI2UdHqqO0jugYqCwkBjoGSSwmST5LYZmUlk9pfXWYXhM7pH6dwvk1fmGxjN35QKNpxyZ6JhjpGBGVEIVfpB+lLUprZB75kdT+znY5JDx/uvATGx9uRCqRsqfHnix3PT724hjnPc+jJdEiOiEaO2M7dLV0CYkNobxVeVWWTNvKhfm3vxPj9rogUXy2lMgJwtjqDP1q70ttEzmORCKhf+X+zL88n93uu/O0QEmkS/kuuI5wpfOezniHelN/U312dt9J1/JdNT01tSAKFJEs4+x1gVYZWO5jhC+NnQYyt8lcShUqleQzhaAgJiFGle3y9f+/zIT58nWyzzKwfmK/D1D2igmLCyMsLkzNRyU52lLtjAmclITRV8vM66HP2wB9Vp+PIzIupWoZyufSX088o1VFO409jdoZ2+EZ4olvhK8oUDJJ28qFaVXRLkOdcLPD4uuLWXJzCQDrO66ne4XuWRonJiGGqeeUvXl0tHSQy+TMajiLX678AsC8JvOSFD+TGjzmnc5w7KS9aO7QhxOem4nQOs0fdX7N3g6pgX5V+jH/8nwueF3AP9IfW2NbTU8pXSrbVObuqLv0OtCLS28u0W1fNxZ8t4A5jefk+yasokARyTQhMSFMODMBj8d7aUX65nu5IGeL2xZ2PN7BkGpDmNtkLiXMSwBKd46RrtJFk9MoBAVxsrhURU9GBFJKgii1ZRKRKWRExEcQER+hlv3Qk1dJM11TAHzDYrnjHayxtOPCJoWVAkWMQ8kSiZ1wc4oN9zfw00Vlts1frf5iRI0RWR5r6c2lvAl9g7GuMZHxkVS0rkh4fDghsSGUsyxHn0p9kiz/92UXisRtQBtrbrwAC0ZjKuuGtXbO995Jj9IWpalTpA53Ptxh/9P9TKw7UdNTyhCWhpacG3iOH879wL93/2XepXk8+fSEzZ0358q1NacQBYpIpjj3+hzDjw/nY8RHakl0Ug6I+IqtXbcyw30X5zzPsenhJrY92sZwp+HMaTIHBzOHnJ/0/5FKpErrRC4Ui/syOylNy08GrUJfLhMRVo6EDDQK1mTasZjJk3c58PQA359U1tX5qeFPTGswLctjvQt7x8LrSrEcm6A8335p+gtjTo0BkltPDj54zUvPpnxdTF4LK/48/olipr4ar4jcv3J/7ny4w2733flGoIDSerWq/Sqq2FZh/Onx7H+6n1dBrzja92iuXmfViShQRDJEZHwk089PZ939dQCUsyzHhlZL4cBwkKURJ6KtR9USzTjrNAhXH1d+vvwzzl7OrH+wni1uWxhRfQSzG89O0vW4ICCRSFTBvKhZD2W0oJcm047FarJ5k/Oe5xlweAACAqNrjObPFn9ma7xp56cRI4vBxsiGT1GfaF6yOa+DXxMcE0xZy7L0rdxXtayyUu5TQAvJV+UJEl9r2jUJ0LtSb344/wO33t/CK8QrmVs6rzO65mjKW5Wnx/4ePPR7SO0NtTnU+xCNHBppemqZJn93HRLJFa6/u061ddVU4mRy3ck8+P4BTuU6woT7MPpK6j8T7oO5UnzUL1af84POc23YNZqXbE6CIoF199dRelVpxp8az/vw95rczXxDep1jJSibCGoqXRPA1rgwevIquL3RzrNdl781XH1c6bavGwmKBHpX6s2aDmuyFaNwyfsSB54dQCqR8inqEwC/NvuVZa7LAJjbeG4S68kd72AiYrSTiZNEvnRNapLCJoVpXrI5AHue7NHoXLJKk+JNuDfqHlVtqyqF47bmbHqwSdPTyjSiQBFJlVhZLDOcZ9BkSxO8QrxwMHPg4uCLLG+7/HNvDvNiYO+U+o95cstII4dGXBx8kStDr9CsRDPi5fGsubcGx5WOTDoziY8RH3NrF/MliemokLyrSU6lo2aGs+6+7HWpiF38Qjxe16Pfhls0WuzCWXfR3aMp3D+502F3B6ITomnt2Jod3XZkq2uvTCFj0tlJwOfKwYOqDuLGuxsExQRRxqIM/ar0S7KO2wevDI2dFyoi96/cH4BdT3aRD7vBAFDcvDg3h9+kR4UeJCgSGHliJJPOTEKmkGl6ahlGFCgiKfLQ9yG11tfir5t/ISAw1Gkoj8c8Vj1ZqIMmxZtwacglLg25RJPiTYiXx7PqziocVzoy5ewUMX4hDRLTUe3Mkrpx7Mz0NZpinNiNNzwm6c0vMf1ZFCm5j1eIF613tCYkNoT6RetzuPdhdLV0szXm2rtrcf/kjomuCR8jPqKnpcesRrNY6roUgLlN5iarNXTHLwNlZMkbFZG7V+iOnpYeHoEePPZ/rOnpZBkjXSP299rPr82UGVKr7qyi7c62BMdo1kqVUcRmgSJJkClkLLq+iF+v/IpMIcPGyIYNnTbQuVznHN2uIAi4eLvw8+WfueGj7OOjr63P2FpjmdlwZr5I99MEcoWQ4+momZlLo8UuqdZpSayEen1mc41Xuy2ofH0+FLOKo+m2xniFeFHFpgpXhl6hkEGhbG0jICqAsv+WJTQ2FFsjW/yj/Pmp4U8UMijEzAszKW1RGo/xHkkEilwhx+Gf4kgCfkcbK1LuaJy3zo8e+3tw2OMwMxrMYHGrxZqeTrY57HGYwUcGE5UQhWMhR473O05F64q5Po/M3L9FgSKi4kXgC4YcHcLtD7cB5VPEug7rsDbKSKs69SAIAhe8LvDz5Z9xfe8KgIG2AeNrj2d6w+k52mZeJHvkhW683zJn3X2TFXiTaIXir7Wawlb+XB92XdWGIDuMPjGaDQ82UMy0GD7hPlgZWvHo+0c4/edEQHQAW7tsTVbk7Nzrc7Td1RYbrdYYRk5KlvyXKEc0af37mkPPDtHzQE+KmRbjzZQ3SCX53+Hw2P8xnfd05m3YW0x0TdjVfRedynXK1Tlk5v6d/4+4SLZRCApW3l5J9f+qc/vDbcz0zNjRbQcHex3MVXECyuyXVo6tuDH8BmcHnKVukbrEyGJY6rqUkitKMtN5JoHRgbk6J5GMoeluvN8yia61r61XCrkp1vGzmVfnkFrEyf2P99n4YCOAqq7P/CbKyqsB0QE4FnJkQNUBydbb+mgrAL1rlGXtwBoY6SetIK1p12RKtC/THlM9U3zCfbjx7oamp6MWqtpW5e6ouzQp3oSI+Ai67O3CouuL8mycjShQvnHehb2j1Y5WTD47mRhZDK1KtcJ9nDsDqw7UaBVCiURCm9JtcB3hyqn+p6hlX4vohGiW3FxCieUlmHVhFkHRGejdLpJraLIb77eMMn33WSoNBqVIkPDfpexnUgmCwMQzExEQqGxdmdDYUMpYlGFg1YEsuaGsSDun8ZxksSehsaEc8TgCwBCnIbStXBgD+4X46c6ia70Q9oyqx/WZzfOUOAEw0DFQVddN7MhcELA2ssZ5kDNjao5BQGDWxVkMODwgSXHJvIIoUL5RBEFgq9tWqqytgou3C4Y6hqxuv5pzA89R1LSopqenQiKR0L5Me+6MvMOJfieoUbgGUQlRLLqxiBIrSjDXZW6+Cfgq6OSH9OeCyB3v4DT7M4F60nd3Pt6J63tXDHUMeR38GoBFLRex+eFmAqIDKGlekoFVByZbb//T/cTJ46hkXYmahWvyIfwD933vEq/lzk8tW1Lf0TJPxJykRGI2z/5n+1PsG5Zf0dXSZW3HtaxpvwZtqTZ73PfQZEsTVakHuULA1TOIY24fNFomQBQo3yD+kf503deVYceGER4XTv2i9XH73o1xtcfl2d4NEomEjmU7cm/UPY71PYaTnROR8ZH8ce0PSq4oyfxL8wmJCdH0NL9p8nr6c0ElN1xrEXERzLgwA4AKVhWIlcfSsFhD2ji2UfXzmdtkboqNMbe6bQVgqNNQJBIJx18cB6Bu0bqqFOW8ynclv8PWyJbgmGCcPZ01PR21M7b2WJwHOWNpYMl93/vUWl+LFZev0GixC/023GLyXjeNlgkQBco3xmGPw1ReW5njL46jI9VhYYuFXBt2jTKWZTQ9tQwhkUjoXK4zD0Y/4HDvw1S1rUp4XDgLri6g5IqS/HL5F0JjQzU9zW+WvJr+XJDJDdfagqsL8Iv0w8HUgfu+9wFY2nop6++v51PUJ0qal2RQ1UHJ1nsR+ALX965oSbQYUEUZm3L8pVKgdCnXJcvzyS20pdqqXkK73QuOm+dLmpVoxt1Rd6lsU5nw8FL8fTYC37CYJMtoqkyAKFC+EUJjQxl8ZDA99vcgMDqQqrZVuTf6Hj81+ilbBZs0hUQioVuFbjz8/iEHex2ksk1lwuLC+PXKr5RcUZIFVxYQHheu6Wl+k7StXJjrM5uzZ1Q9VvR1yrMxBgWFnHatvQh8wfJbywGwMrQClOXgq9pWZfENZfrt7MazU7SebHu0DYC2pdtS2KQwEXERuHi7APlDoAD0r6J08xx9fpSo+CgNzyZnKFmoJNeG3qCIMPn/7yQ9mxIdPL+eeJar7h5RoHwDOHs6U2VtFXY83oFUImV2o9ncHXWXqrZVNT21bCOVSOlRsQePxjxif8/9VLSuSGhsKPMvz6fE8hL8cfUPIuLU00VYJOMkduPt4lQkT8cYFARy0rUmCAJTzk0hQZFAHfs6PPB7oLK8rr+/Hv8of4qbFWdwtcHJ1pUr5Ox4vAOAIdWUacdnX58lXh5PGYsylLcqn+n5aII6RepQqlApohOiVe6pgojHxwQSEozzVCsCUaAUYKLioxh/ajytd7bmffh7yliU4fqw6/zR4o9sV5LMa0glUnpV6sXjMY/Z02MP5a3KExIbwtxLcymxogQLry0kMj5S09MUEckRcsq1dvLlSc6+PouOVIewuDAAxtceT2HjwirryZzGppXoPgAAGxRJREFUc1K8nrh4u/A+/D2F9Aupam0ce3EMUFpP8mq829dIJBJVsGxBdfNA3iwTIAqUAspNn5s4/efEmntrAOVF5eH3D6lfrL6GZ5azaEm16Fu5L+5j3dnVfRflLMsRHBPMbJfZlFxRkiU3lhRYM63It426XWuxslimnJsCQKtSrXgR9AJzfXPmNpnL+vvrlTEpZg7JirIlklj7pF/lfuhr65MgT+DUq1MAdCmfP9w7iSS6ec6+PltgyxvkxTIBokApYMTJ4ph1YRaNtzTmdfBripoWxXmQM/+2/xcjXSNNTy/X0JJq0b9Kf56Oe8qObjsobVGawOhAZl6YSckVJVl6c2mezPsXEckO6nSt/e36N14hXhQ2LswDvweA0lpipGv0Ofak0ewUrSdhsWEc9jgMKLN35AqBDbcuEx9ZFVudRtSxr5fleWmCCtYVcLJzQqaQcfDZQU1PJ0fIi2UCRIFSgHjk94g6G+uw6MYiFIKCwdUG82TsE1qWaqnpqWkMLakWA6sOxGO8B1u7bMWxkCMB0QFMd55OyRUl+cf1H2ISYtIfSETkG+J9+Hv+uPYHAA2LNcQv0o8S5iWYUGcCG+5vwDfSl2KmxRhWfViK6x94doBYWSwVrCoQGFyURotdWHIiHuuEGeiH/0TTv67ku8aRBd3NkxfLBIgCpQAgU8hYeG0htTfU5rH/Y6wNrTnc+zDbum7DXN9c09PLE2hLtRniNITnE56zufNmSpqX5FPUJ344/wOlVpZixa0VolAREfk/052nE50QTR37Opx5fQaAP5v/CcCiG4sAZeZOarFsibVPGttOZNyu5CX482N3676V+wJw9e1VfMJ8NDybnCGvlQkQmwXmc14FvWLI0SGqxnpdy3flv47/iU310iFBnsD2R9tZcHUBb8PeAlDYuDCzGs1iVM1R6GuL5dhFvk2uvr1K061NkSChR8UeHHx2kNr2tbk18hZr7q5h4pmJFDUtyuuJr9HT1ku2/qugV5T9tyxStKmpfYpPEQkpbievdS/OCE22NOHau2ssabmE6Q2na3o6OUZOdkkXmwV+AygEBavvrMbpPydc37tiqmfKtq7bONz7sChOMoCOlg4jaozg5cSX/NfxPxzMHPCN9GXS2UmUXlmaNXfXECeL0/Q0RURyFZlCxsQzEwFlrZPEHjpLWy8lQZ7AoutK68msRrNSFCfwufZJI7shqYoT0EzaanZJDJYtqG6eRPJKmQBRoORDfMJ8aLOzDRPOTCA6IZoWJVvwZOwTBlcbnG9S9/IKulq6jK45mlcTX7G2w1qKmhblQ8QHxp8eT5lVZVh3b12B6sEhIpIW6++v57H/YwrpFyI0NhS5IKdzuc40Kd6ETQ838SHiA0VMijCi+ogU11cICrY/2g5AA/t2Gdpmfupu3bNiT7Sl2rj5ufEs4Jmmp1PgEQVKPkIQBHY82kGVtVW44HUBA20DVrZdyflB53Ewc9D09PI1ulq6jKk1htcTX7O6/WrsTezxCfdh7KmxlFlVhvX314tCRaRAExQdxFyXuQAMrjaYc57n0JJosbjlYuJkcSy8vhBI23pyyfsSPuE+mOmZ0bZcgwxtNz91t7YytKKNYxsA9jzZo+HZFHxEgZJPCIgKoMf+Hgw+OpiwuDDqFqmL2xg3JtadiFQi/hnVhZ62HuNqj8Nzkicr266ksHFh3oW94/uT31Pu33JserCJBHnqZmsRkfzKXJe5hMSGUNW2KtffXQdgdM3RlLcqz+aHm3kf/h57E3tG1EjZegJJa580Km2X59JW1cGXbp58GMKZrxDvbPmAY8+PUWlNJY48P4KOVIc/mv/B9eHXKWtZVtNTK7Doa+szse5EPCd5srzNcuyM7XgT+oaRJ0ZSfnV5tjzcgkwh0/Q0RUTUwkPfh/x3/z8AupTtwn3f+5jomvBLs1+SWE9+avhTqgHk4XHhHHp2CFDWPsmLaavqoHO5zhjqGOIV4sWdD3c0PZ0CjShQ8jBhsWEMPTqUrvu6EhAdQGWbytwZdYfZjWejLdXW9PS+CQx0DJhcbzKekzz5u/Xf2BjZ4BXixfDjwyn/b3m2uW0ThYpIvkYQBCadnYSAQM+KPdn+WBlDMrPhTGyMbNjqthWfcB8KGxdmVM1RqY5z4OkBYmQxlLMsR50idYC8l7aqDox1jVWNDnc/KdjBsppGFCh5FBdvF6qsrcK2R9uQSqTMbDiTe6Pu4WTnpOmpfZMY6hgytf5UvCZ58Verv7A2tMYzxJOhx4ZScXVFdj7eiVwh1/Q0RUQyzR73PVx/dx1DHUPKWZbjbdhbipgUYWr9qcTL4/nzurL+yU+NUreewOfsnaFOQ5ME6xfE7taJbp59T/eJDyg5iChQ8hjRCdFMOjOJFttb4BPug2MhR64OvcqilotSDUwTyT2MdI2Y1mAa3pO9WdxyMZYGlrwKfsWgI4OotKYSu5/sFoWKSL4hMj6S6c7Keh5T6k5h9d3VAPze/HcMdQzZ6raVd2HvsDO2Y1SN1K0nr4Nfc+3dNaQSKYOqDkr2eV5JW1UXrR1bY2FggX+UP5ffXNb0dAosokDJQ9x+f5vq/1Vn1Z1VAIytNRa3MW40dGio4ZmJfI2RrhEzGs7Ae7I3fzb/EwsDC14EvWDA4QFUWVuFve57UQgKTU9TRCRN/rj6Bx8jPlKqUCnC48IJjQ2lqm1VBlUdpLSeXPu/9aThTxjoGKQ6TmJqcatSrShiWiRX5q5JdLV06VWxFyC6eXISUaDkAeLl8cx1mUuDzQ14GfQSexN7zg44y5oOazDWNdb09ETSwETPhFmNZ+E92Zvfv/udQvqF8Aj0oN+hflRdW5UDTw+IQkUkT/Iq6BV/3/obgBkNZqiCZJe2WoqWVIttbtt4G/YWO2M7Rtccneo4CkGhcu8MqZZyZ+OCSKKb55DHIWJl+aeWS35CFCga5on/E+purMsf1/5AISgYUGUA7mPdaVO6jaanJpIJTPVMmdNkDt6Tvfmt2W+Y65vzNOApvQ/2xmmdE4eeHRKFikieYuo5ZYxJ29JtueB1gQRFAm0c29DKsRUJ8gRV7MmMBjPStJ5ceXOFd2HvMNUzpWv5rrk0e83TyKERRU2LEh4XzulXpzU9nQKJKFA0hFwhZ8mNJdTaUAs3PzcsDSw50OsAO7vvpJBBIU1PTySLmOmbMa/pPLwne/Nz058x1TPlyacn9DzQkxr/1eCIxxGxdoKIxjn18hSnXp1CW6rN0GpDOehxEKlEyl+t/gKULps3oW+wNbLl+1rfpzlWYu2TvpX6pilkChpSiZR+lfsBopsnpxAFigbwDPak6damzLwwk3h5PJ3KdsJ9nDs9K/bU9NRE1IS5vjm/NPuFN5PfMK/JPEx0TXjk/4ju+7tTc31Njr84LgoVEY0QJ4tjyrkpAEyuO1kV8za02lCq2FYhQZ7A79d+B2BGwxkY6himOlZEXAQHnx1Uru80NEfnnRdJdPOcfHmSsNgwDc+m4CEKlFxEEATW3VtHtXXVuOFzAxNdEzZ33syxvsewM7bT9PREcoBCBoX47bvfeDPlDXMaz8FY15iHfg/psrcLtTfU5uTLk6JQEclV/nZdjk+AAfbanTGV1OLGO1cMdQz57bvfANjxeAdvQt9gY2TDmFpj0hzr4LODRCdEU8aiDPWK1suN6ecpqtlWo4JVBeJkCfx95STH3D7g6hmEXCF+p9WBRMiHV8fMtGvOK3wI/8CI4yM453kOgGYlmrGlyxZKmJfQ7MREcpXA6ECW3VzGqjuriEqIAqC2fW1+afYL7Uq3E5s9iuQou+8+Y+bhu2gJVqr3ZATQwimEbX2nkiBPoPzq8niFKOv9TGswLc3xmm1txpW3V/ij+R/Mbjw7p6efJxmxfxXnHpigjbXqvcJm+vzcqWK+rvWSU2Tm/i0KlBxGEAR2P9nNhDMTCI0NRV9bn0UtFok9dL5xAqICWHpzKf/e/ZfohGgA6hapy6/NfqW1Y2tRqIionbPuvozZeR8BkHxRfF5AgRQpawfWwE92jmHHhmFtaI33ZG+MdI1SHc8rxAvHlY5IkPB2yluKmRXLhb3IWyiP6QMEhCTHNPF/+bVabk6Smfu3eIfMQQKjA+l9sDcDjwwkNDaU2va1efj9QybXmyyKk28cayNrFrdajPdkb6bVn4aBtgG3P9ym7a62NNzcEGdPZ9H1I6I25AqB2UceJhMnAJL/3wZ+PfGMBVf+AGB6g+lpihP4XPukZamW36Q4kSsEfj3xDEh+TBO/ub+eeCa6e7KBeJdUA3KFgKtnUBL/48mXJ6m8pjIHnx1EW6rNb81+4+aIm5S3Kq/p6YrkIWyMbPir9V94TfZiar2p6Gvr4/reldY7W9N4S2Muel1MIlRSOtdERNLjllcAwVFCshtpIgLgGxbLhyADrAytGFd7XJrjfau1T77kjncwvmGp1z9JPKZ3vINzb1IFDLHjXDY56+7LryeeJTlR9XSj8eEfYrT8qWhdkR3ddlCjcA0NzlIkr2NnbMffbf5meoPpLL6xmHX31nHD5wYtd7SkSfEm/NrsV2IjyyU710Rft0hG2Pf4LGCZ7nJaQiGm1R+QrvXk2ttrvAl9g4muCd0qdFPTLPMXnyIyVpwto8uJJEe0oGSDs+6+jN35IJmKjo3Xxzp+Nn0dF3F/9H1RnIhkmMImhVnedjlek72YWGciulq6XH17lfabZzNm5/1k55pfWCxjdz7grLuvhmYsktcJjglmn8f6DC1rrC9nfJ3x6S6XWPukT6U+aaYhF2RsTFJvnJiV5USSIwqULJLof0zJwC5BigQJb3xqoSMVG/yJZB57E3tWtluJ5yRPxtYch2XC9ymea6KvWyQ95l+az6cEVyRaoak4eAAEZAQwuUnHVNtrJLoX99/z4uijpyBIv8naJ4nUKWlBYTP9VI+pBKWFs05Ji9ycVoFCFChZJD3/I4j+R5HsU9S0KIMq/IaWYJVu/IB4rol8zWP/x6y9txYkCsY1twFI4SwSEIAE4z1MTMV6ctbdl0aLXei34RYzDnpgFv0zxeO3ER5WKienn6fRkkr4uVNFIPkxTXz9c6eK+b5zsyYRBUoWEf2PIrmFeK6JZAVBEJh4ZiIKQUGvir2Y3qIVawfWwM7sK5eDVigBun8yuWlTTPRMko2TmisbhTnjdn3b7sW2lQuneEztzPTFFGM1IAbJZhHR/yiSW4jnmkhGkSsE7ngH8ykilqeBrlx9cx0DHQOWtl4KKG+ozcvbssP1DW+DowmMe87ap8OwMDJlQp2zKY6Xmis70U7w64lntKpo981aCtpWLkyrinaq425jonTrfKvHQ52IAiWLJPof/cJiU4lDUapo0f8okl3Ec00kIyTPKDSgCJtoUyECBzOHNJbZQNtKkZjqJS+alZlU2vqO6WcJFVS0pJJvev9zCtHFk0VE/6NIbiGeayLpkZobRhsrXB6W4qy7b6rLaGHJxQclU3TViO5FEU0iCpRsIPofRXIL8VwTSY2MumF+Of401azDxGW+zgQT3YsimkR08WQT0f8okluI55pISmTUDZMWqblqRPeiiCYRBYoaEP2PIrmFeK6JfI063Stfj5XoXhy78wESSCJSRPeiSE4junhERERE8jHqdK+kNJboXhTRFKIFRURERCQfk1E3jCAI+IfHZclVI7oXRTSBKFBERERE8jEZdcMA2XLViO5FkdxGoy6e1atXU6JECfT19albty537tzR5HRERERE8iUZccOIrhqR/IZEEASNdBjbt28fgwcPZt26ddStW5fly5dz4MABXrx4gY2NTZrrhoeHY2ZmRlhYGKamyYsLiYiIiHyLfFlJNjU3TEaWERHJKTJz/9aYQKlbty61a9fm33//BUChUFCsWDEmTpzITz/9lGTZuLg44uLiVK/Dw8MpVqyYKFBERERERETyEZkRKBpx8cTHx3P//n1atmz5eSJSKS1btsTV1TXZ8gsXLsTMzEz1U6xYsdycroiIiIiIiEguoxGBEhgYiFwux9bWNsn7tra2+Pn5JVt+1qxZhIWFqX58fHxya6oiIiIiIiIiGiBfZPHo6emhp6en6WmIiIiIiIiI5BIasaBYWVmhpaWFv79/kvf9/f2xs7PTxJRERERERERE8hAaESi6urrUrFmTixcvqt5TKBRcvHiR+vXra2JKIiIiIiIiInkIjbl4fvjhB4YMGUKtWrWoU6cOy5cvJyoqimHDhmlqSiIiIiIiIiJ5BI0JlD59+hAQEMD8+fPx8/PDycmJs2fPJgucFREREREREfn20FgdlOwgFmoTERERERHJf+T5OigiIiIiIiIiImmRL9KMvybR6BMeHq7hmYiIiIiIiIhklMT7dkacN/lSoERERACIFWVFRERERETyIREREZiZmaW5TL6MQVEoFHz8+BETExMkkow1uUrs3+Pj4yPGreQi4nHXDOJx1wzicdcM4nHXDFk57oIgEBERgb29PVJp2lEm+dKCIpVKKVq0aJbWNTU1FU9gDSAed80gHnfNIB53zSAed82Q2eOenuUkETFIVkRERERERCTPIQoUERERERERkTzHNyNQ9PT0+Pnnn8Wmg7mMeNw1g3jcNYN43DWDeNw1Q04f93wZJCsiIiIiIiJSsPlmLCgiIiIiIiIi+QdRoIiIiIiIiIjkOUSBIiIiIiIiIpLnEAWKiIiIiIiISJ5DFCgiIiIiIiIieY5vRqCsXr2aEiVKoK+vT926dblz546mp1RgWLhwIbVr18bExAQbGxu6du3KixcvkiwTGxvL+PHjsbS0xNjYmB49euDv76+hGRdMFi1ahEQiYcqUKar3xOOeM3z48IGBAwdiaWmJgYEBVapU4d69e6rPBUFg/vz5FC5cGAMDA1q2bMmrV680OOP8j1wuZ968eZQsWRIDAwMcHR1ZsGBBkqZz4nHPPlevXqVTp07Y29sjkUg4evRoks8zcoyDg4MZMGAApqammJubM2LECCIjIzM/GeEbYO/evYKurq6wefNm4enTp8KoUaMEc3Nzwd/fX9NTKxC0adNG2LJli+Du7i64ubkJ7du3FxwcHITIyEjVMmPGjBGKFSsmXLx4Ubh3755Qr149oUGDBhqcdcHizv/au7+QpvowDuBf3dxEpC0Ttyxmi4RVViyHsgy6cBeGUBQEyYhVF1FNmgWVJF0uhSCoLoq6qIssSdD+SBGymTSYc61piaWFkhGuUbI2ULJ2nvfu0Kr3Rd+pm6fnAwf093vgPHx/MB/YzuztpVWrVtHGjRvJ4XCI65z73JuYmKCioiLav38/+Xw+GhkZoSdPntC7d+/EmqamJlKpVHTv3j3q7++nHTt2kF6vp6mpqRR2vrg5nU5atmwZdXR00OjoKLW2tlJubi5dvHhRrOHck/fo0SNqaGigtrY2AkDt7e0J+zPJuKqqijZt2kQ9PT307NkzWrNmDdXU1My6l79iQCkrKyO73S7+Ho/HqbCwkBobG1PYlXSFw2ECQN3d3UREFIlEKCsri1pbW8Wa169fEwDyer2palMyYrEYFRcXU2dnJ23btk0cUDj3+XH69GnaunXrv+4LgkBarZbOnz8vrkUiEVIqlXTnzp2FaFGSqqur6eDBgwlru3fvJqvVSkSc+3z4dUCZScaDg4MEgPx+v1jz+PFjysjIoI8fP87q/pJ/i2d6ehqBQAAWi0Vcy8zMhMVigdfrTWFn0vX161cAQF5eHgAgEAjg+/fvCWdgMBig0+n4DOaA3W5HdXV1Qr4A5z5fHjx4AJPJhD179qCgoABGoxHXr18X90dHRxEKhRJyV6lUKC8v59yTsGXLFrhcLgwPDwMA+vv74fF4sH37dgCc+0KYScZerxdqtRomk0mssVgsyMzMhM/nm9X9FuV/M56Nz58/Ix6PQ6PRJKxrNBq8efMmRV1JlyAIqKurQ0VFBUpKSgAAoVAICoUCarU6oVaj0SAUCqWgS+loaWnBixcv4Pf7f9vj3OfHyMgIrly5ghMnTuDMmTPw+/04duwYFAoFbDabmO2fXnM49/+vvr4e0WgUBoMBMpkM8XgcTqcTVqsVADj3BTCTjEOhEAoKChL25XI58vLyZn0Okh9Q2MKy2+0YGBiAx+NJdSuS9+HDBzgcDnR2diI7OzvV7fw1BEGAyWTCuXPnAABGoxEDAwO4evUqbDZbiruTrrt376K5uRm3b9/G+vXr0dfXh7q6OhQWFnLuEiX5t3jy8/Mhk8l+e3Lh06dP0Gq1KepKmmpra9HR0YGuri6sXLlSXNdqtZienkYkEkmo5zNITiAQQDgcxubNmyGXyyGXy9Hd3Y1Lly5BLpdDo9Fw7vNg+fLlWLduXcLa2rVrMTY2BgBitvyaM7dOnjyJ+vp67N27Fxs2bMC+fftw/PhxNDY2AuDcF8JMMtZqtQiHwwn7P378wMTExKzPQfIDikKhQGlpKVwul7gmCAJcLhfMZnMKO5MOIkJtbS3a29vhdruh1+sT9ktLS5GVlZVwBkNDQxgbG+MzSEJlZSVevXqFvr4+8TKZTLBareLPnPvcq6io+O0x+uHhYRQVFQEA9Ho9tFptQu7RaBQ+n49zT8Lk5CQyMxP/ZMlkMgiCAIBzXwgzydhsNiMSiSAQCIg1brcbgiCgvLx8djdM6iO+i0RLSwsplUq6efMmDQ4O0qFDh0itVlMoFEp1a5Jw5MgRUqlU9PTpUxofHxevyclJsebw4cOk0+nI7XbT8+fPyWw2k9lsTmHX0vTzUzxEnPt86O3tJblcTk6nk96+fUvNzc2Uk5NDt27dEmuamppIrVbT/fv36eXLl7Rz505+3DVJNpuNVqxYIT5m3NbWRvn5+XTq1CmxhnNPXiwWo2AwSMFgkADQhQsXKBgM0vv374loZhlXVVWR0Wgkn89HHo+HiouL+THj/3L58mXS6XSkUCiorKyMenp6Ut2SZAD443Xjxg2xZmpqio4ePUpLly6lnJwc2rVrF42Pj6euaYn6dUDh3OfHw4cPqaSkhJRKJRkMBrp27VrCviAIdPbsWdJoNKRUKqmyspKGhoZS1K00RKNRcjgcpNPpKDs7m1avXk0NDQ307ds3sYZzT15XV9cfX89tNhsRzSzjL1++UE1NDeXm5tKSJUvowIEDFIvFZt1LBtFPX8PHGGOMMZYGJP8ZFMYYY4wtPjygMMYYYyzt8IDCGGOMsbTDAwpjjDHG0g4PKIwxxhhLOzygMMYYYyzt8IDCGGOMsbTDAwpjjDHG0g4PKIwxxhhLOzygMMYYYyzt8IDCGGOMsbTzD01E95d8ICoqAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "{'appsi_cplex',\n", + " 'appsi_gurobi',\n", + " 'cplex_direct',\n", + " 'cplex_persistent',\n", + " 'gurobi',\n", + " 'gurobi_direct',\n", + " 'gurobi_persistent',\n", + " 'xpress',\n", + " 'xpress_direct',\n", + " 'xpress_persistent'}" ] }, + "execution_count": 15, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" + } + ], + "source": [ + "available_solvers = ListAvailableSolvers()\n", + "set(available_solvers) - set(initial_solvers)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 890 }, + "id": "5IJCue_ln_wl", + "outputId": "80cb3747-2369-49fd-d40f-b730598511b1" + }, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", - "Copyright (c) 2023 HiGHS under MIT licence terms\n", - "Strong formulation solved with appsi_highs in 0.02957 seconds.\n" + "Using the Community license in this session. If you have a full Xpress license, pass the full path to your license file to xpress.init(). If you want to use the FICO Community license and no longer want to see this message, use the following code before using the xpress module:\n", + " xpress.init('/usr/local/lib/python3.10/dist-packages/xpress/license/community-xpauth.xpr')\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUVxeH3924hwgRJISgwd1dAqW4OxQrbkUrlLa4lFKctrgEKRR3De4SHEJIgAQJMeK79/sjXxaWOMRz3+fZBzJzZ+aMnzn3nN9VCCEEEolEIpFIJFkIZWYbIJFIJBKJRPIp0kGRSCQSiUSS5ZAOikQikUgkkiyHdFAkEolEIpFkOaSDIpFIJBKJJMshHRSJRCKRSCRZDumgSCQSiUQiyXJIB0UikUgkEkmWQzooEolEIpFIshzSQckFrF69GoVCwdOnT3PNtn/++WcUCkWGbvNzmDNnDoULF0ZHR4fy5cunevkTJ06gUCjYtm1b2huXSwkNDaV///7Y29ujUCgYNWpUZpuUavr06UOhQoXSdJ2Z+RyR5E6kg5IJeHp60qNHD/Lly4eBgQGOjo50794dT0/PL1rv9OnT2blzZ9oYKUl3Dh06xPjx46lVqxarVq1i+vTpibbduHEjCxYsyDjjPoOzZ8/y888/ExgYmNmmfBHTp09n9erVDB48mHXr1tGzZ8/MNilDya7PEQ8PDxQKBQqFgjdv3mjN+/fff+ncuTOFCxfG2NiY4sWLM3bs2ASv1dDQUEaNGkX+/PkxMDCgZMmSLF26NMFtHj58mNq1a2NsbEyePHno0KFDog7crl27qFixIoaGhhQsWJApU6YQExOTon1Tq9XMnj0bZ2dnDA0NKVu2LJs2bUrRstkaIclQtm/fLvT19YW9vb34/vvvxV9//SV++OEH4eDgIPT19cW///772es2MTERvXv3jjc9JiZGhIeHC7Va/QWWfx6rVq0SgPDy8srQ7U6ZMkVk9ct7woQJQqlUisjIyGTbtmjRQjg5OcWbfvz4cQGIrVu3poOFqWPOnDmZcq7TmmrVqolatWplthlfRO/evRO8XlJCVnyOJIdKpRLly5cXJiYmAhCvX7/Wmm9tbS3KlCkjfvzxR7Fy5UoxYsQIoa+vL0qUKCHCwsI07WJiYkTNmjWFvr6+GD16tFiyZIlo3bq1AMS0adO01rl7926hVCpF5cqVxR9//CF+/fVXYWNjI/LlyydevXql1Xbfvn1CoVCIBg0aiBUrVojhw4cLpVIpvv322xTt38SJEwUgBgwYIFasWCFatGghALFp06bPPGLZg6z9BM9hPHr0SBgbG4sSJUrEu4Bfv34tSpQoIUxMTMTjx48/a/2JPVgyE+mgJE7fvn2FiYlJitrmNAdFpVKJ8PDw9DfqM3B2dhYtWrRIs/VFR0enyAlNS9LDQcnKLF26VFhbW4uRI0cm6KAcP3483jJr1qwRgFi5cqVm2pYtWwQg/v77b6227du3F4aGhsLf318zzdXVVRQpUkTr3F6/fl0olUoxZswYreVdXV1FuXLlRHR0tGba999/LxQKhbh7926S++br6yv09PTE0KFDNdPUarWoU6eOyJ8/v4iJiUly+exM1n6C5zAGDRokAHHq1KkE5588eVIAYtCgQZppcS/au3fvio4dOwozMzNhZWUlRowYofWAB+L94h4yCTkJTk5OokWLFuL48eOiUqVKwtDQUJQuXVpzI2/fvl2ULl1aGBgYiIoVK4qrV69q2Xrjxg3Ru3dv4ezsLAwMDISdnZ3o27evePPmjVa7lDgocS+2p0+fxps3ceJEoaenJwICAoQQQpw6dUp06NBBFChQQOjr64v8+fOLUaNGaX0FfXzc4vDy8hKAWLVqVbxtAGLKlCla03x9fUXfvn1F3rx5hb6+vnB1dY330EqM6Oho8csvv4jChQsLfX194eTkJCZNmiQiIiK0tvnpLyHbhBCiXr168drGvXziHBR3d3fx22+/iXz58gkDAwPRsGFD8fDhw3jrOn/+vHBzcxPm5ubCyMhI1K1bV3h4eKRovxYuXChcXV2FkZGRsLS0FJUqVRIbNmwQQnw43p/+4s47IIYOHSrWr18vXF1dha6urtixY4cQQoirV6+KZs2aCTMzM2FiYiIaNmwozp07p7XtuOvIw8NDjB49WtjY2AhjY2PRpk2beM6+SqUSU6ZMEQ4ODsLIyEjUr19feHp6CicnpyRfvHHHMrF98Pf3F998843ImzevMDAwEGXLlhWrV6/WWkfcdTZnzhzx+++/i8KFCwulUimuXbumOUb3798X3bt3F+bm5sLGxkb88MMPQq1Wi2fPnolWrVoJMzMzYWdnJ+bOnZvgMfj0Xoqz++OXcEIOypw5c0SNGjWElZWVMDQ0FBUrVozn2Kb2OSKEEIsXLxaurq5CX19fODg4iCFDhoh3795ptalXr54oVaqU8PT0FPXr1xdGRkbC0dFRzJo1K9558Pb2Tval/TFv374V1tbWYvHixZpj/KmDkhDBwcEC0HImhg8fLgDx/v17rbZbt24VgFixYoVmm4AYN25cvPWWKlVKODo6av729PQUgFi8eLFWu+fPnwtA/Prrr0nauXjxYgEIT09PrekbN24UgDh9+nSy+5pd0f2S7iFJ6ti9ezeFChWiTp06Cc6vW7cuhQoVYu/evfHmderUiUKFCjFjxgzOnz/PwoULeffuHWvXrgVg3bp19O/fn6pVqzJw4EAAXFxckrTn0aNHdOvWjUGDBtGjRw/mzp1Ly5YtWbZsGZMnT2bIkCEAzJgxg06dOnH//n2Uyti0pcOHD/PkyRP69u2Lvb09np6erFixAk9PT86fP5+qBNVOnToxfvx4tmzZwrhx47TmbdmyhaZNm5InTx4Atm7dSlhYGIMHD8ba2pqLFy/y559/4uvry9atW1O8zaTw9/enevXqKBQKhg0bhq2tLfv376dfv34EBwcnmzTZv39/1qxZQ4cOHRg7diwXLlxgxowZ3L17lx07dgCx52vFihVcvHiRv/76C4CaNWsmuL7vv/+eoKAgfH19+f333wEwNTXVajNz5kyUSiXfffcdQUFBzJ49m+7du3PhwgVNm2PHjtG8eXMqVarElClTUCqVrFq1ioYNG3L69GmqVq2a6D6tXLmSESNG0KFDB0aOHElERAQ3b97kwoULdOvWjXbt2vHgwQM2bdrE77//jo2NDQC2trZa29+yZQvDhg3DxsaGQoUK4enpSZ06dTA3N2f8+PHo6emxfPly6tevz8mTJ6lWrZqWHcOHDydPnjxMmTKFp0+fsmDBAoYNG4a7u7umzaRJk5g9ezYtW7bEzc2NGzdu4ObmRkRERJLnrWTJkqxbt47Ro0eTP39+xo4dq9mH8PBw6tevz6NHjxg2bBjOzs5s3bqVPn36EBgYyMiRI7XWtWrVKiIiIhg4cCAGBgZYWVlp5nXu3JmSJUsyc+ZM9u7dy2+//YaVlRXLly+nYcOGzJo1iw0bNvDdd99RpUoV6tatm6TdKeWPP/6gVatWdO/enaioKDZv3kzHjh3Zs2cPLVq0AFL/HPn555+ZOnUqjRs3ZvDgwdy/f5+lS5dy6dIlzpw5g56enqbtu3fvaNasGe3ataNTp05s27aNCRMmUKZMGZo3b65p16tXL06ePIkQIkX79eOPP2Jvb8+gQYP49ddfU3w8/Pz8ADTXKkBkZCQ6Ojro6+trtTU2NgbgypUrDBgwgMjISACMjIzirdfY2BhPT0/8/Pywt7fn2rVrAFSuXFmrnaOjI/nz59fMT4xr165hYmJCyZIltabH3a/Xrl2jdu3aye5vtiSzPaTcQmBgoABE69atk2zXqlUrAYjg4GAhxIcv01atWmm1GzJkiADEjRs3NNMSC80mFkEBxNmzZzXTDh48KABhZGQkvL29NdOXL18e7wvt04iFEEJs2rQpXoQopV08NWrUEJUqVdKadvHiRQGItWvXJrndGTNmCIVCoWXzl0RQ+vXrJxwcHOJFg7p06SIsLCwStCGO69evC0D0799fa/p3330nAHHs2DHNtN69e6dZF0/JkiW1Qs1//PGHAMStW7eEELEh4aJFiwo3NzetHIKwsDDh7OwsmjRpkuT2W7duLUqVKpVkm6S6eAChVCrjfQW2adNG6Ovra3VrvnjxQpiZmYm6detqpsVdR40bN9ayf/To0UJHR0cEBgYKIYTw8/MTurq6ok2bNlrb+fnnn7WiAUkRF138mAULFghArF+/XjMtKipK1KhRQ5iammru17jrzNzcPF5kJ+6aHDhwoGZaTEyMyJ8/v1AoFGLmzJma6e/evRNGRkZa9n5pBOXT6zYqKkqULl1aNGzYUGt6Sp8jr169Evr6+qJp06ZCpVJp2i1atEgA4p9//tFMi4sCfnwvR0ZGCnt7e9G+fXut7cS1TQk3btwQOjo64uDBg0IIkaoISr9+/YSOjo548OCBZtq8efMSjErE5YB8/fXXQojYKJ2lpaVo1KiRVrs3b95o8mAuX74shPhwXzx79iyeDVWqVBHVq1dP0s4WLVqIwoULx5v+/v17AYiJEycmu6/ZFVnFk0GEhIQAYGZmlmS7uPnBwcFa04cOHar19/DhwwHYt2/fZ9vk6upKjRo1NH/Hfa02bNiQggULxpv+5MkTzbSPvxwiIiJ48+YN1atXB+Dq1auptqVz585cuXKFx48fa6a5u7tjYGBA69atE9zu+/fvefPmDTVr1kQIkeyXSEoQQrB9+3ZatmyJEII3b95ofm5ubgQFBSW5f3HnY8yYMVrT477GE4qOpQV9+/bV+uqLi9LFnbPr16/z8OFDunXrxtu3bzX79P79exo1asSpU6dQq9WJrt/S0hJfX18uXbr02TbWq1cPV1dXzd8qlYpDhw7Rpk0bChcurJnu4OBAt27d8PDwiHcfDBw4UCs6V6dOHVQqFd7e3gAcPXqUmJgYTfQvjrj75XPZt28f9vb2dO3aVTNNT0+PESNGEBoaysmTJ7Xat2/fXit69DH9+/fX/F9HR4fKlSsjhKBfv36a6ZaWlhQvXlzrnvtSPr533r17R1BQEHXq1Pms+xXgyJEjREVFMWrUKE1kFWDAgAGYm5vHu9ZNTU3p0aOH5m99fX2qVq0abx9PnDiR4ujJiBEjaN68OU2bNk2V7Rs3buTvv/9m7NixFC1aVDO9W7duWFhY8M0333D48GGePn3KihUrWLJkCQDh4eEAKJVKBg0axNGjR5k0aRIPHz7kypUrdOrUiaioKK22cf8aGBjEs8PQ0FAzPzHCw8MTXfbj9edEpIOSQcQ5HnGOSmIk5sh8fBNBbNhVqVR+kSbBx04IgIWFBQAFChRIcPq7d+800wICAhg5ciR2dnYYGRlha2uLs7MzAEFBQam2pWPHjiiVSk2oXgjB1q1bad68Oebm5pp2z549o0+fPlhZWWFqaoqtrS316tX77O1+yuvXrwkMDGTFihXY2tpq/fr27QvAq1evEl3e29sbpVJJkSJFtKbb29tjaWmpeZGmNZ+ey7gusbhz9vDhQwB69+4db7/++usvIiMjkzx+EyZMwNTUlKpVq1K0aFGGDh3KmTNnUmVj3PURx+vXrwkLC6N48eLx2pYsWRK1Wo2Pj0+q9jPu+H56/K2srDRtPwdvb2+KFi2q9SKOs/Pj7cbx6b5+TEL3naGhoVZXQ9z0j++5L2XPnj1Ur14dQ0NDrKyssLW1ZenSpZ9938Tt86fnT19fn8KFC8c7Jvnz54/X9ZsnT57P3kd3d3fOnj3LvHnzUrXc6dOn6devH25ubkybNk1rnr29Pbt27SIyMpKmTZvi7OzMuHHj+PPPPwHtrtVffvmFfv36MXv2bIoVK0blypXR1dXVOJpxbeMcw7huoY+JiIhIsJvoY4yMjBJd9uP150RkDkoGYWFhgYODAzdv3kyy3c2bN8mXL5/WSzkh0kKETEdHJ1XTP/6q6dSpE2fPnmXcuHGUL18eU1NT1Go1zZo1S/JLPDEcHR2pU6cOW7ZsYfLkyZw/f55nz54xa9YsTRuVSkWTJk0ICAhgwoQJlChRAhMTE54/f06fPn2S3G5ix0ulUmn9HbeOHj160Lt37wSXKVu2bLL7k9Eiccmds7j9mjNnTqKCcJ/mtXxMyZIluX//Pnv27OHAgQNs376dJUuW8NNPPzF16tQU2ZgWD9KUXJtZgaT2NaF9SMl+pfQaTojTp0/TqlUr6taty5IlS3BwcEBPT49Vq1axcePGZJdPC9L63I0bN46OHTuir6+v+VCL0zXx8fEhKioKR0dHrWVu3LhBq1atKF26NNu2bUNXN/4rsG7dujx58oRbt27x/v17ypUrx4sXLwAoVqyYpp2+vj5//fUX06ZN48GDB9jZ2VGsWDG6deum9ZHi4OAAwMuXL+N9/L18+TLJ3K+45Y8fP44QQusaePnyJUC8fcxJSAclA/n6669ZuXIlHh4eCSY1nT59mqdPnzJo0KB48x4+fKj1Vfbo0SPUarWWWmRGvRTfvXvH0aNHmTp1Kj/99JOWjV9C586dGTJkCPfv38fd3R1jY2NatmypmX/r1i0ePHjAmjVr6NWrl2b64cOHk1133Nfzp8JMn37l2draYmZmhkqlonHjxqneBycnJ9RqNQ8fPtRKavP39ycwMBAnJ6dUrxO+/NzGJTqam5t/1n4BmJiY0LlzZzp37kxUVBTt2rVj2rRpTJo0CUNDw1TbaGtri7GxMffv34837969eyiVyngP9OSIO76PHj3Sul/evn37RdEIJycnbt68iVqt1oqi3Lt3T2u76UlKr+GE2L59O4aGhhw8eFCru2DVqlXx2qb0PMbt8/3797W66KKiovDy8vrs6yyl+Pj4sHHjxgQdrIoVK1KuXDmuX7+umfb48WOaNWtG3rx52bdvX5IO+afKzkeOHAFIcJ/s7Oyws7MDYp3FEydOUK1aNc3649Zz+fJlLWfkxYsX+Pr6apKRE6N8+fL89ddf3L17V6uLNC4B/nMUqLMLsosnAxk3bhxGRkYMGjSIt2/fas0LCAjg22+/xdjYOF4lC8DixYu1/o4LOX6c/W5iYpIhKp5xX0Kffvl8qdJp+/bt0dHRYdOmTWzdupWvv/4aExOTJLcrhOCPP/5Idt3m5ubY2Nhw6tQprelxfcsfb6N9+/Zs376d27dvx1vP69evk9zOV199BcQ/FvPnzwfQVEukFhMTky/qwqpUqRIuLi7MnTuX0NDQePOT269Pr1d9fX1cXV0RQhAdHa2xEeK/QBNDR0eHpk2b8t9//2l1Vfr7+7Nx40Zq166dbCTxUxo1aoSurm485c9Fixalaj2f8tVXX+Hn56dVLRQTE8Off/6JqampppsxPYlzMj++hlUqFStWrEh2WR0dHRQKhVa05enTpwkqxqb0OdK4cWP09fVZuHCh1j35999/ExQU9NnX+rNnzzSOX1Ls2LEj3q9z584ArF27VlPxBrEVO02bNkWpVHLw4MFE84MS4vXr18yaNYuyZcsm63TNnTuXly9fanLOAEqVKkWJEiVYsWKF1vFfunQpCoWCDh06aKYFBQVx7949rXu9devW6OnpaT2rhBAsW7aMfPnyJVr9lxOQEZQMpGjRoqxZs4bu3btTpkwZ+vXrh7OzM0+fPuXvv//mzZs3bNq0KcGyPi8vL1q1akWzZs04d+4c69evp1u3bpQrV07TplKlShw5coT58+fj6OiIs7NzvDLNtMDc3Jy6desye/ZsoqOjyZcvH4cOHcLLy+uL1ps3b14aNGjA/PnzCQkJ0Txs4ihRogQuLi589913PH/+HHNzc7Zv357iL+P+/fszc+ZM+vfvT+XKlTl16hQPHjyI127mzJkcP36catWqMWDAAFxdXQkICODq1ascOXKEgICARLdRrlw5evfuzYoVKwgMDKRevXpcvHiRNWvW0KZNGxo0aJC6g/J/KlWqhLu7O2PGjKFKlSqYmppqRZeSQ6lU8tdff9G8eXNKlSpF3759yZcvH8+fP+f48eOYm5uze/fuRJdv2rQp9vb21KpVCzs7O+7evcuiRYto0aKFJl+qUqVKQGxZdJcuXdDT06Nly5ZaTuan/Pbbbxq58CFDhqCrq8vy5cuJjIxk9uzZKd6/OOzs7Bg5ciTz5s3T3C83btxg//792NjYfHYkauDAgSxfvpw+ffpw5coVChUqxLZt2zhz5gwLFixINvk9LShVqhTVq1dn0qRJBAQEYGVlxebNm1Mkl96iRQvmz59Ps2bN6NatG69evWLx4sUUKVIkXrdzSp8jtra2TJo0ialTp9KsWTNatWrF/fv3WbJkCVWqVNFKiE0NKS0zbtOmTbxpcRGT5s2ba+X0NGvWjCdPnjB+/Hg8PDzw8PDQzLOzs6NJkyaav+vVq0eNGjUoUqQIfn5+rFixgtDQUPbs2aMVPVu/fj3bt2+nbt26mJqacuTIEbZs2UL//v1p3769ll1z5syhVatWNG3alC5dunD79m0WLVpE//79tSKtO3bsoG/fvqxatYo+ffoAsbk7o0aNYs6cOURHR1OlShV27tzJ6dOn2bBhQ6JdZzmCDK4akgghbt68Kbp27SocHByEnp6esLe3F127dtWUhH5MXNncnTt3RIcOHYSZmZnIkyePGDZsWDwlznv37om6desKIyOjFAu1fQr/F9T6mI/Fp+Lw9fUVbdu2FZaWlsLCwkJ07NhRvHjxIl7JbmqVZFeuXCkAYWZmlqDS6J07d0Tjxo2FqampsLGxEQMGDBA3btyIV0KckJJsWFiY6Nevn7CwsBBmZmaiU6dO4tWrVwkKtfn7+4uhQ4eKAgUKaM5Ro0aNNEJNSREdHS2mTp0qnJ2dhZ6enihQoEA8oTYhUldmHBoaKrp16yYsLS0TFGr7VHArsbLqa9euiXbt2glra2thYGAgnJycRKdOncTRo0eT3P7y5ctF3bp1Ncu5uLiIcePGiaCgIK12v/76q8iXL59QKpUJCrUlxNWrV4Wbm5swNTUVxsbGokGDBlrl70J8uI4uXbqkNT2hEtuYmBjx448/Cnt7e2FkZCQaNmwo7t69K6ytrVMkLZ7YveHv7y/69u0rbGxshL6+vihTpky845vQvRJHYiWwiV0HceJmH/P48WPRuHFjjTji5MmTxeHDh1NUZvz333+LokWLCgMDA1GiRAmxatWqBO+T1DxHhIgtKy5RooTQ09MTdnZ2YvDgwYkKtX1KQnampsz4UxI7xiQgQBf3q1evnlbb0aNHi8KFCwsDAwNha2srunXrlqC694ULF0TdunVFnjx5hKGhoShXrpxYtmxZokMB7NixQ5QvX14YGBiI/Pnzix9++EFERUVptYk7xp9eVyqVSkyfPl04OTkJfX19UapUKa2S95yKQogsll0m0SJOCOn169fxsvwlEknKCAwMJE+ePPz22298//33mW2ORCJJATIHRSKR5CgS0oWIywmqX79+xhojkUg+G5mDIpFIchTu7u6sXr2ar776ClNTUzw8PNi0aRNNmzalVq1amW2eRCJJIdJBkUgkOYqyZcuiq6vL7NmzCQ4O1iTO/vbbb5ltmkQiSQUyB0UikUgkEkmWQ+agSCQSiUQiyXJIB0UikUgkEkmWI1vmoKjVal68eIGZmVmGj3kikUgkEonk8xBCEBISgqOjY7zBNz8lWzooL168SPUYHRKJRCKRSLIGPj4+5M+fP8k22dJBiZOV9vHxSfVYHRKJRCKRSDKH4OBgChQokKLhIbKlgxLXrWNubi4dFIlEIpFIshkpSc+QSbISiUQikUiyHNJBkUgkEolEkuWQDopEIpFIJJIsh3RQJBKJRCKRZDmkgyKRSCQSiSTLIR0UiUQikUgkWY5UOyinTp2iZcuWODo6olAo2Llzp9Z8IQQ//fQTDg4OGBkZ0bhxYx4+fKjVJiAggO7du2Nubo6lpSX9+vUjNDT0i3ZEIpFIJBJJziHVDsr79+8pV64cixcvTnD+7NmzWbhwIcuWLePChQuYmJjg5uZGRESEpk337t3x9PTk8OHD7Nmzh1OnTjFw4MDP3wuJRCKRSCQ5CoUQQnz2wgoFO3bsoE2bNkBs9MTR0ZGxY8fy3XffARAUFISdnR2rV6+mS5cu3L17F1dXVy5dukTlypUBOHDgAF999RW+vr44Ojomu93g4GAsLCwICgqSQm0SiUQiyTGo1IKLXgG8Cokgr5khVZ2t0FHmnDHnUvP+TlMlWS8vL/z8/GjcuLFmmoWFBdWqVePcuXN06dKFc+fOYWlpqXFOABo3boxSqeTChQu0bds23nojIyOJjIzU/B0cHJyWZkskEolEkukcuP2Sqbvv8DLoQ4+Dg4UhU1q60qy0QyZaljmkaZKsn58fAHZ2dlrT7ezsNPP8/PzImzev1nxdXV2srKw0bT5lxowZWFhYaH5yoECJRCKR5CQO3H7J4PVXtZwTAL+gCAavv8qB2y8zybLMI1tU8UyaNImgoCDNz8fHJ7NNkkgkEokkTVCpBVN33yGhfIu4aVN330Gl/uyMjGxJmjoo9vb2APj7+2tN9/f318yzt7fn1atXWvNjYmIICAjQtPkUAwMDzcCAcoBAiUQikeQkLnoFxIucfIwAXgZFcNErIOOMygKkqYPi7OyMvb09R48e1UwLDg7mwoUL1KhRA4AaNWoQGBjIlStXNG2OHTuGWq2mWrVqaWmORCKRSCRZnlchiTsnn9Mup5DqJNnQ0FAePXqk+dvLy4vr169jZWVFwYIFGTVqFL/99htFixbF2dmZH3/8EUdHR02lT8mSJWnWrBkDBgxg2bJlREdHM2zYMLp06ZKiCh6JRCKRSHISec0M07RdTiHVDsrly5dp0KCB5u8xY8YA0Lt3b1avXs348eN5//49AwcOJDAwkNq1a3PgwAEMDT8c2A0bNjBs2DAaNWqEUqmkffv2LFy4MA12RyKRSCSS7EVVZyscLAzxC4pIMA9FAdhbxJYc5ya+SAcls5A6KBKJRCLJScRV8QBaTopAjRIlS3tUzBGlxql5f2eLKh6JRCKRSHIyzUo7sLRHRewttLtxVLylqMuJHOGcpJY0FWqTSCQSiUTyeTQr7UATV3uNkmxglDf99rfl+YtotnhWoVOpTpltYoYiHRSJRCLJhuR0SfTcio5SQQ0X6///lY8n7yfxy6lfGLJ3CHWd6mJvap9rzr3MQZFIJJJshpREzz1EqaKo9lc1rvtdp1XxVnxbahm/7Mm+517moEgkEkkORUqi5y70dfRZ22Yteko9Dt95zeANV3LNuZcOikQikWQTpCR67qSMXRmm1JuKVdTAXHXupYMikUgk2QQpiZ57qefYD11sUZBwrklOPPfSQZFIJJJsgpREz728DY1OUbucdO6lgyKRSCTZBCmJnnvJjedelhlLJBJJNiE5SXSBGisTpZYkem4pSU0LsvKxyo1y+NJBkUgkkmyCjlLBlJauDF5/FQV88qISgAIv1RxOPzOhfqH6shw5FWT1Y/Xxuf8UgRqInZ9VHKq0QHbxSCQSSTYiMUl0BwtDnJwOEaQ4ydcbv2bB8eOyHDmFZJfS7bhz75CAHH6k2WJqFjXJJMvSBynUJpFIchaBPhD2NvH5xtZgWSDj7EknEuqOiFZH0npzaw49OkL+yFXoCOsEl43rDvCY0DBHfXF/Diq1oPasY4lWR2XFYxV77t8yZv9Urr06iUL/MRGqML6r8R1zms7JbPOSJDXvb+mgSCSSnEOgDyyqBDGRibfRNYBhV3KEk5IQYdFhNFz5LX7POifbdtOA6h/JqudOzj1+S9eV55NtlxWPlU+QD2WWliEoMggAPaUet4fcpph1sUy2LHGkkqxEIsmdhL1N2jmB2PlJRViyOcZ6xoyp+nOK2uakktTPJTuXbhewKMAfzf4AQIGCaHU0ow+OzmSr0g7poEgkEkkOo0AeixS1y0klqZ9LXjODFLbLmseqV7letCreCvH/lOl9D/ex7+G+TLYqbZAOikQiyfZEq6J58OYBe3PIg/lLiStJTSpjwiGHlaR+DmqhZuP9X4jh9f8rYeKjIGsfK4VCwfKvl2Nt9KH7afTB0USpojLRqrRBlhlLJJIsT2RMJM+CnvHk3ROu+1/nlv8tHr59yPOQ57wNf0tETGz4vYJQ0gLTTLY280lJSerwxg5ZJukzM1CpVfTf3Z/V11djrF8T26hJ8Uq3445OVi/ftTe1Z0mLJXTeFpt39ODtA/688Cdja47NZMu+DJkkK5FIMp2w6DC8A715GviUp4FPufvmLnde3+Fp4FP8Q/0JjQ5N0XoqCCVXU+KgDDwJjuW/zOhsQELaHjGK1wToraBsQTUn+pzAUDdrdl2kJ1GqKHr824Otd7aio9BhdZvV2CgbZWkdlJTQZVsX3D3dATDTN+Ph8IfYmdplslXayCoeiUSSpQiODOZp4FONE+Id5M2jgEc8fPsQ3xBfgiODv3gbChTU1bPgRFTCoXotcomDAh/Kke+/eskvHmPxen8EpTK2e6N3ud6sar0KhSLrRgfSmvDocDps7cC+h/vQU+rh3sGdtiXbAllbSTYlvA17S6klpfB/7w9Avwr9+KvVX5lslTbSQZFIJBmGEIJ3Ee/iOSBx0RCvd14ER6XeAbE0tMRM34zImEgCIwKJUsfvU7c1tqWuU106u3bmz0t/Eup9RkZQksA70Ju6q+vyLOiZZtrvbr8zqvqozDMqAwmJDKHV5laceHoCI10jdnTegVsRt8w2K03ZdX8XrTe31vx9ecBlKjlWykSLtJEOikQiSTOEELx6/0rjdHzqhHgHeRMalbIumE+xMLDAOY8zpWxKUdquNMZ6xpz1Oct53/M8C3qmqUyIQ19Hn9K2pelQqgPfVvqWPEZ5uPj8Iu3c2/E85Dkl9cy4FaOPjjqJkV9zuA5KcjwKeES91fV4EfICAKVCycEeB2lcuHEmW5a+BIQH0HxDcy4+v4iZvhl7u+2ljlOdzDYrXeizsw9rbqwBoFq+apzrdy7LRMmkgyKRSFKMWqh5GfIyUQfkWdAzwmPCP3v9JnomFLMuRgmbEhSzLqb5FbUqiqGuIatvrGbDzQ1cfXmV99Hv4y3vYOpAA+cGDK48mNoFa2vNW3VtFYP3DiZSFUkJmxLs6LyDEromEPaW/rv6c9XvGjMazcDNpemHhXKIkuyXcO/NPequqsvrsNdAbLTq8oDLuFi5ZLJl6YN/qD9N1zflpv9NrIysONjjIJUdK2e2WelGYEQgrotdeRkaK9G/vu16upftnslWxSIdFIkkl5CSPvMYdQzPg59rRz0CvXkaFPuvT7DPF5ck6iv1KWpdNJ4DUsy6GHlN8mp9vV17eY1FFxdx+MlhfIN940VJDHUNKWdXji6luzCg4gBM9OOPLxKlimLMwTEsvrQYgFbFW7Gu7TrMDT48D5z/cOZp4FM8+npQq2CtL9q/nMjtV7ept6oeAREBAJS0KcmF/hcwMzBL821lZm6HT5APjdc15sHbB9ib2nO452FK5y2dIdvOTA49PoTb+tjuK2sja56OeoqpfuZXuEkHRSLJBSRUoWFupKJC8cdgeF3jiPgG+6ISqmTXp1QoUYvEE0yVCiXOls5azkfcL795fnSUOgku9z7qPSuvrmTz7c3c8L+hKQmOQ4GC/Ob5aVK4CUOrDKWiY8Uk7fQP9afD1g54PPMAYGr9qfxQ9weUig+yTmqhxvA3Q6LV0XiP8qagRcFk9z83cvXlVRqsaaBJUv662Nf81+U/rWP5pWTmKMGPAh7ReG1jvINir4GjvY5SxKpIum4zKzFw90BWXl0JkGXG6ZEOikSSgwiPDsc7yFur6+XKExX3H9dBEPuCjyNO4+K1/nTCdc5ppisVSgx0DFALNZGqpKXg85nli42GWH0UDbEuSuE8hdHX0U+RzWeenWHJpSUcf3pcE2b+GBM9Eyo6VKR7me70Kd8HA92UqXle8L1A+y3teR7yHHMDc9a3XU/L4i3jtXsZ8hLH+Y4oFUoif4hEVyklnxLjgu8FGq5pSFhMGACTa09mWqNpabLuuFGCP33JxF2xS3tUTDcn5far2zRZ1wS/UD+KWRfjSM8jFLDIXV17oVGhFFlYBP/3/igVSh4Of0jhPIUz1abUvL/lXSuRZDIhkSHxHJCP/331/pX2AkJJvoi/0UHbOQFQoESgxipqIM8NL4AiNiKiFmqtPBIrI6sPERCrYprumSJWRT4rDBwYHsjSy0vZdmcbt1/fjtdlpEBBIctCNC/anOFVh1PCpkSqt/HPtX8YvHcwUaooStiUYGfnnRS3KZ5gW59gHyA2f0U6J0lTLX81DvQ4QON1jYlSRbHu9Azq6VvQ9OO8nY9JYQ6PSi2YuvtOPOcE+L9jDVN336GJq32ad/dcfnEZt/VuBIQHUCZvGQ73PJzl9EAyAlN9U9w7uNNzdQNsBPyyuT2rW6+K3zCL5mXJO1ciSUeEEARGBCZZARMQHpDsesz0zShkWQgnSydMRUXO3bRNtK0CJbrYYqGsiLNdTLwumaJWRbE2/rJRWYUQHPU6yrLLyzjlfUqTbPkx5gbmVHWsSu9yvelSpstnOwpRqihGHRjF0stLAWhTog1r2qzRyjf5FJ+gWAclt30xfy51nOqwv/t++q114w5GGB2dBkcTiaIkUgUlhMA32Jfrfte54X+D04/8eRnULNFtCuBlUAQXvQLSdJTg096nabGxBSFRIVTNV5X93fdjZZQ1ZeozgnqWhXmksEBfqMH/CayoF79RFq1skw6KRPIFCCF4E/ZG42wk5ICkRIQsj2EejQNSyOL//1oWwski9l9LQ0tNoul/159z7ub1ZNe5puVOWlfI96W7qME/1J9Flxax895O7r25R4w6Rmu+UqGkiFURvi72NcOrDqeQZaEv3qZfqB8dtnTgjM8ZFCiYWn8q39f9PtkcibgISgHzrPXAzco0dG7IWrffMTrwfdINYyKJCvHjdvhrbvjd4Ib//39+N3gX8U7TzDimLrYk7qDEkZajBB96fIg2m9sQHhNO/UL12dVlV7ok/WYrwt7GOidJETfCt3RQJJLsg1qo8Q/1T7QCxjvIm7DosGTXk9ckr8bZ0Pxr6YSThRNOlk5JRgPirSuFo6rmNf8yCXO1Ws3uB7v56+pfnPE5o/XyicPS0JKa+WvSr2I/2hRvg1KZdsmVF3wv0G5LO16EvMDcwJwN7TbwdbGvU7SsJoIiHZRUUeeTMu7EqL2qFpdEfK0ZXaUuJW1KUs6+HNY6Ndh5Nvl1pdUowTvu7qDL9i5EqaJoXqQ52zttx0jPKE3WLckcpIMiyRakV5miSq3iechzrcjHpw5IciW4ChQ4mDkk6IAUsixEQYuCGOsZf7GtccSNVOsXFJFg/74CsP/M0VefBT3jz4t/svv+bh4FPIpX/aOr1KW4dXHalGjD0CpDcTBLnwTHv6/+zZB9Q4hSRVHSpiQ7u+ykmHWxFC/vG+ILyC6e9CJGrSKPUR7K2ZejvF15ytmXo5xdOVxtXTUJzyq14ILnsXS5Tj9l/c319NnZB5VQ0cG1AxvabUhxQrck6yIdFEmW50vKFKNV0fgE+ySagOob7Buvq+JTlAol+c3zazsfHzkhBcwLpLgKJS34eKTaLx19VaVW4e7pzurrq7nw/EKC3VE2xjbUKViHgZUG4ubilq6KlFGqKEbuH8myK8sAaFuiLWvarEl1mF5GUNKXfd32YVe0aZLXQlpep0mx7PIyhuwdgkDQp3wfVrZcKROjcwjyLEqyNImVKfoFRTB4/VX+6FqGEvkj4iWgxjkgL0JeJKntAaCn1KOgRUFNl8unDkg+s3zo6eil305+Bs1KO7C0R8V4jpt9Chy3B28e8OfFP9n3aB9P3z1Fjfbx0dfRx9XGVSMn/6UJtSnlZchLOmztwFmfsyhQ8GuDX5lUZ9JnaXJoclBkBCXFxKhjcL+1gZTojdqb2kEKHNUvuU5Twpwzcxh/ZDwAw6oM44/mf6Sphoskc5EOiiTLklyZokDNkE3HeG7YT1NOmxCGuoaaXI+EElDtTe0TFRnLyjQr7UATV/tku76iVFGsu7GOdTfXcfnF5QTl5O1N7KnvXJ/BlQdT16luBu3BB877nqf9lva8CHmBhYEFG9ptoEWxFp+1rhh1jGacGRlBSRnXXl5jwO4BqF9co3tKBltMBSm9TlODEIIpJ6bw66lfAZhYayLTG03PMuPNSNIG6aBIsiwXvQK0vro+Ja6c1lJZiXw2YRqn41MH5FOp9ZyEjlKRYInmDb8bLLq4iENPDuET5JOgnHzZvGXpXLozAyoOyNRKh5VXVjJ031Ci1dG42rqys/NOiloX/ez1vQx5iVqo0VXq5krti9TwPuo9U05MYcH5BaiEioqkj6Oe2HX6OQghGHNwDAsuLABgesPpTKozKU3WLclaSAdFkmVJafnh6pY70rScNjvyPuo9/1z7h023N3Hd73qCg/vlN89P48KNGVplaJYYKC0yJpKRB0ay/MpyANqVbMfq1qu/2FmK697JZ5ZPhvuTYP/D/QzeOxjvIG8ADHQMeB0TRSQKDBKMW/4fXYNYYa9MQKVW8e2eb/nr2l8ALGy2kOHVhmeKLdkGY+vYcxaThIJ0Jp7TpJAOiiTLklHltNmV877nWXJxCUefHtV0aXyMsZ4xFe0r0q1MN/qW74uhXtY5Ti9DXtJ+S3vO+Z5DgYLfGv7GpNqT0iTSJUXaksY/1J/RB0ez6fYmABzNHAmPDuddxDus7MsR1mYtBuok8rYySXU0WhVNr5292Hx7M0qFkr9a/kXfCn0z3I5sh2UBGHaFvptbc8PvBt/V+I5uZbpqt5FKshJJ6kjPctrsSGBEIMsvL2frna3cenUrQTl5J0snmrk0Y1jVYZTKWyqTLE2acz7naL+lPS9DX2JhYMHG9hv5quhXabZ+KdKWMEII/rn2D+MOj+NdxDuUCiV9yvVh/6P9vIt4R5m8ZTjS6wh5jG0y29R4RMRE0GlrJ3Y/2I2uUpeN7TbSsVTHzDYr2+CjgNX+11AoFNSvORLMHDPbpBQhHRRJliWjyhSzKkIIjnkdY/mV5Zz0Phl/TB5iJfCrOFahV7ledCvTLctVG33KiisrGLZvGNHqaErZlmJnl51pPrqsLDGOz/039xm0ZxAnvU8CUMG+AlPqT2HYvmG8DH2Jq60rR3odwSYLOiehUaG02dyGo15HMdQ1ZHun7Wnq0OYGtnhuAWKHNHDMJs4JSAdFksVJ7zLFrMbr969ZfGkxO+7u4O6bu0SrtdU6lQolLnlcaFG0BcOqDsPFyiWTLE0dkTGRDN8/XDP0e/uS7VnVelW6JOfKEuMPRKmimOUxi99O/0aUKgpjPWN+qf8LrUu0ptHaRvgG+1LCpgTHeh0jr0nezDY3HoERgXy14SvO+Z7DVN+U3V13U79Q/cw2K9vh7ukOQCfXTplsSeqQDooky5MeZYpZBSGElpx8QgMHWhpYUiN/DfpW6Eu7ku2yXUn0i5AXtN/SnvO+51GgYFrDaUysPTHdKqtkF08sZ56dYeCegdx5fQeAZkWasbTFUpQKJfVW1+NZ0DOKWRfjWK9jmVvtFOgTOw7MJ7yLeMeQfUPxfXMPSyNLDnQ/QLX81TLBwOxJnPq2p58PN30iUOro0sG1Q2ablSqkgyLJFqRlmWJm4xPkw6JLi9h1fxcP3z6MJyevo9ChuE1xWhdvzZDKQ8hvkT+TLP1yzvqcpf2W9viF+mFpaMnGdhtpXrR5um4ztyfJBkYEMvHIRE11VF6TvPzR7A86l+qMb7Av9dfU52ngU4paFeV47+PpNlxByoz1gUWVEqwwyQNsAiIww6v9FkpK5yTFfKq+bc8MdHRDuPZUTbPSmWxcKpAOikSSzqjUKrbd2caq66s473ueoMigeG2sjaypU7AO/Sv256uiX2V73RYhBCuurGD4/uFEq6Mpnbc0OzrvSPN8k0+JjInE/70/kPsiKEIItt/dzvD9w/EL9QOgX4V+zG4yGysjK54HP6fh2oY8efeEwnkKc6z3sczPRwh7m3T5K2AIlDS2zRh7cgCJqW+rYkwZvP4qS3tUzDZd49JBkUjSgUcBj1h4YSH7Hu7DK9Arnty+nlIPV1tX2pVsx5DKQ7AxyXrJiZ9LZEwkw/YN02hVdHDtwKrWqzDVT1uF0oR4HvIciBWiy4oJn+mFT5APQ/cNZfeD3QAUsy7Giq9XUK9QPSC2rLvh2oY8CniEs6Uzx3sfJ7959o3MSRImKfXtuNKCqbvv0MTVPlt0kUsHRSJJA6JV0ay/uZ61N9Zy+eVlQqNC47XJa5KX+k6xcvL1CtXL9lGShHge/Jz2W9pz4fkFFCiY3mg6E2pNyLB9jeveyW+eP0ce309RqVUsuriIH47/QGhUKHpKPSbVnsSkOpMw1I3VvfEL9aPh2oY8ePsAJwsnjvc+TkGLgplsuSQ9SE59WwAvgyK46BWQLbrMpYMikXwmt17dYtGFRRx8fJBnQc/iyckb6BhQJm8ZjZy8haFFJlmaMZx5doYOWzto8k02td9EsyLNMtSG3JQge93vOgN3D+TSi0sA1CpQixUtV+Bq66pp8+r9KxqtbcS9N/coYF6A472P42TplFkmS9KZlKpvp7RdZiMdFIkkhYRFhbHq+io23trINb9rCcrJ5zPLRyPnRgypMiTXVBwIIVh2eRkjDowgRh1D6byl2dl5Z6aUQOeGBNmw6DCmnpjKvHPzUAkVFgYWzGo8iwGVBmhJ+79+/5pGaxtx5/Ud8pnl43jv4zjncc5Ey+PjG/KclHQ0rb+1gbY2RTHRN0l3m7IzKVbfTmG7zEY6KBJJElz0vcjiS4s56nVUk9/wMUa6RlSwr6CRkzfWN84EKzOPiJgIhu0bxt/X/gagU6lO/N3q7wzJN0mInBJBiSsR/bSs/tDjQ3y751u8Ar0A6OjakT+a/RGvEudN2Bsar2vM7Ve3cTRz5Hjv41lOM2er51b+/K8/p1LQdv65+Yy5uYbvan7HkCpDtK6vxI5VbiSnqW9LB0Ui+YjgyGBWXFmBu6c7t/xvEanSrjBQoKCgRUHcXNwYWmUoZe3LZpKlmc/z4Oe029KOi88volQomdFoBuNqjsvU3A/fYF8gezson5aIAuQ108fa/hgHfGcCsfu3+KvFtCzeMt7yAeEBNFnXhJv+N7E3tedYr2NfNDp0WhMeHc7og6NZfmU5FYQSSN6ZzWeWj2uhPkw4MoHZZ2YzpsYYhlUdxtmH7+MdK4ccKuKYEnKa+rZCCJHEsJVZk+DgYCwsLAgKCsLc3DyzzZFkY4QQnHh6gmWXl3HC+0SCcvKm+qZUdqhMz7I96VG2B/q6+plgadbC45kHHbZ0wP+9P3kM87C5w2aaujTNbLOosLwC1/2us7fb3mwph55YiahADSh4oz+DATWr8GuDXxNU4X0X/o7G6xpz9eVV7EzsON77OCVtS2aI7Snh7uu7dN7WmVuvbqFAwczKwxh3bTOKZEbajR5ygY3PTjHt9DQeBjwEwEbZGJP3I/nw6o0l7q/sVE6b1iTk5GYVxy0172/poEhyHa/fv2bp5aX8e/df7ry+k6CcvLOls0ZOPit9fWY2QgiWXl7KyAMjiVHHUCZvGXZ03pFlug9sZtvwNvwtN7+9SRm7MpltTqpQqQW1Zx1LogpDYG2qw8XJzRL8Ag6MCKTJuiZcfnEZW2Nbjvc+nmUGjBRCsOr6KobvH05YdBh2Jnasb7eexoUbQ6APE3YN4PCTwwCsabOG0KhQhu4biq5Sl229j1PQqSYAMeoY3G+78+upaYT6jkcHGxTEPxZxXRkeExpmm2hBWpNVu75S8/6WXTySHI8Qgv0P97Pi6go8nnnwNjy+rLaFgQXV81enT/k+dCjZAV0deWt8SkRMBEP2DmHV9VVAbL7JP63+yTKJi2HRYZpzmx2TZJMrEQUFb0PVCZaIBkcG02x9My6/uIyNsQ1Hex3NMs5JcGQwg/cOZuOtjQA0KdyEdW3XaeT1VeaOrHx5kXeKWK0gh2LNsDG2wfr+do48OcLkK0tY/38HRVepS/ey3Slk3ITuf11KdJvZrZw2PcgJ6tvyKSzJkTwPfs6ii4v47/5/PHj7IEE5+aLWRWlVrBVDqwyloKXUhUgK32Bf2rm349KLSygVSmY2msl3Nb/LUlojcfknpvqmWBhkv5Luzy0RDYkMofmG5lx4fgErIyuO9DySZaJHV15cocv2LjwKeISOQoffGv7G+FrjtaqNrr68yruIdwCY6plibRT7Up3ZaCaVn1Rmw60NjK0xlgoOFTTLvAnVjnomRnYpp5UkjHRQJDmCGFUMO+7t4J9r/3D++XkCIwLjtbEytKJ2wdr0q9iPr4t9rfWQlCTOae/TdNjagVfvX5HHMA/uHdxp4tIks82KR3YXafucEtHQqFC+2vgVZ33OkscwD0d6HqGcfbn0MjHFCCFYeGEh4w6PI1odTUGLgmxqv4maBWrGa3vo8SHN/4tYF9Gcu0qOlehauiubbm9iwpEJHOr5oV1OK6eVJIx0UCTZlifvnvDnhT/Z83APT949iScnr6vUpaRNSY2cfF7TrDecfFZGCMGSS0sYdXAUMeoYytqVZUfnHRTOUzizTYuHSi049dAP45i6WOsURqUWWaK/PTWktkT0fdR7WmxsgcczDywMLDjc87BWlCGzeBv2lm92fcOu+7sAaFOiDX+3+hsro4RLW+NyTwBc8mjnMk1rOI1td7Zx+MlhDj8+rHGMc1o5rSRhpIMiyTZEq6LZcGsD626s49KLS4REhcRrY2tsSz2negyqPIhGzo2y5Zd0VuDTfJMupbvwV8u/sky+ycd8qFiwxJbx+D6F2rOOZYmKhdSQmhLRsOgwWm5qySnvU5gbmHOo5yEqOVbKBKu18XjmQdftXfEN9kVfR595TecxtMrQRO/D0KhQzvqc1fz9qfPrnMeZIVWG8MeFP5hwZAKNCjdCqVDmuHJaScLIKh5Jlub2q9ssvriYA48P4B3oHU9OXl9HnzJ5y9CxVEcGVhxIHqM8mWRpzsEnyId2W9px+cVllAolsxrPYmyNsVnS2UusLDc7l5omVyIaHh1Oq82tOPLkCGb6ZhzqeYjq+atnosWxYwLN9JjJlBNTUAkVRa2K4t7BPdmIzt4He/l609cY6RoRHhPOshbLGFR5kFabN2FvcFnoQnBkMOvbrqd72e6aeVm5nFaSMLKKR5Il+Jwyt/DocFZfX82GWxu45neNsOiweG0cTB00cvLV81fPki/O7EBC5+eMz2k6bu3Iq/evsDKywr2De2wpaBYkqZFbBbFOSnYauTWOZqUdaOJqn+C9ExETQRv3Nhx5cgRTfVMO9DiQ6c7Jy5CX9NzRk6NeRwHoWbYni79anKBOSxxx196qc7cwUJXBwMCX8JjwBMvVbYxtmFBrAt8f+57vj/1IAcOGvAtTk9fMkCau9okeK0n2J80dFJVKxc8//8z69evx8/PD0dGRPn368MMPP2heJEIIpkyZwsqVKwkMDKRWrVosXbqUokWl3kROITVfNpdfXGbRxUUceXIkUTn5cnbl6Fq6K99U+AZTg8yRUc9JJHR+TA1j8BZzCVW+opxdOXZ03pHlxm75mJw2cuvHJFQiGhkTSTv3dhx6fAgTPRP2dduXYNJpRnLw0UF67ezFq/evMNYzZslXS+hdvneSy2hfe2WwZwYx0W+I1FseLwcljlHVR7H49Bli/DrS65+rmukyWpKzSXMHZdasWSxdupQ1a9ZQqlQpLl++TN++fbGwsGDEiBEAzJ49m4ULF7JmzRqcnZ358ccfcXNz486dOxgayqzr7E5iYXe/oAgGr7/K/M6uPAn/ly2eW7jhfyNBOfn85vlxc3FjSJUhWSLxLyeR2PkJiVBixQRqutRkR58pGOtl7XGFctrIrUkRGRNJ+y3t2f9oP0a6Ruzttpc6TnUyzZ5oVTQ/HPuB2WdnA1DWrizuHdwpYVMiyeUSu/Z0hBW2UZO546OPcwK9tKfuB6EXPDjRZ0p27MqTJE+aOyhnz56ldevWtGjRAoBChQqxadMmLl68CMRGTxYsWMAPP/xA69atAVi7di12dnbs3LmTLl26pLVJkgwkubC7QM1w95M8NxwPig9VNyZ6JlR2qEyPsj3oWa4nBroGGWZzbiKp86NACQiC3zTFQMcoo01LNbml1DRKFUWnbZ3Y+3AvhrqG7Om2h3qF6mWaPU8Dn9J1e1fO+54HYEjlIcxtOhcjvaSvmZRce7/tvUez0o5aXTRxy5GAZmx27sqTJE+aC0HUrFmTo0eP8uDBAwBu3LiBh4cHzZs3B8DLyws/Pz8aN/7Qr21hYUG1atU4d+5cguuMjIwkODhY6yfJmiQXdlegRBdbDNWlKJynMEOrDOXukLuETg7lRN8T9K/UXzon6UhK1ErjukWyOnGlpom9khTEdgFk51LTaFU0XbZ1Ydf9XRjqGrK7624aOjfMNHv+vfsvFZZX4LzveSwMLNjWcRuLWyxO1jmBz7/2UtOVJ8lZpHkEZeLEiQQHB1OiRAl0dHRQqVRMmzaN7t1jM6/9/PwAsLOz01rOzs5OM+9TZsyYwdSpU9PaVEka8yzoGe43TwHJV9JsaLOHdhWlemtGk5O6RXJ6qWm0Kppu/3Zjx70dGOgYsLPzzkxLWI6IiWDswbEsubwEgOr5q7Op/SYKWRZK8To+99rLSdesJHWkeQRly5YtbNiwgY0bN3L16lXWrFnD3LlzWbNmzWevc9KkSQQFBWl+Pj4+aWix5HOJjInkyJMjjD04llJLSuG0wIll12anaFkHi6ynp5EbyGndIs1KO7C0R0XsLbTttbcwzNZ5CTHqGHru6Mm2O9vQ19Hn387/4lbELVNsuf/mPtX/qq5xTibUmsCpPqdS5ZzA5197Oe2alaScNI+gjBs3jokTJ2pyScqUKYO3tzczZsygd+/e2NvbA+Dv74+Dw4eHh7+/P+XLl09wnQYGBhgYyLB/VuBxwGMOPDrA/kf7Of70uFYZsFKhpKKTOUE+UbyP0E9weanwmLnkRAXOpMpyswOflntXcrKg767euHu6o6fUY3un7XxV9KtMsW3N9TUM3TeU99HvsTW2ZV3bdZ/tKCV37YHAwcIo3rWXE69ZScpIcwclLCwMpVI7MKOjo4NaHZsQ6ezsjL29PUePHtU4JMHBwVy4cIHBgwentTmSLyQsOowTT09onJJHAY+05juYOtCsSDOaFWlG48KNsTKy0mTqQ84Lu2d3cmq3SHYduTWhcm99/TB88UJXT5etHbfydbGvM9yu0KhQhuwdwrqb6wBo6NyQ9W3X42D2+RGppK49gRoFygSvvZx6zUqSJ82VZPv06cORI0dYvnw5pUqV4tq1awwcOJBvvvmGWbNmAbGlyDNnztQqM75582aKy4ylkmz6IYTg3pt7GofklPcprTJgXaUutQrUonmR5jQr0oyydmUTFEqTCo9ZG3l+Mp/ESm4FakBB3/ox/NysTYbbdd3vOp23debB2wcoFUqm1p/KpNqT0FHqpMn6E7r2YnjNn53r0bZC4ro78prNGaTm/Z3mDkpISAg//vgjO3bs4NWrVzg6OtK1a1d++ukn9PVjw/5xQm0rVqwgMDCQ2rVrs2TJEooVK5aibUgHJW0JjgzmmNcxDjw6wIFHB/AO8taaX9CiIM1cmtG8aHMaOjfE3CBlx/xzlGQlGYc8P5mHSi2oPetYEtUpsd0dHhMaZtg5EUKw+NJixh4aS5Qqivzm+dnYbmO66K3EXXuXfO4x/thgLMxe4T8u4SKJhJaT12z2JVMdlIxAOihfhhCCm/43Yx2SxwfweOZBjDpGM19fR596TvVoVqQZzYs0p4RNCSknL5GkIecev6XryvPJtts0oHqad10l9JIPjgyk365+7Li3A4CWxVqyqvUqrI3Tt9ts251tdNzakRr5a3C239nkF5Bke+RYPJJ4vAt/x+EnhzVRkpehL7XmF7EqQjOX2FyS+oXqZ8lRayWSnEJmlc4m1E1iZaLgrd5ynkXuQk+px5wmcxhRbUSGfJQ8DngMxB/FWCIB6aDkWNRCzZUXVzRRkvO+51GLD8qtRrpGNHRuqElwLWJVJBOtlUhyF5lROptYzsvb9ypgAM55dNja83sqOVZKs20mx+N3sQ5KYmPwSHI30kHJQbx6/4pDjw9x4NEBDj4+yJuwN1rzXW1dNVGSOk51MNSVugESSWaQ0aWzKZGZz6saQnn7immyvZTy5N0TgARHMZZIpIOSjYlRx3DB94ImSnLlxRXER48gM30zGhduTLMizXBzccPJ0ikTrZVIJHFkdOlsSmTm/YIjM3zkZxlBkSSFdFCyGS9CXmjySA4/OUxgRKDW/PL25TVRkpoFaqKno5c5hkokkiSJU8H9NCfEPh1KZ7OiXHyUKopnQc8AmYMiSRjpoGRxolRRnHl2RhMluel/U2t+HsM8NHVpqomSfImQkkQiyVgySgU3K8rFPwt6hlqoMdYzxt7UPsO2K8k+SAclg0hN/b53oDf7H+3nwKMDHPU6SmhUqGaeAgVV8lXRREmq5KuCrlKeRkn6kNN0J7Li/mSECm5Wk4tXqQX7bj/EOKYuBc0tUQvQyb6XlSSdkG+2DCA5BcSImAhOeZ9i/8P9HHh8gHtv7mktb2tsq6m2aVK4CbYmthm9C5JcSE5T7sxp+5MaspJc/IfzoMaW8YT7Q+1Zx3LFeZCkDinUls4kVtoXiyB/wQNcffcP4THhmqlKhZIa+Wto5OQrOFRAqUjzgaclkkRJ7LqNe31lt5GCc9r+fC6Z7aTJ8yCRSrJZhOTkrAVqVLzluWE/HM3tNXLyjZwbkccoTwZbK5HEktx1G9cdkJEy7F9CTtufLyWzurnkeZCAVJLNMiRX2qdAiS62bPj6PF0rVZZy8pIsQXLXrQBeBkVkeEnq55LT9udLyayRn+V5kKQW2W+QjqS0ZM9E11E6J5IsQ1YsSf0Sctr+ZFfkeZCkFumgpCNZsbRPIkmOlF6PZ57vJ1oVnc7WfDnyPswayPMgSS3SQUlH4kr7EouNKIhNUMuo0j6JJCUkd92CQEUgi89voPSCtuy9vy8DrUs98j7MGsjzIEkt0kFJR+JK+4B4N2VGl/ZJJCklqeuW/0/VwRLb6O+IfD2YQateUWvxUDxfeWakmSlG3odZA3keJKlFOijpTJyctb2FdtjS3sJQltRJsiyJXbcJoYM1vj7NqbZoEEP2DuH1+9cZYGHqSGx/7CwM5H2YgcjnoSQ1yDLjDCK9S/uyokKmJPsTd135BYXz6967BLyPSqSlIIY3PDfsh4WhGT/W/ZHh1Yajr6OfofYmR+z+vKXD5n68jfRiT+/faezSKLPNSjOyy3Mgu9gpSXtkmXEWJD1L+zJbfEmSc4m7bs89fpuEcwKgQBdbSlm2xjNoB98d/o6ll5cyt+lcWhdvnWWq1GL3x4ZGrhasu3mLI16Hc4yDkp2eA5lV6izJXsgunmxOnDLjp/oCfkERDF5/lQO3X2aSZZKcREpLP3+t9wd/t/obe1N7Hr97TFv3tjRc25DrftfT18BU0tSlKQCHnxzOZEvSBvkckOREpIOSDVGpBecev2XHVV8m77idoIx+3LSpu++gUme7XjxJFiOlpZ/zLvxEUauiPBj2gO/rfI+hriEnnp6g4vKK9PuvHy9DssaLsnHhxgBcfXn1s3Jm4u7B/64/59zjt5l6j6nUgqm778jngCTHIR2UbMaB2y+pPesYXVeeZ/SWG0mG3T9WZpRIvoSUlB7HKF5zxm8tdVfXpdXmVjRybsTdIXfpUroLAsE/1/+h6J9FmX56OuHR4YmuKSOwN7WnTN4yABz1OpqqZT++B0duvk7XleepPetYpkUpUqPQKpFkJ6SDko1ILIybHFKZUfKlJFciqkDB9DYVGVR5AHpKPU48PUHDtQ3pubMn35T/hjN9z1AtXzXeR7/n+2PfU2JxCTbf3kxm5uhrunkep7ybJyt2pUiFVklORToo2YSkwrjJIZUZJWlBciWivaqVZdnXy3g84jFDqwxFX0cfj2ceNF3flLGHx/Jj3R9Z12Yd+c3z8yzoGV23d6XWP7W44HshU/anSeEmABx6cihFjlJW7UqRCq2SnIosM84mnHv8lq4rz6dqGYEalO/4o6clbUq2SifLJLmNT0tEKznl4Yr3u3glo8+DnzPn7ByWX1lOREzs13tlx8qMrzmeu6/vMuvsLMKiwwDoXqY7MxrNoIBFgWS3l1YlqWHRYVjNsiJSFcndoXcpYVMiye2l9B7cNKB6hlaoxI0S7BcUkcgHjMDewpAzExrJUl5JpiPLjHMgnxOeVaDgle4y2m45R8+yPfmj2R/kMcqTDtZJchMfl4geuP2SenOOJ1Lamo8FzRYwsfZE5p2dx5LLS7j84jKdtnWivH15/mj2Bx7PPFhzYw0bbm3g37v/8l3N7xhfazym+qaa9adX6ayxnjG1C9bmqNdRDj0+RAmbEkluLzJGnaL1ZnRXSlz32+D1V1GAlpMiUAMKjKz2ohb10EEvQ22TSL4E2cWTTUhteNbBwpCFXcsyvE4dlAol626uo9SSUux5sCedLJTkNlKaj2Fvas+cpnN4OvIpE2tNxFTflOt+1xmwewBXXl5hRsMZ1C5Qm/CYcH499SvFFxVnzfU17Lv1It3zPT4uN05uf56+CUvROjOjKyWx7jdrEyWBhnM44beAvv/1RS1S5mRJJFkB2cWTTUgujCtQo1C+Z0A9KxoWqaQVBj/ve54+O/tw/+19AHqX682CZguwNLT87PC5VILM3cRdj4klbCuIzU3xmNAw3nXxNuwtC84vYOHFhQRHBgNQ0qYkTQo3Ydf9XTwNegpCiXP0OtQqi1SvPzVce3mNiisqYqpnRin+xS84MsntCSHwD45M8B5MK5u+hITuy/2P9tLWvS0x6hgGVRrE0hZLs4xwniT3kZr3t3RQshFxX3jAJw9IgQBe608nXOccvcv1Zm7TudgY22hahEeH8+PxH5l/bj4CQT6zfAwps4Ldlw1SHT7PToqVkvQhLfIxAiMCWXhhIb+f/53AiEAAilgVoaJ9RQ7dfYpF2E9ftP6UoBZq7OfaExxij33UjGTbj25clN+PPIz9IPgoAB33us+q48m433an27/dUAs1Y2uMZU6TOdJJkWQKqXl/yy6ebERiYVwHCyPmdyrJN9UrokDBmhtrKLGoBGtvrNVUJxjpGTG36VxO9z1NUauiBAQWZPlRNS+DtPUokgufZ8UyS0nGk9I8i3XX/uNFyIsE51kaWvJTvZ/wHuXNtIbTsDKy4lHAI7bc2YKFXv40tSMxlAoljQs3RkekLDerkI0J5UtcQsVbrelZfbC7zqU7s7LlSgDmnZvHLyd/yWSLJJLkkRGUbEhS3Svnfc8zcPdAbr26BUAj50YsbbGUotZFNcuHRL6n6vQDhEUaoEhAeiuxUPWXhPUlOYuURlD89CcRpXOb2gVr06lUJ9qXbI+DWcIv8ZDIkNjxe87OTXFEY+OAqtR0sU21/R+z6toqBu/4PUXbW9qzOG13lCYyJprlTY9gZ1wsW3VxLrywkJEHRgIwr+k8xtQYk8kWSXIbMoKSw4mromhdPh81XKy1HozV81fnysArzGw0E0NdQ456HaXM0jJMOzWNKFWs6uxt3wjCIw0TdE4gceVJqVgpiSN5ZVkwNYqmopM5AsHpZ6cZvn84+ebno97qeiy+uBi/UD+t9mYGZoyvNR6vkV781qwPQhnw/yqU+AjUxPCaMcdbf/E4P01cmhCp9CRG8SbR/VEQ24157tV6IlWRVM1fmQE16id4D2ZlRlQbwW8NfgNg7KGxrLiyIpMtkkgSRzooORA9HT0m1J7A7cG3aVK4CZGqSH44/gMVl1fkzLMzn608KRUrJXEkrywLc9tX42w/D56Nesb8pvOpnr86AsEp71MM2z8Mx3mONFjTgKWXluIf6q9Z3kTfhO9qjmFhp7ooUPw/w+oDcaWzAforuPD8HJVWVGL0gdGERIZ81r7kN89PSdviBOgtRyAS3B+Aic2LsPTyYgDG1hibbXM4JteZzIRaEwD4ds+3bLi5IZMtkkgSRjooORgXKxcO9jjI+rbrsTW2xfO1J7VX1WbD7aUpWt7MUPvrVSpWSj4mOWXZuHyMAhYFGF1jNOf6ncN7lDfzms6jWr5qCAQnnp5gyL4hOM53pOGahiy7vIxX718B0Lq8E8t6VMLBXHv9Kt4SbDiXCJ3YLia1ULPgwgKKLyrOtjvbPks+v0nhJoTrnKN8icvkNTdIcH9exuznTdgbClkWol3JdqneRlZBoVAwo9EMhlYZikDQe2dvdt7bmdlmSSTxkDkouYS3YW8Zf3g8/1z/B4SSglGrUajzEP/7N/YLVcVblHmnsKbtaho4NwBSVupsZqTi+g+t0NWRvm9u4XNLzp8GPmXbnW1s8dzCpReXNNOVCiUNCjWgU6lOtC3RFisjm/93L4Zy1f8E6+9PxTvICwB9HX1N12Ucbi5uLP5qMS5WLineh70P9vL1pq8pZFmI6wNvYjejFjoiD3t6bKBu0XwoFIISi0rwMOAhfzT7gxHVRqR43VkVtVDzzX/fsObGGvR19NnTdQ9NXJpktlmSHI4sM5YkysmnJxm0ZxDPXllhGzX5/+7Jxy8T7ZJlgCGVhzCrySxM9U1TVOrcxNWWf1r9g7Vxxsl9S7I3Xu+8Yp2VO1u4/OKyZrqOQocGzg3o5NqJtiXbYmNsQ7Qqmg23NjDt9DQeBTzStFMJlWY5fR19fqjzA+NrjcdA1yDe9j4lNCoUq1lWRKujuTHoBuWWl4udPikUE30T/rv3H23c22BpaInPaB+N0m12J0YdQ5dtXdh+dztGukYc6nmI2gVrZ7ZZkhyMTJKVJEq9QvW48e0NxjdsSqDhbGJ4ozXfwcKICS2sKOIQqpm25PISSi0pxSnvU0mWOreu6o9K/wq77u+i/PLyeDzzyJB9kmR/nPM4M67WOC4NuMTjEY+Z2WgmlRwqoRIqjjw5wsA9A7Gfa4/bejfW3FhDy2ItuTv0LuvarqO4dXGNcxKX+B2liuKnEz9RYnEJjnkdS3b7pvqm1CxQE4BjT+O3n3tuLgDfVvo2xzgnALpKXTa230jzIs0JjwmnxcYWXHlxJbPNkkgAGUHJ1dx7c4+Bu7/lolcAOiIPLjY2/NV+ElXzVyZKFcVMj5n8cvIXrS/T4VWGM6PxDAx1jRMM6199eZXO2zrzKOAROgodptafysTaE9FR6mTinkqyK48DHrP1zla2eG7hmt81zXRdpS6NnBvRqVQnWhZryVGvo/x66lfuvL6T4Hral2zP4q8WY2dql+i2pp2axg/Hf6BlsZbsfrAbiI2g3H51m+p/V0dPqcfTUU9xNHNM253MAoRHh9N8Q3NOep/E2siak31OUipvqcw2S5IDkV08khSjFmpWXVvFuMPjeBfxDqVCyYiqI/i14a+Y6ptyw+8GvXb24qb/Tc0yhSwLsa7tukRDwSGRIQzeO5gNt2KrAxo5N2Jd23WJ6l9IJCnh4duHbL2zla13tmqVFusqdWlcuDEdXDugo9Dh9/O/a12vcRjqGjK78WyGVBmSoMN86fklqv5VFXMDc40Ef+ikUPr+15etd7bSp3wfVrVelW77l9mERIbQeF1jLj6/iL2pPaf7nqaIVZHMNkuSw5AOiiTV+If6M+bQGDbe2ghAAfMCLP5qMS2LtyRaFc2sM7OYenIqMeoYzTKjqo1iWqNpGOsZx1ufEILV11czbP8wwqLDyGuSl7Vt1uJWxC3D9kmSc3nw9gFbPbey5c4WLWdET6lH48KNKWpVlBPeJxJ0VIrkKcLmDpup5FhJa7pKrcJ2ji3vIt5ppt0afItyy8qhFmpuDb5F6byl02+nsgAB4QE0WNOAm/43KWhREI++HhSwKJDZZklyENJBkXw2Bx8dZPDewXgFxlZJtC/ZnoXNF+Jo5sgt/1v03NGTG/43NO2dLZ1Z3269pv/+U+6+vkvnbZ01yrYTak3g1wa/oqcjh32XpA3339zXdAPFXWcQ66yUty/P27C3PAl8Em+5LqW6sLzlcswNPjxDOm7tyLY72zR/f1vpW5ZdWYabixsHehxI3x3JIviH+lN3dV0evH1AMetinOpzKsmuMYkkNUgHRfJFhEWH8cvJX5h7di4qocLcwJwZjWbwbeVvUalVzDk7hyknpmhFU8ZWH8uvDX/FSM8o3vrCo8MZe2gsSy/H6q9Uz1+dTe03UciyUEbtkiSXcPf1XY2z4vnaUzNdT6mHib6JZlDCOAx0DPi92e98W+lbFEG+/HvlL347/ZtmvqGuARExkSxtsZRqRZuDZe6IJvgE+VB7VW2eBT2jTN4ynOhzAisjq8w2S5IDkA6KJE244XeDgXsGcvH5RSDWsVjx9QrK2JXh9qvb9NrRSytxsbBlYTa030D1/NUTXN+2O9vov6s/QZFBWBpa8nerv7O14JUka3Pn9R22em7F3dOdu2/uaqYnpE5b3TQ/Z8IiUH6iqaKFrgEMu5JrnJRHAY+os6oOfqF+VM1XlSM9j2BmYJbZZkmyOdJBkaQZKrWKpZeXMvnoZEKiQtBV6vJdje/4qd5P6OnoMffsXH48/qMmmqJAwbia45jaYCqGuvEVZb3eedF1e1cuPL8AxGqszHObl2BbiSSt8HzlyRbPLWy5s4V7b+7Fm19BKLlKCsqHB54Ex/Jpb2AW5far29RbXY+A8ADqOdVjX/d9CeacSSQpRTookjTnefBzhu8fzo57OwAonKcwy1oso4lLE+68vkPPHT25+vKqpn1Rq6JsaLeBKvmqxFtXtCqa7499z5yzcwAoZ1cO9w7uFLcpnjE7I8m1CCHwfP1/Z8VzC/ff3gekg5IUl19cpuGahoREhdC8SHN2dtmJvo5+ZpslyaZIB0WSbvx37z+G7R+Gb7AvAN3LdGe+23ysjKz4/dzvfH/se6LV0UBsNGVirYlMqT8lQTXP/Q/302tnL96EvcFEz4TFXy2md/neGbo/ktyLEIJbr26x1XMrl6/+zf7Q98kvlAsdFIDT3qdxW+9GeEw47Uu2Z3OHzegqddN9u587jIIk6yIdFEm6EhIZwg/HfuDPi38iEFgZWTGnyRz6lu/L/bf36flvTy6//CBXXsy6GBvbbYxX1gnwIuQFPf7twfGnxwHoWbYnS1osyVFqnZKsy8uQlxx5coTzl5az2PdW8gvkUgcF4NDjQ7Tc1JIoVRS9yvViVetVKBXpJ0Z+4PZLpu6+w8ugD6OjO1gYMqWlq2YgSkn2Qzookgzh0vNLDNwzUCOaVc+pHsu/Xk4RqyIsOL+AyccmawZyU6Bgcu3J/FT/p3jhYZVaxfTT0/n55M+ohZpi1sVw7+BOefvyGbxHkpxOaFQop7xPcfjxYfY92seDtw8A2cWTUnbe20mHLR1QCRVDKg9h0VeLUCjSPqIRN+bXpy+nuC19PFq2JHshHRRJhhGjjmHB+QVMOTGFsOgw9HX0mVx7MhNrT+Rp4FN67uipNVJtCZsSbGy3kQoOFeKt65T3Kbpt78bzkOcY6Bgwr+k8hlQZki4PQEnuIEYdw5UXVzj85DCHnxzm7LOzxIiYeO2kg5JyNtzcQM8dPREIJtSawIxGM9L0Ho0bNf3jyMnHKAB7C0M8JjSU3T3ZEDlYoCTD0FXq8l3N7/Ac4knzIs2JUkXx88mfKb+8PP7v/TnX7xzzm85HTxkrzHbvzT0qr6zMz8d/JloVrbWuuk51ufHtDb4u9jWRqkiG7R9G+y3teRf+LqFNSyTxEELw8O1Dll5aSjv3dtjMtqH639X58fiPnPI+laBzUsC8AJNrT07R+r0Cn6axxdmP7mW7s+zrZQDMOjOL6aenp+n6L3i9SdQ5gdhR1F8GRXDRKyBNtyvJesgIiiTNEEKwxXMLIw+MxP+9PwD9KvRjdpPZvA17S88dPTXlxQAlbUqyqf0mytmXi7eePy78wfjD44lWR1PQoiCb2m9KVK1Wkrt5E/aGo0+OcuTJEQ4/OYx3kLfW/IR0TyB2jKjv63xP/UL1ufPoEIU3dMSIxL/IwxFUN9Tjr54HEqxOy23MOzuP7w5/B8ACtwWMrD7yi9b38O1D1t5Yy7oLdyDom2Tb/9GlPK3L5/uibUoyHtnFI8lU3oW/Y+KRiay4ugKAvCZ5+d3tdzqX6syfF/9kwpEJmtwUpULJT3V/YnKdyfHk7y+/uEyXbV14/O4xOgodfmv4G+NrjU/XxDxJ1iciJgKPZx4cfnyYI15HuPbympYDolQoMdEzISQqJN6yBjoGfFP+G0bVGEUx62IARMZEUmVlFQL9b9PZuTGzm8xC8Ymj8i7iHT0PjmbvqxuY6puys/NOGhVulL47mg34+cTPTD05FYC/W/3NNxWSdyw+5l34O9w93Vl7Yy3nfM8BYKAqg33UjGSX3TSgOjVcrFNvtCRTkQ6KJEvg8cyDQXsGcef1HQDcXNxY0mIJaqGmx789tKIppWxLsbnD5niDsQVHBjNozyA2394MQJPCTVjXdp0cGyQXoRZqrvtd10RIPLzPIqJc0BF5UCneEan0pKBlfvSV+jwNeqo1BEMcjqaOjKg2ggGVBsSTbP/+6PdM95iOrbEtnkM8sTWxTdCOkMgQ2ri34ZjXMfR19NnUflOuV0IWQvDdoe+Yf34+BYWSlY1m0NSlacKNja3BsgDRqmgOPDrA2ptr2XV/l+ZjRUehg1sRN3qU7sUfe6zxD45MIO4lc1CyO9JBkWQZolRRzD4zm99O/UakKhIjXSOm1JvCqOqjWHFlBeMOjyNSFQnEfvlOrT+VibUnamksCCH4+9rfjNg/gvCYcOxM7Fjfbj2NCzfOrN2SpDPegd4cfnKYI0+OcNTrKG/C3gBgpKqBVdRAdPngRKgVb3mjt4xwnXPx1lPZsTKjq4+mo2vHBAeovOB7gZr/1EQt1GzvtD1ZhyMyJpJu/3bj37v/olQoWf71cvpX7P+Fe5u9EUIw6d+eTLm1K8kuMrWOPr+Ubc2SB7t4HfZaM72sXVl6l+tNtzLdsDe1Bz5U8QBaToqs4sn+SAdFkuV48PYB3+75VqN3UtauLCu+XoGtiS09/+3JWd+zmral85bGvYM7rrauWuvwfOVJ522d8XztiQIFk2pPYmqDqRkiGCVJXwIjAjnudVzjlDwMeKg131TflAqWfXnmHfd1/uFFKFADCl7rTydc5xwKFLQp0YYxNcZQq0CtRCtMwqPDqbC8Avff3qd7me6sb7c+Rbaq1Cq+3fMtf137C4CZjWYyofaEVO9zTkL1/Co6Kxsk264ioVxTqLEzsaN7me70KtcrXg5aHFIHJWciHRRJlkQIwdobaxl7aCxvw9+iQMGQKkP4reFvbLi5gbGHxmqiKToKHX5t8Cvjao3TckDCosMYdWAUK6+uBKBWgVpsbL+RghYFM2WfJJ+n9hmliuK873kOP44t/7304hJqodbM11HoUC1/NZoUbkKtArV4FujLjB1GRMeYxssPgVgnRa0IoF3da4ysPoLCeQona/eYg2P4/fzvOJo5cnvwbfIY5UnxPgshmHx0MjPPzATguxrfMbvJ7NxbEv/iOqyol2yziS41qVt9OE1dmqbowyLHKskG+kDY28Tn/787LCciHRRJluZN2BvGHhrL2htrAXA0c2RR80WUty9Pjx09OOvzIZpSzq4cmztspoRNCa11uN92Z+CegQRHBpPHMA//tP6HNiXaZORuSEj5V27cGDhxeSQnn57kfbS2tHxx6+I0KdyEJi5NqFOwDtf9rrPmxhq23dlGTEThNE2cPOV9ivqr6yMQ7Ou2j+ZFm6dirz/wcSVL3/J9WdFyRe6M6KXQQZE6MsQ6J4sqQUxk4m1y8MjZ0kGRZAuOPjnKt3u/5VHAIwBaF2/NH83+YN/DfYw5OIYIVexLT0ehw/RG0xlbYyw6Sh3N8k/ePaHzts5cfhErqz+86nDmNJmT4Lg/krQnObXPae2didG/zJEnRzjy5AgvQ19qtbM1tqVx4cY0KdyExoUbU8CiAPff3GftjbWsv7WeZ0HPNG2dDTqiDkx+nKaUlJ6GRoVSdmlZvAK96F+hPytbrUzJ7ibKqmur6L+7P2qhpnXx1mzusDn3jc4tHZSUk8uPlXRQJNmG8Ohwpp2exqwzs4hRx2Cqb8q0htNoUbQFfXb2wcPHQ9O2vF153Du6a8pDIbarYNKRScw/Px+ACvYV2Nxhs1YbSdqTnNonCGJ4w3PDfqCI7box0jWirlNdjVNSxq4MSoWSgPAA3G+7s+bGGq3KLgsDCzqX6kzv8r1RRBWj68oLiWzrAymJoAzeM5hlV5ZR0KIgtwbfwtzgy58hO+/tpMu2LkSqIqlfqD7/dfkvTdabbcjlL91UkcuPlXRQJGlKRvQDe77yZOCegZrunSqOVVj+9XIuPr/IqIOjiIiJfRHqKnWZ2Wgmo6qP0oqm7H2wl947e/M2/C2m+qYsbbGUHmV7pKmNkg+ce/yWrivPJ9vOwnE1LUoVpXHhxtQsUFMTWYhWRbP/0X7W3FjDngd7tEpNmxVpRu9yvWlZvKWmfZxD5BcU8UWlp4ceH8JtvRsAR3sdpaFzw9TteBKceHqCVptaERIVQkWHiuzvvh9rI9ucmUPxKSl86a6q2pfezefnbi0j6aBkroPy/PlzJkyYwP79+wkLC6NIkSKsWrWKypUrA7H90VOmTGHlypUEBgZSq1Ytli5dStGiRVO0fumgZBwZmUmvFmpWXlnJhCMTCIoMQkehw+jqo+lXoR+D9gzi1LNTmrYV7Cvg3sGdotYfrhnfYF+6/9udU96x7fqU78Oi5osw0TdJUzsl8N/154zcfD3Zdh93uQghuPryKmtvrGXj7Y2a0mGA8vbl6VW2F93KdEtU4+ZLS08DIwIps7QMvsG+DK86nIXNFyZrf2q5+vIqzdY343XYa1yM2pEneiCvQz7osuTYKpQUvnQrEoptkcasbbM292oZSQcl88bieffuHbVq1UJPT4/9+/dz584d5s2bR548HzLkZ8+ezcKFC1m2bBkXLlzAxMQENzc3IiISH39BkvHEvRA+DeP7BUUweP1VDtx+mciSn4dSoWRQ5UHcHXqXTqU6oRIq5p6bS7MNzZhQawIrW67UfFFf87uG6xJXFpxfoKn+yG+en2O9jjGl3hQUKFh9fTWVV1bmpv/NNLVTAnnNUpZjkdfMkOfBz5l9ZjZllpah8srKLLy4kDdhb7A3tWdsjbHc+PYG1wZdY3SN0Um+tJqVdmBpj4rYW2hv297CMEW6GKMOjMI32JciVkWY0Sj5hNvPoaJDRTy+8aCgQSuiA/ryKkR7vKn0uncyHWNrhE7SuV8xSl1CdQ049PgQ5ZeX5+iToxlknCS7kuYRlIkTJ3LmzBlOnz6d4HwhBI6OjowdO5bvvovNfg8KCsLOzo7Vq1fTpUuXZLchIyjpT1YYUXTvg70M2TdEkyzZuVRnxtUcx9hDYznpfVLTrrJjZdw7uGuVlp54eoJu27vxMvQlBjoGLGi2gEGVBuXeMtA0JiVdLubGavIWWsRRr8MaKXpDXUPalGhDr7K9aOLS5LMqXj6ny3HX/V203twapULJ6b6n03VcJ5VaUH3GYV6HREECJdE5VQl1w+mZzDv6PUWtivDw/4nvZ77xwEjXKLaBsTWeUcFaWkaT60zm5/o/567KJxlBybwIyq5du6hcuTIdO3Ykb968VKhQgZUrP2TJe3l54efnR+PGH1RALSwsqFatGufOxVeCBIiMjCQ4OFjrJ0lfLnoFZPqIoi2KtcBziCdjqo9BqVDi7ulO43WN6Vq6K3+1/Evz4Lv84jIlFpVg4fmFmmhK/UL1ufHtDZoXaU6kKpLBewfTaVsnAiMC083e3ISOUsGUlrFCegmrkggexszgiNchBII6BeuwsuVK/Mb6san9JpoXbf7ZLyUdpYIaLta0Lp+PGi7Wyb7k34a9ZeDugQCMrTE23QedvOgVwOuQaBI6MpBzR+Nd+nAP1xRqylXozTWFmmsKNWr7srEvWcfyYFmAUnlLcXHARQZWHIhAMO30NOqvrq9VsSWRxJHmDsqTJ080+SQHDx5k8ODBjBgxgjVr1gDg5+cHgJ2ddijXzs5OM+9TZsyYgYWFheZXoEDOqw3ParwKSVl3m9fbJMSG0gBTfVPmuc3j0oBLVHKoRGBEIN/u/ZZV11exp9se6heqD0C0OpqRB0dS/a/qeL3zAsDWxJY93fYwt8lcdJW6bLuzjQrLK3DBN/lqEEnyxHW5WJtqOxoxvOG1/nQcbPz5ud7PPB7xmFN9T9G/Yn8sDC0y3M6h+4bi/94fV1tXfmnwS7pvL6X3TkrbZQeevHvCGZ8zKFDQybVTkm2N9YxZ3nI5m9tvxtzAnDM+Zyi/rDz/3fsvg6zNZIytY3VOkkLXILZdLifNu3j09fWpXLkyZ89+ENsaMWIEly5d4ty5c5w9e5ZatWrx4sULHBw+9Bl36tQJhUKBu7t7vHVGRkYSGflB1CY4OJgCBQrILp50JKVVGkHGU+lXvS5jaozB0cwxXW2KUcew6OIifjj2A++j36On1GN8zfEUtCzIqAOjCI8JB0BPqcf8pvMZUnWIplrg4vOLdNnWBa9AL3SVukxvOJ2xNcfm7mqCT0hN14nWKLQ+FzBQl0JH5MFQP5J25crSu3yvJGXmMwr32+502d4FHYUOF/pfoJJjpXTfZkrvnZw0Gu+vJ3/lpxM/0bhwY3Z23onpDFMAQieFJpmk/uTdE7ps68KlF5eAXKRlJJVkM6eLx8HBAVdX7TFUSpYsybNnsSE8e/vYwaD8/f212vj7+2vmfYqBgQHm5uZaP0n6UtXZCgcLwySG/hIodAIJVF9h3rl5OP/hzKDdg3gc8DjdbNJV6jKq+ijuDL1Dy2ItiVZHM81jGnPPzmVVm1U0KBQ7Fki0OprhB4ZT8++aeAd6x+5PvqpcG3SNjq4diVHHMP7IeFpsbMGr96/Szd7sxIHbL6k96xhdV55n5ObrdF15ntqzjmklc0arotl9fzcdt3bEfp49g/cO5pzvOZRKaFg8P/90HoLvxOOsbLWC2gVrZ7pz4hfqx5B9QwD4vs73GeKcQPL3joLYap6qzlaJtMheCCFYd3MdAD3L9kzVsoXzFMbjGw/G1hgLwJ8X/6TG3zV4+PZhMktmcywLfOj6SuiXQ52T1JLmDkqtWrW4f/++1rQHDx7g5OQEgLOzM/b29hw9+iGDOzg4mAsXLlCjRo20NkfymSSVY6AAFChY0qUh+7rvoU7BOkSpolhxdQXFFhWj6/au6Vo5U9CiIP91+Y9tHbfhYOrAw4CHdNnWhQLmBVj81WKM9YwBuPD8AsUWFWPppaUIIbAwtMC9gzvLv16Ooa4hBx4doPyy8hzzOpZutmYHkqvWWnL6LKMOjCLf/Hy02tyKbXe2EaWKoqxdWeY1ncfzMc/Z130fnUt3xkjPKJP2QhshBIP2DCIgPIDy9uX5vu73Gbbt5O4dgCktXXNMguylF5d4GPAQI10j2pZom+rl9XX0mdt0Lnu67sHayJprfteouKIiG25uSAdrJdmJNO/iuXTpEjVr1mTq1Kl06tSJixcvMmDAAFasWEH37t0BmDVrFjNnzmTNmjU4Ozvz448/cvPmTe7cuYOhYfLli7KKJ+NIqQ6KxzMPZnjMYN/DfZppLYq2YFLtSdQqWCvd7AuKCGLy0cksvbwUgcDayJop9aaw895Ojj394HhUz1edLR23UMAi9svklv8tOm/rzN03d1Gg4Ie6P/BTvZ9yVzUBqVeETckotFmBNdfX0Oe/Pugp9bgy8Apl7MpkuA25ZTTe4fuGs+jSIrqV6caGdht4H/U+xV08n/I8+Dnd/+2uqdLrW74vfzb/U2oZ5SAyXahtz549TJo0iYcPH+Ls7MyYMWMYMGCAZn6cUNuKFSsIDAykdu3aLFmyhGLFUiZPLh2U+KSn2mtq1n3d7zozPWay9c5WTUVNXae6TKo9CTcXt3QL+5/zOcfAPQO5/eo2AA0LNaR50eZMOTGFsOgwAAx0DPij2R8MrDQQhULB+6j3jNg/gn+u/wNAnYJ12Nh+I/nN86eLjVmRlOZLlCx2kOF1mqV4FNrMxCfIhzJLyxAUGcSMRjOYWHtiptmSY0fj/T/Rqmgc5zvyJuwN+7vvp1mRZl/koACo1Cp+PfUrv576FbVQU9KmJO4d3CljVybHH8/cQKY7KOmNdFC0yYpfag/fPmT2mdmsubGGaHWsWFUF+wpMqj2JdiXbacnUpxXRqmjmnZvH1JNTiYiJwFDXkFHVRnHxxUWtbpyaBWri3sFd44hsvLWRQXsGERoVipWRFatbr6Zl8ZZpbl9W5HMUYbMyQgjc1rtx+MlhquWrhsc3HlneocrO7Hmwh5abWmJnYofvGF90lbpf7KDEceLpCbr/250XIS8w1DXk29LLOHcnP35Z6DknST2ZmiQryVgyWu01pRS1LsrKVit5MvIJo6uPxljPmGt+1+i0rROuS1z559o/mvFX0go9HT0m1p7I7cG3aVK4CRExEcw8MxO/ED+m1J2iyU0563OWIguL8NfVvxBC0K1MN64OvEpFh4oEhAfQanMrRh8YTWRSw6HnEFKjCJsdWH5lOYefHMZQ15A1bdZI5ySdiUuO7Vq6a5of6/qF6nN90HW+KvoVisgK/HvOGr+gcK02mf2ck6Qv0kHJxqjUgqm77ySo5Bk3beruO6jUmRcky2+en/lu83k26hlT6k0hj2EeHrx9QL9d/XBZ6MKC8wt4H/U+TbfpYuXCwR4HWd92PbbGttx5c4epp6bSoWQHjW5KpCqSAbsHUHdVXV6EvKCodVHOfnOWkdVGArDgwgJq/VOLR/9XxMyp5KSKkyfvnvDdoVh16hmNZlDcpngmW5SzCYoIYtf9XQDpNjCnrYktOzvvorBy/P+naF+pWeU5J0kfpIOSjckKaq8pxdrYmp/r/4z3KG/mNpmLg6kDvsG+jD44GqcFTvx68lfehb9Ls+0pFAq6l+3O3aF3+ab8NwCsvbmWu6/vMqLqCEz0YsPOHj4eFP6jMP9c/Qd9HX0WNFvAf13+w8rIiisvr1BxeUU23dqUZnZlNXJKxYlaqOn7X1/eR7+nnlM9RlQbkdkm5Xi2391OREwEJW1KUtGhYrpt5/LTQEIj9FDkMmVeiXRQsjUpVaK89jz9tElSi5mBGWNrjsVrpBfLv16OSx4X3oa/5acTP1FwQUHGHx7Py5C0C9daG1vzd+u/OdH7BMWti+P/3p+FFxdSI38N6jnFjocRqYqk3+5+1F9TH79QP1oVb8X1QdepXbA2IVEhdPu3G/139dck2+Y0vnQQvqzAwgsLOeV9ChM9E/5p/Y8U4MsA1t9cD8Rqn6Sn5k1uVOaVxCKTZLMxKa3A8NOfRBF7NZ1KdaKja0dK2pbMAOtSRow6hm13tjHDY4ZGO8VAx4A+5fswvtZ4rQEAv5TImEhmeMxghscMolRRGOsZ065EO3bc28H76NhuJkNdQ5a1WEavcr1QCRVTT0xl2ulpCASutq64d3CndN7SaWZTViK7Vkjcf3Of8svLExETwbIWyxhUeVBmm5Tj8QnywWmBEwLB05FPcbJ00sxLqyTZOHKjMm9ORlbx5BKSG1EWBHp67/HW6020+JDwWTpvaTq5dqJTqU5Zpp9eCMG+h/uY7jGdsz6xwyQoFUq6lO7CxFoT01TH4t6bewzaM4hT3qcAKJO3DGb6Zpz1/TA8Q32n+mzusBk7UzuOPjlKjx098Av1w1DXkIXNFtK/Yv9MV0rNrXzsSFmb6jH2eGsuvjhPU5emHOh+QJ6XDGCWxywmHp1IPad6nOhzQmteWjsoKRk5OyeODp1TkQ5KLiKuigfQunnjbtOlPSpSvYgRu+7vYovnFg49PqQp+wUoa1eWTq6d6FiqI8WsU6ZDk54IITj97DQzPGZw4NEBzfSWxVoyqfYkahRIG7VhtVCz6toqxh0ex7uIdygVStwKu3Hq2SmtaMqKr1fQo2wPXr1/Ra+dvTj0+BAAnUt1ZvnXyzNl8LvcTEIl9TG8JtJ4PVdHrtII8UnSDyEEZZaWwfO1JytbrqR/xf5a89PaQYGUPeeyQ1ekRDoouY7U6KC8C38X66zciXVWYtQxmnnl7MppuoGKWhfNMPsT4+rLq8z0mMm2O9sQ/38s1S9Un0m1J9GkcJM0+VL2D/VnzKExbLy1EQBHU0cczBy48vKKpk2DQg3Y3GEzNsY2zD07l++PfU+MOobCeQqzuf1mquSr8sV2SJIn7iX16QNLoEaBgmU9KsmXVAZw7WWsFL2BjgF+3/lhaWipNT89HBTImnpPktQjHZRcyKf5A5Wc8nDF+12S+QQB4QH8d+8/ttzZwpEnR2KdFaHEQF0KF4sKNHSpxLDazSluE99Zych8hftv7jP7zGzW3Vynif5UcqjEpNqTaFuybZokRB58dJDBewfjFegFQLV81bj16pYmMdZI14iVLVfSvWx3zvuep8u2LngHeaOr1GVmo5mMrjFaJmamI8lJ8sswf8Yx9uBY5p+fT0fXjmzpuCXe/PRyUCD75klJPiAdlFzO53xpBIQHMOPIfnZc0CEmxkwzPYbXWNodoWeVMnQs1ZHCeQpn2peMT5AP88/NZ8XVFRrHobh1cSbUmkD3st3R19H/ovWHRYfxy8lfmHt2LiqhwkzfjIIWBfF87alp08i5EZs7bEZHoUP/3f359+6/AHxV9CvWtFmDjbHNF9kgSRiZKJk1iFHHUOD3AviF+vFfl/9oVbxVvDbp6aBIsj9SSTYX87nKshcfR7LtjKWWcwKggzUh/l2Yeug/XBa6UPb3Xny7/kqmKNcWsCjA781+x3uUNz/W/RFLQ0vuv73PN7u+ocjCIiy8sPCLSoGN9YyZ2XgmVwZeoWq+qoREheD52pOiVkU1KrRHvY5S8PeCHHx0kG0dt7HkqyUY6Biw7+E+yi0rx8mnJ9NqdyUfIUtNswbHvI7hF+qHtZE1zYo0y2xzJDkc6aDkID5XWTap5RQoUQCO6hEohT4B/g0zXbnWxtiGXxr8gvcob2Y3no29qT0+wT6MPDASpwVOTDs1jcCIwM9efzn7cpz95ix/Nv8TM30zHgY8JDImEpc8LgCEx4TT9d+uNF3XlE6lOnGh/wWKWxfnRcgLGq5tyNQTU1GpVWm0txLIeZL82ZU4afvOpTp/ccRSIkkO6aDkID5XWTa55UBBTIwZ8+tcQhfbLKPoaG5gzrha4/Aa6cXSFktxtnTmTdgbfjj+AwV/L8jEIxPxC/X7rHXrKHUYVnUYd4fepW2JtqiEisfvHmNnYoeRrhEAR7yOUPD3gtx/c5/LAy/Tu1xv1GqYcWw71RcNY8/t+1J+O43ISZL82ZXQqFBNl2bPcj0z2RpJbkA6KDmIlIa3Dz04rzX+TUqXu/8qZY7H4F0T+P3c7/gE+aSo/ZdiqGvIt5W/5cHwB2xot4HSeUsTEhXCrDOzKLSgEEP2DsHrnddnrTufeT7+7fwvOzvvJL95fvzf+xMeE04+s9iRfcNiwui8vTPtt7SnRcHvKaPYgX3UDF6/+Jph6x9Rado+OZBZGpBTJPmzMzvv7SQsOowiVkWolq9aZpsjyQVIByUHkdLw9oxzk7CabUWjtY2YfWY2wdG+KVpuvefvKWp3791FxhwaQ8EFBan5d00WnF+Ab3DKtvEl6Cp16VamGze+vcGuLruonr86kapIll5eStE/i9JzR088X3kmv6IEaF2iNXeG3GFE1REoUPA85DmmeqYY6BgAcPpBCN9tuU9wuPYt9e69mm/XX2H3zYxx1nIyOUGSPzsTJ23fo0wPKYYnyRBkFU8OIiXKsob64URYTcA76KOIglBSMGo1CnUe4n+fxi6np/ee5/r9sXr/JzpYo0jQtxWoFG/xNfgGFOp4c2sVqEWnUp1oX7I9+czzfdY+pgYhBCe9TzLDY4ZGYA2gdfHWTKo9iWr5P+8r8NLzSwzcM5DrftcBsDa0wfDdHHSwSbD7S6BGRyeEg2OqUdTa5bO2KfmALDXNeF6GvCT/7/lRCzWPhj/CxSrx6zg4IpS802uiI/Kwp8cG6hbNJ8+PRIMsM87FpERx0a2UPQ8DHnLw0UEOPj7I8afHERHlsI2aDIh4zofi/8vVLW7BvGNH+Pu4EvFJuzixrGaVfSnnFKsG+9/9/xKsqlGgoGaBmnQu1Zn2ru1xNHNM24OQAFdeXGGGxwz+vfuvRvStoXNDJtWeRCPnRqn+IoxRx7Dg/AKmnJiCKsIF+6gZyS4TYvIrS9uNoVOpTp+1DxJJZjH/3HzGHhpLjfw1ONvvbKLtDtx+yZRdnvgHfxhaQ4qpST5GOii5nNTqlETGRHLW5yx/nbvMWc98CNUH+fYYXhNuvJZaRU1p6tIUNxc3Hr0wZeqeO/h9IjceoL+CcJ1zQOz4Nl8V/QobYxtu+t9k572dhESFxNu2AgW1C9bWOCv2pvZpeSjice/NPWadmcX6m+s1KrqVHSszufZkWpdonWqxtaeBT+m+4Xee+zRNtu1rvdmE6Z5iYMWBLGi2ACM9o8/aB4kko6m4vCLX/K6x5KslDK4yOME2iSn9Sjl6ycdIB0Xy2WFwlVpw4M4jTjy+yr3Ai1x8tYFXYf5abZwtnWla2A0XUzcKmJbGySoP1hbv2PdoD//d/4/T3qdRiQ9ltvam9nxV5CsKWBTAK9CLXfd3JVgGrEBBnYJ16Fy6M+1LtsfO1O6Lj0NiPAt6xryz81h5dSXhMeEAlLQpyYRaE+hWpht6OnopXte5x2/ouvJCsu3qVbzOurs/IhCUzlsa9w7uuNq6fvY+SCQZgecrT0ovLY2eUo+XY19ibRxfCE8q/UpSinRQJGmGWqi54XeDg48PcujxITyeeWgNNqij0KFGgRq4ubjh5uJGRYeKBEUGsf/hfnY92MX+h/u1IidGukY0LtyYolZFeR32mr0P9hIQEb86SKlQUqdgHbqU7kK7ku3Ia5I3Xfbv9fvX/HHhDxZdXERQZBAABS0KMq7mOPpV6JeiKEdyuT8CNSre8s5sGD/W+4Hfz//Oq/evMNI1YtFXi+hbvq9MOpRkWSYdmcTMMzNpXbw1O7vsTLCNVPqVpBTpoEjSjdCoUE48PcHBRwc59OQQD94+0JpvbWRN48KNcXNxo6lLU2xNbDn59CT/3f+PXfd34RP8oZpFgYLq+atTOm9p3ke95/CTw7wOex1vm3HOStfSXWlXsh22JrZpvl/BkcEsvbSU38//jv/72IiRrbEto6uPZkiVIcmOWpxY7o9ADSh4rT9d0/3VvEhzIlWRHPM6BkC3Mt1Y2mIp5gbyWpZkLdRCTaEFhfAJ9mFbx220d22fYLv/rj9n5Obrya7vjy7laV0+/RPkJVkX6aBIMgyvd14cenyIg48PctTrKMGRwVrzS+ctrXFWaheozYOAB+y6v4td93dpjRgM4JLHhcoOlYkRMXg889A4Ch+jQEH9QvU1kZW0HvsmPDqcVddXMefsHJ4GPgViBeGGVB7CqOqjkux2Sij3R6V4w1u95UTqXEDNh8omEz0Tupbuyqrrq1AJFUWsirC5/WYqOVZK0/2RSL6EE09P0GBNAywMLPD7zg9D3YSlDGQERZJSpIMiyRSiVdFceH5B47Bcen5JUzEDsYJq9ZzqaRwWcwNz9j7cy677uzjqdZQoVZSmraWBJdXyV0NfR58rL67wIvRFvO0pFUrqOdWjW5lutC3RNsG+8S/ZF3dPd2Z4zODO6zsa+/tV6Me4muNwsnRKcLlPc38szd8wdN9gjj89DsQ6WB8fkwaFGvAo4BE+wT7oKfWY02QOI6qNkF0+kixBv//68c/1fxhQcQArWq5ItF1y3ZwyB0USh3RQJFmCt2FvOfLkiMZheR7yXGt+fvP8NC3cFLciblTLV43LLy6z68Eu9j7Yy9vwt5p2eko9KjlUwszADM/XnrwISdxZ6V6mO21KtEkzZ0Ut1Oy+v5vpHtO5+Pwi8EEQbkKtCSlKchVCsObGGsYeGktAePx8G1M9Uyo6VOTUs1MAtCzWklWtV6WpwyWRpJbw6HDs59kTHBnMyT4nqetUN8n2KZE4kFU8EumgSLIcQgjuvL7Dwcex2iunvE8REfOhK0SpUFLFsQpNXZrSqHAj1Go1+x7u47/7//Ew4KHWuopbF8fOxI7HAY95Hvr8002ho9ChXqF69CjTgzYl2pDHKE+a2H/86XFmeMzgyJMjmultS7RlUu1JVMlXJdl1vH7/mrGHxmoGXPuUyg6VufnqJlGqKPKb52dju43UcarzxbZLJJ/DFs8tdN7WGScLJ56MfJKiEvzUShxIch/SQZFkecKjwzn97LRGLM7ztbYEvYWBBY0KN6Jp4aYUsSrC1ZdX2fVgF2eendHqIrEzsaOgRUFeBL9I0lnpWbYnrYu3ThNn5dLzS8zwmMGOezs00xo5N2Jynck0KNQg2e6ZI0+O8O2eb3n87nG8eaZ6plgZWfEs+BlKhZKp9acyqfYkdJQ6X2y3RJIaWm5qyZ4He5hcezLTGk1L8XJS6VeSFNJBySbIG/kDvsG+HH58mIOPD3L4yeF4XSHFrIvh5uJG9XzVCY4K1nQbfaxUa6xnjLOlMwHhAbwMjT9An45Ch/qF6tOrXC9aFW+FpaHlF9l85/UdZp2ZxYabGzS6L1XzVWVS7Um0Kt4qyS/O8Ohwfjv1G7PPztYIxn2Mi6ULjwNjHZiGzg1Z33Y9DmbyC1SSMbx+/xrH+Y7EqGO4O/QuJWxKZLZJkhyCdFCyATIUmjgqtYorL69oSpnP+ZzTEn7TU+pRu2BtGjo3xMLQgtv+t9n9YLeWU6JEiZOlE+HR4fi994u3jThnpXe53rQq3irZMuKk8A70Zu7Zufx17S9Nt5WrrSsTa02kS+kuSYq+3X51m0F7BnHWJ758uLGuMWrURMREYGtsy7q263Ar4vbZdkokKWXRxUUM3z+cyo6VuTTgUmabI8lBSAcliyMloVNHUEQQx7yOafJX4sp/47AzsaNx4cYUsypGYEQgR58e5ab/Ta02eU3yIoRIUGdFR6FDg0IN6FO+Dy2Lt/xsPRL/UH/+uPAHiy8t1pRbF7IsxLia4+hbvm+iom9qoWbFlRVMPDJRIxb3MVaGVhoxu/E1x/Nbw99SpXQrkaSW6n9V58LzCyxwW8DI6iMz2xxJDkI6KFkYKQn9ZQgheBTwSOOsHPc6zvvo91ptKthXoFq+augqdbnz5g6nvE9pdaOY6JlgqGuoVSkUh65Sl3pO9fimwje0LNYSMwOzVNsYFBHEkktL+P3877EOkVDioF+br1y60rXcV9QvViDBc/sy5CUjD4xk652t8eYZ6BgQqYodgK16/upsar+JQpaFUm1bTkV2l6YdD94+oPii4ugodHg+5nm6DjkhyX1IByULIwWN0pa4gQ7jclKu+V3Tmm+iZ0LtgrVxMHXgTdgbTnmfIjjqg5icrlIXEz2TBCMXukpd6jvVp1/Ffnxd7GtM9U1TZVt4dDgT92xm5yU9FOoPybnGBpFMaelK58oJ9+vvfbCXIfuG8CzoWbx5+kp9otRRWBhY8HervxNV9sxNyO7StOWn4z/x66lfaV6kOfu678tscyQ5DOmgZGGkJHT64h/qz+EnhzVjB716/0prfiGLQpS2K40QgluvbsVzAkz0TOJFZOBDZKV/xf4pdlYS68qLk7+v4nqd+a17UdCiYLxlQ6NCmXJ8Cr+f/12rainOlriI0ODKg5nvNj9Rhc+cjuwuTVuEELgsdMEr0IuN7TbStUzXzDZJksOQDkoWRkZQMg61UHPT/6amlDmhgQ7L2pXFysgKv1C/eKXOH3erfExcZCXOWTHRN4nXJrmuvLgBBP2NB9GjXKzoW0KVEldfXmXg7oHxhgX4mLJ2ZXHv4J7rKi1kd2nac+bZGWqvqo2pvin+3/ljrGec2SZJchjSQflMMqIfW0pCZx6hUaGcfHpSk7/y6UCHeQzz4GLlQpQqivtv7ms5JzoKHa1Kojh0FfpUse1K/QKtaFqsGnWKOKKjVKTYEfXTn0Skzi0UQofGBb7lq8JdqFawpNa1F6OOYdHFRXx/9HvCYsK0lleiRI0aYz1jlny1hN7le3/OockypOYelM5+2hF33GeeWsJBr610rlCRNW1XZ7ZZkhyIdFA+g4zsx05MEhoEChQyLJ1BPA18+mGgwydH4+WhFDQviJmBGb7BvgnmqBipamAVNRBdPoyurKMbQvda+pTJW4FxW+8ka8OIpmbsevAvj56W11pPHhMF09tUoHmZD9fBs6BnDNs3jN0Pdie6vp5le7L4q8Wfldyb2aT2HpTdpWlDQsc9jwnMaCufQ5K0RzooqSQz+rETeijE8JpxzZwZWb9emm5Lkjwx6hgu+F7QRFc+HehQX0cfRzNHwqLDePX+FUaqGthGTQZiBwCMIy6/JERvE+bR3ZLdroXNaYLe1Aa0owQCNQoU9Gug5vumX2tE34QQ/Hv3X4btG5agvgtAUauibOm4hfL25VN3EDKR1N6DETERTNj7F/+dc0523TKCkjgyh0eS0UgHJRVkZj/2x+HsNbf+ZMfjObQu0ZKdXXam6XYkqScgPIAjT45o8le0BjoUSgpErkIhrLScE83s/+eXAOhgjYKEFGUFMbz5fxubJNdjWXA+k2pPoHPpzugqdYHYUubJRyez5PKSBO3X19FnXtN5DK0yNMuPjJyae1ChEGy6tYnJxybzLNCXfBF/o4sNnzp4ny4nu0vjI3N4JJlBat7fyY/+lMO56BWQ6A0KsV0wL4MiuOgVfxTaL0VHqaCGizWty+djRvO+KBSC/+7/x53XyXcNSNIXKyMrOpXqxN+t/8ZntA+eQzyZ33Q+bi5umCkqoBTWCToVAAqU6GJLiO4BQPH/qMrHxH4T9KtVAl1sk13PIz/osaMHxf4sxrLLy4iIicDC0ILFLRZz9puzCY6oHKWKYvj+4bTb0i7BEZSzEim9B1ecO0qVlVXosaMHz4Kekd/CkR61DVEkcATj/p7S0lW+XBMhM599EklKyPUOyquQxG/Qz2n3uRS3KU6bEm0AmHN2TrpuS5I6FAoFrraujK4xmgM9DvDP1/GF1BIiRvGS1/rTNdEUzXTe8Ep/OgsuT07Resra1MbayBqvQC8G7x2M8x/OzDkzh5DIEGoUqMH1QdeZ0WgGugrdeMvuvLeTCssrJCiln1VI6b313YFfufryKmb6ZkxvOJ0Hwx4w8+suLO1REXsL7TJrewtD2T2RDFnl2SeRJEb8J1ouI69ZyvQjUtruS5hQawI77u1gw80N/FL/FwpYFEj3bUpSTz7LlHUrqhTviNS5xXPDCxioS6Ej8sROU3qCQo1aVSZF67n5xoNonXcUty5OYEQgfqF+jD8ynuke0xlWZRgjq49kYu2JdHTtyMDdAzn29JjW8s+CnlHnnzr81vA3JtSekOQghpnBg3eXSdGjSBnE0CpD+aneT+Q1yauZ3Ky0A01c7aWSbCrJSs8+iSQhstaTKhOo6mz1P/bOOi6K/I/Dzy7dSIMttqLYhejZ3d19dtwZZ5zXZ5zeGWec3d2tKLbYoqKICoiogHTXxu+P/bGKNCws4DyvF+LuznznO8PszHs+ia2JbgZGdgW2JooLXn7TqFQjWpZrSbIsmX9u/5Pv2xPIHdk5Z/R0EihjkaRwPohkJGo8JU7zGokaT0GkcPkkip8hITgdF1AKctBQCBoZMrxCvQiKDcJU1xRLfUsiEiL4/frvlF1RlunnpqOtoc3FYRfZ1XMXxtqpRZQMGfNc59FhVweCYoJUcyDySKIkkalnpzL7ai8kBPNlTlsKcmRoacVwb9I+/u30bypxksLn7tIm9uaCOMkGWZ3HIgru2icgkB5fvUDREIv4qavCh//lF1WODDlyvmtXpsAueHOazQFgw4MNhT524Gsls3NG9P+ff/o25eXUF4TPCedw38P0rNoTU13TLxaWEaa9gfTiVBTnHoRpbqBRqQY0L90cHQ0dACISIgiOC0YsEmOiY0Jcchwr76zEfpU9Y06MoUHJBvhM82GYw7A0c3fxccFhnQMu3i6qOBS55mXoS5psbsLqu6tBJKN5zcD/R5KkrbsrQszq/s5Ut/q6CtHlN1mdxyDE8Aiol68+iyeF9NJ+0Qjno8ZaWlQx4fSg0wViGpfL5dT5rw6Pgx7z2ze/scB5Qb5vUyB35LRuR0qjw8PPD3Pg+QGefnyKRCZJt56KhGDCtDcQr+GmfE9LrEV50/JEJkYSFJvaCqKrqUuCRDEPESJ6V+/NXKe5RCdGM+jIID5Ef0gzn7lOc/n1m1+VmUEFxa4nu5hwegIxSTGY65mzvcd2tDS0mH5sG1HB7VIdB6GnTv4j9DISKEiENONc8mUVS139dzTb0oR4STy/tvyVH1v8qLJtZcbep3sZdGQQFvoW+E33E8pNF2LyUn04SZrEjbc32PF4BxdeuxAWZZ4mTiUjNMWamOqYEp4QnqrCbUpl2RTa27dnZtOZXPa5zKKbi9L09Wlo15CD/Q6m2w9I1cQmxTL57GS2uW8DoEXZFsxvPp/lbss5730eAFOdEoyo/gdOJTthZ2qYp1gSocNx9hGOlUBBIQgUFbLdfTsjjo9AhIjzQ87T1r5tvm4PFEXDKq+ujG+EL/92/JdJDSfl+zYF1M/H2I8c8TzCnqd7uPfhntIikhVikRgtsVa6fYNSaFq6KUNqDeHfO//yPCR1Grueph57eu9RZpHlB0+CntD/UH9ehLxALBIzvdF0wuLD2P54O3LkaIm1mNxwMvObz8dcP+9F1QSrgIBA4UQQKCpm7ImxbHq0CQt9Cx6Oe1gg2TVr761l0plJlDMtx6sprwrcDC+gXmRyGe6B7mx3386pV6fwDfdNY/1IDxGiTJerZV2L+rb12f54e5reQt/W/ZYVHVeotDOyXC5n/f31zDg/g0RpIraGtrSt0JaDzw8SL4kHoF+NfvzZ6k/szexVsk2hOqqAQOFFECgqJkGSQNPNTXkU+IjGpRpzdcRVtDW083Wb8cnxlF1RluC4YHb32s0gh6zLpqsCwdRbOIlNiuXUq1Nsd9/OLf9b6fYGygllTcqiKdbEO9w71fuljUtzcdhFKptXztP4oAjmHXNiDIc9DwNQ06omQTFBBMcFAwqrzrK2y2hSukmet5WCUB1VQKBwIwiUfMAn3Id6G+oRkRDBtEbTWNFhRb5v8/drv/Pj5R+pbV2bR98+yveS5YJZvOjgG+7LVvetHPU8imeIZ7qdlrODqY4p0UnRqdYXIWJT102Mqjsq1/O78+4OAw4P4E3EGzTFmpjpmfEx9iMAFc0qsqTNEnpW7amyczpBkoBXiBenPLzYeNEgy+WF/jwCAupBECj5xAmvE3Tf1x2A/X32069Gv3zdXnh8OGVWlCEmKYazg8/SoWKHfNuWYBYvukhkEi77XmbTo024+roSEheS4zE0RBppRE7TUk05P/Q8htqG2R5HJpex/NZy5rnOQyKTpMouMtczZ2GLhYyvPz7XFsjYpFhehLzgefBzxU+I4rdPuA8yuQx9iTOWybOzHEfocCwgoB4EgZKP/HDxB5bcXIKhtiH3xt6jqkX+1mb4/vz3/H37b1qUbcGVEVfyZRuCWbx4ERoXyvbH29nrsZfHgY9JliXneiwtsRa3Rt2ifsn6WS77MfYjw48N59zrc6ne19HQYVqjacxtPjdtLZgMiEqMwjPYM40QeRPxJsN1SuiWoIJBB0LeDc5yfMGCIiCgHgSBko9IZBLa7mzLlTdXqGFZgztj7mCgnbVJObe8i3pHhZUVSJYlc3v0bRqVaqTybbh5hzJw4+0slxMu6kUPuVzOg4AHrL+/ntOvThMYE5ircQY7DGZnqz8RxaVfPPDuh3tMvLyAB3Ef06z3R6s/KGtaNt31wuLD0hUi76LeZTgXKwMrqltWp7pFdapZVlP837I61gbWyOTgtMSVwMiEdEOFBbEtkB8Ut9i9/NwfQaDkM4ExgdT5rw6BMYEMqTWEHT125Gt8yKjjo9jqvpWeVXtypP8RlY9/3P090/a5Z7mcYBYv+sQnx7PPYx+bHm7i3od72baulJaLeIkhmRX4j0dOFWLwF8lpWa4lf7X9i/p29ZHL5QTHBX8SIcHP8QxRiJLMBJOdkZ1SiKSIkGqW1bDQt8h0rinuSkhdl1ZwVwrkB8Utdi+/90cQKAXANb9rtNreCqlcyrrO6xhff3y+bcsz2JPqa6sjQsTzSc9V7lYSLChfL95h3qy4vYIDzw7w8Qvrx+fUkYt5SNaxKF2NTGhYfyzGOsZKEfI8+Dmh8aEZrlPGpEy6QiS77qD0KG43DYHCSXGL3SuI/REESgHx182/mH1xNtpiXf5rf4kS2mXzzbzXY18PjnsdZ5TjKDZ336zSsVNiUASz+NeNVCblqOdRltxcwqPAR6mCZrMrUOoSw6N0KuCKEFG+RPk0QqSqRVWMdIxUuh8pFDezu0DhoijG7mX2nSio/REESgEhl8tpteE7XvnWzvf+Ibff3abJ5iZoibXwneZLSWPVuloEs7iAXC4nMjGS91HveR/9Hs9gT3Y83sGToCc4yGTZEij1iSO8RBlqWdeihlUNhTXEohpVLKoILRsEihVFzfKclVWxoPYnJ/dvoTxpHjj/LJA3vm3Q/MLuEBiZwIRdD1V6U29cqjHOZZ255neNFbdX8Fe7v1QybgodatqybkjdNCewlbE2v3SrKYiTIk6yNJmAmACl+Ej5/SH6Q6rXcclxGYyQvUaZMmT4RPjwIeYDr8Nf4xniSWWzylQyr0Rl88pUNq+Mpb5lvtf0ERDIbz5GZ68VRXaXy08yct2k3Kt+7G7LuVcXgRpZjlWQ+yMIlFwilcn55eTz///BU19s5f9/55eTz2lb3UZl5r05zeZwze8a6x+sZ17zeZTQK6GScVPoUNOWttVtuOsbxqCD4wmI82LbwNW0LC+Ik8LKl1aPNL////+PsR+zVSofFOm6JY1LYmNoQ0B0AF4hXiDPuHHh55QzLYdHtD8JkgQ8Pnrg8dEjzTImOiafBItZZaVwqWReCWMd9VlEBQRygpVR9lpCZHe5/CL1vSo18v//u/D4E0K0dmPDn1mOV5D7IwiUXHLXNyxDXx0o/vABkQnc9Q1TmXmvY8WOOFg58PTjU9bdX8e85vNUMu7naIhFNLE3p1rpWN68fsrLMC9alm+h8u0IZE2yNJnAmMBMhUfmVo/UaIm1sDOyo6RxSUoa/f/HOPVvOyM7YpNimeUyi91Pd3+W5ZM9C8q6zus4YN8Kvwg/Xoa+5GXoS16FvVL+/23kWyITI7n/4T73P9xPs761gfUnwWL2yepib2av0h5BAvnH1xL7Y10iGrk4HGQmiNL5fqTEbDQsb1bwk/uMrO5VIEITSxqXakxEEETGkWksYkHuT74LlMWLFzN37lymTZvGihUrAEhISOD7779n3759JCYm0r59e9auXYu1tXV+T0dlqMO8JxKJmNNsDkOODmHlnZXMaDwDPS09lY3/OVUtqnL29VlehLzIl/G/ZlKsHh+iP2QqPIJignJs9chIeJQ0LomFvgViUcZCwzfcl0GHB3Hi5Qlk2bSYfMnAwwP5rtd2ulTugr2ZPR0rdUz1eYIkAe8wb6VgeRn6kpdhL3kV+oqg2CDlz/W311OtJ0JEGZMySsHyuYApa1pWaKZZSPhasqcCogNov7stwZqWWCWlfVBMkWM/da2udnH2MSp796AZjRaioylmwq6HiEg/FrGg9ydfv9X37t3jv//+o1atWqnenzFjBqdPn+bgwYOYmJgwefJkevXqxc2bN/NzOipFXea9/jX7M991Pn6Rfmxz38aEBhNUOn4KKanMgkDJGRKZhIDogEytHh+iPxCbHJut8TTFmgqrx+di4wvhYWdkl6cA1EcBj5hxfgZX/a6m+7lYJGa803xwWw+SxAzHSUTE64Rwuu7tyvRG01nSdkmakva6mrrUsKpBDau0vu7IhEilteVV6Ctehn0SMVGJUfhF+uEX6YeLj0uq9bTEWtib2aeyuKQIGDsjOyHepYDIKs6huATah8aF0nZnW16HvaacuYTfm5Tj30tBqUSZTSEQZTFJMWx4sIHlV06gxawsl7cy0qWJvXm6sYjq2p98y+KJiYmhbt26rF27lt9//x1HR0dWrFhBZGQklpaW7Nmzhz59+gDw4sULqlWrhpubG40bN85y7MKQxZNVaq4cGfo6SXj81EvlivPfu/8y5ewUKpSogNdkr3x5erzmd40W21pQ3rQ8PtN8VD5+TlG32VgulxOVGJWluyUvVo9U7pf//7Y0sMzU6pGX/bnkc4mZLjN5HPRY+b5YJEZHQ4d4STyg6J9zdcRVhaCI8Ic4RT2TZluaES9JoGfVnvzovACARB0jfrj3LyvurACgnm099vfZj72ZfZ7nGhwXnMrq8rmQSZRmLJoMtAyU8S5fChgzPdWaqtV9jqqTophymxuiEqNovaM19z/cx87Ijusjr1OhRIVC9bf3DPZk4ZWFHH9xXOGilYspmbAZDcwzdUV9/rcpLJVk882CMmnSJDp37kybNm34/fffle8/ePCA5ORk2rRpo3yvatWqlClTJkOBkpiYSGLip4tQVFRUfk0722iIRfzUtXq65jA5MkCEn3w5x15A7+q9VbrtUXVG8cvVX/AJ9+Hw88P0r9lfpePDJwvKm4g3xCfH55srKTvkt9lYIpMoYj0yER7vo94XKqtHbpHIJBx8dpD5rvPxjfBVvq8h0qBRyUbceX9HKU46VezE8YHHPwlg09KKH8BPvwTvo99jGP+RH+0cAdAB/unwD63Kt2LE8RE8CHhAnf/qsKHrBgbUHJDrOYtEIqwMrLAysMKpjFOqz2RyGf6R/qniXFIEjG+4L7HJsbgHuuMe6J5mXDM9s0+CxexToG4ls0o5bl/xtbg2MkIdMXkFTVxyHF32dOH+h/tY6FtwcehFKpSoAHyK3VMXydJkDjw7wG/XfsMr1CvVZyWNbelRS8Lpuwpxkh3Xjbr3J4V8ESj79u3j4cOH3Lt3L81ngYGBaGtrY2pqmup9a2trAgPTL3u9aNEifvnll/yYap7IKDVXSihh2huI13Bj5PGROFg7UNm8ssq2q6+lz5SGU/jpyk8svrmYfjX6qdyMbalvSQndEoQnhPMq7BW1rGtlvVI+kBezcWZWj8/Ta4Nig7Idc2Gqa5qp8MhPq0deiEuOY/PDzfx27TeC44KV72uJtRjlOIo3EW8473MeUAisdZ3XMabumAzHszWy5X30+3Sb93Wt0pXH4x8z6PAgrr+9zsDDA7nkc4mVHVeqXJSJRWLKmpalrGlZ2lRok+qzJGkSvuG+aQJ1X4a+5H30e8Liw7j97ja336Wt/VDSqGS6VpfyJcqncVt9La6NzChKKbe5IVGSSM/9Pbn+9jomOiZcGHKBapbV1D0tPkR/4I9rf7D98fZUD1BikZjW5Vvz6ze/0qhkI0QiEV0qpxXRhcEVlRkqFyj+/v5MmzYNFxcXdHVVE38xd+5cvvvuO+XrqKgoSpcurZKx88rnqbkp5rADr/5gxR03NEQaRCdF0+dAH26Pua3Si/OkBpNYcnMJ7oHuuPi40M6+ncrGBsVTa1WLqri9c+NFyAu1CJSs0+Ng/jF3YkRuBMTk3epha2ibZaBpUSs2FhIXwqo7q/jH7R9ikmOU7+to6DC54WT6VO9D973dlWXuSxqV5Oaomxk290uhvGl57n+4T2BMIHK5PI1ALmVcCtfhrvx69Vd+v/Y7mx5t4ta7W+zvs5+aVjVVv6PpoK2hTRWLKlSxqJLms9ikWF6HvU4TqPsy9CWh8aHKc+nym8up1tMQaVDOtNyn7KISldhyoVyG52h+lBsojBSVlNvcIJFJGHh4IBe8L2CgZcCZwWeoY1tHbfORy+W4+Ljw4+Ufuff+XiqXspmeGZPqT2J6k+lpXJjp3asKuxtS5QLlwYMHfPz4kbp16yrfk0qlXLt2jX///Zfz58+TlJREREREKitKUFAQNjY26Y6po6ODjo6OqqeqMr40hzUovxT3oEdceXMFDZEGTz8+ZcLpCWzrvi3Hlo6MfIHm+uaMqzuOFXdWsOTmEpULFIBqFtVwe+eGZ7CnysfODlmnx0FojIwh+38mUeNphssUVatHdsjo/PAN9+Wvm3+x6dGmVA0B9TT1+L7J93zf9Ht2PN5Bsy3NlNajATUGsLvXbsTirI9DJbNKACTLknkf/Z5SxqXSLKMp1uTXb36lZbmWDD4ymOfBz2mwsQGrOqxiTN0xag1eNdA2oLZNbWrb1E7zWWhcKK/CXikFS0qw7qvQV8Qmx+Id7o13uDdnX59FR+qATdKiDLdT0K4NdcVCNCxvhq2JbiYxeXKsjLTUnnKbU2RyGSOPj+Toi6PoaOhwfMBxmpZuqpa5RCVG8bfb3/x79980va0almzILy1/ob19+0y/V4XFdZNdVC5QWrduzdOnqW8WI0eOpGrVqsyZM4fSpUujpaXFpUuX6N1bEZvh5eXF27dvadKkiaqnoxY0xZrs77OfehvqKdvG73i8A6fSToytNzbb42Tl1/6uyXf8e+9fXH1duff+Hg1KNlDpfigzeULVk8mTXXNwVbOGVLSrnGFdj5zGExQV0js/zA3FmFpe5HLgP6merAy1DZnTbA5TG01FV0OX9rvbc+XNFQC0xdrs7LWTfjX6ZXvbnwsSrxCvdAVKCq3Kt+Lx+McMOzqM897nGXdqHJd8L/Ffl/8w0TXJwR4XDOb65pjrm9O4VOp4OLlcTkBMwKc4l9BX3PGW8tYv6zELwrWhzjiYzGLyUl4Fiv/FN8KeimYV83UuqkIulzPp9CR2PdmFpliTg30P0rpC6wKfh3uAO3Nd5+Li7ZKqP5aBlgHDaw9ngfMCbI0Kp4smr6hcoBgZGVGzZmoTroGBAebm5sr3R48ezXfffYeZmRnGxsZMmTKFJk2aZCuDp6hgZWDF4X6Hab61OUnSJACmnJ1CPbt61LWtm8Xa2fVrl2aQwyB2PN7BkptLONTvkEr3Qd2pxtk1B6/ruqRIPRWogozOj5AYCSEx36Cr7Ua8hhumuqb80OwHJjaYiJGOEQ8DHtJ6R2siEiIAqGhWkZsjb2JlaJWj7dsYfrJ2vgx9meWF28rAijODz7D81nLmuc5j/7P93Ptwj32996lcWOcXIpEIOyM77IzsaFmuJZD9fiz57dooDHEwmbXLiNDaxKu4U7TY9pDLwy+rNCYvP5DL5cx2mc36B+sRIWJnz510rdK1wLafJE1i88PNLLm5BL/I1Aq4qkVVfmz+I/1q9iv29X/UYtP+559/6NKlC71798bZ2RkbGxuOHDmijqnkKw1LNmRNpzXK14nSRPoc6EN4fHim62Un9uKXk8+RyuTMbjobgCOeR3gZ+lJFM1eQIlC8QrxyXbgrL6SYjTMyWIpQPCEWNbNxdpHK5Lh5h3Lc/T1u3qFIZXLl+xmdH4o0QjkWkvH81XY572a8Y47THIx0jPj16q/U31BfKU7G1xvPqymvcixOgFRPbF9mDWSEWCRmVrNZXB95nXKm5fAJ96HZlmb87fY3RbBnKVA4ztGcXC/ymw41bbkxpxV7xzZm5QBH9o5tjNsPbbk+YTU1LGvwIfoDLba1UJvbOLv8du03lrktA2Bj1415ykLLCX4Rfgw+MhjjRcZMPDNRKU60xdr0r9GfV5Nf4TnJk0G1BhV7cQJCN+MC4duT37Lh4QbEIjEyuYyulbtybMCxDGMectpVstvebpx8eZIxdcawsdtGlc1bIpOg/4c+ybJk3kx7k2XgZH7wtXZZzsxcr6MlZeTWx5msrSDl/IhJiqHltpY8CHgAKOJQjvY/SvuK7XM9P78IP8qtLAdAB/sOnB1yNkfrRyREMObEGA57Hgagc6XObOuxDQt9i1zPSV2o+xwtKl11g2ODab2jNU8/PsXKwArXYa7pFuxTN/+4/cN3FxRJGSvar2Ba42n5uj2ZXMZRz6P8fPXnNL2rShuXZnbT2YypN6bYtHrIyf276EUFFkFWdVxFo5KNkMlliBBx8uVJlt5cmuHyOU3Zm9NsDgA7nuwgIDog7xP+P5piTSqZK4Ih1eXmSTEb25ik/nLamOgWa3EyYdfDNAHCAZEJjN/1gMF7lmRrnI/RCVx5cwWbZTZKcVLLuhaB3wfmSZxAahePZ0jOn4ZNdU052Pcg6zqvQ0dDh9OvTlN7fW2uvkm/mm1hRt3naHavF9sfHeV91Pt8nUtmWBpY4jrcFUcbRz7GfqTl9pY8CXqitvmkx8YHG5Xi5LdvfstXcRIeH86MczMosaQEfQ72UYoTDZEG7ezbcX/sfd7OeMvkRpOLjTjJKYIFpYB4F/WOehvq8TFWkc4pQoTrcFelL/tzcvNE1Hxrc268vcHsprNZ0jZ7N7Ds0PtAb454HimQJ4nMKEyVGvOTrCpyypEhIwoNTLMcq7njA3Z5/QQozrc5zeawqE3GGSc5xWyJGeEJ4YgQET8/Hh3N3GXaPQl6Qv9D/XkR8gKxSMxC54UscF6AhlhDZXMtCNR1jmb3ehGoPZckDQ+cyjjRv0Z/+lTvg7Vhwfc/C4sPo93OdjwIeIC5njkXh13E0caxwOfxJXue7mHIkSHIUbjOF7dZnC+ZZjf8bvDDpR+45X8rVSC7uZ45kxpMYmbTmRjpGKl8u4UFwYJSCCllXIoDfQ6gIVJcdOXIGXBoQLoWj6z82pDWr51iRVl3f50yxkAVVDUvHD15UtLjujuWpIm9ebEUJ5B1arUIMRqYYmaglWncg0gjnF0vFMUNjbSNuDnqpkrFCXyKQ5EjxzvcO9fj1LKuxf2x9xnhOAKZXMbPV3+mzc42fIj+oKqpFgjqOkezc70w0pNQr6wJcuRcf3udyWcnY/e3HW12tGHjg42ExoVmsrZqMdMz4+KwizQs2ZDQ+FBabW/Fgw8PCmz76XH8xXGGHR2GHDkT609UipOM4sBySoIkgUXXF2GzzIbm25pz0/8mcuSIENGoZCNchroQPCuYX775pViLk5wiCJQCpEW5Fixvt1z5Oig2iP6H+pMsTU61XErKHpDmoqMooy9PU5q4U6VO1LCsQXRSNOvvr1fZnNWdavy1kV1zfQ/HkkDa80NxhsgJ0lgLIhlNSzUl8PtAmpRWfQq/reEn10VeA7QNtA3Y2n0rO3vuxFDbkCtvrlB7fW3OvspZbMvXSGbXC9H/f/7q3ZCbo6/zdvpblrVdRgO7BsjkMi75XmLcqXHYLLeh4+6ObHPfptIHnIww1TXlwpALNCnVhPCEcFrvaM3d93fzfbvp4eLtQr9D/ZDKpQyrPYzVnVYjEok45xGA0xJXBm68zbR97gzceBunJa6c88i+G/1FyAu67e2G0SIj5rnOIyg2CFCk/U9sMJGgmUHcHnObNhXaCE0t00EQKAXM1EZTGeQwCFCY3a+/vc68S2nbdWfk15YSSoj2YmwtPqZ6XywSK60oK26vIEGimroL6k41/trIbjpq2+o26Z4fEkII1v6TRM07LGq9iJujb6KvnT/Vb1Nl8oRkL5MnK4bUGsKDcQ+oY1OHkLgQOu3pxMwLM5Wp+gLpk904mNImpfm+6ffcHXsX76neLGq9CEcbRyQyCeden2Pk8ZFYL7Om295u7Hm6h+jE6Hybs4muCeeHnMepjBORiZG03dkWN3+3fNteetx4e4Me+3uQJE2id7XebO62GbFInGEcWEradmYiRSqTsvXRViquqki1NdU4+fIkEpkEgOqW1dnfZz+RP0SyptMaLA0s83X/ijpCDIoaiEuOo+nmpqm6yB7pd4Se1XqmWfZLv/bfDyZyyPMALcu1xHWYayrVnSxNpuLqiryNfMv6zuv5tv63eZ5rVGIUJosVxbTC54Rjqmua5zEFMiarLtkiwMxAmwWdq2Fjoke9siU47/mSKafmExj/ikTxM8z0Tbky/AoO1g75OtfZLrP569ZfAIx0HMmW7ltUNnaiJJFZLrNYfXc1oEjZ39t7r7I5m0D65DYOxivEi/3P9rP/2X6eBz9Xvq+rqUvnSp3pX6M/nSt3zpdWDzFJMXTe05lrftcw1Dbk7OCzaZpC5gcPPjyg1Y5WRCVG0aFiB44POI62hnauOzMHRgcy99Jc9j/br2y4CYq2Ej2q9mBJmyUqy4QsyjF5Obl/CwJFTfiE+1B/Q33CExQ1UYx1jHkw7kGWVRb9IvyouqYqCZIEDvY9SJ/qfVJ9vvL2Sqafn05Fs4q8mPRCJYGGJf8uyYfoD9wefZtGpRrleTyBzMkobTU9jPVkvJH9RbT4OgDt7dtzatCpAqmR8Hk6ZrPSzbgx6obKt3HsxTFGHR9FeEI4xjrGbOq6ib41+qp8OwKf8PjowX4PhVh5FfZK+b6BlgFdq3Slf43+dKjYQaWZJbFJsXTb1w1XX1cMtAw4Peg0Lcq1UNn4X/Ls4zNabGtBaHwoLcq24MzgM0rxlZMkhcYVzDjz+gwLLi3APcg91edlTMowu+lsxtUbh5aGlsrmXtQ7ZwtBskWACiUqsKf3HkT/9xpHJUbR50Af4pPjM12vrGlZZXG2mRdmpll+TN0xmOmZ8TrsNUc8VVP8TnDzFCwZmevTIzIeSiTOxkDajPWd13NuyLkCK+D0eapxdou15ZQeVXvgPt6dZqWbEZUYRb9D/fj25LdZfk8Eck9Nq5r81uo3vCZ78XDcQ+Y0m0M503LEJseyz2MfPff3xHqZNcOPDefMqzMqcb8ZaBtwcuBJ2lZoS2xyLB13d8TV11UFe5MW7zBv2u5sS2h8KA1LNuTkwJOpLEPZjQNbeWsL5kvN6bKni1KcaIg0aF+hPY/HP8Zvuh+TGk5SuTjJreupKCIIFDXSoWIHfvvmN+Xrx0GPmXxmcpbrzXGaQ2nj0vhF+ilN7CkYaBswpeEUABbfXKySCp2FJZPna+Lzipz/9HfEzCD9i1xK5dhqOj8ypu64Ap3j5zEoIXEhhMWH5ct2ypiU4cqIK8xzmocIERsebqDhpoapXBECqkckElHHtg6L2yzGZ6oPt0ffZkbjGZQ0KklUYhQ7Hu+g857O2CyzYcyJMbh4uyhjLXKDvpY+xwccp0PFDsRL4um8pzMu3i4q3CPwj/Sn9Y7WBMQEUMu6FmcHn02VNROREMEBz+wVuzz2aqfSAm6hb8FC54VEz43m3NBz+dL9vTBVDC4oBIGiZuY2n0uPqj2Ur7e4b2HLo8x9+fpa+vzVViFMFt9YjH+kf6rPJzecjJ6mHg8DHnLJ91Ke5yhk8qiHlLRVG2NdwmKTM1xOhJjgaAl3ffNHIGREShZPihVQ1a0WPkdTrMkfrf/gwtALWBtY4/HRg/ob6rPl0ZYiWya/KCESiWhUqhF/t/+btzPecn3kdSY3mIy1gTXhCeFsfrSZdrvaYbfcjomnJ3L1zVWkMmnWA3+BnpaiynHnSp1JkCTQdW9Xzr0+p5J9CIoJos3ONvhF+lHZvDIXhlzATE9RqkEml7H54WYqr67MHq/fkBBMRg5WOTIkBJMkfk6jko1wHeaqTBHW09JTyVzTbFMu57THi0xLEHzeObu4IAgUNSMWidneYztVzKso35t4eiLuge6ZrtevRj+cyzoTL4ln9sXZqT6z0LdgbF1F1+QlN/NetE1w8aiXnFYWLig+r4MC+StQUmhToQ2Pxz+mbYW2xEviGX1iNEOODiEqMSrfty2gQCwS41TGidWdVvP+u/dcGnaJcXXHYa5nTnBcMOvur6Pl9paU/qc0085O45b/rRz18tLV1OVwv8N0r9KdRGki3fd15/TL03mac1h8GO12teNl6EvKmpTl4tCLyiJ1d9/fpfGmxow5OYbguGCqWlZmShtbSLcvswwQ0bDaW0LnBHN7zG2+Kf9NnuaWany5nMCYQC75XGLl7ZWMOzmOppubYrrElIEHx2drjIK+DuQnQpBsIcEz2JOGmxoSkxQDgH0Je+6Pu59p1ox7oDt1/6uLHDnXRlyjednmys/8IvywX2WPVC7l/tj71LOrl+u5+Uf6U2ZFGTTFmsTNi1OpT1Uga057vGTSrldZLlfQvVbkcjkGfxooMxbmOc3jj9Z/FMi2ZXIZS28uZYHrAqRyKRXNKrKv9748necCeSNZmoyrryv7n+3n6IujqeqplDYuTf8a/elfsz/1bOtlq+ZHkjSJgYcHcsTzCFpiLQ71O0S3Kt1yPK/oxGja7GzD3fd3sTG04frI61Q0q0hQTBBzL81lq/tWQFHQcKHzQiwMLFh0fRH+weaYJY1Dk0+pwCb6Mhb3rE9Hh7wHo4bFh+Hx0YNnH58pfgcrfofGp180T1/uiGXC71mOq+6eS1khZPEUUY54HqH3gd7K1z2q9uBIvyOZfplTGhE62jhyf+z9VFk7Q48OZdeTXfSt3pcDfQ/kel4yuQzjRcbEJsfyYtILqlhUyXqlHFCUU+bym/OvzzPs6HC0Qhejgfn/Y05Sk1HaY0Fgv8oen3AfAHpX682hfocKdPu3/G8x8PBA3ka+RUusxV9t/2Jqo6lC0Ss1kyhJ5IL3BfY/289xr+PKBy9QJAj0r9Gf/jX6U8u6VqZ/q2RpMoOPDObg84NoijXZ32c/var1yvY84pPj6bSnE1feXMFcz5yrI65S2bwya+6t4acrPyktb/2q90NTrMlxr+PEJscq19cR6/FNyTH0qzqGqtYlc3VtikqM4nnw809iJNgDj48eBMYEpru8CBEVzSpS06omNSxrKH5b1cC+RCVaLbuRaQkCdV0HcoIgUIow8y7NY9GNTyXJl7ZZyqxmszJcPjg2mEqrKxGZGMl/Xf5jXL1PgZJPg55Sa30txCIxLya9UDb+yw31NtTjYcBDjvU/Rveq3XM9zpcU9ZS5/CJZmsyPl39UuuiqGQ4kLnhwGqOzurs6O21x4qb/TQAcrBx4MqHgm7+FxYcx+sRojr04BkDXyl3Z2n0r5vqF9ynyayI+OZ6zr8+y/9l+Tr08RVxynPKzKuZVlJaV6pbV011fIpMw7Ogw9nrsRUOkwd7ee7OVap4kTaLHvh6cfX0WYx1jXIe5EpkYydSzU3kW/AyASmaVEIvEvAx9maovThmTMsxsOpOJ9Sdmu1RDXHIcnsGeqawhz4Kf8TbybYbrlDMt90mE/P93VYuqGcayqLtztioQBEoRRiqT0mlPJy54XwBAjJjLIy7jXNY5w3VSap9Y6FvwasqrVG6hLnu6cPrVacbVHcd/Xf/L9bwGHxnMnqd7WNx6MXOc5uR6nM9J+bJ9eQIWpS9bfvAm4g0DDw/k9jtFLYaJ9SeyrN0yrnpFFDox1/dgXw49V1hNdDV1iZ0Xi1hU8KFtcrmcNffW8P2F70mSJlHKuBR7eu1J5fYUUD+xSbGcenmK/c/2c+bVGRKlicrPHKwclGLly3pQUpmUkcdHsvPJTjREGuzsuZOBDgMz3I5EJmHg4YEcen4IPU09dvbcyb5n+5Tnqp6mHmKROJW1REOkQevyrfmr3V+ZZuEkShLxCvVK45rxCfdJJXI+x87ILpUIqWlVk2oW1XLVd6eoP9QJAqWIExoXSv2N9XkT8QYAawNr3Me7p6o78TnJ0mRqr6+NZ4gn0xtN558O/yg/u+53Hedtzuho6PBm+psMx8iK367+xsIrCxnhOIKt3bfmaozPyW21xuLOEc8jjD4xmoiECEx0TNjcbTO9q39y+xU2d9jUs1NZfXc1YsTIkPFm2huVVcvMDe6B7vQ/1J+XoS8Ri8T80vIX5jrNLXKdkb8GohKjOP7iOPuf7eeC9wWSZZ8y1era1qV/jf70q9GPcqblAIVIGXNyDNvctymTC4bUGpJmXJlcxqjjo9j+eDvaGtoMqDGAg88PKmOlRIhSCQkLfQsm1J/A/ObzU3XklsgkvA57ncY18yr0FVJ5+hlKFvoWCgFiWVPpmqlhWYMSeiVUcciUFLbrQE4QBIqKUOdJ8CjgEU23NFX21GlRtgUXh13MsAjXBe8LtN/VHk2xJk/GP6GaZTVA8WTptNWJW/63+KHZD7nuaHvw2UH6HepH41KNcRud934ZOanWWJgDvlRFgiSB789/z9r7awFoXKoxe3vvVV6cCyt/Xv+T+a7zMdExITIxkvNDztPOvp1a5xSTFMPE0xPZ+WQnAK3Kt2JXz12p6rYIFC7C48M5+uIo+5/t55LPpVQCoHGpxvSv0Z++1ftia2TLtye/ZdOjTZSRi1nd8me6Ve6qXFaOnCU3l3Lg2QHCRCLi9M0IjgtOsz0RIhrYNWBJmyU4l3PGN9xXaQlJsYq8CHmRYRE6Ex0TpSXk8zgRKwMr1R+cYoYgUFRAYTCj7Xqyi6FHhypfz2k2h8VtFme4fPd93TnhdYJ29u04N/icMvjshNcJuu/rjrGOMW+nv8VE1yTHc/H46IHDOgdMdEwInxOe5yDE4+7vmbbPPcvlVg5wpPv/O/cWV7xCvOh/qL+yN9OcZnP47ZvfikS21NZHWxl1YhRWBlZ8jP3I6o6rmdww62KDBcGOxzuYeHoiscmxWOpbsrPnTtpXbK/uaQlkQXBsMEc8j7Dv2T6uvrmqtHaIEOFUxom+1fvi43eNP5+fRy+dft4pxCOnCjH4iz7d4gy0DGhRtgWNSjXCJ9wHj48eeIZ4poqL+RwDLQOlFeRzMWJnZCcEYucSQaDkkcIUG5FiQk/h+IDjGabaeYd5U31tdZKkSZwYcIKuVRRPFjK5DId1DjwPfs6SNkuY3Wx2uutnRoIkAYM/DZDJZQR8H5BrV1EKggVFwXb37Uw6M6nI3kTPvT5Hx90dsdK34mPcRyY3mMzqTquzXrGA8Arxot+hfjwJUgTvzm46m99b/V4kxJ8ABEQHcOj5IfY/268MxgaoK9fgAQZZrl+XGB6JZOhq6iJClKqJ3+foaOhQzbJaaouIZQ3KmpZVS0xVcUYQKHmgsMVGJEuTab2jNdffKprBGWsb82j8owy7us69OJfFNxdjX8KeZxOfKX2q2923M+L4CGwNbfGd5pvK15pdKq6qiHe4N5eHX6ZluZa53icoXMdZHa684uKGeBz4GMf/HDHSNiI6KZq2FdpyYegFdU8rFUXVfSaQGv9Ifw4+P8j+Z/tJfnefhxhmuU6KQElBU6xJFfMq1LCqQU1LhVumplVNKpSoUGA9rL52BIGSBwrjk31gTCD1NtTjQ/QHABytHXEb45ZuN9HoxGiq/FuFgJiAVBk3SdIk7FfZ8y7qHRu7bmRM3TE5nkdKRtC6zusYXz97VQ0z45xHAON3PUCOPFV9j4K0VKnDlVecAjk/xn7Eepm1MvCwrElZ3kx/o+5ppcvh54cZfWI0kYmR6QYgCxQd3nmdptTeQVku18nQkATLKtS1qUuLci1oVb4VBtpZW14E8g+hm3EeKIxlxW0MbTjU9xBaYoVZ2j3InSlnpqS7rJGOkTJO5ffrvxMQrehuqa2hzXeNvwNg6c2lueqToeqS9x1q2lKz8m2kpK6caGOiW2DipCA7g8rlctbcXUPjTY15GfqSUsaluDL8CgucFxRJcQKKrAUNkYYyTuBt5NtC22m4d/XeuI93p3GpxkQmRtLnYB8mnp6oDEQXKDrYGdlla7nAmEAuv7nM8tvL6bavG6ZLTKm2pho99/dk3qV57Hi8g3vv7wmtEgopgkD5AiujrFvcA8RKC7atdZPSTVjVcZXy9aZHm9jmvi3dZYfUGkKjko2ISYrhh0s/KN8fW28sJXRL8CrslbKoVU7Ij548z6J38153NDM6iVk5wJG9YxtzY06rfBcn+dUZVCqT4+YdynH397h5hyrXD48Pp/eB3kw+O5lEaSLdqnTD/Vv3Il+nQywSK3uaGGobIkfO67DXap5VxpQzLce1EdeY00xhWVx3fx2NNjUS+kwVITyDPRl9YnS2lu1TrQ+DHQZTz7YeBloGSGQSXoS84NiLYyy6sYjhx4bTcFNDTBabUOrvUrTZ0YYpZ6aw5u4aXH1d+RD9QWhGqUYEF88XpMRGZFROWI4MKaEEG0zgz9a/M6PJjAILopLL5Yw5MYYt7opux9oa2twbey/dokJ339+l0aZGANwefZtGpRT/X3h5Ib9d+40Gdg24M+ZOjiLRb7y9QfOtzVVmxn8T8YbyK8ujKdYkfE44htpZ+5RVRX648jJyF/VvosE/7sOLbTn2+hvq8yDgAZXNKvMy7CUH+x6kT/U+6p5Wlpx/fZ6hR4cSHBeMvpY+azutZbjjcHVPSyADkqRJLL25lN+u/UYNiSTbMSjNG03m91a/Y6BtwPuo93iGePIi5AUvQl4o/59R2XkAYx1jqlpUpapFVapZVFP+rlCighBsnQtycv8WooK+QEMs4qeu1Zmw62EGZcXFlC/7gPcfE5jpMpOTL0+yrce2Agm4E4lErOm8hicfn3D/w32SpEn03N+Th+MepkkdbliyISMcR7DNfRtTz03FbbQbYpGYKQ2nsOzWMu59uMflN5dpVb5VtrefYkHxi/QjLjkOfS39PO3PZd/LADSwa1Cg4gRU78rLKPMrIDKef85BsHZJKlpqF8uGdrZGthCAsnV9QXQ1VgXtK7bn8fjHDD06lEu+lxhxfASXfC+xptOaXFX4FMg/7r2/x+gTo3n68SkAmiKtLxsNZ8iqu6s47HmYtZ3X0q1KN0qblE5Tqyc8PhyvUC88gz1TCRfvcG+iEqO4+/4ud9/fTbWOlliLimYVUwsXy2pUMa8inD8qQhAo6dChpi3rhtRN8zRs8//gyfY1OrHpYS1mnJ/BVb+r1FpXi1UdVzG89vB8fypOaUVe97+6hMaH4hPuw8jjIznc73Cabf/Z6k8OPT/E3fd32fl4J8Mdh2NpYMnoOqP5996/LLm5JEcCxULfAnM9c0LjQ3kZ+hJHG8c87cvlNwqB8k051bUrzy7ZdeVlZ7nM3EUKWSujFNO5M6Y9JfRyXoOmsGNrqHDHpQhWr1AvdU4nR9ga2XJ+yHkW31jMwisL2flkJ7ff3eZA3wN5Pr8F8k5cchwLLy/kn9v/IJPLlCI4MC6ceORZ1kEJ+f+38n30e7rv607var1Z1XFVmhiWEnolaFyqMY1LNU71fqIkkddhr5WC5XPrS1xyHJ4hnniGeHKUo6nWK2VcSmF1MVeIlhQRY2NoU2wspwWB4OLJhKzST73DvBl2bBi3/G8Biu7DG7pswNLAMqMhVYarryttd7ZFJlek0C1vt5zvmnyXZrmlN5cy5+IcbAxteDn5JUY6RryJeEPFVRWRyqU8HPeQOrZ1sr3dlOZwe3vvZUDNAbmev1wup8yKMryLeofLUBfaVGiT67Fyg1Qmx/G3E0TFi/PcIbgwZn4VJCluw7YV2uLi46KyasMFzY23Nxh4eCDvot6hraHN8nbLmdRgknBDUROXfC4x7tS4VN2yHwU+Ur4uLRdh8YVA0dHUIVGSyK5eu5DrmdHkUF+ik6JTLWOsY8ySNksYV29crt3zMrmMd1HvFKLlC6tLUGxQhuuZ6JikdRdZVlNJmnNRKX8vuHhUhIZYlOkNxd7MnmsjrvHXrb9YeHkhx14c45b/LTZ13aQskpZftCrfiqVtljLTZSYAsy7MomHJhjiVcUq13LRG09j4cCOvw17zx/U/WNxmMeVMy9G/Zn/2PN3DkptL2NdnX7a3W9WiKjf9b+Y5qNA73Jt3Ue/QEmvRtHTTPI2VG3Y92YGPdAMWzEVhK/70RU75309dq2frC14YM78KkhQLikQmARTF0eRyeZG7sTuVccL9W3dGnRjFCa8TTDk7hUu+l9jcbbPyyV0g/wmPD2fmhZnKWLvSxqVZ3m45i24swifcR5nS7i+S4/+F3bJX5Y4c8TzC5oD7LG+/nEffPsJpixOBsYoYE02xJlGJUUw4PYGdT3ayocsGaljVyPEcxSIxZUzKUMakTBp3UVh8GF4hXmmsLj7hPkQmRnLn/R3uvL+Tah0tsRaVzCulsbpUtaiaLfd3Yah8nh8IFhQV4R7oztCjQ/H46AHA6Dqj+af9P/nqi5TL5Qw8PJD9z/YDYKVvxZMJT5RZFSmcenmKrnu7oq2hzbOJz6hoVpEnQU+ovb62otX45JfYm9lna5vLbi1jlsss+tfonyNh8yUbH2xk3KlxNC/TnGsjr+V6nNywz2Mfg48MRiaX0bv8b7x734TAPHyxv3YLyrEXx+i5vycN7Bpw78M9AD7O/FgglsT8QC6Xs+rOKma5zCJZlkwZkzLs7b1XLUL6a+Pw88NMPjtZGbQ6qcEkFjovpO+hvlzzu4aOhk6qDshfsq/3PgYcHoCdkR1vp79FQ6zBh+gPfLP9G2VslIZIA02xJonSRLTEWsxpNof5zvPTrSulShIkCbwOe/3J6hKq+O0V6pVhqX1QuIs+D85NsbpYG1gjEokKVeXz7CAUalMTCZIEfnT9keVuy5Ejp7xpebb32J6vqaSxSbE03NSQ58HPAWhZriUXh15MVVdDLpfTcXdHznufp2vlrpwYeAKATrs7cfb1WSbUn8Dazmuztb0UsVPbujbu491zPe9Bhwex12MvC50X8ss3v+R6nJxy1PMofQ/2RSqXMrbuWNZ3WY9cLsqTaTSrzK/i3pn5zrs7NN7cmDImZQBFLZQbI2/QrEwzNc8sbzz48IABhwfwOuw1GiINfvvmN+Y4zUEsEhcZc3pRISA6gMlnJ3PE8wigsNRu6rqJhiUb0vtAb06+PImepl6GpepTCJ0Viv1qeyISInAd5so35RXxbeHx4XTc3TGV5aJCiQpKd1Els0ps6LohzxWyc4NMLsM/0j+VtSXl98fYjxmup3AXVSf87QwSk/QgnXicwnjtEQSKmrn65irDjw3HL9IPESJmNZ3Fr9/8mqvy8tnhddhr6v5XV+lrnec0jz9a/5FqmRchL3BY54BEJuHc4HO0r9ieq2+u0nJ7S3Q0dPCb7pfG8pLRtiqtroSupi6x82Jz5cOVy+XY/W1HYEwgV4ZfoUW5FjkeIzeceXWGHvt6kCxLZmitoWzrsU1lKeIpTzGQXuZX4XuKUSVvI99SdkVZtDW0cS7jzEXfi2zutplRdUape2p5JsUdsOfpHgDaVmjLqGqrWOnyvtiZ09WBXC5ny6MtzHSZSURCBJpiTeY0m8MC5wVoa2gz/Nhwdj3ZhY6GDjqaOlkWVIuZG8P0c9PZ9GgTY+qMYWO3jcrPYpNi6XOgD+e8zynfc7RxJCA6QBk3MspxFH+1+6vQuPTC4sM+pUR/ZnXxjfBFJpehI3XAJinrDvWFyXorVJJVMy3KteDJhCeMdByJHDlLby2l4aaGyoZlqqaiWUX29t6rfP3njT859fJUqmWqWlRlSkNF9dnp56eTLE3GuawzjUs1JlGayKo7q8gO5UzLoa2hTYIkgbeRb3M135S6A7qaummi5vOLiz4X6bW/F8myZPrX6M+W7ltUWr8mJfPLxiS1mbigquKqE2sDhbBNkiZR1rQsUHRSjbPCWMeYXT13saXbFvS19LnxKoY5h14XWPXh4ox3mDdtdrZhzMkxRCREUN+uPg/GPeD3Vr+jo6HD9HPT2fVkFxoiDerZ1ct2tddBDooS+Ic8D5Eo+eQOMtA24MTAE8rPQeGaN9IxYmDNgYgQscV9C1X/rcqep3sKRYE2Mz0zmpZuyqg6CuF0cuBJXk99Tey8WJ6Mf8J3DX/O1jhFNf5NECj5hLGOMVu6b+Fo/6NY6lvyJOgJ9TfUZ8mNJbkqM58VnSt35ucWPytfDzw8EN9w31TLLGyxEEt9S16EvGDNvTWIRCJlRc2199dm6wKgKdakklklIPcVZVPSi5uWbppvVqXPueZ3jW57u5EoTaRH1R7s7LkzXxqDdahpy405rdg7tnGBVsVVNzqaOsonTit9K6BopRpnhUgkYmSdkdwZfQ9r6aR0l8lL9eGvDYlMwvJby3FY54Crryt6mnosa7sMt9FuyqKTv179VdnF/dt63yozJbODc1ln7IzsiEiI4Nzrc6k+09LQYmfPnUxuMFn53uuw15x5dYa/2v5FDcsaBMcFM/jIYDru7pjmGlpY0NXUxcHaga7Vsmd9zm5ZhcKGIFDymR5Ve+Ax0YNuVbqRLEvmh0s/0HJ7y3w58X9s8SOdKnUCFN1ye+7vmarPiKmuKX+2/hOAn6/8THBsMN2qdKOqRVUiEiLY8GBDtraT15L3BVn/xM3fjc57OhMviadTpU7s670vX6s/pmR+dXcsSRN780Lj981vUjJ5jHUVJtviYkH5nOgYa+RSU0QZ1N6QAwGRCdz1DSvYiRUhngQ9ocnmJsx0mUm8JJ5W5VvxdMJTvm/6vfKhYfWd1fx89WcAfv/md/Z67M1kRJSxTyloiDUYUENRAmGPx540y4tFYlZ1XJXqgS4yMZLZF2czpNYQfmv5GzoaOpz3Pk+NtTVYdmuZMkOtsNGwvBm2JroZVoMRoXA/NixfOFxWOUUQKAWAlYEVx/ofY3O3zRhqG3Lj7Q1qra/F5oebVWpGFIvE7O61m/Km5QF4HPSYqWenplpmpONI6tjUITIxkvmu8xGLxMxqOguAf27/k8okmhF5ESgyuYwrb64A+S9Q7n+4T4fdHYhJiqFNhTYc7ne4QCw2XyO2RgqBoq2hDSieSvPDUqhOvvZ08ryQIElggesC6m2ox/0P9zHRMWFT101cHHoxVQbhrie7mHpOcc36ucXPuL1zIzwhPN0x9TT1AKhuWT3NZylunBNeJ4hOjE7zuUgk4qeWP7G642rlezK5jLmX5vIy7CX3xt6jZbmWxEvimeUyiwYbG3D/w/3cH4B8IqXyOaQNkc1puYTCiCBQCgiRSMSoOqN4Mv4Jzcs0JyYphjEnx9B9X3eCYjIu7JNTTHVNOTHwhDJlbuPDjex8vFP5uYZYQ9l0cNPDTTwMeMhgh8GUNCrJh+gP7H66O8tt5EWgPPv4jJC4EPS19GlQskGO188ujwMf025nO6ISo3Au68yx/sfyPY3waybFgpIsTUZHQ4ckaRJvIt6od1IqRpXVh78mbry9QZ3/6vDH9T+QyCT0qtYLz0mejK47OlWtnJNeJxlxbASgqN9UyrgUp1+dTjXW59arlGqw1SyqpdlmXdu6VDavTIIkIdPGqJMbTmZ3r91oiDSU4+98spMxJ8coY49K6JbAPdCdRpsaMePcDGKSYnJ7KPKF4hz/JgiUAqZ8ifJcHn6ZpW2Woq2hzcmXJ6m5riZHPY9mvXI2qWlVk+09titfjzkxRlmfBRQFqQbWHIgcOdPOTUNbQ5sZjWcAisqzKdVpMyIvAiXFveNUxkn5tK1qngc/p+3OtoQnhNO4VGNODTyFgbZBvmxLQIGNoQ2gaG9fyVwRo1Tc3DzF3ZyuaqITo5l8ZjLNtzbnRcgLbAxtONT3EIf7HVZa3FK45neNfof6IZVLGVprKNMaTWPG+RlpxpR/liNnpK2oMZWeBUUkEjGopsKKkp6b53MGOQzi5EBFGrMcOZpiTe6+v0uDjQ2oYVWDF5NfMMhhEDK5jBV3VlBjbQ1Ov0wtnDLqYl5QFNf4N0GgqAENsQazms1SdiIOiQuh14FejDw+MtuR6lnRr0Y/vm/yPQBJsiS67OmSauylbZcqshLe3mD/s/2MqzcOU11TvEK9OP7ieKZjVzGvAkBQbBDh8embXzMiv+NPXoW+ovWO1gTHBVPPth5nB58VGncVACkWlMDYQOX5UZwCZaH4m9NVyZlXZ6ixtgZr7q0BFOm7zyc+p3f13mmWfRjwkK57u5IgSaBblW5s7LqRMSfHpClRb6D16SFDT1OPt1GKLMLqFmkFCsBAh4EAuHi7ZFpPBKBjpY5cHHYRU11TJDIJOho6BMQE4LzVmQveF9jdazfnBp+jnGk53ka+pcveLvQ/1J/AmEDOeQTgtMSVgRtvM22fOwM33sZpiWuBZ3QVx/g3QaCokVrWtbg75i5zms1BhIht7tuota4WV99cVcn4i9ssxrmMM6DoQDzs6DBlzEsp41L80OwHAGa5zEIsEjOpgSJDYfHNxZnGxhjpGFHSqCSQs5uQTC5T7lt+CBTfcF9a7WhFYEwgtaxrcX7IeUx1TVW+HYG0pDwRB0QHUNm8MlD8LChQvM3pqiA4VpEB03lPZ/yj/KlQogIXh15kc/fNlNArkWb5l6Ev6bCrA1GJUbQo24L9ffaz6eEmXH1d05QBiE2OVf6/vm19wuLDEIvEyvPtSyqbV6a+XX2kcikHnx3Mcu5NSzfl2ohr2BrakihNRF9Tn0RpIkOPDmWOyxzaVGiDxwQPZjWdhYZIgwPPDuDw9xDG73ogpJ3nE4JAUTM6mjosbrOYayOvUd60PH6Rfnyz/RtmXpiZKgMnN2iKNTnU7xA2Bgrz+3Gv46y4vUL5+cymMylnWo53Ue9YcnMJUxtNRVdTl7vv73LVL3ORlOLm8Qz2zPZ8Hgc+JjwhHCNtI+rZ1cv5DmWCf6Q/rXa04l3UO6pZVMNlqAvm+oWjMNHXQIoFJSAmoNhaUFIorub0vCCXy9nzdA/V11Znz9M9iEVivm/yPU8nPKV1hdbpruMf6U/bnW0Jjgumrm1dTgw8wbuod8y+OBsglas55YEohZQx7UvYo6ell+G8suvmScHB2oEbo25gX8KeOEmc0mqz9NZSuu3rhkQmYWnbpdwbe4+6NvXRiRuSbvVoIe1cNQgCpZDgVMaJx+MfM6bOGOTIWe62nPob6vMo4FGexrU0sOTUoFPKFL6ZLjOVNQX0tBT1BwD+uvUXcclxjHQcCcCSm0syHTclMC0ncSgp7p3mZZurtA5JQHQArXa0UnRpNqvIpWGXsDKwUtn4AlmTEoMSEB1AFQuFQCmOFpQUiqM5Pbf4R/rTZW8XBh8ZTEhcCA5WDtwefZtl7Zahr6Wf7johcSG029WOt5FvqWJehXODz2GgZcCIYyOIS45DS5y6FEBkQqTy/5piTaXbNqtGf/1r9keEiFv+t7Jd2qFCiQrcGHWD2ta1iU2ORU9TD20Nbc68OkPjzY15GfqSOrZ1WNX6NJpYCmnn+YggUAoRRjpGbOy2kRMDTmBlYMWz4Gc02tSIRdcX5Slls55dPTZ0UdQ4kclldNvbTemT7VWtF9+U+4YESQKzXGYxs+lMxCIx516f43Hg4wzHVAbKhuZcoLQq1yq3u5KGj7Efab2jNa/DXlPOtByuw1zTBOAJ5D8pxzw6KVr5tPsu6h2xSbGZrSZQhJHJZay5u4bqa6tz5tUZtDW0+e2b37g/7n6mGXpRiVF03N2RFyEvKG1cmgtDL2BpYMmK2yu46X8TbQ1tkmXJyuVrWdUiJvlT5oyjjaPywaiGZeYCxc7ITtmPZ59H9pub2hjacGXEFZzKOCn7/5jrmfMi5AWNNjXigvcFQmKSsxhFgZB2nnsEgVII6VqlKx4TPOhZtSfJsmTmuc7DeZszr8Ne53rMkXVGMrrOaABC40Ppub8nUpkUkUjEig4rEIvEHHp+CL8IP/rV6AdkbkXJaSaPRCbhmp+ia3HKBSOvhMaF0mZHGzxDPCllXArXYa6UNimtkrEFcoaRtpHyaTlJmoSFvgVQvK0oXzMvQl7gvNWZyWcnE5MUQ9PSTXH/1l3ZQycjEiQJ9NjXg/sf7mOhb4HLUBfKmJThefBz5rvOB0jzMPZlLMroOqN5FvwMUGQsZkVO3TwpmOqacn7IebpU7kKSNInw+HDsSygaEXbc3ZFr/iezNY6Qdp57BIGSD6gi5czSwJLD/Q6zrfs2jLSNuOV/C8f1jvx3/79cF3db23ktta1rA3DL/5byglDLuhbj640HYNq5aXzX+DsA9j/bn6FZNEWgeId5kyRNynLbjwIeEZUYhamuqXIOeSEiIYL2u9rz9ONTbAxtuDTsEuVLlM/zuAK5QyQSpYpDqWRWBR2pAwfu+6gl7VIgf0iWJvPHtT+ovb42N/1vYqhtyOqOq7k+8jrVLNPWI/kciUzCgEMDuPzmMkbaRpwbfI4qFlWQyCQMPzacRGkiVgZWSOWfBEqTUk1S9TATyTWoaNARr3dG6EgdqGpeHalMjo7UAX2JM3d9w9Oca72q9UJbQxuPjx48DXqao/3V19LnSL8jDK01FBkyvMO9aWjXEJlcxt8PJqGjHSeknecjgkBRMapMOROJRAx3HM7TCU9pWa4lscmxjD89ni57uxAQnfPxtDW0OTP4DCY6JoDCQnLm5RkAfv3mV0roluDpx6fc+3CP9vbtkcllLHdbnu5YdkZ2GGobIpVL8Q7zznLbrr6uALQo2wINsUaO5/450YnRdNzdkQcBD7DQt+DSsEsZRvILFBwpbp4Lzz4S6jcNm6RF7L2pq7a0SwHVcv/DfepvrM+CywtIkibRsWJHnk18xuSGk7NsvCmTyxhzYgzHvY6jo6HDyYEnlYHyi28s5v6H+xhqG6ZJB65lXQsZimBZPWkTyiRtZ8x2DwzjpmCTtIgRGwJwXnITm6RFWCbPZuTWx2nOtRJ6JZQtQFK6UucELQ0ttvXYxvRG0wG4++EubSu0RSwGf/5JVZslBSHtXDUIAkWFnPMIYMKuhypPOStrWpZLwy6xvN1ydDR0OPPqDA7rHDj8/HCOx7IzsuPUoFPKC0qfg33wi/DDXN+c3775DYAfL//IhPoTANj8aHO6NQREIlGO3Dyqqn8SlxxHl71duP3uNiV0S3Bx6MV0CzUJFDw2hjboSZuw46o2iUmpMyuEtMuiS1xyHDMvzKTRpkY8CXqCuZ45u3ru4vSg02n64KSHXC7n+/Pfs/3xdkV6bt8DtCinaHLnHujOr1d/BVLXOQFF2u/ZV2cBhTixTJoHMpNUy0TES4iIT90nJ71zLcXNs9djb5aFKNNDLBLzd/u/+f2b3wFw8XGhY8WO6Bh48lH7T+Ti1IGwQtq5ahAEioqQyuT8cvJ5vqWciUVivmvyHffH3cfRxpHQ+FD6HOzDsKPDiEiIyNFYTmWcWN5WYRmJl8TTfld7EiWJfFv/W2pa1SQsPgwXHxca2DUgQZLA6jur0x0nuwIlWZrMjbc3gLzFnyRIEui+rzvX/K5hrGPMhaEXqG2Td3eRgGqwMbDFLGnc/1+lfmoU0i6LJq6+rjisc2C523JkchmDHAbhOcmTwbUGpypTnxl/XP+DFXdWALC1+1a6VekGQKIkkeHHhpMsS8bByoGg2NQtP0Y6jlQUY5OLMzyv0iO9c61L5S4YahviF+mHm79btub9JSKRiPnO81nXeR0iRJx+dZompZpQ2iqUt9ojCNP7iQHN4oW0cxUiCBQVcdc3LI3l5HNUlXJW06omd8bcYZ7TPMQiMTuf7KTWulpKF0p2mdZ4Gr2q9QIU9SrGnhyLpliTlR1WArD+/nplw60199ak23Crqnn2MnnufbhHbHIs5nrm2QpqS48kaRK9D/Tmos9FDLQMODf4HPXt6udqLIF8IqkimliS0U1ESLssOkQkRDDmxBha72iNT7gPpYxLcWrgKXb32o2lgWW2x1l7by0/Xv4RgBXtVzC09lDlZ79e/ZUnQU8w0zPDOzy1m7hJqSbKpqI6shqZpvOmx5fnmp6WnvJ6lxs3z+eMrz+efX32oSXW4uzrs5Q0Kkm7im2I5gFLHvbl5JvliESCCFcFgkBREdnudBqV95QzbQ1t/mj9B9dHXse+hD3+Uf603tGaGedmEJ8cn60xRCIRu3ruwr6EopPozic72ea+jVblW9GrWi+kciknvE5QyawS4QnhbHy4Mc0Y2bWgXPZVuHdalmuZpa86PZKlyQw4NIAzr86gp6nH6UGnaVK6SY7HEchftEXZu3EJaZeFmyOeR6i2phqbH20GYGL9iTyb+IzOlTvnaJw9T/cw+cxkABY6L2Ra42nKz+68u8Pim4sBqG1dm7jkOOBTM8B5zedxxPMIABrytBVos8vn51qKm+fA8wMkS7OXIpwR/Wr049SgU+hr6XP5zWUi4iOY0nAKAItuLKLHvh4qa1vyNSMIFBWR3VSyWa7f8o/bP4TGheZ5m01LN8V9vDvf1vsWgBV3VlBvQz0eBjzM1vp6WnpcHHZR2bZ8zIkxPPv4jGVtl6GjocPlN5dpU6ENAH+7/Z0mW+dzgZJZZlFe4k+kMilDjw7l6Iuj6GjocGLgCaX/WqBwUbaEabaWE9IuCyeBMYH0OdCH3gd6Exij6Kl0feR11nReg7GOcY7GOvPqDMOPDUeOnMkNJvNzy5+Vn8UnxzP82HBkchnt7dsrrw+gaAbYqGQjohOjlfVHpKKc9fv6nM/PtdYVWmOpb0lIXAgXfS7meswU2tm349KwS5jpmXH3w10u+V5iZYeViiDglydpsrlJnkpDCAgCRWVk1ekU5EhFIbyKPst3F77D7m87Bh0exJU3V3KdNgxgqG3I+i7rOT3oNDaGNniGeNJoUyN+v/Y7Elnq4LH00p/LmZbjSH/Fk4pULqXNzjZY6Fswq+ksAM6+PouNgQ3vo9+nMY1WNKuIWCQmKjGKwJjAdOeXKEnkpv9NIOfxJzK5jFEnRrH/2X60xFoc7ndYKZgECh9OFW2REIyc9IMQhbTLwolcLmfLoy1UW1ONw56H0RRrMs9pHu7j3XEq45Tj8a77Xaf3gd5IZBIGOwxmZceVqeJVFrguwCvUC1tD21RxJxoiRXbfzy1/ZtktRYVrMWISxc+QiUJz4OBJ/1zTFGvSv0Z/IOc1UTKicanGXBtxDTsjO54HP+dvt7/Z1WuX4vXHFzRZO4w/L1wQUu1ziSBQVERWnU5FiFjZrznruqyhjk0dkqRJ7PXYyzfbv6HKv1X46+ZfWXbczIxOlTrxdMJTeldTXBh+vPwjTluclIWyMkt/7lCxAwuaLwAUT1E99/dkTrM5lDQqyZuIN8pA1CU3l6SKgNfR1KFCiQpAxm6eO+/vkCBJwNrAWlkePzvI5XLGnxrPjsc70BBpsL/P/hybmAUKllImdoRpb4B0ogWEtMvCiU+4D213tmX0idFEJERQz7Ye98fe54/Wf6CrmXNLl3ugO132diFBkkDnSp3Z2n1rKrfudb/r/HP7H0DhJnEPdAcUZ4xULqVhyYZUt6jOw0CFFViOHEQyKpd/8v/lsiazcy0lru6o51GlWymv1LCqwc1RN6lkVgm/SD8mnp7IZIdNlE/eiUHMfDa4JjNw422aCan2OUYQKCokq06nvepUYHz98Tz89iH3x95nXN1xGGob8irsFbMvzqbU36Xod7AfF30u5ioVzkLfgoN9D7Kz505MdEy48/4Odf6rw/Rj27JMf/71m19pWa4lAJd8L7Hq7iqWtl0KwPW31zHSNuJFyAtOeqWunphVHEpK/Mk35b/JdtS/XC5n2rlpbHy4EbFIzO5eu+lZrWe2j4OAerDQtyBZ6x7B2n9iYZS6l4qQdlm4kMqk/O32NzXX1uSS7yX0NPX4q+1f3B5zO9eZca9CX9F+V3uiEqNoXqY5B/seREvj03kQkxTDiOMjkCNnaK2hqSyyKbWRfmrxE2vvr1W+n1JjZG6bjuleW031tTDVz/651rhUY8qZliM2OTbNtSwvlDMtx41RN6hjU4eY6IqsvyRFJk2dEh0YGS+k2ucQkTwv/gU1ERUVhYmJCZGRkRgb58w3WhBIZXLu+obxMToBKyOFmTGjp8aYpBj2eexjw4MN3PtwT/l+hRIVGFNnDCPrjFQ2YssJ/pH+jDg+AlefK5RM2IwmFqT3/CFC8YW+MacVcckxVFpdiaDYIESIuDriKnMvzeWm/01qWNbgWfAzGpdqzK1Rt5RiY9aFWSxzW8bUhlNZ2XFlmvFbbmvJVb+r/NflP8bVG5fm8y+Ry+XMdpnNMrdliBCxrcc2htUeluP9F1APpf4uxfvo99wefRdZYoVsfQcECpanQU8ZfWK08nrzTblv2Nh1I/Zm9rke813UO5y2OOEX6YejjSNXhl/BRDf1DXri6Ymsu7+OMiZl6FyxM+serANAW6xNkiyJ+nb1uT36NlbLrAiLD0NPU494STzaGtrEzotFU6yZ7rUVyPb1FmD+pfn8eeNPulXpxvEBx3O9z+kRHh9J/T/OIJEYZZB1JMfaWIdbP7T5ar8PObl/CxaUfCAnnU4NtQ0ZU3cMd8fe5dG3j5hYfyLGOsb4hPswz3Uepf8pTe8DvTn3+lyOGgaWNimNy1AXvq+3Ltupn0Y6RlwZfgVNsSZy5HTa04lfvvkFESKeBT9DS6zF7Xe3uf72unL9zJoGxifH4/ZOUXMguwGyP135iWVuCv/z+i7rBXFSxEipJvsxNlDo9lvISJQk8qPrj9TdUJd7H+5homPCxq4buTTsUp7ESUhcCO12tsMv0o9KZpU4P+R8GnHi4u3CuvsKQfKT809seLghzTg/t/iZy28uExavSA1OybRpXuZT9/P0rq057Syd4uY5++qscluq4sUHCVKJcSYp0SKCopLY8+COSrdbXBEESiHC0caRNZ3X8OG7D2ztvpUmpZogkUk44nmEjrs7Yr/Knt+v/c77qPfZGk8sEtO8dPbiNlLS8apaVmVHjx2Awroz/dx0RtUZBaC86HzeRDAzF4/bOzeSpEmUNCpJRbOKWc7hj2t/8Ns1RTXbVR1WZcviIlC4SLH2BcQIZuzCxC3/W9T5rw6/X1cEz/es2pPnk54zpu6YbLte0yM6MZpOuzvhGeJJSaOSuAx1wcrAKtUykQmRjDqhuIZMajCJPR57lP12THRMlNaTTpU6sfyWooCkCBESuSLIf0zdMbmeX3rUsKpBLetaJMuSc1WNOzOym0I/9fSPHHx2UKXbLo4IAqUQYqBtwAjHEdwafYunE54yteFUTHVN8Yv048fLP1JmRRm67+vO6Zens7SqZDel8/PlBjoMZFxdhTjw+OhBsjQZYx1jQuJCECHizKszygZeKQLlbeRbYpNiU42Zk/iT5beWs+CyIlB3aZulTGk0JVvzFihcKBsG5qJXlIDqiU6MZsqZKThtccIzxBNrA2sO9T3Ekf5HsDOyy9PYCZIEeuzvwb0P9zDXM8dlqAtlTcumWW76+em8i3pHRbOKNCnVhEu+l1KNAYo6KeEJ4bj4uABgbWgNKB6yOldSfXB8bjscZ0V2r7fxsiD6HerHj64/5ire8GtBECiFnJpWNVnZcSUfvvvAjh47aF6mOTK5jBNeJ+iytwvlVpbj5ys/8zbybbrrZ5X+LEeGWDMSG7OYVO+v7byWWta1ANjxZAfdq3QHULZSX3pTEUBrrm+Ohb4FgDJjKAXXN4rqtlm5d9bcXcNMl5kA/NryV2Y1m5Xp8gKFlxSBklHauUDBcfbVWWqsrcG/9/5FjpyRjiN5Puk5vav3zvPYEpmEQYcH4erriqG2IWcHn1V2M/68nMHfV06y7dEORIhY33k981znKcewNbQlUZpIXdu6dKnchR2PdygtK1EJiiJnjtaOGOkY5Xm+XzKg5gAArr65yruodyobN6vrbUr686Rm7QD4/frv9NrfK91K3QL5IFAWLVpEgwYNMDIywsrKih49euDl5ZVqmYSEBCZNmoS5uTmGhob07t2boKCgDEYUAEVRtaG1h3Jt5DWeT3zOjMYzMNMz413UO365+gvlV5an857OHH9xPFX9k8zSnxX1KkQEiv+l9noHjr049tl6GlwZfgUjbcXFYZ/HPiqYViBRmqh8/SbiDZC+mycmKYa77+8CmQuUTQ83MfmsotrkPKd5LHBekONjI1B4SIlBEVw86iMkLoShR4fSaU8n/KP8KW9aHpehLmzpvgUzvbzXoJHL5Yw7OY6jL46iraHN8QHHaVCyAZC2nMGqc2JKJmxmQMXF3Hh7I9WDVEoPsZ9a/ATAqjurANDT1CNOokgBHu44PM/zTY+ypmVxKuOEHDn7PfarbNysyk2AIv15eftlbOu+TXH8vI7TdEtTfMJ9VDaP4oLKBcrVq1eZNGkSt2/fxsXFheTkZNq1a0ds7Cfz/4wZMzh58iQHDx7k6tWrfPjwgV69eql6KsWWapbV+Lv937z/7j17eu2hZbmWyOQyzrw6Q4/9PSjzTxkWuC5QCoiM0p/NDMQkGa0hXsON6KRoeu7vyaTTk0iUKERICb0SXBp2CREikmXJRCRGAJ9qFvzt9jfwWU+ezwTKzbc3kcgklDUpS/kS5dPdj52PdzLupMKV9F3j7/i91e958ocLqB+li0cQKAWOXC5n79O9VFtTjV1PdikajDb+jqcTnqqswKFcLmeWyyy2uivqm+zvs59W5VsBGXdz18SCW09r8M+VTxVjK5tXJl4STx2bOnSt3JWHAQ/xjfAFoJJZJeVyfar3Ucm80yO/3DxZlZtISX8e7jicqyOuYmNog8dHDxpsbKB0iwsoyPc04+DgYKysrLh69SrOzs5ERkZiaWnJnj176NNHcfK9ePGCatWq4ebmRuPGjbMcs7CnGauDl6Ev2fRwE9vctxEcFwwohEQ7+3aMrTuWblW6IRZppknHi0wMZ/yp8Rx8/ilgq5pFNY4NOEZl88oArLy9kunnpwNgqW+pHF9PU4+3M96y3X07M11m0q9GP/b3UTyN/HDxB5bcXMIIxxFs7b41zXwPPDvAwMMDkcllTKw/kX87/SuIk2LAnXd3aLy5MaWNS/N2RvpuRwHV4x/pz4TTEzj96jSgcA1v7raZhiUbqnQ7i64vUrpptnbfygjHEYDCreO0xDWThqlyJITwXnc0YhHoaukSlxzH0f5H6VG1ByOPjWTb423Ap2tMBdMKeE/zzmC8vBMSF4LtclskMgmekzyVlmBVkd1yE++i3tFjXw8eBDxAQ6TBqo6rmNhgokrnUpgoVGnGkZGRAJiZKUyLDx48IDk5mTZtPin6qlWrUqZMGdzc0m+DnZiYSFRUVKofgdRUNq/M0rZLeffdOw70OUCbCm2QI+e893n6HOxD6X9KM991LpYlwlOl45npmXGg7wH29NqDgZYBAJ4hnjisc2DHY0U2z7TG05QxKMFxwYj/f9rES+JZfWe18ovtGeypnE9m/XeOvzjOoMODkMlljK4zmtWdVgvipJiQ4uIJjAnMUwsHgewhk8tYd28dNdbW4PSr02hraPNry195MO6BysXJ+vufYkj+bve3UpxA1t3cQYQmlujIalDHtg5xyXE42jjSvUp34pLj2PdsHwBljMsoH4AG1hyo0vl/iYW+Be3sFbEge5/uVfn42U1/LmVciusjrzPIYRBSuZRJZyYx/tT4NL3PvkbyVaDIZDKmT59Os2bNqFmzJgCBgYFoa2tjamqaallra2sCA9MPrFu0aBEmJibKn9KlS+fntIs02hra9K3RF5ehLrye8pq5TnOxNrAmKDaIJTeXUGl1JdrsaMOBZweUrhxQZO68mPwC5zLOACRJkxh+bDj9DvYjNimWg30PUsa4DACyz3qtrL67mrImisj9l6EvkcqkRCVG8eDDAyCtQDn76ix9D/ZFKpcypNYQ/uvyX646HAsUTlLSjJNlySqvMSGQGq8QL1pua8nEMxOJToqmaemmPPr2ET+2+FEZzK4q9nvsZ+JpxVP9/ObzmdFkRqrPs5tea6Bhi1eoIiZxofNCRCIRh58fVmbzVLesrlx2gMMAVUw9Uz5386hTUOtp6bGr5y4Wt16MCBH/PfiPtjvbEhwbrLY5FQby9c4wadIkPDw82LdvX57GmTt3LpGRkcoff39/Fc2weGNvZs+frf/Ef4Y/R/odoUPFDogQccn3Ev0P9afUP6WYdWGWMvumlHEpLo+4zMoOK5WFkQ4+P0jlfyvjGeKJ2xg3dDR0Um0jJTVQR0OHRGkifpF+XPe7jlQupaJZRUqbfBKTl3wu0etAL5JlyfSt3pet3bcqS1wLFA+0NbQx1zMHhDiU/CJZmsyf1/+k9vraXH97HQMtA1Z3XM31kddT3eBVxbnX5xhydAhy5EyoP4HfvvktzTLZTa+tbGlNTFIMtaxr0b2qwiqbEhwrFomV4sVC34IaljVUtAcZ071qd/Q09Xgd9pr7H+7n+/YyQyQSMcdpDicGnsBI24hrftdosLEBjwMfq3Ve6iTfBMrkyZM5deoUly9fplSpUsr3bWxsSEpKIiIiItXyQUFB2NikX9JdR0cHY2PjVD8C2UdLQ4ue1XpydvBZfKb58KPzj9gZ2RESF8Iyt2VU+bcKLbe1ZM/TPSRJk5jaaCoeEzyUwa8foj9Q57867H26l6P9jqYZf9mtZVQyVwS2vQh5ka5757rfdbrt60aCJIHuVbqzu9dupQgSyD7pdaQubCiLtQm1UHJNRn/nBx8e0GBjA+a7zidRmkiHih14NvEZkxtOzhdL5M23N+m1vxcSmYQBNQdkGCuWnXIGcnEYzyNPAPBj85+44xPOfzce8PRdIsjFOJVxUgbK9qraq0Dcvobahkqh9GW3dnXRpXIXbo+5jX0Je/wi/Wi6panKC8oVFVQeJCuXy5kyZQpHjx7lypUrVKpUKdXnKUGye/fupXdvRT6+l5cXVatWFYJkCxCJTMKZV2fY+HAjZ16dURYLMtMzY1itYYytN5ZKZpWY7zqfZbeWKZt2OZVxoq5NXVbdXZVqvAZ2Dbj34R7L2y1n99PdPAx4yJ5eexjoMJDb727TdmdbYpJi6FCxA8f6H0NHUyfNnAQy55xHAL+cfJ7K129rostPXasXqiZ8bXe25aLPRbb32C60KsgF6f2drY11sC/7kP3ec5HJZZjrmbOiwwoGOwzOtxv5k6AntNjWgoiECDpW7MixAccydR2lZPEAfH5TSSlnUL7cRa4GraSq4QBMksYQ+Nn+SQimbhUfTr5VWGeuDL9Ci3It8mO30nDS6yTd9nXDxtCGdzPeFRqrblh8GP0P9eeiz0VAkY69sMXCIu8Sz8n9W+UCZeLEiezZs4fjx49TpUoV5fsmJibo6ekBMGHCBM6cOcO2bdswNjZmyhRF1dBbt25laxuCQFEt/pH+bHm0hc2PNuMf9cl91qx0M8bVG0dZk7L0PdhXGbxmpG1EKeNSeIZ8Coo11TElIjGCYbWGsfPJTuTI+fDdBwJiAmi1vRWRiZG0Kt+KUwNPoaelV+D7WNRJufh/+WVNuTUVpk7Bw44qzoHFrRczx2mOuqdTpMjo75zS1zdY+0961C7Hig4r0pSUVyWvw17jtMWJoNggmpVuxoWhF9DX0s9yvfTElYRgDC3PEZh8jqS46lglzePLKiFyZIgQ8VH7T0S6j4n8IbLALKxJ0iRsltkQnhDOxaEXaV2hdYFsNztIZBJmXpjJyjuKRqy9qvVie4/tGGobqnlmuUetWTzr1q0jMjKSli1bYmtrq/zZv/9TMZx//vmHLl260Lt3b5ydnbGxseHIkSOqnopANiltUpqfWv6E7zRfTg86Tfcq3dEQaXDT/ybDjw2nx/4e9K7Wm3YVFBHv0UnReIZ4popHSamRcj/gPnLkVLWoSkhcCG13tiUyMRKnMk6cGHBCECe5QCqT88vJ5+nctD49qf5y8nmhcfcI1WRzR2Z/55QbemWteezsuTtfxcmH6A+03dmWoNggalvX5tSgU9kSJ6CoAXJtdktK2O0gWGspQdpzea87moYVtIlMiMZaOon0u6qLkSPHLGkc7Sp0KFD3r7aGNn2r9wUKj5snBU2xJis6rGBzt81oibU44nmEZluaKWtcFXfyvQ5KfiBYUPKfD9Ef2PpoKxsfbsQv0k/5fmXzyviG+5IsU3QaLS0XYfHZBUdXU4cESSLt7dtz9/1dXiWEYVeqIReGXsBYp/j/raQyKXHJccqfeEl8qte5+YmKtiHh47dZbnvv2MY0sTcvgL3MnBW3VzDj/Az61+jPvj55C5D/mnDzDmXgxttZLpeff+ew+DCctzrzLPgZ9iXsuTHqhjKmKLtsc9/GyOMj0RRrIpFJaFO+Dfc+3CMhrgw2SYuyXH9CuyTmtOqZ213IFVffXKXl9paY6JgQODMQXc3sBf0WJDff3qTXgV58jP2Ihb4Fh/sdxrmss7qnlWNycv8WohQF0sXOyI75zvOZ23wuF30usuHBBo57HVdm/GiINLCTyfDCEL3Pn4gkAFrgfROARIxJ6LpZ7eJEJpeRIEnIkTCIT/5MXEiyt05+1C7QlzhjmY3lspvqmd8IHY1zR3b/fvn1d45JiqHT7k48C36GnZEdLkNdcixOIhMi+eHiD4DCPSEWialsUZmLvhepbORAYmjWY5Q3rp2b6eeJ5mWbU9KoJO+j33P21Vl6VitYgZQdmpVpxr2x9+ixrwePAh/Rekdr1nRaU6y7vgsCRSBTxCIx7ezb0c6+HUExQWxz38bGhxvxDvfGAnFqcZIOOsjRkSZn+LlcLidRmpi+KMjuTzri4ctx4iXxqj40WaKvpa/80dPUS/U6Jz9vg3VYejJr4ZPdVM/8RuhonDty03lcVSRKEum1vxd33t/BTM+MC0MuZNiiIjN+vforQbFB6GrqkiBJYIjDEKXbZHidnmy4mPUYpUuY5Hi7eUUsEjOw5kCWuS1jj8eeQilQAMqYlOHGqBuMPD6SA88O8O2pb3kc+JgVHVagpaGl7umpHEGgCGQba0Nr5jjNYVazWVx5c4ULN/4C76wDm/sfHoCHWINkWTJJ0iSSpEkkSBJIkCSoRTjoaOjkSCDkRlzoauqqLLtCWlHOzmuuBEYmZBCfAKZ6WsjkcqQyeYYVKwsKoWFg7khJ1c3o7yxC0c+lYfm8N/z7HKlMypCjQ3DxccFAy4Azg85QwyrnNUg8gz2V2X0JkgT0tfSxNrQmIiGCahbVmNmyByfvXc1w/+TIMNaTqXz/sssgh0Esc1vGSa+TRCVGqd3qmxH6Wvrs672PWla1WHB5AWvvr+V5yHMO9j2o7CxfXBAEikCOEYvEtCrfilY6ZuCddSrgq9BXPBfJslzu8/HFIjEaIg00xZpoijXR1tBW/uhq6qKrqYueph56WnoYaBlgoG2AoZYhRjpGGGkbYaxrjImOCcY6xpTQK4GprinmeuaU0C2BoY5hkarBktIhdcKuh4gg3Yt7RHwygzfdKRRpxykWlJikGGKSYop0xkFBktnf+fNOuKoUoHK5nPGnxnPo+SG0NbQ5NuAYjUo1ytU4089PRyKToK+lT1xyHFMbTuW/B/8BsLDFQrQ1NZX7p9i7T/uRkoo8r1MltQlsRxtHqlpU5UXIC456Hs23TsqqQCQSMd95PjWtajLk6BCuvLlCw40NOT7gOA7WDuqensooOldpgSJLaeNSRGtpI5FJSJImkSxNJlGaSIIkId2YDZlchkwuQ4KERGliOiPmHS2xlsI6oqWntJDoaemlspik+iydZdJbPr31VWF6TemQ+mUK55cERiYwYddDtaYdG+kYYaBlQGxyLIExgVQ0q6iWeRRFMvo72+ST8Pzh4g9serQJsUjM3t57c931+LjXcS54X0BDpEFcchw2hjZoa2gTnhBOVYuqyiyZDjVt+XeQIxP3uSKSfbKUSAnF0OIsAxvsz2gT+Y5IJGJQzUEsvLKQPR57CrVASaF71e64jXaj295u+Eb40mRzE3b12kWPqj3UPTWVIAgUgVzj4nORttlY7kN0AM0dh7DAeQEVSlRI9ZlMLiM+OV6Z7fLl/z/PhPn8dZrPsrF+Sr8PUPSKiUyMJDIxUsVHJS2aYs3sCZz0hNEXy/zYWxe/YF3WXEgkJjG9ahmK59JfTj6nbXUbtT2N2hja4B3uTUB0gCBQckiHmra0rW6TrU64eWHJjSUsvbUUgA1dNtCrWq9cjROfHM+M84rePFoaWkglUuY2m8vPV38G4EfnH1MVPxPrPeGt1ihsxH1pVaY/J723EK1xhj8a/pK3HVIBAx0GsvDKQi76XCQoJghrQ2t1TylLalrV5N7Ye/Q92JfLby7Tc39PfvvmN+Y3n1/km7AKAkUgx4THhzP57GQ8n+yjLVmb76VyKVvdt7LzyU6G1x7OAucFlDMtByjcOQbaChdNfiOTy0iUJGYoerIjkNITRBktk4JEJiE6KZropGiV7IeO1CHTdE05EBCZwF3fMLWlHdsa2SoEihCHkitSOuHmFxsfbOSHS4psm7/a/sXouqNzPdayW8t4E/EGQ21DYpJiqG5ZnaikKMITwqliXoX+NfqnWv7vK66UTNyIJpbc9AIzxmEs6YmlZv733smKimYVaViyIXff3+XAswNMaTRF3VPKFub65pwfcp7vzn/Hv/f+5cfLP/L041O2dNtSINfW/EIQKAI54vzr84w6MYoP0R+oL9JKPyDiC7b12MZsj92c9z7P5keb2f54O6McRzHfeT5lTMrk/6T/j1gkVlgnCqBY3OfZSZlafrJpFfp8mejIKiRno1GwOtOOhUyewsvBZwf59pSirs4PzX5gZtOZuR7rbeRbFt1QiOWEZMX59nOLnxl/ejyQ1npy6OFrXnq34Mti8hpY8OeJj5Q2DlB7ReRBNQdx9/1d9njsKTICBRTWq9WdVuNg7cCkM5M48OwAr0JfcWzAsQK9zqoSQaAIZIuYpBhmXZjF+gfrAahiXoWNbZfBwVEgySRORFOHWuVacs5xKG7+bvx05SdcfFzY8HADW923MrrOaOY1n5eq63FxQCQSKYN5UbEeym5BL3WmHQvVZAsnF7wvMPjIYOTIGVd3HH+2/jNP4828MJN4STxWBlZ8jP1Iq/KteB32mrD4MCqbV2ZAzQHKZRWVcp8BGoi+KE+Q8lrdrkmAfjX68d2F77j97jY+4T5p3NKFnXH1xlHVoiq9D/TmUeAjGmxswOF+h3Eq46TuqeWYot11SKBAuPH2BrXX11aKk2mNpvHw24c4VukCkx/AuKsZ/0x+AKYK8dGkdBMuDL3A9ZHXaVW+FcmyZNY/WE/F1RWZdHoS76LeqXM3iwxZdY4VoWgiqK50TQBrQ1t0pA64v9EstF2Xvzbc/N3oub8nybJk+tXox9rOa/MUo3DZ9zIHnx9ELBLzMfYjAL+0/IXlbssBWNB8QSrryV3fMKLjNdOIkxQ+d02qE1sjW1qVbwXA3qd71TqX3OJc1pn7Y+9Ty7qWQjhub8Xmh5vVPa0cIwgUgQxJkCQw22U2zlud8Qn3oYxJGS4Nu8SKDis+9eYwLQ12jhn/mKa1jDiVceLSsEtcHXGVluVakiRNYu39tdivsmfq2al8iP5QULtYJElJR4W0XU3yKx01J5zzCGCfa3Vskhbh+boxAzfexmmJK+c8BHePuvD46EHnPZ2JS46jnX07dvbcmaeuvRKZhKnnpgKfKgcPrTWUm29vEhofSiWzSgx0GJhqHff3PtkauzBURB5UcxAAu5/upgh2gwGgrGlZbo26Re9qvUmWJTPm5Bimnp2KRCZR99SyjSBQBNLlUcAj6m+oz1+3/kKOnBGOI3gy/onyyUIVOJd15vLwy1wefhnnss4kSZNYfXc19qvsmX5uuhC/kAkp6ag2JqndODYmumpNMU7pxhsVn/rml5L+LIiUgscn3Id2O9sRnhBOk1JNONLvCNoa2nkac929dXh89MBI24gP0R/Q0dBhrtNclrktA2CB84I0tYbuBmajjCyFoyJyr2q90NHQwTPEkydBT9Q9nVxjoG3Agb4H+KWlIkNq9d3VdNjVgbB49VqpsovQLFAgFRKZhMU3FvPL1V+QyCRYGVixsetGulXplq/blcvluPq68tOVn7jpr+jjo6upy4T6E5jTbE6RSPdTB1KZPN/TUXMyF6clrhnWaUmphHpjTiu1V7strnx5PpS2SKTF9ub4hPvgYOXA1RFXKaFXIk/bCI4NpvK/lYlIiMDawJqg2CB+aPYDJfRKMOfiHCqaVcRzkmcqgSKVSSnzT1lEwb+jiQXpdzQuXOdH7wO9OeJ5hNlNZ7Ok7RJ1TyfPHPE8wrCjw4hNjsW+hD0nBp6gumX1Ap9HTu7fgkARUOIV4sXwY8O58/4OoHiKWN95PZYG2WlVpxrkcjkXfS7y05WfcHvnBoCeph6TGkxiVrNZ+dpmXiBvFIZuvF8z5zwC0hR4E2lEEKSxBluLIG6MvKFsQ5AXxp0cx8aHGyltXBr/KH8s9C14/O1jHP9zJDgumG3dt6Upcnb+9Xk67O6AlUY79GOmpkn+S5Ej6rT+fcnh54fpc7APpY1L82b6G8Siou9weBL0hG57u+EX6YeRthG7e+2ma5WuBTqHnNy/i/4RF8gzMrmMVXdWUee/Otx5fwcTHRN29tzJob6HClScgCL7pa19W26Ousm5wedoVLIR8ZJ4lrkto/zK8sxxmUNIXEiBzkkge6i7G+/XTIpr7UvrlUxqjGXSPH5seFgl4uTBhwdsergJQFnXZ6GzovJqcFww9iXsGVxrcJr1tj3eBkC/upVZN6QuBrqpK0ir2zWZHp0qdcJYxxj/KH9uvr2p7umohFrWtbg39h7OZZ2JToqm+77uLL6xuNDG2QgC5SvnbeRb2u5sy7Rz04iXxNO2Qls8JnowpNYQtVYhFIlEtK/YHrfRbpwedJr6dvWJS45j6a2llFtRjrkX5xIal43e7QIFhjq78X7NKNJ3n2fQYFCMCBH/Xc57JpVcLmfK2SnIkVPTsiYRCRFUMqvEkFpDWHpTUZF2fvP5aWJPIhIiOOp5FIDhjsPpUNMWPbtFBGrPpUfjcPaObcyNOa0KlTgB0NPSU1bXTenIXBywNLDEZagL4+uNR46cuZfmMvjI4FTFJQsLgkD5SpHL5Wxz34bDOgdcfV3R19JnTac1nB9ynlLGpdQ9PSUikYhOlTpxd8xdTg48SV3busQmx7L45mLKrSzHAtcFRSbgq7hTFNKfiyN3fcMy7c8Eqknf3fVkF27v3NDX0ud12GsAFrdZzJZHWwiOC6a8aXmG1BqSZr0Dzw6QKE2khmUN6tnW433Uex4E3CNJw4Mf2rShib15oYg5SY+UbJ4Dzw+k2zesqKKtoc26LutY22ktmmJN9nrsxXmrs7LUg1Qmx807lOPu79VaJkAQKF8hQTFB9Njfg5HHRxKVGEWTUk1w/9adiQ0mFtreDSKRiC6Vu3B/7H2ODziOo40jMUkx/HH9D8qvLM/CywsJjw9X9zS/agp7+nNxpSBca9GJ0cy+OBuAahbVSJAm0Kx0M9rbt1f281ngvCDdxpjb3LcBMMJxBCKRiBNeJwBoVKqRMkW5sPJN+W+wNrAmLD4MF28XdU9H5UxoMAGXoS6Y65nzIOAB9TfUZ+WVqzgtcWXgxttM2+eu1jIBgkD5yjjieYSa62pywusEWmItFrVexPWR16lkXkndU8sWIpGIblW68XDcQ470O0It61pEJUbx27XfKL+yPD9f+ZmIhAh1T/OrpbCmPxdnCsK19tu13wiMCaSMcRkeBDwAYFm7ZWx4sIGPsR8pb1qeobWGplnPK8QLt3duaIg0GOygiE058VIhULpX6Z7r+RQUmmJNZS+hPR7Fx83zOS3LteTe2HvUtKpJVFQF/j4XTUBkfKpl1FUmQBAoXwkRCREMOzqM3gd6ExIXQi3rWtwfd58fnH7IU8EmdSESiehZrSePvn3Eob6HqGlVk8jESH65+gvlV5bnt6u/EZUYpe5pfpV0qGnLjTmt2Du2MSsHOBbaGIPiQn671rxCvFhxewUAFvoWgKIcfC3rWiy5qUi/ndd8XrrWk+2PtwPQoWIHbI1siU6MxtXXFSgaAgVgkIPCzXPsxTFik2LVPJv8oXyJ8lwfcZOS8mn/fyf12ZTi4Pnl5PMCdfcIAuUrwMXbBYd1Dux8shOxSMw8p3ncG3uPWta11D21PCMWieldvTePxz/mQJ8DVLesTkRCBAuvLKTcinL8ce0PohNV00VYIPukdOPt7liyUMcYFAfy07Uml8uZfn46ybJkGto15GHgoZpXHAAAG8VJREFUQ6XldcODDQTFBlHWpCzDag9Ls65UJmXnk50ADK+tSDs+9/ocSdIkKplVoqpF1RzPRx00LNmQCiUqEJccp3RPFUc8PySTnGxYqFoRCAKlGBObFMuk05Not6sd76LeUcmsEjdG3uCP1n/kuZJkYUMsEtO3Rl+ejH/C3t57qWpRlfCEcBZcXkC5leVYdH0RMUkx6p6mgEC+kF+utVMvT3Hu9Tm0xFpEJkYCMKnBJGwNbZXWk/nN56d7PXH1deVd1DtK6JZQ1to47nUcUFhPCmu825eIRCJlsGxxdfNA4SwTIAiUYsot/1s4/ufI2vtrAcVF5dG3j2hSuomaZ5a/aIg1GFBzAB4TPNjdazdVzKsQFh/GPNd5lF9ZnqU3lxZbM63A142qXWsJkgSmn58OQNsKbfEK9cJU15QFzgvY8GCDIibFpEyaomwppNQ+GVhzILqauiRLkzn96jQA3asWDfdOCilunnOvzxXb8gaFsUyAIFCKGYmSROZenEvzrc15HfaaUsalcBnqwr+d/sVA20Dd0yswNMQaDHIYxLOJz9jZcycVzSoSEhfCnItzKL+yPMtuLSuUef8CAnlBla61v93+xifcB1tDWx4GPgQU1hIDbYNPsSdO89K1nkQmRHLE8wigyN6RyuRsvH2FpJhaWGs50dCuca7npQ6qWVbD0cYRiUzCoeeH1D2dfKEwlgkQBEox4nHgYxpuasjim4uRyWUMqz2MpxOe0qZCG3VPTW1oiDUYUmsInpM82dZ9G/Yl7AmOC2aWyyzKryzPP27/EJ8cn/VAAgJfEe+i3vHH9T8AaFa6GYExgZQzLcfkhpPZ+GAjATEBlDYuzcg6I9Nd/+DzgyRIEqhmUY2QsFI4LXFl6ckkLJNnoxv1Ay3+ulrkGkcWdzdPYSwTIAiUYoBEJmHR9UU02NiAJ0FPsNS35Ei/I2zvsR1TXVN1T69QoCnWZLjjcF5MfsGWblsob1qej7Ef+e7Cd1RYVYGVt1cKQkVA4P/McplFXHIcDe0acvb1WQD+bPUnAItvLgYUmTsZxbKl1D5pbj2FibvTluAvit2tB9QcAMA1v2v4R/qreTb5Q2ErEyA0CyzivAp9xfBjw5WN9XpU7cF/Xf4TmuplQbI0mR2Pd/Dbtd/wi/QDwNbQlrlOcxlbbyy6mkI5doGvk2t+12ixrQUiRPSu3ptDzw/RwK4Bt8fcZu29tUw5O4VSxqV4PeU1Opo6adZ/FfqKyv9WRowm9TRP8zE6Od3tFLbuxdnBeasz199eZ2mbpcxqNkvd08k38rNLutAs8CtAJpex5u4aHP9zxO2dG8Y6xmzvsZ0j/Y4I4iQbaGloMbruaF5Oecl/Xf6jjEkZAmICmHpuKhVXVWTtvbUkShLVPU0BgQJFIpMw5ewUQFHrJKWHzrJ2y0iWJrP4hsJ6MtdpbrriBD7VPnGyGZ6hOAH1pK3mlZRg2eLq5kmhsJQJEARKEcQ/0p/2u9oz+exk4pLjaF2+NU8nPGVY7WFFJnWvsKCtoc24euN4NeUV6zqvo5RxKd5Hv2fSmUlUWl2J9ffXF6seHAICmbHhwQaeBD2hhG4JIhIikMqldKvSDeeyzmx+tJn30e8paVSS0XVGp7u+TC5jx+MdADS165itbRal7tZ9qvdBU6yJe6A7z4Ofq3s6xR5BoBQh5HI5Ox/vxGGdAxd9LqKnqceqDqu4MPQCZUzKqHt6RRptDW3G1x/P6ymvWdNpDXZGdvhH+TPh9AQqra7EhgcbBKEiUKwJjQtlgesCAIbVHsZ57/NoiDRY0mYJiZJEFt1YBGRuPbnsexn/KH9MdEzoUKVptrZblLpbW+hb0N6+PQB7n+5V82yKP4JAKSIExwbT+0Bvhh0bRmRiJI1KNsJ9vDtTGk1BLBL+jKpCR1OHiQ0m4j3Vm1UdVmFraMvbyLd8e+pbqvxbhc0PN5MszdhsLSBQVFnguoDwhHBqWdfixtsbAIyrN46qFlXZ8mgL76LeYWdkx+i66VtPIHXtE6eKNoUubVUVfO7mKYIhnEUK4c5WBDj+4jg11tbg6IujaIm1+KPVH9wYdYPK5pXVPbVii66mLlMaTcF7qjcr2q/AxtCGNxFvGHNyDFXXVGXro61IZBJ1T1NAQCU8CnjEfw/+A6B75e48CHiAkbYRP7f8OZX15IdmP2QYQB6VGMXh54cBRe2Twpi2qgq6VemGvpY+PuE+3H1/V93TKdYIAqUQE5kQyYhjI+ixvwfBccHUtKrJ3bF3mdd8HppiTXVP76tAT0uPaY2n4T3Vm7/b/Y2VgRU+4T6MOjGKqv9WZbv7dkGoCBRp5HI5U89NRY6cPtX7sOOJIoZkTrM5WBlYsc19G/5R/tga2jK23tgMxzn47CDxkniqmFehYcmGQOFLW1UFhtqGykaHe54W72BZdSMIlEKKq68rDusc2P54O2KRmDnN5nB/7H0cbRzVPbWvEn0tfWY0mYHPVB/+avsXlvqWeId7M+L4CKqvqc6uJ7uQyqTqnqaAQI7Z67GXG29voK+lTxXzKvhF+lHSqCQzmswgSZrEnzcU9U9+cMrYegKfsndGOI5IFaxfHLtbp7h59j/bLzyg5COCQClkxCXHMfXsVFrvaI1/lD/2Jey5NuIai9sszjAwTaDgMNA2YGbTmfhO82VJmyWY65nzKuwVQ48OpcbaGux5ukcQKgJFhpikGGa5KOp5TG80nTX31gDwe6vf0dfSZ5v7Nt5GvsXG0IaxdTO2nrwOe831t9cRi8QMrTU0zeeFJW1VVbSzb4eZnhlBsUFceXNF3dMptggCpRBx590d6vxXh9V3VwMwof4E3Me706xMMzXPTOBLDLQNmN1sNr7TfPmz1Z+Y6ZnhFerF4CODcVjnwD6PfcjkMnVPU0AgU/649gcfoj9QoUQFohKjiEiIoJZ1LYbWGqqwnlz/v/Wk2Q/oaellOE5KanHbCm0paVyyQOauTrQ1tOlbvS8guHnyE0GgFAKSpEkscF1A0y1NeRn6EjsjO84NPsfazmsx1DZU9/QEMsFIx4i5zefiO82X37/5nRK6JfAM8WTg4YHUWleLg88OCkJFoFDyKvQVf9/+G4DZTWcrg2SXtV2GhliD7e7b8Yv0w8bQhnH1xmU4jkwuU7p3htdOv7NxcSTFzXPY8zAJkqJTy6UoIQgUNfM06CmNNjXij+t/IJPLGOwwGI8JHrSv2F7dUxPIAcY6xsx3no/vNF9+bfkrprqmPAt+Rr9D/XBc78jh54cFoSJQqJhxXhFj0qFiBy76XCRZlkx7+/a0tW9LsjRZGXsyu+nsTK0nV99c5W3kW4x1jOlRtUcBzV79OJVxopRxKaISozjz6oy6p1MsEQSKmpDKpCy9uZT6G+vjHuiOuZ45B/seZFevXZTQK6Hu6QnkEhNdE35s8SO+03z5qcVPGOsY8/TjU/oc7EPd/+py1POoUDtBQO2cfnma069OoynWZETtERzyPIRYJOavtn8BCpfNm4g3WBtY8239bzMdK6X2yYAaAzIVMsUNsUjMwJoDAcHNk18IAkUNeId502JbC+ZcnEOSNImulbviMdGDPtX7qHtqAirCVNeUn1v+zJtpb/jR+UeMtI14HPSYXgd6UW9DPU54nRCEioBaSJQkMv38dACmNZqmjHkbUXsEDtYOJEuT+f367wDMbjYbfS39DMeKTozm0PNDivUdR+TrvAsjKW6eUy9PEZkQqebZFD8EgVKAyOVy1t9fT+31tbnpfxMjbSO2dNvC8QHHsTG0Uff0BPKBEnol+PWbX3kz/Q3zm8/HUNuQR4GP6L6vOw02NuDUy1OCUBEoUP52W4F/sB52mt0wFtXn5ls39LX0+fWbXwHY+WQnbyLeYGVgxfj64zMd69DzQ8Qlx1HJrBKNSzUuiOkXKmpb16aaRTUSJcn8ffUUx93f4+YdilQmfKdVgUheBK+OOWnXXFh4H/We0SdGc977PAAty7Vka/etlDMtp96JCRQoIXEhLL+1nNV3VxObHAtAA7sG/NzyZzpW7Cg0exTIV/bce86cI/fQkFso35MQTGvHcLYPmEGyNJmqa6riE66o9zOz6cxMx2u5rSVX/a7yR6s/mNd8Xn5Pv1Ay+sBqzj80QhNL5Xu2Jrr81LV6ka71kl/k5P4tCJR8Ri6Xs+fpHiafnUxEQgS6mrosbr1Y6KHzlRMcG8yyW8v4996/xCXHAdCoZCN+afkL7ezbCUJFQOWc8whg/K4HyAHRZ8Xn5cgQI2bdkLoESs4z8vhILPUt8Z3mi4G2QYbj+YT7YL/KHhEi/Kb7UdqkdAHsReFCcUwfIkee6pim/K+oVsvNT3Jy/xbukPlISFwI/Q71Y8jRIUQkRNDArgGPvn3EtMbTBHHylWNpYMmStkvwnebLzCYz0dPU4877O3TY3YFmW5rh4u0iuH4EVIZUJmfe0UdpxAmA6P+3gV9OPue3q38AMKvprEzFCXyqfdKmQpuvUpxIZXJ+OfkcSHtMU765v5x8Lrh78oBwl1QBUpkcN+/QVP7HUy9PUXNtTQ49P4SmWJNfW/7KrdG3qGpRVd3TFShEWBlY8Ve7v/CZ5sOMxjPQ1dTF7Z0b7Xa1o/nW5lzyuZRKqKR3rgkIZMVtn2DCYuVpbqQpyIGAyATeh+phoW/BxAYTMx3va6198jl3fcMIiMy4/knKMb3rG1ZwkypmCB3n8sg5jwB+Ofk81Ymqox2HP/8QrxFEdcvq7Oy5k7q2ddU4S4HCjo2hDX+3/5tZTWex5OYS1t9fz03/m7TZ2Qbnss780vIXEmKqpDnXBF+3QHbY/+QcYJ7lchryEsxsMjhL68l1v+u8iXiDkbYRPav1VNEsixYfo7NXnC27ywmkRbCg5IFzHgFM2PUwjYpOSNLFMmkeA+wX82DcA0GcCGQbWyNbVnRYgc80H6Y0nIK2hjbX/K7Racs8xu96kOZcC4xMYMKuh5zzCFDTjAUKO2HxYez33JCtZQ11pUxqOCnL5VJqn/Sv0T/TNOTijJVRxo0Tc7OcQFoEgZJLUvyP6RnYRYgRIeKNf320xEKDP4GcY2dkx6qOq/Ce6s2EehMxT/423XNN8HULZMXCywv5mOyGSCMiAwcPgBwJwUxz7pJhe40U9+KB+z4ce/wM5OKvsvZJCg3Lm2FropvhMRWhsHA2LG9WkNMqVggCJZdk5X8Ewf8okHdKGZdiaLVf0ZBbZBk/IJxrAl/yJOgJ6+6vA5GMia2sANI5i+TIgWTDvUzJwHpyziMApyWuDNx4m9mHPDGJ+4mySduJiqyQn9Mv1GiIRfzUtTqQ9pimvP6pa/Ui37lZnQgCJZcI/keBgkI41wRyg1wuZ8rZKcjkMvpW78us1m1ZN6QuNiZfuBw0IgjW/pNpLVpgpGOUZpyMXNnITJm4++t2L3aoaZvuMbUx0RVSjFWAECSbSwT/o0BBIZxrAtlFKpNz1zeMj9EJPAtx49qbG+hp6bGs3TJAcUNtVdWanW5v8AuLIyTxBeuejcTMwJjJDc+lO15GruwUO8EvJ5/TtrrNV2sp6FDTlrbVbZTH3cpI4db5Wo+HKhEESi5J8T8GRiZkEIeiUNGC/1EgrwjnmkB2SJtRqEdJNtO+WjRlTMpkssxGOtSIwVgnbdGsnKTSNrHPOkuouKIhFn3V+59fCC6eXCL4HwUKCuFcE8iKjNwwmljg+qgC5zwCMlxGA3MuPSyfrqtGcC8KqBNBoOQBwf8oUFAI55pARmTXDfPziWcZZh2mLPNlJpjgXhRQJ4KLJ48I/keBgkI41wTSI7tumMzIyFUjuBcF1IkgUFSA4H8UKCiEc03gS1TpXvlyrBT34oRdDxFBKpEiuBcF8hvBxSMgICBQhFGleyW9sQT3ooC6ECwoAgICAkWY7Lph5HI5QVGJuXLVCO5FAXUgCBQBAQGBIkx23TBAnlw1gntRoKBRq4tnzZo1lCtXDl1dXRo1asTdu3fVOR0BAQGBIkl23DCCq0agqCGSy+Vq6TC2f/9+hg0bxvr162nUqBErVqzg4MGDeHl5YWVllem6UVFRmJiYEBkZibFx2uJCAgICAl8jn1eSzcgNk51lBATyi5zcv9UmUBo1akSDBg34999/AZDJZJQuXZopU6bwww8/pFo2MTGRxMRE5euoqChKly4tCBQBAQEBAYEiRE4EilpcPElJSTx48IA2bdp8mohYTJs2bXBzc0uz/KJFizAxMVH+lC5duiCnKyAgICAgIFDAqEWghISEIJVKsba2TvW+tbU1gYGBaZafO3cukZGRyh9/f/+CmqqAgICAgICAGigSWTw6Ojro6OioexoCAgICAgICBYRaLCgWFhZoaGgQFBSU6v2goCBsbGzUMSUBAQEBAQGBQoRaBIq2tjb16tXj0qVLyvdkMhmXLl2iSZMm6piSgICAgICAQCFCbS6e7777juHDh1O/fn0aNmzIihUriI2NZeTIkeqakoCAgICAgEAhQW0CpX///gQHB7Nw4UICAwNxdHTk3LlzaQJnBQQEBAQEBL4+1FYHJS8IhdoEBAQEBASKHoW+DoqAgICAgICAQGYUiTTjL0kx+kRFRal5JgICAgICAgLZJeW+nR3nTZEUKNHR0QBCRVkBAQEBAYEiSHR0NCYmJpkuUyRjUGQyGR8+fMDIyAiRKHtNrlL69/j7+wtxKwWIcNzVg3Dc1YNw3NWDcNzVQ26Ou1wuJzo6Gjs7O8TizKNMiqQFRSwWU6pUqVyta2xsLJzAakA47upBOO7qQTju6kE47uohp8c9K8tJCkKQrICAgICAgEChQxAoAgICAgICAoWOr0ag6Ojo8NNPPwlNBwsY4birB+G4qwfhuKsH4birh/w+7kUySFZAQEBAQECgePPVWFAEBAQEBAQEig6CQBEQEBAQEBAodAgCRUBAQEBAQKDQIQgUAQEBAQEBgUKHIFAEBAQEBAQECh1fjUBZs2YN5cqVQ1dXl0aNGnH37l11T6nYsGjRIho0aICRkRFWVlb06NEDLy+vVMskJCQwadIkzM3NMTQ0pHfv3gQFBalpxsWTxYsXIxKJmD59uvI94bjnD+/fv2fIkCGYm5ujp6eHg4MD9+/fV34ul8tZuHAhtv9r735DmtrDOIB/1bmpiC4TN61mqwQrK8yhTYNeOMiSioIgGbH+UFhKWlBJ4qswhSCoXhQF2YssSVArKUI2swSdutQySw0lI5xSslSUrJ3nvjvc3boXvUvPPD0fGOjv98B5+P7g+MB2XHQ0goODYTKZ0NfXJ2HHC5/b7UZRURH0ej2Cg4OxcuVKnD9/3uNL5zh37z1//hw7duxATEwM/Pz8UFNT47E/k4xHR0dhNpsRFhYGtVqNw4cPY2JiYvbN0B+goqKClEol3bp1i968eUNHjhwhtVpNw8PDUrcmC1u3bqWysjLq6uqijo4O2r59O+l0OpqYmBBrsrOzadmyZWS1WqmtrY02bdpEqampEnYtLy0tLbR8+XJav3495eXlieuc++83OjpKsbGxdODAAbLb7dTf309Pnz6l9+/fizWlpaUUHh5ONTU11NnZSTt37iS9Xk9TU1MSdr6wFRcX0+LFi6m2tpYGBgaosrKSQkND6fLly2IN5+69x48fU2FhIVVVVREAqq6u9tifScYZGRm0YcMGam5uphcvXtCqVasoKytr1r38EQNKcnIy5eTkiL+73W6KiYmhkpISCbuSr5GREQJADQ0NRETkcrkoMDCQKisrxZq3b98SAGpqapKqTdkYHx+nuLg4qquroy1btogDCuc+N86ePUubN2/+131BEEir1dLFixfFNZfLRSqViu7duzcfLcpSZmYmHTp0yGNtz549ZDabiYhznwv/HFBmknF3dzcBoNbWVrHmyZMn5OfnR58+fZrV9WX/Fs/09DQcDgdMJpO45u/vD5PJhKamJgk7k6+vX78CACIiIgAADocD379/9ziD+Ph46HQ6PoPfICcnB5mZmR75Apz7XHn48CEMBgP27t2LqKgoJCYm4ubNm+L+wMAAnE6nR+7h4eFISUnh3L2QmpoKq9WK3t5eAEBnZycaGxuxbds2AJz7fJhJxk1NTVCr1TAYDGKNyWSCv78/7Hb7rK63IL/NeDY+f/4Mt9sNjUbjsa7RaPDu3TuJupIvQRCQn5+PtLQ0JCQkAACcTieUSiXUarVHrUajgdPplKBL+aioqMDLly/R2tr60x7nPjf6+/tx7do1nDp1CufOnUNraytOnDgBpVIJi8UiZvurew7n/v8VFBRgbGwM8fHxCAgIgNvtRnFxMcxmMwBw7vNgJhk7nU5ERUV57CsUCkRERMz6HGQ/oLD5lZOTg66uLjQ2Nkrdiux9/PgReXl5qKurQ1BQkNTt/DEEQYDBYMCFCxcAAImJiejq6sL169dhsVgk7k6+7t+/j/Lycty9exdr165FR0cH8vPzERMTw7nLlOzf4omMjERAQMBPTy4MDw9Dq9VK1JU85ebmora2FvX19Vi6dKm4rtVqMT09DZfL5VHPZ+Adh8OBkZERbNy4EQqFAgqFAg0NDbhy5QoUCgU0Gg3nPgeio6OxZs0aj7XVq1djcHAQAMRs+Z7ze50+fRoFBQXYt28f1q1bh/379+PkyZMoKSkBwLnPh5lkrNVqMTIy4rH/48cPjI6OzvocZD+gKJVKJCUlwWq1imuCIMBqtcJoNErYmXwQEXJzc1FdXQ2bzQa9Xu+xn5SUhMDAQI8z6OnpweDgIJ+BF9LT0/H69Wt0dHSIL4PBALPZLP7Muf9+aWlpPz1G39vbi9jYWACAXq+HVqv1yH1sbAx2u51z98Lk5CT8/T3/ZAUEBEAQBACc+3yYScZGoxEulwsOh0OssdlsEAQBKSkps7ugVx/xXSAqKipIpVLR7du3qbu7m44ePUpqtZqcTqfUrcnCsWPHKDw8nJ49e0ZDQ0Pia3JyUqzJzs4mnU5HNpuN2trayGg0ktFolLBrefr7UzxEnPtcaGlpIYVCQcXFxdTX10fl5eUUEhJCd+7cEWtKS0tJrVbTgwcP6NWrV7Rr1y5+3NVLFouFlixZIj5mXFVVRZGRkXTmzBmxhnP33vj4OLW3t1N7ezsBoEuXLlF7ezt9+PCBiGaWcUZGBiUmJpLdbqfGxkaKi4vjx4z/y9WrV0mn05FSqaTk5GRqbm6WuiXZAPDLV1lZmVgzNTVFx48fp0WLFlFISAjt3r2bhoaGpGtapv45oHDuc+PRo0eUkJBAKpWK4uPj6caNGx77giBQUVERaTQaUqlUlJ6eTj09PRJ1Kw9jY2OUl5dHOp2OgoKCaMWKFVRYWEjfvn0Tazh379XX1//yfm6xWIhoZhl/+fKFsrKyKDQ0lMLCwujgwYM0Pj4+6178iP72b/gYY4wxxnyA7D+DwhhjjLGFhwcUxhhjjPkcHlAYY4wx5nN4QGGMMcaYz+EBhTHGGGM+hwcUxhhjjPkcHlAYY4wx5nN4QGGMMcaYz+EBhTHGGGM+hwcUxhhjjPkcHlAYY4wx5nP+AuobtxctQaZ3AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAANECAYAAADlu5NRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUVxfG33WJKzEIIUASNJDikkCA4CS4FELQ4lChUMPaYh9tkVK0wdvi1uJW3D0EgiRo3HWzu/f7Y7tDNrubnY1uwv097BN29s7MnZk7d84759xzOYQQAgqFQqFQKBQKhUKhUCgUCoVCoVAolA8AbkVXgEKhUCgUCoVCoVAoFAqFQqFQKBQKpbygjhEKhUKhUCgUCoVCoVAoFAqFQqFQKB8M1DFCoVAoFAqFQqFQKBQKhUKhUCgUCuWDgTpGKBQKhUKhUCgUCoVCoVAoFAqFQqF8MFDHCIVCoVAoFAqFQqFQKBQKhUKhUCiUDwbqGKFQKBQKhUKhUCgUCoVCoVAoFAqF8sFAHSMUCoVCoVAoFAqFQqFQKBQKhUKhUD4YqGOEQqFQKBQKhUKhUCgUCoVCoVAoFMoHA3WMUCgUCoVCoVAoFAqFQqFQKBQKhUL5YKCOkSpKdHQ0OBwONm3axCybO3cuOByORrmaNWti5MiRZV6fkSNHombNmmW+n+Ki63x9aAQEBKBBgwYVXY1isWnTJnA4HERHRxu9rq77oqwJCAhAQEBAue4TYN/O1efzxo0b5VMxE6U416lmzZro2bOnwXJnz54Fh8PB2bNnja6Xet3du3cbvS5bTL3PphgPvaYUCoVCNZKxUI1U9SmJTVoSDVZcKvKe4XA4mDt3bpFlysNOrwwU5zqxfR9Rkn5Jve7//vc/o9dlS0W8X6CULRXR11HKD+oYKUfUN5Ouz6xZsyq6egCAiIgIzJ07t8re8Dt27MAvv/xS0dWgUCiUDw6lUoklS5bAw8MDYrEYjRo1wh9//MF6/dTUVIwbNw4ODg4wMzNDhw4dcOvWLY0yajGq7/PDDz+U9mF9sGRkZGDmzJnw8PCASCSCq6sr+vfvj+zsbK2yJ0+eRMeOHWFlZQULCwv4+fnhr7/+0iiTmZmJ6dOnw83NDSKRCD4+Pvjtt9+0tlWULRUbG6tRNjc3FwsXLkS9evUglUrh6uqKAQMG4OHDh6V7MigUSomgGqniqawa6ccff8T+/fsruhoUCoVS5mzcuBE+Pj4Qi8WoU6cOVq5cyWq9zMxMzJkzB127doWtra1Bp9KqVavg4+PD2PeffvopsrKySukoKIBKF//222/w9fWFRCKBnZ0dOnbsiLt372qVffbsGYYOHQpHR0dIJBLUqVMHX3/9tVY5NtdN7RjU9fnzzz+1trlz5060bNkS1tbWsLOzg7+/P/7+++/SOxEmAr+iK/AhMn/+fHh4eGgsK+1IfXd3d+Tk5EAgEBRZ7vHjx+By3/vHIiIiMG/ePAQEBJh09FJx2bFjBx48eIDp06drLGd7vigUyofD8ePHy2zb7du3R05ODoRCYZntoySsX78eSqWyVLf59ddfY9GiRRg7diyaNWuGAwcOYOjQoeBwOBg8eHCR6yqVSvTo0QN3797FF198AXt7e6xevRoBAQG4efMm6tSpAwDw8fHB1q1btdbfunUrjh8/ji5dupTqMX2opKWlwd/fH69fv8a4ceNQu3ZtJCQk4Pz588jLy4NUKmXKhoeHY/To0ejcuTN+/PFH8Hg8PH78GK9evWLKKBQKBAUF4caNG5g0aRLq1KmDY8eOYeLEiUhJScFXX32lVQddtpS1tbXG92HDhuHgwYMYO3YsmjZtirdv3+LXX39Fq1atcP/+fbi7u5fuiaFQKCWCaqSKo7JqpB9//BH9+/dHcHBwRVeFQqEUoCy0hBpT75e++eabUnfqr127Fp988gn69euHTz/9FOfPn8fUqVORnZ2NL7/8ssh1ExMTMX/+fNSoUQONGzcucnTYl19+iSVLlqB///6YNm0aIiIisHLlSjx8+BDHjh0r1WP6kBk1ahS2b9+OESNGYPLkycjKysLt27cRHx+vUe7OnTsICAiAq6srPvvsM9jZ2eHly5caOgow/roNGTIE3bt311jWqlUrje8rV67E1KlT0aNHDyxatAi5ubnYtGkTevbsiT179qBv376ldDYqHuoYqQC6deuGjz76qEz3weFwIBaLDZYTiURlWo/KAtvzRaFQPhzK0mnB5XJNus8pbaHx5s0bLFu2DJMmTcKqVasAAGPGjIG/vz+++OILDBgwADweT+/6u3fvxqVLl7Br1y70798fADBw4EDUrVsXc+bMwY4dOwAA1apVw8cff6y1/rx581CnTh00a9asVI/rQ2X27NmIiYnBrVu3NF5iFhZm0dHRmDRpEqZMmYLly5fr3d7evXtx6dIlbNy4EaNGjQIATJgwAf3798eCBQswZswYODo6aqxjyJZ68+YN9u7di88//xxLly5llrdr1w4dO3bE3r17MWPGDKOOm0KhlC1UI5keVUkjZWVlwczMrKKrQaF8EJSl08LU+yU+nw8+v/Retebk5ODrr79Gjx49mBRtY8eOhVKpxIIFCzBu3DjY2NjoXd/Z2Rnv3r2Dk5MTbty4oVcPvXv3Dj/99BOGDx+OLVu2MMvr1q2LKVOm4NChQ+jVq1epHdeHys6dO7F582bs3bsXISEhessplUoMHz4c3t7eOHPmDCQSic5yxbluTZs21amZC7Jy5Uo0a9YMhw4dYlLDjRo1Cq6urti8eXOVcozQVFomRExMDCZOnAgvLy9mONWAAQN0DtlOTU3FjBkzULNmTYhEIri5uWHEiBFITEwEwD7vYsH8uZs2bcKAAQMAAB06dGCGVJ09exahoaGwt7dHfn6+1ja6dOkCLy8vo483KysLn332GapXrw6RSAQvLy/873//AyFEq+y2bdvQvHlzSKVS2NjYoH379hrR3AcOHECPHj3g4uICkUgET09PLFiwAAqFgikTEBCAv//+GzExMcyxqSO+9J2v06dPo127djAzM4O1tTX69OmDR48eaZRR55B8+vQpRo4cCWtra1hZWSEsLExnSpGCrFixAjweD6mpqcyyZcuWgcPh4NNPP2WWKRQKWFhYaLx0UiqV+OWXX1C/fn2IxWJUq1YN48ePR0pKisY+2JwbfRw/fhxSqRRDhgyBXC7XW06dD/TevXvw9/eHVCpF7dq1mQf3uXPn0KJFC0gkEnh5eeHkyZNa27h9+za6desGS0tLmJubIzAwEFeuXNEq9/DhQ3Ts2BESiQRubm74/vvv9UajHDlyhLl+FhYW6NGjR7FTqERFRaFfv35wcnKCWCyGm5sbBg8ejLS0NKaMXC7HggUL4OnpCZFIhJo1a+Krr75CXl6e3u3GxcWBz+dj3rx5Wr89fvwYHA6HeZEMqO796dOnM/dN7dq1sXjxYq1zkJqaipEjR8LKygrW1tYIDQ3VaGdsyM7Oxvjx42FnZwdLS0uMGDFCo32VtF84f/48BgwYgBo1akAkEqF69eqYMWMGcnJyNMqNHDkS5ubmeP78OYKCgmBmZgYXFxfMnz9fo78omDP2559/hru7OyQSCfz9/fHgwQONbcbGxiIsLIxJ2+Ps7Iw+ffpo9LclmQvmwoULaN68OcRiMWrVqqVhpAD68zn/+uuvqFWrFiQSCZo3b47z58/rrYdSqcQPP/wANzc3iMViBAYG4unTpxpl2LRbXRTOC1zw3K5bt45p482aNcP169cNno8DBw4gPz8fEydOZJZxOBxMmDABr1+/xuXLl4tcf/fu3ahWrZqGAebg4ICBAwfiwIEDRd5j165dw9OnTzFs2DCD9czPz2ecKGKxGHZ2dmjbti1OnDihUS4yMhL9+/eHra0txGIxPvroIxw8eFBre4ae1QAQHx+P0aNHo1q1ahCLxWjcuDE2b96ssR1jz//+/fvRoEEDiMViNGjQAPv27dN5vH/++Sf8/PxgYWEBS0tLNGzYsEgHhvqYwsPDMW7cOHh4eEAmk+k9/2vWrIFCocD8+fMBqIby63rGnz9/HgC0Rg4NHjwYubm5OHDggM7tZ2Rk6H2WZWRkAFA5ywri7OwMAHrFBYVCMT2oRvrwNBJg2IbhcDjIysrC5s2bmXqrr5l63xERERg6dChsbGzQtm1bAOztdfW8cYZsOgCMBiqoT8LDw1nlpFfbuS9fvkTPnj1hbm4OV1dX/PrrrwCA+/fvo2PHjjAzM4O7uzsTDFKQ58+fY8CAAbC1tYVUKkXLli11pjt5/fo1goODYWZmBkdHR8yYMUPvM/zq1avo2rUrrKysIJVK4e/vj4sXLxZ5LPpgY3cDwOrVq1G/fn2IRCK4uLhg0qRJReqX/Px82NraIiwsTOu39PR0iMVifP7558yyvLw8zJkzB7Vr12a0x8yZM7XOQV5eHmbMmAEHBwdYWFigd+/eeP36tVHHrFAo8NVXX8HJyQlmZmbo3bu3RpT3nDlzIBAIkJCQoLXuuHHjYG1tjdzcXL3bv3fvHkaOHIlatWpBLBbDyckJo0aNQlJSkkY59b0QGRmJgQMHwtLSEnZ2dpg2bZrW9jkcDiZPnozt27fDy8sLYrEYfn5++PfffzXKZWRkYPr06Uw/6+joiM6dO2ukuC3JXDARERHo0KEDkwZ1yZIlGr/r65d27dqFevXqadi/RdXDkE3Ntt0WRtccI+pzq7bRRSIR6tevj6NHjxo8H2fOnEFSUpKGjgKASZMmISsry2BqI5FIBCcnJ4P7uXz5MuRyuU57HIDOVEuFYaMt2L7PUCqVWL58ORo2bAixWAwHBwd07dpVYx7UsujP2b5vunHjBoKCgmBvbw+JRAIPDw8mwKsofvrpJzRv3hwhISFQKpV605QdP34cDx48wJw5cyCRSJCdna1T9xT3umVlZUEmk+mtZ3p6OhwdHTXasvpdXVXTUXTESAWQlpam8VIEAOzt7XH9+nVcunQJgwcPhpubG6Kjo/Hbb78hICAAERERTGqKzMxMtGvXDo8ePcKoUaPQtGlTJCYm4uDBg3j9+jXs7e2LVa/27dtj6tSpWLFiBb766iv4+PgAUKUmUXsfjx07pjGxcGxsLE6fPo05c+YYtS9CCHr37o0zZ85g9OjR8PX1xbFjx/DFF1/gzZs3+Pnnn5my8+bNw9y5c9G6dWvMnz8fQqEQV69exenTp5m0KJs2bYK5uTk+/fRTmJub4/Tp0/juu++Qnp7ORIp+/fXXSEtLw+vXr5ntm5ub663jyZMn0a1bN9SqVQtz585FTk4OVq5ciTZt2uDWrVtaD9iBAwfCw8MDCxcuxK1bt7BhwwY4Ojpi8eLFevfRrl07KJVKXLhwgTmv58+fB5fLZV4UASqnQWZmJtq3b88sGz9+PDZt2oSwsDBMnToVL168wKpVq3D79m1cvHiRidJgc250cfjwYfTv3x+DBg3C77//XmQ0NwCkpKSgZ8+eGDx4MAYMGIDffvsNgwcPxvbt2zF9+nR88sknGDp0KJYuXYr+/fvj1atXsLCwAKB6+LRr1w6WlpaYOXMmBAIB1q5di4CAAMapAqjaW4cOHSCXyzFr1iyYmZlh3bp1OjvmrVu3IjQ0FEFBQVi8eDGys7Px22+/oW3btrh9+7ZRhppMJkNQUBDy8vIwZcoUODk54c2bNzh8+DBSU1NhZWUFQBUBv3nzZvTv3x+fffYZrl69ioULF+LRo0d6X0xWq1YN/v7+2Llzp9Z99Ndff4HH4zFiPDs7G/7+/njz5g3Gjx+PGjVq4NKlS5g9ezbevXvH5IYmhKBPnz64cOECPvnkE/j4+GDfvn0IDQ1lfcwAMHnyZFhbW2Pu3Ll4/PgxfvvtN8TExDAv9UvaL+zatQvZ2dmYMGEC7OzscO3aNaxcuRKvX7/Grl27NMoqFAp07doVLVu2xJIlS3D06FHMmTMHcrmceemqZsuWLcjIyMCkSZOQm5uL5cuXo2PHjrh//z7zkrRfv354+PAhpkyZgpo1ayI+Ph4nTpzAy5cvS5wi4+nTp+jfvz9Gjx6N0NBQ/P777xg5ciT8/PxQv359vev99ttvmDx5Mtq1a4cZM2YgOjoawcHBsLGxgZubm1b5RYsWgcvl4vPPP0daWhqWLFmCYcOG4erVqwDYt1tj2LFjBzIyMjB+/HhwOBwsWbIEffv2xfPnz4uMDLt9+zbMzMyY54qa5s2bM7+rX1joW79p06YaaU3U669btw5PnjxBw4YNda67fft2AGDlGJk7dy4WLlyIMWPGoHnz5khPT8eNGzdw69YtdO7cGYCqv2rTpg1cXV2Zfmjnzp0IDg7Gnj17mMgfNs/qnJwcBAQE4OnTp5g8eTI8PDywa9cujBw5EqmpqZg2bZpG/dic/+PHj6Nfv36oV68eFi5ciKSkJEbUFeTEiRMYMmQIAgMDmefUo0ePcPHiRa39FuTChQvIzc1F7dq10b9/f+zfvx9KpRKtWrXCr7/+Cl9fX6bsyZMn4e3tjX/++Yd5vtvY2GDSpEmYN28ecz3z8vLA4/G0Rmmp7Z6bN29i7NixGr916NABmZmZEAqFCAoKwrJly5iUagDg6ekJNzc3LFu2DF5eXmjSpAnevn3LzItiKH0bhUIpf6hGohpJDRsbZuvWrczzety4cQBUfX9BBgwYgDp16uDHH39kHEvG2OtsbLo3b94wDrPZs2fDzMwMGzZsMGrUkUKhQLdu3dC+fXssWbIE27dvx+TJk2FmZoavv/4aw4YNQ9++fbFmzRqMGDECrVq1YkZsxsXFoXXr1sjOzsbUqVNhZ2eHzZs3o3fv3ti9ezdjl+Tk5CAwMBAvX77E1KlT4eLigq1bt+L06dNa9Tl9+jS6desGPz8/zJkzB1wuF+Hh4ejYsSPOnz/P2G9sYWN3z507F/PmzUOnTp0wYcIERntcv35dQ9sWRCAQICQkBHv37sXatWs17Ij9+/cjLy+Ped4rlUr07t0bFy5cwLhx4+Dj44P79+/j559/xpMnTzTmqhkzZgy2bduGoUOHonXr1jh9+jR69Ohh1DH/8MMP4HA4+PLLLxEfH49ffvkFnTp1wp07dyCRSDB8+HDMnz8ff/31FyZPnsysJ5PJsHv3bvTr16/IUREnTpzA8+fPERYWBicnJzx8+BDr1q3Dw4cPceXKFa0X8wMHDkTNmjWxcOFCXLlyBStWrEBKSorWi+Fz587hr7/+wtSpUyESibB69Wp07doV165dY1IbfvLJJ9i9ezcmT56MevXqISkpCRcuXMCjR4/QtGlTo85TYVJSUtC1a1f07dsXAwcOxO7du/Hll1+iYcOG6Natm971/v77bwwaNAgNGzbEwoULkZKSgtGjR8PV1VVneTY2dWnrxQsXLmDv3r2YOHEiLCwssGLFCvTr1w8vX76EnZ2d3vVu374NAFojKv38/MDlcnH79m2D0f9sUDsTCr9bKWiPFwUbbcH2fQYAjB49Gps2bUK3bt0wZswYyOVynD9/HleuXGHORWn352zfN8XHx6NLly5wcHDArFmzYG1tjejoaOzdu7fIc5Seno5r165h4sSJ+Oqrr7By5UpkZmbCw8MDixYtwsCBA5my6mBikUiEjz76CDdv3oRQKERISAhWr14NW1vbYl+3efPm4YsvvgCHw4Gfnx9++OEHrZTTAQEB2L17N1auXIlevXohNzcXK1euRFpaWpFasVJCKOVGeHg4AaDzQwgh2dnZWutcvnyZACBbtmxhln333XcEANm7d69WeaVSSQgh5MWLFwQACQ8PZ36bM2cOKXzJ3d3dSWhoKPN9165dBAA5c+aMRjmFQkHc3NzIoEGDNJb/9NNPhMPhkOfPnxd57KGhocTd3Z35vn//fgKAfP/99xrl+vfvTzgcDnn69CkhhJCoqCjC5XJJSEgIUSgUOo+VEN3nbvz48UQqlZLc3FxmWY8ePTTqoUbX+fL19SWOjo4kKSmJWXb37l3C5XLJiBEjmGXq8zpq1CiNbYaEhBA7OzsdZ+M9CoWCWFpakpkzZzLHZGdnRwYMGEB4PB7JyMgghKjOM5fLJSkpKYQQQs6fP08AkO3bt2ts7+jRo1rL2Z4bf39/Ur9+fUIIIXv27CECgYCMHTtW67zrwt/fnwAgO3bsYJZFRkYSAITL5ZIrV64wy48dO6Z1roODg4lQKCTPnj1jlr19+5ZYWFiQ9u3bM8umT59OAJCrV68yy+Lj44mVlRUBQF68eEEIISQjI4NYW1uTsWPHatQzNjaWWFlZaSzXdV8U5vbt2wQA2bVrl94yd+7cIQDImDFjNJZ//vnnBAA5ffo0s8zf35/4+/sz39euXUsAkPv372usW69ePdKxY0fm+4IFC4iZmRl58uSJRrlZs2YRHo9HXr58SQh5f38tWbKEKSOXy0m7du20zr0u1H2Vn58fkclkzPIlS5YQAOTAgQOEkJL3C7ra5sKFCwmHwyExMTHMstDQUAKATJkyhVmmVCpJjx49iFAoJAkJCYSQ9/exRCIhr1+/ZspevXqVACAzZswghBCSkpJCAJClS5cWWb/C14kN7u7uBAD5999/mWXx8fFEJBKRzz77jFl25swZjb42Ly+P2NnZkWbNmpH8/Hym3KZNmwgAjXqo1/Xx8SF5eXnM8uXLl2u0IzbtVh+F+2z1ubWzsyPJycnM8gMHDhAA5NChQ0Vur0ePHqRWrVpay7OysggAMmvWrCLXNzMz0+pjCSHk77//JgDI0aNHda4nl8tJtWrVSPPmzYvcvprGjRuTHj16FFkmMDCQNGzYUKP/VCqVpHXr1qROnTrMMjbP6l9++YUAINu2bWN+k8lkpFWrVsTc3Jykp6cTQow7/76+vsTZ2ZmkpqYyy44fP04AaFzTadOmEUtLSyKXyw2dFg1++uknpi7Nmzcn27dvJ6tXrybVqlUjNjY25O3bt0xZS0tLYmNjQ0QiEfn222/J7t27ydChQ7Wu+bJlywgAcv78eY19zZo1iwAgPXv2ZJb99ddfZOTIkWTz5s1k37595JtvviFSqZTY29szfaCaq1evEk9PTw17y8/Pj7x7986oY6ZQKGUL1UjuzHeqkVSwtWHMzMw0rlPhfQ8ZMkRjuTH2OlubbsqUKYTD4ZDbt28zy5KSkoitra2GPtGH2s798ccfmWUpKSlEIpEQDodD/vzzT2a5Wl/NmTOHWabWRwWfoRkZGcTDw4PUrFmTaR9qm2Pnzp1MuaysLFK7dm2Ntq1UKkmdOnVIUFCQVlvy8PAgnTt3Zpap792ijpGN3R0fH0+EQiHp0qWLRntetWoVAUB+//13jfNVsK2qtWVhW7R79+4atufWrVsJl8vVsjXWrFlDAJCLFy8SQt63kYkTJ2qUU9svBc+9LtR2uqurK2PHEULIzp07CQCyfPlyZlmrVq1IixYtNNbfu3evzr6mMLru7T/++EOrzarvhd69e2uUnThxIgFA7t69yyxT97s3btxglsXExBCxWExCQkKYZVZWVmTSpElF1q/wdWKD+p1CwX49Ly+PODk5kX79+jHLdPVLDRs2JG5ubsz7E0IIOXv2rJb9y9amZqsXdaHrmQKACIVCpg8nRNVvAiArV64scnuTJk0iPB5P528ODg5k8ODBrOt2/fp1ve8Dbt68SQCQBQsWaCxXv2MyNzcvcttstAXb9xmnT58mAMjUqVO1tqHul8qiP2f7vmnfvn0EALl+/XqR56Qwt27dYtpftWrVyOrVq8n27dtJ8+bNCYfDIUeOHGHK9u7dmyk7bNgwsnv3bvLtt98SPp9PWrduzZwHY65bTEwM6dKlC/ntt9/IwYMHyS+//EJq1KhBuFwuOXz4sMb6cXFxJDAwUMMms7e3J5cuXTLqmCsDNJVWBfDrr7/ixIkTGh9A08OXn5+PpKQk1K5dG9bW1hrDEvfs2YPGjRvrzEdXODKgtOByucwkpur0FIAqErd169ZaEyUa4p9//gGPx8PUqVM1ln/22WcghODIkSMAwESifvfdd1qRwgWPteC5y8jIQGJiItq1a4fs7GxERkYaVTdAlafvzp07GDlyJOOJBYBGjRqhc+fO+Oeff7TW+eSTTzS+t2vXDklJSUhPT9e7Hy6Xi9atWzPDUx89eoSkpCTMmjULhBAmvcz58+fRoEEDZmLZXbt2wcrKCp07d0ZiYiLz8fPzg7m5Oc6cOVPsc/PHH39g0KBBGD9+PNauXat13vVhbm6uEYHr5eUFa2tr+Pj4MCM+ADD/f/78OQBVhNTx48cRHByMWrVqMeWcnZ0xdOhQXLhwgTmH//zzD1q2bKkRpeTg4KAVCX7ixAmkpqZiyJAhGueHx+OhRYsWGueHDerI+mPHjukd+q9uEwVToAGqNg2gyCGuffv2BZ/Px19//cUse/DgASIiIjBo0CBm2a5du9CuXTvY2NhoHFenTp2gUCiYdvTPP/+Az+djwoQJzLo8Hg9Tpkwx5rAxbtw4jeisCRMmgM/nM8da0n6hYNvMyspCYmIiWrduDUIIExlTkILRVOrhyDKZTCs1W3BwsEZ0UPPmzdGiRQum3hKJBEKhEGfPntVKPVca1KtXD+3atWO+Ozg4wMvLi2nzurhx4waSkpIwduxYjZy0w4YN05szNiwsTCMyTr1P9X7YtFtjGTRokEZ9Cu9THzk5OTojJ9WRcIXTp5XW+qdOnUJcXByr0SKAavLuhw8fIioqSufvycnJOH36NAYOHMj0p4mJiUhKSkJQUBCioqLw5s0bAOye1f/88w+cnJwwZMgQ5jeBQICpU6ciMzMT586d01jP0PlXP7tCQ0M1RgR17twZ9erV0zrWrKwsrTRhhsjMzGSO4dSpUxg6dCgmTJiA/fv3IyUlhUn9oS6bkpKCefPmYf78+ejXrx+2b9+Orl27Yvny5Uy/MXToUFhZWWHUqFE4ceIEoqOjsW7dOqxevRqA5vUdOHAgwsPDMWLECAQHB2PBggU4duwYkpKS8MMPP2jU1cbGBr6+vpg1axb279+P//3vf4iOjsaAAQOKTE9BoVAqBqqRqEZSU1o2TOF9G2uvs7Hpjh49ilatWmmMmLS1tWVte6gZM2YM839ra2t4eXnBzMxMI4JYra8K7v+ff/5B8+bNNUbempubY9y4cYiOjkZERARTztnZmZmrDVBFFKtH26i5c+cOoqKiMHToUCQlJTG2TlZWFgIDA/Hvv/8aNak2G7v75MmTkMlkmD59ukZ7Hjt2LCwtLYvUUR07doS9vb2GjkpJScGJEye0dJSPjw+8vb01dFTHjh0BgNGH6jZS+B6cPn0662MGgBEjRjDZEQCgf//+cHZ21rhHRowYgatXr+LZs2fMsu3bt6N69erw9/cvcvsF7+3c3FwkJiaiZcuWAKDRL6qZNGmSxne1Lix8z7Zq1Qp+fn7M9xo1aqBPnz44duwYk8bH2toaV69exdu3b4usY3EwNzfXGP0gFArRvHnzIrXG27dvcf/+fYwYMUJjtJu/v7/eEeWGbOqy0IudOnXSGNXWqFEjWFpastJR+ua+FIvFBnUUW5o2bYoWLVpg8eLFCA8PR3R0NI4cOYLx48dDIBAY3A8bbcH2fcaePXvA4XB0jrosqKOA0u3P2b5vUr+XO3z4sM5UmvpQ66ikpCQcOHAAEyZMwNChQ3Hq1CnY2dnh+++/1yrbrFkzbNu2Df369cP8+fOxYMECXLp0CadOnQJg3HWrUaMGjh07hk8++QS9evXCtGnTcPv2bTg4ODDnTY1UKoWXlxdCQ0Oxa9cu/P7773B2dkbfvn210ndXdqhjpAJo3rw5OnXqpPEBVB3ed999x+Tas7e3h4ODA1JTUzXywT979owZxliejBgxAjk5OcyQtMePH+PmzZsYPny40duKiYmBi4uLhrEAgBmaHhMTA0B1rFwuV+uFTmEePnyIkJAQWFlZwdLSEg4ODswD1VAufX31A6AzL7CPjw9jHBakRo0aGt/VD1pDD9J27drh5s2byMnJwfnz5+Hs7IymTZuicePGTDqtCxcuaHTiUVFRSEtLg6OjIxwcHDQ+mZmZiI+PZ8oac25evHiBjz/+GP369cPKlSuNEpFubm5a5a2srFC9enWtZQXPS0JCArKzs/Wea6VSyeRjjYmJ0UiVoqbwuuqXmh07dtQ6P8ePH9c4P2zw8PDAp59+ig0bNsDe3h5BQUH49ddfNc5fTEwMuFwuateurbGuk5MTrK2tmTalC3t7ewQGBmLnzp3Msr/++gt8Pl9jToWoqCgcPXpU65jUfYj6uGJiYuDs7KyVBsHYPNeFz7W5uTmcnZ018qqWpF94+fIlI6zNzc3h4ODAiIDCbZPL5Wo4zgDVhGIAtPK86mojdevWZcqJRCIsXrwYR44cQbVq1Zi0BbGxsQbrzIbCfQGg6g+K6gvU7aNw++Hz+XqHahvqc9i0W2Mpbj8nkUh05rBWv5w2lKe0uOtv374dPB5PQxgXxfz585Gamoq6deuiYcOG+OKLL3Dv3j3m96dPn4IQgm+//VbrPlQb7ur7kM2zWt2nFX6pVfhZqMbQ+VeXZ9NPTpw4EXXr1kW3bt3g5uaGUaNGscpzrD7XvXr10uhjWrZsCQ8PD1y6dEmrbEHHj/p7Tk4O4wB1cnLCwYMHkZeXhy5dusDDwwNffPEFVq5cCaDolC4A0LZtW7Ro0ULDSZqWloZ27dqhVatWWLhwIfr06YPPPvsMe/bswYULFxAeHm7wWCkUSvlCNRLVSGpKy4Yp7Jgy1l5nY9PFxMRobQ/QtumKQp0/vyBWVlZ69VXh/eu7HurfC9az8Pb06ajQ0FAtW2fDhg3Iy8sz6jqwsbv1tSuhUIhatWoVqaP4fD769eunMefc3r17kZ+fr2H/RUVF4eHDh1rHpNYTBXUUl8vVSstWUh3F4XBQu3ZtDd0yaNAgiEQiJu1rWloaDh8+jGHDhhnU4cnJyZg2bRqqVasGiUQCBwcHpr3ruj6F6+Pp6Qkul8taR2VnZzPzoSxZsgQPHjxA9erV0bx5c8ydO9fgy3226GrzxdVR+pYBhvulstCLxdGIgMqe1jcXRG5ubqnO96AOMBg1ahQ8PDzQq1cvDBw4EE2aNDFoj7PRFmzfZzx79gwuLi4aDvjClFV/zkZH+fv7o1+/fpg3bx7s7e3Rp08fhIeHFznvJfBeG3l4eGgED5ubm6NXr164du0aM7evPh01dOhQANDQXCW5bup5mh4/fqwxl9KAAQPw8uVLbNq0Cf3790dYWBjOnj0LmUyGr7/+ushtVjboHCMmxJQpUxAeHo7p06ejVatWsLKyAofDweDBg42Kyigr6tWrBz8/P2zbtg0jRozAtm3bIBQKNaJYKoLU1FT4+/vD0tIS8+fPh6enJ8RiMW7duoUvv/yy3M6dvjk4iI6JEgvStm1b5Ofn4/Llyzh//jzjAGnXrh3Onz+PyMhIJCQkaDhGlEolHB0dGSOqMGrD2thz4+zszESy3LhxQyuPZXGOv7jnpSSoj2vr1q06JxorGJHPlmXLlmHkyJE4cOAAjh8/jqlTpzI5Wgvm7i9uROLgwYMRFhaGO3fuwNfXFzt37kRgYKBGPmylUonOnTtj5syZOrehNuzLk+L2CwqFAp07d0ZycjK+/PJLeHt7w8zMDG/evMHIkSPL/L6dPn06evXqhf379+PYsWP49ttvsXDhQpw+fRpNmjQp0bbLq82z2Q/bdlua+9SFs7Mzzpw5A0KIxj3y7t07AICLi4vB9dVlC1LU+uqXVJ06ddKagFsf7du3x7Nnz5jztWHDBvz8889Ys2YNxowZw7TLzz//HEFBQTq3YcyLEGMpzbbl6OiIO3fu4NixYzhy5AiOHDnCjMQoPPl7QdTnWtc5dXR01BAXLi4uiIqK0irr6OgIQPOlWPv27fH8+XPcv38fWVlZaNy4MROJyKZvq169Oh4/fsx837NnD+Li4tC7d2+Ncupn4sWLFzVG1VEoFNOFaqTiUdk1UmnYMPpeGLK11yvapqtIHbV06VKNUTAFMfSirTBlaXcDKh21du1aHDlyBMHBwdi5cye8vb3RuHFjpoxSqUTDhg3x008/6dxG4WC+8sDGxgY9e/bE9u3b8d1332H37t3Iy8tjNV/EwIEDcenSJXzxxRfw9fWFubk5lEolunbtyureLskouoEDB6Jdu3bYt28fjh8/jqVLl2Lx4sXYu3dvkfOAsKGi77mC+yntdlsSHaVQKBAfH8/Y0IBqPpqkpCSDOsoYXF1dceHCBURFRSE2NhZ16tSBk5MTXFxcDNrjbLRFWbzPqIj+nMPhYPfu3bhy5QoOHTqEY8eOYdSoUVi2bBmuXLmit480pKPy8/ORlZUFKysrvWV16aiSXDfgff+XnJwMNzc3PH/+HEePHsW6des0ytna2qJt27a4ePGiwW1WJqhjxITYvXs3QkNDsWzZMmZZbm4uUlNTNcp5enriwYMHZVIHQ53KiBEj8Omnn+Ldu3fYsWMHevTooTfNS1G4u7vj5MmTyMjI0IiIUg/pdnd3B6A6VqVSiYiICL2G2dmzZ5GUlIS9e/dqTE7+4sULrbJsO031/gu+ZClYR3t7e5iZmbHaliGaN28OoVCI8+fP4/z58/jiiy8AqF4SrV+/nhkiV/DYPD09cfLkSbRp06bICAFjzg2gilY6fPgwOnbsiK5du+LcuXNFThZdGjg4OEAqleo911wul+mo3d3ddaa4KbyuOsLH0dGRiT4oDRo2bIiGDRvim2++waVLl9CmTRusWbMG33//Pdzd3aFUKhEVFaUxwXRcXBxSU1OZNqWP4OBgjB8/nhkG/uTJE8yePVvruDIzMw0ek7u7O06dOoXMzEyNh7Kuc1wUUVFR6NChA/M9MzMT7969Q/fu3TXKFadfuH//Pp48eYLNmzdjxIgRzHJ9Q2+VSiWeP3+u8WB/8uQJAGiNqNDVRp48eaJVztPTE5999hk+++wzREVFwdfXF8uWLcO2bduKrHtZoG4fT58+1Tjncrkc0dHRaNSoUbG3XVS7LS98fX2xYcMGPHr0SCO6VT1RvL7+veD658+fh1Kp1BhdcfXqVUilUp0GnzqtibGpLNRRM2FhYcjMzET79u0xd+5cjBkzhhm1JBAIDN6HbJ7V7u7uuHfvntZxFX4WskVdnk0/CagiMXv16oVevXpBqVRi4sSJWLt2Lb799lu9Dh51egV1yrCCvH37Ft7e3hpl1enFCo74Ujs8CkfH8ng8rcnbAbDqx58/f66xvbi4OABg0j6oIYRAoVAw0VgUCsX0oRrpw9RIgGEbxtiXuyW11/VtU1dakfJKNeLu7q73eqh/V/998OCBVpCKPh1laWlZqjqqKLu7YLsqaC/IZDK8ePHCYD3at28PZ2dn/PXXX2jbti1Onz6tFdHs6emJu3fvIjAwsMh2o24jz54904gSL46OKgghBE+fPtWy6UeMGIE+ffrg+vXr2L59O5o0aWJQf6ekpODUqVOYN28evvvuO737LFyfgiOonj59CqVSyVpHSaVSDTvL2dkZEydOxMSJExEfH4+mTZvihx9+KLFjpDgU1FGFKel9aAp6Ud3H37hxQ0OH37hxA0ql0qCOKg516tRhRk5ERETg3bt3GDlypMH1DGkLtu8zPD09cezYMSQnJ+sdNVJW/TlbHQWoRsy3bNkSP/zwA3bs2IFhw4bhzz//1EiNWBAXFxc4OTnp1VFisZh59vv5+WH9+vVaZfXpKKD410094ku9TX06ClClNK1qOoqm0jIheDyelrdy5cqVWo2xX79+uHv3LjNcuyAl9aSrDdnCQkPNkCFDwOFwMG3aNDx//pxVNIMuunfvDoVCgVWrVmks//nnn8HhcJgHanBwMLhcLubPn68V+aA+VrXnt+Cxy2QyJjd54eNjM/TX2dkZvr6+2Lx5s8a5ePDgAY4fP671YrgkiMViNGvWDH/88QdevnypMWIkJycHK1asgKenJ5ydnZl1Bg4cCIVCgQULFmhtTy6XM3U25tyosbKywrFjx+Do6IjOnTtr5DwtC3g8Hrp06YIDBw5oDOWNi4vDjh070LZtW1haWgJQtZsrV67g2rVrTLmEhAStkTNBQUGwtLTEjz/+qDPno3oYMFvS09O1Ov+GDRuCy+UywyXVbeKXX37RKKeOSurRo0eR+7C2tkZQUBB27tyJP//8E0KhEMHBwRplBg4ciMuXL+PYsWNa66empjJ17N69O+RyOX777Tfmd4VCwaSlYcu6des0zt9vv/0GuVyuZfAWp1/Q1TYJIVi+fLnedQr2F4QQrFq1CgKBAIGBgRrl9u/fr2FAXLt2DVevXmXqnZ2drTW/gKenJywsLAwOfy0rPvroI9jZ2WH9+vUabW379u3FzmvLpt2WF3369IFAINDoewghWLNmDVxdXdG6dWtm+bt37xAZGanR9vr374+4uDjs3buXWZaYmIhdu3ahV69eOucf2bFjB6RSqc5c8/pISkrS+G5ubo7atWsz58vR0REBAQFYu3atzhEsBfsWNs/q7t27IzY2ViMvtlwux8qVK2Fubm4wv3RhCj67Cj7rTpw4weQY13esXC6XEetFtQ8vLy80btwYBw4cQGJiIrP8+PHjePXqFTp37swsU6ew2LhxI7NMqVQiPDwctra2GjmsC5OQkIDFixejUaNGGuJJV//9zz//4ObNm+jatSuzTO0s+/PPPzXKHjx4EFlZWaUSoUqhUMoHqpE+PI3E1oYxMzPTe010UVJ7XRdBQUG4fPky7ty5wyxLTk7WO7K/tOnevTuuXbvGzE0JqObuW7duHWrWrMkEpHTv3h1v377F7t27mXLZ2dlaEcF+fn7w9PTE//73PybHfUGM1VFs7O5OnTpBKBRixYoVGu1148aNSEtLM3hduFwu+vfvj0OHDmHr1q2Qy+VaaVQHDhyIN2/eYP369Vrr5+TkMCng1PfYihUrNMoUbjOG2LJli8a8Q7t378a7d++0dFS3bt1gb2+PxYsX49y5c8XWUYbqWHAOOACMLixcn8uXL2vMUfLq1SscOHAAXbp0AY/Hg0Kh0OorHB0d4eLiUmE6ysXFBQ0aNMCWLVs02uy5c+dw//79Ym3TlPRix44dYWtrq6HtAZU2l0qlGvdHYmIiIiMjS21+SaVSiZkzZ0IqlWrN2VQYNtqC7fuMfv36gRCCefPmaZUrqKOA0u3P2b5vSklJ0br/1A4qQ+1j0KBBePXqlUZAaGJiIg4cOICOHTsywXJ9+vSBSCRCeHi4xnN+w4YNAKChuQqj77rp6r/fvHmD33//HY0aNWLeOdauXRtcLhd//fWXxnG+fv0a58+fr3I6io4YMSF69uyJrVu3wsrKCvXq1cPly5dx8uRJ2NnZaZT74osvsHv3bgwYMACjRo2Cn58fkpOTcfDgQaxZs0ZjyKix+Pr6gsfjYfHixUhLS4NIJELHjh2Z4VoODg7o2rUrdu3aBWtr62J1NoAqN3mHDh3w9ddfIzo6Go0bN8bx48dx4MABTJ8+nYlUqV27Nr7++mssWLAA7dq1Q9++fSESiXD9+nW4uLhg4cKFaN26NWxsbBAaGoqpU6eCw+Fg69atOgWQn58f/vrrL3z66ado1qwZk8tPF0uXLkW3bt3QqlUrjB49Gjk5OVi5ciWsrKwwd+7cYh23Ptq1a4dFixbBysqKmSDM0dERXl5eePz4sZaX19/fH+PHj8fChQtx584ddOnSBQKBAFFRUdi1axeWL1+O/v37G3VuCmJvb48TJ06gbdu26NSpEy5cuKAxmXVp8/333zP7mzhxIvh8PtauXYu8vDwsWbKEKTdz5kxs3boVXbt2xbRp02BmZoZ169YxUddqLC0t8dtvv2H48OFo2rQpBg8eDAcHB7x8+RJ///032rRpoyU4i+L06dOYPHkyBgwYgLp160Iul2Pr1q3g8Xjo168fAKBx48YIDQ3FunXrmNQF165dw+bNmxEcHKwxCkAfgwYNwscff4zVq1cjKCiImdRLzRdffIGDBw+iZ8+eGDlyJPz8/JCVlYX79+9j9+7diI6Ohr29PXr16oU2bdpg1qxZiI6ORr169bB3716j8zLLZDIEBgZi4MCBePz4MVavXo22bdtqpaYpTr/g7e0NT09PfP7553jz5g0sLS2xZ88evU4AsViMo0ePIjQ0FC1atMCRI0fw999/46uvvtKKlqhduzbatm2LCRMmIC8vD7/88gvs7OyYIbtPnjxhjqtevXrg8/nYt28f4uLiMHjwYKPOUWkhFAoxd+5cTJkyBR07dsTAgQMRHR2NTZs2wdPTs1jD3dm02/LCzc0N06dPx9KlS5Gfn49mzZph//79OH/+PDMPiJrZs2dj8+bNePHiBRPF1r9/f7Rs2RJhYWGIiIiAvb09Vq9eDYVCodNgTk5OxpEjR9CvXz+j0j3Uq1cPAQEB8PPzg62tLW7cuIHdu3dj8uTJTJlff/0Vbdu2RcOGDTF27FjUqlULcXFxuHz5Ml6/fo27d+8CYPesHjduHNauXYuRI0fi5s2bqFmzJnbv3o2LFy/il19+0coxz4aFCxeiR48eaNu2LUaNGoXk5GSsXLkS9evX1xCLY8aMQXJyMjp27Ag3NzfExMRg5cqV8PX11Yi60sXPP/+Mzp07o23bthg/fjzS0tLw008/oW7duhrpqfr06YPAwEAsXLgQiYmJaNy4Mfbv348LFy5g7dq1Gg4tf39/tGrVCrVr10ZsbCzWrVuHzMxMHD58WGM0TevWrdGkSRN89NFHsLKywq1bt/D777+jevXq+Oqrr5hyvXr1Qv369TF//nzExMSgZcuWePr0KVatWgVnZ2eMHj3a6HNLoVAqBqqRPjyNxNaG8fPzw8mTJ/HTTz/BxcVFK297YUrDXi/MzJkzsW3bNnTu3BlTpkyBmZkZNmzYgBo1aiA5OblEKYvYMGvWLPzxxx/o1q0bpk6dCltbW8aO2rNnD/MMHTt2LFatWoURI0bg5s2bcHZ2xtatWyGVSjW2x+VysWHDBnTr1g3169dHWFgYXF1d8ebNG5w5cwaWlpY4dOgQ6/qxsbsdHBwwe/ZszJs3D127dkXv3r0Z7dGsWTNWzoJBgwZh5cqVmDNnDho2bKhlywwfPhw7d+7EJ598gjNnzqBNmzZQKBSIjIzEzp07cezYMXz00Ufw9fXFkCFDsHr1aqSlpaF169Y4deqU0SMP1ClnwsLCEBcXh19++QW1a9fG2LFjNcoJBAIMHjwYq1atAo/H05pPQBeWlpbMnBf5+flwdXXF8ePH9WaFAFQjxXr37o2uXbvi8uXL2LZtG4YOHarVLzZo0ABBQUGYOnUqRCIR40hV29sZGRlwc3ND//790bhxY5ibm+PkyZO4fv26xqi+8ubHH39Enz590KZNG4SFhSElJQWrVq1CgwYNdDr4DGFKelEikWDBggWYNGkSBgwYgKCgIJw/fx7btm3DDz/8oDGiYtWqVZg3bx7OnDmDgIAAjeWpqanMaINDhw4x80lMmTKFmQd22rRpyM3Nha+vL/Lz87Fjxw6mj9Q1R0dB2GgLtu8zOnTogOHDh2PFihWIiopiUsSdP38eHTp0wOTJk8usP2fzvmnz5s1YvXo1QkJC4OnpiYyMDKxfvx6WlpYGAwRmz56NnTt3ol+/fvj0009hZWWFNWvWID8/Hz/++CNTzsnJCV9//TW+++47dO3aFcHBwbh79y7Wr1+PIUOGoFmzZkxZttdt5syZePbsGQIDA+Hi4oLo6GisXbsWWVlZGgGqDg4OGDVqFDZs2IDAwED07dsXGRkZWL16NXJycrQym1R6CKXcCA8PJwDI9evXdf6ekpJCwsLCiL29PTE3NydBQUEkMjKSuLu7k9DQUI2ySUlJZPLkycTV1ZUIhULi5uZGQkNDSWJiIiGEkBcvXhAAJDw8nFlnzpw5pPAl17Xt9evXk1q1ahEej0cAkDNnzmj8vnPnTgKAjBs3jvWxh4aGEnd3d41lGRkZZMaMGcTFxYUIBAJSp04dsnTpUqJUKrXW//3330mTJk2ISCQiNjY2xN/fn5w4cYL5/eLFi6Rly5ZEIpEQFxcXMnPmTHLs2DGt+mdmZpKhQ4cSa2trAoCpk67zRQghJ0+eJG3atCESiYRYWlqSXr16kYiICI0y6vOakJCgsVx9vV+8eGHw/Pz9998EAOnWrZvG8jFjxhAAZOPGjTrXW7duHfHz8yMSiYRYWFiQhg0bkpkzZ5K3b98afW78/f1J/fr1Nbb/9OlT4uzsTHx8fLSOryC61iVE1b569OihtRwAmTRpksayW7dukaCgIGJubk6kUinp0KEDuXTpkta69+7dI/7+/kQsFhNXV1eyYMECsnHjRp3n+syZMyQoKIhYWVkRsVhMPD09yciRI8mNGzeYMrrui8I8f/6cjBo1inh6ehKxWExsbW1Jhw4dyMmTJzXK5efnk3nz5hEPDw8iEAhI9erVyezZs0lubq7W+fL399faT3p6OpFIJAQA2bZtm866ZGRkkNmzZ5PatWsToVBI7O3tSevWrcn//vc/IpPJmHJJSUlk+PDhxNLSklhZWZHhw4eT27dv62znhVG33XPnzpFx48YRGxsbYm5uToYNG0aSkpJ0rlOcfiEiIoJ06tSJmJubE3t7ezJ27Fhy9+5drTqGhoYSMzMz8uzZM9KlSxcilUpJtWrVyJw5c4hCoWDKqe/jpUuXkmXLlpHq1asTkUhE2rVrR+7evcuUS0xMJJMmTSLe3t7EzMyMWFlZkRYtWpCdO3dq1E/fdSoKfW2+8LbOnDmjs39dsWIFcXd3JyKRiDRv3pxcvHiR+Pn5ka5du2qtu2vXLo11C/djbNutLgr32QXPbWEAkDlz5hjcpkKhID/++CNxd3cnQqGQ1K9fX2c7Dw0N1Xk/Jycnk9GjRxM7OzsilUqJv7+/3ufpmjVrCABy8OBBg/UqyPfff0+aN29OrK2tiUQiId7e3uSHH37QuLcIIeTZs2dkxIgRxMnJiQgEAuLq6kp69uxJdu/erVHO0LOaEELi4uKYZ79QKCQNGzbUukeNPf979uwhPj4+RCQSkXr16pG9e/dqXdPdu3eTLl26EEdHRyIUCkmNGjXI+PHjybt371idqxMnTpCWLVsybWv48OE6183IyCDTpk0jTk5OzPHpuu4zZswgtWrVIiKRiDg4OJChQ4eSZ8+eaZX7+uuvia+vL7GysiICgYDUqFGDTJgwgcTGxmqVTU5OJjNmzCB169YlIpGI2Nvbk8GDB5Pnz5+zOkYKhVI+UI3krrGMaiT2NkxkZCRp3749Yz+rr5m+fRPC3l5na9MRQsjt27dJu3btiEgkIm5ubmThwoVkxYoVBIDO51NB1Haurv2w1VfPnj0j/fv3J9bW1kQsFpPmzZuTw4cPa60bExNDevfuTaRSKbG3tyfTpk0jR48e1dmeb9++Tfr27Uvs7OyISCQi7u7uZODAgeTUqVNMGTbXkq3dTQghq1atIt7e3kQgEJBq1aqRCRMmkJSUFK3zVfieIYQQpVJJqlevTgCQ77//XmddZDIZWbx4Malfvz5zz/j5+ZF58+aRtLQ0plxOTg6ZOnUqsbOzI2ZmZqRXr17k1atXrGxetZ3+xx9/kNmzZxNHR0cikUhIjx49SExMjM51rl27RgCQLl26FLntgrx+/ZqEhIQQa2trYmVlRQYMGEDevn2rVUf1vRAREUH69+9PLCwsiI2NDZk8eTLJycnR2KZao2/bto3UqVOHiEQi0qRJE422kZeXR7744gvSuHFjYmFhQczMzEjjxo3J6tWrNbal7zoVhb42r0+XFO6X/vzzT+Lt7U1EIhFp0KABOXjwIOnXrx/x9vbWWteQTW1Muy2MrmeKrvcfhOh+1uhj3bp1xMvLiwiFQuLp6Ul+/vlnreeCet+F72d3d3cCQOen4P0bHh5OGjduTMzMzIiFhQUJDAwkp0+fZlU/ttqC7fsMuVxOli5dSry9vYlQKCQODg6kW7du5ObNm0yZsujP2bxvunXrFhkyZAipUaMGEYlExNHRkfTs2VPjPVNRPHv2jISEhBBLS0sikUhIx44dybVr17TKKZVKsnLlSlK3bl3m+L755hstbcr2uu3YsYO0b9+eODg4ED6fT+zt7UlISIjGOVWTn59PVq5cSXx9fYm5uTkxNzcnHTp0YN0eKhMcQspw5i5KleTAgQMIDg7Gv//+qzEhOIVC+XApy35h5MiR2L17t8Fon+joaHh4eGDp0qX4/PPPS7UOFYVSqYSDgwP69u2rc+g/hUKhUCgU04BqJEpBpk+fjrVr1yIzM1PvpL8UCgDcvXsXvr6+2LJlC4YPH16q2547dy7mzZuHhIQE2NvbF1mWw+Fg0qRJRmVWMHV8fX3h4OCgdx5LCoVCoXOMUIxm/fr1qFWrFtq2bVvRVaFQKCYC7RdKTm5urlZ6iy1btiA5OVljKDSFQqFQKBTTg9pCHy45OTka35OSkrB161a0bduWOkUoBlm/fj3Mzc3Rt2/fiq5KpUXXhNBnz57F3bt3qY6iUChFQucYobDmzz//xL179/D3339j+fLlZZ4vlUKhmD4fSr+QkJCgNclrQYRCoUZ+1+Jw5coVzJgxAwMGDICdnR1u3bqFjRs3okGDBhgwYECJtk2hUCgUCqVs+FBsIYp+WrVqhYCAAPj4+CAuLg4bN25Eeno6vv3224quGsWEOXToECIiIrBu3TpMnjwZZmZmFV2lMiE5ORkymUzv7zweT2vOSGN58+YNOnXqhI8//hguLi6IjIzEmjVr4OTkZHDScAqF8mFDHSMU1gwZMgTm5uYYPXo0Jk6cWNHVoVAoJsCH0i80a9YMMTExen/39/fH2bNnS7SPmjVronr16lixYgWSk5Nha2uLESNGYNGiRRAKhSXaNoVCoVAolLLhQ7GFKPrp3r07du/ejXXr1oHD4aBp06bYuHEj2rdvX9FVo5gwU6ZMQVxcHLp3785Mbl4V6du3L86dO6f3d3d3d0RHR5doHzY2NvDz88OGDRuQkJAAMzMz9OjRA4sWLYKdnV2Jtk2hUKo2dI4RCoVCoVAMcPHiRa00CQVRG+MUCoVCoVAoFAqFQlFx8+ZNpKSk6P1dIpGgTZs25VgjCoVCeQ91jFAoFAqFQqFQKBQKhUKhUCgUCoVC+WAwevL1f//9F7169YKLiws4HA7279+v8TshBN999x2cnZ0hkUjQqVMnREVFaZRJTk7GsGHDYGlpCWtra4wePRqZmZklOhAKhUKhUCgUCoVCMQWoZqJQKBQKhUKhUEwbo+cYycrKQuPGjTFq1Cj07dtX6/clS5ZgxYoV2Lx5Mzw8PPDtt98iKCgIEREREIvFAIBhw4bh3bt3OHHiBPLz8xEWFoZx48Zhx44drOqgVCrx9u1bWFhY0MntKBQKhUKhUCgfBIQQZGRkwMXFBVyu0fFNlHLEFDQTQHUThUKhUCgUCuXDwijNREoAALJv3z7mu1KpJE5OTmTp0qXMstTUVCISicgff/xBCCEkIiKCACDXr19nyhw5coRwOBzy5s0bVvt99eoVAUA/9EM/9EM/9EM/9EM/9PPBfV69elUSE55SzgAVo5kIobqJfuiHfuiHfuiHfuiHfj7MDxvNZPSIkaJ48eIFYmNj0alTJ2aZlZUVWrRogcuXL2Pw4MG4fPkyrK2t8dFHHzFlOnXqBC6Xi6tXryIkJMTgfiwsLAAAr169gqWlZWkeAoVCoVAoFAqFYpKkp6ejevXqjC1MqZyUl2YCqG6iUCgUCoVCoXxYGKOZStUxEhsbCwCoVq2axvJq1aoxv8XGxsLR0VGzEnw+bG1tmTKFycvLQ15eHvM9IyMDAGBpaUkNfArlA0WhJLj2IhnxGblwtBCjuYcteFyaIoJCKQuKc7/Re5RCKTtoSqTKTVlpJoDqJgqFogm1xyiU8oXqJgrFdGCjmUrVMVJWLFy4EPPmzavoalAoFBPh6IN3mHcoAu/ScpllzlZizOlVD10bOFdgzSiUqkdx7jd6j1IoFErFQHUThUJRQ+0xCqV8obqJQql8lOqsjU5OTgCAuLg4jeVxcXHMb05OToiPj9f4XS6XIzk5mSlTmNmzZyMtLY35vHr1qjSrTaFQKhFHH7zDhG23NAwHAIhNy8WEbbdw9MG7CqoZhVL1KM79Ru9RCoVCKZqy0kwA1U0UCkUFtccolPKF6iYKpXJSqo4RDw8PODk54dSpU8yy9PR0XL16Fa1atQIAtGrVCqmpqbh58yZT5vTp01AqlWjRooXO7YpEImb4Nx0GTqF8uCiUBPMORYDo+E09u9LcQw+hUOoqQaFQjMHQ/QYA8w5FaNxvxVmHQqFQPjTKSjMBVDdRKBR2mmnOwQfIVyjKuWYUStWE6iYKpfJidCqtzMxMPH36lPn+4sUL3LlzB7a2tqhRowamT5+O77//HnXq1IGHhwe+/fZbuLi4IDg4GADg4+ODrl27YuzYsVizZg3y8/MxefJkDB48GC4uLqV2YBQKpepx7UWyVjRFYWLT8mD/fQtYWcbDwcwBDlKH93//+7+91F5juaXIkuZrp1AKYeh+IwDepeXi2otktPK0K/Y6FAqFUhWhmolCoVQUbDRTXLoM1vP9YG7xTkMXFdZJBf/aSewg4AnK6SgolMoD1U0USuXFaMfIjRs30KFDB+b7p59+CgAIDQ3Fpk2bMHPmTGRlZWHcuHFITU1F27ZtcfToUYjFYmad7du3Y/LkyQgMDASXy0W/fv2wYsWKUjgcSlHQCZ0ohalsbSI+o2gDX40sX4KYtBjEpMWwKi/kCTVEAPN/HaLAXmoPW4kteFxeSQ6FQjF52N5vBcsVZx1K5aWyPUMolPKEaqbKC+3bKLqoTO2CtZ2ltEJ81l3EZ8UDCexWsRZb6ww8Y5wqhbSTRCAp/oFQKJUEqpsoRVGZnh8fIkY7RgICAkCI/qFcHA4H8+fPx/z58/WWsbW1xY4dO4zdNaUE0AmdKIWpjG3C0UJsuBCALf1WwtU+GwlZCUjITkBidiLz/4TshPf/z0pAVn4WZAoZ3ma8xduMt6y2z+VwYSuxZTUaRb1MyBOW5NAplHKH7f22/Pp81HKejIbVGrJex8GC3g+Vncr4DKFQyhOqmSontG+j6KKytQu29tjOQetR3SFXQxsV/JuYnch8T8pJgpIokZqbitTcVEQlR7Hah5nATLdG0qGX6Eh+SmWF7T135e1xdG/4MQQ8Aet12JajmCaV7fnxIcIhRVnsJkp6ejqsrKyQlpZG8+ayQD2hU+ELrTY3fvu4Kb0hPzAqa5tQKAnaLj6N2LRcnbk4OQCcrMS48GVH1h74nPwcDaPfkChIyU0pVt2tRFaaUVR6RqOo/28mNCvWfiiU0sLQ/QYQyDmJeCMaDQ6HYFijYfiu/VyMWBetdx0CJRRIQtPG+7E1ZDOsxFZlexCUMqGyPkOqAtQGphgLbTPsoX0bRReVsV2UhWZSKBVIyU3R0ElaGqqQjspX5htd98Ij+Q2l97KV2ILLKdWpcykUo2Glm5CIN+LR8LT1wIIOC9C/3kC0X3K2SN1EOClYN6oautYJKtsDoJQJlfH5UVUwxv6ljpEqjrqD1pe7sDhGEaXyUXDonr2ZCJ/tuovY9MrZJtQPFwAaD5jyerjkK/KRlJPEWhQkZSdBQYyf2FDCl+iMotInCqxEVjS6ilLqGLrfvunthGNvFmNXxC4AgIArQG/373Ajogk4OtYhIEgRL0U651/UtauL/YP2w8fBpxyOhFJaULuiYqE2MMVYaJthB+3bKIB2uhM/dxv4Lz1TKdtFRWsmQggyZBmsAs8KjuQ3lqJG8utK70VH8lPKCkP3XK8Wcfjr2WxV6joAjas1xkDPH7H+FNFaB/8tiRf+iFzeFfwY+CO+bPMl1fuVCGpXVCzUMUJhuPwsCUPWXzFY7o+xLemETlUUXUP32CB2XAsbqwRYCC1gKbKEhcgCFkIL7e+i/74X+r+Z0KzMoncq03BE9ZBzY0RBniLP6P3wuXy9Q9R1RVnZSezoPCkUVrC5326+vYmvTn+F48+OAwCsEQBn5RRk54m01rG3fYO+f/XFq/RXMBeaY3PwZvT16Vu+B0UxmoSsBDyIf4AjEc+w87zhfpbaFWUDtYEpxkLbDDuoZqLosndszQRIzjI86sHS+XfYWiUZpZkK/l5WL+ork2YCVCP59QaeFQpAS8xOLNFIfjajUdS/0ZH8FLYYuucyZZn45covWHppKdLz0gEAfjajoUzri+QsorHOV93r4tDLBVh/az0AoH+9/vi99++wEFmU70FRjEKmkOFx4mMcvB+J9SelBstTu6JsoI4RCsOBO28w7c87BsstH+yLPr6uZV+hKoqpTqakb+geGxIES5DN/7dE+zcXmusVALoEQ1Higc/VnBLJVM95SSGEIFOWqT03io7RKOrfM2QZRu+HA44qukrHaBQ7iQOyspwAhRXcba3Rvo4rnMwdIeKLDG+YUm6U5z3Adl+nX5zG7FOzce3NNUDJRzVuf3xUrRt6+rTAqDZ1IOSrnKXxWfEYtHsQzkafBQB81fYrzO8wnzrrSoGStovU3FQ8jH+IB/EP8DDh/V91dJtU3h4O+TMNbofaFWUDtYEpxkLbDDuoZiofTNV+L4lmAkqum4Q8YalpJglfohFVbqrnvDTQNZJfy7FSSDspidLo/RQeya/WTbYSe+Rku4KrtEYNWyu09XSGk4UjHclvgpiabkrKTsKiC4uw6voq5MpzASUfLe2+QFOHIDR1q47hrWoyumndzXWY/M9k5CvzUc+hHvYP2o86dnXKpO4fEiVtE3KlHM+Sn2lppidJTyBXyqlmqmCoY4TCQKOfyh5TjcQxNHTPEDN7CeFql40MWQbS89KRkZfx/v+yDM3v//0/I0/1vTipowwh5ot1jkzREAj6xESh8iKeqEoZq7nyXJ1OFH2TzifnJOvdlkTRCrayceDDgVkmRwKShevAlzzQPS+KnigrM4FZlTrPpoSp9juAyrk3//hBbPo3E0RhzSy3kCiwKMQPPRqpDD+5Uo4vT3yJn678BADoWrsrdvTdARuJTUVUu0pgTLvIkmUhIiECD+IfaBj0bzLe6N1+LZtacJd0wvNnvQ3WhdoVZQO1gSnGQtsMO9hqpu1jmqFNbcdyqFHVw1Rtl5JqJgCY0Z0DZ7tMbc2k1kh6NFOOPKcUj0QFj8MzPEqFpWYyF5pXqfk7lESJlJwUVqNRDI3kL0oz5Quus55sno7kL3tMte8BgNfprzFp73rcfFwLfGLPLHew4GNBn0ZM/S6/uoz+u/rjbcZbWImssK3vNvSs27Oiql3pMaZNKIkSMakxWpopMjFSb/9gKbJEHfPuSHz9scG6UM1UNlDHCIXB0CRQBEooOEkY3/UNZrf7Uisqn1I0pjyZEluBVxh1m0i3mAYzkRRSgRRmAjOYCc00/upaLhVIIeVLIeAJmBfihBAolArIiRz5inzIlDJky9g7XIqTVsoQAq6AtWAwJB4q48t/uVKOpOwkLVFw/Vk+ztzx/K/U+2MiUALgIEH4I3J4l1nvR8wXFykKCuf8tRZbVynxVVaYcr8D6K8fgRIccDDcPw/zuoYw13rH/R0Yc3AMcuQ5qGVTC/sG7UOjao3Kv+KVnKLaBQEwtF0WiOg2HiQ8wMP4h3iR+kLvttws3dDAsQHqO9RHA8cGaODYAD72PjATmpXJhK7lTWWOnqU2MMVYaJthByvNhCS41V6HLSGbUNeubrnXsTJjyrZLcTUToGoXSk4ycqw/16ubmGU6lot5YnC5XICo5mEjhECulCNfmY98ZT5y5bnIlOlwuOjQTJmyTJBij3nRj7nQvFQ0k4XQAgKeoNTrV5YUHMlf0Ily9Vkejt5w+69UyTVTwZH8jONEYq8z8EytoehIfnaYct8DGNZNi/rXxuCPvAEAsZmxGLBrAC68vAAAmBcwD9+0/4bqZyMxpJnGB3IhNItgNFNEQoTe+Y+kAinqOdTT0k2uFq5QElR6zQRUXt1EHSMUDfRNAoX/lsT/9+Bu5tIMm4M304lwWWLqkymxTQlQkOIac8Yi5AnfO1d0OVzUywRmEPPF4HP54ICjEg5QGalKooSCKCBXyiFTyCBTyJArz0WOPEcrGkv9/+JM6GcILoerVzAw/2chGCxFljAXmldYtBCb9mxvwcdPw8yQlJuodzSK+m+u3PioOx6HxzhLDE02by+1h73U/oNz5pp6v2OofuoXS44eq7Aw8Ad08ewCDoeDu7F3EfJXCF6kvoBUIMXvvX/HoAaDyrn2lReFkqDNolOITdftSFaf9zfi0QDnfQqJambVUN+xPho4NFD9dWyAeg71YC22LnJ/FT2ha0kw5ahBNlAbmGIstM2wp6i+jYAgU/oLksgpiPliLAxciKktptIXUiwwdduFvWYiKI2X4MbA5XBVgWcsAtXUwWlcDhdcDlcVuEUAJZRQEiWjmfIV+chT5DFOF12aKUOWAblSXurHI+aLS0UzVWQGADbt2cFSgNWh9kjO1TOin+VI/qKwEFroTO9VOPDsQx7Jb+p9DxvdpOQkY3inKHzZ5gtYia0gU8jw6bFP8ev1XwEAvb16Y0vwFliJrcqz6pUWtlq1sGYS8oTwtvdWOT4K6Kaa1jWLtAMqs2YCKrduoo4Rihb6GvR3PeshiZzClCNTkJqbChFPhO87fo8ZLWfQ4ZwGMPU0ZcWJfnK2EuPzoJpoVUeCLFkWsvOzkZWfhSxZFvNX17KsfAPL//t/cXK6FgcJX6IlHMyEZpDwJRDxRBDwBOBz+eBz+AAHmsJBqXK4qJ0tauGQk5+DrPwslYD4TzAU+3gIFyJlffCIDRScFORxHzIPXqlAWvSw9qLERAkmcmTbXvq2eYkGbiJYi61hJbKCtdha9X+xFaxEVhDwBCCEIDs/W/cQdT2iQD35nLHYiG2MSu8l5ouLtR9Tge112jraD+3qOJVDjTRhW79Y4Wzk8e4joGYAFgYuREu3lkjOScaQPUOYCdw/b/U5FnZa+ME5vwyhUCrwPOX5+1y28Q9xIzod+YkTDa7bvMFl+Nd1Rn3H+qjvUB8OZg4G19FHZTSUTT1qkA3UBqYYC20zxlFU31a/uhyjD47GiecnAADt3dsjvE84atnUqqjqVgqqimayNRMiOUvGfHeyEmFG5+poUVukoXcM6aZsueGyZTFiXhcCrkBnoJqEL4FEIIGQJ4SAKwCPy1M5W8ABh8OBkqicLQploSA1RS5y83NVx5GfxThcin08RWgmPpdfaprJGKcB2/bSq+Uz1HMVMDqJ0Uz/6SepQAoOh8OM5Nc76Xwh/ZSYnVgsp5WYL9Z2nOgZjVJVRvJXlb4nVjgbUrPXmN12NiY3nwyJQIJNdzbhk8OfIE+Rh7p2dbF/0H4a4KyDlJwURjM9iH+Aay9SEP9qqMH1vOoeReta9qqRII71Udu2drE1aWXUTEDl103UMULRSVFDoN6kv8HYQ2Nx5OkRAECb6m2wKXgTatvWrsgqmzSmPkkjm3Qn1SxFWDbQF4mZeWU+LI4QgjxFnmHnSjEcLlmyrDLJ0asLHofHRG5JBVKI+WIIeUKVcOAJwOfw30dpQXt0S2Z6bWQlddOYe0HBSUSSYG2pR5sJecKiJ2ss8P1lrCMOXjNsEBqaXNJMYKbT+NflSCm4XMKXQK6UI0OWwRj9RYmCpOykYqULMBeaG5Xz10JoYVLRVWz7nSTh/+Di+Bbe9t7wsfdRfRx84G3vDUtR2T032davmc8DHHo1hxHKfbz64IeOP8Db3hvfnP4Giy4uAgAEegTiz/5/wl5qX9TmqiSEELxMe8nksr0Xdw+3Y2/jafJTyBQyjbIVNblfZRhanSfPQ0puChKzkjFiXTSSs3T3GxUdNcgWagNTjIW2GeMpqm8jhGDdzXX47PhnyMrPgpnADP/r8j+M9xtvUvaCKVEVNJOTlRjnvuiAmzEp5fLMkyvljNYp7UC1LFlWmcwHqQsxX8yMbJHwJRDxRYyzhc/jg8fhabx8V2smhVKBzPTayEgMKhfNxAEH5kJzVprpdZwT/rlRzeA2DWkmPpevUxsZ0k5WItXIgFx5LpJzkosMPCutkfxs0nvZSe1MLpiJbd+Ta/Yb6rilwcfe5712cvBBDasaZeocYls/kd0OPMneAQBwsXDBHP85CPMNw924u+j7V1+8Sn8Fc6E5NgdvRl+fvmVWX1MmIy8DEQkReJjwEPfj7uN27G08jH+IxJxEjXJUM+lHSZRIz0v/bx6mZIz7PRYpWZojJdVUBt1EHSOUYkEIwe+3f8eMYzOQIcuAVCDF4k6LMbHZxEofLVAWmHoEAlD5h+4Zg5IokZ2frd+5UlRkFguxka/ML3EdJYpWcJB9BUBlgKspOBRfLrgBMV/MOFwKCwcOOCAgTKSWOg+xTCFDnjwPOfIcrZembBApGsJJttBguVTJXCiEkap6/+f0yVfml9pwewFXf2RVwf9biizB5XBBQCBXyJGnyENOfg7SZelaIkH9tzh1FPKErEej2EvtYSuxLdP+0tgRGbpwsXDRMvy97b3hbO5c4pc6rEeq2S7HgCaN8TrtNXZG7ISS/Df/SOPhmBcwDzfe3sDI/SORlZ8Fdyt37B20F02dm5aobqYKIQSxmbFMJNOd2Du49e4WnqY8ZS1kJcpGcMz70WC5yjq5X648Fyk5KUjJTdH/V89vaqc52z5u+5gW4HI4JitcqA1MMRbaZsqGFykvEHYgDOdizgEAOtfqjI29N6K6VfUKrpnpQTWTaUEIgUwhMz5QTb2MRdmSwkYz5fKuQCKQQMwTQ8QvkBGAy38/ugUcjYwA+cp8jVRiufJcozMAsLUnkiVzoBREMrY1o9sU+aU2F4ylyFJ34JlI05Ei5ouZOWzU6aez8rOQkpOic9L50hzJryvwrLxG8pdUN0n4EnjZezFBZt723vBx8EEd2zqlMscL2/p51TmKxtUl+OvhX3iZ/hIAUMe2DhZ0WICAmgEYvGcwzkafBQB81fYrzO8wv8pmf8nJz0FkYiQexD/A/fj7uPH2BiISIhCXFcdqfbb3b2XVTAqlAml5aYwWSs1NZa2d0vLSmP6Q7Xn6tocP7C1ElV4zUccIRYuY1BiMPjgap16cAgB0qNkBv/f5HTWta1ZsxUyMyjIBbWUdumdq5CvyWUdsaS3Lz0JmXjYiIoZAITeHLq+7vnyWpY2QJ4SQKwSfywePywOPw/svlRgHwpQl4CitwYH2i/3Srp96vxxwmOiw0oADDixFljoFglgghoArYASWQqmATClj0qRlyDKQkpPCOFaKI+y4HC7sJHasc/7aS+2NmoiSbb/z1wQvPEmOxKOER4hMjMSjxEd4lPgIsZmxerdtJbKCt723hsPEx94HHjYerCPADNUPIFBykvFKFAZwlOBxePCv6Y9ceS4uvboEQOUcm/DRBPSr1w9jDo5BVHIUxHwx1vZcixGNR7Cqh6mSmJ2Ih/EPcT/+Pq6/vY7b727jWcoz1m1NzBejtm1tNKrWCPUd6jMizcPaEx3+d95kn0eEEOTIc4xybhQ05IsT6VgQDjiw53aFNGuSwbJWEgHSct47wp0sxZjb23Sel9QGphgLbTNlh5IoseraKsw6OQs58hxYiizxc9DPCPMNo6NHCkA104eFkihVL96NDVT7b1mmLBv3HvSHPL9iNROPw9PICMDj/qddCBeilCVAOWkmDjiMbioYHFcaiPlinSNTLISqlMw8jurluhJKVSCaPA/Z8mxkyDKQnpuOpJwkJGYnIjknudgj+bUcJ0Wk9zJ2JD/bDBqrQm3f66Yk1d8nSU/0BkZyOVzUsqml5TDxsfcxaq4PNrpJjkSmLXlYe6C+Q31cfn0ZSTlJAIAmTk3wfYfvcfLFSfx85WcAQJBnEHb02wFbiS3rupgaMoUMUUlReBD/ALdjb+P62+sqB0hmHOu25mzujAaODdCoWiNG39ax9UKflXdN+nmkUCpUOqgozaTHuZGel15ix6uEL4Etpwv46WONWq8yaybqGKHoREmUWHNjDb448QWy87NhLjTHsi7LMLbp2DIz9CvD8LLCVJboosp4bqsabCNC6tT+G1aW8RqOAwCMIUxAoFAqmNRc+Yp8jeinPHkeMwl9Tn4OsvOzWacZex+dRTQMfbaTS3LAYZwt6nRihBCmznKlvNQipMoSqUAKK5FqzhSpUAoRTzXsXz0SRD1KJleei2yZShyk5aYhMz+zWPuzFlsbzPlbMMrq38dpxe53UnNTVY6SQg6T5ynP9YosIU+IOrZ1VCNL7N4b/l72XpAKpFrlDfWLvwxugHTOv1h3ax0uvLzA/F7NrBrMhGZ4nvIcgCot28RmE3Ev7h6OPTsGAJjSfAqWdVlmlDOpIkjLTWOGcl96fQl33t3B89TnyJSxayNWIivUtasLXydfNHBswIguN0s3vc/gsn4eEUKY6EK18a3XaNexrDgj2QrC5XBhLbaGjdgGNhIbzb86llmLrZn/W4mtcPV5itHzbhVkjYk8z6kNTDEW2mbKnidJTzBy/0hcfq2ykXrU6YF1vdbBxcKlTPZXGe16qpkobGGrmTw9D8PaKh5ccJkJ59UQQphJ59UaRD3KntFMBUaN5OTnIEeewzrNWEk1E6ByvKjnbuGCC3BU9VanEiuvdGclgcfhMUFo5kJziPliiHgi8Ll8ZrSOQqFgznVmfibSc9ORkptSrOMT8UR6A810OVRsJDY4/jCuWH2PXCnHi5QXKq1UwGHyKPFRkSNqnM2dtUbl+9j7wMXCRacNb6hvnNnTFg/StmHb/W3MfvlcPura1sWL1BeMzg+oGYAONTtg0YVFyJHnoJZNLewbtA+NqjVidW4rCoVSgWcpz/Ag/gFuvL2Bq2+uIjIxErGZsawcgHwOHzWsaqBhtYbwdfJlznddu7qQCCQ61ymP51G+Ip+1c6NwueKO2CqIVCBlrZkK/rUWW0PMFxdrvmI1lVEzUccIpUieJT9D2IEwnH95HoDK+7yh9wa4WbqV6n4qc4ROZa47pfxgm0PUUD7a4sAFV2WoqvP6/jfUXD2ZotqRweVwIcuqh5zkniCK99EuHF4KeFb7QUS3mbRd+cp85MlVoqK00mgZQj3hIwDG4WKK8Dg8mAlVE1cKeUJmtAUhBHKlKu2XOu1bcY5BKpDCgdsJ3IxBUBa4TmZiGbo1zUJ7L0sNUWApsjTo0M6T5yEqOYox+NVOk8eJj4t0rLlbuTOOkoIi4MbzfFb9YkRCBNbfXI8t97YgOScZgOoFuIXQAml5aQAAW7Et/Fz8mMlu29Voh10DdqGaueH8zmVNliwLjxIf4da7W7j48iLuxt3Fi5QXSJexM2gdpY6oa18XHzl/hIbVGjLn0EZiU6z6GHoeEUKQKcssVgRSam5qiVMK8jg8LeObjZFuI7aBhciiWGnqlESJnPwcZORlodeKO0jI0HcM6ntR971iIxXgxjedK/wFGbWBKcZC20z5oFAq8NPln/DNmW8gU8hgI7bBym4rMbTh0FINKqvMukN33UWY06u+ydedUn5UpGYCACFXCBFfxARGFUzRxePwwOWqNFN+Vn2dmolvfQBEdFvbEfOfbiov1LrJlDUToIpOV8/bKeAKmP5SQRSQyWXIVeQWO621eiS/DacD5KnBUMjfPwMtJHIEN8tHgLeNUSP5CSF4l/mOCTQrqJveZrzVu56F0EJjZIlaO3naeuJkRILBfj1LloVdEbuw7uY6xgkPAJZCS2Tlv3foBbgH4GnyU7zOeA2pQIqNvTdicIPBRp+70kZJlHiZ9hL34+7j4quLuPH2BuMAYeWM5EtQ07omGldrjCZOTVDPsR587H1Q07pmsdKGsXmWyhSyYqWkSslNYR0MVxTmQvNiBYTZSGwg5AmN3l/BNIuZsmz0XfUACRn63vPonnsEqJyaiTpGSpGqGmGiJEosv7IcX53+CrnyXFiJrLC863KMaDyiVAx9tce2cEM0tQiiolAoCeYe34afLm5AA6cauDRhS5W49pTSg63XvW+bl7C3TmEimIr7KdELTMKFSFkfPGIDBScFedyHJR4KLuAKNNJ3aUV2/Zf3tuDcKWpB8SFSMEcy8F/aL4VMU9iwvE4CrkBndJW+nL+2ElvGwFQbsYUN/0cJj5gh3Lqwk9jB274enIRtYCeqhXrVXNGzgQ88bNx1vtzOledi76O9WHdzHZOvXX0e1I43O4kdsvKzkCvPhauFK/YM3IMWbi2KdX6NJU+eh8jESFx5fQUXXl3A/bj7iE6NZpw3RcHj8OBi4QIvOy80c23GRDPVtatbrNzKhBDVxHh6nBpJOSl4HstFcpYceSQeebwIpOYmM0Z9SR2ZfC6/WBFINmIbmAvNAYBxDqojNAuOblMvY/U7i/IFR6roj/AkGjnM9bF9TAu0qW1fovNXUkzVBqaYLqbYZqqqZgJUDv/Q/aG48fYGACDEOwRreq6Bo5ljibddVTTTtRdJCN4RirT8Vzg3biNauDWr6GpRTAi2mql/mzdwsNHWTAVHgrD9FNtxUAaaicfh6XTEaM618l4zFRwRUxlGmZQ2XA6XCfZTp2jWOf8ly2ulHsnPdn7JgqPn03LTEJkYqTEqPzIxEs+Sn+m9NgKuAHXs6sDLzge2vOawFdZEfSc3hDRqBEuxuc517sfdx/pb67H13lak5qYCADMPqRpnc2e8y3wHAPis1WdY1GkR69TIJYEQgrcZb3E39i7OxZzDjbc38CT5CWIzY1lpECuRFWrZ1ELjao3RzKUZ4wBxNHMs1rvHPHlekZrp6TsgKSsfMpIAGe8RUvOSmTKlMV+SpciyWAFh1mJrCHgCyJXyctNMOfk5Gm1In25iQ2XTTNQxUkpU5ugdtjxOfIzQ/aG4+uYqAKBX3V5Y12sdnMydir1NdV7FguetIKaQ448tD+IfoOFvDWEmMEParLQqO+EVpXiUd35lJVEyabVK8imOuFCvZ0pwwNF6Ia9OTUbRxk5iB0czxyLTe/E4PKTkpCA2KxZRSVHMEPOYtBi922UzieHjxMfYcGsDNt3dhMTsRK1tCLgC5CvzIeQJsSngewyp1Vn/gUjtAGv2E+HmK/LxJOkJ/o35FxdfXcT9+Pt4mfoSqXmpBtcV8URwtXRFPft6aOHaAk2cm8DHwQfuVu5azwMlUSItN61YKalSc1NLnFtayBNqGd8WQguYC81Vo50EEiYdgpAnVAnO/8S5UqlEriJX26iWv/+eLctFaro9cmVC5CMRedyHyJZnISc/p2QvIEoBqaI1bGRjwYcDs0yJLHBhZnDdyR1q4/Mgr7KsnkFM0QammDam1mY+BM2Ur8jH4ouLMf/cfOQr82EvtcdvPX5D/3r9i73NqqSZAKDb9m44+vQofu3+KyY2m1jR1aGYEOWtmQghTIpcLT1TXC2lYL+dHHlOqc0ZUhqoR5rocsRQtJHwJXA0cywyvZeVyArZ+dlIyE5ATGoMIpMiGQdKUS/fa1jVeD8iv0BqLgepAzgcDnLyc7A7YrdWemI1BZ0lHT06YleXn2GrLOI6GqmbErIScO3NNZyNPoub724iKjkKcZlxBgMbOeDATmoHTxtPNHFqgpZuLVHfsT687LxgIbLQKp+Tn1OslFQpOSmsU4oXhZXISiMQzEJkAQuRBcwEZjATmEEsEEPMU2XnKBgMCgLIlLIiNVNOfg6yZDnIyHREbp4IMiQih3MPOXKVs6K8MnPoggMOJIpWWrqJDZVNM1HHSClQFaJ32CJXyvG/S//DnLNzIFPIYCuxxa/df8Wg+oOK5cFlGxHyx9iWaOVpV5wqlxsKpQLWi62RKcvEvU/uoWG1hmWwj6obYfchUFnyK5cGSqKETCH7b/LFHFx/kYzY9ByYixXwrEYgUxopNBTsxEWpRH9RjEYqkMJWbAt7M3vYS+wh5UuhhBI58hyk5aUhISsBbzLe6DXudE1i6GnriWfJz7D9/nacenFKa53qhIPHMIekqEh/vgiYfFPLyFcSJR4nPsapF6dw6dUlPIh/gFfpr5CWm2aw3ZgLzeFm6QYfOx80dmqMOrZ1YG9mDxAgNU/HMGsdhjub/RhCwBXATPDeiVEw3QOPw2PEkDqFm3pOIplSprqHFLlMWofSFLsSRSvYysZpGNByJCBZuM5gvu1yo1DUoFjeGNZKw2kGJnfwxOdB3uVQQf2Ymg1MMX1Mqc18SJoJAO7G3sWI/SNwL+4eAGBwg8FY1W0V7KTGa5qqpJkAYO7ZuZh3bh5GNB6BzcGby2QfVDdVXj4kzQSo3rGoNdPVF0mITcuGuUQJz2oE+YU0EysdpDCskwpu50MdoV8RqNPK2kps4SBxgJXYCnwuHzKFDJn5mUjKTsK7zHfMSBBd2EpstdIY8zg8HH16VCM9cUGqEw6ewAJFjlXXo5tSclJw/uV5nI0+i9vvbuNp8lPEZRl2gPA4PDiaOcLTxhONqjVCQ8eGcLFwgYXIAhmyDFaaKSUnpcQBlxxwIBVImZRtTHrx/0YacTlcgEA1L5HyvxFHClXmCmYO1/90U2nfK5VNN0kUfjBXBhpcpbJpJuoYKSFVLXqHLQ/iHyB0fyhuvVMZLP3r9cfq7qvhYGacJ5FtDtHlg33Rx9e1OFUtVzpu7ogz0Wewvtd6jGk6plS3/SFE2H0IfGjXsaKOt6jor2JHgRUhMgpvy9Siv0wR9ct7JVFCCf3nysnMCe7W7pApZIhKjmJytjYhXNyC7iHmBXk2IByHMl7i8qvLiEiMwKu0V0jPSzfomBDxRLAQWcBSZAlzgTn4PD7y5HlIz0tHam4qMmQZxh2wDgpG5REQqP6Zdi7oong/5BqFIg21JyPlgMOIExFPpPevkCfU/q2I8gX/CnlCVmVvx2Rh1Ka7Bo9v++gWaFOn8gwLp1AA02kzH6pmkilkWHBuARZeWAgFUcDJ3Anreq5DL69eRm2nqmmmf6L+QY8dPeBl54XIyZGlvv0Pzd6uinxo17Aij1ehVBQ7S4BOTcXCMVPwUzDtKUUbdQpqQkiR6dLEPDFq29WGhdAC7zLeITotmvmNrW463XkODma8xK13t/A85TkSshMMXh/1/JqWQktYiCwgEUigUCqQKctEam4q0vPSS8WhUDClnDr4q7JqJsA43STgCvTqJoN6x1idVcTfO9HZGLPlvsFjq2yaiTpGSkhVi94xhnxFPhZeWIgF/y6AXCmHg9QBa3uuRYhPCOttVLXzN+vkLCy+uBhjmozB+t7rS227H1qEXVXnQ4lgqyzttqyuhzr6q8TiQo/IKJwntKC4KO1RAKYIWwO/KTJxu4T5nllTBrmmSwsBRwABT/UR8oQQ8oSMgS3miSHm//cRiN8b2lyhhtGtNp4ZA7zAbwKuCIv3myMtW/+9U81SiBOftoJUKC6XPMdsUSgJ/L4/gdRs/aLNWirAzUo2kSCFAphOm6lqNr+xXH9zHaH7Q/Eo8REAILRxKH7p+gusxdas1q9q5y8xOxEOS1UBdckzk2EjsSm1bVcW+5NiGKqZVJhKmy2r61EwBXRJHDQaeqrQdtRzKWTnZ2uUKYtRAKaIyekmE9ZMXHBVeokrhJCvGlki4ouYNMMSvgQSgUTlMCjoYOBp6iUNPaUux1eVE3BF+HGvGKlF6CYnSxFOf94WEoGoVOZ2Lg2qqmYyHVVaSYnP0B31VJittw+gjnNv2Esr1mtWmgh4Anzn/x161e2F0P2huB9/H3139sWwhsOwotsK2EpsDW6juYctnK3EenOIAgSOFkI09zC8rbKGjSHQwlU1EbB6HpbS2u+8QxE6zw+BymCadygCnes5VXjnQ2EHj8upFKK1JJR2u1VHhBScaFD9fyVRQkE0v+sqo6vchSeZ2HguDUmZ7w0xWzMOhrUVoYk7F5Hv5EjJUsJCrBrODg7Ruy02+2NbTl2Gy+EyaZLMiJn+bUF72+rJGGVKmSqVkkKVTklOVCmVFEoF5ETOpFliJm4sMImjUqmEnMi19ktAoFQqK/XohtLG1IdC55N85MvzgTJKVStSNISTbGGRZeLSZXj4Jg+tPA0Ls/KEx+VgUd+G+OS/tB26WNS3IX3GUiglgK1m+vHcKnwl7IKWbi1N5kVAadDMtRlujb+F7858h/9d+h82392Mk89PYmPvjQiqHWRwfUOaiUAJS4my0mgme6k9PG088SzlGa6/vY4unl1Kbd9UN1UdqGYqXpslpPT1yoWoTGw4m6qlmT5uK4afBw9yheK9bpIQeFZTMrqptHRbUdsCVHPo8bl8SPgSw1qr4Hel8r1m+k8vqSdwLzixfcHUtGodpVAqIFf893tBzaR8r8/U14NqJhWmrpmUUKqcZoo8oIx8Zmx0U2x6Hu6+ykIrzyIToJUrVVUzUceIkRQ29OzNRazW+/3eL9jw6BP09uqNMN8wBNUOMqloyZLQxLkJro+9jvnn5mPRxUXYfn87Tr84jfW91qNH3R5FrsvjcjCnVz1M2HYLHGjmEFU/ON5xVyIy0RX1HeuX3UEYgO3Q1hZuKsfIw4SHyJRlwlxY8pc/114k6007AKjO2bu0XFx7kVzlDUdK5YFtu3Vd1B5y/iODBnBZGJL6hq8mZSmw4lgOlMgAD++jC0zJYKNUIDoinCTKFkxbKggPdnCQfaUxFLqqwiPson3Zvhwtb7o2cMaaj5ti7sGHiE1/n8vYyVKEub3rm0SkJoVS2SiomxIz2OUIPxG9B4d/nwsvOy+M9B2JEY1HwMXCpYxrWj6I+WIs6bwEwd7BGLl/JKKSo9B1e1eMbToWy7os0znprJqiNJP69ekzxWLMO3cT8wLmVZhTyZh0QC3cWuBZyjNcfX211BwjVDdRKhts26zbIn/IBY/0OggKOwlKk6I00/Jj2Ujn74GZ3N9kX3RTKgiqmfRSmXVTVdRMVePNfDmhy9BzshTBWipAWna+3td2FhI5bJ2EuB2bjz2P9mDPoz1wMnfC8EbDEeYbBh8Hn/I5gDJExBfhh8Af0Me7D0L3hyIyMRI9/+iJMN8w/Bz0M6zEVnrX7drAGb993FTr3FazECJVuAFR2YfRLvwiDg89jNbVW7OuU2kN9dQ3tDU2LRcTtt3SGNrqYuECN0s3vE5/jZtvb8K/pr/R+ysM287QFDtNyocL2/aYkcNFNj+pVPetzsPK5XDB4/A0vnM5XNUka+BBnDIBgKaBr/rOBQEBF5ovKNQGW4bkJ+QJrjKjWAhRfZSgEUEF4XF44HP5EHAF4PP4qqHF/w1JFvEKDEcWSCDhSyAVSGEmNINUIIW5wBzmQnNYiCxgJjSDhdACFkLVfB8WIgtYiaxgk/oS2NKnXI9JV4QTuCngQPjfFdduSxwAjcTzcfzTlpUuesYYrr1IQVi44Xk6HC1MJ+qpMF0bOKNzPacPIm0HhVLW6NJNXA6g1PN45ACwMeOgfYOm2PPoGR4nPcbsU7Px9emvEeQZhDDfMPT26g0Rn11QminTunpr3PnkDmafnI0V11Zg/a31OP7sOML7hKODRwe96+nTTM5WEvjUeojwyMtY8O9lxGbGYnWP1ayD8CpCMwGqkfY77u/AtbfXjN6XPqhuolQ22LbF9BwOsvMTS3XfHHA09VFhzcRRaSZJalGaSQlLeT+tbat1U7pkGWSCaxoaqeD/q3rqXzZwwAGfy1fpJp4AAu77tLfqdExivhgSvgRivpiZSNxMYAapUAoLoYVKN6n//jdHooXQAlZiK5V2So4GwruV2zHp0kyEmwwO1M/wD1czAZVfN1U1zUQdIyzRZ+jFpecxywpH76ibxNJ+zdG1wQ3ci7uH8Nvh2HZ/G2IzY7H00lIsvbQULVxbIMw3DIMbDC7SgVAZaO7aHLfG3cK3Z77FT5d/QvidcGaYeGfPznrX03djpeb6oecfr3Dl9RUEbgnEzv47WU1WWFqTlxVnaGsL1xZ4nf4aV99cLRXHCNvO0FQ7TcqHCdv2uD54GZrUMNN2XOgyzHU5OAqVYRshaShXd2HDX7VMZfxLc0YghZwrVh5UZpLtCkI9r4SYL4aUL4VEINE0rv9zTqgdFVLB+zLqZYa+SwVSiPgicDncsj2Y3HRWxa6NvYZHfCEuv76Ms9FncfPdTbxIecE6nzCfw4eFyAIieQsIcyZp/U6U1ihs3Gv8DtVQaFUKqaobndq+jhTOVo/1pnlRT6xsCmleiuJDSNtBoZQ1+nRTUU4RAPgxpAm6NuiOX7uvxM6HOxF+JxwXX13EkadHcOTpEdhKbDG0wVCENQlDE6cmlTrVllQgxfJuyxHiE4KwA2GITo1Gxy0dMbnZZCzqtAhmQjOd6+l/GRGIFjdEmPjPRKy/tR4J2QnY0XcHJAJJkfWoSM3U3LU5AODqa1WwSWlcT6qbKJUN1pqpz//g625mtD7SV47L4bK65wxrJt32vlo3meWEIpX8azLzR7BFnc5Y7YyQCCSQ8qWQCt9rJnOhOWt9VFBzFVwm4Usg4AnK/oAy4lkVOzniJK4ocnA2+iwuvbqEiIQIpOSmsN6NudAc5oq2OjUTlDagmklFVdBNVUkzlfrk6zVr1kRMTIzW8okTJ+LXX39FQEAAzp07p/Hb+PHjsWbNGtb7KO9JBBVKgraLT+sd4sgBYCUVQMznITbdsFEpU8jw95O/EX4nHP9E/QMFUQBQDa/u69MXYb5h6OjRsexfKpUxF15ewMj9I/Es5RkA4BO/T7C0y1Kj00tl52dj4K6B+Dvqb/A4PKzvtR5hTcL0li/NycuKM9HhkotL8OXJL9HXpy/2DNzDaj9FoW5/hjrNC192rLQeWkrVw9Tb7YE7bzDtzzvFXj9WOBt5vPulUhchT8jeqC6Bw0LMF4PH5ZVKnU2Ct3eAdSycz+POAS6+GosUSgUiEyNx891N3Hh7A1deX8H9+PvIleuJ2iNcuOZuBA/2Op1mbFg+2Bd9fF2LtW5lQf38BXQHipjK5KGVGVOZSJtScspDMwGmp5sA7ZEjRb2If5L0BJvubMKWu1vwJuMNs7xRtUYI8w3DsIbD4GDmoLVeZSIjLwNfnPgCa2+uBQDUtq2NTX02oU2NNkZva9+jfRiyZwjyFHloV6MdDg45qHeC94rWTLnyXFgutES+Mh/Ppz6Hh40Hq30VhanbnxRKYUy9zZZUMwGlp5s44LB3OhgR0KWrjIArqNTOdy1KoJsSshJw690t3Hx3E9feXMO1N9fwLvOd7vWpZmIN1U1lizH2b6k7RhISEqBQKJjvDx48QOfOnXHmzBkEBAQgICAAdevWxfz585kyUqnUKEO9vA18tobe9tEtwOVyjBpKFJsZi233tiH8TjgiEiKY5TWsaiC0cShCG4fC09azxMdQUWTJsjDr5Cysur4KAOBh7YHwPuFGj6TIV+Rj3OFx2HRnEwDgx44/YlbbWVoPKzZOLGMMC7aGQMHO+1z0OQRsDoCrhStef/ra4LpseC9c1DFXKminSTFlTPlhz7Zf14e7+2m4VYstscNCIpBUmfmmyp3UV8AqP0BeRN56vgiYfBOwrm5wcwqlAk+SnuDmu5u4+fYmbr67iduxt5Epy2Q1QZ4hFvSzQ9/GDfVGAVcVSiv6mKIb6hipOpSHZgJMVzd928MH9hYi1ppJoVTg5POTCL8Tjv2R+1WTogLgc/noWVeVvrdb7W7lE3lbRhx/dhyjD47G6/TX4ICDT1t9iu87fg8x37jRDf/G/Ivef/RGWl4aGjg2wNFhR+FqqfmSyRQ0EwA0X98c199exx/9/sDgBoMNrs+Gow/e4ZNtt0Cg1IhmNwX7k0LRRVXWTADg6fEvqleLK7HDQsgTVi1nRXlSyropKTuJcZaotdOL1Belopm+6ClAcKP6cLFwqfLXm+qmsqNCHSOFmT59Og4fPoyoqChwOBwEBATA19cXv/zyS7G3Wd4GPltDb2InCT7r6F+siFxCCG68vYHwO+H448EfSM1NZX5r794eYb5h6F+vf6lM5l0RnH5xGqMOjEJMWgw44GBai2n4IfAHSAVS1tsghOCrU19h0cVFAICpzafi564/a4ysKU60UlEUZ3uZskxYLbKCkijxesZrLSFSXA7dfYWJf54Gj9gzy2inSQFKLzd0WWCqD3tD0VmGYNuHUMqY1FdAdhFz1EjtWBn3+lASJZ4kPcHvl+5h56XiOTQIlFAgCW/EowGOEm6WbvC294aXnZfqY6/6W92qeqUfKarGlPukyg51jFRdykIzAaarm74P8cTHLbyLtY+UnBT88eAPhN8Jx423N5jl1cyq4eNGHyPMNwz1HesXa9sVTWpuKmYcm8EEg3nbe2Nz8GYm7RRb7sXdQ9dtXfEu8x1qWNXAsY+Pwdv+/fk2Bc0EAFP+mYJV11dheovp+LnrzwbXZ8vwHf/DmXv2GvntTcH+pFQspmyfVFXNBFDdZDKUsW5KzknGb+evY/1pebHWL6yZzIXmqGtXV0sz1bWrW6UCzUy5X6rMmIxjRCaTwcXFBZ9++im++uorAEBAQAAePnwIQgicnJzQq1cvfPvtt5BK2b8gN9XIp1jhbFhaxKK3V2+EeIegU61OxZogMFeei/2R+xF+Jxwnnp1g8tGbC80xoN4AhPmGoW2NtpXOe5qel47Pj3+O9bfWAwDq2tXFpj6b0Kp6K6O288uVXzDj2AwAwKD6g7A5eDNznosbraSP4g5tbbymMe7F3cOegXvQ16cvm8MyyLnocwjY1BFOwjZY0+0POFrSTpNiukZ0QUz1Ya8vOqsoKno4O6ViKH60nKpl2TnvxUvZISRm6580U8KXoI5dHXjZeb13nPwnACxEFsWsOaWqQR0jVZOy0kyA6eqmeNFXaO5hg2DvYIR4h8Dd2r1Y+3sQ/4CZwzE+630O9WYuzZg5HG0kNsXadkVy+MlhjD00FrGZseBxePiyzZf4zv87o7RldGo0grYF4UnSE9hJ7PD30L/Rwq0FANPRTNvubcPwfcPRyq0VLo2+xPLIDNN8fXNcf3MTc1tvha+jv0nZn5SKgWqm4lMczQRQ3fQhUlLN5O5+Au/kR/A85Tkz5YAuPoRAM0rJMBnHyM6dOzF06FC8fPkSLi4uAIB169bB3d0dLi4uuHfvHr788ks0b94ce/fu1budvLw85OW9H/KVnp6O6tWrl3uuXP1ecgKRMBvx0k+Qmvd+YiJzoTm61+mOEO8QdK/THZYi4+v6Ku0Vttzdgk13N+Fp8lNmeW3b2hjZeCRGNB6B6lbF9+pWBEefHsWYg2PwJuMNuBwuPm/1OeZ1mGfUMPE/7v+B0P2hyFfmI9AjEPsG7YOFyKLUo5+AogwBAg44Ooe2jjs0DutvrceXbb7Eok6LWB5V0Xx35jss+HcBhjQYgh39dpTKNimVm9LMDc2G8jTWy2tfukSStVSA1Ox8cGB6w9kpFQObFz7WUgFEfC5i09/bK4UFd1J2Eh4nPcbjxMeqv//9/2ny0yIng3c2d2YMfsZxYu8Fdyv3qjVvDMUg1DFSNSktzQRUDt3E4aUhWjBCYzLeJk5NEOIdghCfENR3qG90AFi+Ih//RP2DTXc34fCTw5ArVRGrIp4Iwd7BCPMNQ6danSpVn5mUnYSpR6dix32V3d/QsSG2hGyBr5Mv620kZCWg5x89ce3NNUgFUuwesBvd6nQrV81EoAQXXJ32U1RSFOquqgsRT4SM2RmlkgotJScFdkvsQEBKdfQ+pfJS3poJqHq6SZ9jqXdjZ6z79wUAqpsopaeZZAoZnqc8f6+ZCmgnGmhGYYPJOEaCgoIgFApx6NAhvWVOnz6NwMBAPH36FJ6euufSmDt3LubNm6e1vDxFIZu8j4E+9jgXcw77Hu3D/sf78TbjLVNOyBMi0CMQId4h6O3VG9XMqxm1f0IILry8gPA74dj5cCey8rP+2z8HnT07Y2TjkQj2DoZEICnJYZYbqbmpmHZ0Grbc3QIAqOdQD1uCt8DPxY/1Nk48O4G+O/siU5aJps5N8c/Qf2AvdTQ41NO5GFELugwBJScJKwa1R7BvTa3yG29txJhDYxBQMwBnQs+w3k9RtN7YGpdfX8bG3hsxqsmoUtkmpfJS2rmhDVGeUVblHdGlS0yciIg1+agySvnCxg7oXM+pWMJUrpQjOjUajxMfIzIxUsNpEpcVp3c9EU+E2ra1dTpN9E22ayymGr34oUIdI1WT0tJMQOXRTd5uedgfuR/7IvfhwssLUJL3TpLatrVVThLvELRwa2F09Gd8Vjy239uO8DvhuB//fsJfN0s3jGg0AiN9R6KOXZ3iHl65sydiDyb8PQEJ2Qngc/n4tv23mN12NmsnQqYsE/139sexZ8fA5/KxsfdGDGs43KADy9lKUiqaSY4E9G2uwIq+o7X3QgjsltghJTcFN8beMEoL6mPfo33ou7MvfOx9EDEpwvAKlCpNeWsmoOrqJn02YWUYjUMpP8pSMwGmG2hGNZNpYRKOkZiYGNSqVQt79+5Fnz599JbLysqCubk5jh49iqCgIJ1lKjrySY0xHb6SKHH9zXXsi9yHfZH78CTpCfMbBxy0qdEGId4hCPYORi2bWkbVI1OWiT0RexB+JxznYs4xy61EVhjSYAjCmoShmUuzSpFq6+Djgxh3aBzisuLA4/DwVbuv8E37byDkCVmtf/PtTXTb3g0J2QnwtPHEsY+PIeqtVG+0EgccLO5fG4M+Mj6nsbqji0vPwacnR+NF1kms67UGY/3GapW9H3cfjdY0grnQHKlfppa4o03LTYPdEjsoiAIx02NQw6pGibZHqfyURaSfPsozyqoiIrr0QY0bSmEqQvil5qbiSdITxvhXO06ikqKYyYd14WjmqDW83MveC7VsaoHP5bPaNxW6pgd1jFQ9SlMzAZVTNyVkJeDg44PYF7kPJ56fgEwhe7+OuTP6ePVBiE8IAmoGsNYIgOql+613txB+Jxw77u9ASu77kf1ta7RFmG8YBtQbUCmiSOOz4jHx74nY82gPAMDP2Q+bgzeznktFppBh9MHR2HZvGwBgaeelaGA5TK9mAjjo1yoJP/UJNbquBe2ny2+PYvG1cfCyr4NHkx7p1Kddt3XFsWfH8Gv3XzGx2USj91eYSX9PwuobqzGl+RSs6LaixNujVG7KUzMBVDdR3UQBKkZDqAPNIhMjtZwmZR1oRjWT6WESjpG5c+di7dq1ePXqFfh8/QL84sWLaNu2Le7evYtGjRqx2nZFisLidPiEEDxKfMSMJCk4SSAANKrWiImKalStkVEOjWfJz7D57mZsvrsZL9NeMsvrOdRDmG8YPm70MZzMnYw7yHImKTsJk49Mxp8P/gQA+Dr5YnPwZjSqxq49RCVFIWhbEF6kvoCjmSOODjuKuCQnrY4J3BTE81ejQXU5zoSeKdGETcsuLcPnJz5H42qNcXv8ba1rplAqYL3YGpmyTNz75B4aVmtY7H0BKgdSnz/7oI5tHTyZ8sTwCpQqD9vc0PXqXEWgjxXqO9ZHfYf6cLN0M6qPKc8oq4qI6KJQjMVUhJ9CqcDLtJdaEVORiZEaI1YLI+AK4GnrqdNpYi+1Z8qZktimvIc6RqoeZamZgMqnmzLyMnDk6RHsi9yHv5/8jQxZBvOblcgKPev2RIh3CIJqB8FcaM66LrnyXBx8fBDhd8Jx/NlxZoSKVCBl5nBs597OpHOTE0Lw54M/MemfSUjJTYGQJ8T8gPn4vPXnrIKwlESJmSdmYtnlZQCAT1t+ikCXz7Dg8CMN20sqzkO08n/I41/FvkH70Nurd7HrnJGXAdefXJEhy8CJ4SfQqVYnrTJzzszB/H/nY0TjEdgcvLnY+1LjtcoLT5Ke4MDgAyWqO6VqwFYzVa9xEm3rilHfsT4aODaAt723Uam+AaqbKJSCmIpmAjQDzQqOzi+NQDOqmUyTCneMKJVKeHh4YMiQIVi06P38Cs+ePcOOHTvQvXt32NnZ4d69e5gxYwbc3Nxw7ty5IraoSWUXha/SXjFDx/+N+VdjUqFaNrUQ7BWMEJ8QtHJrxXqkgZIocfrFaYTfCcfeR3uRK1c9IHkcHrrX6Y4w3zD0qNvDqCir8mbXw12Y+M9EJGYnQsAVYI7/HHzZ9ktWka2xmbHouq0r7sbdhYXQAvsH74e/eweNjtjaMhHtwtsgKScJ3et0x4HBB1hHzRYmOScZrj+5IleeiwthF9CmRhutMh02d8DZ6LNY32s9xjQdU6z9qJl6ZCpWXluJCR9NwOoeq0u0LUrVgG30U6xwNvJ479NIWIosUd9B5SRRG/71HerDydxJp8OE7X5m9hJiqF+zEqXvKe+ILgqlqpKRl6Ey/gs5TZ4kPUF2frbe9WwltvC290ZdWy9cu9MLWbkCvDfr30PFdsVR2W1giiZlrZmAyt1m8uR5OP3iNPZF7sOBxwc0JlcX88XoXKszQrxD0Murl4Zj1xBv0t9g672tCL8TrjGqv5ZNLYQ2DkVo49BiTwZfHrzLeIdxh8fh8JPDAICWbi2xqc8meNl7sVr/f5f+hy9OfAEAGNZwGNb32og7LzMZzdSspg0++XscNt7eCAlfgtOhp9HSrWWx6zvlnylYdX0Vgr2DsW/QPq3f/4n6Bz129ICXnRciJ0cWez8A8DLtJdx/cQeXw0XyzGRYia1KtD1K5ae4monL4cLTxlOllxwaMEFmXvZeet+psN3X0kGu6OfbqESOWKqbKJSSoyvQTO04YRNoVtfWG08ihyMnTwiqmUyLCneMHD9+HEFBQXj8+DHq1q3LLH/16hU+/vhjPHjwAFlZWahevTpCQkLwzTffGGWoV2YDvzBJ2Uk49OQQ9kXuw/FnxxmHBqDyTvbx6oMQ7xB09OgIEV/EapupuanY+XAnwu+E48rr9w9Le6k9hjUchjDfMDR2alzqx1IaxGXGYcLfE7AvUmU0N3Nphs3Bm+Hj4GNw3bTcNAT/FYyz0Wch4Aqwre82DKw/UKPMlddX0HFzR+TIczCmyRis67Wu2CnHxhwcg423N2Jwg8H4o98fWr/POjkLiy8uxpgmY7C+9/pi7UNN/dX1EZEQgd0DdqNfvX4l2halamB4clPAWqpE73Y38SjxIR7GP8STpCcajtiC2IhttAz/+o71cTkqn1WUVYJgCbL5/6KWTS34OfupPi5+aOrcFLYSW1bHxDaii2ezBUEN7NCpVid0qNkBNhIbVtunUD50lESJ1+mvdU5kWHDUqUjREE6yhQa3R8V2+VOVbGBK2WsmoOq0GYVSgSuvrzBpip+nPGd+43K4aO/enklTzDblLCEEl19fRvjtcPz18C9mdAoHHHT06Igw3zCE+IRAKpCWyTGVBEIINt/djGlHpyE9Lx1ivhgLAxdiaouprF62br27FaMOjoJcKUeQZxB2D9ytMQInX5GPPn/2wZGnR2AvtcfFURdR165uEVvUz6OER6i3uh64HC5eTHuhdX0SsxPhsNQBAJA8M7lEdl347XCMOjgKLd1a4vLoy8XeDqXqwEYz2ZpxMLLLczxKeIiHCQ/xIP6BRuq9gvA4PNS1q/teLzmoAs1q29bGP/fjWesmnvQ2mjg30dBNde3qsnaWsNVNbtWPo1/TmgisFYiGjg0rRbp1CsUU0Bdo9jjxMXLkOQCoZjJlKtwxUtZUFQO/MFmyLBx9ehT7Ivfh8JPDSMtLY36zEFqgR90eCPEOQbfa3Vjnwn2U8Aib7mzClntbEJsZyyxv4tQEYb5hGNpwKOykpnWDEkKw4/4OTD4yGam5qRDxRPi+4/eY0XKGwRE0efI8fLzvY+yO2A0OOFjRbQUmN5+sUebg44MI+SsESqLEXP+5mBMwp1j1vP3uNpquawoBV4CXM15qpSxTT/zXqFoj3P3kbrH2AQBvM97C9SdXcMBB4sxE1i+ZKVUfNhObFRy2KVPI8CTpCR7EP8DDeJXh/zDhIZ4mP9WY9LQg1QRtIU6fZbAuHNvliM45ofM3D2sP+LmojP6mzk3h5+yns98pTkQXBxz4ufihk0cndKrVCW1qtDF62DuFQgGy87MRlRSFyMRI/HM/HufuGp7/bPlgX/TxdTVqP6Y0rL4yUlVtYErZURXbDCEE9+PvY98jlZPkbpymne3n7KdKU+wTAh97H1YvArNkWdj7aC/C74TjTPQZZrmlyBKD6w9GWJMwtHBtYXIvFV+lvcLog6Nx4rnKBmtXox3C+4TD09bT4LpHoo6g/67+yM7PRjOXZvh76N9wMHNgfs+UZaLD5g648fYGPKw9cHn0ZVQzr1asegZuCcTpF6cxu+1s/Bj4o9bvnis88TzlOY5/fBydPTsXax8A8PHej7H9/nZ80+4bLOi4oNjboVQtjNVMhBDEZsaqtFL8e2fJw4SHSM9L17kPAVcAT/NuyIkbZ7A+yZI5yMBNreXmQnM0cWryXjO5+MHLzkvnO5Di6CZHM0cEegSiUy2VbqLzllIoxlMw0Gz/ndf4+7qjwXWoZip/qGOkCiBTyHA2+iz2PVINHX+X+Y75TcQToVOtTgjxDkFvr94aBqw+5Eo5jj09hvA74Tj4+CDylfkAACFPiN5evRHmG4Yunl2KnVqqLHiT/gZjD43FkadHAACtq7fGpj6bUMeuTpHrKZQKTD0yFatvqFJOfd3uayzosEBDyKy9sRaf/P0JAGBDrw0Y3XR0serYemNrXH59GfMD5uNb/281flM7NLgcLtJmpRmVB7kgW+9uxYj9I/CRy0e4PvZ6sbZBqbqUxkRfufJcRCZGahn+L1JegBAOXHM3ggc7cKArgonAUqLA6pH2cLNyxdPkp7j59iZuvlN9CkZ0FsTdyp1xlqijpGzEdkVGdHEAOFoKMTskB6ejT+Lk85N4lPhIo4yYL0bbGm0Zo7+JUxPWKQkpFIqKskrPQCcmLDkfgg1MKV0+hDbzPOU5k6b44suLIAWsiLp2dZm5HJu5NmMVjf0i5QU2392MTXc2ISYthlnube+NMN8wDG80HM4WptNnEUKw7uY6fHb8M2TlZ8FMYIYlnZfgk48+MXi8V19fRY8dPZCUk4Q6tnVwfPhx1LSuyfwenxWPVhtb4XnKc/g5++HsyLPF0jTqgDF7qT1ezXilFcQydM9Q/PHgDyzosADftP/G6O0DqvPgvMwZcVlxOBt6Fv41/Yu1HUrVpDRsEEII3mS8wcP493rpYcJDRCREIFOWCRCuQd1kbQb88UkdyBS5uB17m9FNd2LvMFHoBTETmMHXyZfRS37OfvCy9wIHPIO6yc6ch0EdHuJ09En8G/OvVjrVOrZ1GM3UwaMDDcCkUIyEaibThTpGqhhKosTV11cZgz8qOYr5jcvhom2Ntsy8JAUNWX0kZidix/0d2HRnE27H3maWO5s7Y3ij4QhrEgZve++yOBSjIYTg99u/Y8axGciQZUDCl2BRp0WY3HxykYY+IQTf//s9vjv7HQBgdJPRWNNzjYbj55vT3+CH8z+Ax+Hh4JCD6F6nu9H123F/B4btHQYXCxdET4uGgCfQ+N3tJze8yXhTIuM8dH8ottzdglltZmFhJ8PD9CgfHmUVTZAly0JkYiR23nyCvy6qR6m93y6BEgAHCcIfkcNTpStwtXBl5i2p71gf1S2rI0+Rh0cJjxhnydPkpzr3V92yOjyl/fDiRSD05egsHNH1Jv0NTr84jZMvVI6SwrlAbcQ26OjREZ1qdUKgRyBq29Y2uWhPCsXUMJR2ojj5cunEhKXDh2YDU0rOh9Zm4jLjcPDxQeyL3IdTL05BppAxv7lYuCDYKxjB3sEIqBmgZbcXRkmUOBd9DuF3wrE7Yjfz0pLL4aJr7a4I8w1Dr7q9WKc7LmtepLxA2IEwnItRzUMT6BGI3/v8bjAq/HHiY3TZ1gUv017C2dwZRz8+ikbVGjG/RyVFofXvrZGYnYhutbvhwOADBs9dYeRKOWotr4VX6a+wJXgLhjcervH78ivLMf3YdPSs2xOHhhwyattqHsQ/QMPfGkIqkCJ5ZrLJXBeK6VBWmklJlHiZ9hIP4x/i4L2XOHaj+n+/6NdNUoEUPvY+TCpj9WTvbzPe4ta7W7j57iZux97WOTechC+Br5MvXATdcSPCF2x0U548D1deX8GpF6dw8vlJXHtzTSPFMh2FT6EYD9VMpgt1jFRhCCGISIhg8uveendL43dfJ18mKqqBYwODLwDvxt5F+J1wbLu3DUk5Sczylm4tEeYbhkH1B5nEpHUv015i9MHROPn8JAAgoGYAfu/9OzxsPIpcb/3N9fjk70+gJEr09uqNP/r9weQJJoQg7EAYNt/dDKlAirOhZ9HMtZlR9cqT56HGLzUQnxWPXQN2oX+9/hq/99vZD3sf7cXiTosxs81Mo7atrqPbz254m/EWJ4efRGCtQKO3QaHowlhhoCtqwVKiQD3PCKTgDB7GP8Sb/7N33vFRFFobfrYku+m9N1oKLYQOogIiRaXaFRQioqJeFbv3s5dru+q1oAIqoCJYQxEQQao0pQQCIY0E0nvbJJtsm++PNUOW3SSbkECAeX4/TdgpO7uZnT3vnHPeo8lrdvsIjwjRi7eHVw9kyCjTlpFUnMShgkMWw0899XNwN8xAxplODxkC4/rLeH3aYCvbukYEQSClNIUtmVv4I+sPtp3aZtXuHu4RLgb813S/pt2WEBISlzpttZ1oiUbR0PT60RRpMKH9XM4xsET7uJzPmeqGajakb2B1ymrWp683V3T/g6fak8lRk5kRM4OJPSfi4ujS6r4aZzjuydkjPu7t5C3OcBwYNLDTXou9mAQTn/z1Cc9ueRatQYuboxsfTPyAewbe06IuzKvOY9KKSRwrPoa7yp21t6+1KOran7ufscvHojVoiY+L58upX7a50OSNnW/w/LbnGR4ynH33WlbY7svdx8gvR+Ln7EfRk0XtKmL5377/sWDTAib2nMhvs35r8/YSErZoTzLFlm5yUesIC91HoWETKaUpNBgbbG7r6ugqzi7p7dcbD5UHWoOWzPJMDhUe4nDhYctrWTO6afpgN9658Ypmk5hV9VXsOL2DLZm2u/BVChVXhl8p2m5JXfgSEraRNFPXREqMXEacrjwtdpLsyt5lMSegp1dP0V93ROiIFjssdEYdv6b9ytLEpWxM3yhWDzgpnbix943Ex8UztvtYu4eBdQaCIPD5gc95avNT1OprcXV05b/j/8t9g+9rMXhenbKaO36+g3pDPaPCRrH2jrVim6jeqGfKyilsOrkJP2c/9s7da5cnb1MaO09GR4xm+5ztFsve2f0Oz2x5hht738jPt/7c5tecUppC74W9USlUVDxTgZODU5v3ISFxNu1tzWxNGFTWV5Jckmw1w6TpfKOmyJDR3au7OLDQSelERr4r+471E9dopGmVlZfnaQsLrsFBg21aWhhMBg7kHxAD/j05e0QbwUZiA2LFFvKrI65ut+WdhMSlSEe1cXdWm/nliBQDS7QV6Zwx02Bo4I+sP0Sb4pK6EnGZk9KJCT0nMCNmBlOip7RqJ5NamirOcGzaqTogYADxcfHMjJ2Jr7Nvp70We0grS2PO6jnszTV39F4feT1Lpiwh2C242W0q6yuZunIqu7J3oVKo+O6m77ix943i8l/TfmXaqmmYBBMvXv0ir4x9pU3HVFxbTNgHYeiMOv6e9zdDgoeIy+oN9bi/6Y7epCfzkcxWi99sMfm7yaxPX8+749/lySuebPP2EhJncy5xUEu6yWAycLL8pNUMk7SyNCut0oiHyoO+/n3p49cHP2c/BEHgRK6KxJQhCJh1VSONuqlK/V+iQ7UWuqmvX1+byZJ8TT5/ZP7Rahd+o26SuvAlJM4gaaauh5QYuUwpqS1hXdo6ElIS2Hxys0UVQqBrINOipzEjZgZju4/FUeHY7H4KNAV8e/RbliYutagciPCIYPaA2cyJm9OuYLWjyKzIJH5NPDtP7wRgQs8JfDHlC8I8wprdZtfpXUxdNZXK+kr6+vXlt1m/EeoeCoCmQcOY5WM4VHCIXt692HPPHrvmtjSSU5VD9w+7YxSMJM1Pop9/P3HZjlM7GLN8DKHuoeQsyGnza/3kr0/418Z/Ma77OLbcvaXN20tInM2FaM0sqyuzCPwbg//SulLLFUVfXl+L4L7JChgoJU89F2SWw+IDXQOtkiXBbsEWAXutrpY/s/80J0qytpBYmGixD6VcycjQkWJl1NDgoW22ipCQuNToCNuJNYl5PLoqsdX12jOY8HJDioEl2op0zlhjNBnZk7NH7MA/VXlKXKaQKRjdbTQzYmYwPWa6qBea28/vJ39naeJS1qSuEW27HOQOTImewpwBc7gu8roLNsPRaDLy/t73eWHbCzQYG/BUe/LxdR8zs//MZm9oavVa7vzlTlanrEYuk7Pw+oU8MOQBcfnig4u5/9f7zb9PXsy8wfPadEyNw9HnxM1h6bSlFsuGLhnKgfwDrLppFbf1u61N+9Ub9Xi/402NrobD9x8mLjCuTdtLSJzNhdBMeqOe9PJ0qxkm6WXpFrZXQKu6ScCEkTIr3eSocCQ2INZCN/Xz72dxf6ixC7/RdkvqwpeQaB1JM3UtpMSIBJoGDb9l/EZCSgLr09dbfJG5q9y5IfIGZsTM4LrI65qtkBYEgb/y/mJZ4jJWHltJVUOVuGxMtzHMGTCHm/vc3GrreWdgEkx8tP8jnvvjOXOFkcqdDyd9yOwBs5sN9JOKkpi0YhL5mnzC3MPYNGsTvf16A1BYU8jIL0dyqvIUw0KGsfXurW16XY2WWfOHzOfTGz4VH6/R1eDxlgcmwUTe43ktVmnZYvqq6axJXcOb497k2SufbdO2EhJn09VaM4triy2qpA6e1lCSc2er2yl9P8HbowyFTEFpXSknK05aDFptJMAlQEySDAoaxOCgwYS6h4rXiJLaErZmbeWPrD/YnLnZ4sYImFvZx3QbIwb9ffz6SJVREp3mT30pI1U/dRxSDCzRVqRzpmUEQeBI0RESTpiTJEnFSRbLhwYPFTvwW5rBWK4tZ2XSSpYmLuVgwUHx8QCXAHGGYx+/Pp32OloiuSSZ2atncyD/AADTY6bz+Q2fN3sj02Ay8ND6h1h8aDEAL49+mRdHvyjGQC9ue5HXdr6GXCZnze1rmBw12e5jabTMUilU5D2eh4/zmWv+wxseZuHfC1kwYgHvT3y/Ta9xd/Zurlx6Jb7OvhQ9WXRBXQ4kLn66mmZqMDSQVpZmkSw5mlOPsfThVrd1CfgCD/ci6g31nKw4aZXgAHOypL9//zOaKXgw/f37i3N67OnC7+/fXywuk7rwJUDSTO3Bfs00nJE9L2xnaldHSoxIWKAz6tiWtY2EFHPreFNbG5VCxfie45kRM4Op0VObbfvW6rWsTlnN0sSlbMncIt6EdHV05dY+txI/MJ5RYaPO+03D1NJU5qyZw75c88VjStQUFk1eZNNWB8zWYxO/nUhqWSreTt78esevjAwbKe5r1FejKNOWMTlqMgm3Jdhd4bUtaxvXfH0NLg4u5D2eZzGXZcDnAzhadJRfbv2FGb1n2P3aDCYDPu/4UN1QbdVuLiHRHuz9or1pVA7DunsR5BZEkGsQwW7B5yUBam+FRInDO9Qpd4r/liHDzdENd5U7KqWKekN9s/NO/Jz9xGRJY5VUmHsYMpmMzIpMMeD/I+sPyrXlFtsGugaKQ9yv7XFti1WkEpcmHdUm3ZTLQTS0NphQwIRJVs4D1+Xz5BWPSwNzW0CKgSXainTOtI2T5SfFTpK9OXstCi+ifaLFJMnQ4KEtFmM1znBsatk1LGQY8XHx3N7vdjzVnp39UiwwmAy89edbvLrjVfQmPb7Ovnx6/afc0vcWm+sLgsDL21/m1Z2vAnD/4PtZeP1CFHIFgiAwd+1cliYuxdnBmW2ztzEsZJhdxyEIAkOWDOFQwSGrGYzfHPmGu1ffzRVhV7D7nt1ten2vbH+Fl3e8zG19b2PVzavatK2ExNnYq5muH57O4Ag3gtzMeinINQg/F7/zkphrr25SKVR4qDxwdXRFQKCktoQafY3Vdg5yB/r597Poxu8f0B+1Ut2mLvxx3ccxLGSY1IV/mSFppvZhj2YyUkZkzDd8cv1H9PXve96P8WJBSoxINItJMLEvd59YFXWy4qS4TC6Tc1X4VWLreIRnhM19ZFdl8/WRr1mWuMxi+0jvSObEzeHuAXef1xuGRpOR/+75Ly9ufxGdUYe3kzefXPcJt/e73aZgKa0rZfJ3k9mftx8npRM/3vIjN0TdAMDenL1c8/U11BvqmTdoHosmL7Ir2SMIAv0+60dySTIfTfqIfw3/l7hs3tp5fHH4C54Z9QxvXfuW3a+rsaLKS+1FyVMl0rAziXOmvQE0gJujmzngbxL4N/5s+pibyq3dx2evCFH7fU6+bgcanabF9WTIcHZwRq1UYxJMVNZX2uws8XX2FTtKmiZLjhYdFQP+Xad3oTVoLbaL9okWK6PGdBtz3m9ySJw7bQmwO8NSoTNEQ1elucGE/PNIseN/0Cr2EukdyUfXfcSkXpPO9yFeFEgxsERbkc6Z9lNYU8ja1LUkpCTwR+YfFhXSIW4hTI+ZzoyYGVwdcbXNm346o44N6RtYmriU9WnrRSsctVLNjJgZxMfFc033a85rjH+k8AizV8/mSNERAG7rexsLr19o0bnRlM/+/oyHNjyEgMCNvW9kxY0rUCvV6I16pq6aym8Zv+Hr7MveuXvp5d3LrmP46vBXzF07l26e3cj4V4b4+tPK0oj+JBq1Uk31s9VtupF61dKr+DP7z3bZe0lInM25aCalXEmAS8AZ3eQabFFs1qib/Jz9zumzb69u0nm8S7H+T2srrrNwlDvi7OCMUq6kVl9rpXsaX1tfv74WyZLYgFhqdDVsO7WNLZlbpC78SxRJM50/WhrmLiBQqf4vVbIdKOVKHhn2CC+NeQl3lRTfnY2UGJGwC0EQOFZ8TKyKOjvTPyhokLkqKmaGzS8vQRDYlb2LpYlL+fH4j9TqawFzgmV8j/HEx8UzLWYaaqX6vLyeY8XHmL16NocKzBeRm3rfxGc3fGZzXkitrpZbfryFjRkbUcgUfDH1C+bEzQHMw9pv+uEmTIKJV8e8ygujX7Dr+Rf+tZCHNz5MtE80Jx46Ib5fXxz6gnnr5jGm2xi2zd5m9+t5Y+cbPL/teW7qfRM/3fqT3dtJSDSHvQF076jfqZMnkq/JJ1+TT52+zu7ncHV0tQj8myZQmooBN0c3q2tKaxUSZ7et1+nrOFFygp3ZO9mbs5djxcfIrc61K2HiqHBELpNTb6i3mSzxcfIRkyWDggbRz78fBZoCtp7aypbMLfyd/zcm4Yxfr1wmZ0jwEDHgvyLsCqnqvYvTlgDbaBIY9c+5aYv2WCpcCO/qC01z7/mLk/tQatrCU5ufoqi2CDBbvXww8QO6eXa7QEfbNZFiYIm2Ip0zHUNVfRUb0jeQkJLAhvQNou4B81DiKdFTmBEzgwk9J+Ds4Gy1fVFNESuSVrA0cSnHio+Jj4e5h3H3gLuZEzfH7sTCuaIz6nh95+v8Z9d/MApGAlwCWDxlMVOjp9pc/6fkn5j5y0x0Rh2jI0az+vbVeKo9qdHVMGbZGA4WHKSnV0/2zN2Dv4t/q8+v1WsJ/SCUcm056+5YJ1pxCYKA9zveVNZXcmDeAQYHD7br9WgaNHi/443BZGj34HYJiabYq5kG9dlJvSKJgpoC8jX5lNSW2NQVtlDIFAS4BpwpMnO1UYDmFoS/i79NF4u26Ca5DHKqc/g77292nN7B4YLDZFRkUFJb0mrCRClX4ih3RG/S2xwMr5Ap6Ovf18K62F3lzu6c3fyR9Qd/ZP5BmbbMYptA10CxA39c93EtzoqVuPC0VTN1tA2dpJnMNL7n0SH1LNi0gDWpawDz5+nd8e+2OD/sckRKjEi0i6yKLFanrCYhJYE/s/+0+FKP9I4UW8eHhQyzag+t0dXw4/EfWXZkmTgUHcBT7ckd/e4gPi6eIcFDOv2DqjfqefPPN3lt52sYTAb8nP34fPLn3Nj7Rpvr3rvuXr4+8jUAb417i6dHPY1MJuOzvz/jwQ0PAvDV1K+IHxjf6nNrGjSEvB+CRqdh812bubbHtYC5nT7281hcHV2pfKbS7sqQscvHsv3Udj69/lPmD51v71sgIdEsbU08gFmkanQaCjTmgL8x8C/QFJz5/Z+fNTrrNuzmcHZwtkyW/CMGKiojWLnL2pO2LYGPVq8luSSZHad3sC93X5sSJnKZvFmB4KX2EgP+GN8YGgwNJJUk8UfmH6SWpVqs66R04qqIq7i2+7WM6zGOuMA4ye+6C9FcgG1G4IahBTi5pZKnySO3OpfcEieE8kdb3a+9MzK6mnf1+aSlirPqhmpe3v4yH+3/CKNgRK1U89yVz/H0qKfPW5FFV0eKgSXainTOdDz1hnq2ZG4h4UQCa9PWUlpXKi5zUjoxqdckZsTMYHLUZLycvCy2FQSBgwUHWXp4Kd8d+47K+kpx2VXhVxEfF88tfW85L/78B/IPMHv1bJJLkgG4e8DdfDjpQ5sdsNuytjH9++lUN1QTGxDLxpkbCXYLpqimiJFfjiSrMouhwUPZNnubXfarT/3+FP/d+18m9pzIb7N+Ex+f+O1Efj/5OwuvX8iDQx+063WsT1vP5JWT6eHVg5OPnGx9AwmJVmiPZgLz/YWi2iIL3WSloWoKKKopsjuBIpfJ8Xfxt1lsVlIWzJfbrO8t2KubBEEgtzqX/Xn72Xl6J4cKDnGy4qRdCROFTIGAYFEo1nRZb7/eDA4azMDAgXioPcirzmNn9s4Wu/DHdR/H2O5jpS78LkTLmgluvqICV/cM8qrzyNPkcarYgbqi+1rdr6SZWqe1Lp2N6Rt55LdHyCjPAMwxxCfXf0JsQOyFOuQuhZQYuYjoqj55xbXFrE1dy+qU1WzO3IzOqBOXBbkGMT1mOtNjpjOm2xgcFY4W22aUZ7A8cTnLjywnpzpHfLyvX1/i4+KZFTur2WF/HcXhgsPMXj1bHKB4Z/87+fi6j/F28rZYTxAEntnyDO/ueReAx4Y/xnsT30Muk/PvP/7Nm3++iUKmYN0d67gu8rpWn7dxaOD0mOkk3JYAmK2+PN82V1UlzU+in3+/VvdTq6vF+x1vdEYdaQ+nEekT2da3QELCJi21ZsK5VVxoGjSiAGiaQMmvybcQBbaG/jXFyTgSb919KDnT7aVQVtE9/BB9w/TW3ShuQXipvVpNvNYb6kkuSWb7qe3szdnL8ZLjdiVMWsJD5cGgoEFEeUchk8vI1+TzV95fFrOcwNyBck33a0TrrR5ePdr9nBJtQ9OgIU+TR161OcmRU53Ht1uiqNepOXPmn6HRuzVPPRdkZrHnbLgaP/3TVuuezYe3x3FDbADl2nLK6soo05bZ/Hmq2IH0jBta3d/lOoz8ePFxHt74MCezduCLjFD3UJ4c+QRXR1xtuaKzD3heXlWGl1IMLHF+uJTOma6omwwmA7uzd4sd+NlV2eIypVzJmG5jmB5t1k0h7iEW29Yb6lmTsoaliUv5/eTv4o1SFwcXbul7C/Fx8VwVflWnFpbVG+p5adtL/HfvfzEJJkLcQvhi6hc27QwTCxO5bsV1FNYUEuERwe93/U6UTxRpZWlc8eUVlGnLuD7yetbcvqbVOY2ZFZn0+qgXAoKF1mkc7D57wGyWTV9m12t4fNPjfLDvA+4bdB+Lpixq83sgIWGLztRMBpOB4tpim4VnjbqpoKaAwppCm4mHptjSTUoHDX16JDMgQrDqQgl0DWzVpk4QBPI1+ezN3cv2U9tJLEzkZMVJSutKMZgM7XrNcpmcGN8Y4gLi8HLyQtOgIbk0mUMFh1rswh8ZNlIqjjlPGEwGimqKyK3OJU+TR3ZVLos2hqJtcKQzNNPUAcHU6Gqa1UuldaVkFik4njq+1f1drpqpwdDAe3vf4/Wdr+Orr8dfpuDWvrcyf8gDuDmeZXF+mekmKTFykXCx+ORpGjRszNhIQkoC69PWW9xE9FB5MDlqMjNiZjCp1ySLCiGjycjWrK0sTVxKQkoC9Qbz61TKlVwfeT3xcfHcEHlDpw3iajA08OqOV3lr91uYBBNBrkEsmbJEnCfSlPf3vs8Tvz8BwB397mDZ9GU4yB2Ys2YOXx/5GhcHF7bP2d7qAPTkkmT6ftoXuUxO1qNZhHuEA2e6P76Y8gVzB81t9dg3ZWxi0opJhHuEc+rRU1JLnESHcqGvPbW62mYrqMTHNIVo60JRCF4YZRU0yI+LAZctVAqVReB/tnVX47+9nbytPk8NhgaSS5L5I+sP9uXuI7kk+ZwSJm6ObsT4xuDq6EpVfRWpZakWlhsA3Ty7iQH/Nd2vsWn5J9EyJsFEaV2pmPBo7O5omgTJ0+RZJeJUxv4E6t5sdf9XDThI31BH3NXuFJV7sHybZ6vb1Li8TpmpdeuFtoiGaXEhra53KSJUZmP6aCCKlgS4UgUPH5SCfAmJFrhUzpkLHbvYgyAIHC48LHbgN7XMAvPw9Uab4mjfaItludW54gzH9PJ08fGeXj3FGY6NuqIz2Juzl9mrZ4vPPW/QPN6b8J7V7LisiiwmfDuBjPIMfJ19WX/neoaFDGNf7j6uWX4NWoOWuQPnsmTKklb1y+TvJrM+fT0LRizg/YnvA2e6P2J8Yzjx0Am7jj32s1iSipP4/ubvubXvre149RIStrnQ1x2jyUhJXcmZpElTvdSk8KxQU4zSGGO3bvJz9mvR8jjINYhA10ArW2BBECjQFLA7Zzc7Tu8wJ0zKT1KqbX/CJMo7iiC3IIwmI9nV2RbJZTB34V0ZfqVYXCZ14bePOn2d2NWRW51r+fs/P89OxNmrmYb2202fEAe8nbwpqfDi2x2tJyh0Hu9Sathj056tKZJmso+8nP34fTUJx5YSqZeZbpISIxcBF6tPXoOhga1ZW0lISWBN6hqKa4vFZWqlmgk9JzAjZgZToqZYDPGrrK9k1bFVLE1cyl95f4mP+zn7MSt2FnPi5nRay9dfeX8xe/VsUkpTAIiPi+eDiR/gofawWG/F0RXMWTMHg8nA+B7j+fnWn1EpVUz+bjKbMzfj7+LP3rl7W630Hvf1OLZmbeW5K5/jP+P+A8CzW57l7d1vM2/QPBZPWdzqMTe2l98Tdw9fTvuyna9cQqJ5umLV5dlo9doWrbsaxUBFfYXd+3RUOBLoGmg1QP5sMeDj7IPBZOB48XH+yPqDvTl7SS5NJq86r10JE7VcTYBbAAaTgcKaQqv29LjAONF266rwq+yyobiU0Rl1FGgKLBMeZwXwedV5rQbTtrA3wK5UfUCV/A/zPwQ5IfVfosAHGdZizFbFlKfaEx8nH3ycfSx/OvlQWxvMqp2BrR7D5Vr9BEB+Iiwe3fp69+2A4LjOPpouw6UQA0ucXy6Fc+Zi1U3pZelikmRv7l6LZb19e4s2xYODBotJBEEQ2JOzh6WJS/n++PeiTakMGeN6jCM+Lp4ZMTNwcnDq8OOt09fx3Jbn+OivjwCI8Ijgq2lfcU33ayzWK64t5voV13Ow4CAuDi78fOvPTOw1kbWpa5nx/QxMgomXR7/MS2NeavH5NqZv5PrvrsdD5UHe43m4OLpQUluC/3/Nc0oqnqlo1VKnsKaQoPfMf/uSp0rwdfZt56uXkLDNxaCZTIKJktqSZgvPmmqptiQwfJx8rOeeNM5EafK7SqGisKaQXdm7zAmTgkQyKzPb3WES4BKAk4MTZXVlVrpL6sK3RBAEyrXlLSY88qrz2qSXG7FXM9W5LKTEtPGfA2q7ZlIpVBZ6ydfZV9RM2rpQftndelHAZa2ZQNJNNpASI12cS8Unz2gysjd3LwknzK3jWZVZ4jKFTMHVEVczI2YG02OmWwzUSi5JZlniMr45+o2F3cygoEHEx8VzZ/87rSyvzhWtXssL217g/b3vIyAQ6h7Kl1O/ZELPCRbrbcrYxE0/3EStvpbBQYPZMHMDTkonRi8bzeHCw0R6R7L7nt0tVnf/cuIXbvrhJvyc/chZkINKqRIfiw2I5cgDR1o93kGLBnG48DDf3fgdd/S/45xfv4TEpUy9oZ7CmkKraqqzu1DOHvzXEkq50irwb/zp5+JHra6WEyUnOFZ8jBNlJ9qVMFGgwFHpaOWz6yB34IqwK8SAf0jwkFYtKS4mNA2aZhMe2VXZ5Fbntulv1VbsrX4qdHyOBkUSDnIHfJx98BCupr70rn+WNv1uNodRj010YVL/IHycfPBy8mrxb6YzmIh5YSOmFiIwuQxSXrsOR+VlWhVnZ4Av3LcdWfDAzj+eLsLFHgNLnH8u9nPmUtFNBZoC1qSuISElga1ZWy1uFoa5hzE9ZjozYmZwVcRV4vdHra6Wn0/8zNLEpWw/tV1c30Plwe39bic+Lp5hIcM6vLN8x6kdxK+JF7XdQ0Mf4u1r37Yo2tA0aLjph5vYnLkZpVzJsmnLmBk7k0UHFvHA+gcAWDJlCfcOurfZ5zEJJqI+juJkxUkWT17MvMHzAOj5UU8yKzL5fdbvjO/ZsoXKd0nfMfOXmQwMHMih+w+d60uXkLikMQkmyurKrIrMbOmmthQfeam9rK2O//mpUqg4VXmKYyXHOFZ8jKyKrHZ1mKgVagyCwWq7S7kLv7GgzlbCI6cqh+yqbAprCmkwNnTK87dVM4H5+8lbNhZTRaNLirVmmj/egQl9/MVkiLODc7PfY5JmshMpMWKFlBjp4uw9WcYdS1q32vjsrmiu69vrPBzRuSMIAkeLjor+ukeLjlosHxw0mBkxM7ix94309usNmC/0v2X8xtLEpaxLXSd++ToqHJkWPY34uHgm9Jxg97Bye/gz+0/mrJ7DyQrzYL77B9/Pu+PftWgT/zvvb67/7npK60rp5d2LTbM24aR0YuSXIzlddZrhIcPZOnsrzg7ONp/DYDLQ/cPu5Fbn8s2Mb5gVO4u86jxCPwhFLpNT9WxViwMVS+tK8XvX/IVe+ERhp89jaQ8XQ+WMhMTZNBgaKKwptBID+ZoCThbJKdE0UKE7RZFuT4vt501RypUEuASInr2OCkeq66sp0ZZQUltChbaCOkPdOR23u8qdMd3GiEF/jG9M8zdBKnOgroWkQid6izZWqzVNeORW55JVmcWpylPkafIoqS2xSgSdT9wc3fB28kVe8jomozu2/HIBfFzlrJofhZujCwq5Aq1Bi1av5Y8TZXyxvZLy2jOhk7uTkWsGlBHqX4ZWr6VOX4fWcNbPsx6vrQnGVPZIq8d7WVc/2RngPxTan0emf2llS3OpcrHHwBLnn4v9nLFXN307dwhXRna9mNkWlfWVrE9bT0JKAhszNlKnPxMn+Dj5MCV6CjNiZjC+x3ixMySzIlOc4Xi66rS4fm/f3sTHxXPXgLsIdG29E9FeanQ1PPX7U3x+8HPAbOm1bPoyrgy/UlxHZ9QxZ/UcVh5bCcB7E97j8ZGP8/zW53lj1xsoZArW3rGW6yOvb/Z5Gu2MBwQM4PD9h5HJZNz5852sPLaS18a+xvNXP9/icd6z5h6WJi7lqSue4p3x73TAK+9YJM0kcTHS2IVg3alfQGqB6R/NdJrChj9pMNkf13uqPcXCM2+1N/WGesq15ZTUlVBaV0p1Q3WrQ99bY0DAALG4rNUu/Auom2p1tVb2v9lV2WRWZJJTnUNhTSEV2gpx9tT5RilX4qP2xanyvwhGD2xrJgFvVznL743Ay9kDtVKN3qinTl/HluRSFm8vp6zmjKb2cDYxbkAFEQEV1jrJUGdTM9VogtGXPtjq8V7Wmgns1k2/XPUY08a+2KH3WLsqUmKki7MmMY9HVyW2ul6Jwzu4eqQQGxBLf//+4s8+fn06pX26I8msyBRbx3dn77a4oEf7RItVUUNDhiKXySmtK2XF0RUsTVzKkaIzHRXBbsHcHXs3c+LmdNhNj1pdLc9ueZZP/v4EMFcZLJ22lDHdxojrpJWlMeGbCZyuOk2gayAbZ25ErVQz6qtRlGvLmRo9lZ9v/bnZiuA3dr7B89ueZ3jIcPbdaxZzoe+HkqfJY/vs7Yzu1vxF64fjP3DbT7fR378/R+cfbXa9C8WF9lqVkOhIbJ3Pge4qHr42kMjg5meh5GvyKaktsTtYlcvkuDi4oJAp0Jv0NBgb2u3F6+/sz4ReExjfYzzjuo87M8y1Mgc+GQyGFqqG2uktqjPqyNfkk1udS251Lull6WRUZJBdmU1+TT7FNcVUNVSdt+BdIVPgofbAU+2Ju8odV0dXXB1ccXJwwknphKPCEUeFI0q5Erlcjhw5giCgM+nMHrslfpzMHPvP3s4E+o3HX6l+l2rZTttPLshRmfra7eNsC8kv1w7sDPAHUcMxhcJ8M+7q51ssPLgUuNhjYInzz8V+ztirmypU79M9qMxSNwX0J8g1qEvP6tPqtWzO3ExCSgLrUtdZdEw6OzgzqdckZsTMYHLUZDzVnpgEE9uytrE0cSk/n/hZnOGokCm4LvI64uPimRw1GUeFY4cc3+aTm7ln7T3kVuciQ8aCEQt4/ZrXRS1qEkw8sekJ/rf/fwA8dcVTvDnuTeauncvyI8txdnBm++ztDA0ZanP/FdoKQt4PQWvQsit+F1eGX8n/9v2PBZsWMDlqMuvuWNfssQmCQMT/IsipzmHTrE1WTgAXGkkzSVxK2NRMHmqemBhOn1Bdi10o+Zp88VplD05KJ1QKFSbBhM6oo8HY0C6NoZQrGR4ynEm9Jll34XeSbhIEgTJtmZjwOFV5irSyNLIqs8Q5HuXa8k7r8rCFs4MzXmovPFQeuKnccHV0xdnBGSelE2qlWtRMSrkSGTJkMhkGk4F6Qz05xT6knbz6nz1Zdn8IQI3z+1Syw2I2yZlVJM103miDblKEDGLh9QsZFjKs84/rAiIlRro49lY+FTk+R/0/LWlNkcvkRPlEWSRLYgNiifCM6JKDqIpqilibupaElAS2ZG6xaMsMcQthWvQ0ZvSeweiI0TgoHEgsTGTp4aWsSFphIQ5Gho4kPi6e2/rdhrvq3P/u27K2Eb8mXqy6emTYI7x57ZtiJ0i+Jp/rVlzH0aKjuKvcWXP7GhzkDlz7zbXUG+q5f/D9fHbDZzbFVlFNEWEfhKE36Tkw7wCDgwdz0w838cuJX3jn2nd4atRTzR7XfevuY8mhJRaDCLsKF6vHs4SELc71fNYb9RTXFtuce1JQc2YmSnFtse1gsYPwVHtybfdrmR8ykms2v9L6Bme10FY3VJNdlU1KaQopJSmklKaQVZlFQU0BFdoKavW17ZrlYS8KmQIHhQOOCkcc5A4o5ApkyBAQEAQBg8mA3qRHb9R3qIhwMo7EW3cfSs603BsoodxxMVqFpRe8SqHCycFJFBHODs62/60883hL62YVK3l9dU2rx3hZVz/ZGeD/K2wAn+TuAiDUPZT3JrzHLX1u6dI3Qs+Fiz0Gljj/XOznjL26qamVR1N8nHzoH9CfWH9zoiQ2IJa+fn275Cwvg8nArtO7SEhJYHXKanKqc8RlSrmSsd3GijbFQW5BVNVX8cPxH1iauNRihomPkw8z+88kfmA8cYFx53xcVfVVLNi0gKWJSwGI8Y1h2bRlDA8dDphvBL67512e2fIMAHfF3sXnN3zOjT/cyKaTm/Bz9mPP3D308rbthDBv7Ty+OPwFt/e7nZU3rWRvzl6u+OoK/F38KXyisNnreXpZOlGfROGocKTimYpmu/kvBJJmkriUONfzWRAEqhqqrJMmNmZINu2g62gUMgX9/ftzW7/buM07mu4/zGl9oya6SW/UU1hTSEZ5BsklyaSWppJenk5udS4ldSVUN1RTb6jv1EIxB7mDWACmkCtQyMyV/wICRpMRg8mAzqhDZ9Sdc/dNI23RTHKZvEUNZEsztaStThc78uba1ruSLmvNBHbrpqsdYZe+Ghky5g6cy3/G/eeSsp9ripQY6eI0euUWVtXbvGQ2euVuWjCc1LITHC06SlJxEkeLjnK06Giz3uuujq709+9vUSXV378/Xk5enfp62kJ1QzUb0jeQkJLAhvQN4kBBMHtTTo6azIyYGUzsNRGFTMGvab+yNHEpGzM2ijcWnZRO3NTnJuLj4hnTbcw5JYM0DRqe/P1JFh8yD0SP9I5k2fRlXBF2BWBudZ+2aho7T+/EUeHIihtXoJApuOmHmxAQeH3s6/zf1f9nc98zf5nJd0nfER8Xz1fTvuKd3e/wzJZnuKn3Tfx060/NHlOPD3uQVZnF+jvXt9h6fr65VDyeJSTAvvM5wF3F74+POOfz2WAyUFJbItp4FdYUir8X1RSJjxXVFp1TAmWgIOcQrVfLj1HJ2W+sR2fSdWrCprNxkDs0n6Bo+u+zA/Emj6kUThSUO6NtcCTAXU1cuBtuKheLfTkpnTq83djeOOCyvp62YcbIOk0Oj/32mOiHf033a/j4uo/p49enkw/y/HOxx8AS55+L/Zyx93r5zX3dSS49ZqGb0srSbH7PyZDR07unVZFZD68eXcZeQhAEDhUcEm2Kk0uSLZaPCB1hHt4eM4NIn0hSSlNYlriMr498TUFNgbheXGCcOMPxXAeT/5r2K/PWzaOwphC5TM4zo57hpdEvoVKqAFiWuIx7196LUTByXa/r+GrqV9yw8gYOFRyil3cv9tyzx+YNmMTCRAYuGohSriT7sWy8nLxwf9MdvUlP1qNZdPPsZvN4Pvv7Mx7c8CBjuo1h2+xt5/TaOhJJM0lcSpxPzSQIAhqd5oxe0hRSWPuPbtIUmH/XmDVUrb72nJ7LXt00SmnkL6EBo8l4wWytzhUZslb1UmsJC7XCmYJyFxp0KvzcVAwMd8X1LM3k7OCMg9yhQ4uTJM1kJ3bqptK7fuGJpK/5+sjXgLnA8vWxr/PAkAe6TPzTUUiJkYuAxqw7YPEBby3rLggChTWFFkF/UnESySXJ6Iw6m88V6h5qZccV7RvdYS3W7aXeUM8fmX+QkJLA2tS1lNSViMuclE5M7DWR6dHTmRI9hQZDA98c/YaliUtJKU0R1+vm2Y3ZA2Yze8Bsunt1b/exbMrYxNy1c8nT5CGXyXli5BO8OvZV1Eo19YZ6Zv4yk19O/IIMGZ9c/wmCIPDwxocBWDptKXPi5ljts7HaSa1Uk7sgl6TiJMYuH0uoeyg5C3Ks1gezBVnPj3qilCupeKaiS1mC2Fux98INvfF1U3WIj67kyyvRWZxrBWpXxN4AfxA1HG5jG7O9KGSKZpMQbUlY2PPvi30gfXvjgMuGNg4R1Oq1vLP7Hd7a/Rb1hnqUciWPDHuEl8a81CFdpl2FSyEGlji/XArnTHuvl1q9lhOlJ0gqSrLQTkW1RTafx0npRD//fhZFZrEBseecUOgI0srSSDhhTpLsz9tvsayvX19zkqT3DPr792dz5maWJi5lbepaUR86yB2YGj2V+Lh4Jvaa2O7v0HJtOf/a+C++S/oOgP7+/Vk+fTkDgwYCsD5tPbf8eAtag5bhIcP5cuqXTF45mVOVpxgWMoytd2+12a0z6qtR7MnZwytjXuHF0S8ydMlQDuQfYNVNq7it3202j6WxG7+lQrULgb0x5op7hyOXyTpM50i6SaIzuBQ1E3QN3eSkdLIvYdEGfWRrG5VCdVF3UkuayQ7aqJt2Z+/moQ0PiWMM4gLjWHj9QrFA/FJASoxcJHSk76jeqCe9PN0c9BclcbTY/LPpcL6mOMgdiPGNsfLhDXELuSAXTaPJyO6c3eJcklOVp8RlCpmC0d1GMyNmBtOip5GnyWPp4aWsOr6K6oZqcb2x3cYSHxfPTX1ualcrdWV9JY/99hjLjywHoI9fH5ZPX86Q4CEYTUYe3vCwOIDwhatfQGfU8fbut1HKlfx6x69M7DXRYn+CIDB48WAOFx7mnWvfYf7Q+Xi85YFJMJH3eB7BbsFWx7Dk4BLu+/U+rgy/kl3xu9r8GjqLnKocnl+/mh1He7Rpu3Px0ZV8eSU6k7bMeqpTNjNroovR1gBfIVOgVqpxV7kT4BJAiHsIPk4+eKo98VB54OLo0uaEhYPC4Ty80ksH6TrXAu30fs6qyGLBpgWsSV0DQJBrEO+Of5c7+995UYvCRi6VGFji/HGpnDMdeb0sri0mqSjJosjsWPGxZj3wA10DrYrMevv1Rq1Un9Nrai951XmsSV1DQkoC209tt5hZFuERwfSY6UyPmU5v396i1dbhwsPiOkGuQdwVexdz4ubQ2693u47hlxO/8MCvD1BSV4JSruT5q57n31f9GweFA3tz9jJ55WTKteVE+0Tz6Q2fcsuPt1CuLeeGyBtYfftqq8TMyqSV3PnLnQS7BXPq0VMs2LSAhX8vbNZa2Ggy4vuuL5X1leybu0+09brQ6I16Xv1tA9/saj3x5OnkQKX2jFWppJskuiKXomaCtummRJmAo8IRFwcXfJx9CHYLJsA1AC+VF15OXrg4utjXjdG0a12p6pI2+F0V6RrXCu3QTQaTgUUHFvH8tueprK8EYPaA2bx97dsEuAach4PuXKTEyEVEZ1d2VNVXcaz4mFWHSdOEQlO81F5WPrz9/Pud184FQRA4UnRErIpKKrasPBgaPJQZMTOY1GsSJ0pPsDRxKX9k/iG2Nro5unFr31uJj4vnirAr2nwjZG3qWu5bdx9FtUUoZAqeu/I5Xhj9Ag5yB17d8Sov73gZgHsH3kudoY7vkr7DxcGFnfE7GRQ0yGJfXx3+irlr59LNsxsZ/8pg4KKBJBUn8cutvzCj9wyr577tp9v44fgPvDz6ZV4a81KbjrujMZgMbEjfwJJDS9iQvgEHQ18CdW+2aR/tzeJLvrwSnY291U9L4wcwrPv5syMsrSslvSyd9PJ00srSSC9PJ6M8g5PlJzEILQ9rP9fKJ7VSTT//fgwIGGD+L3AAsQGxeKo92/tyJOxAqvBsgcocqLNtHwqAs0+zAzE3pm/kkd8eIaM8A4Crwq/ik+s/ITYgtjOO9LxxKcXAEueHS+mc6czrpdFkJKM8w0IvHS06SmZFps31FTIFUT5RFgmT2IBYwj3Cz2sStkJbwa9pv5KQksBvGb+hNZzxYvd19mVK1BRmxMwgwDWAlUkr+TbpW0rrSsV1hocMJz4untv73Y6H2qNNz11SW8L89fP5+cTPAAwKGsTy6cvp59+PEyUnmPjtRHKqcwh2C+btcW8z79d51BvqmTdoHosmL7J4n3RGHeEfhFNUW8QPN/+A1qBl9urZXBF2Bbvv2W313H/n/c2wL4bhofKg9OnSC95FmlWRxReHvuCrxK+oqPJrs2YCSTdJdE26qmbSGXVkVmSSXp5OetkZ3ZRelk55fXmr25+rbgr3CLfQTAMCBtDTu6eU7OhEJM3UCu3UTSW1JTz3x3N8efhLANxV7rw65lUeGvbQBf9uPRekxIhEiwiCQHZVtlXgn1qa2uyAph5ePax8eHt59zovPnQZ5RliJ8nenL0W3o4xvjHMiJnBiJARJBYlsvzIcgsBE+UTxZwBc7h7wN2EuIfY/ZxldWU8vPFhVh1bBcCAgAEsn76cAYED+PzA5zy04SFMgomp0VOpaahh66mtBLgEsHfuXgtLrzp9HaHvh1JRX8G6O9axJmUNXxz+gmdGPcNb175l8ZwmwYT/u/6Uacv4M/5PRoWPau9bdk6crjzNl4e/5MvDX5KvyRcfvzp8DBU5j6Opk7fJXbOtvo+SL6/E+eBC+pU2GBrIKM8grSyN1LJU83+l5p/l2tYD+aYEugSiM+oory9vd4CvUqgQBAGdybYdY4RHhBjwDwgwJ0ukwF/iYqDB0MB7e9/j9Z2vozVoUcgUPDT0IV4Z+8pFm/CTYmCJtiKdM+dGja6GY8XHrOy4KuorbK7vrnK3OfOxrUmH9lCnr+P3k7+TkJLAutR1Fsfo4uDCdZHXMSVqCnKZnB+O/8CG9A2i9lMr1dzY+0bi4+K5pvs1dn/HC4LA98e/56END1GuLcdR4cgrY17hySuepLCmkInfTiS5JBkPlQdPX/E0L2x/AZNg4tUxr/LC6Bcs9vXithd5bedrjI4YzaLJi4hZGINaqab62WqrjtS3/nyL5/54jmnR01h9++pze+Paic6oY23qWpYcWsLvJ38XH/d3DsC75lO0Dao271PSTRJdjQupmRpt5JtqpdSyVNLK0siqyGrTcHFnpTPezt7kV+djwtQu3SSXyVEr1c0OiHdxcKF/QH+LhEl///64qdzsPk4JiQvF/tz9PLThIQ4WHASgn38/Fl6/kKsjrr7AR9Y+pMSIhE2ay7A2Pp5fWUOdqRCTMo1jJWcC/6YD/JqiVqrp69fXqsPE38W/015DYU0ha1LMreNbs7aiN51pPw51D2Va1DR6evfkcOFhfj7xs/ilJZfJmdBzAvFx8UyNnmp36/tPyT8xf/18SutKcZA78OLoF3n2ymdZm7qWO3++kwZjAyNDR6LRaThWfIwonyh237Pbwov4yd+f5L297zGp1yRu6n0T89bNY2y3sWydvdXiuQ4XHGbQ4kG4OrpS/nT5ebWk0Rv1/Jr2K4sPLWZTxiYx+eTr7MucAXO4d9C9RPtGN+vvaA8r541gZE+fFtcRBIGfjyTx5CrbM1jauj8JiZboTL9SQRAoqCk4E8Q3CeZPVZ5qcei5SqFCZ9RZDfhzlDsyPHQ4o8JG4aH2YF3qOvbk7hGX2xvg75j4Gk8d+5YD+QcsnkOOnBi/GHr79EZr0HKs5BjZVdk29yEF/hIXE9lV2Tzx+xP8lPwTAP4u/rx97dvcPeDuiy7BJ8XAEm1FOmfaTktVqeZlZaQWF1Klz0YrP8axYrNuOlFywkKbNCXcI9zKjivKJ6rT4n29Uc+u7F0knEhgdepqcqtzxWUOcgeu6X4N13S7hlp9LT+d+MliuHu4RzizB8xmTtwcenjZZ6NboCngvl/v49e0XwFzJ8ry6cvxc/Fj6sqp7M7ZjUqhYk7cHBYdXATAl1O/5J6B94j7yKvOI+J/ERgFI0ceOMLoZaOprK/k4H0Hrbryr/36Wv7I+oOPr/uYh4c93O73qT1klGfwxaEvWJq4lOLaYvHxCT0nMG/QPKZGT2XribJ2ayawT+dUN1Tz3YG/eWud7aRIW/cnIdEcnT3joU5fR3pZus0ESHNOJwBKuRIZMpvX3R5ePRgVNoq4gDhOlJ5gxdEVaI1nOurs1U3/6T2JtzI3otFpLB73UnsxNHgo7ip3siqzOFZ8jAajbRujnl49LYrMBgQOIMIj4pKweJW4tDCajHx5+Eue++M5sWDzzv538u74d22OAujKXNDEyMsvv8wrr7xi8Vh0dDQpKeaB2fX19TzxxBOsWrWKhoYGJk6cyKeffkpAgP0eZlKA33aa8+SbOiCItUcKWvTqK60rtenD21ym3N/F39xO3iRZ0sevT4f78FbVV7E+fT0JKQlsTN9Irb5WXObt5M2knpPwdvLmUMEhi5uHXmov7ux/J3Pi5jA4aHCrX0hFNUXMXz+fhJQEAIYED2H59OWU1JYwddVUqhuqifaJpkZXQ54mj5GhI9ly9xZxzsnJ8pNEfhyJgMC629cxZdUUXB1dqXym0qLj5r97/stTm59ictRk1t2xriPfqmbJKMvkra0/sjFtD2UNWTTIj4PMxLju45g3aB7TY6ajUlpWO/12rICX1x6nsLoF/0IbfHh7HNPiznTtmAQTJ8tPcrDgIAfzD3Kw4CCHCg6hrx2An/7pNu9PQqI9tNevtPGmSU5FFQ1CMQrVKdLLU0krTyO11BzInx1AN8XFwQV/F38UMgVVDVWU1JVYrePr7MuosFFcGX4lo8JGMShoEImFibyw7QU2Z262Wv/R6Bv5IGMXsha8RbUIHLjxc66KvZOS2hI+2v8Rnx/83MJWA8zDAG/uczM3974ZN5UbScVJHCk8wpGiI1LgL3HRsvnkZh757RFSSs0x6cjQkXxy/SfmG27nYNt1PpFi4EuH86GZQDpn2kpLcQHQYsygM+pIK0uzmvmYU2274MdR4Uhv395WMx+DXIM69HtTEAQO5B8gIcVsU9x4DQSQIWNE6AiGBA+hTFvGhvQNotc4wNURVxMfF8/NfW5u1VpZEASWH1nOo789SnVDNWqlmv9c8x/mDZ7HnT/fybq0dchlcib2nMjGjI0oZArW3bGO6yKvE/dx8w838/OJn3lg8ANkVmby+8nf+fT6T5k/dL64jlavxettLxqMDZx46AQxvjEd9l41R4OhgV+SV/Px7g0cyT+FUVZBg/w4gW7+3BN3D3MHzbVKItk6l0wyDXKh9SKSs3VOVX0VhwoOmXXTP9opvTwdZ8PVkm6SOC+cy4wHo0lgf1YpJ4ryqTMWYHJIJ738TPFYc9dIMBe4BroG4uLgQoOhgaLaIisdopApGBg0kCvDrmRU+ChGhY3CxdGFD/Z+wPv73rdKrvg5+/HHtOX0/2F2izMZdDIZikeOIPMMY1PGJl7f9bqVgwlAbEAscwfOZVDQIHKqcjhadJQjRWbd1NSBoykeKg9iA2ItrLj6+ffDycGpxfdSQuJ8UFZXxvNbn2fRwUUICLg6uvLS6Jd4dPijOGgKLznN1CmJkZ9++oktW7aIjymVSnx9zRX08+fPZ/369SxbtgwPDw8efvhh5HI5u3dbe4c2hxTgt43mfEebw57Mv0kwkVmRaRH4Hy06ysnyk1ZfFGD+QovyibKy44rwjOiQak2tXsuWzC0kpCSwNnUtZdozH1RnB2dGhY3CSenEgYIDFl9O/fz7ER8Xz6zYWS12ugiCwHdJ3/HwxoeprK9EpVDx2tjXuLbHtdzw3Q0U1BQQ5BpEnb6OqoYqpkVP4+dbfxYTHzd8dwMb0jfw6PBH+eLQF9Tqa0man0Q//37ic0z6dhKbTm7ifxP/x6MjHj3n96Q5Gtu+39v2Bzk5w1HiJy5zUjXw9HXdiR8x0Or1nyg9we8nf+f3k7+z49ROjA09UAheKARPvA33tfq879wajMHhhJgEOVx42GYFiJswCO/6V1vdn1T5JNFRtOZXajQZya7KFq2vtqdUciQ9CqPhjLA1UEK542K0ir3iYwqZgu5e3YnyjsJT7YnepKeopogTpSdsJkKifKIsAvoonyjxxsjhgsO8uP1FsRKzKR4qDxJuS2Bs97FQmcPvSSt59o/niPaNZuWN3wEgIPDy9ldYmraWarU7++7dJ95IEASBnad38s6ed9iUscmqLd3fxZ+7Y+/mrgF3ERsQi8FkIK0sjSOFR6TAX+KiQ2fU8eG+D3llxyvU6muRIeO5/nfx+vGNyJpJ+AE2B71fCKQY+NLhfGgmkM6ZttDSrIbmdJQ9uqlCW2Fz5mONrsbm+j5OPlYd+X39+uLi6NKel2VFSmmKOMvx7/y/LZb19etLtE80BTUF7MvdJ+o6V0dXbulzC/Fx8VwZfmWLiZucqhzuXXevaC91VfhVLJmyhHf3vCt6mA8IGMCRoiO4OLiwfc52hgQPAWD7qe2MXT4WFwcXHhz6IO/ueZfZA2azbPoycf9bMrcw/pvxhLiFkLMgp1OLL9LK0lhycAnf/JWEsuZ2C93k6Szw+vQ4JseGWmxTVV/FtlPb+P3k72zK2ExemRMKwQujrAIEGYH6/7T6vE9NdqBWligmQxrnZZ1NuHocsooFre5P0k0SHYE9Mx6q6qssOj/2ZdRz8vRABKOnuI4t3eTt5E20TzRh7mEo5Aqq66vJqswipTQFE5ad9m6OblwRdoVYQDYsZJh4fazV1fLxXx/z7p53bVoU3x17N19O+xKlXIlQmc31X4ygqKaIz2/4jGEhwwA4VnKceevmkWeo59YrHue/E/4rbl9UU8Sig4tY+PdCi44xMN/zGt9jPHPi5jA1eirODs6U1JZY6KUjhUdILkm22eUil8mJ9I60KjILcQuRiswkLggH8w/y0IaH2J+3H4BrvCL5vbIcRTPdscBFqZk6JTGyevVqEhMTrZZVVVXh5+fHd999x8033wxASkoKvXv3Zu/evYwYMcKu55ACfPtpzXe0OdrrFVmrq+V4yXErH96miYqmuDq62vTh9XJq/+Aug8nA7uzdYlVUUysYhUxBbEAscpncoupZKVdyQ+QNxMfFc33k9c22tedr8pm3bh4b0jcAcEXYFbw+9nUeWP8AaWVpuDu6U2+sR2fUMX/IfBZevxCZTMaG9A3c8N0NeKo96effjz+z/+SLKV8wd9BcwFyF5PW2F1qD1iph0lFklGew5OASlh1Zhqa6J366fwPmSrFGmoq7IT0c2JK5RUyG5GnyLPYX6BrIhJ4TuLbbBD5e70eJRt+MaBQwysrIVd0DZw0uUyvVDAgYwOCgwQwKGsTg4MHE+PRh7H93XRAfU4nLm8r6SpvWV+ll6eK1wsk40uZnp/GWycTBOVwd7U6tvpZTFafYl7eP/Xn7rTrsHOQODAkeIgb0V4RdgZ+LH2dzrPgYL21/iV9O/GLzmKdGTWXVzasskgwP/PoAiw4uYsGIBbw/8X3x8QZDA9d+cy1/Zv9JT6+e7L93Pz7OliK5rK6M5UeW8+H+D23aaPXx68PdsXdzZ/87CfOwDHbaGvhH+URZzC2RAn+J80ledR5PbX6KlcdW2m2nwH07IDiu04+tJaQY+NLhfGgmkM4Ze2mvZoL2xaYmwcTpytNWyZK0sjSbdpsyZPT07mlVZNbDq8c5zXzMrc4VZznuOLXDojgi1D2UcPdwTledttABvbx7iTMcz44FGhEEgcUHF/PE709Qq6/F2cGZd659h3xNPv/58z/i/nOrc/F38Wfv3L308OqBIAj0/6w/x0uOc9+g+1h8aDExvjGceOiEuO9ntzzL27vftkqYdBT1hnp+OfELiw8uZsfpHc3Gfo2/fXJnHD7eOaJm2pe7z+J9VMqVXBF2BRN6TGBc9/E89k01RdUNzeomA6Xkqeda6aYIjwgGBw9mcNBgUTt5O/lesPkPEpcvBpOBzIpMc9FYE82UWppKUW2RuF5ruunmUZUMCBcoqi0isTCR3Tm7OVV5yur5wj3CxQ76UWGj6Offz+q6p9Vr+fzA57z555tiAZoMmZjc9VR58svtvzC221hxm4zyDCI/jsRB7kDls5Wi4wfA98e+5/afbwewuG/TiEkwsf3Udj7a/xHr0tZZXbedHZy5uffNzIqdxTXdr7E4Xp1RR0ppitiN36ibbBXOgTlpdPag9z5+faycPSQkOgOTYGJ54nKe2fIMobVll6Rm6pTEyLvvvouHhwdqtZqRI0fy5ptvEh4eztatWxk3bhwVFRV4enqK20RERPDYY4+xYIHtaoeGhgYaGs5U8VVXVxMWFiYF+Haw92QZdyzZ1+7txw46ypBu7oR5hBHmHkaYRxg+Tj5tunHVODTr7MA/uSQZndH2sN9Q91ArH95o32gcFY5tOn5BEDhceFisijpectxieTePbhgEg4Xvrr+LP7P6zyJ+YLzNBIUgCCxNXMpjvz2GRqfBSenE81c/z+qU1fyd/zeOCkf0Rj0CAv+55j88d9VzmAQTkR9HklmRycSeE9l0chPzBs1j8ZTFwJnqqACXAAqeKOiwG4MNhgZWp6xm8aHFbM36Z6aJICdctwyZyQuw9TwCckU1pxzuRpCdCerVSjVXR1zNhB4TmNBzAv38+2ESTKSWpfL1/qOs+rPxAilrsicTIKPE8T+gSmRA4AAxmB8cPJjevr1tJqE628f0YsSeCh2J1tEb9WRWZNr0sD276qcpjgpHenpFoi98Ab3eheY+OzJFFacdZlt8dsBs4dfYCTIqbBRDgoe02DGRVpbGy9tfZtWxVWJA7yB3EJMMzg7OrLhxBdNjplttG/NJDKllqay5fQ1To6daLCupLWH4F8PJqsxidMRofr/rd5vXVUEQ2JOzh88OfMYPx3+wSm7IkHF1xNXMip3FzX1ubnaQdVsDfx8nH6vuEinwv7Toatey7ae2s3DNffxYUdT6yhdZkC/RtekMzQSSbmov56qZAKaMyGRED29RN4W4h7RZu2j1Wk6UnrCy42p6s7Epzg7O9PXra2XH1XTeob2U1ZWJNsWbMjahNZzx4/dQeeDv4k9OdQ71BnPySIaM8T3HEx8Xz7ToaTbjmqyKLO5Zew/bT20HYFz3cVwVfhWv7HgFAQFPtSeV9ZVEekey+57d+Ln48enfn/LQhofo6dWTkxUnAah4pkKMNYYsHsLBgoN8Pf1r7hpwV5tfZ3MklySz5OASvj76tVhpLkdJD8O3LcZ+Jlk5Oap4i0RGtE8043uMZ0LPCYzpNgY3lRtldWUcLDjIjwfT2Xwo4p81beumQJ9CqyTI2cUsjUi6yZKuFmdcrAiCQGldqZVmSi1N5WTFSQwmQ7PbBrkGEekdTWHWQzTo1DT/2Skj56ziSblMzoCAAWfshMNHEeoeamN7Mw2GBr48/CVv7HpD7F53VjpTZzhTlDY9ejorblphkfgA+OLQF8xbN48rw69kV/wuq32/sv0VXt7xMkq5ks13bWZMtzE2j6GktoSvj3zNx399zOmq01bLA10DuaPfHcyKncXAwIE27/U03jNr1EqNuim1NNXmkHmlXEmMb4xVwiTAtW12mxJdl652Lausr2Txrw/x9DFrBwsrLjLN1OGJkY0bN1JTU0N0dDQFBQW88sor5OXlcezYMdatW0d8fLxFsA4wbNgwxo4dy9tvv21zn7Y8eAEpwLeDNYl5PLoqsd3blzi8Q51yp8VjjnJHAlwDCHMPo6d3T7p5dhOTJo0/3VWt/130Rj3p5elWgb+tLxMw3xSM8Y2xCvzbUmGcXpYudpLsy7UUPz5OPtQb6i1mlQwOGkx8XDx39L8Dbydvi/Wzq7KZu3YuWzLNFghXhl2JXCZnZ/ZO5DK5WDWwfPpy7h5wN+/teY8nNz9JhEcEp6tOExsQy5EHjgDw/NbneWPXG8zsP5Nvb/zWrtfSEqmlqSw5tITlR5aLswNkyJjUaxJjg+9n4SZlq/sodHyO6GCZmAgZETqC01WnRSusgwUHSSxMFCvhnYwj8dbdZ9FirlZpmTZEz13D+xPjG4NS3vrzNnIuPqYXK819+V2O78W5IAgCxbXFovVV02A+syKzxUA+2C2YaJ9o83++Z35GeETwV1alXTdNCh2fI9S3jlHho0RrrBjfGLtsA7Mqsnh156t8feRr8RoS5h5m4b07OmI0Cbcl2Oysy9fkE/J+CDJklD9TbjNhcbz4OFd8dQXVDdXMHTiXJVOWtHgNrdBW8O3Rb/nswGecKD1htdxR4cjkqMnM7D+TGyJvEJMYzZ3PUuB/+XIhr2UGk4HK+koqtBVU1FeIP8u0ZWhP7+XJY3bM9rrIgnyJrk1naCaQdFN7OVfNBLZ1k5faixC3ELp5daOnZ0/CPcMtdFOga6BdHR/FtcVWHfnHS46LSYqzCXINsrLj6u3b2+5Cg1pdLb+f/J2ElATWpa2zmDuiUqhwV7lbFDl4qj25ve/txA+MZ2jwUIu4wiSYWPjXQp7Z8gxagxY3Rzfu6H8HSw8vRW/So1KoaDA2MDxkOFtnb8VoMhLyfgganYZA10AKawr5fdbvjO85nnJtOb7v+CIgkPd43jkPg9XqtfyY/CNLDi3hz+w/xcfD3MO4d9C9xHnfyiMrTrb+frm+wdjoUCb0nMD4HuNxdnAWZ4EcKjzEwfyDFhrXlm5yVeu46ypn5l0x1Ep3tsblqBVsxZmbkwsvu/fhXKk31JNRnmFVMJZamkpFfUWz2zkpnYjyiTqjl/7RTFE+Ubir3O1ONlc5v8Lgbu5iR8iI0BG4qVqfw6M36vn6yNe8uvNVscvd18mXWn2tmNRtqZAMYOYvM/ku6TteuPoFXh1rbeUtCAJ3/nInq46twtvJm/337qeXd69mj0kQBHZl72LRgUX8mPyjza75GN8YZvWfxZ3976S7V3fx8eZ0U72hnuSSZKsis+b+NgEuAVZWXNE+0c06okh0TS7kNV0QBGp0NRZ6qUJbQWV9Jab8w8z9e3nrO7nINFOHJ0bOprKykoiICN5//32cnJzaFeRLlU/t51yrnwodn6NBkdTm7dRKNQEuAYS6h9LTqyc9vcxCINzDLAZC3UObrZauqq+y6cNrax4FmAXH2YF/P/9+rQ4IzNfksyZlDQkpCWw7tc3iZqmT0okGY4N4Y9JR4cj0mOnEx8Uzvsd4UcAIgsDnBz7nqc1PmdvElc70C+jHX3l/iftSypWsv3M9Q4KHEPJ+iChg5DI51c9W4+LowsgvR7Ivdx9Lpy1lTtwcu9/nppzd9t1IiFsIcwfOZU7cHE5WnOTNzZs5mXV1q/u7b5wDQb55ordtYmGiReVYIy4OLgwMGsjgoMHEBQxCZeqDWh5AoLvzOWe1u1qWvDNp7stv6oAgFu/Msul3DZdfFVhT6g31pJel2+z+aCrgz8bFwcUikI/yiRJ/thSI23vT5NXp3bl7RJ82vZacqhze2PUGXx7+UrwWDQ8ZTkppClUNVYD5OvTp9Z9atXI3ZWXSSu785U4GBQ3i4H0Hm11vY/pGJq+cjEkw8d6E93h85OOtHqMgCOzP28/ig4v5Luk7mwPYPdWe3NLnFqJdbuPH/VDYhmBOCvwvbVry7gf7rmV6o94qSLf500Ygr9Fpmt2vZKUl0RXoCM0Ekm5qLx3RMdIe3SSXyfF28ibYNZhuXt2I9I4kwiPCouDMz9nPZgGD0WQkozzDQi8dLTpKZkWmzedSyBRE+0Zb2XGFe4S3WCChN+rZcXoHCScSWJ262mKmmFwmx1HhaJGg6evXlzlxc5gVO4tA10Dx8fSydOasmcOenD0ADA0eyonSE9ToalDIFBgFI1OipvDLbb+w4LcFfPL3J4S4hZCnyeP1sa/zf1f/Hz8n/8zNP95MH78+HH/Q0gmgLSQVJbHk0BK+OfqNGDMqZAqmRE9h3qB5xPrH8uXhL/n+wEnqSm9rdX9zRgsoXRLFZEhzw6R7efcSu0AGBg5C0PWirkHZITrnctdNns4OVNZZ34iWNJM5hs/T5Nm0vjpVecrmjFgwF1aGe4TbTH6Euoe2WPRlr2764LZYZgy0fxaB0WTku6TveGXHK2JHWYBLAEFuQSQWnnm+0RGj+fnWn5vttBIEgdAPQsnX5PPH3X9wTfdrbK6n1WsZs3wMf+X9RbRPNPvu3ddsp3xTyrXlfHPkGxYdXGSzsAxgVNgoZvafia/8Wt7/Pdvum+CCIJBbnWtVZJZelm7zb+mocKSPXx+rIrPm3huJC0tHaCZBENDoNG3WTBX1Zt3UXCHppaqZOj0xAjB06FCuvfZaxo8f3+628KZIotB+Gv1ym/MdbQ4Z4Oum5L93OlFQm09edR55mjyyq7I5VXmK3OpcSutKbVb32ouLgwv+Lv6EuofSw6sHUd5RdPM6030S4hYi3uASBIHsqmyrwL+5CmOAHl49rOy4enn3slmVVaGtEFvHf8v4zWIeQGOg3kiIWwh3D7ibOXFziPKJAiCzIpP4NfHsPG2uEmvsCmnE1dGVnXN2svDvhXx5+EuclE5oDVp2zNnBgIABeL/jjUkwkf1YdrNevc1hs+1bJueGyBuYFj2NtLI0fk3/lbSyNAwmAypjfwJ1b7a6X1viztXRlYGBA0UrrMFBg4nyiTonb2OJ5r/8WuNy8A1uDPyaJj8aO0FOV55uMZCP8Iyw2f3R3jkW9t40acuAy8KaQt7c9SafH/xctBYc220saqWajRkbxfUGBg5kze1rWr0+3LfuPpYcWsLjIx7nvYnvtbjuh/s+5LFNjyFDxto71jI5arJdxwzmBPZ3Sd/x+YHPOVp81GJZa17cbRGm7Qn8+/r1FQP+RlsuKfC/sLTu3S/g5mTk5tFHqWpoPoBv2tHZkVyqQb7ExUdHayaQzhl7aa9masTXVcGLNxsoqDFrptzqXE5VniK7Kpui2qJmB63bg0KmwMfJhyC3ILp5mpMnvbx7WSRPPFQeYmyjadDYnPnYXKGBu8rd5sxHD7WH1bomwcTfeX+LHfhpZWkWy5t2zStkCq6PvJ74uHhuiLoBR4UjRpORD/Z9wPNbn6fB2ICro6u5WKyhWpwHcN+g+3hsxGP0+bSP+NiUqCmsvWMt83+dz+cHP+eRYY/w4XUftul9rNXV8sPxH1h8aLGFc0CERwT3DLwHfxd/1qauZW/uXjFZci66KconysJCeGDgQJvvqUTbaI9uuhw0E0CNrsZm8iOtLK3FGMpD5SEmPJpqp0jvyBatf1uio3WTSTDxU/JPvLz9ZTHR4Ovsy7Soafx84mcqGyoBsxb47PrPiB8Y36LeSytLI/oTs1V75TOVLb7OAk0Bw74YRm51LuN7jGfDzA12O2E02hMvPrSY7499b1VY1qibzEd6brqpVlfLseJjFrrpaNHRZouDQtxCrIrMIr0jpXs7FxB7NJO7k5E7x6VSVW+d3Gjsjq+srzyne7XNcalqpk5PjNTU1BAeHs7LL7/M7Nmz8fPzY+XKldx0000ApKamEhMTIw1f70Sa8x1tDnsvwibBRGldqZg0afx5qvIUmRWZ5FbnUlJXYjV0uC24Obrh5+JHiFsI3T2709u3N718eokiwFPlSVp5mlXgX1BTYHN/aqXapg+vv4u/uI5Wr2Vz5mYSUhJYm7pWTDbYYlTYKOLj4rmp9y0k5zfwzeG1rDj+GRrhMCqlg8UXX6BrIF9M+YLJKyeLQf47175DlE8U07+fTpRPFKkPp9r1vrTU9j0keIjYbl+ts+6ycVG64lf3OYLRA1t+nwImjJRR7f4og4ItkyCRPpF22QFdzpgEE7W6Wmp0NVb/aXQa68caavh931U06Jyw7b/aOm25Ed9V0TRoLFq3m3Z/tHQN8VR7WiY+/vm9l3cv1Ep1hx5jazdN2iK6SutKeWf3O3zy1ydiJ9bVEVczLXoab/75pmiBp5ApeOOaN3hq1FN2ffaiPo4ivTyddXesazXRIQgC89fPZ9HBRbg6urL7nt3EBsS2+hxn7+NA/gGWHFrCiqMrqNPXE1L/JQp8zxqyeIagDhCmFzLwv5wqMjsKe8WxvdXWro6uODs44yB3wCSY0Oq11Bnqmp1bdjZNh3HCpRvkS1xcdIZmAumcaQstzWoQbPze+G9oXTfV6eusNFNudS4ny09yuuo0hTWFVNRX2By8bg8Ocge8nbwJcgsiwiOCXt69iPGNIcIjgnCPcELdQ6msr7TqyD9RcsKm3QuYBx6fXWQW5RNlUbh2ovSE2ElyIP9As8fn6+zLrP6zuHvAHOrrQjmcd5LFie9ypPwXkJlwdnC2iPdeG/sa209t54+sPwDzDMjCJwqJ+iSKjPIM1t6+linRU+x6bxILE1lycAnfJn0rOhAo5UrGdBuDSqHiePFxTldZF9vIkRPoGoSq/F1MRjda0k2uoe8wJHiQOA9kYNBAu6ylL2cEQUBn1NnUR9Z6SSPqpu0HxqHTOdMe3XQpaCajycjpqtNn9FJpKmnlZv2Up8lrdjuFTEEPrx5WminaJxp/F/8Om3F65jg7RjcJgsDa1LW8uP1FjhaZi7G81F48PPRhjpUcIyElQVx3YOBAVt++mnCP8FaPb/HBxdz/6/1cHXE1O+bsaHX9xMJErvzqSmr1tTw45EEW3rCw1W3OpkJbwYqkFSw+uJik4iQQ5C3qpo5I6JkEE6cqT3G06KhFkVlznYVOSif6+fez6CyJDYhtV1JX0kxtp6M1k6PCEVdHV1QKFTJk6Ew66vR11Bvq7Yo35MgxcWa9S1UzdXhi5Mknn2TKlClERESQn5/PSy+9RGJiIsnJyfj5+TF//nw2bNjAsmXLcHd351//+hcAe/bssfs5pAC/7bRk07P2SEGnetedLQRyq3PJrMjkZMVJcqtzKaotoqq+qtnK75aQIcNN5Yafsx/BbsF09+wuVoTXG+oprSslsyKTpOIkjpccb/YGa4BLgJUdVx+/PijlSnad3kVCSgKrU1bbbIt2Mo7ER38/CuHMkEO5sppC+cdoFXst1o30jsRD5cGBArNwuKn3TQS5BvHJ35/Y9QXbXNt3iHsIdbo6SrWlVtvIZXI8VB6olWrKtGXojLomFd0CMprebDX/DV6cFsycEXGXfBLEaDK2HojbE6zrNGgaNNTqai0GvdmDvZVoLfHh7XFMiws5p300pbOCGKPJyKnKUzaH+DWXzASzeO3p1dNcyeQdZdH90Zy9RGdxrgMuK7QVvLf3PT7c/6FYPToidATPjnqWhJQElh8549nZy7sXa25fQx8/+2y58qrzCP3A3NZe/nS5XQGs3qhn0opJbM3aSrhHOH/d+1e7Z3doGjS8tfVnVuzwa3Xdu8eW88ToqR1aOXk+Av/L0cO7I7DXTqFf5N/0Ca/DU+2JQq5Aq9dSVV9lLsLQ5HGy/CR5mjy7KqBkyPBx9qGHZw+8nLxIL08nqyLLKtZQyBTEmoRLMsiX6NqcD80E0jnTVlq6zgOd+h1gNBkpri22SJ5kV2WTUZ7BqcpTFGgKKNOW2bSytAeVQoW3kzeBroGEe4TTy6sXUb7mREdVfRV51XkklyaTVJTUrBWUo8KR3r69rYrMglyDyK3OZXXKahJSEth5eqfVtdrWXA0XtY4c4QM08l1WXfoPD32YT/7+RPz3rvhdXLX0KhQyBeXPlLeYeKjR1bDq2CoWH1zM3/l/i4/7OPng7OBMSW0J9UbrilxnpTNuKjd0Rp3YYdOybpLxwW19mDGwu9W+LiUEQaDeUN8ujWT1eIP58Vp9bYtz/2xxrrrpYtFMYLZiauz2aKqZMsozWrwG+Dn72bS+6uHVA0eFY4ccm72ci24SBIFNJzfxwrYXxKSrm6Mbj498nBjfGB5c/6D4GVXIFLwx7g2eusK+QjKAO3++k5XHVvLS6Jd4eczLdm2zOmU1N35/IwICH1/3MQ8Pe9iu7Wy9tv15+3lnawKHklu3OH/tJh9mDRneoZq3uqGapKIkiyKzpOKkZu+XdfPsZmXF1d2re7Pvt6SZ2oe9mimm516iQqvxUnvh6uiKzqijRldDmbaMopoisiqzOFV5qkUr4aaolWrC3MPo4dWDcm05ySXJNrvMBgkKDuLS+g4vMs3U4YmR22+/nZ07d1JWVoafnx9XXnklb7zxBj179gSgvr6eJ554gpUrV9LQ0MDEiRP59NNPCQwMbGXPZ5AC/PbR3Bd3V8jkni0EcqpzSC9L52TFSXKqciiqLaKivsLuatCmyGVy3Bzd8HH2wVvtjYuDC3KZnDpDHfma/GYDf7lMTpRPlBj09/Prh0wmY3/eflanrOZE6YlmLWMav/or1O9QLdtlsd8eXj3EG3WhbqG4qlxJKU3hl1t/YUbvGVbH0Vzbd2M7enPDik2CyWYW2FPtyaCgQQQoJnL8ZG+q6s58mXXlLyu9UU+tvtaiasieQFzToKG6oZpqXbWYvKjV11Knr2u3sOxInA1X46d/+pz20ZHVTx0RxJTVldmc+5FRntHiZ9jfxd+m9VV3z+5dam5Ee96j6oZqPtz3Ie/tfU+cGTIwcCCvjX0NhUzB3avvFoeYypDx5BVP8vo1r7dJwKw4uoJZCbMYEjyEv+f93foG/1CuLWfEFyNIL09nZOhIts7e2u5uG3uDuRKHdzCq9jMlegqz+s/iusjrOk2sdVTg//vxonP2e71csbf6qV/MFgp1u0gtS22T7YyX2oton2iGBA9hSPAQYgNiUcgVvLnrTdamrbX5t+7l1QuNTkNRbRGRCieSTU4oW7pBo1TBwwfBs212lx2NFANfOpwPzQTSOdMeWtJGXUE3aRo0FsmTrIos0srSOFV5ivyafMrqyuy+GXI2aqUaL7UXvs6+uDm64ahwxCSYKKsrI6sqq9nvTh8nH4siswiPCDIrMtmQsYFNGZuQ6wa1qJmc/b7jRM1Ki302zl9p7KK9f/D9LDq4iJGhI9kz13aC8GD+QXMXa9IK8XtEhgxHhaPNuF8ukyOXyW3eoJfL5PT27c3g4MG4m65m9/EgymvPRAFdVTcJgkCdvq5dRV/VDdXifxrdP0Vf+jq0Bm27u5k6knPVTV1NM+mMOjIrMi26Pxq1U+N5bwuVQkWkT6SV9VW0TzReTl7n/No6kva8T9uytvH8tufFeUTODs48MuwR5g6cy/9t+z9+OP6DuG4v714k3JZAP/9+dh+TIAgEvx9MYU0h22ZvY0y3MXZv+/afb/PsH88il8nZOHMjE3pOsHvbs2mLbuoWVCoObY/wjGj3c7aE0WTkZMVJq3mPzd0vc3V0FW2LGwvM+gf05880jaSZ2om9mmlE7H7KjftIKU1p9u9jCwe5AxGeEcT6xzIidAQDAgcQ5R3FurR1fPTXR2SUZ1hto1aq6e3bm8OFhwkTZGTI3HFsKY1wEWqm8zJjpKORAvzLl+qGaosKqsaqieyqbAprC9vtQS6XyVEr1CgVSmTI0Oq16Ey2b+C6OrrS378/oW7hHE6agV7vQnOt1XJFNYLv85yuPiU+HibICJQ7WATgcpmcrXdvxV3lBs4+4Blms+27rXipvUQbrEZLrO6e3cVqg84Sd40Z6+baoJsG3xX1FVQ1VFFdb05eVDdUi8kLrV6L1qCl3lDf5oqiC4VKocLZwRlnB2fR7uXs/1wcXMTfq6r92fBXVLueq6P9ctsy6Etn1JFRnmHTx7ZMW9bsc6iVaiK9I21WMtkzyK6rYO9np1ZXy8K/F/LO7nfE96WvX19eHfsq13S7hsc2PWbRJRLsGswPt/zAqPBRbT6meWvn8cXhL3hy5JO8O+HdNm2bVpbGiC9GUFFfwcz+M/lmxjedOodF7f85qZpfxX97qb24te+tzOw/k1Hhozq9W63Ngb+DG351izAZbFtpXC7e1e1BZ9SRXnaSmZ+fpLIOWrIiyVPPBVnzN15cHV3p49uHQUGDRPHV16+veBNA06Dhf/v+x+JDi8mtzrXaXi6Tc2e/O+nn349XdryC1qClu2d3Em5L4PdDX7Hyr0+IC4zj9n638+yWZxkQOIClU78yb/zPd/OFRoqBJdqKdM5cnhhMBgprCkXdlF6WTmpZKlmVWeRX51OqLaW6obpd8bWjwhGVQoVCpkBv0jervWTI6Ondk96+fUlJvhOd3rb9kYAJQVZBUI/P+Dt/v9jZFybICJApxSKwbp7dOFV5inmD5jF/yAPidbm6oZqVSStZfGgxhwoOtfn1gLnivI9fH1E3DQoaxICAAbg4nqmM7QzdZBJM1OnrWi360ug0on98VX0VmgaNmOAQdZNBa9awRl27nBjON3LkuDiaNVHjz7N10tn6qaLKj7X72t6dcyE1kyAIFNUW2bS+yqzIbLELNsQtxKb1VbhH+EU1B8Lez87u7N28sO0Ftp3aBph144NDHuSZK59hT84e7llzj8WspCdHmgvJVEpVm44ntTSVmIUxqBQqKp+tbFNBmCAIxK+JZ/mR5bir3Nk3dx+9/Xq36fkbsVc3latfRCM7c227KvwqZvafyS19b8Hbybtdz90WyrXlYkf+0aKjHCk6wrHiYzaTzTJBQbhuGZg8kTRT2xAEgcKaYm7430HKa02ci2aSy+REeEQQFxjHwMCB9PPvR/+A/nT37I5CrkAQBLaf2s7rO19nZ/ZOm7FAT6+e/GvYv/gx+Ud25+wG4KXRLzE/cjJTv7oSvVHPsunLeG7LsxTUFLJs2lKzLfdFqJmkxIjEJYfeqDcLgX/mnSSXJJNRnsHpqtMUaAoo15aj0WnOueqlLcP4DMpkjIKRMEFGKq44teCJapArud47gM1lJ9p0PD5OPhbB/OCgwXTz7NbizU1BEGgwNtgMwCvrKynTlomDnKrqq8QKosZ16vR1okeh1mAOxHVGXZeoKLKFSqFCrVTj5OAkJi7cHN1wcXCxCMhbDModrR9vXNfJwanNN3TtHfbZXk/rth5HS4O+nFQNdI9aSlpZClmVWS3+ncPcwywC+SgfswVWuEf4JW/RBlBvqGfRgUW8+eebFNUWAeYhnC+Pfplb+97KppObiF8dT3FdsbjNnAFz+Oi6j3BTubXrOXt91IuTFSf59Y5fuSHqhjZvvzVrKxO/nYjBZOD1sa/zf1f/X5v3Ya+f8K6nx3Ks5CjfHv2WlcdWkq/JF9eJ8Ijgzv53Mit2lt02Yh1Fc4E/uii7rveXgnd1ezAJJvKq80grSzvzX7n5Z1ZFFkbB2KwViYA58C9x/I9oP6lSqOjj10ccANzPvx/9/fsT7BZs9Z1mNBlZl7aON3e9yYGCA7Y7JVWePDL8Ee4bfB/v732f9/e9D8CEnhNYedNK1Eo14R+EU6Yt4+dbf6aHVw8GLhqIr7MvJU+VdNr71h6kGFiirUjnjERzCIJAVYPZQiunKofUslRSylLIqsgirzqP4rpiquqrzrnDuq0DzB3kDgQaDa1qJpPCgaeix7EwbU2bjlEhU9DPv5+olwYHDyY2IBZnB+cWtzOajGL3etOCr+qGasq15eIA3Mr6SnPR1z+a6ezOi3pDPQ2GBnRGXbPzXS40CpnCrJmUTjg7mrWOq6Mrro6uZ5IZNrRSW/STg9yhzUU49uqmplwIzeSi1jMwNoG0shRSy1JbLHJ0cXCxmfyI9InE1dEOm89LgAP5B3hh2wv8lvEbYK5qv2/wffz7qn/jqHDkofUP8UPymS6RINcgvr/5e66KuKpdz/f5gc+Zv34+Y7qNYdvsbW3evsHQwPhvxrMrexc9vHqw/979+Dr7tr7hWdirm359dBBrUhP49ui3bD+1XUx8OsgduD7yembFzmJy1OQOn6/ZEgaTgbSyNKsis/IqX0kztUKNrob0snTRJq+pfqpqqGqTZgKzC01jwVijZor2jbZ5PuRU5fDGrjdYdWyV6GJxNpN6TeLJkU/i7ODMzT/eTL4mH3eVO9/M+Iap0VN5adtLvLrzVbF7c/w349mSuYVl05YxO252R79d7UZKjEhItIIgCFTWV4qe5ceKj5FWlsbpqtPka/Ip05ahadC0GKza28pb4vAOdcqdgP3DigZRw+EWMsBeKi8ifSMJdw/H38UfTydPZMjOtD43qSJqmryoN9SLyQu9SY/RZOwyFUWOckccFY6oHcxB+NnJCzdHN9xV7rip3NoVfKuV6i57Q741/9X7ru7e6bOA2jPoy9XR1ebg80jvSIsKu8sJnVHHV4e/4vWdr4sDELt7duel0S8xM3YmmgYNj/72KN8c/UbcxlPtyfLpy5kaPbXdz5tTlUP4/8xJp4pnKto98HPRgUU8sP4BAH685Udu7nNzm/fRVj9ho8nI9lPbWZG0gp+Sf7Kw/4gLjGNW/1nc0f8Ogt2C23wsHYHBZGDxn4d4Z0PrN8g72ru6PXSmzUuFtsIqgE8rSyO9PL1Ze5Wm2PKXR1FBz/DDXB3tLlYz9fTq2WolZHJJMq/teK1ZqyyA3r69WTBiAbNiZ1Gjq+H2n29na9ZWAJ678jmzlZ1cIZ733T27k/6vdLQGLW5vmhOUZU+XnZdqPHuRYmCJtiKdMxLnSoOhgYKaArKrskkuTuZE2QkyyzPJ1eRSUltCRX0FWr22WU1xITWTQqagp1dPunt1J9g1GF9nX5wdnKnV11LZUGmpmXR11BnqxI71pskLg8nQZQq/FDKFuWtHqRKTFy6OLmKhl5ujG+6O7rir3HFVtd69frZ+clI6dSkL27NpKc4UAE9nByrrzmj4rqCZ5DI53Ty7nSkWa6KfbBV9XC4cLTrKi9teZE3qGsB8bsfHxfP81c8T4RnBz8k/c9+v91GuLRe3mT1gNh9d91G7tQ7A7T/dzvfHv+fl0S/z0piX2rWPktoShn8xnKzKLK6OuJrNd21uly1wW3VTbnUuK5NW8m3St+IwegB3lTs3976ZWbGzGN1t9AW77/Ht/hSeTzjZ6nqXumbSG/VkVWaJ7hpNi8aaFgQ2hy3NZJKVERC8ixE91aJm6uvXt9WZnbW6Wr48/CUf7/+YjAprqywAlVzF7LjZPDbiMXr79WbJwSU8vPFhdEYdvX17k3BbAtG+0Wj1WsL/F05pXSk/3PwDt/S9hQfXP8hnBz7j31f+mzfGvdG2N6oTaUv8qzxPxyQh0aWQyWR4OXnh5eRFP/9+TIuZZnO9BkMD+Zp8UstSOVZ0jNTyVE5VnCJfk095lQB2FPkYZRWtr9RGKhoq+CvvL/7K+6vD920LpVyJg9wBR4U5eeHk4IRaqbawjHJ1cMVdZQ7CPdWeeKo9cVO52ZW8UClUl21ACDCpXxCfzRpk5b8a2CSQf3pS7071tC7WNFf1ZMl9cU9y46Bwon2iCXQNvKz/bk0xmAx8c+QbXt35KqcqTwEQ6h7KC1e/wJy4OTgqHFmXuo65a+eKs0QAboi8ga+mfYW/i/85Pf+O0zsAGBw0+JyEwv1D7udE6Qk+3P8hdyfcTXfP7gwOHtymfdhzPjdFIVcwrsc4xvUYx8LrF7IubR0rklawIX0DiYWJJBYm8tTmp7im+zXMip3Fjb1vPKfX2FaUciUDQ3oCrSdG/N3OX6WWLTrC71qr14o2eU2D+LSytBb9rlsj1D2Ufv4e9PVLxo04vBwjGBDcnSt7BaGQz7JrH+Xachb+tZBFBxeJiUdbjO8xngUjFjCx10TkMjkH8w9y4w83kl2VjYuDC8unL+emPjcB5m6XD/Z9AMCjwx9FIVfg6uhKsFsw+Zp80svSGR46vN2vW0JCQuJiR6VU0c2zG908u3F1hO1BwYIgUKYt41TlKZKKkjhReoKT5SfJqc6hqNwB7JBDnaGZjILR/D1Wntbh+7aFXCbHQe6Ag8IBlUJl0a3emLxwdXDFTeUm6iYvJy88VB52d69fTBZKnUFrceb4PoFdQjPN7DOfGwYEEO0TTU/vnue1mr+rc6LkBC/veFmcFSKXyZnZfyYvjn6RXt69KK4t5pYfbuGnEz+J23iqPflq6lc2Z7K2hUYLIYCx3ce2ez9+Ln6su2MdV3x1BTtP7+SBXx/gy6lftlkbt1U3hbqH8tSop3hq1FMkFSWxImkF3yV9R051Dl8lfsVXiV8R4hYidt/HBsS2+zW2h56+fkDriZFLQTMJgkC+Jt9m50drNnkyZM0WEzgpnegbrKef3068FEPxduzOwJAeTOx9HUrF3XYdm0kwsTVrK//Z9R92nt7Z7LEEuATw0NCHeGDIA/i5+NFgaOD+dfez+NBiAG7sfSPLpi0THS2+PfotpXWlRHhEiJ/FKB+zLfz5+p7tDKSOEQmJdtJa66OACZOsjFzVGf+/jqp+aooMmTg4UClXioF4Y+uzq4Or2Prs6uiKh9rDInnhpfbC28kbd5W7zeRFe9qc20pXGGTZFbiQ74O91U+Xc9urLYwmI6uOreKVHa+QXp4OQKBrIP++8t/MGzwPtVJNubacRzY+woqkFeJ2TkonPr7uY+4ZeE+HfL7mrpnLV4lf8fQVT/P2+LfPaV9Gk5EpK6ewMWMjwW7B/HXvX4S4t72i51zP57K6Mn5M/pFvj34r+pqC2W94avRUZvafyaRekzptaHtT7G11v5B+uW3xuzaajJyuOm3V+ZFWlkZ2VXaLnYQOcgeMgrHZyllPtSf9/ZtYYJ01B6St6I16Vqes5t0973Ig/0Czx+aocGRm/5ksGLGA/gH9xceXJy7n/l/vp8HYQKR3JAm3JdDXv6+4fEP6Bm747gbcVe7kLsgVA/+xy8ey/dR2vp7+NXcNuKtdx94ZSDGwRFuRzhmJC03r9kcCRlkZ+ep7MWH2Oe8MzQRnhq0rZApz0ZfSEbXin8TFP3ZRbo5u5p//JC881B54qc0Fdd5O3hZJjKbJi/ZY6rYVSTOd4UK9F5Jmaj8Z5Rm8uuNVViStEOPIW/veysujX6a3X28EQeDH5B954NcHLGaJXNfrOr6a9hWBroHnfAwnSk7Q59M+qJVqKp+pbPN8krP5LeM3bvjuBkyCiXfHv8uTVzzZrv2cy/lsEkzsOr2LFUkr+DH5RyrrK8Vl/fz7id334R7h7Tq2tnCpaSaAyvpKUSc1zghKK0sjvSy9xfnGjd81zbnQKGQKonyiRPurkbVd1AABAABJREFURiusxjkg7SGjPIN397zLqmOrWrTw6+/fn8dHPs4d/e4QPwN51Xnc/OPN7MvdhwwZb1zzBs9e+ax4r0IQBPp+2pcTpSd4f8L7LBi5ADijpWIDYjnywJF2HXdnIHWMSEh0MI0evDlVOeRU55BTlcPpqtOovbUIVeMQmvH/K3NY3OJQpA45NgSMghGjYERv0qM1aK3WcVI64aH2wEPlgafaU/zd6t/qf/79z++Ny91V7p1WndQR2fpLBYVcdsEC6GHdvQnyULcaxAzr3nUsZS4kJsFEwokEXtz+IsklyQD4OvvyzKhneHDog6JP9eqU1dy37j6LLpERoSP4dsa39PTu2WHHs/30dgDGdBtzzvtSyBWsunkVI78cSXJJMtNWTWPb7B0cy61vU7B+ruezj7MPDwx5gAeGPEBWRRbfJX3Ht0nfklKawg/Hf+CH4z/g7eTNbX1vY2b/mVwRdoXNJFNHCGeFXMZLU/ow/9tDzc77eWlKnwsW4BtNAq+sS24mSW/+/4If9/D5sRWkl6eSUZ6Bzqhrdn+OcrNFh86os/Jtbwzu1Uq1eQ5Ikxkg/fz7dYglhCAIHC44zLt73mV16mrqDZbVmU2rrHycfHhw6IM8OPRBC8GsM+p4fNPjLPx7IQCToybzzYxv8FR7Wuzr/b3meSPzBs2zmO8T5R3F9lPbSSu7eKufJCQkJC4EeqOePE2ehW7yC6yloGrYP2uc+Y44o5kWiUmRzsQkmDAJJgwYzN9vZ92vUsgUYjLEliay+rcNDaVWqjulqEzSTJZcKN0kaaa2c7ryNK/vfJ2liUvFyvVp0dN4ZcwrDAgcAEBRTRHz188nISVB3E6tVPPhpA+ZN2heh32mGrtFrgi74pyTImCex/DBxA949LdHeXrz00T5RHFD5JQ2a49zOZ/lMjmju41mdLfRfHzdx2xI38C3Sd/ya9qvHCs+xrN/PMuzfzzL6IjRzOw/k5v73GyzYEnSTOb/P/nTPr7PWEf6PwmQpjr+bGTIcHFwQUCgTl9nUcDV+H0DEO4RLmql1uaAtJWq+iqWJi7l478+JrMi0+r4mh7Tdb2u4/GRjzOu+ziLz9Su07u45cdbKKotwlPtycqbVjKp1ySLfW06uYkTpSdwc3Rj7qC54uONHSPpZemYBFOXta9vCaljREICs+9eY+De9Gd2VTZZFVnkanKtbsw0Ysv/z0AJlY5foHZNIcgtiB6ePejr35dr1D5cu/nVVo/nwwE3sam2kKyqLEpqS6jR1aAz6i7oPBBXR1crEWCvQPBQe+Dq6Gp1kWxrtl6ic2mrx+nliCAI/Jr2Ky9uf5HEwkTAXCH/5MgneWT4I+KN1dK6Uh7Z+Agrj60Ut1XIFLw29jWeHvV0hyYas6uyifhfBAqZgopnKto9vP1ssiqyGPbFMGo1kYQIj6HXn5kbc6GEuCAIHC48LA5tL6wpFJd19+wuto3H+MYAHX8ToavelGiP37VCpsBL7YVCrkBr0DZbVSSXyYn0jjRXMfn1E6uZ7JkD0lYKNAUsOriIRQcXWfxtwWxpZjCduWkW4xvD4yMeZ1bsLJwcnCxfZ00ht/x4C39m/wnAS6Nf4sXRL1p9Bx0pPELcojgUMgUnHzlJhGeEuOy9Pe/x5OYnubXvrXx/8/cd+jrPBSkGlmgr0jkj0ZEYTUaKaovIqTLrpKa66VTlKU5XnqZUa9t2sTnNVO64GJn6CP7O/oR7hBPlE8U4tS+37/m01eNZMfJ+fqstIK0sjTxNHpX1ldQb6lu0MOlsHOQOzWuiFgrRmq5/djespJm6FpJmso98TT5v7HyDJYeWiIU11/W6jlfHvsqQ4CGAObZfdWwVD2540KLTYXjIcL698Vt6effq0GO69cdb+TH5R14d8yovjH6hQ/YpCALz189n0cFFeDGW7oqnKas5cw26UFqhQlvBzyd+5tuj34q2y2Dusp4cNZmZ/WdyQ+QNqJQqSTOdRVPNBOYZLk5KJ4wmI5UNlRaapCneTt42O+dbmwPSVgwmA5syNvHunnf5M/tPq+88B7mDRTHb3bF3i/NDmiIIAgv/XsiCTQswmAz09+9Pwm0JNgs4J3wzgc2Zm1kwYgHvT3zf4lic3nDCYDKQ/Vg2YR5hHfpa24s0fF1CogkNhgarqqWc6iadH5WnqWyobNe+FTIFAa4BdPPoQaDjlQQ5R9MnMITr+0QT7hlqnS3NT4TFo1vf8X07IDjO6mGjyUi+Jp/DBYfZk7uHY8XHyKrIoriuGE2D5pyTJ3KZHKVMKWaPjSYjBqFjqrdkyCwCfndHTwqzHvznZqt1xUBXaLO8HOmqQcyFRhAENmdu5oVtL4izfdwc3XhsxGM8PvJxiyr0n5J/4sH1D1pUl8T4xrDixhUMChrU4cf29ZGvmb16NsNDhrPv3tYDvbbwwbZt/G+TuUVY1uRz2hWEn9FkZGvWVlYkreDnEz9To6sRlw0KGsQInwdY/7f1wPZzPfauaGOxJjGPR1cltrqezm0RRcb1zdpghbqHWnWA9Pbr3am+2PWGen458Qvv732fgwUHLZbJkOGmcrNI2lzb41oeH/G4OD/kbPbl7uOmH24iX5OPu8qdb2Z8w9ToqTafe87qOSw/spzb+t7GqptXWSxbl7qOqaumEhcYx+H7D3fAK+0YpBhYoq1I54yEvQiCQGldqc1iscbfc6tz2510cFe5E+oWTpDqKoKco+kbGMbE3j2J8umFi6OL5crnqJkAqhuqSS1NZU/uHg7lHxKTJ43D4s8leSJDhkKuQCEzFwiYBFOzdintoWm3v4fKi7LTj2IwuCJppq6DpJmap7i2mLf+fIvPDnwmFpde0/0aXhv7GleEXSGuV6ApYP76+eLwdTAXwrw0+iWevfJZlPKONbgRBIGA/wZQUlfCrvhdXBl+ZYftW2/Uc9Vn/6IgdzLQ9XRTdlW2OLT9WPEx8XFPtSdX+f+Lo6nW8/QuZ82Ex1eUCpuatcpyUjrR17+vlW7q7Bmsx4qP8dH+j1h5bKWF9gVwVjqjN+nF7yJ/F38eHvqwOD/kbLR6LQ+sf4Cvj3wNwO39bueLKV9Yfx//87z9P+uPXCbn5CMn6ebZzWJ5zCcxpJalsuWuLYzrMa6DXu25IVlpSVw2GE1GCmoKzBVLzQTwRbVF5/QcCpmCMI8wYnxjiPGJIdInkkjvSCJ9IglzDzuvA/AUcvOxhHmEMTXG9o2eyvpKTleeJqU0hUMFhzhafJRTFafE5ElLQbtJMKETmrdXAXP22cnB6czcEgdX8wD1f1pRdUYdtbpaqnXVVNVXUVlfid6kR0Cgsr7SXAlSBSpjfwL1zXsHC0BBVT3Ldmfh66bqMl+mlzqT+gV1+tDCi40dp3bwwrYX2JW9CwBnB2ceGvovxoXcR71OxYk8I8O6C5RpS3h4w8P8mPyjxfaPDn+UN8e9aVXVfq40BpurDmSgMvbn6ogxHb7/H/aZ/gmKLf/+wj+PvLIumfF9Ai/I+aGQKxjfczzje47n0xs+ZV3qOr5N+pbfMn7jUH4iRZkOKBAshElHHPuFtLyzhSAIKJXN+9s2pbzhFCaFyWIOSGMHSD//flY2U52FIAjsydnDh/s/ZG3qWiu7Li+1ub2/or6C6oZqHBWO3Nn/ThaMWNDiEMnFBxfz8IaH0Zv09PbtTcJtCUT7Rttct0BTwHdJ3wGwYMQCq+VN28IFQej0WVsSEhISnU1VfZVV0iO7+oyGyq1uvkPeXrzUXvTy7kVvv95EeUeJuqmXd68O62i1F3eVO0NDhjI0ZKjN5XqjntzqXDIrMkksTCSxKJHU0lTyNflUaCvQGrTNFpwJCBhMBgwt2H/JkaNSqixmPTbOI1HKleiNeuqN9WgaNFQ1mDVT440urUGLtkZLYU2hWTMZmn/vGjXTvpNlyOUyKX4/T0iayZpybTnv7n6Xj/76iDp9HQCjwkbxyuhXcWYAxWX17NWVMbSbFyuPreCRjY9YFKhG+USx4sYVYjdJR2I0CfyYeIja6t64K8MZFNixzyGXKRGqb0JGA11RN4V7hPPMlc/wzJXPcLToKCuOrmBF0gryqgs4lNrjstBMAJ7O9r2GQm06DYpacQ7I2Z3z5zIHpK2U1JawLHEZnx74lFOVpyyWOcgd8HP2I78mnzqD+TPXz78fj494nDv639FscdvpytPc+MONHCo4hFwm551r3+HxkY83q3c+2PsBYB7GfnZSBMyf3dSyVNLL07tMYqQtSIkRiS6LIAgU1xa3WLWUr8nvkFZphUxBN89uZ5Ie/yQ+Ir0jifCM6LhqBWcfUKrA0ND8OkqVeb124qn2xDPQkwGBA7it321WyxsMDeRW55JdlU16eTrHi4+TXJLMqapTFNcUo9FpWuw60Zv06Bv0LQ5zkiHD1dEVbydvenj1IMg1iBD3EELcQvBQe+CkdCI525kf97b+el5bf0L8XarCOT90xSDmQrA3Zy8vbHuBP7L+AEClUDF/yHyG+97Ph5vz+OGPM+emh7OJQvknFBt/Fx8LcQth2fRlXNvj2g4/NssqteEEMpzN++C3oIIO+3z8lVX+z/5tB0iNQvyvrPILfr44OzhzW7/buK3fbZTWlfLf7WtYtdO6MqaR833sHVUxVVVfxbHiYxwrPkZScZL4s7yukhC+RIGPxbyrMwi4qg0k3PkOsYH9O2QOSHs4VXmKLw59wZJDSyiuLbZYplao6endk9NVp8WBm83NDzmbBkMD/9r4L5YcWgKYg/Zl05a1eBPu078/RW/Sc0XYFQwPta6S6+7VHYVMQa2+loKaAoLdrLuPJCQkJLoKdfo6a710lm7S6DQd8lzeTt4WWqnp7x1mF3IeNJODwoHuXt3p7tXd5o2cxg6a7KpssiqzSC5OJrk0+Yxtl7YSnan5gjITJnOCw6Bt0aNepVDhofYgwiOCYLdgglyDCHUPxd/FHxcHF1JyXfnJDs300HeHqNSeKYCTdFPnI2kmM1X1VXyw7wM+2PeBeI9gSPAQXhv7GoJ2AM//kExB1ZmudgeHGvJkn6FVVIqP/WvYv3jr2rfEOY0dSVPd5MfToIdx7+3u0M/HX1nlFFXruBh0U2xALLHjY3nz2jdZtGcbb69rPiF+IY67I3ST0WTkZMVJkoqSLDRTRlkmQSxpUTM5qxpYMuMZYgP7EeMb0yGzaNpKg6GBX9N+5cP9H7I7ezcmLLv9wz3CUcqUZFZmkl+TD5ht6haMWMC1Pa5tUedtzdrKbT+ZNbOPkw/f3/x9i8mMopoivk36FoDHRzxuc53GgrKLdTajlBiRuCAIgrl7oLWqpZaGwzYiQ4aDwgGjydhikkSGjAjPCKsAPtInkm6e3ay8XDsFzzB4+CDUlTW/jrOPeb1OQqVU0dO7Jz29ezK2+1ir5Y0JqdNVp8muyiazPJOU0hTSy9M5XXWaktoS6o0tV5MJCGh0GjQ6DaerTts+DmN/AnmzTcdeWFXP/G8PSb6tEp3KwfyDvLj9RTakbwDMlRj3DrqXf1/1b45lK2x6PFfWgZp/4eSoQavYyx397mDh9QttDrY7V5rzma6spUM/H8Ua+6pG7V3vfOHr7MvI4EmsIrHVdc/HsbfHaqHB0MCJ0hPmIL4oiWMl5p851Tk215fL5Tj5rEdfNpsz9V1mGjt+/nvzcCZFnf/rpqZBw4/JP/Lx/o9JLEq0Wt7Xry/uKnf+yvuL4yXHAbP13IIRC5gVO6tVgZxXncdNP9zE/rz9yJDxxjVv8OyVz7YoCLR6LZ8d+AxoPsB3VDjS3as7GeUZpJWlSYkRCQmJC4bOqCOvOq/ZpEd2VTbl2nK79qWUK5Ejb/GGPoCHysNm4iPSJxJvp/MwVLoLaCaZTIafix9+Ln4MDh4MfazXqdPXkV2VTXZVNqcqTpFenk5KWQpZ5VnkafKoaqhq1ea4wdhAcW0xxbXF4vdgU+zVTE2TIiDpJonOp0ZXw8f7P+bdPe+KRS2xAbG8NvY1pkRNYdPxQh5cYa1ZdHpn/Pg3JY7/wcvzNEunLWVCzwmdcozN6aaO/nxcjLpJLpMT7BIDXUQzQdt1kyAI5GvyLZIfx4qPkVyS3GwHpN51Jcqaf9GcZnr/lisuyDVTEAT+zv+bzw98zvfHvxe7rhrxVHsyIGAA6WXpZFdlA+bE+t0DzPND+vjZ+JI6a/8f7PuApzY/hUkwMTBwIAm3JVjMWLTFZwc+Q2fUMSJ0BCPDRtpcR0qMSEjYoEZX02rVUnN+fWfj6uiKSqFCEATqDHVWFzgBwSKBEuYeZjOQ7+HV44Jke63wDOvUIP5ckclkBLgGEOAawLCQYTbXqdHViCLgdOVpTleeJrUslazKLHKqcijTlrUuAmQnEDACcqu2TTD/XW21c4LAEz/t5XR9GaHuwYS4hxDsFoyvs69Nv3kJCXtJKkripe0vkZCSAJg7yWYPmM0Lo1+gm2c3jCaBW9ZttXlmy5AjYMJX/wBv3fwId8be3inHaDQJvLIu2eYxdHSbtr+bfXMl7F3vfNJVjr01MbbwzjgiQ+qsOkDSy9KbTfS3NAfElpgIvAAVo0aTkW2ntvHZ35+xLm2dlYVjoEsgoyNGc7LyJAfyD4iPj+s+jsdHPs6kXpPsup7vOr2LW368haLaIrzUXnx303dM6jWp1e2+OfoNZdoyunl2Y3rM9GbXi/SOFBMjY7qNaXW/EhISEm3FaDJSWFMoJjjO1ks51TkU1RTZNUPQUeGIi4MLcpkcnVFHja7GarumA2NdHV2b7fzwdfa98BaCXVwzgbljNcY3hhjfGJvLm9o+n640F51llGeQVp5GdlU2BZoCKzvJs7FHMwHN6qYnf95PhamBME+zZgp2C+7U2WESlz5avZZP//6Ut3e/LXZDxfjG8OqYV7mpz03IZfIWNUujbgoVHmP3/ePwc+mcTgRJN7VOVzru1nTTu7dGE+BTYKGbjhUfE5NyZ2NrDkj/gP4EuASw6Xhhl9BMALnVuXx95Gs+O/AZudW5FssUMgVXR1yNl9qLTSc3seP0DsA8P+ShoQ/xwJAH8Hfxb/U5anW13LvuXlYdM89UvHvA3Xx+w+etWn03ftbBtvVwI5HekYCUGJG4jGi0Ymop6dHcxelsPFQeeKm9UDuoQTD7qTZ6ijdSo6uhBsvBQsFuwTYrmHp69exwH38Ja1wdXenj16fZrLTBZCBfk38mcVJlTp6crDhJVmUWedV5YIxCRvO+jLYC/8YltfUqHl37MQ2KJPFRB7kDQW5BBLsFE+J2JvBv/L0xgeLm6HbhhZ5ElyK1NJWXd7zM98e+FxNyM2Nn8uLVLxLpEymud8ZayjYy5MgEH7q7jOi0Y23tGDqy3XlYd2+CPNQUVtU3I2rMAeSw7uehcrSNdIVjb02MgcD9K7eQq7oHZNbD0L3UXlZ+tq3NAbnQftcppSl8efhLlh5eSpnWssrXUeHI5MjJhHmEsTZ1Ld8nfw+Yr90zY2fy2PDHGBA4wK7nEQSBhX8vZMGmBRhMBmIDYkm4LYEeXj1a3dYkmPhgn9kn99Hhj7boDxzlE8XGjI0XbZAvISFxYREEgZK6kmb1Uk612Ra4abKiORzljvg4++Dq6IpCrsBgMqBp0FCmLRO31xl1Vt32zg7O9PLuZVM3BbgESDFxJ6OQKwh1DyXUPdRi6HQjgiBQ1VAlJk3Ejv2KTDIrMsmuyqamJridmsm8tEbrQPxPL1roJm8n72Y1U6Nu8nfx7/Dh1xIXNw2GBpYcWsJ/dv2HgpoCAHp69eTlMS9zR787LGIqe3STTu9CRiH49eyc45V0U+t0leNuTTcJCDz2w5/kqeda6abm5oD08OrRbKHVhdZMtbpaElIS+PTvT9mba+2VGOUdxeSoyaSXp7M+fT0mwfya7ZkfcjaZFZnM+H4GR4uOopQreX/C+zw87GG7vv9XJK2gpK6EcI9wbux9Y7PrNXaMZFZkojfqcVA42HVsXQXpm07CAoPJQIGmoMWqpbN9wZvDXeVOiFsI3k7eOCnNyYoGYwOV9ZUU1hRSUldCVUMVVQ1VNrcPcAmwWcHUy7sXLo4uHfaaJToepVxJuEc44R7hXBl+pdVyQRBY+Xc6//4lvd3PMSTgGuqUSvI0eRTXFqM36cUulpZwcXARkyQWiZMmYiDYLbhrdBdJdCqZFZm8uuNVvjn6jRhs3NLnFl4e87LNpF9XaJE+n8egkMt4aUof5n97CBlYBKqNYdRLU/p0ySGTXeHYWxNjIEMh+OImG0hUEBYdIP0D+hPkGtSuG1bn2++6rK6MVcdW8fnBzzlWfMxqeVxgHLP6zSJbk82yxGVi4YOPkw/zh8znwaEPEuRmf2WWVq/lgfUP8PWRrwG4vd/tfDHlC7vjgt8yfiOlNAV3lTv3DLynxXUv9rZwCQmJzqPxhnZz1lY5VWZb4Na6AcB8UyfYLZgAlwDcVG4o5UqMJiManYbSulLyNHnojDrxRuTZqJVqenr1tKmbLtRMKQn7kMlkFvMhbfHzwdM88aP192tb6OszkkpZLfmafOoN9ZRryynXltv83m5ELpMT6BpoO3HSpPDMS+0lnWOXOHqjnmWJy3ht52uirWu4RzgvXv0idw+42+ZNUEk3naEr66auctytJ9JkKPEj3Gks/cPUFrqpvXNAzrdmMgkmdp7eyZeHvuTH5B+t4gNXR1fujr2b7l7d+TH5R97f9764bFKvSTw+4vFW54eczaaMTdzx8x1U1Ffg7+LPT7f8xFURV9m1baP1FpiLyVpKlAe7BePs4Eydvo6syixRQ10sSImRywiTYDIPM2+laqnxBmFLqJVqwtzDCPMII9g1GBfHM23bVfVVFNUWkVmRyYnSEy3ux9fZ12YLdy/vXrir3DvqpUt0MWQyGd19fID2J0benfSC+EWmM+ooqikiT5NHviafvGrzz/yaJr9r8qlqqKJWX0taWVqrN7p8nHzOdJq4BttMpvi7+LdYbSzRNcmuyub1na+zNHGpWGU5NXoqr4x5hbjAuGa36wqtxuf7GCb1C+KzWYO6TKtxW7jQx26vyFo+NYEZA7u2VcjZ6I16NmZsZMmhJWxM32hl++Wl9mLeoHkMDRnKT8k/8cwfz4jrRPtEs2DEAu4acFebB2yerjzNjT/cyKGCQ8hlct4d/y4LRixok0BoDPDvHXhvq3GGlBiRkLh8qdXVttgdn1OdQ42upvUdAYGugYS5hxHqHoq3kzeOckeMGKnV1VKmLSO3KpeMioxm50iBueuuh1cPm50foe6hkp3sJUywp+s57+OTyf9hZM9FCIJARX2FqI2a6qRGHZWvyaegpgCTYBL/3RIqhcqiO7+pbmqaTJEKGy8+jCYjK5JW8MqOV8isyATMN0D/76r/Y+7AuS3ejJZ008Wjm7rCcdurmz6auJxpcSGdfDQdS0Z5BssTl/PF4S8orCm0WCZDxthuY7ln4D3kVufy6YFPLeaH3BV7F4+NeIy+/n3b9JyCIPDWn2/xf1v/DwGB4SHD+fnWnwlxt/+9+/3k7ySXJOPq6MrcgXNbXFcmkxHlE0ViYSJpZWlSYuRyxmgSLlgrVmOQ01LVUmO1UWso5UpC3UPFxEeYexhBrkE4KBzQGXVoGjTkafLIKM8gvTydbVnbWvS99VJ7NTu8ryVLEIlLm9baNpvDVjuno8LRfK56tHxzsUZXQ4GmwCLwz6vOs0qgNBgbKNOWUaYtI6k4qdn9KWQKm5VUZydRPNWeUiVVF6BAU8B/dv2HxYcWi9fCiT0n8urYV5udp9MUrewogrwCTB7IsL4BcT5ajS9Eu/OFbjU+Fy7ksdsrsgLd25YcuFAIgkBiYSLLEpex/Mhyq25PuUzO9ZHXc/+g+6k31PO//f/jnT3viMuv6X4Nj494nOsir2vXDbytWVu57afbKK0rxdfZl+9v/p5rul/Tpn0cLTrKlswtyGVyHhn+SKvrNwb1JytOYjAZJEsRCYkO4kJqJjDbweRp8lpMetg7zNzbyZtwj3Czbvon+eGh8sCEiTp9HWV1ZWRWZpJels7vJ39vccaiUq6ku2d3m7op3CNcKsa5TGmvZgLruFAmk+Ht5I23kzf9/Ps1u53RZKS4tthaM51VeFamLaPB2EBWZRZZlVktHouHyqPZBEqjZgp0DbzoLFguRUyCiR+P/8hL218itSwVMM80eHbUszww5IFWrcurG6pZlPQkBkajwEfSTReBbrrQx90VEmkdSVV9FT8c/4Elh5bwd/7fVsvD3MN4aOhDjI4Yzarjq3hg/QNisUVb54ecjaZBQ/yaeH4+8TMA8wbN4+PrPm5zV01jx8q9A+/FQ+3R6vpNEyMXG5LC6yBsDTwN6sAMq6ZB02rVUp2+rtX9yJAR5BZkkfQQOz/cgsUEy8nyk6SXp5Nens7enL2crjrdYieJu8q92eF9Ps7nrz1N4uKhpbbN5jjXdk5XR1fzedlkbsTZCIJAubbcqnqqMYHS+HtRbRFGwUieJo88TV6Lz6tWqpu17WoqCNpaPS1hHyW1Jby9+20W/r2QeoP5Gj06YjSvX/O6Tau3s6k31PP81ud5f+/7qJUj8Nf922qd89VqfKHanc93q3FHcqGOvat49p4rBZoCViStYMmhJTYD3UjvSB4e9jBTo6eyNnUtj/z2iHhzxEHuwJ3972TBiAV2zw85m8Y27qc2P4VJMDEoaBC/3PoLEZ4Rbd5XY7fIzX1utmv7UPdQ1Eo19YZ6TlWeopd3rzY/p4SEhCWdrZkah1036iNb1sBFtUV27cvN0c1KLzUmP9wc3dAatORU55BeZtZM+/L2kX40HY1O0+w+5TI53Ty72SwY6+bZTUrASljRWuwn2Pi98d/QvrhQIVcQ5BbUqtVlvaGeAk1Bi5opT5NHnb5OtNBuyVFChgx/F/9m5540Pubj7CN1SXUCgiCwJnUNL257USwO9Hby5ukrnubhYQ/b1fWz8/RO7k64m9NVp3F2TMNP99wFs2iSdFPbuJDHfSnoJoPJwOaTm1mauJTVKavRm/QWy1UK1f+zd95xURxtHP/dHdzRe0dFRCwogiJgN7GXGI29gt1YYks3iTWJMcbejYlii70kJsYey2uNBbuCioXeOxzczfvH5VaO63D055vPRW52dnZ2d3ZufvvMPA+GNR2GCS0mgEGmb+acncO9Z23i2ASzW8/GcN/hOscPKc7T5Kf4YO8HeJj4EMZ8Y6zttRYTAybqXc79hPs4+eykzpPJAFlcFHkdqho8xpi+Ew8qnIyMDFhbWyM9PR1WVhXvbunv+7GYvPOW0gMs7143jGyhcaCfV5gnC2auweiRlpemU10czBwUZi1xg/n//nUyd0JsViw3gOf+TYnAi9QXSu4wimJubK525YejmSPNiCdKhDqB/L6fK34Pjy0z4VxaCqWFsplUKpagF51dpeuMQwCwMbHRGjze2dyZZlLpSEpuCpZdXoZV11ZxMzRb12qNRe8uQifPTjr1WeFx4Rh5eCTng3lCiwnoWftL/Hj8eYW2zbJ+sUQYBvn4AFAtxrSNDyqK3IJcHH1yFFvvbMWpZ6eUVoWaG5sjxC8E41uMh72pPdZeX4ufb/3MrSKxM7XD5JaTMTVwql7xQ4qTLc7G+D/GY8/9PQCAEL8QbOy9UetMRVXEZcXBY6UHxBIxroy7gla1Wum0X7MNzXAv4R7+Gv4Xenr31Pu4hqayjYGJyk9lajOl1UyMMZlbYA2TxWIyYzTqGTkigUhJJ3Ea6r/vUiZV0kvyvzVpMx54qGNdR6Vu8rT1hFAg1H6xCKIYmsZ+ACrtuJAxhkxxJqeZFFahFPk7JjOGc3GrDWO+MVwtXTUGj3ezdCPX3DrCGMPxyOOYe24ubsbeBCCb+Ppx648xs9VMna5jfmE+5p6bi6WXl4KBoa5NXez4YAeyMrwqvG2SbqoaVFXddC/+HraHb8e28G1IyklS2h7sHozJLSejX6N++Dvybyy/uhzXo69z27t7dcfs1rPRtV7XUr1TPfb0GEYcGoGM/Ay4WbrhwKADaF27dYnKGv/7ePxy+xcMaDwABwYf0GmfHeE7EHIkBJ08O+FMyJkSHdeQ6DP+JcNIKZFIGdotOas2UBAPgKOlMZaNMEN01huVs5YScxJ1Opa1yFrlrKWis5dMjU0hZVK8Tn+tciD/PPW5kuWyKKZGpqhvV1/lQN7FwoWMH0SZoM6lQkW7WjAEuQW5iM2KVViCXlwQRGdEI7cwV6fyeODB2cJZY/B4dyt32Jval+vzWpnuVUZ+BlZeXYllV5ZxgZ4DXAOw6N1F6FG/h9J1UVV3QIplV5bh67Nfo0BaACdzJ2zpswV9GvZRu095n29lqAOhnaoixhhjuPz6MraFb8Oe+3tU+s5/t+67mBQwCX0b9cXd+LtYcXUF9j/YrxA/ZGarmQjxCyn1Crjnqc/xwd4PcDf+Loz4RljRfQWmBk4tcb8299xcLLqwCK1rtcblcZd13m/gvoE4+OggVnZfiRmtZpTo2IakMo2BiapBZWkzumgmJyshNo5xQkzmG5Wugd9kvNHZLbC7pbtG3eRg5gAej4f0vHQlzRSZEomI5Agk5yZrPE4tq1oqJ4zVs61X4tmeBKEJTWO/qj4ulDIpknKS1MY9kf+dkJ2gc5kWQgutmsnVwrVEgZtLSmW7T2dfnMXXZ7/GlTdXAMgmv8wInoGP23wMO1PF2fnq6n4v/h5GHh6Ju/F3AQBj/cdiRY8VnEGlMpxzZagDoZ2qopsSsxOx+95u/Hr7V9xNuKu03dHMERNaTMCY5mPgaOaILbe2YPX11QrxQ0Y2G4mZrWZqdGuoC1ImxaLzizD//HwAQLs67bB/0H64WLiUqLyE7ATUWVEH+ZJ8/G/s/9Cmdhud9rv25hpa/dIKtaxq4fUs9THTygt9xr+0VreUXH+RonaAD8gsnQmZBej66xTkC9THKjA1MtU6a8lSZMnllwdDkw/ij0cc5wbzz1KeIV+Sr/ZYIoEIXnZeKgfybpZutCyVKHfULdusqstQi2JqbIp6tvVQz7ae2jyMMWTkZygHjy+2CiU2MxYSJkFcVhzisuJwK/aW2jKFAiFcLVxVBj8s+nfRfqWkVJYBTLY4G2uvr8WPl3/kVur4Ovli4bsL0bdhX5UvVFXV3dHSCMxyP26m/gJAFpj95z4/K/j4rAxtszLUgdBORfvs1UZUWhR2hO/A1jtbVfoHr2VZCxMDJiLUPxTulu44+uQoumzvgv+9/h+Xp7TxQ4pzIvIEhh0chtS8VDibO2P/oP1o79G+xOXlFuRiw78bAACzW8/Wa18KwE4QhkEXzRSfIUbrDaM0aiYeeLJg5hqMHi4WLgrxOLLEWSo1U0RyhNYJaq4WrionjHnZeZELVKLc0TT2q+rjQj6PDydzJziZO6G5a3O1+cQSMeKy4jRqppjMGGTkZyBLnIWnyU+1/obbm9pr1UxO5k6ljvNTWTQTAFx6dQnfnPsG/0T9A0Dm+nlq4FR83vZzOJo7KuVXVXcXaxM0947Er4+nQywRw8HMAT/3+Rn9GvVT2LcytM3KUAdCO5VZN+UX5uPPiD+x7c42/BXxl9LqVCO+Efo27IvxLcaja72ueJX+CquvrcaW21u4CWeOZo6YGjgVkwMnlyh+SHHS89Ix6vAo/PH0DwDA1MCpWN59ealWpm64sQH5knwEuwejdS3dV5zI3dW/yXiDbHG2Tq73KgtkGCklCZnqB/hFcTVriDoutmoH8Hamdkov7RhjnNury68vIyI5ApGpshlMkSmRGmeYG/ONUc+2nsqBfG3r2mT8IIhKBI/Hg7WJNaxNrOHj6KM2n5RJkZidqDIQYtG0xJxEiCVivEx/iZfpLzUe21JoqTUQoqulq9ofV3VuMeLS8zB5561yWfKaW5CLjf9uxA//+4GbRdbQviEWvLMAg5oMUtvfqat7QqYYyOwHO7PnWNpnJMb4j6HVckSpqGxiLDM/EwceHsC28G248PKC0nYhX4jBTQZjbPOx6Fi3I7LF2dh6ZytWXVuF56nPAcjGGcN8h2FWq1nwd/E3SL0YY/jh0g/46uxXYGAIdg/GwcEH4W7lXqpyd97diaScJHhYeyiJdW1428kG+U9TyDBCEKVBV81kY1wHrk4Cta6B3SzdVI5JcgpyEJkSiatvriqtAInLitN4TGdzZwXNJF89X9+uPiyEFiU6X4IgygahQIg61nVQx7qOxnxZ4iwFN12qNFNMZgzyJflIzk1Gcm4yt+JBFQKeAC4WLho1k5ulG2xMbNROxqpozQQA16OvY+65uTjx7AQA2fWc2GIi5rSfo9b9qfq65+Kvf90hEAbgvcb22NJnC5wtnMv4DIjqTmXSTYwx3Ii5gbA7Ydh9f7dKN5pNHJtgUsAkDPcdDjtTO1x5cwVDDgzB4ceHufghPo4+mN1qNkY0G2GwFaUPEx/ig70f4GnyU4gEImx8byNG+48uVZl5hXlYd2MdAGBWq1l6vQOxM7WDvak9knOTEZkSWeL4khUBGUb0pPgSPAdz3ZZd7h60UeXDLfeV+7/X/1NyexWZEsn5xVeFgCeAp62nypUfdazrUPA+gqhm8Hl8OFs4w9nCGS1cW6jNl1+Y/3YmlYol6HJhkCnORKY4E0+Sn+BJ8hONx3Y0c1Qa+LtYuGHTcXcwKP9gMsjcYiz44yG6+riUySwPsUSMLbe24LuL3yEmMwYAUM+2HuZ1nIfhvsM19oESKcOCPx6qCe7GB8BQT/A5Qv26kVGEqBZIpBKcfXEWYeFhOPjoIPIKlV9StnRtiQkBEzCkyRBYm1jjdfprfHH6C2y+uVkhfsiHAR9iatBUuFm6Gax+mfmZGHN0DA4+OggAmNhiIlb3XF1q9xZSJuWCrs8InqH32IhWjBBEySmqm5Iy1a9mL8rh4WFqX4jkFeapjJMYkRyB6MxojeU6mDko6qX//q5vV5/iEBBENcRCaIEG9g2433FVMMaQkpuiUifFZL39Oz47HhImkblA1tLXmBqZKsY6sZBppp1nGoBBebJWeWgmALgTdwdzz83lZpYb8Y0wxn8Mvu7wtUYjkybNJKu5FPUFn+Pw4D4wEtDkW6J68CbjDXaE70BYeJjK9yRWQiuE+IVgbPOxaO7aHIXSQhx6dAjLryzHtehrXL5uXt0wu9VsdPMy7DuFQ48OIfRIKLLEWahtVRuHhhxCS7eWpS53191dSMxJRB3rOhjgM0Dv/RvYN8CVN1fwNPkpGUaqKyqXD1qZwMbMGOk5BWpesMmWGNZzluLK6ysqfdjKfeCrgs/jo65NXaUZTN523qhrU5eCMBMEoYTISAQPGw942HhozJeZn6nRh6/8I5aIkZiTiMScRITHh789jsQXLuLFastnAGLT83D9RYresz40+YEtkBRge/h2LLqwiFsRU9uqNuZ2nItQv1Cd+kVtLj0AHhIzC0tUd4KoTDxOeoywO2HYcXeHSjFvb2qPMf5jMKb5GG7F2o3oG1h+dblC/JAG9g0wq9Usg8QPKc7T5Kf4YO8HeJj4EEKBEGt7rsWEgAkGKftE5Ak8SnoES6ElxrUYp/f+8hcqr9JfIbcgt0SB3wmiJqJKN/F5gFRNdEu5ZvKvY4HHSY9VGkBep78GU/N6DgBsTWxVrpavb1cftqa2Bj5DgiCqOjweD/Zm9rA3s4evs6/afIXSQsRnxWvUTNEZ0UjNS0VuYS6epT7Ds9Rn3P5lqZkAzbrpYeJDzPtnHg48lAVQ5vP4GNVsFOZ2nKvR1bMcbZqJBz4ycvm4EZVKmomo0mSLs3H48WGE3QnDmRdnVI43utXrhnEtxuH9hu/DxMgE6XnpWH5lOVZdW1Um8UOKI5FK8M25b7D4kqw/eafuO9g3cJ9K93f6whjjJpNND5peoon2RQ0jVQmDG0YWL16MQ4cO4fHjxzA1NUWbNm2wZMkSNGzYkMvzzjvv4Pz58wr7TZo0CRs3bjR0dQyGuuWD8Rl5XBoPKLZd9ihFFv4Al2Wn1ZbNAw91rOuoHMh72nqWyj8cQRCEOixFlmgoaoiGDg3V5mGMITk3WaUP3wevTPH6lfbj6Oo+Q446/7vf9G6EFJzDgvMLEJkSKUu3cMVX7b/C+Bbj9ZpZrmud9K07QZQH2gJIJuckY8/9Pdgevh3XY64r7c8HH70b9Ma45uPQy7sXjAXGkEglOPzoMJZfXY5Lry5xed+t+y5mt56NXt69ysQN57GnxzDi0Ahk5GfAzdINBwcfRKtarQxWvnyAP77F+BLNCncwc4CNiQ3S8tIQmRKp8cUJQehDddVMgHrdpM4oItdMcby1sFjcjXM9oQorkZXKlR/edt6wN6OXcgRBGB4jvhHcrdzhbuWOQASqzZdbkKvovus/zRQeZYyI59qPUxLdoU43TXjHFmdjl2P3vd3cC96hTYdiXsd5aOTQSOfySTMRVR1NuknKpLjw8gK2h2/Hvgf7VHrsqWtTF+Oaj0OoXyhqW9cGALxIfYHV11bjl9u/IFOcCUDmYWNK4BRMbjm5TFzKpeSmYPjB4ZwbvNmtZmNJ1yUG8xR06vkpPEh8AAuhBca3GF+iMriV9lXMBbHBDSPnz5/H1KlTERgYiMLCQsyZMwfdunXDw4cPYW7+NvjKhAkTsHDhQu67mVnlDV6nafkg++//Ul4WpCwPRnhrqStEElKEm5ErvQIAqGVVS6Xbq3q29QzmZ44gCMKQ8Hg8OJg5wMHMQWk55JVnyRj281WtZThZ6t6/qXuZEpueiym7byNBuB65gkg4mDngy3ZfYnLLySWawa1rnfSpO0GUB+oE8Fe9G0IquoWw8DD88eQPFEgLlPZtYN8A45uPxyi/UXCxcAEg88G98d+NWHltJRc/xIhvhGFNZfFDNAVALQ1SJsXC8wux4PwCAEC7Ou2wf9B+rl6G4F78PZx6fgp8Hh/Tg6eXqAwej4cG9g1wPfo6niY/JcMIYTCqo2YCtLldAWRGECl4eBvEmNNM+TLNZG5srtLw4W3vDUczR3JxSRBEpcTU2BRedl7wsvNSSL/yLBnDnhtWMwGaddOCo7lIFD4HEzB80OgDLHhnQYnGMKSZiKqMOt008V07vMg9jB3hOxCVHqW0n0ggwpCmQzDWfyzae7TnJoddeX0Fy68ux6FHhxTih8xqNQsjfEeU2cry8Lhw9N/XH89Tn8PUyBRb3t+C4b7DDXqM5VeWAwDGNR8HaxPrEpVRVV0QG9ww8vfffyt837ZtG5ycnHDz5k106NCBSzczM4OLi+HEb1mii8sVPrNEgvFi2JvZwtW8EerY2iCwri0aOnwCbztveNl5Gdz1BEEQREUS5GkHV2sTxKXnaXQlGORpp1N52nzYMkjhUPAhJnXpgxmtPipVQFRD150gygNNAnjq7jtIFP6AXMEVhW3mxuYY7jscY5uPRbB7MPdC8XX6a6y9vhabbm7i4ofYmthicsvJBo8fUpz0vHSMPDwSx54eAwBMC5yGZd2XGXyFrHy1yIDGA1DXpm6JyylqGCEIQ1EdNROgm27iQYBM4VY4WZmitq0V/OtYoqH9OHjb/wBvO2+4WLiQ8YMgiGpDWegOXWJ/uLHp2D1uNYJqlTz2AGkmoqqiSTfNPxKNROFp5AqiFLYFuwdjXPNxGNJ0CLfSvFBaiIMPD2L51eW4+uatgbOs4ocU57d7v2Hc7+OQW5gLTxtPHB5y2ODxOx4kPMCJZydKNZkMIMOIWtLT/wvWaafYUe7atQs7d+6Ei4sL+vTpg2+++UbtDKj8/Hzk578N2JeRoT4mR1mg67LA7X0PY3BL7X4aCYIgqgMCPg/z+vhg8s5bSq4E5UODeX18dA4iqIsPWx6zRyf33qUyigCGrztBlDW6CGA78UREm1wDeFK8U/cdjPEfgwGNB8Bc+Hb2+b8x/2L5leXY92AfFz/E286bix9SNG9Z8DDxIfrt6YeIlAiIBCJsem8TQv1DDX6cuKw47Lq3CwAwq9WsUpXVwE42yI9IiSh1vQhCHYbQTEDV0U2/fLAS/ZrXKuPaEARBVDxloTt00U2FBZaQ5HuWqM5ySDMRVRF9dJOTuQNC/UMxxn8MGjs25nKl56Xjl9u/YPW11VxcU6FAiJG+svghZb2KvFBaiM9PfY7lV2UrObp5dcNvA36DnanhjZArr64EAPRr1E+n2EPqqG9XH4DM7VdyTnKVcXFapoYRqVSKmTNnom3btmja9G3QmeHDh8PDwwNubm64e/cuPv/8czx58gSHDh1SWc7ixYuxYMGCsqyqRnRdFljbtmTLjcoLbT7JCYIg9KVHU1dsGNlCaYmqi7UJ5vXxQY+mrjqXVd4+bA1Zd4Ioay5FxmoVwEZwxPimP+CLTv0V3DhIpBL88fQPLL+yHBdfXeTS36n7Dma3mo3eDXqXSfyQ4hx8eBCjj45GljgLdazr4NDgQwhwCyiTY224sQFiiRitarVC69qtS1VWVZ39RFQdDKWZgKqjm5ytysbdhCEgzUQQhKExtO4oT91Emomoauy99a9Ouumndw5jevueMBYYc9ui0qKw+tpqbLm1hYsf4mDmgCktp2BK4JQyiR9SnMTsRAw9OBRnX5wFAHzZ7kssencRBHyBlj31JyE7ATvu7gAgi1tSGsyMzVDbqjZeZ7xGREoEGUYAYOrUqbh//z4uXbqkkD5x4kTub19fX7i6uqJz58549uwZvLy8iheDL7/8ErNnv71BGRkZqF27dtlVvBjVYfmgOt969ENGEERp6dHUFV19XEr9EqEifNgaqu4EURYwxnD59WWEhYfh8O3XMMc0rfu8V384vOzcAcjih2y9vRWrrq3Cs9RnAMonfkhxJFIJvjn3DRZfWgwA6OTZCXsG7IGjuaOWPUtGbkEu1v+7HkDpB/gAGUaIssdQmgkg3VRaSDMRBFFWGFJ3lLduIs1EVHYSsxOx+95uhIWH4ckbSzjiM6371LcJ4IwiV15fwYqrK3Dw0UEufkhjh8aY3Xp2mcYPKc7NmJvov68/XqW/grmxOcL6hWGAz4AyO97GfzciX5KPIPcgtKndptTlNbBvgNcZr/E0+Sla1WplgBqWPWVmGJk2bRqOHTuGCxcuoFYtzcukg4ODAQCRkZEqB/kikQgikahM6qkLVX35oDrfenHpeZi88xY2jGxBA32CIEqFgM9Da6/SzQioqJcphqg7QRiSqLQobA/fju3h2zmDhkjiC12cXDlZmuBNxhusubYGm29tRlpeGgBZ/JAPW36IqYFT4W7lXnaVL0ZKbgqGHxyOE89OAAA+bv0xfujyA4z4ZTc3Z+fdnUjKSYKHtQc+aPxBqcuTLwtPzElEam4qbE1tS10mQcgxpGYCSDeVBtJMBEGUNYbSHRWhm0gzEZWN/MJ8HHt6DGHhYTgeeRyF0kIAgLnAHyjQvr+9hTH2P9ivFD+ka72umN1aFj+kPFbVywm7E4ZJxyYhX5IPbztvHB5yGE2cmpTZ8fIK87DuxjoAMtfDhoiV4m3njTMvzlSpCWUGV6WMMXz00Uc4fPgw/vnnH3h6avdpeOfOHQCAq2vlHWhW1eWDmnzrMch+MBf88RBdfVwqpUCpqdASfqKsqYxtrCq/TCGI0pKZn4kDDw8gLDwM51+e59LNjc0x0GcgRvmG4Kt9DPEaBLCdBR9r7szA/od7OWFQ364+ZrWahVC/0DKPH1Kc8LhwfLD3A7xIewFTI1P82vdXDG06tEyPyRjjgq5PD55uEAOMpcgSrhauiM2KRURKBILcg0pdJkFUV80EVE3dRJqpalIZx7NE9aKytjHSTURNhTGGGzE3EHYnDHse7EFKbgq3raVbS4T6hWKQzxD0W3NXo+HQ3LQAI/8IxsuMKACy+CEjfEdgVqtZZR4/pDgFkgLMPjEba2+sBQC81+A97PhgB2xMbMr0uLvv7UZCdgJqW9XGgMaGWZVSFVfaG9wwMnXqVOzevRtHjx6FpaUl4uLiAADW1tYwNTXFs2fPsHv3bvTq1Qv29va4e/cuZs2ahQ4dOqBZs2aGro5BqYrLB7UF5WIAYtPzcP1FCln/Kwm0hJ8oaypzG6uKL1MIoqRIpBKcfXEWYeFhOPToEHILcwEAPPDQybMTQv1C0b9xf86gUdAnVqUABhgYgEfiRbh1/wqA8o8fUpzf7v2Gcb+PQ25hLurZ1sPhIYfRzLnsx3knnp3Ao6RHsBRaYlzzcQYrt4F9A8RmxeJp8lMyjBAGoTprJqDq6SbSTFWPyjyeJaoHlb2NkW4iahJvMt5gR/gObL+7HY+THnPpbpZuGNVsFEL8QuDj6MOlqzMcAgxSAM8lPyI3I4qLHzI5cDJcLFzK6WzeEpcVh8H7B3NxIOd1nIe5HeeWuX4rPpmsaJyV0lAVDSM8xpgqA1rJC1Sz9Gbr1q0YPXo0Xr9+jZEjR+L+/fvIzs5G7dq18cEHH+Drr7+GlZWVTsfIyMiAtbU10tPTdd6npnL0TjRm7LmjNV/XFq8xMqgxAtwCYCG0KPuKESpRt4Rf/lTREn6itFSVNlZZZ2cRhCF4lPgI28O3Y8fdHYjOjObSG9o3RKhfKEY2G4na1qpjAqgS6YVIRIpwMwqMb2Bo06GY1WoWWri2KPPzUEWhtBCfn/ocy68uBwB09+qO3QN2w860fOIJdNvRDaeen8KsVrOwvPtyg5U78Y+J+PnWz/imwzdY+O5Cg5WrLzQGrj6Uh2YCqM3oiq6aKdDnPga08ECwezDq2tQ1iNsJQn+qyniWqLpUpTZGuomormSLs3H48WGEhYfhzPMz/00FA0yNTNG/cX+E+IWgs2dntUHJNemmus5pmNVqFkY2G1lu8UOKc/XNVQzYNwAxmTGwEllhxwc78H7D98vl2KeenUK3nd1gIbTA61mvDbY6JSI5Ag3WNoCZsRkyv8yskAl6gH7j3zJxpaWJ2rVr4/z58xrzEIZD12BbO+6vx5ZH98Dn8dHEsQmC3IMQ7B6MIPcgNHFqUqa+wAkZtISfKGuqUhsztA9bEgxERZOck4w99/cgLDwMN2JucOm2JrYY2nQoQv1CEeQepPUlW9M6ErRveQq/XruA3HxjSHipMDOLxoyWEzEtaH+5xg8p/lx5Okkw4vAwnH1xFgAwp90cLHx3oVqxYmjuJ9zHqeenwOfxMT14ukHLroqzn4jKDWmmyoWumumPyF048OIeAMDRzBFB7kGcbgp0Dyw3I3BNpiqNZ4mqSVVrY6SbiOqElElx4eUFhIWH4cDDA8gSZ3HbOnh0QKhfKAb6DISVSPPL7kJpIbL4/wMcVyAuNxMCZgsJLxXt6rvg49bfoHv97uX20l7VM/Xr7S2YdnwaxBIxGjs0xuEhh9HQoWG51AcAN4ltrP9Yg7rsqmtTF0Z8I+QU5CAmMwa1rDTHz6sM0Nvuao62oFwAYGFSgPd8GuF6dBpeZ7zGvYR7uJdwD7/c/gUAYGZshgDXAM5Q0saqDtwEQvCg5sfRzB6wUT3TlVAPLeEnDIlYIkZsZixiMmMQnRmNmMwY3H6Zjdh09e43qmsbq+zL4InqS4GkAMcjjyMsPAx/PPkDBVJZFEABT4Be3r0Q4heCPg36QGSkPVDyzZibWH51OfY92Pc2fohTxcUPUfVcMX4qEo1yYWFqgbB+YejfuH+51mnFFdly8P6N+6OuTV2Dlk2GEYKo3uiimazNpHgvoCNuxJriTtwdJOYk4s+IP/FnxJ9cHm87b85Q0s66LpqYu0Cozj0FaaYSQZqJMCSMMaTkpihopn+jMhCb7q1+H1TfNka6iagoIlMiuRX1UWlRXHo923oIaRaCUX6jUM+2ntZyMvIz8MutX7D6+mquHKFQiCG+IzCz1cxyce1bFFXPlEiYi9fYCrFAjP6N+2Nb322wFFmWW50eJj7E35F/gwceZrSaYdCyjQXGqGdbD0+Tn+Jp8lMyjBAVjy5BuX4aGIweTfsBAGIzY3E9+jquRV/D9ejruBFzAxn5Gbj46iIuvrqI2oyHJ7BQbxQBACMRMO0mDfT1JCFT/QC/JPmI6omUSZGUk4ToDNnAveggnvs3IxqJOYlK+5oVdoAjtA8E4jLycOVZcrWYJaRuGXxceh4m77xVqZbBE9UDxhhux91G2J0w7L6/G0k5Sdw2fxd/hPqFYrjvcDiZO2ktSyKV4NjTY1h+dTkuvLzApXf06IjZrWejt3fvcluNURR1zxWk1nASz8FXPZzRv3FgudRFPgMrIjEe+27fBsDH7FazDX6cBvYNAMbHiwRjHL0dDSerqt03EgShiC6aaUn/lujRtA8AIL8wH+Hx4bj25hqux1zHtTfXEJESwX0u3N2N8bCAkDSTwSHNROhKTkGOVs0UkxmDfEm+wn4yzfSZ1vKrk2YCSDcR5U9aXhr2PdiHsPAwXH59mUu3EllhsM9ghPqHom3ttjq5rXyZ9hKrr63Gz7d+RqY4EwBgb2qPKYFTMCVwSoXED1H3TOWJRXDEHHRr8RKbB00pF7ecRVet7Li/A2B8fODTTydjk7542zXEywQRjtx+A1NpcqXvG8kwUgPQJyiXq6Ur+jbqi76N+gKQvYR9kvSEM5akv7gA06TXmg9YmI+Hry6ivuVACAXCMjmn6oiuS/h1zUdUPTLyM94O3DOiVQ7gYzNjuVnn2jDmG8PN0g1ulm5wt3KHsLAJ/heufb9Fxx4gJfvtMariLCHGGNLzMvHN0XtVZhk8UbWJzYzFzrs7sf3udtxPuM+lO5s7Y2SzkQjxC9F5hlK2OBvb7mzDymsrEZkSCQAw4hthSJMhmNVqFgLcAsrkHHRBk3sJHvjgAfj1fAbGtmJl/lwVn4Flj0VwFKQjPb0uYOD3jBEx5nDP/xVGzAEz9t4BUDX7RoIg1KOPZhIZiTg3WnJSclNwI/oGrkdfR9KzMzB9dVvzAQvzceHxETTyHaKTsZyQQZqJKJQWIi4rTqNmis6IRnp+us5l2pvac5rJVNIMtx5q36c6aCZA5mkgOScVXx8JJ91ElDmF0kKcfHYS28O348jjI5xhks/jo5tXN4T6haJvw746x/249uYall9djoMPD0LCJACARg6NMLvV7AqNH6JNMwHA/WeNIGWAoIwfKeVVK+3gjoZo5+hRJsd69iQULmIT/H4d+P361UrfNxo8+Hp5UFOCCBrat6NByou5A2zuqDVbC2ThoZExmrs251xwBbsHo55tvRoVpFCfa14okcJnwQHki025jrIoPMiE2aXPO9FgBFXL96lYIuYMHpoG8EX9Z2qCBx6czJ3eGj0s3bmBfNHv9mb2Cn4zJVKGdkvOanQTofp4Msp7lpBYIkZqbirS8tKQmif7Ny0vTSmN+7dYunFhE7iIF2s9zm8TWlW7ZfBE+ZBbkIujT44iLDwMJ5+dhJRJAQAigQh9G/VFqF8ounl10zlO15uMN1h7fS0239yM1LxUAICNiQ0+DPgQ04KmlWv8EHVceZaMYT9f1ZqvrJ8rtatWwMADz6D91dtjyV8NyKiIvrGmjIEJw1ET2kxV10y3eVLUtamrEOOxhWsLmBmblewEqii6XneJlCHw+7+RnFVImkkHqpJmYowhOTdZq2aKz4rngjBrw8zYTFErWShrJldLV5gYvTWkVTXNJGVSZOZnKmkiJZ2Ur0JH5aYitzAXIokv6SaiTLkXfw9h4WHYdW8X4rLiuPQmjk0Q6heKEc1GwM3STaeyCqWFOPL4CFZcXaGw0qRLvS6Y3Wp2ucYPUQdppqqjmWjFSCWlLHw7GjoolyasTayRn5+Kq2+u4uqbt52Bvam9wqA/yD0I9mbV84dV33u46eYGvMEuOGKO0jZ5RzKvj0+lHciWJ5XF96mUSZGYnahySXbRAXxRVzrasBJZKRo7VBg9XCxcYKzOX7UGtLmJUDfwL+ksIXWDdCUjh4ZBemkQMFud8pGrBUIfGGO4/PoywsLDsO/BPoXZiG1qt0GoXygG+QyCralu7Q8AbsXewvIry7H3wd638UPs6mNm8EyE+ofCQmhh8PMoKZXBhYmmGVjyX0xDzWpUPJZiWTSDkiAqnqqumerZ1sOdtGeISotCVFoU9j3YJ6sDTwBfZ1+FCWaNHBpViPvE8kCf+5iSm4REwXrwMQlQ8/KFNJOMyqKZANlqWG2aKSYzBmKJWKfyBDwBXC1dNWomN0s3WIms9J6YWd6aCQDyCvNUTwBTZeQoti09P52bnFNSSDcRZUFidiJ239uNsPAw3I57u4rSwcwBw5sOR4hfCFq4ttD5Gc3Iz8Cvt3/FqmuruPghxnxjjGg2ArNazSr3+CGaIM30lsqumcgwUgmpDr4dz4acwTMTS5nf3f/ccN2Ou43k3GQcjzyO45HHubxetl4IrhWMILcgBNcKhr+Lv8KMjaqIvvfw6purmHViFgoEBegdGIPbT720LuGvqZTH88EYQ6Y4U3nAnhGNmKy3A/nYrFjuJaY2hAKh8gqPYgN4N0u3Mn8B2q2JM34a3Ag/HI9EYubbupuKJMjJVy+25UEG11z6C0626aqNHGUwSAdkxiJbE1vYmNjA1vS/f02K/ftfetG0iDhg9K93tJZPrhYIXYhKi8L28O3YHr4dz1Kfcel1rOsgpFkIQvxC4G2vPlBncaRMKosfcmU5zr88z6V38OiA2a1m470G71XKF2CVwYVJeQbepSC/BFF5qQ6a6cCg/ciwr4d/Y/7lNNO1N9cQmxWLO3F3cCfuDjbd3AQAsBRaoqVbS4VJZpVhJWFp0ec+SqQSjDg0Am/Ep+BlL4J9wSTEZ7x9kU6a6S3l9XwUSAreurVSo5miM6ORkZ+hc5kOZg5aNZOjmWOZjpN6NHXFqmG++PbYYyRkvnWXZSqSIidf/Ux0+bhg05XTcLbNULlqQ5UBJK+w9C9HhQIhbE1steol+feiaY+iCzFiyw2txyDdRGgjvzAfx54eQ1h4GI5HHufelxjzjfFeg/cQ6heKnt499XK7/zLtJdZcX4Ofb/3M9SX2pvaY3HIypgROgatl5evzSTOV3bEMDRlGKhmaLHqV3cpWFB54qG9XH/Xt6mNEsxEAZG5xwuPCFYK7P0l+gmepz/As9Rl239sNQOZH3c/ZD8HuwTKDiXsQGtg3qPClcLqi7z1MzE7EoP2DUCAtwECfgVjXfwKkDFVmyXN5IpEyzC/l85FfmI/YrFiN/mhjMmOQXZCtU53kbq2Kz04qPoC3N7U3qBu5vMI8pOamIiU3Bal5sn9TclO4NHl6ck4yknKTkJyTjNS8VGTmZ8qWNjI+RMImEDBbSHipEEjs4IhPtR73q1M/IsfogtZ8RREJRKoH4uqMHUW+W4msSix6XCwYXK0fq10GL3e1EORpV6LyiepPZn4m9j/cj+3h2xWMF+bG5hjUZBBC/ULRwaODXr9P6uKHDG4yGLNazUJLt5YGPw9DEuRpB1drkwp9rspzBlZlmO1FEIQy1UUzAbIJIJ08O6GTZycu7U3GG5lm+i+4+43oG8gUZ+Jc1DmcizrH5XO3dFcwlLR0awlLkWVFnEaJ0Pc+Lji/AKeen4KZsRmOhi5AIwcf0kwqMMTzIXdrpW2iWEJ2gs5urcyNzdVqJrlucrVwhchIVOJzL46USZGel65WM8nTknOSkZybjKScJM6AIZaIS6yZPv37W701Ew88WJtYK0/8EmnWS/LvpZlc2qoeq/DxHVF1YYzhevR1bA/fjt/u/8a5BAaAQLdAhPqFYmjToXp7i1EXP2RWq1kY2WxkpXY5SZqp7I5laMgwUsnQ1crms6IP3B1y4GLhovZjb2pfqWabCgVCBLoHItA9EFMxFQCQmpuKf2P+5Qwl16KvISE7ATdjb+Jm7E2s/3c9AMBaZI1A90AFF1wuFi4VeTpq0cdSGuRpg+GHhuNNxhs0tG+IX97/BTweDwIeKp0VtbxgjCE+Ox4v014iKi0KL9Nf4mXaS7xMf4nIOD7y0iep3xeya7vqwjGYWygbPWIyY/Rya2Utsla5JLvoAL6kbq0A3QbqyTnJSMxJRFJOEpJzk5GWm4aM/AyIpbotM1cLT4p8wT3uqwi+Ou1Wz94eTnadVM5CKotBemnQtgweIFcLhDISqQRnX5xFWHgYDj06xLl044GHzvU6I6RZCPo37g9zoble5UZnRGPt9bXYdHOTQvyQSQGTMC1oGmpZ1TL4uZQFleG5Ks8ZWJVhthdBEMroOt6ut7QrXOwzZfrIXLVmcrZwrnQvV2pZ1UItq1ro37g/ANlv06OkRwqr8e8l3EN0ZjQOPz6Mw48PA5D9Vvk4+rx1wVUrGE2dmuoc66q80Uc3pUiuYtGFRQCAn/v8jCZOTQDUXM0EADkFOZxOikqL4v5+GsuQlD5S7X7y67r5yhlYWcar1Ez6uLUy4hvB1cJVSTMVnyxmKbQs8USx3IJcrcaNpJwkTjel5qYiPS8dWQW6xXBUSwk1U21bK9jbtNFplbs8zUpkVWGTQSvD+I6oerzJeIMd4Tuw/e52PE56zKW7W7pjZLORCPELgY+jj15lSqQSHHl8BMuvLleIH9LZszNmt56NHvV7VIlJ05XhmSLNpBuVc4RUg9HVevYmLRNPszTPQBDwBHA0d1Qc/KsRBCXxvWkIbE1t0dWrK7p6dQUgeyn+Kv2VgqHkZsxNpOen4/Tz0zj9/DS3bx3rOtwMqWD3YLRwbaH3i6qyQB9L6fx/5uP089MwMzbDwcEHYSWqnkExiyKRShCTGaNg9OD+/u97viRf5b5mhR3gqMMxvjnzk8YZOiKBSGFmkqogfG6Wbjq3p+ID9eKrNpJykpCQnYDEnEQk5yQjLU9m3NB1VYohEAlEsDaxho2JDexM7WBvaq8wILc2scX2UxJk5PJR3CckUCSQ5fSDVWpA3KOpKzaMbKHkX7myuVqoSoExqyuPEh9he/h27Li7A9GZ0Vx6Q/uGCPULxchmI1Hburbe5d6KvYUVV1dgz/093FJyL1svzGw1E6P9R1eq+CG6UtHPVXnOwKoMs70IglBG1/F2UlYBXuVd15rPSmQlM5KYO2uceOZk7lQhRgYBX4CmTk3R1KkpxrUYB0C2AvFW7C2F1fgv01/iQeIDPEh8gF/v/AoAMDUyRYBbAOe2OMg9CB7WHhWi/Yqj6318EPcan16SveifFjgNw32Hl2W1Kg3peelKRo+iGioxJ1Hlfrpqpk/+XqR1VYOjmaOCZlI1aczR3FGnF5USqQRpuWlqNZN8QlhCdsJb40Z+OrLEWSiQFmgt3xDweXxYCi05g4W9qb3McPHfqg0rkQ32nitEZq4AGjXTzN+r3Fi+osd3ukK6qWLJFmfj8OPDCAsPw5nnZ7gVY6ZGpujfuD9C/ULRybOT3pO0M/MzufghL9JeAJC53xruOxyzWs2Cn4ufwc+lrKnoZ4o0k26QYaSSoav1bGmPr2FjlYi4rDiFT3x2POKy4pCYnQgJk3Dp2jAxMlEyoDhbqBAGQnOYGImAQtUvrgEARiKghAHVeTwePGw84GHjgcFNBgMACqWFuJ9wX2E5+YOEB3iV/gqv0l/hwMMDAGSGoKZOTRWWk/s4+pT7qhld7+Hz9Dv49uK3ABRnPVV1xBIxXqe/VjuIf5PxRqe4HCKBCDweDwWSAm7ZpISXqmUvGV4Ojqjr1EelP1p3S3fYmdopiUGJVML5eU3JTcHz1OfcQD0lNwUJ2QmIz47njBvpeelIz09HdkG2znFGSgMPPFgILTjjhoOpA+zN7GFnaqfVNZWNiY1OS9KbWsl8EQPVa5ZQj6au6OrjUmkH0JUpMGZNIzknGXvu70FYeBhuxLz1q2xrYouhTYci1C8UQe5Ber880hQ/ZFarWejToE+lWtFZEiryuSrPGViVYbYXQRDK6DreXtP7W9jbpChqpmxF/ZRXmIeM/Axk5GfgafJTjeXxwIODmYPqlSdFjCpufD5sjETglZFmAgBzoTnae7RHe4/2XFpcVhxuRN/gDCXXo68jPT8dl15dwqVXl7h8TuZOCpop0C0Qtqa6BV82JLrex1U3FiItLw3B7sFY1n1ZGdeqfGCMISknSeVEMbmGSs9P11qOEd8IRnwjSJmUW+Ghq2Zys7ZAbcd31Ro9XCxclDQEYwy5hbmcRnqc9BiXX1/mjBuJ2YmIz47njBvyWIRZ4ixuFW5ZY2Jkwhk37Ezt4GDmADtTO62r3G1MbHRa1dLSrnpqJoB0E6EaKZPiwssLCAsPw4GHB5AlfrsSq4NHB4T6hWKgz8ASTfR9lf4Kq6+trlLxQ/SBNFPl7xt5jDHdHEJWIjIyMmBtbY309HRYWVWvGfYSKUO7JWe1Wtkufd5JY4MqlBYiMVvZcKJKDOgTCA0Amgit0MDUAfam9rA3s4eDmT3s/3tJ62BqD2s7L9i5NIOjuWOZzajKzM/EzdibnKHk2ptrCjN85Zgbm6OlW0uF5eTulu5lOkNKl3voYGmESMEwpOWnYlrgNKzptabM6mNoii7ZVrXaIyYzRic/s3weX6/A3DYmNnC1cIc49msUFlpA3QwdZ2sR9k5uiPT8VIXl1YnZiYjNikV8VjyScpOQkiNLl6/cMETAO22IBCKZcUNkDRtTmXHD0dzx7eoNDQHxSrP0XB9osFm+qAuMKb/TVSFwbFWjQFKAvyL+Qlh4GI49PcbNQDTiG6Fn/Z4I9QvFew3eK5F/62xxNsLCw7Dy6kpEpEQAkBnthzQdUiXih1Q1yrO/qix9Y3UeAxNlQ3VtM4bSTIwxZIozVWumYp+E7ARuso4u1OMJ0cDMHvamRfQSp58cYGXrCTuXZnC2cC6z1YNSJkVEcoTCavzwuHCVs+8b2Dd4q5ncg+Hn4qdXcNySoMt9FApz8JQ/FA7mdrg18VaJVm9WBFImRVxWnNrVHi/TXyKnIEdrOXweH4wxneN4GPGN4GbhDkHyYkgLLaFpVcORj5opaabknGTZhMuseCTkJCA5JxkpeSkyt1TiLGQXZOul4UoCn8eHubE5rERWCsYNuYFDk2sqaxPrMm+3QOUZF9QkSDeVP5EpkQi7E4Ydd3fgZfpLLt3L1gshfiEY1WwUPG09S1T29ejrWH5lOQ48PMD9tja0b4hZrWZhlN+oSufisipDmknz+JcMI5UQeYcPqLayGbrDzynIQXxWPLfaRNNHnYsjVfDA09mVl42JTalf+kZnRHMzo65FX8ONmBsKlmw5rhausmXk/y0nb+nW0uAurLTdQ3On3/AgcxeC3YNxYcyFchm86Yp8ybaqmUtRqVFIytU9RocuiAQipeXY8jZhbmwOkZEIAp4AOQU5iM2Kxb/PC3H1ftP/9n7bZhikAHhIFH6PXMEVg9ZRDp/Hh5mxGSyFlrASWcHWxBb2ZvZwNHeEk5kTbE1tNa7aKGkskvKGlieXD/KXAep8a+v6UofQ3mYZY7gddxthd8Kw+/5uhVhDzV2aI9QvFMN8h8HJ3KlEx4/OiMa6G+uw8d+NXPwQa5E1Fz+kqrzEqYqUZ39VGfrG6j4GJgxPdW4z5a2ZJFIJknOT367Uz4pXO/EsJTdFr7LNjc01uvAq6sqrtLohrzAPd+LuKLjgikyJVMonFAjR3KW5wsqS+nb1DT5RR9N9ZGBIEH6PPMFVnBx1El3qdTHosUtDobQQbzLeqIzxEZUWhVfprwzu/snJ3ElhFbyrhSsczB1gKbSEqZEpjPnGkEKKpJwkXI3Mwz936v+3Z/lqJuDthDBL0X8rN0zsZJrJ3EntpDD5d3Nj80rh6k0blWFcUFOQSBna/mdEVQXpJt3R1m7T8tKw78E+hIWHKcT4sBJZYUiTIQjxC0Hb2m1L9IxKpBIcfXIUy68sx/9e/49L7+TZCbNbzUZP755VIn5IVYQ0k3rIMFJJqSxWtqIwxpCen67svisrXkkMJGQn6DWTRCgQqlyGruqjq+VYIpXgcdJjhUH/3fi7SjO9eOChsWNjhUG/r5NvqV9i/30/FvN+f4D4jLfGJFdrEzi6nMcfrxbBwcyh3Gc9McaQnJuscubSi9QXiEqLQqY40yDH4vP4cDJ3gpO5E+xM7GApkg3YwZPdG3GhGDkFOcgUZyI9Px2Z4kzZEuuCXK0iwlTSGnbiiTAq4j23EIlIEW7WOsAXCoScccNaZC3zHWtmDydzJzibO7/1I1uFB+k1AcYYJEyCAkkBCqQFKJAUQCwRc39r+1efvAXS//IX36Zv/mL/8vIbwC5vodZz/W1CqyoZWLS8BkSafi/9PICdd3di+93tuJ9wn9vubO6Mkc1GItQvFL7OugXRVMXt2NtYfnW5UvyQGcEzMKb5mCoZP4So3NSEMTBhWKp7m6mMmgkA8gvzkZCdoHb1vtyoEpsVq9OqgaLYm9orBI5XN/HM3sxe5xdMyTnJuBFzQ2E1fnJuslI+WxNbBc0U5B4ER3NdolloRpVucrDgI7JwCdJ55/Htu9/iqw5flfo4+pBXmIfX6a8V4yKmyyaKvUh7ofMqeV2wFFrC2cIZDqYOsDaxhoXQAkZ8IzDGkC/JR35hPrILspGel44McQYy8zORU5CDvMI8jXUojWaSTwgrvnLD0cwRzhbOcDRzVDspzNrEukJi8RCqkTJpqTRLqTWUAcrmFTSEY963Ws+VdJNm1P1mft27EXim4dgevh1HHh/hJkTzeXx08+qGUL9Q9G3YF6bGpiU6bmZ+Jrbe2YqVV1dWm/ghROWGDCPVhMpgZSspEqkESTlJWl15xWfFc7NrdcVSaKnVr698RlVx40ZOQQ5ux95WWE4elRaldAwTIxO0cG2hsJy8rk1d3V+Kp70GcpKRJc5Fl19HQ8CssLLXd3idcwXfXlyIFB4Pv4w6gc71Out17tqQL9kuutrjReoLRKRE4EXqC8RkxXC+Z0uDmZEZzIzNIBQIZcu7wVAoLUShtBD5knwUFBYgX6r76iJ94PP4MDEygZmROSzgDzO+K6zMGNwd8uBiITNuOFs4w9bEVuXS6po+SGeMlfqFfmUYHJdXAMayxKywAxwLPtOab9VQf/T1dy+HGhmO8npRpW5JvXzOaZLwB2QLZLORRAIR+jXqhxC/EHTz6lbivkDKpPjz6Z9YfnU5/on6h0tvX6c9ZreeXS3ihxCVl5oyBiYMR01oM1VZMwFAljhLJ1de8dnxesW1E/AEijEjixlQim4r7rKVMYYXaS9khpL/NNOt2FsqvQd42ngqrMZv7tJcv5dnKnTT912+wtIbMxCT9Qb+9Tphy6gTBp9FnCXOUlrtEZkSiciUSLzOeK23RlWFgCeApdASIiMRjPhG4IEHCZOgUFoIsUQs+xSKIYHuLtr0QSgQwkxgDgueP0z5LrA0lcLFLhtO5g7c/Xcwc1DpytfUyLRGTwhTNQmrXDWUAcsua9dn5QHpJsMcR51uYoDCKrImjk0Q6heKEc1GwM3SrcTHfJX+CmuurcHPt37mYibZmdphcsvJmBo4tcrHDyEqL2QYIaoUeYV56mdUFfvoG7BNKTiiihlVAr4AT5Of4t+YfzmDSVpemlJZjmaO3MyoYPdgBLoHws7UTvmgaa+BtQEaA9QX8gUwmh4O2Oi3WqToku2otCg8SXqCx0mPZbOWsmKQnJOsl+/j4vDAA5/HB4/HA2MMUiY12EyoohjzjWFiZAJzoTkshBawEckG4Pam9nCycIKLuQtcLV3hYOagNAupogbpEqmk9CsMKsHguDTto7LDAw9CgRDGAmMY8411+lcoEKrepiLNYGX/9+/9N/mYsfuF1vOqajOfysv/rzZXZAxSSJCMOt5bMNo/BIObDIaNiU2Jj5ctzsb28O1YcXWFQvyQwU0GY1arWQh0Dyxx2QShKzQGJvSF2kz1QcqkSM1N1SmGZFGXkbpgamSq1Y2XnakdErMTcSfuDqeZHiU9UirLiG+EZs7NOENJkHsQGjk0Um3Y0EE3MYEIvI9u6qWbGGNIy0vjJoo9S3mGh4kPOaNHfHa83it1isPn8d/G/2AMUhj+5TOfx4eJwASmxqacWypbE1uFlRuuFq5Kk8JsTWxhJbKqkIkajMkmzBl0lXY5rugumrc6Y8Q3MqzO0ZDfEBrq3us8fLTrmdbzIt2kGl10E+Onol+7mxjdPBTNXZqX6p3L9ejrWHF1BfY/2K8QP2Rmq5kI8Quh+CFEmUOGEaJaUjw4ooJfXxUrUfR5AWzMN4aTuRM38Dc1NoVYIkZabhpismIQlRalcoaWt523wnJyfxd/iBIeAZs7aj/oxPOAm79CUn5hPl6lv8LT5KcIjw/Hk6QneJ72HNEZ0UjKSTKYm6vSwufxIRQIZcYN4/+MG/8Nwh3MHLhr6WrhCkczR1iaWHL5RAIRpFC/nLeyDo6rw0wbdQh4glINYBXy6pvfAAYG+b9VbZa+oQLHGhp5gE99/5UyKQolUvRadRMJGarFpCHP6cqzZAz7+arWfKUVSDGZMVh7fa1S/JCJARPxUdBHFD+EKFdoDEzoC7WZmkmBpEBp4pm6eJL66gtbE1tutYG9qT0YY8guyEZ8djyiUqOQlp+mtI+VyAot3VoqrMZ3tXQFYu6USDcxxpCQnYAXaS9wL/4eHiQ8QGRqJF6lv0JcVhxSc1NRyHRfXVOWGPONITISwczIDOZCcy5OoZ2ZHZzMnLi4IS4WLpwbLXNjc5gLzSHgCUpkYCjLFd3aNJQ+q5qqGjzwDKJZFDSRvvkNkNeIb1TlVgNVFd0kZVKdtVN1000UP4SoTOgz/q3ZPmWIKgWPx4OVyApWIis0sG+gMa+USZGck6x2RlVRo0pybjIKpAWIzoxGdGa01nrIl0EXSAsQkRKBiJQI7Lq3C4DsBXNfq7o4qMP5fHzyE5zOTUR8djwy8jOQL8kv15fvPPAg4AtgxDdSmDEiH6AJBULubyOB7JwB2ULL4qsncgtzkZGegciUSIXBcWURJGWFgPf2+gn4AhjxjLhrKv8u/5tL58n+VvVv0e18Hh8C3n///redzy+SVjwfnw8++Fwan8eXrQBSkc5t5/HAh2xwou2Fd0lfloslYq5tl7QM+d/yFUwlLsdAZZT2mhQtQyJoCoYx/7WoogNeWWjMaKxC3VWjy7we8r9Li0jiCxfxYrXbGYDY9Dxcf5FS6tlcCZmqZzyVNF9xbsfexoqrK7Dn/h7OdVs923qYGTwTo/1Hw1JkWaJyCYIgCKKsMRYYw93KHe5W2l3KZIuz1RpNihtVxBIxUvNSkZqXisdJjzWWK3+JXCApQEZ+Bs6+OIuzL85y2x3MHDDItgHW63A+434fh7N5KUjJS9EpHqEhka+ol4/ti78Il7+AFvKF3LhfjpRJlYwHybkyjZpfmK+wzRDjsMoKDzxOM3E66T/dU/w7p0//01WatJNcA8n3lWulohqKD76ihiqiieRpfB6f00xK//63jffff2WlH+SrbEqlQaqoHtI1rzrdxP57et5gJTxWhpbbuZSW6qKb5PFDVl1bheepzwHIDMLDfIdhVqtZ8Hfx17tMgihPyDBCVEv4PD4czR3haO6oNbCuWCLW2ZVXdkG2xlkwEib5L5iU9oC756LO4S6v4lYhMLyNC0KUDAmTQCKRqPS3TBC68RSmwlgVgTGTZIExxVeAKrSSX8BsdcpXUmNFUZwsTQyaD3gbP2TF1RU4F3WOS29Xpx1mt5qN9xu+X+VWJhEEQRCEJsyF5qgnrId6tvU05mNM5p5KF1deidmJYGAa3REl5SThanYKdNFNt+PuIKqCdBMD48b8YogBkk56w8C4lfwEUXJU6yYJ6SatlIVuep3+Gmuur8Hmm5sV4od8GPAhpgZNLVVsEoIoT8gwQtR4hAIhalnVQi2rWlrzvsl4gzuxd3A/4T6epjxFVFoU3mS8QXxWPLIKsqq1u6WKhgceeDyeQhyUomn6/CtfTVGRZVTqc6gi16DSX0c9zoEx4EmsBGk5DLZmfPi4O0DAX1WlzoHH4+H681SM/OVfrc+zPoNudQR52sHV2kTrkvogTxWxoIqRU5CDsDthWHltJZ4mPwVA8UMIgiAIoig8Hg+2prI4Fo0dG2vMm1uQi7vxdznXwM9Sn+FV+itEZ0YjLS+t2sdvqEhKMn6r6PFjRZZR6nF0JahDtbiOepShTjdVpXOoyrrpRvQNLL+6XCF+SAP7BpgZLIsfYi40L3V9CaI8IcMIQfyHfBZUVFoU93mZ/lLhu9wSbgha1WoFO2NTmTsdJkEhK4REKoFEKuFWchQNXFfUZ6zcPZEhlnAaCgFPAJGRCCZGJhAJ/vv3v+/yNJFABFNjUy6t+MfUSLZNnsfUyFRtfvkx5J+q6CuVIIrSzqOia1B6Wns5GWzQrQ0Bn4d5fXwweect8ACF48l7gnl9fADI/OomZObByVJ2bLmf3pjMGKy7vg4bb25ESm4KgLfxQ6YFTUMd6zqlridBEARBVDfEEjFep79W0kpy/fQ6/bVBdUqwezBshaYyrcTefopqpkJpoUIMjKKfyrZCXiQQadRNqrSOqZGpQp6iOkmTZlKloUgzEVUd0k36oYtu+qa3D66/SFGpmSRSCX5/8juWX12OS68ucfu+W/ddzG49G728e1H8EKLKQsHXK4q010BOsvrtZvaATc0K6CqRMrUdsSHKC6xri/T8VLVGj5fpL5GRn1GiYzmYOcDXyRdtardBD3NXtDs+R/tOKoKv60uhtBB5hXl6ffIL89Vvl+hXVmUSGXweXycxwH0ExURCMTGi78eYb0wio5wwdF9BGJa/78di8s5bAFQPujeMbIEeTV0NerwFfzxEbPrbZeau1iacUUTVtpD2ZriatBG/3fuNc+vgaeOJma1mYoz/GIofQlRaqsUYmChXqkWbId2kQFlrpiBPOxRKxXid8VrthLHojOgSGT6EAiG87bwR6BaIdh7t0MHYCt4HxmvfsZS6ScqkEEvEeusmjZpKokFTqfhUJtQZY3TVTRoNL1rKFAlE5Ja0nCDNVPmpLLrpfT9X/B4eq5T+Wc96eJN/DCuvreTihxjxjTCsqSx+SHPX5garG0EYEn3Gv2QYqQjSXgNrA4BCDXEJjETAtJs1ZpCv6cWWrj8EjDEk5SQhKi0Kx+6+xsFrfGTlGXPbJbxkJBtvRK7gisZyRAIRAKiNG1HHug4CXANkH7cAtHBtASdzp7cZYu4Amztqr7ABDCMVTaG0EPmF+XoLA0MJjcq0DJ8Hnv6GFgOLjJpgmDFEX0GUPeV9n1QJv1MP4zB55y0Vr21kr3IShd8jV3AFbWu3xezWs9G3YV8S6kSlp8qPgYlyp8q3GdJNChjq9zWvMA+v0l/h0O3n2PW/fGTmvnUkwfgpSDLaiBzBZY1lCHgCCAVCiCVizp1KUcyMzeDv4q+gmxo5NIIRv4jTihqimxhjWg0zZamncgtyK5WnAWO+sX4aSA/NpEt5Cm2wmkKaqepQ0bopNTsfU3ff1qqZbE1sMbnlZIofQlQJqoxhZN26dVi6dCni4uLg5+eHNWvWICgoSOt+VX6AX0MGgLoit5IXb4jFreSMMSTmJKpcri3/O6cgB6aS1nAUz/mvjLcvihmkAHgQW66DjU0UhHwh8iX5SMpJQnKu6llodW3qcoP5Fq4tEOAWAAczB80nRAKu3JAyqeYVMOUgNCoTxZfc67KU3pAio6yXz+raVxCVg4qcpSaRMrRbclZBYBSFQQqRMBfbJ3igVe3gcqkTQRiCKj8GJkpESTUTUA3aDOkmDn3GQbkFuZxGepn2n1ZKf6uf4rLitGqmdJOfYGf7ChZCCzDGkCHOQFxWnMqJSebG5mju2hwtXGR6KcBVZgTROuGAdFO5wBgrkacBQ2mq3MLcShWLU8ATGEwDlURTlbULaNJMVY+K0k26aCaeIB2f9s3EaH+KH0JUHfQZ/1aYqXzv3r2YPXs2Nm7ciODgYKxcuRLdu3fHkydP4OTkpL0AologkTIs+OOhyvkr7L//T9t7Hkb/LMSr9CjkFuZqLpDx4Vg4+b8ffcUfEh74YGAQZA7B44JxAE9xcFbPtp7M+FHEEGJvZq//SdnUlg3eacl/mcPn8WFqLPOpWxHoMvurrIVG0dlf+RLZ6h1DxsLRB31mf+krMoR8EeYcFqvtK3iQuUzq6uNCS8QrCQI+D629StCHGoDrL1LUDvAB2e+BWGwOJq5fjrUiCILQH9JMBKCbZpq+9yJsr6zAy/QXiM+O11wg48O+YJJazQQwWOaPwYvUsUqayUJogeYuzblVIAGuAWhg36Bkqy5JN5ULPB4PxgJjGAuMK8xdqCrDjC4T3NR+VLiA1lSe3HUqAEiYBNkF2cguyK6Qa6HNBXRpJq/JNJOENFMVo6J0ky6aCRJbtLDvSUYRotpSYYaR5cuXY8KECRgzZgwAYOPGjfjzzz/x66+/4osvvqioahHljLaOGOChsMASbxKMkC/IBQ88uFm6oa5NXdS1qQsPaw/u77o2dRGTbIHQX29pKI0HIzjC07wrAj2tFYwgtqa2hjsxm9o0gK8B8Hg8iIxkwROtYV3ux2eMoUBaoNrQUlKhoSbOjKryis/+KpAWoEBcgExxpsHPVSTxhYt4sfprASA2PQ/XX6RU2Mt4ovKQkKnbai5d8xEEQVQUpJkIQDfNJC4wR/jrbOQLZEYRC6HFW51k/VYvedh4ICnNDh9uf6SxPAFzgK2gJZrVNlUwgnjbext2lTDpphqBEd8IFkILWAgtKuT4EqmkRBPR1GoqPWNzFl1pJWVS5BTkIKcgx+DnSZqJ0AfSTARRQYYRsViMmzdv4ssvv+TS+Hw+unTpgitXlOM/5OfnIz//7fLajIySBcgmKh+6drBz2/2EIS29UNu6NoQCodp8D19H61Teiq6/oK+/u055CaKywuPxIBQIIRQIYSWqGPcYJV2Wr6/IyExviLwk7fWhQRsBAE6WJgbNRxAEURHoq5kA0k3VFV3HN58EL0T/FnVQ16YubE1s1brrOZqgm2b69b2D6Ne8ls71JIjKioAvgBnfDGbGZhVyfLkL6LKOzZmR1gDZidrrQ5qJAEgzEQRQQYaRpKQkSCQSODs7K6Q7Ozvj8ePHSvkXL16MBQsWlFf1iHJE1w72Xa8AeNlpn9FAHTtBlC/lNfvryrNkDPv5qtZ89GwTABDkaQdXaxPEpeepdCXAA+BiLfPfSxAEUVnRVzMBpJuqK7qOb3o3ao8WrobTTM5WFeOuliCqG+XlApo0E6EPpJkIAijbSLkG4ssvv0R6ejr3ef36dUVXiTAQ8o5YnXdLHgBXPTpiQ5dHEETlgJ5tQh8EfB7m9fEBUNxz+tvv8/r4kG9lgiCqHaSbqiekmQiC0AV6tgl9IM1EEBVkGHFwcIBAIEB8vGJQuPj4eLi4uCjlF4lEsLKyUvgQ1QNDd8TUsRNE9YSebUJfejR1xYaRLeBirTgjzsXaBBtGtkCPpq4VVDOCIAjd0FczAaSbqiukmQiC0AV6tgl9Ic1E1HQqxDAiFAoREBCAM2fOcGlSqRRnzpxB69atK6JK5YuZPWAk0pzHSCTLVwMwdEdMHTtBVE/o2Sb0pUdTV1z6vBN+m9AKq4b647cJrXDp807UVgiCqBLUeM0EkG4qAmkmgiB0gZ5tQl9IMxE1GR5jTJUruTJn7969CA0NxaZNmxAUFISVK1di3759ePz4sZIf3eKkp6fDxsYGr1+/rrqzoNLeALkp6reb2gE2NSvQnUTKcDMqFYlZeXC0MEFAXdtSzWQwdHkEQVQO6NkmCKKmkpGRgdq1ayMtLQ3W1tYVXR2iHCiNZgJIN1VHSDMRBKEL9GwTBFFT0UczVUjwdQAYMmQIEhMTMXfuXMTFxcHf3x9///23TgP8zMxMAEDt2rXLupoEQRAEQRAEUanIzMwkw0gNoTSaCSDdRBAEQRAEQdRMdNFMFbZipDRIpVLExMTA0tISPF7pLN5yK1KVnkVFGBRqE4QqqF0QxaE2QaiC2gVRHEO2CcYYMjMz4ebmBj6/QjziElUMQ+km6tsIVVC7IIpDbYJQBbULojjUJojiVJRmqrAVI6WBz+ejVi3DLpem4IREcahNEKqgdkEUh9oEoQpqF0RxDNUmaKUIoQ+G1k3UtxGqoHZBFIfaBKEKahdEcahNEMUpb81EU80IgiAIgiAIgiAIgiAIgiAIgqgxkGGEIAiCIAiCIAiCIAiCIAiCIIgaQ403jIhEIsybNw8ikaiiq0JUEqhNEKqgdkEUh9oEoQpqF0RxqE0Q1QFqx4QqqF0QxaE2QaiC2gVRHGoTRHEqqk1UyeDrBEEQBEEQBEEQBEEQBEEQBEEQJaHGrxghCIIgCIIgCIIgCIIgCIIgCKLmQIYRgiAIgiAIgiAIgiAIgiAIgiBqDGQYIQiCIAiCIAiCIAiCIAiCIAiixkCGEYIgCIIgCIIgCIIgCIIgCIIgagw12jCybt061K1bFyYmJggODsb169crukpEObF48WIEBgbC0tISTk5O6NevH548eaKQJy8vD1OnToW9vT0sLCwwYMAAxMfHV1CNiYrghx9+AI/Hw8yZM7k0ahc1j+joaIwcORL29vYwNTWFr68v/v33X247Ywxz586Fq6srTE1N0aVLF0RERFRgjYmyRiKR4JtvvoGnpydMTU3h5eWFRYsWgTHG5aF2Ub25cOEC+vTpAzc3N/B4PBw5ckRhuy73PyUlBSNGjICVlRVsbGwwbtw4ZGVlleNZEITukG6quZBuIrRBmomQQ7qJKAppJgKo/LqpxhpG9u7di9mzZ2PevHm4desW/Pz80L17dyQkJFR01Yhy4Pz585g6dSquXr2KU6dOoaCgAN26dUN2djaXZ9asWfjjjz+wf/9+nD9/HjExMejfv38F1pooT27cuIFNmzahWbNmCunULmoWqampaNu2LYyNjXH8+HE8fPgQy5Ytg62tLZfnxx9/xOrVq7Fx40Zcu3YN5ubm6N69O/Ly8iqw5kRZsmTJEmzYsAFr167Fo0ePsGTJEvz4449Ys2YNl4faRfUmOzsbfn5+WLduncrtutz/ESNG4MGDBzh16hSOHTuGCxcuYOLEieV1CgShM6SbajakmwhNkGYi5JBuIopDmokAqoBuYjWUoKAgNnXqVO67RCJhbm5ubPHixRVYK6KiSEhIYADY+fPnGWOMpaWlMWNjY7Z//34uz6NHjxgAduXKlYqqJlFOZGZmMm9vb3bq1CnWsWNHNmPGDMYYtYuayOeff87atWundrtUKmUuLi5s6dKlXFpaWhoTiUTst99+K48qEhVA79692dixYxXS+vfvz0aMGMEYo3ZR0wDADh8+zH3X5f4/fPiQAWA3btzg8hw/fpzxeDwWHR1dbnUnCF0g3UQUhXQTIYc0E1EU0k1EcUgzEcWpjLqpRq4YEYvFuHnzJrp06cKl8fl8dOnSBVeuXKnAmhEVRXp6OgDAzs4OAHDz5k0UFBQotJFGjRqhTp061EZqAFOnTkXv3r0V7j9A7aIm8vvvv6Nly5YYNGgQnJyc0Lx5c/z888/c9hcvXiAuLk6hTVhbWyM4OJjaRDWmTZs2OHPmDJ4+fQoACA8Px6VLl9CzZ08A1C5qOrrc/ytXrsDGxgYtW7bk8nTp0gV8Ph/Xrl0r9zoThDpINxHFId1EyCHNRBSFdBNRHNJMhDYqg24yKnUJVZCkpCRIJBI4OzsrpDs7O+Px48cVVCuiopBKpZg5cybatm2Lpk2bAgDi4uIgFAphY2OjkNfZ2RlxcXEVUEuivNizZw9u3bqFGzduKG2jdlHzeP78OTZs2IDZs2djzpw5uHHjBqZPnw6hUIjQ0FDuvqv6PaE2UX354osvkJGRgUaNGkEgEEAikeC7777DiBEjAIDaRQ1Hl/sfFxcHJycnhe1GRkaws7OjNkJUKkg3EUUh3UTIIc1EFId0E1Ec0kyENiqDbqqRhhGCKMrUqVNx//59XLp0qaKrQlQwr1+/xowZM3Dq1CmYmJhUdHWISoBUKkXLli3x/fffAwCaN2+O+/fvY+PGjQgNDa3g2hEVxb59+7Br1y7s3r0bTZo0wZ07dzBz5ky4ublRuyAIgiCqLaSbCIA0E6Ea0k1EcUgzEVWBGulKy8HBAQKBAPHx8Qrp8fHxcHFxqaBaERXBtGnTcOzYMZw7dw61atXi0l1cXCAWi5GWlqaQn9pI9ebmzZtISEhAixYtYGRkBCMjI5w/fx6rV6+GkZERnJ2dqV3UMFxdXeHj46OQ1rhxY7x69QoAuPtOvyc1i08//RRffPEFhg4dCl9fX4waNQqzZs3C4sWLAVC7qOnocv9dXFyUAlcXFhYiJSWF2ghRqSDdRMgh3UTIIc1EqIJ0E1Ec0kyENiqDbqqRhhGhUIiAgACcOXOGS5NKpThz5gxat25dgTUjygvGGKZNm4bDhw/j7Nmz8PT0VNgeEBAAY2NjhTby5MkTvHr1itpINaZz5864d+8e7ty5w31atmyJESNGcH9Tu6hZtG3bFk+ePFFIe/r0KTw8PAAAnp6ecHFxUWgTGRkZuHbtGrWJakxOTg74fMUhlEAggFQqBUDtoqajy/1v3bo10tLScPPmTS7P2bNnIZVKERwcXO51Jgh1kG4iSDcRxSHNRKiCdBNRHNJMhDYqhW4qdfj2KsqePXuYSCRi27ZtYw8fPmQTJ05kNjY2LC4urqKrRpQDkydPZtbW1uyff/5hsbGx3CcnJ4fL8+GHH7I6deqws2fPsn///Ze1bt2atW7dugJrTVQEHTt2ZDNmzOC+U7uoWVy/fp0ZGRmx7777jkVERLBdu3YxMzMztnPnTi7PDz/8wGxsbNjRo0fZ3bt3Wd++fZmnpyfLzc2twJoTZUloaChzd3dnx44dYy9evGCHDh1iDg4O7LPPPuPyULuo3mRmZrLbt2+z27dvMwBs+fLl7Pbt2+zly5eMMd3uf48ePVjz5s3ZtWvX2KVLl5i3tzcbNmxYRZ0SQaiFdFPNhnQToQukmQjSTURxSDMRjFV+3VRjDSOMMbZmzRpWp04dJhQKWVBQELt69WpFV4koJwCo/GzdupXLk5uby6ZMmcJsbW2ZmZkZ++CDD1hsbGzFVZqoEIoP8qld1Dz++OMP1rRpUyYSiVijRo3Y5s2bFbZLpVL2zTffMGdnZyYSiVjnzp3ZkydPKqi2RHmQkZHBZsyYwerUqcNMTExYvXr12FdffcXy8/O5PNQuqjfnzp1TOY4IDQ1ljOl2/5OTk9mwYcOYhYUFs7KyYmPGjGGZmZkVcDYEoR3STTUX0k2ELpBmIhgj3UQoQpqJYKzy6yYeY4yVft0JQRAEQRAEQRAEQRAEQRAEQRBE5adGxhghCIIgCIIgCIIgCIIgCIIgCKJmQoYRgiAIgiAIgiAIgiAIgiAIgiBqDGQYIQiCIAiCIAiCIAiCIAiCIAiixkCGEYIgCIIgCIIgCIIgCIIgCIIgagxkGCEIgiAIgiAIgiAIgiAIgiAIosZAhhGCIAiCIAiCIAiCIAiCIAiCIGoMZBghCIIgCIIgCIIgCIIgCIIgCKLGQIYRgiAIgiAIgiAIgiAIgiAIgiBqDGQYIQiCIAiCIAiCIAiCIAiCIAiixkCGEYIgCIIgCIIgCIIgCIIgCIIgagxkGCEIgiAIgiAIgiAIgiAIgiAIosZAhhGCIAiCIAiCIAiCIAiCIAiCIGoMZBghCIIgCIIgCIIgCIIgCIIgCKLGQIYRgiAIgiAIgiAIgiAIgiAIgiBqDGQYIQiCIAiCIAiCIAiCIAiCIAiixkCGEYIgCIIgCIIgCIIgCIIgCIIgagxkGCEIgiAIgiAIgiAIgiAIgiAIosZAhhGCIAiCIAiCIAiCIAiCIAiCIGoMZBghCIIgCIIgCIIgCIIgCIIgCKLGQIYRgiAIgiAIgiAIgiAIgiAIgiBqDGQYIQiCIAiCIAiCIAiCIAiCIAiixkCGEYIgCIIgCIIgCIIgCIIgCIIgagxkGCEIgiAIgiAIgiAIgiAIgiAIosZAhhGCIAiCIAiCIAiCIAiCIAiCIGoMZBghCIIgCIIgCIIgCIIgCIIgCKLGQIYRgiAIgiAIgiAIgiAIgiAIgiBqDGQYqQFERUWBx+Nh27ZtXNr8+fPB4/EU8tWtWxejR48u8/qMHj0adevWLfPjlBRV16um8c4776Bp06YVXY0SsW3bNvB4PERFRem9r6rnoqx555138M4775TrMQHd27n8ev7777/lUzEDwePxMH/+/HI/rqr+raLqoi8V1RaJsoPuKUEQhHpII+kHaaTqzz///AMej4d//vlH731Lo8FKSkU+M7qM7+XX88CBA+VTKQNRXn1ecSqy/y0tlb3/JvSH7mnNgQwjFYR84KDq88UXX1R09QAADx8+xPz588t1cFOe7N69GytXrqzoahAEQZQJf/31V4UbZPLz8/H555/Dzc0NpqamCA4OxqlTp3TePzo6GoMHD4aNjQ2srKzQt29fPH/+XCmfut/TH374wZCnU+OJj4/HpEmT4O7uDhMTE9StWxfjxo1TmXfv3r1o3bo1zM3NYWNjgzZt2uDs2bNK5Y0ZMwZOTk4wNTVFixYtsH//fqWy5EK5+MfExEQpb3p6Oj777DN4e3vD1NQUHh4eGDduHF69emWYi0AQRJlCGqniqaoa6fvvv8eRI0cquhoEQVQDLl++jPnz5yMtLa3C6iCVSvHjjz/C09MTJiYmaNasGX777Ted909LS8PEiRPh6OgIc3NzvPvuu7h165ZCHrnxTt3nu+++M/Rp1VgyMzPx2WefwdPTEyKRCO7u7hg4cCBycnKU8p4+fRqdOnWCtbU1LC0tERAQgL179yrkycrKwsyZM1GrVi2IRCI0btwYGzZsUCpL07gqLi5OIW9eXh4WL14MHx8fmJmZwd3dHYMGDcKDBw8MezEqGUYVXYGazsKFC+Hp6amQZuiZ+h4eHsjNzYWxsbHGfE+ePAGf/9ZW9vDhQyxYsADvvPNOtbSU7t69G/fv38fMmTMV0nW9XgRBELqQm5sLI6Py/7n966+/sG7dOp2NIydPnjR4HUaPHo0DBw5g5syZ8Pb2xrZt29CrVy+cO3cO7dq107hvVlYW3n33XaSnp2POnDkwNjbGihUr0LFjR9y5cwf29vYK+bt27YqQkBCFtObNmxv8nGoqr1+/Rtu2bQEAH374Idzd3RETE4Pr168r5Z0/fz4WLlyIgQMHYvTo0SgoKMD9+/cRHR3N5cnIyEC7du0QHx+PGTNmwMXFBfv27cPgwYOxa9cuDB8+XKncDRs2wMLCgvsuEAgUtkulUnTt2hUPHz7ElClT0KBBA0RGRmL9+vU4ceIEHj16BEtLS0NdEoIgyhDSSBVHVdVI33//PQYOHIh+/fpVdFUIgjAQxfvf8uLy5ctYsGABRo8eDRsbG635f/75Z0ilUoPW4auvvsIPP/yACRMmIDAwEEePHsXw4cPB4/EwdOhQjftKpVL07t0b4eHh+PTTT+Hg4ID169fjnXfewc2bN+Ht7Q0AaNy4MXbs2KG0/44dO3Dy5El069bNoOdUU0lPT0fHjh3x5s0bTJw4EfXr10diYiIuXryI/Px8mJmZcXm3bt2KcePGoWvXrvj+++8hEAjw5MkTvH79mssjkUjQvXt3/Pvvv5g6dSq8vb1x4sQJTJkyBampqZgzZ45SHVSNq4q37REjRuD333/HhAkT0KJFC8TExGDdunVo3bo17t27Bw8PD8NemEoCGUYqmJ49e6Jly5Zlegx1syqLIxKJyrQeVQVdrxdBEIQu6NKfZGdnw9zcvBxqox6hUGjQ8q5fv449e/Zg6dKl+OSTTwAAISEhaNq0KT777DNcvnxZ4/7r169HREQErl+/jsDAQACy38ymTZti2bJl+P777xXyN2jQACNHjjToORBvmTRpEoyMjHDjxg0lo1RRrl69ioULF2LZsmWYNWuW2nybNm1CZGQkzpw5g06dOgEAJk+ejFatWuHjjz/GwIEDldrkwIED4eDgoPHYN27cwNq1azF16lQuvWHDhhg7dixOnz6NDz74QNdTJgiiAiGNVPmoThqpMoy7CILQji79b2V4ng1tMI6OjsayZcswdepUrF27FgAwfvx4dOzYEZ9++ikGDRqkNEGoKAcOHMDly5exf/9+DBw4EAAwePBgNGjQAPPmzcPu3bsBAM7Ozir104IFC+Dt7c1pMKJ0fPnll3j58iVu3bqlYJz4/PPPFfJFRUVh6tSp+Oijj7Bq1Sq15R06dAiXL1/GL7/8grFjxwKQ6aiBAwdi0aJFGD9+PJycnBT20Tauio6OxqFDh/DJJ59g6dKlXHr79u3RqVMnHDp0SKO2q8qQK61KysuXLzFlyhQ0bNgQpqamsLe3x6BBg1Qu2U5LS8OsWbNQt25diEQi1KpVCyEhIUhKSgKguz/Yov4bt23bhkGDBgEA3n33XW6p1T///IPQ0FA4ODigoKBAqYxu3bqhYcOGep9vdnY2Pv74Y9SuXRsikQgNGzbETz/9BMaYUt6dO3ciKCgIZmZmsLW1RYcOHRRmOh89ehS9e/eGm5sbRCIRvLy8sGjRIkgkEi7PO++8gz///BMvX77kzk0+40vd9Tp79izat2/PuQXp27cvHj16pJBH7u4jMjKSm11gbW2NMWPGqFwiV5TVq1dDIBAoLNdctmwZeDweZs+ezaVJJBJYWloqdKJSqRQrV65EkyZNYGJiAmdnZ0yaNAmpqakKx9Dl2qjj5MmTMDMzw7Bhw1BYWKg2nzw+yd27d9GxY0eYmZmhfv36nG/V8+fPIzg4GKampmjYsCFOnz6tVMbt27fRs2dPWFlZwcLCAp07d8bVq1eV8j148ACdOnWCqakpatWqhW+//VbtTI3jx49z98/S0hK9e/cu8ZLAiIgIDBgwAC4uLjAxMUGtWrUwdOhQpKenc3kKCwuxaNEieHl5QSQSoW7dupgzZw7y8/PVlhsfHw8jIyMsWLBAaduTJ0/A4/G4gREge/ZnzpzJPTf169fHkiVLlK5BWloaRo8eDWtra9jY2CA0NFTvZcE5OTmYNGkS7O3tYWVlhZCQEIX2ZYh+4dq1a+jVqxdsbW1hbm6OZs2aKQwIRo8eDQsLCzx//hzdu3eHubk53NzcsHDhQpV9RXGio6MxduxYODs7QyQSoUmTJvj111+57bm5uWjUqBEaNWqE3NxcLj0lJQWurq5o06aNwrNy5MgRNG3aFCYmJmjatCkOHz6s8rjFfRDL+4mHDx9i+PDhsLW1VVg9sXPnTgQEBMDU1BR2dnYYOnSowgwRXa7X6NGjsW7dOu748o8misejkC+t3rdvH7777jvUqlULJiYm6Ny5MyIjIzWWBcgG5AKBABMnTuTSTExMMG7cOFy5ckXlORXfPzAwUGFA3qhRI3Tu3Bn79u1TuU9ubi7y8vK01q0omZmZmDlzJvcb6uTkhK5duyotNb927Rp69OgBa2trmJmZoWPHjvjf//6nVF50dDTGjRvH9bOenp6YPHkyxGIxl+f58+cYNGgQ7OzsYGZmhlatWuHPP/9UKEff679582Z4eXnB1NQUQUFBuHjxosrzXbNmDZo0acL9hrZs2ZITR+p4/Pgxjh8/jk8//RT29vbIy8tT+awDwMqVK+Hi4oIZM2aAMYasrCyV+S5evAhHR0fOKAIAfD4fgwcPRlxcHM6fP6+0D2MMGRkZap/3jIwMADKRVxRXV1cAgKmpqcbzJAii8kMaqeZpJED72JvH4yE7OxthYWFcveX3TNO4S9fxet26dfHee+/h0qVLCAoKgomJCerVq4ft27cr1VWugYrqk61bt+oUf0M+1n316hXee+89WFhYwN3dnRvT3bt3D506dYK5uTk8PDxU/n7rMsYAgDdv3qBfv34wNzeHk5MTZs2apVan6DoG0oW4uDiMGTOGc//i6uqKvn37Kl2b9evXo0mTJhCJRHBzc8PUqVM16peCggLY2dlhzJgxStsyMjJgYmLCTdQBZO5e582bh/r160MkEqF27dr47LPPlK5Bfn4+Zs2aBUdHR1haWuL999/Hmzdv9DpniUSCOXPmwMXFBebm5nj//fcVxsHz5s2DsbExEhMTlfadOHEibGxstI5vHz9+jMGDB8PR0ZHT2V999RW3Xf4cyPNZWVnB3t4eM2bM0GnsrE13Msbw7rvvwtHREQkJCdx+YrEYvr6+8PLyQnZ2Npd+6dIlBAYGwsTEBF5eXti0aZPK4xaPMSJ3C3T+/HlMmTIFTk5OqFWrFrddV82v6XrNnz8fn376KQDA09OT61M0Pb/F41HI+8uffvqJG6OLRCIEBgbixo0b6i/0fxw9ehQFBQWYMmUKl8bj8TB58mS8efMGV65c0bj/gQMH4OzsjP79+3Npjo6OGDx4MI4eParxncT169cRGRmJESNGaK1nQUEBZ0QxMTGBvb092rVrp+Q6+fHjxxg4cCDs7OxgYmKCli1b4vfff1cqT9vvNgAkJCRg3LhxcHZ2homJCfz8/BAWFqZQjr7XX1ddv2fPHgQEBMDS0hJWVlbw9fXVaMCQn9PWrVsxceJEeHp6QiwWq73+GzduhEQiwcKFCwHIPCio+r2X67ziK4eGDh2KvLw8HD16VGX5mZmZat/9ZWZmAqihOooRFcLWrVsZAHb69GmWmJio8GGMsf379zM/Pz82d+5ctnnzZjZnzhxma2vLPDw8WHZ2NldOZmYma9q0KRMIBGzChAlsw4YNbNGiRSwwMJDdvn2bMcbYixcvGAC2detWbr958+ax4rffw8ODhYaGMsYYe/bsGZs+fToDwObMmcN27NjBduzYweLi4tipU6cYAPbHH38o7B8bG8sEAgFbuHChxnMPDQ1lHh4e3HepVMo6derEeDweGz9+PFu7di3r06cPA8BmzpypsO/8+fMZANamTRu2dOlStmrVKjZ8+HD2+eefc3n69evHBg8ezJYuXco2bNjABg0axACwTz75hMtz8uRJ5u/vzxwcHLhzO3z4sNrrderUKWZkZMQaNGjAfvzxR7ZgwQLm4ODAbG1t2YsXL5Sua/PmzVn//v3Z+vXr2fjx4xkA9tlnn2m8Lrdu3VK6rn379mV8Pp+1bNmSS7tx4wYDwI4dO8aljR8/nhkZGbEJEyawjRs3ss8//5yZm5uzwMBAJhaL9bo2jDHWsWNH1qRJE+77H3/8wUQiEQsJCWGFhYUaz6Njx47Mzc2N1a5dm3366adszZo1zMfHhwkEArZnzx7m4uLC5s+fz1auXMnc3d2ZtbU1y8jI4Pa/f/8+Mzc3Z66urmzRokXshx9+YJ6enkwkErGrV69y+WJjY5mjoyOztbVl8+fPZ0uXLmXe3t6sWbNmDIDCfdm+fTvj8XisR48ebM2aNWzJkiWsbt26zMbGRuX900R+fj7z9PRkbm5u7Ntvv2VbtmxhCxYsYIGBgSwqKorLFxoaygCwgQMHsnXr1rGQkBAGgPXr10/penXs2JH73qlTJ+bj46N03AULFjCBQMDi4uIYY4xlZ2ezZs2aMXt7ezZnzhy2ceNGFhISwng8HpsxYwa3n1QqZR06dGB8Pp9NmTKFrVmzhnXq1Im7TkXbuSrkfZWvry9r3749W716NZs6dSrj8/msQ4cOTCqVMsZYqfuFkydPMqFQyDw8PNi8efPYhg0b2PTp01mXLl0UrqmJiQnz9vZmo0aNYmvXrmXvvfceA8C++eYbhfIAsHnz5nHf4+LiWK1atVjt2rXZwoUL2YYNG9j777/PALAVK1Zw+a5evcoEAgGbNWsWlzZ06FBmamrKnjx5wqWdOHGC8fl81rRpU7Z8+XL21VdfMWtra9akSROF/k1VXeTtzMfHh/Xt25etX7+erVu3jjHG2Lfffst4PB4bMmQIW79+PdfX1K1bl6Wmpup8vS5fvsy6du3KAHB93I4dOzTeg+Jt8dy5c1x/FhAQwFasWMHmz5/PzMzMWFBQkMayGGOsS5curHHjxkrpp0+fZgDY77//rnZfiUTCRCIRmzx5stK2r7/+mgFQ6DcAMHNzc8bj8RgA1rhxY7Zr1y6tdWSMseHDhzOhUMhmz57NtmzZwpYsWcL69OnDdu7cyeU5c+YMEwqFrHXr1mzZsmVsxYoVrFmzZkwoFLJr165x+aKjo5mbmxszMzNjM2fOZBs3bmTffPMNa9y4MXf/4uLimLOzM7O0tGRfffUVW758OfPz82N8Pp8dOnSIK0uf679lyxbut3H16tVs5syZzMbGhtWrV0/hnm7evJnrlzZt2sRWrVrFxo0bx6ZPn67xGq1Zs4YBYAcPHmSdOnViAJhAIGA9evRQ6EMZY8zBwYG9//77bMWKFcze3p4BYC4uLmzNmjUK+bp168bq1KmjdKx169YxAGzx4sVcmvyZsbCw4O71iBEjuP5QTmJiIjM3N2eNGjViZ86cYW/evGH//PMP8/X1ZYGBgaygoEDjeRIEUfGQRvLgvpNGkqHL2HvHjh1MJBKx9u3bc/W+fPmywrFVjbt0Ha97eHiwhg0bMmdnZzZnzhy2du1a1qJFC8bj8dj9+/e5fG/evGF2dnbM3t6eLViwgP3000+sUaNGzM/PT0mfqEI+1vXx8WEffvghW7duHWvTpg133d3c3Dh91aRJEyYQCNjz58+5/XUdY+Tk5LAGDRowExMT9tlnn7GVK1eygIAATh+cO3eOy6vrGEj+7Go7xzZt2jBra2v29ddfsy1btrDvv/+evfvuu+z8+fNcHvk969KlC1uzZg2bNm0aEwgEStq2+DMzduxYZmNjw/Lz8xWOGRYWxgCwGzduMMZk48xu3bpx47VNmzaxadOmMSMjI9a3b1+FfUeOHMkAsOHDh7O1a9ey/v37c9ep6PheFfKxnK+vL2vWrBlbvnw5++KLL5iJiQlr0KABy8nJYYwxFhERwQAojZXy8/OZra0tGzt2rMbjhIeHMysrK2Zvb8++/PJLtmnTJvbZZ58xX19fpWvq6+vL+vTpw9auXcud26hRoxTKK9rnMaa77nz+/DmzsLBgH3zwAZf2xRdfMB6Pp3B/7969y0xNTVmdOnXY4sWL2aJFi5izszN3XTXVRd7OfHx8WMeOHdmaNWvYDz/8wBjTXfNru17h4eFs2LBhnE6U9ylZWVlq70HxtijvL5s3b87q16/PlixZwn788Ufm4ODAatWqpdCOVTF+/Hhmbm7OaW05kZGRDABbvXq1xv3r16/PevbsqZQu1wx3795Vu6/8Ny4iIkLjMRhjbM6cOYzH47EJEyawn3/+mS1btowNGzaMuyeMyd7vWFtbMx8fH7ZkyRK2du1a1qFDB8bj8RT6JV1+t3Nycljjxo2ZsbExmzVrFlu9ejVr3749A8BWrlzJlaXP9ddV1588eZIBYJ07d2br1q1j69atY9OmTWODBg3SeI3++OMPBoBt3ryZDRgwgAkEAsbj8VibNm2485Ij74d3797N3N3dGQBma2vLvv76ayaRSLh8EydOZAKBQEnb/PnnnwwAmzRpEpcmf2bkOkooFLI+ffqwp0+fKuwrFotZrVq1mIuLC/v999/Z69ev2bVr11jHjh2Zp6enwruI6gYZRioIeeNU9WGMcT+SRbly5QoDwLZv386lzZ07lwFQ6FDkyDvRkgz6GZMJj+IDI8ZkA4latWqxIUOGKKQvX76c8Xg8hcGZKor/aBw5coQBYN9++61CvoEDBzIej8ciIyMZY7IBA5/PZx988IFCp1D0XBlTfe0mTZrEzMzMWF5eHpfWu3dvpReYjKm+Xv7+/szJyYklJydzaeHh4YzP57OQkBAuTX5diw9ePvjgA2Zvb6/iarxFIpEwKysrThxIpVJmb2/PBg0axAQCAcvMzGSMya4zn8/nOqaLFy8yAEovAf/++2+ldF2vTVHDyMGDB5mxsTGbMGGC0nVXRceOHRkAtnv3bi7t8ePHDADj8/kKxo0TJ04oXet+/foxoVDInj17xqXFxMQwS0tL1qFDBy5t5syZDIDCgDwhIYFZW1srDMozMzOZjY0NmzBhgkI94+LimLW1tUK6LoaR27dvMwBs//79avPcuXOHAWDjx49XSP/kk08YAHb27FkurfjL6E2bNjEA7N69ewr7+vj4sE6dOnHfFy1axMzNzZV+0L744gsmEAjYq1evGGNvn68ff/yRy1NYWMgNIHQ1jAQEBCgMIH788UcGgB09epQxVrp+obCwkHl6ejIPDw+lH9yiz7ZcvH700UcK23v37s2EQiH30oQxZWPEuHHjmKurK0tKSlIof+jQocza2lrh2fjyyy8Zn89nFy5c4PrBogMtxmR9gqurK0tLS+PS5IMlXQ0jw4YNU8gXFRXFBAIB++677xTS7927x4yMjLh0Xa/X1KlTtbbnoqgzjDRu3FhBYK5atUplGy1OkyZNFNqsnAcPHjAAbOPGjWr3TUxMZABUvkSSvzh//Pgxl9amTRu2cuVKdvToUbZhwwbWtGlTBoCtX79eYx0ZY8za2ppNnTpV7XapVMq8vb1Z9+7dlX5rPD09WdeuXbm0kJAQxufzOeFdvBzG3vZdFy9e5LZlZmYyT09PVrduXa6f1fX6i8Vi5uTkxPz9/RXyyY0gRe9p3759FYzeuiIXSPb29qxHjx5s7969bOnSpczCwoJ5eXlxLyNTUlK4fBYWFmzp0qVs7969rEePHkr3/KOPPmJ8Pl/BoMyY7JkEwKZNm8alrVy5kk2bNo3t2rWLHThwgM2YMYMZGRkxb29vlp6errD/sWPHmKurq8K4qnv37txvKEEQlRvSSB7cd9JIMnQZezPGmLm5ucJ9Kn7s4uMufcbrHh4eDAC7cOECl5aQkMBEIhH7+OOPubSPPvqI8Xg8hZddycnJzM7OTmfDCAD2/fffc2mpqanM1NSU8Xg8tmfPHi5drq+KjjF1HWOsXLmSAWD79u3j8mVnZ7P69esrtG19xkC6GEZSU1MZALZ06VK1eRISEphQKGTdunVTaM9r165lANivv/6qcL2KtlW5tixunOzVqxerV68e933Hjh2Mz+crXCfGGNu4cSMDwP73v/8xxt62kSlTpijkGz58uF6GEXd3d4UJPfv27WMA2KpVq7i01q1bs+DgYIX9Dx06pLKvKU6HDh2YpaUle/nypUJ60Xsmfw7ef/99hTxTpkxhAFh4eDiXVrzP01V3MvZWy+7cuZObcFbckNuvXz9mYmKiUN+HDx8ygUCgs2GkXbt2ChM29dH8ulyvpUuX6vTMylFnGLG3t2cpKSlc+tGjR1W20eL07t1boc3Kyc7OZgDYF198oXF/c3NzlQY1+Yvzv//+W+V+hYWFzNnZWadJcIwx5ufnx3r37q0xT+fOnZmvr6/C74xUKmVt2rRh3t7eXJouv9vyvqvoBDaxWMxat27NLCwsuOdMn+uvq66fMWMGs7Ky0jpRuDjLly/n6hIUFMR27drF1q9fz5ydnZmtrS2LiYnh8lpZWTFbW1smEonYN998ww4cOMD1N0Xv+bJly5T6esZkzyQA9t5773Fpe/fuZaNHj2ZhYWHs8OHD7Ouvv2ZmZmbMwcFB4dlljLFr164xLy8vhbFXQEAAi42N1eucqxrkSquCWbduHU6dOqXwARSXKRUUFCA5ORn169eHjY2NgnuPgwcPws/PT6XPbG1uU0oKn8/ngvLIl1sBwK5du9CmTRulgD7a+OuvvyAQCDB9+nSF9I8//hiMMRw/fhyAbHmbVCrF3LlzlQJwFT3XotcuMzMTSUlJaN++PXJycvD48WO96gYAsbGxuHPnDkaPHg07OzsuvVmzZujatSv++usvpX0+/PBDhe/t27dHcnIy5+ZDFXw+H23atMGFCxcAAI8ePUJycjK++OILMMa45ZIXL15E06ZNuUBJ+/fvh7W1Nbp27YqkpCTuExAQAAsLC5w7d67E1+a3337DkCFDMGnSJGzatEnnwGcWFhYKy/oaNmwIGxsbNG7cGMHBwVy6/O/nz58DkC0zPnnyJPr164d69epx+VxdXTF8+HBcunSJu4Z//fUXWrVqhaCgIC6fo6Oj0pLPU6dOIS0tDcOGDVO4PgKBAMHBwQrXRxesra0BACdOnFC79F/eJoq6QANkbRqAyuXscvr37w8jIyPs3buXS7t//z4ePnyIIUOGcGn79+9H+/btYWtrq3BeXbp0gUQi4drRX3/9BSMjI0yePJnbVyAQ4KOPPtLntDFx4kQF36mTJ0+GkZERd66l6Rdu376NFy9eYObMmUoBwFT1Y9OmTVPYPm3aNIjFYpVu2QCAMYaDBw+iT58+YIwpXK/u3bsjPT1doV+dP38+mjRpgtDQUEyZMgUdO3ZU6J/kfUJoaCjXHgBZ8G8fHx+151mc4v3EoUOHIJVKMXjwYIU6uri4wNvbm2ur+l6v0jJmzBiFWA/t27cH8Pa5VUdubq5Kv8By/+RF3ZWp2hdQ7VdY1f7/+9//MGPGDLz//vv48MMPcfPmTTRt2hRz5szReBxAFnTu2rVriImJUbn9zp07iIiIwPDhw5GcnMzdl+zsbHTu3BkXLlyAVCqFVCrFkSNH0KdPH5X+W+X35q+//kJQUJCC+zQLCwtMnDgRUVFRePjwocJ+2q7/v//+i4SEBHz44YcK+eTu84qf65s3b3Rawl8UuTssFxcX/Pnnnxg8eDA++eQT/Pzzz3j27BnnykOeLzk5GVu2bMEnn3yCwYMH488//4SPjw++/fZbrszx48dDIBBg8ODBuHz5Mp49e4bFixdzS9eL3rcZM2ZgzZo1GD58OAYMGICVK1ciLCwMERERWL9+vUJdHR0d0bx5c3z33Xc4cuQI5s+fj4sXL6p0rUEQROWFNBJpJDm6jL11ofix9R2v+/j4cL/BgOz3pmHDhgrjob///hutW7eGv78/l2ZnZ6eTS5qijB8/nvvbxsYGDRs2hLm5OQYPHsyly/VV0ePrOsb466+/4OrqysUeAAAzMzMF96eA7mMgXTE1NYVQKMQ///yj5PJZzunTpyEWizFz5kyF9jxhwgRYWVlp1FGdOnWCg4ODgo5KTU3FqVOnlHRU48aN0ahRI4Uxt9y9p3zMLW8jxZ/BmTNn6nzOgCzGnqWlJfd94MCBcHV1VXhGQkJCcO3aNTx79oxL27VrF2rXro2OHTuqLTsxMREXLlzA2LFjUadOHYVtqvq6ojHYAHCaUNXzKkdX3QnINGP37t3x0UcfYdSoUfDy8lKICyiRSHDixAn069dPob6NGzdG9+7d1dahOBMmTFCIsaGr5tf3epWWIUOGwNbWlvteHjqqNPufOXMG8fHxOvdZNjY2ePDgASIiIlRuT0lJwdmzZzF48GDudycpKQnJycno3r07IiIiEB0dDUC33+2//voLLi4uGDZsGLfN2NgY06dPR1ZWlpIrXm3XXx9db2Njg+zsbCU3YdqQ6yMej4czZ85g+PDhmDx5Mo4cOYLU1FTOVaI8b2pqKhYsWICFCxdiwIAB2LVrF3r06IFVq1ZxY4vhw4fD2toaY8eOxalTpxAVFYXNmzdzuqjo/R08eDC2bt2KkJAQ9OvXD4sWLcKJEyeQnJyM7777TqGutra28Pf3xxdffIEjR47gp59+QlRUFAYNGqS3u+qqBBlGKpigoCB06dJF4QPIGvLcuXM5H44ODg5wdHREWlqaQhyDZ8+eoWnTpuVe75CQEOTm5nIvMJ48eYKbN29i1KhRepf18uVLuLm5KQwWANmPo3w7IDtXPp+v9cXjgwcP8MEHH8Da2hpWVlZwdHTkAkoVvXb61A+ASr/AjRs35gaHRSn+IyvvjNUNAOW0b98eN2/eRG5uLi5evAhXV1e0aNECfn5+nB/BS5cuKQzKIyIikJ6eDicnJzg6Oip8srKyFHx86nNtXrx4gZEjR2LAgAFYs2aNXgOFWrVqKeW3trZG7dq1ldKKXpfExETk5OSovdZSqZTzx/ry5Ut4e3sr5Su+r/xHulOnTkrX5+TJkwrXRxc8PT0xe/ZsbNmyBQ4ODujevTvWrVuncP1evnwJPp+P+vXrK+zr4uICGxsbrk2pwsHBQSmGwt69e2FkZKTgIzQiIgJ///230jnJ+xD5eb18+RKurq6wsLBQOI6+fq6LX2sLCwu4uroq+Fotab8gFwC69GV8Pl/BaAbIgm4DUOv3NTExEWlpadi8ebPS9ZK/LC3aDoRCIX799Ve8ePECmZmZnF9oOfL7p0v700TxFyQRERFgjMHb21upno8ePeLqqM/1MgQl7c9MTU1V+k+VD6o0+SmVbyvp/kKhENOmTUNaWhpu3rypsZ4//vgj7t+/j9q1ayMoKAjz589XECvyPiQ0NFTpvmzZsgX5+flIT09HYmIiMjIytN6Xly9fqu3j5NuLou36q2uPxsbGSs/K559/DgsLCwQFBcHb2xtTp07VyUe4/FoPHjxY4SXFoEGDYGRkhMuXLyvkMzY2VnjZwufzMWTIELx58wavXr0CIHtxtnv3bjx79gxt27ZF/fr1sXr1aqxcuRIAlPqs4gwfPhwuLi4KBtHnz5/j3XffxdixYzFnzhz07dsX8+bNw/r163HgwAHuJSJBEJUf0kikkeToMvbWheLjLn3H68XrLq9/0bq/fPlSqTwAKtPUYWJiAkdHR4U0a2trtfqq+PF1GWPI61m8PHU6StsYSFdEIhGWLFmC48ePw9nZGR06dMCPP/6IuLg4hXNQVRehUIh69epp1FFGRkYYMGCAQgyFQ4cOoaCgQMEwEhERgQcPHiidk1xTFNVRfD4fXl5eGq+TNoqP0Xg8HurXr6+gXYYMGQKRSIRdu3YBkD2Tx44dw4gRIzTqcPmYVdf+rnhdvLy8wOfzNcbP0FV3yvnll1+Qk5ODiIgIbNu2TWHMnpiYiNzc3DLRUYB2za/v9SotFaGjSrP/rl27IBAIFJ4XTSxcuBBpaWlo0KABfH198emnn+Lu3bvc9sjISDDG8M033yjdl3nz5gGAgsbVRUd5e3srTQIwtI4ClNvjlClT0KBBA/Ts2RO1atXC2LFj8ffff2usL/D2Wvfp00dB37Rq1Qqenp6cjiqat6jhR/49NzcXt2/fBiD7nfr999+Rn5+Pbt26wdPTE59++inWrFkDQLuOateuHYKDgxV0VHp6Otq3b4/WrVtj8eLF6Nu3Lz7++GMcPHgQly5dwtatW7Wea1XFqKIrQKjmo48+wtatWzFz5ky0bt0a1tbW4PF4GDp0qF6zMsoKHx8fBAQEYOfOnQgJCcHOnTshFAoVZrFUBGlpaejYsSOsrKywcOFCeHl5wcTEBLdu3cLnn39ebteu6OyFojAtAaLbtWuHgoICXLlyBRcvXuQMIO3bt8fFixfx+PFjJCYmKhhGpFIpnJycuEFUceQDa32vjaurKzeT5d9//1U5A1rf8y/pdSkN8vPasWMHXFxclLYbGenfDS5btgyjR4/G0aNHcfLkSUyfPh2LFy/G1atXFYK/lXTWydChQzFmzBjcuXMH/v7+2LdvHzp37gwHBwcuj1QqRdeuXfHZZ5+pLEM+sC9PKmu/IG8DI0eORGhoqMo8zZo1U/h+4sQJALLBY0REhN6zPHWh+IBUKpWCx+Ph+PHjKp8VbQOcsqKkz62rqys3A6gosbGxAAA3Nze1+9rZ2UEkEnF59d0fAGeITUlJ0Zhv8ODBaN++PQ4fPoyTJ09i6dKlWLJkCQ4dOoSePXty7Wfp0qUKM0CLYmFhofU4JcWQ/Wbjxo3x5MkTHDt2DH///TcOHjyI9evXY+7cuViwYIHa/eTXungwPoFAAHt7e05cyAMq2tjYKNXbyckJgEyIyEXKwIED8f777yM8PBwSiQQtWrTAP//8A0C3Pqx27doK133btm3Iy8vDe++9p5Dv/fffByBbWdSzZ0+t5RIEUXkhjVQyqrpG0nXsrQl1LwJ1Ha+Xl46pjDpK2xhIH2bOnIk+ffrgyJEjOHHiBL755hssXrwYZ8+eRfPmzUtbZQwdOhSbNm3C8ePH0a9fP+zbtw+NGjWCn58fl0cqlcLX1xfLly9XWUbxyXzlga2tLd577z3s2rULc+fOxYEDB5Cfn88ZL8sKXdq/vrrzn3/+4V7K37t3D61bty59RYuhSkcBhtX8hqA0OurcuXNgjCncI111kKurq946Sm7U79Kli9KYXx0dOnTAs2fPuL55y5YtWLFiBTZu3Ijx48dz9+WTTz5RuyJIH8Oxvhiy33RycsKdO3dw4sQJHD9+HMePH+dWYhQP/l4UdTpKXmZRI5mbmxsiIiKU8hbVUXI6dOiA58+f4969e8jOzoafnx/nAUFXHfXkyRPu+8GDBxEfH8/pJjnyscP//vc/BS8k1QkyjFRSDhw4gNDQUCxbtoxLy8vLQ1pamkI+Ly8v3L9/v0zqoO1HMiQkBLNnz0ZsbCx2796N3r17KyxT0xUPDw+cPn0amZmZCjOi5Eu6PTw8AMjOVSqV4uHDh2oHZv/88w+Sk5Nx6NAhdOjQgUt/8eKFUl5dB8Hy4xftNIrW0cHBAebm5jqVpY2goCAIhUJcvHgRFy9exKeffgpA1un9/PPPOHPmDPddjpeXF06fPo22bdtqnDmgz7UBZLOVjh07hk6dOqFHjx44f/48mjRpYojTVIujoyPMzMzUXms+n88NVD08PFQu2Sy+r3yGj5OTEzerxRD4+vrC19cXX3/9NS5fvoy2bdti48aN+Pbbb+Hh4QGpVIqIiAhu9gIAxMfHIy0tjWtT6ujXrx8mTZrELQN/+vQpvvzyS6XzysrK0npOHh4eOHPmDLKyshSEi6prrImIiAi8++673PesrCzExsaiV69eCvlK0i/I79H9+/e1no9UKsXz588VfuyfPn0KAKhbt67KfRwdHWFpaQmJRKJTG7h79y4WLlzIGafGjx+Pe/fucSuc5PdPl/anD15eXmCMwdPTU+NgRtfrVVauQnTF398f586dQ0ZGBqysrLj0a9eucdvVwefz4evri3///Vdp27Vr11CvXj2lGbTFkc8IKz7rUhWurq6YMmUKpkyZgoSEBLRo0QLfffcdevbsyV1vKysrjdfb0dERVlZWWn+TPTw81PZx8u36ULQ9yl1AADIXMy9evFB4EQAA5ubmGDJkCIYMGQKxWIz+/fvju+++w5dffsktry9OQEAAACgZusRiMZKSkrhrzOfz4e/vjxs3bkAsFiu49pIP1IvfD6FQiMDAQO67fOaStmeVMYaoqCiFlyjx8fFgjEEikSjkLSgoAAAUFhZqLJMgiMoPaaSaqZEAzWNvfeotp7TjdXVlRkZGKqWrSisLdB1jeHh44P79+0ovXdXpKG1jIH3x8vLCxx9/jI8//hgRERHw9/fHsmXLsHPnToV2VXTlq1gsxosXL7TWo0OHDnB1dcXevXvRrl07nD17Fl999ZXS8cPDw9G5c2eN7UbeRp49e6Ywe7wkOqoojDFERkYqTcwKCQlB3759cePGDezatQvNmzfXqr/l10jX/q74hK/IyEhIpVK1OgrQXXcCshfvH330Ebp16wahUMi9EJffV0dHR5iampaJjgK0a35dr1dl0FFbtmzBo0ePFFYD6qKj5NsvXrwIqVSqsLri2rVrMDMzU6k15W4g9XX9Z2dnhzFjxmDMmDHIyspChw4dMH/+fIwfP5673sbGxlrbjy6/2x4eHrh7967SeRlCRxVHVXsUCoXo06cP+vTpA6lUiilTpmDTpk345ptv1Bp41OkoQKaPGjVqpJBX7l6saP+nTkcJBAKFtqCrjgJkWrloefHx8QCgpKPk2qo66yhypVVJEQgESlbMNWvWKDXSAQMGIDw8nFuuXZTSzh6RD2SLCw05w4YNA4/Hw4wZM/D8+fMSz2bo1asXJBIJ1q5dq5C+YsUK8Hg8bnZnv379wOfzsXDhQqVZTfJzlVuEi567WCxW8kEuPz9dlv66urrC398fYWFhCtfi/v37OHnypNKL4dJgYmKCwMBA/Pbbb3j16pXCipHc3FysXr0aXl5ecHV15fYZPHgwJBIJFi1apFReYWEhV2d9ro0ca2trnDhxAk5OTujatauCz9OyQCAQoFu3bjh69KjCct74+Hjs3r0b7dq1416w9urVC1evXsX169e5fImJiUorZ7p37w4rKyt8//333MuxoiQmJupVx4yMDKUfBV9fX/D5fG5mjLxNyF3CyJHPSurdu7fGY9jY2KB79+7Yt28f9uzZA6FQiH79+inkGTx4MK5cucKtbChKWloaV8devXqhsLAQGzZs4LZLJBJumaWubN68WeH6bdiwAYWFhUqzr0vSL7Ro0QKenp5YuXKlUn+jqh8r2lcwxrB27VoYGxujc+fOKssXCAQYMGAADh48qHKwVbQNFBQUYPTo0XBzc8OqVauwbds2xMfHY9asWVyeon1C0T7k1KlTSvEh9KF///4QCARYsGCB0nkzxpCcnAxA9+ulrQ8vawYOHAiJRILNmzdzafn5+di6dSuCg4MVZuO9evVKyb/5wIEDcePGDQXjyJMnT3D27FkMGjSIS1P1DGdmZmLlypVwcHDgBqOqkEgkSr8DTk5OcHNz457ngIAAeHl54aeffuJ8xBZFfnw+n49+/frhjz/+UGnQkd+bXr164fr161zcKADIzs7G5s2bUbduXb3i1ABAy5Yt4ejoiI0bN0IsFnPp27ZtU7r38jYkRygUwsfHB4wxlf2jnHfeeYdbmVjUv+y2bdsgkUjQtWtXLm3IkCGQSCQKM6fy8vKwa9cu+Pj4aJzhFhERgY0bN+K9995TEGyq7vGGDRuQmJiIHj16cGkNGjQAY0zBFSEgi5cFwCAzUQmCqFhII9U8jaTL2Fteb33GPKUdr6uie/fuuHLlCu7cucOlpaSkqF3Zb2h0HWP06tULMTExOHDgAJcvJydHYcwG6D4G0pWcnBwlP/VeXl6wtLTk7mWXLl0gFAqxevVqhfb6yy+/ID09Xet94fP5GDhwIP744w/s2LEDhYWFSm6BBg8ejOjoaPz8889K++fm5nIu4OTP2OrVqxXyFG8z2ti+fbtC3KEDBw4gNjZWSUf17NkTDg4OWLJkCc6fP69T3+Ho6IgOHTrg119/5dyVylHV1xWNZwCA04SaVtTqqjsBWewPqVSKX375BZs3b4aRkRHGjRun0Bd1794dR44cUajvo0ePVJavK7pqfl2vV0XrqL59+8LY2Fihj2aMYePGjXB3d0ebNm249NjYWDx+/FjhvAcOHIj4+HgcOnSIS0tKSsL+/fvRp08flfFHdu/eDTMzM5UxPtRRXFtYWFigfv363PPs5OSEd955B5s2bVK5gqVoH6LL73avXr0QFxenEEeosLAQa9asgYWFhcZ4PKrQR9cXP1c+n88ZN1W5LZPTsGFD+Pn54ejRo0hKSuLST548idevXyvpKEDW38mRSqXYunUr7OzsNOraxMRELFmyBM2aNVMwjKjqp//66y/cvHlTSUcBwJ49exTy/v7778jOzq7WOopWjFRS3nvvPezYsQPW1tbw8fHBlStXcPr0adjb2yvk+/TTT3HgwAEMGjQIY8eORUBAAFJSUvD7779j48aNSjNF9cHf3x8CgQBLlixBeno6RCIROnXqxC3jcnR0RI8ePbB//37Y2NiUaPAIyHztvfvuu/jqq68QFRUFPz8/nDx5EkePHsXMmTM563/9+vXx1VdfYdGiRWjfvj369+8PkUiEGzduwM3NDYsXL0abNm1ga2uL0NBQTJ8+HTweDzt27FA5KAgICMDevXsxe/ZsBAYGwsLCAn369FFZx6VLl6Jnz55o3bo1xo0bh9zcXKxZswbW1taYP39+ic5bHe3bt8cPP/wAa2tr+Pr6ApD9oDRs2BBPnjzB6NGjFfJ37NgRkyZNwuLFi3Hnzh1069YNxsbGiIiIwP79+7Fq1SoMHDhQr2tTFAcHB5w6dQrt2rVDly5dcOnSJbi7uxv0nIvy7bffcsebMmUKjIyMsGnTJuTn5+PHH3/k8n322WfYsWMHevTogRkzZsDc3BybN2/mZhHIsbKywoYNGzBq1Ci0aNECQ4cOhaOjI169eoU///wTbdu2VRKcmjh79iymTZuGQYMGoUGDBigsLMSOHTu4l+8A4Ofnh9DQUGzevJlzXXD9+nWEhYWhX79+Cisv1DFkyBCMHDkS69evR/fu3ZWCbH/66af4/fff8d5772H06NEICAhAdnY27t27hwMHDiAqKgoODg7o06cP2rZtiy+++AJRUVHw8fHBoUOH9PbLLBaL0blzZwwePBhPnjzB+vXr0a5dO6WlliXpF/h8PjZs2IA+ffrA398fY8aMgaurKx4/fowHDx4oDJJNTEzw999/IzQ0FMHBwTh+/Dj+/PNPzJkzR+PKgB9++AHnzp1DcHAwJkyYAB8fH6SkpODWrVs4ffo0547n22+/xZ07d3DmzBlYWlqiWbNmmDt3Lr7++msMHDiQE9GLFy9G79690a5dO4wdOxYpKSlYs2YNmjRpolI46oKXlxe+/fZbfPnll4iKikK/fv1gaWmJFy9e4PDhw5g4cSI++eQTna+XfOA0ffp0dO/eHQKBAEOHDi1R3UpCcHAwBg0ahC+//BIJCQmoX78+wsLCEBUVpTDYA2Qz5M6fP6/QH02ZMgU///wzevfujU8++QTGxsZYvnw5nJ2ducCogEzgyYOe16lTB7GxsZzY2bFjh8KqheJkZmaiVq1aGDhwIPz8/GBhYYHTp0/jxo0b3GxkPp+PLVu2oGfPnmjSpAnGjBkDd3d3REdH49y5c7CyssIff/wBAPj+++9x8uRJdOzYERMnTkTjxo0RGxuL/fv349KlS7CxscEXX3yB3377DT179sT06dNhZ2eHsLAwvHjxAgcPHlTymasNY2NjfPvtt5g0aRI6deqEIUOG4MWLF9i6datSjJFu3brBxcUFbdu2hbOzMx49eoS1a9eid+/eGlfgiEQiLF26FKGhoejQoQNGjRqFV69eYdWqVdzvsZxJkyZhy5YtmDp1Kp4+fYo6depgx44dePnyJXed5Pj4+GDQoEGoU6cOXrx4gQ0bNsDOzg4bN25UyOfh4YEhQ4bA19cXJiYmuHTpEvbs2QN/f39MmjSJyzd69Gj89NNPmDRpEm7fvo0mTZrg1q1b2LJlC5o0aaKX0CMIonJCGqnmaSRdxt7yep8+fRrLly+Hm5sbPD09ERwcrLZcQ4zXi/PZZ59h586d6Nq1Kz766COYm5tjy5YtqFOnDlJSUsp8FrquY4wJEyZg7dq1CAkJwc2bN+Hq6oodO3bAzMxMoTx9xkC68PTpU05P+Pj4wMjICIcPH0Z8fDw3RnV0dMSXX36JBQsWoEePHnj//fc57REYGKiTsWDIkCFYs2YN5s2bB19fX4UVQQAwatQo7Nu3Dx9++CHOnTuHtm3bQiKR4PHjx9i3bx9OnDiBli1bwt/fH8OGDcP69euRnp6ONm3a4MyZM3qvALKzs0O7du0wZswYxMfHY+XKlahfvz4mTJigkM/Y2BhDhw7F2rVrIRAIlOIMqGP16tVo164dWrRogYkTJ8LT0xNRUVH4888/FYx0gGyV2Pvvv48ePf7P3lnHN3W+bfyKS90VKYUKBVpgOIPiLoUJg43SIROYMGfvDGZszMcEGBQYg/0YUNx9Aza0QCmFAgXq7o3nef8IOW2apDlJLS3P90M+oUefk5ycc1/nttE4c+YMNmzYgOnTp9d5TWSrO+Pj47Fnzx6sXbuWKXH3448/4umnn8Yvv/yCF198EQCwePFi7N+/H48++ihefPFF5sF2RESEgY63Bms0P5vPS6+j/u///g/Tpk2DQCDAhAkTGjQLri4CAwPx6quvYtmyZVCpVOjVqxe2b9+Ov//+m+kDomfRokXM71yf+fPYY4+hb9++iIuLQ3JyMjw9PfHzzz9Do9GYLJ9bVFSEffv2YerUqVaVx+vcuTOio6PRs2dPuLu74/z589iyZQsWLFjALPPTTz9h4MCB6Nq1K+bOnYsOHTogNzcXZ86cQUZGBi5fvgyA3X173rx5WLFiBWbNmoULFy6gffv22LJlC06dOoXvvvvOYkUBU7DV9XPmzEFRURGGDh2KwMBA3Lt3Dz/++COioqKMrjG1+fbbbzFixAgMHDgQzz33HEpLS/HNN98gJCTEoDzVpEmTMGzYMHz++ecoKChAZGQktm/fjn/++QcrVqwwcGgNHjwY/fr1Q8eOHZGTk4OVK1eioqICu3fvNtCT/fv3R/fu3fHII4/AxcUFFy9exJo1a9CmTRu8++67zHITJkxAREQElixZgnv37qFv3764desWli9fDj8/P8yePdvqz7bFQCjNQnx8PAFAzp07Z3J+cXExiYuLI56ensTR0ZGMGjWKpKSkkHbt2pHY2FiDZQsLC8mCBQtIQEAAEQqFJDAwkMTGxpKCggJCCCFpaWkEAImPj2fW+fDDD0ntr9/UtletWkU6dOhAeDweAUCOHTtmMH/z5s0EAJk3bx7rY4+NjSXt2rUzmFZeXk4WLlxI/P39iUAgIJ06dSLLli0jWq3WaP01a9aQ7t27E5FIRNzc3MjgwYPJoUOHmPmnTp0iffv2JRKJhPj7+5O33nqLHDhwwGj8FRUVZPr06cTV1ZUAYMZk6vMihJDDhw+TAQMGEIlEQpydncmECRNIcnKywTL6zzU/P99guv77TktLs/j57NmzhwAgY8aMMZg+Z84cAoCsXr3a5HorV64kPXv2JBKJhDg5OZGuXbuSt956i2RlZVn92QwePJhEREQYbP/WrVvEz8+PhIeHGx1fTUytS4ju/Bo3bpzRdABk/vz5BtMuXrxIRo0aRRwdHYlUKiVDhgwhp0+fNlr3ypUrZPDgwUQsFpOAgADy8ccfk9WrV5v8rI8dO0ZGjRpFXFxciFgsJsHBwWTWrFnk/PnzzDKmfhe1uXPnDnn22WdJcHAwEYvFxN3dnQwZMoQcPnzYYDmVSkUWL15MgoKCiEAgIG3atCGLFi0icrnc6PMaPHiw0X7KysqIRCIhAMiGDRtMjqW8vJwsWrSIdOzYkQiFQuLp6Un69+9PvvrqK6JUKpnlCgsLyTPPPEOcnZ2Ji4sLeeaZZ8ilS5dMnue10Z+7J06cIPPmzSNubm7E0dGRzJgxgxQWFppcx5brAiGE/PPPP2TEiBHEycmJODg4kG7dupEff/yRmR8bG0scHBzI7du3yciRI4lUKiU+Pj7kww8/JBqNxmBbAMiHH35oMC03N5fMnz+ftGnThggEAuLr60uGDRtGVq5cSQgh5MKFC4TP55OXXnrJYD21Wk169epF/P39SXFxMTN969atJDw8nIhEItK5c2eybds2k9e32mMxd52oud2BAwcSBwcH4uDgQMLCwsj8+fPJjRs3rPq81Go1eemll4iXlxfhcDgWz+3a5+KxY8cIAPLXX38ZLGfuGmkKmUxG3njjDeLr60tEIhHp1asX2b9/v8l9mxpfeno6eeyxx4izszNxdHQk48ePJ6mpqQbLHDx4kIwYMYL4+voSgUBAXF1dyciRI8mRI0csjk+hUJA333yTREZGMp9jZGQk+fnnn42WvXTpEpkyZQrx8PAgIpGItGvXjjzxxBNG+7l37x6ZOXMm8fLyIiKRiHTo0IHMnz+fKBQKZpnbt2+Txx57jLi6uhKxWEx69+5Ndu/ebbAdaz//n3/+mQQFBRGRSEQeeeQRcvLkSaPvdMWKFWTQoEHMMQQHB5M333yTlJaWWvysCCFk06ZNJDIykohEIuLj40MWLFhAysrKjJbLzc0lsbGxxN3dnYhEItKnTx+T3/u0adNImzZtiFAoJP7+/uT5558nubm5RsvNmTOHdO7cmTg5ORGBQEA6duxI3n77bZP7zsjIIM8++ywJCgoiQqGQ+Pn5kblz59Z536JQKPYD1UjtDKZRjcTe9k5JSSGDBg1i7Gf9d1aX3cXWXjenY0zZ8ZcuXSKPPvooEYlEJDAwkHz++efkhx9+IABITk6O2eMkpNrWNbUftvqKjY1BiM5emThxIpFKpcTT05O88sorZP/+/SbPZzY2EJvvsqCggMyfP5+EhYURBwcH4uLiQvr06UM2b95stOzy5ctJWFgYEQgExMfHh7zwwgsGdrj+86r9myGEEK1WS9q0aUMAkE8++cTkWJRKJfniiy9IREQE85vp2bMnWbx4sYFdJJPJyMsvv0w8PDyIg4MDmTBhAklPTzepNWqjt+U2bdpEFi1aRLy9vYlEIiHjxo0j9+7dM7nO2bNnCQAycuTIOrddm6SkJBITE8N876GhoeT9999n5ut/B8nJyeSxxx4jTk5OxM3NjSxYsIDIZDKDbZm65lnSnenp6cTFxYVMmDDBaGwxMTHEwcGB3Llzh5l24sQJ0rNnTyIUCkmHDh3Ir7/+yur6a+kewUbzs/m8CCHk448/JgEBAYTL5Vo8t2ufi/rr5bJly4yWZXPuEEKIRqMhn332GWnXrh0RCoUkIiLC5HOB2NhYk+MrKiois2fPJh4eHkQqlZLBgweb/dx+/fVXAoDs3LnT4rhq8sknn5DevXsTV1dXIpFISFhYGPn0008NnkUQorsuzZw5k9FrAQEBZPz48WTLli0Gy1m6bxOi0xl6O0AoFJKuXbsa3Zes/fzZ6PotW7aQkSNHEm9vbyIUCknbtm3Jc889R7Kzs1l9VocOHSJ9+/Zl7mPPPPOMyXXLy8vJK6+8Qnx9fZnjM/W9L1y4kHTo0IGIRCLi5eVFpk+fTm7fvm203P/93/+RqKgo4uLiQgQCAWnbti154YUXTN6PioqKyMKFC0lISAgRiUTE09OTTJs2zeC32xrhENKI3boorZ4dO3Zg8uTJOHnypEFDcAqF8vDSWNeFWbNmYcuWLTZnZFAoFAqFQqE0BVQjUWry6quvYsWKFaioqDDbDJhCAYDLly8jKioK69evxzPPPNNg2/3oo4+wePFi5Ofnw9PTs8G2S6FQKC0d2mOEUi9WrVqFDh06YODAgc09FAqFYifQ6wKFQqFQKJSHGWoLPbzIZDKDvwsLC/H7779j4MCB1ClCsciqVavg6OhoUKaUQqFQKI0H7TFCsYk///wTV65cwZ49e/D99983er1UCoVi/9DrAoVCoVAolIcZagtR+vXrh+joaISHhyM3NxerV69GWVkZ3n///eYeGsWO2bVrF5KTk7Fy5UosWLCgyXpZUCgUysMOdYxQbOKpp56Co6MjZs+ezTTRolAoDzf0ukChUCgUCuVhhtpClLFjx2LLli1YuXIlOBwOevTogdWrV2PQoEHNPTSKHfPSSy8hNzcXY8eONdkcm0KhUCiNA+0xQqFQKBQKhUKhUCgUCoVCoVAoFArloYH2GKFQKBQKhUKhUCgUCoVCoVAoFAqF8tBgtWPk5MmTmDBhAvz9/cHhcLB9+3aD+YQQfPDBB/Dz84NEIsHw4cORmppqsExRURFmzJgBZ2dnuLq6Yvbs2aioqKjXgVAoFAqFQqFQKBSKPUA1E4VCoVAoFAqFYt9Y3WOksrISkZGRePbZZzFlyhSj+V9++SV++OEHrFu3DkFBQXj//fcxatQoJCcnQywWAwBmzJiB7OxsHDp0CCqVCnFxcZg3bx42btzIagxarRZZWVlwcnKiDe0oFAqFQqFQKA8FhBCUl5fD398fXC5N/LZn7EEzAVQ3USgUCoVCoVAeLqzSTKQeACAJCQnM31qtlvj6+pJly5Yx00pKSohIJCKbNm0ihBCSnJxMAJBz584xy+zbt49wOBySmZnJar/p6ekEAH3RF33RF33RF33RF33R10P3Sk9Pr48JT2ligObRTIRQ3URf9EVf9EVf9EVf9EVfD+eLjWayOmOkLtLS0pCTk4Phw4cz01xcXNCnTx+cOXMG06ZNw5kzZ+Dq6opHHnmEWWb48OHgcrn477//EBMTY3E/Tk5OAID09HQ4Ozs35CFQKBQKhUKhUCh2SVlZGdq0acPYwpSWSVNpJoDqJgqFQqFQKBTKw4U1mqlBHSM5OTkAAB8fH4PpPj4+zLycnBx4e3sbDoLPh7u7O7NMbRQKBRQKBfN3eXk5AMDZ2Zka+BTKQ4pGS3A2rQh55XJ4O4nRO8gdPC4tEUGhNAa2/N7ob5RCaTxoSaSWTWNpJoDqJgqFYgi1xyiUpoXqJgrFfmCjmRrUMdJYfP7551i8eHFzD4NCodgJ+5OysXhXMrJL5cw0PxcxPpzQGaO7+DXjyCiU1octvzf6G6VQKJTmgeomCoWih9pjFErTQnUThdLyaNCujb6+vgCA3Nxcg+m5ubnMPF9fX+Tl5RnMV6vVKCoqYpapzaJFi1BaWsq80tPTG3LYFAqlBbE/KRsvbLhoYDgAQE6pHC9suIj9SdnNNDIKpfVhy++N/kYpFAqlbhpLMwFUN1EoFB3UHqNQmhaqmyiUlkmDOkaCgoLg6+uLI0eOMNPKysrw33//oV+/fgCAfv36oaSkBBcuXGCWOXr0KLRaLfr06WNyuyKRiEn/pmngFMrDi0ZLsHhXMoiJefruSh/tugaN1tQSFArFGiz93gBg8a5kg9+bLetQKBTKw0ZjaSaA6iYKhcJOM324MwkqjaaJR0ahtE6obqJQWi5Wl9KqqKjArVu3mL/T0tKQmJgId3d3tG3bFq+++io++eQTdOrUCUFBQXj//ffh7++PyZMnAwDCw8MxevRozJ07F7/++itUKhUWLFiAadOmwd/fv8EOjEKhtD7OphUZRVPUJqdUAc9P+sDFOQ9eDl7wknpVvz/4v6fU02C6s8iZ1munUGph6fdGAGSXynE2rQj9gj1sXodCoVBaI1QzUSiU5oKNZsotU8J1SU84OmUb6KLaOqnmu4fEAwKeoImOgkJpOVDdRKG0XKx2jJw/fx5Dhgxh/n7ttdcAALGxsVi7di3eeustVFZWYt68eSgpKcHAgQOxf/9+iMViZp0//vgDCxYswLBhw8DlcjF16lT88MMPDXA4lLqgDZ0otWlp50Reed0Gvh6lSoJ7pfdwr/Qeq+WFPKGBCGD+b0IUeEo94S5xB4/Lq8+hUCh2D9vfW83lbFmH0nJpafcQCqUpoZqp5UKvbRRTtKTzgrWdpXVBXuVl5FXmAfnsVnEVu5oMPGOcKrW0k0Qgsf1AKJQWAtVNlLpoSfePhxGrHSPR0dEgxHwqF4fDwZIlS7BkyRKzy7i7u2Pjxo3W7ppSD2hDJ0ptWuI54e0ktrwQgPVTf0SAZxXyK/ORX5WPgqoC5v/5VfnV/6/MR6WqEkqNElnlWcgqz2K1fS6HC3eJO6tsFP00IU9Yn0OnUJoctr+3788tQQe/Bejq05X1Ol5O9PfQ0mmJ9xAKpSmhmqllQq9tFFO0tPOCrT22+clVaOMlN9BGNd8LqgqYvwtlhdASLUrkJSiRlyC1KJXVPhwEDqY1kgm9RDP5KS0Vtr+5f7MOYmzXpyHgCVivw3Y5in3S0u4fDyMcUpfFbqeUlZXBxcUFpaWltG4uC/QNnWp/0Xpz45ene9Af5ENGSz0nNFqCgV8cRU6p3GQtTg4AXxcx/nl7KGsPvEwlMzD6LYmCYnmxTWN3EbkYRlGZyUbR/99B6GDTfiiUhsLS7w0gUHMKkCmaDQ6HYEa3Gfhg0EeYufKu2XUItNCgED0it+P3mHVwEbs07kFQGoWWeg9pDVAbmGIt9JxhD722UUzREs+LxtBMGq0GxfJiA51kpKFq6SiVVmX12Gtn8lsq7+UucQeX06CtcykUq2Glm1CATPFsBLsH4eMhH+Oxzk9g0JfH69RNhFOMlc/6YHSnUY17AJRGoSXeP1oL1ti/1DHSytFfoM3VLrTFKKK0PGqm7nk6iPD6X5eRU9Yyzwn9zQWAwQ2mqW4uKo0KhbJC1qKgsKoQGmJ9Y0MJX2IyisqcKHARudDoKkqDY+n39t5EXxzI/AJ/Jf8FABBwBZjY7gOcT+4Ojol1CAiKxctQxjmJEI8QbH9yO8K9wpvgSCgNBbUrmhdqA1OshZ4z7KDXNgpgXO6kZzs3DF52rEWeF82tmQghKFeWswo8q5nJby11ZfKbKu9FM/kpjYWl39yEPrn43+1FutJ1ACJ9IvFE8GdYdYQYrYMHU/KEn0HO+xefDfsMbw94m+r9FgS1K5oX6hihMJy5XYinVv1rcblNc/vShk6tFFOpe2wQe6+Am0s+nIROcBY5w0nkBCehk/Hfogd/1/q/g9Ch0aJ3WlI6oj7l3BpRoNAorN4Pn8s3m6JuKsrKQ+JB+6RQWMHm93Yh6wLePfouDt4+CABwRTT8tC+hSiEyWsfTPRNT/jcF6WXpcBQ6Yt3kdZgSPqVpD4piNfmV+UjKS8K+5NvY/Lfl6yy1KxoHagNTrIWeM+ygmoliyt5xdxCgqNJy1oOz3xq4uxRapZlqzm+sB/UtSTMBukx+s4FntQLQCqoK6pXJzyYbRT+PZvJT2GLpN1ehrMB3/36HZaeXoUxRBgDo6TYb2tIpKKokBuu8OzYEu+5/jFUXVwEAHuv8GNZMXAMnkVPTHhTFKpQaJW4U3MDOqylYdVhqcXlqVzQO1DFCYdiRmIlX/ky0uNz306IwKSqg8QfUSrHXZkrmUvfYkC/4ElX8k/Xav6PQ0awAMCUY6hIPfK5hSyR7/czrCyEEFcoK494oJrJR9PPLleVW74cDji66ykQ2iofEC5WVvoDGBe3cXTGoUwB8Hb0h4ossb5jSZDTlb4Dtvo6mHcWiI4twNvMsoOXDh/sYHvEZg/HhffDsgE4Q8nXO0rzKPDy55Ukcv3scAPDuwHexZMgS6qxrAOp7XpTIS3At7xqS8pJwLb/6XR/dJlUPgpfqLYvboXZF40BtYIq10HOGHVQzNQ32ar/XRzMB9ddNQp6wwTSThC8xiCq318+8ITCVyW/kWKmlnbREa/V+amfy63WTu8QTsqoAcLWuaOvugoHBfvB18qaZ/HaIvemmwqpCLP1nKZafWw65Wg5o+ejr8SZ6eI1Cj8A2eKZfe0Y3rbywEgv2LoBKq0Jnr87Y/uR2dPLo1Chjf5io7zmh1qpxu+i2kWa6WXgTaq2aaqZmhjpGKAw0+qnxsddIHEupe5Z4a4IQAR5VKFeWo0xRhnJFefX/leWGfz/4f7lC97ctpaMsIeaLTWamGAgEc2Ki1vIinqhVGatytdykE8Vc0/kiWZHZbUk0/eCunAc+vJhpauSjSLgSfEmS6b4oZqKsHAQOrepztifs9boD6Jx7Sw7uxNqTFSAaV2a6k0SDpTE9Ma6bzvBTa9V4+9Db+ObfbwAAozuOxsYpG+EmcWuOYbcKrDkvKpWVSM5PRlJekoFBn1meaXb7Hdw6oJ1kOO7cnmhxLNSuaByoDUyxFnrOsIOtZvpjTi8M6OjdBCNqfdir7VJfzQQAC8dy4OdRYayZ9BrJjGaSqWUNeCQ6eBye5SwVlprJUejYqvp3aIkWxbJiVtkoljL569JMKsE51s3maSZ/42Ov1x4AyCjLwPxtq3DhRgfwiScz3cuJj48ndWPGdyb9DB776zFklWfBReSCDVM2YHzI+OYadovHmnNCS7S4V3LPSDOlFKSYvT44i5zRyXEsCjKetjgWqpkaB+oYoTBYagJFoIWGU4jnRmdi0aNvG0XlU+rGnpspsRV4tdGfE2VOr8BBJIVUIIWDwAEOQgeDd1PTpQIppHwpBDwB80CcEAKNVgM1UUOlUUGpVaJKyd7hYktZKUsIuALWgsGSeGiJD//VWjUKqwqNRMG52yocSwx+sFT1MRFoAXCQL/wMMt4Z1vsR88V1ioLaNX9dxa6tSnw1FvZ83QHMj49ACw44eGawAotHxzDf9carGzFn5xzI1DJ0cOuAhCcT0M2nW9MPvIVT13lBAEx/tBJEdAlJ+Um4lncNaSVpZrcV6ByILt5dEOEVgS7eXdDFuwvCPcPhIHRolIauTU1Ljp6lNjDFWug5ww5WmgmFCOy4Eutj1iLEI6TJx9iSsWfbxVbNBOjOCy2nCDLXN8zqJmaaielinhhcLhcguj5shBCotWqotCqotCrI1XJUKE04XExopgplBYjNOS/mcRQ6NohmchI6QcATNPj4GpOamfw1nSj/3VZg//nAB0vVXzPVzORnHCcST5OBZ3oNRTP52WHP1x7Asm5a+lhHTHskDACQU5GDx/96HP/c/wcAsDh6Md4b9B7Vz1ZiSTM9N4wLoUMyo5mS85PN9j+SCqTo7NXZSDcFOAVAS9DiNRPQcnUTdYxQDDDXBAoPpuQ9uHH38u+FdZPX0Ua4LLH3ZkpsSwLUxFZjzlqEPGG1c8WUw0U/TeAAMV8MPpcPDjg64QCdkaolWmiIBmqtGkqNEkqNEnK1HDK1zCgaS/9/Wxr6WYLL4ZoVDMz/WQgGZ5EzHIWOzRYtxOZ89nTi45sZDiiUF5jNRtG/y9XWR93xODzGWWKp2byn1BOeUs+Hzplr79cdS+PTP1jyDlqOz4d9ipHBI8HhcHA55zJi/heDtJI0SAVSrJm4Bk92ebKJR99y0WgJBiw9gpwy045k/eeeKZ4NcKpLSPg4+CDCOwJdvLro3r27oLNXZ7iKXevcX3M3dK0P9hw1yAZqA1OshZ4z7Knr2kZAUCH9DoXkCMR8MT4f9jle7vMyfSDFAnu3XdhrJoKGeAhuDVwOVxd4xiJQTR+cxuVwweVwdYFbBNBCCy3RMppJpVFBoVEwThdTmqlcWQ61Vt3gxyPmixtEMzVnBQA257OXswA/x3qiSG4mo59lJn9dOAmdTJb3qh149jBn8tv7tYeNbtJyivDM8FS8PeBNuIhdoNQo8dqB1/DTuZ8AABNDJ2L95PVwEbs05dBbLGy1am3NJOQJEeYZpnN81NBN7V3b12kHtGTNBLRs3UQdIxQjzJ3QH4zvjEJyBC/tewkl8hKIeCJ8MvQTLOy7kKZzWsDey5TZEv3k5yLGG6Pao18nCSqVlahSVaFSVYlKZSXzbmpapcrC9Af/t6Wmqy1I+BIj4eAgdICEL4GIJ4KAJwCfywefwwc4MBQOWp3DRe9s0QsHmUqGSlWlTkA8EAw2Hw/hQqSNAI+4QcMphoJ7jbnxSgXSutPa6xIT9WjkyPZ8mTLgProEiuAqdoWLyAWuYlfd/8UucBG5QMATgBCCKlWV6RR1M6JA33zOWtzEblaV9xLzxTbtx15g+z39PrsnHu3k2wQjMoTt+HKEi6DgXUV0+2h8Puxz9A3siyJZEZ7a+hTTwP2Nfm/g8+GfP3TOL0totBrcKb5TXcs27xrO3y2DquBFi+v27nIGg0P8EOEdgQivCHg5eFlcxxwt0VC296hBNlAbmGIt9JyxjrqubRFt1Ji9czYO3TkEABjUbhDiJ8Wjg1uH5hpui6C1aCZ3ByGKKpXM374uIiwc0QZ9OooM9I4l3VSltrxsY2TMm0LAFZgMVJPwJZAIJBDyhBBwBeBxeTpnCzjgcDjQEp2zRaOtFaSmkUOukuuOQ1XJOFxsPp46NBOfy28wzWSN04Dt+TKh7210DhAwOonRTA/0k1QgBYfDYTL5zTadr6WfCqoKbHJaifliY8eJmWyU1pLJ31quPTnCRZA6ZGDRwEVY0HsBJAIJ1iauxfO7n4dCo0CIRwi2P7mdBjiboFhWzGimpLwknE0rRl76dIvrhYbsR/8OnrpMEO8IdHTvaLMmbYmaCWj5uok6RigmqSsFKrMsE3N3zcW+W/sAAAPaDMDayWvR0b1jcw7ZrrH3Jo1syp34OIvw9RNRKKhQNHpaHCEECo3CsnPFBodLpbKyUWr0moLH4TGRW1KBFGK+GEKeUCcceALwOfzqKC0YZ7dUlHVEZeEYg94LGk4BCgUrGjzaTMgT1t2sscbf93O8sfOsZYPQUnNJB4GDSePflCOl5nQJXwK1Vo1yZTlj9NclCgqrCm0qF+AodLSq5q+T0MmuoqvYXncKhV/B3zsLYZ5hCPcM1728whHmGQZnUePdN9mOr1d4Enalf8gI5Umhk/Dp0E8R5hmG946+h6WnlgIAhgUNw5+P/QlPqWddm2uVEEJwv/Q+U8v2Su4VXMq5hFtFt6DUKA2Wba7mfi0htVqhVqBYXoyCyiLMXHkXRZWmrxvNHTXIFmoDU6yFnjPWU9e1jRCClRdW4vWDr6NSVQkHgQO+GvkVnuv5nF3ZC/ZEa9BMvi5inHhzCC7cK26Se55aq2a0TkMHqlUqKxulH6QpxHwxk9ki4Usg4osYZwufxwePwzN4+K7XTBqtBhVlHVFeMKpJNBMHHDgKHVlppoxcX+w972Nxm5Y0E5/LN6mNLGknF5EuM0CulqNIVlRn4FlDZfKzKe/lIfWwu2AmttceucMv6BRYinDP8Grt5BWOti5tG9U5xHZ8Io+NuFm1EQDg7+SPDwd/iLioOFzOvYwp/5uC9LJ0OAodsW7yOkwJn9Jo47VnyhXlSM5PxrX8a7iaexWXci7hWt41FMgKDJajmsk8WqJFmaLsQR+mIsxbk4PiSsNMST0tQTdRxwjFJgghWHNpDRYeWIhyZTmkAim+GP4FXuz1YouPFmgM7D0CAWj5qXvWoCVaVKmqzDtX6orMYiE2VFpVvcco0fSDl/JdADoDXE/NVHy14DzEfDHjcKktHDjggIAwkVr6OsRKjRIKtQIytczooSkbRJqu8FV+bnG5EslH0AhTdON+4PRRaVUNlm4v4JqPrKr5f2eRM7gcLggI1Bo1FBoFZCoZypRlRiJB/27LGIU8IetsFE+pJ9wl7o16vbQ2I8MU/k7+RoZ/mGcY/Bz96v1Qh3Wmmvv3eLx7JDJKM7A5eTO05EH/kchnsDh6Mc5nnces7bNQqapEO5d22PbkNvTw61GvsdkrhBDkVOQwkUyJOYm4mH0Rt4pvsRayEm03eCs+s7hcS23uJ1fLUSwrRrG82Py7mXl6pznba9wfc/qAy+HYrXChNjDFWug50zikFachbkccTtw7AQAY0WEEVk9cjTYubZp5ZPYH1Uz2BSEESo3S+kA1/TQWy9YXNppJzvsXEoEEYp4YIn6NigBcfnV2CzgGFQFUWpVBKTG5Wm51BQC29kSR5ENoBSmMbc3oNo2qwXrBOIucTQeeiQwdKWK+mOlhoy8/XamqRLGs2GTT+YbM5DcVeNZUmfz11U0SvgShnqFMkFmYZxjCvcLRyb1Tg/R4YTu+0E77EdlGgv9d+x/ul90HAHRy74SPh3yM6PbRmLZ1Go7fPQ4AeHfgu1gyZEmrrf4iU8mQUpCCpLwkXM27ivNZ55Gcn4zcylxW67P9/bZUzaTRalCqKGW0UIm8hLV2KlWUMtdDtp/T++PC4ekkavGaiTpGKEbcK7mH2Ttn40jaEQDAkPZDsGbSGrR3bd+8A7MzWkoD2paaumdvqDQq1hFbRtNUlahQVCE5+Slo1I4w5XU3V8+yoRHyhBByheBz+eBxeeBxeA9KiXEgLP4SHK0rODB+sN/Q49PvlwMOEx3WEHDAgbPI2aRAEAvEEHAFjMDSaDVQapVMmbRyZTmKZcWMY8UWYcflcOEh8WBd89dT6mlVI0q2153/vRCKm0UpuJ5/HSkFKbhecB3XC64jpyLH7LZdRC4I8wwzcJiEe4YjyC2IdQSYpfEBBFpOEdJFcQBHCx6Hh8HtB0OuluN0+mkAOufYC4+8gKmdp2LOzjlILUqFmC/GivErMDNyJqtx2CsFVQW4lncNV/Ou4lzWOVzKvoTbxbdZn2tivhgd3Tuim083RHhFMCItyDUYQ776227vR4QQyNQyq5wbNQ15WyIda8IBB57c0ZBWzre4rItEgFJZtSPc11mMjybaz/2S2sAUa6HnTOOhJVosP7sc7xx+BzK1DM4iZ3w76lvERcXR7JEaUM30cKElWt2Dd2sD1R5Mq1BW4UrSY1Crmlcz8Tg8g4oAPO4D7UK4EBV/CTSRZuKAw+immsFxDYGYLzaZmeIk1JVk5nF0D9e10OoC0dQKVKmrUK4sR5m8DIWyQhRUFaBIVmRzJr+R46SO8l7WZvKzraCxPNa9WjcV6t5vFt40GxjJ5XDRwa2DkcMk3DPcql4fbHSTGgXMuRTkGoQIrwicyTiDQlkhAKC7b3d8MuQTHE47jG///RYAMCp4FDZO3Qh3iTvrsdgbSo0SqYWpSMpLwqWcSziXdU7nAKnIZX2u+Tn6oYt3F3Tz6cbo207uoZj042W7vh9ptBqdDqpLM5lxbpQpyurteJXwJXDnjAS/bK5V67VkzUQdIxSTaIkWv57/FW8eehNVqio4Ch3x9civMbfH3EYz9FtCelltWkp0UUv8bFsbbCNCOnXcAxfnPAPHAQDGECYg0Gg1TGkulUZlEP2kUCuYJvQylQxVqirWZcaqo7OIgaHPtrkkBxzG2aIvJ0YIYcas1qobLEKqMZEKpHAR6XqmSIVSiHi6tH99Jog+S0aulqNKqRMHpfJSVKgqbNqfq9jVYs3fmlFWJ2+U2nzdKZGX6BwltRwmd4rvmBVZQp4Qndw76TJLPKoN/1DPUEgFUqPlLV0Xv5vWBWWck1h5cSX+uf8PM9/HwQcOQgfcKb4DQFeW7cVeL+JK7hUcuH0AAPBS75fw9civrXImNQel8lImlft0xmkkZifiTskdVCjZnSMuIheEeIQgyjcKXby7MKIr0DnQ7D24se9HhBAmulBvfJs12k1MsyWTrSZcDheuYle4id3gJnEzfDcxzVXsyvzfReyC/+4UW913qya/2sn9nNrAFGuh50zjc7PwJmZtn4UzGTobaVyncVg5YSX8nfwbZX8t0a6nmonCFraaKTh4N1xd8sAFl2k4r4cQwjSd12sQfZY9o5lqZI3IVDLI1DLWZcbqq5kAneNF37uFCy7A0Y1bX0qsqcqd1Qceh8cEoTkKHSHmiyHiicDn8plsHY1Gw3zWFaoKlMnLUCwvtun4RDyR2UAzUw4VN4kbDl7Ltenao9aqkVacptNKNRwm1wuu15lR4+foZ5SVH+4ZDn8nf5M2vKVr41vj3ZFUugEbrm5g9svn8hHiHoK0kjRG50e3j8aQ9kOw9J+lkKll6ODWAQlPJqCbTzdWn21zodFqcLv4NpLyknA+6zz+y/wPKQUpyKnIYeUA5HP4aOvSFl19uiLKN4r5vEM8QiARSEyu0xT3I5VGxdq5UXs5WzO2aiIVSFlrpprvrmJXiPlim/oV62mJmok6Rih1crvoNuJ2xOHv+38D0Hmff5v4GwKdAxt0Py05Qqclj53SdLCtIWqpHq0tcMHVGar6ur4PUs31zRT1jgwuhwtlZWfIisaDaKqjXTi8YvBctoOILjFlu1RaFRRqnahoqDJaltA3fATAOFzsER6HBwehrnGlkCdksi0IIVBrdWW/9GXfbDkGqUAKL+5wcMufhLbG9+QgVmJMj0oMCnU2EAXOImeLDm2FWoHUolTG4Nc7TW4U3KjTsdbOpR3jKKkpAs7fUbG6LibnJ2PVhVVYf2U9imRFAHQPwJ2ETihVlAIA3MXu6Onfk2l2+2jbR/HX43/Bx9FyfefGplJZiesF13Ex+yJO3T+Fy7mXkVachjIlO4PWW+qNEM8QPOL3CLr6dGU+QzeJm03jsXQ/IoSgQllhUwRSibyk3iUFeRyekfHNxkh3E7vBSeRkU5k6LdFCppKhXFGJCT8kIr/c3DHof4umfytuUgHOvzei2R+QURuYYi30nGkaNFoNvjnzDd479h6UGiXcxG74ccyPmN51eoMGlbVk3WF67CJ8OCHC7sdOaTqaUzMBgJArhIgvYgKjapbo4nF44HJ1mklVGWFSM/Fdd4CILhk7Yh7opqZCr5vsWTMBuuh0fd9OAVfAXC81RAOlWgm5Rm5zWWt9Jr8bZwjUJZOhUVffA50kakzupUJ0mJtVmfyEEGRXZDOBZjV1U1Z5ltn1nIROBpkleu0U7B6Mw8n5Fq/rlcpK/JX8F1ZeWMk44QHAWeiMSlW1Qy+6XTRuFd1CRnkGpAIpVk9cjWldpln92TU0WqLF/dL7uJp7FafST+F81nnGAcLKGcmXoL1re0T6RKK7b3d09u6McM9wtHdtb1PZMDb3UqVGaVNJqmJ5MetguLpwFDraFBDmJnGDkCe0en81yyxWKKswZXkS8svNPecx3XsEaJmaiTpGGpDWGmGiJVp8/+/3ePfou5Cr5XARueD70d9jZuTMBjH09R7b2ieivUUQ1YVGS/DRwQ345tRv6OLbFqdfWN8qvntKw8HW6z5lwH14uhYzEUy2vur1AJNwIdJGgEfcoOEUQ8G9Vu9UcAFXYFC+yyiy60Hd25q9U/SC4mGkZo1k4EHZL43SUNiw/J4EXIHJ6CpzNX/dJe6Mgak3Ymsb/tfzrzMp3KbwkHggzLMzfIUD4CHqgM4+ARjfJRxBbu1MPtyWq+XYdn0bVl5YydRr138Oesebh8QDlapKyNVyBDgFYOsTW9EnsI9Nn6+1KNQKpBSk4N+Mf/FP+j+4mnsVd0vuMs6buuBxePB38keoRyh6BfRioplCPEJsqq1MCNE1xjPj1CiUFeNODhdFlWooSB4UvGSUyIsYo76+jkw+l29TBJKb2A2OQkcAYJyD+gjNmtlt+mms5rNYvmamivkIT2JQw9wcf8zpgwEdPev1+dUXe7WBKfaLPZ4zrVUzATqHf+z2WJzPOg8AiAmLwa/jf4W3g3e9t91aNNPZtEJM3hiLUlU6TsxbjT6BvZp7WBQ7gq1memxAJrzcjDVTzUwQti+bHQeNoJl4HJ5JR4xhr5VqzVQzI6YlZJk0NFwOlwn205doNtn/kuV3pc/kZ9tfsmb2fKm8FCkFKQZZ+SkFKbhddNvsdyPgCtDJoxNCPcLhzusNd2F7RPgGIqZbNziLHU2uczX3KlZdXIXfr/yOEnkJADB9SPX4OfohuyIbAPB6v9exdPhS1qWR6wMhBFnlWbiccxkn7p3A+azzuFl0EzkVOaw0iIvIBR3cOiDSJxK9/HsxDhBvB2+bnj0q1Io6NdOtbKCwUgUlyYeSdx0liiJmmYbol+QscrYpIMxV7AoBTwC1Vt1kmkmmkhmcQ+Z0ExtammaijpEGoiVH77DlRsENxG6PxX+Z/wEAJoRMwMoJK+Hr6GvzNvV1FWt+bjWxhxp/bEnKS0LXX7rCQeCA0ndKW23DK4ptNHV9ZS3RMmW16vOyRVzo17MnOOAYPZDXlyajGOMh8YC3g3ed5b14HB6KZcXIqcxBamEqk2J+r/Se2e2yaWJ4o+AGfrv4G9ZeXouCqgKjbQi4Aqi0Kgh5QqyN/gRPdRhh/kCkHoAr+0a4Ko0KNwtv4uS9kziVfgpX867ifsl9lChKLK4r4okQ4ByAzp6d0SegD7r7dUe4VzjaubQzuh9oiRal8lKbSlKVyEvqXVtayBMaGd9OQic4Ch112U4CCVMOQcgT6gTnA3Gu1Woh18iNjWp19d9VSjlKyjwhVwqhQgEU3GuoUldCppLV7wFEAyDV9Iebci748GKmaVEJLhwsrrtgSEe8MSq0MYdnEXu0gSn2jb2dMw+DZlJpVPji1BdYcmIJVFoVPKWe+GXcL3is82M2b7M1aSYAGPPHGOy/tR8/jf0JL/Z6sbmHQ7EjmlozEUKYErlGesZWLaVhvx2ZWtZgPUMaAn2miSlHDMUYCV8CbwfvOst7uYhcUKWqQn5VPu6V3ENKYQrjQKnr4Xtbl7bVGfk1SnN5Sb3A4XAgU8mwJXmLUXliPTWdJUODhuKvkd/CXVvH92ilbsqvzMfZzLM4fvc4LmRfQGpRKnIrci0GNnLAgYfUA8Fuweju2x19A/siwjsCoR6hcBI5GS0vU8lsKklVLCtmXVK8LlxELgaBYE4iJziJnOAgcICDwAFigRhinq46R81gUBBAqVXWqZlkKhkqlTKUV3hDrhBBiQLIOFcgU+ucFU1VmcMUHHAg0fQz0k1saGmaiTpGGoDWEL3DFrVWja9Of4UPj38IpUYJd4k7fhr7E56MeNImDy7biJBNc/uiX7CHLUNuMjRaDVy/cEWFsgJXnr+Crj5dG2EfrTfC7mGgpdRXbgi0RAulRvmg+aIM59KKkFMmg6NYg2AfAqXWSqGhYScuGiT6i2I1UoEU7mJ3eDp4wlPiCSlfCi20kKllKFWUIr8yH5nlmWaNO1NNDIPdg3G76Db+uPoHjqQdMVqnDeHgBhwhqSvSny8CFlwwMvK1RIsbBTdwJO0ITqefRlJeEtLL0lEqL7V43jgKHRHoHIhwj3BE+kaik3sneDp4AgQoUZhIszZhuLPZjyUEXAEcBNVOjJrlHngcHiOG9CXc9D2JlFql7jekkTNlHRpS7Eo0/eCunGdgQKuRjyLhSov1tpuMWlGDYnUkXLWWywwsGBKMN0aFNcEAzWNvNjDF/rGnc+Zh0kwAcDnnMmZun4kruVcAANO6TMPyMcvhIbVe07QmzQQAHx3/CItPLMbMyJlYN3ldo+yD6qaWy8OkmQDdMxa9ZvovrRA5pVVwlGgR7EOgqqWZWOkgjWWdVHM7D2uGfnOgLyvrLnGHl8QLLmIX8Ll8KDVKVKgqUFhViOyKbCYTxBTuEnejMsY8Dg/7b+03KE9ckzaEg5twQp256mZ0U7GsGH/f/xvH7x7HpexLuFV0C7mVlh0gPA4P3g7eCHYLRjefbujq3RX+Tv5wEjmhXFnOSjMVy4rrHXDJAQdSgZQp2caUF3+QacTlcAECXV8i7YOMI42ucgXTw/WBbmro30pL000STU84aodZXKWlaSbqGKknrS16hy1JeUmI3R6Li9k6g+Wxzo/h57E/w8vBOk8i2xqi30+LwqSoAFuG2qQMXTcUx+4ew6oJqzCnx5wG3fbDEGH3MPCwfY/Ndbx1RX/ZHAVWh8iovS17i/6yR/QP77VECy3Mf1a+Dr5o59oOSo0SqUWpTM3W7oSLizCdYl6T24/HY1f5fZxJP4PkgmSkl6ajTFFm0TEh4ongJHKCs8gZjgJH8Hl8KNQKlCnKUCIvQbmy3LoDNkHNqDwCAt0/+64FXRfVKdeoFWlo3IyUAw4jTkQ8kdl3IU9oPK+O5Wu+C3lCVsteuleJZ9detnh8f8zugwGdWk5aOIUC2M8587BqJqVGiY9PfIzP//kcGqKBr6MvVo5fiQmhE6zaTmvTTHtT92LcxnEI9QhFyoKUBt/+w2Zvt0Yetu+wOY9Xo9XYXCXApKZi4Zip+apZ9pRijL4ENSGkznJpYp4YHT06wknohOzybNwtvcvMY6ubjo74EDvL7+Ni9kXcKb6D/Kp8i9+Pvr+ms9AZTiInSAQSaLQaVCgrUCIvQZmirEEcCjVLyumDv1qqZgKs000CrsCsbrKod6zVWXW8J96twpz1Vy0eW0vTTNQxUk9aW/SONag0Knz+z+f4+OTHUGvV8JJ6YcX4FYgJj2G9jdb2+b1z+B18ceoLzOk+B6smrmqw7T5sEXatnYclgq2lnLeN9X3oo7/qLS7MiIzadUJriouGzgKwR9ga+D1QgUv1rPfMmkaoNd1QCDgCCHi6l5AnhJAnZAxsMU8MMf/BSyCuNrS5QgOjW288MwZ4jXkCrghfbHdEaZX5346PsxCHXusHqVDcJHWO2aLREvT85BBKqsyLNlepABdaWCNBCgWwn3Omtdn81nIu8xxit8fiesF1AEBsZCy+G/0dXMWurNZvbZ9fQVUBvJbpAuqK3iqCm8StwbbdUuxPimWoZtJhL+dsY30fNUtA18dBY6Cnam1H30uhSlVlsExjZAHYI3anm+xYM3HB1eklrhBCvi6zRMQXMWWGJXwJJAKJzmFQ08HAM9RLBnpKvxxft5yAK8Jn28QoqUM3+TqLcPSNgZAIRA3S27khaK2ayX5UaQslr9x01FNtfr+0A538JsJT2rxes4ZEwBPgg8EfYELIBMRuj8XVvKuYsnkKZnSdgR/G/AB3ibvFbfQOcoefi9hsDVGAwNtJiN5BlrfV2LAxBPoE6BoB6/uwNNR+F+9KNvn5EOgMpsW7kjGis2+zX3wo7OBxOS1CtNaHhj5v9REhNRsN6v+vJVpoiOHfppYxtdw/Nyuw+kQpCiuqDTF3Bw5mDBShezsuUrLVKK7UwkmsS2cHh5jdFpv9sV1OvwyXw2XKJDkQB/PbgvG29c0YlVqlrpSSRldOSU10JZU0Wg3URM2UWWIaN9Zo4qjVaqEmaqP9EhBotdoWnd3Q0Nh7KrSKqKBSq4BGKlUr0nSFr/LzOpfJLVPiWqYC/YItC7OmhMflYOmUrnj+QdkOUyyd0pXeYymUesBWM312YjneFY5E38C+dvMgoCHoFdALF5+7iA+OfYCvTn+FdZfX4fCdw1g9cTVGdRxlcX1LmolAC2eJtsVoJk+pJ4LdgnG7+DbOZZ3DyOCRDbZvqptaD1Qz2XbOEtLweuWf1Ar8drzESDM9PVCMnkE8qDWaat0kIQj20TK6qaF0W13bAnQ99PhcPiR8iWWtVfNvrbZaMz3QS/oG7jUb29csTavXURqtBmrNg/k1NZO2Wp/pvw+qmXTYu2bSQqtzmmkUQCP5zNjoppwyBS6nV6JfcJ0F0JqU1qqZqGPESmobep6OIlbrrbnyHX67/jwmhk5EXFQcRnUcZVfRkvWhu193nJt7DktOLMHSU0vxx9U/cDTtKFZNWIVxIePqXJfH5eDDCZ3xwoaL4MCwhqj+xpHN/REpBQGI8I5ovIOwANvU1j6BOsfItfxrqFBWwFFY/4c/Z9OKzJYdAHSfWXapHGfTilq94UhpObA9bwOWDoKaf92iAdwYhqS59NXCSg1+OCCDFuXgoTq6wJ4MNkozYiLCSaLtw5xLNeHBA17Kdw1SoVsrPMIu2pftw9GmZnQXP/z6dA98tPMacsqqaxn7Oovw0cQIu4jUpFBaGjV1U0E5uxrhh+5uxe41HyHUIxSzomZhZuRM+Dv5N/JImwYxX4wvR3yJyWGTMWv7LKQWpWL0H6Mxt8dcfD3ya5NNZ/XUpZn0j09va77A4hMXsDh6cbM5lawpB9QnsA9uF9/Gfxn/NZhjhOomSkuD7TkbuHQw1ILrZh0EtZ0EDUldmun7A1Uo42+Fg3qw3T7opjQTVDOZpSXrptaomVrHk/kmwpSh5+ssgqtUgNIqldnHdk4SNdx9hbiUo8LW61ux9fpW+Dr64pluzyAuKg7hXuFNcwCNiIgvwqfDPsWksEmI3R6LlIIUjN80HnFRcfh21LdwEbuYXXd0Fz/88nQPo8/Wx0mIEuFvSK3ajUfjT2H39N3o36Y/6zE1VKqnudTWnFI5Xthw0SC11d/JH4HOgcgoy8CFrAsY3H6w1furDduLoT1eNCkPL2zPx3IZF1X8wgbdt74OK5fDBY/DM/iby+HqmqyBB3HxCwAMDXzd31wQEHBh+IBCb7CVS76BQvAfk8VCiO6lBY0IqgmPwwOfy4eAKwCfx9elFj9ISRbxaqQjCySQ8CWQCqRwEDpAKpDCUeAIR6EjnEROcBA6wEnoBCehrt+Hk8gJLiIXuJXcB9ZPatJjMhXhBG4xOBA++MaNzyUOgG7iJTj4Wt8WFz1jDWfTihEXb7lPh7eT/UQ91WZ0Fz+M6Oz7UJTtoFAaG1O6icsBtGZujxwAbg4cDOrSA1uv38aNwhtYdGQR/u/o/2FU8CjERcVhYuhEiPjsgtLsmf5t+iPx+UQsOrwIP5z9AasursLB2wcRPykeQ4KGmF3PnGbyc5EgvMM1xKecwccnzyCnIgc/j/uZdRBec2gmQJdpv/HqRpzNOmv1vsxBdROlpcH2XCyTcVClKmjQfXPAMdRHtTUTR6eZJCV1aSYtnNVTjbat101lkq+hFJw10Eg1/9/aS/+ygQMO+Fy+TjfxBBBwq8ve6ssxifliSPgSiPlippG4g8ABUqEUTkInnW7Svz/okegkdIKL2EWnnYruAvFjmuyYTGkmwi0CB/p7+MOrmYCWr5tam2aijhGWmDP0cssUzLTa0Tv6U2LZ1N4Y3eU8ruReQfyleGy4ugE5FTlYdnoZlp1ehj4BfRAXFYdpXabV6UBoCfQO6I2L8y7i/WPv45sz3yA+MZ5JEx8RPMLseuZ+WCXynhi/KR3/ZvyLYeuHYfNjm1k1K2yo5mW2pLb2CeiDjLIM/Jf5X4M4RtheDO31okl5OGF7Pq6a/DW6t3UwdlyYMsxNOThqLcM2QtJSre7ahr9ums74l8pmopicsKkOKtNku5nQ95UQ88WQ8qWQCCSGxvUD54TeUSEVVC+jn2bpb6lAChFfBC6H27gHIy9jtdjZuWdxnS/EmYwzOH73OC5kX0BacRrresJ8Dh9OIieI1H0glM03mk+0rqht3BvMhy4VWldCqvVGpw7qJIWfyw2zZV70jZXtocxLXTwMZTsolMbGnG6qyykCAJ/FdMfoLmPx09gfsfnaZsQnxuNU+insu7UP+27tg7vEHdO7TEdc9zh09+3eokttSQVSfD/me8SExyBuRxzultzF0PVDsaDXAiwdvhQOQgeT65l/GDEMfc6L8OLeF7Hq4irkV+Vj45SNkAgkdY6jOTVT74DeAID/MnTBJg3xfVLdRGlpsNZMk75CVDsHq/WRueW4HC6r35xlzWTa3tfrJgdZLErISbvpH8EWfTljvTNCIpBAypdCKqzWTI5CR9b6qKbmqjlNwpdAwBM0/gGV57Fa7PDMw/hXI8Pxu8dxOv00kvOTUSwvZr0bR6EjHDUDTWomaN1ANZOO1qCbWpNmavDm6+3bt8e9e/eMpr/44ov46aefEB0djRMnThjMe+655/Drr7+y3kdTNxHUaAkGfnHUbIojB4CLVAAxn4ecMstGpVKjxJ6bexCfGI+9qXuhIRoAuvTqKeFTEBcVh6FBQxv/oVIj88/9fzBr+yzcLr4NAHi+5/NYNnKZ1eWlqlRVeOKvJ7AndQ94HB5WTViFuO5xZpdvyOZltjQ6/PLUl3j78NuYEj4FW5/Yymo/daE//yxdNP95e2iL9dBSWh/2ft7uSMzEK38m2rx+jnARFLyrDTIWIU/I3qiuh8NCzBeDx+U1yJjtgqxEYCUL5/O8E4B/lMEkjVaDlIIUXMi+gPNZ5/Fvxr+4mncVcrWZqD3CRYB8NXjwNOk0Y8P306IwKSrApnVbCvr7L2A6UMRemoe2ZOylkTal/jSFZgLsTzcBxpkjdT2Iv1l4E2sT12L95fXILM9kpnfz6Ya4qDjM6DoDXg5eRuu1JMoV5Xjz0JtYcWEFAKCje0esnbQWA9oOsHpbCdcT8NTWp6DQKPBo20ex86mdZhu8N7dmkqvlcP7cGSqtCndevoMgtyBW+6oLe7c/KZTa2Ps5W1/NBDScbuKAw97pYEVAl6llBFxBi3a+G1EP3ZRfmY+L2RdxIfsCzmaexdnMs8iuyDa9PtVMrKG6qXGxxv5tcMdIfn4+NBoN83dSUhJGjBiBY8eOITo6GtHR0QgJCcGSJUuYZaRSqVWGelMb+GwNvT9m9wGXy7EqlSinIgcbrmxAfGI8kvOTmeltXdoiNjIWsZGxCHYPrvcxNBeVykq8c/gdLD+3HAAQ5BqE+EnxVmdSqDQqzNs9D2sT1wIAPhv6Gd4Z+I7RzYqNE8saw4KtIVDz4n3i7glEr4tGgFMAMl7LsLguG6qFiz7mSge9aFLsGXu+2bO9rpujXbujCPTJqbfDQiKQtJp+U01OSTqwvCegrqNuPV8ELLgAuLaxuDmNVoObhTdxIfsCLmRdwIXsC7iUcwkVygpWDfIs8fFUD0yJ7Go2Cri10FDRxxTTUMdI66EpNBNgv7rp/XHh8HQSsdZMGq0Gh+8cRnxiPLanbNc1RQXA5/IxPkRXvndMxzFNE3nbSBy8fRCzd85GRlkGOODgtX6v4ZOhn0DMty674eS9k5i4aSJKFaXo4t0F+2fsR4Cz4UMme9BMANB7VW+cyzqHTVM3YVqXaRbXZ8P+pGw8v+EiCLQG0ez2YH9SKKZozZoJAIKDTqKNT269HRZCnrB1OSuakgbWTYVVhYyzRK+d0krSGkQzvTlegMndIuDv5N/qv2+qmxqPZnWM1ObVV1/F7t27kZqaCg6Hg+joaERFReG7776zeZtNbeCzNfReHC7B60MH2xSRSwjB+azziE+Mx6akTSiRlzDzBrUbhLioODzW+bEGaebdHBxNO4pndzyLe6X3wAEHr/R5BZ8O+xRSgZT1NgghePfIu1h6aikA4OXeL+Pb0d8aZNbYEq1UF7Zsr0JZAZelLtASLTIWZhgJEVvZdTkdL/55FDziyUyjF00K0HC1oRsDe73ZW4rOsgTbawilkSlJB6rq6FEj9WBl3JtDS7S4WXgTa05fwebTtjk0CLTQoBCZ4tkAR4tA50CEeYYh1CNU9/LUvbdxadPiM0X12PM1qaVDHSOtl8bQTID96qZPYoLxdJ8wm/ZRLCvGpqRNiE+Mx/ms88x0HwcfPN3tacRFxSHCO8KmbTc3JfISLDywkAkGC/MMw7rJ65iyU2y5knsFozeMRnZFNtq6tMWBpw8gzLP687YHzQQAL+19CcvPLcerfV7Ft6O/tbg+W57Z+BWOXfE0qG9vD/YnpXmxZ/uktWomgOomu6GRdVORrAi//H0Oq46qbVq/tmZyFDoixCPESDOFeIS0qkAze74utWTsxjGiVCrh7++P1157De+++y4AIDo6GteuXQMhBL6+vpgwYQLef/99SKXsH5Dba+RTjnARnJ1yMDF0ImLCYjC8w3CbGgTK1XJsT9mO+MR4HLp9iKlH7yh0xOOdH0dcVBwGth3Y4rynZYoyvHHwDay6uAoAEOIRgrWT1qJfm35Wbee7f7/DwgMLAQBPRjyJdZPXMZ+zrdFK5rA1tTXy10hcyb2CrU9sxZTwKWwOyyIn7p5A9Nqh8BUOwK9jNsHbmV40KfZrRNfEXm/25qKz6qK509kpzYPt0XK6M8vDbxvuK3ehoMp800wJX4JOHp0Q6hFa7Th5IACcRE42jpzS2qCOkdZJY2kmwH51U57oXfQOcsPksMmICYtBO9d2Nu0vKS+J6eGYV1ldQ72Xfy+mh6ObxM2mbTcnu2/uxtxdc5FTkQMeh4e3B7yNDwZ/YJW2vFtyF6M2jMLNwpvwkHhgz/Q96BPYB4D9aKYNVzbgmYRn0C+wH07PPs3yyCzTe1VvnMu8gI/6/44o78F2ZX9SmgeqmWzHFs0EUN30MFJfzdSu3SFkq/fhTvEdpuWAKR6GQDNK/bAbx8jmzZsxffp03L9/H/7+/gCAlStXol27dvD398eVK1fw9ttvo3fv3ti2bZvZ7SgUCigU1SlfZWVlaNOmTZPXyjXvJScQCauQJ30eJYrqxkSOQkeM7TQWMWExGNtpLJxF1o81vTQd6y+vx9rLa3Gr6BYzvaN7R8yKnIWZkTPRxsV2r25zsP/WfszZOQeZ5Zngcrh4o98bWDxksVVp4puubkLs9liotCoMCxqGhCcT4CRyavDoJ6AuQ4CAA47J1NZ5u+Zh1cVVeHvA21g6fCnLo6qbD459gI9PfoynujyFjVM3Nsg2KS2bhqwNzYamNNabal+mRJKrVICSKhU4sL90dkrzwOaBj6tUABGfi5yyanultuAurCrEjcIbuFFwQ/f+4P+3im7V2Qzez9GPMfgZx4lnKNq5tGtdfWMoFqGOkdZJQ2kmoGXoJg6vFHcFMw2a8Xb37Y6YsBjEhMcgwivC6gAwlUaFval7sfbyWuy+uRtqrS5iVcQTYXLYZMRFxWF4h+Et6ppZWFWIl/e/jI1XdXZ/V++uWB+zHlG+Uay3kV+Zj/GbxuNs5llIBVJseXwLxnQa06SaiUALLrgm7afUwlSELA+BiCdC+aLyBimFViwrhseXHiAgDZq9T2m5NLVmAlqfbjLnWJoY6YeVJ9MAUN1EaTjNpNQocaf4TrVmqqGdaKAZhQ124xgZNWoUhEIhdu3aZXaZo0ePYtiwYbh16xaCg0330vjoo4+wePFio+lNKQrZ1H0cFu6JE/dOIOF6Arbf2I6s8ixmOSFPiGFBwxATFoOJoRPh4+hj1f4JIfjn/j+IT4zH5mubUamqfLB/DkYEj8CsyFmYHDYZEoGkPofZZJTIS/DK/lew/vJ6AEBnr85YP3k9evr3ZL2NQ7cPYcrmKahQVqCHXw/snb4XnlJvi6mefjZELZgyBLScQvzw5CBMjmpvtPzqi6sxZ9ccRLePxrHYY6z3Uxf9V/fHmYwzWD1xNZ7t/myDbJPScmno2tCWaMooq6aO6DIlJg4l59h9VBmlaWFjB4zo7GuTMFVr1bhbchc3Cm4gpSDFwGmSW5lrdj0RT4SO7h1NOk3MNdu1FnuNXnxYoY6R1klDaSag5eimsEAFtqdsR0JKAv65/w+0pNpJ0tG9o85JEhaDPoF9rI7+zKvMwx9X/kB8Yjyu5lU3/A10DsTMbjMxK2oWOnl0svXwmpytyVvxwp4XkF+VDz6Xj/cHvY9FAxexdiJUKCvw2ObHcOD2AfC5fKyeuBozuj5j0YHl5yJpEM2kRj6m9NbghymzjfdCCDy+9ECxvBjn5563SguaI+F6AqZsnoJwz3Akz0+2vAKlVdPUmglovbrJnE3YErJxKE1HY2omwH4Dzahmsi/swjFy7949dOjQAdu2bcOkSZPMLldZWQlHR0fs378fo0aNMrlMc0c+6bHmgq8lWpzLPIeElAQkpCTgZuFNZh4HHAxoOwAxYTGYHDYZHdw6WDWOCmUFtiZvRXxiPE7cO8FMdxG54KkuTyGuexx6+fdqEaW2dt7YiXm75iG3Mhc8Dg/vPvou3hv0HoQ8Iav1L2RdwJg/xiC/Kh/BbsE48PQBpGZJzUYrccDBF491xJOPWF/TWH+hyy2T4bXDs5FWeRgrJ/yKuT3nGi17Nfcquv3aDY5CR5S8XVLvC22pvBQeX3pAQzS49+o9tHVpW6/tUVo+jRHpZ46mjLJqjoguc1DjhlKb5hB+JfIS3Cy8yRj/esdJamEq03zYFN4O3kbp5aGeoejg1gF8Lp/VvqnQtT+oY6T10ZCaCWiZuim/Mh87b+xEQkoCDt05BKVGWb2Oox8mhU5CTHgMottHs9YIgO6h+8Xsi4hPjMfGqxtRLK/O7B/YdiDiouLweOfHW0QUaV5lHl7c8yK2Xt8KAOjp1xPrJq9j3UtFqVFi9s7Z2HBlAwBg2Yhl6OI8w6xmAjiY2q8Q30yKtXqsNe2nM1n78cXZeQj17ITr86+b1KejN4zGgdsH8NPYn/Birxet3l9t5u+Zj5/P/4yXer+EH8b8UO/tUVo2TamZAKqbqG6iAM2jIfSBZikFKUZOk8YONKOayf6wC8fIRx99hBUrViA9PR18vnkBfurUKQwcOBCXL19Gt27dWG27OUWhLRd8QgiuF1xnMklqNgkEgG4+3ZioqG4+3axyaNwuuo11l9dh3eV1uF96n5ne2asz4qLi8HS3p+Hr6GvdQTYxhVWFWLBvAf5M+hMAEOUbhXWT16GbD7vzIbUwFaM2jEJaSRq8Hbyxf8Z+5Bb6Gl2YwC1GHv9ndGmjxrHYY/Vq2PT16a/xxqE3EOkTiUvPXTL6zjRaDVy/cEWFsgJXnr+Crj5dbd4XoHMgTfpzEjq5d8LNl25aXoHS6mFbG7pzp/8wLNwFEd4RiPCKQKBzoFXXmKaMsmqOiC4KxVrsRfhptBrcL71vFDGVUpBikLFaGwFXgGD3YJNOE0+pJ7OcPYltSjXUMdL6aEzNBLQ83VSuKMe+W/uQkJKAPTf3oFxZzsxzEblgfMh4xITFYFTHUXAUOrIei1wtx84bOxGfGI+Dtw8yGSpSgZTp4fhou0ftujY5IQR/Jv2J+Xvno1heDCFPiCXRS/BG/zdYBWFpiRZvHXoLX5/5GgDwWt/XMMz/dXy8+7qB7SUVK3BX+xUU/P+Q8GQCJoZOtHnM5YpyBHwTgHJlOQ49cwjDOww3WubDYx9iycklmMw3GsoAAQAASURBVBk5E+smr7N5X3pCl4fiZuFN7Ji2o15jp7QO2GqmNm0PY2CIGBHeEeji3QVhnmFWlfoGqG6iUGpiL5oJMAw0q5md3xCBZlQz2SfN7hjRarUICgrCU089haVLq/sr3L59Gxs3bsTYsWPh4eGBK1euYOHChQgMDMSJEyfq2KIhLV0UppemM6njJ++dNGgq1MGtAyaHTkZMeAz6BfZjnWmgJVocTTuK+MR4bLu+DXK17gbJ4/AwttNYxEXFYVzIOKuirJqav679hRf3voiCqgIIuAJ8OPhDvD3wbVaRrTkVORi9YTQu516Gk9AJ26dtx+B2QwwuxK7OBXg0fgAKZYUY22ksdkzbwTpqtjZFsiIEfBMAuVqOf+L+wYC2A4yWGbJuCI7fPY5VE1ZhTo85Nu1Hz8v7XsaPZ3/EC4+8gJ/H/VyvbVFaB2yjn3KEi6DgVZeRcBY5I8JL5yTRG/4RXhHwdfQ16TBhu5+3JggxvWevepXvaeqILgqltVKuKNcZ/7WcJjcLb6JKVWV2PXeJO8I8wxDiHoqziRNQKReg2qyvhort5qOl28AUQxpbMwEt+5xRqBU4mnYUCSkJ2HFjh0FzdTFfjBEdRiAmLAYTQicYOHYtkVmWid+v/I74xHiDrP4Obh0QGxmL2MhYm5vBNwXZ5dmYt3sedt/cDQDoG9gXayetRahnKKv1vzr9Fd489CYAYEbXGVg1YTUS71cwmqlXezc8v2ceVl9aDQlfgqOxR9E3sK/N431p70tYfm45JodNRsKTCUbz96buxbiN4xDqEYqUBSk27wcA7pfeR7vv2oHL4aLorSK4iF3qtT1Ky8dWzcTlcBHsFqzTS15dmCCzUM9Qs89U2O5r2ZMBmBrVrV6OWKqbKJT6YyrQTO84YRNoFuIehpspz0CmEIJqJvui2R0jBw8exKhRo3Djxg2EhIQw09PT0/H0008jKSkJlZWVaNOmDWJiYvDee+9ZZai3ZAO/NoVVhdh1cxcSUhJw8PZBxqEB6LyTk0InISYsBkODhkLEF7HaZom8BJuvbUZ8Yjz+zai+WXpKPTGj6wzERcUh0jeywY+lIcityMULe15AQorOaO7l3wvrJq9DuFe4xXVL5aWY/L/JOH73OARcATZM2YAnIp4wWObfjH8xdN1QyNQyzOk+BysnrLS55NicnXOw+tJqTOsyDZumbjKa/87hd/DFqS8wp/scrJq4yqZ96In4OQLJ+cnY8vgWTO08tV7borQOLDc3BVylWkx89AKuF1zDtbxruFl408ARWxM3sZuR4R/hHYEzqSpWUVb5gi9RxT+JDm4d0NOvp+7l3xM9/HrAXeLO6pjYRnTx3NZjVBcPDO8wHEPaD4GbxI3V9imUhx0t0SKjLMNkI8OaWaciTVf4Kj+3uD0qtpue1mQDUxpfMwGt55zRaDX4N+NfpkzxneI7zDwuh4tB7QYxZYrZlpwlhOBMxhnEX4rH/679j8lO4YCDoUFDERcVh5jwGEgF0kY5pvpACMG6y+vwyv5XUKYog5gvxufDPsfLfV5m9bD198u/49mdz0KtVWNU8ChseWKLQQaOSqPCpD8nYd+tffCUeuLUs6cQ4hFSxxbNcz3/Ojr/3BlcDhdpr6QZfT8FVQXwWuYFACh6q6hedl38pXg8u/NZ9A3sizOzz9i8HUrrgY1mcnfgYNbIO7iefw3X8q8hKS/JoPReTXgcHkI8Qqr1kpcu0Kyje0fsvZrHWjfxpJfQ3a+7gW4K8Qhh7Sxhq5sC2xzE1B7tMazDMHT17toiyq1TKPaAuUCzGwU3IFPLAFDNZM80u2OksWktBn5tKpWV2H9rPxJSErD75m6UKkqZeU5CJ4wLGYeYsBiM6TiGdS3c6/nXsTZxLdZfWY+cihxmenff7oiLisP0rtPhIbWvHyghBBuvbsSCfQtQIi+BiCfCJ0M/wcK+Cy1m0CjUCjyd8DS2JG8BBxz8MOYHLOi9wGCZnTd2IuZ/MdASLT4a/BE+jP7QpnFeyr6EHit7QMAV4P7C+0Yly/SN/7r5dMPl5y/btA8AyCrPQsA3AeCAg4K3Clg/ZKa0ftg0NquZtqnUKHGz8CaS8pJwLU9n+F/Lv4ZbRbcMmp7WxEcwEOKydyyOheP+Pe7KDpmcF+QahJ7+OqO/h18P9PTrafK6Y0tEFwcc9PTvieFBwzG8w3AMaDvA6rR3CoUCVKmqkFqYipSCFOy9mocTly33P/t+WhQmRQVYtR97SqtvibRWG5jSeLTGc4YQgqt5V5FwXeckuZxraGf39OupK1McHoNwz3BWDwIrlZXYdn0b4hPjcezuMWa6s8gZ0yKmIa57HPoE9LG7h4rppemYvXM2Dt3R2WCPtn0U8ZPiEewebHHdfan78Nhfj6FKVYVe/r2wZ/oeeDl4MfMrlBUYsm4IzmedR5BrEM7MPgMfRx+bxjls/TAcTTuKRQMX4bNhnxnND/4hGHeK7+Dg0wcxIniETfsAgKe3PY0/rv6B9x59Dx8P/djm7VBaF9ZqJkIIcipydFopr9pZci3/GsoUZSb3IeAKEOw4BrLceRbHUyT5EOW4YDTdUeiI7r7dqzWTf0+EeoSafAZii27ydvDGsKBhGN5Bp5to31IKxXpqBpptT8zAnnPeFtehmqnpoY6RVoBSo8Txu8eRcF2XOp5dkc3ME/FEGN5hOGLCYjAxdKKBAWsOtVaNA7cOID4xHjtv7IRKqwIACHlCTAydiLioOIwMHmlzaanGILMsE3N3zcW+W/sAAP3b9MfaSWvRyaNTnetptBq8vO9l/HxeV3Lq/x79P3w85GMDIbPi/Ao8v+d5AMBvE37D7B6zbRpj/9X9cSbjDJZEL8H7g983mKd3aHA5XJS+U2pVHeSa/H75d8zcPhOP+D+Cc3PP2bQNSuulIRp9ydVypBSkGBn+acVpIISDAPlq8OABDkxFMBE4SzT4eZYnAl0CcKvoFi5kXcCFbN2rZkRnTdq5tGOcJfooKTexR50RXRwA3s5CLIqR4ejdwzh85zCuF1w3WEbMF2Ng24GM0d/dtzvrkoQUCkVHY5VnoI0J68/DYANTGpaH4Zy5U3yHKVN86v4pkBpWRIhHCNPLsVdAL1bR2GnFaVh3eR3WJq7FvdJ7zPQwzzDERcXhmW7PwM/Jfq5ZhBCsvLASrx98HZWqSjgIHPDliC/x/CPPWzze/zL+w7iN41AoK0Qn9044+MxBtHdtz8zPq8xDv9X9cKf4Dnr69cTxWcdt0jT6gDFPqSfSF6YbBbFM3zodm5I24eMhH+O9Qe9ZvX1A9zn4fe2H3MpcHI89jsHtB9u0HUrrpCFsEEIIMsszcS2vWi9dy7+G5PxkVCgrAMK1qJtcHYBNz3eCUiPHpZxLjG5KzElkotBr4iBwQJRvFKOXevr1RKhnKDjgWdRNHo48PDnkGo7ePYyT904alVPt5N6J0UxDgobQAEwKxUqoZrJfqGOklaElWvyX8R9j8KcWpTLzuBwuBrYdyPQlqWnImqOgqgAbr27E2sS1uJRziZnu5+iHZ7o9g7jucQjzDGuMQ7EaQgjWXFqDhQcWolxZDglfgqXDl2JB7wV1GvqEEHxy8hN8cPwDAMDs7rPx6/hfDRw/7x19D5/+/Sl4HB52PrUTYzuNtXp8G69uxIxtM+Dv5I+7r9yFgCcwmB/4TSAyyzPrZZzHbo/F+svr8c6Ad/D5cMtpepSHj8aKJqhUViKlIAWbL9zE/07ps9Sqt0ugBcBBvvAzyHi6cgUBTgFM35II7wi0cW4DhUaB6/nXGWfJraJbJvfXxrkNgqVTkZY2DOZqdNaO6Mosy8TRtKM4nKZzlNSuBeomdsPQoKEY3mE4hgUNQ0f3jnYX7Umh2BuWyk7YUi+XNiZsGB42G5hSfx62cya3Ihc7b+xEQkoCjqQdgVKjZOb5O/ljcuhkTA6bjOj20UZ2e220RIsTd08gPjEeW5K3MA8tuRwuRnccjbioOEwImcC63HFjk1achrgdcThxT9eHZljQMKyZtMZiVPiNghsYuWEk7pfeh5+jH/Y/vR/dfLox81MLU9F/TX8UVBVgTMcx2DFth8XPrjZqrRodvu+A9LJ0rJ+8Hs9EPmMw//t/v8erB17F+JDx2PXULqu2rScpLwldf+kKqUCKoreK7OZ7odgPjaWZtESL+6X3cS3vGnZeuY8D59s8mGNeN0kFUoR7hjOljPXN3rPKs3Ax+yIuZF/ApZxLJnvDSfgSRPlGwV8wFueTo8BGNynUCvyb8S+OpB3B4TuHcTbzrEGJZZqFT6FYD9VM9gt1jLRiCCFIzk9m6utezL5oMD/KN4qJiuri3cXiA8DLOZcRnxiPDVc2oFBWyEzvG9gXcVFxeDLiSbtoWne/9D5m75yNw3cOAwCi20djzcQ1CHILqnO9VRdW4fk9z0NLtJgYOhGbpm5i6gQTQhC3Iw7rLq+DVCDF8djj6BXQy6pxKdQKtP2uLfIq8/DX43/hsc6PGcyfunkqtl3fhi+Gf4G3Brxl1bb1Ywz8NhBZ5Vk4/MxhDOswzOptUCimsFYYmIpacJZo0Dk4GcU4hmt515BZnml2/XYu7ZhavB3cOoADDgplhbiadxUXsy8aND91Vc2CszoGHFRnenBAMKwrB59M6mlUtk4PIQQpBSk4fOcwjqQdwbG7x4zS3du6tGUM/qFBQ20uCUGhtHasLTtRF3rRUPP6URPamJA9D7MNTLGNh/mcKVOUYW/qXmxP2Y49qXt0Ed0PcBW7YnzIeMSExWBU8Cg4CB0sbkvfw/F0+mlmurvEnenh2N2ve6MdC1u0RIvlZ5fjncPvQKaWwUnohG9HfYtnuz9bpy7MLMvE6D9GIykvCc4iZ+ycttMgqOu/jP8wZN0QyNQyxEXFYfXE1VYHmnx68lO8d+w99Anog3/nGEbY/pvxL/qt7gcvqRdy38i1KYjlu3+/w8IDCzEqeBT2P73f6vUpFFPY4kwxpZscxEq0CfwXOeoDSClIgUKjMLmuo9CR6V0S7hUOF5ELZGoZ7hTdwcWci7iUc8nwWmZGN03u6YQvp/Q368QslZfixL0TOHzHdBa+iCfCwLYDmbJbNAufQjEN1Uz2CXWMPETcK7nHZJL8ff9vgz4BwW7BTH3dvoF968ywUGqU2H1zN+IT47EvdR8TPSDhSzAlfAriouIwJGgI62ZgjQEhBL+e/xVvHnoTlapKOAod8dWIrzCv57w6jeftKdvx1NanIFfLMaDNAOx8aieTJqrSqDBh0wQcuH0AXlIvnJl9hlVN3proM08GtxuM47OOG8z78tSXePvw25gSPgVbn9hq9TGnFKQg/KdwiHgiFL9dDIlAYvU2KJTa2JqaaUkYlMhLkJyfbNTDpGZ/o5pwwEGQWxDTsFDCl+BWliP+TerCLKGnZpSVm+s9gxJcPf16mixpodaqcT7rPGPwn04/zZQR1NPNpxuTQj6o3SCbS95RKK2Rhkrjbqw084cRagNTrIWeMzoUagWOpB1hyhTnV+Uz8yR8CUYGj0RMWAwmhE6wWE7mRsENpodjzUzVSJ9IxEXFYUa3GfCUejbasbDhZuFNzNo+C2cydBm9YzuNxaoJq+Dv5G92nRJ5CSZumoi/7/8NEU+EjVM3Ykr4FGb+7pu7MenPSdASLT4Y9AEWD1ls1ZjyKvPQ5ts2UGqUODf3HB7xf4SZJ1fL4fy5M1RaFe68fMdi8Jspxm8cjz2pe7BsxDK80f8Nq9enUGpTHzuoLt2k1qpxu+i2UQ+Tm4U3jbSKHheRCyK8I9DZqzO8pF4ghOB6hgiJKY+AQKer9Oh1U6n4K4QGygx0U4RXhElnSVZ5Fo7cOWIxC1+vm2gWPoVSDdVM9gd1jDyk5FfmY9fNXUhIScCh24cMohB8HX0xKXQSYsJiMCRoCIQ8odntZJdnY8OVDYhPjDeIHGjn0g6xkbGYFTXLJmO1obhTfAdxO+Jw8t5JAMDI4JH4bcJvaOPSxuw6f9/7GxP/nIgSeQkivCKw/+n9CHQOBACUK8oRvS4aF7MvoqN7R5x+9jSrvi160kvTEfR9EDREg6svXEUX7y7MvBN3TyB6XTQCnQORvjDd6mNdfnY5Xtr3EoYFDcPhmYetXp9CqU1zpGYWVhUaGP5647+gqsBwQaYur6eBcV9jAahRgEzxbIBj2Cze19HXyFni7+RvYLBXKivxz/1/dI6StMNIzEk02Aafy0e/wH5MZFQv/15Wl4qgUFobDVF2YkdiJl75M9HicrY0JnzYoDYwxVroOWOMRqvB6fTTTAb+3ZK7zDweh4fB7QcjJiwGk8MmM3rB3HYO3j6I+MR47LixgynbJeAKMCF0AmZFzsKYTmOarYejRqvBN2e+wfvH3odCo4Cr2BU/jvkRM7rOMPtAU6aSYfq26diesh1cDhc/jf0Jzz/yPDN/5YWVeG73c7r/j1+JuT3nWjUmfXP0WVGzED8p3mBer1W9cD7rPP6c+iee7PKkVdtVaVRw/9IdFcoKXHruEqJ8o6xan0KpTXNoJpVGhdSiVKMeJqmFqQZlrwBY1E0EWmhQaKSbhDwhuvl0M9BNXby7GDwf0mfh68tu0Sx8CsUyVDPZF9QxQkG5ohz7b+1HQkoC9qTuMbiROYucMa7TOMSExWBMpzFmI6QJITibeRZrE9diU9ImlCpKmXnR7aMxK3IWHuv8mMXU88ZAS7T44b8fsOjIIl2EkcgZ34/+HrGRsWYN/au5VzH6j9HIKs9CG+c2OPD0AYR7hQMAcipy0G91P9wtuYveAb1xdOZRq45LXzLrhUdewM/jfmamVygr4LLUBVqiReZrmXVGaZli8p+TsePGDnw+7HO8M/Adq9alUGpjb6mZeZV5BlFSF+6VIz99usX1+J7L4e5SCB6Hh4KqAtwuvm3QaFWPj4MP4yTp4dcDPf16ItA5kLlG5Ffm42jaURxJO4JDdw4ZPBgBdKns0e2jGaO/s1dnGhlFabT61K0ZGv3UcFAbmGIt9JypG0IILudeRsJ1nZPkat5Vg/m9/HsxGfh19WAskhVh09VNiE+Mx4XsC8x0HwcfpodjZ6/OjXYcdZGcn4zY7bE4n3UeADA5bDJ+Hfer2QeZaq0a8/fMx8qLKwEAHw3+CB8M/oCxgT449gE+PvkxuBwudkzbgfEh41mPRV8yS8QTIfO1THhIq6/5C/YuwE/nfsLCvgvxzahvrDrGU/dPYWD8QHhKPZH7Rm6zVjmgtHzsTTMp1ArcLLxp4Cy5ki6HpmCBxXUdfH6Di3Mu5Go5bhffNnJwADpnSVfvrtWayb8nunp3Zfr0sMnC7+rdlQkuo1n4FIBqJltgr5n6oF9w82am2jvUMUIxQKlR4ljaMSSk6FLHa5a1EfFEGBE8AjFhMZgYOtFs2rdMJcP2lO2IT4zH4TuHmYeQjkJHPNH5CcR1j8OANgOa/KHhjYIbmLVjFv7N0F08JoRMwIrxK0yW1QF0pcdGbRiFG4U34C5xx+6ndqNfm37MtgasGYBCWSHGh4xHwpMJrCO8jqUdw9D1Q+EgcEDma5kGfVkif43Eldwr2PbENsSEx7A+NrVWDY8vPVCmKDNKN6dQbIHtjXbqgHT0DnKDn5Mf/Bz94O/k3yQOULYREvmCL1HFP8n8zQEHTkInOIucIeKLIFfLzfY78ZJ6Mc4SfZRUG+c24HA4uFN8hzH4j6QdQZGsyGBdX0dfpon78A7D64wipbROGipNuiYPg2iw1JiQQAstpwjPj8nCG/1fow1z64DawBRroeeMddwuus1kkpxJP2MQeBHqEco4SXr596ozGEvfw7Fmya7eAb0RFxWHaV2mwVXs2tiHYoBaq8bSf5ZiyYklUGlV8JR64uexP+PxiMdNLk8IwUfHP8KSk0sAAM/1fA4/jf0JPC4PhBDM3jkb8YnxkAqkOBZ7DL0DerMaByEEj6x6BBezLxr1YPz98u+YuX0m+rfpj1PPnrLq+BYfX4yPTnyEJyOexJ+P/WnVuhRKbdhqprF9UtGznRP8nHR6yc/RD14OXk3imLNVN4l4IriIXOAodAQBQX5lPipUFUbrCbgCdPHuYpCN39WnK8R8sVVZ+MOChqF3QG+ahf+QQTWTbbDRTBoUolPY71g+9gdEeEc0+RhbCtQxQjGLlmjxb8a/TFTU7eLbzDwuh4tH2z7KpI63c21nchv3S+9j/eX1WJu41mD9Tu6dMCtqFmZGzmzSB4YarQZfnf4KHxz/AEqNEu4SdywfsxzTukwzKVgKqgowfuN4/Jf5HyR8Cf56/C+MCxkHADiTfgZD1w+FXC3H3B5zsWL8ClbOHkIIuvzSBcn5yfhh9A94qc9LzLy5O+fit0u/4e0Bb2Pp8KWsj0sfUeUmdkP+m/m02Rml3thqQAOAk9BJZ/DXMPz17zWnOYmcbB4fWxEi9voVWcoTKFeW17kcBxxIBVKI+WJoiRYl8hKTmSWeUk8mo6Sms+RK7hXG4P/73t+QqWUG64V6hDKRUdHto5v8IQel/lhjYDdGSYXGEA32irnGhHgwJU/4GWS8M+jk3gk/jPkBozuObuohtgioDUyxFnrO2E5ORQ523tiJhJQEHLlzxCBCOsApAJPDJiMmLAaD2g0y+dBPqVFib+pexCfGY8/NPUwpHDFfjJiwGMRFxWFo0NAmtfEv51xG7PZYXM69DAB4MuJJ/DT2J4PMjZr8cu4XzN87HwQEU8Kn4I8pf0DMF0OlUWHinxOx/9Z+eEo9cWb2GXR078hqDGsurcHsnbPR3rU9br10izn+m4U3Ebo8FGK+GGXvlFn1IPXR+Efxz/1/bCrvRaHUpj6aic/lw8fBp1o3OfobBJvpdZOX1Ktev322uknpsgx5qn+MS3HVQsgVQiqQgs/lo1JVaaR79McW4RVh4Czp5tMNFcoKHLt7DIfvHKZZ+K0UqpmajrqauRMQlIi/QinnBPhcPl7u/TI+jP4QziJq39WGOkYorCCEICkviYmKqu3p7+HXQxcVFRZj8uZFCMHf9/9GfGI8/rr2FypVlQB0DpYRHUYgLioOk8ImQcwXN8nxJOUlIXZ7LC5m6y4iU8On4pdxv5jsF1KprMTjfz2Ofbf2gcfh4beJv2FW1CwAumbtUzdPhZZosSR6Cd4f/D6r/f909ics2LcAoR6huD7/OvN5/XbxN8zdNRfR7aNxLPYY6+P59OSneO/Ye5gaPhVbntjCej0KxRxsDejwkIOo4iYiqzwLWeVZqFJVsd6Ho9DRwPCv6UCpKQachE5G1xRLERK109arVFW4nn8dJ++fxJn0M0jKS0JGWQYrh4mQJwSXw4VcLTfpLPGQeDDOkh5+PdDFuwuyy7Nx9O5RHL5zGOeyzkFLquv1cjlcPOL/CGPw92/Tn0a92znWGNgaLcGAB+emKWwpqdActaubG3Of+QfjO6NAexhvHnoTuZW5AHSlXr4d9S3au7ZvptHaJ9QGplgLPWcahlJ5Kfam7kVCSgL2pu5ldA+ga0o8IXQCYsJiMDJ4JKQCqdH6uRW5+OPqH4hPjEdSXhIzvY1zG8yMnIlZUbNYOxbqi1KjxCcnP8Fnf38GDdHAx8EHKyesxMTQiSaX35K8BTO2zYBSo8TgdoOxfdp2uIpdUaGsQPTaaFzIvoBgt2Ccnn0a3g7eFvcvU8kQ+G0gimRF2PXULqYUFyEE7l+6o0RegvNzz6Onf09Wx1OuKIf7l+5Qa9U2N26nUGrCVjP16HwSct5VZFdkI6s8C/mV+SZ1hSl4HB58HH2qg8wcTQSgOfnB28HbZBULa3QTlwOkl6XjXOY5nLh3ApeyL+FW8S3kV+ZbdJjwuXwIuUKotCqTjeF5HB4ivCMMShc7i5xxKv0UjqQdwZE7R1AoKzRYx9fRl8nAHxY0rM5esZTmx1rN1NBl6Khm0qH/zEMD5Fh4YCF23NgBQPd7WjZiWZ39wx5GqGOEYhNpxWnYnrIdCSkJ+Of+PwY39U7unZjU8d4BvY3SQyuUFfjr2l9Ye3kt0xQdAFzFrniqy1OIi4rDI/6PNPoPVaVR4fN/PsfHJz+GWquGl9QLv47/FVPCp5hcds6uOVh/eT0AYOmwpXhrwFvgcDj45dwveHHviwCANRPXIK57nMV9lyvKEfBNAMqV5Tj0zCEM7zAcgC6dvtuv3eAodETJ2yWsI0OGrBuC43eP4+exP+OFXi+w/QgoFLNY63gAdCK1XFmO7HKdwa83/LPLs6v//+C9Qmmchm0OqUBq6Cx5IAaKS9ph09/GNWmtMXxkKhmS85Nx4t4J/Jvxr1UOEy6Ha1YguIndGIM/zDMMCrUCV/Ov4sidI7hReMNgWQlfgkfbPYrhQcMxrMMwRPlG0XrXdoQ5A1sHwbhe2ZA43UBmeSYyyjKQkS8BKXrF4nbZ9siwt9rVTUldEWdlijJ8dPwj/PDfD9AQDcR8MRYNXIS3BrzVZEEW9g61gSnWQs+ZhkeuluPwncNIuJ6AnTd3oqCqgJkn4UswuuNoxITFYHzIeLhJ3AzWJYTgQvYFxF+Kx8akjSiRlzDzHm37KOKi4vB4xONNUp//fNZ5xG6PRXJ+MgBgZuRMfD/6e5MZsMfSjmHy/yajTFGGbj7dsG/GPvg7+SO3Ihf9VvdDWkkaevn3wrHYY6zKr7558E18deYrjAoehf1P72emj9owCgdvH8RPY3/Ci71eZHUce27uwfhN49HBrQNuv3zb8goUigVs0UyA7vlCbmWugW4y0lAV2cityGXtQOFyuPB28DYZbJZf6I/Vx4yfLbDVTYQQZJRl4L/M/3Dy3klczL6I28W3WTlMeBweCIhBoFjNeeFe4ejp1xPdfbvDReyCzLJMnLx/ss4s/GFBwzAkaAjNwrcj6tZMwGP9i+HofAuZZZnILM/E3TwBqnLnWdwu1UyWsZSlsy91H17e/zJuFd0CoLMhlo9djm4+3ZpryHYFdYy0IOy1Tl5eZR523tiJ7SnbcejOISg1Smaen6MfJodNxuSwyYhuHw0hT2iw7q2iW1iXuA7rLq9Delk6Mz3CKwJxUXF4utvTZpv9NRSXsi8hdnss00Bxetfp+HHMj3CXuBssRwjB24ffxrLTywAAr/Z5FV+P+hpcDhfvHnkXn//zOXgcHnY9tQtjOo2xuF9908DJYZOR8GQCAF2pL9cvdFFVV1+4ii7eXSxup1JZCfcv3aHUKHFzwU108uhk7UdAoZikrtRMoH4RF+WKckYA1HSgZFVkGYgCU03/aiLR9IO7ch74qM724vFLEdT2IiLaqIyzUZz84CZ2s+h4lavlSM5PxvG7x3Em/Qyu5V9j5TCpCxeRC3r49UCIewg4XA6yyrNwNvOsQS8nQJeBMjRoKFN6q4NbB5v3SbGOckU5MsszkVmmc3Kkl2Viw+EQyJViVJ/51ehrt2aKZwMcndiTqgfBS/WW0bK1+X5aFMZ180GRrAiFVYUolBWafL+bJ0DqrXEWt/ewNiO/lncNC/YtwO20E/AEB4HOgXij3+sY1G6Q4YJSD8D14YoybE02MKVpaE3njD3qJrVWjVP3TzEZ+PdL7zPz+Fw+ottHY3KoTjcFOAcYrCtXy7EjZQfiE+Nx8PZB5kGpg8ABj0c8jrioODza9tFGDSyTq+X48NiH+OrMV9ASLQKcAvDbxN9MljNMzEnEmD/GIKciB+1c2uHgMwcR4hGCm4U30X91fxTKCjG201jsmLbDYp/GO8V30PGHjiAgBlpH39g9NjIWayevZXUMrx14Dd/++y3m9ZiHFRNWWP0ZUCimaEzNpNaqkVeZZzLwTK+bsiuykVORY9LxUBNTuokvKEfnDsmIbEeMslB8HX0tlqkjhCCrPAtnMs7g+N3jSMxJxO3i2yioKoBaq7bpmLkcLsI8wxDlEwU3iRvKFeVILkjGxeyLdWbh92vTjwbHNBFqrRq5FbnIKMtAZnkm7pdmYMW+QMgUQjSGZpoY6Y8KZYVZvVRQVYA7uTxcuzHC4vYeVs2kUCvw9Zmv8cnJT+CpksObw8MTEU/ghUeeh5OwVonzh0w3UcdIC6Gl1MkrV5Rj3619SEhJwJ6bewweIrqIXDA+ZDxiwmIwuuNogwghjVaDo2lHEZ8Yj4SUBMjVuuPkc/kY22ks4qLiMK7TuEZrxKVQK7DkxBIsPbUUWqKFn6MfVk1YxfQTqck3Z77B6wdfBwA81eUprJ28FgKuALN2zML6y+vhIHDA8VnHLTZAT85PRsTPEeByuEh7JQ1tXdoCqM7++G3Cb5jdY7bFsR+4dQCj/xiNti5tcfeVuzQljtKgNPe1p1JZaTaCiplWngNZVSB4xA0aTjEU3GuMwWUKEU9kYPjXLt2l/9td4m70e1KoFUjOT8aRtCP4N+NfJOcn18th4iR0QphnGByFjiiVl+JG4Q2DkhsA0N61PWPwDw0aarLkH6VutESLgqoCxuGhz+6o6QTJLM80csSJNF3hq/zc4vYfjbyAiEAhnMXOyC1ywbpjrhbXqXD4BIVay6UXrBENk6ICLC7XGiEl96H9oTt4dQlwvghYcIEa+RRKHbSWc6a5bRc2EEJwKecSk4Ffs2QWoGu+ri9THOoZajAvoyyD6eGYWpTKTA92C2Z6OOp1RWNwJv0MYrfHMvue22Muvh75tVHvuLTiNIzcMBK3im7BU+qJPdP3oHdAb/yb8S+GrhsKmVqG2d1nY9WEVRb1y/iN47EndQ8W9l2Ib0Z9A6A6+yPMMwzX519nNfZuv3TD1byr+N9j/8MTEU/YcPQUimma+7qj0WqQX5Vf7TSpqZdqBJ7llOeBrwljrZu8pF51ljz2c/SDr6OvUVlgQgiyy7NxKv0UTtw7oXOYFN1Ggcx2h0mIewj8nPyg0Wpwv+y+gXMZ0GXhDWw7kAkuo1n4tlGlqmKyOjLKMgz//+C9tiOOrWbq1eUUOgcI4C5xR36xGzacsOygULosQ4H6tMnybDWhmokdmen/wWvNaAjrcqQ+ZLqJOkZaAC21Tp5CrcDRtKNISEnAjhs7kFeZx8wT88UYGTwSMWExmBAywaCJX4m8BH8m/Yn4xHiczTzLTPeSeuHpbk9jVtSsRkv5Opt5FrHbY5FSkAIAiIuKw7ejvoWL2MVguT+u/IFZO2ZBrVVjRIcR2PrEVoj4IozfOB6H7hyCt4M3zsw+YzHSe9j6YTiadhSLBi7CZ8M+AwC8c/gdfHHqC8ztMRcrJ6y0OGZ9evmzUc9i9aTVNh45hWIee4y6rI1MJauzdJdeDBTLi1lvU8gTwtfR16iBfG0x4CH1gFqrxrW8aziSdgRn0s8guSAZmWWZNjlMxFwxfJx8oNaqkVORY5SeHuUbxZTderTto6zKULRmlBolssuzDR0etQz4zLJMi8a0Kdga2CWib1HKPaL7g3ARIF8NHjzAgbEYMxUx5Sp2hYfEAx5SD8N3iQcqK/3x50lfi2N4WKOfAABZicDKwZaXm3cC8I9q7NHYDa3BBqY0La3hnGmpuim1MJVxkpzJOGMwL9wznClT3NOvJ+NEIITgdPppxCfG43/X/seUKeWAg2EdhiEuKg4xYTGQCCQNPt4qVRUWHV6EH87+AABo59IOayatwdCgoQbL5VXmYewfY3Eh+wIcBA7Y+sRWjOo4Cjtv7ETM/2KgJVp8NPgjfBj9YZ3725e6D2M3joWLyAWZr2XCQeiA/Mp8eH+l61NS/HaxxZI6ORU58Pta993nv5kPT6mnjUdPoZimJWgmLdEivzLfbOBZTS1ljQPDQ+Jh3PdE3xOlxv9FPBFyKnLw9/2/dQ6T7ETcKbljc4aJj4MPJAIJCqsKjXQXzcI3hBCCIllRnQ6PzLJMq/SyHraaqcrhJ+Rr9z0YkPWaScQTGeglT6kno5lkVYHYdspyUMBDrZkAqptMQB0jdk5rqZOn0WpwJuMMEq7rUsfTStKYeTwOD4PaDUJMWAwmh002aKiVnJ+MtYlr8fuV3w3KzfTw64G4qDhM7zrdqORVfZGpZHj/2Pv45sw3ICAIdA7E6omrMTJ4pMFyB24dwNTNU1GpqkRPv57YO2MvJHwJBq8djEs5l9DJvRNOPXuqzujubde3YermqfCSeiF9YTpEfBEzrZtPN1x+/rLF8fZY0QOXci5h45SNeKrrU/U+fgqlNSNXy5FTkWMUTVU7C6V247+64HP5Roa//t3LwQuVykpcz7+OpLwkXC+8bpPDhAcehHyhUZ1dAVeA/m36Mwb/I/6PWCxJ0ZIoV5SbdXjcL72PjLIMq74ra2Eb/ZQjXAQF7yoEXAE8pB5wIYMgL3jmwdya92adGfXqKAeM7uoHD4kH3CRudX5nSrUWYe/vg7YOC4zLAVI+HgMh/yGNimNp4JN5x8Hx797447ETWroNTGl6Wvo501p0U3Z5Nnbc2IGElAQcTTtq8LCwjXMbTA6bjJiwGDza7lHm/lGprMTW61sRnxiP43ePM8u7iFwwrcs0xEXFoXdA7wbPLD9x9wTidsQx2m5+r/n4YvgXBkEb5YpyTN08FYfuHAKfy8faSWsxo9sMrDi/As/veR4AsGrCKszpMcfsfrREi5AfQ3C7+DZWjl+JuT3nAgCCfwjGneI7OPj0QYwIrruEysarGzFj2wx09+2Oi89drO+hUyitGi3RorCq0CjIzJRusib4yE3sZlzq+MG7iCfC3ZK7SMpPQlJeEtKK02zKMBHzxFATtdF6rTkLXx9QZ8rhkV6ajvul95FTkQOFRtEo+7dWMwG6+5M7Zwi0xfoqKcaa6YURAozs7M04Q6QCqdn7GNVMLKGOESOoY8TOOXO7EE+tslxq45dnQjEmomMTjKj+EEJwJfcKU1/3Su4Vg/k9/XoiJiwGU8KnINwrHIDuQr//1n7EJ8Zj141dzM1XyBNiUugkxEXFYWTwSNbNytnwz/1/MGv7LNwu1jXme67nc1g2YplBmvi5zHMYu3EsCqoK0NG9Iw48fQASvgT9VvfDvdJ76BPQB0djj0IqkJrch1qrRtD3Qcgoy8DvMb/j6W5PI7MsE4HfBoLL4aL0ndI6GyoWVBXAa5nuhp7zek6j92OxhZYQOUOh1EahViCnIsdIDGSVZ+N2Lhf55QoUK+8iV3m6zvTzmvC5fPg4+DA1e4U8IcrkZciX5SO/Mh/FsmJUqavqNW5nkTOi20czRn+YZ5j5hyAl6UBVHU6FRqwtqo9Wq+nwyCjLQFpJGu6W3EVmeSbyK/ONHEFNiZPQCe4ST3DzP4FW4wxT9XIBwMORiz9fCIGT0AE8Lg8ytQwylQxHrhfit+MlKKqsNp2cJRoMjSxEoHchZCoZqlRVkKlrvdeaXlnhD23hyxbH+1BHP7E08OcHdsXLk1cblaVprbR0G5jS9LT0c4atbtow+xEM7GR/NrMpSuQl2HNzDxJSErDv1j5UqartBA+JByaETkBMWAxGdBjBZIbcKb7D9HC8V3qPWT7cMxxxUXF4JvIZ+DpazkRkS4WyAm8efBO/XvgVgK6k19rJazGw7UBmGaVGiVnbZ2FT0iYAwNcjv8Zr/V7De0ffw6d/fwoeh4edT+3E2E5jze5HX8440icSl567BA6Hg+lbp2NT0iZ8PORjvDfovTrH+eyOZxGfGI83+7+JL0d82QBH3rBQzURpieizEIwz9bNxI1v7QDPdQ47iHyi07O16V7ErE3jmLnaHXC1HkawI+VX5KKgqQJmizGLTd0tE+kQywWUWs/CbUTdVKiuNyv/eL72PO8V3kF6WjpyKHBTLipneU00Nn8uHh9gTkpKvQDQuMK2ZCNwduVg3px3cpC4Q88VQaVSoUlXhcHIBVh4vQmFFtaZ2kWoxLLIY7XyKjXWSusqkZqoo94eq4EWL432oNRPAWjdte/RVTBryQYM+Y7VXqGPEztmRmIlX/ky0uFy+4Es4uqSgm083dPXuyrx39urcKOnTDcmd4jtM6vip+6cMLuihHqFMVFSvgF7gcrgoqCrAH1f+QHxiPC7nVmdU+Dv5Y2a3mZgVNavBHnpUKivxzuF3sPzccgC6KIP4SfGIbh/NLHOz8CZG/j4S90rvwdfRF/tm7IOYL8aANQNQJCvCxNCJ2PrEVrMRwZ+e/BTvHXsPfQL64N85OjEX+E0gMsszcTz2OAa3N3/R2nxtM57c8iS6enfFlReumF2uuWjuWqsUSkNi6nz2dRZhwXBfdPI33wslqzwL+ZX5rI1VLocLB4EDeBweVFoVFBqFzbV4vaXeGNlxJEZ0GIFhQcOqm7mWpAPLewLqOqKGbKwtqtQokVWehYyyDGSUZSC1MBW3im/hfsl9ZFVkIa8iD6WK0iYz3nkcHlzELnAVu8JZ5AxHoSMcBY6QCCSQ8CUQ8oQQ8oTgc/ngcrngggtCCJRapa7Gbr4Xbt8Z8mBr1Ya+fvwl4mUo45w0vXPChUgbwbqOsylovVwWsDTwe6ACSTye7mHcoPfqDDxoDbR0G5jS9LT0c4atbioWfYMgv0JD3eTTFX6Ofnbdq0+mkuHQnUNISEnArhu7DDImpQIpRnccjZiwGIwPGQ9XsSu0RItjaccQnxiPrde3Mj0ceRwexnQag7ioOIwPGQ8hT9gg4zt0+xCe3fksMsoywAEHC/suxCdDP2G0qJZo8fqB1/Hdf98BAN7s/yY+H/Y5Zu+cjXWX10EqkOJ47HH0CuhlcvvFsmIEfBMAmVqGv+P+xsC2A/Hdv99h4YGFGB8yHrue2mV2bIQQtPuuHdLL0nHg6QNGlQCaG6qZKK0Jk5rJRYzXR7VF50BlnVkoWeVZzLWKDRK+BCKeCFqihVKjhEKjsElj8Ll89Anog9EdRxtn4TeSbiKEoFBWyDg87pbcxc3Cm0grSWP6eBTJihoty8MUUoEUbmI3uIhc4CRygqPQEVKBFBK+BGK+mNFMfC4fHHDA4XCg1qohV8uRnueBm7cHPdiSYfYHAVAh/QYlOGHQm6R6EaqZmgwrdBMvoAd+GvsTegf0bvxxNSPUMWLnsI18yhUugvxBSlpNuBwuQjxCDJwl3Xy6oZ1rO7tsRJVbkYudN3YiISUBh+8cNkjLDHAKwKTQSYgJj8HgdoMh4AmQmJOI+Evx+OPqHwbioF9gP8RFxeHJLk/CWVT/7/1Y2jHE7Yhjoq5e7v0yPh/+OZMJklWehTF/jMGV3CtwFjljx7QdEHAFGP77cMjVcjzX8zn8Mu4Xk2IrtyIXbb5tA5VWhfNzz6Onf09M3TwV265vw5fDv8SbA940O655u+Zh1cVVBo0I7YWWWuOZQjFFfc9nlUaFvMo8k31Psiuqe6LkVeaZNhYbCFexK4YHDccLAf0w9NBiyyvUSqEtU5Thful9pBSkICU/BSkFKUgrSUN2RTaKZcWoVFXa1MuDLTwODwKeAEKeEAKuADwuDxxwQEBACIFaq4ZKq4JKo2pQESHR9IO7ch74qE65VyMfRcKVkPEMa8GLeCJIBBJGREgFUtN/86un17VsWh4fn2yvsDjGhzr6iaWB/1KbSCzP+BsAEOgciK9Hfo3HOz9u1w9C60NLt4EpTU9LP2fY6qaapTxq4iHxQFefrujmrXOUdPPphgivCLvs5aXWqvH3vb+RkJKA7SnbkV6Wzszjc/kY0n4IU6bYz8kPpfJSbL62GfGJ8QY9TDwkHpjRdQbiuschyjeq3uMqlZdi4YGFiE+MBwCEeYZh7aS16BPYB4DuQeCy08vw9uG3AQDPdHsGv477FVM2T8GB2wfgJfXC6dmn0dHddCWEuTvn4rdLv2Fal2nYNHUTzqSfQf81/eHt4I2c13PMXs9TC1MRsjwEQp4QxW8Xm83mbw6oZqK0Jup7PhNCUKooNXaamOghWTODrqHhcXjo6t0VT3Z5Ek+6hyJo8yzLK9XQTSqNCjkVObhVdAvJ+cm4UXADqUWpyCjLQH5VPsoUZZCr5Y0aKCbgCpgAMB6XBx5HF/lPQKDRaqDWqqHUKKHUKOudfaPHGs3E5XDr1ECmNFNd2upenhCf77SclfRQayaAtW4aJAT+VpWBAw5md5+Nz4Z91qrKz9WEOkbsHH2t3JxSuclLpr5W7oGFfXCj8Dqu5F7B1byruJJ7BVdyr5itve4odERX764GUVJdvbvCTeLWqMdjDWWKMuxN3YuElATsTd3LNBQEdLUpx4eMR0xYDEZ1HAUeh4fdN3cjPjEe+27tYx4sSvgSTO08FXFRcYhuH10vZ1C5ohxvHHwDKy/qGqJ3cu+EtZPXon+b/gB0qe6T/pyEk/dOQsgT4o8pf4DH4WHq5qkgIPhkyCf4v0H/Z3LbM7bNwMarGxEXFYc1k9bgy1Nf4u3Db2Nq+FRseWKL2TF1+L4D0krSsGf6njpTz5ua1lLjmUIB2J3PPs4iHHytb73PZ7VWjfzKfKaMV05FDvP/3IpcZlpuZW69HCjdCRcXYTlaPlrExX8aOZRaZaM6bBobAVdg3kFR8+/ahniNaSKeBNlFUsgUQvg4ixHV1glOIgeDbUn4kgZPN2ZrBzzU11MreozsKk/Hq/tfZerhDw0aih/H/IjOXp0beZBNT0u3gSlNT0s/Z9heL3+fF4TkgiQD3XSz8KbJ+xwHHAS7BxsFmXVw62A35SUIIbiYfZEpU5ycn2wwv29gX13z9rAYdPLohJSCFKxNXIv1l9cjuyKbWS7KN4rp4VjfxuS7b+7G3F1zkVORAy6Hi7cHvI0PB38IEV8EAFibuBZzds6BhmgwpuMYrJm4BuM2jcPF7Ivo6N4Rp589bfIBTGJOIrqv6A4+l4/7r96Hm8QNzp87Q6VVIe2VNLR3bW9yPL+c+wUv7n0R0e2jcSz2WL2OrSGhmonSmmhKzUQIQbmyvFovlecgp/KBbirP1v2/XKehKlWV9doXW900gK/BWaKARqtptrJW9YUDjkW9ZMlhIeZJkV3kAIVSBC8nEbq3dYRjLc0kFUgh4AoaNDiJaiaWsNRNBc9sw+tX12P95fUAdAGWnwz5BM8/8rzd2D8NBXWMtAD0XncABj9wS153QghyKnIMjP6reVeRnJ8MpUZpcl+BzoFG5bhCPUMbLMXaVuRqOY7cOYKElATsvLET+VX5zDwJX4JRHUdhcuhkTAidAIVagd+v/I74xHikFKQwy7V3bY/YyFjERsYiyC3I5rEcuHUAs3fORmZ5JrgcLl7v9zqWDFkCMV8MuVqOGdtmYNv1beCAg+Vjl4MQggX7FgAA4ifFY1bULKNt6qOdxHwxMhZm4GreVQxZNwSBzoFIX5hutDygK0EW/EMw+Fw+it8utquSIGwj9t4fFw5PJ1GD1NGldXkpjUV9I1DtEbYGfg9U4JKVacxs4XF4Zp0Q1jgs2Pzd0hvS22oHPDRY2URQppLhy1NfYumppZCr5eBz+Xi598v4MPrDBskytRdagw1MaVpawzlj6/VSppLhesF1XM29aqCdcitzTe5Hwpegi3cXgyCzbj7d6u1QaAhuFt5EwnWdk+S/zP8M5kV4ReicJOEx6OrdFYfuHEJ8Yjx23tjJ6EMBV4CJoRMRFxWHUR1H2XwPLZIV4aV9L2Hj1Y0AgK7eXbFu8jp09+sOANhzcw8e/+txyNQy9Anog9UTV2P8pvG4W3IXvQN64+jMoyazdQasGYDT6aexOHoxPhj8AXqt6oXzWefx59Q/8WSXJ02ORZ+NX1egWnPA1sb8Y04fcDmcBtM5VDdRGoPWqJkA+9BNEr6EncPCCn1kah0RT9SiM6mpZmKBlbrp1P1TmL93PtPGIMo3Cj+N/YkJEG8NUMdIC6Eh646qNCqkFqXqjP7cq7iSp3uv2ZyvJgKuAGGeYUZ1eAOcAprloqnRanAq/RTTl+RuyV1mHo/Dw+D2gxETFoNJoZOQWZ6J+Evx+PPanyhTlDHLDWk/BHFRcZjaeapNqdQl8hK8uv9VrLu8DgDQ2asz1k1eh0f8H4FGq8GCvQuYBoTvD3ofSo0SX5z6AnwuH7uf2o1RHUcZbI8Qgp4re+JSziV8OfxLvNDrBbgsdYGWaJH5Wib8nfyNxrDqwirM2z0PA9sOxN9xf1t9DI1Femk63tuzHSeudLBqvfrU0aV1eSmNiTW9nqr4ZnpN2BnWGvg8Dg9ivhjOImf4OPggwDkAHhIPuIpd4SJygYPQwWqHhYAnaIIjbT3Q61wd2Fj7Oa04DQsPLMSOGzsAAH6Oflg2Yhmmd53eokWhntZiA1OajtZyzjTk9TKvMg9Xc68aBJkl5SWZrYHv6+hrFGQW7hUOMV9cr2OylcyyTOy4sQMJKQk4fve4Qc+ydi7tMDlsMiaHTUa4ZzhTautSziVmGT9HPzzT7RnMipqFcK9wm8aw7fo2PL/7eeRX5YPP5eO9R9/Du4++CwFPgDPpZzB+03gUyYoQ6hGKn8f9jMf/ehxFsiKM6zQO26dtN3LMbLq6CdO3TYe/kz/uvnIXCw8sxE/nfjJbWlij1cBzmSdK5CX4d/a/TFmv5kalUWHJ/r34/W/LjidXiQAlsupSpVQ3UeyR1qiZAOt0UyKHQMgTwkHgAA+pB/yd/OHj6AM3kRvcJG5wEDqwy8aombXOF9llGXx7hV7jLGCDblJr1VhxfgXeO/YeSuQlAIDYyFh8MfwL+Dj6NMGgGxfqGGlBNHZkR6m8FEl5SUYZJjUdCjVxE7sZ1eHt4t2lSTMXCCG4nHuZiYq6mmcYedDLvxdiwmIwuuNoXC+4jvjEeBy5c4RJbXQSOuGJiCcQFxWH/m36W/0gZOeNnZi3ax5yK3PB4/CwaOAivD/4fQi4Aiw5sQQfnfgIADCn+xxUqauw8epGOAgccDLuJHr49TDY1ppLazB752y0d22PWy/dQvcV3XE17yq2PbENMeExRvt+csuT2HxtMz4a/BE+jP7QqnE3NGqtGntT92LVxVXYm7oXAnUEfJWfW7UNW734tC4vpbFhG/0UHxeJ3kFNV46woKoAqYWpSC1Kxc3Cm0gtSsWtolu4XXQbalJ3s/b6Rj6J+WJ08e6CSJ9I3cs3Et18usFV7Grr4VBYQCM866AkHagyXT4UACD1MNsQc1/qPry8/2XcKroFAHi07aNYPnY5uvl0a4yRNhmtyQamNA2t6ZxpzOulRqvBraJbBnrpSu4V3Cm+Y3J5HoeHEI8QA4dJN59uaOvStkmdsMWyYuy+uRsJKQnYf2s/ZOrqWuyeUk9MCJmAmLAY+Dj6YNPVTdhwdQMKqgqYZfoE9EFcVBymdZkGF7GLVfvOr8zHC3tewNbrWwEAPfx6YN3kdeji3QXX869j1IZRSC9Lh7+TP74Y9gXm7p4LuVqOuT3mYsX4FQafk1KjRNtv2yK3MhebH9sMmVqG2O2x6N+mP049e8po3+cyz6H3b73hInJBwVsFzZ5Fmlacht8u/oY1iWtQXOpltWYCqG6i2Cf2qpmUGiXuFN9BalEqUgurdVNqYSqK5EUW16+vbmrr0tZAM0X6RCLYPZg6OxoRqpksYKNuyq/Mx6Iji7D60moAgLPIGUuil2B+7/nNfm+tD9QxQqkTQgjul943MvxvFNww26Cpg1sHozq8Hd07NkkdultFt5hMkjPpZwxqO4Z5hiEmLAZ9A/oiMTcR6y6vMxAwIR4hmBU5CzMjZyLAOYD1PgurCrFg3wL8mfQnACDSJxLrJq9DpG8kfj3/K+bvnQ8t0WJi6ERUKCpw9O5R+Dj44MzsMwYlvapUVQj8JhDF8mLsemoXdqTswG+XfsPbA97G0uFLDfapJVp4L/NGoawQ/8T9gwFtB9j6kdWLeyX3sPrSaqy+tBpZ5VnM9EFto1Gc/hrKq7hWVde0tu4jrctLaQqas16pQq3AraJbuFl4EzcKb+heBbr3IpllQ74mvg6+UGqUKJIX2Wzgi3giEEKg1Joux9jOpR1j8Ef66Jwl1PCntAQUagW+PvM1Pjn5CWRqGXgcHub3mo/FQxa3WIcftYEp1kLPmfpRoaxAUl6SUTmuYnmxyeWdRc4mez5a63SwhSpVFQ7ePoiElATsurHLYIwOAgeM6TQGE0ImgMvhYvO1zdibupfRfmK+GFPCpyAuKg5Dg4ayvscTQvC/a//D/L3zUSQrgpAnxOLoxXij/xvIqcjBqA2jkJyfDBeRC97q/xbeP/4+tESLJdFL8P7g9w229cGxD/DxyY8xuN1grBi/AmE/hUHMF6PsnTKjjNSl/yzFoiOLMCl0ErZP216/D85GlBoldt7YiVUXV+Hg7YPMdG+pD9wrfoZMIbJ6m1Q3UeyN5tRM+jLyNbXSjcIbuFl4E2nFaVY1F5fypXCXuiOrLAtaaG3STVwOF2K+2GyDeAeBA7r6dDVwmHT17gonkRPrcVIozcV/Gf9h/t75uJB9AQDQxbsLfhr7Ewa1G9TMI7MN6hihmMSch1U/PaukAlXaHGj5N5GUX23412zgVxMxX4wIrwijDBNvB+9GO4acihzsSNGljh9NOwqVtjr9ONA5EJNCJiHYPRiXci5h6/WtzE2Ly+FiZPBIxEXFYWLoRNap71uSt+CFPS+goKoAAq4AHwz+AO8MfAc7b+zE9K3TodAo0C+wH8qV5UjKS0KIRwhOPXvKoBbxGwffwNdnvsbojqMxNXwq5u6aiyHth+Bo7FGDfV3KvoQeK3vAUeiIoreKmrQkjUqjwu6bu7Hy4kocuHWAcT55Sj0xK3IW5vSYg1DPULP1HdmwaW5f9Av2qHMZQgi2Xr6KN/403YPF2u1RKHXRmPVKCSHIrsiuNuJrGPN3S+7W2fRcxBNBqVEaNfgTcoXoE9gHA9oMgIvYBbtu7MLpjNPMfLYG/olRH+PNpA04n3XeYB9ccBHmFYZwj3DI1DIk5Sfhful9k9ughj+lJXG/9D5eP/g6tiRvAQB4O3jji+FfYGbkzBbn4KM2MMVa6DljPXVFpermFeJGXg5KVfch4yYhKU+nm67nXzfQJjVp69LWqBxXiEdIo9n7Ko0Kf9//GwnXE7D9xnZklGUw8wRcAYYGDcXQ9kNRqarElutbDJq7t3Vpi9jIWMyKmoUObuzK6GaXZ2Pe7nnYfXM3AF0myrrJ6+Dl4IWJmybiVPopiHgizIqahRUXVgAAVk9cjWe7P8tsI7MsE+2+awcN0eDy85cxeO1glMhLcGHeBaOs/OHrh+NI2hH8OOZHLOi9wObPyRZuFd3Cbxd/Q3xiPPIq85jpI4NHYm6PuZgYOhFHrxfarJkAdjqnTFGGjefPYeku004Ra7dHoZijsXs8VKmqkFqYatIBYq7SCQDwuXxwwDF53e3g1gED2gxAlE8Urhdcxx9X/oBMU51Rx1Y3fRY+Gkvv7EO5stxgupvYDb38e8FZ5Iy0kjQk5SVBoTFdxijYLdggyCzSNxLtXNq1ihKvlNaFRqvB6kursejIIiZgc3rX6Vg2YpnJVgD2TLM6Rj766CMsXrzYYFpoaChSUnQNs+VyOV5//XX8+eefUCgUGDVqFH7++Wf4+LCvYUYNfOsxV5NvYqQfdl7OrrNWX0FVgck6vOY85d4O3rp08v9n77zjmyr3P/5O0ibde5e2lNKWvUdxgKjgRBwoCggiLtSrwvVevfe6x/WqP3EvcJUlgoiKC1EUHOxRNh20pXukbZq2aeb5/RF7aJqkTdu0tHDerxe0PTnnOU+Sk5Pv5/muZs6SQeGD3F6HV9Oo4dusb9lwfAPfZ31PvbFefCzEO4TLky4nxDuEfSX7bBYPg72CmTV0FreNuI3R0aPb/EIqqytj4bcL2XB8AwBjYsaQfm06FfUVXLPmGmr1taSGplJnqKNIW8SEPhP4ae5PYp+TnKockt9MRkBg480bmbZmGn5KP2oeqbHJuPm/P/+Pf2z+B1enXM3GWza686VySrb6JP/bso7vM/9Erc9FLz8CMguXJF7CnaPu5NoB16LysI12+uFwCU99fYTS2lbqFzrg9ZtHMH3E6awdi2AhpyqHvSV72Vu8l70le9lXsg9j/XDCjf9s93gSEh2ho/VKmxZNCqo16IVyFKo8sqpOkFmVyYlKqyHf0oBujq+nLxG+EShkCjR6DRUNFXb7hPmEcX7c+VwQfwHnx53PqOhRHCg9wOO/PM7mk5vt9n8w9Xpezf4NWSu1RXUI7Ln+PS4cNouK+gre2PkG7+19z6asBlibAc4YNIMZA2fgr/LnUPkhMkozyCjLkAx/iV7L5pzNPPDDAxyvtNqkE/pM4K0r37IuuHWibFd3ItnAZw/doZlAumbaS2t2AdCqzWAwG8hUZ9r1fCyodRzwo1QoGRg20K7nY7RftFu/NwVBYE/xHjYct5YpbroHAsiQkdYnjTExY1Dr1HyX9Z1YaxxgYsJE5o+Yz4xBM9osrSwIAukZ6Tz4w4PU6mvx8vDivxf/lztH38ms9bPYmLkRuUzOZUmX8X329yhkCjbespErkq8Qx5ixdgbrj63nntH3cLLmJD/m/Mg7V77DwrELxX10Rh3BLwajN+s5dt8xBoQNcNtr5Qy9Sc8XR7/kzT++I6M4D7OsGr38CFH+Edw+4nYWjFpg50RydC1ZZFrkQttBJC11jqZRw76SfVbd9Jd2yqrKwsc0UdJNEt1CZ3o8mC0CO3MrOVZWTIO5BItnFllVp4PHnN0jwRrgGuUXha+nL3qTnrL6MjsdopApGBk9kgviLuD8+PM5P+58fJW+vLr9VZbsWGLnXAn3Cefn6ekMXTuv1Z4MBpkMxQMZyILi2JS9ied+e86uggnAsMhhLBi5gFHRoyjQFHCw7CAZZVbd1LwCR3MCVYEMixxmU4prSMQQvD29W30tJSS6A3WDmse2PMb7e99HQMBP6ceTk57kwfEP4qktPes0U5c4Rj7//HN++ukncZuHhwdhYdYI+oULF/Ltt9/yySefEBgYyP33349cLuePP+xrhzpDMvDbh7O6o85wxfNvESycrD5pY/gfLDtITlWO3RcFWL/QUkJT7MpxJQQluCVaU2fU8dPJn9hwfANfn/gate70B9XH04fz487H28ObPSV7bL6chkQMYf6I+cwZNqfVTBdBEFh9aDX3f38/NY01qBQqnp38LJf2u5SrVl9FSV0J0X7RNBgb0Og1TE+dzvqb1ouOj6tWX8V3Wd/x4PgH+WDfB9Qb6zm08BBDIoaI57h85eVsytnEa5e9xoNpD3b6NXFGU9r3K7/8TEHBeDwIFx/zVun55xWJzE8baff8j1Ue48ecH/kx50e25m3DrO+HQghGIQQRYrqrzfO+dFMMJs9johNkf+l+hxEg/sIoQhqfaXM8KfJJwl20Va/UbDFzSnNKLH316/EaMrJSMJtOC1sTFVQpl6JTbBe3KWQKEoMTSQlJIcgrCKPFSFldGccqjzl0hKSEptgY9CmhKeLCyP6S/Tzx6xNiJGZzAlWBbJi5gcmJk6GmgB8PfcqjP/+L1LBUPr1+NQACAk/9+jQfZ35NrVcAO+7YIS4kCILAtvxtvPTnS2zK3mSXlh7hG8HcYXO5dfitDIschsliIlOdSUZphmT4S/Q6DGYDr+94nae3Pk29sR4ZMv419FaeO/I9MicOP8Bho/czgWQDnz10h2YC6ZppD631anCmo1zRTdW6aoc9H+sMdQ73D/UOtcvIHxw+GF+lb0eelh3HK4+LvRx3F++2eWxw+GBSQ1MpqSthR+EOUdf5Kf24cdCNzB8xnwviL2jVcVOgKeCOjXeI5aUujL+QZdOW8fKfL4s1zIdHDiejLANfT19+ve1XxsSMAeDXvF+ZnD4ZX09f7h17Ly//+TLzhs/jk2s/Ecf/6eRPTFkxhVj/WAoWFXRp8EWmOpNle5exYtchPOputtFNQT4Cz107gquH9bE5RtOo4Ze8X/gx50c2ZW+mSO2NQgjGLKsGQUaU8b9tnvcfV3tSLzsgOkOa+mW1JN7rEmTVi9ocT9JNEu7AlR4PmkaNTebHjuxGcvJHIpiDxH0c6aYQ7xBSQ1OJC4hDIVdQ21hLbk0uxyuPY8E2095f6c95ceeJAWTjYseJ98d6Qz1v7nqTl/982WGJ4rnD5vLh9A/xkHsg1Jziyg/SKKsr472r3mVc7DgADlcc4c6Nd1JkauSm8xbzf1P/Tzy+rK6M9/e+z9u737bJGAPrmteUflO4bcRtXJN6DT6ePlTUV9jopYzSDI5WHHWY5SKXyUkOSbYLMov1j5WCzCTOCHuL93Lfd/exs2gnABcHJ/NjTRUKJ9mxQK/UTF3iGPnyyy85cOCA3WMajYbw8HBWr17NjBkzADh+/DgDBw5k+/btpKWluXQOycB3nbbqjjqjo7Ui6w31HKk4YleHt7mjojl+Sj+HdXiDvTveuMtkMfHHqT/EqKjmpWAUMgXDIochl8ltop495B5clXwV80fM58rkK52mtRdri7lz4518l/UdAOfFncdzk5/jnm/vIVOdSYAygEZzIwazgYVjFvL2lW8jk8n4Lus7rlp9FUFeQQyJGMLvp37ng2kfsGDUAsAahRT8YjA6k87OYeIusquyWbZ3GZ9kfIK2Nolww78Ba6RYE83F3Zh+nvx08ifRGVKkLbIZL8oviqlJU7m071Te/DacCq3RiWgUMMvUFKpuhxaNy7w8vBgeOZzR0aMZFT2K0TGjGRA6iMn/99sZqWMqcW5T01jjsPRVljpLvFd4myc4/Ow0LZlcNrqAiakB1BvryavOY0fRDnYW7bTLsPOUezImZoxo0J8Xdx7hvuG05HD5YZ789Um+OPaFwzlfk3INa2assXEy3PPNPby/930WpS1iyWVLxO16k55LV1zK76d+Jyk4iZ137CTUx1YkqxvUpGek8/rO1x2W0RoUPoi5w+Yya+gs4gJtjZ32Gv4poSk2fUskw1+iOymqLeIfm//Bp4c/dbmcAndthZgRXT631pBs4LOH7tBMIF0zrtJRzQQds00tgoX8mnw7Z0mmOtNhuU0ZMpJCkuyCzPoF9+tUz8fC2kKxl+PWvK02wRF9AvoQHxBPvibfRgf0D+kv9nBsaQs0IQgCS/cu5e8//p16Yz0+nj68dOlLFGuL+e/v/xXHL6wtJMI3gu0LttMvuB+CIDD03aEcqTjCXaPuYum+pQwIG8Cx+46JYz/606O8+MeLdg4Td9FoauSLY1+wdO9StuZvdWr7Nf321qwRhIYUiJppR+EOm9fRQ+7BeXHnMbXfVC5JnMJDK2opq9U71U0mKinyWmCnmxICExgdM5rR0aNF7RTiHXbG+j9InLuYLCZOVp+0Bo0100wnKk9QVl8m7teWbppxfg3D4wXK6ss4UHqAPwr+IK8mz+588YHxYgb9+XHnMyRiiN19T2fU8d6e93jh9xfEADQZMtG5G6QK4oubv2By38niMdlV2SS/mYyn3JOaR2vEih8Anx3+jJvX3wxgs27ThEWw8Gver7yx8w02Zm60u2/7ePowY+AM5gybw8WJF9vM12A2cLzyuJiN36SbHAXOgdVp1LLR+6DwQXaVPSQkugKLYCH9QDqP/PQIferVZ6Vm6hLHyMsvv0xgYCBeXl5MmDCBF154gfj4eLZs2cIll1xCdXU1QUFB4jEJCQk89NBDLFrkONpBr9ej15+O4qutrSUuLk4y8F1ge46aW5bt6PDxk0cdZEzfAOIC44gLiCMuMI5Q79B2LVw1Nc1qafgfrTiKwey42W+fgD52dXhTw1JRKpTtmr8gCOwv3S9GRR2pOGLzeN/AvpgEk03d3QjfCOYMncP8kfMdOigEQeDjAx/z0A8PoTVo8fbw5rGJj/Hl8S/ZXbwbpUKJ0WxEQOC/F/+Xf134LyyCheQ3kzlZfZLLki5jU84m7hx1J0unLQVOR0dF+kZS8vcSty0M6k16vjz+JUv3LWVL7l89TQQ58YZPkFmCAUfnEZArasnznIsgO23Ue3l4MTFhIlP7TWVq0lSGRAzBIlg4oT7B8p0HWfN70w1S1mwkCyCjQvlfUB1geNRw0ZgfHTOagWEDHTqhurqOaW/ElQgdibYxmo2crD7psIZty6if5igVSpKCkzGWPo7R6Iuzz45MoSHfc57NZwesJfyaMkHOjzufMTFjWs2YyFRn8tSvT7Hm8BrRoPeUe4pOBh9PH1Zdv4prB1xrd+yAtwZwQn2Cr27+imtSr7F5rKK+gvEfjCe3JpdJCZP48dYfHd5XBUHgz4I/eXfPu6w9stbOuSFDxsSEicwZNocZg2Y4bWTdXsM/1DvULrtEMvzPLnravezXvF95+6u7WFdd1vbOvczIl+jZdIVmAkk3dZTOaiaAaWknSesXIuqm2IDYdmsXnVHHscpjduW4mi82NsfH04fB4YPtynE173foKuoGtVimeFP2JnSm0/X4A1WBRPhGUFBbQKPJ6jySIWNK0hTmj5jP9NTpDu2a3Opcbv/6dn7N+xWASxIv4cL4C3l669MICAR5BVHTWENySDJ/3P4H4b7hvLP7He777j6SgpPIqc4BoPqRatHWGLN0DHtL9rL82uXcOvzWdj9PZxytOMqyvctYfnC5GGkux4N+ppWt2n4WWRUFqvk2jozU0FSm9JvC1KSpXNT3IvxV/qgb1Owt2cu6vVls3pfw156OdVNUaKmdE6RlMEsTkm6ypafZGb0VQRCobKi000wnKk+QU52DyWJyemy0XzTJIamU5t6H3uCF88+OmoIWwZNymZzhkcNPlxOOP58+AX0cHG9Fb9Lz4f4Pef6358XsdR8PHxpMp4PSrk29llU3rLJxfAB8sO8D7tx4JxfEX8Bv83+zG/vpX5/mqa1P4SH3YPOtm7mo70UO51BRX8HyjOW8uetN8jX5do9H+UVxy5BbmDNsDiOjRjpc62laM2vSSk266UTlCYdN5j3kHgwIG2DnMIn0a1+5TYmeS0+7l9U01rD0m/v452H7ChZ29DLN5HbHyPfff09dXR2pqamUlJTw9NNPU1RUxOHDh9m4cSPz58+3MdYBxo0bx+TJk3nxxRcdjumoBi8gGfgu8NWBIh5cc6DDx1d4vkSDxzabbUq5kki/SOIC4kgKSaJvUF/RadL0M0DV9vtiNBvJqsqyM/wdfZmAdVFwQNgAO8O/PRHGWeosMZNkR6Gt+An1DqXR1GjTq2R09Gjmj5jPLUNvIcQ7xGb/U5pTLPh6AT+dtJZAuCDuAuQyOdtObUMuk4tRA+nXpjN3+Fxe+fMVHt78MAmBCeRr8hkWOYyMezIAeGzLYzz/2/PMHjqbldevdOm5tMaJyhMs27eM9Ix0sXeADBmX97+cyTF38/YmjzbHKFX+i9QYmegISeuTRr4mXyyFtbdkLwdKD4iR8N7mCYQY7rJJMfdS6Zg+xsit44cyIGwAHvK2z9tEZ+qY9lacffmdi69FZxAEgfL6crH0VXNj/mT1yVYN+Rj/GFJDU63/wk7/TAhMYFdujUuLJqXKf9EnrIHz488XS2MNCBvgUtnA3Opcntn2DMszlov3kLiAOJvau5MSJrFh5gaHmXXF2mJil8QiQ0bVI1UOHRZHyo9w3kfnUauvZcHIBSybtqzVe2i1rpqVB1fy7p53OVZ5zO5xpULJ1SlXM3vobK5Kvkp0Yji7niXD/9zlTN7LTBYTNY01VOuqqW6sFn+qdWp0+dt5+LALvb16mZEv0bPpCs0Ekm7qKJ3VTOBYNwV7BRPrH0vf4L4kBSURHxRvo5ui/KJcyvgory+3y8g/UnFEdFK0JNov2q4c18CwgS4HGtQb6vkx50c2HN/AxsyNNn1HVAoVAaoAmyCHIK8gbh58M/NHzmdszFgbu8IiWHh719s88tMj6Ew6/JX+3DL0Fj7e/zFGixGVQoXerGd87Hi2zNuC2WImdkksWoOWKL8oSutK+XHOj0xJmkKVroqwl8IQEChaXNTpZrA6o451R9exbN8yfj/1u7g9LiCOO0bdwYiQm3hgVU7br5ff80xO7cPUpKlM6TcFH08fsRfIvtJ97C3ea6NxHekmPy8Dt17ow53njbXTnW1xLmoFR3bm5qOl59zr0FkaTY1kV2XbBYydqDxBdWO10+O8PbxJCU05rZf+0kwpoSkEqAJcdjZrfJ5mdN8AMSMkrU8a/qq2+/AYzUaWZyznmW3PiFnuYd5h1BvrRadua4FkALO/mM3qQ6t5fOLjPDPZvpS3IAjM+mIWaw6vIcQ7hJ137KR/SH+ncxIEgd9O/cb7e95n3dF1DrPmB4QNYM7QOcwaOovE4ERxuzPd1Ghq5GjFUbsgM2fvTaRvpF0prtTQVKcVUSR6Jmfyni4IAnWGOhu9VK2rpqaxBkvxfhbsTm97kF6mmdzuGGlJTU0NCQkJLFmyBG9v7w4Z+VLkU8fpbPRTqfJf6BWH2n2cl4cXkb6R9AnoQ1JwEknBViEQH2gVA30C+jiNltY0ahzW4XXUjwKsgqOl4T8kYkibDQKLtcV8dfwrNhzfwC95v9gslnp7eKM368WFSaVCybUDrmX+iPlM6TdFFDCCIPDenvf4x+Z/WNPEPXwYEjmEXUW7xLE85B58O+tbxsSMIXZJrChg5DI5tY/W4qv0ZcKHE9hRuIOPp3/MbSNuc/l1bk7LtO8mYv1jWTByAbeNuI2c6hxe2LyZnNyJbY531yWeRIcVibVtD5QesIkca8LX05eR0SMZHT2aEZGjUFkG4SWPJCrAp9Ne7Z7mJe9KnH35XTM8mqXbch3Wu4ZzLwqsOY2mRrLUWQ6zP5oL+Jb4evraGPIpoSniz9YMcVcXTZ65NpG5aYPa9VwKNAU8/9vzfLj/Q/FeND52PMcrj6PRawDrfeidK9+xS+VuzqeHPmXWF7MYFT2KvXftdbrf91nfc/WnV2MRLLwy9RUWT1jc5hwFQWBn0U6W7l3K6kOrHTZgD/IK4sZBN5LqO5N1O6G0HcacZPif3bRWux9cu5cZzUY7I93hTweGvNagdTquVEpLoifgDs0Ekm7qKO7IGOmIbpLL5IR4hxDjF0Pf4L4khySTEJhgE3AW7hPuMIDBbDGTXZVto5cOlh3kZPVJh+dSyBSkhqXaleOKD4xvNUDCaDayNX8rG45t4MsTX9r0FJPL5CgVShsHzeDwwdw24jbmDJtDlF+UuD1LncVtX93GnwV/AjA2ZizHKo9RZ6hDIVNgFsxMS5nGFzO/YNEPi3hr91vE+sdSpC3iucnP8Z+J/2H90fXMWDeDQeGDOHKvbSWA9nCo7BDL9i1jxcEVos2okCmYljqNO0fdybCIYXy4/0M+25NDQ+XMNse7bZKAh+8B0RnirJl0/5D+YhbIyKhRCIb+NOg93KJzznXdFOTjSU2D/UK0pJmsNnyRtshh6au8mjyHPWLBGlgZHxjv0PnRJ6BPq0FfruqmV2cO47qRrvciMFvMrD60mqe3Pi1mlEX6RhLtH82B0tPnm5QwifU3rXeaaSUIAn1e7UOxtpif5/7MxYkXO9xPZ9RxUfpF7CraRWpoKjvu2OE0U745VboqVmSs4P297zsMLAM4P+58Zg+dTZj8Upb8eMrlRXBBECisLbQLMstSZzl8L5UKJYPCB9kFmTl7bSTOLO7QTIIgoDVo262ZqhutuslZIOnZqpm63DECMHbsWC699FKmTJnS4bTw5kii0HWa6uU6qzvqDBkQ5u/B/83ypqS+mKLaIoq0RZzSnCKvJo/C2kIqGyodRve6iq+nLxG+EfQJ6EO/4H6khKTQN/h09kmsf6y4wCUIAqc0p+wMf2cRxgD9gvvZlePqH9LfYVRWta5aTB3/IfsHm34ATYZ6E7H+scwdPpfbRtxGSmgKACerTzL/q/lsy7dGiTVlhTThp/Rj223beHv323y4/0O8PbzRmXRsvW0rwyOHE/JSCBbBwqmHTjmt1esMh2nfMjlXJV/F9NTpZKoz+SbrGzLVmZgsJlTmoUQZXmhzXEfizk/px8iokWIprNHRo0kJTelUbWMJ519+bXEu1A1uMvyaOz+aMkHya/JbNeQTghIcZn90tI+Fq4sm7WlwWVpXygu/vcB7e98TSwtO7jsZLw8vvs/+XtxvZNRIvrr5qzbvD3dtvItl+5axOG0xr1z2Sqv7vr7jdR7a9BAyZHx9y9dcnXK1S3MGqwN79aHVvLfnPQ6WH7R5rK1a3O0Rph0x/AeHDxYN/qayXJLhf2Zpu3a/gL+3mRmTDqLROzfgm2d0upOz1ciX6H24WzOBdM24Skc1UxNhfgqemGGipM6qmQprC8mryeOU5hRl9WVOG627gkKmINQ7lGj/aPoGWZ0n/UP62zhPAlWBom2j1Wsd9nx0FmgQoApw2PMx0CvQbl+LYGF30W4xAz9TnWnzePOseYVMwZXJVzJ/xHyuSrkKpUKJ2WLm1R2v8tiWx9Cb9fgp/azBYvpasR/AXaPu4qG0hxj0ziBx27SUaXx9y9cs/GYh7+19jwfGPcDrV7zertex3lDP2iNrWbpvqU3lgITABG4feTsRvhF8feJrthduF50lndFNKaEpNiWER0aNdPiaSrSPjuimc0EzAdQZ6hw6PzLVma3aUIGqQNHh0Vw7JYckt1r6tzXcrZssgoXPj37OU78+JToawnzCmJ4ynfXH1lOjrwGsWuDdK99l/sj5req9THUmqW9ZS7XXPFLT6vMs0ZYw7oNxFNYWMqXfFL6b/Z3LlTCayhMv3beUzw5/ZhdY1qSbrDPtnG6qN9RzuPywjW46WHbQaXBQrH+sXZBZckiytLZzBnFFMwV4m5l1yQk0jfbOjabs+JrGmk6t1TrjbNVMXe4YqaurIz4+nqeeeop58+YRHh7Op59+yg033ADAiRMnGDBggNR8vQtxVnfUGa7ehC2ChcqGStFp0vQzryaPk9UnKawtpKKhwq7pcHvwV/oT7htOrH8siUGJDAwbSP/Q/qIICFIFkVmVaWf4l9SVOBzPy8PLYR3eCN8IcR+dUcfmk5vZcHwDX5/4WnQ2OOL8uPOZP2I+Nwy8kaPFelbs/5pVR95FK+xH5eFp88UX5RfFB9M+4OpPrxaN/JcufYmU0BSu/exaUkJTOHH/CZdel9bSvsfEjBHT7WsN9lk2vh5+hDe8h2AOxFG9TwELZtTUBjzIqBhbJ0hyaLJL5YDOZSyChXpDPXWGOrt/WoPWfpu+jh93XIje4I3j+qtt056F+J6KVq+1Sd1unv3R2j0kyCvI1vHx1+/9Q/rj5eHl1jm2tWjSHtFV2VDJS3+8xFu73hIzsSYmTGR66nRe+P0FsQSeQqbg+Yuf5x/n/8Olz17KmylkVWWx8ZaNbTo6BEFg4bcLeX/v+/gp/fjj9j8YFjmszXO0HGNP8R6W7VvGqoOraDA2Etv4IQrCWjRZPE20G4TpmTT8z6WITHfhqjh2NdraT+mHj6cPnnJPLIIFnVFHg6nBad+yljRvxglnr5Ev0bvoCs0E0jXTHlrr1SA4+L3pb2hbNzUYG+w0U2FtITlVOeRr8imtK6W6sdph43VX8JR7EuIdQrR/NAmBCfQP6c+AsAEkBCYQHxhPn4A+1DTW2GXkH6s45rDcC1gbHrcMMksJTbEJXDtWeUzMJNlTvMfp/MJ8wpgzdA5zh99GY0Mf9hflsPTAy2RUfQEyCz6ePjb23rOTn+XXvF/5OfdnwNoDsvTvpaS8lUJ2VTZf3/w101KnufTaHCg9wLK9y1h5aKVYgcBD7sFFfS9CpVBxpPwI+Rr7YBs5cqL8olFVvYzF7E9rusmvz0uMiRkl9gMZGT3SpdLS5zKCIGAwGxzqI3u9pBV10697LsFg8KEjuuls0Exmi5l8Tf5pvVR5gswqq34q0hY5PU4hU9AvuJ+dZkoNTSXCN8JtPU5Pz9M9ukkQBL4+8TVP/PoEB8uswVjBXsHcP/Z+DlccZsPxDeK+I6NG8uXNXxIfGN/m/JbuXcrd39zNxISJbL1ta5v7Hyg9wAUfXUC9sZ57x9zL21e93eYxLanWVbPq0CqW7l3KofJDIMhb1U3ucOhZBAt5NXkcLDtoE2TmLLPQ28ObIRFDbDJLhkUO65BTV9JM7cfdmkmpUOKn9EOlUCFDhsFioMHYQKOp0SV7Q44cC6f3O1s1k9sdIw8//DDTpk0jISGB4uJinnzySQ4cOMDRo0cJDw9n4cKFfPfdd3zyyScEBATwt7/9DYA///zT5XNIBn77aa1Mz9cZJV1au66lECisLeRk9UlyqnMorC2krL4MTaPGaeR3a8iQ4a/yJ9wnnBj/GBKDEsWI8EZTI5UNlZysPsmh8kMcqTjidIE10jfSrhzXoPBBeMg9+C3/NzYc38CXx790mBbtbZ5AqPFuFMLpJodyj1pK5W+iU2y32Tc5JJlAVSB7SqzC4YaBNxDtF81bu99y6QvWWdp3bEAsDYYGKnWVdsfIZXICVYF4eXih1qkxmA3NIroFZDRfbLW+B09Mj+G2tBFnvRPEbDG3bYi7YqwbtGj1WuoN9TaN3lzB1Ui01nj95hFMHxHbqTGa01VGjNliJq8mz2ETP2fOTLCK16TgJGskU0iKTfaHs/ISXUVnG1xW66p5ZfsrvL7zdTF6NK1PGo+e/ygbjm8gPeN0zc7+If356uavGBTuWlmuotoi+rxqTWuv+meVSwas0Wzk8lWXsyV3C/GB8ey6Y1eHe3do9Vr+t2U9q7aGt7nv3MlV/H3SNW6NnOwOw/9crOHtDlwtpzAkeTeD4hsI8gpCIVegM+rQNGqsQRjaInKqcijSFrkUASVDRqhPKP2C+hHsHUxWVRa51bl2toZCpmCYRTgrjXyJnk13aCaQrpn20tp9HujS7wCzxUx5fbmN8+SU5hTZVdnk1eRRoi1BrVM7LGXpCiqFihDvEKL8oogPjKd/cH9SwqyODk2jhqLaIo5WHuVQ2SGnpaCUCiUDwwbaBZlF+0VTWFvIl8e/ZMPxDWzL32Z3r3bUV8PXy0CB8Cpa+W92Wfr3j72ft3a/Jf792/zfuPDjC1HIFFQ9UtWq46HOUMeaw2tYuncpu4t3i9tDvUPx8fShor6CRrN9RK6Phw/+Kn8MZoOYYdO6bpLx6sxBXDcy0W6sswlBEGg0NXZII9lt11u31xvrW+3754jO6qbeopnAWoqpKdujuWbKrspu9R4Q7hPusPRVv+B+KBVKt8zNVTqjmwRBYFPOJh7/5XHR6eqv9GfxhMUMCBvAvd/eK35GFTIFz1/yPP84z7VAMoBZ62fx6eFPeXLSkzx10VMuHfPl8S+5/rPrERB484o3uX/c/S4d5+i57SzayUtbNrDvaNslzp+9IZQ5Y8a7VfPW6ms5VHbIJsjsUPkhp+tlfYP62pXiSgxOdPp6S5qpY7iqmQYkbSelTy3BXsH4Kf0wmA3UGepQ69SU1ZWRW5NLXk1eq6WEm+Pl4UVcQBz9gvtRpaviaMVRh1lmowQFe/Fte8Beppnc7hi5+eab2bZtG2q1mvDwcC644AKef/55kpKSAGhsbOTvf/87n376KXq9nssuu4x33nmHqKioNkY+jWTgdwxnX9w9wZPbUggU1BaQpc4ipzqHAk0BZfVlVDdWuxwN2hy5TI6/0p9Qn1BCvELw9fRFLpPTYGqgWFvs1PCXy+SkhKaIRv+Q8CHIZDJ2Fu3ky+NfcqzymNOSMU1f/dVeL1Er+81m3H7B/cSFuj7+ffBT+XG88jhf3PQF1w28zm4eztK+m9LRnTUrtggWh17gIK8gRkWPIlJxGUdyBqJpOP1l1pO/rIxmI/XGepuoIVcMca1eS62+llpDrei8qDfW02Bs6LCwdCc+pomEG//ZqTHcGf3kDiNG3aB22Pcjuyq71c9whG+Ew9JXiUGJPapvREdeo1p9La/veJ1Xtr8i9gwZGTWSZyc/i0KmYO6Xc8UmpjJkPHzewzx38XPtEjCrDq5izoY5jIkZw+47d7d9wF9U6apI+yCNrKosJvSZwJZ5WzqcbeOqMVfh+RJm1U6mpU5jztA5XJF8RZeJNXcZ/j8eKet0vddzFVejn4YM+IlSw2+cUJ9oV9mZYK9gUkNTGRMzhjExYxgWOQyFXMELv73A15lfO3yv+wf3R2vQUlZfRrLCm6MWbzxaW6DxUMH9eyGofeUu3Y1kA589dIdmAuma6QitaaOeoJu0eq2N8yS3OpdMdSZ5NXkU1xWjblC7vBjSEi8PL4K9ggnzCcNf6Y9SocQiWFA3qMnV5Dr97gz1DrUJMksITOBk9Um+y/6OTdmbkBtGtaqZfMJXc6zuU5sxm/qvNGXR3j36bt7f+z4T+kzgzwWOHYR7i/das1gPrRK/R2TIUCqUDu1+uUyOXCZ3uEAvl8kZGDaQ0TGjCbBM5I8j0VTVn7YCeqpuEgSBBmNDh4K+avW14j+t4a+gL2MDOpOuw9lM7qSzuqmnaSaD2cDJ6pM22R9N2qnpuneESqEiOTTZrvRVamgqwd7BnX5u7qQjr9Mvub/w2C+Pif2IfDx9eGDcAywYuYD//PIf1h5ZK+7bP6Q/G2ZuYEjEEJfnJAgCMUtiKK0r5Zd5v3BR34tcPvbF31/k0Z8fRS6T8/3s75maNNXlY1vSHt3UN7pSbNqeEJTQ4XO2htliJqc6x67fo7P1Mj+ln1i2uCnAbGjkUH7P1EqaqYO4qpnShu2kyryD45XHnb4/jvCUe5IQlMCwiGGk9UljeNRwUkJS2Ji5kTd2vUF2VbbdMV4eXgwMG8j+0v3ECTKyZQEoW3Mj9ELN1C09RtyNZOCfu9Tqa20iqJqiJk5pTlFaX9rhGuRymRwvhRceCg9kyNAZdRgsjhdw/ZR+DI0YSh//ePYfug6j0RdnqdVyRS1C2GPk1+aJ2+MEGVFyTxsDXC6Ts2XuFgJU/uATCkFxDtO+20uwV7BYBqupJFZiUKIYbdBV4q7JY+0sDbq58V3dWI1Gr6G20eq8qNXXis4LnVGHzqSj0dTY7oiiM4VKocLH0wcfTx+x3EvLf76evuLvmtoIvtuV0qFzubtebnsafRnMBrKrsh3WsVXr1E7P4eXhRXJIssNIJlca2fUUXP3s1BvqeXv327z0x0vi6zI4fDDPTH6Gi/tezEObHrLJEonxi2HtjWs5P/78ds/pzq/v5IP9H/DwhId5eerL7To2U51J2gdpVDdWM3vobFZct6JL+7B4RbzHCe034t/BXsHcNPgmZg+dzfnx53d5tlq7DX9Pf8Ib3sdiclxK41ypXd0RDGYDWeocZr+XQ00DtFaKpMhrAcicL7z4Kf0YFDaIUdGjRPE1OHywuAig1Wt5bcdrLN23lMLaQrvj5TI5s4bMYkjEEJ7e+jQ6k47EoEQ2zNzAj/s+4tNdbzEiagQ3D7mZR396lOFRw/n4mo+sB//13XymkWxgifYiXTPnJiaLidK6UlE3ZamzOKE+QW5NLsW1xVTqKqnV13bIvlYqlKgUKhQyBUaL0an2kiEjKSSJgWGDOX50Fgaj4/JHAhYEWTXR/d5ld/FOMbMvTpARKfMQg8D6BvUlryaPO0fdycIx94j35Vp9LZ8e+pSl+5ayr2Rfu58PWCPOB4UPEnXTqOhRDI8cjq/ydGRsV+gmi2ChwdjQZtCX1qAV68drGjVo9VrRwSHqJpPOqmHNhg5VYuhu5MjxVVo1UdPPljqppX6q1oTz9Y72Z+ecSc0kCAJl9WUOS1+drD7ZahZsrH+sw9JX8YHxvaoPhKufnT9O/cHjvzzOL3m/AFbdeO+Ye3nkgkf4s+BPbv/qdpteSQ9PsAaSqTxU7ZrPicoTDHh7ACqFippHa9oVECYIAvO/mk96RjoBqgB2LNjBwPCB7Tp/E67qpiqvJ9DKTt/bLoy/kNlDZ3Pj4BsJ8Q7p0LnbQ5WuSszIP1h2kIyyDA6XH3bobJYJCuINn4AlCEkztQ9BECitK+eq1/ZSVW+hM5pJLpOTEJjAiKgRjIwayZCIIQyNHEpiUCIKuQJBEPg171ee2/Yc205tc2gLJAUn8bdxf2Pd0XX8UfAHAE9OepKFyVdzzUcXYDQb+eTaT/jXT49SUlfKJ9M/tpbl7oWaSXKMSJx1GM1GqxD4q9/J0YqjZFdlk6/Jp0RbQpWuCq1B2+mol/Y04zN5HMUsmIkTZJzAD+9WaqKa5B5cGRLJZvWxds0n1DvUxpgfHT2avkF9W13cFAQBvVnv0ACvaaxBrVOLjZw0jRoxgqhpnwZjg1ijUGeyGuIGs6FHRBQ5QqVQ4eXhhbent+i48Ff64+vpa2OQt2qUK+23N+3r7end7gVdV5t9drSmdXvn0VqjL2+VnsSUj8lUHye3JrfV9zkuIM7GkE8JtZbAig+MP+tLtAE0mhp5f8/7vPD7C5TVlwHWJpxPTXqKmwbfxKacTcz/cj7lDeXiMbcNv403rngDf5V/h87Z/43+5FTn8M0t33BVylXtPn5L7hYuW3kZJouJ5yY/x38m/qfdY7haT/i3f07mcMVBVh5cyaeHP6VYWyzukxCYwKyhs5gzbI7LZcTchTPDH0OKS/f7s6F2dUewCBaKaovIVGee/ldl/ZlbnYtZMDstRSJgNfwrlP8Vy0+qFCoGhQ8SGwAPiRjC0IihxPjH2H2nmS1mNmZu5IXfXmBPyR7HmZKqIB4Y/wB3jb6LJduXsGTHEgCmJk3l0xs+xcvDi/hX41Hr1Ky/aT39gvsx8v2RhPmEUfGPii573TqCZANLtBfpmpFwhiAIaPTWEloFmgJOqE9wXH2c3OpcimqLKG8oR9Oo6XSGdXsbmHvKPYkym9rUTBaFJ/9IvYS3M79q1xwVMgVDIoaIeml0zGiGRQ7Dx9On1ePMFrOYvd484KtWX0uVrkpsgFvTWGMN+vpLM7XMvGg0NaI36TGYDU77u5xpFDKFVTN5eOOjtGodP6Uffkq/084MB1qpPfrJU+7Z7iAcV3VTc86EZvL1MjJy2AYy1cc5oT7RapCjr6evQ+dHcmgyfkoXynyeBewp3sPjvzzOD9k/ANao9rtG38W/L/w3SoWS+769j7VHT2eJRPtF89mMz7gw4cIOne+9Pe+x8NuFXNT3In6Z90u7j9eb9ExZMYXfTv1Gv+B+7LxjJ2E+YW0f2AJXddM3D47iqxMbWHlwJb/m/So6Pj3lnlyZfCVzhs3h6pSr3d5fszVMFhOZ6ky7ILMqTZikmdqgzlBHljpLLJPXXD9p9Jp2aSawVqFpChhr0kypYakOr4cCTQHP//Y8aw6vEatYtOTy/pfz8ISH8fH0Yca6GRRriwlQBbDiuhVck3oNT/7yJM9se0bM3pyyYgo/nfyJT6Z/wrwR89z9cnUYyTEiIdEGgiBQ01gj1iw/XH6YTHUm+Zp8irXFqHVqtHptq8aqq6m8FZ4v0eCxDXC9WdEo6tjfigc4WBVMclgy8QHxRPhGEOQdhAzZ6dTnZlFEzZ0XjaZG0XlhtBgxW8w9JqJIKVeiVCjx8rQa4S2dF/5KfwJUAfir/DtkfHt5ePXYBfm26q/eNTGxy3sBdaTRl5/Sz2Hj8+SQZJsIu3MJg9nAR/s/4rltz4kNEBODEnly0pPMHjYbrV7Lgz88yIqDK8RjgryCSL82nWtSr+nweQs0BcS/ZnU6VT9S3eGGn+/veZ97vr0HgHU3rmPGoBntHqO99YTNFjO/5v3KqkOr+Pzo5zblP0ZEjWDO0DncMvQWYvxj2j0Xd2CymFj6+z5e+q7tBXJ3167uCF1Z5qVaV21nwGeqM8mqynJaXqU5jurLo6gmKX4/E1MDxGimpOCkNiMhj1Yc5dmtzzotlQUwMGwgi9IWMWfYHOoMddy8/ma25G4B4F8X/Mtayk6uEK/7xKBEsv6Whc6kw/8Fq4NS/U91t0TjuYpkA0u0F+makegsepOekroSTmlOcbT8KMfUxzhZdZJCbSEV9RVUN1ajM+qcaoozqZkUMgVJwUkkBicS4xdDmE8YPp4+1BvrqdHX2GomQwMNpgYxY72588JkMfWYwC+FTGHN2vFQic4LX6WvGOjlr/QnQBlAgCoAP1Xb2est9ZO3h3ePKmHbktbsTAEI8vGkpuG0hu8Jmkkuk9M3qO/pYLFm+slR0Me5wsGygzzxyxN8deIrwHptzx8xn8cmPkZCUALrj67nrm/uokpXJR4zb/g83rjijQ5rHYCbP7+Zz458xlOTnuLJi57s0BgV9RWM/2A8uTW5TEyYyOZbN3eoLHB7dVNhbSGfHvqUlYdWis3oAQJUAcwYOIM5w+Ywqe+kM7busXLncR7bkNPmfme7ZjKajeTW5IrVNZoHjTUPCHSGI81kkamJjPmNtCQvUTMNDh/cZs/OekM9H+7/kDd3vkl2tX2pLACVXMW8EfN4KO0hBoYPZNneZdz//f0YzAYGhg1kw8wNpIalojPqiH8tnsqGStbOWMuNg2/k3m/v5d097/LvC/7N85c8374Xqgtpj/3r0U1zkpDoUchkMoK9gwn2DmZIxBCmD5jucD+9SU+xtpgT6hMcLjvMiaoT5FXnUawtpkojgAtBPmZZdds7tZNqfTW7inaxq2iX28d2hIfcA0+5J0qF1Xnh7emNl4eXTckoP08/AlRWIzzIK4ggryD8Vf4uOS9UCtU5axACXD4kmnfnjLKrvxrVzJD/5+UDu7SmdbnWWdSTLXeNeJjrR8WTGppKlF/UOf2+NcdkMbEiYwXPbHuGvJo8APoE9OHxiY9z24jbUCqUbDyxkQVfLxB7iQBclXwVH03/iAjfiE6df2v+VgBGR4/ulFC4e8zdHKs8xus7X2fuhrkkBiUyOmZ0u8Zw5XpujkKu4JJ+l3BJv0t4+8q32Zi5kVWHVvFd1nccKD3AgdID/GPzP7g48WLmDJvD9QOv79RzbC8ecg9GxiYBbTtGIvy7L1LLEe6od60z6sQyec2N+Ex1Zqv1rtuiT0AfhkQEMjj8KP6MIFiZwPCYRC7oH41CPselMap0Vby9623e3/u+6Hh0xJR+U1iUtojL+l+GXCZnb/Ferl97Pac0p/D19CX92nRuGHQDYM12eXXHqwA8OP5BFHIFfko/YvxjKNYWk6XOYnyf8R1+3hISEhK9HZWHir5Bfekb1JeJCY4bBQuCgFqnJq8mj0NlhzhWeYycqhwKagsoq/IEF+RQV2gms2C2fo9VZbp9bEfIZXI85Z54KjxRKVQ22epNzgs/Tz/8Vf6ibgr2DiZQFehy9npvKqHUFbRlZ04ZFNUjNNPsQQu5angkqaGpJIUkdWs0f0/nWMUxntr6lNgrRC6TM3vobJ6Y9AT9Q/pTXl/OjWtv5PNjn4vHBHkF8dE1HznsydoemkoIAUxOnNzhccJ9w9l4y0bO++g8tuVv455v7uHDaz5stzZur27qE9CHf5z/D/5x/j84VHaIVYdWsfrQagpqC/jowEd8dOAjYv1jxez7YZHDOvwcO0JSWDjQtmPkbNBMgiBQrC12mPnRVpk8GTKnwQTeHt4MjjEyJHwbwYqxhCgTGRnbj8sGXoGHYq5Lc7MIFrbkbuG/v/2XbfnbnM4l0jeS+8bexz1j7iHcNxy9Sc/dG+9m6b6lAFw/8Ho+mf6JWNFi5cGVVDZUkhCYIH4WU0KtZeG763u2K5AyRiQkOkhbqY8CFiwyNYWq0/X/3BX91BwZMrFxoIfcQzTEm1Kf/Tz9xNRnP6UfgV6BNs6LYK9gQrxDCFAFOHRedCTNub30hEaWPYEz+Tq4Gv10Lqe9OsJsMbPm8Bqe3vo0WVVZAET5RfHvC/7NnaPvxMvDiypdFQ98/wCrDq0Sj/P28ObNK97k9pG3u+XzteCrBXx04CP+ed4/eXHKi50ay2wxM+3TaXyf/T0x/jHsumMXsQHtj+jp7PWsblCz7ug6Vh5cKdY1BWu94WtSr2H20Nlc3v/yLmva3hxXU93PZL3c9tS7NlvM5Gvy7TI/MtWZnNKcajWT0FPuiVkwO42cDfIKYmhEsxJYLfqAtBej2ciXx7/k5T9fZk/xHqdzUyqUzB46m0VpixgaOVTcnn4gnbu/uRu9WU9ySDIbZm5gcMRg8fHvsr7jqtVXEaAKoHBRoWj4T06fzK95v7L82uXcOvzWDs29K5BsYIn2Il0zEmeatssfCZhlaoq97sCCtc55V2gmON1sXSFTWIO+PJR4Kf5yXPxVLspf6W/9+ZfzItArkGAva0BdiHeIjROjufOiIyV124ukmU5zpl4LSTN1nOyqbJ7Z+gyrDq0S7cibBt/EU5OeYmD4QARBYN3RddzzzT02vUSu6H8FH03/iCi/qE7P4VjFMQa9MwgvDy9qHqlpd3+SlvyQ/QNXrb4Ki2Dh5Skv8/B5D3donM5czxbBwm/5v7Hq0CrWHV1HTWON+NiQiCFi9n18YHyH5tYezjbNBFDTWCPqpKYeQZnqTLLUWa32N276rnFWhUYhU5ASmiKWv2oqhdXUB6QjZFdl8/KfL7Pm8JpWS/gNjRjK4gmLuWXILeJnoKi2iBnrZrCjcAcyZDx/8fM8esGj4lqFIAgMfmcwxyqPsWTqEhZNWASc1lLDIoeRcU9Gh+bdFUgZIxISbqapBm+BpoCC2gIKNAXka/LxCtEhaC5BcFL/T+25tNWmSG6ZGwJmwYxZMGO0GNGZdHb7eHt4E+gVSKAqkCCvIPF3u7+9/vr7r9+bHg9QBXRZdJI7vPVnCwq57IwZ0OMSQ4gO9GrTiBmX2HNKypxJLIKFDcc28MSvT3C04igAYT5hPHL+I9w79l6xTvWXx7/kro132WSJpPVJY+V1K0kKSXLbfH7N/xWAi/pe1OmxFHIFa2asYcKHEzhacZTpa6bzy7ytHC5sbJex3tnrOdQnlHvG3MM9Y+4htzqX1YdWs/LQSo5XHmftkbWsPbKWEO8QZg6eyeyhszkv7jyHTiZ3CGeFXMaT0waxcOU+p/1+npw26IwZ+GaLwNMbjzpx0lv/X7TuT947vIqsqhNkV2VjMBucjqeUW0t0GMwGu7rtTca9l4eXtQ9Isx4gQyKGuKUkhCAI7C/Zz8t/vsyXJ76k0WQbndk8yirUO5R7x97LvWPvtRHMBrOBxZsW8/butwG4OuVqVly3giCvIJuxlmy39hu5c9SdNv19UkJS+DXvVzLVvTf6SUJCQuJMYDQbKdIW2eim8Kh6SjTj/trj9HfEac30vugU6UosggWLYMGEyfr91mK9SiFTiM4QR5rI7m8HGsrLw6tLgsokzWTLmdJNkmZqP/k1+Ty37Tk+PvCxGLk+PXU6T1/0NMOjhgNQVlfGwm8XsuH4BvE4Lw8vXr/8de4cdafbPlNN2SLnxZ3XaacIWPsxvHrZqzz4w4P8c/M/SQlN4arkae3WHp25nuUyOZP6TmJS30m8ecWbfJf1HSsPreSbzG84XH6YR39+lEd/fpRJCZOYPXQ2MwbNcBiwJGkm6/8Pf76Dz7I3kvWXA6S5jm+JDBm+nr4ICDQYG2wCuJq+bwDiA+NFrdRWH5D2omnU8PGBj3lz15ucrD5pN7/mc7qi/xUsnrCYSxIvsflM/Zb/Gzeuu5Gy+jKCvIL49IZPubz/5TZjbcrZxLHKY/gr/VkwaoG4vSljJEudhUWw9Njy9a0hZYxISGCtu9dkuDf/eUpzitzqXAq1hXYLM004qv9nooIa5Qd4+R0n2j+afkH9GBwxmIu9Qrl08zNtzuf14Tewqb6UXE0uFfUV1BnqMJgNZ7QfiJ/Sz04EuCoQAr0C8VP62d0k2+utl+ha2lvj9FxEEAS+yfyGJ359ggOlBwBrhPzDEx7mgfEPiAurlQ2VPPD9A3x6+FPxWIVMwbOTn+Wf5//TrY7GU5pTJLyWgEKmoPqR6g43b29JbnUu4z4YR702mVjhIYzG031jzpQQFwSB/aX7xabtpXWl4mOJQYli2viAsAGA+xcReuqiREfqXStkCoK9glHIFehMOqdRRXKZnOSQZGsUU/gQMZrJlT4g7aVEW8L7e9/n/b3v27y3YC1pZrKcXjQbEDaAxWmLmTNsDt6e3rbPs66UG9fdyO+nfgfgyUlP8sSkJ+y+gzJKMxjx/ggUMgU5D+SQEJQgPvbKn6/w8OaHuWnwTXw24zO3Ps/OINnAEu1FumYk3InZYqasvowCjVUnNddNeTV55NfkU6lzXHbRmWaqUi5F5pVBhE8E8YHxpISmcIlXGDf/+U6b81k14W5+qC8hU51JkbaImsYaGk2NrZYw6Wo85Z7ONVErgWjN92+ZDStppp6FpJlco1hbzPPbnmfZvmViYM0V/a/gmcnPMCZmDGC17dccXsO9391rk+kwPnY8K69fSf+Q/m6d003rbmLd0XU8c9EzPD7pcbeMKQgCC79dyPt73yeYySQq/om67vQ96ExphWpdNeuPrWflwZVi2WWwZllfnXI1s4fO5qrkq1B5qCTN1ILmmgmsPVy8PbwxW8zU6GtsNElzQrxDHGbOt9UHpL2YLCY2ZW/i5T9f5vdTv9t953nKPW2C2eYOmyv2D2mOIAi8vfttFm1ahMliYmjEUDbM3OAwgHPqiqlsPrmZRWmLWHLZEpu5eD/vjcli4tRDp4gLjHPrc+0oUvN1CYlm6E16u6ilgtpmmR81+dToazo0tkKmINIvkr6B/YhSXkC0TyqDomK5clAq8UF97L2lxQdg6aS2B75rK8SMsNtstpgp1hazv2Q/fxb+yeHyw+RW51LeUI5Wr+2080Quk+Mh8xC9x2aLGZPgnugtGTIbgz9AGURp7r1/LbbaRwz0hDTLc5GeasScaQRBYPPJzTz+y+Nibx9/pT8PpT3E4gmLbaLQPz/6Ofd+e69NdMmAsAGsun4Vo6JHuX1uyzOWM+/LeYyPHc+OO9o29NrDq7/8wmubrCnCsmaf054g/MwWM1tyt7Dq0CrWH1tPnaFOfGxU9CjSQu/h2932Dds7O/eeWMbiqwNFPLjmQJv7Gfzfp8z8rdMyWH0C+thlgAwMH9ildbEbTY18cewLlmxfwt6SvTaPyZDhr/K3cdpc2u9SFqctFvuHtGRH4Q5uWHsDxdpiAlQBrLhuBdekXuPw3Ld9eRvpGenMHDyTNTPW2Dy28cRGrllzDSOiRrD/7v1ueKbuQbKBJdqLdM1IuIogCFQ2VDoMFmv6vbC2sMNOhwBVAH3844lWXUi0TyqDo+K4bGASKaH98VX62u7cSc0EUKuv5UTlCf4s/JN9xftE50lTs/jOOE9kyFDIFShk1gABi2BxWi6lIzTP9g9UBaPOfxCTyQ9JM/UcJM3knPL6cv73+/94d8+7YnDpxYkX8+zkZzkv7jxxvxJtCQu/XSg2XwdrIMyTk57k0QsexUPu3gI3giAQ+X+RVDRU8Nv837gg/gK3jW00G7nw3b9RUng10PN00ynNKbFp++Hyw+L2IK8gLoz4GwdP2PfTO5c1E4EfUSlscloqy9vDm8ERg+10U1f3YD1cfpg3dr7Bp4c/tdG+AD4ePhgtRvG7KMI3gvvH3i/2D2mJzqjjnm/vYXnGcgBuHnIzH0z7wP77+K/zDn13KHKZnJwHcugb1Nfm8QFvDeCE+gQ/3foTl/S7xE3PtnNIpbQkzhnMFjMldSXWiCUnBnxZfVmnzqGQKYgLjGNA2AAGhA4gOTSZ5JBkkkOTiQuI69YGeAq5dS5xgXFcM8DxQk9NYw35NfkcrzzOvpJ9HCw/SF51nug8ac1otwgWDILz8ipg9T57e3qf7lvi6WdtoP5XKqrBbKDeUE+toRZNo4aaxhqMFiMCAjWNNdZIEA2ozEOJMjqvHSwAJZpGPvkjlzB/VY/5Mj3buXxIdJc3LextbM3byuO/PM5vp34DwMfTh/vG/o1LYu+i0aDiWJGZcYkCal0F9393P+uOrrM5/sHxD/LCJS/YRbV3liZjc82ebFTmoUxMuMjt46/dYfnLKLZ9/4W/tjy98ShTBkWdketDIVcwJWkKU5Km8M5V77DxxEZWHlrJD9k/sK/4AGUnPVEg2AgTd8z9TJa8c4QgCHh4OK9v25wqfR4WhcWmD0hTBsiQiCF2Zaa6CkEQ+LPgT17f+Tpfn/jarlxXsJc1vb+6sZpafS1KhZJZQ2exKG1Rq00kl+5dyv3f3Y/RYmRg2EA2zNxAaliqw31LtCWsPrQagEVpi+web54WLghCl/fakpCQkOhqNI0aO6fHqdrTGqqw1nmGvKsEewXTP6Q/A8MHkhKSIuqm/iH93ZbR6ioBqgDGxo5lbOxYh48bzUYKaws5WX2SA6UHOFB2gBOVJyjWFlOtq0Zn0jkNOBMQMFlMmFop/yVHjspDZdPrsakfiYfcA6PZSKO5Ea1ei0Zv1UxNC106kw5dnY7SulKrZjI5f+2aNNOOHDVyuUyy37sJSTPZU6Wr4uU/XuaNXW/QYGwA4Py483l60jP4MJxydSPbDWrG9g3m08OreOD7B2wCVFNCU1h1/Soxm8SdmC0C6w7so752IAEe8YyKcu855DIPhNobkKGnJ+qm+MB4HrngER654BEOlh1k1cFVrDq0iqLaEvad6HdOaCaAIB/XnkOpLgu9ol7sA9Iyc74zfUDaS0V9BZ8c+IR39rxDXk2ezWOeck/CfcIpriumwWT9zA2JGMLitMXcMvQWp8Ft+TX5XL/2evaV7EMuk/PSpS+xeMJip3rn1e2vAtZm7C2dImD97J5QnyCrKqvHOEbag+QYkeixCIJAeX15q1FLxdpit6RKK2QK+gb1Pe30+MvxkRySTEJQgvuiFXxCwUMFJr3zfTxU1v06SJBXEEFRQQyPGs7MITPtHteb9BTWFnJKc4qsqiyOlB/haMVR8jR5lNeVozVoW806MVqMGPXGVps5yZDhp/QjxDuEfsH9iPaLJjYgllj/WAK9AvH28OboKR/WbW/7+Tz77THxdykKp3voiUbMmWB7wXYe/+Vxfs79GQCVQsXCMQsZH3Y3r28uYu3Pp6/NQB8LpfK3KDf/KG6L9Y/lk2s/4dJ+l7p9brZRauOJYjybd8AP0SVu+3zsyq36a3zHBlKTEN+VW3XGrxcfTx9mDpnJzCEzqWyo5P9+/Yo12+wjY5ro7rm7K2JK06jhcPlhDpcf5lD5IfFnVUMNsXyIglCbflenEfDzMrFh1ksMixrqlj4gHSGvJo8P9n3Asn3LKK8vt3nMS+FFUkgS+Zp8seGms/4hLdGb9Pzt+7+xbN8ywGq0fzL9k1YX4d7Z/Q5Gi5Hz4s5jfB/7KLnE4EQUMgX1xnpK6kqI8bfPPpKQkJDoKTQYG+z1UgvdpDVo3XKuEO8QG63U/He3lQvpBs3kqfAkMTiRxOBEhws5TRk0pzSnyK3J5Wj5UY5WHj1dtktXg8HiPKDMgsXq4DDpWq1Rr1KoCPQKJCEwgRj/GKL9oukT0IcI3wh8PX05XujH5y5opvtW76NGdzoATtJNXY+kmaxoGjW8uuNVXt3xqrhGMCZmDM9OfhZBN5zH1h6lRHM6q93Ts44i2bvoFDXitr+N+xv/u/R/Yp9Gd9JcN4XzTzDCJa/84dbPx67cKspqDfQG3TQschjDpgzjhUtf4P0/f+HFjc4d4mdi3u7QTWaLmZzqHA6VHbLRTNnqk0SzrFXN5KPSs+y6RxgWNYQBYQPc0oumvehNer7J/IbXd77OH6f+wIJttn98YDweMg9O1pykuK4YsJapW5S2iEv7XdqqztuSu4WZn1s1c6h3KJ/N+KxVZ0ZZXRkrD60EYHHaYof7NAWU9dbejJJjROKMIAjW7IG2opZaaw7bhAwZngpPzBZzq04SGTISghLsDPjk0GT6BvW1q+XaJQTFwf17oUHtfB+fUOt+XYTKQ0VSSBJJIUlMTpxs93iTQypfk88pzSlOVp3keOVxsqqyyNfkU1FfQaO59WgyAQGtQYvWoCVfk+94HuahRPFCu+Zeqmlk4cp9Ut1WiS5lb/Fenvj1Cb7L+g6wRmLcMeoO/n3hvzl8SuGwxnNNA3jxN7yVWnSK7dwy5BbevvJth43tOouzOtM19bj181GudS1q1NX9uoswnzAmxFzOGg60uW93zL0jpRb0Jj3HKo9ZjfiyQxyusP4sqC1wuL9cLsc79FuM6nmcju+y0pTx838zxnN5SvffN7V6LeuOruPNnW9yoOyA3eODwwcToApgV9EujlQcAayl5xalLWLOsDltCuSi2iJuWHsDO4t2IkPG8xc/z6MXPNqqINAZdby7513AuYGvVChJDE4kuyqbTHWm5BiRkJA4YxjMBopqi5w6PU5pTlGlq3JpLA+5B3LkrS7oAwSqAh06PpJDkwnx7oam0j1AM8lkMsJ9wwn3DWd0zGgYZL9Pg7GBU5pTnNKcIq86j6yqLI6rj5NblUuRtgiNXtNmmWO9WU95fTnl9eXi92BzXNVMzZ0iIOkmia6nzlDHmzvf5OU/XxaDWoZFDuPZyc8yLWUam46Ucu8qe81iMPoQzr+pUP6X4KB8Pp7+MVOTpnbJHJ3pJnd/PnqjbpLL5MT4DoAeopmg/bpJEASKtcU2zo/D5Yc5WnHUaQak0e9TPOr+hjPNtOTG887IPVMQBHYX7+a9Pe/x2ZHPxKyrJoK8ghgeOZwsdRanNKcAq2N97nBr/5BB4Q6+pFqM/+qOV/nH5n9gESyMjBrJhpkbbHosOuLdPe9iMBtI65PGhLgJDveRHCMSEg6oM9S1GbXkrF5fS/yUfqgUKgRBoMHUYHeDExBsHChxAXEODfl+wf3OiLfXjqC4LjXiO4tMJiPSL5JIv0jGxY5zuE+doU4UAfk1+eTX5HNCfYLcmlwKNAWodeq2RYDsGAJmQG6XtgnW99VROicI/P3z7eQ3qukTEENsQCwx/jGE+YQ5rDcvIeEqh8oO8eSvT7Lh+AbAmkk2b/g8Hp/0OH2D+mK2CNy4cYvDK1uGHAELYcZ7+N+MB5g17OYumaPZIvD0xqMO5+DuNO0If9f6Sri6X3fSU+belhh7e9YIkmMb7DJAstRZTh39rfUBcSQmos5AxKjZYuaXvF94d/e7bMzcaFfCMco3ikkJk8ipyWFP8R5x+yWJl7B4wmIu73+5S/fz3/J/48Z1N1JWX0awVzCrb1jN5f0vb/O4FQdXoNap6RvUl2sHXOt0v+SQZNExclHfi9ocV0JCQqK9mC1mSutKRQdHS71UUFtAWV2ZSz0ElQolvp6+yGVyDGYDdYY6u+OaN4z1U/o5zfwI8wk78yUEe7hmAmvG6oCwAQwIG+Dw8eZln/NrrEFn2VXZZFZlckpzihJtiV05yZa4opkAp7rp4fU7qbboiQuyaqYY/5gu7R0mcfajM+p4Z/c7vPjHi2I21ICwATxz0TPcMOgG5DJ5q5qlSTf1ER7ij7svIdy3azIRJN3UNj1p3m3pppdvSiUytMRGNx0uPyw65VriqA/I0MihRPpGsulIaY/QTACFtYUsz1jOu3vepbC20OYxhUzBxISJBHsFsylnE1vztwLW/iH3jb2Pe8bcQ4RvRJvnqDfUc8fGO1hz2NpTce7wubx31Xttlvpu+qyD49LDTSSHJAOSY0TiHKKpFFNrTg9nN6eWBKoCCfYKxsvTCwRrPdWmmuJN1BnqqMO2sVCMf4zDCKak4CS31/GXsMdP6ceg8EFOvdImi4libfFpx4nG6jzJqc4htyaXotoiMKcgw3ldRkeGf9Mj9Y0qHvz6TfSKQ+JWT7kn0f7RxPjHEOt/2vBv+r3JgeKv9D/zQk+iR3Gi8gRPbX2Kzw5/JjrkZg+bzRMTnyA5NFnc73RpKcfIkCMTQkn0TeuyubY1B3emO49LDCE60ItSTaMTUWM1IMcldkPkaDvpCXNvS4yBwN2f/kSh6naQ2TdDD/YKtqtn21YfkDNd7/p45XE+3P8hH+//GLXONspXqVBydfLVxAXG8fWJr/ns6GeA9d49e9hsHhr/EMOjhrt0HkEQeHv32yzatAiTxcSwyGFsmLmBfsH92jzWIlh4dYe1Tu6D4x9stT5wSmgK32d/32uNfAkJiTOLIAhUNFQ41UsFtdaywM2dFc5QypWE+oTip/RDIVdgspjQ6rWodWrxeIPZYJdt7+PpQ/+Q/g51U6RvpGQTdzEKuYI+AX3oE9DHpul0E4IgoNFrRKeJmLFffZKT1Sc5pTlFXV1MBzWT9dE6nSfzP3/CRjeFeIc41UxNuinCN8Ltza8lejd6k55l+5bx39/+S0ldCQBJwUk8ddFT3DLkFhubyhXdZDD6kl0K4UldM19JN7VNT5l3W7pJQOChtb9T5LXATjc56wPSL7if00CrM62Z6g31bDi+gXd2v8P2QvtaiSkhKVydcjVZVVl8m/UtFsH6nF3pH9KSk9Unue6z6zhYdhAPuQdLpi7h/nH3u/T9v+rQKioaKogPjOf6gdc73a8pY+Rk9UmMZiOeCk+X5tZTkL7pJGwwWUyUaEtajVpqWRfcGQGqAGL9YwnxDsHbw+qs0Jv11DTWUFpXSkVDBRq9Bo1e4/D4SN9IhxFM/UP646v0ddtzlnA/HnIP4gPjiQ+M54L4C+weFwSBT3dn8e8vsjp8jjGRF9Pg4UGRtojy+nKMFqOYxdIavp6+opPExnHSTAzE+Mf0jOwiiS7lZPVJntn6DCsOrhCNjRsH3chTFz3l0OnXE1Kku3MOCrmMJ6cNYuHKfcjAxlBtMqOenDaoRzaZ7Alzb0uMgQyFEIa/bCQp0dhkgAyNHEq0X3SHFqy6u961ukHNmsNreG/vexwuP2z3+IioEcwZModT2lN8cuATMfAh1DuUhWMWcu/Ye4n2dz0yS2fUcc+397A8YzkANw+5mQ+mfeCyXfBD9g8crzxOgCqA20fe3uq+vT0tXEJCoutoWtB2VtqqQGMtC9xWNgBYF3Vi/GOI9I3EX+WPh9wDs8WM1qClsqGSIm0RBrNBXIhsiZeHF0nBSQ5105nqKSXhGjKZzKY/pCPW783n7+vsv1/bw+DQCdTI6inWFtNoaqRKV0WVrsrh93YTcpmcKL8ox46TZoFnwV7B0jV2lmM0G/nkwCc8u+1ZsaxrfGA8T0x8grnD5zpcBJV002l6sm7qKfNu25Emw4Nw4r0nMzTOy0Y3dbQPSHdrJotgYVv+Nj7c9yHrjq6zsw/8lH7MHTaXxOBE1h1dx5IdS8THLu9/OYvTFrfZP6Qlm7I3ccv6W6hurCbCN4LPb/ycCxMudOnYptJbYA0ma81RHuMfg4+nDw3GBnJrckUN1VuQHCPnEBbBYm1m3kbUUtMCYWt4eXgRFxBHXGAcMX4x+CpPp21rGjWU1ZdxsvokxyqPtTpOmE+YwxTu/iH9CVAFuOupS/QwZDIZiaGhQMcdIy9f/rj4RWYwGyirK6NIW0SxtpiiWuvP4rpmv2uL0eg11BvryVRntrnQFeodejrTxC/GoTMlwjei1WhjiZ7JKc0pntv2HB8f+FiMsrwm9RqevuhpRkSNcHpcT0g17u45XD4kmnfnjOoxqcbt4UzP3VWRlX7NBq4b2bNLhbTEaDbyffb3LNu3jO+zvrcr+xXsFcydo+5kbOxYPj/6OY/8/Ii4T2poKovSFnHr8Fvb3WAzvyaf69dez76Sfchlcl6e8jKL0ha1SyA0Gfh3jLyjTTtDcoxISJy71BvqW82OL6gtoM5Q1/ZAQJRfFHEBcfQJ6EOIdwhKuRIzZuoN9ah1ago1hWRXZzvtIwXWrLt+wf0cZn70CegjlZM9i4kJ8uv0GG9d/V8mJL2PIAhUN1aL2qi5TmrSUcXaYkrqSrAIFvHv1lApVDbZ+c11U3NnihTY2PswW8ysOrSKp7c+zcnqk4B1AfQ/F/6HBSMXtLoYLemm3qObesK8XdVNb1yWzvQRsV08G/eSXZVN+oF0Ptj/AaV1pTaPyZAxue9kbh95O4W1hbyz5x2b/iG3DruVh9IeYnDE4HadUxAE/vf7//jPlv8gIDA+djzrb1pPbIDrr92POT9ytOIofko/Foxc0Oq+MpmMlNAUDpQeIFOdKTlGzmXMFuGMpWI1GTmtRS01RRu1hYfcgz4BfUTHR1xAHNF+0XgqPDGYDWj1Woq0RWRXZZNVlcUvub+0Wvc22CvYafO+1kqCSJzdtJW26QxH6ZxKhdJ6rQa2vrhYZ6ijRFtiY/gX1RbZOVD0Zj1qnRq1Ts2h8kNOx1PIFA4jqVo6UYK8gqRIqh5AibaE//72X5buWyreCy9LuoxnJj/jtJ9Oc3SygwjyarAEIsN+AaI7Uo3PRLrzmU417gxncu6uiqyogPY5B84UgiBwoPQAnxz4hPSMdLtsT7lMzpXJV3L3qLtpNDXy2s7XeOnPl8THL068mMVpi7ki+YoOLeBtyd3CzM9nUtlQSZhPGJ/N+IyLEy9u1xgHyw7y08mfkMvkPDD+gTb3bzLqc6pzMFlMUkkRCQk3cSY1E1jLwRRpi1p1erjazDzEO4T4wHirbvrL+RGoCsSChQZjA+oGNSdrTpKlzuLHnB9b7bHoIfcgMSjRoW6KD4yXgnHOUTqqmcDeLpTJZIR4hxDiHcKQiCFOjzNbzJTXl9trphaBZ2qdGr1ZT25NLrk1ua3OJVAV6NSB0qSZovyiel0JlrMRi2Bh3ZF1PPnrk5xQnwCsPQ0ePf9R7hlzT5uly2v1tbx/6GFMTEJBqKSbeoFuOtPz7gmONHeiadSw9shalu1bxu7i3XaPxwXEcd/Y+5iUMIk1R9Zwz7f3iMEW7e0f0hKtXsv8r+az/th6AO4cdSdvXvFmu7NqmjJW7hh5B4FegW3u39wx0tuQFJ6bcNTwNNqNHlatXttm1FKDsaHNcWTIiPaPtnF6iJkf/jGigyWnKoesqiyyqrLYXrCdfE1+q5kkAaoAp837Qn26Lz1NovfQWtqmMzqbzumn9LNel836RrREEASqdFV20VNNDpSm38vqyzALZoq0RRRpi1o9r5eHl9OyXc0FQXujpyVco6K+ghf/eJG3d79No8l6j56UMInnLn7OYam3ljSaGnlsy2Ms2b4EL480Igz/ttunu1KNz1S6c3enGruTMzX3nlKzt7OUaEtYdWgVy/Ytc2joJockc/+4+7km9Rq+PvE1D/zwgLg44in3ZNbQWSxKW+Ry/5CWNKVx/2PzP7AIFkZFj+KLm74gISih3WM1ZYvMGDTDpeP7BPTBy8OLRlMjeTV59A/p3+5zSkhI2NLVmqmp2XWTPnJUGrisvsylsfyV/nZ6qcn54a/0R2fSUVBbQJbaqpl2FO0g62AWWoPW6ZhymZy+QX0dBoz1DeorOWAl7GjL9hMc/N70N3TMLlTIFUT7R7dZ6rLR1EiJtqRVzVSkLaLB2CCW0G6tooQMGRG+EU77njRtC/UJlbKkugBBEPjqxFc88csTYnBgiHcI/zzvn9w/7n6Xsn625W9j7oa55Gvy8VFmEm741xkr0STppvZxJud9Nugmk8XE5pzNfHzgY748/iVGi9HmcZVCxS1DbuHOUXciYNU3/97yb3GddXD4YBZPWMysobNc7h/Skkx1Jtd9dh1HK47iKffkrSvf4q7Rd7V7nMPlh/kx50eXg8nA2helaQ69DZkgCO0NPDjj1NbWEhgYiEajISDgzJdb+uFwCQtX7rP7ADfdXt+dM6pVQ7/R1GhtZt6K06OmscaluYT5hNlELYnG/F8/I3wjKKkrEQ148WdVFrnVuXblMJrj6+nrNPMj3CdcioiX6BDOBPI1w6P5OqOky4RzZzFZTNZIKgcp6M2jq1yNOAQI8gpqs3l8pG+kFEnlIlW6Kl758xVe3/m6GKE5oc8Enp38LBcnXuzSPSujNIM5G+aINZjvHHUnV8T9i5e+P3lGr82uXliScA9N9gE4FmNt2QdnCp1Rx1cnvuLjAx+zOWezXVaor6cvc4fP5Y5RdxDqHcpbu95i2b5lYhZJiHcIC8cs5L6x97Wrf0hL6g313LHxDtYcXgPA3OFzee+q99qMVHREaV0pCa8lYDAb2L5gO2l90lw6bti7wzhUfojvZn3HFclXtPu87qan2cASPZ+edM10VjMJgmAtC9xKsFixtrhVPdOESqGy00mihvrrb4tgsdNLTb+3ps1kyIgPjHeomxKDE1EqlG2/WBISLWjN9gN6rF0oCAJag1bUTDZZKM1+L9YWiyVu28JT7km0f3SrzeNj/GOk0twuIggC32d/zxO/PMHekr2ANfD17xP+zkNpD7n0OupNep745Qle/vNlBAT6BvVlxXUrqKtNOuPXpqSbege9VTcdKjvE8ozlfJLxCZUNlXaPj48dz8IxC7l2wLX8kP0DS3YsYVfRLvHxy5IuY/GExUzpN6VTa6rfZH7D7C9mU6uvJcY/hs9v/JwJcRM6NNYdX9/Bh/s/5IaBN/D5TZ+7dMyKjBXM/XIuFydezM9zf+7Qed1Je+xfyTHSScwWgQte3OK0UZAMCPf35JXZPhTVFTqMWqpoqHDpXIGqQIdRS82jl7w9vbEIFgo0BQ4N+ZPVJ+08l83x9vCmf0h/h4Z8lF+U5PyQ6BKclVQ406UW3IHOqKOkrsQmBb2lICiqLUJn0rk0ngwZkX6RrTaPjw2IJdQ7tFs/rz3pvarV1/Lajtd4ZfsrYqPn0dGjeXbys1ze/3K718XR3MHCK9tf4bEtj2G0GInwjeCDaR8wLXWa02O6+/n2hDlItE1vEWOCIPBnwZ98kvEJaw6vcVg7f3Lfydw9+m6mD5jOwbKDvLrjVdYdWWfTP+ShtIeYO3xupzPgTlaf5LrPruNg2UE85B68etmr3Df2vg7f15745Qme3fYsE/pM4M8Ff7p83Iy1M1h/bD2vXfYaD6Y92KFzu5OeZANL9A56yjXjimaKCFDy3vwIirWFDksDF9YWulwWONY/tlXdFOYThkwmQ9OosdNM2VXZZKmzUOvUrZ6nT0AfhwFj/YL7dTjaU0KiNVqz/Xq7XWgRLFQ2VDrte9L0e3l9uctj+in92tRM0X7RHWrc3FF62vu0JXcLj215jO2F2wFr8MuD4x/k7+f9nRBv2+h8Z3M/VHaIORvmcLDsIAC3j7idVy9/VXSo9ITn3BPmINE2vUU3VdRXsPrQaj7a/xEHyw/aPR7uE86do+5k/sj5hPuE88G+D3hj1xs2/UPmDJvDQ2kPtVrW0BUsgoVntz7LU1ufAuCC+AtYd+M6ovyiOjReeX058a/Gozfr+eP2Pzgv7jyXjttZuJO0D9PoE9CHgkXOe6Z1F+2xf6Vc3U6yK7fKqYEPVk9nudbIlI/uRa9w3qvA28O7zaglf5W/uH9TM7QmI/77rO9FYz6nKge9We/0XCqFiqSQJIeGfIx/jJSWKtHtOEvb7K1pqM3x9vSmX3A/+gX3c7qPIAjU6mvtm8e3yEIp0ZZgFsyU1pVSWlfKvpJ9TsdUKpRE+0U7bH7Y/Pfm95WO0lMMmHpDPW/teouX/nxJzNQZGjGUZyY/w/TU6Q4XVB3NPdzfA8F/HXurPwSsjdmXTVtmU+OzJ1ybPWEOEm1zpmv2tkVeTR4rMlbw8YGPHdYH7+Pfh7tG38W8EfOI9Y/lqxNfcenyS/mj4A9xn872D2nJpuxN3LL+Fqobq4n0jWTdjeu4MOHCDo+nM+p4d8+7ACyesLhdx0oN2CUk3IMrmqms1sCEd29tVTPJkFmbmbfi9Ijyi7Lpx1FnqHOombLUWW0GqEX7RTsMGEsKSZJKoEp0O63Zfr3dLpTL5ET4RhDhG8HI6JFO9zOYDZTWlbaqmYq1xdTqa6kz1JGpzmzzOzzUO7RNzRThG9HpPj89RTMB/H7qdx7/5XF+zfsVsJZ+vm/sfTxy/iOE+4bb7e9o7lGBXoxMzuaj4w9gMBsI8wlj2bRlXDvgWptje8K12RPmINE2PVk36U16vs36lk8OfMJ3Wd/ZZad6yD2YnjqdO0bdwZR+UzilOcUbO9/gg/0fiAFn4T7h3Df2PhaOXdih/iEt0TRquHXDrWzM3AjAfWPvY8llSzqVmfru7nfRm/WMjx3PhD6uZ5w0lasvrC2k3lDvUum9noLkGOkk5VrnBn5zon1SiY8KdmrAh3iH2C3aCYIglr36s+BPstRZZFdbI5iyq7JbjTD3lHvSL7ifQ0M+LjBOcn5ISPQgZDIZgV6BBHoFMih8kNP9LIKFivoKh40Qm2+raKjAYDaQr8knX5Pf6rn9lf5tNkKM9o92+uXqrCxGqaaRhSv3dUvKq86o47097/G/P/4nRpGlhqby9EVPc+PgG53e75zNvVxrAO21hPic5OVpc5g/Yr6ULSfRKXqaGNPqtXx+9HM+yfiEbfnb7B5XypXcNPgmbh95O5P6TqLeUM/HBz7m9Z2vc7L6JGC1M24ZeguL0hYxImqEW+YlCAL/+/1//GfLfxAQGB87nvU3rSc2ILZT4648uJLKhkoSAhPsxHpbJIdYjfzMKskxIiHRGVzVTEGe8URHKJyWBo7xj3FokzQYG8iuymZH4Q67DJDSutJWzxnpG2mjmZqy5/uH9MdP6deh5yshIdE1KBVK4gPjiQ+Mb3W/OkOdTZkuR5qpWFuM3qxHrVOj1qnFjAdHKGQKovyiWtVMMf4xBHkFOQ3GOtOaCWBX0S6e+OUJNuVsAqyv512j7uLfF/7baflT53PX8d2eWBTK0Vw9MJQPpn1ApF9kFz8DibOdnqSbBEFgd/Fu0g+ks/rwaodlNAeHD+bu0Xcza+gsQrxD2F64nZmfz2TD8Q1i/5BB4YNYnLaY2cNmuy2j9GjFUa777Doy1ZmoFCreu/o9bhtxW6fGbDQ18vbutwFYlLaoXWsgId4hhHqHotapya7K7nB/yTOB5BhpJy1T8MJ8XUu7XH3jew4/3E21cv8o+MOu7FV2VbZYF98RCpmCxOBEh5kf8YHxUvM+CYmzDLlMTqRfJJF+kYyKHuV0P71JfzqSykEKepMw0Bq0aA1aTqhPcEJ9otVzh/uE2xn+UX4xvP99LAL2X5gC1rIYT288ypRBUV0S5WEwG/hg3wc8/9vzFGuLAegX3I8nJz3JrKGzWr0Hmi0CT2886qS5mxwQ6Kd4hHnDp0pOEYmzArPFzJbcLaRnpLP+2HoaTfaLlGOix3Dn6DuZOXgmgV6BFGgKePSnR1m6d6lN/5B7Rt/DfePuI8Y/xm3z0+q1zP9qPuuPrQfgrlF38cYVb3S6vIVFsIhN1x8c/2C7bSMpY0RCouM0102VWufZ7M3ZMCvd6YJIo6nRYZ/ELHUWRdqiVscN8wmz1Ut//d4/pL/Uh0BC4izET+lHSmiK+D3uCEEQqNJVOdRJxXWnfy+rL8MsmK0lkNu413h7eNv2OvGzaqaVP6cgYB+s1R2aCeBA6QGe+OUJMbLcQ+7B/BHzeWziY606mVrTTNaZW+iveIQNN03DQyEF30qcHRTWFrIiYwXpGekO10kClAHMHT6X20fezsjokZgsJr449gVLti9hZ9FOcb+pSVNZnLaYqUnuXVP44tgXzPtyHnWGOuIC4vhi5heMiRnT6XFXHVxFRUMF8YHx3DDohnYfnxKawvbC7WSqMyXHyNmKw/TBAC+CfDzRNBidLLBZUwz7RVrYXrDdYQ3bphr4jpDL5PQN6msXwZQckkzfoL5SE2YJCQk7VB4qEoISSAhKaHU/rV7bag3fpn8Gs4GKhgoqGirIKMs4fR7zUKIMLzgdXwBKNI3syq1qd9RHa3VgjWYjyzOW8+y2Z8WMmLiAOJ6Y9ATzhs9z6b7YVkkPkFGhNXVo7hISPYnjlcdJP5DOioMrHIr5UO9Q5o+Yz/yR88WMtd1Fu1myY4lN/5CU0BQWpS1yS/+QlmSqM7nus+s4WnEUpULJW1e8xZ2j73TL2JuyN3Gs8hj+Sn8WjFrQ7uObFlROaU6hM+o61PhdQuJcxJFuksvA4qS7ZZNmGhHvx/HK4w4dIAWaAgQny3MAwV7BDrPl+4f0J9g72M3PUEJCorcjk8kI9Qkl1CeUoZFDne5nspgoqytrVTMV1RZR3ViNzqQjpzqHnOoc8fiu1EzQum46WnGUJ399ks+PWhsoy2Vybh12K09MeqLVUs9NtKWZZMip1cnZnVctaSaJXk29oZ4NxzeQfiCdn3N/dmhvTO03lQWjFnBN6jV4eXihadSwZPsSXt/5epf0D2mJ2WLm8V8e54XfrfeTi/pexNoZax2Wv2svgiCIwWQPjHugQ4H2zR0jvQm3O0ZeeOEFvvjiC44fP463tzfnnXceL774IqmpqeI+F110EVu3brU57u677+a9995z93TchrP0wbLaRnGbDFo8bv0oZZv+R9QrPzkdW4aM+MB4h4Z8YnBip+rDSUhISDjDX+VPqiqV1LBUp/sIgoBap3ZYw/fIKW8KTrV9HlfLZzThrP7u41cNoIpfeHrr02RXZVu3+0Xznwv/wx2j7mhXZLmrc2rv3CUkuoO2GkiqG9SsObyG5RnL2VW8y+54OXKuSrmKBSMXcGXylXgqPDFbzGw4toElO5bw+6nfxX0n953M4gmLuTL5yi4pw/lN5jfM/mI2tfpaYvxjWH/TetL6pLlt/CYD/45Rd3QoKjzMJ4wgryBqGmvIrspudeFEQqI9nK2aCZzrJmdOkSbNVCp7C78XpoqlJxwRoApwmPmRHJJMqI+0KCchIeF+POQexAbEEhsQy1jGOt1PZ9TZlu/6SzNl5HmSdbLt83REdzjTTXdeFMyWkiWsPrRaXOC9ecjNPDnpSQaEDXB5fEkzSfR2WtNNFsHCtvxtLM9Yztojax1W7Okb1JcFIxcwb/g84gLjAMitzuWNnW/w4f4P0Rq0gLXCxr1j72XhmIVdUlKuSlfFrPWzxDJ4i9MW8+KUF91WKWjzyc0cqTiCn9KPO0bd0aExxEz7XlaC2O2Oka1bt3LfffcxduxYTCYT//73v5k6dSpHjx7F1/d085U777yTZ555Rvzbx6fnNq9rLX1Q+Ot/i6wOi9CIB6c9dSYqqVIuRWfZDkCfgD4Oy171C+7ntjpzEhISEu5EJpMR5hNGmE+YXTrk9hw1tyzb0eYYEf6u39+cLaaUaHTcu3o/5cp30CmyCfMJ418X/IuFYxZ2KILb1Tm1Z+4SEt2BMwH8n6tSsaj2kZ6RzsYTGzFajHbHpoSmcMfIO7h1+K1E+UUB1hrc7+15j9d2vib2D/GQe3DLEGv/kNYaoHYGi2Dhma3P8PTWpwG4IP4C1t24TpyXOzhUdojNJzcjl8l5YPwDHRpDJpOREprCrqJdZKozJceIhNs4GzUTtFV2BaxOEAsyTjcxFjWT3qqZfD19HTo+kkOTCfcJl0pcSkhI9Ei8Pb1JCkkiKSTJZvv2HDW3nHSvZoLWddPTX+moUJ5EUAhcN+A6nr7o6Q7ZMJJmkujNONNNd00OIVe3gRUZK8jT5Nkdp1KomDlkJrePuJ0LEy4Ug8O2F2xnyY4lfHHsC5v+IYvSFjF76OwuyyzPKM3g+rXXc7L6JN4e3nxwzQfMGjrLredYsn0JAAtGLiDQK7BDY/TWEsRud4z88MMPNn9/8sknREREsHfvXiZOnChu9/HxISrKfeK3K3Gl5Ipc8Kfc8wVCfYKJ9h1AfHAQY/sGkxr2MMkhySSFJLm99ISEhITEmWRcYgjRgV6UahpbLSU4LjHEpfHaqmErYCHMeA93XzqNB9P+1qmGqO6eu4REd9CaAL5v9QEqlP9Dp9hu85ivpy+zhs7i9pG3Mz52vLigWKAp4K1db/H+3vfF/iHBXsEsHLPQ7f1DWqJp1DBnwxy+yfwGgPvH3s8rl73i9gzZpmyRGwbeQN+gvh0ep7ljRELCXZyNmglc000yFGiVHxMR4E1ccAAj4v1JDV1Acuj/SA5JJsovSnJ+SEhInDV0he5wpfdHjPAAqxe8wbg+He89IGkmid5Ka7rpqS+LqFD+hE6RZ/PY+NjxLBi5gJlDZoqZ5iaLifVH17NkxxJ2FJ52cHZV/5CWfHroUxZ8vQCdSUdiUCIbZm5we/+OI+VH2JSzqVPBZCA5Rpyi0fzVrDPE9ka5atUqVq5cSVRUFNOmTePxxx93GgGl1+vR60837Kutdd6ToytwNS1w+fQN3DSm7TqNEhISEmcDCrmMJ6cNYuHKfXalBJtMgyenDXK5iaArNWxlQigXx17VKacIuH/uEhJdjSsCOMRwF0VeO0Fm4aK+FzF/xHxuGHgDvsrT0ed7ivewZPsS1h5ZK/YPSQ5JFvuHNN+3KzhacZRr11xLVlUWKoWK969+n3kj5rn9PKV1paw6tAqARWmLOjVWSojVyM+qyur0vCQknOEOzQS9Rzd9eN1rXDuyTxfPRkJCQuLM0xW6wxXdZDL6Y9YndmjOTUiaSaI30h7dFOEbxrwR85g/Yj4DwweKe2kaNXy4/0Pe2PmG2NdUqVAyZ6i1f0hXZ5GbLCYe2fwIS3ZYMzmmJk3l0xs+JcTb/U7I13a8BsC1A651qfeQM/qH9AesZb/UDepeU+K0Sx0jFouFhx56iPPPP58hQ043nZk1axYJCQnExMRw8OBBHnnkEU6cOMEXX3zhcJwXXniBp59+uiun2iqupgXGBXcs3ai7aKsmuYSEhER7uXxINO/OGWWXohoV6MWT0wZx+ZBol8fq7hq27py7hERX83t2SZsC2INw7hjyPx69+HqbMg5mi5mNmRtZsn0Jv536Tdx+Ud+LWJy2mKtSruqS/iEtWX90Pbd9dRt1hjriA+P54qYvGB0zukvO9e7udzGYDaT1SWNC3IROjdVbo58keg/u0kzQe3RTZEDXlJtwB5JmkpCQcDfu1h3dqZskzSTR2/hs3x6XdNP/XbSBBy68Ak+Fp/hYXk0eb+x8gw/2fSD2DwnzCePeMfdy79h7u6R/SEsq6iu4ef3NbMndAsC/LvgXz05+FoVc0caR7ae8vpwVB1cA1r4lncHH04e4gDgKagvIqsqSHCMA9913H4cPH+b333+32X7XXXeJvw8dOpTo6GguueQScnJySEpKajkM//rXv1i8+PQbVFtbS1xcXNdNvAVnQ/qgs9p60heZhIREZ7l8SDRTBkV1ehHhTNSwddfcJSS6AkEQ+LPgT9Iz0tmwvwBf7m/zmKv7zyIpJBaw9g/5eP/HvL7zdXKqc4Du6R/SErPFzOO/PM4Lv78AwMWJF7PmhjWE+4a3cWTH0Bl1vLPnHaDzBj5IjhGJrsddmgkk3dRZJM0kISHRVbhTd3S3bpI0k0RPp6K+gtWHVpOekc6JQn/C+Webx/QPGi06RbYXbOfVHa+y/th6sX/IwLCBLJ6wuEv7h7Rkb/Ferl97Pac0p/D19CX92nRuGHRDl53vvT3voTfrGRc7jvPizuv0eCmhKRTUFpCpziStT5obZtj1dJlj5P777+ebb75h27Zt9OnTepr0+PHjAcjOznZo5KtUKlQqVZfM0xV6e/qgs9p6pZpGFq7cx7tzRkmGvoSERKdQyGVMSOpcRMCZWkxxx9wlJNxJXk0eyzOWszxjuejQUJmH4kqRqwh/LwprC3lz55ss3beUmsYawNo/5J4x93Df2PuIDYjtusm3oEpXxaz1s9iUswmAv0/4O/+79H94yLsuNmflwZVUNlSSEJjAdQOv6/R4TWnhFQ0VVOuqCfYO7vSYEhJNuFMzgaSbOoOkmSQkJLoad+mOM6GbJM0k0dPQm/R8k/kN6RnpfJ/9PSaLCQBfxQgwtn18qJ8n646ss+sfMqXfFBZPsPYP6Y6s+ibSD6Rz9zd3ozfrSQ5JZsPMDQyOGNxl52s0NfL27rcBa+lhd/RKSQ5J5ufcn3tVQJnbVakgCPztb39jw4YN/PrrryQmtl3T8MCBAwBER/dcQ7O3pg+2VltPwPqF+fTGo0wZFNUjBcq5ipTCL9HV9MRrrDcvpkhIdBatXsvnRz8nPSOdrflbxe2+nr7MGDSDW4fO5T9rBcpaEcAhfnLePPAg645+JgqD/iH9WZS2iHnD53V5/5CWZJRmcN1n15Fbk4u3hzcfTf+Im4fc3KXnFARBbLr+wPgH3OKA8Vf5E+0XTUldCVlVWYyLHdfpMSUkzlbNBL1TN0maqXfSE+1ZibOLnnqNSbpJ4lxFEAR2F+8m/UA6a46soUpXJT42JmYM84bP48ZBM7n2zYOtOg59vY3M2Tie/No8wNo/ZPbQ2SxKW9Tl/UNaYjQbWbxpMW/tfguAq1OuZsV1KwjyCurS864+tJry+nLiAuK4YaB7slJ6Y6a92x0j9913H6tXr+arr77C39+f0tJSAAIDA/H29iYnJ4fVq1dz5ZVXEhoaysGDB1m0aBETJ05k2LBh7p6OW+mN6YNtNeUSgBJNI7tyqyTvfw9BSuGX6Gp68jXWGxdTJCQ6itliZkvuFtIz0vni2BfoTDoAZMi4OPFi5g2fx/UDrxcdGsZpJQ4FMAgIwDHDs+w7vB3o/v4hLfn00Kcs+HoBOpOOfsH92DBzA8Miu97O25SziWOVx/BX+rNg5AK3jZsSmkJJXQmZ6kzJMSLhFs5mzQS9TzdJmqn30ZPtWYmzg55+jUm6SeJcorC2kBUZK1h+cDnHK4+L22P8Y7h12K3MHT6XQeGDxO3OHIcgYAFOml9CV5sn9g9ZOHYhUX5R3fRsTlNaV8pN624S+0A+OelJnpj0RJfrt5bBZM37rHSG3ugYkQmC4MiB1vEBnaTefPzxx9x2220UFBQwZ84cDh8+TH19PXFxcVx33XU89thjBAQEuHSO2tpaAgMD0Wg0Lh9zrvLVgSIeXHOgzf2mjCpgzriBjI4ZjZ/Sr+snJuEQZyn8TZ8qKYVforP0lmusp0ZnSUi4g2MVx1iesZwVB1dQpC0St6eGpjJv+DzmDJtDXKDjngCORLqJCqqUSzF67ubmITezKG0Ro6JHdfnzcITJYuKRzY+wZMcSAC5LuozVN6wmxLt7+glMXTGVzSc3syhtEUsuW+K2ce/aeBfL9i3j8YmP88zkZ9w2bnuRbOCzh+7QTCBdM67iqmYaO+gwN4xKYHzsePoG9XVL2QmJ9tNb7FmJ3ktvusYk3SRxtlJvqGfD8Q2kZ6Tz88mf/woFA28Pb64feD1zh8/lksRLnDYlb0039Y2sYVHaIuYMm9Nt/UNasqNwBzesvYFibTEBqgBWXLeCa1Kv6ZZzb87ZzNSVU/FT+lGwqMBt2SlZ6ixS3krBx9MH7b+0ZyRAD9pn/3ZJKa3WiIuLY+vWra3uI+E+XG22teLwO3xw7BBymZzB4YMZFzuO8bHjGRc7jsERg7u0FriEFSmFX6Kr6U3XmLtr2EqCQeJMo25Qs+bwGtIz0tldvFvcHuwVzM1Dbmbe8HmMix3X5iLbkHgzF47ZzEc7t6HTe2KWVePjU8SDY+7i/nHrurV/SMvPVWKEmdkbbmFL7hYA/n3Bv3lm8jNOxYq7OVx+mM0nNyOXyXlg/ANuHbs3Rj9J9GwkzdSzcFUzbcxexee5hwAI9wlnXOw4UTeNjR3bbU7gc5neZM9K9E562zUm6SaJswmLYGFb/jbSM9L5/Ojn1BnqxMcmJkxk3vB5zBg0gwBV64vdJouJOvkfEP4qpTotCiEYs6yaC/pH8fcJj3NZ/8u6bdHe0Wfqo/0fcP/392MwGxgYNpANMzeQGpbaLfMBxCC220fc7taSXX2D+uIh96DB2ECxtpg+Aa33z+sJSKvdZzltNeUC8PMycvWgAewqqqGgtoBD5Yc4VH6ID/d/CICPpw+jo0eLjpLzAuKJUSiR4eTL0ScUghxHuko4R0rhl3AnBrOBEm0JxdpiirRFFGuL2Z9fT4nGefmNs/Ua6+lp8BJnL0azke+zvyc9I52NJzZitFi7ACpkCq5MvpK5w+cyLWUaKo+2GyXvLd7Lkh1LWHtk7en+IRFnrn+Io8+VIK+mwkOHn7cf6demc/3A67t1Tq9ut6aDXz/wevoG9XXr2JJjRELi7MYVzRToY+Hq0ZPYXeLNgdIDVDRU8G3Wt3yb9a24T3JIsugouSCwL4N9o1A6K08haaYOIWkmCXciCAJVuiobzbQnr5YSTbLzYzh7rzFJN0mcKbKrssWM+ryaPHF7v+B+zB02l1uH30q/4H5tjlOrr+XDfR/yxq43xHGUSiUzh87mobSHuqW0b3McfaZUSh0FfIxBYeD6gdfzyfRP8Ff5d9ucjlYc5YfsH5Ah48G0B906tqfCk37B/chUZ5KpzpQcIxJnHleacv3fjPFcPuRaAEq0Jewq2sXOop3sKtrF7uLd1Opr+e3Ub/x26jfiBBkn8HPuFAHwUMH9eyVDv52Ua50b+B3ZT+LsxCJYqGyopKjWarg3N+LFn7VFVDRU2B3rY5pIOG0bAqW1jWzPUZ8VUULO0uBLNY0sXLmvR6XBS5wdCILA/tL9pB9IZ/Xh1VQ2VIqPjYgawbzh85g1dBYRvhFtjmW2mPkm8xuW7FjCtvxt4vZJCZNYPGExVyVf1W3ZGM1x9rnCEkiE4d/85/JIrh84tlvm0hSBlVVRxtr9+wE5i9MWu/08KaEpIMjJLffkq/1FRAT07nujhISELa5ophevH8PlQ6YBoDfpySjLYGfhTnYV72Jn4U6yqrLEf9sOruYO/FBKmsntSJpJwlUajA1taqZibTF6s97mOKtm+meb459Nmgkk3STR/dQ01rD2yFrSM9L5s+BPcXuAKoCbBt3EvBHzOD/ufJfKVubX5PPGzjdYtm8ZWoMWgFDvUO4dey/3jr33jPQPcfaZajSoCOffTB2Vz9Ib7+2WspzNs1ZWHF4BgpzrBl3rkrOpvSSHpJJfruLL/YV4W9Q9/t4oOUbOAdrTlCvaP5rpA6YzfcB0wLoIe6LyhOgs0eRuw7uyoPUTmvQcPfUb/f1noFQou+Q5nY24msLv6n4SvY9afe1pw722yKEBX6ItEaPO28JT7kmMfwwx/jHEBsSiNA3mj4y2j3v2myNU1Z8+R2+MEhIEAU2jlse/OtRr0uAlejcl2hJWHlzJ8oPLOVx+WNwe6RvJnGFzmDt8rssRSvWGej458Amv7XyN7KpsADzkHswcPJNFaYsYHTO6S56DK7RWXkKGHBnw0dZabk8Tuvxz1TICK5RnCVdo0Gj6gpvXGbOKfYnVf4SHEMaDnx0Aeue9UUJCwjnt0UwqD5VYRquJKl0Vu4t2s6toF5U5P+N9an/rJzTp2Xb8SwYMnemSs1zCiqSZJEwWE6V1pa1qpqLaIjR6jctjhnqHiprJ2zyMfUfbPuZs0ExgrTSgbqjmsS8zJN0k0eWYLCZ+zPmR5RnL+fL4l6JjUi6TMzVpKvOGz2N66nSX+37sLNzJkh1LWH90PWbBDMCAsAEsTlt8RvuHtKWZAA7nDMAigKKLP1L2WSsXEEsqF4QndMm5ck7MI8rgxde74OtdO3r8vdHtzde7g3OliaC7azu6ZbziA7B0Upu7jaKOox6ejIweKZbgGh87nn7B/c6pJoXtec1NZguDnv4cvcFbvFE2R4ZVmP3+yMWSMULvqn1qMBtEh0drBnzz+pmtIUNGhG/EaaeHf6xoyDf/O9Qn1KZuptkicMGLW1otE+H4fFa6O0rIYDZQraumprGG6kbrz5rGGrtt4s8W2z1Ng4kyvNDmeT69M+2sS4OX6B50Rh1fnfiK9Ix0fsz5EYtgAUClUDF9wHTmDZ/H1KSpLvfpKqwt5K1db7F071KqG6sBCPIK4p7R93D/uPu7tX+IM7bnqLll2Y429+vqz5XTrBUEZMjcer86fa6mpQErZ+LeeK7YwBLu41y4Znq7Ztovs9A3qK9Nj8dR0aPw8fTp2BPopbj6upstAmP/+wPqOpOkmVygN2kmQRBQ69RtaqayujKxCXNb+Hj62GolP3vNFO0fjZfHaUdab9NMFsGCVq+100R2OknvQEfpqtGZdKjMQyXdJNGlHCo7RHpGOqsOraK0rlTcPjh8MPOGz2P2sNnE+Me4NJbJYuLL41/y6o5XbTJNLu13KYvTFndr/xBnSJqp92gmKWOkh9IVtR3d3ZSrNQK9AtHrq9lRuIMdhadvBqHeoTZG/7jYcYT6nJ1frO19D9/f+y6FrCKcf9s91nQjeXLaoB5ryHYnPaX2qUWwUFFf4TAlu7kB37yUTlsEqAJsnR0OnB5RflF4OqtX3QptlYlwZvh3NErImZFu5+RoxUjvDAoh2KX9pFILEu1BEAT+LPiT9Ix01h5ZaxONeF7cecwbPo8bB91IsLdr1x/AvpJ9LNm+hM+OfHa6f0hIfx4a/xDzRszDT+nn9ufRUXpCCZPWIrCavjHdFdVoey7bsaQISgmJM09v10z9gvtxoCaHvJo88mryWHtkrXUOMgVDI4faBJgNCBtwRsondgfteR+rdJVUKN5Bzt3gZPFF0kxWeopmAms2bFuaqVhbjMFscGk8hUxBtH90q5opxj+GAFVAuwMzu1szATSaGh0HgDlycrR4TKPXiME5HUXSTRJdQUV9BasPrSY9I539paezKMN8wpg1ZBZzh89lVPQolz+jtfpaPtr/Ea/vfF3sH+Ip92T2sNksSlvU7f1DWkPSTKfp6ZpJcoz0QM6G2o5b5v5Mjpe/te7uX2W49pfuR61T833293yf/b24b1JwEuP7jGdczDjG9xnPiKgRNhEbvZH2voc7CnewaNMijAojV40tZn9mUpsp/Ocq3fH5EAQBrUFrb7DXFlFcd9qQL6krERcx20KpUNpneLQw4GP8Y7p8AXTq4Ej+76YB/O/7bCq0p+furTLToHcutpuaDL75+3dEBGscOzm6wEgHq7Mo2CuYIK8ggr3/+unV4udf25tvyyqF2z460Ob4UqkFCVfIq8ljecZylmcsJ6c6R9weHxjP3GFzmTt8Lsmhzht1tsQiWKz9Q7YvYWv+VnH7xISJLE5bzNUpV/fIBbCeUMKkOxvvSk1+JSR6LmeDZvr8xnXUhvZjT/EeUTPtLNxJSV0JB0oPcKD0AO/vfR8Af6U/Y2LG2ASZ9YRMws7SnvfRbDEz+4vZFBo2kxSqItR4N2W1pxfSJc10mu76fBjNxtNlrZxopiJtEbX6WpfHDPMJa1MzhfuEd6mddPmQaF6/ZSjPfXOccu3pclneKgsNeueR6E12wfvbfyIyuNZh1oYjB0ijqfOLo0qFkmCv4Db1UtPfzbcdKzIx+4PdbZ5D0k0SbaE36fkm8xvSM9L5Pvt7cb3EU+7J1SlXM2/4PK5IvqJdZffza/J5c9ebLNu3TLyXhHqHsnDMQu4dey/R/j3vni9ppq47l7uRHCM9jNY8ej3dy9YcGTL6h/Snf0h/Zg+bDVjL4mSUZtg0dz+hPkFOdQ451TmsPrQasNZRHx45nPGx460Ok9hxpISmnPFUOFdp73tYUV/BjetuxGgxMmPQDN6+/k4sAr0m5bk7MVsEnurk50Nv0lNSV9JqPdpibTH1xnqX5tRU1qpldFJLAz7UO9StZeQaTY1U66qp0lVR3Wj9WaWrErc1bVc3qKnUVaJuUFPdWI1Wr7WmNgpyVMrBKIRgzLJqFOYQwvlHm+f9z+aXaPDY1uZ+zVEpVI4NcWfOjmZ/B6gCOix6ovwEogOPO02Dbyq1MC4xpEPjS5z9aPVa1h1dx/KM5TbOC19PX24cfCPzhs9jYsLEdn0/OesfctPgm1iUtogxMWPc/jzcybjEEKIDvc7o56o7I7B6QrSXhISEPWeLZgJrAMjFiRdzceLF4rbC2kKrZvqrufvuot1oDVp+yfuFX/J+EfeL9Y+1cZSMiRmDv8r/TDyNDtHe9/HprU+z+eRmfDx9+Gre0wwIGyRpJge44/PRVNaqrUCx8vpyl8ta+Xr6OtVMTbop2i8alYeqw8+9JRbBgqZR41QzNW1TN6hR69RUNlSKDgyD2dBhzfSPH55rt2aSISPQK9A+8EvVul5q+rszwaVp/YQzbt9J9F4EQWBX0S6WZyzn08OfiiWBAcbGjGXe8HncPOTmdleLcdY/ZFHaIuYMm9OjS05KmqnrzuVuJMdID8NVL9ugV6cRG9ZAlF+U03+h3qE9KtpUqVAyNnYsY2PHch/3AVCtq2ZP8R7RUbKzaCfl9eXsLdnL3pK9vLPnHQACVYGMjR1rU4Iryi/qTD4dp7THUzouMYhZX8yisLaQ1NBUPrzmQ2QyGQoZPc6L2l0IgkBZfRn5Nfnk1eSRr8knvyaffE0+2aVyGjV3Oz8W62v7+rZv8PWzd3oUa4vbVdYqUBXoMCW7uQHf0bJW4Jqhrm5QU9FQQWVDJWqdmhpdDbX6WgwW19LMnSKzoFccEv9UMdSlw/qFhhIRcrHDKKSuMNI7Q1tp8CCVWpCwx2wxsyV3C+kZ6Xxx7AuxpJsMGZf0u4S5w+Zy/cDr8VX6tmvcotoi3tr1Fu/vfd+mf8jdo+/m/nH30yegj9ufS1fQEz5X3RmB1ROivSQkJOxx1d7u9/IUokK1Vn3k61gzRfpF9rjFlT4BfegT0IfrB14PWL+bjlUes8nGP1R+iCJtERuOb2DD8Q2A9btqUPig0yW4+oxnSMQQl3tddTft0U1V5h08u+1ZAJZNW8bgiMHAuauZABqMDaJOyqvJE3/PLBGo1MxxelzT67p0+88E+Jc51EztKWvlIfcg2i/aTjO1DBbzV/p3OFBMZ9S16dyobKgUdVO1rhpNo4Y6o2s9HJ3SQc0UFxxAaNB5LmW5N20LUAWcsWDQnmDfSfQ+CmsLWZGxguUHl3O88ri4PdY/ljnD5jB3+FwGhQ9q15hmi5kvj3/Jkh1LbPqHXJJ4CYsnLOby/pf3iqDpnvCZkjSTa/RMC+kcxlXvWWGNlsy61iMQFDIF4b7htsa/E0HQkdqb7iDYO5gpSVOYkjQFsC6Kn9KcsnGU7C3ei0av4aeTP/HTyZ/EY+MD48UIqfGx4xkVPardC1VdQXs8pU/9+hQ/nfwJH08f1t+0ngDV2dkUszlmi5libbGN00P8/a+/9Wa9w2N9TBMJd+Ecj//8f61G6KgUKpvIJEdN+GL8Y1y+nloa6i2zNiobKimvL6eioQJ1g5qaRqtzw9WsFHegUqgI9AokyCuIEO8QQr1DbQzyQK9glm82U6uT07ImJDRrZPnA+l5lEF8+JJp354yyq6/c00ot9KbGmGcrxyqOsTxjOSsOrqBIWyRuTw1NZd7wecwZNoe4wLh2j7uvZB+v7niVNYfXiKnkScFJPJT2ELeNuK1H9Q9xlTP9uerOCKyeEO0lISFhj6v2dmWdkVONu9rcL0AVYHWS+Ea2GngW4RtxRpwMCrmCIRFDGBIxhAWjFgDWDMR9JftssvHzNfkcqTjCkYojfHTgIwC8PbwZHTNaLFs8LnYcCYEJZ0T7tcTV9/FIaQH/+N260H//2PuZNXRWV06rx6Bp1Ng5PZprqIqGCofHuaqZHv7h2TazGsJ9wm00k6OgsXDfcJcWKs0WMzW6GqeaqSkgrLy+/LRzQ6+hzlCH0WJsc3x3IJfJ8Vf6iw6LUO9Qq+Pir6yNAFUQn/1iQqtT0KpmeujrXmfLn2n7zlUk3XRmqTfUs+H4BtIz0vn55M9ixpi3hzfXD7yeecPncXHixe0O0tbqtWL/kNyaXMBafmvW0FksSlvE8Kjhbn8uXc2Z/kxJmsk1JMdID8NV79nLlz9GUEAFpXWlNv/K6ssorSulor4Cs2AWt7eFl4eXnQMl0s+BMFD64uWhApPjhWsAPFTQwYbqMpmMhKAEEoISuGnwTQCYLCYOlx+2SSc/Un6EU5pTnNKc4vOjnwNWR9CQiCE26eSDwgd1e9aMq+/hSc0BnvvtOcA26qm3YzAbKNAUODXiC2sLXerLoVKokMlkGM1GMW3SLKtu4ygrSWHh9I2Y5rAebax/LCHeIXZi0Gwxi3Veq3RVnKw+KRrqVboqyuvLKasvE50bmkYNGr2GemO9y31GOoMMGX5KP9G5EeYdRqhPKCHeIW2WpgryCnIpJX1IgLUWMZxdUUKXD4lmyqCoHmtA96TGmOca6gY1aw6vIT0jnd3Fp+sqB3sFc/OQm5k3fB7jYse1e/Gotf4hi9IWMS1lWo/K6OwIZ/Jz1Z0RWD0h2ktCQsIeV+3tN696jtCgKlvNVG+rnxpNjdTqa6nV15Kpzmx1PBkywnzCHGeeNHOqxMjlBHmokHWRZgLwVfpyYcKFXJhwobittK6U3UW7RUfJrqJdaPQafj/1O7+f+l3cL8I3wkYzjY0ZS7C3a82X3Ymr7+Pru5+hprGG8bHjeeWyV7p4Vt2DIAhUNlQ6DBRr0lAavabNcTzkHnjIPbAIFjHDw1XNFBPoR1z4ZKdOjyi/KDsNIQgCOpNO1EjHK4/zZ8GfonOjor6Csvoy0bnR1IuwzlAnZuF2NV4eXqJzI8Q7hDCfMEK8Q9rMcg/yCnIpq2VMyNmpmUDSTRKOsQgWtuVvIz0jnc+Pfk6d4XQm1sSEicwbPo8Zg2Z0KND3lOYUb+x8o1f1D2kPkmbq+fdGmSAIrhWE7EHU1tYSGBiIRqMhIODsirA3WwQueHFLm1623x+5uNULymQxUVFv7zhxJAba0wgNYLAygBTvMEK9Qwn1CSXMJ5TQvxZpw7xDCQxJIiRqGOG+4V0WUaXVa9lbsld0lOws3GkT4duEr6cvY2LG2KSTx/rHdmmElCvvYZi/B9mKW6jRV3P/2Pt588o3u2w+7qZ5yrajbI9ibbFLdWblMnm7GnMHeQUR7ReLoeQxTCY/nEXoRAaq+GxhKhp9tU16dUV9BSV1JZTVlVGpq6Sqwbq9KXPDHQ3v2kKlUFmdG6pAgrytzo1w3/DT2RutNMTrTOp5e5CMze7FWWPMpne6NzSO7W0YzUa+y/qO9Ix0vsn8RoxA9JB7cEX/K5g3fB5Xp1zdofrW9YZ60jPSeW3Ha2RVZQFWp/3MITN7Rf+Q3kZ33q96yr3xbLaBJbqGs/WacZdmEgQBrUHrWDO1+FdeXy4G67hCP5mSFJ9QQr2b6SVRP4UREJxISNQwIv0iuyx70CJYyFJn2WTjZ5RmOIy+TwlNOa2ZYsczPGp4u5rjdgRX3kelsoFM+c2E+Yaw7659HcrePBNYBAuldaVOsz3yNfk0GBvaHEcukyMIgst9PDzkHsT4xaJQv4DF5E9rWQ1f/m2YnWZSN6itAZd1ZZQ3lKNuUFPVWGUtS2Woo95Y3y4N1xHkMjm+nr4EqAJsnBtNDo7WSlMFegV2+XULPccuOJeQdFP3k12VTfqBdFYcXEG+Jl/cnhScxNzhc7l12K0kBid2aOxdRbtYsn0Jnx/9XPxuTQ1NZVHaIm4dfmuPK3HZm5E0U+v2r+QY6YE03fDBsZfN3Tf8BmMDZXVlYrZJa/+clThyhAyZy6W8gryCOr3oW1RbJEZG7Szaye7i3Tae7Cai/aKtaeR/pZOPiRnj9hJWbb2HvhGfckS7ivGx49k2f1u3GG+u0pSy7ShyKa86j0qd6z06XEGlUNmlYzddE76evqg8VChkChqMDZTUlbDnpIkdh4f8dfTpa0bAAsioUP4XnWK7W+fYhFwmx8fTB3+lPwGqAIK9ggn1CSXcN5wInwiCvYNbzdroaC+S7kZKT+4emhYDnNXWdnVRR6Lta1YQBPaX7if9QDqrD6+26TU0Mmok84bP45ahtxDhG9Gh8xfVFvH27rd5b897Yv+QQFWg2D+ktyzi9Ea6837VE+6NZ7sNLOF+zuZrprs1k9liRq1Tn87UrytzGnhWpatq19i+nr6tlvBqXsqrs7qh0dTIgdIDNiW4squy7fZTKpSMjBppk1nSP6S/2wN1WnsfBQTKlf+lUbGDH2/9kUv7XerWc3cGk8VEYW2hwx4feTV5nNKccnv5pwjfCJss+Gi/aMJ8w/BX+uPt4Y2n3BMLFiobKtmR3civB/r/dWT3aiY4HRDmr/orc8MrxKqZfCOcBoU1/e3r6dsjSr21RU+wC84VzBaB8/9yojpC0k2u09Z1W9NYw9oja0nPSLfp8RGgCmDm4JnMHT6X8+PO79Bn1Gwx89WJr1iyfQl/FPwhbr848WIWpy3miuQrekX/kN6IpJmcIzlGeig9xcvWHEEQ0Og19uW76srsxEB5fXm7IkmUCqXDNHRH/1z1HJstZo5XHrcx+g+WHbSL9JIhY2D4QBujf2jE0E4vYv9wuIQnvz5CWe1pZ1J0oBfhUVvZeOpZwnzCuj3qSRAE1Dq1w8il3Opc8mry0Bq0bjmXXCYnwjeCCN8IQrxC8FdZDXZk1vfGYDLQYGxAa9Ci0WvQGrTWFGujrk0R4W2eQIjhLjyaVc81UUGVcmmbBr5SoRSdG4GqQGvtWJ9QInwjiPSNPF1Hthcb6ecCgiBgFswYzUaMFiNGsxGD2SD+3tbP9uxrtPy1f8vH2rt/i58yfQohjc+0+Vw/vTOtVzYW7S6DqLXvy+EJsPLgSpYfXM7h8sPi45G+kcwZNod5w+cxNNK1JpqO2F+ynyU7ltj1D3lw/IPMHzm/V/YPkejZnAs2sIR7OduvmZ6omQD0Jj3l9eVOs/ebnColdSUuZQ00J9Q71KZxvLPAs1CfUJcXmNQNanYX77bJxlfr1Hb7BXsF22imcbHjCPd1pZtF6zjSTWF+crJNL6KRbeW5yc/xn4n/6fR52kOjqZECTYFtX0SNNVAstybX5Sx5V/BX+hPpF0mYdxiBXoH4Kf3wkHsgCAJ6sx69SU+9sR5No4ZaQy1avZYGYwONpsZW59AZzdQUENYycyPcJ5xIv0jCfcKdBoUFegWekV48Eo6xCJZOaZZOayg3jC0zphLe+Fybz1XSTa3j7DvzsasGIPPOYHnGcr48/qUYEC2XyZmaNJV5w+cxPXU63p7eHTqvVq/l4wMf89qO186a/iESPRvJMXKW0BO8bB3FbDFT2VDZZimvsroyMbrWVfyV/m3W9W2KqGrp3GgwNrC/ZL9NOnleTZ7dObw8vBgVPcomnbxvUF/XF8VrCqBBTZ1Bx6Uf3YZCCOC1K5+noGE7z/32DFUyGR/euolL+l3SrufeFk0p282zPXKrc8mqyiK3OpfiumKx9mxn8PHwwcfTB6VCaU3vRsBkMWGymNCb9RhNRvQW17OL2oNcJsfLwwsfD1/8GIGPPJoAH4HYsEai/KzOjUi/SIK9gh2mVp/rRrogCJ1e0O8JxnF3NWDsSnxMEwk3/rPN/V6/eQTTR8R2w4zcR3ctVDlLqW+KOa1U/o96hTUaSaVQce2Aa5k7fC5Tk6Z2+F5gESx8m/ktS3Ys4de8X8XtF8ZfyOIJi8+K/iESPZdzxQaWcB/nwjXTmzUTQJ2hzqVSXmX1Ze3qa6eQKWx7RrZwoDR/rGXJVkEQyK3JtTpK/tJM+0r2OawekBiUaJONPzJqZPsWzxzopv9e+h9e3v0gxXWFjOh3MR/cusntUcR1hjq7bI/sqmyyq7IpqC1ot0Z1hEKmwF/pj8pDxf+zd9+BTZR9HMC/2UnTvVtGKWW1gBTKpuxRNghlCErZyJChgoKvMhyIiCJ7qIAMZYigqGxEUPYSKJuW3dK926zn/SPkaJqkuXSP3+d9Y8nlyeXu8uTu+d2zxEIxBBBAy7TQ6DRQaVX6h0YFLfgP0WYLqUgKO5ES9oJgKITecFDo4O2aAU+lO/f9u9u5mx3KVyFWVOoGYeYaYZVoDFWE6y7uoc9KAsVNRfM5luImBhj1IqvvUR8RjSIw/JXh8HXwLfBnPkx5iOVnlmP9xfXcnEmuCldMbDoRk5tNLvfzh5CyiypGSLmSrcm23KIqz8PWCdtMJkc006JKJBThdsJtnH96nqswSc5ONlmXh50H1zKqRZUWaFalGVwVrqYfmvwIWBGS7wT1GqEI4qlXAGfbeovk7rIdnRyNW/G3cDP+pr7VUvpTJGQm2DT2cV4CCCAUCCEQCMAYg47piqwlVG4SoQRysRxKqRL2Uns4y/QFcDeFGzztPeGt9IaPgw/c7dxNWiGVViFdq9MWvodBGSgcFyZ/lHUCCCAVSSERSSARSnj9lYqk5l8zs6zI1v3i77XHOZi2LcrqfpW3lk8lNf6vtaHIGHTQIgHVa3+LkcEjMLj+YDjLnQv8eRmqDPxw5Qd8ffpro/lDBtcfjBktZ6BZlWYFXjchfFEZmNiK8kzFoWM6JGUl8ZpDMveQkXwoxAqrw3i5KlwRlxGHyzGXuZjpRvwNk3WJhWK84vUKV1HSvEpz1HOvZ75ig0fcxEQyCN66YFPcxBhDcnYy11DsXuI9RMZFcpUesRmxNvfUyUsoEL6c/4Mx6FD0N5+FAiHkIjkUEgU3LJWL3MWo54aPvY9JozAXuQscZY6l0lCDMX2DuSLtpV2CPbpzp63IxEJx0cY5+aQvihjq6qNsvLX1ntX9orjJPD5xExMmoX/oBYxsHIHG3o0Ldc/l7JOz+Pr019h5fafR/CHTW07HiEYjaP4QUuyoYoRUSHknRzQa19dMTxRbbgBLhBJ4Kj25gr9CooBKq0JyVjKepj9FdHK02RZatV1rG3UnD/YOhuz5DWBde+sfOv444BtstChHk4OHKQ9xO+E2rsRewa34W7iffB9PUp8gPjO+yIa5KiyhQAipSKqv3JC8qNx4UQh3t3PnjqWPvQ887DzgIHfg0slEMuhguTtvWS0cV4SWNpaIBKJCFWCN0tqavggqGAx/y1sr/aKaOLaoGSb4tPWvjumg0erQ85sLeJ5qPpgsyn06dS8Br60/bTVdYQOkp2lPseLsCpP5Q8aHjMdbzd+i+UNIiaIyMLEV5ZnKSa1VmzQ8szSfpK3xhYvchett4KZwA2MMGeoMxGbEIjopGsk5ySbvcZQ5oqlvU6Pe+D4OPsDTywWKmxhjeJ7xHFHJUbgaexXXn1/H3aS7eJjyEDHpMUjKSoKG8e9dU5wkQglkYhnsxHZQSpXcPIWudq7wtPPk5g3xtvfmhtFSSpRQSpUQCUQFqmAozh7d1mIoW3o1lTcCCIokZjGKiWxNXwRpxUJxuesNVF7iJh3T8Y6dKlrcRPOHkLLElvJv5R5ThpQrAoEAjjJHOMocUcetTr5pdUyHhMwEiy2qcleqJGQlQK1T40naEzxJe2J1OwzdoNU6Ne4k3sGdxDvYenUrAP0N5n6ONfAzj/155+C7OJwVh9iMWKTmpCJHm1OiN98FEEAkFEEsFBu1GDEU0KQiKfdvsUi/z4C+o2Xe3hNZmiykpqTibuJdo8JxWQlIiotI8PL4iYQiiAVi7pganhv+zS0X6P9t7m/u14UCIUSCF39fvC4U5lqWN51QCCGE3DKhQKjvAWRmOfe6QAAh9IUTaze8C3qzXKVVcXm7oOsw/NvQg6nA6ymidRT2mOReh1bUAAyjXuSo3AVe/dSYT/ANanwzsti3w/DvwpJpG8JbtdDi6wzAs5RsnI1KLHRrrudp5ls8FTRdXpeeXcLXp7/GT9d+4oZuq+lSE9NbTMfI4JFwkDkUaL2EEEJIcZOIJKjiWAVVHK0PKZOhyrBYaZK3UkWlVSEpOwlJ2Um4GX8z3/UabiKrtWqk5qTiaNRRHI06yr3ubueOQS51sIrH/oz5dQyOZiciMTuR13yERcnQo95Qts97I9xwA1oqlHLlfgMd05lUHiRk6WPUHE2O0WtFUQ4rqwQQcDETFye9iHvyPufi0xdxVX6xkyEGMrzXECvljqGEEBrHULliIsMyoUDIxUwmf1+8Jnjxv+KKHwy9bAoVg5TTeIhvWktxE3vx63mMpfBbGlFi+1JYFSVuMswf8s2Zb3A/6T4AfYXwaw1fw4yWMxDsHWzzOgkpSVQxQiokoUAID6UHPJQeVifWVWlVvIfyylBn5NsKRsu0LyaTsj7h7rHoY/hPUHq9EBhezgtCCkbLtNBqtWbHWyaEn9tQSJ+ZmRgzXj8xpuoUUI568ouYC690Ba2syM3TQV6k6YCX84d8ffprHIs+xi0PrR6Kt1u+jb51+5a7nkmEEEJIfpRSJWpKa6KmS8180zGmH56Kz1BecRlxYGD5DkcUnxmP0xmJ4BM3XYq5jOhSipsYGFfmV0EFUOhkMwbG9eQnpODMx01aipusKo646VHKIyw/uxzrLqwzmj/kzZA3Mbn55ELNTUJISaKKEVLpSUVSVHWsiqqOVa2mfZz6GJefXca159dwO/E2opOj8Tj1MWLTY5GuTq/Qwy2VNgEEEAgERvOg5F5my19Db4rSXEeZ3odycgzK/HG0YR8YA2490yI5k8HFToigKu4QCb8pV/sgEAhw9n4SXv/uvNXfsy2Fbkua+7vCx0lutUt9c38zc0HlkanOxKbLm7D0zFLcTrgNgOYPIYQQQnITCARwUejnsQj0CMw3bZY6C//F/scNDXwv6R4epjzEk7QnSM5OrvDzN5SmgpTfSrv8WJrrKHQ5ugxsQ4U4jjasw1LcVJ72oTzHTeeenMNXp78ymj+kjlsdTG+hnz9EKVUWensJKUlUMULIC4ZWUNHJ0dzjQcoDo+eGmvCi0LJqS7hKFPrhdJgWGqaBVqeFVqflenLknrgu95ixhuGJiqILZ1ERCUSQiWWQi+WQiV78ffHcsEwmkkEhUXDL8j4UYv1rhjQKscJiesNnGB7lcaxUQnIL9SvtLSi8VgGeRVbotkYkFGBunyBM3HIRAsDo8wxngrl9ggDox9V9npYNTwf9ZxvG6X2a9hQrz67EmgtrkJiVCODl/CFTmk9Bdafqhd5OQgghpKJRaVV4lPLIJFYyxE+PUh4VaZzSokoLuEgV+liJvXzkjpk0Oo3RHBi5H2Wth7xMJMs3bjIX6yjECqM0ueOk/GImczEUxUykvKO4yTZ84qYPewXhbFSi2ZhJq9Pi11u/4qvTX+Hkw5PcezvW6Ii3W72NnrV70vwhpNyiyddLS/IjIDPB8ut2boBz5ZrQVatjFk/ERbG+ZjVckJKTZLHS40HKA6TmpBbos9zt3NHQsyFaV2uN7kofhP45x/qbzEy+biuNToNsTbZNjxxNjuXXtbatqywFGUKBkFcwwD1EeYKEPMGIrQ+JUEJBRgkp6nMFKVr7rz3DxC0XAZgvdK9+vQm6N/Ap0s+b/1sknqW87Gbu4yTnKkXMvTairR1Ox6/Bj1d/5IZ18Hf2x/SW0zEqeBTNH0LKrApRBiYlqkLkGYqbjBR3zNTc3xUanQqPUh9ZbDD2JPVJgSo+pCIparvWRjPfZgj1C0U7iSNq7xpr/Y2FjJt0TAeVVmVz3JRvTKXNJ6Yy8yhLLFXG8I2b8q14sbJOmUhGw5KWEIqZyr6yEjf1beSDX688M1k+q0dNPM7Zh6VnlnLzh4iFYrzWQD9/SGOfxkW2bYQUJVvKv1QxUhqSHwErQgBNPvMSiGXAlAuVppCf340tvhcCxhjiM+MRnRyNff89ws9nhEjPlnCvawUJSJCsQZboVL7rkYlkAGBx3ojqTtUR4hOif/iGoIlPE3gqPV8meHoZWNfe+gYXQcVIadPoNMjR5NgcGBRVoFGWuuELILC9oqWIg4zKUDFTFOcKUvxK+nsyF/gdiozBxC0Xzdy20d/KiZN+hizRKbSp1gZvt3ob/er2o0CdlHnlvgxMSly5zzMUNxkpqutrtiYbD1MeYvel+9j6Tw7Ssl4OJMGEiYgXr0Gm6N981yESiCAVSaHSqrjhVHKzk9gh2DvYKG6q514PYmGuQSsqSdzEGLNaMVOc8VSWOqtMjTQgEUpsi4FsiJn4rM8oD1ZQFDOVH6UdNyVl5GDytktWYyYXuQsmNp1I84eQcqHcVIysXLkSixcvRkxMDBo1aoTly5ejefPmVt9X7gv4laQAyJehljxvRsxbS84YQ1xmnNnu2oZ/Z6ozodC2godqzot1vLxRzKADIIDKYSWcnaMhFUqRo81BfGY8ErLMt0Kr4VyDK8w38WmCEN8QuNu5579DFMCVGB3T5d8DpgQCjbIkb5d7Pl3pizLIKO7us3zPFaRsKM1WalodQ+iio0YBRm4MOsikWfhhnB9aVmtRIttESFEo92VgUiAFjZmACpBnKG7i2FIOylJncTHSg+QXsVLKy/gpJj3GasyUIv8Sri4PYS+1B2MMqapUxKTHmG2YpJQo0dinMZp46+OlEB99JYjVBgcUN5UIxliBRhooqpgqS5NVpubiFAlERRYDFSSmKu4hoClmKn9KK27iEzMJRCmY2S8NI4Np/hBSfthS/i21qvLt27fj7bffxpo1a9CiRQssXboUYWFhuHXrFjw9Pa2vgFQIWh3D/N8izbZfYS/+O2X7cYj/WoCHKdHI0mTlv0ImhIdm4ouLvvGFRAAhGBhEaUNwUz0GEBgXzmq61NRXfuSqCHGzc7N9p5yr6Qvv1OW/2AkFQigk+jF1SwOf1l/FHWjkbv2Vo9X33inKuXBsYUvrL1uDDKlQhjm/qCyeKwTQD5nUNcibuoiXESKhAK0CCnAOLQJnoxItFvAB/fVApVKCqWqV4FYRQojtKGYiAL+Yaer2E3A59TUepEQhNiM2/xUyIdzUEyzGTACDQ84oRCWNNomZ7KX2aOzdmOsFEuITgjpudQrW65LiphIhEAggEUkgEUlKbbhQcxUzfBq4WXyYGQI6v/UZhk4FAC3TIkOdgQx1RqkcC2tDQBem8Zo+ZtJSzFTOlFbcxCdmgtYFTdx6UKUIqbBKrWLkq6++wrhx4zBq1CgAwJo1a/D777/j+++/x/vvv19am0VKmLUTMSCARu2Ax8/FyBFlQQABfB18UcO5Bmo414Cfkx/37xrONfA0wR4R31/MZ20CiOEBf2VXNPN3MqoEcVG4FN2OOVejAnwlIBAIIBPrJ090glOJfz5jDGqd2nxFS0EDDQvzzJhbX97WX2qdGmqVGmmqtCLfV5m2IbxVCy0fCwDPUrJxNiqx1G7Gk7LjeRq/3lx80xFCSGmhmIkA/GImlVqJK48ykCPSV4rYS+1fxklOL+MlP2c/xCe74s0fbuS7PhFzh4uoKV6ppjCqBKntVrtoewlT3FQpiIVi2EvtYS+1L5XP1+q0BWqIZjGmsnFuztw9rXRMh0x1JjLVmUW+nxQzEVtQzERIKVWMqFQqXLhwAbNnz+aWCYVCdOnSBadOmc7/kJOTg5ycl91rU1MLNkE2KXv4nmA/Cv0SQ5oGoJpTNUhFUovpIh894bW+r7t+h37BVXilJaSsEggEkIqkkIqkcJSVzvAYBe2Wb2uQkZZSF9nx1reHCm0EADwd5EWajhBCSoOtMRNAcVNFxbd8826LBRjQpDpqONeAi9zF4nA9e5/zi5m+7/0z+jeuyns7CSmrREIR7IR2sJPYlcrnG4aALu65OVOT6yAjzvr2UMxEAIqZCAFKqWIkPj4eWq0WXl5eRsu9vLxw8+ZNk/QLFy7E/PnzS2rzSAnie4LtGBCCAFfrLRroxE5IySqp1l+n7iXgtfWnraaj3zYBgOb+rvBxkiMmJdvsUAICAN5O+vF7CSGkrLI1ZgIobqqo+JZvetVriyY+RRczeTmWznC1hFQ0JTUENMVMxBYUMxECFO9MuUVk9uzZSElJ4R6PHj0q7U0iRcRwIrY0uqUAgI8NJ+KiXh8hpGyg3zaxhUgowNw+QQDyjpz+8vncPkE0tjIhpMKhuKliopiJEMIH/baJLShmIqSUKkbc3d0hEokQG2s8KVxsbCy8vb1N0stkMjg6Oho9SMVQ1CdiOrETUjHRb5vYqnsDH6x+vQm8nYxbxHk7ybH69Sbo3sCnlLaMEEL4sTVmAihuqqgoZiKE8EG/bWIriplIZVcqFSNSqRQhISE4cuQIt0yn0+HIkSNo1apVaWxSybJzA8Sy/NOIZfp0lUBRn4jpxE5IxUS/bWKr7g18cPK9TvhxXEt8MzQYP45riZPvdaK8QggpFyp9zARQ3JQLxUyEED7ot01sRTETqcwEjDFzQ8kVu+3btyMiIgJr165F8+bNsXTpUuzYsQM3b940GUc3r5SUFDg7O+PRo0fltxVU8mMgK9Hy6wpXwLlyTXSn1TFciE5CXHo2POzlCKnhUqiWDEW9PkJI2UC/bUJIZZWamopq1aohOTkZTk5Opb05pAQUJmYCKG6qiChmIoTwQb9tQkhlZUvMVCqTrwPAkCFDEBcXh48++ggxMTEIDg7G/v37eRXw09LSAADVqlUr7s0khBBCCCGkTElLS6OKkUqiMDETQHETIYQQQgipnPjETKXWY6QwdDodnj59CgcHBwgEhavxNtQiletWVKRIUZ4g5lC+IHlRniDmUL4geRVlnmCMIS0tDb6+vhAKS2VEXFLOFFXcROc2Yg7lC5IX5QliDuULkhflCZJXacVMpdZjpDCEQiGqVi3a7tI0OSHJi/IEMYfyBcmL8gQxh/IFyauo8gT1FCG2KOq4ic5txBzKFyQvyhPEHMoXJC/KEySvko6ZqKkZIYQQQgghhBBCCCGEEEIqDaoYIYQQQgghhBBCCCGEEEJIpVHpK0ZkMhnmzp0LmUxW2ptCygjKE8QcyhckL8oTxBzKFyQvyhOkIqB8TMyhfEHyojxBzKF8QfKiPEHyKq08US4nXyeEEEIIIYQQQgghhBBCCCmISt9jhBBCCCGEEEIIIYQQQgghlQdVjBBCCCGEEEIIIYQQQgghpNKgihFCCCGEEEIIIYQQQgghhFQaVDFCCCGEEEIIIYQQQgghhJBKo1JXjKxcuRI1atSAXC5HixYtcPbs2dLeJFJCFi5ciGbNmsHBwQGenp7o378/bt26ZZQmOzsbkydPhpubG+zt7TFw4EDExsaW0haT0vD5559DIBBg+vTp3DLKF5XPkydP8Prrr8PNzQ0KhQINGzbE+fPnudcZY/joo4/g4+MDhUKBLl264M6dO6W4xaS4abVafPjhh/D394dCoUBAQAA+/vhjMMa4NJQvKra///4bffr0ga+vLwQCAfbs2WP0Op/vPzExEcOHD4ejoyOcnZ0xZswYpKenl+BeEMIfxU2VF8VNxBqKmYgBxU0kN4qZCFD246ZKWzGyfft2vP3225g7dy4uXryIRo0aISwsDM+fPy/tTSMl4Pjx45g8eTJOnz6NQ4cOQa1Wo1u3bsjIyODSzJgxA7/99ht27tyJ48eP4+nTpxgwYEApbjUpSefOncPatWvxyiuvGC2nfFG5JCUloU2bNpBIJPjzzz8RGRmJJUuWwMXFhUvzxRdfYNmyZVizZg3OnDkDpVKJsLAwZGdnl+KWk+K0aNEirF69GitWrMCNGzewaNEifPHFF1i+fDmXhvJFxZaRkYFGjRph5cqVZl/n8/0PHz4c169fx6FDh7Bv3z78/fffGD9+fEntAiG8UdxUuVHcRPJDMRMxoLiJ5EUxEwHKQdzEKqnmzZuzyZMnc8+1Wi3z9fVlCxcuLMWtIqXl+fPnDAA7fvw4Y4yx5ORkJpFI2M6dO7k0N27cYADYqVOnSmszSQlJS0tjtWvXZocOHWLt27dn06ZNY4xRvqiM3nvvPRYaGmrxdZ1Ox7y9vdnixYu5ZcnJyUwmk7Eff/yxJDaRlIJevXqx0aNHGy0bMGAAGz58OGOM8kVlA4D98ssv3HM+339kZCQDwM6dO8el+fPPP5lAIGBPnjwpsW0nhA+Km0huFDcRA4qZSG4UN5G8KGYieZXFuKlS9hhRqVS4cOECunTpwi0TCoXo0qULTp06VYpbRkpLSkoKAMDV1RUAcOHCBajVaqM8Uq9ePVSvXp3ySCUwefJk9OrVy+j7ByhfVEa//vormjZtikGDBsHT0xONGzfG+vXrudejoqIQExNjlCecnJzQokULyhMVWOvWrXHkyBHcvn0bAHDlyhWcPHkSPXr0AED5orLj8/2fOnUKzs7OaNq0KZemS5cuEAqFOHPmTIlvMyGWUNxE8qK4iRhQzERyo7iJ5EUxE7GmLMRN4kKvoRyKj4+HVquFl5eX0XIvLy/cvHmzlLaKlBadTofp06ejTZs2aNCgAQAgJiYGUqkUzs7ORmm9vLwQExNTCltJSspPP/2Eixcv4ty5cyavUb6ofO7fv4/Vq1fj7bffxpw5c3Du3DlMnToVUqkUERER3Pdu7npCeaLiev/995Gamop69epBJBJBq9Xi008/xfDhwwGA8kUlx+f7j4mJgaenp9HrYrEYrq6ulEdImUJxE8mN4iZiQDETyYviJpIXxUzEmrIQN1XKihFCcps8eTKuXbuGkydPlvamkFL26NEjTJs2DYcOHYJcLi/tzSFlgE6nQ9OmTfHZZ58BABo3boxr165hzZo1iIiIKOWtI6Vlx44d2Lp1K7Zt24b69evj8uXLmD59Onx9fSlfEEIIqbAobiIAxUzEPIqbSF4UM5HyoFIOpeXu7g6RSITY2Fij5bGxsfD29i6lrSKlYcqUKdi3bx+OHTuGqlWrcsu9vb2hUqmQnJxslJ7ySMV24cIFPH/+HE2aNIFYLIZYLMbx48exbNkyiMVieHl5Ub6oZHx8fBAUFGS0LDAwEA8fPgQA7nun60nlMnPmTLz//vsYOnQoGjZsiDfeeAMzZszAwoULAVC+qOz4fP/e3t4mE1drNBokJiZSHiFlCsVNxIDiJmJAMRMxh+ImkhfFTMSashA3VcqKEalUipCQEBw5coRbptPpcOTIEbRq1aoUt4yUFMYYpkyZgl9++QVHjx6Fv7+/0eshISGQSCRGeeTWrVt4+PAh5ZEKrHPnzrh69SouX77MPZo2bYrhw4dz/6Z8Ubm0adMGt27dMlp2+/Zt+Pn5AQD8/f3h7e1tlCdSU1Nx5swZyhMVWGZmJoRC4yKUSCSCTqcDQPmisuPz/bdq1QrJycm4cOECl+bo0aPQ6XRo0aJFiW8zIZZQ3EQobiJ5UcxEzKG4ieRFMROxpkzETYWevr2c+umnn5hMJmMbN25kkZGRbPz48czZ2ZnFxMSU9qaREjBx4kTm5OTE/vrrL/bs2TPukZmZyaV58803WfXq1dnRo0fZ+fPnWatWrVirVq1KcatJaWjfvj2bNm0a95zyReVy9uxZJhaL2aeffsru3LnDtm7dyuzs7NiWLVu4NJ9//jlzdnZme/fuZf/99x/r168f8/f3Z1lZWaW45aQ4RUREsCpVqrB9+/axqKgotnv3bubu7s5mzZrFpaF8UbGlpaWxS5cusUuXLjEA7KuvvmKXLl1iDx48YIzx+/67d+/OGjduzM6cOcNOnjzJateuzV577bXS2iVCLKK4qXKjuInwQTETobiJ5EUxE2Gs7MdNlbZihDHGli9fzqpXr86kUilr3rw5O336dGlvEikhAMw+NmzYwKXJyspikyZNYi4uLszOzo69+uqr7NmzZ6W30aRU5C3kU76ofH777TfWoEEDJpPJWL169di6deuMXtfpdOzDDz9kXl5eTCaTsc6dO7Nbt26V0taSkpCamsqmTZvGqlevzuRyOatZsyb74IMPWE5ODpeG8kXFduzYMbPliIiICMYYv+8/ISGBvfbaa8ze3p45OjqyUaNGsbS0tFLYG0Kso7ip8qK4ifBBMRNhjOImYoxiJsJY2Y+bBIwxVvh+J4QQQgghhBBCCCGEEEIIIWVfpZxjhBBCCCGEEEIIIYQQQgghlRNVjBBCCCGEEEIIIYQQQgghpNKgihFCCCGEEEIIIYQQQgghhFQaVDFCCCGEEEIIIYQQQgghhJBKgypGCCGEEEIIIYQQQgghhBBSaVDFCCGEEEIIIYQQQgghhBBCKg2qGCGEEEIIIYQQQgghhBBCSKVBFSOEEEIIIYQQQgghhBBCCKk0qGKEEEIIIYQQQgghhBBCCCGVBlWMEEIIIYQQQgghhBBCCCGk0qCKEUIIIYQQQgghhBBCCCGEVBpUMUIIIYQQQgghhBBCCCGEkEqDKkYIIYQQQgghhBBCCCGEEFJpUMUIIYQQQgghhBBCCCGEEEIqDaoYIYQQQgghhBBCCCGEEEJIpUEVI4QQQgghhBBCCCGEEEIIqTSoYoQQQgghhBBCCCGEEEIIIZUGVYwQQgghhBBCCCGEEEIIIaTSoIoRQgghhBBCCCGEEEIIIYRUGlQxQgghhBBCCCGEEEIIIYSQSoMqRgghhBBCCCGEEEIIIYQQUmlQxQghhBBCCCGEEEIIIYQQQioNqhghhBBCCCGEEEIIIYQQQkilQRUjhBBCCCGEEEIIIYQQQgipNKhihBBCCCGEEEIIIYQQQgghlQZVjBBCCCGEEEIIIYQQQgghpNKgipEKIDo6GgKBABs3buSWzZs3DwKBwChdjRo1MHLkyGLfnpEjR6JGjRrF/jkFZe54VTYdOnRAgwYNSnszCmTjxo0QCASIjo62+b3mfhfFrUOHDujQoUOJfibAP58bjuf58+dLZsPKEMMx+vLLL62mLcq8Y+4cKRAIMG/evCJZf3EqrfxMig99p4SQiopiJNtQjFTx/fXXXxAIBPjrr79sfm9hYrCCKs3fDJ+yueF47tq1q2Q2qowRCASYMmWK1XRFmXdK8xxeWGX9GkBsR99pxUAVI8XEcPI393j//fdLe/MAAJGRkZg3b16JFm5K0rZt27B06dLS3gxCCCmz/vjjj1KvkMnJycF7770HX19fKBQKtGjRAocOHeL9/idPnmDw4MFwdnaGo6Mj+vXrh/v375tNGxsbiwkTJqBKlSqQy+WoUaMGxowZU1S7QmDbMd6+fTtatWoFpVIJZ2dntG7dGkePHjVZ36hRo+Dp6QmFQoEmTZpg586dJusyBMp5H3K53CRtSkoKZs2ahdq1a0OhUMDPzw9jxozBw4cPi+YgEEIsohip9JXXGOmzzz7Dnj17SnszCCEEAPDvv/9i3rx5SE5OLrVt0Ol0+OKLL+Dv7w+5XI5XXnkFP/74I+/3JycnY/z48fDw8IBSqUTHjh1x8eJFk3TZ2dlYuHAhgoKCYGdnhypVqmDQoEG4fv16Ue5OpZeWloZZs2bB398fMpkMVapUQXh4ODIzM03SHj58GJ06dYKTkxMcHBwQEhKC7du3G6VJT0/H9OnTUbVqVchkMgQGBmL16tUm68qvbBYTE2OUtiLmBXFpb0BFt2DBAvj7+xstK+qW+n5+fsjKyoJEIsk33a1btyAUvqwLi4yMxPz589GhQ4cKWcu5bds2XLt2DdOnTzdazvd4EUKIwf/+979ivWGTlZUFsbjkL8l//PEHVq5cybty5ODBg0W+DSNHjsSuXbswffp01K5dGxs3bkTPnj1x7NgxhIaG5vve9PR0dOzYESkpKZgzZw4kEgm+/vprtG/fHpcvX4abmxuX9tGjR2jTpg0A4M0330SVKlXw9OlTnD17tsj3qbKy5RjPmzcPCxYsQHh4OEaOHAm1Wo1r167hyZMnXJrU1FSEhoYiNjYW06ZNg7e3N3bs2IHBgwdj69atGDZsmMl6V69eDXt7e+65SCQyel2n06Fr166IjIzEpEmTUKdOHdy9exerVq3CgQMHcOPGDTg4OBTVISGEWEAxUukprzHSZ599hvDwcPTv37+0N4UQYoM33ngDQ4cOhUwmK5b15z2Hl5R///0X8+fPx8iRI+Hs7Gw1/fr166HT6Yp0Gz744AN8/vnnGDduHJo1a4a9e/di2LBhEAgEGDp0aL7v1el06NWrF65cuYKZM2fC3d0dq1atQocOHXDhwgXUrl2bSzt8+HD8+uuvGDduHJo0aYKnT59i5cqVaNWqFa5evQo/P78i3a/KKCUlBe3bt8fjx48xfvx41KpVC3FxcThx4gRycnJgZ2fHpd2wYQPGjBmDrl274rPPPoNIJMKtW7fw6NEjLo1Wq0VYWBjOnz+PyZMno3bt2jhw4AAmTZqEpKQkzJkzx2QbzJXN8ubtipgXqGKkmPXo0QNNmzYt1s+w1CIyr+K6EJU3fI8XIaT8yczMNCo0FBWxWFysFRd8zkkZGRlQKpXFtg18SKXSIl3f2bNn8dNPP2Hx4sV49913AQAjRoxAgwYNMGvWLPz777/5vn/VqlW4c+cOzp49i2bNmgHQX3cbNGiAJUuW4LPPPuPSTpgwAWKxGOfOnTOqMCFFh+8xPn36NBYsWIAlS5ZgxowZFtOtXbsWd+/exZEjR9CpUycAwMSJE9GyZUu88847CA8PN8mT4eHhcHd3z/ezz507hxUrVmDy5Mnc8rp162L06NE4fPgwXn31Vb67TAgpIIqRyp6KFCOVhTITIeVNcf1uRCKRSUOVosTnHF4WzglFXen85MkTLFmyBJMnT8aKFSsAAGPHjkX79u0xc+ZMDBo0KN/jvmvXLvz777/YuXMnwsPDAQCDBw9GnTp1MHfuXGzbto37nN27d+Pdd9/F4sWLufe3bdsWnTp1wu7du/MtzxN+Zs+ejQcPHuDixYtGlRPvvfeeUbro6GhMnjwZb731Fr755huL69u9ezf+/fdffPfddxg9ejQAfRwVHh6Ojz/+GGPHjoWnp6fRe6yVzSpqXqChtErJgwcPMGnSJNStWxcKhQJubm4YNGiQ2S7bycnJmDFjBmrUqAGZTIaqVatixIgRiI+PB8B/PNjcYy9u3LgRgwYNAgB07NiR6yb1119/ISIiAu7u7lCr1Sbr6NatG+rWrWvz/mZkZOCdd95BtWrVIJPJULduXXz55ZdgjJmk3bJlC5o3bw47Ozu4uLigXbt2Rq2U9+7di169esHX1xcymQwBAQH4+OOPodVquTQdOnTA77//jgcPHnD7ZmjxZel4HT16FG3btuWG9OjXrx9u3LhhlMYwVMfdu3e5lgFOTk4YNWqU2e5tuS1btgwikcioq+WSJUsgEAjw9ttvc8u0Wi0cHByMToA6nQ5Lly5F/fr1IZfL4eXlhQkTJiApKcnoM/gcG0sOHjwIOzs7vPbaa9BoNBbTGeYn+e+//9C+fXvY2dmhVq1a3Niqx48fR4sWLaBQKFC3bl0cPnzYZB2XLl1Cjx494OjoCHt7e3Tu3BmnT582SXf9+nV06tQJCoUCVatWxSeffGKxlcWff/7JfX8ODg7o1atXgbvz3blzBwMHDoS3tzfkcjmqVq2KoUOHIiUlhUuj0Wjw8ccfIyAgADKZDDVq1MCcOXOQk5Njcb2xsbEQi8WYP3++yWu3bt2CQCDgCjWA/rc/ffp07ndTq1YtLFq0yOQYJCcnY+TIkXBycoKzszMiIiJs7tKbmZmJCRMmwM3NDY6OjhgxYoRR/iqK88LKlStRs2ZNKBQKNG/eHCdOnDCZ38DSGLTmxkQ25MULFy6gXbt2sLOz41o+PH/+HGPGjIGXlxfkcjkaNWqETZs2Wdy2r7/+Gn5+flAoFGjfvj2uXbtm9HpB5xjZs2cPGjRoALlcjgYNGuCXX34xmy7vOMaGz4uMjMSwYcPg4uJi1Htiy5YtCAkJgUKhgKurK4YOHWrUQsTgzJkz6NmzJ1xcXKBUKvHKK69wBaiRI0di5cqV3OcbHvnJ+30ZvpcdO3bg008/RdWqVSGXy9G5c2fcvXvX6vHZtWsXRCIRxo8fzy2Ty+UYM2YMTp06ZXaf8r6/WbNmXKUIANSrVw+dO3fGjh07uGU3b97En3/+iZkzZ8LNzQ3Z2dlm87IlaWlpmD59Oncd9vT0RNeuXU26mp85cwbdu3eHk5MT7Ozs0L59e/zzzz8m63vy5AnGjBnDnav9/f0xceJEqFQqLs39+/cxaNAguLq6ws7ODi1btsTvv/9utB5bj/+6desQEBBg9Bs0Z/ny5ahfvz53HW7atCkXHFliyzFeunQpvL29MW3aNDDGkJ6ebjbdiRMn4OHhwVWKAIBQKMTgwYMRExOD48ePm7yHMYbU1FSz5QtA3wsFALy8vIyW+/j4AAAUCkW++0kIKV4UI1W+GAmwXvYWCATIyMjApk2buO02fGf5lZn4ltdr1KiB3r174+TJk2jevDnkcjlq1qyJH374wWRbDTFQ7vhkw4YNvOZQGDlyJOzt7fHw4UP07t0b9vb2qFKlClceu3r1Kjp16gSlUgk/Pz+z114+5QMAePz4Mfr37w+lUglPT0/MmDHDYpzCt/zCR0xMDEaNGsUN3eLj44N+/fqZHJtVq1ahfv36kMlk8PX1xeTJk/ONX9RqNVxdXTFq1CiT11JTUyGXy7lGNoB+qNa5c+eiVq1akMlkqFatGmbNmmVyDHJycjDCclbaAAEAAElEQVRjxgx4eHjAwcEBffv2xePHj23aZ61Wizlz5sDb2xtKpRJ9+/Y1KsPOnTsXEokEcXFxJu8dP348nJ2dkZ2dne9n7Ny5E0FBQUYxRd75DSzNIWPut23Ii/fu3UPPnj3h4OCA4cOHA7DtvAQAW7duRd26dSGXyxESEoK///7b6PWCzjFy8uRJNGvWDHK5HAEBAVi7dq3ZdHnnGDF83vHjxzFp0iR4enqiatWq3Ot87xvcvHkTgwcPhoeHB3dv44MPPgCgP+/MnDkTAODv78+dl/Lbx7zfV+75Lg1ldJlMhmbNmuHcuXNWj8/evXuhVqsxadIkbplAIMDEiRPx+PFjnDp1Kt/379q1C15eXhgwYAC3zMPDA4MHD8bevXu530paWhqAgped1Wo15s+fj9q1a0Mul8PNzQ2hoaEmQyffvHkT4eHhcHV1hVwuR9OmTfHrr7+arM/atR/gdy/A1uPPN67/6aefEBISAgcHBzg6OqJhw4b5VmAY9mnDhg0YP348/P39oVKpLJ6v16xZA61WiwULFgDQj6Bg7rdpiPPy9hwaOnQosrOzsXfvXrPrT0tLs3j/sLB5oayiHiPFLCUlxegHCgDu7u44d+4c/v33XwwdOhRVq1ZFdHQ0Vq9ejQ4dOiAyMpJr8Zyeno62bdvixo0bGD16NJo0aYL4+Hj8+uuvePz4cb6tIvPTrl07TJ06FcuWLcOcOXMQGBgIAAgMDMQbb7yBH374AQcOHEDv3r2598TExODo0aOYO3euTZ/FGEPfvn1x7NgxjBkzBsHBwThw4ABmzpyJJ0+e4Ouvv+bSzp8/H/PmzUPr1q2xYMECSKVSnDlzBkePHkW3bt0A6C909vb2ePvtt2Fvb4+jR4/io48+QmpqKldr+cEHHyAlJQWPHz/m1p97aI28Dh8+jB49eqBmzZqYN28esrKysHz5crRp0wYXL1406UY/ePBg+Pv7Y+HChbh48SK+/fZbeHp6YtGiRRY/o23bttDpdDh58iR3XE+cOAGhUGh0c+rSpUtIT09Hu3btuGUTJkzAxo0bMWrUKEydOhVRUVFYsWIFLl26hH/++YdrfcDn2Jizb98+hIeHY8iQIfj++++ttuhISkpC7969MXToUAwaNAirV6/G0KFDsXXrVkyfPh1vvvkmhg0bhsWLFyM8PByPHj3ihia5fv062rZtC0dHR8yaNQsSiQRr165Fhw4duEoVQJ/fOnbsCI1Gg/fffx9KpRLr1q0ze7LdvHkzIiIiEBYWhkWLFiEzMxOrV69GaGgoLl26ZNMwCCqVCmFhYcjJycFbb70Fb29vPHnyBPv27UNycjKcnJwA6FtjbNq0CeHh4XjnnXdw5swZLFy4EDdu3LB4kfTy8kL79u2xY8cOk9/R9u3bIRKJuGA8MzMT7du3x5MnTzBhwgRUr14d//77L2bPno1nz55xY0MzxtCvXz+cPHkSb775JgIDA/HLL78gIiKC9z4DwJQpU+Ds7Ix58+bh1q1bWL16NR48eMAVsAt7Xli9ejWmTJmCtm3bYsaMGYiOjkb//v3h4uJiVFC1VUJCAnr06IGhQ4fi9ddfh5eXF7KystChQwfcvXsXU6ZMgb+/P3bu3ImRI0ciOTkZ06ZNM1rHDz/8gLS0NEyePBnZ2dn45ptv0KlTJ1y9etXkom+LgwcPYuDAgQgKCsLChQuRkJDABYp8DRo0CLVr18Znn33GFXg+/fRTfPjhhxg8eDDGjh2LuLg4LF++HO3atcOlS5e47q6HDh1C79694ePjww1DdOPGDezbtw/Tpk3DhAkT8PTpUxw6dAibN28u8H4CwOeffw6hUIh3330XKSkp+OKLLzB8+HCcOXMm3/ddunQJderUgaOjo9Hy5s2bAwAuX76MatWqmX2vTqfDf//9x7WAyfv+gwcPIi0tDQ4ODlwFrZeXFzp37oyjR49CJBKha9euWL16tdVzxJtvvoldu3ZhypQpCAoKQkJCAk6ePIkbN26gSZMmAPQ3jnr06IGQkBDMnTsXQqEQGzZsQKdOnXDixAlun54+fYrmzZtzY/rWq1cPT548wa5du5CZmQmpVIrY2Fi0bt0amZmZmDp1Ktzc3LBp0yb07dsXu3btMunRwOf4f/fdd5gwYQJat26N6dOn4/79++jbty9cXV2NjvH69esxdepUhIeHY9q0acjOzsZ///2HM2fOmB26ysCWY3zkyBG0bt0ay5YtwyeffIKEhAR4e3vjgw8+MJrEMycnx+w531BGunDhArp27Wr0Ws2aNZGeng6lUon+/ftjyZIlRr/jpk2bQqlU4sMPP4Srqyvq1q2Lu3fvYtasWWjWrBm6dOlicR8JIUWHYiSKkQz4lL03b96MsWPHonnz5lxjioCAAKP1mCsz2VJev3v3LsLDwzFmzBhERETg+++/x8iRIxESEoL69esD0DdsMFSYzZ49G0qlEt9++61NvY60Wi169OiBdu3a4YsvvsDWrVsxZcoUKJVKfPDBBxg+fDgGDBiANWvWYMSIEWjVqhXXephv+SArKwudO3fGw4cPMXXqVPj6+mLz5s0m83gB/MsvfA0cOBDXr1/HW2+9hRo1auD58+c4dOgQHj58yOWXefPmYf78+ejSpQsmTpzIxR7nzp0zim1zk0gkePXVV7F7926sXbvWqMfonj17kJOTw90A1Ol06Nu3L06ePInx48cjMDAQV69exddff43bt28bzVUzduxYbNmyBcOGDePmOuvVq5dN+/zpp59CIBDgvffew/Pnz7F06VJ06dIFly9fhkKhwBtvvIEFCxZg+/btRuUclUqFXbt2YeDAgfn21vr9998xZMgQNGzYEAsXLkRSUhLGjBmDKlWq2LSdeWk0GoSFhSE0NBRffvkl7OzsbDovAfpGkdu3b8fUqVMhk8mwatUqdO/eHWfPni3U8IhXr15Ft27d4OHhgXnz5kGj0WDu3Lk2xWaTJk2Ch4cHPvroI2RkZADgf9/gv//+Q9u2bSGRSDB+/HjUqFED9+7dw2+//YZPP/0UAwYMwO3bt/Hjjz/i66+/5q45Hh4eNu/rtm3bkJaWhgkTJkAgEOCLL77AgAEDcP/+/Xx7mVy6dAlKpZK7ThkYfrOXLl3Kd1jiS5cuoUmTJibDkDVv3hzr1q3D7du30bBhQwQEBKBq1apYsmQJ6tati8aNG+Pp06fcXBjWhuyaN28eFi5cyJ3DU1NTcf78eVy8eJErx1+/fh1t2rRBlSpVuHs/O3bsQP/+/fHzzz9z5zY+135b7wXwOf584/pDhw7htddeQ+fOnbnr3o0bN/DPP/+YfG5uJ0+eRHZ2NmrVqoXw8HDs2bMHOp0OrVq1wsqVKxEcHMylPXz4MOrVq4c//viD+126uLhg8uTJmD9/Pvd95uTkQCQSmfSuzx1HjRs3zui1jh07Ij09HVKpFGFhYViyZInRkGqFzQtlFiPFYsOGDQyA2QdjjGVmZpq859SpUwwA++GHH7hlH330EQPAdu/ebZJep9MxxhiLiopiANiGDRu41+bOncvyfr1+fn4sIiKCe75z504GgB07dswonVarZVWrVmVDhgwxWv7VV18xgUDA7t+/n+++R0REMD8/P+75nj17GAD2ySefGKULDw9nAoGA3b17lzHG2J07d5hQKGSvvvoq02q1ZveVMfPHbsKECczOzo5lZ2dzy3r16mW0HQbmjldwcDDz9PRkCQkJ3LIrV64woVDIRowYwS0zHNfRo0cbrfPVV19lbm5uZo7GS1qtljk6OrJZs2Zx++Tm5sYGDRrERCIRS0tLY4zpj7NQKGRJSUmMMcZOnDjBALCtW7carW///v0my/kem/bt27P69eszxhj7+eefmUQiYePGjTM57ua0b9+eAWDbtm3jlt28eZMBYEKhkJ0+fZpbfuDAAZNj3b9/fyaVStm9e/e4ZU+fPmUODg6sXbt23LLp06czAOzMmTPcsufPnzMnJycGgEVFRTHGGEtLS2POzs5s3LhxRtsZExPDnJycjJab+13kdenSJQaA7dy502Kay5cvMwBs7NixRsvfffddBoAdPXqUW9a+fXvWvn177vnatWsZAHb16lWj9wYFBbFOnTpxzz/++GOmVCrZ7du3jdK9//77TCQSsYcPHzLGXv6+vvjiCy6NRqNhbdu2NTn25hjOVSEhIUylUnHLv/jiCwaA7d27lzFWuPNCTk4Oc3NzY82aNWNqtZpbvnHjRgbA6PgYtsfw/RocO3bM5HxlyItr1qwxSrt06VIGgG3ZsoVbplKpWKtWrZi9vT1LTU1ljL08FygUCvb48WMu7ZkzZxgANmPGDG4Zn7yTV3BwMPPx8WHJycncsoMHDzIAJucmAGzu3Lkmn/faa68ZpYuOjmYikYh9+umnRsuvXr3KxGIxt1yj0TB/f3/m5+fHnUsMcp9PJ0+ebNN+5c3Phu8lMDCQ5eTkcMu/+eYbs/k8r/r16xvle4Pr16+b/W5zi4uLYwDYggULTF5buXIlA8Bu3rzJGGNs6tSpDABzc3Nj3bt3Z9u3b2eLFy9m9vb2LCAggGVkZOS7nU5OTmzy5MkWX9fpdKx27dosLCzM5Hrl7+/Punbtyi0bMWIEEwqF7Ny5c2bXw9jL89+JEye419LS0pi/vz+rUaMGd67me/xVKhXz9PRkwcHBRunWrVtn8hvs168fd32wBd9jnJiYyKWzt7dnixcvZtu3b2fdu3c3+c7feustJhQKWXR0tNFnDR06lAFgU6ZM4ZYtXbqUTZkyhW3dupXt2rWLTZs2jYnFYla7dm2WkpJi9P59+/YxHx8fo7JZWFgYdx0mhBQfipH8uOcUI+nxKXszxphSqTT6nvJ+dt4yky3ldT8/PwaA/f3339yy58+fM5lMxt555x1u2VtvvcUEAgG7dOkStywhIYG5urqaLb/mFRERwQCwzz77jFuWlJTEFAoFEwgE7KeffuKWG+Kr3OVDvuUDQ1l4x44dXLqMjAxWq1Yto7xtS/nFUhk9t6SkJAaALV682GKa58+fM6lUyrp162aUn1esWMEAsO+//97oeOXOq4bY8rfffjNaZ8+ePVnNmjW555s3b2ZCodDoODHG2Jo1axgA9s8//zDGXuaRSZMmGaUbNmyYybE3x1AOq1KlChdfMMbYjh07GAD2zTffcMtatWrFWrRoYfT+3bt3mz3X5NWwYUNWtWpVo3LKX3/9ZRJTmIuXGDP/2zbkxffff98oLd/zEmOMO3efP3+eW/bgwQMml8vZq6++yi3jk3fy6t+/P5PL5ezBgwfcssjISCYSiayeww2fFxoayjQaDbfclvsG7dq1Yw4ODkafz5jxOXfx4sU27Vfe/Gz4Xtzc3FhiYiK3fO/evWbzeV69evUyyvcGGRkZZr/bvJRKpck5mzHGfv/9dwaA7d+/n1t25swZFhAQYHTNDgkJYc+ePcv3MxhjrFGjRqxXr175puncuTNr2LCh0bVKp9Ox1q1bs9q1a3PL+Fz7bb0XwOf4843rp02bxhwdHY3yHR9fffUVty3NmzdnW7duZatWrWJeXl7MxcWFPX36lEvr6OjIXFxcmEwmYx9++CHbtWsXd87K/Z0vWbLE5HrBmP5+EgDWu3dvbtn27dvZyJEj2aZNm9gvv/zC/ve//zE7Ozvm7u7O3XcyKExeKKtoKK1itnLlShw6dMjoARh3MVKr1UhISECtWrXg7OxsNDTHzz//jEaNGpkd77ogw7rwIRQKuQl1DF2lAH0XydatW5tMxmPNH3/8AZFIhKlTpxotf+edd8AYw59//gkAXK3oRx99ZFJrnXtfcx+7tLQ0xMfHo23btsjMzMTNmzdt2jYAePbsGS5fvoyRI0fC1dWVW/7KK6+ga9eu+OOPP0ze8+abbxo9b9u2LRISErghOswRCoVo3bo117X0xo0bSEhIwPvvvw/GGNfV8cSJE2jQoAHX6nvnzp1wcnJC165dER8fzz1CQkJgb2+PY8eOFfjY/PjjjxgyZAgmTJiAtWvX8p60zN7e3qg2uG7dunB2dkZgYCDX4wMA9+/79+8D0LeQOnjwIPr374+aNWty6Xx8fDBs2DCcPHmSO4Z//PEHWrZsadRKycPDg+via3Do0CEkJyfjtddeMzo+IpEILVq0MDo+fBh6hBw4cMBi139Dnsg9BBqgz9MAzHZnNxgwYADEYjG2b9/OLbt27RoiIyMxZMgQbtnOnTvRtm1buLi4GO1Xly5doNVquXz0xx9/QCwWY+LEidx7RSIR3nrrLVt2G+PHjzdqkTJx4kSIxWJuXwtzXjh//jwSEhIwbtw4o3k6hg8fDhcXF5u2My+ZTGbSpf6PP/6At7c3XnvtNW6ZRCLB1KlTkZ6ebjL8Tv/+/Y1aXDVv3hwtWrQw+9vny3BeiYiI4PIUAHTt2hVBQUG815P3XLN7927odDoMHjzYKF94e3ujdu3aXH6/dOkSoqKiMH36dJMJ04rj2jFq1Cij1iht27YF8PK3b0lWVpbZVpaGVnNZWVn5vhcwP65w3vcbhmry9vbG77//jsGDB+Pdd9/F+vXrce/ePavDRDk7O+PMmTN4+vSp2dcvX76MO3fuYNiwYUhISOC+l4yMDHTu3Bl///03dDoddDod9uzZgz59+pgdv9Xw3fzxxx9o3ry5USsve3t7jB8/HtHR0YiMjDR6n7Xjf/78eTx//hxvvvmmUTrDEHx59/Xx48e8uvDnxvcYG9IlJCTg22+/xbvvvovBgwfj999/R1BQED755BNunWPHjoVIJMLgwYPx77//4t69e1i4cCHXyjd3/pg2bRqWL1+OYcOGYeDAgVi6dCk2bdqEO3fuYNWqVUbb6uHhgcaNG+PTTz/Fnj17MG/ePJw4ccLs8ByEkOJBMRLFSAZ8yt585P1sW8vrQUFB3PUT0F8r6tata1SW2b9/P1q1amXUetfV1dUkPrFm7Nix3L+dnZ1Rt25dKJVKDB48mFtuiK9yfz7f8sEff/wBHx8fbt4AQN9KOPfQpQD/8gtfCoUCUqkUf/31l8mQzwaHDx+GSqXC9OnTjfLzuHHj4OjomG8c1alTJ7i7uxvFUUlJSTh06JBJHBUYGIh69eoZlZcNQ3MaysuGPJL3Nzh9+nTe+wzo58czjI4A6Oc78/HxMfqNjBgxAmfOnMG9e/e4ZVu3bkW1atXQvn17i+t++vQprl69ihEjRhj17mrfvj0aNmxo03aakzuGBPiflwxatWqFkJAQ7nn16tXRr18/HDhwgNdw3uZotVocOHAA/fv3R/Xq1bnlgYGBCAsL472ecePGGY2Ewfe+QVxcHP7++2+MHj3a6POB4rm+DBkyxCgmLok4ytb3u7i4IDg4GO+//z727NmDL7/8EtHR0Rg0aJDVYeCcnZ1x/fp13Llzx+zriYmJOHr0KAYPHsxdu+Lj45GQkICwsDDcuXMHT548AcDv2m/rvQBrx9+WuN7Z2RkZGRkmw4RZY4iPBAIBjhw5gmHDhmHixInYs2cPkpKSuOEWDWmTkpIwf/58LFiwAAMHDsTWrVvRvXt3fPPNN1z5ZNiwYXBycsLo0aNx6NAhREdHY926dVxclPv7HTx4MDZs2IARI0agf//++Pjjj3HgwAEkJCTg008/NdrWwuSFsooqRopZ8+bN0aVLF6MHoM+EH330ETduo7u7Ozw8PJCcnGw0j8G9e/cK1QWxoEaMGIGsrCzu5sOtW7dw4cIFvPHGGzav68GDB/D19TUqLADguvw9ePAAgH5fhUKh1ZuG169fx6uvvgonJyc4OjrCw8MDr7/+OgAYHTtbtg+A2XGBAwMDucJhbnkvkIYTqaUCoEHbtm1x4cIFZGVl4cSJE/Dx8UGTJk3QqFEjbjitkydPGhXK79y5g5SUFHh6esLDw8PokZ6ejufPn3NpbTk2UVFReP311zFw4EAsX77cpot81apVTdI7OTmZDHljuHAYjktcXBwyMzMtHmudTseNx/rgwQOjbnsGed9ruMB26tTJ5PgcPHjQ6Pjw4e/vj7fffhvffvst3N3dERYWhpUrVxodvwcPHkAoFKJWrVpG7/X29oazszOXp8xxd3c3mf9g+/btEIvFRuN73rlzB/v37zfZJ8M5xLBfDx48gI+Pj8kwCLaOc533WNvb28PHx8donNSCnhcMxyPv8RKLxTYNc2ZOlSpVTLqHGvJO3psHec85BubyWZ06dWweBzfvNlhaty3fTd6bLHfu3AFjDLVr1zbJGzdu3ODyhSHoKqnrR0HPiQqFwuz4qYZCVX7jlBpe4/N+w9/Bgwcb5YtBgwZBLBZbneT9iy++wLVr11CtWjU0b94c8+bNMwpWDOehiIgIk+/l22+/RU5ODlJSUhAXF4fU1FSr38uDBw8snicNr+dm7fhbyo8SicSokhrQT/Bnb2+P5s2bo3bt2pg8eTKvccb5HmNDOolEYnTDRigUYsiQIXj8+DEePnwIQH/zbdu2bbh37x7atGmDWrVqYdmyZdxQgvkN/wLoAwJvb2+jua7u37+Pjh07YvTo0ZgzZw769euHuXPnYtWqVdi1a5dJwE8IKR4UI1GMZMCn7M1H3jKTreX1vNtu2P7c2/7gwQOT9QGmZdz8yOVyk+F2nJycLMZXeT+fT/nAsJ1512cpjrJWfuFLJpNh0aJF+PPPP+Hl5cUNFxYTE2O0D+a2RSqVombNmvnGUWKxGAMHDjSa/2D37t1Qq9VGFSN37tzB9evXTfapTp06AIzjKKFQaDIsW2HjKIFAgFq1ahnFEkOGDIFMJsPWrVsB6H+T+/btw/Dhw/ONwy3FUZaW2UIsFpsMBcT3vGRgKY7KzMw0O6cKH3FxccjKyiqWOAqwft/AUMavyHGULe9PSUlB27Zt0apVKyxcuBD9+vXDO++8g59//hknT57Ehg0b8v2cBQsWIDk5GXXq1EHDhg0xc+ZM/Pfff9zrd+/eBWMMH374ocn3YhiiMneMyyeOsuVeQEHjKMA0P06aNAl16tRBjx49ULVqVYwePRr79+/Pd3uBl8e6T58+RvFNy5Yt4e/vbxSrGtLmrvgxPM/KysKlS5cA6K91v/76K3JyctCtWzf4+/tj5syZWL58OQDrcVRoaChatGhhFEcVNi+UVTTHSCl56623sGHDBkyfPh2tWrWCk5MTBAIBhg4dalOrjOISFBSEkJAQbNmyBSNGjMCWLVsglUqNWrGUhuTkZLRv3x6Ojo5YsGABAgICIJfLcfHiRbz33nslduwszcHBLExIZhAaGgq1Wo1Tp07hxIkTXAVI27ZtceLECdy8eRNxcXFGFSM6nQ6enp5cISovQ8Ha1mPj4+PDtWQ5f/682dbLtu5/QY9LYRj2a/PmzfD29jZ5PXcPBb6WLFmCkSNHYu/evTh48CCmTp2KhQsX4vTp00aFx4K2GBk6dChGjRqFy5cvIzg4GDt27EDnzp2NxsPW6XTo2rUrZs2aZXYdhoJ9SSqJ84KlY2qpxVF5neCLr7z7p9PpIBAI8Oeff5r9vVkr4BSXgv72fXx8uBZAuT179gwA4Ovra/G9rq6ukMlkXNr83m/4m3dcYpFIBDc3N6uBx+DBg9G2bVv88ssvOHjwIBYvXoxFixZh9+7d6NGjB3ceWrx4sVEr0tzs7e2RmJiY7+cUVFGeewMDA3Hr1i3s27cP+/fvx88//4xVq1bho48+wvz58y2+j+8xNkyo6OzsbLLdnp6eAPSBiCFICQ8PR9++fXHlyhVotVo0adKEm1SUz3mwWrVqRsd948aNyM7ONpofAAD69u0LAPjnn3/Qo0cPq+slhBQPipEKprzHSHzL3vmxVCbkW14vqTimLMZR1sovtpg+fTr69OmDPXv24MCBA/jwww+xcOFCHD16FI0bNy7sJmPo0KFYu3Yt/vzzT/Tv3x87duxAvXr10KhRIy6NTqdDw4YN8dVXX5ldh6X564qTi4sLevfuja1bt+Kjjz7Crl27kJOTw1VeFgVb4yiZTMZ7xIjyyFwcBRTtfYOiUJg46tixY2CMGX33fOIow/v5xFE///wzYmNjubKygeGa888//5j0PMqtXbt2uHfvHnd+//bbb/H1119jzZo1GDt2LPe9vPvuuxZ7BBW2EjA/RXnu9fT0xOXLl3HgwAH8+eef+PPPP7meGHknf8/NUhxlWGfuWNXX1xd37twxSZs7jjJo164d7t+/j6tXryIjIwONGjXiRkDgG0fdunWLe17YvFBWUcVIKdm1axciIiKwZMkSbll2djaSk5ON0gUEBODatWvFsg3WCokjRozA22+/jWfPnmHbtm3o1atXgYa98fPzw+HDh7lJcA0MXbr9/PwA6PdVp9MhMjLSYsHsr7/+QkJCAnbv3m00OXlUVJRJWr6FYMPn5/7B595Gd3d3KJVKXuuypnnz5pBKpThx4gROnDiBmTNnAtCfsNavX48jR45wzw0CAgJw+PBhtGnTJt+bwLYcG0DfWmnfvn3o1KkTunfvjuPHj3MTCxYXDw8P2NnZWTzWQqGQK6j6+fmZ7W6Z972GFj6enp5FOmluw4YN0bBhQ/zvf//Dv//+izZt2mDNmjX45JNP4OfnB51Ohzt37hhNdhYbG4vk5GQuT1nSv39/TJgwgesGfvv2bcyePdtkv9LT063uk5+fH44cOYL09HSjwMXcMc7PnTt30LFjR+55eno6nj17hp49exqlK8h5wXA87t69a/QZGo0G0dHReOWVV7hlhnXlPRfm13rM3Of9999/0Ol0RoX9vOccA3P57Pbt24XqzWL4DD552BYBAQFgjMHf3z/fwozhd3Ht2rV881BxDTfCV3BwMI4dO4bU1FSjCdgNk4ZbuhYA+h4GDRs2xPnz501eO3PmDGrWrMldcwxd/PNWwqhUKsTHx/OaKNHHxweTJk3CpEmT8Pz5czRp0gSffvopevTowR1vR0fHfI+3h4cHHB0drV7X/fz8LJ4nDa/bInd+NAwjAeiHqYmKijK6mQAASqUSQ4YMwZAhQ6BSqTBgwAB8+umnmD17tsXJQfkeY6FQiODgYJw7dw4qlcqox5ehoJ73+5BKpWjWrBn33NByydr5kTGG6OhooxsxsbGxYIyZ3CRQq9UA9OclQkjpoRipcsZIQP5lb1u226Cw5XVL67x7967JcnPLigPf8oGfnx+uXbtmcsPUUhxlrfxiq4CAALzzzjt45513cOfOHQQHB2PJkiXYsmWLUb7K3WtVpVIhKirK6na0a9cOPj4+2L59O0JDQ3H06FF88MEHJp9/5coVdO7cOd98Y8gj9+7dM2r5XZA4KjfGGO7evWsU4wD6c0e/fv1w7tw5bN26FY0bN7Yaf+eOo/LKu6yo4ig+5yUDS3GUnZ1dgSYiB/TlQIVCUSxxFGD9voEhX1q7xpSFOOrbb7/FjRs3jHoU8omjDK+fOHHCJGY+c+YM7OzsuFgzNjYWgGkFm6E8zafs7OrqilGjRmHUqFFIT09Hu3btMG/ePIwdO5Y73hKJxOrvn8+139Z7AdbYGtdLpVL06dMHffr0gU6nw6RJk7B27Vp8+OGHFit4LMVRgD4+qlevnlFaw/Biuc+hluIokUhkMnk7YD2OAvS9p3KvryjyQllUcauHyziRSGRSA7l8+XKTDDZw4EBcuXKF666dW2FbjxgKsnkvnAavvfYaBAIBpk2bhvv37xe4NUPPnj2h1WqxYsUKo+Vff/01BAIB1zKzf//+EAqFWLBggUmrJsO+Gmpzc++7SqUyGT/csH98uv76+PggODgYmzZtMjoW165dw8GDB01uDBeGXC5Hs2bN8OOPP+Lhw4dGPUaysrKwbNkyBAQEwMfHh3vP4MGDodVq8fHHH5usT6PRcNtsy7ExcHJywoEDB+Dp6YmuXbsajXlaHEQiEbp164a9e/cadS2OjY3Ftm3bEBoayt0c7dmzJ06fPo2zZ89y6eLi4kx6zoSFhcHR0RGfffYZd2MrN1u78Kamppqc0Bs2bAihUMh1NTXkCcNwLgaGVkm9evXK9zOcnZ0RFhaGHTt24KeffoJUKkX//v2N0gwePBinTp3CgQMHTN6fnJzMbWPPnj2h0WiwevVq7nWtVst1keRr3bp1Rsdv9erV0Gg0Ji2nC3JeaNq0Kdzc3LB+/XqjY7t161aTlvqGAqthDhXD/qxbt473vvTs2RMxMTFG4w9rNBosX74c9vb2JuP47tmzx6gQcvbsWZw5c6ZQrcZzn1dyn4cOHTpkMj+ELQYMGACRSIT58+ebXAMYY0hISAAANGnSBP7+/li6dKnJOT73+6xdB4pbeHi4yfebk5ODDRs2oEWLFkYt+h4+fGgyRnp4eDjOnTtnVDly69YtHD16FIMGDeKWdejQget5l3vs040bN0Kr1aJr164Wt1Gr1ZpcSzw9PeHr68udE0JCQhAQEIAvv/ySGyM2N8N5SCgUon///vjtt9/MVugYvpuePXvi7Nmz3NxTAJCRkYF169ahRo0aNs1TA+h/gx4eHlizZg1UKhW3fOPGjSbfvSEPGUilUgQFBYExZvYca2DLMR4yZAi0Wq1Ry6ns7Gxs3boVQUFB+bZwu3PnDtasWYPevXsbVQ6aO9evXr0acXFx6N69O7esTp06YIwZDWcI6OfcAlAkrVkJIQVHMVLli5H4lL0N221LeaWw5XVzwsLCcOrUKVy+fJlblpiYaLFnf1HjWz7o2bMnnj59il27dnHpMjMzTcrTfMsvfGVmZpqMMR8QEAAHBwfuu+zSpQukUimWLVtmlF+/++47pKSkWP1ehEIhwsPD8dtvv2Hz5s3QaDRGw2gB+jjqyZMnWL9+vcn7s7KyuCHgDL+xZcuWGaXJm2es+eGHH4zmHdq1axeePXtmEkv06NED7u7uWLRoEY4fP87r3OHr64sGDRrghx9+MPqOjh8/jqtXrxql9fPzg0gkMoqjAOR7PyAvvuclg1OnThnN//To0SPs3bsX3bp1s9gS3xqRSISwsDDs2bOHG14V0M/Rai425ovvfQMPDw+0a9cO33//vdHnA2UrjurXrx8kEonR98sYw5o1a1ClShW0bt2aW/7s2TPcvHnTaL/Dw8MRGxuL3bt3c8vi4+Oxc+dO9OnTh5t/xFDe/umnn4w+/9dff0VGRobVsnPe2MLe3h61atXizgmenp7o0KED1q5da7YHS+7zEJ9rv633AqyxJa7Pu69CoZCrIDU3bJlB3bp10ahRI+zduxfx8fHc8oMHD+LRo0cmcRSgP2ca6HQ6bNiwAa6urkZz/uQVFxeHRYsW4ZVXXjGqGDF3rv/jjz9w4cIFkzgKKHheKKuox0gp6d27NzZv3gwnJycEBQXh1KlTOHz4MNzc3IzSzZw5E7t27cKgQYMwevRohISEIDExEb/++ivWrFlj0srTFsHBwRCJRFi0aBFSUlIgk8nQqVMnrguWh4cHunfvjp07d8LZ2blAhUdAP05ex44d8cEHHyA6OhqNGjXCwYMHsXfvXkyfPp27EVqrVi188MEH+Pjjj9G2bVsMGDAAMpkM586dg6+vLxYuXIjWrVvDxcUFERERmDp1KgQCATZv3mw2AAoJCcH27dvx9ttvo1mzZrC3t0efPn3MbuPixYvRo0cPtGrVCmPGjEFWVhaWL18OJycnzJs3r0D7bUnbtm3x+eefw8nJiZswzdPTE3Xr1sWtW7cwcuRIo/Tt27fHhAkTsHDhQly+fBndunWDRCLBnTt3sHPnTnzzzTcIDw+36djk5u7ujkOHDiE0NBRdunTByZMnjSaiLmqffPIJ93mTJk2CWCzG2rVrkZOTgy+++IJLN2vWLGzevBndu3fHtGnToFQqsW7dOq4FgIGjoyNWr16NN954A02aNMHQoUPh4eGBhw8f4vfff0ebNm1MCnb5OXr0KKZMmYJBgwahTp060Gg02Lx5M0QiEQYOHAgAaNSoESIiIrBu3Tpu6IKzZ89i06ZN6N+/v1GvCEuGDBmC119/HatWrUJYWJjJBNkzZ87Er7/+it69e2PkyJEICQlBRkYGrl69il27diE6Ohru7u7o06cP2rRpg/fffx/R0dEICgrC7t27bR6XWaVSoXPnzhg8eDBu3bqFVatWITQ01KSbZEHOC1KpFPPmzcNbb72FTp06YfDgwYiOjsbGjRsREBBg1Nqmfv36aNmyJWbPno3ExES4urrip59+sqn1wfjx47F27VqMHDkSFy5cQI0aNbBr1y78888/WLp0qcmYubVq1UJoaCgmTpyInJwcLF26FG5ubhaHMeNr4cKF6NWrF0JDQzF69GgkJiZi+fLlqF+/vtngk4+AgAB88sknmD17NqKjo9G/f384ODggKioKv/zyC8aPH493330XQqEQq1evRp8+fRAcHIxRo0bBx8cHN2/exPXr17mgwlBwmjp1KsLCwiASiTB06NBC7bctWrRogUGDBmH27Nl4/vw5atWqhU2bNiE6OtqosAfoW9kdP37c6Jw2adIkrF+/Hr169cK7774LiUSCr776Cl5eXtzkqoB+qIDFixcjIiIC7dq1wxtvvIGHDx/im2++4a43lqSlpaFq1aoIDw9Ho0aNYG9vj8OHD+PcuXNci2ahUIhvv/0WPXr0QP369TFq1ChUqVIFT548wbFjx+Do6IjffvsNAPDZZ5/h4MGDaN++PcaPH4/AwEA8e/YMO3fuxMmTJ+Hs7Iz3338fP/74I3r06IGpU6fC1dUVmzZtQlRUFH7++Webhz2QSCT45JNPMGHCBHTq1AlDhgxBVFQUNmzYYDLHSLdu3eDt7Y02bdrAy8sLN27cwIoVK9CrVy+T305uthzjCRMm4Ntvv8XkyZNx+/ZtVK9eHZs3b8aDBw+442QQFBSEQYMGoXr16oiKisLq1avh6uqKNWvWGKXz8/PDkCFD0LBhQ8jlcpw8eRI//fQTgoODMWHCBC7dyJEj8eWXX2LChAm4dOkS6tevj4sXL+Lbb79F/fr1zU7mSAgpORQjVb4YiU/Z27Ddhw8fxldffQVfX1/4+/ujRYsWFtdbFOX1vGbNmoUtW7aga9eueOutt6BUKvHtt9+ievXqSExMLPYW5HzLB+PGjcOKFSswYsQIXLhwAT4+Pti8eTPs7OyM1mdL+YWP27dvc/FEUFAQxGIxfvnlF8TGxnLlSw8PD8yePRvz589H9+7d0bdvXy72aNasGa/KgiFDhmD58uWYO3cuGjZsaNQjCADeeOMN7NixA2+++SaOHTuGNm3aQKvV4ubNm9ixYwcOHDiApk2bIjg4GK+99hpWrVqFlJQUtG7dGkeOHLG5B5CrqytCQ0MxatQoxMbGYunSpahVqxbGjRtnlE4ikWDo0KFYsWIFRCKRyRwBlnz22Wfo168f2rRpg1GjRiEpKQkrVqxAgwYNjGIKJycnDBo0iJs/NCAgAPv27bNpzk2+5yWDBg0aICwsDFOnToVMJuNu0uc3/Cof8+fPx/79+9G2bVtMmjSJu7Fdv359o3sBtrDlvsGyZcsQGhqKJk2aYPz48fD390d0dDR+//13rmLUEEd98MEHGDp0KCQSCfr06VOkPenyU7VqVUyfPh2LFy+GWq1Gs2bNsGfPHpw4cQJbt241qpiaPXs2d64wjIoQHh6Oli1bYtSoUYiMjIS7uztWrVoFrVZr9P316dMH9evXx4IFC/DgwQO0bNkSd+/exYoVK+Dj44MxY8bku51BQUHo0KEDQkJC4OrqivPnz2PXrl2YMmUKl2blypUIDQ1Fw4YNMW7cONSsWROxsbE4deoUHj9+jCtXrgDgd+239V4AH3zj+rFjxyIxMRGdOnVC1apV8eDBAyxfvhzBwcEm56m8vv76a3Tt2hWhoaGYMGECUlJS8NVXX6FOnTpGw1P169cPnTt3xsKFCxEfH49GjRphz549OHnyJNauXctVaAH6e4mtWrVCrVq1EBMTg3Xr1iE9PR379u0ziidbt26Nxo0bo2nTpnBycsLFixfx/fffo1q1apgzZw6XrrB5ocxipFhs2LCBAWDnzp0z+3pSUhIbNWoUc3d3Z/b29iwsLIzdvHmT+fn5sYiICKO0CQkJbMqUKaxKlSpMKpWyqlWrsoiICBYfH88YYywqKooBYBs2bODeM3fuXJb36zW37vXr17OaNWsykUjEALBjx44Zvb5jxw4GgI0fP573vkdERDA/Pz+jZWlpaWzGjBnM19eXSSQSVrt2bbZ48WKm0+lM3v/999+zxo0bM5lMxlxcXFj79u3ZoUOHuNf/+ecf1rJlS6ZQKJivry+bNWsWO3DggMn2p6ens2HDhjFnZ2cGgNsmc8eLMcYOHz7M2rRpwxQKBXN0dGR9+vRhkZGRRmkMxzUuLs5oueH7joqKsnp8fv/9dwaA9ejRw2j52LFjGQD23XffmX3funXrWEhICFMoFMzBwYE1bNiQzZo1iz19+tTmY9O+fXtWv359o/XfvXuX+fj4sMDAQJP9y83cexnT569evXqZLAfAJk+ebLTs4sWLLCwsjNnb2zM7OzvWsWNH9u+//5q897///mPt27dncrmcValShX388cfsu+++M3usjx07xsLCwpiTkxOTy+UsICCAjRw5kp0/f55LY+53kdf9+/fZ6NGjWUBAAJPL5czV1ZV17NiRHT582CidWq1m8+fPZ/7+/kwikbBq1aqx2bNns+zsbJPj1b59e5PPSU1NZQqFggFgW7ZsMbstaWlpbPbs2axWrVpMKpUyd3d31rp1a/bll18ylUrFpUtISGBvvPEGc3R0ZE5OTuyNN95gly5dMpvP8zLk3ePHj7Px48czFxcXZm9vz4YPH84SEhLMvqcg5wXGGFu2bBnz8/NjMpmMNW/enP3zzz8sJCSEde/e3SjdvXv3WJcuXZhMJmNeXl5szpw57NChQ7zysUFsbCx3jpVKpaxhw4Ymx8JwLli8eDFbsmQJq1atGpPJZKxt27bsypUrRmn55B1zfv75ZxYYGMhkMhkLCgpiu3fvNnuOBMDmzp1r8nmWfos///wzCw0NZUqlkimVSlavXj02efJkduvWLaN0J0+eZF27dmUODg5MqVSyV155hS1fvpx7XaPRsLfeeot5eHgwgUBgdR/z5udjx44xAGznzp1G6SydZ83Jyspi7777LvP29mYymYw1a9aM7d+/3+xnm9u+R48esfDwcObo6Mjs7e1Z79692Z07d8x+1o8//sgaNWrE5a0pU6aw1NTUfLcvJyeHzZw5kzVq1Ig7jo0aNWKrVq0ySXvp0iU2YMAA5ubmxmQyGfPz82ODBw9mR44cMUr34MEDNmLECObh4cFkMhmrWbMmmzx5MsvJyeHS3Lt3j4WHhzNnZ2cml8tZ8+bN2b59+4zWY+vxX7VqFfP392cymYw1bdqU/f333ybf6dq1a1m7du24fQgICGAzZ85kKSkp+R4nA77HODY2lkVERDBXV1cmk8lYixYtzH7vQ4cOZdWqVWNSqZT5+vqyN998k8XGxpqkGzt2LAsKCmIODg5MIpGwWrVqsffee8/sZz9+/JiNHj2a+fv7M6lUynx8fNi4cePyvfYRQooGxUh+RssoRuJf9r558yZr164dV342fGf5lZn4ltctxTHmyvGXLl1ibdu2ZTKZjFWtWpUtXLiQLVu2jAFgMTExFveTMX0eUCqVZj+Hb3zFp3zAmL6s0bdvX2ZnZ8fc3d3ZtGnT2P79+83mZz7lFz7fZXx8PJs8eTKrV68eUyqVzMnJibVo0YLt2LHDJO2KFStYvXr1mEQiYV5eXmzixIksKSnJ5Hjl/c0wxphOp2PVqlVjANgnn3xidltUKhVbtGgRq1+/PvebCQkJYfPnzzcq02RlZbGpU6cyNzc3plQqWZ8+fdijR49MyubmGMphP/74I5s9ezbz9PRkCoWC9erViz148MDse86ePcsAsG7duuW77rx++uknVq9ePSaTyViDBg3Yr7/+ygYOHMjq1atnlC4uLo4NHDiQ2dnZMRcXFzZhwgR27do1k9+2pbzIGP/zkiHO37JlC6tduzaTyWSscePGJvnLlnsluR0/fpyFhIQwqVTKatasydasWcPrHG7tOsPnvgFjjF27do29+uqr3G+tbt267MMPPzRK8/HHH7MqVaowoVBodR/z5ufcsWhefPIfY4xptVr22WefMT8/PyaVSln9+vXN3luIiIgwu32JiYlszJgxzM3NjdnZ2bH27dubPW6JiYlsxowZrE6dOkwmkzF3d3c2dOhQdv/+favb+Mknn7DmzZszZ2dnplAoWL169dinn35qdD+DMf25bcSIEczb25tJJBJWpUoV1rt3b7Zr1y6jdNau/YzZfi8gL3PHn09cv2vXLtatWzfm6enJpFIpq169OpswYQJ79uyZ1ePEGGOHDh1iLVu25K6Fb7zxhtn3pqWlsWnTpjFvb29u/8x97zNmzGA1a9ZkMpmMeXh4sGHDhrF79+6ZpPvggw9YcHAwc3JyYhKJhFWvXp1NnDjR7DWtMHmhrBIwVoyzeZFyb+/evejfvz/+/vtvownBCSGVV1GdF3Q6HTw8PDBgwACzXd0JIYQQQsoiipFIbtOnT8fatWuRnp5e4OGDSOVw5coVBAcH44cffsAbb7xRqHUFBwfDw8MDhw4dKqKtI4SQyofmGCH5Wr9+PWrWrInQ0NDS3hRCSBlRkPNCdna2yXAOP/zwAxITE9GhQ4ci3kJCCCGEkOJDMVLllZWVZfQ8ISEBmzdvRmhoKFWKEKvWr18Pe3v7fIdxzUutVpsMK/zXX3/hypUrFEcRQkgh0RwjxKyffvoJ//33H37//Xd88803xT5eKiGk7CvMeeH06dOYMWMGBg0aBDc3N1y8eBHfffcdGjRoYDRJdnmQkpJiEhTn5e3tXUJbQwghhJCSQjESadWqFTp06IDAwEDExsbiu+++Q2pqKj788MPS3jRShv3222+IjIzEunXrMGXKFJvmoXjy5Am6dOmC119/Hb6+vrh58ybWrFkDb29vvPnmm8W41UUvPT3d6lyLHh4eVMlICCkxNJQWMUsgEMDe3h5DhgzBmjVrIBZTHRohlV1hzgvR0dGYOnUqzp49y02q3rNnT3z++efcZKblxciRI7Fp06Z809CllRBCCKl4KEYic+bMwa5du/D48WMIBAI0adIEc+fORZcuXUp700gZVqNGDcTGxiIsLAybN2+2aQLolJQUjB8/Hv/88w/i4uKgVCrRuXNnfP755yaToZd18+bNszoxe+4JwgkhpLhRxQghhBBig8jISDx9+jTfNBQcE0IIIYQQQshL9+/fx/379/NNExoaCrlcXkJbRAip7KhihBBCCCGEEEIIIYQQQgghlYbNk6///fff6NOnD3x9fSEQCLBnzx6j1xlj+Oijj+Dj4wOFQoEuXbrgzp07RmkSExMxfPhwODo6wtnZGWPGjLE6ziAhhBBCCCGElAcUMxFCCCGEEFK22TwoakZGBho1aoTRo0djwIABJq9/8cUXWLZsGTZt2gR/f398+OGHCAsLQ2RkJNcdbvjw4Xj27BkOHToEtVqNUaNGYfz48di2bRuvbdDpdHj69CkcHBxowjtCCCGEEFIpMMaQlpYGX19fCIU2t28iJagsxEwAxU2EEEIIIaRysSlmYoUAgP3yyy/cc51Ox7y9vdnixYu5ZcnJyUwmk7Eff/yRMcZYZGQkA8DOnTvHpfnzzz+ZQCBgT5484fW5jx49YgDoQQ960IMe9KAHPehBj0r3ePToUWGK8KSEAaUTMzFGcRM96EEPetCDHvSgBz0q54NPzGRzj5H8REVFISYmxmjSWScnJ7Ro0QKnTp3C0KFDcerUKTg7O6Np06Zcmi5dukAoFOLMmTN49dVXrX6Og4MDAODRo0dwdHQsyl0ghBBCCCGkTEpNTUW1atW4sjApn0oqZgIobiKEEEIIIZWLLTFTkVaMxMTEAAC8vLyMlnt5eXGvxcTEwNPT03gjxGK4urpyafLKyclBTk4O9zwtLQ0A4OjoSAV8QioprY7hbFQinqdlw9NBjub+rhAJaYgIQopDQX5v9BslpPjQkEjlW3HFTADFTYQQY1QeI6RkUdxESNnBJ2Yq0oqR4rJw4ULMnz+/tDeDEFJG7L/2DPN/i8SzlGxumY+THHP7BKF7A59S3DJCKp6C/N7oN0oIIaWD4iZCiAGVxwgpWRQ3EVL+FOmsjd7e3gCA2NhYo+WxsbHca97e3nj+/LnR6xqNBomJiVyavGbPno2UlBTu8ejRo6LcbEJIObL/2jNM3HLRqOAAADEp2Zi45SL2X3tWSltGSMVTkN8b/UYJISR/xRUzARQ3EUL0qDxGSMmiuImQ8qlIK0b8/f3h7e2NI0eOcMtSU1Nx5swZtGrVCgDQqlUrJCcn48KFC1yao0ePQqfToUWLFmbXK5PJuO7f1A2ckMpLq2OY/1skmJnXDLMrzfvtOrQ6cykIIbaw9nsDgPm/RRr93gryHkIIqWyKK2YCKG4ihPCLmeb+eg1qrbaEt4yQioniJkLKL5uH0kpPT8fdu3e551FRUbh8+TJcXV1RvXp1TJ8+HZ988glq164Nf39/fPjhh/D19UX//v0BAIGBgejevTvGjRuHNWvWQK1WY8qUKRg6dCh8fX2LbMcIIRXP2ahEk9YUecWk5MD9kxZwcnwOD6UHPOw8Xv598W93O3ej5Y4yRxqvnZA8rP3eGIBnKdk4G5WIVgFuBX4PIYRURBQzEUJKC5+YKTZVBecFIbB3eGYUF+WNk3L/dVO4QSKSlNBeEFJ+UNxESPllc8XI+fPn0bFjR+7522+/DQCIiIjAxo0bMWvWLGRkZGD8+PFITk5GaGgo9u/fD7lczr1n69atmDJlCjp37gyhUIiBAwdi2bJlRbA7JD80oRPJq7zliedp+RfwDVRqBR6kPMCDlAe80ktFUqMggPu3maDA3c4drgpXiISiwuwKIWUe399b7nQFeQ8pv8rbNYSQkkQxU/lF5zZiTnnKF7zLWTonPM+4gucZz4E4fm9xljubbXjGVarkiZ0UEkXBd4SQcoLiJpKf8nT9qIxsrhjp0KEDGLPclUsgEGDBggVYsGCBxTSurq7Ytm2brR9NCoEmdCJ5lcc84ekgt54IwA8Dl6OKeybiMuIQlxmH+Mx47t9xmXEv/50Rhwx1BlRaFZ6mPcXTtKe81i8UCOGqcOXVG8WwTCqSFmbXCSlxfH9v35xbgJo+U9DQqyHv93g40O+hvCuP1xBCShLFTOUTnduIOeUtX/Atj+0Ysh7VPLKNYqPcf+Mz47nnCVkJ0DEdkrOTkZydjDuJd3h9hlKiNB8jmYmXqCc/Ka/4/uZOPz2Ing1fh0Qk4f0evulI2VTerh+VkYDlV2Ivo1JTU+Hk5ISUlBQaN5cHw4ROeb9oQ3Fj9etN6AdZyZTXPKHVMYQuOoqYlGyzY3EKAHg7yXHyvU68a+Cz1FlGhX5rQUFSdlKBtt1J5mTcispCbxTDv5VSZYE+h5CiYu33BjBoBPF4IhsDgYBh+CvD8VG7eRixLtriexh00CIBTRrtweZXN8FJ7lS8O0GKRXm9hlQEVAYmtqI8wx+d24g55TFfFEfMpNVpkZSdZBQnmcRQeeIotU5t87bn7clvbXgvV4UrhIIinTqXEJvxipsQjyfyMQhw9cfHHT9GeNBgtPvir3zjJiZIwrrRXuheO6x4d4AUi/J4/agobCn/UsVIBWc4QVsau7AghSJS/uTuuueulOGdnVcQk1o+84Th4gLA6AJTUhcXtVaNhKwE3kFBQmYCtMz2iQ0VYoXZVlSWggInmRO1riJFztrv7X99vXHgySLsjNwJAJAIJejr9xHORzaGwMx7GBiS5IuRKvgbddzqYM+QPQj0CCyBPSFFhcoVpYvKwMRWlGf4oXMbAUyHOwnxc0H7xcfKZb4o7ZiJMYY0VRqvhme5e/LbKr+e/OaG96Ke/KS4WPvN9WkRi+33ZuuHrgPQyKsRBgd8hvVHmMl78GLJc+lnyBadxmedP8N7bd6jeL8coXJF6aKKEcI5dS8Br60/bTXdj+Na0oROFZS5rnt8yD3XwsUpDg5SBzjKHOEgc4CD1MH0uezF8zz/VkqVxdZ6pzx1RzR0ObclKMjR5tj8OWKh2GIXdXOtrNwUbjRPCuGFz+/twtMLmHN0Dg7eOwgAcEYH+OjeQmaOzOQ97q5PMGD7ADxKfQR7qT029d+EAYEDSnaniM3iMuJw7fk1/Bl5DztOWD/PUrmieFAZmNiK8gw/FDMRc+UdV6UEiRnWez04+nwPV6cEm2Km3K8X14368hQzAfqe/BYbnuVpgBafGV+onvx8eqMYXqOe/IQva7+5dFU6lp5eisX/LkZqTioAIMRlDHQpA5CYwYzeM6dnHfz28GOsv7geABAeFI7v+34PB5lDye4UsYlKq8Kt+Fv49epNrD9sZzU9lSuKB1WMEM7ey08w7afLVtN9MzQY/YKrFP8GVVBldTIlS133+IiTfIFM8d+F+nx7qb3FAMBcwJBf8CAWGk+JVFaPeWExxpCuSjedG8VMbxTD62mqNJs/RwCBvnWVmd4obgoPZGR4A1on+Lk6o13tKvC294RMLLO+YlJiSvI3wPezjkYdxewjs3H2yVlAJ4aXMBxNvXqgd2ALjG5TG1KxvrL0ecZzDNk1BH9F/wUAmBM6Bws6LqDKuiJQ2HyRnJ2M68+v49rza7ge9/KvoXWbnaYdPNSzrK6HyhXFg8rAxFaUZ/ihmKlklNXye2FiJqDwcZNUJC2ymEkhVhi1Ki+rx7womOvJb1Kxkid20jGdzZ+Ttye/IW5yVbgjK7MKhDpnVHd1QmiAD7wdPKknfxlU1uKmhMwEfH7yc6w4twLZmmxAJ0ZLt5lo4hGGJlWr4Y1WNbi4ad2FdZjyxxSodWoEeQRhz5A9qO1Wu1i2vTIpbJ7Q6DS4l3jPJGa6nXAbGp2GYqZSRhUjhEOtn4pfWW2JY63rnjWz+khRxS0Taao0pOakIi0n7eW/VWnGz1/8Oy1H/7wgQ0dZIxfLzfZMMQoQLAUTedLLRLIKVVjN1mSbrUSxNOl8YlaixXUptK3gqhoPMTy4ZRrEIVG6DmLFNfPzolhoZaWUKCvUcS5Lyup5B9BX7i04+Cs2/p0OpnXmljsotPj81RD0ekVf8NPoNHjv0Hv46vRXAIDutbpj24BtcFG4lMZmVwi25IsMVQYi4yJx7fk1owL9k7QnFtdf06Um/BRdcP9eX6vbQuWK4kFlYGIryjP88I2Zto5thja1PEtgiyqeslp2KWzMBAAzegrg45ZuGjMZYiQLMVOWJqsI90RPJBBZ76XCM2ayl9pXqPk7dEyHpKwkXr1RrPXkzy9mUkvO8Z5snnryF7+yeu4BgMepjzF593pcuFUTYubOLfdwEOPjfq9w23fq0SmE7wzH07SncJI5YcuALehdp3dpbXa5Z0ue0DEdHiQ/MImZbsbftHh+cJQ5orZ9T8Q/ft3qtlDMVDyoYoRwrE0CxaCDVpCACd2fYHbb90xa5ZP8leXJlPgGeHkZ8kSqwzQoZXawk9hBKVFCKVUa/TW33E5iBzuxHSQiCXdDnDEGrU4LDdNArVVDpVMhU8W/wqUgw0pZIxFKeAcM1oKH8njzX6PTICEzwSQoOHdPjWOXA16kerlPDDoAAsRJP0OW6BTvz5GL5fkGBXnH/HWWO1eo4Ku4lOXzDmB5+xh0EECAN9rnYH73V7nvetvVbRj761hkabJQ06UmfhnyC17xeqXkN7ycyy9fMADD2maAyS7hWtw1XH9+HVHJURbXVdWxKhp4NkB9j/po4NkADTwbINA9EEqpslgmdC1p5bn1LJWBia0oz/DDK2ZCAqrWWocfXt2IOm51Snwby7OyXHYpaMwE6POFTpCILOd3LcZN3DIzy+UiOYRCIcD087AxxqDRaaDWqaHWqZGtyUa6ykyFi5mYKV2VDlbgPi+W2UvtiyRmcpA6QCKSFPn2FafcPflzV6KcuZeD/eervkhV+Jgpd09+ruJE4W624ZkhhqKe/PyU5XMPYD1u+jy8FoY2rQcAiEmPwaCdg3Dy4UkAwPwO8/G/dv+j+NlG1mKmCZ2FkCojuZgpMi7S4vxHdhI7BHkEmcRNVRyqQMdQ7mMmoPzGTVQxQoxYmgQKL5Y8f3HhbubbDJv6b6KJcHkq65Mp8R0SILeCFuZsJRVJX1aumKtwMSyTKCEXyyEWiiGAQB84QF9I1TEdtEwLjU4DlVYFlVaFbE02sjRZJq2xDP8uyIR+1ggFQosBA/dvHgGDo8wR9lL7UmstxCc/uzuI8dVwJRKy4y32RjH8zdbY3upOJBBxlSXWJpt3t3OHu517pavMLevnHWvbZ7ix5Om/Ags7f4puAd0gEAhwJeYKXt3+KqKSo2AnscP3fb/HkAZDSnjryy+tjqHN50cQk2q+Itlw3J/IxwCCl0NIeCm9UN+zPhp4NND/9WyAII8gOMud8/280p7QtTDKcqtBPqgMTGxFeYa//M5tDAzpdkuRwI5ALpZjYeeFmNpiKt2Q4qGsl134x0wMRXET3BZCgVDf8IxHQzVD4zShQAihQKhvuMUAHXTQMR0XM6m1auRoc7hKF3MxU5oqDRqdpsj3Ry6WF0nMVJojAPDJzx6OEqyKcEditoUe/Tx78ufHQepgdnivvA3PKnNP/rJ+7uETN+kEiXijyx2812YmnOROUGlVePvA21h5biUAoG/dvvih/w9wkjuV5KaXW3xj1bwxk1QkRT33evqKj1xxUw3nGvmWA8pzzASU77iJKkaICUsZ+qPeQUhgR/DWn28hOTsZMpEMn3T6BDNazqDunFaU9WHKCtL6ycdJjnfDaqBVbQUyVBnIVGciQ52BDFUG99fcsgy1leUv/l2QMV0LQiFWmAQOSqkSCrECMpEMEpEEYqEYYoEYEMA4cNDpK1wMlS2GwCFLnYUMdYY+gHgRMBR4f5gQMl19iJgLtIIk5AivcxdeO4ld/t3a8wsmCjGRI9/8MqDNQzSoKoOz3BlOMic4y531/5Y7wUnmBIlIAsYYMtWZ5ruoWwgKDJPP2cpF7mLT8F5ysbxAn1NW8P2eNo8JQdva3iWwRcb4bl+MdDZyRFfRoUYHLOy8EC2rtkRiViJe+/k1bgL3d1u9i4VdFla6yi9rtDot7ifdfzmW7fPrOB+dCnX8JKvvbd7gFNrX8UF9z/qo71EfHkoPq++xpDwWlMt6q0E+qAxMbEV5xjb5ndvqV9NgzK9jcOj+IQBAO7922NBvA2q61CytzS0XKkrM5KqUIjFDxT33dpJhRtdqaFFLZhTvWIubMjXW0xZHj3lzJEKJ2YZqCrECCokCUpEUEqEEIqFIX9kCAQQCAXRMX9mi1eVppKbNRrY6W78f6gyuwqXA+5NPzCQWiossZrKl0oBvfunT8h6Cqki4OImLmV7ET3YSOwgEAq4nv8VJ5/PET/GZ8QWqtJKL5aYVJxZ6o1SUnvwV5dwTI50NO+VjzA6djSnNp0AhUWDj5Y14c9+byNHmoI5bHewZsocaOJuRlJXExUzXnl/D2agkPH80zOr76tbZj9Y13fU9QTzro5ZrrQLHpOUxZgLKf9xEFSPErPy6QD1JfYJxv43Dn3f/BAC0qdYGG/tvRC3XWqW5yWVaWZ+kkc9wJ16OMiwZHIz49Jxi7xbHGEOONsd65UoBKlwyVBnFMkavOSKBiGu5ZSexg1wsh1Qk1QcOIgnEAvHLVlow7d2SnloLGQk9jOZe0ArikSBZW+StzaQiaf6TNeZ6/jDGE7+etV4gtDa5pFKiNFv4N1eRknu5QqyARqdBmiqNK/TnFxQkZCYUaLgAe6m9TWP+OkgdylTrKr7nnQTpl/D1fIp67vUQ6B6of3gEop57PTjKiu+6yXf7mgVew2+P5nKBcr+6/fBpp09Rz70e/nf0f/j8n88BAJ39O+On8J/gbuee3+oqJMYYHqY85May/S/2P1yKuYS7iXeh0qqM0pbW5H7loWt1jiYHSdlJiM9IxIh10UjMMH/eKO1Wg3xRGZjYivKM7fI7tzHGsO7COrxz8B1kqDOglCjxZbcvMSFkQpkqL5QlFSFm8naS4/jMjrjwIKlErnkanYaLdYq6oVqGKqNY5oM0Ry6Wcz1bFGIFZGIZV9kiFokhEoiMbr4bYiatTov01FpIiw8rkZhJAAHspfa8YqbHsd7447yX1XVai5nEQrHZ2Mha7OQk0/cMyNZkIzErMd+GZ0XVk5/P8F5udm5lrjET33NPtnI1aldNQaB74MvYySMQ1Z2qF2vlEN/tk7ltw+3MbQAAXwdfzG0/F6OCR+FK7BUM2D4Aj1IfwV5qj039N2FA4IBi296yLC0nDZFxkbgedx1XY6/iUswlXH9+HfFZ8UbpKGayTMd0SM1JfTEPUyLGfx+DpAzjnpIG5SFuoooRUiCMMXx/6XvMODADaao02EnssKjLIkxqNqnctxYoDmW9BQJQ/rvu2ULHdMhUZ1quXMmvZRaPYEOtUxd6GxXaVvBQzQGgL4Ab5O6Kr5Gch1ws5ypc8gYOAgjAwLiWWoZxiFVaFXI0OcjSZJncNOVDpm0Ib9VCq+mSFfOgld7Ub/eLSh+1Tl1k3e0lQsstq3L/21HmCKFACAYGjVaDHG0OstRZSFWlmgQJhr8F2UapSMq7N4q7nTtcFa7Fer60tUeGOb4OviYF/3ru9eBj71Pomzq8e6q5foNBjRvhccpj7IjcAR17Mf9Iozcwv8N8nH96HiP3jESGOgN+Tn7YPWQ3mvg0KdS2lVWMMcSkx3AtmS7HXMbFZxdxN+ku70BWoXsFnjmfWU1XXif3y9ZkIykrCUnZSZb/WnjNUGnO9xy3dWwLCAWCMhu4UBmY2IryTPGISorCqL2jcPzBcQBA15pd8V3f71DNqVopb1nZQzFT2cIYg0qrsr2hmmEZj7SFxSdmyhadhkKigFwkh0yca0QAofhl7xYIjEYEUOvURkOJZWuybR4BgG95IlExFzrJTa5szcVtWnWRzQXjKHM03/BMZlyRIhfLuTlsDMNPZ6gzkJSVZHbS+aLsyW+u4VlJ9eQvbNykECtQ170u18isnns9BHoEorZr7SKZ44Xv9tWtvR+Nqimw/fp2PEx9CACo7VobH3f8GB1qdMDQn4fir+i/AABzQudgQccFFXb0lyx1Fm7G38S159dw9flVnH96HpFxkYjNiOX1fr6/3/IaM2l1WqTkpHCxUHJ2Mu/YKSUnhTsf8j1OH/YKhLuDrNzHTFQxQkw8SH6AMb+OwZGoIwCAjjU64vt+36OGc43S3bAyprxMQFteu+6VNWqtmneLLZNl6gyk52QiMvI1aDX2MFfrbmk8y6ImFUkhFUohFoohEoogEoheDCUmgDTpCwh0zhDA9MZ+UW+f4XMFEHCtw4qCAAI4yhzNBghyiRwSoYQLsLQ6LVQ6FTdMWpoqDUlZSVzFSkECO6FACDeFG+8xf93t3G2aiJLveWf7xLq4nXgTN+Ju4Gb8TdyIv4Eb8TcQkx5jcd1OMifUc69nVGES6B4Ifxd/3i3ArG0fwKATJOKRbBQg0EEkEKF9jfbI1mTj30f/AtBXjk1sOhEDgwZi7K9jcSfxDuRiOdb2XosRjUbw2o6yKj4zHtefX8fV51dx7uk5XHp2CfeS7vHOa3KxHLVca+EVr1dQ36M+F6T5Oweg45cnyuz1iDGGLE2WTZUbuQvyBWnpmJsAArgLu8MuY7LVtE4KCVKyXlaEezvKMa9v2bleUhmY2IryTPHRMR1WnF2B9w+/jyxNFhxljvg67GuMCh5FvUdyoZipctExnf7Gu60N1V4sS1dl4r9r4dCoSzdmEglERiMCiIQvYhcmhCzpC6CEYiYBBFzclLtxXFGQi+Vme6Y4SPVDMosE+pvrOuj0DdE0OcjUZCJNlYbU7FQkZCUgPjMeiVmJBe7Jb1Jxks/wXrb25Oc7gsaKCNeXcVOC/u/thNsWG0YKBULUdKlpUmES6B5o01wffOImDeK5vOTv7I/6HvVx6vEpJGQlAAAaezfGJx0/weGow/j69NcAgLCAMGwbuA2uClfe21LWqLQq3Em4g2vPr+FSzCWce3pOXwGSHss7r/nY+6CBZwO84vUKF9/Wdq2LfsuvlOnrkVan1cdB+cVMFio3UnNSC13xqhAr4CroBnHqOJveV55jJqoYIWbpmA5rzq/BzEMzkanOhL3UHku6LcG4JuOKraBfHrqX5VVeWheVx2Nb0fBtEVK71u9wcnxuVHEAgCsIMzBodVpuaC61Vm3U+ilHk8NNQp+lzkKmOpP3MGMvW2cxo4I+38klBRBwlS2G4cQYY9w2a3SaImshVZzsJHZwkunnTLGT2kEm0nf7N/QEMfSSydZkI1OlDw5SslOQrk4v0Oc5y52tjvmbu5XV37dSCnzeSc5O1leU5KkwuZ9032KQJRVJUdu1tr5nidvLgn9d97qwk9iZpLd2Xlw6tAFSBX9j3cV1OPnwJPe6l9ILSqkS95PuA9APyzap2ST8F/sfDtw7AAB4q/lbWNJtiU2VSaUhJTuF68r97+N/cfnZZdxPvo90Fb884iRzQh23Ogj2DkYDzwZc0FXVsarFa3BxX48YY1zrQkPh22Kh3cyygvRky00oEMJZ7gwXuQtcFC7Gf80sc5Y7c/92kjvhzP0km+fdym1NGbmeUxmY2IryTPG7nXAbI/eMxKnH+jJSr9q9sK7POvg6+BbL55XHcj3FTIQvvjFTQMA+ODs9hxBCbsJ5A8YYN+m8IQYx9LLnYqZcvUay1FnI0mTxHmassDEToK94MczdIoQQEOi32zCUWEkNd1YYIoGIa4RmL7WHXCyHTCSDWCjmeutotVruWKer05GanYqk7KQC7Z9MJLPY0MxchYqLwgUHr8cW6Nyj0WkQlRSlj5VyVZjciL+Rb48aH3sfk175ge6B8HXwNVuGt3ZunNXbFddStmDL1S3c54qFYtRxrYOo5Cguzu9QowM61uiIz09+jixNFmq61MQvQ37BK16v8Dq2pUWr0+Je0j1ce34N55+ex5knZ3Az/iZi0mN4VQCKBWJUd6qOhl4NEewdzB3vOm51oJAozL6nJK5Haq2ad+VG3nQF7bGVm53EjnfMlPuvs9wZcrG8QPMVG5THmIkqRki+7iXew6i9o3Di4QkA+trnb/t+i6qOVYv0c8pzC53yvO2k5PAdQ9TaeLQFIYRQX1A1jOv7oqu5YTJFQ0WGUCCEKiMIWYm9wbQvW7sIREkQOe0Bk13ihu1S69TI0eiDiqIaRssaw4SPALgKl7JIJBBBKdVPXCkVSbneFowxaHT6Yb8Mw74VZB/sJHbwEHaBMG0IdLm+J6VchR5NMtCurqNRUOAoc7RaoZ2jycGdxDtcgd9QaXIr/la+FWt+Tn5cRUnuIOD8fTWv82JkXCTWX1iPH/77AYlZiQD0N8AdpA5IyUkBALjKXRHiG8JNdtu2elvsHLQTXvbWx3cubhmqDNyIv4GLzy7in4f/4ErsFUQlRSFVxa9A62nniTruddDUpykaejXkjqGLwqVA22PtesQYQ7oqvUAtkJKzkws9pKBIIDIpfPMppLvIXeAgcyjQMHU6pkOWOgtpORnos+wy4tIs7YPht2j+t+JiJ8H5/3Ut9RtkVAYmtqI8UzK0Oi2+OvUV/nfsf1BpVXCRu2B5j+UY1nBYkTYqK89xh/ltl2Fun/plfttJySnNmAkApEIpZGIZ1zAq9xBdIoEIQqE+ZlJn1DcbM4md94LJLplWxLyIm0qKIW4qyzEToG+dbpi3UyKUcOdLLdNCpVEhW5td4GGtDT35XQQdoUnuD63m5TXQQaFB/2ZqdKjnYlNPfsYYnqU/4xqa5Y6bnqY9tfg+B6mDUc8SQ+wU4BqAw5FxVs/rGaoM7IzciXUX1nGV8ADgKHVEhvplhV4Hvw64m3gXj9Mew05ih+/6foehDYbafOyKmo7p8DDlIa7GXsU/j/7B+afnuQoQXpWRYgVqONdAI69GaOzdGEGeQQh0D0QN5xoFGjaMz7VUpVUVaEiqpOwk3o3h8mMvtS9QgzAXhQukIqnNn5d7mMV0VSYGrLiGuDRL93nMzz0ClM+YiSpGilBFbWGiYzp8c/obzDk6B9mabDjJnPBN928wotGIIinoG2ps82bEstaCKD9aHcO8g1vw1T/fooF3dfw78YcK8d2TosO31n1Am4dwd07iWjAV9FGoG5hMCJmuPkTMBVpBEnKE1wvdFVwilBgN32XSsuvFuLe5504xBBSVUe4xkoEXw35pVcaBDc/vSSKUmG1dZWnMX1eFK1fANBRi8xb8b8Td4Lpwm+OmcEM99yB4S9vATVYTQV5V0LtBIPxd/Mze3M7WZGP3jd1Yd2EdN1674TgYKt7cFG7IUGcgW5ONKg5V8PPgn9GiaosCHV9b5WhycDP+Jk4/Po2Tj07iauxVRCdHc5U3+REJRPB18EVdt7poVqUZ15qpjludAo2tzBjTT4xnoVIjISsJ92OESMzQIIc9R44oEsnZiVyhvrAVmWKhuEAtkFzkLrCX2gMAVzloaKGZu3ebYRmv13mkz91TxXILT2Y0hrklW8e2QJta7oU6foVVVsvApOwqi3mmosZMgL7CP2JPBM4/PQ8AeLXeq1jTew08lZ6FXndFiZnORiWg/7YIpKgf4fj479CiarPS3ixShvCNmcLbPIGHi2nMlLsnCN9HgSsOiiFmEglEZitijOdaeRkz5e4RUx56mRQ1oUDINfYzDNFsdv5Lnt+VoSc/3/klc/eeT8lOwc34m0a98m/G38S9xHsWvxuJUILabrVR1y0QrqLmcJXWQH3vqnj1lVfgKLc3+56rsVex/uJ6bP5vM5KzkwGAm4fUwMfeB8/SnwEA3mn1Dj7v8jnvoZELgzGGp2lPcSXmCo4/OI7zT8/jduJtxKTH8IpBnGROqOlSE428GqGZbzOuAsRT6Vmge485mpx8Y6a7z4CEDDVULA4q0Q0k5yRyaYpiviRHmWOBGoQ5y50hEUmg0WlKLGbKUmcZ5SFLcRMf5S1mooqRIlKeW+/wdSv+FiL2RODMkzMAgD51+mBdn3Xwtvcu8DoN4yrmPm65lYUx/vi69vwaGq5uCKVEiZT3UyrshFekYEp6fGUd03HDahXmUZDgwvC+skQAgckNecPQZMSUm8INnkrPfIf3EglESMpKQkxGDO4k3OG6mD9IeWBxvXwmMbwVfwvfXvwWG69sRHxmvMk6JEIJ1Do1pCIpNnb4BK/V7Gp5R+zcAGf+E+GqtWrcTriNvx/8jX8e/YOrz6/iYfJDJOckW32vTCRDFccqCHIPQosqLdDYpzECPQLh5+Rncj3QMR1SslMKNCRVcnZyoceWloqkJoVvB6kD7KX2+t5OEgU3HIJUJNUHnC+Cc51Oh2xttmmhWvPyeaYqG8mp7shWSaFGPHKE15GpyUCWOqtwNyCKgJ22NVxU4yCGB7dMhwwIobT63ikda+HdsLrFuXlWlcUyMCnbylqeqQwxk1qrxqJ/FmHB8QVQ69Rwt3PH6l6rER4UXuB1VqSYCQB6bO2B/Xf3Y2XPlZjUbFJpbw4pQ0o6ZmKMcUPkmsQzBY2ltPzXk6XJKrI5Q4qCoaeJuYoYYkohVsBT6Znv8F5OMidkqjMRlxmHB8kPcDPhJleBkt/N9+pO1V/2yM81NJeHnQcEAgGy1FnYFbnLZHhig9yVJZ38O2Fnt6/hqsvne7QxborLiMPZJ2fxV/RfuPDsAu4k3kFseqzVho0CCOBm54YAlwA09m6MllVbor5nfdR1qwsHmYNJ+ix1VoGGpErKSuI9pHh+nGRORg3BHGQOcJA5QClRQilRQi6RQy7Sj86RuzEoGKDSqfKNmbLUWchQZSEt3RPZOTKoEI8swX/I0ugrK0pqZA5zBBBAoW1lEjfxUd5iJqoYKQIVofUOXxqdBl/++yXm/jUXKq0KrgpXrOy5EkPqDylQDS7fFiE/jmuJVgFuBdnkEqPVaeG8yBnpqnT89+Z/aOjVsBg+o+K2sKsMysv4ykVBx3RQaVUvJl/MwrmoRMSkZsFerkWAF4NKZ2OgoeUXXBRJ6y9iMzuJHVzlrnBXusNd4Q47sR100CFLk4WUnBTEZcThSdoTi4U7c5MYBrgG4F7iPWy9uhVHoo6YvKcaE+AW7KHIr6W/WAZMuWBSyNcxHW7F38KRqCP499G/uPb8Gh6lPkJKdorVfGMvtUdVx6oIdAtEI+9GqO1aG+5Kd4AByTlmulmbKbjz+RxrJEIJlJKXlRi5h3sQCURcMGQYws0wJ5FKp9L/hrTZ3LAORRnsKrSt4Koab1SA1iAOidJ1VsfbLjF5Wg3KNY3grLM+zMCUjgF4N6xeCWygZWWtDEzKvrKUZypTzAQAV2KuYMSeEfgv9j8AwNAGQ7Gixwq42dke01SkmAkA5v01D/OPz8eIRiOwqf+mYvkMipvKr8oUMwH6eyyGmOlMVAJiUjJhr9AhwItBnSdm4hUHaa3HSbnXU1l76JcGw7CyrgpXeCg84CR3glgohkqrQro6HQmZCXiW/ozrCWKOq8LVZBhjkUCE/Xf3Gw1PnFs1JsBtOCDfvuoW4qakrCSceHgCf0X/hUvPLuFu4l3EZlivABEJRPBUeiLAJQCveL2Chp4N4evgCweZA9JUabxipqSspEI3uBRAADuJHTdkGze8+IueRkKBEGDQz0uke9HjSKsfuYKbw/VF3FTUv5XyFjcptCGw13W2+pbyFjNRxUghVbTWO3xde34NEXsicPGZvsASHhSOVT1XwUNpW00i3zFEvxkajH7BVQqyqSWq06ZOOBZ9DOv7rMfYJmOLdN2VoYVdZVDZvsfS2t/8Wn8VuBVYPkFG3nWVtdZfZZHh5r2O6aCD5WPlrfSGn7MfVFoV7iTe4cZsbcyEuAjzXcxzuzdoA35Le4hTj04hMj4Sj1IeITUn1WrFhEwkg4PMAY4yR9hL7CEWiZGjyUFqTiqSs5ORpkqzbYfNyN0qj4FB//+yPRZ0fl52uUaeloamk5EKIOCCE5lIZvGvVCQ1fS2f9Ln/SkVSXmkvPcjA6I1XrO7f1jEt0KZ2+ekWTghQdvJMZY2ZVFoVPj7+MRaeXAgt08Lb3hvreq9Dn7p9bFpPRYuZ/rjzB3pt64W6bnVxc8rNIl9/ZStvV0SV7Tsszf3V6rQFHiXAbEzFo2Im9yP3sKfElGEIasZYvsOlyUVy1HKrBQepA56lPUN0SjT3Gt+46WjXufg17SEuPruI+0n3EZcZZ/X7Mcyv6Sh1hIPMAQqJAlqdFumqdCRnJyM1J7VIKhRyDylnaPxVXmMmwLa4SSKUWIybrMY7tsZZ+fy9HJ2JsT9ctbpv5S1mooqRQqporXdsodaqsfDkQnz898fQ6DTwsPPA2t5r8Wrgq7zXUdGO3/uH38eifxZhbOOxWN93fZGtt7K1sKvoKksLtvKSb4vr+zC0/ip0cGEhyMg7Tmju4KKoewGURXwL+E2QjkuFHO+Zt2IYa7qoSAQSSET6h1QkhVQk5QrYcpEccvGLh0T+sqAtlBoVug2FZ64Anus1iVCGRXvskZJp+bfj5SjFobdbwU4qL5FxjvnS6hhCPjmE5EzLQZuznQQXytlEgoQAZSfPVLQyv63OPTmHiD0RuBF/AwAQ0SgCS7svhbPcmdf7K9rxi8+Mh8difYO6xFmJcFG4FNm6y0v5k1hHMZNeWcmzxfV95B4CujAVNEbxVJ71GOZSyFRnGqUpjl4AZVGZi5vKcMwkhFAfLwmlkIr1PUtkYhk3zLBCrIBCotBXGOSuYBAZx0tG8ZQhnVifTiKU4bPdciTnEzd5O8pw9N1QKCSyIpnbuShU1Jip7ESl5dTzNPOtnvLafGkvavv0hbtd6daaFSWJSIKP2n+EPnX6IGJPBK4+v4oBOwZgeMPhWNZjGVwVrlbX0dzfFT5OcotjiAIMng5SNPe3vq7ixqcg0KKKfiJgwzwsRfW583+LNHt8GPQFpvm/RaJrkHepn3wIPyKhoFwErYVR1PnW0CIk90SDhn/rmA5aZvzcXBpz6U7eTsd3x1OQkP6yIOaqFGB4qAyN/YS4+UyDpAwdHOT67uwQMIvr4vN5fNMZ0ggFQm6YJCVTWl4XTNdtmIxRpVPph1LS6odT0jD9kEpanRYapuGGWeImbsw1iaNOp4OGaUw+l4FBp9OV694NRa2sd4VWMzXUGjVQTEPVyrQN4a1amG+a2FQVrj/JQasA64FZSRIJBfh8QEO8+WLYDnM+H9CQrrGEFALfmOmz4yswR9oNLau2LDM3AopCsyrNcHHCRXx07CN8+e+X2HRlEw7fP4zv+n6HsFphVt9vLWZi0MFRoSs3MZO7nTsCXAJwL+kezj09h24B3YrssyluqjgoZipYnmWs6OOVk3fS8e1fySYx0+uhcoT4i6DRal/GTQqGAC8dFzcVVdyW37oA/Rx6YqEYCrHCeqyV+7lO9zJmehEvGSZwzz2xfe6haQ1xlFanhUb74vXcMZPuZXxm+D4oZtIr6zGTDjp9pZk2ByimOjM+cVNMag6uPMpAq4B8B0ArURU1ZqKKERvlLei528t4ve/7/5bi2xtvom/dvhgVPAphtcLKVGvJwmjs0xjnxp3DguML8Pk/n2Pr1a04GnUU6/usR686vfJ9r0gowNw+QZi45SIEMB5D1HDheCZcjpvxVVDfs37x7YQVfLu2tqiqrxi5Hncd6ap02EsLf/PnbFSixWEHAP0xe5aSjbNRiRW+4EjKD775tsrn7aAR37BaAC6OgqSl7qsJGVosO5AFHdIgwsvWBWWpwEZKkZkWTgpdCy4v5SaCGzxUc4y6QldUIsavtS/fm6MlrXsDH6x5vQnm/XodMakvxzL2dpRhXt/6ZaKlJiHlTe64KT6N3xjhh6J/xr7v56GuW12MDB6JEY1GwNfBt5i3tGTIxXJ80fUL9K/XHyP3jMSdxDvovrU7xjUZhyXdlpiddNYgv5jJcPv0nnYR5h+/gPkd5pdapZItwwG1qNoC95Lu4czjM0VWMUJxEylv+ObZqp+3h0Zyw2IFQd5KgqKUX8z0zYFMpIp/hlLTvsze6CalhGImi8pz3FQRY6aKcWe+hJgr6Hk7yuBsJ0FKptribTsHhQau3lJcilHj5xs/4+cbP8Pb3htvvPIGRgWPQqBHYMnsQDGSiWX4tPOn6FevHyL2ROBm/E30/rE3RgWPwtdhX8NJ7mTxvd0b+GD1601Mjq2XgxTJ0m9xJ3Mf2m74B/uG7UPraq15b1NRdfW01LU1JiUbE7dcNOra6uvgi6qOVfE49TEuPL2A9jXa2/x5efE9GZbFkyapvPjmx7QsITLFCUX62YZxWIUCIUQCkdFzoUCon2QNIsiTJgIwLuDrnwvBwCCE8Q0KQ4EtTfEVciRnuF4sjOkfOlCLoNxEAhHEQjEkQgnEIrG+a/GLLskyUa7uyBIFFGIF7CR2UEqVsJPYwV5iD3upPRxkDlBKlXCQOsBBqp/vw0HmACeZE1ySHwI/9CvRfTLXwgnCJAggffGNm+YlAYBX5Atw8O2W5a71jC3ORiVh1Abr83R4OpSdVk95dW/gg65B3pVi2A5Cipu5uEkoAHQWLo8CAC5KAdo1aIKfb9zDrYRbmH1kNj44+gHCAsIwKngU+tbtC5mYX6O0sqx1tda4/OZlzD48G8vOLsP6i+tx8N5BbOi3AR39O1p8n6WYycdJgcCa17Hh5il8/PcpxKTHYFWvVbwb4ZVGzAToe9pvu7oNZ5+etfmzLKG4iZQ3fPNiapYAmer4Iv1sAQTG8VHemEmgj5kUyfnFTDo4agaarNsQN6UqlkAlOWsUI+X+d0Uf+pcPAQQQC8X6uEkkgUT4cthbw3BMcrEcCrECcrGcm0hcKVHCTmoHB6mDPm4y/H0xR6KD1AFOcid97JQYDWzoUWL7ZC5m+j975x0Wxbn24XsLvfcqqChgQ+w19t6JKUZNlBhNPUlMz/nSezlJTnqiMWhiO0kUu7HEGltiQVGpAkrvvS27O98fG0ZWFthFUMS5r4sLmPLOO8sw8/zmaYK8ABm1z/DbVzPBra+b2ptmkhwjRtKQoZddUi0uuzZ6p/aS+Hj2QCb1PMm57HNEnIlgdfRqssqy+Pjox3x89GMG+QwiPDScOT3nNOpAuBUY6DOQ00tO8+r+V/n02KdEREWIaeLjA8Y3uF9D/1hFVf2Yti6V42nHGfvTWH656xejmhW2VPOy5qS2DvIZRFpJGifST7SIY8TYm2FbvWlK3J4Yez0un/UJffxs6jsuDBnmhhwc12xjbIRkU7W6rzX8dct0xr915QMUCgebVQdVbLJ9k6jtK2GptMRaaY2VmZW+cf2Pc6LWUWFtdnWb2mVN/W5tZo2F0gK5TN66J1NVYtRmfy3+ixilOcfSjnEg5QCnMk+RXJhsdD1hpUyJnYUdFupBmFc+Xm+9oHXkWuNebz26VGhdCan2G506oqs1Xg5xDZZ5qW2s3BbKvDTG7VC2Q0KitWlINzXmFAF4L6wPk3pO4espX/LLhV+IiIrgSOoRdibuZGfiTpytnJnbcy7hfcLp49nnli61ZW1mzeeTPyesWxjhm8NJKUphzE9jeGLAE3ww7gNszG0M7tfwy4ixDDppwWM7HmP56eXkVuSy9s61WJlZNTqPm6mZBvoMBOBEmi7YpCX+npJukrjVMFozzfwPof42JuujhraTy+RG/c81rZkM2/u1usmmcgFFwqE20z/CWGrLGdc6I6zMrLBWWmNtflUz2ZrbGq2P6mquususlFaYKcxa/4RKc4zabO8DezmuqeRAygGOph7lYu5FCqsKjT6MrbkttprhBjUTWickzaSjPeim9qSZWrz5eseOHbl8+XK95Y899hhff/01o0aN4uDBg3rrHn74Yb777jujj3GjmwhqtALDP9zXYIqjDHCwNsNSqSCrpGmjUqVRsT1+OxFREexI2IFG0AC69Oo7u91JeGg4YzqNaf2XSq3Mn1f+ZOGmhVwqvATAI/0e4eMJH5tcXqqipoJ7fr2H7QnbUcgULJ++nPA+4Q1u35LNy5rT6PCjIx/x4t4XubPbnWy4Z4NRx2mM2uuvqZvmny+OuWU9tBLtj7Z+3W6OSuep9VHN3j/L/GWqFdEtMhdzhbnxRvV1OCwslZYo5IoWmXObICMKlhnhfF5yELxD9RZptBpi82I5lXmKkxknOZ52nOicaKrUDUTtCXJ8qlagwNWg08wYPp8TysxQn2bte6tQ+/wFw4EibaV56K1MW2mkLXH93AjNBG1PN0H9zJHGXsTH58ezMmolP539ifTSdHF5iEcI4aHhzOs1Dzcbt3r73UqUVpfy/J7n+f7U9wB0ce7CypkrGeY3zOSxImMiuW/DfVRrqrnD7w623LelwQbvN1szVamrsH/fnhptDUlPJtHJqZNRx2qMtm5/SkhcS1u/Zq9XM0HL6SYZMuOdDiYEdBnaxkxudks73+txHboptzyX05mnOZV5ir/S/+Kv9L/ILMs0vL+kmYxG0k2tiyn2b4s7RnJzc9FoNOLv58+fZ/z48ezfv59Ro0YxatQoAgMDeeutt8RtrK2tTTLUb7SBb6yht2bRIORymUmpRFllWaw+t5qIqAgu5l4Ul/s5+LGg9wIW9F5AgHPAdZ/DzaJcVc5Le1/iq7+/AqCTYyciZkaYnElRo6lhybYlrIxaCcB7Y97jpeEv1XtYGePEMsWwMNYQqHvzPphykFGrRuFj50PaM2lN7msMV4VLbcyVDummKdGWacsPe2Pv6w3h778PX4+s63ZYWJlZtZt+UzecolT4qh+oG6lbr7SAJ06BY4cmh9NoNcTnx3Mq8xSnMk5xKvMUZ7LOUKYqM6pBXlO8PduFO3v3ajAKuL3QUtHHEoaRHCPthxuhmaDt6qZXp3bD1c7CaM2k0WrYm7SXiKgINsVu0jVFBZRyJdMCdeV7J3eZfGMib1uJ3Zd2s2jLItJK0pAh45khz/DOmHewVJqW3XDo8iFmrJtBcXUxPd178vu83/Gx13/J1BY0E8DA5QP5O+Nv1s1ex5yec5rc3xh+P5/JI6tPI6DVi2ZvC/anhIQh2rNmAgjodIgOHtnX7bAwV5i3L2fFjaSFdVN+Rb7oLKnVTslFyS2imZ6fZsaskB5423m3+7+3pJtaj5vqGLmWp59+mm3btpGQkIBMJmPUqFGEhoby3//+t9lj3mgD31hD77FxVjw7ZmSzInIFQeBkxkkioiJYd34dRVVF4roR/iMIDw3nru53tUgz75vBvuR9PLj5QS4XX0aGjKcGPcW7Y9/F2sza6DEEQeDff/ybD458AMCTA5/ks0mf6WXWNCdaqTGaM16ZqgyHDxzQClrSlqbVEyLNZevZVB5bvw+F4Couk26aEtBytaFbg7b6sG8qOqspjL2HSLQyRalQ0UiPGmsXo4z7htAKWuLz4/nx6Dl+Odo8h4aAFg35pFsuApkWX3tfgl2DCXIJ0n256r53cOhwy2eK1tKW70m3OpJjpP3SGpoJ2q5ueicsgPmDgpt1jMLKQtadX0dEVAQnM06Kyz1sPJgfMp/w0HB6uPdo1tg3m6KqIpbuWioGgwW7BrNq1iqx7JSxnMs+x6TVk8gsy8TPwY9d83cR7Hr1824LmgngXzv+xVd/f8XTg57ms0mfNbm/sdy/9j/sP+eqV9++LdifEjeXtmyftFfNBJJuajO0sm4qqCzg28N/s3yfuln7X6uZbM1tCXQJrKeZAl0C21WgWVu+L93KtBnHiEqlwtvbm2eeeYZ///vfAIwaNYoLFy4gCAKenp5Mnz6dV199FWtr41+Qt9XIpyzzl7G3y2JG0AzCgsMY13lcsxoEVqmr2BS7iYioCPZc2iPWo7c1t+Xu7ncTHhrOcL/ht5z3tKS6hOd2P8fy08sBCHQJZOXMlQzpMMSkcf57/L8s3bUUgHt73MuqWavEz7m50UoN0dzU1t7f9eZc9jk23LOBO7vdacxpNcnBlIOMWjkGT/NhfDd5He720k1Tou0a0XVpqw/7hqKzGuNmp7NL3ByaHy2nu7JcvDZyRbWVvIqGm2ZaKa3o6tKVIJegq46TfwSAnYVdM2cu0d6QHCPtk9bSTNB2dVOOxb8Z2MmJWcGzCAsOw9/Rv1nHO59zXuzhmFN+tYb6AO8BYg9HJyunZo19M9kWv43FWxeTVZaFQqbgxWEv8trI10zSlilFKUxcPZH4/HhcrFzYPnc7g3wHAW1HM60+t5r7I+9niO8Qji46auSZNc3A5QP5O/0Ubwz9mVD3kW3K/pS4OUiaqfk0RzOBpJtuR65XM/n77yFTvZOkwiSx5YAhbodAM4nro804Rn755Rfmzp3LlStX8Pb2BmDZsmX4+/vj7e3NuXPnePHFFxk4cCAbN25scJzq6mqqq6+mfJWUlNChQ4cbXiu3YS+5gIV5BTnWj1BUfbUxka25LVO6TiEsOIwpXadgb2H6XFOLU/np7E+sPLuSxIJEcXkX5y4s7L2QB3o/QAeH5nt1bwa/J/7OQ1seIr00HblMznNDnuPN0W+alCa+LnodCzYtoEZbw9hOY4m8NxI7C7sWj36CxgwBARkyg6mtS7YuYfnp5bw47EU+GPeBkWfVOK/tf423D73NfT3vY+3stS0ypsStTUvWhjaGG2ms36hjGRJJjtZmFFXUIKPtpbNL3ByMeeHjaG2GhVJOVslVe+VawZ1fkU9cfhxxeXG67//8nFiQ2GgzeC9bL9HgFx0nrkH4O/i3r74xEk0iOUbaJy2lmeDW0E0yRTEpZg/oNePt49mHsOAwwrqF0cOth8kBYDWaGnYk7GDl2ZVsi9+GWquLWLVQWDAreBbhoeGM6zzulrpn5lfk8+TvT7I2Wmf393LvxU9hPxHqGWr0GLnluUxbN42/0v/C2sya3+7+jcldJ99QzSSgRY7coP2UkJ9A4FeBWCgsKH25tEVKoRVWFuLykQsCQotm70vcutxozQTtTzc15Fia0duLZYeSAUk3SbScZlJpVCQVJl3VTHW0kxRoJmEMbcYxMnHiRMzNzdm6dWuD2+zbt4+xY8eSmJhIQIDhXhpvvPEGb775Zr3lN1IUGlP3cWw3Vw5ePkhkTCSb4jaRUZohbmeuMGdsp7GEBYcxI2gGHrYeJh1fEAT+vPInEVER/HLhF8pryv85vozxAeNZ2Hshs4JnYWVmdT2necMoqiriqd+f4qezPwHQ3a07P836iX7e/YweY8+lPdz5y52Uqcro69WXHXN34Grt3mSqp1czohYMGQJaWT5f3DuCWaEd622/4vQKHtr6EKM6jmL/gv1GH6cxhq4YyrG0Y6yYsYIH+zzYImNK3Lq0dG3opriRUVY3OqLLkJjYczGrzUeVSdxYjLEDxnf3bJYwVWvVpBSlEJcXR2xerJ7TJLs8u8H9LBQWdHHuYtBp0lCzXVNpq9GLtyuSY6R90lKaCW4d3RTsW82m2E1Exkby55U/0QpXnSRdnLvonCTBYQzyHWRy9GdOeQ5rzq0hIiqC6JyrDX997X15IOQBFoYupKtL1+ae3g1nw8UNPLr9UXIrclHKlbw64lVeHv6y0U6EMlUZd/1yF7su7UIpV7Jixgrm9bq/SQeWl4NVi2gmNbncOVDDF3cuqn8UQcDlIxcKqwo5ufikSVqwISJjIrnzlzvp5tqNi49fbHoHiXbNjdZM0H51U0M24a2QjSNx42hNzQRtN9BM0kxtizbhGLl8+TKdO3dm48aNzJw5s8HtysvLsbW15ffff2fixIkGt7nZkU+1mHLD1wpa/k7/m8jYSCJjI4nPjxfXyZAxzG8YYcFhzAqeRWenzibNo0xVxoaLG4iIiuDg5YPicgcLB+7reR/hfcIZ4D3glii1tSVuC0u2LiG7PBuFTMG/7/g3r4x4BXOFuVH7n8o4xeQ1k8mtyCXAKYBd83eRkGHdYLSSDBkf3tWFe/ubXtO49kaXXVLJM3sXkVy+l2XTv2Nxv8X1to3OjibkuxBszW0perHoum+0xVXFuHzkgkbQcPnpy/g5+F3XeBK3Pq0R6dcQNzLK6mZEdDWEZNxIXMvNEH5FVUXE58eLxn+t4yQhP0FsPmwIdxv3eunlQa5BdHbqjFKuNOrYktBte0iOkfZHS2omuDV1U255LlvithAZG8mepD2oNKqr+9h6MTNoJmHdwhjVcZTRGgF0L91PZ54mIiqCtdFrKay6mtk/3G844aHh3N397lsiijSnPIfHtj/GhpgNAPTz6seqWauM7qWi0qhYtGURq8+tBuDj8R/T035eg5oJZMweks+nMxeYPNe69tOxjN/58K8lBLl2JebxGIP6dNLqSey6tIuvp3zNYwMeM/l41/L49sf55uQ3/Gvgv/hi8hfXPZ7Erc2N1Ewg6SZJN0nAzdEQtYFmsXmx9ZwmrR1oJmmmtkebcIy88cYbfP/996SmpqJUNizAjxw5wvDhwzl79iwhISFGjX0zRWFzbviCIBCTFyNmktRtEggQ4hEiRkWFeISY5NC4VHCJVWdXsersKq4UXxGXd3frTnhoOPND5uNp62naSd5g8ivyeWLnE6w/vx6AUM9QVs1aRYiHcddDQn4CE1dPJLkoGXcbd36f9zvZ+Z71bkzIC8lRfkPPDmr2L9h/XQ2bPjn6Cc/teY7eHr058/CZen8zjVaD44eOlKnKOPfIOXp59Gr2sUDnQJq5fiZdnbsS/6/4pneQaPcYWxu6e9cTjO3mQA/3HvRw64Gvva9J95gbGWV1MyK6JCRMpa0IP41Ww5XiK/UipmLzYvUyVq/FTG5GgHOAQaeJq7WruF1bEtsSV5EcI+2P1tRMcOvpptLqUnYm7iQyNpLt8dspVZWK6xwsHJgWOI2w4DAmdpmIrbmt0XOpUlexJW4LEVER7L60W8xQsTazFns43uF/R5uuTS4IAuvPr+fxHY9TWFWIucKct0a9xXNDnzMqCEsraHlhzwt8cuwTAJ4Z/AxjvZ/l7W0xeraXtWU1Kdr/UK08QeS9kcwImtHsOZdWl+LzqQ+lqlL23L+HcZ3H1dvm9f2v89aht3ig9wOsmrWq2ceqJeirIOLz49k8Z/N1zV2ifWCsZurgt5fhgZb0cO9BT/eeBLsGm1TqGyTdJCFRl7aimUA/0Kxudn5LBJpJmqltctMdI1qtlk6dOnHffffxwQdX+ytcunSJtWvXMmXKFFxcXDh37hxLly7F19eXgwcPNjKiPre6KEwtThVTxw9dPqTXVKizU2dmBc0irFsYQ3yHGJ1poBW07EveR0RUBBtjNlKl1j0gFTIFU7pOITw0nKmBU02KsrrR/HrhVx7b8Rh5FXmYyc14feTrvDj8RaMiW7PKspi0ehJns89iZ27HpjmbGOk/Wu9G7Gifxx0Rw8ivzGdK1ylsnrPZ6KjZaymoLMDnUx+q1FX8Gf4nw/yG1dtm9KrRHEg5wPLpy3mo70PNOk4tT+58ki//+pJH+z/KN1O/ua6xJNoHxkY/ZZm/TLXiahkJewt7erjpnCS1hn8Ptx542noadJgYe5wXppszt9+A6yrfc6MjuiQk2iul1aU64/8ap0l8fjwVNRUN7uds5UywazCBzkH8FTWd8iozrpr1V5HE9s3jVreBJfRpbc0Et/Y1U62uZl/yPiJjI9kct1mvubql0pLxnccTFhzG9KDpeo7dpkgvSefncz8TERWhl9Xf2akzC3ovYEHvBc1uBn8jyCzNZMm2JWyL3wbAYN/BrJy5kiDXIKP2/8/R//D8nucBmNdrHsunryDqSpmomQZ0dOKR7UtYcWYFVkor9i3Yx2Dfwc2e7792/Iuv/v6KWcGziLw3st76HQk7mLp2KkEuQcQ+Edvs4wBcKb6C/3/9kcvkFLxQgIOlw3WNJ3Hr01zNJJfJCXAK0Oklt55ikFmQa1CD71SMPdbH9/owOzTkuhyxkm6SkLh+DAWa1TpOjAk0C3QOJj72fiqrzZE0U9vipjtGdu/ezcSJE4mLiyMwMFBcnpqayvz58zl//jzl5eV06NCBsLAwXnnlFZMM9VvZwL+W/Ip8tsZvJTI2kt2XdosODdB5J2cGzSQsOIwxncZgobQwasyiqiJ+ufALEVERHE+7+rB0tXZlXq95hIeG09uzd4ufS0uQXZbNo9sfJTJWZzQP8B7Aqlmr6ObWrcl9i6uKmfW/WRxIOYCZ3IzVd67mnh736G1zPO04Y1aNoVJdyUN9HmLZ9GXNLjn20JaHWHFmBXN6zmHd7HX11r+09yU+PPIhD/V5iOUzljfrGLX0+KYHF3Mv8tvdvzG7++zrGkuifdB0c1NwtNYy445TxORd4ELOBeLz4/UcsXVxsnSqZ/j3cO/BsYQao6Kscs0+okJ5iM5Onenn1U/35d2Pvl59cbZyNuqcjI3oUjj9xMSeLozrPI7RHUfjZOVk1PgSErc7WkFLWkmawUaGdbNOLTS98FS93+R4kti+8bQnG1ii9TUTtJ9rRqPVcDztuFimOKkwSVwnl8kZ4T9CLFNsbMlZQRA4lnaMiDMR/O/C/8TsFBkyxnQaQ3hoOGHdwrA2s26Vc7oeBEFg1dlVPPX7U5RUl2CptOT9se/z5KAnjXrZ+vPZn3lwy4OotWomBkzkt3t+08vAqdHUMHP9THYm7sTV2pUjDx4h0CWwkREbJiY3hu7fdEcuk5P8VHK9v09eRR5uH7sBUPBCwXXZdRFnInhwy4MM9h3MsUXHmj2ORPvBGM3kbCNj4YQkYnIvcCH3AudzzuuV3quLQqYg0CXwql5y0wWadXHuwo7oHKN1k8L6DH28+ujppkCXQKOdJcbqJt8Ou5ndtyNjO4+ll3uvW6LcuoREW6ChQLO4vDgq1ZWApJnaMjfdMdLatBcD/1rKVeX8nvg7kbGRbIvfRnF1sbjOztyOqYFTCQsOY3KXyUbXwo3JjWFl1Ep+OvcTWWVZ4vI+nn0IDw1nbq+5uFi3rX9QQRBYG72WJ3Y+QVFVERYKC94Z8w5LBy9tMoOmWl3N/Mj5/HbxN2TI+GLyFzwx8Am9bbbEbSHsf2FoBS1vjHyD10e93qx5nsk8Q99lfTGTm3Fl6ZV6JctqG/+FeIRw9pGzzToGQEZpBj6f+iBDRt4LeUa/ZJZo/xjT2Kxu2qZKoyI+P57zOee5kKMz/C/kXiCxIFGv6WldPMyGY1nyUpNzkTl/TkrlHoPrOjl2op+3zujv69WXfl79DN53mhPRJUNGP+9+jOs0jnGdxzHMb5jJae8SEhJQUVNBQn4CsXmx7IjO4eDZpvuffT4nlJmhPiYdpy2l1d+KtFcbWKL1aI/XjCAIROdEExmjc5Kczda3s/t59dOVKe4WRjfXbka9CCxXlbMxZiMRURHsT9kvLre3sGdOjzmE9wlnkM+gNvdSMbU4lUVbFrEnSWeD3eF3BxEzIwhwDmhy350JO7nr17uoqKlggPcAts/djpuNm7i+TFXG6FWjOZlxkk6OnTi26Bgeth7NmufYn8ayL3kfLw9/mffGvldvfcAXASQVJrF7/m7GB4xv1jEA5m+cz5roNbxyxyu8PebtZo8j0b4wVTMJgkBWWZZOK+VcdZZcyL1ASXWJwWOYyc0IsJ1MZfaSJudTYPU6pZyqt9zW3JY+nn2uaibvfgS5BBl8B9Ic3eRu487YTmMZ11mnm6S+pRISplM30GxTVBrb/3Zvch9JM914JMdIO0ClUXEg5QCRMbrU8cyyTHGdhcKCcZ3HERYcxoygGXoGbEOotWp2Je4iIiqCLXFbqNHWAGCuMGdG0AzCQ8OZEDCh2aWlWoP0knQWb13MzsSdAAztMJSVM1fS1aVro/tptBqe3Pkk35zUlZz6vzv+j7dHv60nZL4/+T2PbH8EgB+m/8CivouaNcehK4ZyLO0Yb416i1dHvqq3rtahIZfJKX6p2KQ6yHX5+ezPPLDpAfp79+fvxX83awyJ9ktLNPqqUlcRmxdbz/BPLkxGEGT4VK1AgQsyDEUwCdhbafhmoSu+Dj4kFiRyKuMUpzJ1X3UjOuvi7+AvOktqo6ScLF0ajeiSAe725rwcVsm+lL3sTdpLTF6M3jaWSkuG+w0Xjf4+nn2MLkkoISGho7XKM0iNCa+f28EGlmhZbodrJqkwSSxTfOTKEYQ6VkSgS6DYy3GAzwCjorGTC5NZdXYVK6NWcrn4srg82DWY8NBw7g+5Hy+7tnPPEgSBZaeW8ezuZymvKcfGzIaPxn/EI/0fafJ8T6SdYOraqeRX5tPVuSu7799NR8eO4vqc8hyGrBhCUmES/bz6cWDhgWZpmtqAMVdrV1KXptYLYpm7YS7rzq/j7dFv88qIV0weH3Sfg9cnXmSXZ3NgwQFGdhzZrHEk2ictYYMIgkB6aToXcq7qpQu5F7iYe5EyVRkI8iZ1k6MNrHukKypNFWeyzoi6KSorSoxCr4uNmQ2hnqGiXurn1Y8g1yBkKJrUTS62Cu4dfYF9KXs5dPlQvXKqXZ27ipppdKfRUgCmhISJSJqp7SI5RtoZWkHLibQTosGfUJAgrpPL5Az3Gy72JalryDZEXkUea6PXsjJqJWeyzojLvWy9uD/kfsL7hBPsGtwap2IygiDw45kfWbprKaWqUqyUVnww7gOeGPhEo4a+IAi8c+gdXjvwGgCL+iziu2nf6Tl+Xtn3Cu8efheFTMGW+7YwpesUk+e3Nnot8zbOw9vOm5SnUjBTmOmt9/3Ul/TS9OsyzhdsWsBPZ3/ipWEv8f64ptP0JG4/WiuaoFxVTmxeLL+ciud/R2qz1K6OK6AFZOSav0elQleuwMfOR+xb0sO9Bx3sO1CtqSYmN0Z0liQWJBo8Xgf7DgRYzyY5eSwN1ei8NqIrvSSdfcn72Jusc5RcWwvUydKJMZ3GMK7zOMZ2GksX5y5tLtpTQqKt0VTZiebUy5UaE7YMt5sNLHH93G7XTHZZNlvithAZG8kfyX+g0qjEdd523swKmsWs4FmM6jiqnt1+LVpBy8GUg0RERfDbxd/El5ZymZxJXSYRHhrO9MDpRpc7bm2SC5MJ3xzOwcu6PjRjO43lx5k/NhkVHpcXx4TVE7hSfAUvWy9+n/87IR4h4vqE/ASG/jiUvIo8JneZzOY5m5v87K5FrVXT+fPOpJak8tOsn7i/9/166z8//jlP73qaaYHT2HrfVpPGruV8znl6fdsLazNrCl4oaDN/F4m2Q2tpJq2g5UrxFS7kXGDLuSvsOtnhnzUN6yZrM2u6uXYTSxnXNnvPKM3gdOZpTmWe4kzWGYO94ayUVoR6huJtNoWTF0MxRjdVq6s5nnacP5L/YG/SXv5K/0uvxLKUhS8hYTqSZmq7SI6RdowgCFzMvSjW1z2deVpvfahnqBgV1dO9Z5MvAM9mnSUiKoLV51aTX5kvLh/sO5jw0HDu7XFvm2had6X4Cou2LGJv0l4ARnUcxY8zfqSTU6dG91t+ajmPbH8EraBlRtAM1s1eJ9YJFgSB8M3hrDq7Cmszaw4sOMAAnwEmzataXY3ff/3IKc/h17t/5a7ud+mtn/3LbDbGbOTDcR/ywrAXTBq7do6+n/mSUZrB3vv3MrbzWJPHkJAwhKnCwFDUgr2Vhu4BFylkPxdyLpBemt7g/v4O/mIt3s5OnZEhI78yn+icaE5nntZrfupYsxB7dRgyrmZ6yBAY20vGOzP71StbV4sgCMTmxbI3aS9/JP/B/pT99dLd/Rz8RIN/TKcxzS4JISHR3jG17ERj1IqGuvePukiNCY3ndraBJZrH7XzNlFSXsCNhB5tiN7E9YbsuovsfHC0dmRY4jbDgMCYGTMTG3KbJsWp7OB5NPSoud7ZyFns49vHq02rnYixaQctXf33FS3tfolJdiZ25HZ9N/IwH+zzYqC5ML0ln0ppJnM85j72FPVvmbNEL6jqRdoLRq0ZTqa4kPDScFTNWmBxo8u6hd3ll/ysM8hnE8Yf0I2yPpx1nyIohuFm7kf1cdrOCWP57/L8s3bWUiQET+X3+7ybvLyFhiOY4UwzpJhtLFR18j5Ol3kVsXizVmmqD+9qa24q9S7q5dcPBwoFKdSVJBUmczjrNmawz+veyBnTTrH52fHTn0AadmMVVxRy8fJC9SYaz8C0UFgz3Gy6W3ZKy8CUkDCNppraJ5Bi5jbhcdFnMJDl85bBen4AApwCxvu5g38GNZlioNCq2xW8jIiqCnQk7xegBK6UVd3a7k/DQcEZ3Gm10M7DWQBAEvjv5Hc/veZ7ymnJszW35z/j/sKTfkkaN502xm7hvw31UqasY1mEYW+7bIqaJ1mhqmL5uOrsu7cLN2o1ji44ZVZO3LrWZJyP9R3Jg4QG9dR8d+YgX977Ind3uZMM9G0w+59i8WLp93Q0LhQWFLxZiZWZl8hgSEtfS3NTMpoRBUVURF3Mv1uthUre/UV1kyOjk1ElsWGiltCIxw5bj53uKW9RSN8rKyfGyXgmufl79DJa0UGvVnMw4KRr8R1OPimUEawnxCBFTyEf4j2h2yTsJifZIS6Vxt1aa+e2IZANLmIp0zeioVlfzR/IfYpni3IpccZ2V0ooJARMICw5jetD0JsvJxOXFiT0c62aq9vboTXhoOPNC5uFq7dpq52IM8fnxLNy0kGNpuozeKV2nsHz6crztvBvcp6iqiBnrZnD4ymEsFBasnb2WO7vdKa7fFr+NmetnohW0vDbiNd4c/aZJc8opz6HDZx1QaVT8vfhv+nv3F9dVqauwf9+eGm0NSU8mNRn8Zohpa6exPWE7H4//mOeGPmfy/hIS13I9dlBjukmtVXOp4FK9Hibx+fH1tEotDhYO9HDvQXe37rhZuyEIAjFpFkTF9kdAp6tqqdVNxZb/Ici3Uk839XDrYdBZklGawR9JfzSZhV+rm6QsfAmJq0iaqe0hOUZuU3LLc9kav5XI2Ej2XNqjF4XgaevJzKCZhAWHMbrTaMwV5g2Ok1mayepzq4mIitCLHPB38GdB7wUsDF3YLGO1pUgqTCJ8cziHLh8CYELABH6Y/gMdHDo0uM/hy4eZsX4GRVVF9HDrwe/zf8fX3heA0upSRq0axenM03Rx7sLRB48a1belltTiVDp93gmNoCH60Wh6uvcU1x1MOcioVaPwtfcldWmqyef61V9f8a+d/2Jsp7HsfWCvyftLSFzLzUjNzK/I1zP8a43/vIo8/Q3FuryuesZ9nQ1Qk0e65SKQ6TeL97T1rOcs8bbz1jPYy1Xl/HnlT52jJHkvUVlRemMo5UqG+A4RI6MGeA8wuVSEhER7oyXKTmyOSuep9VFNbtecxoS3G5INLGEq0jVTH41Ww9HUo2IGfkpRirhOIVMwsuNIwoLDmBU8S9QLDY2z+9JuIqIi2By3WSzbZSY3Y3rQdBb2XsjkrpNvWg9HjVbDp8c+5dX9r1KtqcbR0pEvJ3/JvF7zGnyhWVlTydyNc9kUuwm5TM7XU77mkf6PiOuXnVrGw9se1v08bRmL+y02aU61zdEXhi4kYmaE3roBywdwMuMk62ev596e95o0bo2mBuePnClTlXHm4TOEeoaatL+ExLXcDM1Uo6khoSChXg+ThPwEvbJXQJO6SUCLhvx6uslcYU6IR4ieburp3lPv/VBtFn5t2S0pC19ComkkzdS2kBwjEpRWl/J74u9ExkayPWG73oPM3sKeqV2nEhYcxuSukxuMkBYEgb/S/2Jl1ErWnV9HcXWxuG5Ux1Es7L2Qu7rf1WTqeWugFbR8ceILXv7jZV2EkYU9n0/6nAW9FzRo6EdnRzNpzSQySjPoYN+BXfN30c2tGwBZZVkMWTGElKIUBvoMZN8D+0w6r9qSWY/2f5Rvpn4jLi9TleHwgQNaQUv6M+mNRmkZYtb6WWyO28z7Y9/npeEvmbSvhMS1tLXUzJzyHL0oqVOXS8lNndvkfkrXr3B2yEchU5BXkcelwkt6jVZr8bDxEJ0kfb360s+rH772vuI9Irc8l33J+/gj+Q/2JO3RezECulT2UR1HiUZ/d7fuUmSURKvVp27PSNFPLYdkA0uYinTNNI4gCJzNPktkjM5JEp0Trbd+gPcAMQO/sR6MBZUFrIteR0RUBKcyT4nLPWw8xB6O3d26t9p5NMbF3Iss2LSAkxknAZgVPIvvpn7X4ItMtVbN49sfZ9npZQC8MfINXhv5mmgDvbb/Nd4+9DZymZzNczYzLXCa0XOpLZllobAg/Zl0XKyv3vOf2PEEX//9NUsHL+XTiZ+adI5HrhxheMRwXK1dyX4u+6ZWOZC49WlrmqlaXU18fryes+RcahWavCea3NfG4wcc7LOpUldxqfBSPQcH6Jwlvdx7XdVM3v3o5d5L7NNjTBZ+L/deYnCZlIUvAZJmag7Ga6ZBDAm4uZmpbR3JMSKhh0qjYn/yfiJjdanjdcvaWCgsGB8wnrDgMGYEzWgw7buyppJNsZuIiIpgb9Je8SWkrbkt93S/h/A+4QzrMOyGvzSMy4tj4eaFHE/T3TymB07n+2nfGyyrA7rSYxNXTyQuPw5nK2e23beNIR2GiGMN+3EY+ZX5TAucRuS9kUZHeO1P3s+Yn8ZgY2ZD+jPpen1Zen/Xm3PZ59h4z0bCuoUZfW5qrRqXj1woqS6pl24uIdEcjH3Qzh6WysBOTnjZeeFl64W3nfcNcYAaGyGRa/YRFcpD4u8yZNiZ22FvYY+F0oIqdVWD/U7crN1EZ0ltlFQH+w7IZDKSCpNEg/+P5D8oqCzQ29fT1lNs4j6u87hGo0gl2ictlSZdl9tBNDTVmFBAi1ZWwCOTM3hu6DNSw9xGkGxgCVORrhnTuFRwScwkOZZ6TC/wIsglSHSSDPAe0GgwVm0Px7oluwb6DCQ8NJw5PefgaOnY2qeih1qr5oM/P+Ctg29Ro63B1dqVb6Z8w9097ja4vSAIvHHgDd469BYAD/d7mK+nfI1CrkAQBBZtWUREVATWZtbsX7CfgT4DjZqHIAj0X96f05mn6/Vg/Pnszzyw6QGGdhjKkQePmHR+bx54kzcOvsG9Pe5l/V3rTdpXQuJajNVMUwYl0M/fDi87nV7ysvXCzcbthjjmmqubLBQWOFg4YGtui4BAbnkuZTVl9fYzk5vR072nXjZ+L49eWCotTcrCH9tpLAN9BkpZ+LcZkmZqHsZoJg35dA3+ma+mfEEP9x43fI63CpJjRKJBtIKW42nHxaioS4WXxHVymZw7/O4QU8f9Hf0NjnGl+Ao/nf2JlVEr9fbv6tyVhaELeaD3Azf0haFGq+E/R//DawdeQ6VR4WzlzFeTv2JOzzkGBUteRR7T1k7jRPoJrJRW/Hr3r0wNnArAsdRjjPlpDFXqKhb3Xcz30743ytkjCAI9v+3JxdyLfDHpC/416F/iusVbFvPDmR94cdiLfDDuA6PPqzaiysnSidznc6VmZxLXTXMNaAA7czudwV/H8K/9XneZnYVds+dnrAixdPuODNVBSlWljW4nQ4a1mTWWSku0gpaiqiKDmSWu1q5iRkldZ8m57HOiwX/48mEq1ZV6+wW5BImRUaM6jrrhLzkkrh9TDOzWKKnQGqKhrdJQY0L+WZJj/h6VimN0de7KF5O/YFKXSTd6ircEkg0sYSrSNdN8ssqy2BK3hcjYSP5I+kMvQtrHzodZwbMICw5jhP8Igy/9VBoVOxJ2EBEVwfb47WIpHEulJWHBYYSHhjOm05gbauOfzTrLgk0LOJt9FoB7e9zL11O+1svcqMu3f3/L4zseR0Dgzm53subONVgqLanR1DBj/Qx+T/wdV2tXji06RhfnLkbN4cczP7JoyyI6OnYk8V+J4vnH58cT9FUQlkpLSl4qMelF6h0Rd/DnlT+bVd5LQuJarkczKeVKPGw8ruomW2+9YLNa3eRm7XZd//vG6iaVw8fk1PxZvxTXNZjLzbE2s0YpV1JeU15P99SeWw+3HnrOkhCPEMpUZexP2c/epL1SFn47RdJMN47GmrkLCBRZ/odi2UGUciVPDnyS10e9jr2FZN9di+QYkTAKQRA4n3NejIq61tPf16uvLioqOMzgw0sQBA5fOUxEVAS/XviV8ppyQOdgGd95POGh4cwMnoml0vKGnM/5nPMs2LSA05m6m8jsbrP5duq3BvuFlKvKufvXu9mZuBOFTMEPM35gYehCQNesffYvs9EKWt4a9RavjnzVqON//dfXPLHzCYJcgoh5PEb8vH44/QOLty5mVMdR7F+w3+jzeffQu7yy/xVmd5vNb/f8ZvR+EhINYawB3S1wNxXyKDJKM8gozaCipsLoY9ia2+oZ/nUdKHXFgJ25Xb17SlMREtemrVfUVBCTG8OhK4c4lnqM8znnSStJM8phYq4wRy6TU6WuMugscbFyEZ0lfb360tO9J5mlmexL2cfepL38nfE3WuFqvV65TE5/7/6iwT+0w1Ap6r2NY4qBrdEKDPvn2jREc0oq3Iza1Tebhj7z16Z1J0+7l+f3PE92eTagK/Xy2cTP6OjY8SbNtm0i2cASpiJdMy1DcVUxOxJ2EBkbyY6EHaLuAV1T4ulB0wkLDmNCwASszazr7Z9dls2a6DVEREVwPue8uLyDfQce6P0AC0MXGu1YuF5UGhXvHHqH9w6/h0bQ4GHjwbLpy5gRNMPg9r9d/I15G+eh0qgY6T+STXM24WjpSJmqjFErR3Eq8xQBTgEcXXQUdxv3Jo9fWVOJ72e+FFQWsPW+rWIpLkEQcP7ImaKqIk4uPkk/735GnU9pdSnOHzmj1qqb3bhdQqIuxmqmvt0PUaWIJrMsk4zSDHLLcw3qCkMoZAo8bD2uBpnZGghAs/PC3cbdYBULU3STXAapJan8nf43By8f5EzmGRILE8ktz23SYaKUKzGXm1OjrTHYGF4hU9DDvYde6WJ7C3uOpB7hj+Q/+CPpD/Ir8/X28bT1FDPwx3Ya22ivWImbj6maqaXL0EmaSUftZx7kU8XSXUvZHLcZ0P0/fTz+40b7h92OSI4RiWaRXJjMpthNRMZG8ueVP/Ue6l2du4qp4wN9BtZLDy1TlfHrhV9ZeXal2BQdwNHSkft63kd4aDj9vfu3+j9qjaaG9/98n7cPvY1aq8bN2o3vpn3Hnd3uNLjtQ1sf4qezPwHwwdgPeGHYC8hkMr79+1se2/EYAD/O+JHwPuFNHru0uhSfT30oVZWy5/49jOs8DtCl04d8F4KtuS1FLxYZHRkyetVoDqQc4Jsp3/DogEeN/QgkJBrEVMcD6ERqqaqUzFKdwV9r+GeWZl79+Z/vZar6adgNYW1mre8s+UcMFBb5s+5w/Zq0phg+lTWVXMy9yMHLBzmedtwkh4lcJm9QIDhZOokGf7BrMNXqaqJzo/kj6Q/i8uP0trVSWnGH/x2M6zSOsZ3HEuoZKtW7bkM0ZGDrEJg6IBMruzjSS9NJK0kjLdcKoeCpJsc1tkdGW6tdfSNpLOKspLqENw68wRcnvkAjaLBUWvLy8Jd5YdgLNyzIoq0j2cASpiJdMy1PlbqKvUl7iYyJZEv8FvIq8sR1VkorJnWZRFhwGNMCp+Fk5aS3ryAInMo8RcSZCNaeX0tRVZG47g6/OwgPDefuHnffkPr8JzNOsmDTAi7mXgTggd4P8Pmkzw1mwO5P3s+s/82ipLqEEI8Qds7bibedN9ll2QxZMYTkomQGeA9g/4L9RpVffX738/zn2H+YGDCR3+f/Li6fuHoiuy/t5uspX/PYgMeMOo/t8duZtm4anZ06c+nJS03vICHRBM3RTKB7v5Bdnq2nm+ppqLJMssuyjXagyGVy3G3cDQab5eZ7s2J//XcLxuomQRBIK0njRPoJDl0+xOnM01wqvGSUw0QhUyAg6AWK1V3Xza0b/bz60cezDw6WDqSXpHPoyqFGs/DHdhrL6E6jpSz8NkTjmgnuGlqIrX0i6SXppJemk5JjRkX2kibHlTRT0zSVpbMzYSdP/v4kiQWJgM6G+GrKV4R4hNysKbcpJMfILURbrZOXU57DlrgtbIrdxJ6kPag0KnGdl60Xs4JnMSt4FqM6jsJcYa63b2JBIquiVrHq7CpSS1LF5T3cehAeGs78kPkNNvtrKc5knmHBpgViA8W5veby5eQvcbZy1ttOEARe3PsiHx/9GICnBz3NJxM/QS6T8+8//s37f76PQqZg631bmdx1cpPHrW0aOCt4FpH3RgK6Ul+OH+qiqqIfjaane88mxylXleP8kTMqjYr4J+Lp6tLV1I9AQsIgjaVmwvVFXJRWl4oCoK4DJaMsQ08UGGr6VxcrzRCcVUtQcjXbS6EsppPfaXp0qKmfjWLnhZOlU5OO1yp1FRdzL3Ig5QDHUo9xIfeCUQ6TxnCwcKCvV18CnQORyWVklGbwV/pfer2cQJeBMqbTGLH0Vmenzs0+poRplFaXkl6aTnqJzsmRWpLO6r2BVKksuXrlX6W2dmu65SKQ6cSetXoEbjUv1Nv2Wj6fE8rUEA8KKgvIr8gnvzLf4PeUHDMSEqc2Od7t2oz8Qs4Fntj5BJeSD+KKDF97X54b8iwj/Efob2jtAo63V5Rhe7KBJW4M7emaaYu6Sa1Vc+TKETED/0rxFXGdUq5kVMdRzArS6SYfex+9favUVWyO3UxEVAS7L+0WX5TamNlwd4+7CQ8N5w6/O1o1sKxKXcXr+1/nP8f+g1bQ4mPnww8zfjBYzjAqK4rJayaTVZaFv4M/u+/fTaBLIPH58QxdMZT8ynymdJ3C5jmbm+zTmFSYRJcvuiAg6Gmd2sbuC3ovYOWslUadwzO7nuGz45+xpO8Svp/+vcmfgYSEIVpTM6m1anLKcwwGntXqpsyyTLLKsgw6HupiSDcpzUrp3vkivf2FelkonraeTZapEwSBjNIMjqUd40DKAaKyorhUeIm8ijzUWnWzzlkukxPsGkyoRyhOVk6UVpdyMe8ipzNPN5qFP6TDECk45gah1qrJLssmrSSN9NJ0rhSn8f1OXyqrzWkNzTSjtzdlqrIG9VJeRR5J2QouxI1vcrzbVTNVq6v55NgnvHPoHVxrqnCXKbinxz082v8R7MyvKXF+m+kmyTFyi3Cr1MkrrS5lZ+JOImMj2R6/Xe8looOFA9MCpxEWHMakLpP0IoQ0Wg37kvcRERVBZGwkVWrdeSrlSqZ0nUJ4aDhTu05ttUZc1epq3jr4Fh8c+QCtoMXL1ovl05eL/UTq8umxT3l297MA3NfzPlbOWomZ3IyFmxfy09mfsDGz4cDCA002QL+Ye5Ee3/RALpOT/FQyfg5+wNXsjx+m/8CivouanPuuxF1MWjMJPwc/Up5KkVLiJFqUm33vKVeVNxhBJS4rzaKywheF4IRGVki1/IJocBnCQmGhZ/hfW7qr9ndnK+d6/0/V6mou5l7kj+Q/OJ52nIu5F6/LYWJnbkewazC25rYUVxUTlx+nV3IDoKNjR9HgH9NpjMGSfxKNoxW05FXkiQ6P2uyOuk6Q9NL0eo44C00vPFXvNzn+Hb1P0cPXHHtLe7ILHFi137HJfcps3iFf23TpBVNEw8xQnya3a48IRVfQftEHRWMCXGkBT5ySjHwJiUZoL9fMzbZdjEEQBM5knREz8OuWzAJd8/XaMsVBrkF669JK0sQejgkFCeLyAKcAsYdjra5oDY6lHmPBpgXisRf3XcwnEz6p1zsuuTCZCasnkFiQiKu1K9vnbmegz0COpx1nzKoxVKorWdRnEcunL29Sv0xbO43tCdtZOngpn078FLia/RHsGkzM4zFGzT3k2xCic6L5313/454e9zTj7CUkDHOz7zsarYbcityrTpO6eqlO4FlWaQ5KTbDRusnN2q3Rksdetl542nrWKwssCAKZpZkcST3CwcsHdQ6TgkvkVTbfYRLoHIiXnRcarYYrJVf0nMugy8Ib7jdcDC6TsvCbR0VNhZjVkVaSpv/zP9+vdcQZq5kG9DxCdx8znK2cyS10YvXBph0UKoePyVMfNVierS6SZjKO9NQTuP04CfPGHKm3mW6SHCO3ALdqnbxqdTX7kvcRGRvJ5rjN5JTniOsslZZMCJhAWHAY0wOn6zXxK6oqYv359URERfBX+l/icjdrN+aHzGdh6MJWS/n6K/0vFmxaQGxeLADhoeF8NvEzHCwd9LZbc24NCzcvRK1VM77zeDbcswELpQXT1k5jT9Ie3G3cObboWJOR3mN/Gsu+5H28PPxl3hv7HgAv7X2JD498yOK+i1k2fVmTc65NL38w9EFWzFzRzDOXkGiYthh1eS2VNZWNlu6qFQOFVYVGj2muMMfT1rNeA/lrxYCLtQtqrZoLORf4I/kPjqUe42LeRdJL0pvlMLGUW+Jh54FaqyarLKteenqoZ6hYdusOvzuMKkPRnlFpVGSWZuo7PK4x4NNL0ps0pg1hrIFdZPEZxfI/dL8IcnyqVqDABRn1xZihiClHS0dcrFxwsXbR/27lQnm5N+sPeTY5h9s1+gmAjChYNrLp7ZYcBO/Q1p5Nm6E92MASN5b2cM3cqropIT9BdJIcSzumt66bazexTHE/r36iE0EQBI6mHiUiKoL/XfifWKZUhoyxnccSHhpOWHAYVmZWLT7fipoKXt77Ml/89QUA/g7+/DjzR8Z0GqO3XU55DlPWTOFU5ilszGzYcM8GJnaZyJa4LYT9LwytoOWNkW/w+qjXGz3ezoSdTFk7BQcLB9KfScfG3Ibc8lzc/6PrU1L4YmGTJXWyyrLw+kT3t899PhdXa9dmnr2EhGFuBc2kFbTkluc2GHhWV0uZ4sBwsXKp3/ektidKnZ8tFBZklWVx+MphncMkM4qkoqRmZ5h42HhgZWZFfkV+Pd0lZeHrIwgCBZUFjTo80kvSTdLLtRirmSpsviZXu/OfCZmumSwUFnp6ydXaVdRMlRW+bDzSdFDAba2ZQNJNBpAcI22c9lInT6PVcCztGJExutTx5KJkcZ1CpmCE/wjCgsOYFTxLr6HWxdyLrIxayc/nftYrN9PXqy/hoeHM7TW3Xsmr66WyppJX97/Kp8c+RUDA196XFTNWMCFggt52uxJ3MfuX2ZTXlNPPqx875u3ASmnFyJUjOZN1hq7OXTny4JFGo7s3xmxk9i+zcbN2I3VpKhZKC3FZiEcIZx852+R8+37flzNZZ1h751ru63XfdZ+/hER7pkpdRVZZVr1oqmuzUK5t/NcYSrmynuFf+93Nxo1yVTkxuTGczzlPTH5MsxwmChSYK83r1dk1k5sxtMNQ0eDv792/yZIUtxKl1aUNOjyuFF8hrSTNpL+VqRgb/ZRl/jLVimjM5Ga4WLvgIIygKu/+f9bWfTbrzKinJ9owqZcXLlYuOFk5Nfo3U6m1BL+6E20jFphcBrFvT8ZceZtGxRlp4AtLDiDz7tP682kj3Oo2sMSN51a/ZtqLbsoszWRz3GYiYyPZl7xP72VhB/sOzAqeRVhwGHf43yE+P8pV5WyI2UBEVAQHUg6I2ztYODCn5xzCQ8MZ6DOwxTPLD6YcJHxzuKjtHh/wOB+O+1AvaKO0upTZv8xmT9IelHIlK2euZF7IPL4/+T2PbH8EgOXTl/NQ34caPI5W0BL4ZSCXCi+xbNoyFvdbDEDAFwEkFSaxe/5uxgc0XkJlbfRa5m2cRx/PPpx++PT1nrqERLtGK2jJr8ivF2RmSDeZEnzkZOlUv9TxP98tFBakFKVwPvc853POk1yY3KwME0uFJWpBXW+/9pyFXxtQZ8jhkVqcypXiK2SVZVGtqW6V45uqmUD3fHKWjUZbWFslpb5menS8GRO6u4vOEGsz6wafY5JmMhLJMVIPyTHSxjl2KZ/7ljddauPb+4OY3KPLDZjR9SMIAueyz4n1dc9ln9Nb38+rH2HBYdzZ7U66uXUDdDf63xN/JyIqgq1xW8WHr7nCnJlBMwkPDWdCwASjm5Ubw59X/mThpoVcKtQ15nu438N8PP5jvTTxv9P/ZsraKeRV5NHFuQu75u/CSmnFkBVDuFx8mUE+g9i3YB/WZtYGj6HWqun0eSfSStL4Oexn5ofMJ70kHd/PfJHL5BS/VNxoQ8W8ijzcPtY90LOezWr1fizN4VaInJGQuJZqdTVZZVn1xEBGaSaXsuXkllZTqEohW3W00fTzuijlSjxsPMSaveYKc0qqSsitzCW3PJfCykIq1BXXNW97C3tGdRwlGv3BrsENvwQpSoWKRpwKrVhbtDZara7DI60kjeSiZFKKUkgvTSe3PLeeI+hGYmduh7OVK/Lcd9Bq7DFULxfAxVbO+kcDsTO3QSFXUKmupLKmkj9i8vnhQBEF5VdNJ3srDWN65+Prnk9lTSUVNRVUqq/5fs3y8jJvtPlPNjnf2zr6yUgD/3HfXjw5a0W9sjTtlVvdBpa48dzq14yxumn1ov4M79r2bGZDFFUVsT1+O5GxkexM3ElFzVU7wcXKhelB0wkLDmN85/FiZkhSYZLYw/Fy8WVx+26u3QgPDef+3vfjadt0JqKxlKnKeH7383x36jtAV9Jr5ayVDPcbLm6j0qhYuGkh686vA+CTCZ/wzJBneGXfK7x7+F0UMgVb7tvClK5TGjxObTnj3h69OfPwGWQyGXM3zGXd+XW8PfptXhnxSqPzfHDzg0RERfD80Of5aPxHLXDmLYukmSRuRWqzEOpn6mcSl6n9RzNdJqv6T6q1xtv1jpaOYuCZs6UzVeoqCioLyK3IJa8ij5LqkiabvjdFb4/eYnBZk1n4N1E3lavK65X/vVJ8haTCJFJLUskqy6KwslDsPXWjUcqVuFi6YlX0HwSNA4Y1k4CzrZxVD/njZO2ApdKSGk0NFTUV7L2Yx7IDBeSXXdXUDtZaxvYuxN+jsL5OUlcY1Exlpd7U5D3W5Hxva80ERuumjXc8zczRr7XoO9a2iuQYaeNsjkrnqfVRTW6Xa/YRtg6xhHiE0Mu9l/i9u1v3VkmfbkmSCpPE1PEjV47o3dCDXILEqKgBPgOQy+TkVeSx5twaIqIiOJt9NaPC286bB0IeYGHowhZ76VGuKuelvS/x1d9fAboog4iZEYzqOErcJj4/ngk/T+By8WU8bT3ZOW8nlkpLhv04jILKAmYEzWDDPRsajAh+99C7vLL/FQb5DOL4Qzox5/upL+ml6RxYcICRHRu+af1y4Rfu/e1eern34tyj5xrc7mZxs2utSki0JIauZ097C54Y50lX74Z7oWSUZpBbnmu0sSqXybExs0EhU1CjraFaU93sWrzu1u5M6DKB8Z3HM7bT2KvNXItS4at+oG4kaqiZtUVVGhUZpRmklaSRVpJGQn4CiYWJXCm6QkZZBjllORRXF98w410hU+Bg6YCjpSP2FvbYmttia2aLlZkVVkorzBXmmCvMUcqVyOVy5MgRBAGVVqWrsZvrxqWk0f+MdtXQr51/keXHlMgOGT64IMdC28PoOs6GkOrlGoGRBn5fyjivUOhexo14pdHAg/bArW4DS9x4bvVrxljdVGjxKZ288vV1k0cvvGy92nSvvsqaSvYk7SEyNpKtcVv1MiatzayZ1GUSYcFhTAuchqOlI1pBy/7k/URERbAhZoPYw1EhUzC562TCQ8OZFjgNc4V5i8xvz6U9PLjlQdJK0pAhY+ngpbwz5h1Ri2oFLc/uepb/nvgvAM8PfZ73x77Poi2LWHV2FdZm1hxYcIABPgMMjl9YWYjPpz5Uqis5HH6Y4X7D+e/x/7J011KmBU5j631bG5ybIAj4/9ef1JJUds3fVa8SwM1G0kwS7QmDmsnBkmcn+tHdV9VoFkpGaYZ4rzIGK6UVFgoLtIIWlUZFtaa6WRpDKVcyyGcQk7pMqp+F30q6SRAE8ivzRYdHSlEK8fnxJBcli308CioLWi3LwxDWZtY4WTrhYOGAnYUdtua2WJtZY6W0wlJpKWompVyJDBkymQy1Vk2VuorUHBfiL434ZyT97A8BKLP+lCIO6vUmubqJpJluGCboJoVPX76e8jUDfQa2/rxuIpJjpI1jbORTtvnLVP2TklYXuUxOoEugnrMkxCMEf0f/NtmIKrssmy1xW4iMjWRv0l69tEwfOx9mBs0krFsYI/1HYqYwIyoriogzEayJXqMnDob4DiE8NJx7e96LvcX1/933J+8nfHO4GHX15MAneX/c+2ImSEZpBpPXTOZc9jnsLezZPGczZnIzxv08jip1FQ/3e5hvp35rUGxll2XT4bMO1GhrOLn4JP28+zH7l9lsjNnIR+M+4vlhzzc4ryVbl7D89HK9RoRthVu1xrOEhCGu93qu0dSQU55jsO9JZtnVnig55TmGjcUWwtHSkXGdxvGozxDG7Hmz6R2uSaEtqS7hSvEVYvNiic2NJTYvluSiZDLLMimsLKS8prxZvTyMRSFTYKYww1xhjpncDIVcgQwZAgKCIKDWqqnR1lCjqWlREWGlGYKzaglKrqbcq8mlwHwZlQr9WvAWCguszKxEEWFtZm34d+XV5Y1tm5yj5J1NZU3O8baOfjLSwP9Xh958lXYYAF97Xz6Z8Al3d7+7Tb8IvR5udRtY4sZzq18zxuqmuqU86uJi5UIvj16EuOscJSEeIfRw69Eme3mptWoOXz5MZGwkm2I3kVqSKq5TypWM7jhaLFPsZedFcVUxv1z4hYioCL0eJi5WLszrNY/wPuGEeoZe97yKq4pZumspEVERAAS7BrNy5koG+Q4CdC8CPz76MS/ufRGA+0Pu57up33HnL3ey69Iu3KzdOLroKF2cDVdCWLxlMT+c+YE5PeewbvY6jqUeY+iPQ3G3cSfr2awG7+cJ+QkEfhWIucKcwhcLG8zmvxlImkmiPXG917MgCBRXF9d3mhjoIVk3g66lUcgU9HLvxb097+Ve5yA6/bKw6Z3q6KYaTQ1ZZVkkFiRyMfcicXlxJBQkkFaSRm5FLiXVJVSpq1o1UMxMbiYGgCnkChQyXeS/gIBGq0GtVaPSqFBpVNedfVOLKZpJLpM3qoEMaabGtNXlHHPe39J0VtJtrZnAaN00whwO15QgQ8aiPot4b+x77ar8XF0kx0gbp7ZWblZxlcFbZm2t3F1LBxGXH8O57HNE50RzLvsc57LPNVh73dbcll7uvfSipHq598LJyqlVz8cUSqpL2JGwg8jYSHYk7BAbCoKuNuW0wGmEBYcxsctEFDIF2+K3EREVwc7EneKLRSulFbO7zyY8NJxRHUddlzOotLqU53Y/x7LTuoboXZ27snLWSoZ2GAroUt1nrp/JocuHMFeYs+bONShkCmb/MhsBgXdGv8P/jfg/g2PP2ziPtdFrCQ8N58eZP/LRkY94ce+LzO42m9/u+a3BOXX+vDPJRclsn7u90dTzG017qfEsIQHGXc8e9hbsfmbwdV/Paq2a3PJcsYxXVlmW+HN2Wba4LLs8+7ocKH0EOadpOlp+lIWcE5oqVFpVqzpsWhszuVnDDoq6v19riNdZZqGwIrPAmspqczzsLQn1s8POwkZvLCulVYunGxtrB9zW91MTeoxsLU3l6d+fFuvhj+k0hi8nf0l3t+6tPMkbz61uA0vceG71a8bY++XPSzpxMe+8nm6Kz483+JyTISPAOaBekFlnp85tpryEIAiczjwtlim+mHtRb/1g38G65u3BYXR16UpsXiwro1by09mfyCzLFLcL9QwVezheb2PybfHbWLx1MVllWchlcl4c9iKvj3wdC6UFACujVvLQlofQCBomd5nMjzN+ZOq6qZzOPE0X5y4cffCowRcwUVlR9Pm+D0q5kitPX8HJygn79+2p0daQ/FQyHR07GpzPt39/y2M7HmNUx1HsX7D/us6tJZE0k0R74kZqJkEQKFWVXtVLpVlklf+jm0ozdT+X6jRUeU35dR3LWN00TKnhL6EajVZz08paXS8yZE3qpaYcFpYKazILbKhWWeBmZ0EfP1tsr9FM1mbWmMnNWjQ4SdJMRmKkbsq7fyPPRv/ET2d/AnQBlu+MfodH+j/SZuyflkJyjNwC1HrdAb1/8Ka87oIgkFWWpWf0R+dEczH3IiqNyuCxfO1965XjCnINarEU6+ZSpa7ij6Q/iIyNZEvcFnIrcsV1VkorJnaZyKygWUwPmk61upqfz/1MRFQEsXmx4nYdHTuyoPcCFvReQCenTs2ey67EXSzasoj00nTkMjnPDnmWt0a/haXSkip1FfM2zmNjzEZkyPhqylcIgsATO58AIGJmBAtDF9YbszbayVJpSdrSNKJzohm9ajS+9r6kLk2ttz3oSpAFfBGAUq6k8MXCNlUSxNiIvVendsPVzqJF6uhKdXklWovrjUBtixhr4PeljDMmpjEbi0KmaNAJYYrDwpjfb/WG9M21A24bTGwiWFlTyUdHPuKDIx9Qpa5CKVfy5MAneX3U6y2SZdpWaA82sMSNpT1cM829X1bWVBKTF0N0drSedsouzzZ4HCulFT3de+oFmYV4hFy3Q6EliM+PJzJG5yQ5kX5Cb10Ptx46J0m3MHq592JP0h4ioiLYErdF1IdmcjNmBM0gPDSciV0mNvsZWlBZwL92/ou10WsB6OXei1WzVtHHqw8A2+O3c/evd1OprmSQzyBWzFjBtHXTSClKYaDPQPY9sM9gts6wH4dxNPUob456k9dGvsaA5QM4mXGS9bPXc2/Pew3OpTYbv7FAtZuBsTbmmocGIZfJWkznSLpJojVoj5oJ2oZuslJaGeewMEEfGdrHQmFxS2dSS5rJCEzUTUeuHOHxHY+LbQxCPUP5esrXYoB4e0ByjNwitGTd0RpNDQkFCTqjPzuaczm673Wb89XFTG5GsGtwvTq8PnY+N+WmqdFqOJJ6ROxLklKUIq5TyBSM7DiSsOAwZgbNJL00nYgzEay/sJ6S6hJxu9EdRxMeGs7s7rOblUpdVFXE078/zaqzqwDo7tadVbNW0d+7Pxqthid2PCE2IHx1xKuoNCo+PPIhSrmSbfdtY2KXiXrjCYJAv2X9OJN1ho/GfcSjAx7F4QMHtIKW9GfS8bbzrjeH5aeWs2TbEob7Dedw+GGTz6G1SC1O5ZXtmzh4rrNJ+11PHV2pLq9Ea2JKr6cKZQO9JtoYphr4CpkCS6Ul9hb2eNh44GPvg4uVC46WjjhYOGBjbmOyw8JMYXYDzrT9IN3nGqGZtZ+TC5NZumspm+M2A+Bl68XH4z9mbq+5t7QorKW92MASN472cs205P0ypzyH6OxovSCz8znnG6yB72nrWS/IrJtbNyyVltd1Ts0lvSSdzXGbiYyN5EDKAb2eZf4O/swKnsWs4Fl0c+0mlto6k3VG3MbL1ov7Q+5nYehCurl1a9YcNsZs5JFtj5BbkYtSruSVO17h33f8GzOFGcdSjzFt3TQKKgsIcgnim6nfcPevd1NQWcDUrlPZNGdTPcfMuuh1zN04F287b1KeSmHprqV8/ffXDZYW1mg1uH7sSlFVEccXHRfLet1sajQ1vPX7Dn4+3LTjydHKjKLKq6VKJd0k0RZpj5oJTNNNUTIBc4U5NmY2uFi74G3njYetB04WTjhZOWFjbmNcNkbdrHWlRZssg99Wke5xTdAM3aTWqvn+5Pe8sv8ViqqKAFjQewEfjvsQD1uPGzDp1kVyjNxCtHZkR3FVMedzztfLMKnrUKiLk6VTvTq8Pd173tDMBUEQOJt9VoyKis7RjzwY4D2AsOAwJnWZRExeDBFREfyR9IeY2mhnbsc9Pe4hPDScoR2GmvwiZEvcFpZsXUJ2eTYKmYKXh7/MqyNfxUxuxlsH3+KNg28A8FCfh6hQV7A2ei02ZjYcCj9EX6++emP9eOZHFm1ZREfHjiT+K5E+3/chOieajfdsJKxbWL1j3/vbvfxy4RfeGPkGr4963aR5tzRqrZodCTtYfno5OxJ2YKbugafqfZPGaK4XX6rLK9HaGBv9FBHem4Gdblw5wryKPBLyE0goSCA+P56EggQSCxK5VHAJtdB4s/brjXyyVFrS070nvT166748exPiEYKjpWNzT0fCCKQIz0YoSoUKw+VDAbB2abAh5s6EnTz5+5MkFiQCcIffHXw15StCPEJaY6Y3jPZkA0vcGNrTNdOa90uNVkNiQaKeXjqXfY6kwiSD2ytkCgJdAvUcJiEeIfg5+N1QJ2xhZSHb4rcRGRvJ74m/U6m+Wovd1dqV6YHTCQsOw8PWg3XR61gdvZq8ijxxm0E+gwgPDWdOzzk4WDqYdOzc8lwe3f4oG2I2ANDXqy+rZq2ip3tPYnJjmLh6IqklqXjbefPh2A9ZvG0xVeoqFvddzPfTvtf7nFQaFX6f+ZFdns0vd/1CpbqSBZsWMLTDUI48eKTesf9O/5uBPwzEwcKBvBfybnoWaXJhMj+c/oEfo36ksNjNZM0Ekm6SaJu0Vc2k0qhIKkwioSCBhPyruikhP4GCqoIm979e3eTn4KenmXp79CbAOUBydrQikmZqgmbqptzyXF7+42VWnFkBgL2FPW+NeovHBz5+05+t14PkGJFoFEEQuFJ8pZ7hH5cX12CDps5OnevV4e3i3OWG1KFLLEgUM0mOpR7Tq+0Y7BpMWHAYg30GE5Udxaqzq/QETKBLIAt7L+SB3g/gY+9j9DHzK/J5YucTrD+/HoDeHr1ZNWsVvT17893J73h8x+NoBS0zgmZQVl3GvpR9eNh4cGzRMb2SXhU1Ffh+6kthVSFb79vK5tjN/HDmB14c9iIfjPtA75haQYv7x+7kV+bzZ/ifDPMb1tyP7Lq4XHSZFWdWsOLMCjJKM8TlI/xGUZj6DKUVcpOqa5pa91GqyytxI7iZ9Uqr1dUkFiQSnx9PXH6c7itP972gsmlDvi6eNp6oNCoKqgqabeBbKCwQBAGV1nA5Rn8Hf9Hg7+2hc5ZIhr/ErUC1uppPjn3CO4feoVJdiUKm4PEBj/Pm6DdvWYefZANLmIp0zVwfZaoyzuecr1eOq7Cq0OD29hb2Bns+mup0aA4VNRXsvrSbyNhItsZt1ZujjZkNk7tOZnrgdOQyOb9c+IUdCTtE7WeptOTObncSHhrOmE5jjH7GC4LA/y78j8d3PE5BZQHmCnPeHPUmzw19jqyyLCaunsjF3Is4WDjwwtAXePXAq2gFLW+NeotXR76qN9Zr+1/j7UNvM9J/JN9P+57gr4OxVFpS8lJJvYzUD/78gJf/eJmZQTPZNGfT9X1wzUSlUbElbgvLTy9n96Xd4nJ3aw+cy76hstrC5DEl3STR1riZmqm2jHxdrRSXH0d8fjzJhckmNRe3VlrjbO1MRkkGWrTN0k1ymRxLpWWDDeJtzGzo5dFLz2HSy70XdhZ2Rs9TQuJmcSLtBI/veJxTmacA6Onek6+nfM0I/xE3eWbNQ3KMSBikIQ9r7fKMojIqtFlolfGcz71q+Ndt4FcXS6UlPdx61Mswcbdxb7VzyCrLYnOsLnV8X/I+arRX04997X2ZGTiTAOcAzmSdYUPMBvGhJZfJmRAwgfDQcGYEzTA69f23i7/x6PZHyavIw0xuxmsjX+Ol4S+xJW4LczfMpVpTzRDfIZSqSjmfc55Al0COPHhErxbxc7uf45NjnzCpyyRmd5vN4q2LGd1xNPsW7NM71pnMM/Rd1hdbc1sKXii4oSVpajQ1bIvfxrLTy9iVuEt0Prlau7Kw90Ie6vsQQa5BDdZ3NIZ1iwczJMCl0W0EQWDD2WieW2+4B4up40lINEZr1isVBIHMssyrRnwdYz6lKKXRpucWCgtUGlW9Bn/mcnMG+Q5iWIdhOFg6sDVuK0fTjorrjTXwD058m+fPr+Zkxkm9Y8iRE+wWTDeXblSqKzmfe54rxVcMjiEZ/hK3EleKr/Ds7mf57eJvALjbuPPhuA95oPcDt5yDT7KBJUxFumZMp7GoVN26fOJysiiuuUKl/Dznc3S6KSY3Rk+b1MXPwa9eOa5Al8BWs/drNDUcvnKYyJhINsVtIq0kTVxnJjdjTKcxjOk4hvKacn6L+U2vubufgx8Lei9gYehCOjsZV0Y3szSTJduWsC1+G6DLRFk1axVuNm7MWDeDI6lHsFBYsDB0Id+f+h6AFTNW8GCfB8Ux0kvS8f+vPxpBw9lHzjJy5UiKqoo4teRUvaz8cT+N44/kP/hy8pc8MfCJZn9OzSGxIJEfTv9ARFQEOeU54vIJARNY3HcxM4JmsC8mv9maCYzTOSXVJaw9+TcfbDXsFDF1PAmJhmjtHg8VNRUk5CcYdIA0VOkEQClXIkNm8L7b2akzwzoMI9QjlJi8GNacW0Ol5mpGnbG66b1uk/ggaSelqlK95U6WTgzwHoC9hT3JRcmczzlPtcZwGaMApwC9ILPenr3xd/BvFyVeJdoXGq2GFWdW8PIfL4sBm3N7zeXj8R8bbAXQlrmpjpE33niDN998U29ZUFAQsbG6htlVVVU8++yzrF+/nurqaiZOnMg333yDh4fxNcwkA990GqrJN6O3F1vOZjZaqy+vIs9gHd6GPOXuNu66dPI6zpLubt1bvA5vcVUx2xO2Exkbyc6EnZTXlIvrnK2cmRQwCWcrZ05nntZ7eehk6cTcXnNZGLqQfl79mnwgZZdl8+j2R4mMjQSgv3d/Vs1aRW55LjPWz6CkuoQglyDKVGWkl6YzxHcIex/YK/Y5uVRwia5fdkVAYOucrUxfPx1bc1uKXizSy7j5z9H/8Pye55kWOI2t921tyY+qQRLzk/hg36/sjD9KfnUy1fILINMyttNYFvddzKzgWVgo9aOdfj+fyRtbLpBV0kj9QgN8PieUmaFXs3a0gpZLBZc4lXmKUxmnOJV5itOZp6kp741bzQsmjych0RyaW6+09qVJamEx1UIOCosUEgriiC+IJy5PZ8hfa0DXxcbMBncbdxQyBcXVxeRW5NbbxtXalWEdhjHcbzjDOgyjr1dforKieHX/q+xJ2lNv+6eC7uSzxMPIGqktWonAyTu/446QueSW5/LFiS/47tR3emU1QNcM8K7ud3FXt7uws7AjOieas1lnOZt9VjL8JW5Z9lzaw5O/P0lsns4mHeI7hK+mfKV74XYdZbtuJJIN3H64EZoJpGvGVBqzC4BGbQaVRkV8fny9no+pJYYDfswV5nRz7Vav56OXrVeLPjcFQeBkxkkiY3VlimvvgQAyZAz2HUx/7/7kV+azI2GHWGscYIT/CMJDw7mr+11NllYWBIFVZ1fx1O9PUVJdgqXSkvfGvMfifouZu2EuW+O3IpfJmRgwkZ2JO1HIFGy9byuTu04Wx7jrl7vYELOBR/o9QlJRErsv7eabKd/w6IBHxW0qaypx+tCJak01MY/HEOwa3GKfVUNUq6vZeHETXx7ZwdmMFDSyQqrlF/C0c+fB0AdZ1HdRPSeSoWtJKytFLjQdRHKtzimuKuZ05mmdbvpHOyUUJGCtHiHpJokbwvX0eNBoBU4k5xGTnUGFJhOtWQIJBVeDxxq6R4IuwNXT1hMbMxuq1dVkl2fX0yEKmYI+Xn0Y3mE4w/yGMazDMGzMbfjs2Gd8evzTes4VN2s3/pi5il6/LGi0J4NKJkPx5Flkjh3YlbiLdw6/U6+CCUCIRwiL+iyir1dfUotTOZd9jrPZOt1UtwJHXRwsHAjxCNErxdXTvSdWZlaNfpYSEjeC/Ip8Xtn3Ct+f+h4BAVtzW14f+TpPDXoKs9KsdqeZWsUx8ttvv7F3715xmVKpxNVVF0H/6KOPsn37dlauXImDgwNPPPEEcrmcI0fq1w5tCMnAN42G6o42hDGef62gJakwSc/wP5d9jksFl+o9KED3QAt0CaxXjsvf0b9FojUrayrZm7SXyNhItsRtIb/y6j+qtZk1wzoMw0ppxcnMk3oPp57uPQkPDWd+yPxGM10EQWBt9Fqe2PkERVVFWCgseHv024zrPI6pa6eSWZaJl60XFTUVFFcXMzNoJhvu2SA6PqauncqOhB08Negpfjj9A+U15UQ/Gk1P957iMSatnsSuS7v478T/8tTgp677M2mI2rTvT/b/QWrqIJS4ieusLKp5YXInwgf3qXf+MXkx7L60m92XdnMw5RCa6s4oBCcUgiPO6iVNHveje7xRm8WITpAzWWcMRoDYCX1xrnqryfGkyCeJlqKpeqUarYYrxVfE0lcHYos4mxCIRn1V2KrJpcB8GZWKY+IyhUxBJ6dOBDoH4mjpSI22huyybGLyYgw6QgJdAvUM+kCXQPHFyJnMM7x24DUxErMuDhYORN4byehOo6Eold3R63jpj5cJcg1i3Z1rARAQeOPAm0TEb6HE0p7jDx0XXyQIgsChy4f46OhH7ErcVS8t3d3GnQdCHuD+3vcT4hGCWqsmPj+es1lnJcNf4pZDpVHx+fHPefPgm5TXlCNDxsu97uedCzuRNeDwAww2er8ZSDZw++FGaCaQrhlTaKxXQ0M6yhjdVFhZaLDnY5mqzOD2LlYu9TLye7j1wMbcpjmnVY/YvFixl+PfGX/rrevh1oMglyAyyzI5nnZc1HW25rbc3f1uwkPDGe43vFHHTWpxKg9tfUgsL3WH3x0sn76cj49+LNYw7+3Rm7PZZ7Exs+HAwgP09+4PwIGUA4xeNRobMxseG/AYHx/9mAW9F7By1kpx/L1Jexn/83h87HxIXZraqsEX8fnxLD+1nJ//ikZZNkdPNzlaC7wzK5RpIb56+xRXFbM/ZT+7L+1mV+Ie0vOtUAhOaGSFIMjwrHmvyeM+P82MclmU6Ayp7Zd1LX6WY5EVLm1yPEk3SbQExvR4KK4q1sv8OJ5YxaXLfRA0juI2hnSTs5UzQS5BdLDvgEKuoKSqhOSiZGLzYtGin2lvZ27H0A5DxQCygT4DxftjuaqcL//6ko+PfmywRPEDIQ+wYuYKlHIlQtEVpvwwmOyybL6b+i0DfQYCcD73Aou3LiZdXcU9Q5/hPxP+I+6fXZbN96e+5+u/v9bLGAPdO6/xncezMHQhM4JmYG1mTW55rp5eOpt1lou5Fw1muchlcro6d60XZOZj5yMFmUncFE5lnOLxHY9zIv0EAGOcurK7qABFA9mxwC2pmVrFMbJp0yaioqLqrSsuLsbNzY21a9dy1113ARAbG0u3bt04duwYgwcPNuoYkoFvPE3VHW2I5taKLFeVcyH3Qr06vHUdFXWxNbc1WIfXyar5jbvUWjVHrhwRo6LqloJRyBSEeIQgl8n1op6VciVTu04lPDScKV2nNJjWnlGaweKti9mRsAOAoR2G8s7od3hk+yPE58djb25PlaYKlUbFo/0f5espXyOTydiRsIOpa6fiaOlIT/ee/HnlT36Y/gOL+i4CdFFITh86UamurOcwaSkSCxJZfmo5K8+upLQkADfVvwFdpFgtdcVd/85m7E3aKzpD0kvT9cbztPVkQsAExnWcwJfb3cgtrWlANApoZPmkWTwI1zQus1Ra0tujN/28+tHXqy/9vPsR7NKd0f85fFPqmErc3hRVFRksfZWQnyDeK6w0Qwz+79S+MpnYL5URQfaU15STUpjC8fTjnEg/US/DzkxuRn/v/qJBP7TDUNxs3LiW8znnef3A62yM2WhwzjMCZ7D+rvV6ToZHtj3C96e+Z+ngpXw68VNxebW6mnE/j+PPK38S4BTAiYdO4GKtL5LzK/JZdXYVn5/43GAZre5u3Xkg5AHm9ppLBwd9Y8dUwz/QJVCvb4lk+EvcSNJL0nl+z/OsO7/O6HIKLDkI3qGtPrfGkGzg9sON0EwgXTPG0lzNBM2zTbWClstFl+s5S+Lz4w2W25QhI8A5oF6QWWenztfV8zGtJE3s5Xgw5aBecISvvS9+9n5cLr6spwO6OHcRezheawvUIggCy04t49ndz1JeU461mTUfjfuIjNIM3vvzPXH8tJI03G3cObboGJ2dOiMIAr2+7cWF3Ass6buEZaeXEewaTMzjMeLYL+19iQ+PfFjPYdJSVKmr2BizkWWnlnHw8sEGbb/an76aG4qLc6qomY6nHdf7HJVyJUM7DGVC5wmM7TSep38uIbukukHdpCaPdMtF9XSTv4M//bz70c+rn6idnK1cb1r/B4nbF7VWTVJhki5orI5misuLI7s8W9yuKd1017AievsJZJdnE5UVxZHUI6QUpdQ7np+Dn5hBP6zDMHq696x336usqeS7k9/x/p/viwFoMmSic9fRwpGNczYyuuNocZ/EgkS6ftkVM7kZRS8ViRU/AP53/n/M2TAHQO+9TS1aQcuBlAN8ceILtsZvrXfftjaz5q5udzE/ZD5jOo3Rm69KoyI2L1bMxq/VTYYC50DnNLq20Xt3t+71KntISLQGWkHLqqhVvLj3RXzL89ulZmoVx8jHH3+Mg4MDlpaWDBkyhPfffx8/Pz/27dvH2LFjKSwsxNHRUdzH39+fp59+mqVLDUc7VFdXU119NYqvpKSEDh06SAa+ERy7lM99y483e//Rfc/Rv6M9HRw60MG+Ax0cOuBi5WLSi6vaplnXGv4Xcy+i0hhu9utr71uvDm+QaxDmCnOT5i8IAmeyzohRURdyL+it7+jQEbWg1qu7627jzvxe8wnvE27QQSEIAhFRETz9+9OUqkqxUlrxyohX2BS7ib8z/sZcYU6NpgYBgffGvMfLd7yMVtDS9cuuJBUmMTFgIrsu7WJx38Usm74MuBod5WHjQeazmS32YrBaXc2m2E0sO72Mfcn/9DQR5PipViLTOgGGjiMgV5SQYvYAguyqUW+ptGSE/wgmdJ7AhIAJ9HTviVbQEpcfx08nzrH+z9obpKzOSFpARq75e2ARRW/P3qIx38+7H91cuxl0QrV2HdNbEWMidCSapkZTQ1JhksEattdG/dTFXGFOgFNXarJepabGhob+d2SKYi6bLdD73wFdCb/aTJBhHYbR37t/oxkT8fnxvHHgDdafXy8a9GZyM9HJYG1mzZo71zAreFa9fYO/CiYuP47NczYzI2iG3rrc8lwG/TCI5KJkRvqPZPf9uw3eVwVB4GjqUb49+S2/XPilnnNDhowR/iOYHzKfu7rf1WAja1MNfxcrl3rZJZLh375oa/eyAykH+HrzEn4tzG5641vMyJdo27SGZgJJNzWX69VMANMHJzG4s7Oom3zsfUzWLpU1lcTkxdQrx1X3ZWNdrM2s6eHWo145rrr9Do0lvyJfLFO8K3EXleqr9fgdLBxwt3EntSSVKrXOeSRDxviA8YSHhjMzaKZBuya5MJkHtzzIgZQDAIztNJY7/O7gzYNvIiDgaOlIUVURXZ27cuTBI7jZuPHN39/w+I7HCXAK4FLhJQAKXywUbY3+y/pzKvMUP836ift732/yeTbExdyLLD+1nJ/O/SRGmstR0lm9ulHbTysrINUiXM+REeQSxPjO45kQMIFRHUdhZ2FHfkU+pzJP8eupBPac9v9nS8O6ydMlq54T5Npgllok3aRPW7MzblUEQSCvIq+eZorLi+NS4SXUWnWD+3rZetHVOYis5MepVlnS8P9OPqnXBE/KZXJ6e/S+Wk7Ybxi+9r4G9tdRra5mxZkVvHv4XTF73VppTYX6alDarKBZrJm9Rs/xAfDD6R9YvHUxw/2Gczj8cL2x3zzwJm8cfAOlXMme+/cwquMog3PILc/lp7M/8eVfX3K5+HK99Z62ntzX8z7mh8ynj2cfg+96at+Z1WqlWt0UlxdnsMm8Uq4k2DW4nsPEw9a0cpsSbZe2di8rqipi2bbHeeF8/QoW9bjFNFOLO0Z27txJWVkZQUFBZGZm8uabb5Kens758+fZunUr4eHhesY6wMCBAxk9ejQffvihwTEN1eAFJAPfCDZHpfPU+qhm759r9hEVykN6y8zl5njYetDBvgMBzgF0dOwoOk1qv9tbNP13qdHUkFCQUM/wN/QwAd1LwWDX4HqGvykRxgn5CWImyfE0ffHjYuVClbpKr1dJP69+hIeGc1+v+3C2ctbb/krxFRZtWcTeJF0JhOEdhiOXyTl05RBymVyMGlg1axUP9H6AT45+wnN7nsPfwZ/LxZcJ8Qjh7CNnAXhl3yu8e/hd5vWax+o7Vxt1Lo0RlxfH8tPLWXV2ldg7QIaMSV0mMdr7Yb7epWxyjCzzlwnylomOkMG+g7lcfFkshXUq8xRRWVFiJLyVZgjOqiV6KeaWFpXM7F/D/YN6EewajFLe9HFruZ46prcqDT38bsfP4noQBIGc8hyx9FVdYz6pMKlRQ97bzpsglyDdl+vV7/4O/vyVXGTUS5Ms85fxda1gmN8wsTRWsGuwUWUDkwuTeevQW/x09ifxHtLBvoNe7d2R/iOJvDfSYGZdRmkGPp/6IENGwYsFBh0WF3IuMPTHoZRUl7CozyKWT1/e6D20sLKQ1edW8+3Jb4nJi6m33lxhzrTAaczrNY+pXaeKToyGrmfJ8L99uZn3MrVWTVFVEYWVhRRWFYrf8yvzqbx8jOfOG9Hb6xYz8iXaNq2hmUDSTc3lejUTGNZNTpZO+Nj50NGpIwGOAfg5+unpJk9bT6MyPnLKc+pl5F/IvSA6Ka7Fy9arXjmubq7djA40KFeVs/vSbiJjI9kav1Wv74iFwgJ7C3u9IAdHS0fm9JhDeJ9wBngP0LMrtIKWr//6mhf3vkiluhI7czvu63UfEWciqNHWYKGwoFpTzSCfQexbsA+NVoPPpz6UqkrxtPUkqyyL3fN3Mz5gPAWVBbh+5IqAQPoz6dfdDLayppJfL/7K8tPL+fPKn+LyDvYdeKjvQ4Q638OTay41/XnZvsvoIF8mBExgfOfxWJtZi71ATmed5lTGKT2Na0g32VqquP8OaxYPHVBPdzbF7agVDNmZey5m3Xafw/VSpa4isSCxXsBYXF4chVWFDe5npbQi0CXwql76RzMFugRib2FvtLO52PpN+nW0FzNCBvsOxs6i6T48NZoafjr7E28dekvMcne1cqW8plx06jYWSAYwb+M81kav5dURr/LW6PqlvAVBYO7Guaw/vx5nK2dOPHSCLs5dGpyTIAgcvnKY709+z68XfzWYNR/sGsz8XvOZ22sunZw6icsb0k1V6iou5l6sF2TW0N/Gw8ajXimuIJegBiuiSLRNbuY9XRAEylRlenqpsLKQoqoitBlnWPT3qqYHucU0U4s7Rq6lqKgIf39/Pv30U6ysrJpl5EuRT83neqOfssxfploRbfJ+lkpLPGw88LX3JcApgAAnnRDwc9CJAV973wajpYurig3W4TXUjwJ0guNaw7+ne88mGwRmlGawOXYzkbGR7E/Zr/ey1EppRbWmWnwxaa4wZ1bwLMJDwxnfebwoYARB4LuT3/H8nud1aeJKa3p69OSv9L/EsZRyJdvnbqe/d398PvURBYxcJqfkpRJszG0YsmIIx9OOEzEzgoWhC43+nOtybdp3LT52Pizqs4iFoQu5VHiJ9/fs4VLyiCbHWzLWDC/XdLG2bVRWlF7kWC02Zjb08epDP69+hHr0xULbHUu5B5721tft1W5rXvLWpKGH34zeXiw7lGyw3jXcflFgdalSV5GQn2Aw+6OugL8WGzMbPUM+0CVQ/N6YIW7sS5O3ZnXigcHdTTqX1OJU3j38LivOrBDvRYN8BhGbF0txdTGguw99M+WbeqncdVkXvY65G+fS16svp5acanC7nQk7mbZuGlpByycTPuGZIc80OUdBEDiRfoJlp5axNnqtwQbsjpaO3N39boJs7uXXE5BlgjEnGf7tm8Zq94Nx97IaTU09I93gdwOGfKmqtMFxpVJaEm2BltBMIOmm5tISGSPN0U1ymRxnK2e8bb3p6NSRrs5d8Xfw1ws4c7N2MxjAoNFqSCxI1NNL57LPkVSYZPBYCpmCINegeuW4/Bz8Gg2QqNHUcPDyQSJjItkUt0mvp5hcJsdcYa7noOnh1oOFoQuZHzIfT1tPcXlCfgILNy/kaOpRAAZ4DyAmL4YyVRkKmQKNoGF64HQ23ruRpb8v5au/v8LHzof00nTeGf0O/zfi/9hwcQN3/XoX3d26c+Ex/UoAphCdHc3y08v5+dzPos2okCmYHjSdxX0XE+IewoozK/jfyUtU5N3b5HgLRwoobaJEZ0hDzaS7OHcRs0D6ePZFUHWholrZIjrndtdNjtZmFFXUfxEtaSadDZ9emm6w9FVKUYrBHrGgC6z0c/Az6PzwtfdtNOjLWN302b0hhPUxvheBRqthbfRa3jz4pphR5mHjgZedF1FZV4830n8kG+7Z0GCmlSAI+H7mS0ZpBn888AdjOo0xuF1lTSWjVo3ir/S/CHIJ4vhDxxvMlK9LQWUBP5/9me9PfW8wsAxgWIdhzOs1D1f5OD7dfcXol+CCIJBWklYvyCwhP8Hg39JcYU53t+71gswa+mwkbi4toZkEQaBUVWqyZiqs0ummhgJJ26tmanXHCMCAAQMYN24c48ePb3ZaeF0kUWg8tfVyG6o72hAywNVOyX/mWpFZnkF6STrppelcKb5CSlEKaSVp5FXkGYzuNRYbMxvcbdzxtfels1NnAp0D6eh0NfvEx85HfMElCAJXiq/UM/wbijAG6OzUuV45ri7OXQxGZRVWFoqp478n/q7XD6DWUK/Fx86HB3o/wMLQhQS6BAKQVJhE+OZwDl3WRYnVZoXUYmtuy6GFh/j6769ZcWYFVkorKtWVHFx4kN4evXH+yBmtoOXK01carNXbEAbTvmVypnadysygmcTnx7MtYRvx+fGotWosNL3wVL3f5LiGxJ2tuS19PPuIpbD6efUj0CXwumobSzT88GuK26FucK3hV9f5UZsJcrnocqOGvL+jv8Hsj+b2sTD2pYkpDS6zyrJ4//D7fHfqO7G04OiOo7FUWrIzcae4XR/PPmyes7nJ+8OSrUtYfno5zwx+hk8mftLotp8f/5yndz2NDBlb7tvCtMBpRs0ZdA7stdFr+e7kd5zLOae3rqla3KYI0+YY/j3ceogGf21ZLsnwv7k0XbtfwM5Kw10jz1Fc3bABXzejsyVpr0a+xK1HS2smkK4ZY2muZqrF1VbBa3epySzTaaa0kjRSilK4UnyF7PLsBhutG4NCpsDFygUvOy86OuqcJ12cu+g5TxwsHETbprS61GDPx4YCDewt7A32fHSwdKi3rVbQ8nf632IGfnx+vN76ulnzCpmCKV2nEB4aztTAqZgrzNFoNXx2/DNe2fcK1ZpqbM1tdcFi1SViP4AlfZfw9OCn6f5Nd3HZ9MDpbLlvC49ue5TvTn3HkwOf5PPJn5v0OZaryvnlwi8sO71Mr3KAv4M/D/Z5EHcbd7bEbeFY2jHRWXI9uinQJVCvhHAfzz4GP1MJ02iObrodNBNAmarMoPMjPj++URvKwcJBdHjU1U5dnbs2Wvq3MVpaN2kFLb9d/I03DrwhOhpcrV2ZGTiTDTEbKKouAnRa4Nsp3xLeJ7xRvRefH0/QV7pS7UUvFjV6npmlmQz8YSBpJWmM7zyeHfN2GF0Jo7Y88bLTy/jf+f/VCyyr1U26mV6fbipXlXM+57yebjqXfa7B4CAfO596QWZdnbtK73ZuIsZoJnsrDXPHxlFcVd+5UZsdX1RVdF3vahuivWqmVneMlJWV4efnxxtvvMGCBQtwc3Nj3bp1zJ49G4C4uDiCg4Ol5uutSEN1RxvC2JuwVtCSV5EnOk1qv6cUpZBUmERaSRq5Fbn1mg6bgp25HW42bvjY+dDJsRPdXLvRxaWLKAIcLRyJL4ivZ/hnlmUaHM9SaWmwDq+7jbu4TWVNJXuS9hAZG8mWuC2is8EQwzoMIzw0nNnd7uZiRjU/n9nCmgvfUiqcwUJppvfg87T15IfpPzBt3TTRyP9o3EcEugQy63+zCHQJJO6JOKM+l8bSvvt79xfT7UtU9bNsbJS2uFV8h6BxwFC9TwEtGvIpsX+Kvt76TpCuLl2NKgd0O6MVtJSryilTldX7KlWV1l9WXcbu43dQrbLCcP3VpjHlRXxbpbS6VC91u272R2P3EEdLR33Hxz8/d3HugqXSskXn2NRLE1NEV15FHh8d+Yiv/vpKzMQa4T+CmUEzef/P98USeAqZgnfHvMvzw5436n8v8MtAEgoS2Hrf1iYdHYIg8Oj2R/n+1PfYmtty5MEjhHiENHmMa8c4mXGS5aeXs+bcGipqqvCpWoEC12uaLF7FqwWE6c00/G+niMyWwlhxbGy0ta25LdZm1pjJzdAKWiprKqlQVzTYt+xa6jbjhPZr5EvcWrSGZgLpmjGFxno1CAZ+rv0dmtZNFTUV9TRTWkkalwoucbn4MlllWRRWFRpsvG4MZnIznK2c8bLzwt/Bny7OXQh2DcbfwR8/Bz987X0pqiqql5EfkxtjsNwL6BoeXxtkFugSqBe4FpMXI2aSnMw42eD8XK1dmd9rPg/0XkhVhS9n0i+xLOpjzhZsBJkWazNrPXvv7dFvcyDlAH8k/wHoekBmPZtF4FeBJBYksmXOFqYHTTfqs4nKimL5qeWsjl4tViBQypWM6jgKC4UFF3IucLm4frCNHDmetl5YFHyMVmNHY7rJ1vcj+nv3FfuB9PHqY1Rp6dsZQRBQaVQG9VF9vVQq6qYDJ8eiUlnTHN3UHjSTRqvhcvHlq3opL474Ap1+Si9Nb3A/hUxBZ6fO9TRTkEsQ7jbuLdbj9Oo8W0Y3CYLAlrgtvHbgNc5l64KxnCydeGLAE5zPPU9kbKS4bR/PPmyaswk/B78m57fs1DIe3vYwI/xHcHDhwSa3j8qKYviPwymvKeex/o/x9dSvm9znWgorC1kTvYZlp5YRnRMNgrxR3dQSDj2toCWlKIVz2ef0gswayiy0UlrR072nXmZJiEdIs5y6kmYynZbWTOYKc2zNbbFQWCBDhkqroqKmgip1lVH2hhw5Wq5u1141U4s7Rp577jmmT5+Ov78/GRkZvP7660RFRXHx4kXc3Nx49NFH2bFjBytXrsTe3p5//etfABw9etToY0gGvuk0VqZny9nMVq1dd60QSCtJI6kwiUuFl0grSSO7PJviquIGI78bQ4YMOws73Kzd8LbzppNjJzEivEpdRV5FHkmFSUTnRHMh90KDL1g9bDzqlePq7tYdpVzJ4cuHiYyNZFPsJoNp0VaaIbjUPIxCuNrkUK4sIUv+JZWKY3rbdnXuioOFAyczdcJhdrfZeNl68dXfXxn1gG0o7dvH3ocKVQV5lXn19pHL5DhYOGCptCS/Mh+VRlUnoltARt2Xrbq/wWszvVk4OLTdO0E0Wk3ThrgxxrqqlNLqUspV5XqN3ozB2Ei0xvh8TigzQ32ua4y6tJYRo9FqSClKMdjEryFnJujEa4BTgC6SyTlQL/ujofISrcX1NrgsrCzkk2Of8PmJz8Xo0cG+g3lp2EtExkay6uzVmp1dnLuwec5mursZV5YrvSQd3890ae0FLxQYZcDWaGqYtGYS+5L34efgx18P/dXs3h2l1aV8sG8Daw66NbntA6MLeHbkjBaNnLwRhv/tWMO7JTC2nELPrn/T3a8CR0tHFHIFlTWVFFcV64IwStO5VHCJ9NJ0oyKgZMhwsXahs2NnnKycSChIILkwuZ6toZApCNEK7dLIl2jb3AjNBNI1YyqN3eeBVn0GaLQacspz9JwnV4qvkFiQSEpRCpmlmeRX5hssZWkMFgoLnK2c8bT1xM/Bjy5OXQh01Tk6iquKSS9J52LeRaKzoxssBWWuMKeba7d6QWZetl6klaSxKXYTkbGRHLp8qN692lBfDRtLFanCZ5TKD9fL0n9iwBN89fdX4u+Hww9zR8QdKGQKCl4saNTxUKYqY/359Sw7tYy/M/4Wl7tYuWBtZk1ueS5VmvoRudZKa+ws7FBpVGKGTeO6ScZn93YnrE+nemO1JwRBoEpd1SyNVG95tW55eU15o33/DHG9uulW0UygK8VUm+1RVzMlFiQ2eg9ws3YzWPqqs1NnzBXmLTI3Y7ke3SQIArsu7eLV/a+KTlc7czueGfIMwa7BPLb9MfF/VCFT8O7Yd3l+qHGBZABzN8xl3fl1vD7ydd4Y9YZR+2yK3cSd/7sTAYEvJ3/JEwOfMGo/Q+d2Iv0EH+2L5PTFpkucvz3bhfn9B7Wo5i2pLiE6O1ovyCw6J7rB92UdHTvWK8XVyalTg5+3pJmah7GaKTjgGIG+JThZOmFrbotKo6JMVUZ+ZT7ZZdkkFyWTUpTSaCnhulgqLelg34HOTp0pqCzgYu5Fg1lmfQUFp7BpesBbTDO1uGNkzpw5HDp0iPz8fNzc3Bg+fDjvvvsuAQEBAFRVVfHss8+ybt06qqurmThxIt988w2enp5NjHwVycBvHg09uNuCJ/daIZBakkpCfgKXCi+RWpxKdnk2hVWFRkeD1kUuk2NnboeLtQvOls7YmNkgl8mpUFeQUZrRoOEvl8kJdAkUjf6ebj2RyWScSD/BpthNxOTFNFgypvbRX2j5ESWyw3rjdnbqLL6o87XzxdbClti8WDbes5GwbmH15tFQ2ndtOnpDzYq1gtagF9jR0pG+Xn3xUEzkwqVuFFdcfZi15YdVjaaG8ppyvaghYwzx0upSSqpLKFGViM6L8ppyKmoqmi0sWxJr9Qjcal64rjFaMvqpJYyY/Ip8g30/EgsSG/0fdrdxN1j6qpNjpzbVN6I5n1FJdQmfH/+cT459IvYM6ePZh7dHv41CpuCBTQ+ITUxlyHhu6HO8M+YdkwTMmnNrmB85n/7e/fl78d9N7/APBZUFDP5hMAkFCQzxHcK+BfuanW1jrDGXa/YRGosTTA+azvxe85ncdXKribWWMvx3X8i+7nqvtyvGRj/1DN5LluowcflxJpWdcbJ0IsgliP7e/env3Z8QjxAUcgXvH36fLfFbDP6tuzh1oVRVSnZ5Nl0VVlzUWqFs7AWN0gKeOAWOppW7bGkkG7j9cCM0E0jXTHNoTBu1Bd1UWl2q5zxJLkwmPj+elKIUMsoyyK/IN/plyLVYKi1xsnTC1doVO3M7zBXmaAUt+RX5JBcnN/jsdLFy0Qsy83fwJ6kwiR2JO9iVuAu5qm+jmsnabS0xZev0xqztv1KbRftwv4f5/tT3DPEdwtFFhh2EpzJO6bJYo9eIzxEZMswV5gbtfrlMjlwmN/iCXi6T0821G/28+2GvHcGRC14UlF+1AtqqbhIEgYqaimYFfZVUl4hfpap/gr5qKqhUVzY7m6kluV7d1NY0k0qjIqkwSS/7o1Y71V73hrBQWNDVpWu90ldBLkE4WTld97m1JM35nPYn7+eV/a+I/Yiszax5cuCTLOqziP/b/3/8cuEXcdsuzl2IvDeSnu49jZ6TIAh4f+pNVlkW+xfsZ1THUUbv++GfH/LSHy8hl8nZOW8nEwImGL3vtZiimzp65YlN2/0d/Zt9zMbQaDVcKrxUr99jQ+/LbM1txbLFtQFmvTx68Wd8qaSZmomxmmlwyAkKNMeJzYtt8O9jCDO5Gf6O/oS4hzDYdzC9PXsT6BzI1vitfPHXFyQWJNbbx1JpSTfXbpzJOkMHQUaizB7zxtwIt6BmuiE9RloaycC/fSmpLtGLoKqNmrhSfIWs8qxm1yCXy+RYKixRKpTIkFFZU4lKa/gFrq25Lb3ce+Fr58eZ6DBqamxoKLVarihBcH2FyyUp4vIOggxPuZmeAS6Xydn3wD7sLezA2gUcOxhM+zYVJ0snsQxWbUmsTo6dxGiD1hJ3tR7rhtKg6xrfhVWFFFcXU1Klc16UVJeIzovKmkoq1ZVUqatMjii6WVgoLLA2s8bazFos93Ltl42ZjfhzcYk7O/4KbNaxWrperimNvlQaFYkFiQbr2OZX5jd4DEulJV2duxqMZDKmkV1bwdj/nXJVOV///TUfHflI/Fx6uPXgrdFvMabjGJ7e9bReloi3rTe/3P0Lw/yGmTynxVsW88OZH3huyHN8POFjk/aNz49n8A+DKawqZF6vefwc9nOr9mGxdP+OuNJt4u9Olk7c0+Me5vWaxzC/Ya2erWay4W9mh1vF92jVhktp3C61q5uDSqMiIf8S8767RFEFNFaKJN1yEcgafvFia25Ld9fu9PXqK4qvHm49xJcApdWl/Pf4f1l2ehlpJWn19pfL5MztOZee7j158+CbVKor6eTYich7I9l9+kfW/fUVoZ6hzOk5h5f2vkRvz95EzPhRt/M/z+abjWQDS5iKdM3cnqi1arLKskTdlJCfQFx+HMlFyWSUZJBXmUdJdUmz7GtzhTkWCgsUMgU12poGtZcMGQHOAXRz7UHsxbmoagyXPxLQIsgK8er8LX9nnBAz+zoIMjxkSjEIrKNjR1KKUljcdzGP9n9EvC+XVJewLnody04v43TmaZPPB3QR593duou6qa9XX3p79MbG/GpkbGvoJq2gpaKmosmgr1JVqVg/vriqmNLqUtHBIeomdaVOw2pUzarEcKORI8fGXKeJar9fq5Ou1U+FxW5sOW56ds7N1EyCIJBdnm2w9FVSYVKjWbA+dj4GS1/5OfjdUn0gjP3fOXLlCK/uf5X9KfsBnW58rP9jvDj8RY6mHuXBzQ/q9Up6bogukMxCaWHSfOLy4gj+OhgLhQVFLxWZFBAmCALhm8NZdXYV9hb2HF90nG5u3Uw6fi3G6qYCy9colV29t93hdwfzes3j7h5342zl3Kxjm0JBZYGYkX8u+xxns89yPue8QWezTFDgp1oJWkckzWQagiCQVZbD1P+eoqBcy/VoJrlMjr+DP6GeofTx7ENP95708uhFJ8dOKOQKBEHgQMoB3jn0DoeuHDJoCwQ4BfCvgf/i14u/ciT1CACvj3ydR7tOY8aPw6nR1LBy1kpe3vsSmWVZrJwZoSvLfQtqJskxItHuqNHU6ITAP/1OLuZeJLEgkcvFl8kszaSgsoBSVel1R72Y0oxPrbyIRtDQQZARhy1WjdREVcuVTHH2YE9+jEnzcbFy0TPm+3n1o6Njx0ZfbgqCQLWm2qABXlRVRH5lvtjIqbiqWIwgqt2moqZCrFFYqdYZ4iqNqk1EFBnCQmGBpdISKzMr0XFhZ26HjZmNnkHeqFFuXn957bZWZlYmv9A1ttlnc2tamzqPxhp9WVlU0ykwgvj8WJKLkhv9O3ew76BnyAe66Epg+Tn4tfsSbQBV6iq+P/k97//5Ptnl2YCuCecbI9/gnh73sOvSLsI3hZNTkSPus7D3Qr6Y/AV2FnbNOmaXL7pwqfAS2+7bxtTAqSbvvy95HxNXT0StVfPO6Hf4vxH/Z/IYxtYTPvzCaM7nnmP1udWsO7+OjNIMcRt/B3/m9prL/JD5RpcRaykaMvxRBRp1v28Ptaubg1bQkl6STnx+/NWvAt335MJkNIKmwVIkAjrDP9f8PbH8pIXCgu5u3cUGwD3de9LLvRfedt71nmkarYat8Vt5//D7nMw8aThT0sKRJwc9yZJ+S/j02Kd8evxTACYETGDd7HVYKi3x+8yP/Mp8Ntyzgc5OnenzfR9crV3JfT631T635iDZwBKmIl0zEg0hCALF1boSWqnFqcTlxxGbH0tyYTLpJenkVORQXFV83RnWpjYwN5Ob4alRN6mZtAozng8ay9fxm02ao0KmoKd7T1Ev9fPuR4hHCNZm1o3up9FqxOz1ugFfJdUlFFQWiA1wi6qKdEFf/2imazMvqtRVVKurUWlUDfZ3udkoZAqdZlJaYW2u0zq25rbYmttedWYY0Eqm6CczuZnJQTjG6qa63AzNZGNZQ5+QSOLzY4nLj2s0yNHGzMag86OrS1dszY0o89kOOJlxklf3v8rvib8Duqj2Jf2W8O87/o25wpzHtz/OLxevZol42Xrxv7v+xx3+dzTreN+d/I5Htz/KqI6j2L9gv8n7V6urGf/zeA5fOUxnp86ceOgErtauTe94Dcbqpm1P9WVzXCSrz63mQMoB0fFpJjdjStcpzA+Zz7TAaS3eX7Mx1Fo18fnx9YLMCopdJc3UBGWqMhLyE8QyeXX1U3F1sUmaCXRVaGoDxmo1U5BrkMHrIbU4lXcPv8v68+vFKhbXMqnLJJ4b8hzWZtbc9etdZJRmYG9hz89hPzMjaAav73+dtw69JWZvjv95PHuT9rJy5koWhC5o6Y+r2UiOEQmJJhAEgaKqIrFm+fmc88Tnx3O5+DIZpRnkV+ZTWl3aqLFqbCpvrtlHVCgPAcY3K+pLGWca8QA7WTjR1bUrfvZ+uNu442jliAzZ1dTnOlFEdZ0XVeoq0XlRo61Bo9W0mYgic7k55gpzLM10Rvi1zgs7czvsLeyxs7BrlvFtqbRssy/km6q/umREp1bvBdScRl+25rYGG593de6qF2F3O6HSqPjxzI+8c+gdsQFiJ8dOvD7ydeaFzKO0upSnfn+Kn8/9LO7jaOnIqlmrmBE0o9nHTS1Oxe+/OqdT4YuFzW74+f3J73lk+yMA/Hr3r9zV/S6TxzC1nrBGq+FAygHWRK/ht4u/6ZX/CPUMZX6v+dzX6z687bxNnktLoNaqWfbnaT7a0fQL8pauXd0cWrPMS2FlYT0DPj4/noSChAbLq9TFUH15FIUE+J1hRJC9GM0U4BTQZCTkxdyLvH3w7QZLZQF0c+3G0sFLmR8ynzJVGXM2zGFf8j4AXh7+sq6UnVwhXvedHDuR8K8EKtWV2L2vc1Dmv5B/Q6LxjEWygSVMRbpmJK6XanU1mWWZXCm+wsWci8Tkx5BUkERaaRq55bkUVhVSWVPZoKa4mZpJIVMQ4BRAJ6dOeNt642rtirWZNeU15RRVF+lrJlUFFeoKMWO9rvNCrVW3mcAvhUyhy9pRWojOCxtzGzHQy87cDntze+wt7LG1aDp7/Vr9ZKW0alMlbK+lMTtTABytzSiquKrh24JmksvkdHTseDVYrI5+MhT0cbtwLvscr+1/jc1xmwHdtR0eGs4rI17B39GfDRc3sGTbEgoqC8R9FvRewBeTv2i21gGY89sc/nfhf7wx8g1eH/V6s8bILc9l0A+DSC5KZoT/CPbcv6dZZYFN1U1pJWmsi17H6ujVYjN6AHsLe+7qdhfzQ+YzsuPIm/beY/WJWF6JvNTkdu1dM9VoakguShara9QNGqsbENgQhjSTVpaPh/dhBgdYipqph1uPJnt2lqvKWXFmBV+e+JLEwvqlsgAs5BYsCF3A04OfpptbN5afWs4TO59ApVHRzbUbkfdGEuQaRGVNJX7/9SOvIo9f7vqFu3vczWPbH+Pbk9/y7+H/5t2x75r2QbUipti/yhs0JwmJNoVMJsPJygknKyd6uvdkZvBMg9tVq6vJKM0gLj+O89nniSuII6UwhYzSDAqKBTAiyEcjK2x6IxMprC7kr/S/+Cv9rxYf2xBKuRIzuRnmCp3zwsrMCkulpV7JKFszW+wtdEa4o6UjjpaO2FnYGeW8sFBY3LYGIcCknl58O79vvfqrnnUM+RcmdWvVmtY5pQ1FPemzJPQ57uzrR5BLEJ62nrf1360uaq2an8/+zFuH3iKlKAUAX3tfXh3xKgtDF2KuMGdr3FYWbVkk9hIBmNp1Kj/O/BF3G/frOv7BywcB6OfV77qEwsP9HyYmL4bPT3zOA5EP0MmxE/28+5k0hjHXc10UcgVjO49lbOexfD3la7bGb2VN9Bp2JOwgKiuKqKwont/zPGM6jWF+yHzu7HbndZ2jqSjlSvr4BABNO0bc7W5cpJYhWqLedWVNpVgmr64RH58f32i966bwtfelp7sDPdwuYkcoTub+9PbuxPAuXijk840ao6CygK//+prvT30vOh4NMb7zeJYOXsrELhORy+ScyjjFnb/cyZXiK9iY2bBq1ipmd58N6LJdPjv+GQBPDXoKhVyBrbkt3nbeZJRmkJCfwCDfQc0+bwkJCYlbHQulBR0dO9LRsSMj/A03ChYEgfzKfFKKUojOjiYmL4ZLBZdILUklu8AMjJBDraGZNIJG9xwriG/xsQ0hl8kxk5thpjDDQmGhl61e67ywNbPFzsJO1E1OVk44WDgYnb1+K5VQag2asjPHd/dsE5ppXvdHmdrbgyCXIAKcA25oNH9bJyY3hjcOviH2CpHL5MzrNY/XRr5GF+cu5JTncPcvd/NbzG/iPo6Wjvw440eDPVlNobaEEMDoTqObPY6bjRtb79vK0B+HcujyIR7Z9ggrZqwwWRubqpt87X15ftjzPD/seaKzo1kTvYa10WtJLUnlx6gf+THqR3zsfMTs+xCPkGafY3MIcHUDmnaMtAfNJAgCGaUZBjM/miqTJ0PWYDCBldKKHt419HQ7hJNiAM7mnejj05mJ3SajVDxg1Ny0gpZ9yft47/B7HLp8qMG5eNh48PiAx3mk/yO42bhRra7m4a0Ps+z0MgDu7HYnK2euFCtarD63mryKPPwd/MX/xUAXXVn4G/WcbQ2kjBEJiWbSVOqjgBatLJ80i6v1/1oq+qkuMmRi40ClXCka4rWpz7ZmtmLqs625LQ6WDnrOCydLJ5ytnLG3sDfovGhOmrOptIVGlm2Bm/k5GBv9dDunvRpCo9Ww/vx63jz4JgkFCQB42nry7+H/ZnG/xVgqLSmoLODJnU+yJnqNuJ+V0oovJ3/Jg30ebJH/r0WbF/Fj1I+8MPQFPhz/4XWNpdFqmL5uOjsTd+Jt581fD/2Fj73pET3Xez3nV+Tz68VfWX1utVjXFHT1hmcEzWBer3lM6jKp1Zq218XYVPebWS/XlHrXGq2Gy8WX62V+xOfHc6X4SqOZhGZyMzSCpsHIWUdLR3q51ymBdU0fEFOp0dSwKXYTHx/9mJMZJxucm7nCnHm95rF08FJ6efQSl6+KWsXD2x6mWlNNV+euRN4bSQ/3HuL6HQk7mLp2KvYW9qQtTRMN/9GrRnMg5QA/zfqJ+3vf36y5twaSDSxhKtI1I3Gzabr8kYBGlk+G5UNo0dU5bw3NBFebrStkCl3Ql9IcS8U/jot/ykXZmdvpvv/jvHCwdMDJUhdQ52zlrOfEqOu8aE5JXVORNNNVbtZnIWmm5pNYkMhbB99iTfQa0Y68p8c9vDHyDbq5dUMQBH69+CuPbHtEr5fI5C6T+XHmj3jael73HGJyY+j+TXcslZYUvVhkcn+Sa/k98Xemrp2KVtDy8fiPeW7oc80a53quZ62g5fDlw6yJXsOvF3+lqKpIXNfTvaeYfe/n4NesuZlCe9NMAEVVRaJOqu0RFJ8fT0J+QqP9jWufNQ1VoVHIFAS6BIrlr2pLYdX2AWkOiQWJfHz0Y9afX99oCb9e7r14Zsgz3NfzPvF/IL0knbt+vYvjaceRIePdMe/y0vCXxHcVgiDQ45sexOTF8OmET1k6ZClwVUuFeIRw9pGzzZp3ayBljEhItDC1NXhTi1NJLUkltTiVy8WXsXSuRCgei9BA/b98s2WNNkVqkbkhoBE0aAQNNdoaKtWV9baxUlrhYOmAg4UDjpaO4s/1frf85/d/fq5db29h32rRSS3hrW8vKOSym2ZAD+zkjJeDZZNGzMBObaekzM1EK2iJjInktQOvcTH3IgCu1q68OOxFHhvwmFinelPsJpZsXaKXJTLYdzCrw1YT4BzQYvM5cPkAAKM6jrrusRRyBevvWs+QFUO4mHuRmetnsn/BQc6nVZlkrF/v9exi7cIj/R/hkf6PkFyY/P/snXd8U1X/xz83STOa7j0obYEyyih7iYIIiANRZCggFRnKUCj6qA8qiPi4+MlGUFQsSzYqbgRFkb3KHmV075GmK2mS8/sj5NI0s23apu337avS3nvuuecmJzfnc78LWy9sxeYLm3E19yp2XNqBHZd2wEfmg3Edx2FC5wnoH9bfrJHJEcJZKOCwcEQ0Zmw+Y7Hez8IR0Q22wNfqGBbtu2zBSK//f9zOI1h3cQtu5F9DYn4i1Fq1xf7EAn2KDrVWbZK33bC4l4qk+joglWqAdAro5JCUEIwxnM04iyVHluC7a9+hXGPsnVnZy8pX5ouZvWZiZq+ZRoJZrVVj3m/zsObkGgDA420fx6anNsFL6mXU19Kj+noj07pPM6rv09anLf668xeu5zVe7yeCIIiGoEJbgTRlmpFu8g8qQYai990W974j7mmmz3mjSF2iYzromA4aaPTfb1WeVwk5IW8MMaeJTP42o6GkImmdOJWRZjKmoXQTaabqk1SYhPf/fh8bzm3gPddHthuJRYMWISYoBgCQVZyFGT/NwN6re/njpCIpVgxfgWndpznsM2WIFukf1r/WRhFAX49h2cPLMOfXOXh9/+to69sWj0WNqLb2qM18FnACDIwYiIERA7HqkVX4+cbP2HxhM368/iMuZl/EmwfexJsH3sTA8IGY0HkCRkePNuuwRJpJ///Xdh3D9sR9uHHXAFJZx1eFAwe5ixwMDKUVpUYOXIbvGwBo6dmS10q26oBUF0W5AhvObcCqE6twq+CWyfgqj+mRNo9gXr95eCjyIaPP1D9J/2DMzjHIKsmCl9QL3z79LYa3GW7U1283f8OV3CtwF7tjSvcp/HZDxMiNvBvQMZ3Tpq+3BkWMEAT0efcMC/fK/yYrknG74DZSlakmD2YMmMv/p0EOCsVfQup2FcHuwWjl1QodAzpisNQXQ/a/Z3M8K2Kexm8lmbituI2ckhwUq4uh1qobtB6Im9jNRATYKxA8pZ5wE7uZ3CSra60n6pbq5jhtjjDG8OP1H7HgrwU4l3kOgN5D/rV+r+GVPq/wD1ZzS3Pxyi+v4NuL3/LHCjkhFj+4GK/f97pDDY3JimSELw+HkBOi4I2CGhdvr8rtgtvo/WVvlCijEMrmoqLiXt2YhhLijDGczTzLF23PLM7k90V6RfJh4+392gNw/EMEZ30oUZN810JOCG+pN4QCIco0ZRa9igScAFE+UXovJv9OvDeTPXVAqkuGMgOfn/4cn5/+3Oi9BfQpzTS6ew/N2vu1x7y+8zCxy0TIXGTG11mciTE7x+Bw8mEAwMKBC7Fg4AKT76CEzAR0/bwrhJwQN1+5iXCvcH7fp0c+xWv7X8PYjmOxffR2h15nbaA1MFFdaM4QjkSr0yKrJAspCr1Oqqyb7hTeQVJhEnLLzKddtKSZ8sVfgJMmIMA1AC09W6Ktb1s8JPXDM0c+szmeLf1exK8lGbiedx1pyjQUlheiXFNuNYVJXeMicLGsiaw4olVuXzUaljSTc0GayT7Slen439//w/oz63nHmkfaPIL3HnwPPUN6AtCv7bdd3IaZP880inToE9oHm0dtRhufNg4d09idY7Hz8k68N+g9vDPwHYf0yRjDjJ9m4PPTn8MbDyJS+Dryiu/dgxpKKxSUFWD3ld3YfH4zn3YZ0EdZP972cUzoPAGPRT0GiUhCmqkKlTUToK/hIhPJoNVpUagqNNIklfGR+ZiNnLdVB6S6aHQa/Jb4G5YcWYLDyYdNvvNcBC5GzmyTukzi64dUhjGGNSfXIO63OGh0GnQO6Iy94/aadeActmkY9t/aj7i+cVj68FKjscj+J4NGp0Hy3GSEeYY59FprChVfJ4hKqDQqE6+llKJKkR+FSShUFdaobyEnRKBbICI8WyFIPADBru0QHRSKR6PboaVXC1Nrafo54IuBtjuefggI6WqyWavTIl2ZjrMZZ3Ek9QguZl/E7YLbyC7NhlKlrLXxRMAJIOJEvPVYq9NCwxzjvcWBM1rwe4i9kHl75t2HraYeA84QZtkccdZFTEPDGMP+W/vxzp/v8LV93MXumNt3Lub1m2fkhb7r8i7M/GmmkXdJe7/22DJqC7oHd3f42DYmbETsd7HoE9oHx6baXuhVh2V//onlv+lDhLlKn1NnEH5anRYHbx/ElgtbsPvKbhSri/l93YO7o6/vS/jppGnB9tqO3RnTWHx/Lg1ztp2z2U7t/jmytD9ZTIPVwqOFSQRIB/8OdZoXu1xTjj1X9mDp0aU4nXHaaB8HDu4SdyOjzZBWQzCv7zy+fkhVjqUew9M7nka6Mh0eEg9semoTnmj3hNlzP//d84hPiMe4juOwbfQ2o337ru3DE9ueQNegrjj74lkHXKljoDUwUV1ozhD2whhDbmmuWWcxw++pRak1Njp4SDzQwr0lgiX3I9i1HToGheHhDq3R1rcN5GK5ceNaaiYAKFIV4VruNRxJPYIz6Wd444mhWHxtjCccOAgFQgg5vYOAjukspkupCZWj/T0l3shLmgONxg2kmZwH0kyWyS7JxkeHP8LaU2t559LBkYOx+MHF6B/Wn2+XoczAjJ9m8MXXAb0jzMKBC/HmgDchEjg2wQ1jDIH/F4ic0hz8M/kfDGg5wGF9V2grcP/al5GR+jgA59NNyYpkvmj7xeyL/HYvqRfuD3gZ56+Z1tNrzpoJnl8jl/1mMVWWTCRDx4COJrqprmuwXsy+iJXHV+Lbi98aaV8AcBW5okJXwX8XBcgDMLvXbL5+SFXKKsrw0k8vYWPCRgDAM52ewZcjvjT9Pr573s5rO0PACXDzlZuI8Iow2t9+dXtcy7uGP577Aw+1eshBV1s7KJUW0WzQ6rTIKM7QeyxZWMBnlWTV6hxCTogwzzC092uP9r7tEeUbhSifKET5RiHMI6xeC+AJBfqxhHmG4Yn25h/0FJYXIqkwCVdzr+JMxhmczz6POwV3eOOJtUW7jumgZpbTqwB667PMRXavbomLm76A+t1QVLVWjRJ1CYrURVCUK1BYXogKXQUYGArLC/WeIApAou2MoArLuYMZgAxFOb759zb83CVO82Xa1BneKbjOixY2Ng7dOYR3/nwH/yT/AwBwdXHFrF4v46HQ6ShXS3AlTYvekQx5ZTmY/fNs7Ly80+j4OX3m4MOHPjTxaq8thsXmtlOJkGg744HwQQ7vf8cx3d1FsfH7z+5uWbTvMoZGBzXI/BAKhBjaeiiGth6Kzx77DPuu7cPmC5vxa+KvOJN+Dlm3XCAEMxImjhh7Q6a8Mwdj7r/whgABAABJREFUDCKR5fy2lclX3YFOqDOqA2KIAOkU0MkkzVRdwRjDkZQjWHF8BX649oNJui5vqT68v6C8AEWqIoiFYozvPB5xfeOsFpH84vQXmP3zbFToKtDBrwP2jtuLdn7tzLbNUGZg64WtAIC4vnEm+yuHhTPG6rzWFkEQRF2jKFeYGD2Si+5pqNQiyxHy9uIt9UYbnzbo4N8BbX3a8rqpjU8bh0W02ouHxAO9QnuhV2gvs/srtBVILUrFrYJbOJd5DueyzuFa7jWkK9NRUFaAMk2ZRYczBgaNTgONlfRfAgggEUmMaj0a6pGIBCJUaCtQri2HUqWEQqXXTIYHXWWaMpQVlyGzOFOvmTSWXzuDZjp2Mw8CAUfr93qCNJMp+WX5WPLvEqw8sRKlFaUAgPvC7sOige/BFTHIzivHUXUeekV449uLW/DKL68YOai29W2LLaO28NEkjkSrY9h57gxKijrAQ9QS3YMcew4BJwIrehocVHBG3dTSsyXeGPAG3hjwBs5nnceW81uw5cIWpBVl4My1Vs1CMwGAl6t915BZdgMqYQlfB6Rq5Hxt6oBUl5ySHHxz7ht8duoz3Cm8Y7TPReACf1d/pBeno1Sj/8x1CuiEeX3n4dnOz1p0bksqTMKoHaNwJuMMBJwAnwz5BPP6zbOod5YdXQZAX4y9qlEE0H92r+Vdw438G05jGKkOZBghnBbGGLJLsq16LaUr0x0SKi3khIjwirhn9Lhr+IjyiUK4V7jjvBVcfQGRBNCoLLcRSfTtaoiX1AteQV6ICYrBuE7jTParNCqkFqUiWZGMG/k3cCn7Ei7nXMYdxR1kF2dDqVZajTqp0FWgQlVhtZgTBw5uYjf4yHzQyrsVgt2CEeoRilD3UHhKPSETyXA52RU7j9q+nsU/XeF/Jy+c+sEZFzENwdGUo3jnz3dw4PYBAIBEKMGMnjPQx+9FrNifhh0H7s1NT1cdMgWrka39nd8W6h6Kb578BkNaDXH42Iy91PogCH2w/xjwa3CGwz4fJ27n3+3f/ALJIMRP3M5v8Pni6uKKcZ3GYVynccgtzcX//fU9tv1t6hljoL7H7iiPKUW5AhezL+Ji9kVcyL7A/5tfWohQfAUhfI3qXd2DwU2qwd7xn6BLUGeH1AGpCXcK7+DLM19i/Zn1yC7JNtonFUrR2qc1khRJfMFNS/VDqqLSqPDyLy9j/Zn1APSL9m9GfmP1IdxnJz9Dha4C/cP6o08LUy+5SO9ICDkhSipKkFGcgRB30+gjgiAIZ6G0otRUL1XRTUq10iHn8pH5GGmlyr87LF1IPWgmF6ELIr0jEekdafZBjiGCJlmRjNuFt3E5+zIu516+l7arrBBqnWWHMh10egOHpsxqjnqJUAJPqSfCPcMR4h6CYLdgtPBogQB5AOQuclxNdcMuOzTTrK1nUFh2zwGOdFPdQ5pJj6JcgWXHlmHZsWX8M4KeIT2x+MHFYGUxeHvHZWQo7kW1u7gUI41bizJhIb/t5d4v46MhH/F1Gh1JZd3kj9eBCuChT/916OfjxO18ZBWp0Rh0U5fALugytAs+HPIhPj/yJz7eZ9kg3hDjdoRu0uq0uFlwExeyLhhppsS8WwjGequayVWiwvqn3kCXoE5o79feIbVoqotKo8KP13/EiuMr8G/yv9DBONq/pWdLiDgRbhXeQnpxOgB9mrq4vnEY0mqIVZ138PZBjNul18y+Ml9sH73dqjEjqzgLmy9sBgDM6zvPbBuDQ1ljrc1IhhGiQWBMHz1gy2vJWnFYAxw4uAhdoNVprRpJOHAI9wo3WcBH+UYhwivCJJdrneAVBsw+DZTmWW7j6qtvV0dIRBK09mmN1j6t8WDkgyb7DQapJEUSkhXJuJV/C1dzr+JG/g0kKZKQU5KDcq11bzIGBqVaCaVaiSRFkvlxaDsjCB9Wa+yZinLM2HyG8rYSdcrp9NNY8NcC/HzjZwB6T4yp3adi/v3zcTFZaDbHc2EpIMXLkImVKBMexbOdnsWaR9eYLWxXWyzlmS4sgUM/H9lK+7xG7W1XX/i5+qFfyHBswzmbbetj7DVJtaDSqHAl94p+EZ91ARdz9P+mFKWYbS8QCCDz/QkVebG459+lxxDx83+j+2B42/q/bypVSuy8vBOrjq/CuaxzJvs7+neEh8QDJ9JO4FLOJQD61HNxfeMwsctEmwI5rSgNT+94GsfTjoMDh/8N/h/eHPCmVUFQVlGGtafWArC8wBcLxYj0jkRifiKu510nwwhBEA2GWqtGWlGaRaNHsiIZ+WX5dvUlEogggMDqA30A8JR4mjV8RPlGwUdWD0WlnUAzcRwHf7k//OX+6BHSA4g2bVNaUYpkRTKSFcm4U3AHN/Jv4GreVdzOv400ZRoUKoXNNMcqrQrZJdnILsnmvwcrY69mqmwUAUg3EXVPsboYq46vwpIjS3inli6BXbD4wcUY0XYEfruUiZlbTDWLusIV/piPHPEH8PZKwoaRGzCs9bA6GaMl3eToz0dj1E0CToAQeXvASTQTUH3dxBhDujLdyPhxMfsiLudcthgBWeH2LUTFL8OSZlo6pn+D3DMZYziZfhLrTq3D9kvb+agrA15SL8QExuBG3g0kK5IB6A3rk2L09UOi/c18SVXpf9mxZfjP/v9Ax3ToFtQNe8ftNaqxaI61p9ZCrVWjb4u+6BfWz2wbMowQhBmK1cU2vZYs5euripvYDRKhBIwxlGpKTW5wDMzIgBLmEWZ2Id/Ku1WDWHtN8Aqr00V8beE4DoFugQh0C0Tv0N5m2xSri3kRkFSYhKTCJFzLu4bbhbeRokhBXlmebRHAXQGDFoDAJGwT0L+v5sI5AYZXdx1FUnkeWniEINQjFCHuIfBz9TObb54g7OVC1gUs/Gsh9l7dC0AfSRYbE4t3Br6DCK8IaHUMY/YdNDuzOQjAoINfxUv4aPQrGN/lmToZo1bHsGjfZbNjcHSYdoC7fXUl7G1XnzjL2G2JsTXjuyIqtNQkAuRG3g2Lhn5rdUDMiYmgBvAY1eq0+PPOn1h7ci32Xd9nksIxSB6EgeEDcbPwJk6ln+K3PxT5EOb1m4fhbYbbdT//J+kfjNk5BlklWfCWemPr01sxvM1wm8dtOr8JeWV5iPCKwJPtn7TYLsonijeMDIoYZLNfgiCI6qLVaZFZnMkbOKrqpZSiFGQVZ9lVQ1AsFEPuIoeAE0CtVaNYXWxyXOWCsW5iN4uRH36ufg2fQtDJNROgj1ht79ce7f3am91fOe1zUqHe6SwxPxHX868jWZGMDGWGSTrJqtijmQBY1E2v7T6OAp0KYV56zRTiHlKntcOIpk9ZRRk+O/kZPv73Yz4aqr1fe7w36D08Hf00BJzAqmYx6KYWbC7+ffEh+MvrJhKBdJNtnGnctnTTkrHtEOibYaSbLmZf5I1yVTFXB6RzYGcEygPx26VMp9BMAJBalIqNCRux9tRapBalGu0TckI8EP4AvKXe+O3mbziUdAiAvn7IrF6z8FLPlxAgD7B5jhJ1Cabum4ptF/U1FSfFTMK6x9bZTPVt+KwD5lMPG4jyiQJAhhGiGWFIxWTN6GHp5lQVT4knvKXekLpIAabPp2rIKW6gWF2MYhgXFgpxDzHrwdTau7XD8/gTpriJ3RDtH23RKq3RaZCuTL9nOFHojSc3C27iduFtpBWlAdq24GA5L6O5hb9hT0m5BHN+WAWV8AK/1UXggmD3YIS4hyDU/d7C3/C7wYDiLnZveKFHOBXXcq/h3UPvYvvF7bxBbkKXCVjwwAJE+Ubx7e6lljIPBwE45otIed86G6utMTgy3Ll3pA+CPaXIVJRbEDX6BWTvyHrwHK0mzjB2W2IMYHjx2z+QKnkB4EyLoXtLvU3y2dqqA9LQ+a6v5l7FV2e/woazG5BXZuzlKxaK8XjU4wjzDMMP137A9svbAejv3RO6TMDcPnMRExRj13kYY1hzcg3ifouDRqdBl8Au2DtuL1p5t7J5rI7psOyYPk/unD5zrOYHbuvbFr8k/tJoF/kEQTQsjDHklOZY1EspRfq0wJWNFZYQC8TwdfWFm9gNQoEQGp0GSpUSeWV5/PFqrdok2t7VxRVtfNqY1U2B8kBaE9cxQoEQLTxaoIVHC6Oi0wYYY1CoFLzRhI/YL7iFWwW3kKxIRnFxSA01k35vcZkLJu9aYKSbfGQ+FjWTQTcFyAMcXvyaaNyoNCqsP7MeH/zzATKKMwAArb1b491B7+LZTs8arans0U3qCjkSMwH/1nUzXtJNtnGWcdvSTQwMc3ccRpp0ioluslQHpJV3K4uOVg2tmUrUJdh7dS8+O/kZjqaa5kps69MWj7d9HDfyb+CnGz9Bx/TXbE/9kKrcKriFp7Y/hfNZ5yESiLB02FLM7j3bru//LRe2IKc0By09W2JUh1EW2xkiRm4V3EKFtgIuQhe7xuYs0DcdYYRGp0GGMsOq11LVvOCW8JB4INQ9FD4yH8hEemOFSqtCYXkhMoszkVOaA4VKAYVKYfb4QHmgWQ+mNj5tIBfLHXbNhOMRCURo6dkSLT1bYkDLASb7GWP49uQNzN9zo8bn6Bk4GKUiEdKUacguyUaFroKPYrGG3EXOG0mMDCeVxECIe4hzRBcRdcqtglt479B72HR+E7/YGBM9Bu8Oetes0c8ZQqTrcwxCAYeFI6IxY/MZcIDRQtWwjFo4Itopi0w6w9htiTGAg5D5wZ3rhrbBMIoA6RzYGcFuwTV6YFXf+a7zSvOw7eI2rDu9DhezL5rs7xrUFRM7TUSyMhnfnPuGd3zwlfliRs8ZmNlrJoLd7ffMKqsow0s/vYSNCRsBAM90egZfjvjS7nXBr4m/4mruVXhIPPBCtxestm3sYeEEQdQdhgfallJbpSj0aYFtRQMA+oc6Ie4hCJQHwl3iDpFABK1OC6VaidzSXKQp06DWqvkHkVWRiqRo7d3arG5qqJpShH1wHGdUH9Icu08n4dWdpt+v1aGjbz8UciVIV6ajXFOO/LJ85Jflm/3eNiDgBAhyCzJvOKnkeOYt9aY51sSp0Fbgm3PfYPHfi/m0ri09W2LBAwswKWaS2YegpJvu4cy6yVnGbduQxkEEf7SUPYjOYVIj3VTTOiD1rZl0TIe/k/7GV2e+ws7LO03WB25iN0zqMgmR3pHYeXknlh5byu8b3mY45vWdZ7N+SFV+S/wNz+5+FgXlBQiQB2DXmF24P/x+u441pN4C9M5k1gzlIe4hcHVxRWlFKW4X3uY1VGOBDCPNCB3T6YuZ2/BaMjwgtIZUJEWYRxjCPMMQ4hYCufhe2LaiXIGskizcKriFK7lXrPbj5+pnNoS7jU8beEg8HHXphJPBcRwifX0B1NwwsmT4O/wXmVqrRlZxFtKUaUhXpiOtSP9venGl35XpUKgUKKkowfW86zYfdPnKfO9FmriFmDWmBMgDrHobE85JsiIZ7//9Pjac28B7WT7R7gksGrQIXYO6WjzOGUKN63sMwzsFY+3E7k4TalwdGnrs9oqs+Cf24qluzp0qpCoV2gr8kvgL1p9Zj19u/GKS9stb6o1p3aehV2gv7Lq8C28ceINv0863HeL6xuG5mOeqXWAzqTAJo3aMwpmMMxBwAiwZugRxfeOqJRAMC/yp3abaXGeQYYQgmi8l6hKr0fEpRSkoVhfb7ghAkFsQwjzC0MKjBXxkPhALxNBCixJ1CfLK8pCqSEViQaLFOlKAPuqulXcrs5EfLTxaUDrZJkyIl1ut+1j9+Afo1/pzMMZQUF7Aa6PKOsmgo9KV6cgozoCO6fi/rSERSoyi8yvrpsrGFHJsbHxodVpsubAFiw4twq2CWwD0D0Dfuv8tTOk2xerDaNJNjUc3OcO47dVNKx+Ox8iuoXU8GseSmJ+I+HPx+PLsl8gszjTax4HDgxEP4oVuLyC1KBWfnfrMqH7Ic12ew9y+c9ExoGO1zskYw0eHP8JbB98CA0Of0D7YPXY3Qj3sf+1+v/k7LudchpvYDVO6TbHaluM4tPVti3OZ53A97zoZRpozWh1rsFAswyLHmteSwdvIFiKBCC08WvCGjzCPMAS7BcNF6AK1Vg2lSok0ZRoS8xNxI/8G/rz9p9W8t95Sb4vF+6ylBCGaNrbCNi1hLpxTLBTr56qn9YeLxepiZCgzjBb+aUVpJgYUlVaFvLI85JXl4UL2BYv9CTmhWU+qqkYUL6kXeVI5ARnKDHzwzwf44swX/L3w4dYP470H37NYT6cyZdx5MEEBoPMEB9MHEPURatwQ4c4NHWpcGxpy7PaKrCCP6hkHGgrGGM5lnsM3575BfEK8SbSngBPg0ahH8WL3F1GuKcfy48vxyZFP+P2DIwdjXt95eCTqkRo9wDt4+yDG7RqH3NJc+Ln6Yfvo7RgcObhafZzPOo8/bv0BASfAK31esdnesKi/WXATGp2GUooQhINoSM0E6NPBpCnTrBo97C1m7iPzQUvPlnrddNf44SnxhA46lFaUIq80D7cKb+FG3g38fvN3qzUWRQIRIr0izeqmlp4tyRmnmVJTzQSYrgs5joOPzAc+Mh90Cuhk8TitTovskmxTzVTF8SyvLA8qrQq3C2/jduFtq2PxlHhaNKAYNFOQW1CjS8HSFNExHXZe2omFfy3EtbxrAPQ1Dd6870281PMlm6nLi1RF+PzCa9BgIITwJd3UCHRTQ4/bGQxpjkRRrsCOSzuw/sx6nEw/abI/zCMMs3rNwsDwgdh2aRte+ukl3tmiuvVDqqJUKTH5+8nYfWU3AGBa92lY9ciqakfVGCJWpnabCk+pp832lQ0jjQ1SeA7CXMHTYAdaWJUqpU2vpdKKUpv9cOAQ7B5sZPTgIz/cQ3gDy838m7iRfwM38m/gaMpRJCmSrEaSeEg8LBbv83Wtv/A0ovFgLWzTErUN53QTu+nnZaW6EVVhjCG/LN/Ee8pgQDH8nlWSBS3TIk2ZhjRlmtXzSkVSi2m7KguC6npPE/aRU5KDj//9GGtOrkG5Rn+PHhg+EO8Pft9sqreqlGvK8fbBt7H06FJIRX0RoJ5v0qa+Qo0bKty5vkONHUlDjd1ZcvbWlgxlBrZc2IL1Z9abXehG+URhdu/ZeKLdE/jh2g945ddX+IcjLgIXjO88HnF94+yuH1IVQxj3f/b/BzqmQ/fg7tgzdg/CvcKr3ZchWmR09Gi7jm/h0QJSkRTlmnLcKbyDNj5tqn1OgiCMqWvNZCh2bdBH5lIDZ5Vk2dWXu9jdRC8ZjB/uYneUacqQUpSCG3l6zXQs7RhunL8BpVppsU8BJ0CEV4RZh7EIrwgywBIm2Fr7MTO/G/4GarYuFAqECHYPtpnqslxTjgxlhlXNlKZMQ2lFKZ9C21pGCQ4cAuQBFuueGLb5uvpSlFQdwBjD99e+x4I/F/DOgT4yH7ze/3XM7j3brqifv5P+xqS9k5CkSIKr+Dr81f9tsBRNpJuqR0OOuynoJo1Og/0392PDuQ347up3qNBVGO2XCCV4ttOzmNZ9Ghj0+mb+wfn8c9aO/h0xr988jO883u76IVW5nncdT21/CpdzLsNF4ILVj67G9B7Tq93PxeyL+P3m73Y7kwH6uiiGMTQ2OMZYdR0PGpyioiJ4enpCoVDAw6Ph0y39ejEDMzafMfkAG26vayd2t7rQL9eU64uZWzF6FJYX2jUWP1c/I68lfjF/998AeQAyijP4BTz/b/4N3C64bZIOozJyF7nFyA9/V3/yiCdqhCWB/ERMMH5IyKgz4VxbNDqN3pPKTAh6Ze8qez0OAcBL6mWzeHygPJA8qewkvywfnx75FCuOr+A9NPu16IfFDy7G4MjBdt2zEjITMHHvRD4H87Tu0/BI2H/xyS+3GnRu1vWDJcIxGNYHgHkxZmt90FCUVZTh+2vfY8O5Ddh/c79JVKjcRY5JMZMwtftU+Mp8sfrEaqw/s56PIvGR+WBGzxmY1WtWteqHVKVEXYKp+6Zi28VtAIBJMZOw7rF1Nj0VzZFZnInw5eFQa9U4OuUo+rboa9dxXdZ2wYXsC/h5/M94JOqRap/X0TjbGphwfpxpztRWMzHG9GmBrTiLpSvTreoZAxKhxEQn8Rrq7t86pjPRS4bfrWkzDhxaerY0q5sivSMhFoptv1gEUQVraz8ATrsuZIxBqVbymskoCqXS7+nKdD7FrS1cBC4Idg+2Wjw+xD2EUnPbCWMMvyT+ggV/LsDpjNMA9I6vr/Z7FXP7zrXrdVRpVFjw5wIsObIEDAwRXhHY9NQmFBe1bvC5SbqpcdBYddOFrAvYmLAR3yR8g9zSXJP9fUL7YEbPGXiy/ZP4NfFXLD22FCfSTvD7H279MOb1m4ehrYbW6pnqj9d/xIQ9E1CkKkKIewh2jdmFfmH9atTX1B+m4quzX+HpDk9j19hddh2zKWETJn03CYMjB+PApAM1Oq8jqc76lwwjtUSrYxjw8UGLhYI4AP7uLvh0givSilPNei3llObYdS5PiadZr6XK3ksyFxl0TIcURYrZhfytglsmlsvKyEQytPFpY3YhH+QWRMYPok6wlFKhoVMtOIKyijJkFGcYhaBXFQRpRWko05TZ1R8HDoFugVaLx4d6hMJX5luvn1dneq+KVEVYfmw5Pj36KV/ouUdwDyx+cDGGtxlu8rqYGzugw6dHP8XbB99Gha4CAfIAfDniS4xoN8LiMfV9vc4wBsI2jUWMMcZwJOUIvkn4BtsubjObO//BiAfxYo8XMbL9SJzPOo9lx5Zh56WdRvVD5vadi0kxk2odAXer4Bae2v4Uzmedh0ggwrKHl2FWr1k1vq8t+HMBFv+9GP1a9MORKUfsPm70jtHYfWU3lj+8HHP6zqnRuR2JM62BicaBs8wZezRTgIcY6yYHIF2ZajY1cGpRqt1pgUPdQ63qJj9XP3AcB0W5wkQzJeYn4kbeDeSV5Vk9TwuPFmYdxlp5t6qxtydBWMPa2q+xrwt1TIfc0lyLdU8Mv2eXZNvdp5vYzaZmCnYLrlHh5pribO/TwdsH8fbBt3E09SgAvfPLnD5z8Gr/V+EjM/bOtzT2C1kXMHHvRJzPOg8AeKHrC1g2fBlvUHGGa3aGMRC2aSy6KackB1svbMXXZ7/G+ezzJvv9Xf0xrfs0TO42Gf6u/vjyzJdYeWKlUf2QiV0mYm7fuVbTGtqDjumw+NBivHvoXQDAgJYDsHPMTgS5BdWov+ySbLRc1hIqrQr/vvAv+of1t+u446nH0fervmjh0QIpcZZrptUX1Vn/UqxuLTlxO9/iAh/QWzqzlRUY+vVMqISWaxXIRDKbXkvuEne+vaEYmmER/8uNX/jF/M38m1BpVRbPJRFK0NqntdmFfIh7CIWlEvWOpbDNxhqGWhmZiwytvFuhlXcri20YYyhSFZkWj68ShZKhzICWaZFZnInM4kycyThjsU+xUIxgt2CzxQ8r/175vlJTnGUBU6IuweoTq/HJkU/4SJ3OAZ3x3oPvYWS7kWYfqJobu7+7CMx9J04XfAVAX5h9/Yj1Rjk+nWFuOsMYCNs0dM5eW9wpvINNCZuw4dwGs/nBW7i3wPQe0xHbNRah7qH4/tr3GLJxCP5N+ZdvU9v6IVX5LfE3PLv7WRSUFyBQHoidY3bi/vD7a9xfWUUZ1p5aCwCY129etY6lAuwE4Rjs0UxZRWr0W/ucVc3EgdMXM7di9AhyCzKqx1GsLjarmW7k3bDpoBbsFmzWYay1T2tKgUrUO9bWfo19XSjgBAiQByBAHoBuwd0stlNr1cgszrSqmdKV6ShSFaFYXYzreddtfof7ynxtaqYAeUCt6/w4i2YCgMPJh/HOn+/grzt/AdCnfp7VaxbeuO8N+Mv9TdqbG3uQpxTdohLx9dVXoNaq4efqh/Uj1uPJ9k8aHesMc9MZxkDYxpl1k0qjwk83fsI3577Bzzd+NolOFQlEGNluJKZ2n4qhrYYiWZGMlcdX4suzX/IOZ/6u/pjVaxZm9JpRo/ohVVGUK/Dc3uew7/o+AMCsXrOw9OGltYpMXXtyLVRaFfqE9kG/FvZHnBjS1acWpaJEXWJX6j1ngQwjtSRbaXmBX5lg13ZoGeRtcQHvI/MxeWjHGOPTXh1JOYIbeTeQWKD3YErMT7TqYe4icEEr71ZmF/JhnmFk/CAIJ4LjOHhKPeEp9US0f7TFdjqmQ05JjtlCiJW35ZTmQK1VI0mRhCRFktVzu4vdbRZCDHYPtvjlaiktRqaiHDM2n6mXkNeyijKsO7UOH/37Ee9F1s63HRYNWoQxHcdYvN9ZGnu2Ug0on4SP6y0sGTERk7tOpmg5olY4mxhTqpTYdXkXvkn4Bn8n/W2yXywQY2zHsXih2wsYGDEQJeoSbDi3ASuOr8CtglsA9OuMZzs/i7i+cega1NUh42KM4aPDH+Gtg2+BgaFPaB/sHrsboR6htep38/nNyC3NRbhnuIlYt0WUj36Rfz2fDCMEURvs1UxeLi0RHCC0mBo4xD3E7JqktKIUifmJOJZ6zCQCJLM40+o5A+WBRprJED3fxqcN3MRuNbpegiDqBrFQjJaeLdHSs6XVdsXqYqM0XeY0U7oyHSqtCnllecgry+MjHswh5IQIcguyqplC3EPgJfWy6IzV0JoJAE6kncCCPxfgt5u/AdC/ntO7T8f8++dbTH9qeexl+PlUKITiHni8gy++HPElAt0C6/gKiKaOM+kmxhhOpp9E/Ll4bL241WwazY7+HfFijxcxvvN4+Mh8cDT1KMbtGoe9V/fy9UOi/aMxr+88TOgywWERpZdzLuOp7U/het51SIQSrHt8HZ7v+nyt+izXlGPNyTUAgLi+cdV6BuIj84GvzBd5ZXlIzE+scX3JhoAMI9Wkagien9y+sMutY9aZ/XAbcuX+m/KvSdqrxPxEPi++OYScEJHekWYjP1p6tqTifQTRxBBwAgS6BSLQLRDdg7tbbKfSqO55UpkJQTcIA6VaCaVaiWt513At75rVc/u7+pss/IPcQvD5L6FgMP3CZNCnxVi07zKGRgfViZeHWqvGl2e+xP/++R/SlekAgFberbBw4EKM7zze6j1Qq2NYtO+yheJuAgAMrYRvIDZmGBlFiCaBVqfFwdsHEZ8Qj91XdqNcY/qQsmdwT0zrMQ3jOo6Dp9QTKYoUvPnHm/ji9BdG9UNe6vESZvWehRD3EIeNT6lSYvL3k7H7ym4AwPTu07HykZW1Tm+hYzq+6PqcPnOqvTaiiBGCqDmVdVOu0nI0e2X2jo+3+ECkXFNutk7ijbwbSFOmWe3Xz9XPWC/d/b2NTxuqQ0AQTRA3sRva+rblv8fNwRhDflm+WZ2UXnzv96ySLGiZVp8C2ca9RiaSGdc6cdNrps0H2oLB1FmrPjQTAJzLPIcFfy7gPctFAhEmd52Mtx9426qRyZpm0o9chzbCN7B37AiIhOR8SzQNUotSsSlhE+IT4s0+J/EQe2BSzCS80O0FdAvuBo1Ogz1X9mDp0aU4nnacbzes9TDM6zsPw1o79pnCnit7EPtdLIrVxQjzCMOecXvQM6Rnrfvdcn4Lckpz0NKzJZ6Ofrrax7f1bYujqUdxPe86GUaaKmbDBz2k8HJ1gaK0wsIDNn2IYatAHY6mHDWbw9aQA98cAk6ACK8IEw+mKJ8oRHhFUBFmgiBMkIgkCPcKR7hXuNV2SpXSag5fw49aq0ZOaQ5ySnOQkJVw7zzazghSf2ixfwYgQ1GOE7fzq+31YS0PbIW2AhsTNmLx34v5iJgwjzAsGLgAsTGxdt0XbaX0ADjkKDU1GjtBOBNXc68i/lw8Np3fZFbM+8p8MbnrZEzuNpmPWDuZdhJLjy01qh/S1rct4vrGOaR+SFWu513HU9ufwuWcyxALxVj9yGpM6zHNIX3/lvgbruRegbvYHVO6T6n28YYHKsmKZJRVlNWo8DtBNEfM6SYBB+gsVLc0aKauLd1wNfeqWQNIiiIFzMLjOQDwlnqbjZZv49MG3jJvB18hQRCNHY7j4OvqC19XX3QO7GyxnUanQVZxllXNlFaUhoLyApRpynCz4CZuFtzkj69LzQRY102Xcy5j4V8LseuyvoCygBPguS7PYcHABVZTPRuwpZk4CFBUJsDJOwWkmYhGTYm6BHuv7kX8uXgcuH3A7HpjWKthmNJ9Cp5o9wSkIikU5QosPboUK46vqJP6IVXR6rR458938OFh/f1kUMQg7Bi9w2z6u+rCGOOdyV7p/UqNHO0rG0YaEw43jHz44YfYs2cPrl69CplMhv79++Pjjz9Gu3bt+DaDBg3CoUOHjI578cUXsW7dOkcPx2FYCh/MKirnt3FAlf36j1Ki5iMEffqHxb45cGjp2dLsQj7SO7JW+eEIgiAs4S5xRztJO7Tza2exDWMMeWV5ZnP4XkqWISXZ9nnsTZ9hwFL+3Xcea498/IlFhxYhMT9Rv90tGG/d/xamdp9aLc9ye8dU3bETRH1gq4BkXmketl3cho0JG3Ei/YTJ8QII8FjbxzCl2xQ8GvUoXIQu0Oq02HtlL5YeW4rDyYf5tg9GPIh5/ebh0ahH6yQN54/Xf8SEPRNQpCpCiHsIdo/djb4t+jqsf8MCf2r3qTXyCvdz9YOX1AuF5YVIzE+0+uCEIKpDU9VMgGXdZMkoYtBMmdxquH04jE89YQ4PiYfZyI8onyj4utJDOYIgHI9IIEKoRyhCPULRC70stiurKDNO33VXMyXcccGNW7bPUxPdYUk3TRvkjYMZS7H1wlb+Ae8znZ7BwoEL0d6vvd39k2YiGjvWdJOO6fB30t/YmLAROy7tMJuxJ8IrAlO6TUFsTCzCPMMAALcLbmPl8ZX46uxXUKqVAPQZNmb2mokZPWfUSUq5/LJ8jN89nk+DN6/vPHw89GOHZQraf2s/LuVcgpvYDVO7T61RH3ykfSNLQexww8ihQ4cwa9Ys9OrVCxqNBvPnz8ewYcNw+fJlyOX3iq9MmzYN7733Hv+3q6vzFq+zFj7I7v5fxxVDx8ohwj1LnQa5yBd/gTLdUQBAC48WZtNetfJu5bA8cwRBEI6E4zj4ufrBz9XPJBzy6M08PLv+mM0+Atztv79ZepiSoSjDzK1nkS3+DGXCRPi5+uG/A/6LGT1n1MiD294xVWfsBFEfWBLAbz3WDjrJGcQnxGPftX2o0FWYHNvWty2mdpuK52KeQ5BbEAB9Du51p9Zh+fHlfP0QkUCEZzvp64dYK4BaG3RMh/cOvYdFhxYBAAa0HICdY3by43IEF7IuYP+t/RBwArzS55Ua9cFxHNr6tsWJtBO4nnedDCOEw2iKmgmwlXYF0BtBdOBwr4gxr5lUes0kd5GbNXxE+UbB39WfUlwSBOGUyFxkaO3TGq19WhttP3ozD8/ecqxmAqzrpkXflyFHfAtMyPBU+6ewaNCiGq1hSDMRjRlLumn6gz64XbYXmxI24Y7ijslxEqEE4zqNwwtdX8D94ffzzmFHU45i6bGl2HNlj1H9kLi+cZjQeUKdRZYnZCZg1I5RuFVwCzKRDF8+8SXGdx7v0HMsPboUADCl2xR4Sj1r1EdjTUHscMPIr7/+avT3N998g4CAAJw+fRoPPPAAv93V1RVBQY4Tv3WJPSlXBMwd2S4fwtfVG8Hy9mjp7YVeEd5o5/caonyi0NqntcNTTxAEQTQkvSN9EOwpRaai3Goqwd6RPnb1ZyuHLYMOfhUv4cUhIzCn78u1Kojq6LETRH1gTQDP2noOOeKPUCY8arRP7iLH+M7j8UK3F9AntA//QDFFkYLVJ1bj89Of8/VDvKXemNFzhsPrh1RFUa7AxL0T8eP1HwEAs3vNxqcPf+rwCFlDtMjTHZ5GhFdEjfupbBghCEfRFDUTYJ9u4iCEUrwBAR4yhHl7oGtLd7TznYIo348Q5ROFILcgMn4QBNFkqAvdYU/tjxD2CrZOWYneLWpee4A0E9FYsaab3v0uDTniP1AmvGO0r09oH0zpNgXjOo3jI801Og12X96NpceW4ljqPQNnXdUPqcq3F77FlB+moExThkivSOwdt9fh9TsuZV/Cbzd/q5UzGUCGEYsoFHeLdfoY3yi3bNmCzZs3IygoCCNGjMA777xj0QNKpVJBpbpXsK+oyHJNjrrA3rDAjSP3YmxP23kaCYIgmgJCAYeFI6IxY/MZk1SChqXBwhHRdhcRtCeHLcd8MTj0sVoZRQDHj50g6hp7BLCPejrSpMcBTodBEYMwuetkPN3hacjF97zPT6WfwtKjS7Hj0g6+fkiUTxRfP6Ry27rgcs5lPLntSdzIvwGJUILPH/8csV1jHX6ezOJMbLmwBQAQ1zeuVn219dEv8m/k36j1uAjCEo7QTEDj0U1fPbUcT3ZrUcejIQiCaHjqQnfYo5s0Fe7QqiJrNGYDpJmIxkh1dFOA3A+xXWMxuetkdPDvwLdSlCvw1dmvsPL4Sr6uqVgoxsTO+vohdR1FrtFp8Mb+N7D0mD6SY1jrYfj26W/hI3O8EXL5seUAgCfbP2lX7SFLtPFpA0Cf9iuvNK/RpDitU8OITqfD3Llzcd9996FTp3tFZ8aPH4/w8HCEhITg/PnzeOONN3Dt2jXs2bPHbD8ffvghFi1aVJdDtYq9YYFh3jULN6ovbOUkJwiCqC7DOwVj7cTuJiGqQZ5SLBwRjeGdgu3uq75z2Dpy7ARR1xxOzLApgEXwx9ROH+HNwaOM0jhodVrsu74PS48uxT/J//DbB0UMwry+8/BY28fqpH5IVXZf3o3nv38exepitPRsiT1j96BHSI86Odfak2uh1qrRt0Vf9AvrV6u+Gqv3E9F4cJRmAhqPbgr0qJt0E46ANBNBEI7G0bqjPnUTaSaisbH9zCm7dNP/DdqLV+5/BC5CF37fncI7WHl8Jb488yVfP8TP1Q8ze87EzF4z66R+SFVySnLwzO5ncPD2QQDAfwf8F4sfXAyhQGjjyOqTXZKNTec3AdDXLakNri6uCPMIQ0pRCm7k3yDDCADMmjULFy9exOHDh422T58+nf+9c+fOCA4OxkMPPYSbN2+idevWVbvBf//7X8ybd+8NKioqQlhYWN0NvApNIXzQUm49+iIjCKK2DO8UjKHRQbV+iNAQOWwdNXaCqAsYYziScgTxCfHYezYFcsy2eczjbcajtU8oAH39kA1nN2DF8RW4WXATQP3UD6mKVqfFO3++gw8PfwgAGBw5GNue3gZ/ub+NI2tGWUUZPjv1GYDaL/ABMowQdY+jNBNAuqm2kGYiCKKucKTuqG/dRJqJcHZySnKw9cJWxCfE41qqO/zxus1j2nj14I0iR1OOYtmxZdh9ZTdfP6SDXwfM6zevTuuHVOV0+mmM2jEKyYpkyF3kiH8yHk9HP11n51t3ah1UWhV6h/ZG/7D+te6vrW9bpBSl4HredfRt0dcBI6x76swwMnv2bPz444/4+++/0aKF9TDpPn36AAASExPNLvIlEgkkEkmdjNMeGnv4oKXcepmKcszYfAZrJ3anhT5BELVCKODQr3XtPAIa6mGKI8ZOEI7kTuEdbEzYiI0JG3mDhkTbGfYkuQpwlyK1KBWrjq/CF2e+QGF5IQB9/ZCXer6EWb1mIdQjtO4GX4X8snyM3z0ev938DQDwar9X8dGQjyAS1J1vzubzm5Fbmotwz3A81eGpWvdnCAvPKc1BQVkBvGXete6TIAw4UjMBpJtqA2kmgiDqGkfpjobQTaSZCGdDpVHhx+s/Ij4hHr8k/gKNTgMAkAu7AhW2j/d1c8HOSztN6ocMbTUU8/rp64fUR1S9gfhz8Xjxxxeh0qoQ5ROFveP2omNAxzo7X7mmHGtOrgGgTz3siFopUT5ROHD7QKNyKHO4KmWM4eWXX8bevXvx119/ITLSdk7Dc+fOAQCCg513odlYwwet5dZj0H9hLtp3GUOjg5xSoDRXKISfqGuccY415ocpBFFblColdl3ehfiEeBxKOsRvl7vIMTp6NJ7rPAlv7WDIsiKAfdwEWHVuDnZe3s4LgzY+bRDXNw6xMbF1Xj+kKgmZCXhq+1O4XXgbMpEMX4/8Gs90eqZOz8kY44uuv9LnFYcYYNwl7gh2C0ZGcQZu5N9A79Dete6TIJqqZgIap24izdQ4ccb1LNG0cNY5RrqJaK4wxnAy/STiz8Vj26VtyC/L5/f1DOmJ2JhYjIkehydXnbdqOJTLKjBxXx8kFd0BoK8fMqHzBMT1javz+iFVqdBWYN5v87D65GoAwONtH8empzbBS+pVp+fdemErskuyEeYRhqc7OCYqpTFG2jvcMDJr1ixs3boV33//Pdzd3ZGZmQkA8PT0hEwmw82bN7F161Y8+uij8PX1xfnz5xEXF4cHHngAXbp0cfRwHEpjDB+0VZSLAchQlOPE7Xyy/jsJFMJP1DXOPMca48MUgqgpWp0WB28fRHxCPPZc2YMyTRkAgAOHwZGDERsTi1EdRvEGjYoRGWYFMMDAAFxRL8aZi0cB1H/9kKp8e+FbTPlhCso0ZWjl3Qp7x+1Fl8C6X+f9dvM3XMm9AnexO6Z0m+Kwftv6tkVGcQau510nwwjhEJqyZgIan24izdT4cOb1LNE0cPY5RrqJaE6kFqViU8ImbDy/EVdzr/LbQ9xD8FyX5zApZhKi/aP57ZYMhwCDDsAt7ScoK7rD1w+Z0WsGgtyC6ulq7pFZnImxO8fydSAXDlyIBQMX1Ll+q+pMVrnOSm1ojIYRjjFmzoBW8w4thN5s2LABzz//PFJSUjBx4kRcvHgRJSUlCAsLw1NPPYW3334bHh4edp2jqKgInp6eUCgUdh/TXPn+XBrmbDtns93Q7imY2LsDeoT0gJvYre4HRpjFUgi/4VNFIfxEbWksc8xZvbMIwhFcybmCjQkbsen8JqQp0/jt7XzbITYmFhO7TESYp/maAOZEugY5yBd/gQqXk3im0zOI6xuH7sHd6/w6zKHRafDG/jew9NhSAMDDrR/G1qe3wkdWP/UEhm0ahv239iOubxyWPrzUYf1O3zcd68+sxzsPvIP3HnzPYf1WF1oDNx3qQzMBNGfsxV7N1Cv6Ip7uHo4+oX0Q4RXhkLQTRPVpLOtZovHSmOYY6SaiqVKiLsHeq3sRnxCPA7cO3HUFA2QiGUZ1GIVJMZPwUORDFouSW9NNEYGFiOsbh4ldJtZb/ZCqHEs9hqd3PI10ZTo8JB7Y9NQmPNHuiXo59/6b+zFs8zC4id2QEpfisOiUG3k30HZ1W7i6uEL5X2WDOOgB1Vv/1kkqLWuEhYXh0KFDVtsQjsPeYlubLn6GL69cgIAToKN/R/QO7Y0+oX3QO7Q3OgZ0rNNc4IQeCuEn6prGNMccncOWBAPR0OSV5mHbxW2IT4jHyfST/HZvqTee6fQMYmNi0Tu0t82HbJ1aanF/z/34+vjfKFO5QMsVwNU1DXN6Tsfs3jvrtX5I1c9VZIAWE/Y+i4O3DwIA5g+Yj/cefM+iWHE0F7MvYv+t/RBwArzS5xWH9t0YvZ8I54Y0k3Nhr2bal7gFu25fAAD4u/qjd2hvXjf1Cu1Vb0bg5kxjWs8SjZPGNsdINxFNCR3T4e+kvxGfEI9dl3ehWF3M73sg/AHExsRidPRoeEisP+zW6DQoFvwL+C9DZpkSQuYNLVeAAW2C8Gq/d/Bwm4fr7aG9uc/U12e/xOxfZkOtVaODXwfsHbcX7fza1ct4APBObC90fcGhKbsivCIgEohQWlGKdGU6WnhYr5/nDNDT7iaOraJcAOAmrcDj0e1xIq0QKUUpuJB9AReyL+Crs18BAFxdXNEjuAdvKOnv0RIhQjE4WPhydPUFvMx7uhKWoRB+wpGotWpkKDOQrkxHmjIN6cp0nE0qQYbCcvqNpjrHnD0Mnmi6VGgr8EviL4hPiMe+a/tQodNXARRyQjwa9SgmxUzCiLYjIBHZLpR8Ov00lh5bih2XdtyrHxLQcPVDzH2umKAAOaIyuMncEP9kPEZ1GFWvY1p2VB8OPqrDKER4RTi0bzKMEETTxh7N5Omqw+M9BuJkhgznMs8hpzQHP934CT/d+IlvE+UTxRtKBnhGoKM8CGJL6SlIM9UI0kyEI2GMIb8s30gznbpThAxFlOVj0HTnGOkmoqFIzE/kI+rvFN7ht7fyboVJXSbhuZjn0Mq7lc1+ilRF+OrMV1h5YiXfj1gsxrjOEzC379x6Se1bGXOfKYm4DCnYALVQjVEdRuGbkd/AXeJeb2O6nHMZvyb+Cg4c5vSd49C+XYQuaOXdCtfzruN63nUyjBANjz1Fuf5vdB8M7/QkACBDmYETaSdwPO04TqSdwMn0kyhSFeGf5H/wT/I/CGMcrsHNslEEAEQSYPZpWuhXk2yl5QV+TdoRTRMd0yG3NBdpRfqFe+VFPP9vURpySnNMjnXVPAB/2F4IZBaV4+jNvCbhJWQpDD5TUY4Zm884VRg80TRgjOFs5lnEn4vH1otbkVuay+/rGtQVsTGxGN95PALkATb70uq0+PH6j1h6bCn+Tvqb3z4wfCDm9ZuHx6Ieq7dojMpY+lxB54kA9Xy8NTwQozr0qpexGDywbuRkYcfZswAEmNd3nsPP09a3LcAEuJ3tgu/PpiHAo3HfGwmCMMYezfTxqJ4Y3mkEAEClUSEhKwHHU4/jRPoJHE89jhv5N/ifv89vxVS4QUyayeGQZiLspbSi1KZmSlemQ6VVGR2n10yv2+y/KWkmgHQTUf8Ulhdix6UdiE+Ix5GUI/x2D4kHxkaPRWzXWNwXdp9daSuTCpOw8vhKrD+zHkq1EgDgK/PFzF4zMbPXzAapH2LpM1WulsAf8zGsexK+GDOzXtJyVo5a2XRxE8AEeCr6SbuMTdUlyqcdkrIl+O5sKmS6PKe/N5JhpBlQnaJcwe7BGNl+JEa2HwlA/xD2Wu413liiuP03ZLkp1k+oUeFy8j9o4z4aYqG4Tq6pKWJvCL+97YjGR5Gq6N7CvSjN7AI+Q5nBe53bwkXgghD3EIS4hyDUIxRiTUf8m2D7uMU/XkJ+yb1zNEYvIcYYFOVKvPP9hUYTBk80bjKUGdh8fjM2nt+Ii9kX+e2B8kBM7DIRk2Im2e2hVKIuwTfnvsHy48uRmJ8IABAJRBjXcRzi+sahR0iPOrkGe7CWXoKDAByArw8V4YW+rM4/V1U9sHyxGP5CBRSKCMDBzxlvpMsRqvoaIuaHOdvPAWic90aCICxTHc0kEUn4NFoG8svycTLtJE6knUDuzQOQJZ+1fkKNCn9f/Q7tO4+zy1hO6CHNRGh0GmQWZ1rVTGlFaVCoFHb36Svz5TWTTNsFZy7bPqYpaCZAn2kgr7QAb3+XQLqJqHM0Og1+v/k7NiZsxHdXv+MNkwJOgGGthyE2JhYj2420u+7H8dTjWHpsKXZf3g0t0wIA2vu1x7y+8xq0fogtzQQAF2+2h44Bwjr+SJlGrQxAKNphgH94nZzr5rVYBKml+OEE8MOJY05/b3R48fX6oLkUEXR0bkeH9Jd+DvhioM1m3VGMyyIXdAvuxqfg6hPaB628WzWrIoXVec01Wh2iF+2CSi3jb5SV4aAXZoffGEyLETSu3KdqrZo3eFhbwFfOn2kNDhwC5AH3jB7uofxCvvLfvq6+RnkztTqGAR8ftJomwvz59NS3l5Baq0ZBWQEKywtRUK7/t7C80GQb/2+V7S6ajghSf2jzPN9O69vkwuCJ+qGsogzfX/se8Qnx+P3m79AxHQBAIpRgZPuRiI2JxbDWw+yu05ValIrVJ1bji9NfoKC8AADgJfXCSz1ewuzes+u1fogljt7Mw7Prj9lsV9efK4tRK2DgwDn0fnXvXIZHA3oa4t7YXNbAhONoDnOmsWums5wOEV4RRjUeuwd3h6uLa80uoJFi7+uu1TH0+uBX5BVrSDPZQWPSTIwx5JXl2dRMWcVZfBFmW7i6uBprJTdTzRTsHgyp6J4hrbFpJh3TQalSmmgiE52kMqOjygpQpimDRNuZdBNRp1zIuoD4hHhsubAFmcWZ/PaO/h0RGxOLCV0mIMQ9xK6+NDoNvrv6HZYdW2YUaTKk1RDM6zuvXuuHWII0U+PRTBQx4qTURW5HRxflsoan1BMqVQGOpR7DsdR7NwNfma/Ror93aG/4ujbNL9bqvoefn16LVGyBP+ab7DPcSBaOiHbahWx94iy5T3VMh5ySHLMh2ZUX8JVT6djCQ+JhbOwwY/QIcguCi6V81VawlSbC0sK/pl5ClhbpJkYOK4v02iBk3na1o1QLRHVgjOFIyhHEJ8Rjx6UdRt6I/cP6IzYmFmOix8BbZt/8A4AzGWew9OhSbL+0/V79EJ82mNtnLmK7xsJN7Obw66gpzpDCxJoHluEb01FejcbnMu6LPCgJouFp7JqplXcrnCu8iTuFd3Cn8A52XNqhHwMnROfAzkYOZu392jdI+sT6oDrvY35ZLnKEn0GAFwELD19IM+lxFs0E6KNhbWmmdGU61Fq1Xf0JOSGC3YOtaqYQ9xB4SDyq7ZhZ35oJAMo15eYdwMwZOarsU6gUvHNOTSHdRNQFOSU52HphK+IT4nE2814UpZ+rH8Z3Go9JMZPQPbi73Z/RIlURvj77NVYcX8HXD3ERuGBClwmI6xtX7/VDrEGa6R7OrpnIMOKENIXcjgcnHcBNqbs+7+7dNFxnM88irywPvyT+gl8Sf+HbtvZujT4t+qB3SG/0adEHXYO6GnlsNEaq+x4eSz2GuN/iUCGswGO90nH2emubIfzNlfr4fDDGoFQrTRfsRWlIL763kM8ozuAfYtpCLBSbRnhUWcCHuIfU+QPQYR0D8X9j2+OjXxKRo7w3dplEi1KVZbFtKDK46vDPCPBWmDdy1MEiHdAbi7yl3vCSesFbdvdfaZV/726vvO1GJvD81+ds9k+pFgh7uFN4BxsTNmJjwkbcLLjJb2/p2RKTukzCpJhJiPK1XKizKjqm09cPOboUh5IO8dsfCH8A8/rOw+NtH3fKB2DOkMKkPgvvUpFfgnBemoJm2jVmJ4p8W+FU+ileMx1PPY6M4gycyzyHc5nn8PnpzwEA7mJ39AzpaeRk5gyRhLWlOu+jVqfFhD0TkKrej9a+EvhWvIisonsP0kkz3aO+Ph8V2op7aa0saKY0ZRqKVEV29+nn6mdTM/m7+tfpOml4p2CseLYz3v/xKrKV99JlySQ6lKose6Ib1gWfH/0Dgd5FZqM2zBlAyjW1fzgqForhLfW2qZcMf1fediVNgwlfnrR5DtJNhC1UGhV+vP4j4hPi8UviL/zzEheBCx5v+zhiY2LxSNQj1Uq7n1SYhFUnVmH9mfX8vcRX5osZPWdgZq+ZCHZ3vns+aaa6O5ejIcOIk2HNoufsVrbKcODQxqcN2vi0wYQuEwDo0+IkZCYYFXe/lncNNwtu4mbBTWy9sBWAPo96TGAM+oT20RtMQnujrW/bBg+Fs5fqvoc5JTkYs3MMKnQVGB09GmtGTYOOodGEPNcnWh3Du7X8fKg0KmQUZ1jNR5uuTEdJRYldYzKktarqnVR1Ae8r83VoGrlyTTkKygqQX5aPgnL9v/ll+fw2w/a80jzkluUirzQPBeUFUKqU+tBGJoBE3BFC5g0tVwCh1gf++I/N8761/xOUiv622a4yEqHE/ELckrGj0t8eEo8ai54gN4Zgz6sWw+ANqRZ6R/rUqH+i6aNUKbHz8k5sTNhoZLyQu8gxpuMYxMbE4oHwB6r1/WSpfsjYjmMR1zcOPUN6Ovw6HEnvSB8Ee0ob9HNVnx5YzuDtRRCEKU1FMwF6B5DBkYMxOHIwvy21KFWvme4Wdz+ZdhJKtRJ/3vkTf975k28X6h5qZCjpGdIT7hL3hriMGlHd93HRoUXYf2s/XF1c8X3sIrT3iybNZAZHfD4Maa1sOYpll2TbndZK7iK3qJkMuinYLRgSkaTG114VHdNBUa6wqJkM2/JK85BXlofc0lzegKHWqmusmf7z6/vV1kwcOHhKPU0dvyTW9ZLh79o4l/ZtxRp8fUc0XhhjOJF2AhsTNuLbi9/yKYEBoFdIL8TGxOKZTs9UO1uMpfohcX3jMLHLRKdOOUmaqe7O5WjIMOJk2Gtli142AqF+pQhyC7L44yvzdSpvU7FQjF6hvdArtBdmYRYAoKCsAKfST/GGkuNpx5Fdko3TGadxOuM0Pjv1GQDAU+KJXqG9jFJwBbkFNeTlWKQ6ltLekV4Yv2c8UotS0c63Hb564itwHAchB6ezotYXjDFklWQhqTAJdwrvIEmRhKTCJCQpkpCYKUC54kXLx0L/2q74+0fI3UyNHunK9GqltfKUeJoNya68gK9pWivAvoV6XmkeckpzkFuai7yyPBSWFaJIVQS1zr4wc4twOqiEF/g/Jehs12GtfH0R4DPYrBdSXSzSa4OtMHiAUi0Qpmh1Why8fRDxCfHYc2UPn9KNA4eHWj2ESV0mYVSHUZCL5dXqN60oDatPrMbnpz83qh/yYo8XMbv3bLTwaOHwa6kLnOFzVZ8eWM7g7UUQhCn2rrdbLRmKIF+lXh/JzWumQLdAp3u40sKjBVp4tMCoDqMA6L+bruReMYrGv5B9AWnKNOy9uhd7r+4FoP+uivaPvpeCq0UfdAroZHetq/qmOropX3sMi/9eDABYP2I9OgZ0BNB8NRMAlFaU8jrpTuEd/vfrGQy5iokWjzO8rl8cPQAP9yyzmqk6aa1EAhGC3YJNNFNVZzF3sXuNHcXKKspsGjdyS3N53VRQVgBFuQLFFfbVcLRIDTVTmLcHfL362xXlbtjmIfFoMGdQZ1jfEY2P1KJUbErYhI3nN+Jq7lV+e6h7KCZ2mYhJMZMQ7R9drT61Oi2+u/odlh5balQ/5KHIhzCv3zwMbzO8UThNO8NnijSTfTjnCqkZY6/1LLVQievF1j0QhJwQ/nJ/48W/BUFQk9ybjsBb5o2hrYdiaOuhAPQPxZMVyUaGktPpp6FQKfDHrT/wx60/+GNberbkPaT6hPZB9+Du1X5QVRdUx1L67l/v4o9bf8DVxRW7x+6Gh6RpFsWsjFanRboy3cjowf9+92+VVmX2WFfNA/C34xzvHPg/qx46EqHEyDPJXBG+EPcQu+dT1YV61aiN3NJcZJdkI6c0B3mleSgs1xs37I1KcQQSoQSeUk94Sb3gI/OBr8zXaEHuKfXGxv1aFJUJUDUnJFCpkOUruxvVgnh4p2CsndjdJL+ys6VaaEyFMZsqV3KuYGPCRmw6vwlpyjR+ezvfdoiNicXELhMR5hlW7X7PZJzBsmPLsO3iNj6UvLV3a8ztOxfPd33eqeqH2EtDf67q0wPLGby9CIIwxd71dm5xBZLLT9hs5yHx0BtJ5IFWHc8C5AENYmQQCoToFNAJnQI6YUr3KQD0EYhnMs4YReMnKZJwKecSLuVcwtfnvgYAyEQy9Ajpwact7h3aG+Ge4Q2i/api7/t4KTMF/zmsf9A/u9dsjO88vi6H5TQoyhUmRo/KGiqnNMfscfZqptd+XWwzqsHf1d9IM5lzGvOX+9v1oFKr06KwrNCiZjI4hGWXZN8zbqgUKFYXo0JXYbN/RyDgBHAXu/MGC1+Zr95wcTdqw0Pihe1/aqAsE8KqZpr7Q6Nbyzf0+s5eSDc1LCXqEuy9uhfxCfE4cOsAHzEmE8kwqsMoxMbEYnDk4Go7aStVSr5+yO3C2wD06bfGdx6PuL5xiAmKcfi11DUN/ZkizWQfZBhxMuy1ni0Z/ja8PHKQWZxp9JNVkoXM4kzklORAy7T8dltIRVITA0qgmxlhIJZDKpIAGvMPrgEAIglQw4LqHMch3Csc4V7hGNtxLABAo9PgYvZFo3DyS9mXkKxIRrIiGbsu7wKgNwR1CuhkFE4e7R9d71Ez9r6HtxTn8P4/7wMw9npq7Ki1aqQoUiwu4lOLUu2qyyERSsBxHCq0FXzYpJYrsHGUntZ+/ogIGGE2H22oeyh8ZD4mYlCr0/J5XvPL8nGr4Ba/UM8vy0d2STaySrJ444aiXAGFSoGSihK764zUBg4c3MRuvHHDT+YHX1df+Mh8bKam8pJ62RWS3slDn4sYaFpeQsM7BWNodJDTLqCdqTBmcyOvNA/bLm5DfEI8Tqbfy6vsLfXGM52eQWxMLHqH9q72wyNr9UPi+sZhRNsRThXRWRMa8nNVnx5YzuDtRRCEKfaut1c99j58vfKNNVOJsX4q15SjSFWEIlURruddt9ofBw5+rn7mI08qGVVCBAJ4iSTg6kgzAYBcLMf94ffj/vD7+W2ZxZk4mXaSN5ScSDsBhUqBw8mHcTj5MN8uQB5gpJl6hfSCt8y+4suOxN73ccXJ91BYXog+oX3w6cOf1vGo6gfGGHJLc806ihk0lEKlsNmPSCCCSCCCjun4CA97NVOIpxvC/B+0aPQIcgsy0RCMMZRpyniNdDX3Ko6kHOGNGzklOcgqyeKNG4ZahMXqYj4Kt66RiqS8ccNH5gM/Vz/4yHxsRrl7Sb3simrp6dM0NRNAuokwj47p8HfS34hPiMeuy7tQrL4XifVA+AOIjYnF6OjRNXL0TVYkY+XxlY2qfkh1IM3k/PdGjjFmX0JIJ6KoqAienp5QKBTw8GhaHvZaHcOAjw/atLIdfmOw1Qml0WmQU2JqODEnBqpTCA0AOoo90FbmB1+ZL3xdfeHn6gvfuw9p/WS+8PRpDZ+gLvCX+9eZR5VSpcTpjNO8oeR46nEjD18Dchc5eob0NAonD3UPrVMPKXveQz93ERKFz6JQVYDZvWZj1aOr6mw8jqZyyLa5aI90ZbpdeWYFnKBahbm9pF4IdguFOuNtaDRusOShE+gpwfYZ7aBQFRiFV+eU5CCjOANZxVnILctFfql+uyFywxEF72whEUr0xg2JJ7xkeuOGv9z/XvSGlYJ4tQk9rw602KxfLBXGNLzTjaFwbGOjQluBn2/8jPiEePx4/UfeA1EkEOGRNo8gNiYWj7d9vEb5rUvUJYhPiMfyY8txI/8GAL3RflyncY2ifkhjoz7vV85yb2zKa2Cibmiqc8ZRmokxBqVaaV4zVfnJLsnmnXXsoRUnRltXX/jKKuklXj/5wcM7Ej5BXRDoFlhn0YM6psONvBtG0fgJmQlmve/b+ra9p5lC+yAmKKZaxXFrgj3vo1hciuuCZ+An98GZ6WdqFL3ZEOiYDpnFmRajPZIUSSitKLXZj4ATgDFmdx0PkUCEELdQCPM+hE7jDmtRDd+93MVEM+WV5ukdLouzkF2ajbzSPOSX5+vTUqmLUVJRUi0NVxMEnAByFzk8JB5Gxg2DgcNaaipPqWedz1vAedYFzQnSTfVPYn4i4s/FY9P5TUhSJPHbW3u3xqSYSXiuy3OI9I6sUd8n0k5g6dGl2HV5F//d2s63HeL6xuG5mOecLsVlY4Y0k/X1LxlGnBDDDR8wb2Vz9A2/tKIUWcVZfLSJtR9LKY7MwYGzO5WXl9Sr1g9904rSeM+o42nHcTL9pJEl20CwW7A+jPxuOHnPkJ4OT2Fl6z2UB3yLS8ot6BPaB39P/rteFm/2YgjZNue5dKfgDnLL7K/RYQ8SocQkHNswJ+QuckhEEgg5IUorSpFRnIFTtzQ4drHT3aPvzRkGHQAOOeIPUCY86tAxGhBwAri6uMJd7A4PiQe8pd7wdfWFv9wfAa4B8JZ5W43aqGktkvqGwpPrB8PDAEu5te19qEPYnrOMMZzNPIv4c/HYenGrUa2hbkHdEBsTi2c7P4sAeUCNzp9WlIY1J9dg3al1fP0QT4knXz+ksTzEaYzU5/3KGe6NTX0NTDiepjxn6lszaXVa5JXl3YvUL86y6HiWX5Zfrb7lLnKrKbwqp/KqrW4o15TjXOY5oxRcifmJJu3EQjG6BXUziixp49PG4Y461t5HBoZs8QcoFx7D78/9jiGthjj03LVBo9MgtSjVbI2PO4V3kKxIdnj6pwB5gFEUfLBbMPzkfnAXu0MmksFF4AIddMgtzcWxxHL8da7N3SPrVzMB9xzC3CV3IzekPnrNJA+w6BRm+FvuIneKVG+2cIZ1QXNBq2O4764R1Rykm+zH1rwtLC/Ejks7EJ8Qb1Tjw0PigXEdx2FSzCTcF3ZfjT6jWp0W31/7HkuPLsW/Kf/y2wdHDsa8vvPwSNQjjaJ+SGOENJNlyDDipDiLla0yjDEoVArT9F3FWSZiILsku1qeJGKh2GwYurkfey3HWp0WV3OvGi36z2edN/H04sChg38Ho0V/54DOtX6I/evFDCz84RKyiu4Zk4I9pfAPOoR9yYvh5+pX715PjDHkleWZ9Vy6XXAbdwrvQKlWOuRcAk6AAHkAAuQB8JH6wF2iX7CD0783ao0apRWlUKqVUKgUUKqV+hDrijKbIkKm7Qcf9XSIKmXP1SAH+eIvbC7wxUIxb9zwlHjqc8e6+iJAHoBAeeC9PLKNeJHeHGCMQcu0qNBWoEJXgQptBdRaNf+7rX+r07ZCd7d91X3VbV/lX07VFj7l79m81m+n9W2UhUXra0Fk7fsyJhzYfH4zNp7fiIvZF/n9gfJATOwyEbExsegcaF8RTXOczTiLpceWmtQPmdNnDiZ3m9wo64cQzk1zWAMTjqWpzxln1EwAoNKokF2SbTF632BUySjOsCtqoDK+Ml+jwvGWHM98XX3tfsCUV5qHk+knjaLx88ryTNp5S72NNFPv0N7wl9tTzcI65nSTn5sAiZqPoeAO4f0H38dbD7xV6/NUh3JNOVIUKcZ1ERV6R7HbhbftjpK3B3exOwLdAuEn84On1BNuYjeIBCIwxqDSqqDSqFBSUQJFuQJF6iIoVUqUVpSiXFNudQy10UwGh7CqkRv+rv4IdAuEv6u/RacwT6lng9TiIcyjY7paaZZaaygH9M1VtIN/+fs2r5V0k3UsfWe+/Vh7cLIEbEzYiO+ufsc7RAs4AYa1HobYmFiMbDcSMhdZjc6rVCmx4dwGLD+2vMnUDyGcGzKMNBGcwcpWU7Q6LXJLc22m8soqzuK9a+3FXexuM6+vwaOqqnGjtKIUZzPOGoWT3ym8Y3IOqUiK7sHdjcLJI7wi7H8oXpgClOahWF2GIV8/DyHzwPJH/4eU0qN4/5/3kM9x+Oq53/BQq4eqde22MIRsV472uF1wGzfyb+B2wW2kF6fzuWdrg6vIFa4urhALxfrwbjBodBpodBqotCpUaCqg0tkfXVQdBJwAUpEUriI53NAVroJgeLgyhPqVI8hNb9wIdAuEt9TbbGh1c1+kM8Zq/UDfGRbH9VWAsS5x1TwA/4rXbbZb8UxXjOwaWg8jchz19aDKUki9wec0V/wRSoR6bySJUIIn2z+JSTGTMKz1sBrfC3RMh5+u/4Slx5birzt/8dvvb3k/5vWb1yTqhxDOS3NZAxOOoznMmcasmQCgWF1sVyqvrJKsatW1E3JC45qRVQwolfdVTdnKGMPtwtt6Q8ldzXQm44zZ7AGRXpFG0fjdgrpV7+GZGd30wZC3sOTkHKQXp6Jrq8H48rnfHO5FXKwuNon2SMxPRGJ+IlKKUqqtUc0h5IRwF7tDIpJAJBCBAwct00Kj00CtVet/NGpoYX+KtuogForhKpTDjesKmSAI7jIdgnxKECD3499/P1c/s6l8ZSJZs3YIM+eEVa8ayoF913Xqs/qAdJNjzmNJNzHAKIqso39HxMbEYkKXCQhxD6nxOZMVyVh1fBXWn1nP10zykflgRs8ZmNVrVqOvH0I4L2QYIRoV5Zpyyx5VVX6qW7DNpDiiGY8qoUCI63nXcSr9FG8wKSwvNOnL39Wf94zqE9oHvUJ7wUfmY3rSwhRgdQ+rBeo1AiFEryQAXtWLFqkcsn2n8A6u5V7D1dyreq+l4nTkleZVK/dxVThwEHACcBwHxhh0TOcwT6jKuAhcIBVJIRfL4SZ2g5dEvwD3lfkiwC0AQfIgBLsHw8/Vz8QLqaEW6VqdtvYRBk6wOK7N/HB2OHAQC8VwEbrAReBi179iodj8PjPbHNb33X8vpqowZ+ttm9fV2Dyf6iv/r61UZAw6aJGHllFf4vmukzC241h4Sb1qfL4SdQk2JmzEsmPLjOqHjO04FnF949ArtFeN+yYIe6E1MFFdaM40HXRMh4KyArtqSFZOGWkPMpHMZhovH5kPckpycC7zHK+ZruReMelLJBChS2AX3lDSO7Q32vu1N2/YsEM3MaEE3Munq6WbGGMoLC/kHcVu5t/E5ZzLvNEjqySr2pE6VRFwgnv1PxiDDo5/+CzgBJAKpZC5yPi0VN5Sb6PIjWC3YBOnMG+pNzwkHg3iqMGY3mHOoVHa9RjRXbltU0YkEDlW51hp7wgNdSGlHC9vuWnzukg3mcce3cQEBXhywGk83y0W3YK61eqZy4m0E1h2bBl2XtppVD9kbt+5mBQzieqHEHUOGUaIJknV4ohGeX3NRKJU5wGwi8AFAfIAfuEvc5FBrVWjsKwQ6cXpuFN4x6yHVpRPlFE4edegrpBkXwG+GGj7pNMPASFdjTapNCokK5JxPe86ErIScC33Gm4V3kJaURpyS3Mdluaqtgg4AcRCsd644XLXuHF3Ee7n6se/lsFuwfB39Ye71J1vJxFKoIPlcF5nXRw3BU8bSwg5Ya0WsEZtq9veAQYGw7+NzUvfUYVjHY2hwGd1/9UxHTRaHR5dcRrZRebFpCOv6ejNPDy7/pjNdrUVSOnKdKw+sdqkfsj0HtPxcu+XqX4IUa/QGpioLjRnmicV2goTxzNL9SSrqy+8pd58tIGvzBeMMZRUlCCrJAt3Cu6gUFVocoyHxAM9Q3oaReMHuwcD6edqpJsYY8guycbtwtu4kHUBl7IvIbEgEcmKZGQWZ6KgrAAaZn90TV3iInCBRCSBq8gVcrGcr1Po4+qDANcAvm5IkFsQn0ZL7iKHXCyHkBPWyMBQlxHdtjRUdaKaGhscOIdoFiNNVN32DmgrEogaXTRQY9FNOqazWzs1Nd1E9UMIZ6I669/mnVOGaFRwHAcPiQc8JB5o69vWalsd0yGvNM+iR1Vlo0peWR4qdBVIU6YhTZlmcxyGMOgKXQVu5N/Ajfwb2HJhCwD9A+aRHhHYbcf1vPr7a/ijLAdZJVkoUhVBpVXV68N3DhyEAiFEApGRx4hhgSYWivnfRUL9NQP6QMuq0RNlmjIUKYqQmJ9otDh2FkFSVwi5e6+fUCCEiBPxr6nhb8Pv/HZO/7u5fyvvF3ACCLm7/97dLxBU2la1nUAAAQT8NgEn0EcAmdnO7+c4CKBfnNh64F3Th+VqrZqf2zXtw/C7IYKpxv04qI/aviaV+9AKO4Fh8t0ZVXnBqy+NmYYViFjxfJ2Pw/B7bZFoOyNI/aHF/QxAhqIcJ27n19qbK1tp3uOppu2qcjbjLJYdW4ZtF7fxqdtaebfC3D5z8XzX5+Euca9RvwRBEARR17gIXRDqEYpQD9spZUrUJRaNJlWNKmqtGgXlBSgoL8DV3KtW+zU8RK7QVqBIVYSDtw/i4O2D/H4/Vz+M8W6Lz+y4nik/TMHB8nzkl+fbVY/QkRgi6g1r+6oPwg0PoMUCMb/uN6BjOhPjQV6ZXqOqNCqjfY5YhzkrHDheM/E66a7uqfo3r0/v6ipr2smggQzHGrRSZQ0lgMBYQ1XSRIZtAk7AayaTf+/u4+7+V1f6wRBlUysN0kj1kL1tLekmdvfTk4rlCF8eW2/XUluaim4y1A9ZcXwFbhXcAqA3CD/b+VnE9Y1D16Cu1e6TIOoTMowQTRIBJ4C/3B/+cn+bhXXVWrXdqbxKKkqsesFomfZuMSnbBXf/vPMnznMNF4XAcK8uCFEztEwLrVZrNt8yQdjHdcjEGWYKY+bqC2OqjwKNKJJfyLztaldTY0VlAtylDm0H3KsfsuzYMvx5509++4CWAzCv7zw80e6JRheZRBAEQRDWkIvlaCVuhVberay2Y0yfnsqeVF45JTlgYFbTEeWW5uJYST7s0U1nM8/hTgPpJgbGr/nVUAMknaoNA+Mj+Qmi5pjXTVrSTTapC92UokjBqhOr8MXpL4zqh7zU4yXM6j2rVrVJCKI+IcMI0ewRC8Vo4dECLTxa2GybWpSKcxnncDH7Iq7nX8edwjtILUpFVnEWiiuKm3S6pYaGAweO44zqoFTeVp1/DdEUDdmHU19DI3kNnP51rMY1MAZcy9CisJTB21WA6FA/CAUrGtU1cByHE7cKMPGrUzY/z9VZdFuid6QPgj2lNkPqe0eaqQVVhdKKUsSfi8fy48txPe86AKofQhAEQRCV4TgO3jJ9HYsO/h2sti2rKMP5rPN8auCbBTeRrEhGmjINheWFTb5+Q0NSk/VbQ68fG7KPWq+jnWAMTeJ1rEYflnRTY7qGxqybTqadxNJjS43qh7T1bYu5ffT1Q+Riea3HSxD1CRlGCOIuBi+oO4V3+J8kRZLR3wZLuCPo26IvfFxk+nQ6TAsN00Cr00Kr0/KRHJUL11XOGWtIT+SIEE5HIeSEkIgkkIqkkAjv/nv3b8M2iVACmYuM31b1RybS7zO0kYlkFtsbzmH4aYy5UgmiMgPCG3oEtadf6wCHLbptIRRwWDgiGjM2nwEHGJ3PcCdYOCIagD6vbrayHAHu+nMb8vSmK9Ox5sQarDu9Dvll+QDu1Q+Z3Xs2Wnq2rPU4CYIgCKKpodaqkaJIMdFKBv2UokhxqE7pE9oH3mKZXiuxez+VNZNGpzGqgVH5x9ki5CVCiVXdZE7ryEQyozaVdZI1zWROQ5FmIho7pJuqhz266Z3HonHidr5ZzaTVafHDtR+w9NhSHE4+zB/7YMSDmNdvHh6NepTqhxCNFiq+3lAUpgCleZb3u/oCXs2roKtWxyzeiB3RX68IbyhUBRaNHkmKJBSpimp0Lj9XP3QO6Iz+Yf0xXB6MAb/Mt32QmeLr1UWj06BcU16tH5VGZXm/tnp9OZPIEHACu8QA/yOsIhKqiJHq/rgIXEhk1BOOvlcQjuXXixmYsfkMAPOL7rUTu2N4p2CHnm/RvsvIUNwLMw/2lPJGEXP7Jt3vimO56/DthW/5tA6RXpGY23cuJnedTPVDCKelSayBiXqlScwZ0k1G1LVm6h3pA41OjZSiFIsOY2lFaTUyfIiFYkT5RKFXSC8MCB+AB1w8ELVrqu0Da6mbdEwHtVZdbd1kVVNprWgqMz/OhCVjjL26yarhxUafEqGE0pLWE6SZnB9n0U1PxATjh4QMk+2vP9IKqaofsfz4cr5+iEggwrOd9PVDugV3c9jYCMKRVGf9S4aRhqAwBVjdA9BYqUsgkgCzTzebRb61B1v2fhEwxpBbmos7hXfw4/kU7D4uQHG5C79fy+Uhz2UdyoRHrfYjEUoAwGLdiJaeLdEjuIf+J6QHugd3R4A84F6D9HPAFwNtD9gBhpGGRqPTQKVRVVsYOEpoOFMYPgeu+oYWB4uM5mCYccS9gqh76vt9Mif89l/OxIzNZ8w8ttE/yskRf4Ay4VHcF3Yf5vWbh5HtRpJQJ5yeRr8GJuqdRj9nSDcZ4ajv13JNOZIVydhz9ha2/KuCsuxeIgkmyEeuaB1KhUes9iHkhBALxVBr1Xw6lcq4uriia1BXI93U3q89RIJKSSuaiW5ijNk0zNSlniqrKHOqTAMuApfqaaBqaCZ7+jOag00U0kyNh4bWTQUlKszaetamZvKWemNGzxlUP4RoFDQaw8iaNWuwZMkSZGZmIiYmBqtWrULv3r1tHtfoF/jNZAFoLwYredWJWNVKzhhDTmmO2XBtw++lFaWQafvBXz3/bh/3HhQz6ABwULuvgZfXHYgFYqi0KuSW5iKvzLwXWoRXBL+Y7x7cHT1CesDP1c/6BZGAqzd0TGc9AqYehIYzUTXk3p5QekeKjLoOn7X3XkE4Bw3ppabVMQz4+KCRwKgMgw4ScRk2TgtH37A+9TImgnAEjX4NTNSImmomoAnMGdJNPNVZB5VVlPEaKanwrlZS3NNPmcWZNjWTQvp/8PFOhpvYDYwxFKmLkFmcadYxSe4iR7fgbugepNdLPYL1RhCbDgekm+oFxliNMg04SlOVacqcqhankBM6TAPVRFPVdQpo0kyNj4bSTfZoJk6owH9GKvF8V6ofQjQeqrP+bTBT+fbt2zFv3jysW7cOffr0wfLly/Hwww/j2rVrCAgIsN0B0STQ6hgW7bts1n+F3f3/7O2HIPrrPSQr7qBMU2a9QyaAv2bG3S994y8SDgIwMAiV43C1YgrAGS/OWnm30hs/KhlCfF19q39RXmH6xTuF/Nc5Ak4AmYs+p25DYI/3V10LjcreXyqtPnrHkbVwqkN1vL+qKzLEAgnm71VbvFdw0KdMGhodRCHiToJQwKFf6xrcQx3Aidv5Fhf4gP77QK2Wg6nb1OOoCIIgqg9pJgKwTzO9sv0feB9dhiTFbWSVZFnvkAngW/GiRc0EMLirJuN2wQsmmslN7IZuQd34KJAewT3Q1rdtzaIuSTfVCxzHwUXoAhehS4OlCzVnmLHHwc3ij5kU0Nb6M6ROBQAt06KkogQlFSUN8lrYSgFdG+c1vWbSkmZqZDSUbrJHM0Hrje6+j5BRhGiyNJhhZOnSpZg2bRomT54MAFi3bh1++uknfP3113jzzTcbalhEPWPrRgxw0FS4IzVbBJWwDBw4hLiHIMIrAhFeEQj3DOd/j/CKQHqeG2K/PmOlNw4i+CNSPhS9Ij2NjCDeMm/HXZhXGC3gmwEcx0Ei0hdP9IRnvZ+fMYYKXYV5Q0tNhYaFOjPm+qvq/VWhq0CFugJKtdLh1yrRdkaQ+kPLrwWADEU5TtzOb7CH8YTzkK20L5rL3nYEQRANBWkmArBPM6kr5EhIKYFKqDeKuInd7ukkz3t6KdwrHLmFPnhp4xWr/QmZH7yFPdElTGZkBInyjXJslDDppmaBSCCCm9gNbmK3Bjm/VqetkSOaRU1VzdqclSOtdEyH0opSlFaUOvw6STMR1YE0E0E0kGFErVbj9OnT+O9//8tvEwgEGDJkCI4eNa3/oFKpoFLdC68tKqpZgWzC+bD3BrtgwP9hXM/WCPMMg1gottjuckqaXf0tG/oVRnYNtastQTgrHMdBLBRDLBTDQ9Iw6TFqGpZfXZGhVLRDea7t8dCijQCAAHepQ9sRBEE0BNXVTADppqaKveub1/q8h1HdWyLCKwLeUm+L6Xq+z7ZPM339+G482a2F3eMkCGdFKBDCVeAKVxfXBjm/IQV0XdfmLCpsi5Ic2+MhzUQApJkIAmggw0hubi60Wi0CAwONtgcGBuLq1asm7T/88EMsWrSovoZH1CP23mAfbN0DrX1sezTQjZ0g6pf68v46ejMPz64/ZrMdfbYJAOgd6YNgTykyFeVmUwlwAII89fl7CYIgnJXqaiaAdFNTxd71zWPt70f3YMdppkCPhklXSxBNjfpKAU2aiagOpJkIAqjbSrkO4r///S8UCgX/k5KS0tBDIhyE4UZsKbslByC4GjdiR/dHEIRzQJ9tojoIBRwWjogGUDVz+r2/F46IptzKBEE0OUg3NU1IMxEEYQ/02SaqA2kmgmggw4ifnx+EQiGysoyLwmVlZSEoKMikvUQigYeHh9EP0TRw9I2YbuwE0TShzzZRXYZ3Csbaid0R5GnsERfkKcXaid0xvFNwA42MIAjCPqqrmQDSTU0V0kwEQdgDfbaJ6kKaiWjuNIhhRCwWo0ePHjhw4AC/TafT4cCBA+jXr19DDKl+cfUFRBLrbUQSfbtmgKNvxHRjJ4imCX22ieoyvFMwDr8xGN9O64sVz3TFt9P64vAbg2muEATRKGj2mgkg3VQJ0kwEQdgDfbaJ6kKaiWjOcIwxc6nk6pzt27cjNjYWn3/+OXr37o3ly5djx44duHr1qkke3aooFAp4eXkhJSWl8XpBFaYCZfmW98t8AK/mVehOq2M4facAOcXl8HeTokeEd608GRzdH0EQzgF9tgmCaK4UFRUhLCwMhYWF8PT0bOjhEPVAbTQTQLqpKUKaiSAIe6DPNkEQzZXqaKYGKb4OAOPGjUNOTg4WLFiAzMxMdO3aFb/++qtdC3ylUgkACAsLq+thEgRBEARBEIRToVQqyTDSTKiNZgJINxEEQRAEQRDNE3s0U4NFjNQGnU6H9PR0uLu7g+NqZ/E2WJEatRcV4VBoThDmoHlBVIXmBGEOmhdEVRw5JxhjUCqVCAkJgUDQIBlxiUaGo3QT3dsIc9C8IKpCc4IwB80Loio0J4iqNJRmarCIkdogEAjQooVjw6WpOCFRFZoThDloXhBVoTlBmIPmBVEVR80JihQhqoOjdRPd2whz0LwgqkJzgjAHzQuiKjQniKrUt2YiVzOCIAiCIAiCIAiCIAiCIAiCIJoNZBghCIIgCIIgCIIgCIIgCIIgCKLZ0OwNIxKJBAsXLoREImnooRBOAs0Jwhw0L4iq0JwgzEHzgqgKzQmiKUDzmDAHzQuiKjQnCHPQvCCqQnOCqEpDzYlGWXydIAiCIAiCIAiCIAiCIAiCIAiiJjT7iBGCIAiCIAiCIAiCIAiCIAiCIJoPZBghCIIgCIIgCIIgCIIgCIIgCKLZQIYRgiAIgiAIgiAIgiAIgiAIgiCaDWQYIQiCIAiCIAiCIAiCIAiCIAii2dCsDSNr1qxBREQEpFIp+vTpgxMnTjT0kIh64sMPP0SvXr3g7u6OgIAAPPnkk7h27ZpRm/LycsyaNQu+vr5wc3PD008/jaysrAYaMdEQfPTRR+A4DnPnzuW30bxofqSlpWHixInw9fWFTCZD586dcerUKX4/YwwLFixAcHAwZDIZhgwZghs3bjTgiIm6RqvV4p133kFkZCRkMhlat26NxYsXgzHGt6F50bT5+++/MWLECISEhIDjOHz33XdG++15//Pz8zFhwgR4eHjAy8sLU6ZMQXFxcT1eBUHYD+mm5gvpJsIWpJkIA6SbiMqQZiIA59dNzdYwsn37dsybNw8LFy7EmTNnEBMTg4cffhjZ2dkNPTSiHjh06BBmzZqFY8eOYf/+/aioqMCwYcNQUlLCt4mLi8O+ffuwc+dOHDp0COnp6Rg1alQDjpqoT06ePInPP/8cXbp0MdpO86J5UVBQgPvuuw8uLi745ZdfcPnyZXz66afw9vbm23zyySdYuXIl1q1bh+PHj0Mul+Phhx9GeXl5A46cqEs+/vhjrF27FqtXr8aVK1fw8ccf45NPPsGqVav4NjQvmjYlJSWIiYnBmjVrzO635/2fMGECLl26hP379+PHH3/E33//jenTp9fXJRCE3ZBuat6QbiKsQZqJMEC6iagKaSYCaAS6iTVTevfuzWbNmsX/rdVqWUhICPvwww8bcFREQ5Gdnc0AsEOHDjHGGCssLGQuLi5s586dfJsrV64wAOzo0aMNNUyinlAqlSwqKort37+fDRw4kM2ZM4cxRvOiOfLGG2+wAQMGWNyv0+lYUFAQW7JkCb+tsLCQSSQS9u2339bHEIkG4LHHHmMvvPCC0bZRo0axCRMmMMZoXjQ3ALC9e/fyf9vz/l++fJkBYCdPnuTb/PLLL4zjOJaWllZvYycIeyDdRFSGdBNhgDQTURnSTURVSDMRVXFG3dQsI0bUajVOnz6NIUOG8NsEAgGGDBmCo0ePNuDIiIZCoVAAAHx8fAAAp0+fRkVFhdEcad++PVq2bElzpBkwa9YsPPbYY0bvP0Dzojnyww8/oGfPnhgzZgwCAgLQrVs3rF+/nt9/+/ZtZGZmGs0JT09P9OnTh+ZEE6Z///44cOAArl+/DgBISEjA4cOH8cgjjwCgedHcsef9P3r0KLy8vNCzZ0++zZAhQyAQCHD8+PF6HzNBWIJ0E1EV0k2EAdJMRGVINxFVIc1E2MIZdJOo1j00QnJzc6HVahEYGGi0PTAwEFevXm2gURENhU6nw9y5c3HfffehU6dOAIDMzEyIxWJ4eXkZtQ0MDERmZmYDjJKoL7Zt24YzZ87g5MmTJvtoXjQ/bt26hbVr12LevHmYP38+Tp48iVdeeQVisRixsbH8+27u+4TmRNPlzTffRFFREdq3bw+hUAitVov//e9/mDBhAgDQvGjm2PP+Z2ZmIiAgwGi/SCSCj48PzRHCqSDdRFSGdBNhgDQTURXSTURVSDMRtnAG3dQsDSMEUZlZs2bh4sWLOHz4cEMPhWhgUlJSMGfOHOzfvx9SqbShh0M4ATqdDj179sQHH3wAAOjWrRsuXryIdevWITY2toFHRzQUO3bswJYtW7B161Z07NgR586dw9y5cxESEkLzgiAIgmiykG4iANJMhHlINxFVIc1ENAaaZSotPz8/CIVCZGVlGW3PyspCUFBQA42KaAhmz56NH3/8EX/++SdatGjBbw8KCoJarUZhYaFRe5ojTZvTp08jOzsb3bt3h0gkgkgkwqFDh7By5UqIRCIEBgbSvGhmBAcHIzo62mhbhw4dkJycDAD8+07fJ82L//znP3jzzTfxzDPPoHPnznjuuecQFxeHDz/8EADNi+aOPe9/UFCQSeFqjUaD/Px8miOEU0G6iTBAuokwQJqJMAfpJqIqpJkIWziDbmqWhhGxWIwePXrgwIED/DadTocDBw6gX79+DTgyor5gjGH27NnYu3cvDh48iMjISKP9PXr0gIuLi9EcuXbtGpKTk2mONGEeeughXLhwAefOneN/evbsiQkTJvC/07xoXtx33324du2a0bbr168jPDwcABAZGYmgoCCjOVFUVITjx4/TnGjClJaWQiAwXkIJhULodDoANC+aO/a8//369UNhYSFOnz7Ntzl48CB0Oh369OlT72MmCEuQbiJINxFVIc1EmIN0E1EV0kyELZxCN9W6fHsjZdu2bUwikbBvvvmGXb58mU2fPp15eXmxzMzMhh4aUQ/MmDGDeXp6sr/++otlZGTwP6WlpXybl156ibVs2ZIdPHiQnTp1ivXr14/169evAUdNNAQDBw5kc+bM4f+medG8OHHiBBOJROx///sfu3HjBtuyZQtzdXVlmzdv5tt89NFHzMvLi33//ffs/PnzbOTIkSwyMpKVlZU14MiJuiQ2NpaFhoayH3/8kd2+fZvt2bOH+fn5sddff51vQ/OiaaNUKtnZs2fZ2bNnGQC2dOlSdvbsWZaUlMQYs+/9Hz58OOvWrRs7fvw4O3z4MIuKimLPPvtsQ10SQViEdFPzhnQTYQ+kmQjSTURVSDMRjDm/bmq2hhHGGFu1ahVr2bIlE4vFrHfv3uzYsWMNPSSingBg9mfDhg18m7KyMjZz5kzm7e3NXF1d2VNPPcUyMjIabtBEg1B1kU/zovmxb98+1qlTJyaRSFj79u3ZF198YbRfp9Oxd955hwUGBjKJRMIeeughdu3atQYaLVEfFBUVsTlz5rCWLVsyqVTKWrVqxd566y2mUqn4NjQvmjZ//vmn2XVEbGwsY8y+9z8vL489++yzzM3NjXl4eLDJkyczpVLZAFdDELYh3dR8Id1E2ANpJoIx0k2EMaSZCMacXzdxjDFW+7gTgiAIgiAIgiAIgiAIgiAIgiAI56dZ1hghCIIgCIIgCIIgCIIgCIIgCKJ5QoYRgiAIgiAIgiAIgiAIgiAIgiCaDWQYIQiCIAiCIAiCIAiCIAiCIAii2UCGEYIgCIIgCIIgCIIgCIIgCIIgmg1kGCEIgiAIgiAIgiAIgiAIgiAIotlAhhGCIAiCIAiCIAiCIAiCIAiCIJoNZBghCIIgCIIgCIIgCIIgCIIgCKLZQIYRgiAIgiAIgiAIgiAIgiAIgiCaDWQYIQiCIAiCIAiCIAiCIAiCIAii2UCGEYIgCIIgCIIgCIIgCIIgCIIgmg1kGCEIgiAIgiAIgiAIgiAIgiAIotlAhhGCIAiCIAiCIAiCIAiCIAiCIJoNZBghCIIgCIIgCIIgCIIgCIIgCKLZQIYRgiAIgiAIgiAIgiAIgiAIgiCaDWQYIQiCIAiCIAiCIAiCIAiCIAii2UCGEYIgCIIgCIIgCIIgCIIgCIIgmg1kGCEIgiAIgiAIgiAIgiAIgiAIotlAhhGCIAiCIAiCIAiCIAiCIAiCIJoNZBghCIIgCIIgCIIgCIIgCIIgCKLZQIYRgiAIgiAIgiAIgiAIgiAIgiCaDWQYIQiCIAiCIAiCIAiCIAiCIAii2UCGEYIgCIIgCIIgCIIgCIIgCIIgmg1kGCEIgiAIgiAIgiAIgiAIgiAIotlAhhGCIAiCIAiCIAiCIAiCIAiCIJoNZBghCIIgCIIgCIIgCIIgCIIgCKLZQIYRgiAIgiAIgiAIgiAIgiAIgiCaDWQYaeTcuXMHHMfhm2++4be9++674DjOqF1ERASef/75Oh/P888/j4iIiDo/T00x93o1NwYNGoROnTo19DBqxDfffAOO43Dnzp1qH2vuc1HXDBo0CIMGDarXcwL2z3PD63nq1Kn6GRjBU3VuNKZ7U319nxD1R0PdqwiCIOoK0kjVozGtQ4ia8ddff4HjOPz111/VPrY2GqymNORnhuM4vPvuu1bbGF7PXbt21c+gCB5zc8Oe98wZoDV308PZv98J25BhpA4wLBzM/bz55psNPTwAwOXLl/Huu+/W6+KmPtm6dSuWL1/e0MMgCIJwepzhfllYWIjp06fD398fcrkcDz74IM6cOWPXsSdOnMDMmTPRo0cPuLi42DSAZmVl4cUXX0RoaCikUikiIiIwZcoUR1wGcZfqvMbbt29Hv379IJfL4eXlhf79++PgwYMm/U2ePBkBAQGQyWTo3r07du7cadKX4aFn1R+pVGrSVqFQ4PXXX0dUVBRkMhnCw8MxZcoUJCcnO+ZFIAjCBNJIDY8zfOfXhA8++ADfffddQw+DIAjCiJ9//rnBDTIqlQpvvPEGQkJCIJPJ0KdPH+zfv79GfQ0dOhQcx2H27NlG21NSUrBo0SL07t0b3t7e8PPzw6BBg/DHH3844hKISiiVSrz++uuIjIyERCJBaGgoRo8ejdLSUpO2f/zxBwYPHgxPT0+4u7ujR48e2L59u1Gb4uJizJ07Fy1atIBEIkGHDh2wdu1ak76srdEyMzON2paXl+PDDz9EdHQ0XF1dERoaijFjxuDSpUuOfTHqCVFDD6Ap89577yEyMtJom6M99cPDw1FWVgYXFxer7a5duwaB4J4d7PLly1i0aBEGDRrUJK2bW7duxcWLFzF37lyj7fa+XgRBEPVJQ96bLN0vLVH1+6S26HQ6PPbYY0hISMB//vMf+Pn54bPPPsOgQYNw+vRpREVFWT3+559/xpdffokuXbqgVatWuH79usW2KSkpuO+++wAAL730EkJDQ5Geno4TJ0447HqaO9V5jd9991289957GD16NJ5//nlUVFTg4sWLSEtL49sUFRVhwIAByMrKwpw5cxAUFIQdO3Zg7Nix2LJlC8aPH2/S79q1a+Hm5sb/LRQKjfbrdDoMHToUly9fxsyZM9G2bVskJibis88+w2+//YYrV67A3d3dUS8JQRBVII3UcDRWjfTBBx9g9OjRePLJJxt6KARBOCFlZWUQier/8ebPP/+MNWvW2G0c+f333x0+hueffx67du3C3LlzERUVhW+++QaPPvoo/vzzTwwYMMDufvbs2YOjR4+a3ff999/j448/xpNPPonY2FhoNBps3LgRQ4cOxddff43Jkyc76nKaNQqFAgMHDkRqaiqmT5+ONm3aICcnB//88w9UKhVcXV35ths2bMCUKVMwdOhQfPDBBxAKhbh27RpSUlL4NlqtFg8//DBOnTqFWbNmISoqCr/99htmzpyJgoICzJ8/32QM5tZoXl5eRn9PmDABP/zwA6ZNm4bu3bsjPT0da9asQb9+/XDhwgWEh4c79oWpY8gwUoc88sgj6NmzZ52ew5InZFUkEkmdjqOxYO/rRRBE46KkpARyubyhh1Fj7L03OcN1Ovr7ZNeuXThy5Ah27tyJ0aNHAwDGjh2Ltm3bYuHChdi6davV42fMmIE33ngDMpkMs2fPtmoYefHFFyESiXDy5En4+vo69DoIPfa+xseOHcN7772HTz/9FHFxcRbbff7550hMTMSBAwcwePBgAPr3vG/fvnj11VcxevRoiMVio2NGjx4NPz8/q+c+efIkVq9ejVmzZvHb27VrhxdeeAF//PEHnnrqKXsvmSCIakIayfloShrJGdZKBNGYKC8vh1gsdqjjU33TWHRU1TVrbTlx4gS2bduGJUuW4LXXXgMATJo0CZ06dcLrr7+OI0eO2NVPeXk5Xn31VbzxxhtYsGCByf4HH3wQycnJRuvrl156CV27dsWCBQvIMOIg/vvf/yIpKQlnzpwxMk688cYbRu3u3LmDWbNm4eWXX8aKFSss9rdnzx4cOXIEX331FV544QUAeh01evRoLF68GFOnTkVAQIDRMbbWaGlpadizZw9ee+01LFmyhN9+//33Y/DgwdizZ49VbeeMNN47XyMmKSkJM2fORLt27SCTyeDr64sxY8aYDdkuLCxEXFwcIiIiIJFI0KJFC0yaNAm5ubkA7M8HWzl/7jfffIMxY8YA0N/gDOFRf/31F2JjY+Hn54eKigqTPoYNG4Z27dpV+3pLSkrw6quvIiwsDBKJBO3atcP//d//gTFm0nbz5s3o3bs3XF1d4e3tjQceeMDIqv7999/jscceQ0hICCQSCVq3bo3FixdDq9XybQYNGoSffvoJSUlJ/LUZPL4svV4HDx7E/fffz6fyGDlyJK5cuWLUxpCiIzExEc8//zy8vLzg6emJyZMnmw1rq8zKlSshFApRWFjIb/v000/BcRzmzZvHb9NqtXB3dze68el0OixfvhwdO3aEVCpFYGAgXnzxRRQUFBidw57XxhK///47XF1d8eyzz0Kj0VhsZ6hPcv78eQwcOBCurq5o06YNn1v10KFD6NOnD2QyGdq1a2c2tPLs2bN45JFH4OHhATc3Nzz00EM4duyYSbtLly5h8ODBkMlkaNGiBd5//33odDqz4/rll1/498/d3R2PPfZYjcP4bty4gaeffhpBQUGQSqVo0aIFnnnmGSgUCr6NRqPB4sWL0bp1a0gkEkRERGD+/PlQqVQW+83KyoJIJMKiRYtM9l27dg0cx2H16tX8tsLCQsydO5f/3LRp0wYff/yxyWtQWFiI559/Hp6envDy8kJsbKzRPLOH0tJSvPjii/D19YWHhwcmTZpkNL9qc1+4cuUKZDIZJk2aZLT98OHDEAqFRnM9IiICjz/+OH7//Xd07doVUqkU0dHR2LNnj9GxhjDPQ4cOYebMmQgICECLFi34/fbMh8zMTEyePJkPKQ0ODsbIkSON7sOnTp3Cww8/DD8/P8hkMkRGRvILiurwxRdfoHXr1pDJZOjduzf++ecfkzbm7k3PP/883NzccPPmTTz66KNwd3fHhAkTANh/XzC8HgMHDoS7uzs8PDzQq1cv3thg7X5piar52A3vx7///ot58+bx6bCeeuop5OTk2Hx9du3ahcDAQIwaNYrf5u/vj7Fjx+L777+3+rkCgMDAQMhkMpvnuXr1Kn755Rf85z//ga+vL8rLy83OaUsolUrMnTuX/z4OCAjA0KFDTVJ+HT9+HMOHD4enpydcXV0xcOBA/Pvvvyb9paWlYcqUKfw9OzIyEjNmzIBarebb3Lp1C2PGjIGPjw9cXV3Rt29f/PTTT0b9GHJc79ixA//73//QokULSKVSPPTQQ0hMTDQ5rz3zEQBWrVqFjh078t/HPXv2tGmkqs5rvHz5cgQFBWHOnDlgjKG4uNhsu3/++Qf+/v68UQQABAIBxo4di8zMTBw6dMjkGMYYioqKzK4zAH0UCqCfO5UJDg4GALvmE0EQjoc0UvPTSIDttTfHcSgpKUF8fDw/bsN7Zjj35cuXMX78eHh7e/Me0vau1w3rz8OHD6N3796QSqVo1aoVNm7caDJWgwaqrE82bNhgV/0Nw7ouOTkZjz/+ONzc3BAaGoo1a9YAAC5cuIDBgwdDLpcjPDzc7HeuPesCAEhNTcWTTz4JuVyOgIAAxMXFWVxP2btusQd71tcA8Nlnn6Fjx46QSCQICQnBrFmzrOqXiooK+Pj4mH34WlRUBKlUyj8UBvSphRYuXIg2bdpAIpEgLCwMr7/+uslroFKpEBcXB39/f7i7u+OJJ55Aampqta5Zq9Vi/vz5CAoKglwuxxNPPGHksb1w4UK4uLiYXRNPnz4dXl5eKC8vN9t3dnY2/P39MWjQIKP7QmJiIuRyOcaNG8dvM+j006dPo3///rx2WbdunVGfhnXjtm3b8PbbbyM0NBSurq782sie+WDPmtgeTW0P3333HTp16gSpVIpOnTph7969ZttVrTFi7d4A6O+pPXr0gEwmg4+PD5555hmj983A8ePH8eijj8Lb2xtyuRxdunThH0Q///zz/Oe3ctoha1StMVLddXxVdu3aBaFQiOnTp/PbpFIppkyZgqNHj5q9JnN88skn0Ol0Rp+jynTs2NHE6UgikeDRRx9FamoqlEql1f4rKiqwaNEiREVFQSqVwtfXFwMGDDBJ+XX16lWMHj0aPj4+kEql6NmzJ3744QeT/mytAQD952fKlCkIDAyEVCpFTEwM4uPjjfoxfPf93//9H6+RJBIJevXqhZMnT5qc1975uG3bNvTo0YPX3507d7ZqwDBc04YNGzB9+nRERkZCrVZbvG+vW7cOWq0W7733HgB9uixzaweDznvmmWeMtj/zzDMoLy/H999/b7Z/pVJp8Tmi4b1uUjqKEQ5nw4YNDAD7448/WE5OjtEPY4zt3LmTxcTEsAULFrAvvviCzZ8/n3l7e7Pw8HBWUlLC96NUKlmnTp2YUChk06ZNY2vXrmWLFy9mvXr1YmfPnmWMMXb79m0GgG3YsIE/buHChazqWxseHs5iY2MZY4zdvHmTvfLKKwwAmz9/Ptu0aRPbtGkTy8zMZPv372cA2L59+4yOz8jIYEKhkL333ntWrz02NpaFh4fzf+t0OjZ48GDGcRybOnUqW716NRsxYgQDwObOnWt07LvvvssAsP79+7MlS5awFStWsPHjx7M33niDb/Pkk0+ysWPHsiVLlrC1a9eyMWPGMADstdde49v8/vvvrGvXrszPz4+/tr1791p8vfbv389EIhFr27Yt++STT9iiRYuYn58f8/b2Zrdv3zZ5Xbt168ZGjRrFPvvsMzZ16lQGgL3++utWX5czZ86YvK4jR45kAoGA9ezZk9928uRJBoD9+OOP/LapU6cykUjEpk2bxtatW8feeOMNJpfLWa9evZhara7Wa8MYYwMHDmQdO3bk/963bx+TSCRs0qRJTKPRWL2OgQMHspCQEBYWFsb+85//sFWrVrHo6GgmFArZtm3bWFBQEHv33XfZ8uXLWWhoKPP09GRFRUX88RcvXmRyuZwFBwezxYsXs48++ohFRkYyiUTCjh07xrfLyMhg/v7+zNvbm7377rtsyZIlLCoqinXp0oUBMHpfNm7cyDiOY8OHD2erVq1iH3/8MYuIiGBeXl5m3z9rqFQqFhkZyUJCQtj777/PvvzyS7Zo0SLWq1cvdufOHb5dbGwsA8BGjx7N1qxZwyZNmsQAsCeffNLk9Ro4cCD/9+DBg1l0dLTJeRctWsSEQiHLzMxkjDFWUlLCunTpwnx9fdn8+fPZunXr2KRJkxjHcWzOnDn8cTqdjj3wwANMIBCwmTNnslWrVrHBgwfzr1PleW4Ow72qc+fO7P7772crV65ks2bNYgKBgD3wwANMp9Mxxlit7wtLlixhANj333/PGGOsuLiYtW7dmkVHR7Py8nK+XXh4OGvbti3z8vJib775Jlu6dCnr3LkzEwgE7PfffzcZd3R0NBs4cCBbtWoV++ijjxhj9s+H/v37M09PT/b222+zL7/8kn3wwQfswQcfZIcOHWKMMZaVlcW8vb1Z27Zt2ZIlS9j69evZW2+9xTp06GD1Wqvy5Zdf8ve1lStXsrlz5zIvLy/WqlUro7lh7t4UGxvLJBIJa926NYuNjWXr1q1jGzduZIzZf1/YsGED4ziOderUif3vf/9ja9asYVOnTmXPPfccY8z6/dISlb9PKr8f3bp1Y4MHD2arVq1ir776KhMKhWzs2LE2X6M2bdqwRx55xOJrd/78eZt9GJg1a5bFz/mqVasYALZ79242ePBgBoAJhUI2fPhwo7lhifHjxzOxWMzmzZvHvvzyS/bxxx+zESNGsM2bN/NtDhw4wMRiMevXrx/79NNP2bJly1iXLl2YWCxmx48f59ulpaWxkJAQ5urqyubOncvWrVvH3nnnHdahQwdWUFDAGGMsMzOTBQYGMnd3d/bWW2+xpUuXspiYGCYQCNiePXv4vv7880/+9e/RowdbtmwZe/fdd5mrqyvr3bu32dfU1nz84osv+Hvc559/zlasWMGmTJnCXnnlFauvUXVeYz8/P/bEE0+wZcuWMV9fXwaABQUFsVWrVhm1GzZsGGvZsqXJudasWcMAsA8//JDfZrjPu7m5MQBMLpezCRMm8PdWAzk5OUwul7P27duzAwcOsNTUVPbXX3+xzp07s169erGKigqr10kQRM0gjRTO/00aSY89a+9NmzYxiUTC7r//fn7cR44cMTp3dHQ0GzlyJPvss8/YmjVr+NfcnvV6eHg4a9euHQsMDGTz589nq1evZt27d2ccx7GLFy/y7VJTU5mPjw/z9fVlixYtYv/3f//H2rdvz2JiYkz0iTliY2OZVCpl0dHR7KWXXmJr1qxh/fv351/3kJAQXl917NiRCYVCduvWLf54e9cFpaWlrG3btkwqlbLXX3+dLV++nPXo0YPXB3/++Sff1t51i+Gza+saba2vK79nQ4YMYatWrWKzZ89mQqHQZA1b9TPzwgsvMC8vL6ZSqYzOGR8fzwCwkydPMsYY02q1bNiwYfwa6/PPP2ezZ89mIpGIjRw50ujYiRMnMgBs/PjxbPXq1WzUqFH867Rw4UKr12pYf3Xu3Jl16dKFLV26lL355ptMKpWytm3bstLSUsYYYzdu3GAATNY3KpWKeXt7sxdeeMHqeXbu3MkAsBUrVvDXd99997HAwECWm5vLtzPo9ICAADZ79my2cuVKNmDAAAaAffXVVybjjo6OZl27dmVLly5lH374ISspKbF7PthaE9urqW3x22+/MYFAwDp16sSWLl3K3nrrLebp6ck6duxoNDcYYybvmbV7w/vvv884jmPjxo1jn332GX9vi4iI4NfhjOnvmWKxmIWHh7OFCxeytWvXsldeeYUNGTKEMcbYkSNH2NChQxkA/t60adMmq9dU9flAddbx5hgyZIhZffrHH38wAOyHH36w2UdSUhKTyWTs22+/ZYzpX8tZs2bZPI4x/VxwdXW1+Rxp/vz5jOM4Nm3aNLZ+/Xr26aefsmeffZbX8IzpnxV5enqy6Oho9vHHH7PVq1ezBx54gHEcZ3SPs2cNUFpayjp06MBcXFxYXFwcW7lyJbv//vsZALZ8+XK+L8N3X7du3VibNm3Yxx9/zD755BPm5+fHWrRoYXRPsnc+/v777wwAe+ihh9iaNWvYmjVr2OzZs9mYMWOsvkb79u1jANgXX3zBnn76aSYUChnHcax///78dRkw3NO3bt3KQkNDGQDm7e3N3n77babVavl206dPZ0Kh0ETb/PTTTwwAe/HFF/lthvu8QUeJxWI2YsQIdv36daNj1Wo1a9GiBQsKCmI//PADS0lJYcePH2cDBw5kkZGRRp+hxgIZRuoAw4Qy98MY478kK3P06FEGgH/oxRhjCxYsYACMbgIGDA8sa7LoZ+zeF2zlhRFj+i/aFi1asHHjxhltX7p0KeM4zmhxZo6qC5jvvvuOAWDvv/++UbvRo0czjuNYYmIiY0y/YBAIBOypp54y+iBXvlbGzL92L774InN1dTV6wPrYY4+ZfFkyZv716tq1KwsICGB5eXn8toSEBCYQCNikSZP4bYbXteri5amnnmK+vr5mXo17aLVa5uHhwYsDnU7HfH192ZgxY5hQKGRKpZIxpn+dBQIBfzP5559/GAC2ZcsWo/5+/fVXk+32vjaVDSO7d+9mLi4ubNq0aSavuzkGDhzIALCtW7fy265evcoAMIFAYGTc+O2330xe6yeffJKJxWJ28+ZNflt6ejpzd3dnDzzwAL9t7ty5DIDRAiw7O5t5enoaLcqVSiXz8vJi06ZNMxpnZmYm8/T0NNpuj2Hk7NmzDADbuXOnxTbnzp1jANjUqVONtr/22msMADt48CC/rerC5/PPP2cA2IULF4yOjY6OZoMHD+b/Xrx4MZPL5SZfQm+++SYTCoUsOTmZMXbv8/XJJ5/wbTQaDf+lb69hpEePHkZf+p988omRIaO29wWtVssGDBjAL+BnzZrFRCIRL2AMhIeH8w9VDSgUChYcHMy6detmMu4BAwYYLcLsnQ8FBQUMAFuyZInFMe/du9dIZNUEtVrNAgICWNeuXY1EnOGhsz2GEQDszTffNOrX3vtCYWEhc3d3Z3369GFlZWVGbSvfVy3dLy1hyTAyZMgQo37j4uKYUChkhYWFVvuTy+VmRaFhwfbrr7/aPTZrhhHDwy5fX182fPhwtn37drZkyRLm5ubGWrdubfTQzRyenp5WRYJOp2NRUVHs4YcfNvneioyMZEOHDuW3TZo0iQkEArPzy3Cs4T74zz//8PuUSiWLjIxkERER/D3bIKg6dOhgNM9WrFhhdL+pznwcOXKkkQHdXux9jfPz8/l2bm5ubMmSJWz79u1s+PDhDABbt24d3+fLL7/MBAKBiZB+5plnGAA2e/Zsftvy5cvZ7Nmz2ZYtW9iuXbvYnDlzmEgkYlFRUUyhUBgd/+OPP7Lg4GCjNdrDDz/Mfx8TBOF4SCOF83+TRtJjz9qbMf1aofL7VPXczz77rNH26qzXDevPv//+m9+WnZ3NJBIJe/XVV/ltL7/8MuM4zugBVV5eHvPx8bHbMAKAffDBB/y2goICJpPJGMdxbNu2bfx2g76q/KDX3nXB8uXLGQC2Y8cOvl1JSQlr06aN0dyuzrrFHsOIPevr7OxsJhaL2bBhw4zm8+rVqxkA9vXXXxu9XpXnqkFbVjVOPvroo6xVq1b835s2bWKC/2fvvOOauP8//soejLCXAxHZKqh174kLBbWuVhFnh53fLvvr0tra1k5rrbO4bV24995bXIgigoO9N4Qkn98fMSchCbmwDPh5PswDc/e5u89dPrm8X/ceHy5X6zoRQsjSpUsJAHL27FlCyPMx8tZbb2m1mzhxokmOkSZNmmgFAm7evFnLkUEIIV27diWdO3fW2n779u167zX6mDBhApFKpeT+/ftMwNmOHTu02mh0+i+//MIsKysrY77HGq2n6XfLli217humjAdjNjHb77UxgoKCiKurq5aW0Dx0ZusYqXxvSExMJDwej3z33Xday2/dukX4fD6zXKFQEA8PD+Lu7q7zoLfi9alKe+jDkGPEmB1viICAAK3nCBru3LmjY1MbYsyYMaRbt27Me7aOkbi4OCIWi5mAu6oIDAwkw4YNq7JN//79SZs2bbR+s1QqFenWrRvx8vJilrGxATT3wYoBbHK5nHTt2pVYWloy31nNb5+9vT3Jzs5m2u7cuVPnfsN2PL733nvE2traqLOoMr/++ivTl06dOpENGzaQJUuWEGdnZ2Jra0uSk5OZttbW1sTW1paIRCLy5Zdfkq1btzL3rorPDn755Red3w1C1M+VAJDhw4czy/777z8yZcoUsmbNGhIVFUW++OILIpVKiYODA/P8ScPFixeJp6enlh3XoUMHkpKSYtI5mwu0lFYd8tdff+Hw4cNaL0A7tai8vBxZWVlo1aoVbGxstNIPt23bhsDAQL11ro2l6FUXLpfLTKRTMR1uw4YN6Natm84kPMbYt28feDwe3n33Xa3l//vf/0AIwf79+wGoU9JUKhW++uorndqWFc+14rUrKChAZmYmevbsieLiYsTGxprUNwBISUlBdHQ0pkyZAjs7O2Z527ZtMXDgQOzbt09nmzfeeEPrfc+ePZGVlcWkn+qDy+WiW7duOHXqFAB1eaGsrCx89tlnIIQwk1ydPn0arVu3ZiY32rJlC2QyGQYOHIjMzEzm1aFDB1haWuL48ePVvjabNm3CuHHjMGvWLCxbtox1TVFLS0utVDwfHx/Y2NjAz88PnTt3ZpZr/v/w4UMA6jTjQ4cOITQ0FC1btmTaubq6YuLEiThz5gxzDfft24cuXbqgU6dOTDtHR0emjJCGw4cPIzc3FxMmTNC6PjweD507d9a6PmyQyWQAgIMHDxpM/deMiYol0AD1mAagN51dw6hRo8Dn8/Hff/8xy27fvo2YmBitVOgtW7agZ8+esLW11TqvAQMGQKlUMuNo37594PP5ePPNN5lteTwe3nnnHVNOGzNnztSabPPNN98En89nzrWm9wUul4vVq1ejsLAQQ4YMwZIlSzBnzhy9tSvd3Ny07nma0l7Xr19HamqqVtsZM2ZoTarMdjxIJBIIhUKcOHFCb+kp4PkEY3v27DGp3FJFrly5gvT0dLzxxhta9WQ1pc/YUvHzBdjfFw4fPoyCggJ89tlnOnV36+I3ZObMmVr77dmzJ5RKJR49elTldiUlJXprvGv6XFJSUiv905RqcnFxwd69ezF27Fh89NFHWLFiBeLj442WibKxscHFixeRnJysd310dDTi4uIwceJEZGVlMZ9LUVER+vfvj1OnTkGlUkGlUmHHjh0ICQnR+x3QXMN9+/ahU6dOWmn/lpaWmDlzJhITExETE6O1XUREhNY469mzJ4Dn92BTxqONjQ2ePn2qN4W8KtheY027rKwsrFy5Eh999BHGjh2LvXv3wt/fH/Pnz2f2OX36dPB4PIwdOxbnzp1DfHw8FixYwKSuVxwf7733Hv78809MnDgRo0ePxu+//441a9YgLi4OS5Ys0eqro6Mj2rVrh++++w47duzAN998g9OnT9MayRRKPUA1EtVIGtjY3myofGxT7XV/f3/mdxNQ/0b4+Pgwv6EAcODAAXTt2hVBQUHMMjs7Ox19Yozp06cz/7exsYGPjw8sLCwwduxYZrlGX1U8Plu7YN++fXB1dWXmbQMAqVSqVWoHYG+3sIWNfX3kyBHI5XK8//77WuN5xowZsLa2rlJH9evXDw4ODlo6KicnB4cPH9bRUX5+fvD19dWykzUlOTV2smaMVP4Ovv/++6zPGVDP52BlZcW8HzNmDFxdXbW+I5MnT8bFixcRHx/PLNuwYQOaNWuG3r17Gz3G4sWLIZPJMGbMGHz55ZeYNGkSRo4cqdOOz+dj1qxZzHuhUIhZs2YhPT0dV69e1WobHh6udd8wZTwYs4lr43utuQeFh4dr2akDBw6Ev78/6/1Uvjds374dKpUKY8eO1RofLi4u8PLyYsbH9evXkZCQgPfff19n4um6+J0xZscboqY66vjx49i2bRt+//13k/pbXFyMV199FRKJBD/88IPR9jY2Nrhz5w7i4uL0rs/OzsaxY8cwduxY5jcsMzMTWVlZCA4ORlxcHJKSkgCwswH27dsHFxcXTJgwgVknEAjw7rvvorCwUKcU77hx42Bra8u8r3z9TRmPNjY2KCoq0ikTZgyNPuJwODh69CgmTpyIN998Ezt27EBOTg5Ttk3TNicnB3PnzsW8efMwevRobNiwAYMHD8Yff/zB2CkTJ06ETCbD1KlTcfjwYSQmJmL58uWMLqo4PsaOHYvIyEhMnjwZoaGh+Pbbb3Hw4EFkZWXhu+++0+qrra0tgoKC8Nlnn2HHjh34+eefkZiYiFdffdVgaUBzhjpG6pBOnTphwIABWi9APfi++uorpp6sg4MDHB0dkZubq1VzMT4+Hq1bt673fk+ePBklJSXMQ4d79+7h6tWrmDRpksn7evToEdzc3LSMBQDw8/Nj1gPqc+VyuUZ/5O7cuYOwsDDIZDJYW1vD0dERr7/+OgCYXK+y4vH11QX28/NjjIGKNG/eXOu95gZqyADU0LNnT1y9ehUlJSU4ffo0XF1d0b59ewQGBjK1/86cOaNllMfFxSEvLw9OTk5wdHTUehUWFiI9PZ1pa8q1SUhIwOuvv47Ro0fjzz//NOnHvWnTpjrtZTIZmjVrprOs4nXJyMhAcXGxwWutUqmYGpiPHj2Cl5eXTrvK22p+WPv166dzfQ4dOqR1fdjg4eGBDz/8ECtXroSDgwOCg4Px119/aV2/R48egcvlolWrVlrburi4wMbGpsqHwA4ODujfvz82b97MLPvvv//A5/O15leIi4vDgQMHdM5Jcw/RnNejR4/g6uoKS0tLreOYWue68rW2tLSEq6urVj3gmt4XPD098c033+Dy5csICAjAl19+qbddq1atdMaXt7c3AOjUJ678EILteBCJRPjxxx+xf/9+ODs7o1evXvjpp5+0HC+9e/fG6NGjMXfuXDg4OGDkyJGIjIw0Ot9FRTRjofL1FQgEWs7BquDz+Vrzp2jOk819QSO+6ut3pLr3RolEove6aoyq2qpTqtnP2LFjtcT4q6++Cj6fb3Rywp9++gm3b99Gs2bN0KlTJ3zzzTdaYkUz/sLDw3U+l5UrV6KsrAx5eXnIyMhAfn6+0c/l0aNHBu+XmvUVMXb9TRmPn376KSwtLdGpUyd4eXnh7bffZlVvnO011rQTCARaD264XC7GjRuHp0+f4vHjxwDUD+E2btyI+Ph4dO/eHa1atcKiRYsYAVf5/leZiRMnwsXFRWvOq4cPH6Jv376YOnUqPv/8c4wcORJff/01lixZgq1btzIPJCkUSt1ANRLVSBrY2N5sqGwTmmqvV+67pv8V+/7o0SOd/QHQu8wQYrEYjo6OWstkMplBfVX5+GzsAk0/K+/PkI4yZrewhY19bWhcCYVCtGzZskodxefzMXr0aK3557Zv347y8nItx0hcXBzu3Lmjc04aPVFRR3G5XHh6elZ5nYxR2a7icDho1aqVlm4ZN24cRCIRNmzYAED9ndyzZw9ee+01Vjrczs4OixYtws2bNyGTybBo0SK97dzc3HQmFzdVR7EZD8Zs4tr4XhuyWwHTPiN950kIgZeXl8553r1796XSUQqFAu+++y4mTZqEjh07su6rUqnE+PHjERMTg61bt8LNzc3oNvPmzUNubi68vb3Rpk0bfPzxx7h58yaz/sGDByCE4Msvv9T5XL7++msA0Pps2OgoLy8vnYCC2tZRgO54fOutt+Dt7Y0hQ4agadOmmDp1Kg4cOFBlf4Hnn1VISIiWvunSpQs8PDy0tKqmbUXHj+Z9SUkJrl+/DkD9m7dr1y6UlZVh0KBB8PDwwMcff4w///wTgHEd1aNHD3Tu3FlLR+Xl5aFnz57o2rUrFixYgJEjR+J///sftm3bhjNnziAyMtLouZob/BfdgZeRd955B5GRkXj//ffRtWtXyGQycDgcjB8/3qSojLrC398fHTp0wPr16zF58mSsX78eQqFQK4rlRZCbm4vevXvD2toa8+bNg6enJ8RiMa5du4ZPP/203q5dxQj1ihADk7xq6NGjB8rLy3H+/HmcPn2acYD07NkTp0+fRmxsLDIyMrQcIyqVCk5OTowRVRmNYW3qtXF1dWUiWa5cuaI3atnU86/udakJmvNat24dXFxcdNbz+abf4n755RdMmTIFO3fuxKFDh/Duu+9iwYIFuHDhgtYD6upGiowfPx4RERGIjo5GUFAQNm/ejP79+2tNZqZSqTBw4EB88sknevehMXDrk9q4L2gmCU1OTkZWVpbez8wUKht6poyH999/HyEhIdixYwcOHjyIL7/8EgsWLMCxY8fQrl07cDgcbN26FRcuXMDu3btx8OBBTJ06Fb/88gsuXLhg1IioLUQikY5Bx/a+UN9U9x7g6uqKlJQUneWaZWyMbTZo9lN5ojgejwd7e3ujwmPs2LHo2bMnoqKicOjQISxcuBA//vgjtm/fjiFDhjDjb+HChVrRpBWxtLREdnZ2zU9GD7V5D/bz88O9e/ewZ88eHDhwANu2bcOSJUvw1VdfYe7cuQa3Y3uNNRMq2tjY6PTbyckJgFqIaETKmDFjMGLECNy4cQNKpRLt27fHiRMnALC7HzZr1kzruq9evRqlpaUYPny4VrsRI0YAAM6ePYshQ4YY3S+FQqldqEaqHg1dI7G1vavC0MM/tvZ6fekYc9RRxuwWUzBmX9eU8ePHY9myZdi/fz9CQ0OxefNm+Pr6IjAwkGmjUqnQpk0b/Prrr3r3UTmYrz6wtbXF8OHDsWHDBnz11VfYunUrysrKGOclGw4ePAhAbR89ffpUJ4vBVAzpKDbjwZhNDNTO97o20HeeHA4H+/fv1/u9qy+NV5ma6ChNJkVF2OiotWvX4t69e1i2bJmO46ygoACJiYlwcnKCVCrVWjdjxgzs2bMHGzZsYDKxjNGrVy/Ex8cz42HlypX47bffsHTpUkyfPp0Zfx999BGCg4P17sMUJ7Sp1OY92MnJCdHR0Th48CD279+P/fv3M5kYlSd/r4ghHaXZZ0Wt6ubmhri4OJ22FXWUhl69euHhw4e4desWioqKEBgYyGR7sdVR9+7dY95v27YNaWlpjG7SoLFDzp49q1PxwtyhjpEXwNatWxEeHo5ffvmFWVZaWorc3Fytdp6enrh9+3ad9MGYkTh58mR8+OGHSElJwcaNGzFs2DCt1DK2uLu748iRIygoKNCKiNKkdLu7uwNQn6tKpUJMTIzBH+ITJ04gKysL27dvR69evZjlCQkJOm3ZGsGa41f8olfso4ODg07URXXp1KkThEIhTp8+jdOnT+Pjjz8GoL5RrVixAkePHmXea/D09MSRI0fQvXv3Kr39plwbQB2ttGfPHvTr1w+DBw/GyZMnERAQUBunaRBHR0dIpVKD15rL5TKGqru7u940y8rbaiJ8nJycmGjD2qBNmzZo06YNvvjiC5w7dw7du3fH0qVLMX/+fLi7u0OlUiEuLo6JOACAtLQ05ObmMmPKEKGhoZg1axaTBn7//n3MmTNH57wKCwuNnpO7uzuOHj2KwsJCLSNO3zWuiri4OPTt25d5X1hYiJSUFAwdOlSrXU3uC0uXLsXhw4fx3XffYcGCBZg1axZ27typ004TLVLxO3z//n0AQIsWLao8hqnjwdPTE//73//wv//9D3FxcQgKCsIvv/yC9evXM226dOmCLl264LvvvsPGjRvx2muv4d9//9Uqg2AIzViIi4vTMhrLy8uRkJCgJeJMge19QXM9bt++XaUhWVdlR9gSFBSE06dPQ6VSaTmBLl68CKlUWmuOwA4dOgCAjniQy+XIzMxk5VBydXXFW2+9hbfeegvp6elo3749vvvuOwwZMoS53tbW1lWOP0dHR1hbWxv9fXd3dzd4v9SsNwVTx6OFhQXGjRuHcePGQS6XY9SoUfjuu+8wZ84cndJsGtheYy6Xi6CgIFy+fBlyuVyrdIDGUK/8eQiFQq1oNk3kkrHvOiEEiYmJWg9k0tLSQAiBUqnUaqspm6dQKKrcJ4VCqRuoRno5NRJQte1tSr811NReN7TPBw8e6CzXt6wuYGsXuLu74/bt2zr2tCEdZcxuMZWq7OuK46pitqpcLkdCQoLRfvTq1Quurq7477//0KNHDxw7dgz/93//p3P8GzduoH///lWOG80YiY+P14r4ro6OqgghBA8ePEDbtm21lk+ePBkjR47E5cuXsWHDBrRr1461/j5w4ABWrlyJTz75BBs2bEB4eDguXryoEwSYnJyMoqIire+mqTqK7XioyibWYOx7XRUV7dbKmPoZVcTT0xOEEHh4eFSpMSrqqKquhznoqOPHjyM/Px/W1tbM8osXLzLrDfH48WOUl5eje/fuOuvWrl2LtWvXIioqCqGhoczyjz/+GJGRkfj99991shWMYWdnh4iICERERKCwsBC9evXCN998g+nTpzP3A4FAYHT8sbEB3N3dcfPmTR19WRs6qjL6xqNQKERISAhCQkKgUqnw1ltvYdmyZfjyyy8N6nJDOgpQf7d9fX212mrKi1W8lxrSUTweT2sssNVRgDrTvuL+0tLSAEBHR2m0VUPUUbSU1guAx+PpeB7//PNPnYE1evRo3Lhxg0nXrkhNo0c0P5aVhYaGCRMmgMPh4L333sPDhw9NimaoyNChQ6FUKrF48WKt5b/99hs4HA7zwxkaGgoul4t58+bpRDVpzlXjxa147nK5XKduuOb82KRqurq6IigoCGvWrNG6Frdv38ahQ4d0HgzXBLFYjI4dO2LTpk14/PixVsZISUkJFi1aBE9PT7i6ujLbjB07FkqlEt9++63O/hQKBdNnU66NBplMhoMHD8LJyQkDBw7UqnlaF/B4PAwaNAg7d+7UikhIS0vDxo0b0aNHD+bHfOjQobhw4QIuXbrEtMvIyNCJkA8ODoa1tTW+//57vfNAZGRkmNTH/Px8nRt5mzZtwOVymRRVzZioXIdTE5U0bNiwKo9hY2OD4OBgbN68Gf/++y+EQqGWsQGoP/fz588zkUEVyc3NZfo4dOhQKBQK/P3338x6pVLJpEayZfny5VrX7++//4ZCodCJmK7ufSEhIQEff/wxRo8ejc8//xw///wzdu3ahbVr1+q0TU5O1rrn5efnY+3atQgKCjKaYcJ2PBQXF+vUvvT09ISVlRXzOefk5OjcZzXGBNtyWq+88gocHR2xdOlSyOVyZvnq1asN3nvZwPa+MGjQIFhZWWHBggU651vx3NjeL+uKMWPGIC0tDdu3b2eWZWZmYsuWLQgJCdGqmxsfH1/te1WfPn2YTJuK12P16tVQKpUYOHCgwW2VSqXONXJycoKbmxszHjp06ABPT0/8/PPPTI3YimjGH5fLRWhoKHbv3o0rV67otNN8NkOHDsWlS5eYOagAoKioCMuXL0eLFi1Mqq8MmDYes7KytN4LhUL4+/uDEFLlnDumXONx48ZBqVRqRU6VlpZiw4YN8Pf3rzLCLS4uDkuXLsXw4cO1RK2+e/7ff/+NjIwMDB48mFnm7e0NQohWWUNAPfcWgFqJaqVQKKZDNdLLp5HY2N6afptiO9XUXtdHcHAwzp8/j+joaGZZdna2wQze2oatXTB06FAkJydj69atTLvi4mIsX75ca39s7Ra2sLGvBwwYAKFQiEWLFmmN11WrViEvL8/o58LlcjFmzBjs3r0b69atg0Kh0CqjBajt5KSkJKxYsUJn+5KSEqYEnOY7VrkslalzLaxdu1Zr3qGtW7ciJSVFR0cNGTIEDg4O+PHHH3Hy5EnW947c3FxMnz4dnTp1wvfff4+VK1fi2rVr+P7773XaKhQKLFu2jHkvl8uxbNkyODo6Mg9dDcF2PLCxidl+r6ui4j2o4vEOHz6sM8+eKYwaNQo8Hg9z587V+b0ghDA2cPv27eHh4YHff/9d595TWUcBhn8z6poxY8ZAqVRqfb/LysoQGRmJzp07a2VIPX78WGvOqfHjxyMqKkrnBajvI1FRUVpzyC5cuBA///wzPv/8c7z33nsm9bOytrC0tESrVq2Y8eDk5IQ+ffpg2bJleisJVLwfsbEBhg4ditTUVK05iRQKBf78809YWlqymtunIqaMx8rnyuVyGUdpVePfx8cHgYGB2LlzJzIzM5nlhw4dwpMnT3R0FKC+d2pQqVSIjIyEnZ1dld/3jIwM/Pjjj2jbtq2WY0TfPX/fvn24evWqjo4CgH///Ver7a5du1BUVNQgdRTNGHkBDB8+HOvWrYNMJoO/vz/Onz+PI0eOwN7eXqvdxx9/jK1bt+LVV1/F1KlT0aFDB2RnZ2PXrl1YunRptaONAfUDPh6Phx9//BF5eXkQiUTo168fk3rl6OiIwYMHY8uWLbCxsamW8Qio6+P17dsX//d//4fExEQEBgbi0KFD2LlzJ95//33GE9+qVSv83//9H7799lv07NkTo0aNgkgkwuXLl+Hm5oYFCxagW7dusLW1RXh4ON59911wOBysW7dOrwDq0KED/vvvP3z44Yfo2LEjLC0tERISorePCxcuxJAhQ9C1a1dMmzYNJSUl+PPPPyGTyfDNN99U67wN0bNnT/zwww+QyWRo06YNAPWPgI+PD+7du4cpU6Zote/duzdmzZqFBQsWIDo6GoMGDYJAIEBcXBy2bNmCP/74A2PGjDHp2lTEwcEBhw8fRo8ePTBgwACcOXMGTZo0qdVzrsj8+fOZ47311lvg8/lYtmwZysrK8NNPPzHtPvnkE6xbtw6DBw/Ge++9BwsLCyxfvpzx/GuwtrbG33//jUmTJqF9+/YYP348HB0d8fjxY+zduxfdu3fXEZxVcezYMcyePRuvvvoqvL29oVAosG7dOvB4PIwePRoAEBgYiPDwcCxfvpwpXXDp0iWsWbMGoaGhWpkXhhg3bhxef/11LFmyBMHBwTqp0B9//DF27dqF4cOHY8qUKejQoQOKiopw69YtbN26FYmJiXBwcEBISAi6d++Ozz77DImJifD398f27dtNfsgtl8vRv39/jB07Fvfu3cOSJUvQo0cPnfTI6twXCCGYOnUqJBIJ48CZNWsWtm3bhvfeew8DBgzQegDq7e2NadOm4fLly3B2dsY///yDtLQ0VrUq2Y6H+/fvM+fr7+8PPp+PqKgopKWlYfz48QCANWvWYMmSJQgLC4OnpycKCgqwYsUKWFtbs34YIBAIMH/+fMyaNQv9+vXDuHHjkJCQgMjISNZzjOiD7X3B2toav/32G6ZPn46OHTti4sSJsLW1xY0bN1BcXMw8kDblflkXjBkzBl26dEFERARiYmLg4OCAJUuWQKlU6pRt6t+/PwDtOsmPHj3CunXrAIBxNGgi0dzd3Zna7yKRCAsXLkR4eDh69eqFSZMm4fHjx/jjjz+Y3x1DFBQUoGnTphgzZgwCAwNhaWmJI0eO4PLly0xkM5fLxcqVKzFkyBAEBAQgIiICTZo0QVJSEo4fPw5ra2vs3r0bAPD999/j0KFD6N27N2bOnAk/Pz+kpKRgy5YtOHPmDGxsbPDZZ59h06ZNGDJkCN59913Y2dlhzZo1SEhIwLZt23RKrBnDlPE4aNAguLi4oHv37nB2dsbdu3exePFiDBs2TKcefkVMucazZs3CypUr8fbbb+P+/fto3rw51q1bh0ePHjHXSYO/vz9effVVNG/eHAkJCfj7779hZ2eHpUuXarVzd3fHuHHj0KZNG4jFYpw5cwb//vsvgoKCtCYjnTJlCn7++WfMmjUL169fR0BAAK5du4aVK1ciICBA72SOFAql7qEa6eXTSGxsb02/jxw5gl9//RVubm7w8PDQemBXmdqw1yvzySefYP369Rg4cCDeeecdWFhYYOXKlWjevDmys7PrPHKcrV0wY8YMLF68GJMnT8bVq1fh6uqKdevW6ZTDMcVuYQMb+9rR0RFz5szB3LlzMXjwYIwYMYLRHh07dmTlLBg3bhz+/PNPfP3112jTpo1WRhAATJo0CZs3b8Ybb7yB48ePo3v37lAqlYiNjcXmzZtx8OBBvPLKKwgKCsKECROwZMkS5OXloVu3bjh69KjJGUB2dnbo0aMHIiIikJaWht9//x2tWrXCjBkztNoJBAKMHz8eixcvBo/HYx1t/9577yErKwtHjhwBj8fD4MGDMX36dMyfPx8jR47Uut+5ubnhxx9/RGJiIry9vfHff/8hOjoay5cvh0AgqPI4bMcDG5uY7ffaGAsWLMCwYcPQo0cPTJ06FdnZ2fjzzz8REBCg13nDBk9PT8yfPx9z5sxBYmIiQkNDYWVlhYSEBERFRWHmzJn46KOPwOVy8ffffyMkJARBQUGIiIiAq6srYmNjcefOHSaAUfMA+t1330VwcDB4PB4z3uuDzp0749VXX8WcOXOQnp6OVq1aYc2aNUhMTNR6aA6os5ZOnjzJ/Db4+vpqZSFUxMPDQyt4MyoqCp988gm8vLzg5+enVWEBUE9Crq8ElAZ/f3/06dMHHTp0gJ2dHa5cuYKtW7di9uzZTJu//voLPXr0QJs2bTBjxgy0bNkSaWlpOH/+PJ4+fYobN24AYGcDzJw5E8uWLcOUKVNw9epVtGjRAlu3bsXZs2fx+++/V6lnDMF2PE6fPh3Z2dno168fmjZtikePHuHPP/9EUFCQzv2qMr/99hsGDhyIHj16YNasWcjLy8Ovv/4Kb29vrfJUI0eORP/+/bFgwQJkZmYiMDAQO3bswJkzZ7Bs2TKtwMLevXuja9euaNWqFVJTU7F8+XIUFhZiz549WnqyW7duaNeuHV555RXIZDJcu3YN//zzD5o1a4bPP/+caRcSEoKAgADMmzcPjx49QpcuXfDgwQMsXrwYrq6umDZtmsnX9oVDKLVOZGQkAUAuX76sd31OTg6JiIggDg4OxNLSkgQHB5PY2Fji7u5OwsPDtdpmZWWR2bNnkyZNmhChUEiaNm1KwsPDSWZmJiGEkISEBAKAREZGMtt8/fXXpPJHq2/fK1asIC1btiQ8Ho8AIMePH9dav3nzZgKAzJw5k/W5h4eHE3d3d61lBQUF5IMPPiBubm5EIBAQLy8vsnDhQqJSqXS2/+eff0i7du2ISCQitra2pHfv3uTw4cPM+rNnz5IuXboQiURC3NzcyCeffEIOHjyo0//CwkIyceJEYmNjQwAwfdJ3vQgh5MiRI6R79+5EIpEQa2trEhISQmJiYrTaaK5rRkaG1nLN552QkGD0+uzdu5cAIEOGDNFaPn36dAKArFq1Su92y5cvJx06dCASiYRYWVmRNm3akE8++YQkJyebfG169+5NAgICtPb/4MED4urqSvz8/HTOryL6tiVEPb6GDRumsxwAefvtt7WWXbt2jQQHBxNLS0silUpJ3759yblz53S2vXnzJunduzcRi8WkSZMm5NtvvyWrVq3Se62PHz9OgoODiUwmI2KxmHh6epIpU6aQK1euMG30fS8q8/DhQzJ16lTi6elJxGIxsbOzI3379iVHjhzRaldeXk7mzp1LPDw8iEAgIM2aNSNz5swhpaWlOterd+/eOsfJz88nEomEACDr16/X25eCggIyZ84c0qpVKyIUComDgwPp1q0b+fnnn4lcLmfaZWVlkUmTJhFra2sik8nIpEmTyPXr1/WO88poxu7JkyfJzJkzia2tLbG0tCSvvfYaycrK0ruNqfeFP/74gwAg27Zt01r++PFjYm1tTYYOHcos04yjgwcPkrZt2xKRSER8fX3Jli1b9Pbb0D3W2HjIzMwkb7/9NvH19SUWFhZEJpORzp07k82bNzP7uHbtGpkwYQJp3rw5EYlExMnJiQwfPlxrTLFlyZIlxMPDg4hEIvLKK6+QU6dO6YwNffem8PBwYmFhYXC/bO4LhBCya9cu0q1bN+b+1qlTJ7Jp0yZmvaH7pSEq/54Y+jyOHz+u97dFH9nZ2WTatGnE3t6eSKVS0rt3b72fr7u7u07/NMfR99L3/du0aRMJDAwkIpGIODs7k9mzZ5P8/Pwq+1dWVkY+/vhjEhgYSKysrIiFhQUJDAwkS5Ys0Wl7/fp1MmrUKGJvb09EIhFxd3cnY8eOJUePHtVq9+jRIzJ58mTi6OhIRCIRadmyJXn77bdJWVkZ0yY+Pp6MGTOG2NjYELFYTDp16kT27Nmj9/wrf08M/d6xGY/Lli0jvXr1Ys7B09OTfPzxxyQvL6/K66SB7TVOS0sj4eHhxM7OjohEItK5c2dy4MABnXbjx48nzZo1I0KhkLi5uZE33niDpKWl6bSbPn068ff3J1ZWVkQgEJBWrVqRTz/9VO+xnz59SqZOnUo8PDyIUCgkrq6uZMaMGVX+BlIolJpBNZK71jKqkdjb3rGxsaRXr16M/az5zAwdmxD29rohHaPPjr9+/Trp2bMnEYlEpGnTpmTBggVk0aJFBABJTU01eJ6EGLbrTNFXbOwCQtQ2xogRI4hUKiUODg7kvffeIwcOHNA7ntnYLWw+Szb2tYbFixcTX19fIhAIiLOzM3nzzTdJTk6OzvXSZ5OqVCrSrFkzAoDMnz9fb1/kcjn58ccfSUBAAPOd6dChA5k7d66WLVNSUkLeffddYm9vTywsLEhISAh58uQJAUC+/vprg+dKyHP7a9OmTWTOnDnEycmJSCQSMmzYMPLo0SO921y6dIkAIIMGDapy3xp27txJAJBffvlFa3l+fj5xd3cngYGBjC7UjKMrV66Qrl27ErFYTNzd3cnixYv19ruy3ajB2HhgYxOz/V6zYdu2bcTPz4+IRCLi7+9Ptm/frndsVP7Mqro3aPbbo0cPYmFhQSwsLIivry95++23yb1797TanTlzhgwcOJA517Zt25I///yTWa9QKMg777xDHB0dCYfDMfq8ofJ9xVQ7Xh8lJSXko48+Ii4uLkQkEpGOHTvqtad79+5ttH+E6H+Go7mehl7G9N78+fNJp06diI2NDZFIJMTX15d89913Ws81CFHf4yZPnkxcXFyIQCAgTZo0IcOHDydbt27VamfMBiBErTM0NoVQKCRt2rTRuZ6a67xw4UK916HyfYDNeNy6dSsZNGgQcXJyIkKhkDRv3pzMmjWLpKSkVHmNNBw+fJh06dKF+e5MmjRJ77YFBQXkvffeIy4uLsz56Xu29MEHH5CWLVsSkUhEHB0dycSJE0l8fLxOu//7v/8jQUFBRCaTEYFAQJo3b07efPNNvb9t2dnZ5IMPPiDe3t5EJBIRBwcHMn78ePLw4UNW52hucAipwxm9KA2anTt3IjQ0FKdOndKaEJxCoby81OV9oUWLFmjdujX27NlTq/ulUCgUCoVCqS2oRqJU5P3338eyZctQWFhocAJfCgUAbty4gaCgIKxdu5bJaK4t+vTpg8zMzDqbf4lCoVAaK3SOEYpBVqxYgZYtW6JHjx4vuisUCsVMoPcFCoVCoVAoLzPUFnp5KSkp0XqflZWFdevWoUePHtQpQjHKihUrYGlpWWX5VgqFQqHUL3SOEYoO//77L27evIm9e/fijz/+qPN6qRQKxfyh9wVtsrOztSawrgyPx4Ojo2M99ohCoVAoFEpdQm0hSteuXdGnTx/4+fkhLS0Nq1atQn5+Pr788ssX3TWKGbN7927ExMRg+fLlmD17NjNh98tKXl6ejpOxMi4uLvXUGwqF8rJDS2lRdOBwOLC0tMS4ceOwdOlS8PnUf0ahvOzUx32hIZXS6tOnD06ePGlwvbu7u9YE4RQKhUKhUBo2VCNRPv/8c2zduhVPnz4Fh8NB+/bt8fXXX2PAgAEvumsUM6ZFixZIS0tDcHAw1q1bV62Jn43RkEppTZkyBWvWrKmyDX1MSaFQ6gvqGKFQKBQKxUSuXr2KnJwcg+slEgm6d+9ejz2iUCgUCoVCoVAoFPMmJiYGycnJVbahzkYKhVJfUMcIhUKhUCgUCoVCoVAoFAqFQqFQKJSXBpMnXz916hRCQkLg5uYGDoeDHTt2aK0nhOCrr76Cq6srJBIJBgwYgLi4OK022dnZeO2112BtbQ0bGxtMmzYNhYWFNToRCoVCoVAoFAqFQjEHqGaiUCgUCoVCoVDMG5MLoxYVFSEwMBBTp07FqFGjdNb/9NNPWLRoEdasWQMPDw98+eWXCA4ORkxMDMRiMQDgtddeQ0pKCg4fPozy8nJERERg5syZ2LhxI6s+qFQqJCcnw8rKik56R6FQKBQKhUJ5KSCEoKCgAG5ubuByTY5votQj5qCZAKqbKBQKhUKhUCgvFyZpJlIDAJCoqCjmvUqlIi4uLmThwoXMstzcXCISicimTZsIIYTExMQQAOTy5ctMm/379xMOh0OSkpJYHffJkycEAH3RF33RF33RF33RF33R10v3evLkSU1MeEo9A7wYzUQI1U30RV/0RV/0RV/0RV/09XK+2GgmkzNGqiIhIQGpqalaEyXJZDJ07twZ58+fx/jx43H+/HnY2NjglVdeYdoMGDAAXC4XFy9eRFhYmNHjWFlZAQCePHkCa2vr2jwFCoVCoVAoFArFLMnPz0ezZs0YW5jSMKkvzQRQ3UShUCgUCoVCebkwRTPVqmMkNTUVAODs7Ky13NnZmVmXmpoKJycn7U7w+bCzs2PaVKasrAxlZWXM+4KCAgCAtbU1NfAplJcUpYrgUkI20gtK4WQlRicPO/C4tEQEhVIXVOf7Rr+jFErdQUsiNWzqSjMBVDdRKBRtqD1GodQvVDdRKOYDG81Uq46RumLBggWYO3fui+4GhUIxEw7cTsHc3TFIyStllrnKxPg6xB+DW7u+wJ5RKI2P6nzf6HeUQqFQXgxUN1EoFA3UHqNQ6heqmyiUhketztro4uICAEhLS9NanpaWxqxzcXFBenq61nqFQoHs7GymTWXmzJmDvLw85vXkyZPa7DaFQmlAHLidgjfXX9MyHAAgNa8Ub66/hgO3U15QzyiUxkd1vm/0O0qhUChVU1eaCaC6iUKhqKH2GIVSv1DdRKE0TGrVMeLh4QEXFxccPXqUWZafn4+LFy+ia9euAICuXbsiNzcXV69eZdocO3YMKpUKnTt31rtfkUjEpH/TNHAK5eVFqSKYuzsGRM86zexK3+y+A6VKXwsKhWIKxr5vADB3d4zW960621AoFMrLRl1pJoDqJgqFwk4zfb3rNsqVynruGYXSOKG6iUJpuJhcSquwsBAPHjxg3ickJCA6Ohp2dnZo3rw53n//fcyfPx9eXl7w8PDAl19+CTc3N4SGhgIA/Pz8MHjwYMyYMQNLly5FeXk5Zs+ejfHjx8PNza3WToxCoTQ+LiVk60RTVCY1rwwO8ztDZp0ORwtHOEodn/999n8HqYPWcmuRNa3XTqFUwtj3jQBIySvFpYRsdPW0r/Y2FAqF0hihmolCobwo2GimtHw5bOZ1gKVVipYuqqyTKv61l9hDwBPU01lQKA0HqpsolIaLyY6RK1euoG/fvsz7Dz/8EAAQHh6O1atX45NPPkFRURFmzpyJ3Nxc9OjRAwcOHIBYLGa22bBhA2bPno3+/fuDy+Vi9OjRWLRoUS2cDqUq6IROlMo0tDGRXlC1ga9BXi7Bo7xHeJT3iFV7IU+oJQKY/+sRBQ5SB9hJ7MDj8mpyKhSK2cP2+1axXXW2oTRcGtpvCIVSn1DN1HCh9zaKPhrSuGBtZ6lkSC+6gfSidCCD3SY2Yhu9gWeMU6WSdpIIJNU/EQqlgUB1E6UqGtLvx8uIyY6RPn36gBDDqVwcDgfz5s3DvHnzDLaxs7PDxo0bTT00pQbQCZ0olWmIY8LJSmy8EYC1o/9EE4diZBRlIKM4A5nFmcz/M4oznv+/KANF5UWQK+VILkhGckEyq/1zOVzYSexYZaNolgl5wpqcOoVS77D9vv1xeR5aus5GG+c2rLdxtKLfh4ZOQ/wNoVDqE6qZGib03kbRR0MbF2ztsc3jVqCZY6mWNqr4N7M4k3mfVZIFFVEhtzQXuaW5iMuOY3UMC4GFfo2kRy/RTH5KQ4Xtd+5C8iEMbfM6BDwB623YtqOYJw3t9+NlhEOqstjNlPz8fMhkMuTl5dG6uSzQTOhU+YPWmBt/v96efiFfMhrqmFCqCHr8eAypeaV6a3FyALjIxDjzaT/WHviS8hIto9+YKMgpzalW32UimXYUlYFsFM3/LYQW1ToOhVJbGPu+AQQKTiaSRNPA4RC81vY1fNXrG0xenmhwGwIVlMhC+8AdWBe2BjKxrG5PglInNNTfkMYAtYEppkLHDHvovY2ij4Y4LupCMylVSuSU5mjpJB0NVUlHlavKTe575Ux+Y+W97CR24HJqdepcCsVkWOkmZCJJPA2edh74tu+3GOM/Fr1+OlGlbiKcHCyf6ozBXsF1ewKUOqEh/n40Fkyxf6ljpJGjuUEbql1YHaOI0vComLrnYCHC/7bcQGp+wxwTmh8XAFo/MPX141KuLEdWSRZrUZBVnAUlMX1iQwlfojeKypAokIlkNLqKUusY+759McIFB5N+xJaYLQAAAVeAEe5f4UpMO3D0bENAkCNeiHzOKXjbe2PHuB3wc/SrhzOh1BbUrnixUBuYYip0zLCD3tsogG65kw7utui98HiDHBcvWjMRQlAgL2AVeFYxk99Uqsrk11fei2byU+oKY9+5kM5p+C9+jrp0HYBA50CM9fweK44SnW3wbEm68HuU8i7g+/7f49Pun1K934CgdsWLhTpGKAzn47MwYcUFo+02zehCJ3RqpOhL3WOD2GkZbGUZsBJawVpkDSuRFayEVrrvRc/eV/q/hdCizqJ3GlI6oibl3BRRUKYsM/k4fC7fYIq6vigre4k9nSeFwgo237eryVfx+bHPcSj+EADABn3gqnoHxWUinW0c7JIw6r9ReJL/BJZCS6wJXYNRfqPq96QoJpNRlIHb6bexPyYem08bv89Su6JuoDYwxVTomGEH1UwUffaOnYUA2UXGsx6sXf+BnSzLJM1UcX1dPahvSJoJUGfyGww8qxSAllmcWaNMfjbZKJp1NJOfwhZj37lCeSF+v/A7Fp5biPyyfABAB9tpUOWNQnYR0drm86He2P34W6y4tgIAMMZ/DP4Z8Q+sRFb1e1IUk5Ar5biXeQ+7bsVixRGp0fbUrqgbqGOEwrAzOgnv/RtttN0f44MwMqhJ3XeokWKukykZSt1jQ4bgJxTzT9Xo+JZCS4MCQJ9gqEo88LnaUyKZ6zWvKYQQFMoLdedG0ZONollfIC8w+TgccNTRVXqyUewljigqcgGUMrjb2aCXVxO4WDpBxBcZ3zGl3qjP7wDbYx1LOIY5R+fgUtIlQMWHM3cMXnEeguF+nTG1uxeEfLWzNL0oHeO2jsOJxBMAgM97fI55fedRZ10tUNNxkVuaizvpd3A7/TbuZDz/q4lukyp6wbH8E6P7oXZF3UBtYIqp0DHDDqqZ6gdztd9ropmAmusmIU9Ya5pJwpdoRZWb6zWvDfRl8us4VippJxVRmXycypn8Gt1kJ3FASXETcFU2aG4nQw9PV7hYOdFMfjPE3HRTVnEWfjjzAxZfXoxSRSmg4qOL/cdo7xiM9k2bYVLXFoxuWn51OWbvm41yVTn8Hf2xY9wOeNl71UnfXyZqOiYUKgXis+N1NNP9rPtQqBRUM71gqGOEwkCjn+oec43EMZa6Z4xPQoRoYl+MAnkB8svyUVBW8Pz/8gLt98/+X1Cmfl+d0lHGEPPFejNTtASCITFRqb2IJ2pUxmqpolSvE8XQpPPZJdkG9yVRdoWdfCb4cGSWKZCBbOFy8CW39c+LYiDKykJg0aiuszlhrvcdQO3cm3doF1afKgRR2jDLrSRK/BDWAcPaqg0/hUqBTw9/il8v/AoAGNxqMDaO2ghbie2L6HajwJRxUSQvQkxGDG6n39Yy6JMKkgzuv6VtS7hLBuBh/AijfaF2Rd1AbWCKqdAxww62mmnD9I7o3sqpHnrU+DBX26WmmgkAPhjKgat9oa5m0mgkA5qpRFFSi2eihsfhGc9SYamZLIWWjWr+DhVRIackh1U2irFM/qo0U7ngMuvJ5mkmf91jrvceAHia/xRvb1+Bq/dagk8cmOWOVnx8O7It07/zT85jzJYxSC5Ihkwkw/pR6zHce/iL6naDx5QxoSIqPMp9pKOZYjNjDd4frEXW8LIcisynrxvtC9VMdQN1jFAYjE0CRaCCkpOFWYOTMKfnpzpR+ZSqMefJlNgKvMpoxkS+1XuwEEkhFUhhIbCAhdBC66++5VKBFFK+FAKegHkgTgiBUqWEgihQriyHXCVHsZy9w6U6ZaWMIeAKWAsGY+KhIT78V6gUyCrO0hEFl+PLcTza81mr5+dEoALAQYbwe5TwzrM+jpgvrlIUVK75ayO2aVTiq64w5/sOYLh/BCpwwMGk3mWYOziM+aw33tqI6bumo0RRgpa2LRE1LgptndvWf8cbOFWNCwJgYs8iENF13M64jTvpd5CQm2BwX02tm6K1U2sEOAagtVNrtHZqDT8HP1gILepkQtf6piFHz1IbmGIqdMywg5VmQhaatlqOtWGr4W3vXe99bMiYs+1SXc0EqMeFipONEpuPDOomZpme5WKeGFwuFyDqedgIIVCoFChXlaNcVY5SRSkK5XocLno0U6G8EKTaOS+GsRRa1opmshJaQcAT1Hr/6pKKmfwVnSgX48tw4ErTZ61qrpkqZvIzjhOJg97AM42Gopn87DDnew9gXDf9MKYVxr/iCwBILUzFq1texZnHZwAAc/vMxRe9vqD62USMaaZZ/bkQWsQwmikmI8bg/EdSgRT+jv46uqmJVROoCBq8ZgIarm6ijhGKFoYmgcKzJenPfrg7unXEmtA1dCJclpj7ZEpsSwJUpLrGnKkIecLnzhV9DhfNMoEFxHwx+Fw+OOCohQPURqqKqKAkSihUCsiVcsiVcpQqSlGiKNGJxtL8vzoT+hmDy+EaFAzM/1kIBmuRNSyFli8sWojNeHaw4uPX1yyQVZppMBtF87dUYXrUHY/DY5wlxiabd5A6wEHq8NI5c839vmOsf5oHS04ei7Gg/3cY5DkIHA4HN1JvIOy/MCTkJkAqkOKfEf9gXOtx9dz7hotSRdD9h6NIzdfvSNZc9yTxNIDzvISEs4UzApwC0NqxtfqvU2v4O/rDRmxT5fFe9ISuNcGcowbZQG1giqnQMcOequ5tBASF0t+RRY5CzBdjQf8FeLfzu/SBFAvM3XZhr5kIauMhuClwOVx14BmLQDVNcBqXwwWXw1UHbhFABRVURMVopnJlOcqUZYzTRZ9mKpAXQKFS1Pr5iPniWtFML7ICAJvx7GgtwJJwB2SXGsjoZ5nJXxVWQiu95b0qB569zJn85n7vYaObVJxsTBoQh0+7fwyZWAa5Uo4PD36Ivy7/BQAY4TMCa0PXQiaW1WfXGyxstWplzSTkCeHr4Kt2fFTQTS1sWlRpBzRkzQQ0bN1EHSMUHQwN6K+G+yOLHMU7+99BbmkuRDwR5vebjw+6fEDTOY1g7mXKqhP95CoT46PgFujqJUGRvAjF5cUoKi9CkbyI+atvWVG5keXP/l+dmq7VQcKX6AgHC6EFJHwJRDwRBDwB+Fw++Bw+wIG2cFCpHS4aZ4tGOJSUl6CovEgtIJ4JhmqfD+FCpAoAj9hCyclBGfcO88MrFUirTmuvSkzUYCJHtuNlVPfHaN1UBBuxDWQiGWzENur/i2WQiWQQ8AQghKC4vFh/iroBUaCZfM5UbMW2JpX3EvPF1TqOucD2c1o3rQN6ernUQ4+0Ydu/VOEclPFuoU+LPljQfwG6NO2C7JJsTNg2gZnA/aOuH2HBgAUvnfPLGEqVEg9zHj6vZZt+B1cS81Ge+ZbRbTu1Po/e3q4IcApAgGMAHC0cjW5jiIZoKJt71CAbqA1MMRU6ZkyjqntbQDMFpu2ahsMPDwMAern3QuTISLS0bfmiutsgaCyayc5CiOwiOfPeRSbCBwOboXMrkZbeMaabihXG29ZFxrw+BFyB3kA1CV8CiUACIU8IAVcAHpendraAAw6HAxVRO1uUqkpBaspSlJaXqs+jvIhxuFT7fKrQTHwuv9Y0kylOA7bjJaRLPPybCBidxGimZ/pJKpCCw+EwmfwGJ52vpJ8yizOr5bQS88W6jhMD2SiNJZO/sdx7UoVzILV4ijk95mB2p9mQCCRYHb0ab+x5A2XKMnjbe2PHuB00wFkPOSU5jGa6nX4blxJykP5kotHtfLwPoFtLB3UmiFMAWtm1qrYmbYiaCWj4uok6Rih6qSoFKik/CTN2z8D+B/sBAN2bdcfq0NVoZdfqRXbZrDH3SRrZlDtxthbhl7FByCwsq/O0OEIIypRlxp0r1XC4FMmL6qRGrz54HB4TuSUVSCHmiyHkCdXCgScAn8N/HqUF3eyWwvxWKMoaojX3gpKTiSzBslqPNhPyhFVP1ljh/eNUJ+y6ZNwgNDa5pIXAQq/xr8+RUnG5hC+BQqVAgbyAMfqrEgVZxVnVKhdgKbQ0qeavldDKrKKr2N53soQ/w80pGb4OvvBz8FO/HP3g6+ALa1Hd/W6y7V9Hv9vY/eRrRiiP9BmJ7/p9B18HX3xx7Av8cPYHAEB/j/74d8y/cJA6VLW7RgkhBI/zHjO1bG+m3cT11Ot4kP0AcqVcq+2LmtyvIaRWlynKkFOag8yibExenojsIv33jRcdNcgWagNTTIWOGdOp6t5GCMHyq8vxv0P/Q1F5ESwEFvh50M+Y1WGWWdkL5kRj0EwuMjFOftwXVx/l1MtvnkKlYLRObQeqFcmL6mQ+SH2I+WIms0XCl0DEFzHOFj6PDx6Hp/XwXaOZlColCvNboSAzuF40EwccWAotWWmmp2ku2HfF2eg+jWkmPpevVxsZ004ykTozoFRRiuyS7CoDz2ork59NeS97qb3ZBTOxvfeUWvwNr6Z58HPwe66dHP3QXNa8Tp1DbPsnst+I+8UbAQBuVm74uvfXiAiKwI20Gxj13yg8yX8CS6El1oSuwSi/UXXWX3OmoKwAMRkxuJNxB7fSbuF66nXcSb+DzJJMrXZUMxlGRVTIL8t/Ng9TNmb+k4qcIu1MSQ0NQTdRxwilWhBC8M/1f/DBwQ9QIC+AVCDFjwN+xFsd32rw0QJ1gblHIAANP3XPFFREheLyYsPOlaois1iIjXJVeY37KFF2haP8cwBqA1xDxVR8heAKxHwx43CpLBw44ICAMJFamjrEcqUcZYoylChKdB6askGkbAMX+QKj7XIl30ApjFX3+5nTp1xVXmvp9gKu4ciqiv+3FlmDy+GCgEChVKBMWYaS8hLky/N1RILmb3X6KOQJWWejOEgdYCexq9P7pakZGfpws3LTMfx9HXzhaula44c6rDPV7P7Aq+0C8TTvKTbHbIaKPJt/JHAS5vaZiyvJVzBlxxQUlRfBXeaO7eO2o71r+xr1zVwhhCC1MJWJZIpOjca1lGt4kPOAtZCVqNrCqex7o+0a6uR+pYpS5JTkIKc0x/BfA+s0TnO297gN0zuDy+GYrXChNjDFVOiYqRsSchIQsTMCJx+dBAAMbDkQq0asQjNZsxfcM/ODaibzghACuVJueqCaZhmLtjWFjWYq5V2ARCCBmCeGiF+hIgCX/zy7BRytigDlqnKtUmKlilKTKwCwtSeyJV9DJYhlbGtGtynLa20uGGuRtf7AM5G2I0XMFzNz2GjKTxeVFyGnJEfvpPO1mcmvL/CsvjL5a6qbJHwJfBx8mCAzXwdf+Dn6wcvOq1bmeGHbPx+vAwhsJsF/d/7D4/zHAAAvOy982/db9GnRB+O3jceJxBMAgM97fI55fec12uovJeUliM2Mxe3027iVfgtXkq8gJiMGaUVprLZn+/1tqJpJqVIiryyP0UK5pbmstVNeWR5zP2R7nb4c5gcHK1GD10zUMULR4VHuI0zbNQ1HE44CAPq26It/Rv6DFjYtXmzHzIyGMgFtQ03dMzfKleWsI7Z0lpUXobCsGDExE6BUWEKf191QPcvaRsgTQsgVgs/lg8flgcfhPSslxoEw5ydwVDbgQPfBfm33T3NcDjhMdFhtwAEH1iJrvQJBLBBDwBUwAkupUkKukjNl0grkBcgpyWEcK9URdlwOF/YSe9Y1fx2kDiZNRMn2vvPfmz64nx2Luxl3EZsZi7uZd3E38y5SC1MN7lsmksHXwVfLYeLn4AcPWw/WEWDG+gcQqDjZeCKKADgq8Dg89G7RG6WKUpx7cg6A2jn25itvYrT/aEzfNR1x2XEQ88VYNnwZJgdOZtUPcyWzOBN30u/gVvotXE6+jOsp1xGfE896rIn5YrSya4W2zm0R4BjAiDQPG0/0/fm02f4eEUJQoigxyblR0ZCvTqRjRTjgwIE7GNKit422lUkEyCt57gh3sRbjmxHm83tJbWCKqdAxU3eoiAqLLy3GZ0c+Q4miBNYia/wW/BsigiJo9kgFqGZ6uVARlfrBu6mBas+WFcqLcfP2GCjKX6xm4nF4WhUBeNxn2oVwIcr5CagnzcQBh9FNFYPjagMxX6w3M8VKqC7JzOOoH66roFIHoinKUKwoRoG8APml+cgqyUJmcSayS7Krncmv4ziporyXqZn8bCtoLA63e66bstR/72fdNxgYyeVw0dK2pY7DxM/Bz6S5PtjoJgUymbHkYeOBAMcAnH96HlklWQCAdi7tML/vfBxJOILfLvwGAAj2DMbG0RthJ7Fj3RdzQ66UIy4rDrfTb+N66nVcTr6sdoAUprEea66Wrmjt1Bptndsy+tbLzgcj/7xh1r9HSpVSrYOq0kwGnBv5Zfk1drxK+BLYcQaBnz/DpO0asmaijhGKXlREhaVXluLjwx+juLwYlkJL/DLoF8xoP6PODP2GkF5WmYYSXdQQr21jg21EiFervZBZp2s5DgAwhjABgVKlZEpzlSvLtaKfyhRlzCT0JeUlKC4vZl1m7Hl0FtEy9NlOLskBh3G2aMqJEUKYPitUilqLkKpLpAIpZCL1nClSoRQinjrtX5MJosmSKVWUoliuFgd5pXkoLC+s1vFsxDZGa/5WjLI6dS+v2ved3NJctaOkksPkYc5DgyJLyBPCy85LnVli/9zw93HwgVQg1Wlv7L74+/jWyOecwvJry3Hm8RlmvbOFMyyEFniY8xCAuizbWx3fws20mzgYfxAA8E6nd/DLoF9Mcia9CPJK85hU7nNPzyE6JRoPcx+iUM5ujMhEMnjbeyPIJQitnVozoqupdVODv8F1/XtECGGiCzXGt0GjXc+y6mSyVYTL4cJGbANbsS1sJbbaf/UssxHbMP+XiWW4+DDH5Hm3KrLUTH7PqQ1MMRU6Zuqe+1n3MWXHFJx/qraRhnkNw/KQ5XCzcquT4zVEu55qJgpb2GomT889sJGlgwsuM+G8BkIIM+m8RoNosuwZzVQha6SkvAQlihLWZcZqqpkAteNFM3cLF1yAo+63ppRYfZU7qwk8Do8JQrMUWkLMF0PEE4HP5TPZOkqlkrnWheWFyC/NR05pTrXOT8QTGQw00+dQsZXY4tCdtGrdexQqBRJyEtRaqYLD5G7m3SozalwtXXWy8v0c/OBm5abXhjd2b/xkuB1u563H+lvrmePyuXx423kjITeB0fl9WvRB3xZ98cOZH1CiKEFL25aIGheFts5tWV3bF4VSpUR8Tjxup9/GleQruJh0EbGZsUgtTGXlAORz+Ggua442zm0Q5BLEXG9ve29IBBK929TH71G5spy1c6Nyu+pmbFVEKpCy1kwV/9qIbSDmi6s1X7GGhqiZqGOEUiXx2fGI2BmB049PA1B7n1eOWImm1k1r9TgNOUKnIfedUn+wrSFqrB5tdeCCqzZUNXV9n6WaayZT1DgyuBwu5EX+KMkeDqJ8Hu3C4eWAJ9sBIrrOlO0qV5WjTKEWFbVVRssYmgkfATAOF3OEx+HBQqieuFLIEzLZFoQQKFTqsl+asm/VOQepQApH7gBwC8ZBVeFzshDLMaR9EXr5WGuJAmuRtVGHdpmiDHHZcYzBr3Ga3Mu8V6VjzV3mzjhKKoqAKw/LWd0XYzJisOLqCqy9uRbZJdkA1A/ArYRWyCvLAwDYie3Qwa0DM9ltz+Y9seXVLXC2NF7fua4pkhfhbuZdXEu5hrOPz+JG2g0k5CQgX87OoHWSOsHbwRuvuL6CNs5tmGtoK7GtVn+M/R4RQlAoL6xWBFJuaW6NSwryODwd45uNkW4rtoWVyKpaZepURIWS8hIUlBUhZFE0MgoMnYPmu6j/u2IrFeDKFwNf+AMyagNTTIWOmfpBqVLi1/O/4ovjX0CulMNWbIs/h/yJiW0m1mpQWUPWHfr7LsLXIQFm33dK/fEiNRMACLlCiPgiJjCqYokuHocHLletmcqLAvRqJr7NThDRdV1HzDPdVF9odJM5ayZAHZ2umbdTwBUw90slUUKukKNUWVrtstaaTH5bTl8ockOhVDz/DbSSKBDasRx9fG1NyuQnhCClMIUJNKuom5ILkg1uZyW00sos0WgnTztPHInJMHpfL5IXYUvMFiy/upxxwgOAtdAaReXPHXp93PvgQfYDPC14CqlAilUjVmF86/EmX7vaRkVUeJz3GLfSbuHsk7O4knyFcYCwckbyJWhh0wKBzoFo59IO/k7+8HPwQwubFtUqG8bmt1SulFerJFVOaQ7rYLiqsBRaVisgzFZiCyFPaPLxKpZZLJQXY9Ti28goMPScR//cI0DD1EzUMVKLNNYIExVR4Y8Lf+DzY5+jVFEKmUiGPwb/gcmBk2vF0Nd4bCsPRHOLIKoKpYrgm0Pr8evZlWjt0hzn3lzbKD57Su3B1us+qvtjONjkMBFM1X3V6AEm4UKkCgCP2ELJyUEZ906NU8EFXIFW+S6dyK5ndW8rzp2iERQvIxVrJAPPyn4p5drChuXnJOAK9EZXGar5ayexYwxMjRFb2fC/m3GXSeHWh73EHr4O/nARdoe9qCX8nZtgeGs/eNi66324Xaooxfa727H86nKmXrvmOmgcb/YSexSVF6FUUYomVk2wbew2dG7auVrX11TKFGWIzYzFhacXcObJGdxKu4XE3ETGeVMVPA4PblZu8LH3QccmHZloJm9772rVViaEqCfGM+DUyCrJwcNULrKLFCgj6SjjxSC3NJsx6mvqyORz+dWKQLIV28JSaAkAjHNQE6FZMbtNs4zVehbtK2aqGI7wJFo1zA2xYXpndG/lUKPrV1PM1QammC/mOGYaq2YC1A7/8B3huJJ8BQAQ5huGpcOXwsnCqcb7biya6VJCFkI3hiOv/AlOzlyFzk07vuhuUcwItpppTPckONrqaqaKmSBsX9V2HNSBZuJxeHodMdpzrTzXTBUzYhpClkltw+VwmWA/TYlmvfNfsvysNJn8bOeXrJg9n1eah9jMWK2s/NjMWMRnxxv8bARcAbzsveBj7wc7XifYCVsgwKUpwtq2hbXYUu82t9JuYcW1FVh3cx1yS3MBgJmHVIOrpStSClMAAP/r+j/8MOAH1qWRawIhBMkFybiRegMnH53EleQruJ99H6mFqaw0iEwkQ0vblgh0DkRHt46MA8TJwqlazx7LFGVVaqYHKUBWUTnkJANy3l3klmUzbWpjviRrkXW1AsJsxDYQ8ARQqBT1pplKyku0xpAh3cSGhqaZqGOklmjI0TtsuZd5D+E7wnEx6SIAIMQ7BMtDlsPF0qXa+9TUVax43SpiDjX+2HI7/Tba/N0GFgIL5H2W12gnvKJUj/qur6wiKqasVk1e1REXmu3MCQ44Og/kNaXJKLrYS+zhZOFUZXkvHoeHnJIcpBalIi4rjkkxf5T3yOB+2UxieC/zHlZeW4nVN1YjszhTZx8CrgDlqnIIeUKs7jMfE1oONHwiUnvAhv1EuOXKctzPuo9Tj07h7JOzuJV+C49zHyO3LNfotiKeCE2sm8DfwR+dm3RGO9d28HP0g7vMXef3QEVUyCvNq1ZJqtzS3BrXlhbyhDrGt5XQCpZCS3W2k0DClEMQ8oRqwflMnKtUKpQqS3WNasXz98XyUuTmO6BULkQ5MlHGvYNiRRFKyktq9gCiFpAqu8FWPgN8ODLLVCgCFxZGt53dtxU+Cvapy+4ZxRxtYIp5Y25j5mXQTOXKcvx49kfMOzkP5apyOEgd8PewvzHGf0y199mYNBMADNkwBAceHMBfQ//CWx3fetHdoZgR9a2ZCCFMiVwdPVNdLaVkv58SRUmtzRlSG2gyTfQ5Yii6SPgSOFk4VVneSyaSobi8GBnFGXiU+wixWbGMA6Wqh+/NZc2fZ+RXKM3lKHUEh8NBSXkJtsZs1SlPrKGis6SfRz9sGfQb7FRVfI4m6qaMogxcSrqEE4kncDXlKuKy45BWmGY0sJEDDuyl9vC09UQ7l3bo0rQLApwC4GPvAyuRlU77kvKSapWkyinJYV1SvCpkIplWIJiVyApWIitYCCxgIbCAWCCGmKeuzlExGBQEkKvkVWqmkvISFMlLUFDohNIyEeTIRAnnJkoUamdFfVXm0AcHHEiUXXV0ExsammaijpFaoDFE77BFoVLg53M/4+sTX0OulMNOYoe/hv6FcQHjquXBZRsRsmlGF3T1tK9Ol+sNpUoJmx9tUCgvxM03bqKNc5s6OEbjjbB7GWgo9ZVrAxVRQa6UP5t8sQSXE7KRml8CS7ESns4EcpWJQkPJTlzUSvQXxWSkAinsxHZwsHCAg8QBUr4UKqhQoihBXlkeMooykFSQZNC40zeJoaedJ+Kz47Hh1gYcTTiqs00zwsE9WEJSVaQ/XwTMvqpj5KuICvcy7+FowlGce3IOt9Nv40n+E+SV5hkdN5ZCSzS1bgo/ez8EugTCy84LDhYOAAFyy/SkWesx3NkcxxgCrgAWgudOjIrlHngcHiOGNCXcNHMSyVVy9XdIWcqUdahNsStRdoWdfKaWAa1ABrKFy43W2643KkUNihWBsFEZLzMwu68nPgr2rYcOGsbcbGCK+WNOY+Zl0kwAcCP1BibvmIybaTcBAONbj8fiIYthLzVd0zQmzQQA35z4BnNPzsXkwMlYE7qmTo5BdVPD5WXSTID6GYtGM11MyEJqXjEsJSp4OhOUV9JMrHSQ0rhOqriflzVD/0WgKStrJ7GDo8QRMrEMfC4fcqUcheWFyCrOQkphCpMJog87iZ1OGWMeh4cDDw5olSeuSDPCwX1YocpcdQO6KackB6cfn8aJxBO4nnIdD7IfIK3IuAOEx+HBycIJnraeaOvcFm2c2sDNyg1WIisUyAtYaaackpwaB1xywIFUIGVKtjHlxZ9lGnE5XIBAPS+R6lnGkVJduYKZw/WZbqrt70pD000SZQdYqvob3aShaSbqGKkhjS16hy23028jfEc4rqWoDZYx/mOwZOgSOFqY5klkW0P0j/FBGBnUpDpdrVf6remH44nHsSJkBaa3n16r+34ZIuxeBl62z/FFnW9V0V/VjgKrQmRU3pe5RX+ZI5qH9yqiggqGr5WLhQvcbdwhV8oRlx3H1GxtR7i4Bv0p5hWJfzUSuwse4/yT84jJjMGTvCfIL8s36pgQ8USwElnBWmQNS4El+Dw+yhRlyC/LR25pLgrkBaadsB4qRuUREKj/mXct6Kp4nnKNSpGGupORcsBhxImIJzL4V8gT6q6ron3Fv0KekFXb64+KMHX1DaPnt2FaZ3T3ajhp4RQKYD5j5mXVTHKlHN+e/BYLziyAkijhYumC5cOXI8QnxKT9NDbNtC9uH4ZtHAYfex/Ezo6t9f2/bPZ2Y+Rl+wxf5PkqVcpqVwnQq6lYOGYqviqWPaXooilBTQipslyamCdGK/tWsBJaIaUgBYl5icw6trrp2MCvsavgMa6lXMPDnIfIKM4w+vlo5te0FlrDSmQFiUACpUqJQnkhcktzkV+WXysOhYol5TTBXw1VMwGm6SYBV2BQNxnVO6bqrCr+RicWY/raW0bPraFpJuoYqSGNLXrHFMqV5VhwZgG+PfUtFCoFHKWOWDZ8GcL8wljvo7Fdv8+OfIYfz/6I6e2mY8WIFbW235ctwq6x87JEsDWUcVtXn4cm+qvG4sKAyKhcJ7SiuKjtLABzhK2B3x6FuF7Des+sqYNa07WFgCOAgKd+CXlCCHlCxsAW88QQ85+9BOLnhjZXqGV0a4xnxgCvsE7AFeHHHZbIKzb83XG2FuLwh10hFYrrpc4xW5Qqgg7zDyO32LBos5EKcLWBTSRIoQDmM2Yam81vKpeTLiN8RzjuZt4FAIQHhuP3wb/DRmzDavvGdv0yizPhuFAdUJf9STZsJba1tu+GYn9SjEM1kxpzGbN19XlULAFdEweNlp6qtB/NXArF5cVabeoiC8AcMTvdZMaaiQuuWi9xhRDy1ZklIr6IKTMs4UsgEUjUDoOKDgaetl7S0lOadnx1OwFXhO+3i5FbhW5ysRbh2Ec9IBGIamVu59qgsWom81GlDZT0Av1RT5VZd30nvFxHwEH6Yr1mtYmAJ8BXvb9CiHcIwneE41b6LYzaPAqvtXkNi4Ysgp3Ezug+OnnYwVUmNlhDFCBwshKik4fxfdU1bAyBzk3UEwFr5mGprePO3R2j9/oQqA2mubtjMNDf5YXffCjs4HE5DUK01oTaHreaiJCKEw1q/q8iKiiJ9nt9bfS1O3O/EKtO5iGr8LkhZmfBwWs9RGjnzkVsigI5RSpYidXp7OAQg/ticzy27TRtuBwuUybJglgY3hd0962ZjFGukqtLKSnV5ZQURF1SSalSQkEUTJklZuLGCpM4qlQqKIhC57gEBCqVqkFnN9Q25p4KXU7KUa4oB+qoVK1I2QYu8gVVtknLl+NOUhm6ehoXZvUJj8vBD6Pa4I1nZTv08cOoNvQ3lkKpAWw10/cnF+Nz4SB0adrFbB4E1AYdm3TEtVnX8NXxr/DzuZ+x5sYaHHl4BKtGrEJwq2Cj2xvTTAQqWEtUDUYzOUgd4GnrificeFxOvoxBnoNq7dhUNzUeqGaq3pglpPb1ypm4Qqw8kaujmV7vIUYHDx4USuVz3SQh8HRWMbqptnRbVfsC1HPo8bl8SPgS41qr4nuV6rlmeqaXNBO4V5zYvmJpWo2OUqqUUCifra+omVTP9Znm86CaSY25ayYVVGqnmbIMqCOfGRvdlJpfhhtPitDVs8oCaPVKY9VM1DFiIpUNPQdLEavt/rn5O1befQMjfEYgIigCwa2CzSpasia0c22HyzMuY97Jefjh7A/YcGsDjiUcw4qQFRjmPazKbXlcDr4O8ceb66+BA+0aopofjhTun4jNbIIAp4C6OwkjsE1t7dxU7Ri5k3EHhfJCWApr/vDnUkK2wbIDgPqapeSV4lJCdqM3HCkNB7bjtskPvaDg3zVqANeFIWkofTWrSIlFB0ugQgF4eB5dYE4GG+UFoifCSaLqzIylivBgD0f551qp0I0VHmEX7cv24Wh9M7i1K5a+3h7f7LqD1PzntYxdrEX4ZkSAWURqUigNjYq6KbOAXY3ww4nbsOefb+Bj74MpQVMwOXAy3Kzc6rin9YOYL8ZPA39CqG8opuyYgrjsOAzeMBgz2s/AL4N+0TvprIaqNJPm8Wm88kfMPXkVc/vMfWFOJVPKAXVu2hnxOfG4+PRirTlGqG6iNDTYjtmmP/SGQnDXoIOgspOgNqlKM/1xsBj5/G2wUPQ22wfdlBcE1UwGaci6qTFqpsbxZL6e0GfouViLYCMVIK+43OBjOyuJAnYuQlxPLce2u9uw7e42uFi6YFLbSYgIioCfo1/9nEAdIuKL8F3/7zDSdyTCd4QjNjMWwzcNR0RQBH4L/g0ysczgtoNbu+Lv19vrXFtnKyFyhSsRV7wHPSPPYs/EPejWrBvrPtVWqqeh1NbUvFK8uf6aVmqrm5Ubmlo3xdP8p7iafBW9W/Q2+XiVYXszNMebJuXlhe14LCjhopifVavH1tRh5XK44HF4Wu+5HK56kjXwIM55E4C2ga9+zwUBARfaDyg0BluB5FeUCS4yWSyEqF8q0IigivA4PPC5fAi4AvB5fHVq8bOUZBGvQjqyQAIJXwKpQAoLoQWkAiksBZawFFrCSmQFC6EFrIRWsBKq5/uwEllBJpLBNvcxsHZkvZ6TvggncHPAgfDZJ647ljgA2orn4dCHXRpc9IwpXErIQUSk8Xk6nKzMJ+qpMoNbu2Kgv8tLUbaDQqlr9OkmLgdQGfh55ACwteCgV+v22HY3Hvey7mHO0Tn4v2P/h2DPYEQERWCEzwiI+OyC0syZbs26IfqNaMw5MgeLLi3CimsrcCj+ECJHRqKvR1+D2xnSTK4yCfxa3kFk7Hl8e+o8UgtTsWTYEtZBeC9CMwHqTPuNtzbiUvIlk49lCKqbKA0NtmMxv4SD4vLMWj02BxxtfVRZM3HUmkmSW5VmUsFaMVpn3xrdlC/5BXLBJS2NVPH/jb30Lxs44IDP5at1E08AAfd52VtNOSYxXwwJXwIxX8xMJG4hsIBUKIWV0EqtmzR/n82RaCW0gkwsU2un7EQgcki9nZM+zUS42eBA8xv+8momoOHrpsammahjhCWGDL20/DJmWeXoHc2QWDi6Ewa3voKbaTcReT0S62+tR2phKhaeW4iF5xaic5POiAiKwPjW46t0IDQEOjXphGszr+HL41/i1/O/IjI6kkkTH+g50OB2hr5YuaUdMHzTE1x4egH91/bH5jGbWU1WWFuTl1UntbVzk854mv8UF5Mu1opjhO3N0FxvmpSXE7bjcUXoL2jX3ELXcaHPMNfn4KjUhm2EpLFa3ZUNf/UytfEvLZmMHHKyWnVQmUm2XxCaeSXEfDGkfCkkAom2cf3MOaFxVEgFz9tolhl7LxVIIeKLwOVw6/ZkSvNZNbs04xLu8oU4//Q8TiSewNWUq0jISWBdT5jP4cNKZAWRojOEJW/rrCcqG1Q27rXWQ50KrS4h1XijU3t5SeEqu2ewzItmYmVzKPNSFS9D2Q4Kpa4xpJuqcooAwPdh7TC49VD8NfRPbL6zGZHRkTj75Cz2P9iP/Q/2w05ih4mtJyKiXQTaubRr0KW2pAIp/hjyB8L8whCxMwKJuYnot7YfZnecjR8G/AALoYXe7Qw/jOiPzldEeGvfW1hxbQUyijOwcdRGSASSKvvxIjVTpyadAAAXn6qDTWrj86S6idLQYK2ZRv6MIHcLk/WRoXZcDpfVd864ZtJv72t0k0VJOHLJKbOZP4ItmnLGGmeERCCBlC+FVPhcM1kKLVnro4qaq+IyCV8CAU9Q9ydUkM6q2ZHJR3BBWYITiSdw7sk5xGTEIKc0h/VhLIWWsFT20KuZoLIF1UxqGoNuakyaqdYnX2/RogUePXqks/ytt97CX3/9hT59+uDkyZNa62bNmoWlS5eyPkZ9TyKoVBH0+PGYwRRHDgCZVAAxn4fUfONGpVwpx977exEZHYl9cfugJEoA6vTqUX6jEBEUgX4e/er+oVIdc+bxGUzZMQXxOfEAgDc6vIGFgxaaXF6quLwYY7eMxd64veBxeFgRsgIR7SIMtq/NycuqM9HhT2d/wqdHPsUov1HYNnYbq+NUhWb8Gbtpnvm0X4P10FIaH+Y+bndGJ+G9f6OrvX2qcA7KeLdqpS9CnpC9UV0Dh4WYLwaPy6uVPpsFydHAchbO55knAbcgrUVKlRKxmbG4mnIVV5Kv4MLTC7iVfgulCgNRe4SLJqWrwIODXqcZG/4YH4SRQU2qtW1DQfP7C+gPFDGXyUMbMuYykTal5tSHZgLMTzcBupkjVT2Iv591H6ujV2PtjbVIKkhilrd1bouIoAi81uY1OFo46mzXkCgoK8DHhz/GsqvLAACt7Fph9cjV6N68u8n7irobhQnbJqBMWYaezXti14RdBid4f9GaqVRRCusF1ihXlePhuw/hYevB6lhVYe72J4VSGXMfszXVTEDt6SYOOOydDiYEdOlrI+AKGrTzXYca6KaMogxcS7mGqylXcSnpEi4lXUJKYYr+7almYg3VTXWLKfZvrTtGMjIyoFQqmfe3b9/GwIEDcfz4cfTp0wd9+vSBt7c35s2bx7SRSqUmGer1beCzNfQ2TOsMLpdjUipRamEq1t9cj8joSMRkxDDLm8uaIzwwHOGB4fC086zxObwoiuRF+OzIZ1h8eTEAwMPGA5EjI03OpChXlmPmnplYHb0aAPB9v+/xWY/PdH6s2DixTDEs2BoCFW/eJxNPos+aPmhi1QRPP3xqdFs2PBcumpgrNfSmSTFnzPnHnu193RDu7sfQ1Dm1xg4LiUDSaOabqndynwCLOwCKKurW80XA7KuATTOju1OqlLifdR9XU67iavJVXE25iuup11EoL2Q1QZ4xvh1tj1GBbQxGATcWaiv6mKIf6hhpPNSHZgLMVzd9OcwPDlYi1ppJqVLiyMMjiIyOxI7YHepJUQHwuXwM91aX7x3Sakj9RN7WEYfiD2Harml4mv8UHHDwYdcPMb/ffIj5pmU3nHp0CiM2jUBeWR5aO7XGgdcOoIm19kMmc9BMANBpRSdcTr6MTaM3YXzr8Ua3Z8OB2yl4Y/01EKi0otnNwf6kUPTRmDUTAHh6nEIz57QaOyyEPGHjclbUJ7Wsm7KKsxhniUY7JeQm1Ipm+ni4AKFtA+Bm5dboP2+qm+qOF+oYqcz777+PPXv2IC4uDhwOB3369EFQUBB+//33au+zvg18tobeWwMk+F+/3tWKyCWE4EryFURGR2LT7U3ILc1l1vVy74WIoAiM8R9TK5N5vwiOJRzD1J1T8SjvETjg4L3O7+G7/t9BKpCy3gchBJ8f/Rw/nP0BAPBup3fx2+DftDJrqhOtVBXV2V+hvBCyH2RQERWefvBUR4hUl903nuCtf4+BRxyYZfSmSQFqrzZ0XWCuP/bGorOMwfYeQqljcp8AxVXMUSO1Z2XcG0JFVLifdR//nLuJzeeq59AgUEGJLCSJpwEcFZpaN4Wvgy987H3ULwf132ayZg0+U1SDOd+TGjrUMdJ4qQvNBJivbpof5onXO/tW6xg5JTnYdHsTIqMjcSX5CrPc2cIZr7d9HRFBEQhwCqjWvl80uaW5+ODgB0wwmK+DL9aErmHKTrHlZtpNDF4/GCmFKWgua46Drx+Er8Pz620OmgkA3tn3DhZfXoz3O7+P3wb/ZnR7tkza+DOO33TQqm9vDvYn5cVizvZJY9VMANVNZkMd66bskmz8ffoyVhxTVGv7yprJUmgJb3tvHc3kbe/dqALNzPm+1JAxG8eIXC6Hm5sbPvzwQ3z++ecAgD59+uDOnTsghMDFxQUhISH48ssvIZWyf0BurpFPqcI5sLZKxQifEQjzDcOAlgOqNUFgqaIUO2J3IDI6EofjDzP16C2FlnjV/1VEBEWgR/MeDc57ml+Wj48OfYQV11YAALztvbF65Gp0bdbVpP38fuF3fHDwAwDAuIBxWBO6hrnO1Y1WMkR1U1sDlwbiZtpNbBu7DaP8RrE5LaOcTDyJPqv7wUXYHUuHbIKTNb1pUszXiK6Iuf7YG4rOqooXnc5OeTFUP1pOPbLsXbfjsXw3MosNT5op4UvgZe8FH3uf546TZwLASmRVzZ5TGhvUMdI4qSvNBJivbkoXfY5OHrYI9Q1FmG8Y3G3cq3W82+m3mTkc04ue11Dv6NaRmcPRVmJbrX2/SPbc34MZu2cgtTAVPA4Pn3b/FF/1/sokbZmYm4jg9cG4n3Uf9hJ77J24F52bdgZgPppp/c31mBQ1CV2bdsW5aedYnplxOq3ohMtJV/FNt3UIcuptVvYn5cVANVP1qY5mAqhuehmpqWZydz+MFMV+PMx5yEw5oI+XIdCMUjPMxjGyefNmTJw4EY8fP4abmxsAYPny5XB3d4ebmxtu3ryJTz/9FJ06dcL27dsN7qesrAxlZc9TvvLz89GsWbN6r5Vr2EtOIBIWI136BnLLnk9MZCm0xFCvoQjzDcNQr6GwFpne1yd5T7D2xlqsvrEaD7IfMMtb2bXClMApmBw4Gc1k1ffqvggOPDiA6bumI6kgCVwOFx91/Qhz+841KU18061NCN8RjnJVOfp79EfUuChYiaxqPfoJqMoQIOCAoze1debumVhxbQU+7f4pfhjwA8uzqpqvjn+Fb099iwmtJ2Dj6I21sk9Kw6Y2a0OzoT6N9fo6lj6RZCMVILe4HByYXzo75cXA5oGPjVQAEZ+L1Pzn9kplwZ1VnIV7WfdwL/Oe+u+z/z/IflDlZPCulq6Mwc84Thx84C5zb1zzxlCMQh0jjZPa0kxAw9BNHF4eEgWTtSbjbefSDmG+YQjzC0OAY4DJAWDlynLsi9uH1TdWY8/9PVCo1BGrIp4Iob6hiAiKwICWAxrUPTOrOAvvHngXG2+p7f42Tm2wNmwtglyCWO8joygDwzcNx6WkS5AKpNj66lYM8RpSr5qJQAUuuHrtp7isOHgv9oaIJ0LBnIJaKYWWU5ID+5/sQUBqNXuf0nCpb80END7dZMixNCLQFctPJQCguolSe5pJrpTjYc7D55qpgnaigWYUNpiNYyQ4OBhCoRC7d+822ObYsWPo378/Hjx4AE9P/XNpfPPNN5g7d67O8voUhWzqPvb3c8DJRycRdTcKO+7tQHJBMtNOyBOiv0d/hPmGYYTPCDhbOpt0fEIIzjw+g8joSGy+sxlF5UXPjs/BQM+BmBI4BaG+oZAIJDU5zXojtzQX7x14D2tvrAUA+Dv6Y23oWnRw68B6H4fjD2PU5lEolBeivWt77Ju4Dw5SJ6Opnq7ViFrQZwioOFlYNK4XQoNa6LRfdW0Vpu+ejj4t+uB4+HHWx6mKbqu64fzT81g1YhWmtptaK/ukNFxquza0Meozyqq+I7r0iYnDMalmH1VGqV/Y2AED/V2qJUwVKgUScxNxL/MeYjNjtZwmaUVpBrcT8URoZddKr9PE0GS7pmKu0YsvK9Qx0jipLc0ENBzd5Nu0DDtidyAqNgpnHp+Bijx3krSya6V2kviGoXPTziZHf6YXpWPDzQ2IjI7ErfTnE/42tW6KyW0nY0rQFHjZe1X39OqdbTHb8ObeN5FRnAE+l48ve32JOT3msHYiFMoLMWbzGByMPwg+l49VI1bhtTaTjDqwXGWSWtFMCmRgVCclFo2apnsUQmD/kz1ySnNwZcYVk7SgIaLuRmHU5lHwc/BDzNsxxjegNGrqWzMBjVc3GbIJG0I2DqX+qEvNBJhvoBnVTOaFWThGHj16hJYtW2L79u0YOXKkwXZFRUWwtLTEgQMHEBwcrLfNi4580mDKDV9FVLicdBlRsVGIio3C/az7zDoOOOjevDvCfMMQ6huKlrYtTepHobwQ22K2ITI6EicfnWSWy0QyTGg9ARHtItDRrWODKLW1694uzNw9E2lFaeBxePi85+f4otcXEPKErLa/mnwVQzYMQUZxBjxtPXHw9YOIS5YajFbigIMfx7TCuFdMr2msudGl5ZfgwyPTkFB0BMtDlmJGhxk6bW+l3ULbpW1hKbRE7qe5Nb7R5pXmwf4neyiJEo/ef4TmsuY12h+l4VMXkX6GqM8oqxcR0WUIatxQKvMihF9uaS7uZ91njH+N4yQuK46ZfFgfThZOOunlPg4+aGnbEnwun9WxqdA1P6hjpPFRm5oJaJi6KaMoA7vu7UJUbBQOPzwMuVL+fBtLV4z0GYkwvzD0adGHtUYA1A/dr6VcQ2R0JDbe2oic0ueZ/T2a90BEUARe9X+1QUSRphel4629b2Hb3W0AgA6uHbAmdA3ruVTkSjmm7ZqG9TfXAwAWDlyI1tavGdRMAAeju2bh15HhJve1ov10PvkAfrw0Ez4OXrj79l29+nTw+sE4GH8Qfw39C291fMvk41Xm7b1vY8mVJXin0ztYNGRRjfdHadjUp2YCqG6iuokCvBgNoQk0i82M1XGa1HWgGdVM5odZOEa++eYbLFu2DE+ePAGfb1iAnz17Fj169MCNGzfQtm1bVvt+kaKwOjd8QgjuZt5lMkkqThIIAG2d2zJRUW2d25rk0IjPjseaG2uw5sYaPM57zCz3d/RHRFAEXm/7OlwsXUw7yXomqzgLs/fPxr+3/wUABLkEYU3oGrR1Zjce4rLiELw+GAm5CXCycMKB1w4gLctF58YEbg7S+UvQupkCx8OP12jCpl/O/YKPDn+EQOdAXJ91XeczU6qUsPnRBoXyQtx84ybaOLep9rEAtQNp5L8j4WXnhfvv3De+AaXRw7Y2tL/XRfT3kyHAKQABjgFoat3UpHtMfUZZvYiILgrFVMxF+ClVSjzOe6wTMRWbGauVsVoZAVcATztPvU4TB6kD086cxDblOdQx0vioS80ENDzdVFBWgP0P9iMqNgp77+9FgbyAWScTyTDcezjCfMMQ3CoYlkJL1n0pVZRi171diIyOxKH4Q0yGilQgZeZw7One06xrkxNC8O/tf/H2vreRU5oDIU+IeX3m4aNuH7EKwlIRFT45/Al+Of8LAODDLh+iv9v/8O2eu1q2l1RchkTVzyjjX0TUuCiM8BlR7T4XlBWgya9NUCAvwOFJhzGg5QCdNl8f/xrzTs3D5MDJWBO6ptrH0uCz2Af3s+5j5/idNeo7pXHAVjM1a34EPbzFCHAKQGun1vB18DWp1DdAdROFUhFz0UyAdqBZxez82gg0o5rJPHnhjhGVSgUPDw9MmDABP/zwfH6F+Ph4bNy4EUOHDoW9vT1u3ryJDz74AE2bNsXJkyer2KM2DV0UPsl7wqSOn3p0SmtSoZa2LRHqE4owvzB0bdqVdaaBiqhwLOEYIqMjsf3udpQq1D+QPA4PQ72GIiIoAsO8h5kUZVXfbLmzBW/tewuZxZkQcAX4uvfX+LTHp6wiW1MLUzF4/WDcSLsBK6EVdozfgd7ufbVuxDbWmegZ2R1ZJVkY6jUUO8fvZB01W5nskmw0+bUJShWlOBNxBt2bd9dp03dNX5xIPIEVISswvf30ah1Hw7v738Wfl/7Em6+8iSXDltRoX5TGAdvop1ThHJTxnpeRsBZZI8BR7STRGP4BjgFwsXTR6zBhe5xPQoSY2KFjjcr31HdEF4XSWCkoK1Ab/5WcJvez7qO4vNjgdnYSO/g6+MLbzgeXokNQVCrAc7P+OVRsvzgaug1M0aauNRPQsMdMmaIMxxKOISo2Cjvv7dSaXF3MF2Ngy4EI8w1DiE+IlmPXGEn5SVh3cx0ioyO1svpb2rZEeGA4wgPDqz0ZfH2QUpCCmXtmYs/9PQCALk27YPXI1fBx8GG1/c/nfsbHhz8GALzW5jWsCFmF6MeFjGbq2MIWb+ydiVXXV0HCl+BY+DF0adql2v19Z987WHx5MUJ9QxE1Lkpn/b64fRi2cRh87H0QOzu22scBgMd5j+H+uzu4HC6yP8mGTCyr0f4oDZ/qaiYuhwtPW0+1XnJszQSZ+Tj4GHymwvZYC8c1weigtjVyxFLdRKHUHH2BZhrHCZtAM287X9yPnYSSMiGoZjIvXrhj5NChQwgODsa9e/fg7e3NLH/y5Alef/113L59G0VFRWjWrBnCwsLwxRdfmGSoN2QDvzJZxVnYfX83omKjcCj+EOPQANTeyZE+IxHmG4Z+Hv0g4otY7TO3NBeb72xGZHQkLjx9/mPpIHXAa21eQ0RQBAJdAmv9XGqDtMI0vLn3TUTFqo3mjm4dsSZ0Dfwc/Yxum1eah9D/QnEi8QQEXAHWj1qPsQFjtdpceHoB/db0Q4miBNPbTcfykOXVLjk2fdd0rLq+CuNbj8em0Zt01n925DP8ePZHTG83HStGrKjWMTQELAlATEYMtr66FaP9R9doX5TGgfHJTQEbqQojel7F3cw7uJN+B/ez7ms5YitiK7bVMfwDnAJwPq6cVZRVhuAnFPNPoaVtS3Rw7aB+uXVAe9f2sJPYsTonthFdPNu1CG5tjwEtB6Bvi76wldiy2j+F8rKjIio8zX+qdyLDilmnImUbuMgXGN0fFdv1T2OygSl1r5mAxjNmlColLjy9wJQpfpjzkFnH5XDRy70XU6aYbclZQgjOPz2PyOuR+O/Of0x2Cgcc9PPoh4igCIT5hUEqkNbJOdUEQgjW3FiD9w68h/yyfIj5YizovwDvdn6X1cPWdTfWYequqVCoFAj2DMbWsVu1MnDKleUY+e9I7H+wHw5SB5ydehbe9t5V7NEwdzPuwn+JP7gcLhLeS9D5fDKLM+G40BEAkP1Jdo3susjrkZi6ayq6NO2C89POV3s/lMYDG81kZ8HBlEEPcTfjDu5k3MHt9NtapfcqwuPw4G3v/VwvOaoDzVrZtcK+W+msdRNPeh3tXNtp6SZve2/WzhK2uqlps0MY3b4F+rfsjzZObRpEuXUKxRwwFGh2L/MeShQlAKhmMmdeuGOkrmksBn5liuRFOPDgAKJio7Dn/h7kleUx66yEVhjmPQxhvmEY0moI61q4dzPuYnX0aqy9uRaphanM8nYu7RARFIGJbSbCXmpeX1BCCDbe2ojZ+2cjtzQXIp4I8/vNxwddPjCaQVOmKMPrUa9ja8xWcMDBoiGLMLvTbK02u+7tQth/YVARFb7p/Q2+7vN1tfp5PeU62i9vDwFXgMcfPNYpWaaZ+K+tc1vceONGtY4BAMkFyWjyaxNwwEHmJ5msHzJTGj9sJjarmLYpV8pxP+s+bqffxp10teF/J+MOHmQ/0Jr0tCLOgh4Q539mtC8cuz+QWHJY7zoPGw90cFMb/e1d26ODawe9953qRHRxwEEHtw4Y4DEAA1oOQPfm3U1Oe6dQKEBxeTHisuIQmxmLfbfScfKG8fnP/hgfhJFBTUw6jjml1TdEGqsNTKk7GuOYIYTgVvotRN1VO0lupGnb2R1cO6jLFPuFwc/Bj9WDwCJ5Ebbf3Y7I6EgcTzzOLLcWWWN8wHhEtItA5yadze6h4pO8J5i2axoOP1TbYD2b90TkyEh42nka3XZ/3H6M2TIGxeXF6OjWEXsn7oWjhSOzvlBeiL5r+uJK8hV42Hjg/LTzcLZ0rlY/+6/tj2MJxzCnxxx83/97nfWeizzxMOchDr1+CAM9B1brGADw+vbXseHWBnzR8wt82+/bau+H0rgwVTMRQpBamKrWSunPnSV3Mu4gvyxf7zEEXAE8LYegJG2m0f5kS75GAa7qLLcUWqKdS7vnmsmtA3zsffQ+A6mObnKycEJ/j/4Y0FKtm+i8pRSK6VQMNNsR/RR7LzsZ3YZqpvqHOkYaAXKlHCcSTyDqrjp1PKUwhVkn4okwoOUAhPmGYYTPCC0D1hAKlQIHHxxEZHQkdt3bhXJVOQBAyBNihM8IRARFYJDnoGqXlqoLkvKTMGP3DOx/sB8A0K1ZN6weuRpe9l5VbqdUKfHu/nex5Iq65NT/9fw/fNv3Wy0hs+zKMryx9w0AwMqQlZjWflq1+thtVTecf3oe8/rMw5e9v9Rap3FocDlc5H2WZ1Id5Iqsu7EOk3dMxitur+DyjMvV2gel8VIbE32VKkoRmxmrY/gn5CSAEA6alK4CD/bgQF8EE4G1RIklUxzQVNYED7If4GryVVxNUb8qRnRWxF3mzjhLNFFStmL7KiO6OACcrIWYE1aCY4lHcOThEdzNvKvVRswXo0fzHozR386lHeuShBQKRU1dlWegExPWnJfBBqbULi/DmHmY85ApU3z28VmQClaEt703M5djxyYdWUVjJ+QkYM2NNVgdvRqP8h4xy30dfBERFIFJbSfB1cp87lmEECy/uhz/O/Q/FJUXwUJggZ8G/oQ3XnnD6PlefHoRwzYOQ1ZJFrzsvHBo0iG0sGnBrE8vSkfXVV3xMOchOrh2wIkpJ6qlaTQBYw5SBzz54IlOEMvEbROx6fYmfNv3W3zR6wuT9w+or4PrL65IK0rDifAT6N2id7X2Q2mc1IYNQghBUkES7qQ/10t3Mu4gJiMGhfJCgHCN6iYbC2DTG16QK0txPfU6o5uiU6OZKPSKWAgsEOQSxOilDq4d4OPgAw54RnWTvSUP4/rewbHEIzj16JROOVUvOy9GM/X16EsDMCkUE6GayXyhjpFGhoqocPHpRcbgj8uOY9ZxOVz0aN6DmZekoiFriMziTGy8tRGro1fjeup1ZrmrpSsmtZ2EiHYR8HXwrYtTMRlCCP65/g8+OPgBCuQFkPAl+GHAD5jdaXaVhj4hBPNPzcdXJ74CAExrNw1Lhy/Vcvx8cewLfHf6O/A4POyasAtDvYaa3L+Ntzbite2vwc3KDYnvJULAE2itb/prUyQVJNXIOA/fEY61N9bis+6fYcEA42l6lJePuoomKJIXITYzFpuv3sd/ZzVZas/3S6ACwEGG8HuU8NTlCppYNWHmLQlwCkAz62YoU5bhbsZdxlnyIPuB3uM1s24GT+loJCT0h6EanZUjupLyk3As4RiOJKgdJZVrgdqKbdHPo9NvWzcAAOgzSURBVB8GtByA/h790cquldlFe1Io5oaxshPVqZdLJyasHV42G5hSc162MZNWmIZd93YhKjYKRxOOQq6UM+vcrNwQ6hOKUN9Q9GnRR8dur4yKqHAy8SQioyOxNWYr89CSy+FicKvBiAiKQIh3COtyx3VNQk4CInZG4OQj9Tw0/T3645+R/xiNCr+XeQ+D1g/C47zHcLV0xYHXD6Ctc1tmfVxWHLr90w2ZxZkY0moIdo7fafTaVUahUqDlHy3xJP8J1oauxaTASVrr/7jwB94/+D6Gew/H7gm7Tdq3htvpt9Hm7zaQCqTI/iTbbD4XivlQV5pJRVR4nPcYd9LvYNfNxzh4pdmzNYZ1k1QghZ+DH1PKWDPZe3JBMq6lXMPVlKu4nnpd79xwEr4EQS5BcBMMxZWYILDRTWWKMlx4egFHE47iyMMjuJR0SavEMs3Cp1BMh2om84U6RhoxhBDEZMQw9XWvpVzTWh/kEsRERbV2am30AeCN1BuIjI7E+pvrkVWSxSzv0rQLIoIiMC5gnFlMWvc47zGm7ZqGIw+PAAD6tOiDf0b8Aw9bjyq3W3F1Bd7Y+wZURIURPiOwafQmpk4wIQQROyOw5sYaSAVSnAg/gY5NOprUrzJFGZr/3hzpRenY8uoWjPEfo7V+9ObR2H53O34c8CM+6f6JSfvW9LHpb02RXJCMI5OOoH/L/ibvg0LRh6nCQF/UgrVECX/PGOTgOO6k30FSQZLB7d1l7kwt3pa2LcEBB1klWbiVfgvXUq5pTX5qUz4F1oowcPA804MDgv5tOJg/soNO2ToNhBDEZsbiyMMjOJpwFMcTj+ukuzeXNWcM/n4e/apdEoJCaeyYWnaiKjSioeL9oyJ0YkL2vMw2MKV6vMxjJr8sH/vi9mFH7A7sjdurjuh+ho3YBsO9hyPMNwzBnsGwEFoY3ZdmDsdzT84xy+0kdswcju1c29XZubBFRVRYfGkxPjvyGUoUJbASWuG34N8wtd3UKnVhUn4SBm8YjNvpt2Etssau8bu0grouPr2Ivmv6okRRgoigCKwascrkQJPvTn2HL45/gc5NOuPCdO0I2wtPL6Drqq5wlDoi7aO0agWx/H7hd3xw8AMEewbjwOsHTN6eQtFHdZwp+nSThViOZk0vIFVxELGZsShTlund1lJoycxd4ufoB5lIhhJFCR5mP8S11Gu4nnpd+15mQDeFdrDCT6O6GXRi5pXm4eSjkzjyUH8WvognQo/mPZiyWzQLn0LRD9VM5gl1jLxEPMp9xGSSnH58WmueAE9bT6a+bpemXarMsJAr5dhzfw8ioyOxP24/Ez0g4Uswym8UIoIi0NejL+vJwOoCQgiWXlmKjw9/jKLyIlgKLfHzwJ8xs8PMKo3nHbE7MGHbBJQqStG9WXfsmrCLSRMtV5YjZFMIDsYfhKPUEeennWdVk7cimsyT3u69cWLKCa11P539CZ8e+RSj/EZh29htJp9zbGYs/P7yg4gnQs6nOZAIJCbvg0KpTHVTM40Jg9zSXMRkxOjMYVJxfqOKcMCBh60HM2GhhC/Bg2RLXLjdmmmhoWKUla3NI60SXB1cO+gtaaFQKXAl+Qpj8J97co4pI6ihrXNbJoW8l3uvape8o1AaI7WVxl1XaeYvI9QGppgKHTNqyhRlOJpwlClTnFGcwayT8CUY5DkIYb5hCPEJMVpO5l7mPWYOx4qZqoHOgYgIisBrbV+Dg9Shzs6FDfez7mPKjik4/1Sd0TvUayhWhKyAm5WbwW1yS3MxYtMInH58GiKeCBtHb8Qov1HM+j3392DkvyOhIip81esrzO0716Q+pRelo9lvzSBXynF5xmW84vYKs65UUQrrBdYoV5Xj4bsPjQa/6WP4xuHYG7cXCwcuxEfdPjJ5ewqlMjWxg6rSTQqVAvHZ8TpzmNzPuq+jVTTIRDIEOAXA39EfjlJHEEJw96kI0bGvgECtqzRodFOe+Gf4NC3R0k0BjgF6nSXJBck4+vCo0Sx8jW6iWfgUynOoZjI/qGPkJSWjKAO77+9GVGwUDscf1opCcLF0wUifkQjzDUNfj74Q8oQG95NSkIL1N9cjMjpSK3LAXeaO8MBwTAmaUi1jtbZ4mPMQETsjcOrRKQDAIM9BWBmyEs1kzQxuc/rRaYz4dwRyS3MR4BiAA68fQFPrpgCAgrIC9FnTB9dSrqGVXSucm3qO1bwtGp7kPYHHHx5QEiVuvXkLrZ1aM+tOJp5EnzV90NS6KZ588MTkc118aTHe2f8O+nv0x5HJR0zenkKpzItIzcwqztIy/DXGf2ZxpnZDpi6vg5ZxX6EBFMhEkngawNGeLN7F0kXHWeJm5aZlsBfJi3Dm8Rm1oyThCKJTo7X2wefy0bVpVyYyqqNbR5NLRVAojY3aKDuxMzoJ7/0bbbRddSYmfNmgNjDFVOiY0UWpUuLck3NMBn5ibiKzjsfhoXeL3gjzDUOobyijFwzt51D8IURGR2LnvZ1M2S4BV4AQnxBMCZyCIV5DXtgcjkqVEr+e/xVfHv8SZcoy2Iht8OeQP/Fam9cMPtAsKS/BxO0TsSN2B7gcLv4a+hfeeOUNZv3yq8sxa88s9f+HL8eMDjNM6pNmcvQpQVMQOTJSa13HFR1xJfkK/h39L8a1HmfSfsuV5bD7yQ6F8kJcn3UdQS5BJm1PoVTmRWimcmU54rLjdOYwicuK0yp7BcCobiJQQYksHd0k5AnR1rmtlm5q7dRa6/mQJgtfU3aLZuFTKMahmsm8oI4RCgrKCnDgwQFExUZhb9xerR8ya5E1hnkNQ5hvGIZ4DTEYIU0IwaWkS1gdvRqbbm9CXlkes65Piz6YEjgFY/zHGE09rwtURIVFFxdhztE56ggjkTX+GPwHwgPDDRr6t9JuYfCGwUguSEYz62Y4+PpB+Dn6AQBSC1PRdVVXJOYmolOTTjg2+ZhJ56UpmfXmK29iybAlzPJCeSFkP8igIiokfZhUZZSWPkL/DcXOezuxoP8CfNbjM5O2pVAqY26pmelF6VpRUlcfFSDjyUSj2/EdFsNOlgUeh4fM4kzE58RrTbSqwdnCmXGStHdtjw6uHdDUuilzj8goysCxhGM4mnAUhx8e1nowAqhT2fu06MMY/f6O/jQyilJn9akbMzT6qfagNjDFVOiYqRpCCG6k3UDUXbWT5Fb6La31Hd06Mhn4Vc3BmF2SjU23NiEyOhJXU64yy50tnJk5HP0d/evsPKoiJiMG4TvCcSX5CgAg1DcUS4ctNfggU6FS4O29b2P5teUAgG96f4Oven/F2EBfHf8K3576FlwOFzvH78Rw7+Gs+6IpmSXiiZD0YRLspc/v+bP3zcZfl//CB10+wK/Bv5p0jmcfn0WPyB5wkDog7aO0F1rlgNLwMTfNVKYow/2s+1rOkptPSqHMnG10WwvnlZBZp6FUUYr4nHgdBwegdpa0cWrzXDO5dUAbpzbMPD1ssvDbOLVhgstoFj4FoJqpOrDXTJ3R1fPFZqaaO9QxQtFCrpTjeMJxRMWqU8crlrUR8UQY6DkQYb5hGOEzwmDad0l5CXbE7kBkdCSOPDzCPIS0FFpirP9YRLSLQPdm3ev9oeG9zHuYsnMKLjxV3zxCvEOwbPgyvWV1AHXpseD1wbiXdQ92EjvsmbAHXZt1ZfbV/Z/uyCrJwnDv4YgaF8U6wut4wnH0W9sPFgILJH2YpDUvS+DSQNxMu4ntY7cjzC+M9bkpVArY/2SP/LJ8nXRzCqU6sP2hHd39CTp52MLVyhWulq5ws3KrFwco2wiJDMFPKOafYt5zwIGV0ArWImuI+CKUKkoNznfiKHVknCWaKKlm1s3A4XDwMOchY/AfTTiK7JJsrW1dLF2YSdwHtBxQZRQppXFSW2nSFXkZRIOxiQkJVFBxsvHGkGR81O1DOmFuFVAbmGIqdMyYRnx2PJNJcv7Jea3ACx97H8ZJ0tGtY5XBWJo5HCuW7OrUpBMigiIwvvV42Iht6vpUtFCoFPjhzA+Yd3IeylXlcJA6YMnQJXg14FW97Qkh+ObEN5h3ah4AYFaHWfhr6F/gcXkghGDarmmIjI6EVCDF8fDj6NSkE6t+EELwyopXcC3lms4cjOturMPkHZPRrVk3nJ161qTzm3tiLr45+Q3GBYzDv2P+NWlbCqUybDXT0M5x6OBuBVcrtV5ytXSFo4VjvTjmqqubRDwRZCIZLIWWICDIKMpAYXmhznYCrgCtnVprZeO3cW4DMV9sUhZ+f4/+6NSkE83Cf8mgmql6sNFMSmTBy3cdFg9dhACngHrvY0OBOkYoBlERFS48vcBERcXnxDPruBwuejbvyaSOu9u4693H47zHWHtjLVZHr9ba3svOC1OCpmBy4OR6fWCoVCnx87mf8dWJryBXymEnscPiIYsxvvV4vYIlszgTwzcOx8Wki5DwJdjy6hYM8x4GADj/5Dz6re2HUkUpZrSfgWXDl7Fy9hBC0Prv1ojJiMGiwYvwTud3mHUzds3Ayusr8Wn3T/HDgB9Yn5cmospWbIuMjzPoZGeUGlNdAxoArIRWaoO/guGv+VtxmZXIqtr9YytCxI5LkSw/iQJ5QZXtOOBAKpBCzBdDRVTILc3Vm1niIHVgMkoqOktupt1kDP7Tj06jRFGitZ2PvQ8TGdWnRZ96f8hBqTmmGNh1UVKhLkSDuWJoYkI8W5Iu/B4lvPPwsvPCoiGLMLjV4PruYoOA2sAUU6FjpvqkFqZi171diIqNwtGHR7UipJtYNUGobyjCfMPQy72X3od+cqUc++L2ITI6Envv72VK4Yj5YoT5hiEiKAL9PPrVq41/I/UGwneE40baDQDAuIBx+GvoX1qZGxX5+/LfeHvf2yAgGOU3ChtGbYCYL0a5shwj/h2BAw8OwEHqgPPTzqOVXStWffjn+j+YtmsaWti0wIN3HjDnfz/rPnwW+0DMFyP/s3yTHqT2jOyJM4/PVKu8F4VSmZpoJj6XD2cL5+e6ydJNK9hMo5scpY41+u6z1U1y2UKkl5/RLcVVCSFXCKlACj6Xj6LyIh3dozm3AMcALWdJW+e2KJQX4njicRx5eIRm4TdSqGaqP6qazJ2AIFf8M/I4J8Hn8vFup3fxdZ+vYS2i9l1lqGOEwgpCCG6n32aioip7+tu7tldHRfmG6f3xIoTg9OPTiIyOxJY7W1BUXgRA7WAZ2HIgIoIiMNJ3JMR8cb2cz+302wjfEY5rKeqbyGi/0fh72N965wspkhfh1S2vYv+D/eBxeFg5YiWmBE0BoJ6sffTm0VARFeb1mYcve3/J6vh/XfoLs/fPho+9D+6+fZe5XiuvrcSM3TPQp0UfHA8/zvp8vjv1Hb44/gVG+43G1rFbWW9HoRiCrQHt530IxdxoJBckI7kgGcXlxayPYSm01DL8KzpQKooBK6GVzj3FWIRE5bT14vJi3M24i1OPT+H8k/O4nX4bT/OfsnKYCHlCcDlclCpK9TpL7CX2jLOkvWt7tHZqjZSCFBxLPIYjD4/gcvJlqMjzer1cDhevuL3CGPzdmnWjUe9mjikGtlJF0P3Z2NRHdUoqvIja1S8aQ9f8q+H+yFQdwceHP0ZaURoAdamX34J/QwubFi+ot+YJtYEppkLHTO2QV5qHfXH7EBUbhX1x+xjdA6gnJQ7xCUGYbxgGeQ6CVCDV2T6tMA0bbm1AZHQkbqffZpY3s26GyYGTMSVoCmvHQk2RK+WYf2o+vj/9PZRECWcLZywPWY4RPiP0tt8asxWvbX8NcqUcvd17Y8f4HbAR26BQXog+q/vgaspVeNp64ty0c3CycDJ6/JLyEjT9rSmyS7Kxe8JuphQXIQR2P9khtzQXV2ZcQQe3DqzOp6CsAHY/2UGhUlR74nYKpSJsNVN7/1Mo5d1CSmEKkguSkVGUoVdX6IPH4cHZ0vl5kJmlngA0K1c4WTjprWJhim7icoAn+U9wOekyTj46iesp1/Eg5wEyijKMOkz4XD6EXCHKVeV6J4bncXgIcArQKl1sLbLG2SdncTThKI4+PIqskiytbVwsXZgM/P4e/aucK5by4jFVM9V2GTqqmdRorrlPk1J8cPAD7Ly3E4D6+7Rw4MIq5w97GaGOEUq1SMhJwI7YHYiKjcKZx2e0ftS97LyY1PFOTTrppIcWygux5c4WrL6xmpkUHQBsxDaY0HoCIoIi8IrbK3X+RS1XlmPBmQX49tS3UKgUcJQ6YunwpRjlN0pv2+m7p2PtjbUAgB/6/4BPun8CDoeDvy//jbf2vQUA+GfEP4hoF2H02AVlBWjyaxMUyAtweNJhDGg5AIA6nb7t0rawFFoi99Nc1pEhfdf0xYnEE1gydAne7Pgm20tAoRjEVMcDoBapBfICpBSoDX6N4Z9SkPL8/8/+Fsp107ANIRVItZ0lz8RATq47Np3WrUlriuFTUl6CmIwYnHx0EheeXjDJYcLlcA0KBFuxLWPw+zr4okxRhlsZt3D04VHcy7qn1VbCl6Cne08M8BiA/i37I8gliNa7NiMMGdhqCIZ1TIHE6h6SCpLwNP8pnmZIQLLfM7pftnNkmFvt6vqkqoiz/LJ8fHPiGyy6uAhKooSYL8acHnPwSfdP6i3IwtyhNjDFVOiYqX1KFaU48vAIou5GYdf9XcgszmTWSfgSDG41GGG+YRjuPRy2ElutbQkhuJpyFZHXI7Hx9kbkluYy63o274mIoAi8GvBqvdTnv5J8BeE7whGTEQMAmBw4GX8M/kNvBuzxhOMI/S8U+WX5aOvcFvtf2w83KzekFaah66quSMhNQEe3jjgefpxV+dWPD32Mn8//jGDPYBx4/QCzPHh9MA7FH8JfQ//CWx3fYnUee+/vxfBNw9HStiXi3403vgGFYoTqaCZA/XwhrShNSzfpaKjCFKQVprF2oHA5XDhZOOkNNsvIcsOq47rPFtjqJkIInuY/xcWkizj16BSupVxDfE48K4cJj8MDAdEKFKu4zs/RDx1cO6CdSzvIxDIk5Sfh1ONTVWbh9/foj74efWkWvhlRtWYCxnTLgaX1AyTlJyGpIAmJ6QIUp800ul+qmYxjLEtnf9x+vHvgXTzIfgBAbUMsHroYbZ3bvqgumxXUMdKAMNc6eelF6dh1bxd2xO7A4YeHIVfKmXWulq4I9Q1FqG8o+rToAyFPqLXtg+wHWBO9BmturMGT/CfM8gDHAEQEReD1tq8bnOyvtriech3hO8KZCRQntpmIP4f8CTuJnVY7Qgg+PfIpFp5bCAB4v/P7+CX4F3A5XHx+9HMsOLMAPA4PuyfsxhCvIUaPq5k0MNQ3FFHjogCoS33Z/KiOqrr15i20dmptdD9F8iLY/WQHuVKO+7Pvw8vey9RLQKHoparUTKBmERcFZQWMAKjoQEkuTNYSBfom/auIRNkVdvKZ4ON5thePnweP5tcQ0KxcNxvFyhW2YlujjtdSRSliMmJwIvEEzj85jzsZd1g5TKpCJpKhvWt7eNt5g8PlILkgGZeSLmnN5QSoM1D6efRjSm+1tG1Z7WNSTKOgrABJBUlIylc7OZ7kJ2H9EW+UysV4PvKfo6ndmiSeBnDUYk+q6AXH8k902lbmj/FBGNbWGdkl2cgqzkJWSZbev4npAsQ9GGZ0fy/rZOR30u9g9v7ZiE84CQdw0NS6KT7q+j/0cu+l3VBqD9i8XFGGjckGptQPjWnMmKNuUqgUOPv4LJOB/zjvMbOOz+WjT4s+CPVR66Ym1k20ti1VlGJn7E5ERkfiUPwh5kGphcACrwa8ioigCPRs3rNOA8tKFaX4+vjX+Pn8z1ARFZpYNcHKESv1ljOMTo3GkA1DkFqYCneZOw5NOgRve2/cz7qPbqu6IaskC0O9hmLn+J1G52l8mPMQrRa1AgHR0jqaid3DA8OxOnQ1q3P48OCH+O3Cb5jZfiaWhSwz+RpQKPqoS82kUCmQXpSuN/BMo5tSClOQWpiq1/FQEX26iS8ogH/LGAS6E50sFBdLF6Nl6gghSC5Ixvmn53Ei8QSiU6MRnxOPzOJMKFSKap0zl8OFr4MvgpyDYCuxRUFZAWIyY3At5VqVWfhdm3WlwTH1hEKlQFphGp7mP0VSQRIe5z3Fsv1NUVImRF1ophGBbiiUFxrUS5nFmXiYxsOdewON7u9l1UxlijL8cv4XzD81Hw7lpXDi8DA2YCzefOUNWAkrlTh/yXQTdYw0EBpKnbyCsgLsf7AfUbFR2Ht/r9ZDRJlIhuHewxHmG4bBrQZrRQgpVUocSziGyOhIRMVGoVShPk8+l4+hXkMRERSBYV7D6mwirjJFGeadnIcfzv4AFVHB1dIVK0JWMPOJVOTX87/if4f+BwCY0HoCVoeuhoArwJSdU7D2xlpYCCxwYsoJoxOgx2TEIGBJALgcLhLeS0BzWXMAz7M/VoasxLT204z2/eCDgxi8YTCay5oj8b1EmhJHqVVe9L2nSF5kMIKKWVaQipLipuARWyg5OSjj3mEMLn2IeCItw79y6S7NezuJnc73qUxRhpiMGBxNOIoLTy8gJiOmRg4TK6EVfB18YSm0RF5pHu5l3dMquQEALWxaMAZ/P49+ekv+UapGRVTILM5kHB6a7I6KTpCkgiQdR5xI2QYu8gVG998z8CoCmgphLbZGWrYMa47bGN2m0GI+slTGSy+YIhpGBjUx2q4xQnIfQ7WoHXhVCXC+CJh9lRr5FEoVNJYx86JtFzYQQnA99TqTgV+xZBagnnxdU6bYx8FHa93T/KfMHI5x2XHMck9bT2YOR42uqAvOPzmP8B3hzLFntJ+BXwb9ojN3XEJOAgatH4QH2Q/gIHXA3ol70alJJ1x4egH91vRDiaIE09pNw4qQFUb1y/CNw7E3bi8+6PIBfg3+FcDz7A9fB1/cffsuq763/bstbqXfwn9j/sPYgLHVOHsKRT8v+r6jVCmRUZzx3GlSUS9VCDxLLUgHX+nLWjc5Sh2rLHnsaukKF0sXnbLAhBCkFKTg7JOzOPnopNphkh2PzJLqO0y87bzhauUKpUqJx/mPtZzLgDoLr0fzHkxwGc3Crx7F5cVMVsfT/Kfa/3/2t7Ijjq1m6tj6LPybCGAnsUNGji3WnzTuoJDLFiJTcU5vebaKUM3EjqQnF+H4z2AIq3KkvmS6iTpGGgANtU5emaIMxxKOISo2Cjvv7UR6UTqzTswXY5DnIIT5hiHEO0RrEr/c0lz8e/tfREZH4lLSJWa5o9QRr7d9HVOCptRZytelpEsI3xGO2MxYAEBEUAR+C/4NMrFMq92GmxswZecUKFQKDGw5ENvGboOIL8LwjcNx+OFhOFk44fy080Yjvfuv7Y9jCccwp8ccfN//ewDAZ0c+w49nf8SM9jOwPGS50T5r0sunBk3FqpGrqnnmFIphzDHqsjIl5SVVlu7SiIGc0hzW+xTyhHCxdNGZQL6yGLCX2kOhUuBO+h0cTTiK80/OIyYzBkn5SdVymIi5YjhbOUOhUiC1MFUnPT3IJYgpu9WzeU9WZSgaM3KlHCkFKdoOj0oGfFJ+klFjWh9sDexc0W/I4x5VvyFcNCldBR7swYGuGNMXMWUjtoG9xB72UnvtvxJ7FBW54d9TLkb78LJGPwEAkqOB5b2Nt5t5EnALquvemA2NwQam1C+NYcw0VN0UlxXHOEnOPz2vtc7PwY8pU9zBtQPjRCCE4NyTc4iMjsR/d/5jypRywEH/lv0RERSBMN8wSASSWu9vcXkx5hyZg0WXFgEA3GXu+GfkP+jn0U+rXXpROoZuGIqrKf/P3nnHN1Xuf/yd0aZ77wmUtqyyERAVUMHJEhUFZIioiFcF9ar3unBc10/cA1ABmYJQBQVxMGXJKhQKHbTQvdLdpkmTnN8fsYeGJG26oOB5v17aknPOc56kJ+d8P893HcHVwZUN927glq63sCl5ExO+m4BRMPLq8Fd5ZcQrjZ5va+pWbl99O54qT3Lm5+Dq6EpRdREB/2fqU1L6XGmTJXXyq/IJft/0ty96tgg/F78WvnsJCetcCZrJKBgpqi6yGXjWUEs1x4Hh6+xr2fekvidKg99VChX5VfnsydxjcpjkJZBelt7iDJNA10CcHZxR16gtdJeUhW+OIAiUaEoadXjkVOQ0Sy/XY69mqnH9jCLj1r8n1HzNpFKozPSSn4ufqJk0NWFs3Nt0UMA/WjOBpJusIDlGOjhXS508g9HA/uz9xJ82pY5nlGWI2xQyBTdE3sCEbhMY3228WUOtpKIkliUsY8WJFWblZvoH92dm35lMjptsUfKqtWjqNLy04yUW7l+IgECYRxhfj/2a0VGjzfbblraNiesmUl1XzYDgAWyZsgVnpTPDlw3nWP4xon2i2fvg3kajuzee3sjEdRPxd/Ena14WKqVKfK13YG+OP3q8yfn2X9SfY/nHWH3Xau6Pu7/V719C4mqmVl9LflW+RTTVxVkoFzf+awylXGlh+Nf/9Hf1p1pXzemi05wsPMlp9ekWOUwUKHBUOlrU2XWQO3Bt+LWiwT8wZGCTJSmuJCq1lTYdHpnlmWRXZDfrb9Vc7I1+ynd8Aa0iEQe5A74uvngKN1Bb/MDfWxs+m01m1FO3uHJrXDC+zr54O3s3+jfT6Y10e2krxkYsMLkMzrx+G47Kf2hUnJ0GvvDwTmQh/dp/Ph2EK90Glrj0XOnXzNWim/Iq8/gx+Ufiz8SzPWO72WJhuEc447uNZ0K3CVwfeb34/KjWVbPh9AaWJixl57md4v6eKk/u63UfM/vO5JrQa9o8s3zXuV3M/HGmqO3mDprLOze/Yxa0UamtZOK6ifyW/htKuZJl45YxpfcUFh1exKM/PwrAkjFLeKj/QzbPYxSMxHwSw9nSsyy+czGzB8wGIOrjKNJL0/l16q+Mimq8hMrqxNVM2TiFfkH9OPrI0da+dQmJqxqjYERdo7YIMrOmm5oTfOTt5G1Z6vjvnyqFinNl5zhZdJKThSfJKM1oUYaJk8IJvaC3OO5qzsKvD6iz5vDIKs8iszyT/Kp8tAZtu5y/uZoJTM8nH9lIjKX1VVIsNdOcUQ6M7hEgOkNcHFxsPsckzWQnkmPEAskx0sHZf1bN/UuaLrXxxQOx3Naz6yWYUesRBIETBSfE+ronCk6YbR8QPIAJ3SZwV/e76O7fHTDd6H9J+4WlCUvZnLxZfPg6KhwZFzuOmX1nMjpqtN3Nyu3hz8w/mfHDDM6WmhrzPTLgEd4b9Z5ZmvihnEPcvvp2imuK6erTlW1Tt+GsdGbo10M5X36ewaGD2T59Oy4OLlbPoTfq6fxRZ7IrslkxYQVTe08lpyKHsA/CkMvklD9f3mhDxeKaYvzfMz3Q85/Ob/d+LC3hSoickZC4GK1eS35VvoUYyK3M42yBnKJKLaW6cxTo9jWaft4QpVxJoGugWLPXUeFIRW0FRZoiiqqLKNWUUqOvadW8PVQejOg0QjT6u/l1s70IUpYFNY04Fdqxtmh9tFpDh0d2RTYZZRmcKztHTmUORdVFFo6gS4m7ozs+zn7Ii97AaPDAWr1cAF83OWvnxODu6IpCrkCj16Cp0/DHaTVf7SyjpPqC6eThbODGPmrCAtRo6jTU1NWg0V/086LXq6tCMKqfaHK+/+joJzsN/LlhcTwx/muLsjRXK1e6DSxx6bnSrxl7ddPKWQO5Lrrj2czWKKst4+eUn4k/E8/WtK3U1F2wE3ydfRkTO4YJ3SYwqssoMTMkvTRd7OF4vvy8uH93v+7M7DuTB/o8QJBb05mI9lKlq+LZX5/lyyNfAqaSXsvGL+O6iOvEfXQGHTN+mMGak2sAeH/0+8wfOp8Xt7/Im3veRCFTsOn+TdwefbvN89SXM+4T2IdjjxxDJpMxecNk1pxcw+sjX+fFG15sdJ4P/vggSxOW8uy1z/LuqHfb4J23LZJmkrgSqc9CsMzUzyM5z/i3ZjpPvvZPtEb77XovJy8x8MzHyYdafS0lmhKKaooorimmQlvRZNP3pugT2EcMLmsyC/8y6qZqXbVF+d/M8kzSS9PJqsgivyqfUk2p2HvqUqOUK/F18sO57P8QDJ5Y10wCPm5ylj8UibeLJ05KJ+oMddTU1fB7UjGLd5agrrqgqT1djNzUp5TIwFJLnaSvsaqZqipDqCt+rMn5/qM1E9itmzZe/xTjRr7cpmusHRXJMdLB+TEhhyfXJjS5X5HDu7h5nqF3YG/iAuLEnz38e7RL+nRbkl6aLqaO783ca3ZDj/WNFaOiBoUOQi6TU1xTzKoTq1iasJTjBRcyKkLcQ5jWexoz+s5os0WPal01z//+PJ8e+hQwRRksHbeUEZ1GiPukqFMYvWI058vPE+QWxNYpW3FSOjHsm2GUaEoYGzuWDfdusBkR/ObuN3lxx4sMDh3MgYdMYi5sYRg5lTnsnL6T4Z1s37TWnVrHpO8nERcQx4k5J2zud7m43LVWJSTaEmvXc5CHisdvDiI6xHYvlNzKXIqqi+w2VuUyOa4OrihkCuqMdWgN2hbX4g1wCWB019GM6jKKmzrfdKGZa1kWfDoA9I1EDbWwtqjOoCO3MpfsimyyK7JJVaeSVppGZlkmuVW5FFYVUq4tv2TGu0KmwNPJEy8nLzxUHrg5uuHm4IazgzPOSmccFY44KhxRypXI5XLkyBEEAZ1RZ6qxW+TP2fSRf492wdCvn3+Z03tUyHZbP7kgR2XsaXcdZ2tI9XLtwE4Dvz9VnFQoTItxN7zYaODB1cCVbgNLXHqu9GvGXt1UqlpI52C1uW4KjCPYLbhD9+rT1Gn4Lf034s/Eszl5s1nGpIuDC7d2vZUJ3SZwZ8ydeDl5YRSM7MjYwdKEpWw4vUHs4aiQKbgt+jZm9p3JnTF34qhwbJP5/Xb2Nx7c9CDZFdnIkDFvyDzeuPENUYsaBSNPb3uaDw9+CMCz1z7LWze9xaxNs1h+fDkuDi7snL6TQaGDrI5fqikldGEoGr2GPTP3cF3EdXx44EPmbZvHnTF3svn+zTbnJggCkR9GklWRxbap2ywqAVxuJM0kcTVhVTN5OvH0LRH0CNM1moWSW5kr3qvswVnpjEqhwigY0Rl0aA3aFmkMpVzJ4NDB3Nr1Vsss/HbSTYIgoNaoRYfHubJzpKhTyCjLEPt4lGhK2i3LwxouDi54O3njqfLEXeWOm6MbLg4uOCudcVI6iZpJKVciQ4ZMJkNv1FOrryWr0JeUszf8PZJ59ocAVLkspIxdZr1JLuwiaaZLRjN0kyK0P5/d/hnXhF7T/vO6jEiOkQ6OvZFPBY4vUPt3SlpD5DI5Mb4xZs6S3oG9ifSK7JCNqAqqCtiUvIn4M/H8nv67WVpmqHso42LHMaH7BIZHDsdB4UBCfgJLjy1lVeIqM3EwNGwoM/vOZFKvSXioWv9335Gxg5k/zhSjrp645gneuvktMRMktzKX21bdxomCE3ioPPjxvh9xkDtw84qbqdXX8siAR/jiji+siq2CqgLCPwinzljH4dmHGRAygInrJrLx9Ebevfldnh32rM15Pbz5YZYcXWLWiLCjcKXWeJaQsEZrr+c6Qx2F1YVW+57kVV3oiVJYXWjdWGwjvJy8uLnzzcwJHcqNvy1o+oCLUmgrtBVklmdypvgMZ4rOcKb4DBllGeRV5VGqKaW6rrpFvTzsRSFT4KBwwFHhiIPcAYVcgQwZAgKCIKA36qkz1lFnqGtTEeFsGIqP7mGUXEi511NEieNiNArzWvAqhQpnB2dRRLg4uFj/t/LC643tm1Go5I0fqpqc4z86+slOA/9f4X34NHsPAGEeYbw/+n3u6XFPh14IbQ1Xug0scem50q8Ze3VTw1IeDfF19iUuMI7eASZHSe/A3vT079khe3npjXr2nN9D/Jl4fjjzA1kVWeI2pVzJyE4jxTLFwe7BlNeWs+7UOpYmLDXrYeLr7MuUuCnM7DeTvkF9Wz2v8tpy5m2bx9KEpQB08+vGsnHLGBw2GDAtBL637z2e+/05AB7o/QBf3vEld627i21nt+Hv4s++Wfvo6mO9EsLsTbP56thX3NfrPtZMXMP+rP1c+821BLgGkP90vs37eao6lZhPY3BUOFL6XKnNbP7LgaSZJK4mWns9C4JAubbc0mlipYdkwwy6tkYhUxAXEMekXpOY5BNL53Uzmj6ogW6qM9SRX5VPWkkaSUVJJBcnk1qSSnZFNkU1RVRoK6jV17ZroJiD3EEMAFPIFShkpsh/AQGD0YDeqEdn0KEz6FqdfVNPczSTXCZvVANZ00yNaavzhY68tanprKR/tGYCu3XTDY6wp64CGTJm9ZvF/27631VVfq4hkmOkg1NfKze/vNbqLbO+Vu62eYNJVp/mRMEJEgsTOVFwghMFJ2zWXndzdCMuIM4sSiouIA5vZ+92fT/NoUJbwZbULcSfiWdL6haxoSCYalPeGXMnE7pN4Jaut6CQKfgp5SeWJixla9pWcWHRWenMxB4Tmdl3JiM6jWiVM6hSW8kzvz7D4qOmhujRPtEsG7+Ma8OvBUyp7uPWjmP3+d04KhxZddcqFDIFE9dNREDgjZFv8N8b/mt17Ckbp7A6cTUz+87km3Hf8O7ed3nu9+eY2H0i39/7vc05dfmoCxllGfw8+edGU88vNVdLjWcJCbDveg70UPHr/CGtvp71Rj1F1UViGa/8qnzx94KqAvG1guqCVjlQ+glyjtJ0tPwIlZyDhlp0Rl27OmzaGwe5g20HRcN/X2yIN3hNpXAmr8QFjdaRQA8n+ka4465yNRvLWenc5unG9toB/+j7aTN6jGyuzOKpX54S6+Hf2PlGPrntE3r492jnSV56rnQbWOLSc6VfM/beL1c83Jmk4pNmuilFnWL1OSdDRpRPlEWQWRfvLh2mvIQgCBzNOyqWKU4qSjLbPiRsiKl5e7cJRPtGc6b4DMsSlvHt8W/Jq8oT9+sb1Ffs4djaxuQ/pfzE7M2zya/KRy6T89yw53hl+CuolCoAliUs46FND2EQDNzW9Ta+GfsNd6y5g6N5R+nq05V9D+6zugCTkJ9Av0X9UMqVZD6VibezNx5veVBnrCPjyQw6eXWyOp8vDn3BY1seY0SnEeyYvqNV760tkTSTxNXEpdRMgiBQqau8oJcq88mv/ls3VeaZfq80aajquupWncte3TRMaeAvQYvBaLhsZa1aiwxZk3qpKYeFk8KFvBJXtDoV/u4q+kW44XaRZnJxcMFB7tCmwUmSZrITO3VT8QMbeTrxW749/i1gCrB8Y+QbPDrw0Q5j/7QVkmPkCqDe6w6YfcGb8roLgkB+Vb6Z0Z9YmEhSURI6g87qucI8wizKccX6xbZZinVLqdXX8kf6H8SfiWdT8iaKaorEbc5KZ27pegvjY8czJnYMWr2WFSdWsDRhKWeKz4j7dfLqxPQ+05neZzqdvTu3eC7b0rYxa9MscipzkMvkPD30aV4b+RpOSidq9bVM2TiFjac3IkPGp7d/iiAIPL71cQCWjlvKjL4zLMasj3ZyUjqRPS+bxMJERi4fSZhHGFnzsiz2B1MJsqiPo1DKlZQ+V9qhSoLYG7H30h3d8XNXtUkdXakur0R70doI1I6IvQZ+f6o41sw0ZntRyBQ2nRDNcVjY8+8rvSF9S+2AfwzNbCKoqdPw7t53eXvv29Tqa1HKlTxxzRO8MuKVNsky7ShcDTawxKXlarhmWnq/1NRpOF18msSCRDPtVFBdYPU8zkpnegX0Mgsy6x3Yu9UOhbYgRZ1C/GmTk+RgzkGzbT39e5qcJN0nEBcQx2/pv7E0YSmbkjeJ+tBB7sDY2LHM7DuTW7re0uJnaImmhH9t/RerE1cDEBcQx/Lxy+kX3A+An1N+5p7196DRaxgcOpivx37NnWvu5FzZOa4JvYbt07ZbzdYZ9s0w9mXtY8GIBbw8/GUGLRnE4dzDrJ24lkm9JlmdS302fmOBapcDe23MVQ8NRi6TtZnOkXSTRHtwNWom6Bi6yVnpbJ/Dohn6yNoxKoXqis6kljSTHTRTN+3N3MvcLXPFNgZ9g/ry2e2fiQHiVwOSY+QKoS3rjtYZ6kgtSTUZ/QWJnCg0/WzYnK8hDnIHuvl1s6jDG+oeellumgajgb1Ze8W+JOfKzonbFDIFwzsNZ0K3CYyLHUdOZQ5Ljy1l7am1VGgrxP1GdhrJzL4zmdhjYotSqctqy3jql6dYfnw5AD38e7B8/HIGhgzEYDTw+JbHxQaEL93wEjqDjnf2voNSruSn+3/ilq63mI0nCAIDFg/gWP4x3r35XeYMmoPn254YBSM583MIcQ+xmMOSI0t4+KeHuS7iOvbM3NPs99BeZJVn8eLPP7DrRJdmHdeaOrpSXV6J9qQ5vZ5qlDZ6TXQwmmvgK2QKnJROeKg8CHQNJNQjFF9nX7ycvPBUeeLq6Npsh4WDwuESvNOrB+k+1wgtrP2cUZrBvG3z+DH5RwCC3YJ5b9R7TI6bfEWLwnquFhtY4tJxtVwzbXm/LKwuJLEg0SzI7GThSZs18IPcgiyCzLr7d8dJ6dSq99RScipy+DH5R+LPxLPz3E6znmWRnpGM7zae8d3G092vu1hq61j+MXGfYLdgHuj9ADP6zqC7f/cWzWHj6Y08+tOjFNUUoZQrefH6F/nP9f/BQeHA/qz93LnmTko0JcT6xvL5HZ9zz/p7KNGUcEf0Hfxw3w8Wjpk1iWuYvHEyIe4hnHvyHPO2zeOzQ5/ZLC1sMBrwe8+PstoyDsw6IJb1utzUGep47ZctrNjTtOPJy9mBMs2FUqWSbpLoiFyNmgmap5sSZAKOCkdcHVzxdfElxD2EQLdAvFXeeDt74+roal82RsOsdaWqQ5bB76hI97gmaIFu0hv1LDq8iBd3vEhZbRkA0/tM552b3yHQLfASTLp9kRwjVxDtHdlRXlvOycKTFhkmDR0KDfF28raow9sroNclzVwQBIHjBcfFqKjEQvPIg0Ehg5jQbQK3dr2V08WnWZqwlD/S/xBTG90d3bm3573M7DuTa8OvbfZCyKbkTTy8+WEKqgtQyBS8cN0LvDT8JRzkDry26zVe3fUqAA/1e4gafQ2rE1fj6uDK7pm76R/c32ysb459w6xNs+jk1Ym0f6XRb1E/EgsT2XjvRiZ0n2Bx7knfT2LdqXW8OvxVXhnxSrPm3dbojXq2pG5hydElbEndgoO+J0G6t5o1Rku9+FJdXon2xt7op6Uz+3BN50tXjrC4pphUdSqpJamkqFNILUklrSSNsyVn0QuNN2tvbeSTk9KJXgG96BPYx/RfUB96B/bGy8mrpW9Hwg6kCM9GKMuCGuvlQwFw8bXZEHNr6lae+OUJ0krSALg+4no+vf1Tegf2bo+ZXjKuJhtY4tJwNV0z7Xm/NBgNpJWkmemlEwUnSC9Nt7q/QqYgxjfGzGHSO7A3EZ4Rl9QJW6op5aeUn4g/E88vab+g0V+oxe7n4seYmDFM6DaBQLdA1iSuYWXiSoprisV9BocOZmbfmdzX6z48nTybde6i6iLm/DyHDac3ANA/uD/Lxy+nV0AvThed5paVt5BVkUWIewjv3PQOs3+aTa2+ltn9Z7PozkVmn5POoCPigwgKqgtYd/c6NHoN03+YzrXh17L3wb0W5z6Uc4hrvroGT5Unxf8uvuxZpBmlGXx19Cu+SfiG0nL/ZmsmkHSTRMeko2omnUFHemk6qSWppKov6KZUdSoltSVNHt9a3RThGWGmmfoE9iHKJ0pydrQjkmZqghbqpqLqIl744wW+PvY1AB4qD14b8Rpzr5l72Z+trUFyjEg0iiAIZJZnWhj+ycXJNhs0dfHuYlGHt6tP10tShy6tJE3MJNmftd+stmM3v25M6DaBIaFDSChIYPnx5WYCJsY3hhl9ZjCtzzRCPULtPqe6Rs3jWx9n7cm1APQJ7MPy8cvpE9SHLw9/ydwtczEKRsbGjqVKW8X2c9sJdA1k/6z9ZiW9aupqCFsYRmltKZvv38yPZ37kq2Nf8dyw53j75rfNzmkUjAS8F4Bao+bPmX8yLGJYSz+yVnG+7DxfH/uar499TW5lrvj6DREjKM2aT2WNvFnVNZtb91GqyytxKbic9Uq1ei1pJWmkqFNIVieb/is2/SzRNG3INyTINQidQUdJbUmLDXyVQoUgCOiM1ssxRnpGigZ/n0CTs0Qy/CWuBLR6Le/vf583dr+BRq9BIVMwd9BcFoxccMU6/CQbWKK5SNdM66jSVXGy8KRFOa7S2lKr+3uoPKz2fGyu06El1NTV8OvZX4k/E8/m5M1mc3R1cOW26NsYEzMGuUzOulPr2JK6RdR+Tkon7up+FzP7zuTGzjfa/YwXBIHvTn3H3C1zKdGU4KhwZMGIBTxz7TPkV+Vzy8pbSCpKwlPlyb+v/Tcv7XwJo2DktRGv8dLwl8zGennHy7y++3WGRw5n0Z2L6PZZN5yUTlQ8X2GRkfr2n2/zwh8vMC52HD/c90PrPrgWojPo2JS8iSVHl/Dr2V/F1wNcAvGp+hyNVtXsMSXdJNHRuJyaqb6MfEOtlKxOJkWdQkZpRrOai7soXfBx8SG3IhcjxhbpJrlMjpPSyWaDeFcHV+IC48wcJnEBcbir3O2ep4TE5eJg9kHmbpnLkbwjAPQK6MVnt3/GDZE3XOaZtQzJMSJhFVse1vrXc8uqqDHmY1SmcLLoguHfsIFfQ5yUTvT072mRYRLgGtBu7yG/Kp8fz5hSx7dnbKfOeCH9OMwjjHEx44jyieJY/jE2nN4gPrTkMjmjo0Yzs+9MxsaOtTv1/fuk75nz8xyKa4pxkDvw8vCXef6659mUvInJGyajNWgZGjaUSl0lJwtPEuMbw94H95rVIn7m12d4f//73Nr1ViZ2n8jszbMZ2Wkk26dvNzvXsbxj9F/cHzdHN0r+XXJJS9LUGer4KeUnFh9dzLa0baLzyc/Fjxl9ZvBQ/4eI9Yu1Wd/RHtbMHsLQKN9G9xEEgQ3HE3lmrfUeLM0dT0KiMdqzXqkgCORV5V0w4hsY8+fKzjXa9FylUKEz6Cwa/DnKHRkcNphh4cPwdPJkc/Jm9mXvE7fba+DvuuV1nj25ksO5h83OIUdON/9udPftjkav4WTRSTLLM62OIRn+ElcSmeWZPP3r03yf9D0AAa4BvHPzO0zrM+2Kc/BJNrBEc5GumebTWFSqaZua5MJ8yusy0chPcrLQpJtOF5020yYNifCMsCjHFeMb0272fp2hjj2Ze4g/Hc8PyT+QXZEtbnOQO3Bj5xu5sdONVNdV8/3p782au0d4RjC9z3Rm9J1BF2/7yujmVebx8E8P81PKT4ApE2X5+OX4u/ozds1Y9mbtRaVQMaPvDBYdWQTA12O/5sF+D4pj5FTkEPlhJAbBwPFHjzN82XDKass48vARi6z8m7+9mT8y/uCT2z7h8Wseb/Hn1BLSStL46uhXLE1YSmF1ofj66KjRzO4/m7GxY9l+Wt1izQT26ZwKbQWrDx/i7c3WnSLNHU9Cwhbt3eOhpq6GVHWqVQeIrUonAEq5Ehkyq/fdLt5dGBY+jL6BfTldfJpVJ1ahMVzIqLNXN/2v+628nb6VSl2l2eveTt4MChmEh8qDjLIMThaeRGuwXsYoyjvKLMisT1AfIj0jr4oSrxJXFwajga+Pfc0Lf7wgBmxOjpvMe6Pes9oKoCNzWR0jr776KgsWLDB7LTY2ljNnTA2za2trefrpp1m7di1arZZbbrmFzz//nMBA+2uYSQZ+87FVk29sn2A2Hc9rtFZfcU2x1Tq8tjzlAa4BpnTyBs6SHv492rwOb3ltOT+n/kz8mXi2pm6luq5a3Obj7MOtUbfi4+zD0byjZouH3k7eTI6bzIy+MxgQPKDJB1JBVQFzfp5D/Jl4AAaGDGT5+OUUVRcxdu1YKrQVxPrGUqWrIqcyh6FhQ/l92u9in5OzJWeJ/iQaAYHN921mzNoxuDm6UfZcmVnGzf/t+z+e/e1Z7oy5k833b27Lj8omaep03t6+nq0p+1BrM9DKT4HMyE2db2J2/9mM7zYeldI82umXk3m8uukU+RWN1C+0wkf39WVc3wtZO0bByNmSsxzJO8KR3CMcyTvC0byj1FX3wb/u380eT0KiJbS0Xmn9oklWaTlaoRCF6hypJcmklKSQXGwy5C82oBvi6uBKgGsACpmCcm05RTVFFvv4ufgxLHwY10Vcx7DwYfQP7k9CfgIv7XiJ39J/s9j/ydi7+CBtD7JGaotqEDh815dc33syRdVFfHzwY7488qVZWQ0wNQO8u8fd3N39btxV7iQWJnI8/zjHC45Lhr/EFctvZ3/jiV+e4EyxySYdGjaUT2//1LTg1oqyXZcSyQa+ergUmgmka6a5NGYXAI3aDDqDjhR1ikXPx6wK6wE/jgpHuvt1t+j5GOwW3KbPTUEQOJx7mPgzpjLF9fdAABkyhoQNYWDIQNQaNVtSt4i1xgFuiLyBmX1ncnePu5ssrSwIAsuPL+fJX56kQluBk9KJ/934P2YPmM3kDZPZnLIZuUzOLVG3sDVtKwqZgs33b+a26NvEMe5edzcbTm/g0QGPkl6Wzq9nf+Xz2z9nzqA54j6aOg3e73ijNWg5Pfc03fy6tdlnZQutXsvGpB/4ZO8WjueewyArRSs/RZB7AA/2fZBZ/WdZOJGsXUtGWSVyoekgkot1TnltOUfzjpp009/aKbUkFRf9DZJukrgktKbHg8EocDCjmNMFudQY8jA6pJJaciF4zNY9EkwBrkFuQbg6uKLVaymoLrDQIQqZgn7B/bgu/DqGRQxjWPgwXB1d+WD/Byw8sNDCueLv4s8f45YTt256oz0ZdDIZiieOI/MKZ1vaNt7Y84ZFBROA3oG9mdVvFv2D+5NVnsWJghMcLzDppoYVOBriqfKkd2Bvs1JcvQJ64ezg3OhnKSFxKVDXqHlx+4ssOrIIAQE3RzdeGf4KTw5+EofK/KtOM7WLY+T777/n999/F19TKpX4+Zki6OfMmcPPP//MsmXL8PT05PHHH0cul7N3r2XtUFtIBn7zsFV31Bb2eP6NgpH00nQzw/9EwQnOlpy1eFCA6YEW4xtjUY4r0iuyTaI1NXUafk//nfgz8WxK3oRac+GL6uLgwrDwYTgrnTmcd9js4dQroBcz+85kau+pjWa6CILA6sTVPL71ccpqy1ApVLw+8nVu7nIzd6y+g7yqPILdgqmpq6FcW8642HFsuHeD6Pi4Y/UdbEndwpODn+Sro19RXVdN4pxEegX0Es9x68pb2XZ2Gx/e8iFPDnmy1Z+JLerTvt/f8QdZWYNR4i9uc1Zp+fdtnZk5pJ/F+z9dfJpfz/7Kr2d/Zde53Ri0XVAI3igEL3z0Dzd53nfvDUHvcFp0ghzLP2Y1AsRd6I9P7WtNjidFPkm0FU3VKzUYDWSWZ4qlr3aeKeN4agwG/QVhq6eIEsfFaBT7xdcUMgWdvTsT4xODl5MXdcY6CqoKOF182qojJMY3xsygj/GNERdGjuUd4+WdL4uRmA3xVHkSPymekZ1HQlkWvyau4fk/XiDWL5Y1d60GQEDg1Z0LWJqyiQonDw48dEBcSBAEgd3nd/PuvnfZlrbNIi09wDWAab2n8UCfB+gd2Bu9UU+KOoXj+cclw1/iikNn0PHRgY9YsGsB1XXVyJDxQtwDvHFqKzIbDj/AaqP3y4FkA189XArNBNI10xwa69VgS0fZo5tKNaVWez5W6aqs7u/r7GuRkd/Tvyeujq4teVsWnCk+I/ZyPJR7yGxbT/+exPrGkleVx4HsA6Kuc3N0454e9zCz70yui7iuUcdNVnkWD21+SCwvdX3E9SwZs4T39r0n1jDvE9iH4wXHcXVwZeeMnQwMGQjAznM7Gbl8JK4Orjw26DHe2/ce0/tMZ9n4ZeL4v6f/zqgVowh1DyVrXla7Bl+kqFNYcmQJK/5KRFl1n5lu8nIReGN8X+7sHWZ2THltOTvO7eDXs7+yLe03ctTOKARvDLJSEGQE1f2vyfM+e6cD1bIE0RlS3y/rYiKcbkJWOq/J8STdJNEW2NPjoby23Czz40BaLWfP90MweIn7WNNNPs4+xPrGEu4RjkKuoKK2goyyDM4Un8GIeaa9u6M714ZfKwaQXRN6jXh/rNZV88lfn/Devvesliie1nsaX4/7GqVciVCWye1fDaGgqoAv7/iCa0KvAeBk0Slmb55Njr6We6+dz/+N/j/x+IKqAhYdWcRnhz4zyxgD05rXqC6jmNF3BmNjx+Li4EJRdZGZXjqef5ykoiSrWS5ymZxon2iLILNQ91ApyEzisnAk9whzt8zlYM5BAG70jubXshIUNrJjgStSM7WLY+SHH34gISHBYlt5eTn+/v6sXr2au+++G4AzZ87QvXt39u/fz5AhQ+w6h2Tg209TdUdt0dJakdW6ak4VnbKow9vQUdEQN0c3q3V4vZ1b3rhLb9SzN3OvGBXVsBSMQqagd2Bv5DK5WdSzUq7kjug7mNl3JrdH324zrT23MpfZm2ezJXULANeGX8sbI9/g0Z8fJUWdgoejB7WGWnQGHXMGzuGz2z9DJpOxJXULd6y+Ay8nL3oF9OLPzD/5asxXzOo/CzBFIXm/441Gr7FwmLQVaSVpLDmyhGXHl1FZEYW/7j+AKVKsnobibmAXB35P/110huRU5piNF+QWxOio0dzcaTSf/OxPUWWdDdEoYJCpyVY9CBc1LnNSOtEnsA8DggfQP7g/A0IG0M23ByP/b89lqWMq8c+mrLbMaumrVHWqeK9wNgy1+t2pXzK5ZUAWN8R6UF1XzbnScxzIOcDBnIMWGXYOcgcGhgwUDfprw6/F39WfizlZeJJXdr7CxtMbrc55bMxY1t691szJ8OhPj7LoyCLmDZnHwlsWiq9r9VpuXnEzf2b+SZR3FAcfOoivi7lIVteoWX58OR8d/MhqGa0e/j2Y1nsak+MmE+5pbuw01/CP8Y0x61siGf4Sl5Kcihye/e1Z1pxcY3c5BR7eBSF9231ujSHZwFcPl0IzgXTN2EtLNRO0zDY1CkbOl523cJakqFOsltuUISPKJ8oiyKyLd5dW9XzMrsgWeznuOrfLLDgizCOMCI8IzpefN9MBXX26ij0cL7YF6hEEgcVHFvP0r09TXVeNi4ML7978LrmVufzvz/+J42dXZBPgGsD+Wfvp4t0FQRCI+yKOU0WneLj/wyw+uphuft04Pfe0OPbzvz/PO3vfsXCYtBW1+lo2nt7I4iOL2XV+l03br/63Tyf3xdcnS9RMB7IPmH2OSrmSa8OvZXSX0dzUeRRPraigoEJrUzfpKSbHaZaFbor0jGRAyAAGBA8QtZOPs99l6/8g8c9Fb9STXppuChproJmSi5MpqC4Q92tKN909rIw+EQIF1QUk5CewN2sv58rOWZwvwjNCzKAfFj6MXgG9LO57mjoNXx7+krf+fEsMQJMhE527XiovNt63kZGdRorHpJWkEf1JNA5yB8qeLxMrfgB8d/I77ttwH4DZuk09RsHIznM7+fjgx2xO2Wxx33ZxcOHu7ncztfdUbux8o9l8dQYdZ4rPiNn49brJWuAcmJxGFzd67+Hfw6Kyh4REe2AUjCxPWM5zvz9HWLX6qtRM7eIYee+99/D09MTJyYmhQ4fy1ltvERERwfbt27npppsoLS3Fy8tLPCYyMpKnnnqKefOsRztotVq02gtRfBUVFYSHh0sGvh3sP6vm/iUHWnz8yP4nGNjJg3DPcMI9wgn3DMfX2bdZC1f1TbMuNvyTipLQGaw3+w3zCLOowxvrF4ujwrFZ8xcEgWP5x8SoqFNFp8y2d/LshF7Qm9XdDXANYGrcVGb2m2nVQSEIAksTlvLUL09RqavEWenMize8yA9nfuBQ7iEcFY7UGeoQEPjfjf/jhetfwCgYif4kmvTSdG6JuoVtZ7cxu/9sFo9ZDFyIjgp0DSTv6bw2WxjU6rX8cOYHFh9dzPaMv3uaCHIidMuQGb0Ba+cRkCsqOOcwDUF2wah3UjpxQ+QNjO4ymtFRo+kV0AujYCRZncy3B0+w9s/6G6SswUhGQEaR4/9AlUCfoD6iMT8gZADd/bpbdUK1dx3TKxF7InQkmqbOUEd6abrVGrYXR/00xFHhSJR3NHX5L1FX54qt745MUc55h+lm3x0wlfCrzwQZFj6MgSEDG82YSFGn8OrOV1l7cq1o0DvIHUQng4uDC6vuWsX4buMtju32aTeS1cn8eN+PjI0da7atqLqIwV8NJqMsg+GRw/n1gV+t3lcFQWBf1j6+OPwF606ts3BuyJBxQ+QNTO09lbt73G2zkXVzDX9fZ1+L7BLJ8L+66Gj3sp3ndvLZjw+zvrSg6Z2vMCNfomPTHpoJJN3UUlqrmQDGDElnSBcfUTeFeoQ2W7to6jScLj5tUY6r4WJjQ1wcXOjp39OiHFfDfof2oq5Ri2WKt6VtQ6O/UI/fU+VJgGsAWRVZ1OpNziMZMkZFjWJm35mMix1n1a7JKM3gwU0PsvPcTgBu6nwT10dcz4JdCxAQ8HLyoqy2jGifaPY+uBd/V38+P/Q5c7fMJco7irOlZwEofa5UtDUGLh7IkbwjfDv+Wx7o80Cz36ctkoqSWHJkCd+e+FaMNJejpIt+ZaO2n1FWQpZqppkjI9Y3llFdRjE6ajQjOo3AXeWOukbNkbwjrD+Sym9HI//e07puCvLNt3CCXBzMUo+km8zpaHbGlYogCBTXFFtopuTiZM6WnkVv1Ns8NtgtmGifWPIz5qLVOWH7u6Mm66LgSblMTp/APhfKCUcMI8wjzMrxJrR6LV8f+5o397wpZq+7KF2o0V8IShsfO55VE1eZOT4Avjr6FbM3z+a6iOvYM3OPxdgLdi7g1V2vopQr+e2B3xjRaYTVORRVF/Ht8W/55K9POF9+3mJ7kFsQ9/e6n6m9p9IvqJ/VtZ76NbN6rVSvm5KLk602mVfKlXTz62bhMAl0a165TYmOS0e7l5XVlrH4p7n8+6RlBQsLrjDN1OaOka1bt1JVVUVsbCx5eXksWLCAnJwcTp48yebNm5k5c6aZsQ5wzTXXMHLkSN555x2rY1qrwQtIBr4d/JiQw5NrE1p8fJHDu9Qod5u95ih3JNAtkHCPcKJ8oujk1Ul0mtT/9FA1/XepM9SRWpJqYfhbe5iAaVGwm183C8O/ORHGqepUMZPkQLa5+PF19qVWX2vWq2RA8ABm9p3J/XH34+PsY7Z/ZnkmszbN4vd0UwmE68KvQy6TsztzN3KZXIwaWD5+OdP6TOP9fe/zzG/PEOkZyfny8/QO7M3xR48D8OL2F3lzz5tMiZvCyrtW2vVeGiO5OJklR5ew/PhysXeADBm3dr2VkSGP8Nk2ZZNj5Du+QGyITHSEDAkbwvny82IprCN5R0jITxAj4Z0NQ/HRPWyWYu6k0jBuYB0PDI6jm183lPKmz1tPa+qYXqnYevj9Ez+L1iAIAoXVhWLpq4bGfHppeqOGfIh7CLG+sab//C78jPSM5K+MMrsWTfIdXyDMr4ZhEcPE0ljd/LrZVTYwozSD13a/xrfHvxXvIeEe4Wa1d4dHDid+UrzVzLrcylxCF4YiQ0bJcyVWHRanCk9x7TfXUqGtYFa/WSwZs6TRe2ipppSVJ1byxeEvOF182mK7o8KRO2PuZErcFO6IvkN0Yti6niXD/5/L5byX6Y16ymrLKNWUUlpbKv5Ua9Rozu/nmZN29Pa6wox8iY5Ne2gmkHRTS2mtZgLrusnbyZtQ91A6eXciyiuKCK8IM90U5BZkV8ZHYXWhRUb+qaJTopPiYoLdgi3KcXX36253oEG1rppfz/5K/Jl4NqdsNus7olKo8FB5mAU5eDl5cV/P+5jZbyaDQgaZ2RVGwchnf33Gc78/h0avwd3Rnfvj7mfpsaXUGetQKVRoDVoGhw5m+/TtGIwGQheGUqmrJMgtiPyqfH6d+iujokZRoinB710/BARy5ue0uhmspk7D+qT1LDm6hD8z/xRfD/cI56H+D9HX516eWHW26c/L7U1GxoYxOmo0o7qMwsXBRewFcjT/KEdyj5hpXGu6yc1JxwPXuzD72kEWurMp/olawZqd+VtS/j/uc2gttfpa0krSLALGkouTKa0ttXmcs9KZGN+YC3rpb80U4xuDh8rDbmdzucsCBnTyEDNChoQNwV3VdB+eOkMd3x7/ltd2vyZmufs5+1FdVy06dRsLJAOYsnEKqxNX89INL/HaSMtS3oIgMHnjZNaeXIuPsw8HHzpIV5+uNuckCAJ7Mvew6PAi1iett5o1382vG1PjpjI5bjKdvTuLr9vSTbX6WpKKkiyCzGz9bQJdAy1KccX6xtqsiCLRMbmc93RBEKjSVZnppVJNKWW1ZRhzjzHr0PKmB7nCNFObO0YupqysjMjISBYuXIizs3OLjHwp8qnltDb6Kd/xBbSKxGYf56R0ItA1kDCPMKK8o4jyNgmBCE+TGAjzCLMZLV1eW261Dq+1fhRgEhwXG/69Ano12SAwtzKXH8/8SPyZeHac22G2WOqsdEZr0IoLk44KR8Z3G8/MvjMZ1WWUKGAEQeDLw1/y7G/PmtLElS70CuzFXzl/iWMp5Up+nvwzA0MGErowVBQwcpmciucrcHV0ZejXQzmQfYCl45Yyo+8Muz/nhlyc9l1PqHsos/rNYkbfGZwtPctbv/3G2Ywbmhzv4ZscCPbLEWvbJuQnmEWO1ePq4Eq/4H4MCB5A38D+qIw9cJIHEuTh0mqvdkfzkrcnth5+Y/sEs3h3htV61/DPiwJrSK2+llR1qtXsj4YC/mJcHVzNDPkY3xjxZ2OGuL2LJq+N78y0IT2a9V6yyrN4c8+bfH3sa/FeNDh0MGeKz1CuLQdM96HPb//cIpW7IWsS1zB542T6B/fnyMNHbO63NXUrd665E6Ng5P3R7zN/6Pwm5ygIAgdzDrL4yGJWJ6622oDdy8mLe3rcQ6zrJNYfhPxmGHOS4X9101jtfrDvXlZnqLMw0q3+tGLIV+oqbY4rldKS6Ai0hWYCSTe1lLbIGGmJbpLL5Pg4+xDiFkIn705E+0QT6RlpFnDm7+JvNYDBYDSQVpJmppdOFJwgvTTd6rkUMgWxfrEW5bgiPCMaDZCoM9Sx6/wu4k/H80PyD2Y9xeQyOY4KRzMHTU//nszoO4OpvacS5BYkvp6qTmXGjzPYl7UPgEEhgzhdfJoqXRUKmQKDYGBMzBg2TtrIvF/m8emhTwl1DyWnMoc3Rr7Bf2/4LxuSNnD3+rvp4d+DU4+ZVwJoDokFiSw5uoQVJ1aINqNCpmBM7Bhm959N74DefH3sa747fJaa4klNjjdjuIDSNUF0hthqJt3Vp6uYBdIvqD+Cris1WmWb6Jx/um7ycnGgrMZyIVrSTCYbPqcyx2rpq3Nl56z2iAVTYGWEZ4RV50eYR1ijQV/26qYPJvVmQj/7exEYjAZWJ65mwa4FYkZZoGsgwe7BJORfON/wyOFsuHeDzUwrQRAI+yCM3Mpc/pj2Bzd2vtHqfpo6DSOWj+CvnL+I9Y3lwEMHbGbKN6REU8KK4ytYdGSR1cAygGHhw5gSNwU/+c0s/DXT7kVwQRDIrsi2CDJLVada/Vs6Khzp4d/DIsjM1mcjcXlpC80kCAKVuspma6bSWpNushVIerVqpnZ3jAAMGjSIm2++mVGjRrU4Lbwhkii0n/p6ubbqjtpCBvi5K/m/yc7kVeeSU5FDTmUOmeWZnCs7R3ZFNsU1xVaje+3F1cGVANcAwjzC6OLdhRifGDp5X8g+CXUPFRe4BEEgszzTwvC3FWEM0MW7i0U5rq4+Xa1GZZVqSsXU8V/SfjHrB1BvqNcT6h7KtD7TmNF3BjG+MQCkl6Yz88eZ7D5vihKrzwqpx83Rjd0zdvPZoc/4+tjXOCud0eg17Jqxiz6BffB51wejYCTzqUybtXptYTXtWybnjug7GBc7jhR1Cj+l/kSKOgW9UY/KEEeQ7q0mx7Um7twc3egX1E8shTUgeAAxvjGtqm0sYfvh1xT/hLrB9YZfQ+dHfSbI+bLzjRrykV6RVrM/WtrHwt5Fk+Y0uMyvyuetPW/x5ZEvxdKCIzuNxEnpxNa0reJ+/YL68eN9PzZ5f3h488MsObqE+UPm8/4t7ze670cHPuKpbU8hQ8am+zdxZ8ydds0ZTA7s1Ymr+fLwl5woPGG2rala3M0Rpi0x/Hv69xQN/vqyXJLhf3lpuna/gLuzgbuHn6Bca9uAb5jR2ZZcrUa+xJVHW2smkK4Ze2mpZqrHz03By3fryasyaabsimzOlZ0jszyTguoCm43W7UEhU+Dr7EuwezCdvEzOk64+Xc2cJ54qT9G2qdRWWu35aCvQwEPlYbXno6eTp8W+RsHIoZxDYgZ+ijrFbHvDrHmFTMHt0bczs+9M7oi5A0eFIwajgQ8OfMCL219Ea9Di5uhmChbTVoj9AB7u/zBPDXmKHp/3EF8bEzOGTfdvYs5Pc/jyyJc8cc0TfHTbR836HKt11aw7tY7FRxebVQ6I9IzkwX4PEuAawKbkTezP3i86S1qjm2J8Y8xKCPcL6mf1M5VoHi3RTf8EzQRQpauy6vxIUac0akN5qjxFh0dD7RTtE91o6d/GaGvdZBSMfJ/0Pa/ufFV0NPi5+DEuZhwbTm+gTFsGmLTAF7d/wcx+MxvVeynqFGI/NZVqL3uurNH3mVeZxzVfXUN2RTajuoxiy5QtdlfCqC9PvPjoYr47+Z1FYFm9bjLNtHW6qVpXzcnCk2a66UTBCZvBQaHuoRZBZtE+0dLazmXEHs3k4Wxg8k3JlNdaOjfqs+PLastatVZri6tVM7W7Y6SqqoqIiAheffVVpk+fjr+/P2vWrGHixIkAJCcn061bN6n5ejtiq+6oLey9CRsFI8U1xaLTpP7nubJzpJemk12RTVFNkUXT4ebg7uiOv6s/oe6hdPbqTHe/7nT17SqKAC+VFyklKRaGf15VntXxnJROVuvwBrgGiPto6jT8lv4b8Wfi2ZS8SXQ2WGNY+DBm9p3JxO73kJSrZcWxTaw69QWVwjFUSgezB1+QWxBfjfmKO9fcKRr57978LjG+MYz/bjwxvjEkP55s1+fSWNr3wJCBYrp9hc4yy8ZV6YZ/zZcIBk+s1fsUMGJATYXHk/QPMXeCRPtG21UO6J+MUTBSraumSldl8V+lrtLyNW0Vvx64Hq3OGev1V5umOQvxHZVKbaVZ6nbD7I/G7iFeTl7mjo+/f+/q0xUnpVObzrGpRZPmiK7immLe3fsun/71qZiJdUPkDYyLHcdbf74llsBTyBS8eeObPDvsWbu+ezGfxJBaksrm+zc36egQBIE5P89h0ZFFuDm6sffBvfQO7N3kOS4e43DuYZYcXcKqE6uoqasltPZrFPhd1GTxAsFtIEwvp+H/T4rIbCvsFcf2Rlu7Obrh4uCCg9wBo2BEU6ehRl9js2/ZxTRsxglXr5EvcWXRHpoJpGumOTTWq0Gw8nv9v6Fp3VRTV2OhmbIrsjlbcpbz5efJr8qntLbUauN1e3CQO+Dj7EOwezCRnpF09elKN79uRHpGEuEZQZhHGGW1ZRYZ+aeLTlst9wKmhscXB5nF+MaYBa6dLj4tZpIczj1sc35+Ln5MjZvKtD4zqK0J41jOWRYnvMfxko0gM+Li4GJm770+8nV2ntvJHxl/AKYekPlP5xPzaQxpJWlsum8TY2LH2PXZJOQnsOTIElYmrhQrECjlSkZ0GoFKoeJU4SnOl1sG28iRE+QWjKrkPYwGdxrTTW5h7zIwpL/YD6RfcD+7Skv/kxEEAZ1BZ1UfWeqlSlE37Tx8EzqdCy3RTVeDZjIYDZwvP39BLxUnk1Ji0k85lTk2j1PIFHTx7mKhmWJ9YwlwDWizHqcX5tk2ukkQBDYlb+LlnS9zosAUjOXt5M3jgx7nZNFJ4s/Ei/v2C+rHD/f9QIRnRJPzW3xkMY/89Ag3RN7Arhm7mtw/IT+B6765juq6ah4b+Bif3fFZk8dcTKmmlFWJq1h8ZDGJhYkgyBvVTW3h0DMKRs6VneNEwQmzIDNbmYXOSmd6BfQyyyzpHdi7RU5dSTM1n7bWTI4KR9wc3VApVMiQoTPqqKmroVZfa5e9IUeOkQv7Xa2aqc0dI8888wxjxowhMjKS3NxcXnnlFRISEkhKSsLf3585c+awZcsWli1bhoeHB//6178A2Ldvn93nkAz85tNYmZ5Nx/PatXbdxUIguyKb9NJ0zpaeJbsim4LqAspry21GfjeGDBnuKnf8XfwJcQ+hs1dnMSK8Vl9LcU0x6aXpJBYmcqrolM0F1kDXQItyXD38e6CUK9lzfg/xZ+L54cwPVtOinQ1D8a17BIVwocmhXFlBvvwTNIr9ZvtG+0TjqfLkcJ5JOEzsPpFgt2A+PfSpXQ9YW2nfoR6h1OhqKNYUWxwjl8nxVHnipHRCrVGjM+gaRHQLyGi42Gr6G7w8LoQZQ/pe9U4Qg9HQtCFuj7Guq6RSW0m1rtqs0Zs92BuJ1hgf3deXcX1DWzVGQ9rLiDEYDZwrO2e1iZ8tZyaYxGuUd5Qpksknxiz7w1Z5ifaitQ0uSzWlvL//fT46+JEYPTokbAjPD3ue+DPxLD9+oWZnV5+u/Hjfj/Twt68sV05FDmEfmNLaS/5dYpcBW2eo49ZVt7I9YzsRnhH89dBfLe7dUamt5O3tG1i1y7/JfaeNLOHp4WPbNHLyUhj+/8Qa3m2BveUUekUfokdEDV5OXijkCjR1Gspry01BGJU5nC05S05ljl0RUDJk+Lr40sWrC97O3qSWpJJRmmFhayhkCnobhavSyJfo2FwKzQTSNdNcGrvPA+36DDAYDRRWF5o5TzLLM0krSeNc2TnyKvNQa9RWS1nag0qhwsfZhyC3ICI8I+jq3ZUYP5Ojo7y2nJyKHJKKk0gsSLRZCspR4Uh3v+4WQWbBbsFkV2Tzw5kfiD8Tz+7zuy3u1db6arg66cgSPqBSvsciS//xQY/z6aFPxX/vmbmH65dej0KmoOS5kkYdD1W6KtaeXMviI4s5lHtIfN3X2RcXBxeKqouoNVhG5LooXXBXuaMz6MQMm8Z1k4wPJvVgQr/OFmNdTQiCQK2+tkUayeJ1ren16rrqRvv+WaO1uulK0UxgKsVUn+3RUDOllaQ1eg/wd/G3Wvqqi3cXHBWObTI3e2mNbhIEgW1nt/HSjpdEp6u7ozvzh86nm183Hvv5MfE7qpApePOmN3n2WvsCyQAmb5jMmpNreGX4K7w64lW7jvnhzA/c9d1dCAh8ctsnPH7N43YdZ+29Hcw5yLvb4zma1HSJ89cn+jJ14OA21bwV2goSCxLNgswSCxNtrpd18upkUYqrs3dnm5+3pJlahr2aqVvUfmLCKvB28sbN0Q2dQUeVrgq1Rk1BVQEZZRmcKzvXaCnhhjgpnQj3CKeLdxdKNCUkFSVZzTLrLyg4gmvTA15hmqnNHSP33Xcfu3fvRq1W4+/vz3XXXcebb75JVFQUALW1tTz99NOsWbMGrVbLLbfcwueff05QUFATI19AMvBbhq0Hd0fw5F4sBLIqskhVp3K29CxZ5VkUVBdQWltqdzRoQ+QyOe6O7vi6+OLj5IOrgytymZwafQ25lbk2DX+5TE6Mb4xo9Pfy74VMJuNgzkF+OPMDp4tP2ywZU//oL3V6lwrZHrNxu3h3ERfqwtzDcFO5cab4DBvv3ciE7hMs5mEr7bs+Hd1Ws2KjYLTqBfZy8qJ/cH8CFbdw6mx3ymsuPMw68sOqzlBHdV21WdSQPYZ4pbaSCm0FFboK0XlRXVdNTV1Ni4VlW+KivwH/un+3aoy2jH5qCyNGXaO22vcjrSSt0e9wgGuA1dJXnb06d6i+ES35jCq0FXx04CPe3/++2DOkX1A/Xh/5OgqZgmk/TBObmMqQ8cy1z/DGjW80S8CsOrGKqfFTGRgykEOzDzV9wN+UaEoY8tUQUktSGRo2lO3Tt7c428ZeY67I4V0MqoOMiR3D1Lip3BZ9W7uJtbYy/H89VdDqeq//VOyNfurV7XfydXtIVic3q+yMt5M3sb6xDAwZyMCQgfQO7I1CruCtPW+xKWWT1b91V++uVOoqKaguIFrhTJLRGWVjCzRKFTx+BLyaV+6yrZFs4KuHS6GZQLpmWkJj2qgj6KZKbaWZ8ySjNIMUdQrnys6RW5WLukZt92LIxTgpnfB28sbPxQ93R3ccFY4YBSPqGjUZ5Rk2n52+zr5mQWaRnpGkl6azJW0L29K2Idf1b1Qzufiv5nTVGrMx6/uv1GfRPjLgERYdWcTQsKHsm2XdQXgk94gpizVxlfgckSHDUeFo1e6Xy+TIZXKrC/RymZzuft0ZEDIAD+MN7D0VTEn1BSugo+omQRCoqatpUdBXhbZC/K9S93fQV10NGr2mxdlMbUlrdVNH00w6g4700nSz7I967VR/3VtDpVAR7RttUfoq1jcWb2fvVr+3tqQln9OOjB28uONFsR+Ri4MLT1zzBLP6zeK/O/7LulPrxH27+nQlflI8vQJ62T0nQRAIWRhCflU+O6bvYESnEXYf+86f7/D8H88jl8nZOmUro6NG233sxTRHN3UKLhabtkd6Rbb4nI1hMBo4W3rWot+jrfUyN0c3sWxxfYBZXGAcf6ZUSpqphdirmYb0PkiJ4QBnis/Y/PtYw0HuQKRXJL0DejMkbAh9gvoQ4xPD5pTNfPzXx6SVpFkc46R0ortfd47lHyNckJEm88CxMTfCFaiZLkmPkbZGMvD/uVRoK8wiqOqjJjLLM8mvzm9xDXK5TI6TwgmlQokMGZo6DTqj9QVcN0c34gLiCHOP4FjiBOrqXLGVWi1XVCD4vcj5inPi6+GCjCC5g5kBLpfJ2T5tOx4qd3DxBa9wq2nfzcXbyVssg1VfEquzV2cx2qC9xF29x9pWGnRD47u0tpRybTkVtSbnRYW2QnReaOo0aPQaavW1zY4oulyoFCpcHFxwcXARy71c/J+rg6v4e3lFAFv+imnRudq6Xm5zGn3pDDrSStKs1rFVa9Q2z+GkdCLaJ9pqJJM9jew6CvZ+d6p11Xx26DPe3fuu+Ln09O/JayNf48ZON/LUtqfMskRC3EJYd886hkUMa/acZm+azVfHvuKZoc/w3uj3mnVsijqFIV8NobS2lClxU1gxYUW79mFxCviS5MqfxH97O3lzb897mRI3hWERw9o9W63Zhr+DO/41izDqrZfS+KfUrm4JOoOOVPVZpnx5lrIaaKwUSY7TLJDZXnhxc3Sjh18P+gf3F8VXT/+e4iJApbaSDw98yOKji8muyLY4Xi6TM7nXZHoF9GLBrgVo9Bo6e3UmflI8vx79hjV/fUrfoL7c1+s+nv/9efoE9WHp2G9MB//9bL7cSDawRHORrpl/JnqjnvyqfFE3papTSVYnk1GWQW5FLsWaYiq0FS2yrx0VjqgUKhQyBXXGOpvaS4aMKJ8ouvv15EzSZHR11ssfCRgRZKUEd/mCQ7kHxcy+cEFGoEwpBoF18urEubJzzO4/mzkDHxXvyxXaCtYkrmHx0cUczTva7PcDpojzHv49RN3UP7g/fQL74Op4ITK2PXSTUTBSU1fTZNBXpa5SrB9fXltOpbZSdHCIukmvMWlYg65FlRguNXLkuDqaNFH9z4t10sX6qbTcn00Hmp+dczk1kyAIFFQXWC19lV6a3mgWbKh7qNXSVxGeEVdUHwh7vzt7M/fy0o6X2HFuB2DSjY8NfIznrnuOfVn7ePDHB816JT0z1BRIplKqmjWf5OJkun3WDZVCRdnzZc0KCBMEgZk/zmT58eV4qDw4MOsA3f27N+v89dirm0qcXqZSduHedn3E9UyJm8I9Pe/Bx9mnReduDiWaEjEj/0TBCY4XHOdk4UmrzmaZoCBCtwyMXkiaqXkIgkB+VSF3fHiEkmojrdFMcpmcSM9I+gb1pV9QP3oF9CIuMI7OXp1RyBUIgsDOczt5Y/cb7M7cbdUWiPKO4l/X/Iv1SevZm7UXgFeGv8Kc6DsZ+8111BnqWDZ+GS/8/jx5VfksG7fUVJb7CtRMkmNE4qqjzlBnEgJ/9ztJKkoirSSN8+XnyavMo0RTQqWustVRL81pxqdXJmEQDIQLMpJxw7mRmqh6uZLbfQL5TX26WfPxdfY1M+YHBA+gk1enRhc3BUFAa9BaNcDLastQa9RiI6fy2nIxgqh+n5q6GrFGoUZvMsR1Bl2HiCiyhkqhwknphLODs+i4cHd0x9XB1cwgb9Qod7R8vX5fZwfnZi/o2tvss6U1rZs7j8YafTmrtHSOWUqK+gwZZRmN/p3DPcLNDPkYX1MJrAjPiKu+RBtArb6WRYcX8dafb1FQXQCYmnC+OvxV7u15L9vObmPmDzMprCkUj5nRZwYf3/Yx7ir3Fp2z68ddOVt6lp/u/4k7Yu5o9vHbM7Zzy8pb0Bv1vDHyDf57w3+bPYa99YT3/HskJ4tOsPLEStacXENuZa64T6RnJJPjJjO191S7y4i1FbYMf3Qxdt3vr4ba1S3BKBjJqcghRZ1y4b8S08+M0gwMgsFmKRIBk+Ff5Pg/sfykSqGih38PsQFwr4BexAXEEeIeYvFMMxgNbE7ZzFt73uJw3mHrmZIqL54Y/AQPD3iYhfsXsvDAQgBGR41mzcQ1OCmdiPggArVGzYZ7N9DFuwv9FvXDz8WPomeL2u1zawmSDSzRXKRrRsIWgiBQrjWV0MoqzyJZncwZ9RkySjPIqcihsKaQ8tryVmdYN7eBuYPcgSCDvknNZFQ48GzsTXyW8mOz5qiQKegV0EvUSwNCBtA7sDcuDi6NHmcwGsTs9YYBXxXaCko0JWID3LLaMlPQ19+a6eLMi1p9LVq9Fp1BZ7O/y+VGIVOYNJPSGRdHk9Zxc3TDzdHtgjPDilZqjn5ykDs0OwjHXt3UkMuhmVyd6ujXO54U9RmS1cmNBjm6OrhadX5E+0bj5mhHmc+rgMO5h3lpx0v8kvYLYIpqf3jAw/zn+v/gqHBk7s9zWZd0IUsk2C2Y7+7+jusjr2/R+b48/CVzfp7DiE4j2DF9R7OP1+q1jFoxij2Ze+ji3YWDDx3Ez8Wv6QMvwl7d9NOT/fkxOZ6VJ1ay89xO0fHpIHfg9ujbmdp7KnfG3Nnm/TUbQ2/Uk6JOsQgyKyn3kzRTE1TpqkhVp4pl8hrqp3JtebM0E5iq0NQHjNVrpli/WKvXQ1Z5Fm/ueZO1J9eKVSwu5taut/LM0GdwcXDh7vV3k1uZi4fKgxUTVjA2diyv7HiF13a/JmZvjloxit/Tf2fZuGVM7zu9rT+uFiM5RiQkmkAQBMpqy8Sa5ScLT5KiTuF8+XlyK3NRa9RUaisbNVbtTeUtcniXGuVuwP5mRf2p4lgjHmBvlTfRftFEeEQQ4BqAl7MXMmQXUp8bRBE1dF7U6mtF50WdsQ6D0dBhIooc5Y44KhxxcjAZ4Rc7L9wd3fFQeeCucm+R8e2kdOqwC/JN1V99+IbO7d4LqCWNvtwc3aw2Po/2iTaLsPsnoTPo+ObYN7yx+w2xAWJnr868MvwVpvSeQqW2kid/eZIVJ1aIx3g5ebF8/HLGxo5t8XmzyrOI+NDkdCp9rrTFDT8XHV7Eoz8/CsD6e9Zzd4+7mz1Gc+sJG4wGdp7byarEVXyf9L1Z+Y++QX2ZGjeV++PuJ8Q9pNlzaQv0Rj2L/zzKu1uaXiBv69rVLaE9y7yUakotDPgUdQqpJak2y6s0xFp9eRSlREUc44ZYDzGaKco7qslIyKSiJF7f9brNUlkA3f26M2/IPKb2nkqVror7NtzH9oztALxw3QumUnZyhXjdd/bqTOq/UtHoNbi/ZXJQqv+tviTRePYi2cASzUW6ZiRai1avJa8qj8zyTJIKkzitPk16STrZldkUVRdRWluKpk5jU1NcTs2kkCmI8o6is3dnQtxC8HPxw8XBheq6asq0ZeaaSVdDjb5GzFhv6LzQG/UdJvBLIVOYsnaUKtF54eroKgZ6uTu64+HogYfKAzdV09nrF+snZ6VzhyphezGN2ZkC4OXiQFnNBQ3fETSTXCank1enC8FiDfSTtaCPfwonCk7w8o6X+TH5R8B0bc/sO5MXb3iRSK9INiRt4OGfHqZEUyIeM73PdD6+7eMWax2A+76/j+9Ofcerw1/llRGvtGiMouoiBn81mIyyDG6IvIHfHvitRWWBm6ubsiuyWZO4hpWJK8Vm9AAeKg/u7n43U3tPZXin4Zdt3WPlwTO8GH+2yf2uds1UZ6gjoyxDrK7RMGisYUCgLaxpJqNMTWDIHoZEOYmaqad/zyZ7dlbrqvn62Nd8cvAT0kotS2UBqOQqpvedzlNDnqK7f3eWHFnC41sfR2fQ0d2vO/GT4on1i0VTpyHiwwiKa4pZd/c67ul5D4/9/BhfHP6C/1z3H9686c3mfVDtSHPsX+UlmpOERIdCJpPh7eyNt7M3vQJ6Ma7bOKv7afVacitzSVYnc7LgJMklyZwrPUduZS4l5QLYEeRjkJU2vVMzKdWW8lfOX/yV81ebj20NpVyJg9wBR4XJeeHs4IyT0smsZJSbgxseKpMR7uXkhZeTF+4qd7ucFyqF6h9rEALc2iuYL6b2t6i/GtTAkP/3rd3btaZ1YaWtqCdzHu77DHf1jyDWN5Ygt6B/9N+tIXqjnhXHV/Da7tc4V3YOgDCPMF664SVm9J2Bo8KRzcmbmbVplthLBOCO6Dv4Ztw3BLgGtOr8u87vAmBA8IBWCYVHBj7C6eLTfHTwI6bFT6OzV2cGhAxo1hj2XM8NUcgV3NTlJm7qchOf3f4Zm1M2sypxFVtSt5CQn0BCfgLP/vYsN3a+kam9p3JX97ta9R6bi1KupF9oFNC0YyTA/dJFalmjLepda+o0Ypm8hkZ8ijql0XrXTRHmEUavAE96+ifhTl+8HSPpE9KZ67oGo5BPtWuMEk0Jn/31GYuOLBIdj9YY1WUU84bM45autyCXyTmSe4S71t1FZnkmrg6uLB+/nIk9JgKmbJcPDnwAwJODn0QhV+Dm6EaIewi5lbmkqlMZHDa4xe9bQkJC4kpHpVTRyasTnbw6cUOk9UbBgiCg1qg5V3aOxIJEThef5mzJWbIqsigocQA75FB7aCaDYDA9x0pS2nxsa8hlchzkDjgoHFApVGbZ6vXOCzcHN9xV7qJu8nb2xlPlaXf2+pVUQqk9aMrOHNUjqENopik95nBHn0BifWOJ8om6pNH8HZ3TRad5dderYq8QuUzOlLgpvDz8Zbr6dKWwupB71t3D96e/F4/xcvLim7HfWO3J2hzqSwgBjOw8ssXj+Lv6s/n+zVz7zbXsPr+bR396lK/Hft1sbdxc3RTmEcazw57l2WHPkliQyKrEVaxOXE1WRRbfJHzDNwnfEOoeKmbf9w7s3eL32BKi/PyBph0jV4NmEgSB3Mpcq5kfTZXJkyGzGUzgrHSmZ0gdvfx3460YhI9jZ/qFduGW7rehVEyza25Gwcj2jO38b8//2H1+t825BLoGMnfQXB4d+Cj+rv5o9Voe2fwIi48uBuCu7nexbNwysaLFyhMrKa4pJtIzUvwuxviaysJfqudseyBljEhItJCmUh8FjBhlarJVF+r/tVX0U0NkyMTGgUq5UjTE61Of3RzcxNRnN0c3PJ08zZwX3k7e+Dj74KHysOq8aEmac3PpCI0sOwKX83OwN/rpn5z2ag2D0cDak2tZsGsBqSWpAAS5BfGf6/7D7AGzcVI6UaIp4YmtT7AqcZV4nLPSmU9u+4QH+z3YJt+vWT/O4puEb/j3tf/mnVHvtGosg9HAmDVj2Jq2lRD3EP566C9CPZof0dPa61ldo2Z90npWnlgp1jUFU73hsbFjmRI3hVu73tpuTdsbYm+q++Wsl9ucetcGo4Hz5ectMj9S1Clklmc2mknoIHfAIBhsRs56OXkRF9CgBNZFfUCaS52hjh/O/MB7+97jcO5hm3NzVDgyJW4K84bMIy4wTnx9ecJyHvnpEbQGLdE+0cRPiqdnQE9x+5bULdyx+g48VB5kz8sWDf+Ry0ey89xOvh3/LQ/0eaBFc28PJBtYorlI14zE5abp8kcCBpmaXKeHMGKqc94emgkuNFtXyBSmoC+lI06Kvx0Xf5eLcnd0N/3823nh6eSJt5MpoM7H2cfMidHQedGSkrrNRdJMF7hcn4WkmVpOWkkar+16jVWJq0Q78t6e9/Lq8Ffp7t8dQRBYn7SeR3961KyXyG1db+Obcd8Q5BbU6jmcLjpNj8974KR0ouy5smb3J7mYX9J+4Y7Vd2AUjLw36j2eufaZFo3TmuvZKBjZc34PqxJXsT5pPWW1ZeK2XgG9xOz7CM+IFs2tOVxtmgmgrLZM1En1PYJS1CmkqlMb7W9c/6yxVYVGIVMQ4xsjlr+qL4VV3wekJaSVpPHevvdYe3JtoyX84gLimD90Pvf3ul/8DuRU5HD3+rs5kH0AGTLevPFNnr/ueXGtQhAEen7ek9PFp1k4eiHzhs4DLmip3oG9Of7o8RbNuz2QMkYkJNqY+hq8WeVZZFVkkVWexfny8zj5aBDKb0KwUf9P7bC40aZIbTI3BAyCAYNgoM5Yh0avsdjHWemMp5MnnipPvJy8xN8t/u3097///r1+u4fKo92ik9rCW3+1oJDLLpsBfU1nH4I9nZo0Yq7p3HFKylxOjIKR+NPxvLzzZZKKkgDwc/HjuWHP8digx8Q61T+c+YGHNz9sliUyJGwIKyesJMonqs3ms/P8TgBGdBrR6rEUcgVr717L0K+HklSUxLi149gxfRcns2ubZay39nr2dfHl0YGP8ujAR8kozWB14mpWJq7kTPEZ1p1ax7pT6/Bx9mFSz0lMiZvCteHXWnUytYVwVshlvDKmB3NWHrXZ7+eVMT0um4FvMAos2Jxkw0lv+v+89fv48uQqUkuSSStJQ2fQ2RzPUW4q0aEz6Czqttcb905KJ1MfkAY9QHoF9GqTkhCCIHAs7xjv7XuPH5J/oFZvHp3ZMMrK19mXxwY9xmODHjMTzDqDjvnb5vPZoc8AuDPmTlZMWIGXk5fZWAv3m/qNzO4/26y/T4xPDDvP7SRFfeVGP0lISEhcDuoMdeRU5pjpJv+gavLKr/l7jwvPiAuaaZHoFGlPjIIRo2BEj970fLtovUohU4jOEGuayOLfVjSUk9KpXYLKJM1kzuXSTZJmaj7ny87zxu43WJqwVIxcHxc7jgUjFtAnqA8ABVUFzPl5DvFn4sXjnJROfHTrR8zuP7vNvlP12SLXhl/baqcImPoxfHDLBzz5y5P8+7d/E+Mbwx3RY5qtPVpzPctlcoZ3Gs7wTsP55LZP2JK6hZWJK/kp5SdOFp7k+T+e5/k/nmd45HCmxE3h7h53Ww1YkjST6f/PfH+A79I2k/q3A6Shjr8YGTJcHVwREKipqzEL4Kp/3gBEeEaIWqmpPiDNpby2nKUJS/nkr09IL023mF/DOd3W9TbmD53PTZ1vMvtO7Tm/h3vW30NBdQFeTl6smbiGW7veajbWtrPbOF18GndHd2b1nyW+Xp8xkqpOxSgYO2z5+saQMkYkJDDV3as33Bv+zCzPJKM0g+zKbIuFmXqs1f/TU0SZ41c4uZ0h2D2YLl5d6BnQkxudfLn5t9eanM9HfSayrTqfjPIMiqqLqNJVoTPoLms/EDdHNwsRYK9A8HTyxM3RzeIm2VxvvUT70twap/9EBEHgp5SfeHnnyyTkJwCmCPlnhj7DE4OfEBdWi2uKeWLrE6w5uUY8ViFT8PrI1/n3sH+3qaMxszyTyA8jUcgUlD5X2uLm7ReTUZrBNV9dQ3VlNKHCU9TVXegbc7mEuCAIHMs/JjZtz6/KF7d19uospo138+sGtP0iQkddlGhJvWuFTIG3kzcKuQKNXmMzqkgukxPtE22KYvLvJUYz2dMHpLnkVeax6MgiFh1ZZPa3BVNJM73xwqJZN79uzB8yn6m9p+Ls4Gz+PqvyuWf9PfyZ+ScArwx/hZeHv2zxDDqef5y+i/qikCk4+8RZIr0ixW3v73ufZ357hnt73st3d3/Xpu+zNUg2sERzka4ZibbEYDRQUF1AVrlJJzXUTefKznG+7DzFGutlF21pphLHxcicjhPgEkCEZwQxvjHc5OTHffs+b3I+q4Y+wi/VeaSoU8ipzKGstoxafW2jJUzaGwe5g21N1EggWsP9L86GlTRTx0LSTPaRW5nLm7vfZMnRJWJgzW1db+O1ka8xMGQgYLLt155cy2NbHjPLdBgcOpiVd62kq0/XNp3TvevvZX3Sel4b8RovDX+pTcYUBIE5P89h0ZFFeDOSzop/o666cA+6XFqhVFPKhtMbWHlipVh2GUxZ1nfG3MmUuCncEX0HKqVK0kwX0VAzgamHi7PSGYPRQJm2zEyTNMTH2cdq5nxTfUCai96oZ1vaNt7b9x5/Zv5p8cxzkDuYBbNN6z1N7B/SEEEQ+OzQZ8zbNg+9UU9cQBzxk+KtBnCOXjGa39J/Y96QeSy8ZaHZXJzfdEZv1JP5VCbhnuFt+l5bitR8XUKiAVq91iJqKauiQeZH2XnKtGUtGlshUxDoFkgnzy4EOV5HsEssPYJCub1HLBFeYZbe0twEWDy86YEf3gUhfS1eNhgN5FbmcizvGPuy93Gy8CQZpRkU1hRSqa1stfNELpOjlClF77HBaEAvtE30lgyZmcHv4ehFfsZjfy+2WkYMdIQ0y38iHdWIudwIgsBv6b/x0o6XxN4+7o7uPDXkKeYPnW8Whf590vc89vNjZtEl3fy6sequVfQP7t/mc/v2+LdM/2E6g0MHc+Chpg295vDBjh18uM2UIixr8D3tCMLPYDSwPWM7qxJXseH0Bqp0VeK2/sH9GeL7KD8fsmzY3tq5d8QyFj8m5PDk2oQm99O5L6LA8LPNMlhhHmEWGSDd/bu3a13sWn0tG09vZOH+hRzJO2K2TYYMd5W7mdPm5i43M3/IfLF/yMUcyD7AxHUTya3MxUPlwYoJKxgbO9bquWf8MIPlx5czqeck1t691mzb5uTNjF07lr5BfTn2yLE2eKdtg2QDSzQX6ZqRsBdBECiuKbYaLFb/e3ZFdoudDh4qD8LcIwhWXU+wSyw9g8K5pXsUMb5dcXV0Nd+5lZoJoEJbQXJxMvuy93E096joPKlvFt8a54kMGQq5AoXMFCBgFIw2y6W0hIbZ/p4qb9Tnn0Svd0PSTB0HSTPZprC6kLf/fJsvDn8hBpfe2PlGXh/5OteGXyvul1eZx5yf54jN18EUCPPK8Fd4/rrnUcrbtsCNIAgE/l8gRTVF7Jm5h+sirmuzsesMdVz/xb/Iy74T6Hi6KbM8U2zafrLwpPi6l5MX1wf8ixPJlv30/smaCc9vKBa22SyV5ax0pmdATwvd1N49WE8WnuTjgx+z5uQaM+0L4KJ0oc5YJz6LAlwDeHzQ42L/kIvR1Gl49OdH+fb4twDc1+s+vhrzleXz+O/zxn0Rh1wm5+wTZ+nk1clse7dPu5GsTub3B37npi43tdG7bR1SKS2JfwwGo4G8qjxTxJINA76guqBV51DIFIR7htPNrxvdfLsR7RtNtE800b7RhHuEX9IGeAq5aS7hnuGM7WZ9oaestozzZec5U3yGo3lHOVF4gnOl50TnSWNGu1EwohNsl1cBk/fZ2cH5Qt8SBzdTA/W/U1F1Bh3VumoqdBWU15ZTVltGnbEOAYGy2jJTJEg5qAxxBNXZrh0sAHnltSzbm4Gfu6rDPEyvdm7tFdzuTQuvNHad28VLO15iT+YeAFwcXJg76F/cFPowtToVp3MMXNNZQK0p4vEtj7M+ab3Z8U8OfpK3bnrLIqq9tdQbm2sPp6EyxHFD5Ig2H3/dAePfRrH531/4+5UFm5MY1SPoslwfCrmCUVGjGBU1is/v+JzNyZtZmbiSX9J+4WhuAgXpDigQzIRJW8z9cpa8s4YgCCiVtuvbNqREew6jwmjWB6Q+A6RXQC+LMlPthSAI7Mvax0cHP2JT8iaLcl3eTqb0/tLaUiq0FTgqHJkcN5l5Q+Y12kRy8ZHFPL7lceqMdXT36078pHhi/WKt7ptXmcfqxNUAzBsyz2J7w7RwQRDavdeWhISERHtTXltu4fTIrLigobIrbGfI24u3kzddfbrS3b87MT4xom7q6tO1zTJa7cVD5cGg0EEMCh1kdXudoY7simzSS9NJyE8goSCB5OJkcitzKdWUotFrbAacCQjojXr0jZT/kiNHpVSZ9Xqs70eilCupM9RRa6ilUltJudakmeoXujR6DZoqDflV+SbNpLf92dVrpgNn1cjlMsl+v0RImsmSEk0J7+19j4//+piauhoAhoUPY8Hw13ChD4XqWvbr1Azq5M2ak6t4YusTZgGqMb4xrLprlZhN0pYYjALrE45SXdEdD2UE/YPa9hxymRKhYiIytHRE3RThGcFz1z3Hc9c9x4mCE6w6sYpViavIqcjjaHKXf4RmAvByse895GtS0SqqxT4gF2fOt6YPSHMpqi5iWcIyPj/8OefKzpltc5A74O/iT25VLjV603euV0Av5g+Zz/1x99sMbjtfdp671t3F0byjyGVy3r35XeYPnW9T73yw/wPA1Iz9YqcImL67yepkUktSO4xjpDlIjhGJDosgCBRWFzYatZRbmdsmqdIKmYJOXp0uOD3+dnxE+0QT6RXZdtEKLr6gVIFea3sfpcq0XwvxcvLCK8iLPkF9mNRrksV2rV5LdkU2meWZpJakcqrwFElFSZwrP0dhVSGVuspGs07qjHXUaesabeYkQ4aboxs+zj508e5CsFswoR6hhLqH4unkibPSmaRMF9bvb/r9vP7zafF3KQrn0tARjZjLwf6s/by04yX+yPgDAJVCxZyBcxjs9wgf/ZbDuj8uXJueLkby5Z9SaPhVfC3UPZRl45dxc5eb23xu5lFqgwliML8dgF+C89rs+/FXRsnf41s3kOqF+F8ZJZf9enFxcGFSr0lM6jWJ4ppi/m/nj6zdbRkZU8+lnntbRUyV15ZzsvAkJwtPkliYKP4sqSkjlK9R4GvW7+oCAm5OeuInv0vvoLg26QPSEs6VneOro1+x5OgSCqsLzbY5KZyI8onifPl5seGmrf4hF6PVa/nX1n+x5OgSwGS0Lxu3rNFFuM8PfU6dsY5rw69lcJhllFxn784oZAqq66rJq8ojxN0y+0hCQkKio1BTV2Oply7STZW6yjY5l4+zj5lWavh7m5ULuQSayUHhQGfvznT27mx1Iac+gyazPJOMsgySCpNIKk66ULZLU4bOaDugzIjR5ODQaxqtUa9SqPB08iTSM5IQ9xCC3YIJ8wgjwDUAVwdXzmS78b0dmmnu6qOUaS4EwEm6qf2RNJOJ8tpyPjjwAR8c+EBcIxgYMpDXR76OoOnDi+uSyCu/kNXu4FBFjuwLNIoy8bV/XfMv3r75bbFPY1vSUDf582+og5ve39um34+/MkooqNBxJeim3oG96T2qN2/d/BaL9u3gnc22HeKXY95toZsMRgNnS8+SWJBoppnS1OkEs6RRzeSi0rJkwnP0DupFN79ubdKLprlo9Vp+SvmJjw5+xN7MvRgxz/aP8IxAKVOSXpZOblUuYCpTN2/IPG7ucnOjOm97xnYmfW/SzL7Ovnx393eNOjMKqgpYmbgSgPlD5lvdpz6g7ErtzSg5RiQuC4Jgyh5oKmqpseaw9ciQ4aBwwGA0NOokkSEj0ivSwoCP9o2mk1cni1qu7YJXODx+BGrUtvdx8TXt106olCqifKKI8oliZOeRFtvrHVLny8+TWZ5Jekk6Z4rPkFqSyvny8xRVF1FraDyaTECgUldJpa6S8+Xnrc/DEEcQbzVr7vnltcxZeVSq2yrRrhzJPcLLO19mS+oWwBSJ8VD/h/jP9f/hZKbCao3nshpw4l84O1aiUezn/l7389ntn1ltbNdabNWZLqumTb8fhZX2RY3au9+lws/Fj6Eht7KWhCb3vRRzb0mpBa1ey+ni0yYjviCRk0Wmn1kVWVb3l8vlOPv+TJ16Ohfiu0zUZ/z8392DuTXm0t83K7WVrE9azycHPyGhIMFie0//nnioPPgr5y9OFZ0CTKXn5g2Zx9TeU5sUyDkVOUxcN5GDOQeRIePNG9/k+eueb1QQaOo0fHH4C8C2ge+ocKSzd2fSStJIUadIjhEJCYnLhs6gI6cix6bTI7M8kxJNiV1jKeVK5MgbXdAH8FR5WnV8RPtG4+N8CZpKdwDNJJPJ8Hf1x9/VnwEhA6CH5T41dTVklmeSWZ7JudJzpJakckZ9hoySDHIqcyjXljdZ5lhr0FJYXUhhdaH4HGyIvZqpoVMEJN0k0f5U6ar45OAnvLfvPTGopXdgb14f+TpjYsaw7VQ+j62y1Cy6Ohf8+Q9Fjv/D2+s8S8ctZXTU6HaZoy3d1NbfjytRN8llckJcu0EH0UzQfN0kCAK5lblmzo+ThSdJKkqymQFZ57YGZdW/sKWZFt5z7WW5ZwqCwKHcQ3x5+Eu+O/WdmHVVj5eTF30C+5CqTiWzPBMwOdan9TH1D+nhb+UhddH4Hxz4gGd/exajYKRfUD/iJ8Wb9Vi0xheHv0Bn0DEkbAhDw4da3UdyjEhIWKFKV9Vk1JKten0X4+bohkqhQhAEavQ1Fjc4AcHMgRLuEW7VkO/i3eWyeHst8ApvVyO+tchkMgLdAgl0C+Sa0Gus7lOlqxJFwPmy85wvO0+yOpmMsgyyyrNQa9RNiwDZaQQMgNwibRNMf1dr6Zwg8PT3+zlfqybMI4RQj1BC3EPwc/GzWm9eQsJeEgsSeWXnK8SfiQdMmWTT+0znpeEv0cmrEwajwD2bt1u9smXIETDiV/cob9/9BJN739cuczQYBRZsTrI6h7ZO0w5wt6+vhL37XUo6ytybEmOfTe5LdGiNRQZIqjrVpqO/sT4g1sRE0GWIGDUYDew4t4MvDn3B5pTNFiUcg1yDGB45nLNlZzmce1h8/abONzF/6Hxu7XqrXffzPef3cM/6eyioLsDbyZvVE1dza9dbmzxuxYkVqDVqOnl1Yny38Tb3i/aJFh0jIzqNaHJcCQkJieZiMBrIr8oXHRwX66WsiiwKqgrs6iHoqHDE1cEVuUyOzqCjSldlcVzDhrFujm42Mz/8XPwufwnBDq6ZwJSx2s2vG938ulnd3rDs8/kyU9BZWkkaKSUpZJZnkleZZ1FO8mLs0UyATd30zIaDlBq1hHuZNFOIe0i79g6TuPrR1Gn4/NDnvLP3HTEbqptfN14b8RoTe0xELpM3qlnqdVOY8BR7H7kJf9f2yUSQdFPTdKR5N6Wb3rs3lkDfPDPddLLwpOiUuxhrfUDiAuMIdA1k26n8DqGZALIrsvn2+Ld8cfgLsiuyzbYpZApuiLwBbydvtp3dxq7zuwBT/5C5g+by6MBHCXANaPIc1bpqHtr8EGtPmnoqTuszjS/v+LLJUt/133WwXnq4nmifaEByjEj8g6gvxdSY08PWzeliPFWeeDt54+TgBIKpnmp9TfF6qnRVVGHeWCjEPcRqBFOUd1Sb1/GXsMTN0Y0e/j1seqX1Rj25lbkXHCflJufJ2dKzZJRlkFORA4YYZNiuy2jN8K/fUl2r4slNn6BVJIqvOsgdCHYPJsQ9hFD3C4Z//e/1DhR3R/fLL/QkOhTJxcm8uutVvjv5neiQm9J7Ci/f8DLRvtHifhdKS1lHhhyZ4Etn1yHtNtem5tCW6c7XdPYh2NOJ/PJaG6LGZEBe0/kSRI42k44w96bEGAg8suZ3slUPgsyyGbq3k7dFPdum+oBc7nrXZ4rP8PWxr1l6bClqjXmUr6PCkTuj7yTcM5xNyZv4Luk7wHTvntJ7Ck8Nfoo+QX3sOo8gCHx26DPmbZuH3qind2Bv4ifF08W7S5PHGgUjHxww1cl9cvCTjdYHjvGNYWva1ivWyJeQkLi8CIJAUU2RTb2UVWEqC9zQWWELR7kjvi6+uDm6oZAr0Bv1VGorUWvU4vE6g84i297FwYWuPl2t6qZA10DJJm5nFHIFYR5hhHmEmTWdrkcQBMq15aLTRMzYL00nvTSdzPJMqqpCWqiZTFurNA7M/P5lM93k4+xjUzPV66YA14A2b34tcWWj1WtZcnQJ/9vzP/Kq8gCI8o7i1RGvcn+v+81sKnt0k67OlbR88I9qn/lKuqlpOsq8m9JNAgJPrfuTHKdZFrrJVh+QLt5dbAZaXW7NVK2rJv5MPJ8f+pz92Za1EmN8Yrgz5k5SS1L5OfVnjILpPdvTP+Ri0kvTmfDdBE4UnEApV7Jw9EIev+Zxu57/qxJXUVRTRIRnBHd1v8vmfvUZI+ml6dQZ6nBQONg1t46C9KSTMENv1JNXmddo1NLFdcFt4aHyINQ9FB9nH5yVJmeF1qClrLaM/Kp8imqKKNeWU64tt3p8oGug1Qimrj5dcXV0bbP3LNH2KOVKIjwjiPCM4LqI6yy2C4LAmkOp/GdjaovPMTDwRmqUSnIqcyisLqTOWCdmsTSGq4Or6CQxc5w0EAMh7iEdI7tIol1JL03ntV2vseLECtHYuKfHPbw64lWrTr+OkCJ9KeegkMt4ZUwP5qw8igzMDNV6M+qVMT06ZJPJjjD3psQYyFAIfrjL+hETjFkGSFxgHMFuwS1asLrU9a7VNWrWnlzLl0e+5GThSYvtfYP6MrXXVDIrM1mWsEwMfPB19mXOwDk8Nugxgt3tj8zS1Gl49OdH+fb4twDc1+s+vhrzld12wS9pv3Cm+AweKg8e7Pdgo/te6WnhEhIS7Uf9grat0lZZ5aaywE1lA4BpUSfEPYRA10DcVe4o5UoMRgOVukqKa4rJqcxBZ9CJC5EX46R0Iso7yqpuulw9pSTsQyaTmfWHtMaGI+d5er3l87U59PQdSpmsmtzKXGr1tZRoSijRlFh9btcjl8kJcguy7jhpEHjm7eQtXWNXOXWGOpYlLOP13a+LZV0jPCN4+YaXmdZnmtVFUEk3XaAj66aOMu+mHWkylPgT4TySuHAnM93U0j4gl1ozGQUju8/v5uujX7M+ab2FfeDm6Ma03tPo7N2Z9UnrWXhgobjt1q63Mn/I/Cb7h1zMtrRt3L/hfkprSwlwDeD7e77n+sjr7Tq2vvQWmILJGnOUh7iH4OLgQk1dDRllGaKGulKQHCP/IIyC0dTMvImopfoFwsZwUjoR7hFOuGc4IW4huDpeSNsury2noLqA9NJ0ThefbnQcPxc/qyncXX264qHyaKu3LtHBkMlkdPb1BVruGHnv1pfEB5nOoKOgqoCcyhxyK3PJqTD9zK1q8HtlLuXacqrrqklRpzS50OXr7Hsh08QtxKozJcA1oNFoY4mOSWZ5Jm/sfoOlCUvFKMuxsWNZMGIBfYP62jyuI6QaX+o53NormC+m9u8wqcbN4XLP3V6RtXxsPBP6dexSIRdTZ6hja9pWlhxdwtbUrRZlv7ydvJndfzaDQgfxfdL3PPfHc+I+sb6xzBsyjwf6PNDsBpvny85z17q7OJp3FLlMznuj3mPekHnNEgj1Bv5D/R5q0s6QHCMSEv9cqnXVjWbHZ1VkUaWranogIMgtiHCPcMI8wvBx9sFR7ogBA9W6atQaNdnl2aSVptnsIwWmrLsu3l2sZn6EeYRJ5WSvYkK83Fo9xqd3/o+hUYsQBIHS2lJRGzXUSfU6Krcyl7yqPIyCUfx3Y6gUKrPs/Ia6qaEzRQpsvPIwGA2sSlzFgl0LSC9NB0wLoP+9/r/M6jer0cVoSTddObqpI8zbXt308S3LGdc3tJ1n07aklaSxPGE5Xx37ivyqfLNtMmSM7DSSB/s9SHZFNp8f/tysf8gDvR/gqSFP0TOgZ7POKQgCb//5Nv/d/l8EBAaHDmbDvRsI9bD/s/v17K8kFSXh5ujGrH6zGt1XJpMR4xtDQn4CKeoUyTHyT8ZgFC5bKla9kdNY1FJ9tFFTKOVKwjzCRMdHuEc4wW7BOCgc0Bl0VGoryanMIa0kjdSSVHZk7Gi07q23k7fN5n2NlQSRuLppKm3TFtbSOR0VjqZr1bPxxcUqXRV5lXlmhn9ORY6FA0Vr0KLWqFFr1CQWJtocTyFTWI2kutiJ4uXkJUVSdQDyKvP4357/sfjoYvFeeEvULbw28jWb/XQaopGdQJCXgtETGZYLEJci1fhypDtf7lTj1nA5526vyAryaJ5z4HIhCAIJ+QksS1jG8uPLLbI95TI5t0ffziP9H6FWX8uHBz/k3X3vittv7Hwj84fM57bo21q0gLc9YzuTvp9EcU0xfi5+fHf3d9zY+cZmjXGi4AS/p/+OXCbnicFPNLl/vVF/tvQseqNeKikiIdFGXE7NBKZyMDmVOY06PextZu7j7EOEZ4RJN/3t/PBUeWLESE1dDeoaNell6aSqU/n17K+N9lhUypV09upsVTdFeEZIwTj/UFqqmcDSLpTJZPg4++Dj7EOvgF42jzMYDRRWF1pqposCz9QaNVqDloyyDDLKMhqdi6fK06YDpV4zBbkFXXElWK5GjIKR9afW88rOV0hWJwOmngbPD3ueRwc+2mTp8gptBYsSn0HPcBT4SrrpCtBNl3veHcGR1paU15az7tQ6lhxdwqHcQxbbwz3CmTtoLsMjh7P21Foe/flRMdiiuf1DLqZSW8nMH2ey4fQGAGb3n80nt33S7Kya+oyVh/o9hKeTZ5P7N3SMXGlICq+NsNbwNLgNPayV2somo5Zq6mqaHEeGjGD3YDOnh5j54R4iOljOlpwltSSV1JJU9mft53z5+UYzSTxUHjab9/m6XLr0NIkrh8bSNm3R2nRON0c303XZoG/ExQiCQImmxCJ6qt6BUv97QXUBBsFATmUOOZU5jZ7XSelks2xXQ0HQ3OhpCfsoqi7inb3v8Nmhz6jVm+7RwyOH88aNb1gt9XYxtfpaXtz+Igv3L8RJOYQA3X8s9rlUqcaXK935UqcatyWXa+4dpWZva8mrzGNV4iqWHF1i1dCN9onm8WseZ2zsWDYlb+KJX54QF0cc5A5MjpvMvCHz7O4fcjH1adzP/vYsRsFI/+D+bLx3I5Fekc0eqz5b5O4ed9t1fJhHGE5KJ2r1tZwrO0dXn67NPqeEhIQ57a2Z6ptd1+sja6WBC6oL7BrL3dHdQi/VOz/cHd3R6DVkVWSRqjZppgM5B0g9kUqlrtLmmHKZnE5enawGjHXy6iQ5YCUsaMr2E6z8Xv9vaJldqJArCHYPbrLUZa2+lrzKvEY1U05lDjV1NWIJ7cYqSsiQEeAaYLPvSf1rvi6+UpZUOyAIAj8m/8jLO14WgwN9nH3497X/5vFrHrcr62f3+d1Mi5/G+fLzuDim4K974bKVaJJ0U/O4nPO+GnST3qjnt7O/sTRhKT+c+YE6Y53ZdpVCxf297md2/9kImPTNf7b/R1xn7enfk/lD5zM5brLd/UMuJkWdwoTvJpBUlISD3IFPb/+Uhwc83OxxThae5Nezv9odTAamvij1c7jSkAmC0NzAg8tORUUFnp6elJeX4+Fx+cst/XIyjzkrj1p8getvr19M7d+ooV+rrzU1M2/E6VFWW2bXXPxc/MyilkRj/u+fAa4B5FXliQa8+LMklYzSDItyGA1xdXC1mfnh7+IvRcRLtAhbAnlsn2A2Hc9rN+HcWvRGvSmSykoKesPoKnsjDgG8nLyabB4f6BooRVLZSYmmhPf3vc9HBz8SIzSHhg3l9ZGvc2PnG+26Zx3PP87U+KliDebZ/WdzW/gLvLs1/bJem+29sCTRNtTbB2BdjDVlH1wuNHUafkz+kaUJS/nt7G8WWaGuDq5M6zONh/o/hK+zL5/+9SlLji4Rs0h8nH2YM3AOcwfNbVb/kIup1lXz0OaHWHtyLQDT+kzjyzu+bDJS0Rr5VflEfhiJzqBj/6z9DAkbYtdxvb/oTWJhIlsmb+G26Nuafd62pqPZwBIdn450zbRWMwmCYCoL3EiwWG5lbqN6ph6VQmWhk0QN9fe/jYLRQi/V/96YNpMhI8Izwqpu6uzdGUeFY9MfloTERTRm+wEd1i4UBIFKXaWomcyyUBr8nluZK5a4bQoHuQPB7sGNNo8PcQ+RSnPbiSAIbE3byss7XuZI3hHAFPj69NCneWrIU3Z9jlq9lpd3vMx7+95DQKCTVydWTFhBVUXUZb82Jd10ZXCl6qbEgkS+Pf4ty44vo7im2GL74NDBzBk4h/HdxvNL2i8sPLCQv3L+ErffEnUL84fOZ1SXUa1aU/0p5SembJxChbaCEPcQvr/ne4aGD23RWA9teoivj33NxO4T+f7e7+06ZsXxFUz7YRo3dr6RP6b90aLztiXNsX8lx0grMRgFrntnu81GQTLA392B96e4kFOVbTVqqaimyK5zeao8rUYtNYxecnZwxigYySrPsmrIp5emW3guG+KsdKarT1erhnyQW5Dk/JBoF2yVVLjcpRbaAk2dhryqPLMU9IsFQU5FDhq9xq7xZMgIdAtstHl8qEcovs6+l/T72pH+VhXaCj488CHv739fbPQ8IHgAr498nVu73mrxuVibOxh5f//7vLj9ReqMdQS4BvDVmK8YEzvG5jGX+v12hDlINM2VIsYEQWBf1j6WHV/G2pNrrdbOH9lpJI8MeIRx3cZxouAEHxz4gPWn1pv1D3lqyFNM6zOt1Rlw6aXpTPhuAicKTqCUK/nglg+YO2hui+9rL+94mdd3v87QsKHsm7XP7uPuXnc3G05v4MNbPuTJIU+26NxtSUeygSWuDDrKNWOPZgrwcOTLmQHkVmZbLQ2cXZFtd1ngUPfQRnWTn4sfMpmM8tpyC82UVpJGqjoVtUbd6HnCPMKsBox18e7S4mhPCYnGaMz2u9LtQqNgpLim2Gbfk/rfC6sL7R7TzdGtSc0U7BbcosbNLaWj/Z22Z2znxe0vsj97P2AKfnly8JM8fe3T+DibR+fbmntiQSJT46dyouAEAA/2fZAPbv1AdKh0hPfcEeYg0TRXim4qqi5ideJqvjn2DScKT1hs93fxZ3b/2czsNxN/F3++OvoVH//1sVn/kKm9p/LUkKcaLWtoD0bByOu7XufVXa8CcF3Eday/Zz1BbkEtGq+wupCIDyLQGrTsfXAv14Zfa9dxB7MPMuTrIYR5hJE1z3bPtEtFc+xfKVe3lfyVUWLTwAeTp7Owso5R3zyGVmG7V4Gz0rnJqCV3lbu4f30ztHojfmvqVtGYP1tyFq1Ba/NcKoWKKJ8oq4Z8iHuIlJYqccmxlbZ5paahNsTZwZku3l3o4t3F5j6CIFChrbBsHn9RFkpeZR4GwUB+VT75VfkczTtqc0xHhSPBbsFWmx82/L3hfaWldBQDplpXzad/fcq7+94VM3XiAuJ4beRrjIsdZ3VB1drc/d2VCO7rOVL6NWBqzL5kzBKzGp8d4drsCHOQaJrLXbO3Kc6VnWPF8RUsTVhqtT54mHsYDw94mOl9pxPqHsqPyT9y87c3szdrr7hPa/uHXMy2tG3cv+F+SmtLCXQNZP0967k+8voWj6ep0/DF4S8AmD90frOOlRqwS0i0DfZopoIKHUO/eKBRzSRDZmpm3ojTI8gtyKwfR5WuyqpmSlWnNhmgFuwWbDVgLMonSiqBKnHJacz2u9LtQrlMToBrAAGuAfQL7mdzP51BR35VfqOaKbcylwptBVW6KlLUKU0+w32dfZvUTAGuAa3u89NRNBPAn5l/8tKOl9h5bidgKv08d9Bcnhv2HP6u/hb7W5t7kKcT/aLT+ObME+gMOvxc/FgyZgnju403O7YjXJsdYQ4STdORdZNWr+Xn1J9ZlrCMLalbLLJTlXIl42LH8VD/hxjVZRSZ5Zl8fPBjvjr2lRhw5u/iz9xBc5kzaE6L+odcTHltOQ/EP8DmlM0AzB00l4W3LGxVZuoXh75Aa9AyOHQwQ8PszzipL1efXZFNta7artJ7HQXJMdJKCittG/gNCXaJJSLI26YB7+PsY7FoJwiCWPZqX9Y+UtWppJWaIpjSStIajTB3kDvQxbuLVUM+3DNccn5ISHQgZDIZnk6eeDp50sO/h839jIKRouoiq40QG75WVFOEzqDjfPl5zpefb/Tc7o7uTTZCDHYPtvlwtVUWI7+8ljkrj16SlFdNnYYvD3/J23vfFqPIYn1jWTBiAff0vMfm/c7W3AsrdVA5Hh+XdN4bM5WZfWdK2XISraKjibFKbSXfJ33PsuPL2H1+t8V2R7kj9/a8lwf7PcjwTsOp1lWzNGEpHx38iPTSdMBkZ9wfdz/zhsyjb1DfNpmXIAi8/efb/Hf7fxEQGBw6mA33biDUI7RV4648sZLimmIiPSMtxHpTRPuYjPyUEskxIiHRGuzVTF4OEQQHKGyWBg5xD7Fqk9TU1ZBWksaB7AMWGSD5VfmNnjPQNdBMM9Vnz3f16Yqbo1uL3q+EhET74KhwJMIzggjPiEb3q9JVmZXpsqaZcitz0Rq0qDVq1Bq1mPFgDYVMQZBbUKOaKcQ9BC8nL5vBWJdbMwH8lfMXL+94mW1ntwGmz/Ph/g/zn+v/Y7P8qe25a9hyOBSF4wDu7O7LV2O+ItAtsJ3fgcTVTkfSTYIgcCj3EMsTlrP65GqrZTR7+vfkkQGPMDluMj7OPuzP3s+k7ycRfyZe7B/Sw78H84fMZ0rvKW2WUZpUlMSE7yaQok5BpVDx5Z1fMqPvjFaNWauv5bNDnwEwb8i8Zq2B+Dj74Ovsi1qjJq0krcX9JS8HkmOkmVycgufnal/a5ep7vrT65a6vlbs3a69F2au0kjSxLr41FDIFnb07W838iPCMkJr3SUhcZchlcgLdAgl0C6R/cH+b+2n12guRVFZS0OuFQaWukkpdJcnqZJLVyY2e29/F38LwD3ILYdHWUAQsH5gCprIYCzYnMapHULtEeegMOr46+hVv7nmT3MpcALp4d+GV4a8wOW5yo/dAg1FgweYkG83d5IBAF8VzTO8zWnKKSFwVGIwGtmdsZ/nx5Ww4vYFaveUi5cDggcweMJtJPSfh6eRJVnkWz//+PIuPLDbrH/LogEeZe81cQtxD2mx+ldpKZv44kw2nNwDwcP+H+fi2j1td3sIoGMWm608OfrLZtpGUMSIh0XIa6qbiStvZ7A2Jn7zc5oJIrb7Wap/EVHUqOZU5jY7r5+Jnrpf+/r2rT1epD4GExFWIm6MbMb4x4nPcGoIgUKIpsaqTcqsu/F5QXYBBMJhKIDdxr3FWOpv3OnEzaaaVf8QgYBmsdSk0E0BCfgIv73hZjCxXypXM7DuTF294sVEnU2OayTRzI10VzxF/7xiUCin4VuLqILsimxXHV7D8+HKr6yQejh5M6zONB/s9SL/gfuiNejae3sjC/Qs5mHNQ3G901GjmD5nP6Ki2XVPYeHoj03+YTpWuinCPcDZO2sjAkIGtHnfViVUU1RQR4RnBxB4Tm318jG8M+7P3k6JOkRwjVytW0wc9nPBycaC8ps7GApspxbBLoJH9Wfut1rCtr4FvDblMTievThYRTNE+0XTy6iQ1YZaQkLBApVQR6RVJpFdko/tVaisbreFb/5/OoKOopoiimiKOFxy/cB5DHEG6t2yOLwB55bX8lVHS7KiPxurA1hnq+Pb4t7y++3UxIybcI5yXh7/M9D7T7bovNlXSA2QUVepbNHcJiY7EmeIzLE9YzooTK6yKeV9nX2b2ncnMfjPFjLVDOYdYeGChWf+QGN8Y5g2Z1yb9Qy4mRZ3ChO8mkFSUhKPCkU9v+5TZA2a3ydjb0rZxuvg07o7uzOo/q9nH1y+oZJZnoqnTtKjxu4TEPxFrukkuA6ON7pb1mqlvhBtnis9YdYBklWch2FieA/B28raaLd/Vpyvezt5t/A4lJCSudGQyGb4uvvi6+BIXGGdzP71RT0FVQaOaKacih9LaUjR6DWdLz3K29Kx4fHtqJmhcNyUVJfHKzlf4PsnUQFkuk/NA7wd4efjLjZZ6rqcpzSRDToVGzqFzpZJmkriiqdZVE38mnuUJy/kj4w+r9sboLqOZ1X8WY2PH4qR0ory2nIX7F/LRwY/apX/IxRiMBl7a8RJv/Wm6n4zoNIJ1d6+zWv6uuQiCIAaTPXHNEy0KtG/oGLmSaHPHyFtvvcXGjRs5c+YMzs7OXHvttbzzzjvExsaK+4wYMYJdu3aZHffII4/w5ZdftvV02gxb6YMFFbXiazK4aLvpq5Smf5ug93+3ObYMGRGeEVYN+c7enVtVH05CQkLCFu4qd2JVscT6xdrcRxAE1Bq11Rq+pzKdycps+jz2ls+ox1b93Zfu6EYJO1iwawFpJWmm192C+e/1/+Wh/g81K7Lc3jk1d+4SEpeCphpIqmvUrD25lm+Pf8tfuX9ZHC9Hzh0xdzCr3yxuj74dB4UDBqOB+NPxLDywkD8z/xT3HdlpJPOHzuf26NvbpQznTyk/MWXjFCq0FYS4h7Dh3g0MCRvSZuPXG/gP9X+oRVHhfi5+eDl5UVZbRlpJWqMLJxISzeFq1UxgWzfZcorUa6Z82ae4vTVaLD1hDQ+Vh9XMj2ifaHxdpEU5CQmJtkcpVxLqEUqoRyiDGGRzP02dxrx819+a6fg5B1LTmz5PS3SHLd00e4Q32/MWsjpxtbjAe1+v+3hl+Ct08+tm9/iSZpK40mlMNxkFI7vP7+bb49+y7tQ6qxV7Onl1Yla/WUzvM51wz3AAMkoz+Pjgx3x97GsqdZWAqcLGY4MeY87AOe1SUq5EU8LkDZPFMnjzh8znnVHvtFmloN/Sf+NU0SncHN14qP9DLRpDzLS/wkoQt7ljZNeuXcydO5dBgwah1+v5z3/+w+jRo0lKSsLV9ULzldmzZ/Paa6+J/3Zx6bjN6xpLHxT+/r9RVoVRqEXJBU+dnmJKHBejMe4HIMwjzGrZqy7eXdqszpyEhIREWyKTyfBz8cPPxc8iHXL/WTX3LznQ5BgB7vbf32wtpuSVa3hs9TEKHT9Ho0jDz8WPF657gTkD57QogtveOTVn7hISlwJbAvi/d8RiVB1l+fHlbE7eTJ2xzuLYGN8YHur3EA/0eYAgtyDAVIP7y8Nf8uHBD8X+IUq5kvt7mfqHNNYAtTUYBSOv7XqNBbsWAHBdxHWsv2e9OK+2ILEgkd/Sf0Muk/PE4CdaNIZMJiPGN4a/cv4iRZ0iOUYk2oyrUTNBU2VXwOQEMSLjQhNjUTNpTZrJ1cHVquMj2jcafxd/qcSlhIREh8TZwZkonyiifKLMXt9/Vs396W2rmaBx3bTgRw1FjukICoEJ3SawYMSCFtkwkmaSuJKxpZseHulDhiaeFcdXcK78nMVxKoWKSb0m8WDfB7k+8noxOGx/1n4WHljIxtMbzfqHzBsyjylxU9ots/x4/nHuWncX6aXpOCud+WrsV0yOm9ym51i4fyEAs/rNwtPJs0VjXKkliNvcMfLLL7+Y/XvZsmUEBARw5MgRbrjhBvF1FxcXgoLaTvy2J/aUXJEL7hQ6vIWvizfBrt2I8PZiUCdvYv2eIdonmiifqDYvPSEhISFxObmmsw/Bnk7kl9c2Wkrwms4+do3XVA1bASN+dY/yyM1jeHLIv1rVELWt5y4hcSloTADPXZ1AkePbaBT7zba5OrgyOW4yD/Z7kMGhg8UFxazyLD7961MWHVkk9g/xdvJmzsA5bd4/5GLKa8uZGj+Vn1J+AuDxQY/z/i3vt3mGbH22yMTuE+nk1anF4zR0jEhItBVXo2YC+3STDAWVjksJ8HAm3NuDvhHuxPrOItr3baJ9oglyC5KcHxISElcN7aE77On9ESI8wepZH3NNWMt7D0iaSeJKpTHd9OoPORQ5/o5Gcc5s2+DQwczqN4tJvSaJmeZ6o54NSRtYeGAhB7IvODjbq3/IxaxJXMOsTbPQ6DV09upM/KT4Nu/fcarwFNvObmtVMBlIjhGblJf/3azTx/xGuWrVKlauXElQUBBjxozhpZdeshkBpdVq0WovNOyrqLDdk6M9sDct8Ntx8dw7sOk6jRISEhJXAwq5jFfG9GDOyqMWpQTrTYNXxvSwu4mgPTVsZYIvN4be0SqnCLT93CUk2ht7BLCP7mFynA6CzMiITiOY2XcmE7tPxNXxQvT54dzDLNy/kHWn1on9Q6J9osX+IQ33bQ+SipIYv3Y8qSWpqBQqFt25iOl9p7f5efKr8lmVuAqAeUPmtWqsGB+TkZ9aktrqeUlI2KItNBNcObrp6wkfMr5fWDvPRkJCQuLy0x66wx7dpK9zx6Dt3KI51yNpJokrkebopgBXP6b3nc7MvjPp7t9d3Ku8tpyvj33Nxwc/FvuaOiocmRpn6h/S3lnkeqOe5357joUHTJkco6NGs2biGnyc294J+eGBDwEY3228Xb2HbNHVpytgKvulrlFfMSVO29UxYjQaeeqppxg2bBi9el1oOjN58mQiIyMJCQnhxIkTPPfccyQnJ7Nx40ar47z11lssWLCgPafaKPamBYZ7tyzd6FLRVE1yCQkJieZya69gvpja3yJFNcjTiVfG9ODWXsF2j3Wpa9i25dwlJNqbP9PymhTASvx5qNfbPH/jXWZlHAxGA5tTNrNw/0L2ZO4RXx/RaQTzh8znjpg72qV/yMVsSNrAjB9nUKWrIsIzgo33bmRAyIB2OdcXh75AZ9AxJGwIQ8OHtmqsKzX6SeLKoa00E1w5uinQo33KTbQFkmaSkJBoa9pad1xK3SRpJokrje+OHrZLN/3fiHieuP42HBQO4rZzZef4+ODHfHX0K7F/iJ+LH48NfIzHBj3WLv1DLqaouoj7NtzH9oztALxw3Qu8PvJ1FHJFE0c2n8LqQlacWAGY+pa0BhcHF8I9wsmqyCK1JFVyjADMnTuXkydP8ueff5q9/vDDD4u/x8XFERwczE033cTZs2eJioq6eBheeOEF5s+/8AeqqKggPDy8/SZ+EVdD+qCt2nrSg0xCQqK13NormFE9glq9iHA5ati21dwlJNoDQRDYl7WP5ceXE38sC1ceb/KYO7tOJsonFDD1D1l6bCkfHfyIs6VngUvTP+RiDEYDL+14ibf+fAuAGzvfyNqJa/F39W/iyJahqdPw+eHPgdYb+CA5RiTan7bSTCDpptYiaSYJCYn2oi11x6XWTZJmkujoFFUXsTpxNcuPLyc52x1//t3kMV29BohOkf1Z+/ngwAdsOL1B7B/S3a8784fOb9f+IRdzJPcId627i8zyTFwdXFk+fjkTe0xst/N9efhLtAYt14Rew7Xh17Z6vBjfGLIqskhRpzAkbEgbzLD9aTfHyOOPP85PP/3E7t27CQtrPE168ODBAKSlpVk18lUqFSqVql3maQ9Xevqgrdp6+eW1zFl5lC+m9pcMfQkJiVahkMsYGtW6iIDLtZjSFnOXkGhLzpWd49vj3/Lt8W9Fh4bKEIc9Ra4C3J3Irsjmk4OfsPjoYspqywBT/5BHBz7K3EFzCfUIbb/JX0SJpoTJGyaz7ew2AJ4e+jRv3/w2Snn7xeasPLGS4ppiIj0jmdB9QqvHq08LL6opolRTirezd6vHlJCopy01E0i6qTVImklCQqK9aSvdcTl0k6SZJDoaWr2Wn1J+Yvnx5WxN24reqAfAVdEX6po+3tfNgfWn1lv0DxnVZRTzh5r6h1yKrPp6lics55GfHkFr0BLtE038pHh6BvRst/PV6mv57NBngKn0cFv0Son2ieaPjD+uqICyNlelgiDwr3/9i/j4eHbu3Ennzk3XNExISAAgOLjjGppXavpgY7X1BEwPzAWbkxjVI6hDCpR/KlIKv0R70xGvsSt5MUVCorVUaiv5Pul7lh9fzq7zu8TXXR1cubvH3TwQN43/rhMoaEQA+7jJ+SThSdYnfScKg64+XZk3ZB7T+0xv9/4hF3M8/zgTvptARlkGzkpnvhn3Dff1uq9dzykIgth0/YnBT7SJA8Zd5U6wWzB5VXmklqRyTeg1rR5TQuJq1UxwZeomSTNdmXREe1bi6qKjXmOSbpL4pyIIAodyD7E8YTlrT62lRFMibhsYMpDpfaZzT49JjP/kRKOOQ1fnOqZuHsz5inOAqX/IlLgpzBsyr937h1xMnaGO+dvm8+mhTwG4M+ZOVkxYgZeTV7ued3XiagqrCwn3CGdi97bJSrkSM+3b3DEyd+5cVq9ezY8//oi7uzv5+fkAeHp64uzszNmzZ1m9ejW33347vr6+nDhxgnnz5nHDDTfQu3fvtp5Om3Ilpg821ZRLAPLKa/kro0Ty/ncQpBR+ifamI19jV+JiioRESzEYDWzP2M7y48vZeHojGr0GABkybux8I9P7TOeu7neJDo26MXlWBTAICMBp3escPbkfuPT9Qy5mTeIaZm2ahUavoYt3F+InxdM7sP3tvG1nt3G6+DTuju7M6jerzcaN8Y0hryqPFHWK5BiRaBOuZs0EV55ukjTTlUdHtmclrg46+jUm6SaJfxLZFdmsOL6Cb098y5niM+LrIe4hPND7Aab1mUYP/x7i67YchyBgBNIN76KpOCf2D5kzaA5BbkGX6N1cIL8qn3vX3yv2gXxl+Cu8PPzldtdvFweTNeyz0hquRMeITBAEaw60lg9oI/Vm6dKlzJgxg6ysLKZOncrJkyeprq4mPDycCRMm8OKLL+Lh4WHXOSoqKvD09KS8vNzuY/6p/JiQw5NrE5rcb1T/LKZe050BIQNwc3T7//buO76t8t4f+OdoWpK3vJ3lhAyynGknEOBVCKtAQ9MyE2JoL7SQtBm/20JpKZdRKKUNgUAJUGgddqANI1y4TROaNG08cBxn7zje2xq2ZK3z/P5QdGzJknVky5rfNy/h+Oj46Mh6JD+f86zRPzHila8h/K53FQ3hJyMVLWUsUntnERIMx9uPY2vNVrx96G00GhuF7VO1U1FSWIKVs1dibIr3NQG8hXQ72tGleB02eSXunHkn1i9aj3m580b9eXhj5+14eOfD2Fi2EQBw/aTr8d733kO6KjTrCVz39nXYeW4n1i9aj43XbwzacR/4/AG8ceANPHblY3jyW08G7biBojpw7AhFZgKozIglNjMtnH4E35s3HsX5xZiQOiEo006QwEVLfZZEr2gqY5SbSKzqtfZi+4ntKK0pxa5zuy52BQNUMhWWX7ocqwpX4ZqCa3wuSj5UbpqQrcP6ReuxcvbKkK0f4qmsoQzf2/Y9NBmbkKxMxtvffRvfmfqdkDz2zrM7cd071yFRkYj69fVBG51yuvM0prw8BWq5GsZfGMPSQQ8IrP47KlNpDWXs2LHYs2fPkPuQ4BG72NbbR/6IPx0/DAknwYzMGSjKL0JxfjGK8oswI2vGqM4FTpxoCD8ZbdFUxoI9hy0FBhJunaZOfHDkA5TWlKKyqVLYnpaQhjtn3omSwhIU5Rf5vcg2c5wDVyzYibfK98JskcPBdUOtbsTaBQ9gTdFHIV0/xPN9VZDlwIrtd2H3+d0AgEeXPIonv/Wkz7ASbEfajmDnuZ2QcBL8tPinQT12NPZ+IpGNMlNkEZuZPj/zLj4+fxgAkKnORFF+kZCbFuYvDFkjcDyLpvosiU7RVsYoN5FYwjMeey/sRWlNKT4+9jF6rD3CfVeOvxIlhSX4/vTvI1k59MVuO29Hj+TfQOYLaDEbIWVpcHDdWHJJDv7f4sdw/SXXh+yivbf31FvVf8KaL9fA6rDi0oxLsf2O7ZiaMTUk5wNA6MT2gzk/COqUXRNSJ0AmkcFkM6HJ2IQxyUOvnxcJ6Gp3jPO3KBcAJCbYcPP0aaho1KHeUI/DbYdxuO0w3qx+EwCglqsxP3e+0FByWfI45EkV4ODjj6NaC6R67+lKfKMh/CSYrA4rmo3NaDI2odHYiCZjE6ov9KJZ73v6jVgtY5E+DJ7ELpvDhi/PfInSmlJ8fvJz2HjnKoBSTopvT/42VhWuwi1TboFS5n+h5KqmKmws24htR7f1rx+SFb71Q7y9r5ikG+0yMxJViSi9tRTLL10e0nN6Yb9zOPjyS5djQuqEoB6bGkYIiW1iMlOKmsfN869CZbMKB1sOot3Uji9Of4EvTn8h7DM5fbLQULIkZQJmaHKg8DU9BWWmYaHMRIKJMYYuc5dbZvqm1oBm/WTfP4PYLWOUm0i4nOk6I4yor9XVCtsnpk3EqtmrcE/hPZiYNtHvcQwWA9488CZeqnhJOI5CocAds1Zg3aJ1IZnadyBv7ymlwox6/BlWqRXLL12Ovyz7C5KUSSE7p2Ptx/DVma/AgcPaRWuDemy5VI6JaRNxqvMUTnWeooYREn5iFuX6/feLccPMWwEAzcZmVDRWoLyxHBWNFahsqoTBYsC/6v6Ff9X9C2MZh5NI9N0oAgAyJbCmiir6AWoz+q7gD2c/Ept4xqPD1IFGg7PiPrASL3w1NKLd1D7oZ9X2K5EJ/xWBFkMf9p/tjIleQr6Gwbfo+/DgOwciahg8iQ2MMVS3VKP0YCneO/IeOkwdwn1zcuagpLAEd8+6G1maLL/HcvAO7Di1AxvLNmLvhb3C9qvGX4UNizfgpsk3hWw0xkC+3lfgU5BlfRS/vCEbyy9dGJJzcfXAOt3eim3V1QAk2LBoQ9AfZ4p2CsAkON8mx6fVjchKju7PRkKIOzGZ6bnlC3DDzFsAABa7BTWtNShvKEdFUwXKG8pxuuu0cNt76D38FxKhoMwUdJSZiFgmm8lvZmoyNsHisLj9nDMz/dzv8WMpMwGUm0jo6fp02HZ0G0prSvGf+v8I25OVybh9+u0omVOCy8deLmraygu6C3ip/CW8ceANGK1GAIBWpcVDCx/CQwsfCsv6Ib7eU31WJTLxKK6bdwGv3/ZQSKblHDhq5e0jbwNMgu9Ov1VUY1OgJqdPxYU2JT6pboCK74z4z0ZqGIkDgSzKlZuUi2XTlmHZtGUAnBdhT3acFBpL9Of3QtVRP/QD2i04VvcvXJL0fSikilF5TrFI7BB+sfuR6GOwGPor7oZGrxX4ZmOz0OvcH7lEjrykPOQl5SE/OR8K+wz8u8b/zz214yi6evsfIxp7CTHGoO8z4rFPD0fNMHgS3ZqNzXjn0DvYemgrjrQdEbZna7KxcvZKrCpcJbqHUq+1F385+BdsKt+EM11nAAAyiQx3zLgD6xetx/y8+aPyHMQYanoJDhJwAN7aY8APFrFRf1959sDS4ilkSvXQ6ycAQb7OeLpJg3zLW5CxDKz98CCA6PxsJIT4FkhmUsqUwjRaLl3mLlQ2VqKisQIdZ3dBVVc99APaLdh74hNMm3WHqMZy4kSZidh5O1p6WobMTI2GRugtetHH1Kq0QmZSOWbjwDH/PxMLmQlwzjTQaerGrz6podxERp2dt+PvZ/+OrTVb8cmJT4SGSQknwXWTrkNJYQmWTV0met2P8oZybCzbiL8e+ysczAEAmJYxDRsWbQjr+iH+MhMAHDk7DTwDpKP8lho8amUJ8jEVSzLHj8pjnT1ZghxrAj6rAD6rKIv4z8agL74eCvGyiGCw53YMyvGaDgKvX+V3t3nowTGZHHNz5wpTcBXnF2Ni2sS4WqQwkN+53cFj+hMfw2JVCR+UA3FwBrN9D19NlRFE19ynVodVaPAYqgI/cP7MoXDgkKXJ6m/0SMoXKvIDv9eqtW7zZjp4hiXP7R5ymgjvj+cU6l5CVocV3eZu6Pp06O5zftX16QZtE756bJfbZyDH+qzfx3n//kUxNwyehIbZZsanJz9FaU0p/n727+AZDwBQSpVYNm0ZSgpLcN2k60Sv09VgaMDLFS/j9arX0d3XDQBITUjFj+f/GGuK1oR0/RBf9p/txF1vlPndb7TfVz5HrYCBAxfUz6v+x3JdGnAKx2djvNSBSfDEQ5mJ9sxUzfGYkDrBbY3HebnzoJarh/cEopTY37uDZ1j4zFfo7LFTZhIhmjITYwyd5k6/mam1p1VYhNkftVztnpUSB2em3KRcJMj6G9KiLTPxjIfRYhyUiQblJIuXHGXuhtluhtIxi3ITGVWHWw+jtKYU7x5+Fy09LcL2GZkzUFJYghWzVyAvKU/Usey8HZ+c+AQvlL3gNtJk6cSl2LBoQ0jXD/GFMlP0ZCYaMRKhRmNux2AvyjWUlIQUWCzdKGsoQ1lD/4eBVqV1q/QX5RdBq47NP6yBvoavVb2KBryLTDw66D7XB8njt0yP2IpsKEXK3Kc849He2+51SPbACvzAqXT8SVYmuzd2eGn0yEnMgdzXfNVD8DdNhK+K/3B7CfmqpA9q5Biikj4SUpYmaj+aaoEEgjGG/9T/B6U1pdh2dJtbb8TLxl6GksIS3Db9NqSpxJU/ADjQfAAb92/Eh0c/7F8/JP0SrCteh5I5JUhUJAb9eQxXJExhMlQPLNdfzGD1anR/LPdjUQ9KQsIv2jPTxLSJOKg7i1pdLWp1tdh2dJvzHDgpZmXPcutgNi1jWlimTwyFQF7HLnMH2qV/hAQ/AnxcfKHM5BQpmQlwjob1l5majE2wOqyijiflpMhNyh0yM+Ul5SFZmRxwx8xQZyYA6LP3ee8A5q2Rw+M+vUUvdM4ZLspNZDS097bjvcPvobSmFNUt/aMoM9QZuHvm3VhVuArzcueJfo8aLAa8Vf0WXix/UVg/RC6RY8XsFVi/aH3I1w8ZCmWmfpGemahhJALFwtyOu1ftwtmEJOe8uxen4apuqUanuRNfnvkSX575Uth3UtokFI8pRlFeEYrHFGNOzhy3HhvRKNDXsKyhDOv/bz1sUhtuWtiE6lOT/A7hj1eheH8wxmC0GgdX2A2NaOrpr8g39zQLFzH9UUgVg0d4eFTg85LyRv0C6HUzsvH726fht1+eQbux/9xVSgdMFt9h27XI4OZ9/4usNL33Ro5RqKQDzsaitIQ0pCakIk118WuCx9eL2wduO90C3PvWQb/Hp6kWiBi1ulpsrdmKrTVbcbb7rLB9XMo4rJq9CqsKV2Gy1vdCnZ54xjvXD9m/EXsu7BG2Xzn+SmxYtAE3T7k5Ii+ARcIUJqFceJcW+SUkcsVCZvr4to9g0E7EN03fCJmpvKEczT3NONhyEAdbDuK1qtcAAEmKJCzIW+DWySwSRhKOVCCvo4N3YMXfVqDBuhOTtEpobT9Cq6H/Qjplpn6hen/YHLb+aa18ZKZGYyMMFoPoY2aoM/xmpkx15qjWk26YmYsX75qFp3ecQJuxf7oslZKHyeK7J7qrXvDa/n8gO83gddSGtwaQPvvIL44qpAqkJaT5zUuu7wduO95ox4o/Vfp9DMpNxB+L3YIdp3agtKYUX575UrheIpfIcfOUm1FSWIIbJ98Y0LT7F3QXsLliM9448IbwWaJVafHgggfx0MKHkJsUeZ/5lJlG77GCjRpGIsxQLXqR3so2EAcOl6RfgkvSL8GK2SsAOKfFqWmpcVvc/WTnSZztPouz3Wfx3uH3ADjnUS/MLkRxfrGzwSS/CFO0U8I+FE6sQF/D9t523PbRbbDxNnx/+vfxyvL7wTNEzZDnUHLwDP8zwveHxW5Bc0/zkPPRNhmb0GvrFXVOrmmtPHsneVbgtSptUKeR67P3odvcjS5zF7r7nF+7zF3CNtf2TlMnOswd6DR1oruvG0aL0Tm0kUmgVMyAlKXBwXVD6khHJn7m93F/ufN3MMn2+t1vIKVU6b0i7quxY8D3ycrkYYeenESG3JQTPofBu6ZaKCpIH9bxSewzWoz46NhH2Fqz1a3xQiPX4LYZt6GksARXjr8yoL9PvtYPuX3G7Vi/aD0W5C0I+vMIpqKCdOSmJIT1fRXKHliR0NuLEDJYrGQmwNkB5OqCq3F1wdXCtgZDgzMzXVzcvbKxEkarEV/Xfo2va78W9stPyndrKFmQtwBJyqRwPI1hCfR1fGLPE9h5bifUcjU+LXkC0zKmU2byIhjvD9e0Vv46irX1tome1koj1/jMTK7clJuYC6VMOezn7olnPPR9ep+ZybWt09SJTnMnOkwdQgOG1WEddmb62VdPB5yZOHBISUgZ3PFLOXRecn0/ks6liyaysNfvSPRijKGisQJba7bi/SPvC1MCA8DCvIUoKSzBnTPvDHi2GF/rh6xftB4rZ6+M6CknKTON3mMFGzWMRBixrWzTX7gF+Rkm5CTm+LxpVdqI6m2qkCqwMH8hFuYvxGqsBgB0m7vxTdM3QkNJeWM52nrbUNVcharmKvzxmz8CAFKUKViYv9BtCq6cxJxwPh2fAmkpLSpIxd1/uxsNhgZM1U7Fm995ExzHQcoh4lpRQ4UxhtbeVlzQXUCtrhYX9BdwQXcBF/QXcKZFgj79j3z/LJy/2xf37oAmcXCjR5OxKaBprVKUKV6HZA+swA93WitAXEW909SJdlM7Okwd6DR3QmfWwWAxwMqLG2buE8fDIj0sfKvELFE/NlGrRVb61V57IY1GJX0k/A2DB2iqBTKYg3dg9/ndKK0pxd+O/02Y0o0Dh2smXoNVs1dh+aXLoVFoAjpuo6ERL1e8jNeqXnNbP+RH83+ENUVrMCZ5TNCfy2iIhPdVKHtgRUJvL0LIYGLr2xOfvxY5WqMzH2m8Z6bsxOyIu7gyJnkMxiSPwfJLlwNw/m063nHcbTT+4bbDaDQ2YvuJ7dh+YjsA59+q6ZnT+6fgGlOMmVkzRa91FWqB5KYuRxme2vsUAOCNW97AjKwZAOI3MwGAyWYSclKtrlb496lmhg79Sp8/5/q9vr5/F5KTWr1mpkCmtZJJZMhNzB2UmTw7iyUpkobdUcxsM/tt3OgwdQi5qdvcDX2fHj02cWs4+jTMzDQ2LRna1MtEjXJ3bUtWJoetM2gk1O9I9GkwNODtmrex9dBWnOg4IWzPT8rHytkrsapwFaZnTg/omA7egU9OfIKNZRvd1g+5puAabFi8ATdcckNUdJqOhPcUZSZxIrOGFMfEtp416Iw41TN0DwQpJ0WmJtO98u8jEAxn7s1gSFOl4dpJ1+LaSdcCcF4Ur9PXuTWUVDVVQW/R4x/n/oF/nPuH8LPjUsYJPaSK84sxL3dewBeqRkMgLaX/88//wT/O/QNquRp/vf2vSFbG5qKYAzl4B5qMTW6NHsK/L35vcVi8/qzafiUyRTzGY7t+P2QPHaVU6dYzydsifHlJeaLLk2dF3XPURoepA229bWg3taPT1Aldn7NxQ+yolGBQSpVISUhBakIq0lXp0Kq0bhXylIQ0bN3pgMEsgeeckMCAhSx/+teoqhDfMDMXr66cN2h+5UibaiGaFsaMVcfbj2NrzVa8fehtNBobhe1TtVNRUliClbNXYmzK2ICPe6D5AF4oewEfHPlAGEo+KW0S1i1ah3vn3BtR64eIFe73VSh7YEVCby9CyGBi69sdPTbU9VX43S9ZmexsJNFkD9nxLEuTFZZGBqlEiplZMzEzayZ+OO+HAJwjEA80H3AbjX9BfwFH24/iaPtRvHXwLQCASqbC/Lz5wrTFRflFGJ8yPizZz5PY1/FoSz1+ts95oX/NwjW4e9bdo3laEUPfpx/U6DEwQ7Wb2r3+nNjM9N9fPeV3VEOmOtMtM3nrNJapyRR1odLBO6Az63xmJleHsLbetv7GDYsePdYe2Hib3+MHg4STIEmRJDRYaFVaZ8PFxVEbycpUfPi1HUazFENmpnWfRV1dPtz1O7EoN4VXr7UX209sR2lNKXad2yWMGFPJVFh+6XKUFJbg6oKrA+6kbbQYhfVDzuvOA3BOv3X3rLuxftF6FOYUBv25jLZwv6coM4lDDSMRRmzr2fM3/Aqpye1o6Wlxu7X2tqKlpwXtve1wMIew3Z8EWcKgBpTsRC/BQKFBgkwJ2L1fuAYAyJTAMBdU5zgO41PHY3zqeNw+43YAgJ2340jbEbfh5EfbjqJOX4c6fR0+PvYxAGdD0MysmW7DyadnTg/5qBmxr+E5/UE8/a+nAbj3eop2VocV9fp6n5X4BkODqHU5lFIlOI6DzWEThk06uG4/P+U0KSMTE7Ju8TofbX5SPtJV6YPCoIN3CPO8dpm7cK77nFBR7zJ3oa23Da29rULjhr5PD71Fj15br+h1RkaCA4dERaLQuJGhyoBWrUW6Kt3v1FSpCamihqTPTHbORQzEVi+hG2bm4trpORFbgY6khTHjTaepEx8c+QClNaWobOqfVzktIQ13zrwTJYUlKMovCvji0VDrh6xftB63TLklokZ0Dkc431eh7IEVCb29CCGDia1vb77paWhTu9wzU697fuqz98FgMcBgMeBU56khj8eBQ4Y6w/vIkwGNKnkSCVJlSnCjlJkAQKPQ4IrxV+CK8VcI21p6WlDZWCk0lFQ0VkBv0WNf3T7sq9sn7JelyXLLTAvzFiJNJW7x5WAS+zq+WPkkdH06FOcX4w/X/2GUzyo0GGPoMHV47SjmylB6i97vcWQSGWQSGXjGCyM8xGamvJREjM38ls9Gj5zEnEEZgjEGs90sZKQTHSfwn/r/CI0b7b3taO1tFRo3XGsR9lh7hFG4oy1BliA0bqSr0pGhzkC6Kt3vKPfUhFRRo1oWpMdmZgIoNxHveMZj74W9KK0pxcfHPkaPtX8k1pXjr0RJYQm+P/37w+roW6evw0vlL0XV+iGBoMwU+Z+NHGNM3ISQEcRgMCAlJQV6vR7JybHVw97BMyx5brffVrZ9D189ZIGy83a09w5uOPEWBgJZCA0AZiiSMUWVAa1KC61aiwy1FtqLF2kzVFqkpE9Ces5sZGoyR61HldFiRFVzldBQUt5Q7tbD10Uj12BB3gK34eT5Sfmj2kNKzGuYkSTDGeld0Fm6sWbhGmz+9uZRO59gGzhk29tojyZjk6h5ZiWcJKCFuVMTUpGbmA9r869gtyfCVw+d7BQlPnxwKvSWbrfh1e297WjuaUZrTys6zB3oMjm3u0ZuBGPBO3+UUqWzcUOZglSVs3EjU5PZP3pjiAXxRjL0PBBU2QwtXwtjul7paFg4NtrYHDb87+n/RWlNKXac2iH0QJRJZLjxkhtRUliCm6fcPKz5rXutvSitKcWmsk043XUagLPR/o6Zd0TF+iHRJpSfV5Hy2RjLdWAyOmK1zAQrMzHGYLQavWcmj1tbb5vQWUeMiZwCU9RaaFUD8pKQnzKQnFaA9JzZyE7MHrXRgzzjcbrztNto/JqWGq+976dop/RnpvxiFOYUBrQ47nCIeR0VChNOSe5EhiYdBx44MKzRm+HAMx4tPS0+R3tc0F+AyWbyexwJJwFjTPQ6HjKJDHmJ+ZB2PgvenoShRjV88pPZgzJTp6nT2eGypxVtpjZ0mjrR1dflnJbK2oNeW29AGW44JJwEGrkGycpkt8YNVwPHUFNTpSSkjHq5BSKnXhBPKDeF3pmuMyg9WIq3D72NC/oLwvZJaZOwqnAV7pl9DwrSCoZ17IrGCmzcvxEfH/tY+Ns6VTsV6xetxz2F90TcFJfRjDLT0PVfahiJQK4PfMB7K1uwP/BNNhNae1qF0SZD3XxNceQNB070VF6pCakjvujbaGgUekaVN5ajsqnSrSXbJTcx1zmM/OJw8gV5C4I+hZW/11CT9T6OGt9FcX4x9t63NySVN7FcQ7a99Vyq7a5Fh1n8Gh1iKKXKQcOxXWVCI9dAKVNCyklhspnQ3NOMb87ZUXZk5sWf7i8zDDwADu2KZ2CW7g/qObpIOAnUcjWSFElIViYjLSENWrUWmZpMZKmzkKZKG3LUxnDXIgk1Gp4cGq6LAb7m1hZ7UYf4L7OMMVS3VKP0YCneO/Ke21pDc3PmoqSwBHfNugtZmqxhPX6joRGvVL6CLd9sEdYPSVGmCOuHRMtFnGgUys+rSPhsjPU6MAm+WC4zoc5MDt6BTnNn/0j9nlafHc+6zF0BHVsj1ww5hdfAqbxGmhv67H042HLQbQquM11nBu2nkCowN2eu28iSS9IvCXpHnaFeRwaGNsUz6JOW4e/3/B1LJy4N6mOPhJ23o8HQ4HWNj1pdLer0dUGf/ilLk+U2Cj43MRcZmgwkKZKgkqkgl8jBg0eHqQNlZ/rwz4OXXPzJ0GYmoL9DWJLy4siNhHRnZtJk+ewU5vpeI9dExFRv/kRCvSBeOHiGyy82onpDuUk8f+VW16fDtqPbUFpT6rbGR7IyGXfMuAOrClfh8rGXD+s96uAd+PTkp9i4fyP+Xf9vYfvVBVdjw6INuHHyjVGxfkg0oszkGzWMRKhIaWUbiDEGvUU/ePquntZBYaCtty2gniQKqcLrMHRvN7Etxw7egRMdJ9wq/YdaDw3q6cWBw6WZl7pV+mdlzRrxReyvjjTj8c+OotXQ35iUm5KAzJw9+LzuKWSoM0Le64kxhk5zp9eeS+e7z6NWVwuj1RiUx5JwEmRpspClyUJ6QjqSlM4KOzjna2O1W2GymWC0GqG36GG0Gp1DrG1mvyFC5ViMdOsDkA2YPdeOdnQpXvdbwVdIFULjRooyxTl3rFqLLE0WsjXZ/fPIRnElPR4wxuBgDtgcNth4G2wOG6wOq/Bvf18D2dfGX9zf875A9/f4ylmmIL3vSb/P9f37F0XlwqKhqhAN9feycDzwzqF3sPXQVhxpOyLcn63JxsrZK1FSWIJZ2eIW0fSmurkaG8s2Dlo/ZG3xWtw3976oXD+ERLZ4qAOT4Ir1MhOJmQkALHYL2nrbfI7edzWqNPc0ixo1MJBWpXVbON5XxzOtWiv6AlOnqROVTZVuo/E7zZ2D9ktLSHPLTEX5RcjUiFnNYmjeclNGogRn7M9Bz+3B0996Gr+88pcjfpxA9Nn7UK+vd18XUe/sKHZed170KHkxkhRJyE7MRoYqAykJKUhUJEImkYExBovDAovdgl5bL/R9ehisBhgtRphsJvTZ+4Y8h5FkJleHMM+RG5nqTGQnZiNTnemzU1hKQkpY1uIh3vGMH1FmGXGGCsKxOdtUZPY97fe5Um4amq+/mb+6aRo4VQ221mzFJyc+ETpESzgJrpt0HUoKS7Bs6jKo5KphPa7RYsSfD/4Zm8o2xcz6ISSyUcNIjIiEVrbhcvAOdJg6/E7l1drTKvSuFStJkeR3Xl9XjyrPxg2TzYTq5mq34eS1utpBj5EgS8C83Hluw8knpE4Qf1FcVw+YOtFjNWPpW/dCypKx6du/Qb1pP57+15Po4ji8ec//4ZqJ1wT03P1xDdkeONrjfPd5nO46jfPd59HU0yTMPTsSapkaarkaCqnCObwbDHbeDjtvh8Vhgc1ug4UXP7ooEBJOggRZAtQyDRIxB2pJLpLVDPkZfchJdDZuZCdmIy0hzevQ6nivpDPGRnxBPxIqx6FagHE0qe1XItP2c7/7vXjnHCybkx+CMwqeUF2o8jWk3tXntEPxW/RKnb2RlFIlbp12K1YVrsJ1k64b9mcBz3h8ceoLbCzbiH/W/lPYfsW4K7Bh8YaYWD+ERK54qQOT4ImHMhPNmQkAeqw9oqbyau1tDWhdOykndV8z0qMBZeB9nlO2MsZwXnfe2VByMTMdaD7gdfaAgtQCt9H4c3PmBnbxzEtuembpL/F85Vo09TRgzsSr8ad7/i/ovYh7rD2DRnuc6TqDM11nUG+oDzijeiPlpEhSJEEpU0ImkYEDBwdzwM7bYXVYnTe7FQ6In6ItEAqpAmqpBoncHKgkOUhS8chJ70WWJkN4/TPUGV6n8lXJVHHdIcxbJ6yQZqggHnu0pz4LBcpNwXkcX7mJAW6jyGZkzkBJYQlWzF6BvKS8YT9mnb4Om8s3440DbwhrJqWr0vHgggexeuHqqF8/hEQuahghUaXP3ue7R5XHLdAF2wYtjuilR5VUIsWpzlP4pukbocFE16cbdKxMdabQM6o4vxgL8xciXZU++EF19cDL84dcoN4ukUL20xogNbDRIgOHbNfqanGy4yROdJxw9lrqaUKnqTOguY89ceAg4STgOA6MMfCMD1pPqIHkEjkSZAnQKDRIVCQiVemsgGtVWmQlZiFHk4PcpFxkqDMG9UIKVyXdwTtGPsIgAirHIykfkY4DB4VUAblUDrlELuqrQqrwfp+XbUE79sWvRxosWPveeb/PK9p6PoVq/l9/U5Ex8HCgE+Mm/wn3zlmF22fcjtSE1GE/Xq+1F1trtuKFshfc1g+5fcbtWL9oPRbmLxz2sQkRi+rAJFBUZmIHz3h0m7tFrSE5cMpIMVQyld9pvNJV6WjvbcfBloNCZjrecXzQsWQSGWZnzxYaSoryizAtY5r3hg0RuYlJleB+UhVQbmKMQdenEzqKne06i2Ptx4RGj9be1oBH6niScJL+9T8YA4/gX3yWcBIkSBOgkquEaanSEtLcRm7kJuYO6hSWlpCGZGVyWDpqMObsMBfUUdohHNE9cN9YJpPIgptzhtg/GBnqcH0ffvLuWb/Pi3KTd2JyE5N049YlVbh3bgnm5swd0TWXisYKvFD2Aj46+pHb+iHrFq3DqsJVtH4IGXXUMEJikufiiG7z+noZiRLIBWC5RI4sTZZQ8VfJVbA6rNCZdWjqaUKtrtZrD63J6ZPdhpPPyZkDZdtx4PWr/D/oA3uAvDlumyx2C+r0dTjVeQo1rTU42XES53Tn0GhoRIepI2jTXI2UhJNAIVU4GzfkFxs3LlbCM9QZwu8yNzEXmepMJCUkCfsppUrw8D2cN1Irx7HQ08YXKScdUQXWbd9A9w9CA4Pra7T10g/WwrHB5lrgM9CvPONhd/D49otVaDN4D5PBfE77z3birjfK/O430oDUZGzCyxUvD1o/5IH5D+AnRT+h9UNISFEdmASKykx8sjlsgzqe+VpPMtB8kZaQJow20Kq0YIyh19aL1t5W1HbXQmfRDfqZZGUyFuQtcBuNn5uUCzQdHFZuYoyhrbcN53Xncbj1MI62HcWZ7jOo09ehpacF3eZu2Jn40TWjSS6RQylTQi1TQ6PQCOsUpqvTkaXOEtYNyUnMEabR0sg10Cg0kHLSYTUwjOaIbn8ZKpBRTdGGAxeUzOKWiQLdPwj7yiSyqBsNFC25iWe86OwUa7mJ1g8hkSSQ+m98zylDogrHcUhWJiNZmYwp2ilD7sszHp2mTp89qgY2qnSaO2HjbWg0NqLR2Oj3PFzDoG28Dae7TuN012m8e/hdAM4LzMuSJ+CvIp7P//v7f+Mf5na09rbCYDHA4rCE9OI7Bw5SiRQyicytx4irgqaQKoR/y6TO5ww4B1p6jp4w280w6A0403XGrXIcKYFktEi5/t+fVCKFjJMJv1PX965/C9s557+9fR14v4STQMpd/HrxfolkwDbP/SQSSCARtkk4iXMEkJftwv0cBwmclRN/F7yHe7Hc6rAKZXu4x3D92zWCadjHCdIxRvo7GXgMh3QmGO67WKIGVnidS2M24kVMePHeUT8P179HSumYhRzrsz7vZwCa9X2oON814t5cbUbvPZ6Gu5+n6uZqvFD2Aj448oEwddvEtIlYV7wO9865F0nKpGEdlxBCCBltcqkc+cn5yE/2P6VMr7XXZ6OJZ6OK1WFFd183uvu6caLjxJDHdV1EtjlsMFgM2H1+N3af3y3cn6HOwG1pU/BHEc/nh5/9ELv7utDV1yVqPcJgco2od9XtPS+Euy5AKyQKod7vwjN+UONBp9mZUS12i9t9waiHRSoOnJCZhJx0Mfd4fi/k04u5aqjs5MpArp91ZaWBGUoCiXuGGpCJXNsknETITIO+XryPu/jfaOUH1yibEWWQKM1DYvf1lZvYxXdPAzZh/KaSkD2XkYqV3ORaP+TF8hdxrvscAGeD8F2z7sL6ResxJ2dOwMckJJSoYYTEJAknQaYmE5maTL8L61odVtFTefXaeofsBeNgjouLSflfcPfr2q9xiAvfKASG/nVByPA4mAMOh8PrfMuEiHMKKkWzl4UxO5wLY1r3A1E0kl/K0kTtN9zGioGykhKCuh/Qv37IC2Uv4Ovar4XtS8YtwYZFG/Cdqd+JupFJhBBCyFA0Cg0mKiZiYtrEIfdjzDk9lZipvNp728HAhpyOqMPUgbLeLojJTdUtB1EbptzEwIQ6vxVWgKJTwBiYMJKfkOHznpsclJv8Go3cVK+vx+aKzXi96nW39UN+PP/HWF20ekRrkxASStQwQuKeQqrAmOQxGJM8xu++DYYGHGw+iCNtR3Cq6xRqdbVoMDSgtacVPbaemJ5uKdw4cOA4zm0dlIHbAvnqGk0RzmNE9HOIkt9BxP8eA3gOjAEnmx3QmRjS1BJMz8+AVPJiVD0HjuNQca4bK9/8xu/7OZBKty9FBenITUnwO6S+qMDLWlAeTDYTSg+WYlP5JpzqPAWA1g8hhBBCBuI4Dmkq5zoWl2ZeOuS+ZpsZh1oPCVMDn+0+izp9HRqNjdD16WJ+/YZwGk79Ldz1x3AeY8T16Ag4h5j4PQZwDF+5KZqeQzTnpsrGSmws2+i2fsgU7RSsK3auH6JRaEZ8voSEEjWMEHKRqxdUra5WuF3QX3D73tUSHgyLxixCulzlnE6HOWBndjh4Bxy8QxjJMXDhuoFzxrqmJwrGEM5gkXJSKGVKJMgSoJRe/Hrxe9c2pVQJlVwlbPO8qWTO+1z7qGQqn/u7HsN1i8a5UgkZaMn4cJ/ByC2elBW0Src/UgmHx2+ZjgffOQAOcHs81yfB47dMB+CcV7fN2IesJOdju+bpbTI24ZWKV7Clagu6zF0A+tcPWVO0BuNSxo34PAkhhJBYY3VYUa+vH5SVXPmpXl8f1JxSnF+MNIXKmZVY/21gZrLzdrc1MAbeIm2EvFKqHDI3ecs6KpnKbZ+BOWmozOQtQ1FmItGOclNgxOSmx26ajorzXV4zk4N34LOTn2Fj2Ubsq9sn/Oy3JnwLGxZvwLcnf5vWDyFRixZfDxddPWDq9H2/WgukxteCrg6e+fwgDsbxFk5Ig97S7bPR44L+AgwWw7AeK0OdgVlZs3DZ2MtwgyYXS7581P8PeVl8PVB23o4+e19AN4vd4vt+R2DHiqSQIeEkosKAcJN6hASPMBLoTS6RU8gIkWB/VpDg+upIMx585wAA75XuV1fOww0zc4P6eE98fgzN+v5h5rkpCUKjiLf7Vl2hRlnHFrx/+H1hWoeC1AKsW7QO9825j9YPIRErJurAJKRiosxQbnIz2pmpqCAddt6KekO9zw5jjYbGYTV8KKQKTE6fjIV5C7Fk/BJcKU/G5I//y/8PjjA38YyH1WENODcNmakcQ2QqL7dI4qsxRmxuGrLhxc8xlVIlTUsaIpSZIl+k5KbvFObis5rmQdt/fuNENFh2YFP5JmH9EJlEhrtmOtcPmZs7N2jnRkgwBVL/pYaRcNDVAy/PB+xDrEsgUwJrquKmkj/UhS2xfwgYY+gwdaBWV4sdh+rx13IJevrkwv0OrhOd8i0wS/cPeRylVAkAPteNGJcyDvNz5ztvefMxL3cesjRZ/Ts0HQRev8r/CQehYSTc7LwdFrsl4GAQrKARScPwOXCBN7QEOWTEQ8NMMD4ryOgL9evkLfjtPNaCB9854OWyjfNSTrviGZil+3H52MuxYfEGLJu6jII6iXhRXwcmIRf1ZYZyk5tg/X3ts/ehTl+Hv1Wfw7v/tsBo7p9Igkm60CHbApP0P0MeQ8pJoZAqYHVYhelUBlLL1ZiTM8ctN03LmAaZZMCkFXGSmxhjfhtmRjNPmW3miJppQC6RB5aBAshMYo7nVgZjFGWm6BHu3NTda8Hq96r9Zqa0hDQ8uOBBWj+ERIWoaRh55ZVX8Pzzz6OlpQWFhYXYvHkzioqK/P5c1Ffw46QCKJarldyzIHq2kjPG0G5q9zpc2/Vvk80ElWMxMq2PXjxG/4ViBh4AB2vSK0hNrYVCooDFYUGHqQOdZu+90CakThAq8/Ny52F+3nxkqDOGfkIU4EKGZ/zQI2BCEDQiieeQezFD6YMZMkZ7+KzYzwoSGcLZS83BMyx5brdbwBiIgYdSYcbW+8dj0djikJwTIcEQ9XVgMizDzUxADJQZyk2CQOpBZptZyEgXdBezkr4/P7X0tPjNTPqE3yM9rQ6JikQwxmCwGtDS0+K1Y5JGrsHc3LmYl+PMS/NznY0gfjscUG4KCcbYsGYaCFamMtvNEbUWp5STBi0DDSdTjfYU0JSZok+4cpOYzMRJ9fjZMiPunUPrh5DoEUj9N2xN5R9++CE2bNiALVu2oLi4GJs2bcL111+PkydPIisry/8BSExw8AxPfH7Ma/8VdvH/az7cA9k/n0SdvhZmu3noAzIJMu0PXvyj7/6HhIMEDAxS4x04YfshwLlXziamTXQ2fgxoCNGqtYE/qdSxzso7DfkfdRJOApXcOaduOIjp/TXaQWNg7y+Lwzl6J5hr4QQikN5fgYYMhUSJR7dbfX5WcHBOmXTt9BwaIh4hpBIOiycN4zM0CCrOd/ms4APOvwdWqwbMekkIz4oQQgJHmYkA4jLTTz/8F9L2v4AL+vNo7W0d+oBMAq3tRz4zE8CQZLkP57t/MCgzJSoSMTdnrjAKZH7ufEzRThneqEvKTSHBcRzkUjnkUnnYpgv11jAjpoObz5uXKaCHOp5r6lQAcDAHem296LX1huV34W8K6JF0XnNmJgdlpigTrtwkJjPBkYZ52hupUYTErLA1jGzcuBH3338/7rvvPgDAli1b8MUXX+Ctt97CI488Eq7TIiHm74MY4GC3JaGhTQaL1AwOHPKS8jAhdQImpE7A+JTxwr8npE5AU2ciSt46MMTROMiQiQLNtVhYkOLWCJKmSgveE0sdSxX4OMBxHJQy5+KJKUgJ+eMzxmDjbd4bWoYbNHysM+PteJ69v2y8DTarDUarMejPVemYhRzrs75/FwCa9X2oON8VtovxJHK0GcWN5hK7HyGEhAtlJgKIy0xWmwY19b2wSJ2NIomKxP6clNKfl8anjkeHLh0/3np8yONJWQbSpAswe6zKrRFksnZycEcJU26KCzKJDImKRCQqEsPy+A7eMayOaD4zVYBrcw4cacUzHiabCSabKejPkzITCQRlJkLC1DBitVpRVVWFX/ziF8I2iUSCpUuXYv/+wes/WCwWWCz9w2sNhuEtkE0ij9gP2F8v+T3uWDAJY1PGQiFV+NzvWH2jqOO9cO2bWDYnX9S+hEQqjuOgkCqgkCqQrAzP9BjDHZYfaMgw6qeir8P/+VCljQBAVlJCUPcjhJBwCDQzAZSbYpXY+s1/Fz+J5fPGYULqBKQlpPmcrufTNnGZ6a2b/4pb544RfZ6ERCqpRAq1RA21XB2Wx3dNAT3aa3MadFPQ2+7/fCgzEYAyEyFAmBpGOjo64HA4kJ2d7bY9OzsbJ06cGLT/s88+iyeeeCJUp0dCSOwH7LcmzcekdP89GuiDnZDQClXvr/1nO3HXG2V+96P3NgGAooJ05KYkoEXf53UqAQ5ATopz/l5CCIlUgWYmgHJTrBJbv7lp2hWYlxu8zJSdHJ7pagmJNaGaApoyEwkEZSZCgNFdKTdIfvGLX0Cv1wu3+vr6cJ8SCRLXB7Gv2S05ALkBfBAH+3iEkMhA720SCKmEw+O3TAfgOXN6//eP3zKd5lYmhMQcyk2xiTITIUQMem+TQFBmIiRMDSMZGRmQSqVobXVfFK61tRU5OTmD9lcqlUhOTna7kdgQ7A9i+mAnJDbRe5sE6oaZuXh15TzkpLj3iMtJScCrK+fhhpm5YTozQggRJ9DMBFBuilWUmQghYtB7mwSKMhOJd2FpGFEoFJg/fz527dolbON5Hrt27cLixYvDcUqhpdYCMuXQ+8iUzv3iQLA/iOmDnZDYRO9tEqgbZuZi38NX4/37F+HFO+fg/fsXYd/DV1NZIYREhbjPTADlpgEoMxFCxKD3NgkUZSYSzzjGmLep5Ebdhx9+iJKSErz22msoKirCpk2bsG3bNpw4cWLQPLqe9Ho9UlNTUV9fH729oHQNgLnL9/2qdCA1vha6c/AMVbXdaO/pQ2ZiAuZPSBtRT4ZgH48QEhnovU0IiVcGgwFjx46FTqdDSkpKuE+HhMBIMhNAuSkWUWYihIhB721CSLwKJDOFZfF1ALjjjjvQ3t6OX//612hpacGcOXPw1VdfiargG41GAMDYsWNH+zQJIYQQQgiJKEajkRpG4sRIMhNAuYkQQgghhMQnMZkpbCNGRoLneTQ1NSEpKQkcN7IWb1crUlT3oiJBRWWCeEPlgniiMkG8oXJBPAWzTDDGYDQakZeXB4kkLDPikigTrNxEn23EGyoXxBOVCeINlQviicoE8RSuzBS2ESMjIZFIMGZMcIdL0+KExBOVCeINlQviicoE8YbKBfEUrDJBI0VIIIKdm+izjXhD5YJ4ojJBvKFyQTxRmSCeQp2ZqKsZIYQQQgghhBBCCCGEEELiBjWMEEIIIYQQQgghhBBCCCEkbsR9w4hSqcTjjz8OpVIZ7lMhEYLKBPGGygXxRGWCeEPlgniiMkFiAZVj4g2VC+KJygTxhsoF8URlgngKV5mIysXXCSGEEEIIIYQQQgghhBBChiPuR4wQQgghhBBCCCGEEEIIISR+UMMIIYQQQgghhBBCCCGEEELiBjWMEEIIIYQQQgghhBBCCCEkblDDCCGEEEIIIYQQQgghhBBC4kZcN4y88sormDBhAhISElBcXIyKiopwnxIJkWeffRYLFy5EUlISsrKycOutt+LkyZNu+/T19WH16tXQarVITEzE9773PbS2tobpjEk4/Pa3vwXHcVi3bp2wjcpF/GlsbMTKlSuh1WqhUqkwa9YsfPPNN8L9jDH8+te/Rm5uLlQqFZYuXYrTp0+H8YzJaHM4HHjsscdQUFAAlUqFSZMm4amnngJjTNiHykVs27t3L2655Rbk5eWB4zh88sknbveLef27urqwYsUKJCcnIzU1FT/84Q/R09MTwmdBiHiUm+IX5SbiD2Um4kK5iQxEmYkAkZ+b4rZh5MMPP8SGDRvw+OOP48CBAygsLMT111+Ptra2cJ8aCYE9e/Zg9erVKCsrw86dO2Gz2XDdddeht7dX2Gf9+vX4/PPP8dFHH2HPnj1oamrC8uXLw3jWJJQqKyvx2muvYfbs2W7bqVzEl+7ublx++eWQy+X48ssvcezYMfzhD39AWlqasM/vfvc7vPTSS9iyZQvKy8uh0Whw/fXXo6+vL4xnTkbTc889h1dffRUvv/wyjh8/jueeew6/+93vsHnzZmEfKhexrbe3F4WFhXjllVe83i/m9V+xYgWOHj2KnTt3YseOHdi7dy8eeOCBUD0FQkSj3BTfKDeRoVBmIi6Um4gnykwEiILcxOJUUVERW716tfC9w+FgeXl57Nlnnw3jWZFwaWtrYwDYnj17GGOM6XQ6JpfL2UcffSTsc/z4cQaA7d+/P1ynSULEaDSyyZMns507d7KrrrqKrV27ljFG5SIePfzww2zJkiU+7+d5nuXk5LDnn39e2KbT6ZhSqWTvv/9+KE6RhMFNN93EfvCDH7htW758OVuxYgVjjMpFvAHAtm/fLnwv5vU/duwYA8AqKyuFfb788kvGcRxrbGwM2bkTIgblJjIQ5SbiQpmJDES5iXiizEQ8RWJuissRI1arFVVVVVi6dKmwTSKRYOnSpdi/f38Yz4yEi16vBwCkp6cDAKqqqmCz2dzKyLRp0zBu3DgqI3Fg9erVuOmmm9xef4DKRTz67LPPsGDBAtx2223IysrC3Llz8cYbbwj3nz9/Hi0tLW5lIiUlBcXFxVQmYthll12GXbt24dSpUwCAmpoa7Nu3DzfeeCMAKhfxTszrv3//fqSmpmLBggXCPkuXLoVEIkF5eXnIz5kQXyg3EU+Um4gLZSYyEOUm4okyE/EnEnKTbMRHiEIdHR1wOBzIzs52256dnY0TJ06E6axIuPA8j3Xr1uHyyy/HzJkzAQAtLS1QKBRITU112zc7OxstLS1hOEsSKh988AEOHDiAysrKQfdRuYg/586dw6uvvooNGzbg0UcfRWVlJX76059CoVCgpKREeN29/T2hMhG7HnnkERgMBkybNg1SqRQOhwO/+c1vsGLFCgCgchHnxLz+LS0tyMrKcrtfJpMhPT2dygiJKJSbyECUm4gLZSbiiXIT8USZifgTCbkpLhtGCBlo9erVOHLkCPbt2xfuUyFhVl9fj7Vr12Lnzp1ISEgI9+mQCMDzPBYsWIBnnnkGADB37lwcOXIEW7ZsQUlJSZjPjoTLtm3b8O677+K9997DjBkzcPDgQaxbtw55eXlULgghhMQsyk0EoMxEvKPcRDxRZiLRIC6n0srIyIBUKkVra6vb9tbWVuTk5ITprEg4rFmzBjt27MDXX3+NMWPGCNtzcnJgtVqh0+nc9qcyEtuqqqrQ1taGefPmQSaTQSaTYc+ePXjppZcgk8mQnZ1N5SLO5ObmYvr06W7bLr30UtTV1QGA8LrT35P48rOf/QyPPPII7rzzTsyaNQv33HMP1q9fj2effRYAlYt4J+b1z8nJGbRwtd1uR1dXF5URElEoNxEXyk3EhTIT8YZyE/FEmYn4Ewm5KS4bRhQKBebPn49du3YJ23iex65du7B48eIwnhkJFcYY1qxZg+3bt2P37t0oKChwu3/+/PmQy+VuZeTkyZOoq6ujMhLDrrnmGhw+fBgHDx4UbgsWLMCKFSuEf1O5iC+XX345Tp486bbt1KlTGD9+PACgoKAAOTk5bmXCYDCgvLycykQMM5lMkEjcq1BSqRQ8zwOgchHvxLz+ixcvhk6nQ1VVlbDP7t27wfM8iouLQ37OhPhCuYlQbiKeKDMRbyg3EU+UmYg/EZGbRrx8e5T64IMPmFKpZH/5y1/YsWPH2AMPPMBSU1NZS0tLuE+NhMCDDz7IUlJS2D//+U/W3Nws3Ewmk7DPj3/8YzZu3Di2e/du9s0337DFixezxYsXh/GsSThcddVVbO3atcL3VC7iS0VFBZPJZOw3v/kNO336NHv33XeZWq1m77zzjrDPb3/7W5aamso+/fRTdujQIbZs2TJWUFDAzGZzGM+cjKaSkhKWn5/PduzYwc6fP8/+9re/sYyMDPbzn/9c2IfKRWwzGo2surqaVVdXMwBs48aNrLq6ml24cIExJu71v+GGG9jcuXNZeXk527dvH5s8eTK76667wvWUCPGJclN8o9xExKDMRCg3EU+UmQhjkZ+b4rZhhDHGNm/ezMaNG8cUCgUrKipiZWVl4T4lEiIAvN7+/Oc/C/uYzWb20EMPsbS0NKZWq9l3v/td1tzcHL6TJmHhWcmnchF/Pv/8czZz5kymVCrZtGnT2Ouvv+52P8/z7LHHHmPZ2dlMqVSya665hp08eTJMZ0tCwWAwsLVr17Jx48axhIQENnHiRPbLX/6SWSwWYR8qF7Ht66+/9lqPKCkpYYyJe/07OzvZXXfdxRITE1lycjK77777mNFoDMOzIcQ/yk3xi3ITEYMyE2GMchNxR5mJMBb5uYljjLGRjzshhBBCCCGEEEIIIYQQQgiJfHG5xgghhBBCCCGEEEIIIYQQQuITNYwQQgghhBBCCCGEEEIIISRuUMMIIYQQQgghhBBCCCGEEELiBjWMEEIIIYQQQgghhBBCCCEkblDDCCGEEEIIIYQQQgghhBBC4gY1jBBCCCGEEEIIIYQQQgghJG5QwwghhBBCCCGEEEIIIYQQQuIGNYwQQgghhBBCCCGEEEIIISRuUMMIIYQQQgghhBBCCCGEEELiBjWMEEIIIYQQQgghhBBCCCEkblDDCCGEEEIIIYQQQgghhBBC4gY1jBBCCCGEEEIIIYQQQgghJG78fxuaEJMSB52HAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -459,52 +704,40 @@ } ], "source": [ - "if 'google.colab' in sys.modules:\n", - " !pip install gurobipy\n", - " !pip install cplex\n", - " !pip install xpress\n", - "\n", - "import gurobipy\n", - "import highspy\n", - "\n", - "installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(10, 100)\n", + "installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(8, 88)\n", "weak = FacilityLocationWeak(installation, service)\n", "strong = FacilityLocationStrong(installation, service)\n", "\n", - "for solver in [\"gurobi_direct\", \"appsi_highs\"]:\n", - " t = pc()\n", - " pyo.SolverFactory(solver).solve(weak)\n", - " t = pc() - t\n", - " X, Y, value = GetSolution(weak)\n", - " print(f\"Weak formulation solved with {solver} in {t:5.5f} seconds.\")\n", - " ShowFacilityLocation(xC, yC, xF, yF, X, Y, f\"{value:.1f}\")\n", - " t = pc()\n", - " if solver == 'gurobi_direct':\n", - " pyo.SolverFactory(solver, solver_io='python').solve(strong)\n", - " else:\n", - " pyo.SolverFactory(solver).solve(strong)\n", - " t = pc() - t\n", - " X, Y, value = GetSolution(strong)\n", - " print(f\"Strong formulation solved with {solver} in {t:5.5f} seconds.\")\n", - " ShowFacilityLocation(xC, yC, xF, yF, X, Y, f\"{value:.1f}\", model=\"strong\")" + "solver_names = [\"cplex_direct\", \"gurobi_direct\", \"xpress_direct\", \"appsi_highs\"]\n", + "solver_names = sorted(set(solver_names) & set(ListAvailableSolvers()))\n", + "\n", + "_, axs = plt.subplots(len(solver_names), 2, figsize=(20, 10))\n", + "plt.subplots_adjust(hspace=0.5)\n", + "\n", + "for i, solver_name in enumerate(solver_names):\n", + " solver = SwitchCutsOff(pyo.SolverFactory(solver_name))\n", + " ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, weak), ax=axs[i, 0])\n", + " ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, strong), ax=axs[i, 1])" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "ktcxGDIimSje" + }, "source": [ "We now run a more extensive performance comparison considering increasingly larger instances of the problem. We will see that the strong formulation is consistently faster than the weak formulation." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "id": "aPhtOddQChEG" }, "outputs": [], "source": [ - "def SolveInstances(dimensions, solvers, seed):\n", + "def SolveInstances(dimensions, solvers, seed, modify=lambda s: s):\n", " np.random.seed(seed)\n", " model = {\"weak\": FacilityLocationWeak, \"strong\": FacilityLocationStrong}\n", " df = pd.DataFrame(\n", @@ -512,92 +745,161 @@ " columns=[f\"{s}_{m}\" for s, m in it.product(solvers, model.keys())],\n", " )\n", " for n, m in tqdm(df.index):\n", - " installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(n, m)\n", + " installation, service, *_ = GenerateFacilityLocationInstance(n, m)\n", " instance = {\n", " option: model[option](installation, service) for option in model.keys()\n", " }\n", - " values = []\n", + " values = dict.fromkeys(solvers)\n", " for column in tqdm(df.columns, leave=False):\n", " solver = column[: column.rfind(\"_\")]\n", " option = column[column.rfind(\"_\") + 1 :]\n", " t = pc()\n", - " pyo.SolverFactory(solver).solve(instance[option])\n", + " modify(pyo.SolverFactory(solver)).solve(instance[option])\n", " df.at[(n, m), column] = pc() - t\n", - " _, _, v = GetSolution(instance[option])\n", - " values.append(v)\n", - " assert len(set(values)) == 1, values\n", + " *_, v = GetSolution(instance[option])\n", + " values[solver] = v\n", + " if len(set(values.values())) > 1:\n", + " print(values)\n", " return df" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "Fuo0eiU4mSje" + }, "source": [ "We solve instances with 10 to 100 facilities and 100 to 1000 customers. We then plot the run-time of the strong and weak formulations as a function of the number of facilities." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 479, + "height": 495, "referenced_widgets": [ - "1294e1e0267f43358ac99effc70128e8", - "5fb634832d144e898d43fe2e2daa3ff8", - "9afae778d42b49a293d000514b231b08", - "c5245f957ad544bd9f6433f03ec80c8c", - "b1e4298892354b85891bfb7bedae71b5", - "2b6b07a676324e7599771c3cd6816cab", - "96e13bb592014f958949550e9a50b8e7", - "8deb54a173144e97ae90cb2a0d74be6f", - "9c3d70c190984120a0dcda2fef4d5e99", - "520d17284864418d86ac64e0b6b73cab", - "c7049091f1c841c9861f389d31b8df41", - "091a1aa65e5342528d39652e260a6884", - "b925e6b7184e4770922ea82c8f2e9c57", - "0440d71f4f4f4e2da08f0f782c2f555c", - "138e95596bc24c70ab4622807cde60ea", - "142c446f870e4fe1b5e3a36c89b7f130", - "a4126c64c5ba4ca38b37f47fd246e903", - "55371f16b2a74a22b8b94757c40a2f03", - "9067a2d4cba0410cb8614e1f3de8640c", - "3731e95e109342e798ec0ebaa6cac35f", - "b68d54faa7e040809f8bc15ebd57cdbc", - "42b544df5fe34055a1833157584ab9aa", - "d19c5b8ed3c6495a8c454aa8a7651289", - "57f67ff7b8a14165905b4e16ab10d511", - "16816948aa9847e78f1c6df5abcacd9b", - "943b99de911c4f1aa632ac61cc4710b1", - "3c19141cab784881a42abbf678b16c64", - "e94d32723438448481403c36f3b8004a", - "f5a1b131fb5d40358ba9120583e7945c", - "b019a74d534640f0817ec9147225f0be", - "51b15f7e45c14600933168c0474fdcb5", - "9d671d72b81d4e6885d616765f5cd66d", - "913bd458480f4a5a9542e906191f629d", - "5afe8885e187477989e25fc18382ed6d", - "26d091601ccb4b668d4a7fc2f4213b66", - "74f52ba4788f429bbef73ffd4461f17c", - "45d3caf5dbe54265b830ec599133eeae", - "46a7460ea1e94a939ad19169fa60204a", - "fae047c7917346c5af046c878eda54a7", - "168ea24296fd4eb2887651985ffcb9d2", - "ed320a06340f49ec950b71980f60d27c", - "f39f38141dfc46c68e755164b0b3efe1", - "573e1e5b5fe54ba788b56611a9d34cb8", - "2aa58354415e4e13aa2c6cd7c2b08807" + "072163be46894e5fb2d9d09667429996", + "cd2e2ee82e564282a80e76bc9abbce69", + "77257b9d0f5043568a2bac799a6c819b", + "165d87bc12a847388d237ea630f4a8c9", + "474ff661f4a84c40bfe6f87c441e8308", + "cdd37d14626e4374a0d803cc92d42bdd", + "731431f8547b46f89b6d2e2830a4fdd7", + "6335e575f2624d6396d528e3cac6ae1f", + "e5dbd7c509cd44b59b432a0b14b890aa", + "60b4bc35757d40a5a116fa9df5190284", + "c699442d513a4094a70685f352d5468c", + "5282f70e18cc4df5ad2f549aabeb9e32", + "ba00c6dd28df48c29cad735edab10e99", + "176d4885237e4508a5e44884b79aaa26", + "f0f95d15d24b4e7da7fe94979db2e489", + "e51b92f48e5348bfaf250d7c230117e4", + "0210e96365904b709f9711521393067f", + "7cf53e1b34ee45db8432a23ac32ede32", + "0a301c0524224055960e46964f54e2f5", + "c65dee8ab2dd48e08e91f71a97c7c240", + "0039195756be48469c78c89c309c92c5", + "d4cbe258db7f4b7e8dbf8f7f579dfb94", + "fac4728a5f3f4e93947154d87bc24f49", + "0af04d4a53f143a4bf6b260e21124098", + "c445b382d7434495a63bccfcd397bb6c", + "58a18087c376431c84adc35eeddc1411", + "9127974355fa44b09e35fb3c9a0ef86b", + "ef3c798fbc094460ac7efeb6e8759af6", + "6847d30161354479b72b3d5cb96a9583", + "c8dba2a8629d408aa2bb4010753c2fcf", + "6b4cf0fc34004c8c82398fb43ba2dbca", + "cd1f6a2c515641ddac388ec112632c52", + "21146e302ea644779302ca9ceefdf876", + "c7aae13494d44f33a22b2113dd12812a", + "4cd3df9aac8041d4b2aeaced5e8c47f7", + "ee3469ee85834698835a54a3ac2b0956", + "264d9ba8d8ed40be89d44dcb6bc33aee", + "0d4417f042ef49549d069bb829fce678", + "467d2af922954c7c9743fa4b196d70a3", + "9a17ae9b0ed74628a73d345592f3067b", + "bfbcefb4f223464abdbfefdf83dd8edc", + "605413d957af4a7f8dc80c1fcc4bcef0", + "83e4a6ff48f2495e95e4183afafd9466", + "31440c4c479d44b1a87ff8dd5d70ab96", + "8f2a530dba02479a987a038a5c8c5a93", + "e52bfecd1d514aa4886233163d78d8ea", + "679832d3146d4cfa80b12460d797960f", + "640afb7ef22a4a28a41dcbae77e864e3", + "29b918fdb4a545f48498a665d15aa557", + "2c7fd7cea38a4b6ebabf7f9f35c3d241", + "b9c73d15781a4548824a671183943c8e", + "ed9c9243a92545559bb5ef7f3f495368", + "eed1f8dac1974df8aa7a71420f5414bb", + "f0913472ebf645a7b2c37e253c384a2e", + "2e200afece75499eb5ac8fccaaf2aa78", + "02e4ad5bd56b4a35aed597f3f635d585", + "78ef2f297ae4460da045363bb6092ed3", + "137fac635ab041258a87221dd40d70e9", + "6bef2d23dbc446caa12c04b567aea01c", + "334526415ffb4a3093a174015acc53d7", + "fa4069965d534138ac847d5260b1d5bc", + "cb28ea11229048639cc44aede8da2acb", + "09a5b70127d748a3a976acf9040bb7ed", + "5346c4066dc847bb8682f0170ef2e4fe", + "e2a70d7f926d4b05a3dd73dec602c4cd", + "ed287d7cdb8e4f09811dd5b8645a8d06", + "a9765b6554c84ad4b962f7cd39282bb7", + "96ff01f793f84fdeba69b91246307897", + "f0c70021d6864b7b863708a7585285d4", + "93dcdf6814f741188da28a72a8835cd2", + "00c04e53247c4fb797e2fcb348c3bf74", + "ea6f7a4915814433865c6905d4843057", + "5c08e1a9afc240debbaaf9536338948e", + "7a729f255a8b44f3a290fa6842a954de", + "228b0aaf0f454864b5668bde4a6e0751", + "8a5e9cff650e4e90a4f37a67e6722846", + "9ab7930ae7bc4b589fd109d4151959e4", + "789de8c9e2cc49088ad9b308e4f47a00", + "e2bf7fae58c145c39794a6eb277cd2bc", + "0600de01691649d3be4eed2c39d760c2", + "e6b404556e6f4d50833bd404bcaa1f32", + "59d580cc363b4a999494937df36a1ff0", + "40a49f03ad6d4e57a132a59103c07782", + "c39fb6a39fb54c488f67c0841804e6a2", + "27bc2478a1494353b59ef30dc6c4c04c", + "498a59a1827d4f3c81705eb9df57d051", + "b763b174fb764631bd4c81bdbb0ef0ae", + "c8912e8284a34bc89863c43c47d218be", + "607c82b6ff22460397704afb7302c4ad", + "f576af6969ba4aa693a91b439453eaaa", + "d77c5d6f82ad486e9f2dbe2570f9f570", + "98694874a8e249d78cde7c8d811747a7", + "ebf1f8123c7f4e289a98dab51938446d", + "c6f7e46119fd43fda31a181407bf2f6e", + "5c299f5d2edd4d7182871aa103ad63ee", + "a0da15cab04c40cabde8fd5b7d301777", + "47d54bd6957c43dfa689a179c5f3a29c", + "1cf5564591574664878bed9e60176bb3", + "b278858c80b740e1a9dd1f06c8eebd7a", + "48819bcad9fa44d89a4436fb21542d4b", + "cbe8a1af6e90448d9ba465f919dbb8f5", + "b989b18af609490d9f9e1b58961f711d", + "28e45e0536d54afeb6ce0213a5902e51", + "66843e746cb84d2ab2045423d955b8d0", + "28e4a9b3aa714645b133cb0c8d19fbb4", + "4b118cfb1ca948d6a13844eee6771e83", + "335e32a1bdb14773b77219dce136d84b", + "1073687e38144cbf959a02c7a1edc0ef", + "e3bff2ba80814042af7b394ef751ed31", + "2024a6b35a8e49ed956dc6577e899ce6" ] }, "id": "JBsS9otSAFxp", - "outputId": "ca4c985b-e3b3-4405-8eeb-f79314d5d529" + "outputId": "1df9de62-0e85-439c-df35-a7023cd07998" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9c61d5cd36a940c99878b0e1a3df80d3", + "model_id": "072163be46894e5fb2d9d09667429996", "version_major": 2, "version_minor": 0 }, @@ -611,271 +913,5787 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e6b7ea4df20a4a848eb5afb9ae4bffce", + "model_id": "5282f70e18cc4df5ad2f549aabeb9e32", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 0%| | 0/6 [00:00" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApYAAAGsCAYAAABn++dcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlSklEQVR4nO3dd3wUdf7H8ddueg9pEJKA9BaaNClSBAsqCurZwIb1DvtZjt+p2EG9U+/sooBgL4Ccig0EEaX3EpqhhUCAQHrf+f2xsBBI27C7s0nez8cjj+zOzO73s98MyZuZ+X7HYhiGgYiIiIjIGbKaXYCIiIiI1A8KliIiIiLiEgqWIiIiIuISCpYiIiIi4hIKliIiIiLiEgqWIiIiIuISCpYiIiIi4hK+nm7QZrOxb98+wsLCsFgsnm5eRERERKphGAY5OTk0bdoUq7XmxyE9Hiz37dtHUlKSp5sVERERESft2bOHxMTEGm/v8WAZFhYG2AsNDw/3dPMiIiIiUo3s7GySkpIcua2mPB4sj5/+Dg8PV7AUERER8WLOXraowTsiIiIi4hIKliIiIiLiEgqWIiIiIuISHr/GsiZsNhvFxcVmlyFu5ufnh4+Pj9lliIiIiIt4XbAsLi4mNTUVm81mdiniAZGRkTRp0kRzmoqIiNQDXhUsDcMgPT0dHx8fkpKSnJqQU+oWwzDIz88nIyMDgPj4eJMrEhERkTPlVcGytLSU/Px8mjZtSnBwsNnliJsFBQUBkJGRQVxcnE6Li4iI1HFedUiwrKwMAH9/f5MrEU85/h+IkpISkysRERGRM+VVwfI4XW/XcOhnLSIiUn94ZbAUERERkbpHwVJEREREXELB0s127tyJxWJhzZo1ZpfiEvXt84iIiIjrKFiKiIiIiEsoWIqIiIh4sYM5RXy2fDc2m2F2KdXy6mBpGAb5xaWmfBmGcz88m83Giy++SOvWrQkICKBZs2Y899xzjvUpKSn069ePwMBAkpOTWbhwYbnXb9y4kUsvvZTw8HDCwsI499xz2bFjR5VtbtiwAavVysGDBwHIzMzEarVy7bXXOrZ59tlnGTBgQLnXDB8+nNDQUBo3bswNN9zAoUOHHOu///57BgwYQGRkJNHR0Vx66aVV1lFWVsbYsWNp3749u3fvrllniYiISI09/91mHv1qPf+cvcHsUqrlVROkn6qgpIyOT/xgStubnr6QYP+ad8/48eOZPHkyr7zyCgMGDCA9PZ2UlBTH+ocffphXX32Vjh078vLLLzNixAhSU1OJjo4mLS2NgQMHMnjwYObPn094eDiLFy+mtLS0yjY7depEdHQ0Cxcu5KqrrmLRokWO58ctXLiQwYMHA3D06FHOO+88brvtNl555RUKCgp49NFHufrqq5k/fz4AeXl5PPjgg3Tp0oXc3FyeeOIJRo0axZo1a067E1JRURHXXXcdO3fuZNGiRcTGxta4v0RERKR6f+w4zKzVaVgscF3vJLPLqZZXB8u6Iicnh//85z+8/vrr3HTTTQC0atWKAQMGsHPnTgDuvvturrzySgDeeustvv/+e95//30eeeQR3njjDSIiIvj000/x8/MDoG3bttW2a7FYGDhwIAsWLOCqq65iwYIF3HLLLbz33nukpKTQqlUrfv/9dx555BEAXn/9dbp3787zzz/veI8pU6aQlJTE1q1badu2raPGk9fHxsayadMmkpOTHctzc3O55JJLKCoq4pdffiEiIqL2HSgiIiKnKS618fjX9qOUY/o0p0tipLkF1YBXB8sgPx82PX2haW3X1ObNmykqKmLo0KGVbtO3b1/HY19fX3r27MnmzZsBWLNmDeeee64jVDpj0KBBvPvuu4D96OTzzz/P1q1bWbBgAZmZmZSUlNC/f38A1q5dyy+//EJoaOhp77Njxw7atm3Ltm3beOKJJ1i6dCmHDh3CZrMBsHv37nLB8rrrriMxMZH58+c7bs0oIiIirvPeb3+yPSOXmFB/Hrqwndnl1IhXB0uLxeLU6WiznGmwOpPXDx48mPvvv59t27axadMmBgwYQEpKCgsWLODIkSP07NnTcdvE3NxcRowYwQsvvHDa+8THxwMwYsQImjdvzuTJk2natCk2m43k5GSKi4vLbX/xxRfz4Ycf8scff3DeeefVun4RERE53d4j+fx33jYA/nlJByKCnD/4ZAavHrxTV7Rp04agoCDmzZtX6TZLlixxPC4tLWXlypV06NABgC5durBo0aJa3S+7c+fONGrUiGeffZZu3boRGhrK4MGDWbhwIQsWLHBcXwlw9tlns3HjRs466yxat25d7iskJITDhw+zZcsWHnvsMYYOHUqHDh04cuRIhe3+9a9/ZdKkSVx22WWnDUQSERGRM/PU/zZRWGKjT4soRnZLMLucGlOwdIHAwEAeffRRHnnkEaZPn86OHTtYsmQJ77//vmObN954g1mzZpGSksK4ceM4cuQIY8eOBezXX2ZnZ3PttdeyYsUKtm3bxowZM9iyZUu1bR+/zvKjjz5yhMguXbpQVFTEvHnzGDRokGPbcePGkZmZyXXXXcfy5cvZsWMHP/zwA7fccgtlZWU0atSI6Oho3n33XbZv3878+fN58MEHK237nnvu4dlnn+XSSy/lt99+q2XviYiIyMl+3nSAnzYdwNdq4dmRyVgsFrNLqjEFSxd5/PHH+fvf/84TTzxBhw4duOaaa8jIyHCsnzRpEpMmTaJr16789ttvzJkzh5iYGACio6OZP38+ubm5DBo0iB49ejB58uQaX3M5aNAgysrKHMHSarUycOBALBaL4/pKgKZNm7J48WLKysq44IIL6Ny5M/fffz+RkZFYrVasViuffvopK1euJDk5mQceeICXXnqpyrbvv/9+nnrqKS6++GJ+//13J3tNRERETlZQXMaEORsBuH1gS9o0DjO5IudYDGcnbDxD2dnZREREkJWVRXh4eLl1hYWFpKam0qJFCwIDAz1ZlphEP3MREZETXvohhTd+2UFCZBA/PTjQtLEmVeW1quiIpYiIiIgX2J6Rw7u//gnAhBEd68QA5lMpWHq50NDQSr8WLVpkdnkiIiLiAoZh8PjsjZSUGQxtH8f5HRubXVKt1L0o3MCsWbOm0nUJCXVnlJiIiIhUbs7affzx52EC/aw8eVmnOjVg52QKll6udevWZpcgIiIibpRVUMIz39hvmnLPeW1Iigo2uaLac/pUeFpaGmPGjCE6OpqgoCA6d+7MihUr3FGbiIiISL338o9bOJRbRMvYEG47t4XZ5ZwRp45YHjlyhP79+zNkyBDmzp1LbGws27Zto1GjRu6qT0RERKTeWr83ixlLdgHw7OXJBPjW/JbS3sipYPnCCy+QlJTE1KlTHctatKjbyVpERETEDGU2g8dmr8dmwOXdmtKvdYzZJZ0xp06Fz5kzh549e/KXv/yFuLg4unfvzuTJk6t8TVFREdnZ2eW+RERERBq6T5btZu3eLMICfPnnJR3MLsclnAqWf/75J2+99RZt2rThhx9+4K9//Sv33nsvH3zwQaWvmThxIhEREY6vpKSkMy5aREREpC47lFvEi9+nAPDQhe2IC6sfNwlxKljabDbOPvtsnn/+ebp3784dd9zB7bffzttvv13pa8aPH09WVpbja8+ePWdcdF2yc+dOLBZLldMGiYiISMPy/HebyS4spVPTcMac09zsclzGqWAZHx9Px44dyy3r0KEDu3fvrvQ1AQEBhIeHl/sSz3jyySfp1q2b2WWIiIjISZb8eZiZq9KwWOC5UZ3xsdbNOSsr4lSw7N+/P1u2bCm3bOvWrTRvXn+SdkNUUlJidgkiIiINQkmZjcdnbwDg+t7N6JYUaW5BLuZUsHzggQdYsmQJzz//PNu3b+fjjz/m3XffZdy4ce6pzjCgOM+cL8NwqlSbzcaLL75I69atCQgIoFmzZjz33HOO9SkpKfTr14/AwECSk5NZuHBhuddv3LiRSy+9lPDwcMLCwjj33HPZsWNHte0uWLCA3r17ExISQmRkJP3792fXrl1MmzaNp556irVr12KxWLBYLEybNg0Ai8XCW2+9xWWXXUZISIijzrfeeotWrVrh7+9Pu3btmDFjRrm2LBYL7733HqNGjSI4OJg2bdowZ86cctvMmTOHNm3aEBgYyJAhQ/jggw+wWCwcPXrUqf4UERGpj97/LZVtGblEh/jzyIXtzS7H5ZyabqhXr17MmjWL8ePH8/TTT9OiRQteffVVRo8e7Z7qSvLh+abuee/q/N8+8A+p8ebjx49n8uTJvPLKKwwYMID09HRSUlIc6x9++GFeffVVOnbsyMsvv8yIESNITU0lOjqatLQ0Bg4cyODBg5k/fz7h4eEsXryY0tLSKtssLS1l5MiR3H777XzyyScUFxezbNkyLBYL11xzDRs2bOD777/n559/BiAiIsLx2ieffJJJkybx6quv4uvry6xZs7jvvvt49dVXGTZsGN988w233HILiYmJDBkyxPG6p556ihdffJGXXnqJ1157jdGjR7Nr1y6ioqJITU3lqquu4r777uO2225j9erVPPTQQzXuQxERkfos7WgB//l5GwDjL+5ARLCfyRW5nsUwnDw0d4ays7OJiIggKyvrtOstCwsLSU1NpUWLFgQGBtqPHNaBYJmTk0NsbCyvv/46t912W7l1O3fupEWLFkyaNIlHH30UsAfCFi1acM899/DII4/wf//3f3z66ads2bIFP7+a72SZmZlER0ezYMECBg0adNr6J598ktmzZ582cMhisXD//ffzyiuvOJb179+fTp068e677zqWXX311eTl5fHtt986XvfYY4/xzDPPAJCXl0doaChz587loosu4h//+Afffvst69evd7zHY489xnPPPceRI0eIjIw8rcbTfuYiIiL11J0zVvDDxgP0PiuKz+48x6vvB15VXquKd98r3C/YHvDMaruGNm/eTFFREUOHDq10m759+zoe+/r60rNnTzZvtt8XdM2aNZx77rlOhUqAqKgobr75Zi688ELOP/98hg0bxtVXX018fHy1r+3Zs+dpn+GOO+4ot6x///785z//KbesS5cujschISGEh4eTkZEBwJYtW+jVq1e57Xv37u3UZxIREamP5qcc4IeNB/C1WnhmZLJXh8oz4fS9wj3KYrEfNTTjy4kfeFBQ0Bl9zDN5/dSpU/njjz/o168fn332GW3btmXJkiXVvi4kpOan+U92avi1WCzYbLZavZeIiEhDUFBcxhNfbwTg1gEtaNckzOSK3Me7g2Ud0aZNG4KCgpg3b16l25wc9kpLS1m5ciUdOthn2e/SpQuLFi2q9ejs7t27M378eH7//XeSk5P5+OOPAfD396esrKxG79GhQwcWL15cbtnixYtPm16qKu3atWPFihXlli1fvrzGrxcREamP3lywnb1HCmgaEci9Q9uYXY5bKVi6QGBgII8++iiPPPII06dPZ8eOHSxZsoT333/fsc0bb7zBrFmzSElJYdy4cRw5coSxY8cCcPfdd5Odnc21117LihUr2LZtGzNmzDhtaqdTpaamMn78eP744w927drFjz/+yLZt2xyB9ayzziI1NZU1a9Zw6NAhioqKKn2vhx9+mGnTpvHWW2+xbds2Xn75ZWbOnOnU4Js777yTlJQUHn30UbZu3crnn39ebiS6iIhIQ7PjYC5vL7TP8vLEiE6EBHj3VYhnSsHSRR5//HH+/ve/88QTT9ChQweuueYax7WHAJMmTWLSpEl07dqV3377jTlz5hATY7/ZfHR0NPPnzyc3N5dBgwbRo0cPJk+eXO01l8HBwaSkpHDllVfStm1b7rjjDsaNG8edd94JwJVXXslFF13EkCFDiI2N5ZNPPqn0vUaOHMl//vMf/vWvf9GpUyfeeecdpk6dyuDBg2vcBy1atODLL79k5syZdOnShbfeeot//vOfgH2ifBERkYbEMAye+HoDJWUGQ9rFcmGnxmaX5HbePSpc6rznnnuOt99+u9JbeepnLiIi9dWctfu495PVBPha+emBQTSLrvnAYLPVz1HhUue8+eab9OrVi+joaBYvXsxLL73E3XffbXZZIiIiHpVdWMIz32wC4O4hretUqDwTCpZeLjQ0tNJ1c+fO5dxzz/VgNdXbtm0bzz77LJmZmTRr1oy///3vjB8/3uyyREREPOrlH7dyMKeIFjEh3DGopdnleIyCpZc7dXLzkyUkJHiukBp65ZVXyk28LiIi0tBsSMti+h87AXjm8mQCfH3MLciDFCy9XOvWrc0uQURERGrIZjN4bPYGbAaM6NqUAW1izC7Jo7xyVLiHxxOJifSzFhGR+uTT5XtYs+cooQG+PHZJB7PL8TivCpY+PvZDxcXFxSZXIp6Sn58PnH5HHxERkbrmcG4RL3yfAsCD57elcXjDm+3Eq06F+/r6EhwczMGDB/Hz88Nq9arcKy5kGAb5+flkZGQQGRnp+E+FiIhIXTVpbgpZBSV0jA/nxr7NzS7HFF4VLC0WC/Hx8aSmprJr1y6zyxEPiIyMpEmTJmaXISIickaW78zki5V7AXh2VDK+Pg3z4JhXBUuw39+6TZs2Oh3eAPj5+elIpYiI1HklZTYem7UBgOt6J3F2s0YmV2QerwuWAFarVXdhERERkTph2uKdbDmQQ1SIP49c2N7sckzVMI/TioiIiLjAvqMFvPLzVgD+Mbw9jUL8Ta7IXAqWIiIiIrX0zDebyC8uo2fzRlx1dqLZ5ZhOwVJERESkFn7ZksHcDfvxsVp4ZmQyVqvF7JJMp2ApIiIi4qTCkjImfL0RgLH9z6JDfLjJFXkHBUsRERERJ725YAe7M/NpEh7IfcPaml2O11CwFBEREXFC6qE83l6wA4AnRnQkNMArJ9kxhYKliIiISA0ZhsETX2+guMzGoLaxDE/WTT5OpmApIiIiUkPfrk9n0bZD+PtaeeqyTlgsGrBzMgVLERERkRrIKSzh6f9tAuBvg1txVkyIyRV5HwVLERERkRp45adtZOQUcVZ0MHcNamV2OV5JwVJERESkGhv3ZTHt91QAnr48mUA/H5Mr8k4KliIiIiJVsNkMHp+9AZsBl3SOZ2DbWLNL8loKliIiIiJV+HzFHlbtPkqIvw+PX9rR7HK8moKliIiISCUy84qZ9H0KAA+c35YmEYEmV+TdFCxFREREKvHC3BSO5pfQvkkYN/c7y+xyvJ6CpYiIiEgFVuzM5LMVewB4blQyvj6KTdVRD4mIiIicorTMxmOzNwBwTc8kejSPMrmiukHBUkREROQU037fScr+HCKD/Xh0eHuzy6kzFCxFRERETpKeVcArP20F4B8XtScqxN/kiuoOBUsRERGRkzz7zWbyiss4u1kkV/dMMrucOkXBUkREROSYhVsP8u36dKwWeHZkZ6xWi9kl1SkKliIiIiJAYUkZE762D9i5uV8LOjYNN7miukfBUkRERAR4e+EOdh7Op3F4AA+c38bscuokBUsRERFp8HYeyuPNBTsAePzSjoQF+plcUd2kYCkiIiINmmEYPDFnI8WlNs5tE8MlnePNLqnOUrAUERGRBm3uhv38uvUg/j5Wnr48GYtFA3ZqS8FSREREGqzcolKe/t8mAO4a3IoWMSEmV1S3KViKiIhIg/XqT1vZn11Is6hg/ja4ldnl1HkKliIiItIgbU7PZurvOwF46vJOBPr5mFtQPaBgKSIiIg2OzWbw2OwNlNkMhic3YUi7OLNLqhcULEVERKTB+XLlXlbuOkKwvw+PX9rR7HLqDQVLERERaVCO5BUzce5mAB4Y1pamkUEmV1R/OBUsn3zySSwWS7mv9u3bu6s2EREREZd78YcUjuSX0K5xGDf3P8vscuoVX2df0KlTJ37++ecTb+Dr9FuIiIiImGLV7iN8smwPAM+OSsbPRydvXcnpVOjr60uTJk1qvH1RURFFRUWO59nZ2c42KSIiInLGSsts/HPWBgCu6pFIr7OiTK6o/nE6pm/bto2mTZvSsmVLRo8eze7du6vcfuLEiURERDi+kpKSal2siIiISG1N/2MXm9OziQjyY/xwXcrnDhbDMIyabjx37lxyc3Np164d6enpPPXUU6SlpbFhwwbCwsIqfE1FRyyTkpLIysoiPDz8zD+BiIiISDUOZBcy9N8LyS0q5flRnbm+TzOzS/Jq2dnZREREOJ3XnDoVPnz4cMfjLl260KdPH5o3b87nn3/OrbfeWuFrAgICCAgIcKYZEREREZd65ptN5BaV0i0pkmt76eypu5zRFauRkZG0bduW7du3u6oeEREREZdatO0g36xLx2qBZ0cmY7VazC6p3jqjYJmbm8uOHTuIj493VT0iIiIiLlNUWsYTX28E4Ma+Z5GcEGFyRfWbU8HyoYceYuHChezcuZPff/+dUaNG4ePjw3XXXeeu+kRERERq7Z2Ff5J6KI/YsAAevKCt2eXUe05dY7l3716uu+46Dh8+TGxsLAMGDGDJkiXExsa6qz4RERGRWtl1OI/Xf7Ffrvf4pR0JD/QzuaL6z6lg+emnn7qrDhERERGXMQyDJ+dspLjURv/W0Yzoosv2PEHTzYuIiEi988PG/fyy5SD+PlaevjwZi0UDdjxBwVJERETqlbyiUp763yYA7hzUklaxoSZX1HAoWIqIiEi98t9520jPKiQpKohxQ1qbXU6DomApIiIi9caW/Tm8/1sqAE9d1olAPx+TK2pYFCxFRESkXjAMg8dmr6fUZnBhp8ac176x2SU1OAqWIiIiUi98tSqN5TuPEOTnwxMjOpldToOkYCkiIiJ13tH8Yp7/bjMA9w1rQ0JkkMkVNUwKliIiIlLnvfjDFjLzimkTF8rY/i3MLqfBUrAUERGROm317iN8smw3AM+OTMbfV/HGLOp5ERERqbNKy2w8NnsDhgFXnJ1An5bRZpfUoClYioiISJ314ZJdbNyXTXigL/93cQezy2nwFCxFRESkTsrILuTfP24F4JGL2hMTGmByRaJgKSIiInXSs99uJqeolK6JEVzXu5nZ5QgKliIiIlIHLd5+iDlr92G1wLMjO+NjtZhdkqBgKSIiInVMUWkZj3+9AYAbzmlO58QIkyuS4xQsRUREpE6Z/Ouf/Hkwj5jQAB68oJ3Z5chJFCxFRESkztiTmc9r87cD8NglHYgI8jO5IjmZgqWIiIjUCYZhMGHORopKbfRtGc3l3ZqaXZKcQsFSRERE6oQfNx1gfkoGfj4WnhnZCYtFA3a8jYKliIiIeL384lKemrMRgNvPbUnruDCTK5KKKFiKiIiI1/vvvO3syyokITKIe85rY3Y5UgkFSxEREfFqWw/k8N6iPwF46rJOBPn7mFyRVEbBUkRERLyWYRg8NnsDpTaDYR0aM6xjY7NLkiooWIqIiIjXmrU6jWWpmQT6WZkwoqPZ5Ug1FCxFRETEK2Xll/Dct5sBuHdoG5Kigk2uSKqjYCkiIiJe6aUfUzicV0yr2BBuG9DS7HKkBhQsRURExOus3XOUj5buBuCZkcn4+yqy1AX6KYmIiIhXKbPZB+wYBozqnkC/VjFmlyQ1pGApIiIiXuWjpbtYn5ZFWKAv4y9ub3Y54gQFSxEREfEaGTmFvPTDFgAevrAdcWGBJlckzlCwFBEREa8x8bsUcgpL6ZwQweg+zc0uR5ykYCkiIiJe4fcdh5i1Og2LBZ4dmYyP1WJ2SeIkBUsREREx3eHcIh6btQGA0X2a0TUp0tyCpFYULEVERMRUezLzuertP/jzUB6xYQE8fIEG7NRVvmYXICIiIg3Xxn1Z3Dx1OQdzikiIDGL6rb2JCPYzuyypJQVLERERMcXv2w9xx4yV5BaV0r5JGB+M7U3jcI0Cr8sULEVERMTjvlm3jwc/W0txmY1zWkbx7o09CQ/Ukcq6TsFSREREPGra4lSe+mYThgEXd27Cy1d3I9DPx+yyxAUULEVERMQjDMPgxR+28NaCHQDc2Lc5E0Z00rRC9YiCpYiIiLhdSZmNf3y1nq9W7QXsd9X52+BWWCwKlfWJgqWIiIi4VX5xKeM+WsUvWw7iY7UwcVRnru6VZHZZ4gYKliIiIuI2mXnFjJ22nDV7jhLoZ+WN689maIfGZpclbqJgKSIiIm6xJzOfm6Yu48+DeUQG+/H+Tb3o0byR2WWJGylYioiIiMttTs/mpinLyDg28fkHY3vROi7M7LLEzRQsRURExKX+2HGYO6avIKeolHaN7ROfN4nQxOcNgYKliIiIuMx369O5/9M1FJfZ6N0iisk39iQiSBOfNxQKliIiIuIS0//YyYQ5GzEMuKhTE169VhOfNzQKliIiInJGDMPg3z9u5fVftgMwuk8znr48WROfN0DWM3nxpEmTsFgs3H///S4qR0REROqS0jIbj361zhEqHzy/Lc+OVKhsqGp9xHL58uW88847dOnSxZX1iIiISB1RUFzG3R+vYl5KBlYLPDeqM9f1bmZ2WWKiWh2xzM3NZfTo0UyePJlGjaqej6qoqIjs7OxyXyIiIlK3HckrZvR7S5iXkkGAr5W3x/RQqJTaBctx48ZxySWXMGzYsGq3nThxIhEREY6vpCTdwklERKQuSztawFVv/86q3UeJCPLjo9v6cEGnJmaXJV7A6VPhn376KatWrWL58uU12n78+PE8+OCDjufZ2dkKlyIiInVUyn77xOcHsouIjwhk+tjetGmsic/FzqlguWfPHu677z5++uknAgNrNtFpQEAAAQEBtSpOREREvMfSPw9z2/QV5BSW0rZxKB+M7U18RJDZZYkXsRiGYdR049mzZzNq1Ch8fE7MSVVWVobFYsFqtVJUVFRuXUWys7OJiIggKyuL8PDw2lcuIiIiHvP9hv3c++lqiktt9DqrEe/d2IuIYE18Xl/VNq85dcRy6NChrF+/vtyyW265hfbt2/Poo49WGypFRESk7vlwyS6e+HoDNgPO79iY167rronPpUJOBcuwsDCSk5PLLQsJCSE6Ovq05SIiIlK3GYbBKz9t5b/z7XNUXte7Gc9c3glfnzOaBlvqMd15R0RERE5TWmbj8a838MmyPQDcN7QN9w9rg8Wiic+lcmccLBcsWOCCMkRERMRbFJaUcffHq/l58wGsFnj68mTGnNPc7LKkDtARSxEREXE4ml/MrR+sYOWuI/j7Wvnvtd25KFlzVErNKFiKiIgIAPuOFnDTlGVsy8glPNCX927qRe8WUWaXJXWIgqWIiIiw9UAON01ZRnpWIU3CA/lgbG/aNdHE5+IcBUsREZEGbsXOTMZOW052YSmt4+wTnydEauJzcZ7mCxAREWnAfty4n9HvLSW7sJSzm0Xy5V19FSq9jWHAvjVQlGN2JdXSEUsREZEG6uOlu3ls9npsBgzrEMdr151NkL8mPvcaBzbBxpmwYSZk7oCRb0O368yuqkoKliIiIg2MYRj8Z942Xv15GwDX9EziuVHJmvjcGxzaZg+SG2fCwZQTy30DISfdvLpqSMFSRESkASmzGTz+9QY+XrobgHvOa82D57fVxOdmykyFjbPsgfLASbfO9vGH1sOg0xXQ7iII8P7BVAqWIiIiDURhSRn3frKaHzcdwGKBpy/rxA19zzK7rIYpa++JMLlv1YnlVl9oOQSSr4B2F0NQpGkl1oaCpYiISAOQlV/C7dNXsGxnJv6+Vv5zTTeGd443u6yGJWc/bJxtP829Z+mJ5RYrnHWuPUx2uAyC6+7coQqWIiIi9Vx6VgE3T1nOlgM5hAX6MvnGnpzTMtrsshqGvEOw6Wv70cmdvwHGsRUWaN4POo2CjpdDaJyZVbqMgqWIiEg9tj0jhxvfX8a+rEIahwfwwdjetG8SbnZZ9Vt+JqR8Yz/NnforGGUn1iX2sl8z2WkkhDc1rUR3UbAUERGpp1buymTstBVkFZTQMjaE6WN7k9go2Oyy6qfCbNjynT1M7pgPtpIT6+K72U9zdxoFkc1MK9ETFCxFRETqoZ83HeDuT1ZRWGKje7NIptzUi0Yh/maXVb8U58GWufbT3Nt+grKiE+viOp0Ik9GtzKvRwxQsRURE6pnPlu/m/2ZtoMxmcF77OF6/vjvB/vqT7xIlBfYQuXEmbPkeSgtOrItpaz/NnXwFxLYzr0YTaS8TERGpJwzD4PX52/n3T1sB+EuPRJ6/ojN+mvj8zJQW2U9vb5hpP91dnHtiXaOzIPlKe6Bs3Aka+HygCpYiIiL1QJnN4Mk5G5mxZBcA44a04qEL2mni89oqK4HUhfYwufkbKMo6sS4iyT74ptMV0LR7gw+TJ1OwFBERqeMKS8p44LM1zN2wH4sFJlzakZv7tzC7rLrHVmafEmjjTNg0BwoyT6wLbWK/XjL5CkjoCVYdBa6IgqWIiEgdllVQwh3TV7A0NRN/HyuvXNONS7po4vMas9nsk5Vv+Mo+32Rexol1wTH2OSaTr4BmfcHqY16ddYSCpYiISB11ILuQm6YsI2V/DmEBvrxzYw/6tYoxuyzvZxiQttJ+mnvjLMjZd2JdUCPoMMJ+mvusc8FHUckZ6i0REZE6aHtGLjdNWUba0QJiwwL44JbedGyqic8rZRiQvtZ+mnvjLDi6+8S6gHBof4l9EE7LweDjZ1qZdZ2CpYiIiCdl/mm/fs8/xH7nlbB4+/eQ2Bqfal21+wi3TlvOkfwSWsaE8MHY3iRFaeLzCh3YZA+TG2ZC5o4Ty/1CoN1w+2nuVkPBL9C8GusRBUsRERFPyE6HX1+EVdPBVnr6eosPhDaG8PgTYTPs+ON4CGsK4fHMT83nbx/ZJz7vmhTJlJt6Eh0a4PnP480ObTt2mnsmHEw5sdw3ENpcYD8y2eYC8FcYdzUFSxEREXfKz4TFr8LSd09Mpt1ioP30a/Y+yEmH3AP2+0nn7Ct/vV8FehlBfGNpRFFkY9o1boPvkp8codPxPSSu4V0bmJlqP8W9YSYcWH9iuY8/tB5mv2ay3UUQEGZejQ1AA9vrREREPKQoF5a+BYtfOzEHYtI5MGwCNO9XftuyUvto5Jx0+5HNnPQToTN7H0ZOOsVH0ggoyyPMUkCYpQAK98GG1RW3bbHaw+XJYbOio6AB4XV7DsasvSfC5L5VJ5ZbfaHlEPtp7nYXQ1CkaSU2NAqWIiIirlRaBCunwa8vQd5B+7LGyTD0Cfvp14qCnI+vPfSFN4WE8qvKbAZP/28jH+zdRQgF3Nc7jNu7BWDJ2V8ufJKz3/44Z7/96GfufvsXlYRPsF9nWM2pd0Ibe9dglpz9sHG2/TT3nqUnllus9lHcyVdAh8sgOMq0EhsyBUsRERFXsJXBus/gl4mQdWzEcaMWcN5j9tOwtZhQu6i0jAc/W8u369OxWODvl/Rg7IBqJj63ldkDbUWh07Es3X4UtSQPDm+3f1XKAqFxFYfOkwNpYIT7jn7mHbLPMblxln0Cc4wTtTXvZ5+4vOPl9jrFVAqWIiIiZ8IwIOUbmP/siYEiYfEw6BHofkOtj/ZlF9onPl/yZyZ+PhZevrobI7o2rf6FVh8Ia2L/qkpx3onT7qeceneEz9z99oFGuQfsX+lrKn8/v+Bj7Z4aOk9aFtoEfP1r1gH5mfZ+3TATUn+1H4U9LrGXPax3GmlvQ7yGgqWIiEht/bkA5j1tn2wbIDASzn0Qet8BfkG1ftuM7EJumrqczenZhAb48u4NPejX2sUTn/uHQExr+1dlbDbIP1Rx6Dw5kBYehZJ8+1RKmX9W3W5IbMWhM+zY8wMb7GFyx3ywlZx4XXw3+2nuTqMgspkrekDcQMFSRETcYuuBHNbsPkpseABxYQE0Dg8kKtgfq7UODxY5bu9KmPcUpC60P/cLgb5/g3732E8Jn4E/D+Zy45Rl7D1SQExoANNu6UVywpm9Z61ZrfbTy6FxQLfKtyvOPyloVnQU9NhzW4n9NH3eQdi/rvr24zqdCJPRrVz1qcSNFCxFRMTl5m0+wJ0zVlJqM8ot97VaiA2zB8248EBH4Dz+PfbY9+gQLw2gGSkw/xn7KVqwT2XTcyyc+3eXXN+3Zs9Rxk5bTmZeMWdFBzN9bB+aRdeBuRb9g+3Br6rwZ7NB/uGqT73npNv7seNIe6CMbeexjyCuoWApIiIu9fuOQ/z1o1WU2gw6xIdjtcCB7CIO5xVRajNIzyokPasQyKr0PXysFmJDA4gLDyAuLJC48AAaH/9+0rLokAB8PBFAj+yCBZNg3adg2OwjkLteB4P/4bLTsr9syeBvH66ioKSMLokRTLm5FzH1aeJzqxVCY+1f8V3MrkbcRMFSRERcZtXuI9z2wQqKS22c37Exb44+Gz8f+2jo0jIbh3KLycgp5EB2EQeyC8nIKSLj2Pfjzw/lFlFmM9ifXcj+7OoDaEyoP3FhgfbAWcFR0LiwAKJDaxlAczPg13/BiiknrvfrMAKGPAZx7WvRQxX7auVeHv1qHaU2g4FtY3lr9NmEBOhPtNQ92mtFRMQlNu3L5uYpy8gvLuPcNjG8fn13R6gE8PWx0iQikCYRVd+TubTMxuG8YnvQzC7iQI79e0ZO+efHA6g9pBaxPq3y97RaICb0RNCsMICGBxAd4o+vjxUKjsLvr8GSt+xT8gC0HGyfizKhx5l31jGGYfDOr38yaa59NPmo7gm8cGUX/H2dn5pIxBsoWIqIyBnbcTCXG6csJbuwlJ7NG/HODT0I8PWp1Xv5+lhpHB5I4/DqA2hmXjEHjoXOk78fPOmo6KHcImwG9qOjOUVVvmewpYi7guZzizGLMCMXgPTQTmzseD/GWYNobAQQl1VITOixAHoGbDaDZ77dxNTFOwG4c2BLHr2ovXdeWypSQwqWIiJyRvZk5jPmvaUcyi0mOSGcKbf0Itjf/X9efH2s9iOP4YFA5aOmy2wGh3OLyp1uP/U0/KGsXM4r+IF7fGbS2HYUgK22BP5VejU/HuoJv1rg1xWO97RYIDrk+PWex494nn4UtLIAWlRaxt8/X8s369IBeOySDtx2bkuX9o+IGRQsRUSk1jKyCxnz/lLSswppHRfKB7f0JjzQi27/h/06zOMB9LRpe2w22PAV/PIclKQCUByaxPZOd7M+6kI65ZQSe8pR0IPHTsEfyrWfjt9YRdvHA6g9aAY4rgVdtjPTMfH5v/7Slcu7JVTxLiJ1h4KliIjUypG8Ysa8v5Rdh/NJigriw1v7EF1XRjEbBmz9wT65ecaxaBgSBwMfxr/HTXT0DaBjJS8tsxlk5hWfuOazkqOgGTnlA+im9PLvE+Lvw9s39ODcNrFu/aginqRgKSIiTsspLOGmqcvYeiCXxuEBfHzbOdUOyvEaO3+zB8o9S+3PAyKg/71wzl/td6Ophs+xuThjwwLoVMXdBG02g8z84vKB89jgo5JSgxv7NadTU5MmPhdxEwVLERFxSkFxGbdOW8G6vVlEhfjz0W19SIqqA5N471tjD5Q75tmf+wZBnzuh/30QHOXy5qxWCzGhAcSEBtDJ5e8u4p0ULEVEpMaKSsu488OVLNuZSVigL9PH9qZ1XJjZZVXt0Db7NZQbZ9mfW33h7Jtg4MP2e1SLiMsoWIqISI2Ultm475M1/Lr1IEF+Pubew7omsvba75az5mMwygALdP4LDBkPURqBLeIOCpYiIlItm83gka/W8f3G/fj7WJl8Y096NHf96WOXyDsEi16G5e9B2bF5K9sOh/MegybJ5tYmUs8pWIqISJUMw2DCnI3MXJWGj9XCG6PPZkCbGLPLOl1hNvzxBvzxOhTbJzen+QD73XKa9TG3NpEGQsFSRESq9OIPW5ixZBcWC7x8dVfO79jY7JLKKym0H51c9G8oyLQvi+9qD5SthtonkxQRj1CwFBGRSr3xy3beWrADgOdGdvauibzLSmHNR7DwBcg+dqPw6Nb2U94dLger7rct4mkKliIiUqFpi1N56YctgP2Wg9f3aWZyRcfYbLBptn2k9+Ht9mXhCTD4H9D1evDRnzYRszj137m33nqLLl26EB4eTnh4OH379mXu3Lnuqk1EREzyxYo9PPm/TQDcN7SNd9zH2jBg28/w7iD48hZ7qAyOhgufh3tWwdk3KlSKmMypf4GJiYlMmjSJNm3aYBgGH3zwAZdffjmrV6+mUydN/yoiUh98uy6dR79aB8BtA1pw/7A2JlcE7F4K856CXYvtz/3DoN/dcM7fIDDc3NpExMFiGIZxJm8QFRXFSy+9xK233lqj7bOzs4mIiCArK4vwcP0yEBHxJr+kZHDHjBWUlBlc2yuJiVd0xmLm4Jf9G2D+M7D1e/tznwDofTsMeBBCos2rS6Seq21eq/U5g7KyMr744gvy8vLo27dvpdsVFRVRVFRUrlAREfE+f+w4zF0frqSkzOCyrk15bpSJoTLzT/jleVj/JWCAxQe6j4ZBj0JEojk1iUi1nA6W69evp2/fvhQWFhIaGsqsWbPo2LFjpdtPnDiRp5566oyKFBER91qz5yi3fbCcolIbwzrE8e+ru+JjNSFUZqfDry/CqulgK7Uv6zQKhjwGMa09X4+IOMXpU+HFxcXs3r2brKwsvvzyS9577z0WLlxYabis6IhlUlKSToWLiHiJlP3ZXPPOErIKSujfOpr3b+pFoJ+PZ4vIz4TFr8LSd6G0wL6s9TA473Fo2s2ztYhIrU+Fn/E1lsOGDaNVq1a88847Ndpe11iKiHiPPw/mcvU7SziUW8TZzSKZcWsfQgI8OLK6KBeWvgWLX4OiLPuypD4wdAKc1d9zdYhIOR6/xvI4m81W7oikiIjUDWlHCxjz3lIO5RbRMT6cqbf09lyoLC2CldPg15cg76B9WeNk+xHKthfqbjkidZRTv0HGjx/P8OHDadasGTk5OXz88ccsWLCAH374wV31iYiIG2TkFDJ68hL2ZRXSKjaE6bf2JiLIz/0N28pg3Wfwy0TI2m1f1qgFDPknJF+pu+WI1HFOBcuMjAxuvPFG0tPTiYiIoEuXLvzwww+cf/757qpPRERc7Gh+MTe8t4ydh/NJbBTEh7f1ISY0wL2NGgakfAPzn4WDKfZloU1g0CPHJjb3QKgVEbdzKli+//777qpDREQ8ILeolJumLGPLgRziwgL46LY+xEcEubfRPxfAvKchbaX9eWAkDHgAet8B/sHubVtEPEr3vhIRaSAKisu4ddpy1u7NolGwHx/d1ofm0SHuazB9Hfz4GKQutD/3C7bfKaffPRAU6b52RcQ0CpYiIg1AcamNv360kqWpmYQF+DJ9bB/aNA5zX4MHNsGUC6EkH6x+0HMsDHwIQuPc16aImE7BUkSknists3H/Z6tZsOUggX5WptzSi86JEe5rsDAbPr/BHiqb9YNRb0Oj5u5rT0S8hoKliEg9ZrMZ/GPmer5bvx9/HyuTb+xJr7Oi3NegYcCcu+HwdghPgGtmQEiM+9oTEa+ieR1EROopwzB4+ptNfLlyLz5WC/+9rjvntol1b6NL3oRNX9tPf//lA4VKkQZGwVJEpJ76149bmPb7TiwW+NdfunBRchP3Nrh7Cfz0hP3xhc9DUi/3ticiXkfBUkSkHnpzwXbe+GUHAM9cnsyo7onubTA3A764GWyl9onOe9/u3vZExCspWIqI1DPT/9jJi99vAWD88PaMOcfNA2fKSuHLsZCTDjHtYMR/dUtGkQZKwVJEpB75cuVenvh6IwD3nteaOwe1cn+jvzwHOxeBX4h9sE5AqPvbFBGvpGApIlJPzF2fziNfrgXglv5n8cD5bd3faMp38NvL9seXvwax7dzfpoh4LQVLEZF6YMGWDO79dDU2A67umcjjl3TE4u7T0ZmpMOsu++M+d9mvrRSRBk3BUkSkjlv652Hu+nAlJWUGl3SJZ+IVXbBa3RwqSwrsk6AXZUFibzj/Gfe2JyJ1goKliEgdtnbPUW79YAWFJTbOax/HK1d3w8fdoRLgu4dh/3oIjoa/TANff/e3KSJeT8FSRKSO2rI/h5umLiO3qJS+LaN5c/TZ+Pt64Nf6qhmwegZggSvfh4gE97cpInWCgqWISB2UeiiPMe8v5Wh+Cd2SIpl8U08C/Xzc33D6OvjuIfvj8/4JrYa4v00RqTMULEVE6ph9RwsY895SDuYU0b5JGB/c0pvQAF/3N1xw1H5dZWkhtLkQBvzd/W2KSJ2iYCkiUocczClizHtLSTtaQMuYEGbc2oeIYD/3N2yzwey/wpGdENkMRr0NVv0JEZHy9FtBRKSOOJpfzA3vL+XPQ3kkRAbx4W19iA0L8Ezjv/8HtnwHPv5w9XQIjvJMuyJSpyhYiojUAblFpdw8dTkp+3OIDQvgo9v60DQyyDONp/4K8562Px7+IjTt7pl2RaTOUbAUEfFyhSVl3PbBctbsOUpksB8f3tqHs2JCPNN4drr9PuCGDbpeDz1u9ky7IlInKViKiHix4lIbf/toFUv+zCQ0wJfpY3vTrkmYZxovK4Evb4G8g9A4GS75N7j7bj4iUqcpWIqIeKkym8EDn69hfkoGgX5Wptzciy6JkZ4r4OcnYfcfEBBuv67SP9hzbYtInaRgKSLihWw2g/Ez1/HtunT8fCy8PaYHvVt4cMDMxtnwx+v2xyPfhOhWnmtbROosBUsRES9jGAZPf7OJz1fsxWqB/17bncHt4jxXwKHt8PXd9sf97oEOIzzXtojUaQqWIiJe5uWftjLt950AvHRVV4Z3jvdc48V59knQi3OgeX8Y+qTn2haROk/BUkTEi7y9cAevzd8OwDOXd+LKHomea9ww4JsHIGMThMTBVVPAxwN39BGRekPBUkTES3y4ZBeT5qYA8OhF7bmh71meLWDFFFj3GVh84C/TIKyJZ9sXkTpPwVJExAvMWr2Xx7/eAMC4Ia3462APD5ZJWwnf/8P+eNgEOKu/Z9sXkXpBwVJExGTfb9jPQ1+swzDg5n5n8dAF7TxbQH4mfH4TlBVD+0uh372ebV9E6g0FSxERE/269SD3frKaMpvBVT0SeeLSjlg8OQm5zQYzb4esPRDV0j61kCZBF5FaUrAUETHJ8p2Z3DFjBcVlNi7u3IRJV3TGavVwqPv1Jdj+M/gGwdUzIDDCs+2LSL2iYCkiNVJmMziQXYhhGGaXUi+s35vF2KnLKSyxMbhdLK9e0x1fHw//St4+DxZMtD++9GVokuzZ9kWk3tE8EiJSrc3p2dw+fQV7jxQQGexH54QIx1dyQgSJjYI8e/q2jtt6IIcbpywlp6iUPi2ieHtMD/x9PRwqj+6Br24DDDj7Juh2vWfbF5F6ScFSRKr006YD3P/pavKKywA4ml/Com2HWLTtkGObRsF+JCdE0CXxWOBMjKRpRKDCZgV2Hc5jzHtLOZJfQtfECN67qSeBfj6eLaK0CL64CQoyIb4rDH/Rs+2LSL2lYCkiFTIMg3d+/ZMXvk/BMKBfq2hevbYbB7KKWJd2lA1pWazbm8WW/TkcqSBsRoX4lzuq2SUxgvgGHjbTswq4fvJSMnKKaNc4jA/G9iYs0M/zhfzwT/v0QoGRcPV08Av0fA0iUi8pWIrIaYpKyxg/cz0zV6UBMOacZkwY0Qk/HytxYYF0Towot+2W/Tms25vlCJtbD+SQmVfMwq0HWbj1oGPb6BB/OieeOI3eOTGCJuENI2weyi1i9HtLSTtawFnRwcy4rTeRwf6eL2TdF7B8sv3xFe9Co7M8X4OI1FsWw8NX4mdnZxMREUFWVhbh4eGebFpEauBQbhF3zVjJil1H8LFamDCiIzc6eQeYwpIyUvbnsD4ti/V7j7I+LZutB3Ios53+6yYmNIDOCeF0Toyk87Ejm43D69cRtKz8Eq6dvITN6dk0jQjk87v6ktgo2POFZGyGyedBST6c+xAMfdzzNYhInVDbvKZgKSIOm9Ozue2DFaQdLSAs0Jc3R5/NuW1iXfLehSVlbE7PdhzVXJ+WxbaM3ArDZmxYQLkBQl0SI4iro2Ezr6iUMe8vZfXuo8SEBvDFXX1pERPi+UKKcuDdIXB4G7QYBDfMAquHr+0UkTpDwVJEzsjJg3TOig7mvZt60Tou1K1tFpaUsSk9m/XHgub6vVlsy8ihgqxJXFgAXRLt12seP40eF+bdYbOwpIyx05bz+47DRAT58dmd59C+iQm/9wwDvrwFNs6CsKZw1yIIifF8HSJSZyhYikitVDRI583RZ5tz/R9QUHw8bNpPoa9PO8r2jNwKw2bj8AA6J5w4hZ6cEEFsWIDni65ASZmNv364kp83ZxDi78NHt59Dt6RIc4pZ8pb9PuBWX7hlLiT1NqcOEakzFCxFxGlVDdLxJvnFpWzal+04qrk+LYvtB3Op6LdXfESgfRR6QgTJxwYKxYR6NmyW2Qzu/2wN/1u7jwBfK9Nu6U3fVtEercFh91KYdjHYSuGiF+Ccu8ypQ0TqFAVLEXGKKwbpmCmvqJRN6dmO0ejr07LYUUnYbHo8bJ50Kj3aTWHTMAzGz1zPp8v34Odj4d0bejKkfZxb2qpW7kF451zISYdOo+CqqboPuIjUiIKliNSYOwfpmCm3yH5kc93eY/NspmWReiivwrCZEBnkuFbzeNiMCjmz0/+GYfDst5t5/7dUrBZ47bqzuaRL/Bm9Z63ZymDGKEhdCDFt4fb5EBBmTi0iUufUNq9pHkuRBubnTQe4z8ODdDwlNMCX3i2i6N0iyrEsp7CEjftOjEbfkJbFn4fySDtaQNrRAr7fuN+xbUJkkOOo5vG7CDlzremrP2/j/d9SAZh0ZRfzQiXAL8/bQ6VfCFw9Q6FSRDxCRyxFGghvG6RjpuzCEjamZTuOam44dmSzIklRx45sHhsk1Dkhgojg0++WM/nXP3nuu80APDmiIzf3b+HWz1ClLd/DJ9fYH1/5PnS+yrxaRKRO0qlwEalUXRmkY6asghI27jsxOGh9Wha7DudXuG2zqGDHafTOCRFsO5DDk//bBMDDF7Zj3JDWniy9vCM74Z2BUJgFve+Ai18yrxYRqbMULEWkQnV9kI6ZsgpK2HjsqObxEem7MysOmwB3DWrFoxe1M+8WlSWFMOUCSF8LCT3tUwv5Nrwj0iJy5nSNpYicpr4O0vGUiCA/+rWOoV/rE5OJH80vZkPasamP0o6yPi2LPZkF3NL/LHNDJcDcR+yhMjgarv5AoVJEPM6pYDlx4kRmzpxJSkoKQUFB9OvXjxdeeIF27dq5qz4RqaX6PEjHTJHB/gxoE8OANifCZnGpDX9fky8rWP0RrPoAsMCV70FEorn1iEiD5NRvwoULFzJu3DiWLFnCTz/9RElJCRdccAF5eRVf9C4inmcYBm8v3MHtM1aQV1xGv1bRzB7XX6HSjUwPlfvXw7cP2h8P+T9odZ659YhIg3VG11gePHiQuLg4Fi5cyMCBA2v0Gl1jKeI+GqTTABUchXcHw5FUaH0+XP85WPXzFpEzY8o1lllZWQBERUVVuk1RURFFRUWO59nZ2WfSpIhUQoN0GiDDgK/H2UNlRDO44l2FShExVa1/A9lsNu6//3769+9PcnJypdtNnDiRiIgIx1dSUlJtmxSRSmxOz+by1xezYtcRwgJ9mXZLL4XKhuD3/0LKN+Djbx+sE1z5f/JFRDyh1qfC//rXvzJ37lx+++03EhMrv0i8oiOWSUlJOhUu4iIapNNA7fwNPhgBhg0ufQV6jjW7IhGpRzx6Kvzuu+/mm2++4ddff60yVAIEBAQQEBBQm2ZEpAq6k04DlrMfvrjFHiq7XAs9bjG7IhERwMlgaRgG99xzD7NmzWLBggW0aGHiLctEGrCi0jL+b+YGvlq1F9AgnQalrMQeKvMyIK6T/WilmXNnioicxKlgOW7cOD7++GO+/vprwsLC2L9/PwAREREEBQW5pUARKU+DdBq4eU/B7t/BPwyung7+wWZXJCLi4NQ1lpXdUWLq1KncfPPNNXoPTTckUnu6k04Dt2kOfH6D/fHVM6DjZebWIyL1lkeusfTwbcVF5CQapNPAHd5hn1oIoO/dCpUi4pV0r3ARL6dBOkJxPnx2AxRlQ7O+MOxJsysSEamQgqWIF9MgHcEw7LdrzNgIIXFw1VTw8TO7KhGRCilYingpDdIRAFZOg7WfgMUKV02B8HizKxIRqZSCpYgX0iAdASBtFcx9xP546ARoca659YiIVEPBUsTLnDxIp0VMCO/d1JNWsRqk0+DkZ8LnN0FZMbS7BPrfZ3ZFIiLVUrAU8RKnDtLp3zqaN67XIJ0GyWaDmXdA1m5o1AJGvqlJ0EWkTlCwFPECGqQj5Sz6N2z/CXwD4ZoZEBRpdkUiIjWiYCliMg3SkXJ2zIdfnrM/vuTf0KSzufWIiDhBwVLERBqkI+Vk7YWvbgMMOPtG6D7G7IpERJyiYCliEg3SkXJKi+GLmyH/MDTpAsNfMrsiERGnKViKeJgG6UiFfnwM9i6HwAi4ejr4BZpdkYiI0xQsRTxIg3SkQuu/hGXv2B+PeheiWphbj4hILSlYiniIBulIhTJSYM699sfn/h3aXWRuPSIiZ0DBUsQDUvZnc+s0DdKRUxTlwuc3QkketBgIQ/5pdkUiImdEwVLEzTRIRypkGPC/e+HQFgiLhyungNXH7KpERM6IgqWIm2iQjlRp2buw4Suw+sJfpkGojmCLSN2nYCniBhqkI1Xaswx+OHba+/xnoNk55tYjIuIiCpYiLqZBOlKlvEP2+SptJdBxJJzzV7MrEhFxGQVLERfSIB2pkq0MvroVstMgug1c/jpYLGZXJSLiMgqWIi6iQTpSrQUT4c8F4BcM18yAgDCzKxIRcSkFS5EzpEE6UiNbf4Bfj92mccR/Ia6DufWIiLiBgqXIGdAgHamRI7tg5h32x71uhy5/MbceERE3UbAUqSUN0pEaKSm0T4JeeBQSesCFz5ldkYiI2yhYitSCBulIjX3/D0hfA0FR8JcPwDfA7IpERNxGwVLESRqkIzW25hNYORWwwJWTITLJ7IpERNxKwVKkhjRIR5yyfwN884D98eB/QOth5tYjIuIBCpYiNaBBOuKUwiz4/AYoLbAHyoGPmF2RiIhHKFiKVEODdMQphgGz/waZf0JEElwxGaz6D4iINAwKliJV0CAdcdrvr0HKN+DjD1d/AMFRZlckIuIxCpYildAgHXHazsXw85P2xxdNtE8vJCLSgChYipxCg3SkVnIOwJe3gFEGXa6BnreaXZGIiMcpWIqcZN/RAv714xZmrkoDNEhHaqis1B4qcw9AbAe49BWwWMyuSkTE4xQspcHLKijh+w3pzFqdxtLUTAwDDdIR58x/GnYtBv8wuGYG+IeYXZGIiCkULKVBKi61sWBLBrPXpPHz5gyKS22Odee0jOLeoW3o1yrGxArrKZsNbKVgK4GykmOPS489LrEf+XOsP/bdsf6k79WuP+k9baWnbFtF+7ayk2o59rwmtRrH9p/LX4eYNub2sYiIiRQspcEwDINVu48wa3Ua36xL52h+iWNd28ahjOqeyGXdmpIQGWRilW5kGFBaCMX5UJJ3yvd8KM479v3Y8pKCCpYVVh3cTgtjp4Q1w1Z9nXWRxQoDH4ZOI82uRETEVAqWUu/tOJjL16vTmLUmjT2ZBY7ljcMDuLxbAiO7JdAhPgyLN1wTZysrH+QqC33lvhfUYNtjX94Y7CxWsPqBjx9YfU56fOz58cc+vmD1PWn9sefHHzuWHd/2+PIqXuN4XN22Fa0/qVa/IAiMMLsnRURMp2Ap9dLBnCK+WbeP2avTWLs3y7E8xN+H4Z3jGdU9gXNaRuNjrUWYLC12IvQdX19Qdeg7vry00IW9UAWfAPAPBr+QY9+D7dcF+gVXvdw3sHxwczaAnRoWrb6aPFxEpB5RsJR6I7+4lJ82HWDW6jQWbTtEmc0AwNdqYVDbWEZ2T2BYh8YE+ftU/ib718Mfb0Lu/grC37HntlIPfBrLSSGvhqHPsfyk9RW9h1+wPfiJiIi4mP66SJ1WWmbj9x2Hmb06je837ie/uMyxrnuzSEZ1T+CSzvFEhwZU/UY5B2D+M7D6Q8CoWeNW31NCXmWhr5pQWGH4C9J0NSIiUucoWEqdYxgGG/dlM2t1GnPW7uNgTpFjXfPoYEZ2S2Bk9wRaxNRgypeSAvjjDfjtFSjOtS/rNAraXlQ+DPoFnR4QfTVhuoiIyMkULKXO2JOZz5y1+5i1Oo3tGbmO5Y2C/RjRtSkjuyfQPSmyZoNwDAM2fGW//V7WHvuyhB5w4URo1sc9H0BERKSeU7AUr5aVX8K369OZvTqNZTszHcsDfK2c37Exo7onMLBtrHN3xtmzDH74P9i73P48PAGGPQnJV2kgiYiIyBlQsBSvU1Raxi8pGcxancYvKQcpLrNPkWOxQL9W0YzslsBFyU0IC/Rz7o2P7rYfodzwlf25XwgMeAD6jrOf3hYREZEzomApXsFmM1i+M5PZa9L4dl062YUnRl53iA9nVPemXNY1gSYRgc6/eVEOLHrZfi1lWRFgge6j4bzHIayJ6z6EiIhIA6dgKabadiCHWavT+HrNPtKOnpi8PD4i0D55efemtG8SXrs3t5XZR3nPfxbyMuzLzjoXLnwO4ru6oHoRERE5mYKleFxGdiFz1u5j9po0NqRlO5aHBfhyced4RnZPoE+LKKy1mbz8uB2/wA//hIyN9udRLeGCZ6HdxZrGR0RExE0ULMUj8opK+WHjfmatTmPx9kMcm7scPx8Lg9vFMap7Aue1jyPQr4rJy2vi0Db48THY+r39eWAEDPoH9LpN0wOJiIi4mYKluE1pmY1F2w8xe3UaP248QEHJicnLezRvxMjuCVzaOZ5GIS4IfPmZsGASrHjffmcci489TA7+BwRHnfn7i4iISLWcDpa//vorL730EitXriQ9PZ1Zs2YxcuRIN5QmdZFhGKzbm8Ws1Wn8b+0+DucVO9a1jAlhZPcERnZLoFm0i0ZhlxbD8vdg4QtQeNS+rO1FcP4zENvWNW2IiIhIjTgdLPPy8ujatStjx47liiuucEdNUgftPpzP7DVpzF6dxp+H8hzLo0P8GdG1KaO6J9AlMaJmk5fXhGHAlu/gx8chc4d9WVwn+8CcVkNc04aIiIg4xelgOXz4cIYPH+6OWqSOOZJXzDfHJi9fueuIY3mgn5ULOzVhZPcEBrSOcW7y8ppIX2ef4HznIvvzkFg47zHofgNYz/AaTREREak1t19jWVRURFHRiXs5Z2dnV7G1eLvCkjLmbbZPXr5gSwalx0bhWC3Qv3UMo7oncEGnJoQGuGHXytkP85+B1R8BBvgE2Cc3H/AABNZySiIRERFxGbcHy4kTJ/LUU0+5uxlxI5vNYEnqYWavTmPu+v3kFJ2YvDw5IZyR3RK4rGtT4sJrMXl5TZQUwB+vw6JXoOTYafZOV9hvw9iouXvaFBEREae5PViOHz+eBx980PE8OzubpKQkdzcrLpCyP5tZq9OYs2Yf6VmFjuUJkUGM7N6Ukd0SaNM4zH0FGAas/9J+G8bsvcca7wkXTYSk3u5rV0RERGrF7cEyICCAgIAAdzcjLpKeVcCcNfuYtTqNlP05juXhgb5c0sU+CKdn80ZnNnl5Texear+OMm3FsQIS7Ucok68Eq4uv2RQRERGX0DyWQk5hCXM37Gf26jT++PMwxrHJy/19rAxpH8uo7gkMaR9HgK8HBsYc2WU/Qrlxpv25Xwic+wD0vRv8gtzfvoiIiNSa08EyNzeX7du3O56npqayZs0aoqKiaNasmUuLE/cpKbOxcMtBZq1J4+dNBygqtTnW9T4ripHdE7i4cxMigz10t5rCbPjtZfjjTSgrAizQfYx9tHdYE8/UICIiImfE6WC5YsUKhgw5MU/g8esnb7rpJqZNm+aywsQ90o4W8MnS3Xy2Yg8Hc06M1m8VG8IVZydyWdemJEW5aPLymrCVweoZMP9ZyDtoX3bWuXDh8xDfxXN1iIiIyBlzOlgOHjwY4/i5UqkTymwGv249yIdLdvHLlgzHfbpjQgO4vJv9uslOTcNdN3l5Te34BX74J2RstD+PagUXPAvthoOnaxEREZEzpmss67GDOUV8vmIPnyzbzd4jBY7l/VpFM+ac5pzfsbHrJy+vUWFb4cfHYNsP9ueBkfZ7eve8FXw9dOpdREREXE7Bsp4xDIMlf2by0dJd/LBxPyVl9sOTEUF+XNUjkev7NKNVbKg5xeVnwoKJsPx9MMrA6gu9boNBj0JwlDk1iYiIiMsoWNYTWQUlfLVyLx8t3cWOgyfu1d29WSSj+zTn0i7xBPqZdLvD0mJYPhkWvgCFWfZlbYfDBc9ATBtzahIRERGXU7Cs49buOcqHS3bxv3X7KCyxj+wO9vdhZPcEru/djOSECPOKMwxI+RZ+ehwy/7Qva5wMFz4HLQebV5eIiIi4hYJlHZRfXMqcNfv4aOlu1qdlOZa3axzGmHOaMbJ7AmGBfiZWCKSvtQ/M2bnI/jwkzj51UPcxYDXpyKmIiIi4lYJlHbL1QA4fLdnFzFVpjvt1+/tYuaRLPKP7NKNH80aeH9l9qpz9MO8ZWPMRYIBPAPS7GwY8AAFuvP2jiIiImE7B0ssVlZbx/Yb9fLRkN8t2ZjqWN48OZnSfZlzVI4moEC8YSV2cD3+8Dr+9CiXHrvFMvtJ+G8ZITZwvIiLSEChYeqndh/P5eNluvlixh8N5xQD4WC0M6xDHmHOa079VjPvv110TNhts+NJ+G8bsNPuyxF72Cc6TeptamoiIiHiWgqUXKS2zMT8lg4+W7ubXbQcd9+xuEh7Itb2TuLZXM5pEBJpb5Ml2L4Ef/g/SVtqfRyTZj1AmX6kJzkVERBogBUsvcCC7kE+X7eHT5btJzyp0LB/YNpbRfZoxtH0cvmZMZF6ZIzvtRyg3zrI/9w+1X0PZdxz4BZlZmYiIiJhIwdIkNpvB7zsO8+GSXfy0+QBlx+6zGBXiz196JnJ972Y0jw4xucpTFGbDon/DkregrAiwwNk3wJDHIKyx2dWJiIiIyRQsPexIXjFfrtzLx8t2k3roxETmvc5qxJhzmnNRchMCfL1sOp6yUlg9HeY/B/mH7MtaDLRfR9mks7m1iYiIiNdQsPQAwzBYtfsIHy3ZzTfr0ykutU9kHhrgyxVnJzC6T3PaNfHSqXh2zLfPR5mxyf48ujVc8Cy0vUjXUYqIiEg5CpZulFtUyuzVaXy4ZBcp+3Mcyzs1DWfMOc25rGtTQgK89EdwcAv8+Bhs+9H+PDASBv8Det4Kvl4wvZGIiIh4HS9NNXXbpn3ZfLR0F7NXp5FXXAZAgK+VEV2bMuac5nRNjDB/IvPK5B2GBRNhxRQwysDqC73vgIEPQ3CU2dWJiIiIF1OwdJHCkjK+XZfOR0t3sWr3UcfylrEhjO7TnKvOTiQi2OTbLFaltBiWvQsLX4SiY7eJbHcxnP8MxLQ2tzYRERGpExQsz1DqoTw+WrKLL1ft5Wh+CQC+VgsXJjdhdJ9m9G0Z7b1HJwEMA1K+gR8fhyOp9mWNO8OFz0HLQebWJiIiInWKgmUtlJTZ+HnTAT5cuovF2w87lidEBnF9n2b8pWcicWFeNJF5ZfatsQ/M2fWb/XlIHAx9HLqNBquXjUwXERERr6dg6YR9Rwv4dNluPl2+h4ycIsA+MHpIuzjGnNOMQW3j8PGG2yxWpKwEDm2F9LWQvg7S19jvnIMBvoHQ924YcD8EeOnodBEREfF6CpbVsNkMFm47yEdLdjM/5QDH5jEnJtSfa3olcV3vZiQ2Cja3yFOVFMCBTfbwuH+dPUge2HhsUvNTdP4LDJ0AkUkeL1NERETqFwXLShzKLeLzFXv4ZNlu9mQWOJb3bRnN6HOacUHHJvj7esFtFguzYP/6Y0ch19qD5MEt9hHdp/IPs09oHt8V4rtAYm8NzBERERGXUbA8iWEYLEvN5MOlu/l+QzolZfbDk+GBvlzVI4nr+zSjdVyoeQXmHoT9a086nb32xICbUwVHHwuQXaFJF/v3Ri3A6gVhWEREROolBUsgu7CEmSv38tHS3WzLyHUs75oUyeg+zRjRpSlB/h4czGIYkLWn/FHI9LWQk17x9uGJJ45CHg+S4U11ZxwRERHxqAYdLNfvzeLDJbuYs3YfBSX2U8dBfj6M7N6U0X2ak5wQ4f4ibDbI3HHsKOTaE0Gy4EgFG1sgutVJRyG7QJOuEBLt/jpFREREqtHggmVBcRn/W7uPD5fuYt3eLMfyto1DGXNOc0Z2TyA80E0TmZcWw8GUk45CrrNfH1mSd/q2Vl+I7VD+KGSTZI3aFhEREa/VYILltgM5fLR0N1+t2ktOYSkA/j5WhnduwphzmtOzeSPXTmRenGcfiX3yUciMzVBWfPq2vkH20Hj8KGR8V3uo9KsDc2GKiIiIHFOvg2VxqY3vN+7noyW7WJqa6VjeLCrYPpF5j0SiQwPOvKGCI8dGZp80qObwNjBsp28bEFH+KGR8V4huDT71+kchIiIiDUC9TjOfr9jDY7M3AGC1wLAOjRl9TnPObR2DtbYTmefsP2lQzbGjkUd3V7xtSNzpg2oanaVBNSIiIlIv1etgeVm3prz/WyqXdW3Ktb2TiI8IqvmLDQOO7ip/FHL/Osg9UPH2kc2OhceuJ8JkWBPXfBARERGROqBeB8vwQD/m/31Q9ddO2srg0LbyU/vsX2effPxUFitEtzllUE1nCI5yz4cQERERqSPqdbAETg+VpUWQsan8Ucj9G6C04PQXW/2gcccT10LGd4XGncA/xDPFi4iIiNQh9TtYFuedPqjm4GawlZ6+rV+IfWT2yYNqYtuDr7/n6xYRERGpg+p3sNz6PXw59vTlQY3KH4Vs0sU+8bjVg3fXEREREaln6newjO8GYfHlj0LGd4GIJI3MFhEREXGx+h0so1vB31PMrkJERESkQbCaXYCIiIiI1A8KliIiIiLiEgqWIiIiIuISCpYiIiIi4hIKliIiIiLiEgqWIiIiIuISCpYiIiIi4hIKliIiIiLiEgqWIiIiIuISCpYiIiIi4hIKliIiIiLiEgqWIiIiIuISCpYiIiIi4hIKliIiIiLiEr6ebtAwDACys7M93bSIiIiI1MDxnHY8t9WUx4NlTk4OAElJSZ5uWkRERESckJOTQ0RERI23txjORtEzZLPZ2LdvH2FhYVgsFre3l52dTVJSEnv27CE8PNzt7dUV6pfKqW8qpn6pnPqmYuqXyqlvKqZ+qZgZ/WIYBjk5OTRt2hSrteZXTnr8iKXVaiUxMdHTzRIeHq6dtALql8qpbyqmfqmc+qZi6pfKqW8qpn6pmKf7xZkjlcdp8I6IiIiIuISCpYiIiIi4RL0PlgEBAUyYMIGAgACzS/Eq6pfKqW8qpn6pnPqmYuqXyqlvKqZ+qVhd6hePD94RERERkfqp3h+xFBERERHPULAUEREREZdQsBQRERERl1CwFBERERGX8GiwPHz4MHFxcezcudOTzXrU22+/zYgRI5x6jfqlcg2hb6699lr+/e9/O/Ua9Uvl1DcVU79UTn1TMfVL5dQ3VTA86IEHHjBuu+22csvuuece4+yzzzb8/f2Nrl27Vvi6tWvXGgMGDDACAgKMxMRE44UXXnC67a+++so4//zzjaioKAMwVq9efdo2BQUFxt/+9jcjKirKCAkJMa644gpj//795bbZtWuXcfHFFxtBQUFGbGys8dBDDxklJSWO9UVFRUbTpk2NX3/9tca11aZfUlNTDeC0rz/++KPG7RpGzfpl0KBBp7Vz5513ltvGHf1iGKf3zZo1a4xrr73WSExMNAIDA4327dsbr7766mmv++WXX4zu3bsb/v7+RqtWrYypU6c61e7hw4eNu+++22jbtq0RGBhoJCUlGffcc49x9OhRpz53TWpZv3690ahRo9Peuyq16Zdffvmlwn0mPT29xu3WtF8qaueTTz45rR5X94thnN43hw4dMi688EIjPj7e8Pf3NxITE41x48YZWVlZTtVTE3fccYfRsmVLIzAw0IiJiTEuu+wyY/PmzeW28ZZ9pib94op9xjBq1i/etM+c7NChQ0ZCQoIBGEeOHHGqHmfYbDbjoosuMgBj1qxZ5dZ5yz5zssr6xVX7zHFV9Yu37TOuqKcmXPE3uSa11LZvPBYs8/LyjPDw8NOCzz333GO8/vrrxg033FBhgMrKyjIaN25sjB492tiwYYPxySefGEFBQcY777zjVPvTp083nnrqKWPy5MmVBqi77rrLSEpKMubNm2esWLHCOOecc4x+/fo51peWlhrJycnGsGHDjNWrVxvfffedERMTY4wfP77c+zz00EPGVVddVaO6atsvx4Plzz//bKSnpzu+iouLa9TucTXpl0GDBhm33357uXZO/uPjjn4xjIr75v333zfuvfdeY8GCBcaOHTuMGTNmGEFBQcZrr73m2ObPP/80goODjQcffNDYtGmT8dprrxk+Pj7G999/X+O2169fb1xxxRXGnDlzjO3btxvz5s0z2rRpY1x55ZVOfe6a1tKzZ0/j9ddfd2u/HP+Fv2XLlnI/y7KyMpf2i2HYf8FOnTq1XDsFBQVu7ZfK+iYzM9N48803jeXLlxs7d+40fv75Z6Ndu3bGdddd53Q91XnnnXeMhQsXGqmpqcbKlSuNESNGGElJSUZpaalhGN61z9SkX1yxz9SkXwzDu/aZk11++eXG8OHDTwtQrtpnjnv55Zcd7ZwcoLxpnzlZZf3iqn3muMr6xTC8b59xVT3VccXfZHf1jWF4MFh+8cUXRmxsbKXrJ0yYUGGAevPNN41GjRoZRUVFjmWPPvqo0a5du1rVcTyQnRqgjh49avj5+RlffPGFY9nmzZvLHQX87rvvDKvVWu4o5ltvvWWEh4eXq2/hwoWGv7+/kZ+fX209te2Xyj5HbVX1foMGDTLuu+++Sl/rjn4xjOr75ri//e1vxpAhQxzPH3nkEaNTp07ltrnmmmuMCy+8sEbtVubzzz83/P39Hf/rq8nnrmktTz31lDFgwIAa1VHbfjn+C//Uoy5n6tR+MQyjwj8CJ3NHvxhGzfvmP//5j5GYmOh0Pc5au3atARjbt283DMP795lT+8Vd+8yp/WIY3rnPvPnmm8agQYOMefPmndYPrtxnVq9ebSQkJBjp6emn9YM37jNV9Ysr95mq+sUwvG+fcVU91XHF32R39Y1hGIbHrrFctGgRPXr0cPp1f/zxBwMHDsTf39+x7MILL2TLli0cOXLEZfWtXLmSkpIShg0b5ljWvn17mjVrxh9//OGopXPnzjRu3LhcLdnZ2WzcuNGxrGfPnpSWlrJ06dJq261tvxx32WWXERcXx4ABA5gzZ06t36c6H330ETExMSQnJzN+/Hjy8/Md69zRL1DzvsnKyiIqKqpcPSf/HI/Xc/znWFtZWVmEh4fj6+vraKe6z13TWnr37s2yZcsoKiqqto7a9stx3bp1Iz4+nvPPP5/FixdX+z41aefkfjlu3LhxxMTE0Lt3b6ZMmYJx0r0Y3NEvULO+2bdvHzNnzmTQoEFO1+OMvLw8pk6dSosWLUhKSnK04637TEX9cpwr95mK+uU4b9pnNm3axNNPP8306dOxWk//U+mqfSY/P5/rr7+eN954gyZNmlTYjjftM9X1y3Fnus9U1y/HedM+46p6auJM/ya7q2/Ag4N3du3aRdOmTZ1+3f79+8t1DuB4vn//fpfUdvy9/P39iYyMPK2t4+3UtJbg4GAiIiLYtWtXte3Wtl9CQ0P597//zRdffMG3337LgAEDGDlypFvC5fXXX8+HH37IL7/8wvjx45kxYwZjxoxxrHdHv0DN+ub333/ns88+44477qi2nuzsbAoKCmrU9qkOHTrEM888U6N2jq9zppamTZtSXFxco326tv0SHx/P22+/zVdffcVXX31FUlISgwcPZtWqVdW2WZmK+gXg6aef5vPPP+enn37iyiuv5G9/+xuvvfaaY707+gWq7pvrrruO4OBgEhISCA8P57333nO6npp48803CQ0NJTQ0lLlz5/LTTz85/mPsjftMVf3iyn2mqn4B79pnioqKuO6663jppZdo1qxZha9z1T7zwAMP0K9fPy6//HKn2jm+zplaznSfqUm/uGqfqa5fwLv2GVfWUx1X/E12V98A+Fa/iWsUFBQQGBjoqeZMFxQUVO5/EJWpbb/ExMTw4IMPOp736tWLffv28dJLL3HZZZc5/X5VOTk0dO7cmfj4eIYOHcqOHTto1aqVU+9V036B6vtmw4YNXH755UyYMIELLrjAqTqckZ2dzSWXXELHjh158skn3dJGUFAQgEv2mcr6pV27drRr187xvF+/fuzYsYNXXnmFGTNmOF1zVf3y+OOPOx53796dvLw8XnrpJe69916n2nCmX6DqvnnllVeYMGECW7duZfz48Tz44IO8+eabTtVTE6NHj+b8888nPT2df/3rX1x99dUsXrzY5b//XLXPVNUvrtxnqusXb9pnxo8fT4cOHcr9sXaHOXPmMH/+fFavXu3Wdo47032mJv3iin2mpv3iTfuMK+upjiv/JlfH2b4BDx6xjImJqdWp6yZNmnDgwIFyy44/r+rweG3aKS4u5ujRo6e1dbwdZ2rJzMwkNja22nZr2y8V6dOnD9u3b3fJe1XXDuBoyx39AlX3zaZNmxg6dCh33HEHjz32WLl1ldUTHh7u+EdSUzk5OVx00UWEhYUxa9Ys/Pz8qm3n+DpnasnMzAQ4432mqn6pSO/evWu1z1TVLxXp06cPe/fudZxOcUe/QNV906RJE9q3b89ll13GO++8w1tvvUV6erpT9dREREQEbdq0YeDAgXz55ZekpKQwa9asKts5vs6ZWly1z1TVLxWp7T5TVb9UxMx9Zv78+XzxxRf4+vri6+vL0KFDHdtOmDDBqXqqMn/+fHbs2EFkZKSjLYArr7ySwYMHV9nO8XXO1HKm+0xN+qUizu4zNemXinjD7xlX1OOs2vxNdlffgAeDZffu3dm0aZPTr+vbty+//vorJSUljmU//fQT7dq1o1GjRi6rr0ePHvj5+TFv3jzHsi1btrB792769u3rqGX9+vVkZGSUqyU8PJyOHTs6lu3YsYPCwkK6d+9ebbu17ZeKrFmzhvj4eJe8V3XtAI623NEvUHnfbNy4kSFDhnDTTTfx3HPPnba+b9++5X6Ox+s5/nOsqezsbC644AL8/f2ZM2fOaf9DrcnnrmktGzZsIDExkZiYmGrrqm2/VKQ2+0x1/VJZO40aNSIgIABwT79Azf892Ww2AMcvfFftM6cy7AMky7XjTfvMqU7tl4q44vfMqf1SWTtm7TNfffUVa9euZc2aNaxZs8ZxecCiRYsYN26cU/VU5R//+Afr1q1ztHP8d+srr7zC1KlTHe14yz5Tk36piLP7TE36pbJ2vOn3TG3rcVZt/ia7q28Az81juW7dOsPX19fIzMwst3zbtm3G6tWrjTvvvNNo27atsXr1amP16tWOkUtHjx41GjdubNxwww3Ghg0bjE8//dQIDg52erqhw4cPG6tXrza+/fZbAzA+/fRTY/Xq1eXm1rrrrruMZs2aGfPnzzdWrFhh9O3b1+jbt69j/fEh/BdccIGxZs0a4/vvvzdiY2NPm1Zn6tSpRsuWLd3aL9OmTTM+/vhjY/PmzcbmzZuN5557zrBarcaUKVNc2i/bt283nn76aWPFihVGamqq8fXXXxstW7Y0Bg4c6NZ+qaxv1q9fb8TGxhpjxowpN9VCRkaGY5vj0yg8/PDDxubNm4033njD6SkdsrKyjD59+hidO3c2tm/fXq6tU6eOqepz17SWm266yRg7dqxb++WVV14xZs+ebWzbts1Yv369cd999xlWq9X4+eefXdovc+bMMSZPnmysX7/e2LZtm/Hmm28awcHBxhNPPOHWfqmsb7799ltjypQpxvr1643U1FTjm2++MTp06GD079/f6XqqsmPHDuP55583VqxYYezatctYvHixMWLECCMqKso4cOCAYRjetc/UpF9csc/UpF+8bZ85VUUjnV2xz1SESqYb8oZ95lQV9Ysr9pmKnNov3rbPuLKeqrjqb7K7+sYwPDjdkGEYRu/evY2333673LKKJvoEjNTUVMc2J0+QnpCQYEyaNKncexzfuU9+zammTp1aYTsTJkxwbHN8gvRGjRoZwcHBxqhRo06b1HXnzp3G8OHDjaCgICMmJsb4+9//ftqkoxdccIExceJEt/bLtGnTjA4dOhjBwcFGeHi40bt373JTJbmqX3bv3m0MHDjQiIqKMgICAozWrVsbDz/88GmTS7ujXyrqmwkTJlRYb/PmzU/77N26dTP8/f2Nli1bnjbx6/HPXZnKJvk9tT9r8rmrq6WgoMCIiIhwanL72vTLCy+8YLRq1coIDAw0oqKijMGDBxvz5893eb/MnTvX6NatmxEaGmqEhIQYXbt2Nd5+++3T5rFzR79U1Dfz5883+vbta0RERBiBgYFGmzZtjEcffbTCya7PZJ9JS0szhg8fbsTFxRl+fn5GYmKicf311xspKSnltvOWfaYm/eKKfaYm/eJt+8ypKptC50z3mYqcGqAMw3v2mVNV1C+u2Gcqcmq/eNs+46p6qusbV/5NdlffeDRYHv8fcW0nSq3MlClTjNatWzs9Obg7bNiwwYiLi3Nqpnr1S+Xc1TdPPPGEMWjQIJe+Z229+eabxvnnn+/Ua9QvlVPfVEz9Ujn1TcXUL5VT31TOY6PCAS655BK2bdtGWlraafOXnYnvvvuO559/vtoBBJ6Qnp7O9OnTiYiIqPFr1C+Vc1ffzJ07l9dff91l73cm/Pz8yk1JURPql8qpbyqmfqmc+qZi6pfKqW8qZzGMk2bvFBERERGpJY+NChcRERGR+k3BUkRERERcQsFSRERERFxCwVJEREREXELBUkRERERcQsFSRERERFxCwVJEREREXELBUkRERERcQsFSRERERFzi/wEK7eW2xk5liwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "if \"google.colab\" in sys.modules:\n", + " solvers = [\"cbc\"]\n", + "else:\n", + " solvers = [\"gurobi_direct\", \"cplex_direct\"]\n", + "dimensions = [(n, 10 * n) for n in range(10, 51, 5)]\n", + "\n", + "SolveInstances(dimensions, solvers, 2023).plot(figsize=(8, 5))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 625, + "referenced_widgets": [ + "8c7086a7cfd7460aad559245cef7ff77", + "625f74db8a634c0b8cc312bc9d105f5e", + "1d0ddd9712e844d2a296bb609ec3fff5", + "dda03857c5944c80a6b0fdff79df4847", + "3ea18ef2302340c684ea614cb1e0cd18", + "93ba0848c35b4259bff79e47a62f84b3", + "04cd85a43cc742cea18c680a330b3e5a", + "c5da6771ede5465ca850795a762d6cbb", + "68ceffbb96d9411c911a088047ef8210", + "a95b4ab28ca74e2ab235ba2bdb048723", + "89a68d44723140ba827948a9ba93ef17", + "642df90b5e1b41408a81074ea013358d", + "edb5cbfd04ac4822ac2a5eccd3cf6666", + "b0e5a3f34fa94ee382af945506190cc3", + "38de3a672dbc4c5d9620a283e428bcb3", + "96968612455b4cfdbac09f761a8b760a", + "7876f2c265164fa29d9f57b3716f5850", + "9c81568cfc05430bb94d0bcf5d348ee9", + "2d69bed4be844104b908c017c22443eb", + "f85aadc89bce49c79b16ab574167a7d1", + "99c38d42e32f415ba894524a52536328", + "7a6ec07624f84daa8c9d46c21208f070", + "396b75923524457cb5142db3f4af0c4d", + "5534d740bd254cb9bcdcd546650a84da", + "a6b3488dce324c27b7ac47b00cb7afcb", + "49ca84b82a6e40ac92d2efc1a5bbafc9", + "996c329766a34c2686553501c096958e", + "59ed3adc94c64b078a5bc2df9042654f", + "44d2e56aaabd4c019ef6ebad1572a7ff", + "1438ec6ec58946c48a8c180ae0a1946b", + "3a2f1d392d7d4f1cb1e1b2be6a28dfec", + "c770e86620384eb698dc9d2b2454fbc6", + "2a086a827bff4b4cbb9db9f78b6da267", + "14a3160cb16c46b7a13d9780b33914da", + "9cfc136c44c045c3b472b019eec4c312", + "7cf700de12ab411da5ac9cdb1d0d4b19", + "2f1f2004c80943e5ba17ef3b2a132d4b", + "1c6c5ceb12af45c1bb9a9295ca142294", + "d6ccbdb27c464881a1f9e10341916ba0", + "007afb7342c74bc2bd0945b9e8c5f0f1", + "40d4ab0078304ecba831ab77bb9fb84b", + "468332aff46e42e49d0e20858d0a2026", + "18c2f46a33a1475f9e20b09ed96f4309", + "591597f211084bd0b2f44dc35edac400", + "0acf882b5e864cde8f6fc362257a49c8", + "c7b04cbfa91d4c389e2916fbfff36469", + "edb8bbc204384c77bf5b8e1a429c2bba", + "c6e68ae189e548cd882b35a0a9517b0c", + "8bd3b2e672654723a006cbec5120a8f3", + "e5f97f96e30c4da289153abf2663332f", + "15a853bb96ae476cbfa78754c7164fae", + "49cdd1f1b5944379a5da8c67ef15dc21", + "28e1b9d68e0a49c984fff1dfb76b5777", + "31ac4b264ab4415ba96807ee4d0e06ad", + "3e45ba09bc184a2cb7290f88b31bd5d2", + "66bf0d682fc34f4e98fa1211f66a0d86", + "645597e4eed64b5cab7e1d1675f9578e", + "c37d4d2cf2eb4452beac434bb6ce6068", + "cf3abef3b7504796a90a236a3cd3fbfe", + "28102cc074114ea1acf2a3a3b89038f7", + "61595fdc15de46f59be378b329c23270", + "c91812476862455c95871615bc50705d", + "4829e9cb01a24b81948f58fa562803dd", + "0ef9438e841f4db496122205eef24486", + "82c94dd7d81d45dcb99e536befb198ff", + "98f88a65d0344c1eac141ae1d785f9ab", + "a6388465ec334509ad4b28a1bf68ed45", + "556c5ed9f4bd4c72bdfc12b35af4749a", + "4fba6ac047ee4347b151cba97f6a297a", + "e271a8ab10944015a3be933b24663c7c", + "16adf58866ef4b12a18098367ec7e97f", + "90c52e72a18d4f7aa519a4b03a83db60", + "5c519d7149904a91badcc572aa3c1f91", + "73382149cd2845209238fcf3c9788335", + "829f26b3ee6d48629887b83c0e60f983", + "dee52cc7414843a6a366d67c7c4d704c", + "a33017fd785f429d9021ef56858b0465", + "bd419397f35e41b181e9d27801cf0ebe", + "add771f12a394c58af97586453413df9", + "3906cd318d414f438b8ae30664e8e510", + "433f368380d54ce6b98873956dbc91a1", + "2ca39efc251640a388627a1570dad519", + "5c8293d798dd4615b512899915435b44", + "ea3554a8554045ec9223b3e134664989", + "500cf76011fe45a683e06f8419b0b63a", + "ada1ac7e7a76477486e593e55442895e", + "967ef5059a3b4b808d0b1362b876aba8", + "1e06349ebb494303acf76d783fb9da67", + "1a909a2324e841299ae8e4573479c641", + "aa6f16444c6940a18f7f6a9870c9927d", + "957e6b15bb47489f834c7e824ea2bb97", + "934fd49155fd45faa1fe0200ff81c8c8", + "0c53603aca8c4d1595d3b704fb40504a", + "48a471a2841e4a0fad4d8e3720bd3e5f", + "978e1da737f543b1a90fbfde3eb14ec8", + "b10d500d3b3c4cb9ad5316404fbed8f8", + "7b5e382d691e43789122b23044a6a194", + "4c8af45c03994d5585834ba8e889c50b", + "aac100fba4be415cbe0973b16a8680ec", + "3dd533f28a5245f2ab55c1d445bc9104", + "e2f71b4308724c2bbe827e292c9f45ac", + "a8e76377609d4397a086f7e75f0f1fff", + "3716355844164b24a588e39d39fd6f58", + "aebde985ee394558a181784bb24ff3d8", + "e720c7dc426a471486fa7c95fca993d2", + "8d04329a03f148018cc3cf13225d5c0c", + "b426e565409e4ea496f566b5f6c083cb", + "457ef66d94164abd8cb7afed6d61f01b", + "03a45b815fc3428e80f1a3b0e0f84970", + "e069acd4535c4b1c8d58a39fae727403" + ] + }, + "id": "JjbJjN1ru3vM", + "outputId": "b2fb124e-9582-4c96-f5d9-82d389aa1554" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8c7086a7cfd7460aad559245cef7ff77", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/9 [00:00" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAGsCAYAAAB0LKeoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbkUlEQVR4nO3deXxTVd4/8E+WJt3TjUJLF0opBWRf7cKmCO77OOAyqI+jjrgNig7Pb9RxZhQVR3BE0MER0XEfl2HGAR8FgQJlb5EdWtpSoKXQLV3TJjm/P26TNm3apiXJTZrP+/XKq/TmJvfb01v66Tn3nqMQQggQEREREbmYUu4CiIiIiMg3MHgSERERkVsweBIRERGRWzB4EhEREZFbMHgSERERkVsweBIRERGRWzB4EhEREZFbqOUuoD2z2Yxz584hJCQECoVC7nKIiIiIqB0hBGpqahAbGwul0vF+TI8LnufOnUN8fLzcZRARERFRN4qLixEXF+fw/h4XPENCQgBIX0hoaKjM1RARERFRe3q9HvHx8dbc5iiPC56W4fXQ0FAGTyIiIiIP1tPLInlzERERERG5BYMnEREREbkFgycRERERuYXHXePpKJPJhObmZrnLIBfz8/ODSqWSuwwiIiJyAq8LnkIIlJaWoqqqSu5SyE3CwsIwYMAAzutKRETk5bwueFpCZ3R0NAIDAxlG+jAhBOrr61FWVgYAiImJkbkiIiIiuhReFTxNJpM1dEZGRspdDrlBQEAAAKCsrAzR0dEcdiciIvJiXnVzkeWazsDAQJkrIXeyfL95TS8REZF386rgacHhdd/C7zcREVHf4JXBk4iIiIi8D4MnEREREbkFg6fMCgsLoVAokJubK3cpTtHXvh4iIiJyHgZPIiIiInILBk8iIiIiL1emb8Rnu0/LXUa3vD54CiFQ32SU5SGEcLhOs9mM1157DUOGDIFWq0VCQgJeeukl6/PHjh1Deno6/P39MXLkSGzZssXm9YcPH8b111+P0NBQhISEYOrUqcjPz+/ymIcOHYJSqcSFCxcAABUVFVAqlZg7d651nz//+c/IzMy0ec0111yD4OBg9O/fH/fccw8uXrxofX7Dhg3IzMxEWFgYIiMjcf3113dZh8lkwv33349hw4bh9GnP/4EgIiLyFkII7CuqwGOf5iD9lU343dcHcbREL3dZXfKqCeTtaWg2YcTz38ty7CN/nINAjWNNuHjxYqxevRrLli1DZmYmSkpKcOzYMevzixYtwvLlyzFixAi88cYbuOGGG1BQUIDIyEicPXsW06ZNw4wZM7Bp0yaEhoZi+/btMBqNXR7zsssuQ2RkJLZs2YLbb78dWVlZ1s8ttmzZghkzZgAAqqqqcMUVV+CBBx7AsmXL0NDQgGeffRZ33HEHNm3aBACoq6vDwoULMXr0aNTW1uL555/HLbfcgtzcXCiVtn/HGAwGzJs3D4WFhcjKykK/fv0caisiIiLqXGOzCf8+cA5rswtx6Gxr0JyYGA6D0SxjZd3z+uDpDWpqavDmm29ixYoVmD9/PgAgOTkZmZmZKCwsBAA8+uijuO222wAAq1atwoYNG/D3v/8dzzzzDN5++23odDp89tln8PPzAwAMHTq02+MqFApMmzYNmzdvxu23347Nmzfjvvvuw3vvvYdjx44hOTkZO3bswDPPPAMAWLFiBcaNG4eXX37Z+h7vv/8+4uPjceLECQwdOtRaY9vn+/XrhyNHjmDkyJHW7bW1tbjuuutgMBjw008/QafT9b4BiYiICGerGvDxziJ8tqcYFXVNAACNWombxsRifvogjBzo+b9rvT54BvipcOSPc2Q7tiOOHj0Kg8GAK6+8stN90tLSrP9Wq9WYOHEijh49CgDIzc3F1KlTraGzJ6ZPn46//e1vAKTezZdffhknTpzA5s2bUVFRgebmZmRkZAAADhw4gJ9++gnBwcEd3ic/Px9Dhw7FyZMn8fzzz2PXrl24ePEizGbpL6vTp0/bBM958+YhLi4OmzZtsi57SURERD0jhMDOUxVYu6MQ/3ekFOaWq/xidf64Oy0RcyclICJII2+RPeD1wVOhUDg83C2XSw1el/L6GTNm4Mknn8TJkydx5MgRZGZm4tixY9i8eTMqKysxceJE65KUtbW1uOGGG/Dqq692eJ+YmBgAwA033IDExESsXr0asbGxMJvNGDlyJJqammz2v/baa/GPf/wD2dnZuOKKK3pdPxERkS+qbzLi25xz+DC7EMdKa6zb0wZHYn56ImYN7w+1yvtu1fHsxNZHpKSkICAgABs3bsQDDzxgd5+dO3di2rRpAACj0Yh9+/bh0UcfBQCMHj0aa9euRXNzc497PUeNGoXw8HD8+c9/xtixYxEcHIwZM2bg1VdfRWVlpfX6TgAYP348vvrqKwwaNAhqdcdTo7y8HMePH8fq1asxdepUAMC2bdvsHvc3v/kNRo4ciRtvvBHfffcdpk+f3qO6iYiIfNHp8np8tLMQn+8phr5RupcjwE+FW8YPxPy0QUgdECJzhZeGwdMN/P398eyzz+KZZ56BRqNBRkYGLly4gMOHD1uH399++22kpKRg+PDhWLZsGSorK3H//fcDkK7/fOuttzB37lwsXrwYOp0OO3fuxOTJk5GamtrlsS3XeX788cd4+umnAUhB1mAwYOPGjVi4cKF13wULFmD16tWYN28ennnmGURERCAvLw+fffYZ3nvvPYSHhyMyMhJ/+9vfEBMTg9OnT+N3v/tdp8d+7LHHYDKZcP3112P9+vU2d88TERGRRAiBbXkXsXZHITYeK4Nl0pyEiED8Ki0Rv5gQD11gzy+380QMnm7y3HPPQa1W4/nnn8e5c+cQExODhx9+2Pr8K6+8gldeeQW5ubkYMmQI1q1bh6ioKABAZGQkNm3ahEWLFmH69OlQqVQYO3as9drM7kyfPh3ffvuttXdTqVRi2rRp+O6772zeIzY2Ftu3b8ezzz6L2bNnw2AwIDExEVdffTWUSiUUCgU+++wzPP744xg5ciRSU1Px17/+1abXtL0nn3wSZrMZ1157LTZs2ID09PSeNx4REVEfVGsw4qt9Z7A2uxCnLtRZt08b2g/z0xIxIzUaKqVCxgqdTyF6MhmlG+j1euh0OlRXVyM0NNTmucbGRhQUFCApKQn+/v4yVUjuxu87ERH1Jacu1OLD7CL8c98Z1Bqk4fQgjQq3T4jDr9IHIblfx5t8PU1Xea0r7PEkIiIicjGzWWDziTJ8sKMIW09csG4f3C8I89MG4dbxAxHi3zeG07vC4Onl7E19ZLF+/XrrTUBERETkftUNzfhybzE+2lmEovJ6AIBCAVyRGo356YOQOSQKyj42nN4VBk8vl5ub2+lzAwcOdF8hREREZHXifA3W7ijE1/vPoqHZBAAI9VfjjonxuCctEYmRQTJXKA8GTy83ZMgQuUsgIiIiAEaTGT8eLcPaHYXIPlVu3Z7aPwTz0wfh5nGxHj/3uKv59ldPREREdIkq65rw2Z5i/GNnEc5WNQAAlApg9ogBmJ8+CJcPjoBC4TvD6V1h8CQiIiLqhcPnqrF2RyH+lXsOBqO0hHR4oB/mTk7A3ZcnYmAYl4xuj8GTiIiIyEHNJjO+P1yKtTsKsaew0rr9sthQzE8fhBvHxMLfTyVjhZ6NwZOIiIioGxdqDPh092l8vKsI5/UGAIBaqcA1o2IwPy0RExLDOZzuAAZPIiIiok7kFldh7Y5CfPdzCZpM0nB6VLAWd05JwF1TEtA/lAub9ASDp8wKCwuRlJSEnJwcjB07Vu5yiIiIfJ7BaMJ/D5bggx1FOFBcZd0+Nj4M96YPwjWjBkCr5nB6bzB4+rA//OEP+Pbbb7ucC5SIiMhXnNc34uOdRfhk92lcrG0CAGhUSlw/Ogbz0wdhTHyYvAX2AQye1K3m5mb4+fX9ZbyIiMj3CCGwt6gSa3cUYsOhUhjNAgDQP1SLu6ckYt6UBEQFa2Wusu9Qyl3AJRMCaKqT5yGEw2WazWa89tprGDJkCLRaLRISEvDSSy9Znz927BjS09Ph7++PkSNHYsuWLTavP3z4MK6//nqEhoYiJCQEU6dORX5+frfH3bx5MyZPnoygoCCEhYUhIyMDRUVF+OCDD/Diiy/iwIEDUCgUUCgU+OCDDwAACoUCq1atwo033oigoCBrnatWrUJycjI0Gg1SU1Px0Ucf2RxLoVDgvffewy233ILAwECkpKRg3bp1NvusW7cOKSkp8Pf3x8yZM7F27VooFApUVVU53JZERESXqrHZhC/2FOO6v27DL97Jxn9+LoHRLDB5UATevnM8tj17BR67MoWh08m8v8ezuR54OVaeY//vOUDj2JJXixcvxurVq7Fs2TJkZmaipKQEx44dsz6/aNEiLF++HCNGjMAbb7yBG264AQUFBYiMjMTZs2cxbdo0zJgxA5s2bUJoaCi2b98Oo9HY5TGNRiNuvvlm/PrXv8ann36KpqYm7N69GwqFAr/85S9x6NAhbNiwAT/++CMAQKfTWV/7hz/8Aa+88gqWL18OtVqNb775Bk888QSWL1+OWbNm4T//+Q/uu+8+xMXFYebMmdbXvfjii3jttdewdOlSvPXWW7jrrrtQVFSEiIgIFBQU4Pbbb8cTTzyBBx54ADk5OXj66ad70uJERESX5GxVAz7KLsLne06jsr4ZAKBVK3Hz2IH4VXoiLovVdfMOdCm8P3h6gZqaGrz55ptYsWIF5s+fDwBITk5GZmYmCgsLAQCPPvoobrvtNgBSz+KGDRvw97//Hc888wzefvtt6HQ6fPbZZ9Yh76FDh3Z7XL1ej+rqalx//fVITk4GAAwfPtz6fHBwMNRqNQYMGNDhtXfeeSfuu+8+6+fz5s3Dvffei0ceeQQAsHDhQuzcuROvv/66TfC89957MW/ePADAyy+/jL/+9a/YvXs3rr76arz77rtITU3F0qVLAQCpqak4dOiQTc8vERGRswkhkH2qHGt3FOKHI+fRMpqOgWEBuCctEb+cGI/wII28RfoI7w+efoFSz6Ncx3bA0aNHYTAYcOWVV3a6T1pamvXfarUaEydOxNGjRwEAubm5mDp1ao+vs4yIiMC9996LOXPm4KqrrsKsWbNwxx13ICYmptvXTpw4scPX8OCDD9psy8jIwJtvvmmzbfTo0dZ/BwUFITQ0FGVlZQCA48ePY9KkSTb7T548uUdfExERkaPqm4z4JucsPtxRhOPna6zb05MjMT99EGYN7w+VknNvupP3B0+FwuHhbrkEBFzaklmX8vo1a9bg8ccfx4YNG/D555/j97//PX744QdcfvnlXb4uKKh3bdo+HCsUCpjN5l69FxERUW8Uldfhw+wifLG3GDWN0mVpgRoVbh0/EL9KG4Sh/UNkrtB3ef/NRV4gJSUFAQEB2LhxY6f77Ny50/pvo9GIffv2WYfFR48ejaysLDQ3N/fq+OPGjcPixYuxY8cOjBw5Ep988gkAQKPRwGQyOfQew4cPx/bt2222bd++HSNGjHC4jtTUVOzdu9dm2549exx+PRERUWfMZoEtJy7g/g/2YMbrm/H3bQWoaTQiMTIQz10/AtmLr8Sfbx7F0Ckz7+/x9AL+/v549tln8cwzz0Cj0SAjIwMXLlzA4cOHrcPvb7/9NlJSUjB8+HAsW7YMlZWVuP/++wFI13++9dZbmDt3LhYvXgydToedO3di8uTJSE1N7fS4BQUF+Nvf/oYbb7wRsbGxOH78OE6ePIlf/epXAIBBgwahoKAAubm5iIuLQ0hICLRa+3fvLVq0CHfccQfGjRuHWbNm4d///je+/vpr641JjnjooYfwxhtv4Nlnn8X//M//IDc31+ZOeiIiop6qaWzGV/vO4MPsIpy6WGfdPn1oP9ybPgjTh/aDksPpHoPB002ee+45qNVqPP/88zh37hxiYmLw8MMPW59/5ZVX8MorryA3NxdDhgzBunXrEBUVBQCIjIzEpk2bsGjRIkyfPh0qlQpjx45FRkZGl8cMDAzEsWPHsHbtWpSXlyMmJgYLFizAQw89BAC47bbb8PXXX2PmzJmoqqrCmjVrcO+999p9r5tvvhlvvvkmXn/9dTzxxBNISkrCmjVrMGPGDIfbICkpCf/85z/x1FNP4c0330RaWhr+3//7f/jNb37TaeAlIiKyJ/9CLT7cUYh/7juDuiZp9C5Yq8btE+Lwq7REDO4XLHOFZI9CiB5MRukGer0eOp0O1dXVCA0NtXmusbERBQUFSEpKgr8/10btC1566SW88847KC4u7nQfft+JiHyT2SxQ12RETaPl0YxSfSM+31OMrJMXrfsl9wvC/PRBuHV8HIK17FNzh67yWlf43SG3WrlyJSZNmoTIyEhs374dS5cuxaOPPip3WURE5GTNJrM1LLYNjjWNRtQaWv+tb/d5TWMzalv2r20ydrpWi0IBXDmsP+5NH4SMIZG8ZMtLMHh6ueDgzocS1q9fj6lTp7qxmu6dPHkSf/7zn1FRUYGEhAQ89dRTWLx4sdxlERFRCyEEGppNdkKjEbWG1rDYNiDWGFr/bXnOYHTejCZ+KgVC/P0QrFUjNECN9OQo3HN5IuIjHJvWkDwHg6eXy83N7fS5gQMHuq8QBy1btgzLli2Tu4xLkn+hFu9lFSBIo0K/EK3tI1iL8EANL2QnIlmYzEIKgAbbXsZaQ2sgrGk0toTEln0MHXsjTWbnXYUXqFEhWKtGiL8aIf5+LR/VCNH6WbcFt2wL9VcjWNtmn5b9tWolezT7CAZPLzdkyBC5S/A5f/m/4/jvwdJOn1cpFYgK1liDaNtQ2i/E3yaoBmlU/M+UiKwMRhMq65pRXmdAVX1zp8PTrYHRdnjacpONMygVsPYySqGwNSBaA6NWCott92sbLoO1aqhVnLmRWnll8PSw+6HIxTzp+20yC2xruaD9FxPiYDILXKg1oExvwIVaAyrqmmAyC5zXG3Beb+j2/QL8VO2CqRbR7XtRQ7SIDNJCo+Z/3kTeRAgBfaMRFXVN1kdlXRPK65pQWd+E8tqWj3VNqKgzoLJO6pl0Bq1aaRMCO4RCbZvn2mxv2+MYyD+MyQW8KnhaVsWpr6+/5NWAyHvU19cD6Lgqkhx+PlMFfaMRof5qLLl1VIe/5JtNZpTXNuFCjQEXahulj5ZHrcHm87omExqaTThdUY/TFfXdHjs80K9DSG39vLUnNSzAj0P9RC7QZDSjyhoU7Tzqm1DRJkxW1jXB2Isha5VSgfBADcID/dr1ILYNjWoEt+lZDG3T4xjsr4ZWrXJBCxBdOq8KniqVCmFhYda1vwMDA/nXWB8mhEB9fT3KysoQFhYGlUr+/0gtvZ3pyVF2h4/8VEoM0PljgM4fgK7L96ozGHGxtvNgaulJvVhrgNEsUFnfjMr6Zpw4X9vl+6qVCkR1GOLveC1qvxAtgjjtiFuYzQJGs4CfSsH/szyEEAK1BqP9ANk+TLb827L0Yk8FaVSICNYgIlCDiCANwoM0iGz7MVCDyGANIoK0iAjUIDRAzfOE+iyv+60zYMAAALCGT+r7wsLCrN93uVnmjctMibrk9wrSqhGkVSMxMqjL/cxmgaqG5jaBtPOe1Mr6ZhjNAqX6RpTqG7uvof0NUp30pEYGa+DnZddpGU1mNJnMaDKaYTC2/2hCk7Hj801GMwwmMwzNJutz7Z9vMrW+vv37tr6fyWb/ZpPU66VUAFq1Cv5+Svj7qeDvp4JWrbT5aH2uzX7a9s+rVbb7+imt76tt95y3fd96y2gyo6K+yXp9ZGVdMyrqDKiwfKyXPlqGtyvrmtFk6vld10oFEN4uQEbYeVjCZHigBv5+8v/RTOQpvC54KhQKxMTEIDo6utdrl5P38PPz84ieTgCoNRix/3QlAGBaSj+3HVepVFh/maUO6HqN4SajGeV17XpO2/emtvSkNjSbUNdkQl15PQrLux/qjwjS2AmmHT/3Uys7hC+DA+HM0GwJdV0/39TmeUNn4dFoghNvynUaswAamqVLLAD3/P+lUirgr1ZC66eCv7o1yLYG2PbBVwWtnXDbPvhq7T4nHeNSbyYRQqC+yYSKutYha7sf2/RGVjf0rj0D/FR2g6PdR6AGOl7KQnRJvC54WqhUKo8JJOQbduaXw2gWSIgIREKkZ84dp1ErEaMLQIyu+2ug6wxGlNkE1MYOAfVCjQEXa6Ubpiy/4I+fr3HDV+Jclp5GjVopPVRKaP1aPqqVnT5n2WZ5Xmvn+a7et+3zKqVCCsvNZjQ2m9DYbEaj0YTG5pZtxpZtzS3bjPb+3fKx5XNDyzaD0fb9Gptbe/JMZiH9geHEu527o1YqbHpite1Crm2AVaLOYOpws01TL+aAVCiAsAA/RARpEBmkRXiQnzR83f5joMY69B2g4e8RInfqcfDcunUrli5din379qGkpATffPMNbr75ZuvzQgi88MILWL16NaqqqpCRkYFVq1YhJSXFmXUTud22PGmYfaoThtk9QZBWjSStGklR3Q/1V9Y3dbwG1U5PalV9a6+TWqloE9zaBLM2QU3b7rn2Qc72dY4FRK2d13rOdC7uuUFOCCH1MreEUUO7UGoJtNYAazS3hNi24bb13wZr0LX/PpYebQujWbp+srb7iR26pFUrrddCtu15tHd9ZHigBmGBGqjYG0nk0XocPOvq6jBmzBjcf//9uPXWWzs8/9prr+Gvf/0r1q5di6SkJDz33HOYM2cOjhw5wnW2yatlnbwAoO8ET0cplQpEBmsRGazFsG4utTUYTTCbYe3hI3koFAprz6LOTWHXbBZoMrXvmW3pkW0Tcu0F2ECNSrpuMtg2TAb4cTofor6mx8HzmmuuwTXXXGP3OSEEli9fjt///ve46aabAAAffvgh+vfvj2+//RZz5869tGqJZHKuqgH5F+qgVABpyb4VPHuCU7j4LqVSAX+lijfSEFGXnDr+VFBQgNLSUsyaNcu6TafTYcqUKcjOzrb7GoPBAL1eb/Mg8jSWaZTGxIdBFyD/fKJERETeyKnBs7RUWkawf//+Ntv79+9vfa69JUuWQKfTWR/x8fHOLInIKbZahtmHsLeTiIiot2S/4n7x4sWorq62PoqLi+UuiciG2SywI78cADB1qPumUSIiIuprnBo8LZN8nz9/3mb7+fPnO50AXKvVIjQ01OZB5EmOlOhRUdeEYK0aY+PD5C6HiIjIazk1eCYlJWHAgAHYuHGjdZter8euXbuQlpbmzEMRuY1lmP3ywZE+swoMERGRK/T4rvba2lrk5eVZPy8oKEBubi4iIiKQkJCAJ598En/+85+RkpJinU4pNjbWZq5PIm9iubHI16ZRIiIicrYeB8+9e/di5syZ1s8XLlwIAJg/fz4++OADPPPMM6irq8ODDz6IqqoqZGZmYsOGDZzDk7xSQ5MJewulZTKdsT47ERGRL1MIITxqRWO9Xg+dTofq6mpe70my23y8DPeu2YOBYQHY9uxMTmZNRESE3uc1XrBG1IWslmH2zCFRDJ1ERESXiMGTqAvW6zuHcpidiIjoUjF4EnWiTN+I4+droFAAGVwmk4iI6JIxeBJ1wjLMPjJWh/AgjczVEBEReT8GT6JObMvjNEpERETOxOBJZIcQovXGIgZPIiIip2DwJLLjWGkNLtYaEOCnwoTEcLnLISIi6hMYPInssNzNPmVwBLRqlczVEBER9Q0MnkR2WNZnn5rST+ZKiIiI+g4GT6J2GptN2F1QAYA3FhERETkTgydRO3sLK2EwmtE/VIuU6GC5yyEiIuozGDyJ2snKk4bZM4f04zKZRERETsTgSdRO1gnO30lEROQKDJ5EbVysNeBIiR4AkDGEwZOIiMiZGDyJ2tjeslrR8JhQ9AvRylwNERFR38LgSdSGZbUiDrMTERE5H4MnUQshhHXieAZPIiIi52PwJGqRV1aLUn0jNGolJg2KkLscIiKiPofBk6iFZZh9SlIE/P24TCYREZGzMXgStdjWcmNRJu9mJyIicgkGTyIATUYzdp4qB8D12YmIiFyFwZMIwP7TlahvMiEqWINhA0LkLoeIiKhPYvAkApB1UlomM2NIFJRKLpNJRETkCgyeRECbaZQ4zE5EROQqDJ7k8yrrmvDz2WoAvLGIiIjIlRg8yeftyC+HEMDQ/sEYoPOXuxwiIqI+i8GTfN62POn6zswhHGYnIiJyJQZP8mlCCGw9wWUyiYiI3IHBk3xaYXk9zlY1wE+lwJTBXCaTiIjIlRg8yadZplGakBiOQI1a5mqIiIj6NgZP8mlZnEaJiIjIbRg8yWc1m8zYmW9ZJpPXdxIREbkagyf5rAPFVagxGBEe6IfLYnVyl0NERNTnMXiSz7IMs6cPiYKKy2QSERG5HIMn+SzLjUVTuVoRERGRWzB4kk+qbmjGgTMty2Ty+k4iIiK3YPAkn5SdXw6TWWBwVBDiwgPlLoeIiMgnMHiST7Isk8m72YmIiNyHwZN80raWG4syOX8nERGR2zB4ks8prqhHYXk9VEoFLucymURERG7D4Ek+xzKN0viEMIT4+8lcDRERke9g8CSfY5lGKXMIh9mJiIjcicGTfIrJLLDDskzmUN5YRERE5E4MnuRTDp6tRnVDM0L81Rg9kMtkEhERuRODJ/mUrBPSMHtGchTUKp7+RERE7sTfvORTsvIs0yhxmJ2IiMjdGDzJZ9QajNhfVAmAE8cTERHJgcGTfMauU+UwmgUSIgKRGBkkdzlEREQ+h8GTfEbWSQ6zExERyYnBk3yGZf7OaQyeREREsmDwJJ9wrqoB+RfqoFQAackMnkRERHJg8CSfsK1lmH1MfBh0AVwmk4iISA5OD54mkwnPPfcckpKSEBAQgOTkZPzpT3+CEMLZhyJymGUapalD2NtJREQkF7Wz3/DVV1/FqlWrsHbtWlx22WXYu3cv7rvvPuh0Ojz++OPOPhxRt8xmge3W+Tu5PjsREZFcnB48d+zYgZtuugnXXXcdAGDQoEH49NNPsXv3bmcfisghR0r0qKhrQpBGhXEJYXKXQ0RE5LOcPtSenp6OjRs34sSJEwCAAwcOYNu2bbjmmmvs7m8wGKDX620eRM5kmUYpLTkSflwmk4iISDZO7/H83e9+B71ej2HDhkGlUsFkMuGll17CXXfdZXf/JUuW4MUXX3R2GURWlmmUpnKYnYiISFZO7/754osv8PHHH+OTTz7B/v37sXbtWrz++utYu3at3f0XL16M6upq66O4uNjZJZEPa2gyYW+htEwmJ44nIiKSl9N7PBctWoTf/e53mDt3LgBg1KhRKCoqwpIlSzB//vwO+2u1Wmi1WmeXQQQA2FVQjiaTGbE6fwyO4jKZREREcnJ6j2d9fT2UStu3ValUMJvNzj4UUbcs83dOTekHhUIhczVERES+zek9njfccANeeuklJCQk4LLLLkNOTg7eeOMN3H///c4+FFG3uD47ERGR53B68Hzrrbfw3HPP4ZFHHkFZWRliY2Px0EMP4fnnn3f2oYi6VKZvxPHzNVAogAxOHE9ERCQ7pwfPkJAQLF++HMuXL3f2WxP1yLaWSeNHxuoQEaSRuRoiIiLipIbUZ2VZr+9kbycREZEnYPCkPkkIwes7iYiIPAyDJ/VJx0prcLHWgAA/FSYkhstdDhEREYHBk/ooyzRKUwZHQKtWyVwNERERAQye1EdltdxYlMm72YmIiDwGgyf1OY3NJuw6VQ4AmDaU67MTERF5CgZP6nP2FVXCYDSjf6gWKdHBcpdDRERELRg8qc/ZevICAGnSeC6TSURE5DkYPKnPsdxYNC2Fw+xERESehMGT+pTyWgMOn9MD4DKZREREnobBk/oUyzKZw2NC0S9EK3M1RERE1BaDJ/Up27hMJhERkcdi8KQ+o+0ymQyeREREnofBk/qM/Au1KNU3QqNWYtKgCLnLISIionYYPKnP2HpC6u2cPCgC/n5cJpOIiMjTMHhSn2G5sYjD7ERERJ6JwZP6hCajGTtblsnMZPAkIiLySAye1CfsP12J+iYTooI1GD4gVO5yiIiIyA4GT+oTLNMoZQyJglLJZTKJiIg8EYMn9QlZLeuzZ3K1IiIiIo/F4Eler6q+CT+frQYATOX67ERERB6LwZO83o78cggBpEQHY4DOX+5yiIiIqBMMnuT1LMPs7O0kIiLybAye5NWEENaJ4zl/JxERkWdj8CSvVlhej7NVDfBTKTBlMJfJJCIi8mQMnuTVtrUMs09IDEegRi1zNURERNQVBk/yaltPWobZeX0nERGRp2PwJK9lNJmxM19aJpPXdxIREXk+Bk/yWgfOVKHGYERYoB8ui9XJXQ4RERF1g8GTvJblbvaMIVFQcZlMIiIij8fgSV5rW17L9Z1cJpOIiMgrMHiSV9I3NiO3uAoAkMnrO4mIiLwCgyd5pez8cpjMAoOjghAXHih3OUREROQABk/ySttaplFibycREZH3YPAkr8T12YmIiLwPgyd5neKKehSW10OlVOByLpNJRETkNRg8yetktQyzj08IQ4i/n8zVEBERkaMYPMnrbMuThtkzh3CYnYiIyJsweJJXMZkFtudJy2TyxiIiIiLvwuBJXuXg2WpUNzQjxF+NMXFcJpOIiMibMHiSV9nWcjd7enIk1CqevkRERN6Ev7nJq2xtubGI0ygRERF5HwZP8hq1BiNyTlcCAKby+k4iIiKvw+BJXmPXqXI0mwTiIwKQGBkkdzlERETUQwye5DWyOMxORETk1Rg8yWtsy2sJnkM4zE5EROSNGDzJK5RUNyCvrBZKBZCezOBJRETkjRg8yStYhtlHx4VBF8hlMomIiLwRgyd5BUvwnMa72YmIiLwWgyd5PLNZYHvL9Z2ZvLGIiIjIazF4ksc7UqJHRV0TgjQqjEsIk7scIiIi6iUGT/J4lmH2tORI+HGZTCIiIq/lkt/iZ8+exd13343IyEgEBARg1KhR2Lt3rysORT5gW560Pnsmp1EiIiLyampnv2FlZSUyMjIwc+ZMrF+/Hv369cPJkycRHh7u7EORD2hoMmFPQcsymUN5fScREZE3c3rwfPXVVxEfH481a9ZYtyUlJTn7MOQjdhdWoMlkRqzOH4OjuEwmERGRN3P6UPu6deswceJE/OIXv0B0dDTGjRuH1atXd7q/wWCAXq+3eRBZZJ1oGWZPiYJCoZC5GiIiIroUTg+ep06dwqpVq5CSkoLvv/8ev/nNb/D4449j7dq1dvdfsmQJdDqd9REfH+/sksiLWZfJ5DRKREREXk8hhBDOfEONRoOJEydix44d1m2PP/449uzZg+zs7A77GwwGGAwG6+d6vR7x8fGorq5GaGioM0sjL1Omb8TklzdCoQD2/f4qRARp5C6JiIiIIOU1nU7X47zm9B7PmJgYjBgxwmbb8OHDcfr0abv7a7VahIaG2jyIgNbezpGxOoZOIiKiPsDpwTMjIwPHjx+32XbixAkkJiY6+1DUx207aVmtiNMoERER9QVOD56//e1vsXPnTrz88svIy8vDJ598gr/97W9YsGCBsw9FfZgQAlnW6zsZPImIiPoCpwfPSZMm4ZtvvsGnn36KkSNH4k9/+hOWL1+Ou+66y9mHoj7s+PkaXKgxIMBPhQmJnAOWiIioL3D6PJ4AcP311+P66693xVuTj8g6IfV2Tk6KgFatkrkaIiIicgYufE0eicPsREREfQ+DJ3mcxmYTdheUA+D8nURERH0Jgyd5nH1FlWhsNiM6RIuh/YPlLoeIiIichMGTPE5Wm2mUuEwmERFR38HgSR4n66S0Pjuv7yQiIupbGDzJo5TXGnD4nB4AkDGEwZOIiKgvYfAkj7I9X7qpaNiAEESH+MtcDRERETkTgyd5lKwT0jD7tKG8m52IiKivYfAkjyGEwLaW+TszOcxORETU5zB4ksfIv1CLkupGaNRKTE6KkLscIiIicjIGT/IYlmmUJg+KgL8fl8kkIiLqaxg8yWNsazN/JxEREfU9DJ7kEZqMZmSfsiyTyeBJRETUFzF4kkfIOV2J+iYTIoM0GD4gVO5yiIiIyAUYPMkjtF0mU6nkMplERER9EYMneYQsTqNERETU5zF4kuyq6pvw85kqAMDUFE4cT0RE1FcxeJLsduSXQwggJToYA3RcJpOIiKivYvAk2WVxGiUiIiKfwOBJshJCIOtky/rsHGYnIiLq0xg8SVZF5fU4U9kAP5UCUwZzmUwiIqK+jMGTZGXp7ZyQGI5AjVrmaoiIiMiVGDxJVpbrO3k3OxERUd/H4EmyMZrMyM6Xlsnk/J1ERER9H4MnyebAmSrUGIwIC/TDyIE6ucshIiIiF2PwJNlYhtkzkqOg4jKZREREfR6DJ8mm9fpODrMTERH5AgZPkoW+sRm5xVUAOHE8ERGRr2DwJFlk55fDZBZIigpCXHig3OUQERGRGzB4kiy2cZidiIjI5zB4kiy25bWsz85plIiIiHwGgye5XXFFPQou1kGlVCAtOVLucoiIiMhNGDzJ7Sy9nePiwxDi7ydzNUREROQuDJ7kdpb12blMJhERkW9h8CS3MpkFtue1LJPJG4uIiIh8CoMnudWhs9WobmhGiL8aY+K4TCYREZEvYfAkt7IMs6cnR0Kt4ulHRETkS/ibn9zKskxmJq/vJCIi8jkMnuQ2dQYj9p+uBABM4/WdREREPofBk9xmV0E5mk0C8REBSIwMkrscIiIicjMGT3KbrScsqxVxmJ2IiMgXMXiS21gmjucwOxERkW9i8CS3KKluQF5ZLZQKID2ZwZOIiMgXMXiSW1juZh8dFwZdIJfJJCIi8kUMnuQW21qC51QOsxMREfksBk9yObNZWK/v5PrsREREvovBk1zuSIkeFXVNCNKoMC4hTO5yiIiISCYMnuRylt7OywdHwo/LZBIREfkspgByOcv67Ly+k4iIyLcxeJJLNTSZsKdQWiaT67MTERH5NgZPcqndhRVoMpoRq/NHcj8uk0lEROTLGDzJpba1DLNnpkRBoVDIXA0RERHJyeXB85VXXoFCocCTTz7p6kORB8o6yWmUiIiISOLS4Llnzx68++67GD16tCsPQx6qrKYRx0proFAAGUN4YxEREZGvc1nwrK2txV133YXVq1cjPDzcVYchD7a9ZRqly2JDERGkkbkaIiIikpvLgueCBQtw3XXXYdasWV3uZzAYoNfrbR7UN2Sd4DA7ERERtVK74k0/++wz7N+/H3v27Ol23yVLluDFF190RRkkIyEEsizLZHKYnYiIiOCCHs/i4mI88cQT+Pjjj+Hv79/t/osXL0Z1dbX1UVxc7OySSAbHz9fgQo0B/n5KTBjESy2IiIjIBT2e+/btQ1lZGcaPH2/dZjKZsHXrVqxYsQIGgwEqlcr6nFarhVardXYZJLNtLXezT0mKhFat6mZvIiIi8gVOD55XXnklDh48aLPtvvvuw7Bhw/Dss8/ahE7qu1qnUeIwOxEREUmcHjxDQkIwcuRIm21BQUGIjIzssJ36psZmE3YVlAPgjUVERL1Sng9cOAbEjAV0A+Wuhjxdox4o3g2czgZmLAZULrmFxyk8tzLyWvuLKtHYbEZ0iBZD+wfLXQ4RkXcQAijaDuxYAZzYAEBI28MSgcQMIDFN+hgxGOBKcL6trhw4vQMoypbOmdKfAWGWnht2HTBwfNevl5FbgufmzZvdcRjyEFtbhtm5TCYRkQNMzcDhb4Hst4CSA63bo4YC5XlAVZH0OPCJtD24P5CYDiSkSx+jRwBKroDdp1WflXozi7YDRTuk3vD2wpOk80Hd/Y3dcmKPJzndtjxpfXZe30lE1IWGKmDfB8Cud4Gac9I2dQAwdh5w+SNAVIo0hHpmtxQ2inYAZ/cBteeBw99IDwDw1wEJaVLoSMwAYsYAKj+5viq6VEIAFadav+dF26U/PNrrN7zle97yCI11f629wOBJTlVea8Chs9IiAFwmk4jIjspCYOcqYP9HQHOdtC0oGpjyIDDhfiAosnVf/1BgyCzpAQDNjVL4LNohDbWe3gU0VktD8yc2SPv4BQJxk1qG59OBuImAX4Bbv0TqAbMZuHC0TdDcAdSW2u6jUEp/UFi+pwlpQGCEPPVeIgZPcqrt+dJNRcMGhCA6xLO7+4mI3Kp4N7DjLeDYf1qvx4u+DEhbAIy6HVA7MLWgnz8wKEN6AIDJCJQeaAks2VIYbagECrZIDwBQ+knX/Fl6ROMnS72kJA+b71nLo7HKdh+VBhg4seW63nQgbrL0R0gfwOBJTrXtJIfZiYisTEbg2L+B7LeBM21W80u+Ekh/FBg889JuFFKpgYETpEf6Yy29Z8dabjxpedSUAMW7pMe2ZVLvWf+Rtr1nwZyBxGXa9lIXbZf+ALH0dFv4BUl/EFi+JwMnSH9k9EEMnuQ0Qog283fyPzEi8mGGGmkofdcqoOq0tE2lAUbfAVy+AOg/wjXHVSql9+4/Apj0gHS9YGVBy93PLcGnskC6C7r0Z6k+QLqRydIjmpAGhMW7pj5fYKiRwqX1uty9gKnJdh//sNbQn5gBxIz2metyGTzJafIv1KGkuhEatRKTk7zz2hMioktSVQzsfhfYtxYwSNe7IzBSCoGTHgCCo91bj0IhTb8UMRgYd5e0TV9i2yNadgS4eEJ67PtA2keXYHvjSuQQTuHUmfqKljvOW4J9yc+AMNnuY5mJwNKj2W+4z85EwOBJTpPVMsw+eVAE/P24QhUR+ZCz+6Xh9MPftIaOyBTp+s0xcz3r5p7QGGDkbdIDaAlOO6XQdDobOJcLVJ8Gfj4N/PyZtE9QP9spnPpfBih99P95fUlrW1mCe3vWuVdb2otzr1oxeJLTbGszfycRUZ9nNgMn1kuBs2h76/akaUDao8CQq7yjVyswAhh2rfQAAENtmymcsqVrU+suAEf+JT0AQKsDEi5vndQ+Ziyg1sj2JbiMENIsBG2nNqos6Lhfv2FtgnkaoItze6negsGTnKLJaMbOU9Id7ZmcRomI+rKmOiD3E2DnSmm+RQBQqoGRt0s9nDGj5a3vUmmDgeQrpAcAGA1Sj66ll+/0LsBQDZz8XnoA0vyj8ZNae0TjJgGaQPm+ht4ym4GLx1snarfcnNWWQgkMGGV7c1YQf+85isGTnCLndCXqmkyIDNJgREzfmPKBiMiGvgTYsxrY+740ZREgTUs08X5g8oNeM4F3j6m1LT2badLnJiNw/mDrco1FO4CGCqBgq/QApCAeO67NFE5TgIAw2b6ETpmM0k1W1ms0W76WtpR+0l3mNtNR8fdcbzF4klNsy5OG2TOGREGp5HUsRNSHlB6UhtMP/hMwN0vbwpOk1YXG3in1EPoSVUuojB0HpD0iDUdfOG57w5L+rDREf2YPsP1NAIqWKZza3LDk7hutANve26Id0hRTTbW2+/gFSuHS2nvLCfidicGTnGKrdRolDjcQUR9gNgN5PwLZK1onYgekYdW0BUDqtb57c017CgUQPUx6TLxfCqJVp1uviSzaAVTkS72k5w9Kd/0D0p3ybe/0Dktwfm0216vuAM7sBUwG2320utaJ2rnkqMsxeNIlq6pvwsEzVQA4fycRebnmRulO7uyV0rV+AKBQASNukm4Yipsgb33eQKEAwhOlx9h50raa8216RLOB84eA8jzpsf9DaZ/QONse0aihPb8TvL5C6sW0BN5zuR2nNgqKtj1O9Aj+EeFGDJ50yXbkl8MsgJToYAzQ9c2VFoioj6u9AOx5T3rUSyM40IQAE+YDUx5yTW+cLwnpD1x2i/QApGtkT+9qM4VTDqA/Axz8QnoAQGCU1BNpGfIeMKpjQKwptV16suxwx2OHJbS+R2IGEJnMqY1kxOBJlyyL0ygRkbcqOwbsfBs48HnrEKwuAbj8YWDcPbyJxFUCwoHUq6UHIM0UcGZP6w1LZ/ZIfwAc/bf0AABtqHSTUtwkoLq4dQi/Pa7C5NEYPOmSSMtkcn12IvIiQgCnNks3DOX90Lp94ARpOH34jdINNOQ+miBg8AzpAQDGJqkX1DI8f3qntBJU3g+23zMo2kxt1NI7ynXnPRp/suiSFJXX40xlA/xUCkxJipS7HCKizhkNwKGvpMB5/lDLRgUw/HopcMZP4RCsp1BrgIQp0iPzt4DZJH3PirKBs/ukqassUxt54jRN1CkGT7okWS3TKI1PCEeQlqcTEXmg+gpp7s3dq4HaUmmbXxAw7m5pSD1isLz1UfeUKulu85gxcldCl4hJgS5J1glpmH3aUA5tEJGHKc+XVhfK+RgwNkjbQmKkm4Um3CtdZ0hEbsXgSb1mNJmRnc9lMonIgwghXROYvQI4vh6AkLYPGAWkPSbdVd0X1xQn8hIMntRrB85Uo8ZghC7ADyMH6uQuh4h8makZOPIvKXCey2ndPvRq6frNQZm8fpPIAzB4Uq9Z7mbPHBIFFZfJJCI5NFRJE5DveleaBxIA1P7AmHnSCkNRKbKWR0S2GDyp17Zx/k4ikktlIbDzHSDno9a1toOigckPSss2BnGWDSJPxOBJvaJvbEZOcRUAXt9JRG5UvFsaTj/6b0CYpW3RI6TezZG3A35cPY3IkzF4Uq/szC+HySyQFBWE+IhAucshor7MbJKCZvbbwJndrduTr5Cu30y+gtdvEnkJBk/qlW0t83dytSIichlDDZDzD2DnKqCqSNqm0gCj7wAuXwD0HyFvfUTUYwye1CvW9dk5zE5EzlZ9Ftj1DrBvLWColrYFRACTHpAeIf3lrY+Ieo3Bk3qsuKIeBRfroFIqcHkyL+AnIic5lyMNpx/+BjAbpW2RKUDaI8DouYCGl/UQeTsGT+oxyzD7uPgwhPr7yVwNEXk1sxk4sUEKnEXbWrcPmipdv5kyG1Aq5auPiJyKwZN6jNMoEVGPNdVJUyBVFACVBa0fy44BNeekfZRqYORtwOWPALFj5ayWiFyEwZN6xGQWbW4s4vrsRNRCCKC+wjZUVhQAFaekf9ee7/y1/jpgwn3SHJy6ge6rmYjcjsGTeuTQ2WpUNzQjxF+NMXFcJpPIp5jNgP5sJ+GyEDDou369fxgQkQSEJ9l+jB0HaILc8RUQkcwYPKlHLL2daYMjoVbxuiuiPsdoACqL2oXLU9K/q4oAU1PXrw+JbRMqB9mGzMAIt3wJROS5GDypR7aekNZnnzqUw+xEXquxuuO1lhUtD/1ZAKLz1yr9gLAEOz2Xg4HwRMAvwG1fBhF5HwZPclidwYj9pysBAFM5fyeR5xJCuqbS3rWWFQVAQ0XXr9cE2++xjBgM6OIApcotXwYR9T0MnuSwXQXlaDYJxEcEIDGS8+kRycrUDFQXd+yxrCyQrrdsru/69UH9Ol5raQmXQVFcgpKIXILBkxzWulpRPyj4S4nI9TpMQXSq9d9VxYAwdf5ahVLqnbQbLpMAbYjbvgwiIgsGT3KYZf7OaZy/k8g52k9B1HY4vLspiABA7Q+ED7IfLsMSALXGLV8GEZGjGDzJISXVDThZVgulAkhPZvAk6pHmRuDMnpYey7bhsrD3UxCFJwEhMVzVh4i8CoMnOcTS2zkqLgy6QC6TSeSQ5gZg3wfAtuVAbWnn+3EKIiLyEQye5JAsDrMTOa6pDtj7PrD9r0BdmbQtKBqIGW2n53IQpyAiIp/B4EndMpsFtudZbixi8CTqlKEG2PMesOMtoL5c2qZLAKYuBMbeCai18tZHRCQzBk/q1pESPcrrmhCkUWFcQrjc5RB5nsZqYPffgOy3gQZprluEDwKmPg2MmQuoeHkKERHA4EkOsCyTefngSGjUvJGByKqhCtj1DrBzpRQ+ASAiGZi2CBj1C0DF/2KJiNri/4rULcuNRZm8vpNIUl8B7FwlhU7LXelRQ4FpzwAjb+XKPkREnWDwpC41Npuwu1BaXm9qCtdnJx9XVw5kr5CG1ZtqpW3RI6QezhE3MXASEXWDwZO6tLugAk1GM2J0/kjuFyR3OUTyqC2Tbhja83eguU7a1n8UMP0ZYNj1nEuTiMhBDJ7UpayTFwAAU1OiuEwm+Z6aUmlKpL3vA8YGaVvMWGD6s0DqNVzPnIiohxg8qUvW9dk5zE6+pPossP1NafJ3k0HaNnACMP13QMpVDJxERL3E4EmdKqtpxLHSGigUnL+TfERVMbBtGZDzEWBqkrbFT5F6OJOvYOAkIrpEDJ7UKcuk8ZfFhiIiSCNzNUQuVFkIZL0B5H4CmJulbYkZUuBMmsbASUTkJAye1CnrMPsQDrNTH1WeLwXOA58CwiRtS5omBc5BmfLWRkTUBzn9VswlS5Zg0qRJCAkJQXR0NG6++WYcP37c2YchFztaoseW49KNRVyfnfqciyeBrx8CVkwEcv8hhc7kK4D7NgDz/83QSUTkIk7v8dyyZQsWLFiASZMmwWg04n//938xe/ZsHDlyBEFBnI7H0xVerMMbP5zAv38+ByGA/qFajE/kMpnUR5QdA7YuBQ59BUBI21JmSxO/x0+StTQiIl+gEEIIVx7gwoULiI6OxpYtWzBt2rRu99fr9dDpdKiurkZoaKgrS6M2Sqsb8ebGk/hibzFMZumUuH50DBbNSUViJP9gIC9XekgKnEf+BWvgTL1Wmvh94HhZSyMi8ka9zWsuv8azulpavzgiIsLu8waDAQaDwfq5Xq93dUnURkVdE1ZtzsOH2UUwGM0AgJmp/fDU7FSMHKiTuTqiS1RyANjyGnDsP63bht8gBc6YMfLVRUTko1waPM1mM5588klkZGRg5MiRdvdZsmQJXnzxRVeWQXbUGoz4e1YBVmedQq3BCACYNCgci+YMw+Qk+38kEHmNs/uALUuBE+tbNiiAy26WAmf/y+SsjIjIp7l0qP03v/kN1q9fj23btiEuLs7uPvZ6POPj4znU7iKNzSb8Y2cRVm7OR0WdNE/hiJhQLLo6FTOG9uPqROTdivcAW14F8n6QPlcogZG3AVOfBqKHyVsbEVEf4nFD7Y8++ij+85//YOvWrZ2GTgDQarXQarWuKoNaGE1m/HPfGby58SRKqhsBAIOjgrBw9lBcOzIGSiUDJ3mxomwpcJ76SfpcoQJG3wFMfQqISpG3NiIisnJ68BRC4LHHHsM333yDzZs3IykpydmHoB4wmwW+O1iCN344gYKLdQCAGJ0/npyVgtvGx0GtcvqMWkTuU5AlBc7CLOlzpRoYMxfIXAhEJstbGxERdeD04LlgwQJ88skn+Ne//oWQkBCUlpYCAHQ6HQICApx9OOqEEAKbj1/A0u+P40iJdMNWRJAGC2YOwV1TEuDvp5K5QqJeEgIo2CLdNFS0Xdqm9APG3QVk/hYIHyRreURE1DmnX+PZ2TWCa9aswb333tvt6zmd0qXbXVCBpd8fw57CSgBAiFaNX08bjPszkxCs5WJV5KWEAPI3SoGzeJe0TaUBxv8KyHgSCIuXtTwiIl/iMdd4unhaUOrCobPVeP3/jmNzy4pDWrUS89MH4TfTkxHOtdbJWwkBnPw/aUj97D5pm9ofmHAvkPEEEBora3lEROQ4dn/1Aacu1OIvP5zAdz+XAABUSgV+OSkej1+RggE6f5mrI+olIYDj/5UCZ8kBaZs6AJj0P0D6Y0DIAHnrIyKiHmPw9GLnqhrw140n8eW+MzCZBRQK4MYxsfjtrKEYFMXVhshLmc3AsX9L83CePyht8wsCJj8ApD0GBPeTtz4iIuo1Bk8vVF5rwMrN+fhoZxGaWlYbunJYNJ6ek4rhMbwulryU2QQc+VYKnBeOSts0IcCUB4HLFwBBkbKWR0REl47B04vUNDZjdVYB/p51CnVNJgDAlKQIPHN1KiYkcrUh8lImI3D4a2kt9YsnpG1aHXD5w8CUh4FAnttERH0Fg6cXaGw24cPsQqzcnI+q+mYAwKiBOiyak4qpKVFcbYi8k8kIHPwC2Po6UJEvbfPXSb2bUx4CAsJkLY+IiJyPwdODNZvM+GJvMf668STO66VlRZP7BeHp2am4euQABk7yTqZm4MBnQNbrQGWhtC0gHEh7FJj8IODPy0WIiPoqBk8PZDYL/Pvnc3jjhxMoKq8HAAwMC8ATs1Jw67iBXG2IvJPRAOR+AmS9AVSflrYFRkl3qE/6H0AbIm99RETkcgyeHkQIgU3HyrD0++M4VloDAIgKllYbunNKArRqrjZEXqi5Ecj5CNi2HNCfkbYFRUtzcE68D9BwBgYiIl/B4Okhdp4qx9Lvj2NfUctqQ/5qPDRtMO7LSEIQVxsib9TcAOxbC2xfDtRIc8wiJEZaZWjCfMCPS+gSEfkaJhqZHTxTjde+P4askxcBAP5+StybnoSHpw9GWCBXGyIv1FQH7F0DbH8TqCuTtoUOlNZRH3cP4MdFDYiIfBWDp0zyymrwl/87gfWHSgEAaqUC8yYn4LErhiA6lL+YyQvVXgByPgSyVwL10h9S0CUAUxcCY+8E1Fp56yMiItkxeLrZmcp6vPnjSXy1/wzMAlAogFvGDsSTs4YiITJQ7vKIesZsBk5tkobUj/8XMBul7eGDgKlPA2PmAio/WUskIiLPweDpJhdrDVixKQ+f7DqNJpO02tDsEf3x1OxUpA7g3bzkZfTngJx/APs/ar1DHQAGTgQmPQCM+gWg4n8vRERki78ZXKy6oRmrt57C+9sLUN+y2lB6ciQWzUnFuIRwmasj6gGTETj5f8D+tdJHIf0BBX8dMHouMP5XwICR8tZIREQejcHTRRqaTPhgRyHe2ZKP6gZptaExcTosmjMMmSlRMldH1AOVhVLPZu7HrXenA0BiBjB+PjDiRt6hTkREDmHwdLImoxmf7y3GWxtPoqxGWm0oJToYT81OxZzL+nO1IfIOxibg+HfStZunNgMQ0vbASOlGofHzgagUOSskIiIvxODpJCazwLoDZ7Hsh5M4XSGtNhQXHoDfzhqKm8cNhErJwEle4GIesP8DIPfT1jvTAWDwTGnuzdTrADWn+SIiot5h8LxEQgj8cOQ8/vJ/J3D8vGW1IS0ev3II5k5KgEbN5S3JwzU3AEfWSdduFm1v3R48ABh3lzT3ZkSSfPUREVGfweB5CXbkXcRr3x9HbnEVACDUX42HZyTj3vRBCNSwacnDnT8sDaX//DnQWCVtUyiBlNnSUHrKbN6ZTkRETsXfKr2QW1yF178/jm150lBkgJ8K92cOwoNTk6EL5JyF5MGa6oBDX0u9m2f2tG7XJQDj7wHG3gXoBspXHxER9WkMnj1w4nwN/vJ/x/H94fMAAD+VAndNScQjM5MRHcLVhsiDncuRejcP/hNoki4JgVINpF4rXbs5eCagVMlbIxER9XkMng4orqjHsh9P4JucsxACUCqAW8bF4clZKYiP4GpD5KEaq4GfvwD2fwiU/ty6PWKwNJQ+9k4gOFq++oiIyOcweHahrKYRKzbl4dPdp9FskqaTufqyAXhq9lCk9OdqQ+SBhACKd0tD6Ye+BowN0naVBhh+o9S7OWiqtFYrERGRmzF42lFd34x3tuZjzfYCNDZLq7NMTYnC07NTMSY+TN7iiOyprwAOfCYFzgvHWrf3Gyb1bo6ZCwRGyFcfERERGDxt1DcZsWa7tNpQTaMRADAuIQyL5qQiPZmrDZGHEQIozJKu3Ty6DjA1SdvVAcDIW6XAGT+ZvZtEROQxGDwhrTb06e7TeGtTHi7WSqsNpfYPwdNzUjFreDRXGyLPUlsmLV+5/0Og4lTr9gGjpaH0Ub+Q1k8nIiLyMD4fPP+VexZLvz+OM5XStXAJEYFYeNVQ3DAmlqsNkecwm4D8n6RVhY6vB8xSjzw0IcCo26XAGTtO1hKJiIi64/PB82hJDc5UNiA6RIvHr0zBLyfFw0/F1YbIQ1SfBXL+AeR8BFQXt26PmyQNpV92C6ANlq8+IiKiHvD54Pnw9MGICPLDPZcPQoCG8xiSBzAZgZPfS9du5v0ACOkGN/iHSTcJjZ8P9B8ha4lERES94fPBMyxQgwenJctdBhFQWShdt5nzMVBb2ro9MVMaSh9+I+DHhQqIiMh7+XzwJJKVsQk49h9pGqRTm1u3B0ZJE7yPnw9EDZGtPCIiImdi8CSSw8WTwL4PgAOfAvXlLRsVQPJMKWymXguoNXJWSERE5HQMnkTu0twAHPmXdO3m6R2t20NigHF3A+PuAcIT5auPiIjIxRg8iVyt9JA0lP7z59L66QCgUAIpc6RrN4dcBaj4o0hERH0ff9sRuYKhFjj0lRQ4z+5r3R6WAIz7FTDuLiA0Vr76iIiIZMDgSeQsQgDn9ktD6Ye+Appqpe1KNTDsOunazcEzASXniSUiIt/E4El0qRqqgINfSoHz/MHW7RHJ0lD6mDuB4H6ylUdEROQpGDyJekMIoHiXdGf64W8Bo7TkKlRaYMRNUuBMzAAUXHaViIjIgsGTqCvNjUD1GaD6tPSxqlhauvLsPuDiidb9okdIQ+mj7wACI+Srl4iIyIMxeJLvEgJorGoNk9VngKrT0r+rWj6vK+v89X6BwMhbgfH3AnET2btJRETUDQZP6rvMZmnpSWuwLG79tyVYNtV0/z5+QUBYPKCLb/kYB4QnAUNmAf6hrv86iIiI+ggGT/JezY2A/mxrL2XbofCq04D+HGBu7v59AqPaBMsEKVhaQ2Y8EBDO3kwiIiInYPAkz9VQZds7WX3atseyq2FwC4UKCB3YGiJ1cbYhM3QgoAl0+ZdCREREDJ4kF7MZqD3f2jtZfcZ2KLz6DGDQd/8+foG2Q+DWXsuWbcEDuCoQERGRh+BvZHINo6FdmDzTJmQWA9VnHRwGj2zTU5lgOwSui5fuIOcwOBERkVdg8KyvABoqAaVKWmFGoZL+rVBJK8woWrZbt6kYdABpzfGu7gavLe3+PRRKaai7wxB4m2FxTZDrvxYiIiJyCwbPnSuBrUt7+CKFnaCqbBNO1Xa2WfZvt836nJ1tCqWd0Kt08Nhtg3Pb/ZXtjtNNrY1V7W7asQyDV3ffTOqAdkPg8YAuoTVkhsRyGJyIiMiH8Le+0g/QBANmEyBMgNkICHM3LxLSfmajW0r0WAERdobA21xnGRjJ3mEiIiKyUgghhNxFtKXX66HT6VBdXY3QUJnmSBRCCp/WMNomkLbdZgmqZnO7bSY7+3X3nLnlvdpvsxy77f7mNsduv63t/vbq6uzr6KQuTXC7O8ITWv+tDZbn+0NERESy6m1eY4+nPQpF65AzERERETmFUu4CiIiIiMg3MHgSERERkVu4LHi+/fbbGDRoEPz9/TFlyhTs3r3bVYciIiIiIi/gkuD5+eefY+HChXjhhRewf/9+jBkzBnPmzEFZmQNLHBIRERFRn+SS4PnGG2/g17/+Ne677z6MGDEC77zzDgIDA/H++++74nBERERE5AWcHjybmpqwb98+zJo1q/UgSiVmzZqF7OzsDvsbDAbo9XqbBxERERH1PU4PnhcvXoTJZEL//v1ttvfv3x+lpR2XUVyyZAl0Op31ER8f7+ySiIiIiMgDyH5X++LFi1FdXW19FBcXy10SEREREbmA0yeQj4qKgkqlwvnz5222nz9/HgMGDOiwv1arhVardXYZRERERORhnN7jqdFoMGHCBGzcuNG6zWw2Y+PGjUhLS3P24YiIiIjIS7hkycyFCxdi/vz5mDhxIiZPnozly5ejrq4O9913nysOR0RERERewCXB85e//CUuXLiA559/HqWlpRg7diw2bNjQ4YYjIiIiIvIdCiGEkLuItvR6PXQ6HaqrqxEaGip3OURERETUTm/zmux3tRMRERGRb3DJUPulsHTAciJ5IiIiIs9kyWk9HTj3uOBZU1MDAJxInoiIiMjD1dTUQKfTOby/x13jaTabce7cOYSEhEChULjlmHq9HvHx8SguLuZ1pW2wXexju3SObWMf26VzbBv72C6dY9vY5+52EUKgpqYGsbGxUCodv3LT43o8lUol4uLiZDl2aGgoT2I72C72sV06x7axj+3SObaNfWyXzrFt7HNnu/Skp9OCNxcRERERkVsweBIRERGRWzB4Qlov/oUXXuCa8e2wXexju3SObWMf26VzbBv72C6dY9vY5y3t4nE3FxERERFR38QeTyIiIiJyCwZPIiIiInILBk8iIiIicgsGTyIiIiJyC48LnuXl5YiOjkZhYaHcpbjMO++8gxtuuKFHr2G7dM4X2mbu3Ln4y1/+0qPXsF06x7axj+3SObaNfWwX+9guXRAe5re//a144IEHbLY99thjYvz48UKj0YgxY8bYfd2BAwdEZmam0Gq1Ii4uTrz66qs9PvZXX30lrrrqKhERESEAiJycnA77NDQ0iEceeURERESIoKAgceutt4rS0lKbfYqKisS1114rAgICRL9+/cTTTz8tmpubrc8bDAYRGxsrtm7d6nBtvWmXgoICAaDDIzs72+HjCuFYu0yfPr3DcR566CGbfVzRLkJ0bJvc3Fwxd+5cERcXJ/z9/cWwYcPE8uXLO7zup59+EuPGjRMajUYkJyeLNWvW9Oi45eXl4tFHHxVDhw4V/v7+Ij4+Xjz22GOiqqqqR1+3I7UcPHhQhIeHd3jvrvSmXX766Se750xJSYnDx3W0Xewd59NPP+1Qj7PbRYiObXPx4kUxZ84cERMTIzQajYiLixMLFiwQ1dXVParHEQ8++KAYPHiw8Pf3F1FRUeLGG28UR48etdnHU84ZR9rFGeeMEI61iyedM21dvHhRDBw4UAAQlZWVPaqnJ8xms7j66qsFAPHNN9/YPOcp50xbnbWLs84Zi67aRa5zxl67OKMWRzjj97EjtfT2Z8mjgmddXZ0IDQ3tEIwee+wxsWLFCnHPPffYDVjV1dWif//+4q677hKHDh0Sn376qQgICBDvvvtuj47/4YcfihdffFGsXr2604D18MMPi/j4eLFx40axd+9ecfnll4v09HTr80ajUYwcOVLMmjVL5OTkiP/+978iKipKLF682OZ9nn76aXH77bc7VFdv28USPH/88UdRUlJifTQ1NTl0XAtH2mX69Oni17/+tc1x2v5yckW7CGG/bf7+97+Lxx9/XGzevFnk5+eLjz76SAQEBIi33nrLus+pU6dEYGCgWLhwoThy5Ih46623hEqlEhs2bHD42AcPHhS33nqrWLduncjLyxMbN24UKSkp4rbbbuvR1+1oLRMnThQrVqxwabtYfiEcP37c5ntpMpmc2i5CSP8Jr1mzxuY4DQ0NLm2XztqmoqJCrFy5UuzZs0cUFhaKH3/8UaSmpop58+b1uJ7uvPvuu2LLli2ioKBA7Nu3T9xwww0iPj5eGI1GIYRnnTOOtIszzhlH2kUIzzpn2rrpppvENddc0yFgOeucsXjjjTesx2kbsDzpnGmrs3Zx1jlj0Vm7CCHPOdNZuzirlu444/exq36WhPCw4Pnll1+Kfv36dfr8Cy+8YDdgrVy5UoSHhwuDwWDd9uyzz4rU1NRe1WEJbO0DVlVVlfDz8xNffvmlddvRo0dtehH/+9//CqVSadMLumrVKhEaGmpT35YtW4RGoxH19fXd1tPbduns6+itrt5v+vTp4oknnuj0ta5oFyG6bxuLRx55RMycOdP6+TPPPCMuu+wym31++ctfijlz5jh03M588cUXQqPRWP9ydOTrdrSWF198UWRmZjpUR2/bxfILoX2vzaVq3y5CCLu/JNpyRbsI4XjbvPnmmyIuLq7H9fTUgQMHBACRl5cnhPD8c6Z9u7jqnGnfLkJ45jmzcuVKMX36dLFx48YO7eDMcyYnJ0cMHDhQlJSUdGgHTzxnumoXZ54zXbWLEPKcM521i7Nq6Y4zfh+76mdJCCE86hrPrKwsTJgwocevy87OxrRp06DRaKzb5syZg+PHj6OystJp9e3btw/Nzc2YNWuWdduwYcOQkJCA7Oxsay2jRo1C//79bWrR6/U4fPiwddvEiRNhNBqxa9eubo/b23axuPHGGxEdHY3MzEysW7eu1+/TnY8//hhRUVEYOXIkFi9ejPr6eutzrmgXwPG2qa6uRkREhE09bb+Plnos38feqq6uRmhoKNRqtfU43X3djtYyefJk7N69GwaDods6etsuFmPHjkVMTAyuuuoqbN++vdv3ceQ4bdvFYsGCBYiKisLkyZPx/vvvQ7RZz8IV7QI41jbnzp3D119/jenTp/e4np6oq6vDmjVrkJSUhPj4eOtxPPWcsdcuFs48Z+y1i4UnnTNHjhzBH//4R3z44YdQKjv+OnXWOVNfX48777wTb7/9NgYMGGD3OJ50znTXLhaXes501y4W7j5nuvpZckYtjrjU38eu+lkCPOzmoqKiIsTGxvb4daWlpTYNCMD6eWlpqVNqs7yXRqNBWFhYh2NZjuNoLYGBgdDpdCgqKur2uL1tl+DgYPzlL3/Bl19+ie+++w6ZmZm4+eabXRI+77zzTvzjH//ATz/9hMWLF+Ojjz7C3XffbX3eFe0CONY2O3bswOeff44HH3yw23r0ej0aGhocOnZ7Fy9exJ/+9CeHjmN5rie1xMbGoqmpyaFzurftEhMTg3feeQdfffUVvvrqK8THx2PGjBnYv39/t8fsjL12AYA//vGP+OKLL/DDDz/gtttuwyOPPIK33nrL+rwr2gXoum3mzZuHwMBADBw4EKGhoXjvvfd6XI8jVq5cieDgYAQHB2P9+vX44YcfrH84e+I501W7OPOc6apdAM86ZwwGA+bNm4elS5ciISHB7uucdc789re/RXp6Om666aYeHcfyXE9qudRzxpF2cdY50127APKcM539LDmrlu444/exq36WAEDd/S7u09DQAH9/f7nLcJuAgACbv0I609t2iYqKwsKFC62fT5o0CefOncPSpUtx44039vj9utI2VIwaNQoxMTG48sorkZ+fj+Tk5B69l6PtAnTfNocOHcJNN92EF154AbNnz+5RHT2h1+tx3XXXYcSIEfjDH/7gkmMEBAQAgFPOmc7aJTU1FampqdbP09PTkZ+fj2XLluGjjz7qcc1dtctzzz1n/fe4ceNQV1eHpUuX4vHHH+/RMXrSLkDXbbNs2TK88MILOHHiBBYvXoyFCxdi5cqVParHEXfddReuuuoqlJSU4PXXX8cdd9yB7du3O/3/P2edM121izPPme7axZPOmcWLF2P48OE2v9BdYd26ddi0aRNycnJcehyLSz1nHGkXZ5wzjraLHOdMZz9LzqqlO878fdydnv4sAR7W4xkVFdWrofEBAwbg/PnzNtssn3fV/d6b4zQ1NaGqqqrDsSzH6UktFRUV6NevX7fH7W272DNlyhTk5eU55b26Ow4A67Fc0S5A121z5MgRXHnllXjwwQfx+9//3ua5zuoJDQ21/iA5qqamBldffTVCQkLwzTffwM/Pr9vjWJ7rSS0VFRUAcMnnTFftYs/kyZN7dc501S72TJkyBWfOnLEO2biiXYCu22bAgAEYNmwYbrzxRrz77rtYtWoVSkpKelSPI3Q6HVJSUjBt2jT885//xLFjx/DNN990eRzLcz2pxVnnTFftYk9vz5mu2sUeOc+ZTZs24csvv4RarYZarcaVV15p3feFF17oUT1d2bRpE/Lz8xEWFmY9FgDcdtttmDFjRpfHsTzXk1ou9ZxxpF3s6ek540i72OOOc8bR39m9raWnevP72FU/S4CHBc9x48bhyJEjPX5dWloatm7diubmZuu2H374AampqQgPD3dafRMmTICfnx82btxo3Xb8+HGcPn0aaWlp1loOHjyIsrIym1pCQ0MxYsQI67b8/Hw0NjZi3Lhx3R63t+1iT25uLmJiYpzyXt0dB4D1WK5oF6Dztjl8+DBmzpyJ+fPn46WXXurwfFpams330VKP5fvoKL1ej9mzZ0Oj0WDdunUd/sp15Ot2tJZDhw4hLi4OUVFR3dbV23axpzfnTHft0tlxwsPDodVqAbimXQDHf57MZjMAWH8pOOucaU9IN3naHMeTzpn22reLPc74f6Z9u3R2HLnOma+++goHDhxAbm4ucnNzrZcfZGVlYcGCBT2qpyu/+93v8PPPP1uPY/m/ddmyZVizZo31OJ5yzjjSLvb09JxxpF06O46rzxlHf5Z6W0tP9eb3sat+lgB41jyeP//8s1Cr1aKiosJm+8mTJ0VOTo546KGHxNChQ0VOTo7Iycmx3n1VVVUl+vfvL+655x5x6NAh8dlnn4nAwMAeT6dUXl4ucnJyxHfffScAiM8++0zk5OTYzC328MMPi4SEBLFp0yaxd+9ekZaWJtLS0qzPW6YpmD17tsjNzRUbNmwQ/fr16zBt0Jo1a8TgwYNd2i4ffPCB+OSTT8TRo0fF0aNHxUsvvSSUSqV4//33ndoueXl54o9//KPYu3evKCgoEP/617/E4MGDxbRp01zaLp21zcGDB0W/fv3E3XffbTOdRFlZmXUfy1QRixYtEkePHhVvv/12j6etqK6uFlOmTBGjRo0SeXl5NsdqPzVOV1+3o7XMnz9f3H///S5tl2XLlolvv/1WnDx5Uhw8eFA88cQTQqlUih9//NGp7bJu3TqxevVqcfDgQXHy5EmxcuVKERgYKJ5//nmXtktnbfPdd9+J999/Xxw8eFAUFBSI//znP2L48OEiIyOjx/V0JT8/X7z88sti7969oqioSGzfvl3ccMMNIiIiQpw/f14I4VnnjCPt4oxzxpF28bRzpj17d2o745yxB51Mp+QJ50x79trFGeeMPe3bRa5zxl67OLOWrjjr97GrfpaE8LDplIQQYvLkyeKdd96x2WZvMlQAoqCgwLpP2wnkBw4cKF555RWb97Cc/G1f096aNWvsHueFF16w7mOZQD48PFwEBgaKW265pcOkt4WFheKaa64RAQEBIioqSjz11FMdJmadPXu2WLJkiUvb5YMPPhDDhw8XgYGBIjQ0VEyePNlmKihntcvp06fFtGnTREREhNBqtWLIkCFi0aJFHSbfdkW72GubF154wW69iYmJHb72sWPHCo1GIwYPHtxhclzL192ZziZBbt+ejnzd3dXS0NAgdDpdjyb/7027vPrqqyI5OVn4+/uLiIgIMWPGDLFp0yant8v69evF2LFjRXBwsAgKChJjxowR77zzTod5/FzRLvbaZtOmTSItLU3odDrh7+8vUlJSxLPPPmt3MvBLOWfOnj0rrrnmGhEdHS38/PxEXFycuPPOO8WxY8ds9vOUc8aRdnHGOeNIu3jaOdNeZ1MEXeo5Y0/7gCWE55wz7dlrF2ecM/a0bxc5z5n27eKsWrprF2f+PnbVz5LHBU/LX9S9nUi2M++//74YMmRIjydPd4VDhw6J6OjoHs32z3bpnKva5vnnnxfTp0936nv21sqVK8VVV13Vo9ewXTrHtrGP7dI5to19bBf72C6d86i72gHguuuuw8mTJ3H27NkO87ddiv/+9794+eWXu73BwR1KSkrw4YcfQqfTOfwatkvnXNU269evx4oVK5z2fpfCz8/PZtoNR7BdOse2sY/t0jm2jX1sF/vYLp1TCNFm9lIiIiIiIhfxqLvaiYiIiKjvYvAkIiIiIrdg8CQiIiIit2DwJCIiIiK3YPAkIiIiIrdg8CQiIiIit2DwJCIiIiK3YPAkIiIiIrdg8CQiIiIit/j/808nSDJ9aisAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "modify = compose(ClosureForMaxTime(10), SwitchCutsOff)\n", + "SolveInstances(dimensions, solvers, 2023, modify).plot(figsize=(8, 5))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 495, + "referenced_widgets": [ + "80b50f091f824bf581da1f4acc14a7b9", + "2b9c9f47ab9a4bec9bb81e30451d6284", + "64d77d0bec484bd09bdbd989f96f1106", + "810da8e965b74ca48e9be524f6172625", + "8223d0cb5665477ba0c2273bde5dc066", + "552c8fcbbb3d4a9e97c5b723c6a835cb", + "5b134799e124401998885dd3284d8234", + "edec5d52b907433fb6810c504abafc26", + "649d01972e304b338ccfc5c60da52a3b", + "2e582be8221c459e96df73cce70b66eb", + "9143c06ee03641b7bb4919f03d2cc46c", + "cd189c3366634e63961a523adade1895", + "c846cbccc2b6453182b37f0bdd8925fc", + "67ffbfc0c6024cae989b0841ff9124b0", + "e566bc5f53a84edcaca0d9a5b5aa22b5", + "eaad7a53f5ad41f8b9d2833f04e28f52", + "f0db76fbd07e4b52a8bf19f6d6087d17", + "2eb8078c5d6242fba118b461ddf326f8", + "f8dfd1a002e74b74b9272ba374ac4ca8", + "53ff29fa5d6f4725917315ba9975722c", + "5c698883183c49afb09f2a54b5f1c717", + "8025ba94d49640a0ab26b58aa73eb694", + "0a72801cb28e4885b31120dc6aece997", + "573b54fb59f146699436d2956c0bd63a", + "9cf96e7620c64cd88a4258f4a75a2530", + "f340a0b32caa466e967f004d55851c1b", + "ea0d0fe1a8d444fcaf9cfc6383a3dc62", + "376fe78cb3c540c4a220ed186188da31", + "52ccf02fa430430d9ef9e05ff3b71d69", + "25c3d5dfe949490db446a02d9b059d19", + "94f97d042e9640af942dc5eedc46e8b3", + "b369107bece6428fb7aa4a31fb4bf555", + "7b2d5b467e8f470b909fa4e9362e6937", + "ef7b8d5473a64de0901f904a83022884", + "f31395285b5c44049f57f099329641de", + "b8e4b5c864e648f9b84d821cd7113c51", + "b315b2bdfaff427ea5bd76effcfe1477", + "1533677646974ac4ae31c8039d75f828", + "1134d02f65aa450d9965863d3c404477", + "44f92ec072ce40e48afe6cd371719276", + "dfe5ad2c602e4a87aa3c294c7285c905", + "360c633b95b14b61ae22126a06891e5b", + "e0e5bae586834b1a9fd4b76522088c9b", + "381db092432a43f7aa320c7ed9dc466a", + "7933f9200c4e4b10b838a900407119a0", + "39460fbe052d43bca951e6b2c2cc7bb9", + "ee3b059fb8684fce9576f7e4d39e3842", + "8498a2d4766649a59e91009418d25a88", + "68a5a12069c145cfbac9b1c73573fd5c", + "93c5f0b7798848b4b33ad22461794d18", + "7260dd9b253a4ad48a950f4bfdadf718", + "ab0d3854aefb4e2a8872929c98a39e63", + "77ec5f624fb8498b8548e8f088d937a0", + "81b2366d9b3a43a6ba5aa9389ca6b178", + "86bfe1cdddb74c0ca0e3082a4dc835ba", + "f2247d826a1941af99873314c0bacba5", + "68ef6fb4be4a454e83f66b020bb7391f", + "9fcf9855749b4f19b9a8780d68cdc8fe", + "7b1ae36ed08647ccace82fdeee3f3e24", + "5dcba6d4508e4b548d98b70d40d88c4d", + "4151f1f974de4d9caac54d86654207d3", + "c3b7a39f314b40c18fb8ccdbfb8ca3b3", + "27cd3760950a44deb7cfaf9e38dc6a7b", + "ea86851eeae74975a56623b77c8359e7", + "b2961a36fd7b493e94f788fd8c59315a", + "4b246903555445ec94cb5c32d2124b3a", + "4e3bb73f18764060bcb6b7ee2f6fe485", + "8337fc4ac16946698e312ebcf3ac04ca", + "4d6fbf9dc9714ae28490df603971cb5a", + "c6cc64e709694bbd9d8b5cfe61e6f5a3", + "b3678115674744cda88561ea1c573378", + "985eafb953fa46499539d986161ae925", + "e9f02fa8c02846ec92c0c98354f7b57b", + "73480f5d144b4b71ba1d60b6090edf68", + "9003370e7ac644aea13745f95cdbcc40", + "53c7ac1ad2584257838784914b991e56", + "f09cc7e7f9164e35bfbc896753efcaba", + "473a1c307fb0453684a33f1df2418ba9", + "bfd6ce6e77c045acb94760a1f9324ec6", + "99823a253a014addb9eca48c2afee8f8", + "4a961c5e0aa3439281b152c4f5af59ae", + "15e5fb815c034f6faae4160a3a0c82b1", + "9330af137bf244f889e247d25e6e558c", + "08ddd5f58e354efa88bceab4767f3fb9", + "35343359cab04e7885ff633c8069a6bf", + "18d0f80e84a1469ead9f82d3bb48913b", + "95a7706b521d4dabbb4af9ac99e29619", + "8a609b1eb4c54c099171188cadf8682d", + "8f50142f64244cdb8ba137f5e29fa70f", + "4251d033b4714dd690e7488f3f468ebb", + "5fe315366e2d4065847ecb5620e5f6c4", + "afdc6fb0d6b4440da5b1fd09dd4d8c19", + "9a7c634d7e0646c1be57ed33bcb6efd7", + "be32d666dd0d4b4898cd26a6533f3fda", + "1155dbabf1db4bf48b567e75ee11e9fa", + "8e0e4cf35e4b4aa1bbf59a599150b11a", + "c74eebbfa22442c7ba756708f5110a68", + "1c891fe6ac6f4cd4a99c7cdc1c618ccd", + "97584ec732df478c87a7a36cfc933fdc", + "d3f3df0d05ef48b8929943660e4e395f", + "caaf55d8eae74a39872c86ceedb5685c", + "54fec21ccc8a4ee7b26a2b6bf7f218f4", + "3cd0272ed30a45deb92258eefc4fe86f", + "46a76fbe44404ef99e2888cb8886dfca", + "53246238e747442899aca531a8f27bd5", + "943bca12541347c5bbea3d35a9c2496a", + "b67cd5e62a01452391260c93b66d28d9", + "8ee3a4a6374e4af99e6f694eb9266e20", + "076146cd0e694d9480beb78f4c29ce8a", + "195b5f677e274fd0ae935287d9ea37e5" ] }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "febf42102bed4c1995c296e24498254d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/6 [00:00" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApYAAAGsCAYAAABn++dcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm8UlEQVR4nO3deVwV9f7H8ddhB9kEcUFw38V9SzOXtD3N0hazsr1btl3brvdXmt1Ky8q6LVZWmrZYVpZtdkvTzDRX3BdU3HcQkO0A58zvjxEUBeTggTnA+/l4zEOYM3Pmw5cR3sx3vt+xGYZhICIiIiJynrysLkBEREREqgYFSxERERFxCwVLEREREXELBUsRERERcQsFSxERERFxCwVLEREREXELBUsRERERcQufij6g0+nkwIEDhISEYLPZKvrwIiIiInIOhmFw4sQJoqOj8fIq/XXICg+WBw4cIDY2tqIPKyIiIiIu2rt3LzExMaXevsKDZUhICGAWGhoaWtGHFxEREZFzSEtLIzY2tiC3lVaFB8v87u/Q0FAFSxEREREP5uptixq8IyIiIiJuoWApIiIiIm6hYCkiIiIiblHh91iWhtPpJCcnx+oypJz5+vri7e1tdRkiIiLiJh4XLHNyckhMTMTpdFpdilSA8PBw6tatqzlNRUREqgCPCpaGYXDw4EG8vb2JjY11aUJOqVwMwyAzM5MjR44AUK9ePYsrEhERkfPlUcEyLy+PzMxMoqOjCQoKsrocKWeBgYEAHDlyhNq1a6tbXEREpJLzqEuCDocDAD8/P4srkYqS/wdEbm6uxZWIiIjI+fKoYJlP99tVH/pei4iIVB0eGSxFREREpPJRsBQRERERt1CwLGe7du3CZrMRHx9vdSluUdW+HhEREXEfBUsRERERcQsFSxEREREPlpyRw6d/78bpNKwu5Zw8OlgahkFmTp4li2G49s1zOp28/PLLNGvWDH9/fxo0aMALL7xQ8PqWLVvo1asXAQEBxMXFsWjRokL7b9y4kauvvprQ0FBCQkK46KKL2LFjR4nH3LBhA15eXhw9ehSA5ORkvLy8uOmmmwq2ef755+ndu3ehfa644gqCg4OpU6cOt956K8eOHSt4fd68efTu3Zvw8HAiIyO5+uqrS6zD4XBw55130qpVK/bs2VO6xhIREZFSGzd3I/83ZwNPf7fB6lLOyaMmSD9TVq6DNmN/seTYm567jCC/0jfPmDFjmDp1KpMnT6Z3794cPHiQLVu2FLz+xBNP8Prrr9OmTRtee+01Bg0aRGJiIpGRkezfv58+ffrQr18/FixYQGhoKEuWLCEvL6/EY7Zt25bIyEgWLVrEsGHDWLx4ccHn+RYtWkS/fv0ASElJ4eKLL+buu+9m8uTJZGVl8dRTT3HDDTewYMECADIyMhg9ejTt27cnPT2dsWPHcu211xIfH3/Wk5DsdjvDhw9n165dLF68mKioqFK3l4iIiJzbvA2H+H7tAby9bNzULdbqcs7Jo4NlZXHixAneeOMN3nrrLUaOHAlA06ZN6d27N7t27QLgwQcfZOjQoQBMmTKFefPm8eGHH/Lkk0/y9ttvExYWxqxZs/D19QWgRYsW5zyuzWajT58+LFy4kGHDhrFw4ULuuOMOPvjgA7Zs2ULTpk3566+/ePLJJwF466236NSpEy+++GLBe3z00UfExsaybds2WrRoUVDj6a9HRUWxadMm4uLiCtanp6dz1VVXYbfb+f333wkLCyt7A4qIiMhZjmfk8PS35lXK+/o0oX1MuLUFlYJHB8tAX282PXeZZccurc2bN2O32xkwYECx2/Ts2bPgYx8fH7p27crmzZsBiI+P56KLLioIla7o27cv77//PmBenXzxxRfZtm0bCxcuJDk5mdzcXC688EIA1q5dy++//05wcPBZ77Njxw5atGhBQkICY8eO5e+//+bYsWM4nU4A9uzZUyhYDh8+nJiYGBYsWFDwaEYRERFxn/Hfb+RYup3mtYN5ZGBzq8spFY8OljabzaXuaKucb7A6n/379evHo48+SkJCAps2baJ3795s2bKFhQsXcvz4cbp27Vrw2MT09HQGDRrESy+9dNb71KtXD4BBgwbRsGFDpk6dSnR0NE6nk7i4OHJycgptf+WVV/LJJ5+wdOlSLr744jLXLyIiImf7ddNhvo0/gJcNJl3fAX+f0l/wspJHD96pLJo3b05gYCDz588vdptly5YVfJyXl8eqVato3bo1AO3bt2fx4sVlel52u3btqFmzJs8//zwdO3YkODiYfv36sWjRIhYuXFhwfyVA586d2bhxI40aNaJZs2aFlho1apCUlMTWrVt5+umnGTBgAK1bt+b48eNFHvf+++9n4sSJDB48+KyBSCIiIlJ2qZm5/N+c9QDc06cJHWPDrS3IBQqWbhAQEMBTTz3Fk08+yYwZM9ixYwfLli3jww8/LNjm7bffZs6cOWzZsoVRo0Zx/Phx7rzzTsC8/zItLY2bbrqJlStXkpCQwMyZM9m6des5j51/n+Wnn35aECLbt2+P3W5n/vz59O3bt2DbUaNGkZyczPDhw1mxYgU7duzgl19+4Y477sDhcFCzZk0iIyN5//332b59OwsWLGD06NHFHvuhhx7i+eef5+qrr+bPP/8sY+uJiIjI6Z77YRNHTthpElWDfw4895gLT+JysNy/fz+33HILkZGRBAYG0q5dO1auXFketVUqzzzzDI899hhjx46ldevW3HjjjRw5cqTg9YkTJzJx4kQ6dOjAn3/+ydy5c6lVqxYAkZGRLFiwgPT0dPr27UuXLl2YOnVqqe+57Nu3Lw6HoyBYenl50adPH2w2W8H9lQDR0dEsWbIEh8PBpZdeSrt27Xj00UcJDw/Hy8sLLy8vZs2axapVq4iLi+Of//wnkyZNKvHYjz76KOPHj+fKK6/kr7/+crHVRERE5HQLthzm69X7sNlg0rAOBLgw5sMT2AwXJmw8fvw4nTp1on///tx///1ERUWRkJBA06ZNadq0aaneIy0tjbCwMFJTUwkNDS30WnZ2NomJiTRu3JiAgADXvhKplPQ9FxERMaVm5XLp5EUcTrNzd+/GPH11G8tqKSmvlcSlkTEvvfQSsbGxTJs2rWBd48aNXXkLERERESnCCz9u4nCanca1avDYpS2tLqdMXOoKnzt3Ll27duX666+ndu3adOrUialTp5a4j91uJy0trdAipRccHFzssnjxYqvLExERETdYuPUIX640u8BfHtaeQL/K1QWez6Urljt37mTKlCmMHj2af//736xYsYKHH34YPz+/gonBzzRhwgTGjx/vlmKro/j4+GJfq1+/fsUVIiIiIuUiLTuXMd+Yo8Bv79WIbo0iLK6o7Fy6x9LPz4+uXbsWGqTx8MMPs2LFCpYuXVrkPna7HbvdXvB5WloasbGxusdSAH3PRURExnyzjs+X76VhZBA/P3KRR8zhXdZ7LF3qCq9Xrx5t2hS+kbR169bs2bOn2H38/f0JDQ0ttIiIiIgI/JlwjM+X7wXgpaHtPSJUng+XguWFF1541tyK27Zto2HDhm4tSkRERKSqS7fn8dTX6wAY2bMhFzSJtLii8+dSsPznP//JsmXLePHFF9m+fTufffYZ77//PqNGjSqv+kRERESqpIk/b2Z/ShaxEYE8eXkrq8txC5eCZbdu3ZgzZw6ff/45cXFx/Oc//+H1119nxIgR5VWfiIiISJXz1/ZjfLLMvJXwpevaU8O/cneB53P5q7j66qu5+uqry6MWERERkSovw57Hkye7wEf0aECvZrUsrsh99KzwcrZr1y5sNluJ0waJiIhI9fHyvC3sO55F/fBAxlzZ2upy3ErBsgp79tln6dixo9VliIiIyEnLdibx8dLdAEwc2o7gKtIFnk/BUsjNzbW6BBERkSovM+fUKPDh3WO5qHmUxRW5n2cHS8OAnAxrltLPGw+A0+nk5ZdfplmzZvj7+9OgQQNeeOGFgte3bNlCr169CAgIIC4ujkWLFhXaf+PGjVx99dWEhoYSEhLCRRddxI4dO8553IULF9K9e3dq1KhBeHg4F154Ibt372b69OmMHz+etWvXYrPZsNlsTJ8+HQCbzcaUKVMYPHgwNWrUKKhzypQpNG3aFD8/P1q2bMnMmTMLHctms/HBBx9w7bXXEhQURPPmzZk7d26hbebOnUvz5s0JCAigf//+fPzxx9hsNlJSUlxqTxERkapm0i9b2Z2USXRYAP+uYl3g+Tz7+mtuJrwYbc2x/30A/GqUevMxY8YwdepUJk+eTO/evTl48CBbtmwpeP2JJ57g9ddfp02bNrz22msMGjSIxMREIiMj2b9/P3369KFfv34sWLCA0NBQlixZQl5eXonHzMvLY8iQIdxzzz18/vnn5OTksHz5cmw2GzfeeCMbNmxg3rx5/PbbbwCEhYUV7Pvss88yceJEXn/9dXx8fJgzZw6PPPIIr7/+OgMHDuSHH37gjjvuICYmhv79+xfsN378eF5++WUmTZrEm2++yYgRI9i9ezcREREkJiYybNgwHnnkEe6++27WrFnD448/Xuo2FBERqapW7Epm+l+7AJgwtD0hAb7WFlROPDtYVhInTpzgjTfe4K233ip4ZnrTpk3p3bs3u3btAuDBBx9k6NChgHllcN68eXz44Yc8+eSTvP3224SFhTFr1ix8fc0TrUWLFuc8blpaGqmpqVx99dU0bdoUMJ+ElC84OBgfHx/q1q171r4333wzd9xxR8Hnw4cP5/bbb+eBBx4AYPTo0SxbtoxXXnmlULC8/fbbGT58OAAvvvgi//3vf1m+fDmXX3457733Hi1btmTSpEkAtGzZkg0bNhS6cisiIlLdZOU4ePKrdRgG3NA1hr4tql4XeD7PDpa+QeaVQ6uOXUqbN2/GbrczYMCAYrfp2bNnwcc+Pj507dqVzZs3AxAfH89FF11UECpLKyIigttvv53LLruMSy65hIEDB3LDDTdQr169c+7btWvXs76Ge++9t9C6Cy+8kDfeeKPQuvbt2xd8XKNGDUJDQzly5AgAW7dupVu3boW27969u0tfk4iISFXz2q9bSTyWQZ1Qf/7vqjbn3qES8+x7LG02szvaisVmK3WZgYGB5/Vlns/+06ZNY+nSpfTq1YsvvviCFi1asGzZsnPuV6NG6bv5T3dm+LXZbDidzjK9l4iISFW3ancyH/yZCMCE69oRFlg1u8DzeXawrCSaN29OYGAg8+fPL3ab08NeXl4eq1atKui2bt++PYsXLy7z6OxOnToxZswY/vrrL+Li4vjss88A8PPzw+FwlOo9WrduzZIlSwqtW7JkCW3alP4vq5YtW7Jy5cpC61asWFHq/UVERKqS7FwHT5zsAr+uc30ublXH6pLKnYKlGwQEBPDUU0/x5JNPMmPGDHbs2MGyZcv48MMPC7Z5++23mTNnDlu2bGHUqFEcP36cO++8EzDvv0xLS+Omm25i5cqVJCQkMHPmTLZu3VricRMTExkzZgxLly5l9+7d/O9//yMhIaEgsDZq1IjExETi4+M5duwYdru92Pd64oknmD59OlOmTCEhIYHXXnuNb775xqXBN/fddx9btmzhqaeeYtu2bXz55ZeFRqKLiIhUJ5N/28bOoxnUDvFn3NVtrS6nQihYuskzzzzDY489xtixY2ndujU33nhjwb2HABMnTmTixIl06NCBP//8k7lz51KrlvkIp8jISBYsWEB6ejp9+/alS5cuTJ069Zz3XAYFBbFlyxaGDh1KixYtuPfeexk1ahT33XcfAEOHDuXyyy+nf//+REVF8fnnnxf7XkOGDOGNN97glVdeoW3btrz33ntMmzaNfv36lboNGjduzFdffcU333xD+/btmTJlCv/3f/8HgL+/f6nfR0REpLJbs+c4U//YCcAL17YjLKhqd4HnsxmGixM2nqe0tDTCwsJITU0lNDS00GvZ2dkkJibSuHFjAgICKrIsKScvvPAC7777Lnv37i3ydX3PRUSkqsnOdTDozT9JOJLOkI7RvH5TJ6tLcllJea0knj0qXCqdd955h27duhEZGcmSJUuYNGkSDz74oNVliYiIVJj/zk8g4Ug6tYL9GTeoenSB51Ow9HDBwcHFvvbzzz9z0UUXVWA155aQkMDzzz9PcnIyDRo04LHHHmPMmDFWlyUiIlIh1u1L4b2TXeDPD4mjZg0/iyuqWAqWHi4+Pr7Y1+rXr19xhZTS5MmTmTx5stVliIiIVDh7noMnZq/D4TQY1CGay+POfkBJVadg6eGaNWtmdQkiIiJSCm8v2M7WwyeIrOHH+MHVqws8n0eOCq/g8URiIX2vRUSkKtiwP5W3F+4A4D9D4oioZl3g+TwqWHp7ewOQk5NjcSVSUTIzM4Gzn+gjIiJSWeTkOXl89locToMr29XlynbnfrRyVeVRXeE+Pj4EBQVx9OhRfH198fLyqNwrbmQYBpmZmRw5coTw8PCCPypEREQqm3cWbmfLoRPUDPLluWvirC7HUh4VLG02G/Xq1SMxMZHdu3dbXY5UgPDwcOrWrX43N4uISNWw6UAaby3YDsD4a+KoFVy9HwjiUcESzOdbN2/eXN3h1YCvr6+uVIqISKWV63DyxFdryXMaXNa2DoPaV98u8HweFywBvLy89BQWERER8WjvLtzBxgNphAf58p8hcdhsNqtLspxuYhQRERFx0dZDJ/jvggQAnh3UltohuiAGCpYiIiIiLslzmKPAcx0GA1vX4ZqO0VaX5DEULEVERERc8P7inazfn0pogA8vXqsu8NMpWIqIiIiUUsLhE7z+q9kFPm5QW2qHqgv8dAqWIiIiIqWQ53Dy+FfryHE46d8yius617e6JI+jYCkiIiJSCh/+mcjavSmEBPgw4br26gIvgoKliIiIyDlsP5LOq79uA+CZq9pQN0xd4EVRsBQREREpgcNp8ORXa8nJc9KnRRTXd42xuiSPpWApIiIiUoJpSxJZvSeFYH8fJl7XTl3gJVCwFBERESlG4rEMJv2yFYD/u6o10eGBFlfk2RQsRURERIrgPNkFbs9z0rtZLW7qFmt1SR5PwVJERESkCB8v3cWKXcep4efNxKHqAi8NBUsRERGRM+w6lsFL87YAMObK1sTUDLK4ospBwVJERETkNE6nwZNfryM710nPJpHc3L2B1SVVGgqWIiIiIqf55O/dLE9MJsjPm5eHtcfLS13gpaVgKSIiInLS3uRMJv5sdoE/dXkrYiPUBe4KBUsRERER8keBryMzx0H3xhHcekFDq0uqdBQsRURERIDPlu9h6c4kAny9mKQu8DJRsBQREZFqb9/xTCb8tBmAJy9rRcPIGhZXVDkpWIqIiEi1ZhgGY75ZT0aOg26NanJ7r0ZWl1RpKViKiIhItfbFir0sTjiGv48XLw/roC7w86BgKSIiItXW/pQsnv/R7AJ/4rKWNK6lLvDzoWApIiIi1VJ+F3i6PY/ODcK548LGVpdU6SlYioiISLU0e9U+/th2FL+TXeDe6gI/bwqWIiIiUu0cSs3mPz9sAmD0JS1oVjvY4oqqBgVLERERqVYMw+Dfc9ZzIjuPDrHh3N1bXeDu4lKwfPbZZ7HZbIWWVq1alVdtIiIiIm73zer9LNhyBD9vL14Z1h4fb11ncxcfV3do27Ytv/3226k38HH5LUREREQscSQtm/HfbwTgkYHNaV4nxOKKqhaXU6GPjw9169Ytj1pEREREyo3ZBb6BtOw82tUP474+Tawuqcpx+dpvQkIC0dHRNGnShBEjRrBnz54St7fb7aSlpRVaRERERCra3LUH+G3zYXy9bbxyfQd1gZcDl1q0R48eTJ8+nXnz5jFlyhQSExO56KKLOHHiRLH7TJgwgbCwsIIlNjb2vIsWERERccWRE9mMm2t2gT98cXNa1lUXeHmwGYZhlHXnlJQUGjZsyGuvvcZdd91V5DZ2ux273V7weVpaGrGxsaSmphIaGlrWQ4uIiIiUimEY/OOTVfyy8TBto0P5dtSF+OpqZYnS0tIICwtzOa+d18ib8PBwWrRowfbt24vdxt/fH39///M5jIiIiEiZ/bDuIL9sPIyPl41JwzooVJaj82rZ9PR0duzYQb169dxVj4iIiIjbHEu3M/a7DQCM6t+MNtHqLS1PLgXLxx9/nEWLFrFr1y7++usvrr32Wry9vRk+fHh51SciIiJSZuO+28jxzFxa1Q1hVP9mVpdT5bnUFb5v3z6GDx9OUlISUVFR9O7dm2XLlhEVFVVe9YmIiIiUyU/rD/Lj+oN4e5mjwP181AVe3lwKlrNmzSqvOkRERETcJjkjh2e+NbvAH+jXlLj6YRZXVD0ououIiEiVM27uRpIycmhZJ4QHL1YXeEVRsBQREZEqZd6GQ3y/9gDeXjYmXd8efx9vq0uqNhQsRUREpMo4npHD0ye7wO/r04T2MeHWFlTNKFiKiIhIlTH++40cS7fTrHYwDw9obnU51Y6CpYiIiFQJv246zLfxB/CywaRh7QnwVRd4RVOwFBERkUovNTOX/5uzHoB7LmpCpwY1La6oelKwFBERkUrvuR82ceSEnSZRNfjnJS2sLqfaUrAUERGRSm3BlsN8vXofNnWBW07BUkRERCqt1Kxc/v2NOQr8rgsb06VhhMUVVW8KliIiIlJpvfDjJg6lZdO4Vg0eu7Sl1eVUewqWIiIiUikt2naUL1eaXeAvD2tPoJ+6wK2mYCkiIiKVTlp2Lv/6eh0At/dqRLdG6gL3BAqWIiIiUulM+GkzB1OzaRARxBOXqQvcUyhYioiISKXyZ8IxPl++FzC7wIP8fCyuSPIpWIqIiEilkW7P46mTXeC39WzIBU0iLa5ITqdgKSIiIpXGxJ83sz8li5iagTx1eSury5EzKFiKiIhIpfDX9mN8smwPAC8PbU8Nf3WBexoFSxEREfF4GfY8nvrG7AIf0aMBvZrVsrgiKYqCpYiIiHi8l+dtYW9yFvXDAxlzZWury5FiKFiKiIiIR1u2M4mPl+4GYOLQdgSrC9xjKViKiIiIx8rMOTUKfHj3WC5qHmVxRVISBUsRERHxWJN+2crupEzqhQWoC7wSULAUERERj7RiVzLT/9oFwITr2hEa4GttQXJOCpYiIiLicbJyHDz51ToMA67vEkO/lrWtLklKQcFSREREPM5rv24l8VgGdUL9efrqNlaXI6WkYCkiIiIeZdXu43zwZyJgdoGHBaoLvLJQsBQRERGPkZ3r4Imv1mIYcF3n+lzcqo7VJYkLFCxFRETEY0z+bRs7j2ZQO8SfcVe3tboccZGCpYiIiHiE+L0pTP1jJwAvXNuOsCB1gVc2CpYiIiJiudTMXB77Mh6nAUM6RnNJG3WBV0YKliIiImKp1Mxcbvnwb3YczSAqxJ9xg9QFXlkpWIqIiIhlUrNyufWjv1m/P5WIGn7MvKs7NWv4WV2WlJGCpYiIiFgiNSuX2z78m3X7UqkZ5Mund/egVd1Qq8uS86BgKSIiIhUuLTuX2z5aztqTofKzey6gdT2FyspOwVJEREQqVFp2Lrd+uJy1e1NOXqlUqKwqFCxFRESkwqRl53LbyVAZHuTLJ3f3oE20QmVVoWApIiIiFeJEdi4jP1pO/N4UwgJ9+eSuHrSNDrO6LHEjBUsREREpd/mhcs0eM1R+encP4uorVFY1CpYiIiJSrtLtedw+bQWrFSqrPAVLERERKTfp9jxGfrScVbuPExrgo1BZxSlYioiISLlIt+dxe6FQeYFCZRWnYCkiIiJul2HP445py1m5+zghAT58cncP2sUoVFZ1CpYiIiLiVmaoXMGKXSdD5V09aB8TbnVZUgEULEVERMRtMux53DF9Bct3JRPi78PMu3rQITbc6rKkgihYioiIiFtk5pwMlYknQ+XdPeioUFmtKFiKiIjIecvMyePOk6Ey2N+HGXd1V6ishhQsRURE5Lxk5Ti4a/pKlu08FSo7NahpdVliAQVLERERKbOsHAd3Tl/B0p1JBPv78PGd3emsUFltnVewnDhxIjabjUcffdRN5YiIiEhlkZXj4K6PzVBZw8+bj+/sRpeGCpXVWZmD5YoVK3jvvfdo3769O+sRERGRSiArx8HdM1bw1w4zVM64qztdGkZYXZZYrEzBMj09nREjRjB16lRq1tRfJiIiItVJdq6De2asZMn2JIL8vPn4ToVKMZUpWI4aNYqrrrqKgQMHnnNbu91OWlpaoUVEREQqp/xQ+ef2YwWhsmsjhUox+bi6w6xZs1i9ejUrVqwo1fYTJkxg/PjxLhcmIiIiniU/VC5OMEPl9Du6002hUk7j0hXLvXv38sgjj/Dpp58SEBBQqn3GjBlDampqwbJ3794yFSoiIiLWyc51cO/MVQWhctrt3ejeWKFSCrMZhmGUduNvv/2Wa6+9Fm9v74J1DocDm82Gl5cXdru90GtFSUtLIywsjNTUVEJDQ8teuYiIiFSI/FD5x7ajBPp6M/2ObvRoEml1WVKOyprXXOoKHzBgAOvXry+07o477qBVq1Y89dRT5wyVIiIiUrlk5zq477RQOU2hUkrgUrAMCQkhLi6u0LoaNWoQGRl51noRERGp3Ox5Du7/ZBWLth0lwNeLj27vxgUKlVICPXlHREREzmLPc/CPmav4feupUNmzqUKllMzlUeFnWrhwoRvKEBEREU9hXqlcfSpUjuxGr6a1rC5LKgFdsRQREZEC9jwHD3yymgVbjuDv48WHI7vRq5lCpZSOgqWIiJQLFyYdEQ+Rk+dk1KermX9aqLxQoVJcoGApIiJuZ89zcN2Uv7jgxfl8smw3eQ6n1SXJOeTkOXng09X8ttkMlR+M7Erv5gqV4hoFSxERcbupf+xkzZ4UDqVl8/S3G7j8jcXM33xYVzE9VE6ek1Gfrea3zYfx8/Fi6m1duah5lNVlSSWkYCkiIm61NzmTt37fDsCwLjHUDPJl+5F07vp4JcOnLmP9vlSLK5TT5eQ5efCz1fy6yQyVH9zWlT4tFCqlbBQsRUTErZ77YRPZuU4uaBLBpGHtWfRkf/7Rtyl+Pl4s25nMoLf+5NFZa9h3PNPqUqu9XIeThz5fzf82nbpSqVAp50PBUkRE3GbBlsP8uukwPl42nrsmDpvNRmiAL/+6ohULHuvLtZ3qA/Bt/AEufnURE37eTGpWrsVVV0+5DicPfbaGXzYexs/bi/dv7UJfhUo5TwqWIiLiFtm5DsbN3QjAnb0b06JOSKHXY2oGMfnGjnz/YG96NokkJ8/Je4t20m/S70xbkkhOngb4VJRch5OHP1/DvI2H8PP24r3butCvZW2ry5IqQMFSRETcYsrCHexNzqJuaAAPD2he7HbtYsL47J4efHR7V5rVDuZ4Zi7jv9/EpZMX8fP6gxrgU85yHU4embWGnzecDJW3dqG/QqW4iYKliIict91JGUxZtAOAp69uTbB/yQ92s9lsXNyqDvMeuYgXro2jVrA/u5Iyuf/T1Qx7dymr9xyviLKrnVyHk0dnxfPTejNUvntrZ/q3UqgU91GwFBGR82IYBuPmbiQnz0nvZrW4ql29Uu/r4+3FiB4NWfhEPx6+uBkBvl6s2n2c6975i1GfrmZ3UkY5Vl695DmcPPpFPD+uP4ivt40pt3Tm4lZ1rC5LqhgFSxEROS//23SYhVuP4uttY/w1bbHZbC6/R7C/D6MvbcnCx/tzQ9cYbDb4cf1BBr62iOe+38TxjJxyqLz6KAiV606GyhFdGNBaoVLcT8FSRETKLCvHwXPfbwLgnoua0DQq+Lzer25YAC8P68BPD19EnxZR5DoMPlqSSN9Jv/P+HzvIznW4o+xqJc/h5J9fruWHk6HynRFdGNhGoVLKh4KliIiU2Vu/J7A/JYv64YE8eHEzt71v63qhzLizOzPu7E6ruiGkZefx4k9bGPjaIr6L34/TqQE+pZHncDL6y7V8v/YAvt423r65M5coVEo5UrAUEZEy2XE0nff/2AnA2EFtCPIrecBOWfRpEcWPD1/EpGHtqRPqz77jWTwyK55r31nC3zuT3H68qiTP4eSx2WuZu/YAPl5mqLy0bV2ry5IqTsFSRERcZhgGz87dSK7DoF/LKC4tx6tg3l42ru8ay8LH+/PYJS2o4efN2n2p3Pj+Mu7+eCXbj6SX27ErK4fT4PHZa/ku/mSoHKFQKRVDwVJERFz20/pDLE44hp+PF+MHl23AjqsC/bx5aEBzFj7RnxE9GuDtZeO3zYe57PU/eObbDRxLt5d7DZVBfqj89mSofOvmzlymUCkVRMFSRERckm7P4z8/mAN2/tG3KQ0ja1To8aNC/Hnh2nb88uhFDGxdG4fTYOay3fSbtJC3f99OVk71HeDjcBo8MXstc9bsx9vLxpvDO3F5nEKlVBwFSxERccmb8xM4lJZNbEQgD/RralkdzWqH8MHIbnx+zwW0qx9Guj2PSb9spf8rC/lq1T4c1WyAj8Np8MRXa/nmZKh8a3gnrnBhTlERd1CwFBGRUtt2+AQf/pkIwPjBbQnw9ba4IujZNJLvRl3IGzd1pH54IIfSsnl89lqufvNP/kw4ZnV5FcLhNHjyq3V8s/rUlUqFSrGCgqWIiJSKYRiM/W4DeU6Dga3reNRTW7y8bFzTsT7zH+vLmCtaERLgw+aDadzy4d+M/Gg5Ww+dsLrEcuN0Gjz19Tq+Xr0Pby8b/72pE1cqVIpFFCxFRKRU5q49wLKdyfj7eDFuUBuryylSgK839/VtyqIn+nN7r0b4eNlYtO0oV7zxB099tY7DadlWl+hW+aHyq1VmqHzjpo5c1V6hUqyjYCkiIueUlp3L8z9uBuDB/s2IjQiyuKKSRdTw49nBbfl1dF+uiKuL04AvVu6l36SFTP51Gxn2PKtLPG9Op8G/vlnH7FX78LLB6zd25Or20VaXJdWcgqWIiJzT678mcPSEnca1anBv3yZWl1NqjWvVYMotXfj6/p50ahBOVq6DN+Yn0O+VhXy+fA95DqfVJZaJ02kw5pv1fLnyZKi8qRODOihUivUULEVEpESbD6bx8dJdADw7uC3+PtYP2HFVl4YRfHN/L94Z0ZkGEUEcPWFnzDfrueKNxfy+5QiGUXlGkDudBv+es54vVu7FywaTb+zIYIVK8RAKliIiUizDMHjm2w04nAZXxNWlb4soq0sqM5vNxpXt6vHb6L6MvboN4UG+JBxJ547pKxjxwd9s2J9qdYnn5HQa/N+3G5i14lSovKZjfavLEimgYCkiIsX6evV+Vu4+TpCfN89c7ZkDdlzl5+PFnb0bs+jx/tzbpwl+3l78tSOJQW/9yegv4jmQkmV1iUVyOg2e/m4Dny/fg5cNXrtBoVI8j4KliIgUKTUzlwk/mQN2Hh7QnOjwQIsrcq+wIF/+fWVr5j/Wl8EdojEM+GbNfvq/spCX5m0hLTvX6hILOJ0Gz3y3gc/+3oPNBq/e0IEhnRQqxfMoWIqISJFe/XUrSRk5NKsdzJ0XNra6nHITGxHEf4d34rtRF9K9cQT2PCdTFu6g36SFzFi6i1yLB/gYhsHYuRv4ND9UXt+BazvFWFqTSHEULEVE5Cwb9qfyybLdADw3uC1+PlX/10WH2HC+uPcCpt7WlSZRNUjOyGHsdxu5bPIf/LLxkCUDfMxJ6TfyyTIzVL4yrAPXdVaoFM9V9X9SiIiIS5xOg6e/3YDTgEEdounVrJbVJVUYm83GJW3q8MujffjPkDgia/ix81gG981cxQ3vLWXNnuMVVothGIybu5GZy3Zjs8GkYR0Y2kWhUjybgqWIiBTy5cq9xO9NIdjfh6evam11OZbw9fbi1gsasvCJfjzYvxn+Pl6s2HWca9/5iwc/W83e5MxyPb5hGDw7dyMzlpqh8uWh7RmmUCmVgIKliIgUOJ6Rw0vztgDw6MDm1AkNsLgia4UE+PL4ZS1Z+EQ/hnaOwWaDH9YdZMCri3j+h02kZOa4/ZiGYTD++018fDJUvnRde67vGuv244iUBwVLEREp8PIvWzmemUvLOiGM7NXI6nI8Rr2wQF69oQM/PNSb3s1qkeNw8sGfifSdtJAPFu/Enudwy3HyQ+X0v3YBZqi8oZtCpVQeCpYiIgJA/N4UZq3YA8B/hsTh661fEWdqGx3GzLu6M/2ObrSsE0JqlvkM9YGvLeKHdQfOa4CPYRg898NpoXJoO4VKqXT0U0NERHA4DZ7+dj2GAdd1rk/3xhFWl+SxbDYb/VrW5qdHLuKloe2oHeLP3uQsHvxsDde+8xcrdiW7/J6GYfD8j5uZtmQXABOva8eN3Rq4uXKR8qdgKSIifLZ8Dxv2pxES4MOYK6rngB1XeXvZuLFbAxY+0Y9/DmxBkJ838XtTuP7dpdw3cyU7j6aX6n0Mw+CFHzfz4Z+JALx4bTtu6q5QKZWTgqWISDV3LN3OpJMDdh6/tCVRIf4WV1S5BPn58MjA5ix8vB/DuzfAywa/bDzMpZP/YNx3G0hKtxe7r2EYvPjTZj44GSpfuDaOm3soVErlpWApIlLNTfx5C2nZebSpF8oIhZoyqx0awITr2jHv0T70bxlFntPg46W76TdpIe8s3E52buEBPoZhMOHnLUxdbIbK54fEMaJHQytKF3EbBUsRkWps5a5kvlq1DzAH7PhowM55a1EnhGl3dOfTu3vQpl4oJ+x5vDxvKxe/spBvVu/D6TQwDIOJ87bw/h87AbPtb7lAoVIqP5tRwc+oSktLIywsjNTUVEJDQyvy0CIicpo8h5Or3/yTLYdOcGPXWF4a1t7qkqocp9Ngzpr9vPK/rRxMzQYgrn4obeqF8uXKk4H+mrbc2rORhVWKnK2sec2nHGsSEREPNnPZbrYcOkFYoC9PXt7S6nKqJC8vG0O7xHBV+3p8+GciUxbuYMP+NDbsTwPgOYVKqWLU5yEiUg0dScvmtf9tA+DJy1sSGawBO+UpwNebUf2bsfCJftzWsyG1gv35z5A4blOolCpGVyxFRKqhF3/azAl7Hh1iwrhJ8yVWmFrB/jx3TRzPXRNndSki5UJXLEVEqpllO5P4Nv4ANps5aMTby2Z1SSJSRShYiohUI7kOJ2O/2wDAzd0b0D4m3NqCRKRKUbAUEalGpi/ZxbbD6UTU8OOJyzRgR0TcS8FSRKSaOJSazeu/mQN2/nV5K8KD/CyuSESqGpeC5ZQpU2jfvj2hoaGEhobSs2dPfv755/KqTURE3Og/P24iI8dB5wbhDOsSY3U5IlIFuRQsY2JimDhxIqtWrWLlypVcfPHFXHPNNWzcuLG86hMRETf4M+EYP647iNfJATteGrAjIuXApemGBg0aVOjzF154gSlTprBs2TLatm3r1sJERMQ97HkOxs41B+zc1rMRbaPDLK5IRKqqMs9j6XA4mD17NhkZGfTs2bPY7ex2O3a7veDztLS0sh5SRETK4IPFiew8mkGtYH/+eUkLq8sRkSrM5cE769evJzg4GH9/f/7xj38wZ84c2rRpU+z2EyZMICwsrGCJjY09r4JFRKT09qdk8eaCBAD+fWUrwgJ9La5IRKoym2EYhis75OTksGfPHlJTU/nqq6/44IMPWLRoUbHhsqgrlrGxsS4/1FxERFx338yV/LLxMN0bRfDFfRdgs+neShE5t7S0NMLCwlzOay53hfv5+dGsWTMAunTpwooVK3jjjTd47733itze398ff389g1ZEpKL9vvUIv2w8jLeXjeeGtFWoFJFyd97zWDqdzkJXJEVExHrZuQ6enWvO2HFHr0a0qqseIhEpfy5dsRwzZgxXXHEFDRo04MSJE3z22WcsXLiQX375pbzqExGRMnhv0U52J2VSJ9SfRzVgR0QqiEvB8siRI9x2220cPHiQsLAw2rdvzy+//MIll1xSXvWJiIiL9iRl8s7C7QD831VtCPYv8wQgIiIucemnzYcfflhedYiIiJuM/34j9jwnvZpGMqh9PavLEZFqRM8KFxGpQn7bdJj5W47g623juWs0YEdEKpaCpYhIFZGV4+DZ780BO3f1bkKz2iEWVyQi1Y2CpYhIFfHOwu3sO55FdFgADw9oZnU5IlINKViKiFQBiccyeG/RTgCeuboNQX4asCMiFU/BUkSkkjMMg3FzN5LjcNKnRRSXx9W1uiQRqaYULEVEKrl5Gw7xx7aj+Hl7MX6wBuyIiHUULEVEKrHMnDye+2ETAPf1bULjWjUsrkhEqjMFSxGRSuy/87dzMDWbmJqBPNBPA3ZExFoKliIildT2Iyf4YLE5YGfcoLYE+nlbXJGIVHcKliIilZBhGIz9biN5ToMBrWpzSZs6VpckIqJgKSJSGX2/7iB/7UjC38eLZwe3tbocERFAwVJEpNJJt+fx/MkBOw/0a0ZsRJDFFYmImBQsRUQqmdd/3caRE3YaRgZxX98mVpcjIlJAwVJEpBLZciiNaX/tAmD84LYE+GrAjoh4DgVLEZFKwjAMxn67EYfT4LK2dejXsrbVJYmIFKJgKSJSScxZs5/lu5IJ8PVi7CAN2BERz6NgKSJSCaRm5fLiT5sBeOji5tQPD7S4IhGRsylYiohUApN/3cax9ByaRNXgnos0YEdEPJOCpYiIh9uwP5UZS3cB8NzgOPx89KO7UnM6YO9yyMmwuhIRt/OxugARESme02kw9rsNOA24qn09ejevZXVJcj4cuTD7dtjyA/iFQLuh0Ok2qN8ZbDarqxM5bwqWIiIe7KtV+1i9J4UgP2+euaqN1eXI+XDkwTf3mKESIOcErJpuLrXbQKdbof2NUCPSyipFzov6U0REPFRKZg4T520B4NGBzakbFmBxRVJmTgd8Nwo2zgEvX7j5Sxj5PbS7AXwC4Mgm+GUMvNoSvhwJCb+Z+4hUMrpiKSLioSb9spXkjBxa1AnmjgsbW12OlJXTCT88CutmgZcP3PAxtLjMfK1xH8iaBOtnw5qZcHAtbPrWXEJjoOPN0GkE1GxkXf0iLrAZhmFU5AHT0tIICwsjNTWV0NDQijy0iEilsXZvCkPeWYJhwKx7L+CCJuoerZQMA356AlZMBZsXDP0Q4q4rfvuD62DNJ7DuC8hOObW+cV/ofBu0uhp8deVayl9Z85quWIqIeBiH0+CZ7zZgGDCkY7RCZWVlGPC/p81QiQ2GvFtyqASo1x7qvQyXPGfei7lmJuxcCImLzCUgzOw+73wr1OtQEV+FiEsULEVEPMysFXtYty+VEH8f/n1Va6vLkbIwDJj/HCx9y/x88H+hw42l3983ANoNM5fjuyH+U1jzKaTtM4PqiqlQt715FbPdMAisWT5fh4iL1BUuIuJBktLtXPzqIlKzchk3qI3uraysFr0Mv79gfnzlK9D9nvN/T6fDvHq5ZiZs+REcOeZ6b39oMxg63QKN+oCXxuXK+VNXuIhIFfDyvK2kZuXSul4ot17Q0OpypCz+fP1UqLzsRfeESgAvb2g2wFwyk837MFfPhCMbzcE/62dDeEMzYHa8GcJi3HNcERfoiqWIiIdYtfs4Q6f8BcBX/+hJ10YRFlckLls2Beb9y/x4wFi46LHyPZ5hwIE15lXM9V+BPe3kCzYzgHa6FVpeCT5+5VuHVDm6YikiUok5nAbPfLsBgGFdYhQqK6MVH54KlX3/Vf6hEsyn9dTvbC6XvgCb55pXMXf/Cdt/M5egSGh/kzngp7bu2ZXypSuWIiIe4OO/djFu7kZCA3xY8Hg/agX7W12SuGLNJ+YE6AAXPgoDn7X2EY1JO8ya4j+D9EOn1tfvYl7FjBsKAfodLMUra15TsBQRsdjRE3YufnUhJ7Lz+M+QON1bWdmsm20+qhEDetwPl0/wnOd+O/LMq5ZrZsK2eeDMM9f7BkGbIeZVzAY9Pade8RjqChcRqaQm/LyZE9l5tKsfxs3dG1hdjrhi47cw5z7AgK53elaoBPD2gZaXm0v6EVg7ywyZx7bB2s/MJbKZOeCnw3AIqWt1xVLJ6YqliIiFlicmc8N7S7HZYM4DF9IxNtzqkqS0tv4MX9xiXgXseAsMfrNyTPVjGLB3OayZARvmQG6Gud7mDc0vNa9iNr8UvH2trVMspSuWIiKVTK7DWTBg56ZuDRQqK5OE3+DL28xQ2e56cwL0yhAqwbyi2qCHuVw+0bzqumYm7P0btv1sLjVqQ8fh5v2YtZpbXXH1lHUcjm6Do5vh6FY4ugUueACaX2J1ZSVSsBQRscjHf+1i6+ET1Azy5cnLWlpdjpTWzkXwxQhzgvLWg81HNXp5W11V2fiHmFcoO99qhpc1M83u8owjsOQNc4m9wHy9zRDwD7a64qonM9kMjUdOC5BHtxYedJUvtofHB0t1hYuIWOBwWjYDXl1Euj2Pide14ybdW1k57F4Kn1wHuZnQ4gq4YUbVmyPSkWsO9FnzCST8Dwynud4v2HzWeafbIKarZ91L6ukMAzKOnQyNW06Fx6NbIONo8fuFxkBUS4hqZf7boCdEtaiQktUVLiJSibzw42bS7Xl0jA3nhq6xVpcjpbFvJXx6vRkqmw2EGz6ueqESzHsrWw8yl7SD5gCfNZ9A8k5YPcNcolqZ3eQdboIatayu2HMYBqQfLhwcj5wMklnJxe8X3uBUeIxqBVGtzVsQKuGUULpiKSJSwf7afoybP/gbLxvMfbA3cfXDrC5JzuVAPHw8GOyp0OgiGDEbfAOtrqriGAbsXmJOvr7pO8jLMtd7+ULLK8yQ2WxA5b0lwFWGAWkHCgfI/H+zU4rZyQY1G50RIFuai1+NCiy+dDSPpYhIJZCT5+SKN/5gx9EMbuvZkOeuibO6JDmXwxth+lXmYIoGPeGWrz0yCFSY7FTz8ZFrZpqPk8wXEm0+o7zTLRDR2Lr63MkwIHXvaeExP0BuPe3xmWeweUHNxuZTjk4PkJHNwS+oYus/DwqWIiKVwLuLdjDx5y1E1vBjwWP9CAvSlC4e7ehWmHYlZB6D+l3h1jmVsnuy3BzaYHaTr5tlBu98jS6CzreZ3emV4cqu0wkpu8+++nhsG+SkF72PzRsim54Mj6eFyMhm4BtQsfWXAwVLEREPdyAliwGvLiIr18Er13dgWJcYq0uSkiTtMENl+iGo1wFumwuB4VZX5Zny7LDlR/Mq5o7fgZPRwj8M2g0zR5XX62j9gB+nA47vOnsAzdFtp7r3z+Tla4bFqJaFr0JGNK2a99iepME7IiIe7vkfN5GV66Bbo5oM7Vzf6nKkJMd3wceDzFBZuy3c+q1CZUl8/M0R43HXQcoe8xnlaz6F1D2w8kNzqdPODJjtroegiPKtx5EHxxMLD545utW8AumwF72Ptx/UanFa9/XJJaKxJot3ga5YiohUgD+2HeW2j5bj7WXjh4d607qefv55rNR95pXKlN1m0Lj9JwiOsrqqysfphMRF5lXMzd+b834CePtD66vNAT+N+57fxPJ5OeZo9YKrjyfngkzafup4Z/IJOBkgTxtEU7s1hDc0H4EpgK5Yioh4LHueg3FzNwIwsmcjhUpPduKQOfo7ZTdENDG7vxUqy8bLC5r2N5fMZFg/2xxVfng9bPjaXMIaQKcR0HEEhJcw7Vae3QyL+QEyfzLx5B3m04+K4ht0xujrk/+GN6w+o9ctoCuWIiLl7K0FCbzyv21Ehfgz/7G+hAaoW80jpR81R38f22rOK3jHzxCm+2DdyjDgYPzJAT+zzembALCZAbTTreb9jIVGYW+B5EQwHEW/p19I0QEyLLbyPGbTA+mKpYiIB9qbnMlbv28H4OmrWitUeqrMZJhxjRkqQ+vDyO8VKsuDzQbRnczl0ufNLvLVM2DXYtixwFyK4x92cgBNq8IhMrS+9YOCpICCpYhIORr//Sayc51c0CSCwR2irS5HipKVAjOvhSMbIbiOGSprNrK6qqrPNxDa32AuyTvNwT7rvjCn9ykIjqeNwg6pqwBZCbgULCdMmMA333zDli1bCAwMpFevXrz00ku0bNmyvOoTEam05m8+zG+bD+PjZeM/18Rh0y9Fz2M/AZ8OM7tng2qZ91RGNrW6quonogkMeMZcpFJz6eaDRYsWMWrUKJYtW8avv/5Kbm4ul156KRkZGeVVn4hIpZSd6+DZ780BO3f1bkzzOiEWVyRnycmAT2+AfSsgsCbc9p3ZzSoiZebSFct58+YV+nz69OnUrl2bVatW0adPH7cWJiJSmU1ZuIO9yVnUDQ3g4QHNrS5HzpSbBZ/fBHv+Mu/du3UO1NXjNUXO13ndY5maao7miogofqJTu92O3X5qMtK0tGKerSkiUkXsTspgyqIdADxzdRtq+Ot2do+SZ4cvboHEP8Av2Hz2d3Qnq6sSqRLKPA7f6XTy6KOPcuGFFxIXV/xfeRMmTCAsLKxgiY0tYZ4qEZFKzjAMxs3dSE6ek4ua1+LKdnWtLklO58iF2bfD9t/MeQ5HzIbYblZXJVJllDlYjho1ig0bNjBr1qwStxszZgypqakFy969e8t6SBERj/e/TYdZuPUovt42nh3cVgN2PIkjD76+G7b+ZD59Zfjn0LCX1VWJVCll6p958MEH+eGHH/jjjz+IiSl5ni9/f3/8/f3LVJyISGWSmZPHc99vAuDePk1oGhVscUVSwOmAb++HTd+az4S+8VNo0s/qqkSqHJeCpWEYPPTQQ8yZM4eFCxfSuHHj8qpLRKTSefv37exPyaJ+eCAP9teAHY/hdML3D8P6L8HLB66fDs0HWl2VSJXkUrAcNWoUn332Gd999x0hISEcOnQIgLCwMAIDA8ulQBGRymDH0XTe/2MnAGMHtSHQT88i9giGAT89bj5C0OYFQz+AVldZXZVIleXSPZZTpkwhNTWVfv36Ua9evYLliy++KK/6REQ8nmEYjPtuI7kOg/4to7i0TR2rSxIwQ+Uv/4aVHwI2uPY9aHut1VWJVGkud4WLiEhhP60/xJ/bj+Hn46UBO57CMOC3Z2HZO+bng980Hx0oIuWqzKPCRUQE0u15/OcHc8DO/X2b0jCyhsUVCQCLXoIlr5sfX/UqdL7V0nJEqgvN2isiUkZH0rK5d+YqDqVl0yAiiPv76RnTHmHxa7BwgvnxZS9Ct7utrUekGlGwFBEpgw37U7lnxkoOpmYTFujL5Bs7EuCrATuWW/o2zB9vfjxgHPQcZW09ItWMgqWIiIt+XHeQx2bHk53rpGlUDT4c2Y1GtdQFbrnlU83BOgD9xsBFo62tR6QaUrAUESklwzB4Y34Cr/+WAEDfFlG8eXMnQgN8La5MWD3TnFYIoPc/oe9T1tYjUk0pWIqIlEJWjoPHv1rLj+sOAnBX78b8+8rWeHtpBLjl1n4Bcx8yP77gAbMLXCPzRSyhYCkicg4HU7O4Z8ZKNuxPw9fbxvND4rixWwOryxKAjXPg238ABnS9yxyso1ApYhkFSxGREqzZc5x7Z67i6Ak7ETX8ePeWLnRvHGF1WQKw5Uf4+m4wnNDpFrjyFYVKEYspWIqIFOO7+P088dU6cvKctKwTwgcjuxIbEWR1WQKQ8Ct8ORKcedDuBhj0X/DS1MwiVlOwFBE5g9Np8OqvW3n79x0ADGxdm9dv6kSwv35keoSdC2HWCHDmQpshMGQKeGmqJxFPoJ+SIiKnybDn8c8v4vnfpsMA3N+vKY9f2lKDdDzFriXw2U3gsEPLq2DoB+CtX2UinkL/G0VETtp3PJO7P17JlkMn8PP2YuLQdlzXOcbqsiTf3hXw2Q2QlwXNBsL108BbUz2JeBIFSxERYOWuZO6buYqkjBxqBfvz3q1d6NKwptVlSb4Da+CToZCTDo37wo2fgI+/1VWJyBkULEWk2pu9ci//nrOeXIdBm3qhTB3ZlfrhgVaXJfkOrYcZQ8CeCg16wfDPwVffHxFPpGApItWWw2kw8efNTF2cCMAVcXV59YYOBPnpR6PHOLLFDJXZKRDTDUZ8CX56fKaIp9JPTxGplk5k5/Lw52v4fetRAB6+uBmPDmyBlwbpeI5j22HGYMg8BvU6wIivwD/E6qpEpAQKliJS7exOyuDuj1eScCQdfx8vXrm+A4M6RFtdlpwuORE+HgTph6FOHNz6LQSGW12ViJyDgqWIVCtLdyRx/6erSMnMpU6oP1Nv60r7mHCry5LTpew1r1SeOAC1WpqhMkhPOxKpDBQsRaTa+OzvPYz9bgN5ToMOMWG8f1tX6oQGWF2WnC7toHmlMmUPRDSBkXMhOMrqqkSklBQsRaTKy3M4ef7HzUz/axcAgzpEM2lYewJ89bQWj5J+xLxSeTwRwhvCyO8hpK7VVYmICxQsRaRKS83M5cHPV7M44RgAj1/aglH9m2GzaZCOR8lIghnXwLFtEBpjhsowTU4vUtkoWIpIlbXzaDp3f7ySnccyCPT1ZvKNHbg8rp7VZcmZslJg5hA4sgmC65rd3zUbWl2ViJSBgqWIVEmLE44y6tPVpGXnER0WwNSRXWkbHWZ1WXKm7DT45Do4tA6CapmhMrKp1VWJSBkpWIpIlWIYBjOW7ua5HzbhcBp0bhDOe7d2JSpEj//zOPZ0+PR62L8KAmvCbd9BVEurqxKR86BgKSJVRq7Dybi5G/ns7z0AXNe5PhOua4e/jwbpeJzcLPj8Jti7DPzDzCmF6sZZXZWInCcFSxGpEo5n5HD/p6tYtjMZmw3+dXkr7u3TRIN0PFFuNswaAbsWg18w3PoNRHe0uioRcQMFSxGp9BIOn+Cuj1eyJzmTGn7e/Hd4Jwa0rmN1WVKUvByYfTvsmA++QTBiNsR0tboqEXETBUsRqdR+33KEhz5fQ7o9j9iIQD64rRst6+p50h7JkQdf3wXbfgafABg+Cxr2sroqEXEjBUsRqZQMw+DDPxN58afNOA3o3jiCd2/pQkQNP6tLk6I4HTDnPtg8F7z94MZPoUlfq6sSETdTsBSRSsee5+DpORuYvWofADd1i+W5a+Lw8/GyuDIpktMJcx+CDV+Blw9c/zE0H2h1VSJSDhQsRaRSOZZu5x8zV7Fy93G8bPD0VW2448JGGqTjqQwDfhwN8Z+CzRuGfgitrrS6KhEpJwqWIlJpbD6Yxt0fr2R/ShYhAT68dXNn+raIsrosKY5hwLwxsGoaYINr34O2Q6yuSkTKkYKliFQK/9t4iEe/iCczx0GjyCA+GNmNZrWDrS5LipN2ABa9BKumm59f8xa0v97SkkSk/ClYiohHMwyDdxbu4JX/bcUw4MJmkbx9c2fCgzRIx+MYBuxeAsvfh80/gOEw11/1GnS6xdraRKRCKFiKiMfKznXwr6/X8W38AQBu69mQZ65ug6+3Bul4FHs6rPsClk+Fo5tPrW/QCy58BFpebl1tIlKhFCxFxCMdScvm3pmriN+bgreXjWcHt+XWCxpaXZac7lgCrPgA4j8De5q5zjcI2t8A3e7RIxpFqiEFSxHxOBv2p3LPjJUcTM0mLNCXKSM606tZLavLEjDno9w2z7w6ufP3U+sjmkK3u6HjzRAYbll5ImItBUsR8Sg/rjvIY7Pjyc510jSqBh+O7EajWjWsLksykmD1x7ByGqTuObnSBi0uh+53Q5OLwUu3KIhUdwqWIuIRDMPgjfkJvP5bAgB9W0Tx5s2dCA3wtbiyam7/KvPq5IZvwGE31wXWhM63Qdc7oWYjS8sTEc+iYCkilsvKcfD4V2v5cd1BAO7q3ZgxV7TCR4N0rJGbDRvnmKO7D6w+tb5eR+h+L8RdB76BlpUnIp5LwVJELHUwNYt7Zqxkw/40fL1tPD8kjhu7NbC6rOopZQ+s/AhWz4DMJHOdtx+0vdYMlPW7gJ5wJCIlULAUEcus2XOce2eu4ugJOxE1/JgyojM9mkRaXVb1Yhiwc6HZ3b3tZzCc5vrQGOh6B3QeCcF6upGIlI6CpYhY4rv4/Tzx1Tpy8py0rBPCByO7EhsRZHVZ1Ud2KqydZQbKpIRT6xv3he73QIsrwFu/IkTENfqpISIVyuk0ePXXrbz9+w4ABrauzes3dSLYXz+OKsSRzWaYXDsLcjPMdX7B0GG4OV1Q7VbW1icilZp+kotIhcmw5/HoF/H8uukwAPf3a8rjl7bE20v37ZUrRy5s+dGczHzX4lPra7U0r052uAn8Q6yrT0SqDAVLEakQ+45ncvfHK9ly6AR+3l5MHNqO6zrHWF1W1Xbi8Km5J0+Yj8XE5gWtrjKfjNO4jwbjiIhbKViKSLlbuSuZ+2auIikjh1rB/rx3axe6NKxpdVlVk2HA3uWwYips/Bacueb6oFrQ5XZzQE6YAr2IlA8FSxEpV7NX7uXfc9aT6zBoUy+UqSO7Uj9ccyC6XU4mbPjKvH/y0LpT62O6mVMFtbkGfPytq09EqgWXg+Uff/zBpEmTWLVqFQcPHmTOnDkMGTKkHEoTkcrM4TSY+PNmpi5OBODytnV57cYOBPnp71m3St4JKz6ENZ9Adoq5zicA4oaZj1qM7mRpeSJSvbj8Ez4jI4MOHTpw5513ct1115VHTSJSyZ3IzuXhz9fw+9ajADx8cTMeHdgCLw3ScQ+nE3bMN5+Mk/ArYJjrwxtCt7ug060QFGFpiSJSPbkcLK+44gquuOKK8qhFRKqA3UkZ3P3xShKOpOPv48Ur13dgUIdoq8uqGrKOw5pPzdHdxxNPrW820ByM0/wS8PK2rj4RqfbKvU/Kbrdjt9sLPk9LSyvvQ4qIRZbuSOL+T1eRkplLnVB/pt7WlfYx4VaXVfkdXGcOxlk3G/KyzHX+YdDpFvMKZWRTa+sTETmp3IPlhAkTGD9+fHkfRkQs9tnfexj73QbynAbtY8J4/9au1A0LsLqsyisvBzbPNQfj7F12an2dOHPuyXbXg18N6+oTESlCuQfLMWPGMHr06ILP09LSiI2NLe/DikgFyXM4ef7HzUz/axcAgzpEM2lYewJ81SVbJmkHzHknV02HjCPmOi8faD3YDJQNemruSRHxWOUeLP39/fH31xQXIlVRamYuD36+msUJxwB4/NIWjOrfDJuCj2sMA3YvMQfjbP4BDIe5PriuOe9kl9shpK6lJYqIlIbm/RCRMtl5NJ27P17JzmMZBPp6M/nGDlweV8/qsioXezqs+8IcjHNk06n1DXqZVydbDwJvX+vqExFxkcvBMj09ne3btxd8npiYSHx8PBERETRo0MCtxYmIZ1qccJRRn64mLTuP6LAApo7sStvoMKvLqjyOJZhhMv4zsJ8c0OgbBO1vMEd3142ztj4RkTJyOViuXLmS/v37F3yef//kyJEjmT59utsKExHPYxgGM5bu5rkfNuFwGnRuEM57t3YlKkS3u5yT0wHbfjG7u3f+fmp9RFPodjd0vBkCwy0rT0TEHVwOlv369cMwjPKoRUQ8WK7Dybi5G/ns7z0AXNe5PhOua4e/jwbplCgjCdbMgBUfQeqekytt0OJy88k4TS4GLy9LSxQRcRfdYykiAGTnOjiUms2B1CwOpWZzMDWbg6lZHEwxP96fkkVqVi42G/zr8lbc26eJBumUZP8qWP4BbPgaHCfn8g2sCZ1vg653Qs1GlpYnIlIeFCxFqoH80FgQFk/+eyg1mwMp2RxKyyY5I+ec7xMS4MPkGzoysE2dCqi6EsrNho1zzMnM9686tb5eB+h+H8RdB76B1tUnIlLOFCxFKjl3hUaAQF9v6oUHUC8sgHphgYX/DQ+gYUQNAv3U9X2WlL2w8iNY/TFkJpnrvP2g7bXmYJyYrpp7UkSqBQVLEQ92emg8lJZlBsVCAdI9obFuWADRYYGEBvqoe/tccrPh8AbzimT+knRqpgxC65td3Z1HQnCUdXWKiFhAwVLEItm5Dg6n5V9VPL/QGODrRXRYIPXCA6gbGkh0+KmwqNB4HpxOSEooHCIPbQBn7tnbNu4D3e+FFleAt360ikj1pJ9+1YzDabD5YBp/JyazJykDPx8vAny9CfD1xt/HC39fbwJOWxfge/JjH/Nj//x/T77m5+2lsFKE4kPjqW7qJDeFxnphAYQF+ur74A5pBwqHyAPxp+aZPF1QJNTvCvW7mEt0J6gRWeHlioh4GgXLKi7P4WTjgTT+Tkzi753JLN+VzInsPLe9v83GWaEzwNf7jIDqVRBcCwJrfoj1PWNfnzMC7cnX/E8LuL7eNktDlD2viHsaU84vNNY9417G07upFRrLSXaqGRwLguRqOHHg7O18AiG648kQ2dkMlOENdM+kiEgRFCyrmFyHk/X7U/l7ZzJ/Jyaxctdx0u2Fg2Swvw9dG9Wkdb1QHE6D7FzHycVJdq4De575b3aeE/vpr+U5Cl7Pn8rUMCAr10FWrgMoonuwHHjZOCug+p8RYgN8zg60+VdZTw+vp4fhghDr40VSRk6hqXfyrzweTHFPaMy/8qjQWEHyck67L3K1+e+xbcAZc/LavKB2m5MB8uTVyKjW6toWESkl/bSs5HLynKzbl8KynUn8nZjMqt3HycxxFNomJMCH7o0i6NEkgguaRNKmXig+3mWfkNkwDHIcTrJz84Nn4dB5ekg9PaCeeu201/MKh9kz3y8714k9z/w3n9OAzBzHWV9nRQrw9Tpr4EvdsACzm1qh0VpOJyTvPOO+yHXgKOIPgvAGpwJk/S7mtEB+NSq+ZhGRKkLBspLJznUQvzel4Irk6j3HC4UugPAg35NBMpIejSNoXS8Uby/3BRybzXbyyp43BPq67X1LYhgG9jwn9jNCZ/aZgfWMgJofSs3XTg+85mtFvV+Ow0nNIL+zQuPp3dPhQQqNHuPE4TPui1xtdnOfKbBm4RAZ3VmjtkVE3EzB0sNl5ThYs+c4yxKT+XtnEmv2ppCTVzhIRtTwo0fjCHNpEknLOiF4uTFIegKbzVbQ/R1GxYRZ8UD2dDgYD/tWnurWTtt39nY+AebVx4Ig2RlqNtZ9kSIi5UzB0sNk5uSxavdx/t6ZzLKdSazdl0Kuo/B9YLWC/Qu6tS9oHEGz2sG6eiZVjyMXjmwqPLjm6BYwnGdsaIOoVqcNrukCddqCt/4AERGpaAqWFjuRncvKk0Hy78Qk1u9LJc9ZOEjWDQ2gR5MIejSOpEeTCJrUqqEgKVWLYcDxxFMDa/avgoNrIS/77G1DYwoPronuCP4hFV6yiIicTcGygqVm5bJyVzJ/n+zaXr8/lTNyJPXDA092a5thsmFkkIKkVC0ZxwrfF7l/FWQdP3s7/7DCIbJ+ZwipW/H1iohIqShYlrOUzByWJ5pBctnOJDYdTCuYqidfbEQgPRpHcsHJwTaxEUHWFCtSHnIyzKuPp4fIlD1nb+ftB3XbFx5gE9EEvMo+g4GIiFQsBUs3S0q3FwqSWw+fOCtINq5Vo9AVyejwQGuKFXE3R555H+T+VbB/pdm1fWRTEfdFArVannFfZBz4+FV8zSIi4jYKlufp6Al7wVNt/k5MYtvh9LO2aRpVo2DqnwuaRFInNMCCSkXczDDMK4+nD645GA+5mWdvG1LvjKl+OkJAWEVXLCIi5UzB0kWH07JZtjOJZSeD5M6jGWdt06JO8Mlu7Ui6N44gKsTfgkpF3MgwIP0wHNpQuEs789jZ2/qFQP1OhYNkaHTF1ywiIhVOwfIc9qdk8ffOU1ckdyUVvhpjs0GruqEnr0ZG0L1xJBE11J0nlVTWcUjaAUnbT/t3u/kkm5yzr8bj5Qt14wqHyMjmui9SRKSaUrA8jWEY7DueVfB4xL8Tk9ibnFVoGy8btIkONaf+aRxB98YRhAcpSEolkpNhBsUzA2TyDshMKn4/m5c5mOb0EFknDnx1a4eIiJiqdbA0DIPdSZn8nXiya3tnEgdSC8+b5+1lI65+GBecHGzTtVEEoQGaeFk8nCMXju8+dcUxPzgm7YC0/SXvGxINkU1PLs3MJaIp1GykwTUiIlKiahUsDcNgx9GMQoNtDqfZC23j42WjfUxYwWCbro0iCPavVs0klYXTaYbE00Njfog8vhsMR/H7BtY8FRojm5rBMbKZeUXSP7jivgYREalSqnRiMgyDhCPp/L0z6eSztpM5ll44SPp5e9EhNqxgHsnODcMJ8qvSzSKViWGYk4kn7yh89TFpp7muqCfT5PMNOnXVMaJp4SAZFFFxX4OIiFQbVTpBfbN6P4/NXltonZ+PF50bhBc8HrFzg5oE+HpbVKHISdlpZ1x1PO1fe2rx+3n5QkTjk8HxjPAYUs8cXSYiIlJBqnSw7NqoJgG+XnRpWLNgsE2H2HAFSbFGbrb5POwzg2PSdsg4UsKONgiLPTs4RjaFsAbgXaX/G4uISCVSpX8jNYgIYt24y/Dz0dQnUkEceZC6x+yqPnPgTMpewCh+3xq1C4fG/BBZs7FGXouISKVQpYOlzWbDz0ddgeJmhgEnDp0RHE8GyeREcOYWv69/6Gnh8YzBMwGhFfc1iIiIlIMqHSxFzktmstlVXdTAmdyzn7hUwCfAHF195nQ9kc2gRi3d9ygiIlWWgmVV58iF1H2Qutfsii34d48ZnEqtlGGo1JmptO9X2jd04/s5HWabZZXQPjZvqNnwtODY5NTHofX15BkREamWFCwru5zMwmGxUHjcC2kHKPG+PilZaP3C8zzmL+ENNFm4iIjIGRQsPZlhQHZK4bCYsqdwgCzpEXz5fAIgLMYcWRwea44kDo+FGlHmY/rOXUjp6y3dhm7dzP31AaH1zKuQfjVKv4+IiEg1p2BpJafTnGamuKuNKXsh58S538c/9LTQGGteTTsrQOq+PhERESlfCpblyZFnPnKvUFjcc9rn+8BhP/f71Ig6Ozie/nlgeLl/KSIiIiLnomB5PnKzzHBYEBbPuOp44gAYzpLfw+YFIdGnhcbYwl3WYTHgF1QxX4+IiIjIeVCwLElWSglXG/dCxtFzv4e332n3NzY4+2pjaDR4+5b7lyIiIiJS3qpvsDQMMxiWdH9jSc9ozucXUvzVxvBY82kqmnpGREREqoGqHSyzU+HwxtPC42kBMnUf5GWf+z2CIs8Oi/mfhzeAgHANjBERERGhqgfLXX/CrJtL2MAGIfWKH00dFqPpZkRERERKqWoHy5qNoGbjoq82hsWak19rkmsRERERt6jawbJOW3gk3uoqRERERKoFjSoREREREbdQsBQRERERt1CwFBERERG3ULAUEREREbdQsBQRERERt1CwFBERERG3ULAUEREREbdQsBQRERERtyhTsHz77bdp1KgRAQEB9OjRg+XLl7u7LhERERGpZFwOll988QWjR49m3LhxrF69mg4dOnDZZZdx5MiR8qhPRERERCoJl4Pla6+9xj333MMdd9xBmzZtePfddwkKCuKjjz4qj/pEREREpJJwKVjm5OSwatUqBg4ceOoNvLwYOHAgS5cuLXIfu91OWlpaoUVEREREqh6XguWxY8dwOBzUqVOn0Po6depw6NChIveZMGECYWFhBUtsbGzZqxURERERj1Xuo8LHjBlDampqwbJ3797yPqSIiIiIWMDHlY1r1aqFt7c3hw8fLrT+8OHD1K1bt8h9/P398ff3L/jcMAwAdYmLiIiIeKj8nJaf20rLpWDp5+dHly5dmD9/PkOGDAHA6XQyf/58HnzwwVK9x4kTJwDUJS4iIiLi4U6cOEFYWFipt3cpWAKMHj2akSNH0rVrV7p3787rr79ORkYGd9xxR6n2j46OZu/evYSEhGCz2Vw9vMvS0tKIjY1l7969hIaGlvvxKgu1S/HUNkVTuxRPbVM0tUvx1DZFU7sUzYp2MQyDEydOEB0d7dJ+LgfLG2+8kaNHjzJ27FgOHTpEx44dmTdv3lkDeorj5eVFTEyMq4c9b6GhoTpJi6B2KZ7apmhql+KpbYqmdime2qZoapeiVXS7uHKlMp/LwRLgwQcfLHXXt4iIiIhUD3pWuIiIiIi4RZUPlv7+/owbN67QyHRRu5REbVM0tUvx1DZFU7sUT21TNLVL0SpTu9gMV8eRi4iIiIgUocpfsRQRERGRiqFgKSIiIiJuoWApIiIiIm6hYCkiIiIiblGhwTIpKYnatWuza9euijxshXr33XcZNGiQS/uoXYpXHdrmpptu4tVXX3VpH7VL8dQ2RVO7FE9tUzS1S/HUNiUwKtA///lP4+677y607qGHHjI6d+5s+Pn5GR06dChyv7Vr1xq9e/c2/P39jZiYGOOll15y+dhff/21cckllxgREREGYKxZs+asbbKysowHHnjAiIiIMGrUqGFcd911xqFDhwpts3v3buPKK680AgMDjaioKOPxxx83cnNzC1632+1GdHS08ccff5S6trK0S2JiogGctSxdurTUxzWM0rVL3759zzrOfffdV2ib8mgXwzi7beLj442bbrrJiImJMQICAoxWrVoZr7/++ln7/f7770anTp0MPz8/o2nTpsa0adNcOm5SUpLx4IMPGi1atDACAgKM2NhY46GHHjJSUlJc+rpLU8v69euNmjVrnvXeJSlLu/z+++9FnjMHDx4s9XFL2y5FHefzzz8/qx53t4thnN02x44dMy677DKjXr16hp+fnxETE2OMGjXKSE1Ndame0rj33nuNJk2aGAEBAUatWrWMwYMHG5s3by60jaecM6VpF3ecM4ZRunbxpHPmdMeOHTPq169vAMbx48ddqscVTqfTuPzyyw3AmDNnTqHXPOWcOV1x7eKucyZfSe3iaeeMO+opDXf8Ti5NLWVtmwoLlhkZGUZoaOhZweehhx4y3nrrLePWW28tMkClpqYaderUMUaMGGFs2LDB+Pzzz43AwEDjvffec+n4M2bMMMaPH29MnTq12AD1j3/8w4iNjTXmz59vrFy50rjggguMXr16Fbyel5dnxMXFGQMHDjTWrFlj/PTTT0atWrWMMWPGFHqfxx9/3Bg2bFip6ipru+QHy99++804ePBgwZKTk1Oq4+YrTbv07dvXuOeeewod5/RfPuXRLoZRdNt8+OGHxsMPP2wsXLjQ2LFjhzFz5kwjMDDQePPNNwu22blzpxEUFGSMHj3a2LRpk/Hmm28a3t7exrx580p97PXr1xvXXXedMXfuXGP79u3G/PnzjebNmxtDhw516esubS1du3Y13nrrrXJtl/wf+Fu3bi30vXQ4HG5tF8Mwf8BOmzat0HGysrLKtV2Ka5vk5GTjnXfeMVasWGHs2rXL+O2334yWLVsaw4cPd7mec3nvvfeMRYsWGYmJicaqVauMQYMGGbGxsUZeXp5hGJ51zpSmXdxxzpSmXQzDs86Z011zzTXGFVdccVaActc5k++1114rOM7pAcqTzpnTFdcu7jpn8hXXLobheeeMu+o5F3f8Ti6vtjGMCgyWs2fPNqKioop9fdy4cUUGqHfeeceoWbOmYbfbC9Y99dRTRsuWLctUR34gOzNApaSkGL6+vsbs2bML1m3evLnQVcCffvrJ8PLyKnQVc8qUKUZoaGih+hYtWmT4+fkZmZmZ56ynrO1S3NdRViW9X9++fY1HHnmk2H3Lo10M49xtk++BBx4w+vfvX/D5k08+abRt27bQNjfeeKNx2WWXleq4xfnyyy8NPz+/gr/6SvN1l7aW8ePHG7179y5VHWVtl/wf+GdedTlfZ7aLYRhF/hI4XXm0i2GUvm3eeOMNIyYmxuV6XLV27VoDMLZv324YhuefM2e2S3mdM2e2i2F45jnzzjvvGH379jXmz59/Vju485xZs2aNUb9+fePgwYNntYMnnjMltYs7z5mS2sUwPO+ccVc95+KO38nl1TaGYRgVdo/l4sWL6dKli8v7LV26lD59+uDn51ew7rLLLmPr1q0cP37cbfWtWrWK3NxcBg4cWLCuVatWNGjQgKVLlxbU0q5dO+rUqVOolrS0NDZu3FiwrmvXruTl5fH333+f87hlbZd8gwcPpnbt2vTu3Zu5c+eW+X3O5dNPP6VWrVrExcUxZswYMjMzC14rj3aB0rdNamoqERERheo5/fuYX0/+97GsUlNTCQ0NxcfHp+A45/q6S1tL9+7dWb58OXa7/Zx1lLVd8nXs2JF69epxySWXsGTJknO+T2mOc3q75Bs1ahS1atWie/fufPTRRxinPYuhPNoFStc2Bw4c4JtvvqFv374u1+OKjIwMpk2bRuPGjYmNjS04jqeeM0W1Sz53njNFtUs+TzpnNm3axHPPPceMGTPw8jr7V6W7zpnMzExuvvlm3n77berWrVvkcTzpnDlXu+Q733PmXO2Sz5POGXfVUxrn+zu5vNoGKnDwzu7du4mOjnZ5v0OHDhVqHKDg80OHDrmltvz38vPzIzw8/Kxj5R+ntLUEBQURFhbG7t27z3ncsrZLcHAwr776KrNnz+bHH3+kd+/eDBkypFzC5c0338wnn3zC77//zpgxY5g5cya33HJLwevl0S5Qurb566+/+OKLL7j33nvPWU9aWhpZWVmlOvaZjh07xn/+859SHSf/NVdqiY6OJicnp1TndFnbpV69erz77rt8/fXXfP3118TGxtKvXz9Wr159zmMWp6h2AXjuuef48ssv+fXXXxk6dCgPPPAAb775ZsHr5dEuUHLbDB8+nKCgIOrXr09oaCgffPCBy/WUxjvvvENwcDDBwcH8/PPP/PrrrwV/GHviOVNSu7jznCmpXcCzzhm73c7w4cOZNGkSDRo0KHI/d50z//znP+nVqxfXXHONS8fJf82VWs73nClNu7jrnDlXu4BnnTPurOdc3PE7ubzaBsDn3Ju4R1ZWFgEBARV1OMsFBgYW+guiOGVtl1q1ajF69OiCz7t168aBAweYNGkSgwcPdvn9SnJ6aGjXrh316tVjwIAB7Nixg6ZNm7r0XqVtFzh322zYsIFrrrmGcePGcemll7pUhyvS0tK46qqraNOmDc8++2y5HCMwMBDALedMce3SsmVLWrZsWfB5r1692LFjB5MnT2bmzJku11xSuzzzzDMFH3fq1ImMjAwmTZrEww8/7NIxXGkXKLltJk+ezLhx49i2bRtjxoxh9OjRvPPOOy7VUxojRozgkksu4eDBg7zyyivccMMNLFmyxO0//9x1zpTULu48Z87VLp50zowZM4bWrVsX+mVdHubOncuCBQtYs2ZNuR4n3/meM6VpF3ecM6VtF086Z9xZz7m483fyubjaNlCBVyxr1apVpq7runXrcvjw4ULr8j8v6fJ4WY6Tk5NDSkrKWcfKP44rtSQnJxMVFXXO45a1XYrSo0cPtm/f7pb3OtdxgIJjlUe7QMlts2nTJgYMGMC9997L008/Xei14uoJDQ0t+E9SWidOnODyyy8nJCSEOXPm4Ovre87j5L/mSi3JyckA533OlNQuRenevXuZzpmS2qUoPXr0YN++fQXdKeXRLlBy29StW5dWrVoxePBg3nvvPaZMmcLBgwddqqc0wsLCaN68OX369OGrr75iy5YtzJkzp8Tj5L/mSi3uOmdKapeilPWcKaldimLlObNgwQJmz56Nj48PPj4+DBgwoGDbcePGuVRPSRYsWMCOHTsIDw8vOBbA0KFD6devX4nHyX/NlVrO95wpTbsUxdVzpjTtUhRP+DnjjnpcVZbfyeXVNlCBwbJTp05s2rTJ5f169uzJH3/8QW5ubsG6X3/9lZYtW1KzZk231delSxd8fX2ZP39+wbqtW7eyZ88eevbsWVDL+vXrOXLkSKFaQkNDadOmTcG6HTt2kJ2dTadOnc553LK2S1Hi4+OpV6+eW97rXMcBCo5VHu0CxbfNxo0b6d+/PyNHjuSFF1446/WePXsW+j7m15P/fSyttLQ0Lr30Uvz8/Jg7d+5Zf6GW5usubS0bNmwgJiaGWrVqnbOusrZLUcpyzpyrXYo7Ts2aNfH39wfKp12g9P+fnE4nQMEPfHedM2cyzAGShY7jSefMmc5sl6K44+fMme1S3HGsOme+/vpr1q5dS3x8PPHx8QW3ByxevJhRo0a5VE9J/vWvf7Fu3bqC4+T/bJ08eTLTpk0rOI6nnDOlaZeiuHrOlKZdijuOJ/2cKWs9rirL7+Tyahug4uaxXLduneHj42MkJycXWp+QkGCsWbPGuO+++4wWLVoYa9asMdasWVMwciklJcWoU6eOceuttxobNmwwZs2aZQQFBbk83VBSUpKxZs0a48cffzQAY9asWcaaNWsKza31j3/8w2jQoIGxYMECY+XKlUbPnj2Nnj17FryeP4T/0ksvNeLj44158+YZUVFRZ02rM23aNKNJkybl2i7Tp083PvvsM2Pz5s3G5s2bjRdeeMHw8vIyPvroI7e2y/bt243nnnvOWLlypZGYmGh89913RpMmTYw+ffqUa7sU1zbr1683oqKijFtuuaXQVAtHjhwp2CZ/GoUnnnjC2Lx5s/H222+7PKVDamqq0aNHD6Ndu3bG9u3bCx3rzKljSvq6S1vLyJEjjTvvvLNc22Xy5MnGt99+ayQkJBjr1683HnnkEcPLy8v47bff3Nouc+fONaZOnWqsX7/eSEhIMN555x0jKCjIGDt2bLm2S3Ft8+OPPxofffSRsX79eiMxMdH44YcfjNatWxsXXnihy/WUZMeOHcaLL75orFy50ti9e7exZMkSY9CgQUZERIRx+PBhwzA865wpTbu445wpTbt42jlzpqJGOrvjnCkKxUw35AnnzJmKahd3nDNFObNdPO2ccWc9JXHX7+TyahvDqMDphgzDMLp37268++67hdYVNdEnYCQmJhZsc/oE6fXr1zcmTpxY6D3yT+7T9znTtGnTijzOuHHjCrbJnyC9Zs2aRlBQkHHttdeeNanrrl27jCuuuMIIDAw0atWqZTz22GNnTTp66aWXGhMmTCjXdpk+fbrRunVrIygoyAgNDTW6d+9eaKokd7XLnj17jD59+hgRERGGv7+/0axZM+OJJ544a3Lp8miXotpm3LhxRdbbsGHDs772jh07Gn5+fkaTJk3Omvg1/+suTnGT/J7ZnqX5us9VS1ZWlhEWFubS5PZlaZeXXnrJaNq0qREQEGBEREQY/fr1MxYsWOD2dvn555+Njh07GsHBwUaNGjWMDh06GO++++5Z89iVR7sU1TYLFiwwevbsaYSFhRkBAQFG8+bNjaeeeqrIya7P55zZv3+/ccUVVxi1a9c2fH19jZiYGOPmm282tmzZUmg7TzlnStMu7jhnStMunnbOnKm4KXTO95wpypkByjA855w5U1Ht4o5zpihntounnTPuqudcbePO38nl1TYVGizz/yIu60Spxfnoo4+MZs2auTw5eHnYsGGDUbt2bZdmqle7FK+82mbs2LFG37593fqeZfXOO+8Yl1xyiUv7qF2Kp7YpmtqleGqboqldiqe2KV6FjQoHuOqqq0hISGD//v1nzV92Pn766SdefPHFcw4gqAgHDx5kxowZhIWFlXoftUvxyqttfv75Z9566y23vd/58PX1LTQlRWmoXYqntima2qV4apuiqV2Kp7Ypns0wTpu9U0RERESkjCpsVLiIiIiIVG0KliIiIiLiFgqWIiIiIuIWCpYiIiIi4hYKliIiIiLiFgqWIiIiIuIWCpYiIiIi4hYKliIiIiLiFgqWIiIiIuIW/w+2sOzhSjXfxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "SolveInstances(dimensions, solvers, 2023, SwitchPresolveOff).plot(figsize=(8, 5))" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0039195756be48469c78c89c309c92c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "007afb7342c74bc2bd0945b9e8c5f0f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00c04e53247c4fb797e2fcb348c3bf74": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0210e96365904b709f9711521393067f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02e4ad5bd56b4a35aed597f3f635d585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78ef2f297ae4460da045363bb6092ed3", + "IPY_MODEL_137fac635ab041258a87221dd40d70e9", + "IPY_MODEL_6bef2d23dbc446caa12c04b567aea01c" + ], + "layout": "IPY_MODEL_334526415ffb4a3093a174015acc53d7" + } + }, + "03a45b815fc3428e80f1a3b0e0f84970": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04cd85a43cc742cea18c680a330b3e5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0600de01691649d3be4eed2c39d760c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27bc2478a1494353b59ef30dc6c4c04c", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_498a59a1827d4f3c81705eb9df57d051", + "value": 2 + } + }, + "072163be46894e5fb2d9d09667429996": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cd2e2ee82e564282a80e76bc9abbce69", + "IPY_MODEL_77257b9d0f5043568a2bac799a6c819b", + "IPY_MODEL_165d87bc12a847388d237ea630f4a8c9" + ], + "layout": "IPY_MODEL_474ff661f4a84c40bfe6f87c441e8308" + } + }, + "076146cd0e694d9480beb78f4c29ce8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "08ddd5f58e354efa88bceab4767f3fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "09a5b70127d748a3a976acf9040bb7ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a301c0524224055960e46964f54e2f5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a72801cb28e4885b31120dc6aece997": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_573b54fb59f146699436d2956c0bd63a", + "IPY_MODEL_9cf96e7620c64cd88a4258f4a75a2530", + "IPY_MODEL_f340a0b32caa466e967f004d55851c1b" + ], + "layout": "IPY_MODEL_ea0d0fe1a8d444fcaf9cfc6383a3dc62" + } + }, + "0acf882b5e864cde8f6fc362257a49c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7b04cbfa91d4c389e2916fbfff36469", + "IPY_MODEL_edb8bbc204384c77bf5b8e1a429c2bba", + "IPY_MODEL_c6e68ae189e548cd882b35a0a9517b0c" + ], + "layout": "IPY_MODEL_8bd3b2e672654723a006cbec5120a8f3" + } + }, + "0af04d4a53f143a4bf6b260e21124098": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef3c798fbc094460ac7efeb6e8759af6", + "placeholder": "​", + "style": "IPY_MODEL_6847d30161354479b72b3d5cb96a9583", + "value": "100%" + } + }, + "0c53603aca8c4d1595d3b704fb40504a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0d4417f042ef49549d069bb829fce678": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0ef9438e841f4db496122205eef24486": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1073687e38144cbf959a02c7a1edc0ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1134d02f65aa450d9965863d3c404477": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1155dbabf1db4bf48b567e75ee11e9fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "137fac635ab041258a87221dd40d70e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_09a5b70127d748a3a976acf9040bb7ed", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5346c4066dc847bb8682f0170ef2e4fe", + "value": 2 + } + }, + "1438ec6ec58946c48a8c180ae0a1946b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14a3160cb16c46b7a13d9780b33914da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9cfc136c44c045c3b472b019eec4c312", + "IPY_MODEL_7cf700de12ab411da5ac9cdb1d0d4b19", + "IPY_MODEL_2f1f2004c80943e5ba17ef3b2a132d4b" + ], + "layout": "IPY_MODEL_1c6c5ceb12af45c1bb9a9295ca142294" + } + }, + "1533677646974ac4ae31c8039d75f828": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "15a853bb96ae476cbfa78754c7164fae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15e5fb815c034f6faae4160a3a0c82b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "165d87bc12a847388d237ea630f4a8c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_60b4bc35757d40a5a116fa9df5190284", + "placeholder": "​", + "style": "IPY_MODEL_c699442d513a4094a70685f352d5468c", + "value": " 9/9 [01:01<00:00, 9.89s/it]" + } + }, + "16adf58866ef4b12a18098367ec7e97f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "176d4885237e4508a5e44884b79aaa26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a301c0524224055960e46964f54e2f5", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c65dee8ab2dd48e08e91f71a97c7c240", + "value": 2 + } + }, + "18c2f46a33a1475f9e20b09ed96f4309": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "18d0f80e84a1469ead9f82d3bb48913b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "195b5f677e274fd0ae935287d9ea37e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a909a2324e841299ae8e4573479c641": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aa6f16444c6940a18f7f6a9870c9927d", + "IPY_MODEL_957e6b15bb47489f834c7e824ea2bb97", + "IPY_MODEL_934fd49155fd45faa1fe0200ff81c8c8" + ], + "layout": "IPY_MODEL_0c53603aca8c4d1595d3b704fb40504a" + } + }, + "1c6c5ceb12af45c1bb9a9295ca142294": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "1c891fe6ac6f4cd4a99c7cdc1c618ccd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cf5564591574664878bed9e60176bb3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d0ddd9712e844d2a296bb609ec3fff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5da6771ede5465ca850795a762d6cbb", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_68ceffbb96d9411c911a088047ef8210", + "value": 9 + } + }, + "1e06349ebb494303acf76d783fb9da67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2024a6b35a8e49ed956dc6577e899ce6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "21146e302ea644779302ca9ceefdf876": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "228b0aaf0f454864b5668bde4a6e0751": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "25c3d5dfe949490db446a02d9b059d19": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "264d9ba8d8ed40be89d44dcb6bc33aee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83e4a6ff48f2495e95e4183afafd9466", + "placeholder": "​", + "style": "IPY_MODEL_31440c4c479d44b1a87ff8dd5d70ab96", + "value": " 2/2 [00:02<00:00, 1.33s/it]" + } + }, + "27bc2478a1494353b59ef30dc6c4c04c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "27cd3760950a44deb7cfaf9e38dc6a7b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28102cc074114ea1acf2a3a3b89038f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "28e1b9d68e0a49c984fff1dfb76b5777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28e45e0536d54afeb6ce0213a5902e51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e3bff2ba80814042af7b394ef751ed31", + "placeholder": "​", + "style": "IPY_MODEL_2024a6b35a8e49ed956dc6577e899ce6", + "value": " 2/2 [00:10<00:00, 4.90s/it]" + } + }, + "28e4a9b3aa714645b133cb0c8d19fbb4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29b918fdb4a545f48498a665d15aa557": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "2a086a827bff4b4cbb9db9f78b6da267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2b9c9f47ab9a4bec9bb81e30451d6284": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_552c8fcbbb3d4a9e97c5b723c6a835cb", + "placeholder": "​", + "style": "IPY_MODEL_5b134799e124401998885dd3284d8234", + "value": "100%" + } + }, + "2c7fd7cea38a4b6ebabf7f9f35c3d241": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ca39efc251640a388627a1570dad519": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "2d69bed4be844104b908c017c22443eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2e200afece75499eb5ac8fccaaf2aa78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e582be8221c459e96df73cce70b66eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2eb8078c5d6242fba118b461ddf326f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2f1f2004c80943e5ba17ef3b2a132d4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_18c2f46a33a1475f9e20b09ed96f4309", + "placeholder": "​", + "style": "IPY_MODEL_591597f211084bd0b2f44dc35edac400", + "value": " 2/2 [00:10<00:00, 4.58s/it]" + } + }, + "31440c4c479d44b1a87ff8dd5d70ab96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31ac4b264ab4415ba96807ee4d0e06ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "334526415ffb4a3093a174015acc53d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "335e32a1bdb14773b77219dce136d84b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35343359cab04e7885ff633c8069a6bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "360c633b95b14b61ae22126a06891e5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3716355844164b24a588e39d39fd6f58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03a45b815fc3428e80f1a3b0e0f84970", + "placeholder": "​", + "style": "IPY_MODEL_e069acd4535c4b1c8d58a39fae727403", + "value": " 2/2 [00:15<00:00, 7.01s/it]" + } + }, + "376fe78cb3c540c4a220ed186188da31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "381db092432a43f7aa320c7ed9dc466a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "38de3a672dbc4c5d9620a283e428bcb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99c38d42e32f415ba894524a52536328", + "placeholder": "​", + "style": "IPY_MODEL_7a6ec07624f84daa8c9d46c21208f070", + "value": " 2/2 [00:01<00:00, 1.64it/s]" + } + }, + "3906cd318d414f438b8ae30664e8e510": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_500cf76011fe45a683e06f8419b0b63a", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ada1ac7e7a76477486e593e55442895e", + "value": 2 + } + }, + "39460fbe052d43bca951e6b2c2cc7bb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93c5f0b7798848b4b33ad22461794d18", + "placeholder": "​", + "style": "IPY_MODEL_7260dd9b253a4ad48a950f4bfdadf718", + "value": "100%" + } + }, + "396b75923524457cb5142db3f4af0c4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5534d740bd254cb9bcdcd546650a84da", + "IPY_MODEL_a6b3488dce324c27b7ac47b00cb7afcb", + "IPY_MODEL_49ca84b82a6e40ac92d2efc1a5bbafc9" + ], + "layout": "IPY_MODEL_996c329766a34c2686553501c096958e" + } + }, + "3a2f1d392d7d4f1cb1e1b2be6a28dfec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3cd0272ed30a45deb92258eefc4fe86f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_076146cd0e694d9480beb78f4c29ce8a", + "placeholder": "​", + "style": "IPY_MODEL_195b5f677e274fd0ae935287d9ea37e5", + "value": " 2/2 [00:08<00:00, 3.98s/it]" + } + }, + "3dd533f28a5245f2ab55c1d445bc9104": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2f71b4308724c2bbe827e292c9f45ac", + "IPY_MODEL_a8e76377609d4397a086f7e75f0f1fff", + "IPY_MODEL_3716355844164b24a588e39d39fd6f58" + ], + "layout": "IPY_MODEL_aebde985ee394558a181784bb24ff3d8" + } + }, + "3e45ba09bc184a2cb7290f88b31bd5d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3ea18ef2302340c684ea614cb1e0cd18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40a49f03ad6d4e57a132a59103c07782": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40d4ab0078304ecba831ab77bb9fb84b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4151f1f974de4d9caac54d86654207d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4251d033b4714dd690e7488f3f468ebb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be32d666dd0d4b4898cd26a6533f3fda", + "placeholder": "​", + "style": "IPY_MODEL_1155dbabf1db4bf48b567e75ee11e9fa", + "value": "100%" + } + }, + "433f368380d54ce6b98873956dbc91a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_967ef5059a3b4b808d0b1362b876aba8", + "placeholder": "​", + "style": "IPY_MODEL_1e06349ebb494303acf76d783fb9da67", + "value": " 2/2 [00:14<00:00, 6.56s/it]" + } + }, + "44d2e56aaabd4c019ef6ebad1572a7ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44f92ec072ce40e48afe6cd371719276": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "457ef66d94164abd8cb7afed6d61f01b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "467d2af922954c7c9743fa4b196d70a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "468332aff46e42e49d0e20858d0a2026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "46a76fbe44404ef99e2888cb8886dfca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "473a1c307fb0453684a33f1df2418ba9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfd6ce6e77c045acb94760a1f9324ec6", + "IPY_MODEL_99823a253a014addb9eca48c2afee8f8", + "IPY_MODEL_4a961c5e0aa3439281b152c4f5af59ae" + ], + "layout": "IPY_MODEL_15e5fb815c034f6faae4160a3a0c82b1" + } + }, + "474ff661f4a84c40bfe6f87c441e8308": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "47d54bd6957c43dfa689a179c5f3a29c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4829e9cb01a24b81948f58fa562803dd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48819bcad9fa44d89a4436fb21542d4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cbe8a1af6e90448d9ba465f919dbb8f5", + "IPY_MODEL_b989b18af609490d9f9e1b58961f711d", + "IPY_MODEL_28e45e0536d54afeb6ce0213a5902e51" + ], + "layout": "IPY_MODEL_66843e746cb84d2ab2045423d955b8d0" + } + }, + "48a471a2841e4a0fad4d8e3720bd3e5f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "498a59a1827d4f3c81705eb9df57d051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49ca84b82a6e40ac92d2efc1a5bbafc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c770e86620384eb698dc9d2b2454fbc6", + "placeholder": "​", + "style": "IPY_MODEL_2a086a827bff4b4cbb9db9f78b6da267", + "value": " 2/2 [00:02<00:00, 1.04s/it]" + } + }, + "49cdd1f1b5944379a5da8c67ef15dc21": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a961c5e0aa3439281b152c4f5af59ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95a7706b521d4dabbb4af9ac99e29619", + "placeholder": "​", + "style": "IPY_MODEL_8a609b1eb4c54c099171188cadf8682d", + "value": " 2/2 [00:05<00:00, 2.87s/it]" + } + }, + "4b118cfb1ca948d6a13844eee6771e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b246903555445ec94cb5c32d2124b3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c8af45c03994d5585834ba8e889c50b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cd3df9aac8041d4b2aeaced5e8c47f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_467d2af922954c7c9743fa4b196d70a3", + "placeholder": "​", + "style": "IPY_MODEL_9a17ae9b0ed74628a73d345592f3067b", + "value": "100%" + } + }, + "4d6fbf9dc9714ae28490df603971cb5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73480f5d144b4b71ba1d60b6090edf68", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9003370e7ac644aea13745f95cdbcc40", + "value": 2 + } + }, + "4e3bb73f18764060bcb6b7ee2f6fe485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8337fc4ac16946698e312ebcf3ac04ca", + "IPY_MODEL_4d6fbf9dc9714ae28490df603971cb5a", + "IPY_MODEL_c6cc64e709694bbd9d8b5cfe61e6f5a3" + ], + "layout": "IPY_MODEL_b3678115674744cda88561ea1c573378" + } + }, + "4fba6ac047ee4347b151cba97f6a297a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73382149cd2845209238fcf3c9788335", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_829f26b3ee6d48629887b83c0e60f983", + "value": 2 + } + }, + "500cf76011fe45a683e06f8419b0b63a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5282f70e18cc4df5ad2f549aabeb9e32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba00c6dd28df48c29cad735edab10e99", + "IPY_MODEL_176d4885237e4508a5e44884b79aaa26", + "IPY_MODEL_f0f95d15d24b4e7da7fe94979db2e489" + ], + "layout": "IPY_MODEL_e51b92f48e5348bfaf250d7c230117e4" + } + }, + "52ccf02fa430430d9ef9e05ff3b71d69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53246238e747442899aca531a8f27bd5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5346c4066dc847bb8682f0170ef2e4fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "53c7ac1ad2584257838784914b991e56": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "53ff29fa5d6f4725917315ba9975722c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54fec21ccc8a4ee7b26a2b6bf7f218f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b67cd5e62a01452391260c93b66d28d9", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ee3a4a6374e4af99e6f694eb9266e20", + "value": 2 + } + }, + "552c8fcbbb3d4a9e97c5b723c6a835cb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5534d740bd254cb9bcdcd546650a84da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59ed3adc94c64b078a5bc2df9042654f", + "placeholder": "​", + "style": "IPY_MODEL_44d2e56aaabd4c019ef6ebad1572a7ff", + "value": "100%" + } + }, + "556c5ed9f4bd4c72bdfc12b35af4749a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_90c52e72a18d4f7aa519a4b03a83db60", + "placeholder": "​", + "style": "IPY_MODEL_5c519d7149904a91badcc572aa3c1f91", + "value": "100%" + } + }, + "573b54fb59f146699436d2956c0bd63a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_376fe78cb3c540c4a220ed186188da31", + "placeholder": "​", + "style": "IPY_MODEL_52ccf02fa430430d9ef9e05ff3b71d69", + "value": "100%" + } + }, + "58a18087c376431c84adc35eeddc1411": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd1f6a2c515641ddac388ec112632c52", + "placeholder": "​", + "style": "IPY_MODEL_21146e302ea644779302ca9ceefdf876", + "value": " 2/2 [00:01<00:00, 1.37it/s]" + } + }, + "591597f211084bd0b2f44dc35edac400": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59d580cc363b4a999494937df36a1ff0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "59ed3adc94c64b078a5bc2df9042654f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b134799e124401998885dd3284d8234": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c08e1a9afc240debbaaf9536338948e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c299f5d2edd4d7182871aa103ad63ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c519d7149904a91badcc572aa3c1f91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c698883183c49afb09f2a54b5f1c717": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c8293d798dd4615b512899915435b44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5dcba6d4508e4b548d98b70d40d88c4d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "5fe315366e2d4065847ecb5620e5f6c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8e0e4cf35e4b4aa1bbf59a599150b11a", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c74eebbfa22442c7ba756708f5110a68", + "value": 2 + } + }, + "605413d957af4a7f8dc80c1fcc4bcef0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "607c82b6ff22460397704afb7302c4ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f576af6969ba4aa693a91b439453eaaa", + "IPY_MODEL_d77c5d6f82ad486e9f2dbe2570f9f570", + "IPY_MODEL_98694874a8e249d78cde7c8d811747a7" + ], + "layout": "IPY_MODEL_ebf1f8123c7f4e289a98dab51938446d" + } + }, + "60b4bc35757d40a5a116fa9df5190284": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "61595fdc15de46f59be378b329c23270": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "625f74db8a634c0b8cc312bc9d105f5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93ba0848c35b4259bff79e47a62f84b3", + "placeholder": "​", + "style": "IPY_MODEL_04cd85a43cc742cea18c680a330b3e5a", + "value": "100%" + } + }, + "6335e575f2624d6396d528e3cac6ae1f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "640afb7ef22a4a28a41dcbae77e864e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0913472ebf645a7b2c37e253c384a2e", + "placeholder": "​", + "style": "IPY_MODEL_2e200afece75499eb5ac8fccaaf2aa78", + "value": " 2/2 [00:03<00:00, 1.77s/it]" + } + }, + "642df90b5e1b41408a81074ea013358d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_edb5cbfd04ac4822ac2a5eccd3cf6666", + "IPY_MODEL_b0e5a3f34fa94ee382af945506190cc3", + "IPY_MODEL_38de3a672dbc4c5d9620a283e428bcb3" + ], + "layout": "IPY_MODEL_96968612455b4cfdbac09f761a8b760a" + } + }, + "645597e4eed64b5cab7e1d1675f9578e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61595fdc15de46f59be378b329c23270", + "placeholder": "​", + "style": "IPY_MODEL_c91812476862455c95871615bc50705d", + "value": "100%" + } + }, + "649d01972e304b338ccfc5c60da52a3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "64d77d0bec484bd09bdbd989f96f1106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edec5d52b907433fb6810c504abafc26", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_649d01972e304b338ccfc5c60da52a3b", + "value": 9 + } + }, + "66843e746cb84d2ab2045423d955b8d0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "66bf0d682fc34f4e98fa1211f66a0d86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_645597e4eed64b5cab7e1d1675f9578e", + "IPY_MODEL_c37d4d2cf2eb4452beac434bb6ce6068", + "IPY_MODEL_cf3abef3b7504796a90a236a3cd3fbfe" + ], + "layout": "IPY_MODEL_28102cc074114ea1acf2a3a3b89038f7" + } + }, + "679832d3146d4cfa80b12460d797960f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed9c9243a92545559bb5ef7f3f495368", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_eed1f8dac1974df8aa7a71420f5414bb", + "value": 2 + } + }, + "67ffbfc0c6024cae989b0841ff9124b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8dfd1a002e74b74b9272ba374ac4ca8", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_53ff29fa5d6f4725917315ba9975722c", + "value": 2 + } + }, + "6847d30161354479b72b3d5cb96a9583": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68a5a12069c145cfbac9b1c73573fd5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "68ceffbb96d9411c911a088047ef8210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68ef6fb4be4a454e83f66b020bb7391f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4151f1f974de4d9caac54d86654207d3", + "placeholder": "​", + "style": "IPY_MODEL_c3b7a39f314b40c18fb8ccdbfb8ca3b3", + "value": "100%" + } + }, + "6b4cf0fc34004c8c82398fb43ba2dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bef2d23dbc446caa12c04b567aea01c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2a70d7f926d4b05a3dd73dec602c4cd", + "placeholder": "​", + "style": "IPY_MODEL_ed287d7cdb8e4f09811dd5b8645a8d06", + "value": " 2/2 [00:03<00:00, 1.67s/it]" + } + }, + "7260dd9b253a4ad48a950f4bfdadf718": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "731431f8547b46f89b6d2e2830a4fdd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "73382149cd2845209238fcf3c9788335": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73480f5d144b4b71ba1d60b6090edf68": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", - "Copyright (c) 2023 HiGHS under MIT licence terms\n", - "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", - "Copyright (c) 2023 HiGHS under MIT licence terms\n" - ] + "77257b9d0f5043568a2bac799a6c819b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6335e575f2624d6396d528e3cac6ae1f", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e5dbd7c509cd44b59b432a0b14b890aa", + "value": 9 + } }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" + "77ec5f624fb8498b8548e8f088d937a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsnElEQVR4nOzdd3iT5frA8W/SvRctHXRCWzrYQxlCWTIEFbfyUxDcICKI6DmKW1CZCnIEFVBB9Kh4EBCZZQqyhS5K6QI6oHumbfL+/ggEKquFtknb+3NduWjyPnnfO6Ft7j7jflSKoigIIYQQQpgQtbEDEEIIIYT4J0lQhBBCCGFyJEERQgghhMmRBEUIIYQQJkcSFCGEEEKYHElQhBBCCGFyJEERQgghhMmRBEUIIYQQJsfc2AH8k06n4+zZszg4OKBSqYwdjhBCCCFqQFEUioqK8Pb2Rq2+9f4Pk0tQzp49i6+vr7HDEEIIIcRNSE9Pp1WrVrd8HpNLUBwcHAD9C3R0dDRyNEIIIYSoicLCQnx9fQ2f47fK5BKUi8M6jo6OkqAIIYQQjUxdTc+QSbJCCCGEMDmSoAghhBDC5EiCIoQQQgiTY3JzUGpCURSqqqrQarXGDkWIBmNmZoa5ubksvxdCNAuNLkGpqKggIyOD0tJSY4ciRIOztbXFy8sLS0tLY4cihBD1qlElKDqdjuTkZMzMzPD29sbS0lL+mhTNgqIoVFRUcO7cOZKTkwkODq6TQkhCCGGqGlWCUlFRgU6nw9fXF1tbW2OHI0SDsrGxwcLCgtTUVCoqKrC2tjZ2SEIIUW8a5Z9g8pejaK7ke18I0VzIbzshhBBCmBxJUIQQQghhciRBaeJSUlJQqVQcOXLkmm2io6NRqVTk5+ff1DWWLVuGs7Oz4f7bb79Nx44db+pcTY1KpeLXX381dhhCCNHoSIIi6NmzJxkZGTg5OdXJ+V555RW2bNlSJ+e6HvnwF0KIpksSlEassrKyTs5jaWmJp6dnnS3Ztre3x83N7ZrHKyoq6uQ6Qgghaken1bFu4VFOHsxGURRjh3NdjT5BURSF0ooqo9xq859bVFTEqFGjsLOzw8vLi7lz5xIVFcWkSZOAq/cGODs7s2zZMuDSUM0PP/xA3759sba2ZsWKFeh0Ot59911atWqFlZUVHTt2ZMOGDVdcPz4+np49e2JtbU1kZCTbt283HKvtEM+yZcvw8/PD1taWkSNHkpOTU+34P4d4xowZw7333ssHH3yAt7c3oaGhAKSnp/PQQw/h7OyMq6sr99xzDykpKdXO9fXXXxMREYGVlRVeXl5MmDABgICAAABGjhyJSqUy3L+WgoICzMzMOHDgAKCvqePq6srtt99uaPPdd9/h6+truH+j+Pbv38+gQYNo0aIFTk5O9O3bl0OHDl03jrfeegsvLy/+/vvv67YTQoj6ELs7g5RjOWz/PoHKctOuxt6o6qBcTVmllvDpfxjl2rHvDsbWsmZv4eTJk9m9ezdr1qyhZcuWTJ8+nUOHDtV6rsZrr73G7Nmz6dSpE9bW1syfP5/Zs2fzxRdf0KlTJ77++mvuvvtuYmJiCA4ONjxv6tSpzJs3j/DwcObMmcOIESNITk6+bk/H1ezbt49x48YxY8YM7r33XjZs2MBbb711w+dt2bIFR0dHNm3aBOh7fwYPHkyPHj3YuXMn5ubmvP/++wwZMoS///4bS0tLFi1axOTJk5k5cyZDhw6loKCA3bt3A/rkwMPDg6VLlzJkyBDMzMyue30nJyc6duxIdHQ0Xbt25dixY6hUKg4fPkxxcTH29vZs376dvn371ji+oqIiRo8ezWeffYaiKMyePZthw4aRmJiIg4NDtesrisLEiRNZu3YtO3fupE2bNrV634UQ4lZVlFexf20yAF2HBWBpY9opgGlH10QUFRWxfPlyVq5cyYABAwBYunQp3t7etT7XpEmTuO+++wz3Z82axbRp03jkkUcA+Oijj9i2bRvz5s1j4cKFhnYTJkzg/vvvB2DRokVs2LCBr776ildffbVW158/fz5DhgwxPC8kJIQ9e/ZctdfmcnZ2dnz55ZeGEu3fffcdOp2OL7/80jC0tHTpUpydnYmOjubOO+/k/fffZ8qUKbz00kuG83Tr1g0Ad3d3QN/L5OnpWaPYo6KiiI6O5pVXXiE6OppBgwYRHx/Prl27GDJkCNHR0YbX9cMPP9wwvv79+1c7/+LFi3F2dmb79u0MHz7c8HhVVRX/93//x+HDh9m1axc+Pj41ilcIIerS0S3plBZW4NjCmsg+pv97qNEnKDYWZsS+O9ho166JU6dOUVlZSffu3Q2POTk5GYY6aqNr166GrwsLCzl79iy9evWq1qZXr14cPXq02mM9evQwfG1ubk7Xrl2Ji4ur9fXj4uIYOXLkFee+UYLSrl27avvHHD16lJMnT17R01BeXk5SUhLZ2dmcPXvWkNDVhb59+/LVV1+h1WrZvn07d955J56enkRHR9O+fXtOnjxJVFRUjeIDyMrK4o033iA6Oprs7Gy0Wi2lpaWkpaVVe87LL7+MlZUVe/fupUWLFnX2eoQQoqZKCys4tFH/u+n2e1tjZm76MzwafYKiUqlqPMxiylQq1RVzWq42CdbOzq6hQqpT/4y7uLiYLl26sGLFiivauru710vF1D59+lBUVMShQ4fYsWMHH374IZ6ensycOZMOHTrg7e1tGBa7UXwAo0ePJicnh/nz5+Pv74+VlRU9evS4YhLwoEGD+P777/njjz8YNWpUnb8uIYS4kf1rk6nSaPHwd6BNFw9jh1Mjpp9CNQFBQUFYWFiwf/9+w2MFBQWcOHHCcN/d3Z2MjAzD/cTExBvu2Ozo6Ii3t7dhXsZFu3fvJjw8vNpje/fuNXxdVVXFwYMHCQsLq/VrCQsLY9++fdc8d0117tyZxMREPDw8aNOmTbWbk5MTDg4OBAQEXHe5soWFBVptzSd5OTs70759exYsWICFhQVt27alT58+HD58mLVr1xrmn9QkPtC/zxMnTmTYsGGGibznz5+/4rp33303K1eu5KmnnmLVqlW1eJeEEOLW5WWWELPrLAA972/TaDbZlQSlATg4ODB69GimTp3Ktm3biImJYdy4cajVasM3Sv/+/VmwYAGHDx/mwIEDPPfcc1hYWNzw3FOnTuWjjz7ihx9+ICEhgddee40jR45Um7cBsHDhQlavXk18fDzjx48nLy+PsWPH1vq1TJw4kQ0bNjBr1iwSExNZsGDBDYd3rmbUqFG0aNGCe+65h507d5KcnEx0dDQTJ07k9OnTgH410OzZs/n0009JTEzk0KFDfPbZZ4ZzXExgMjMzycvLq9F1o6KiWLFihSEZcXV1JSwszLA6qjbxBQcH8+233xIXF8e+ffsYNWoUNjY2V73uyJEj+fbbb3nyySf56aefav1+CSHEzdr76ykUnUJA+xb4hLgYO5wakwSlgcyZM4cePXowfPhwBg4cSK9evQgLCzPsSDt79mx8fX254447eOyxx3jllVdqtGPzxIkTmTx5MlOmTKFdu3Zs2LCBNWvWVFvBAzBz5kzDUMauXbtYs2bNTc2HuP3221myZAnz58+nQ4cObNy4kTfeeKPW57G1tWXHjh34+flx3333ERYWxrhx4ygvL8fR0RHQD6HMmzePzz//nIiICIYPH05iYqLhHLNnz2bTpk34+vrSqVOnGl23b9++aLVaw1wT0Cct/3ysJvF99dVX5OXl0blzZx5//HEmTpyIh8e1u04feOABli9fzuOPP84vv/xSi3dLCCFuTkZSAaeOnEOlgh73tjZ2OLWiUkysUkthYSFOTk4UFBQYPgguKi8vJzk5mcDAwEa/1XxJSQk+Pj7Mnj2bcePGGTsc0Ug0pZ8BIUT9UhSFXz45ROapAsJ7edHv8doP69fG9T6/b0bjn13aSBw+fJj4+Hi6d+9OQUEB7777LgD33HOPkSMTQgjRFCUfOU/mqQLMLdR0HxFk7HBqTYZ4GtCsWbPo0KEDAwcOpKSkhJ07d5rcstOhQ4dib29/1duHH35o7PCuKyIi4pqxX201jhBCNFVarY4/f9WXROg4yA87ZysjR1R70oPSQDp16sTBgweNHcYNffnll5SVlV31mKurawNHUzvr16+/5v5ELVu2bOBohBDCeOJ2nSU/qxQbBws6DfIzdjg3RRIUUU1jrnLq7+9v7BCEEMLoKsqr+OtCSftudwWafEn7a5EhHiGEEKIJObwpjbKiSpw8bAi/o/ZbqpgKSVCEEEKIJqKkQMORzekA3H5Pa8zMGu/HfK0j37FjByNGjMDb2xuVSsWvv/5qOFZZWcm0adNo164ddnZ2eHt788QTT3D27Nm6jFkIIYQQV3GxpH3LQEdad3Y3dji3pNYJSklJCR06dKi2U+5FpaWlHDp0iDfffJNDhw7xyy+/kJCQwN13310nwQohhBDi6nIzSojdrd8yped9jaek/bXUeubM0KFDGTp06FWPOTk5sWnTpmqPLViwgO7du5OWloafX+OcSSyEEEKYur2/JqHoFAI7tMA72NnY4dyyeh+cKigoQKVS4ezsfNXjGo2GwsLCajdRd1JSUlCpVBw5cuSabaKjo1GpVOTn59/UNZYtW1bt//ftt9+mY8eON3UuIYQQtXc2MZ/ko+dRqVX0GNm4StpfS70mKOXl5UybNo1HH330mmVvZ8yYgZOTk+Hm6+tbnyGJq+jZsycZGRmGXXpv1SuvvHLdXYjryj/nQN2KfyZZQgjRWCiKwp5fTgIQ3ssLF087I0dUN+otQamsrOShhx5CURQWLVp0zXavv/46BQUFhlt6enp9hdTkXKsoWW1ZWlri6elZZ+OV9vb2uLm5XfN4RUVFnVzHGBpz7EKIpunU4XNkJRdibmVGt+GBxg6nztRLgnIxOUlNTWXTpk3X3TTIysoKR0fHardaURSoKDHOrRb7LBYVFTFq1Cjs7Ozw8vJi7ty5REVFMWnSJODqvQHOzs4sW7YMuDRU88MPP9C3b1+sra1ZsWIFOp2Od999l1atWmFlZUXHjh3ZsGHDFdePj4+nZ8+eWFtbExkZyfbt2w3HajvEs2zZMvz8/LC1tWXkyJHk5ORUO/7PIZ4xY8Zw77338sEHH+Dt7U1oaCgA6enpPPTQQzg7O+Pq6so999xDSkpKtXN9/fXXREREYGVlhZeXFxMmTAAgICAAgJEjR6JSqQz3r+fo0aP069cPBwcHHB0d6dKlCwcOHCA6Oponn3zSMBypUql4++23Ddd57733eOKJJ3B0dOSZZ54B4OeffzbEFRAQwOzZs6tdKyAggA8//JCxY8fi4OCAn58fixcvrtZmz549dOzYEWtra7p27cqvv/56w+E4IYS4nFar48/VF0raD/TFzqnxlbS/ljovL3cxOUlMTGTbtm3X/Uu6bi5YCh8aqRDNv86CZc260iZPnszu3btZs2YNLVu2ZPr06Rw6dKjWczVee+01Zs+eTadOnbC2tmb+/PnMnj2bL774gk6dOvH1119z9913ExMTQ3BwsOF5U6dOZd68eYSHhzNnzhxGjBhBcnJyrf9/9u3bx7hx45gxYwb33nsvGzZs4K233rrh87Zs2YKjo6NhEnVlZSWDBw+mR48e7Ny5E3Nzc95//32GDBnC33//jaWlJYsWLWLy5MnMnDmToUOHUlBQwO7duwHYv38/Hh4eLF26lCFDhmBmZnbDGEaNGkWnTp1YtGgRZmZmHDlyBAsLC3r27Mm8efOYPn06CQkJgL4X6KJZs2Yxffp0w+s8ePAgDz30EG+//TYPP/wwe/bs4YUXXsDNzY0xY8YYnjd79mzee+89/vWvf/HTTz/x/PPP07dvX0JDQyksLGTEiBEMGzaMlStXkpqaakhWhRCipmJ3nqXgXFmjLml/LbVOUIqLizl58qThfnJyMkeOHMHV1RUvLy8eeOABDh06xNq1a9FqtWRmZgL6fVwsLS3rLvJGpKioiOXLl7Ny5UoGDBgAwNKlS/H2rn1iNWnSJO677z7D/VmzZjFt2jQeeeQRAD766CO2bdvGvHnzqi0FnzBhAvfffz8AixYtYsOGDXz11Ve8+uqrtbr+/PnzGTJkiOF5ISEh7Nmz56q9Npezs7Pjyy+/NHwPfPfdd+h0Or788kvD0NLSpUtxdnYmOjqaO++8k/fff58pU6bw0ksvGc7TrVs3ANzd9ev7nZ2d8fT0rFHsaWlpTJ06lbZt2wJUS+CcnJxQqVRXPVf//v2ZMmWK4f6oUaMYMGAAb775puE9iI2N5ZNPPqmWoAwbNowXXngBgGnTpjF37ly2bdtGaGgoK1euRKVSsWTJEqytrQkPD+fMmTM8/fTTNXotQghRUVbF/nX6kvbdhwdiad04S9pfS61fzYEDB+jXr5/h/uTJkwEYPXo0b7/9NmvWrAG4omdg27ZtREVF3Xyk12Jhq+/JMAYL2xo1O3XqFJWVlXTv3t3wmJOTk2Gooza6du1q+LqwsJCzZ8/Sq1evam169erF0aNHqz3Wo0cPw9fm5uZ07dqVuLi4Wl8/Li6OkSNHXnHuGyUo7dq1q5agHj16lJMnT+Lg4FCtXXl5OUlJSWRnZ3P27FlDQlcXJk+ezFNPPcW3337LwIEDefDBB2nd+saz3S9/z0H/Htxzzz3VHuvVqxfz5s1Dq9UaenPat29vOH4x+cnOzgYgISGB9u3bY21tbWhz+feHEELcyMWS9s4tbQnr3XhL2l9LrROUqKgolOvMvbjesXqhUtV4mMWUqVSqK967q02CtbNrnK/1n3EXFxfTpUsXVqxYcUVbd3d31Oq6nx719ttv89hjj7Fu3Tp+//133nrrLVatWnVFwvVPN/ueW1hYVLuvUqnQ6XQ3dS4hhLhcSb6GI5vSAOhxb+MuaX8tTe8VmaCgoCAsLCzYv3+/4bGCggJOnDhhuO/u7k5GRobhfmJiIqWlpdc9r6OjI97e3oZ5GRft3r2b8PDwao/t3bvX8HVVVRUHDx4kLCys1q8lLCyMffv2XfPcNdW5c2cSExPx8PCgTZs21W5OTk44ODgQEBBw3eXKFhYWaLXaWl03JCSEl19+mY0bN3LfffexdOlSQL+SqabnCgsLu+p7HhISUqO5MAChoaEcO3YMjUZjeOzy7w8hhLiev9YmU1WpwzPIicCOLYwdTr2QBKUBODg4MHr0aKZOncq2bduIiYlh3LhxqNVqw/yL/v37s2DBAg4fPsyBAwd47rnnrvgL/GqmTp3KRx99xA8//EBCQgKvvfYaR44cqTZvA2DhwoWsXr2a+Ph4xo8fT15eHmPHjq31a5k4cSIbNmxg1qxZJCYmsmDBghsO71zNqFGjaNGiBffccw87d+4kOTmZ6OhoJk6cyOnTpwF9j8fs2bP59NNPSUxM5NChQ3z22WeGc1xMYDIzM8nLy7vu9crKypgwYQLR0dGkpqaye/du9u/fb0jSAgICKC4uZsuWLZw/f/66yeGUKVPYsmUL7733HidOnGD58uUsWLCAV155pcav/7HHHkOn0/HMM88QFxfHH3/8waxZswAafXlqIUT9yj1bQtxu/dSGnvc3/pL21yIJSgOZM2cOPXr0YPjw4QwcOJBevXoRFhZmmIMwe/ZsfH19ueOOO3jsscd45ZVXsLW98RyXiRMnMnnyZKZMmUK7du3YsGEDa9asqTYBFGDmzJnMnDmTDh06sGvXLtasWUOLFrXPum+//XaWLFnC/Pnz6dChAxs3buSNN96o9XlsbW3ZsWMHfn5+3HfffYSFhTFu3DjKy8sNS81Hjx7NvHnz+Pzzz4mIiGD48OEkJiYazjF79mw2bdqEr68vnTp1uu71zMzMyMnJ4YknniAkJISHHnqIoUOH8s477wD6YnXPPfccDz/8MO7u7nz88cfXPFfnzp358ccfWbVqFZGRkUyfPp1333232gTZG3F0dOS3337jyJEjdOzYkX//+99Mnz4doNq8FCGE+Kc/f01CUSCooztereumwKYpUikNPmnk+goLC3FycqKgoOCKmijl5eUkJycTGBjY6H+Jl5SU4OPjw+zZsxk3bpyxwxEmYMWKFYZ6LDY2Nldt05R+BoQQtXfmRB6/zjmMSq3i0endTapq7PU+v29G01qTZMIOHz5MfHw83bt3p6CggHfffRfgitUgovn45ptvCAoKwsfHh6NHjzJt2jQeeuihayYnQojmTVEU9vysL/MR0dvbpJKT+iBDPA1o1qxZdOjQgYEDB1JSUsLOnTtvapilPg0dOhR7e/ur3j788ENjh3ddERER14z9aquFjC0zM5P/+7//IywsjJdffpkHH3zwimqzQghx0cmD2WSnFjW5kvbXIkM8opozZ85QVlZ21WOurq64uro2cEQ1l5qaes39iVq2bHlFzZXGSH4GhGietFU6Vr6zj8JzZXQfEUi3u0wvQZEhHlGvfHx8jB3CTfP39zd2CEIIUS9idp6h8FwZNo6WdBjga+xwGoQM8QghhBAmTFNWxf51KUDTLGl/LZKgCCGEECbs8B+plBfrS9qH9/IydjgNRhIUIYQQwkQV55VzZEs6AD1GtkbdBEvaX0vzeaVCCCFEI/PXb8loK3V4tXEisINprfqsb5KgCCGEECYo50wx8X/q92jreV/TLWl/LZKgGFlKSgoqlYojR44YO5Q60dRejxBCGMvFkvatO7vjGdR0S9pfiyQoQgghhIk5nZBH6rEc1GoVt9/T2tjhGIUkKEIIIYQJUXQKf/5yoaT9Hd44t7zxxrFNUaNPUBRFobSy1Ci32hTh1el0fPzxx7Rp0wYrKyv8/Pz44IMPDMfj4+Pp2bMn1tbWREZGsn379mrPj4mJYfjw4Tg6OuLg4MAdd9xBUlLSda95/Phx1Go1586dAyA3Nxe1Ws0jjzxiaPP+++/Tu3fvas+5WO6+ZcuWPP7445w/f95wfMOGDfTu3RtnZ2fc3NwYPnz4dePQarWMHTuWtm3bkpaWVrM3SwghmrGLJe0trMzoaoIVYxtKo6/2UlZVxm0rbzPKtfc9tg9bi5pltq+//jpLlixh7ty59O7dm4yMDOLj4w3Hp06dyrx58wgPD2fOnDmMGDGC5ORk3NzcOHPmDH369CEqKoqtW7fi6OjI7t27qaqquu41IyIicHNzY/v27TzwwAPs3LnTcP+i7du3ExUVBUB+fj79+/fnqaeeYu7cuZSVlRk2sNu6dSug34V58uTJtG/fnuLiYqZPn87IkSM5cuQIanX1fFej0fDoo4+SkpLCzp07cXd3r9F7JYQQzZW2Usfe/+n/6Os82A9bR0sjR2Q8jT5BaQyKioqYP38+CxYsYPTo0QC0bt2a3r17k5KSAsCECRO4//77AVi0aBEbNmzgq6++4tVXX2XhwoU4OTmxatUqLCwsAAgJCbnhdVUqFX369CE6OpoHHniA6OhonnzySb788kvi4+Np3bo1e/bs4dVXXwVgwYIFdOrUqdqmgF9//TW+vr6cOHGCkJAQQ4yXH3d3dyc2NpbIyEjD48XFxdx1111oNBq2bduGk1Pzm+AlhBC1dXzHGQrPl2PrZEmHAX7GDseoGn2CYmNuw77H9hnt2jURFxeHRqNhwIAB12zTo0cPw9fm5uZ07dqVuLg4AI4cOcIdd9xhSE5qo2/fvoYdcrdv386HH37IiRMniI6OJjc3l8rKSnr16gXA0aNH2bZtG/b29lecJykpiZCQEBITE5k+fTr79u3j/Pnz6HQ6ANLS0qolKI8++iitWrVi69at2NjU7H0SQojmTFNayYH1KQDcNiIICysz4wZkZI0+QVGpVDUeZjGWW/2AvpXnR0VFMWnSJBITE4mNjaV3797Ex8cTHR1NXl4eXbt2xdZW//4VFxczYsQIPvrooyvO4+WlL688YsQI/P39WbJkCd7e3uh0OiIjI6moqKjWftiwYXz33Xf8+eef9O/f/6bjF0KI5uLQH2mUl1Ti4mlL2x6exg7H6Br9JNnGIDg4GBsbG7Zs2XLNNnv37jV8XVVVxcGDBwkLCwOgffv27Ny5k8rKylpfu127dri4uPD+++/TsWNH7O3tiYqKYvv27URHRxvmnwB07tyZmJgYAgICaNOmTbWbnZ0dOTk5JCQk8MYbbzBgwADCwsLIy8u76nWff/55Zs6cyd13333FhF8hhBDVFeWWc3TrhZL297VpViXtr0XegQZgbW3NtGnTePXVV/nmm29ISkpi7969fPXVV4Y2CxcuZPXq1cTHxzN+/Hjy8vIYO3YsoJ+fUlhYyCOPPMKBAwdITEzk22+/JSEh4YbXvjgPZcWKFYZkpH379mg0GrZs2ULfvn0NbcePH09ubi6PPvoo+/fvJykpiT/++IMnn3wSrVaLi4sLbm5uLF68mJMnT7J161YmT558zWu/+OKLvP/++wwfPpxdu3bd5LsnhBBN31+/nUJbqcM72JmAdm7GDsckSILSQN58802mTJnC9OnTCQsL4+GHHyY7O9twfObMmcycOZMOHTqwa9cu1qxZQ4sW+n0X3Nzc2Lp1K8XFxfTt25cuXbqwZMmSGs9J6du3L1qt1pCgqNVq+vTpg0qlMsw/AfD29mb37t1otVruvPNO2rVrx6RJk3B2dkatVqNWq1m1ahUHDx4kMjKSl19+mU8++eS61540aRLvvPMOw4YNY8+ePbV814QQouk7f7qY+L2ZQPMsaX8tKqU2xTwaQGFhIU5OThQUFODo6FjtWHl5OcnJyQQGBmJtbW2kCIUwHvkZEKLp+e2zI6TF5NKmiweDn4688RNM1PU+v2+G9KAIIYQQRpIen0taTC5qMxW33xtk7HBMiiQojZy9vf01bzt37jR2eEIIIa5BX9JeX5Qtso8PTu6mvSK1oTX6ZcbN3fV2Dfbx8Wm4QIQQQtRK4oEszqUVYWFtRtdhAcYOx+RIgtLItWnTxtghCCGEqCVtpY69v54CoPNgf2wcmm9J+2uRIR4hhBCigR3bfpqi3HLsnCzpMMDX2OGYJElQhBBCiAZUXnKppH33u4OwsGzeJe2vRRIUIYQQogEd+iMVTWkVrt52tO3hZexwTJYkKEIIIUQDKcot5++tpwHoMbI1arUUZbsWSVCEEEKIBrJvzSm0VTp8Qpzxj5SS9tcjCYqRpaSkoFKprrtcWAghRON3Lr2IhH36kvY9pKT9DUmC0oy9/fbbdOzY0dhhCCFEs/Dn6iRQILirBy0Dbr0UfFMnCYq4ocrKSmOHIIQQjVp6bC7psfqS9rfd09rY4TQKkqA0EJ1Ox8cff0ybNm2wsrLCz8+PDz74wHA8Pj6enj17Ym1tTWRkJNu3b6/2/JiYGIYPH46joyMODg7ccccdJCUl3fC60dHRdO/eHTs7O5ydnenVqxepqaksW7aMd955h6NHj6JSqVCpVCxbtgwAlUrFokWLuPvuu7GzszPEuWjRIlq3bo2lpSWhoaF8++231a6lUqn48ssvGTlyJLa2tgQHB7NmzZpqbdasWUNwcDDW1tb069eP5cuXo1KpyM/Pv4l3VQghTJ+iU9iz+iQA7fq2wsndxsgRNQ6NvpKsoigoZWVGubbKxqbGY4ivv/46S5YsYe7cufTu3ZuMjAzi4+MNx6dOncq8efMIDw9nzpw5jBgxguTkZNzc3Dhz5gx9+vQhKiqKrVu34ujoyO7du6mqqrruNauqqrj33nt5+umn+f7776moqOCvv/5CpVLx8MMPc/z4cTZs2MDmzZsBcHJyMjz37bffZubMmcybNw9zc3NWr17NSy+9xLx58xg4cCBr167lySefpFWrVvTr18/wvHfeeYePP/6YTz75hM8++4xRo0aRmpqKq6srycnJPPDAA7z00ks89dRTHD58mFdeeaU2b7kQQjQ6J/ZncT69GEsbcylpXwuNP0EpKyOhcxejXDv00EFUtjfe3KmoqIj58+ezYMECRo8eDUDr1q3p3bs3KSkpAEyYMIH7778f0PdUbNiwga+++opXX32VhQsX4uTkxKpVq7CwsAAgJCTkhtctLCykoKCA4cOH07q1vksxLCzMcNze3h5zc3M8PT2veO5jjz3Gk08+abj/6KOPMmbMGF544QUAJk+ezN69e5k1a1a1BGXMmDE8+uijAHz44Yd8+umn/PXXXwwZMoQvvviC0NBQPvnkE/37FxrK8ePHq/UkCSFEU1JVqWXv//S93V2G+GNtb2HkiBoPGeJpAHFxcWg0GgYMGHDNNj169DB8bW5uTteuXYmLiwP0GwLecccdhuSkplxdXRkzZgyDBw9mxIgRzJ8/n4yMjBo9t2vXrle8hl69elV7rFevXoYYL2rfvr3hazs7OxwdHcnOzgYgISGBbt26VWvfvXv3Gr8eIYRobI5tO0NxrgZ7Fyva92tl7HAalUbfg6KysSH00EGjXbsmbGrYrj6ev3TpUiZOnMiGDRv44YcfeOONN9i0aRO33377dZ9nZ2d3U9f7ZxKlUqnQ6XQ3dS4hhGjMyksqObghBYDuI4Iwl5L2tVLrHpQdO3YwYsQIvL29UalU/Prrr9WOK4rC9OnT8fLywsbGhoEDB5KYmFhX8V5BpVKhtrU1yq2m80+Cg4OxsbFhy5Yt12yzd+9ew9dVVVUcPHjQMBzTvn17du7cedOraTp16sTrr7/Onj17iIyMZOXKlQBYWlqi1WprdI6wsDB2795d7bHdu3cTHh5e4zhCQ0M5cOBAtcf2799f4+cLIURjcvD3FDSlVbj52BF6+5VD6eL6ap2glJSU0KFDBxYuXHjV4x9//DGffvop//nPf9i3bx92dnYMHjyY8vLyWw62sbK2tmbatGm8+uqrfPPNNyQlJbF3716++uorQ5uFCxeyevVq4uPjGT9+PHl5eYwdOxbQz08pLCzkkUce4cCBAyQmJvLtt9+SkJBw3esmJyfz+uuv8+eff5KamsrGjRtJTEw0JD4BAQEkJydz5MgRzp8/j0ajuea5pk6dyrJly1i0aBGJiYnMmTOHX375pVaTXJ999lni4+OZNm0aJ06c4Mcff6y2ckgIIZqKwvNl/B19oaT9fW2kpP3NUG4BoKxevdpwX6fTKZ6ensonn3xieCw/P1+xsrJSvv/++xqds6CgQAGUgoKCK46VlZUpsbGxSllZ2a2EbRRarVZ5//33FX9/f8XCwkLx8/NTPvzwQyU5OVkBlJUrVyrdu3dXLC0tlfDwcGXr1q3Vnn/06FHlzjvvVGxtbRUHBwfljjvuUJKSkq57zczMTOXee+9VvLy8FEtLS8Xf31+ZPn26otVqFUVRlPLycuX+++9XnJ2dFUBZunSpoihX/r9e9PnnnytBQUGKhYWFEhISonzzzTfVjl/teU5OTobzKoqi/O9//1PatGmjWFlZKVFRUcqiRYsUoFH+nxpDY/4ZEKI52fj1cWXBs1uUX+ceUnQ6nbHDaRDX+/y+GSpFUZSbTW5UKhWrV6/m3nvvBeDUqVO0bt2aw4cPV6tQ2rdvXzp27Mj8+fOvOIdGo6n2l3thYSG+vr4UFBTg6Fi90l55eTnJyckEBgZibW19s2ELE/LBBx/wn//8h/T0dGOH0ijIz4AQpu9cWhE/fqgfvn7oX91w93MwckQNo7CwECcnp6t+ft+MOl3Fk5mp32OgZcuW1R5v2bKl4dg/zZgxAycnJ8PN19e3LkMSJubzzz9n//79nDp1im+//ZZPPvnEsPRaCCEaO0VR2POLvihbcLeWzSY5qQ9GX2b8+uuvU1BQYLjJX9K1Y29vf83bzp07jR3eFRITE7nnnnsIDw/nvffeY8qUKbz99tvGDksIIepEemwup+PzUJuruP2eIGOH06jV6TLjiwW/srKy8PLyMjyelZV1zU3prKyssLKyqsswmpXr7YLs4+PTcIHU0Ny5c5k7d66xwxBCiDqn0yns+UVflK1dVCscW0hJ+1tRpwlKYGAgnp6ebNmyxZCQFBYWsm/fPp5//vm6vJS4oE2bNsYOQQghBHDir0xyzhRjZWtO16EBxg6n0at1glJcXMzJkycN9y8uU3V1dcXPz49Jkybx/vvvExwcTGBgIG+++Sbe3t6GibRCCCFEU1NVoWXf/04B0HmIP9Z2UtL+VtU6QTlw4EC1vVcmT54MwOjRo1m2bBmvvvoqJSUlPPPMM+Tn59O7d282bNggKw6EEEI0WX9vO01xngZ7VylpX1dqnaBERUVxvZXJKpWKd999l3ffffeWAhNCCCEag/LiSg5uSAXg9ruDMLeQkvZ1weireIQQQojG7MDvKVSUVeHWyp6Q7lLSvq5IgiKEEELcpMLzZRy7UNK+532tUUlJ+zojCUozEh0djUqlIj8//4Ztly1bhrOz83XbjBkzptaTnwMCApg3b16tnmOq3n777WsunxdCNA97/3cKnVbBN8wFv3A3Y4fTpNTpMmNh2nr27ElGRgZOTk51cr758+dfdz6SEEI0ZdmphSTuzwIV9BgpJR/qmiQozYilpaWhmF5dqKtERwghGpvLS9qHdveUkvb1QIZ4GtCGDRvo3bs3zs7OuLm5MXz4cJKS9FUHU1JSUKlUrFq1ip49e2JtbU1kZCTbt283PP/iEM26deto37491tbW3H777Rw/ftzQJjU1lREjRuDi4oKdnR0RERGsX7++2vNrMsRz0R9//EFYWBj29vYMGTKEjIwMw7F/DvEUFRUxatQo7Ozs8PLyYu7cuURFRTFp0qRq5ywtLWXs2LE4ODjg5+fH4sWLDccqKiqYMGECXl5eWFtb4+/vz4wZM24Y5yuvvMLw4cMN9+fNm4dKpWLDhg2Gx9q0acOXX35puP/ll18SFhaGtbU1bdu25fPPP692zmnTphESEoKtrS1BQUG8+eabVFZWXjOGpKQkgoKCmDBhgvQsCdHEpcXkciYhHzNzNd3vDjR2OE1So09QFEWhUqM1yq22H0IlJSVMnjyZAwcOsGXLFtRqNSNHjkSn0xnaTJ06lSlTpnD48GF69OjBiBEjyMnJqXaeqVOnMnv2bPbv34+7uzsjRowwfHCOHz8ejUbDjh07OHbsGB999BH29vY39d6WlpYya9Ysvv32W3bs2EFaWhqvvPLKNdtPnjyZ3bt3s2bNGjZt2sTOnTs5dOjQFe1mz55N165dOXz4MC+88ALPP/88CQkJAHz66aesWbOGH3/8kYSEBFasWEFAQMANY+3bty+7du1Cq9UCsH37dlq0aEF0dDQAZ86cISkpiaioKABWrFjB9OnT+eCDD4iLi+PDDz/kzTffZPny5YZzOjg4sGzZMmJjY5k/fz5Lliy5Zpn+v//+m969e/PYY4+xYMECVCqZKCdEU6Uvaa/vPWnXrxWOblLSvj40+iGeqgodi1/afuOG9eCZ+X2xsKr5evf777+/2v2vv/4ad3d3YmNjDUnEhAkTDO0WLVrEhg0b+Oqrr3j11VcNz3vrrbcYNGgQAMuXL6dVq1asXr2ahx56iLS0NO6//37atWsHQFDQzW9WVVlZyX/+8x9at25tiO1a9W2KiopYvnw5K1euZMCAAQAsXboUb2/vK9oOGzaMF154AdD3UsydO5dt27YRGhpKWloawcHB9O7dG5VKhb+/f41iveOOOygqKuLw4cN06dKFHTt2MHXqVH799VdA33vk4+Nj2BrgrbfeYvbs2dx3332AfpuG2NhYvvjiC8Puym+88Ybh/AEBAbzyyiusWrWq2v8FwJ49exg+fDj//ve/mTJlSo3iFUI0Xgl7M8g9W4KVrTldhtTsd5SovUbfg9KYJCYm8uijjxIUFISjo6OhZyAtLc3QpkePHoavzc3N6dq1K3FxcdXOc3kbV1dXQkNDDW0mTpzI+++/T69evXjrrbf4+++/bzpeW1tbQ3IC4OXlRXZ29lXbnjp1isrKSrp37254zMnJidDQ0Cvatm/f3vC1SqXC09PTcN4xY8Zw5MgRQkNDmThxIhs3bqxRrM7OznTo0IHo6GiOHTuGpaUlzzzzDIcPH6a4uJjt27fTt29fQN+TlZSUxLhx46rt/vz+++8bhtwAfvjhB3r16oWnpyf29va88cYb1f6vQP9/N2jQIKZPny7JiRDNQGWFln1rkgHoMjRAStrXo0bfg2JuqeaZ+X2Ndu3aGDFiBP7+/ixZsgRvb290Oh2RkZFUVFTUWUxPPfUUgwcPZt26dWzcuJEZM2Ywe/ZsXnzxxVqfy8Ki+g+eSqWqk7kVVzvvxWGuzp07k5yczO+//87mzZt56KGHGDhwID/99NMNzxsVFUV0dDRWVlb07dsXV1dXwsLC2LVrF9u3bzckEMXFxQAsWbKE2267rdo5zMz0PWJ//vkno0aN4p133mHw4ME4OTmxatUqZs+eXa29u7s73t7efP/994wdOxZHR8ebe1OEEI3C31vTKcnX4OBqTbso09sxvilp9D0oKpUKCyszo9xqM88gJyeHhIQE3njjDQYMGEBYWBh5eXlXtNu7d6/h66qqKg4ePEhYWNg12+Tl5XHixIlqbXx9fXnuuef45ZdfmDJlCkuWLKnNW3pTgoKCsLCwYP/+/YbHCgoKOHHiRK3P5ejoyMMPP8ySJUv44Ycf+Pnnn8nNzb3h8y7OQ9myZYthrklUVBTff/89J06cMDzWsmVLvL29OXXqFG3atKl2CwzUT3bbs2cP/v7+/Pvf/6Zr164EBweTmpp6xTVtbGxYu3Yt1tbWDB48mKKiolq/XiFE41BWXMGhCyXtb7tHStrXt0bfg9JYuLi44ObmxuLFi/Hy8iItLY3XXnvtinYLFy4kODiYsLAw5s6dS15eHmPHjq3W5t1338XNzY2WLVvy73//mxYtWhhW00yaNImhQ4cSEhJCXl4e27ZtuyLBqQ8ODg6MHj2aqVOn4urqioeHB2+99RZqtbpWidycOXPw8vKiU6dOqNVq/vvf/+Lp6XnDonEAffr0oaioiLVr1zJz5kxAn6A88MADeHl5ERISYmj7zjvvMHHiRJycnBgyZAgajYYDBw6Ql5fH5MmTCQ4OJi0tjVWrVtGtWzfWrVvH6tWrr3pdOzs71q1bx9ChQxk6dCgbNmy46YnJQgjTdWB9ChXlWlr42hPSraWxw2nyGn0PSmOhVqtZtWoVBw8eJDIykpdffplPPvnkinYzZ85k5syZdOjQgV27drFmzRpatGhxRZuXXnqJLl26kJmZyW+//YalpSUAWq2W8ePHExYWxpAhQwgJCbli+Wx9mTNnDj169GD48OEMHDiQXr16GZbx1pSDgwMff/wxXbt2pVu3bqSkpLB+/XrU6ht/q7q4uNCuXTvc3d1p27YtoE9adDqdYf7JRU899RRffvklS5cupV27dvTt25dly5YZelDuvvtuXn75ZSZMmEDHjh3Zs2cPb7755jWvbW9vz++//46iKNx1112UlJTU+DULIUxfwblSjm8/A0DP+9tISfsGoFJMrGBDYWEhTk5OFBQUXDGeX15eTnJyMoGBgbX60GsMUlJSCAwM5PDhw9csnx4dHU2/fv3Iy8urUY+CsZWUlODj48Ps2bMZN26cscNpEpryz4AQpuyPL49z8kA2fuGujJjY0djhmKTrfX7fDBniEXXm8OHDxMfH0717dwoKCgxLku+55x4jRyaEEDcvK6WQkwey9SXt72t94yeIOiFDPM3U0KFDqy2xvfz24Ycf3vR5Z82aRYcOHRg4cCAlJSXs3LnziiGqm7FixYprxhsREXHL5xdCiKtRFIU9P+uLsrW9zZMWraSkfUORHhQTERAQcMMlvFFRUXVWQv3LL7+krKzsqsdcXV1v6pydOnXi4MGDtxLWNd19991XLAm+6J/LloUQoq6kHs/hbOLFkvY3X/hS1J4kKM2Uj0/jWr/v4OCAg4P85SKEaDg6rY49v+iLN3YY0AoHV5n31ZBkiEcIIYS4ivi9meRllGBlZ07nwVLSvqFJgiKEEEL8Q6VGy19rTgHQdWgAVrYylNzQJEERQggh/uHolnRKCipwcLOmXd9Wxg6nWZIERQghhLhMWVEFhzbqS9rffm8QZhbyUWkM8q4LIYQQl9m/PoXKci3ufg4Ed5GS9sYiCUozEh0djUqlIj8//4Ztly1bdsNqtWPGjDHsAVRTAQEBzJs3r1bPEUKIhpKfVUqMlLQ3CbLMuBnp2bMnGRkZODk51cn55s+fX2d1WepbQEAAkyZNYtKkScYORQhhghRFIWFvJrt/PolOp+Af6UarUBdjh9WsSYLSjFhaWuLp6Vln56urRMdUaLVaVCpVjTYmFEI0HbkZJWxfmcDZxHwAXL3t6PNIyPWfJOqd/CZuQBs2bKB37944Ozvj5ubG8OHDSUrSFwFKSUlBpVKxatUqevbsibW1NZGRkWzfvt3w/ItDNOvWraN9+/ZYW1tz++23c/z4cUOb1NRURowYgYuLC3Z2dkRERLB+/fpqz6/JEM9Ff/zxB2FhYdjb2zNkyBAyMjIMx/45xFNUVMSoUaOws7PDy8uLuXPnEhUVdUWvRWlpKWPHjsXBwQE/Pz8WL15sOFZRUcGECRPw8vLC2toaf39/ZsyYccM4FUXh7bffxs/PDysrK7y9vZk4cSKgr8CbmprKyy+/jEqlQqXSd9leHMZas2YN4eHhWFlZkZaWRl5eHk888QQuLi7Y2toydOhQEhMTDde6+LzrvTdVVVVMnDjR8H89bdo0Ro8eXeshMSFE/ams0LL31yR+eP8vzibmY26ppsd9rXno391wbGFj7PCavUafoCiKQmV5uVFutR3eKCkpYfLkyRw4cIAtW7agVqsZOXIkOp3O0Gbq1KlMmTKFw4cP06NHD0aMGEFOTk6180ydOpXZs2ezf/9+3N3dGTFiBJWVlQCMHz8ejUbDjh07OHbsGB999BH29vY39d6WlpYya9Ysvv32W3bs2EFaWhqvvPLKNdtPnjyZ3bt3s2bNGjZt2sTOnTs5dOjQFe1mz55N165dOXz4MC+88ALPP/88CQkJAHz66aesWbOGH3/8kYSEBFasWEFAQMANY/3555+ZO3cuX3zxBYmJifz666+0a9cOgF9++YVWrVrx7rvvkpGRUS2RKC0t5aOPPuLLL78kJiYGDw8PxowZw4EDB1izZg1//vkniqIwbNgww3tck/fmo48+YsWKFSxdupTdu3dTWFjIr7/+esPXIYRoGKnHc1j17j4ObkhFp1UIaN+CR9+6jc53+mNm1ug/GpuERj/EU6XR8OnoB4xy7YnLf8KiFlve33///dXuf/3117i7uxMbG2tIIiZMmGBot2jRIjZs2MBXX33Fq6++anjeW2+9xaBBgwBYvnw5rVq1YvXq1Tz00EOkpaVx//33Gz6cg4Jufu+IyspK/vOf/9C6dWtDbBd3KP6noqIili9fzsqVKxkwYAAAS5cuxdvb+4q2w4YN44UXXgBg2rRpzJ07l23bthEaGkpaWhrBwcH07t0blUqFv3/NqjempaXh6enJwIEDsbCwwM/Pj+7duwP6vYXMzMxwcHC4YoirsrKSzz//nA4dOgCQmJjImjVr2L17Nz179gT0GxX6+vry66+/8uCDD9bovfnss894/fXXGTlyJAALFiww9GQJIYynOE/Drv+eIOnQOQDsXay44+EQgjq6Gzky8U+SJjagxMREHn30UYKCgnB0dDT0DKSlpRna9OjRw/C1ubk5Xbt2JS4urtp5Lm/j6upKaGiooc3EiRN5//336dWrF2+99RZ///33Tcdra2tr+AAG8PLyIjs7+6ptT506RWVlpSEpAP0cldDQ0Cvatm/f3vC1SqXC09PTcN4xY8Zw5MgRQkNDmThxIhs3bqxRrA8++CBlZWUEBQXx9NNPs3r1aqqqqm74PEtLy2rxxMXFYW5uXm1jQjc3t2rvMVz/vSkoKCArK6vae2FmZkaXLl1q9FqEEHVPp9VxdEs6K9/eS9Khc6jUKjoO8uPRt26T5MRENfoeFHMrKyYu/8lo166NESNG4O/vz5IlS/D29kan0xEZGUlFRUWdxfTUU08xePBg1q1bx8aNG5kxYwazZ8/mxRdfrPW5/rlLsEqlqpNVO1c778Vhrs6dO5OcnMzvv//O5s2beeihhxg4cCA//XT9/2NfX18SEhLYvHkzmzZt4oUXXuCTTz5h+/bt193t2MbGxjAn5VZfQ2NZ0SREc5OVUsj2lQmcSysCwDPIkb6PtaVFq5sb/hYNo9H3oKhUKiysrY1yq80HW05ODgkJCbzxxhsMGDCAsLAw8vLyrmi3d+9ew9dVVVUcPHiQsLCwa7bJy8vjxIkT1dr4+vry3HPP8csvvzBlyhSWLFlSm7f0pgQFBWFhYcH+/fsNjxUUFHDixIlan8vR0ZGHH36YJUuW8MMPP/Dzzz+Tm5t7w+fZ2NgwYsQIPv30U6Kjo/nzzz85duwYoO8p0Wq1NzxHWFgYVVVV7Nu3z/DYxf+78PDwGsXv5OREy5Ytq70XWq32qvNxhBD1R1NWxY7vE/jpowOcSyvCytacqFGh3PdKF0lOGoFG34PSWLi4uODm5sbixYvx8vIiLS2N11577Yp2CxcuJDg4mLCwMObOnUteXh5jx46t1ubdd9/Fzc2Nli1b8u9//5sWLVoYVodMmjSJoUOHEhISQl5eHtu2bbsiwakPDg4OjB49mqlTp+Lq6oqHhwdvvfUWarW6VoncnDlz8PLyolOnTqjVav773//i6el5w6Jxy5YtQ6vVctttt2Fra8t3332HjY2NYQ5LQEAAO3bs4JFHHsHKyooWLVpc9TzBwcHcc889PP3003zxxRc4ODjw2muv4ePjwz333FPj1/Hiiy8yY8YM2rRpQ9u2bfnss8/Iy8u7qd4aIUTtKIrCyQPZ7PpvIqWF+h7q0Ns86Xl/G2wdLY0cnagpSVAaiFqtZtWqVUycOJHIyEhCQ0P59NNPiYqKqtZu5syZzJw5kyNHjtCmTRvWrFlzxYfpzJkzeemll0hMTKRjx4789ttvWFrqf+i0Wi3jx4/n9OnTODo6MmTIEObOndsgr3HOnDk899xzDB8+HEdHR1599VXS09OxrsVEYgcHBz7++GMSExMxMzOjW7durF+//oa1SZydnZk5cyaTJ09Gq9XSrl07fvvtN9zc3AB9Uvfss8/SunVrNBrNdYdjli5dyksvvcTw4cOpqKigT58+rF+//rpDRf80bdo0MjMzeeKJJzAzM+OZZ55h8ODBmJmZ1fgcQojay88qZceqBNLj9D3Uzi1t6ftYqBRda4RUiokNnBcWFuLk5ERBQQGOjo7VjpWXl5OcnExgYGCtPvQag5SUFAIDAzl8+DAdO3a8apvo6Gj69etHXl7eDXsUTEFJSQk+Pj7Mnj2bcePGGTsco9LpdISFhfHQQw/x3nvv3fR5mvLPgBC3Qlup49DGVA7+noq2SoeZuZquw/zpNMhfNvtrINf7/L4Z0oMi6szhw4eJj4+ne/fuFBQUGJbd1mZopKlITU1l48aN9O3bF41Gw4IFC0hOTuaxxx4zdmhCNDnp8bns+P4E+VmlAPiGu9LnkRCcPWyNHJm4FZJWNlNDhw7F3t7+qrcPP/zwps87a9YsOnTowMCBAykpKWHnzp3XnO9RGytWrLhmvBEREbd8/rqmVqtZtmwZ3bp1o1evXhw7dozNmzc3yHwgIZqL0sIKNn0dw5p5R8jPKsXWyZI7n4pgxIsdJDlpAmSIp5k6c+YMZWVlVz3m6uqKq6trA0d0fUVFRWRlZV31mIWFRY0LujV28jMgBCg6hZhdZ/lzdRIVZVWggnZRrbjt7iCsbGRgwFhkiEfUCR8fH2OHUCsODg44ODgYOwwhhJGdSy9i+8oEspILAXD3cyBqVCge/rf+gShMiyQoQgghTF5FeRV//ZbM31vTURSwsDbj9ntaE9nXB7Valu83RY0yQbl8cz0hmhP53hfNjaIoJB85z84fT1CcpwGgTRcPej8YjJ1z7ap5i8alUSUolpaWqNVqzp49i7u7O5aWllL4SjQLiqJQUVHBuXPnUKvVhro3QjRlhefL2PnDCVKO6Xd0d2xhTd9HQ/GLcDNyZKIh1HmCotVqefvtt/nuu+/IzMzE29ubMWPG8MYbb9xyMqFWqwkMDCQjI4OzZ8/WUcRCNB62trb4+fndsHCdEI2ZVqvj6OZ09q9NpqpSh9pMRefB/nQZ4o+5pRQ7bC7qPEH56KOPWLRoEcuXLyciIoIDBw7w5JNP4uTkxMSJE2/5/JaWlvj5+VFVVVWjvVWEaCrMzMwwNzeXXkPRpJ1NzGf79wnkni0BwCfEmb6PheLiaWfkyERDq/MEZc+ePdxzzz3cddddgH4PlO+//56//vqrzq6hUqmwsLCoVelxIYQQpqusuII/f0kibk8GADYOFvS6vw0ht3lKUt5M1XmC0rNnTxYvXsyJEycICQnh6NGj7Nq1izlz5ly1vUajQaPRGO4XFhbWdUhCCCFMlKIoxP+ZwZ6fkygvqQQg/A5vetzbGms7+SO0OavzBOW1116jsLCQtm3bYmZmhlar5YMPPmDUqFFXbT9jxgzeeeedug5DCCGEics5W8z2lQlknCwAwM3Hjr6PtcWrtZORIxOmoM4TlB9//JEVK1awcuVKIiIiOHLkCJMmTcLb25vRo0df0f71119n8uTJhvuFhYX4+vrWdVhCCCFMRGWFlgPrUjiyKQ2dTsHcUk33EUG0798KMzOZAC706rzUva+vL6+99hrjx483PPb+++/z3XffER8ff8Pn13WpXCGEEKYj5dh5dqw6QVFOOQCBHVpwx8MhOLjK1g2NncmXui8tLb1iCaSZmZkUmBJCiGasOK+cnT8mcurwOQDsXazo80gIgR3cjRyZMFV1nqCMGDGCDz74AD8/PyIiIjh8+DBz5sxh7NixdX0pIYQQJk6n1fH3ttP89VsylRotKrWKjgN86XpXAJbWjapWqGhgdT7EU1RUxJtvvsnq1avJzs7G29ubRx99lOnTp9eo+qUM8QghRNOQmVzA9pUJnE8vBsAzyImoUaG4+dgbOTJRH+r687vOE5RbJQmKEEI0bprSSvb+eorjO8+AAla25vS8rw1hPb1QycZ+TZbJz0ERQgjRPCmKQuL+LHb9dJKywgoA2t7uSc/722DjIPtHidqRBEUIIcQty88qZfv3CZyOzwPAxdOWvo+G4hPqYuTIRGMlCYoQQoibVlWp5dCGVA7+kYquSsHMQk3XYQF0GuSHmbnUNBE3TxIUIYQQNyU9Npft3ydQcK4MAL8IV/o8EoqTu42RIxNNgSQoQgghaqWkQMPun06SuD8LADsnS3o/FELrzu6ysZ+oM5KgCCGEqLH4vRns/CGRirIqVCpoF9WK2+4OwtJGPk5E3ZLvKCGEEDVy5kQeW5bHgQIe/g70fSwUD38pByHqhyQoQgghbqi8pJLNS2NBgdDbPen/RBhqqWki6pFMsRZCCHFdiqKwfWUCxXkanNxt6PNIiCQnot5JgiKEEOK6EvZlcvJgNmq1ikHjImQPHdEgJEERQghxTQXnStnx/QkAuo0IpGWAzDkRDUMSFCGEEFel0+rY9HUslRotXm2c6DzY39ghiWZEEhQhhBBXdWB9ClnJhVjamDPwyXCZdyIalCQoQgghrpCRVMCB9SkARD0WiqObVIcVDUsSFCGEENVoyqrY9HUMigKht3kS3K2lsUMSzZAkKEIIIarZsSqBopxyHFtY0+eREGOHI5opSVCEEEIYnPgrkxP7slCpVQwaGyEl7IXRSIIihBACgMLzZWxfmQBA12EBeAY5GTki0ZxJgiKEEAKdTmHzslgqyrV4BjnSdagsKRbGJQmKEEIIDm1IJeNkARbWZgx8MgK1mXw8COOS70AhhGjmspIL+WttMgB9HwnByV2WFAvjkwRFCCGasYryKjZ+HYOiUwju6kHIbZ7GDkkIQBIUIYRo1nb9mEjhuTLsXa3o+1goKpVUixWmQRIUIYRopk4ezCZuTwaoYNCT4VjZWhg7JCEMJEERQohmqDivnOgV8QB0GeyPd7CLkSMSojpJUIQQoplRLiwp1pRW4eHvQLcRgcYOSYgrSIIihBDNzOFNaZxJyMfcyoxBYyMwkyXFwgTJd6UQQjQj2amF7FtzCoA7HgrGuaWtkSMS4uokQRFCiGaiUqNl09ex6LQKrTu5E9bTy9ghCXFNkqAIIUQzsfunRPKzSrFztiLq/9rKkmJh0iRBEUKIZuDUkXPE7DwLKhg4JgxrO1lSLEybJChCCNHElRRo2Patfklxp4F+tGrrauSIhLgxSVCEEKIJU3QKW5bHUV5SSQtfe267O8jYIQlRI5KgCCFEE/b3ttOkx+ZibqHWLym2kF/7onGQ71QhhGiizp8uZs/qkwD0ejAYVy87I0ckRM1JgiKEEE1QVYWWTV/HoKtSCGjfgog7vI0dkhC1IgmKEEI0QXtWJ5F7tgQbR0v6Py5LikXjIwmKEEI0MSnHznNs22kABowOw8bB0sgRCVF7kqAIIUQTUlpYwdZv4gBo378V/hFuRo5IiJsjCYoQQjQRiqKw9Zs4yooqcfOxo8fI1sYOSYibJgmKEEI0Ece3nyH1eA5m5volxeYWZsYOSYibJgmKEEI0ATlni9n9s35Jcc/7W+PmY2/kiIS4NfWSoJw5c4b/+7//w83NDRsbG9q1a8eBAwfq41JCCNHsaSt1bPoqFm2lDr8IV9pFtTJ2SELcMvO6PmFeXh69evWiX79+/P7777i7u5OYmIiLi0tdX0oIIQTw5/+SyDlTjI2DBf2fCJMlxaJJqPME5aOPPsLX15elS5caHgsMDKzrywghhADSY3M5ujkdgP6Ph2HnZGXkiISoG3U+xLNmzRq6du3Kgw8+iIeHB506dWLJkiXXbK/RaCgsLKx2E0IIcWNlxRVsXh4LQGRfHwLatzByRELUnTpPUE6dOsWiRYsIDg7mjz/+4Pnnn2fixIksX778qu1nzJiBk5OT4ebr61vXIQkhRJOjKArbvo2ntKACF09bet7fxtghCVGnVIqiKHV5QktLS7p27cqePXsMj02cOJH9+/fz559/XtFeo9Gg0WgM9wsLC/H19aWgoABHR8e6DE0IIZqMmJ1niF6RgNpMxQOvdcXd18HYIYlmrrCwECcnpzr7/K7zHhQvLy/Cw8OrPRYWFkZaWtpV21tZWeHo6FjtJoQQ4tryMkvY9d9EAG6/t7UkJ6JJqvMEpVevXiQkJFR77MSJE/j7+9f1pYQQotnRVunY9HUsVRU6WrV1oeMAGRYXTVOdJygvv/wye/fu5cMPP+TkyZOsXLmSxYsXM378+Lq+lBBCNDt//XaKc2lFWNmZM3BMOCq1LCkWTVOdJyjdunVj9erVfP/990RGRvLee+8xb948Ro0aVdeXEkKIZuV0Qh6HNuqHy/v/Xxh2zrKkWDRddV4HBWD48OEMHz68Pk4thBDNUnlJJZuXxoIC4b29CerkbuyQRCO1Im4F/X3742XvZexQrkv24hFCCBOnKArRK+Ipydfg3NKW3g8GGzsk0UhtTNnIzL9m8tDah8gvzzd2ONclCYoQQpi4+D8zSTp0DrVaxaCx4VhYyS7FovbSCtOYvmc6APcF34eztbNxA7oBSVCEEMKE5WeXsvOHEwB0vzsQD38pxSBqT6PVMGX7FEoqS+js0ZkXO71o7JBuSBIUIYQwUVqtjs1LY6nUaPEOdqbTnVKuQdycj/76iPjceFytXZnZ4Q3MVKbfCycJihBCmKgD61LISi7EytacgU+Go5YlxeImrD21lv+e+C8qVMwMe5WS0ePJmjEDRaczdmjXJQmKEEKYoLMn8zn4ewoAfR8LxcHV2rgBiUbpVMEp3v3zXQAmBD6Bx+uLqExPpzh6OzoT35xXEhQhhDAxmrIqNn8di6JA29s9Ce7a0tghiUaorKqMKdFTKKsq4w6nLgyc9ycVSUmYe3ri9/XXmDk7GzvE65IERQghTMyO7xMoyi3HsYU1dzwcYuxwRCP1wd4POJl/Em8zV15eVYomNhYzV1f8vv4ay1Y+xg7vhuqlUJsQQoibk7AvkxN/ZaFSqxg0NgJLG/k1LWpvdeJq/pf0P6y0KmZt8qDqyDHUjo74ff0VVkGBxg6vRqQHRQghTETh+TJ2fK/fbLXbXQF4BjkZOSLRGJ3IO8EH+z7ATKswb6sf5geOo7K1xW/xF1i3bWvs8GpMEhQhhDABugtLiivKtXi1dqLLEFlSLGqvpLKEKdFTqKgq561tbrgdSEJlaYnv5wux6djR2OHViiQoQghhAg5uSCUjqQBLazP9kmIz+fUsakdRFN7Z8w4pBcm8uMWKtvuzwdwcn/nzsLv9dmOHV2vyEyCEEEaWeaqA/etSAOjzaCiOLWyMG5BolP574r/8nryeJ7ZB7/2loFbj8/FHOPTrZ+zQborMvhJCCCOqKK9i09cxKDqF4G4tCb3N09ghiUYoNieWmX/N5P7dCsP36Quweb33Lo7Dhhk5spsnPShCCGFEO384QeH5chxcren7qCwpFrVXVFHElOgpDNqr4eGd+uSk5b9ex/n++40c2a2RBEUIIYwk8UAW8X9molLBwCfDsbK1MHZIopFRFIXpu6cTsiuNMVv0yYn7SxNxfeIJI0d26yRBEUIIIyjKLWf7Sv2S4i5DA/AOdjZuQKJRWhG3gtING3nmd31y4vbUONyee87IUdUNSVCEEKKB6XQKm5fGoimtwiPAka53BRg7JNEI/X3ub7Z9/zETftOhBpwffQT3KVNQqZrGppKSoAghRAM7simNs4n5mFuZMWhsOGaypFjUUoGmgMVfT2DiL5WY68Dx7rvxfPPNJpOcgCQoQgjRoLJTC9n3v1MA9Hk4GGcPWyNHJBobnaLj028mMO67c1hqwWZAFN4ffoBK3bQ+0pvWqxFCCBNWqdGy6etYdDqF1p09aNvDy9ghiUbox7UfMXTBAawrge4d8Zs7H5V506saIgmKEEI0kF3/TSQ/qxR7FyuiRoU2qe540TAO/7WWgLe+wU4DJeH+hH7xNWpLS2OHVS8kQRFCiAZw6vA5YnedBRUMGBOOtZ0sKRa1cy7pOGUTpuFUCuf9nem47EfUNk236rAkKEIIUc9K8jVs/S4OgM53+tEq1MXIEYnGRpOZwcnRj+NSqCPLw5KO3/6EuaOjscOqV5KgCCFEPVJ0CpuXxaIpqcLdz4HuI4KMHZJoZKry8jg26gGcz5eT5aLC56slOHj4GDuseicJihBC1KOjW9M5HZ+HuYVav6TYXH7tiprTFhUR/8Sj2J3J5bwDlMyaSnBwd2OH1SDkJ0UIIerJufQi/vw1CYDeDwXj4mln5IhEY6IrLeXU0+MwS0ylwBb2vTaEu3o9aeywGowkKEIIUQ8qK7Rs+ioGXZVCYIcWhPf2NnZIohHRaTSkjR9P1ZFjFFvDN88EMuGeGcYOq0FJgiKEEPXgz59PkpdZiq2jJf0ebytLikWNKZWVnJk8hbI/91JuAXMftWXqowuxNrc2dmgNShIUIYSoYyl/n+fY9jMADBgTho1906xTIeqeotNx9vV/UbxlCxVm8NEDap546AMCnQKNHVqDkwRFCCHqUGlhBVu/1S8p7jDAF79wNyNHJBoLRVHIfOddCteuRauGOSPVRA5+lCGBQ4wdmlFIgiKEEHVEURS2LI+jrKgSNx97br9XlhSLmlEUheyPPyH/hx/QqeDTEWrKbovg1W6vGjs0o2l6xfuFEMJIDv6eSlpMDmYWagaNC8fcwszYIYlG4vznn5O7dCkAXwxVc7yDEz9EzcbSrPkOD0qCIoQQdSDpUDb71uh3Kb7joWDcvO2NHJFoLHKWLeP8ZwsAWDpQzbYOaub1eg9fB18jR2ZcMsQjhBC3KDu1kM1LYwFo378VEXc0/Sqfom7k/fe/ZM/8CIDV/az5vZuax8MfZ4D/ACNHZnySoAghxC0oydew/vO/qarU4RfhSq/72xg7JNFIFKxbR+b0twDYE+XB97dV0r5Fe17u/LKRIzMNkqAIIcRNqqzQsn7R35QUVODiZcedT0WiNpNfq+LGirZu4+y010BRSO4Xwrzbc3CydmZW31lYmMlO1yAJihBC3BRFp7BlWRzZqUVY21tw1wvtsbKRaX3ixkr+/JMzkyZBVRUl/bvy2m1JoFLxYe8P8bL3MnZ4JkMSFCGEuAl/rUsm6VA2ajMVQ59th5O7jbFDEo1A6aHDpL8wHqWiArOonkzseQJFpWJc5Dj6tOpj7PBMiiQoQghRSyf2Z3JgXQoAUaPa4h3sbNR4RONQHhtL+rPPopSVYdOzB9MH51OkLaWzR2cmdJpg7PBMjiQoQghRC5nJBWxdHg9Apzv9COspXfLixjRJSaSNewpdURE2Xbrw3RM+xBSewNXalY/7fIy5WoYH/0kSFCGEqKGi3HLWLzqGtkpHQPsW3H5va2OHJBqBitOnSRs7Dm1eHtYREcRMu5sfUn9FhYoZd8ygpV1LY4dokuo9QZk5cyYqlYpJkybV96WEEKLeVJRXse7zvykrrMCtlT2DxoajVssOxeL6KrOySBvzJFVZWVi2aY1u9r9559gsAJ7t8Cw9vXsaOULTVa99Svv37+eLL76gffv29XkZIYSoV4pOYfPSWHJOF2PjoF+xY2ktXfLi+qpyc0kbO47K06ex8PPDffFCRu+fRFlVGbd53sZz7Z8zdogmrd56UIqLixk1ahRLlizBxcWlvi4jhBD1bu//kkg+eh4zczXDnm+Pg6u1sUMSJk5bVETaU09RkZSEuacnvl9/xUenFnMy/yQtbFows89MzNSyV9P11FuCMn78eO666y4GDhx43XYajYbCwsJqNyGEMBXxf2Zw6I80APo/0RbPICcjRyRMna60lPRnn0MTG4eZqyt+X3/N+rL9rElag1ql5uM+H9PCpoWxwzR59dJHuWrVKg4dOsT+/ftv2HbGjBm888479RGGEELckrMn89n2nX7FTtdhAYR09zRyRMLU6TQaTk+YQNmhQ6gdHfH7+itSnCv4YP0HAEzoOIFunt2MHGXjUOc9KOnp6bz00kusWLECa+sbd4O+/vrrFBQUGG7p6el1HZIQQtRa4fkyfv/PMXRahdad3ek+PNDYIQkTp1RWcmbyFEr2/InK1ha/xV+gbe3LK9tfQaPV0MunF+PajTN2mI1GnfegHDx4kOzsbDp37mx4TKvVsmPHDhYsWIBGo8HM7NK4m5WVFVZWVnUdhhBC3LSKMv2KnfLiStz9HBgwJhyVrNgR16FotZx9/V8Ub9mCytIS388XYt2hA9N2TCOlMIWWti2Z0XsGapVU96ipOk9QBgwYwLFjx6o99uSTT9K2bVumTZtWLTkRQghTo9Mp/PFlDLlnS7BzsmTY8+2xsJTfW+LaFEUh8513KVy7FszN8Zk/D7vbb+eH+B/4PeV3zFXmzOo7CxdrWTBSG3WeoDg4OBAZGVntMTs7O9zc3K54XAghTM2en06SFpODuYWaYS+0x95FenjFtSmKQvbHn5D/44+gVuPz8Uc49OtHTE4MH+3/CIBJXSbR0aOjcQNthKSvSQghLojZeYajW/Xz4AaMCcfD39HIEQlTd/7zz8lduhQAr/fexXHYMAorCpkSPYVKXSX9fPvxRPgTRo6ycWqQSkPR0dENcRkhhLhppxPy2PH9CQBuuzuQNl08jByRMHU5y5Zx/rMFALT81+s4338/iqIwffd0zhSfwcfeh/d6vYdKJfOXbob0oAghmr38rFI2fHEMnU4huFtLugwNMHZIwsTl/fgj2TP1QzjuL03E9Ql9L8l3cd+xJW0LFmoLZvedjZOV1M25WZKgCCGatfKSStZ9/jea0ipaBjrS/4m28hevuK6CtevIfOttAFzHjcXtOX3J+qPnjjLnwBwAXun6ChEtIowVYpMgCYoQotnSanX8seQ4+Vml2LtYMfS5dphbyIqd6zlVcIp9Gfuo1FYaOxSjKNq6lbPTpoGi4PzIw3i88goqlYr88nxe2f4KVUoVd/rfyaNtHzV2qI2e7HYlhGi2dv2YyOn4PMytzLhrfHvsnGTFzvUcyjrEs5uepVxbjoOlA/18+zE4YDC3e92OpZmlscOrdyV//smZSS+DVovj3SPwnD4dlUqFTtHxr13/IrMkEz8HP97p+Y70wtUBSVCEEM3S39tOc3z7GVDBnWPDadHKwdghmbS4nDjGbxlPubYcC7UFRRVFrElaw5qkNdhb2BPlG8Ug/0H08umFlVnTS/RKDx0m/YXxKBUVOAwaiPeHH6JS6wchlh5fys4zO7FUWzInag72lvZGjrZpkARFCNHspMXmsOtH/YqdHiNbE9jB3cgRmbbkgmSe2/wcxZXFdPbozKKBi4jNiWVT6iY2p24muyybtafWsvbUWmzNbenr25c7/e+kl08vbMxtjB3+LSuPjSX92WdRysqw69UL79mzUZnrPz4PZB7gs8OfAfD6ba8T6hpqzFCbFJWiKIqxg7hcYWEhTk5OFBQU4OgoNQiEEHUrN6OEnz86QEW5lrY9POn/RJh0x19HRnEGT2x4gsySTMJcw/hq8Fc4WF7qbdIpOo6eO8rGlI1sSt1EVmmW4ZiNuQ13+NzBoIBB9PHpg62FrTFewi3RJCWR+n+Po83Lw6ZLF/y+XILaRp905ZTl8OBvD3Ku7BzDg4bzYe8Pm/X3Ul1/fkuCIoRoNsqLK/nvzP0Uni/Hq40T97zUCTMLWStwLTllOYzZMIaUwhQCnQJZNmQZrtau12yvU3QcP3+cTamb2JiykbMlZw3HrM2s6e3Tm0H+g+jr2xc7C7uGeAm3pOL0aVIfG0VVdjbWERH4LVuKmYM+OdPqtDy3+Tn2ZuwlyCmI7+/6vlEmYHVJEhQhhLgJ2ioda+Yf4WxiPo4trHlgWldsHJr+xM6bVVhRyLg/xhGfG4+XnRffDP0GTzvPGj9fURRic2LZmLqRjSkbOV182nDMUm1JT5+e3Ol/J1G+UdV6ZExFZVYWqaP+j8rTp7Fs0xr/b7/F3OXSXjqLji7i8yOfY2Nuw8phK2nj0saI0ZoGSVCEEKKWFEVh27fxxO3JwNLajPte7YKbt0xkvJayqjKe3fQsh7MP42btxvKhy/F39L/p8ymKQkJeAhtTNrIxdSOphamGY+Zqc3p692SQ/yD6+fYzicJmVbm5pD7+BBVJSVj4+eH/3bdYeFyqLLw3Yy/PbHwGBYX3e73PPW3uMWK0pkMSFCGEqKUjm9PY/dNJVCq4a3wH/CPdjB2SyarUVvLi1hfZfXY3DpYOLB28tE4nfiqKQmJ+IptSN7EpZRNJBUmGY+Yqc27zvo07/e+kn28/o+z+W5mVTfrzz6GJjcPc0xP/777DspWP4fi50nM88NsD5Jbncl/wfbzT850Gj9FUSYIihBC1kPL3edYt+hsU6P1gMB0G+Bo7JJOl1Wl5dcerbEzdiI25DYsHLa73XXiT8pPYmKqfYJuYl2h43ExlRjfPbgzyH8QAvwG42dRfUqktKKBo0yYK1q2jdN9foNNh5uqK/3ffYRUUaGhXpavi6Y1PcyDrACEuIawYtgJrc+t6i6uxkQRFCCFqKOdMMT9/fJBKjZaIO7zp+1hos15lcT2KovD2n2/zS+IvmKvNWThgIT29ezZoDMkFyWxO3cym1E3E5cYZHler1HRt2dWQrLjb3vqycF1JCUVbt1G4fj3Fu3ZB5aXKuDYdO+L5zttYh1bvOfr00KcsObYEW3Nbfhj+AwFOAbccR1MiCYoQQtRAaWEFP808QFFuOT6hLoyY2AEzM1mxczWKojD7wGyWxy5HrVIzq+8sBvkPMmpM6YXphp6VmJwYw+MqVHTy6MSdAXcy0G8gLe1a1vicuooKSnbsoHD9eoq2RaOUlRmOWYWG4njXXTgOG4plq1ZXPHfn6Z28sOUFAD7p8wlDAofcwqtrmiRBEUKIG6iq1PK/uUfIPFWAk4cND0zrirWdhbHDMlmL/15sKDb2bs93GRk80sgRVXem+AybUzezMXUjf5/7u9qxju4dGeQ/iEH+g/Cy97riuUpVFSV791G4bh1FmzejKyoyHLPw98PprrtwHDYMqzbXXoWTWZLJA789QIGmgIdDH+aN29+ouxfXhEiCIoQQ16EoCpuXxXJiXxZWtubc/2oXXDxNv+aGsayMW8mMv2YA8Gq3V3k8/HEjR3R9GcUZbE7TDwMdzj5c7Vj7Fu31w0C+/XE7eY7Cdeso3PAH2txcQxvzli1xHDYMx7vuwjoi/IZDfpW6Sp7c8CRHzx0l3C2cb4d+2yz2HboZkqAIIcR1HNyQwt5fT6FSqxjxYgd8w65dWKy5+y3pN/61618APNfhOcZ3HG/kiGonqySLLWlb2JS6iYOZBwjIUugVq6NnnEKLwkvtzFxccBgyGKe77sKmc2fDHjo1MWv/LJbHLsfBwoEfRvyAr4NMsr6Wuv78lr14hBBNRtLhbPb+egqAPo+ESHJyHVvTtvLm7jcBGBU2ihc6vGDkiGqvpV1L7re8jUEncshbdwZtarrhWKkV/BWiYne4ispO3gwI8mKQvxuBtUhOtqZtZXnscgDe6/WeJCcNTBIUIUSTcC6tiM1LYwFo168VkX18bvCM5mtfxj6mbp+KVtFyd+u7ebXbq41qdVPF6TMU/r6ewnXr0cTHGx5XWVlh368f6jv7EONXxuGz0RzP/AttQQKxhxP47PBntHFuw50Bd3Kn/520dm59zWucLjrNG7v0c00eD3+cAf4D6v11iepkiEcI0eiVFGj474wDlORr8At35a7x7VHLip2rOnbuGOM2jqOsqoz+vv2ZHTUbc7Xp/61ade4chb9voHD9esqOHLl0wNwc+969cbxrGPb9+mNmX32+UX55PtvSt7ExdSN7z+6lSqkyHAtyCjJMsA1xCTEkaRXaCp74/QlicmJo796eZYOXYWHWRCZZKwpkx4GmEPxur9NTyxwUIYS4TFWFltWzD5GdWoSLpy33T+uKlY3pf+AaQ2JeIk/+8SQFmgJu87qNhQMWYmVmZeywrklbUEDhxo0Url9vKKAGgEqF7W234XjXMBwHDcLM2blG5yvQFBCdHs2m1E3sObuHSt2l2icBjgGGZGX1ydV8H/89TlZO/Hf4f6+6OqhRKcqEU9GQtE3/b3EmeHeGZ7bV6WUkQRFCiAsURWHjlzGcPJiNtZ0FD7zWBSf35r2j7LWkF6Uz+vfRnCs7R/sW7Vly5xKT3H3XUEBt3TqKd++uXkCtQwcc77oLhyGDq+2NczOKKorYfno7m1I2sevMLip0FVe0WThgIX1a9bml6xhFRQmk7IZTFxKS7Njqx82tIeAOeHQVmNVdMi+TZIUQ4oL9a5M5eTAbtZmKoc9FSnJyDdml2Ty98WnOlZ2jjXMbPh/4uUklJzqNhpKdOylYt47ibdEo5eWGYzcqoHazHCwdGB40nOFBwympLGHH6R1sSt3EztM7KdeW81S7pxpPcqLTwtkjcGorJEVD+j64rHcIVODVAVr3g6B+4HsbWJh+iX5JUIQQjVLi/iz2r0sBoO9joXgHN/zGco1Bfnk+z2x8hjPFZ/B18GXxoMUmsWNwtQJqmzahKy42HKtpAbW6Ymdhx9DAoQwNHEppZSnpRemEuITU+3VvSe6pS8M2yTugPL/6cSc/aB2lT0gC+4Jd49sgUxIUIUSjk5VcyJZv9Hu1dBzkR3gvbyNHZJpKKkt4fvPzJBUk4WHjweJBi+tkH5ubpeh0lB06ROH69VcWUPP0xHHo0BoXUKsvtha2dbp7c50pzdUnIqe26ZOS/NTqx62cIPCOS70krkHQiFZmXY0kKEKIRqUot5z1i/5GW6kjoJ0bPUZee6loc6bRapi4dSLHc47jbOXM4jsX08qh7oZIakpRFMpjYvVVXX//narMTMOxWymg1uRVaSD9r0sJydnDwGVTRtXm0Kr7pYTEu1OdzicxBU3r1QghmrSK8irWL/qb0sIK3HzsGDQuArW6cf+VWB8qdZW8sv0V/sr8CzsLO/4z8D/XrflRHzRJSfqkZN16KlIv/bWvtrfHYdAgHIcNw67H7ajM5WMIuLD8N/bSSpvU3VBZWr1Ni9BLCUlAL7ByMEqoDUW+M4QQjYKiU9i8NJbz6cXYOFgw7IX2WFrLr7B/0ik6pu+eTnR6NJZqSz7r/xkRLSIa5NoVp8/oh2/W/6OAmrU19v2icBw2DPs+fVBbme7S5gZVmKFPRi6utinOqn7czgOCovRJSWBfcGpexQflp1sI0SjsXXOK5KPnUZurGPZ8exzdbIwdkslRFIUZ+2aw9tRazFXmzImaQzfPbvV6zcrsbIo2/EHhunWUHT166YCFBfa9euF4113Y9+t3RQG1ZklTDKl7Lg3bnIurftzcBvx7XuolaRnR6OeR3ApJUIQQJi9+bwaHNuiHCfo/HoZnkPFXoZiizw5/xqqEVahQ8X7v9+nr27derqPNz6dw0yYK162n9K9bL6DWZOm0+rkjSdv0SUn6X1cu//XuqO8laUTLfxuKJChCCJOWcTKfbd/phwu6DPUn9DZPI0dkmpYdX8aSY0sA+Pdt/+auoLtq9XxFUdCVlKLNy0Wbm0tVbi7a3DyqcnPQ5ubpH8vLRZuTS/mJE/VWQK3Ryz11KSFJ3gHlBdWPO/vpk5GLwza2sqHltUiCIoQwWYXny/j9i2PoqhSCOrlz24ggY4dkkn4+8TOzD84G4KXOL/Fw24f1CUdx8aVkI+9CkpGbhzYnR59sGBIP/WNKxZXVVK/Fqm1bHIcNq/MCao1OaS4kb780ubUZLP9tKJKgCCFMUkVZFes+/5uyokrc/RwYOCYcVTNesaMoCrqiIqpyci5LNnKJP/UXKcd/58VShTC1Nz6/riMx9zu0ubkolZU3PvE/qKytMXd1xczVFTNXF8xd9F+bu7li5qJ/zDIgAKvAwHp4lY1AlUZfqfViL8nZI1yx/Nf3tku9JF4dm9zy34Yi75oQwuTodAobv44h92wJtk6WDHu+HRZWZsYOq04pOh26wkJ9j0ZujmFIRZt3jV6O/PxqwyoXOQPDDPfOoPnHcZWtLeYuLvok4/LEw1WfcJi7XXjMxRVzVxfUtqZTAt8kKApkxVxaaZO658rlv+5tLyUk/r3Ayt4ooTY1kqAIIUzOnl9OknosBzMLNcOeb4+9S+OZOFh59iyVZ85QlZN7Idm4LPHIyb00pJKXB1ptrc+vtrXFzM0NjYMlRytTyLfR4eYZRP8OI7Fwc7si8VBbN573zmQUZlxaaXMqGkqyqx+387gwZBOlvzlKJeP6IAmKEMKkxO46y9HN6QAMGB1Gy4DGsat5+YkTnP/sM4o2ba7V89T29vreDRcXzNzcqg+ruLpg5up2qcfD1RW1lRVxOXE89cdYiitV9Pbpy6f9PsXCzKKeXlkzUXAaYlbD8V/g7KHqx8xt9IXRLvaSeIQ32nkkik7HubQUKspKaRUWaexwrksSFCGEyTiTkMf2lQkAdB8RSHDXlkaO6MYqUlI4t2AhhevW6YcDVCos/Hwxd3W7lGRcZSjFzM0NMxcX1JaWtbpeckEyz21+juLKYjp7dGZO1BxJTm5WYQbE/qpPSk7/ddmBi8t/LyQkvreBeeMsLqfTaslOOcXp2GOkxx3nTHwMmpISWga14f9mzDN2eNclCYoQwiTkZ5fy++Jj6HQKwV096DoswNghXVflmTOcW7SIgtW/GoZqHAYPxv3FCfW2A29GcQbPbHqG3PJcwlzDWDBgATbmUrCuVoqzIfZ/+t6S1D1cmuCq0hdJixgJYXeDg+knx1ejraoi61Qi6bHHOR13nLMJsVSUlVVrY2Ftg62TMzqdFrXadOd2SYIihDA6TWkl6z//G01JFR4BjvR/Isxou9neSGV2Njn/+YK8//7XMGnVvm9fWkx8EZuI+ispn1OWwzObniGzJJMAxwD+M+g/OFg27b1Y6kxJDsStgZhfIGUXKLpLx1p1h8j7IPyeRjmXpKqigsyTJ0iPO8bp2OOcTYynSlN9qrSVrR3ebcOx9w+l3M2fM+ZuFFhamHRyApKgCCGMTKfV8ceS4+RllmLvYsWw59thbml6vzir8vLIWfIleStWoFz4ALDtcTvuEydi26lTvV67sKKQ5zY/R0phCl52Xiy5cwmu1lLg67rK8iBurT4pObUdlMsmJHt3vpCU3AvOvkYL8WZUlpdzNjGe03HHOR17nIyTCWj/sbrL0s4Bq1ZtKHXz57SVN7HldiSdL0VzRAfkArkEtbDjyV6mvVRcEhQhhFHt+jGR9Lg8zC3VDHuhPXZOpjXWry0sJHfZMnKXLUdXql9eatOxI+6TJmF3+231fv2yqjImbJlAfG48rtauLLlzCZ52Uk33qsoLIOF3/ZySpK3Vy8p7ttcnJREjwSXAaCHWlqa0lLMJsZyOO0563HGykhLR/XP1l40DxS5+pFl6cUzbgmwzZ6hQQQboh7CKAbA0VxPUwo7glg609TT93jdJUIQQRnMs+jTHtp8BFQwaG4G7r+n80tSVlJD77XfkfP01usJCAKzCw/B46SXs+vRpkCGoSm0lL297mcPZh3GwcGDxoMX4O/rX+3UbFU0xnNigT0pObgbtZcMbHhEQORLCR0KL+pkXVNfKi4s5HR9j6CHJTk5CuXxICiizcCDNypMzVt6csfEm39zp0qoic7C1NKONhz1t3O1p09KeYA8Hgj3s8XW1xawRFTus8wRlxowZ/PLLL8THx2NjY0PPnj356KOPCA0NretLCSEasfTYXHb+mAhAj3tbE9TR3cgR6enKy8lbtYqcxUvQ5uYCYNmmNe4TJ+IwaFCDzY3R6rS8tvM1dp/djY25DZ8P/JxQV/k9CkBFKST+oU9KEjdCVfmlYy1CIOI+fW+Ju+m/X6WFBZyOO86pY3+TevwYxRnpVKtMCxSYO3LG2osz1t6ctfam0NwBVCocrM0J9riQgLS0p7WHPcEe9ng72aBuRInItdR5grJ9+3bGjx9Pt27dqKqq4l//+hd33nknsbGx2NnJdttCCMjLLGHDkuMoOoXQ2z3pdKefsUNCqagg/5dfOL/oP1RlZQFg4eeH+4sTcBw2DJVZw82LURSFd/e+y8bUjZirzZkXNY+OHh0b7PomqbIcTm7Sr75J2ACVJZeOuQZdSkpMvEbJ6TOZHPnrIGmxxyhOPYFZQfYVbfIsnDlj7c0Zay/OWntj5eRKGw97unjY84iHPcEt9T0i7g5WJjuZvC7UeYKyYcOGaveXLVuGh4cHBw8epE+fPnV9OSFEI1NeXMnahX9TUVaFV2sn+o1qa9RfskpVFQW/reX8woVUnj4NgLmXFy1eeB7ne+9FZdGwNUYURWH2gdn8kvgLapWaj/t8TE+fng0ag8mo0uirucb8AvHroaLo0jFnP31SEjESvDqYVFKiKArnijQkZhcTfzKV07HHKU07gXVOKo4V+YZ2F1Pe8xaunLX2ptjVDwf/UAJ8PRlwoTekjYc9bvamNS+rodT7HJSCAv1W066uV59xrtFo0Fy2JKrwwlivEKLp0Vbp2LD4GIXnynBws2boc+0ws1AbJRZFp6NowwbOfbaAiuRkAMzcW9Di2edwfujBWhdQqytLji1heexyAN7u8TaD/AcZJQ6j0VbqV93E/KJfhaMpuHTM0UefkETcBz6djZ6U6HQKZwvKSMwuJim7mMTMItLT0ilLT8StKB2f8gwcq4qwBy7uzqMABTYeVHkE4hgYSkB4O/oFetLa3R4nGym4d7l6TVB0Oh2TJk2iV69eREZevaTujBkzeOedd+ozDCGECSjOK2fbd/GcOZGPhbUZd73QHhuHhk8CFEWheNs2zs3/FE2CvmqtmZMTbs88jctjj6G2MV7hs5VxK/ns8GcATO06lZHBI40WS4PSVkHKzgtJyW/6JcIX2XtCxL36pKRVN1A3fEKr1Smk55aSmF1MYnYRJ7OL9besIqxKcvAuP4tP+Vl8yjPooi2p9lxFpQK3VjgHtSWoXXs6deuEi4tzg7+GxkilKIpy42Y35/nnn+f3339n165dtGrV6qptrtaD4uvrS0FBAY6OjWMPDiHEtSmKQtzuDHb/lEhFuRa1uYqhz7YjoF2LBo+jZM8ezs3/lPK//wb0++C4PjkG19GjMbM37g60vyX9xr92/QuA5zo8x/iO440aT73TaSHtT/1E17g1UHLu0jE7d33htIj7wK9HgyYluSUV/JWcw4msYn1CklXEqfMlVFTpQFFwq8zFp/ws3mX6hMRWV71KK2ozXPxbE9SuPQGR7fEOaYulTfPYIbqwsBAnJ6c6+/yutx6UCRMmsHbtWnbs2HHN5ATAysoKK6vmOb4mRFNXeL6Mbd/Fczpe/xdxy0BH+j8ehqt3w06YLz1wgHPz5lN64AAAKhsbXB9/HLexT2Lm7NygsVzN1rStvLn7TQAea/sYL3R4wcgR1ROdTr/nzfFf9OXmizMvHbNxhfC79UM4/r3BrGGqYCiKQnxmEVvjs9kan82htDwu/tmuUnS0qMghvPwsvpoMfDQZWFy+Yggws7DEOziUVuGRtAprh1dwCBZWsoN0Xajz7wBFUXjxxRdZvXo10dHRBAaadqU6IUTdU3QKx7af4c9fk6jSaDG3UHPbPUG07+/boMsfy44d49z8TynZtQsAlaUlLo8+gtvTT2PeomF7cK5lX8Y+pm6filbRcnfru5nWfVrTWpmhKHDm4IWk5FcoPHPpmLUTtB2hr1US2BcaaNPD8kote5LOsyUum23x2Zwt0Ccd5rpKvCrO0c4iH7+KDKxz06CiekJiYWWNd2gYrcIiaRUeiWfrEMwbeCJ1c1HnCcr48eNZuXIl//vf/3BwcCAzU58hOzk5YWPEsV0hRMPIzypl67dxZJzUT270Dnam3+NtcfZouG7u8oQTnPv0U4q3bNE/YG6O8/330+L557DwNJ0qrMfOHePFrS9Soaugv29/3un5DmqVcSYN1ylFgYwj+iXBMashP+3SMUsHaHuXfklwUD8wb5h5SGfzywy9JHuSzqOpqMK1Mo+WmizCK88RqMvBujgb/jHrwdLGFp+24bQKi8Q3vB0ega0xM5capw2hzuegXCvzX7p0KWPGjLnh8+t6DEsI0TB0Wh1HtqTz12/JaCt1WFiZ0fO+1kTc4YOqgXpNNKeSOb9gAYW//67/oFGrcbr7blqMfwFLX9PacyUxL5En/3iSAk0Bt3nexsKBC7Eya8TD3YoCWTH6ia4xqyH31KVjFnYQOlSflLQeABb1PwSi1SkcSc9na3wWW2KzOH0mg5aabDw1WbTUZNOy4jzmusornmfv6oZn6xBahUXQKiwS94BAk99Uz1SY/ByUepxzK4QwUTlnitn6TRzZqfo6Fb7hrkSNCsXRrWF6TStOn+H8559T8Ouv+nkOgMPQIbi/+CJWQUENEkNtpBel8+ymZynQFNC+RXvm95/feJOT7PhLScn5E5ceN7eBkMH6OSXBd4Jl/fegFZRVsjPxHNuOphJ3PAbbgrO01GTTU5OFnbbsivaWNjZ4tg7Gs3UInm30NwdX0xj6E7IXjxDiFmi1Og5tSOXA+hR0WgVLG3N6P9iGtj28Gmavmqxszv9nEfk//QwXdnS179cP95cmYt22bb1f/2Zkl2bz9ManOVd2jjbObfh84OfYWTSyKtvnT14YvvkFsmMvPW5mBcGD9ElJyBCwqt+VUYqicOJsPtv2HCH272OUn03BQ5ONd2U+3v9oqzIzw90vAK82IXi2CcWrTQgu3j7SO2LCJEERQtyUc2lFbPkmjpzT+p1SA9q3IOqxUOyc678noCo3l5zFS8j7/nuUC2UK7Hr2xP2lidh06FDv179Z+eX5PLPxGc4Un6GVfSsWD1qMk5WTscO6utJcyEu5cEvW/5t74d+C9Evt1BbQZoB+SXDoULCuv6F5RVHIOp3On3sPE38shpLTp3AsycYMHf/cQtHa1R2/tmF4twnFs00IHoFBWFg20l6qZkoSFCFErVRVajmwLoVDG9NQdArWdhb0eSSENl096r3XRFtQQM7SpeR+8y1KaSkANl264P7SROy6d6/Xa9+qksoSnt/8PEkFSXjYeLDkziW42xpxg0RtFRSerp54XJ6MlBdc+7lqcwiK0iclbYeBjUu9hFhakE/GyRMkxcaQeDyWkjMpmFXqh2osL9wAqixssPEOpE1EOGHtI2nZOhhbRxNN/ESNSYIihKixzFMFbP0mjrxMfXLQpqsHdzwUgq1j/a7E0BaXkPfdt+R8vRTdhe0wrCMjcX/pJex69zL5ZbkarYaJWydyPOc4zlbOLL5zMa0crl0fqu4uXHRZ8nFZEpKbrO8F0VVd//n2nuASoL+5Bl74OhDcQ+o8KanUlJN16iSZJ0+QcfIEaQnxlOedr9bGDKhSmZFv44GtTxAhkeH07tkZb99WJv89IGpPEhQhxA1VVmjZ979THN2aDgrYOFoS9WgoQZ3qtwdAV15O3srvyVmyBG2evtibVXAw7i9NxH7AgEbxoVSpq+SV7a/wV+Zf2JrbsmjgIlo7t66bk+t0UJRx5RDMxYSkNOf6zzezAhf/S0mIS+ClZMTZv94mtup0WnJOp19IRhLIPHmC8+mpKBcmOF+kALkWLmRZeWDe0p+27SMZ3KM97X3dGrSejjAOSVCEENd1JiGPrd/FU3hO37Xe9nZPej0YjLVd/RWnUioqyPvpJ3IW/Yeqc/oS6JYBAbR4cQKOQ4eiMsJ+LDdDp+iYvns60enRWKotWTBgAZEtrr4v2TVVlEJ+6tV7QvJSQau5/vNt3a5MPi7ed/Cq9zLyiqJQlHOezJMJZJw8QWbSCbKSTlKpKb+ibbGZLVlWLcmy8iDfzouQiLb0a+dPVKg7Ho5SnbW5kQRFCHFVFeVV/PlLEsd36Ct/2rtYETWqLf6RbvV2TaWqioL/reH8woVUnj0LgIW3Ny3Gj8fpnrtRNaICWYqiMGPfDNaeWouZyozZUbPp5tntag2hOPvqk1HzUqqXg78atTk4+V6ZfFzsFanHSatXU15STFbSSTKTLvWOlOTnXdGuSm1BhqU72RcSkkwrD9w8POjf1oNHwzzoHuiKlbmssGnOGs9PuxCiwaTF5LBtRTzFufq/ziPu8KbnfW2wtKmfXxmKTkfh+t85/9lnVKSmAmDu7o7b88/h8sADqCwbftfjW/XZ4c9YlbAKFSo+6PEOUTY+kLjp6j0hlaXXP5mVE7gGXJl8uAaCY6sG27fmn7RVlZxLTTEkIpknT5B79vSVDVVqNI4tSVG5kW7uTpaVB3kWzqjNzOjq78LDYR70b9uS1u52jWLYTjQMSVCEEAblJZXs/vkk8XsyAHBsYU2/x8NoFVo/qzQURaF4yxbOzf8UTWIiAGYuLrg9/TQujz2K2rqRdesXn4PU3Sw79StLcg8C8O9iLXetGI1+RsW1qMCp1VUmpAboExIbFzDyB3dFeRm5p9M5fzqN7JQkMhNPkJ2ShLbqyom2tm4eaFx8SFLcOFjmQLaFG1Vq/ZCgs60F/UL1PSV9gt1xspV9bMTVSYIihAAg+eg5olcmUFpQASro0M+X2+4JwsKq7rvZFUWhZNduzs2fT/nx4wCoHRxwGzcWl/97HDP7RlK4TFMMqXvgVDQkb4es4/xsb8dsd/0w2Eu5+TxcoF91hIXd1ZMPlwBw9gVz06jRUVleTs6ZdHJOp3E+PZWc02nknE6n8FzWVdtb2zvgERRMhWsrTiquROdYk1yiAu2FBlbQ1tOB/m09GBDmQUdfF8xkgquoAUlQhGjmyooq2PljIon79R9Azi1t6f9EGF6t66eORMlff3Fu/qeUHdT3MKhsbXF94nHcnnwSMycTr11RVQFnDugTklPbycs4RIyFmhgrS2IsLYnx9Sb7wjyZJx3DGddhJLgF6ZMQO3ej94Jc7vJE5OLtfHraNRMRAFsnZ9xa+eHuF4C1dwAnFFd2ZujYlZRDeeqlFThW5mp6tnajf1hL+rf1wMdZNooVtScJihDNlKIonDyYzY5VJygvrkSlVtFpkB/dhgdgblE3vSbawkLKjx+n7HgM5ceOUXb8OFUZ+uEjlZUVLo89htvTT2Hu6lon16tzOh1kHYfk7RQlbSE26xAxZjqOW1kRa2nJGd8rd0ZWq9SMChvFy12nmsR8isrycnLPnr6sN0R/K8i+cSJy8WbZwos8S1dSS1TEZRex7FQusfGFwKVzeDlZ06+tBwPaetCzdQtsLGWCq7g1kqAI0QyVFGjY8f0JTh3RL+F187Gj/xNhePjf/IoPXWkp5bGxlB0/Tvmx45QdP0ZlatqVDS0scHnwAdyefRaLli1v+nr1QlEgL5nSk5uJP7WR4+f/JkZVRaylJSmWFuB+ZQ9PgGMA4W7hRLhFENEigjDXMGwt6n9jvH+q1JSTe+ZCInImnZwLCUnBuWz967oKG0cnWrTyw83XDzcfP3BpSY6FPhE5cq6Yk1nFnNxXTG7JWeBsteeqVNDJ15n+bfUTXMO8HEwiIRNNhyQoQjQjiqKQsDeTXf9NRFNahVqtosuwALoM8cfMvOb1MHQVFWgSEig7dozyY8cpP34cTVKSYSfhy1n4+mIdGYFNZDus20ViHR5hUnNMNAWnSYj7iZi07cTknyRGVcEpCwt0KhU4WAGX5ob42LgT7t6RSPdIItwiCHMLw9GyYZfxXkxEck6ncf50mj4ROZOu7xG5QSLi2soPFx9ftE4tyTF3IbkE9mYXk5RdTNKeEoo1WVzeK3I5H2cb2njYE+xhT7i3I31D3HGzN415M6JpkgRFiGaiKLec6BXxpMXkAuDu50D/J8Jo0er6O84qVVVokpL0QzQXkpHyEycMuwdfzrxlS6wjI7FpF4l1RCTWkRGYu9TPCqCbUamr5GT2UY6fWEtM5n5ii0+TqNZSdfEvfyu4uMOLh5kNEc4hRPj0JMKjPRFuEbhYN9xruTwRMSQjF4dmrpWIODjqe0Na+ePk5YPG3oNz5i6klKjYfqFHJPlUCRXabCD7iuebq1X4u9nSxsP+QjLiQBsPe4Lc7bC1lI8L0bDkO06IJk7RKcTsOsueX05SWa7FzFxN9xGBdBzoi9pM/Y+2OipSUik/fswwVFMeF4dSfmXVTzNnZ6zbtdMnI5H6hMSipUdDvawb0uq0nCo4RUz2UWLSook5f4wETS4Vl49CmAGocFVUhFu5E+nRkYjAgYR7dsHDtmFeS2WF5lIikp7K+dNp5J5OJz8785qJiLWDo35oppUf9p4+lNm5k6V2IrlUzaHsYk5mF5N2shSdkgNcWe7e2kJNUAt7glva08bd3pCQ+LvZYVmLnjQh6pMkKEI0YQXnytj2XRxnEvIB8Axyov8TbXHxtENRFCpOn6H8+DH9RNZjxymPiUFXXHzFedT29lhHRFxKRiLbYeHjbTJzDnSKjrTCNGJyYjh+7jixmX8RV3CKMuUfNTpU4KDVEaFTE+HgT6T37US0HYlni/B6fy3VEpGLt/S0GiYivli5e1Ni6062mTOnilX8eSERyTxZDuRduFXnaG1uSD4u7xHxcbaRvWyEyZMERYgmSKdTOLbtNHv/l0RVhQ5zSzXdB7YkyDaDih+/Iu3CUM3FDfgup7K2xjos7NJQTWQ7LAP8TWb/G0VROFN8hpicGGJyYog9H0Ps+eMUVV1ZjdVWpyNcU0GEYkaES1si/PvhG3oPKteAeouvskJD3tkzht4Qw6qZrCwU5co5OqCvJXJxxYx5Cy+KbdzIUDmRXKwi+lwJJ88Wk3eyEii4cKvO3cGKNu4XekQ8LvWKuDtYmUwSKURtSYIiRBOTl1nClqXHyUotAaCFKpu2sauw3Jjwj3UYgIUF1iEhl5KRdu2wat3aZPa8URSF7NJsfc/I+ePE5sQSkxNDvib/irZWOh1tKyqJ0FQQqVUR4d4e/+BBmLXuBx7h9VKDpLQgn+yUU2SnnOJcajLnUpPJPXP6homIi48vKhdPimzcyFA5k1QEG86VkJReTGmSFii+cLtEpYJWLjaG5CPYw4HWF5IRqcYqmiLT+C0khLhp2uISymNjKP37OMePlhGvCUanNsesqow2SavxztiNCkCtxqp1ENYXVtPYREZiFRqK2sp0VmLklOVc1jMSy/Gc45wvO39FO3NFIbSiggjNhVuljtaenTBv2w8C+4JPZzCruw9tnU5LfmaGPhG5kIxkpyZTkpd71fbWdva4+frh7O2LzsmTAmsXzuJETLGKk+dKSE4tofKUApReuF322tQqAlrYEXzZ0Exrd/1NaouI5kQSFCEaEZ1GgyYuzrCapuz4cSpOnaLY1ou4tv9HkUMYqMEtJ4aIku24dg7Aut00bCIjsQ4LQ21nOst7CzQFhh6RmPP6pCSjJOOKdmYKtK6sJFKjMSQkwRWVWHq2g9C+EBQFfj3Asm5eW2V5OefSUjiXelnPSFoKVRrNlY1VKlw8vXH1DUDdwocCG3dOq1yIKVZz8lwJ6SmlF6aXaPjnqhkbCzNae9hdGJpxoLX7xYmqtliYmcZwmhDGJAmKECZKqaxEk5h4WeGz4/oN9S7bnE2nMiPFfyip/kNQVGZYmmnpfrs1ESMex9z5RSNGrx+eKaosIrMk03DLKs0yTGZNL0q/4jkqIBALIkqKiCgvJUJTQWhFJTaKAq5BEHIhIQnsA7a3Vn1WURRK8vM4d9kQTXZqMnkZZ646adXc0go3X3+sWvpS7tCSbAs3TlTak5BTQer5UpRzADr+uWrGycaiem/IhVoi3k4yUVWI65EERQgjUxQFbV4eFcnJVCQnUx4Xr681Eh+PcpW/2s3c3LCJjKS0dVcO5QSRf2HOZFBHd/o8GoKdU8MM2RRXFJNVmnUpASnNJKsky/B1ZkkmZVVl1z2Hn6UzEVUQkZ9JeEkB4ZoK7C4mB3YeEDJUP2QT1Bec/W46Vp1WS17GmSvmi5QW5F+1va2zC/ZefuhcvMizdicVZ2JKLDl1voyqDAUyAKqAS893sbUg1NOBkJYOBLd0MMwVaWFvKRNVhbgJkqAI0UB0paVUpKZSkZJiuGmS9f/qCguv+hy1g0O1Kqw2kZHg5sGB9Skc3piGooCNgwV3PBxCmy4edfZBWFpZakgyskqyLiUflyUhxZVXLke+GmcrZzytXPE0s6GlosK7vJiw7FOE553BSXdZKXxLBwjur09GAv+/vXOPkqK80/9TXffq7um5zzjMDMNwGS4aUBAEI2g0XBaVo3h0RbO6ZjXG256QGGWTlYU9mmyMiQmIuIr4I0aMelRYBU4UR9ZVNILDZeTiXBkuw8Bc+n6r6v7+/ujpmu7pHhiYnjDg+zmnTndVV9X7Pv1Wv/X0973ULKBw3Fl1bA0H/Dh5qBknDvX0F2lvOQRDD6fsy3EW2IsvAp83DF5bEVr5XBzUbfi6CwgFo91GBIiZkVjkyiYLGFNkM81IfGFGhMHILMygMBgZhAwD+rFjMQPS1IRQczPC3SbEOH687wM5DmJJCaSKCsijRsUmQLt4AsTy8qThva31Tnz0wg4422IdK0dfXoSrbh0N1S71O49BI5gU+UgXBXGH0xum3mRJWSiyFqFYK0axnI1i4lGkh1Ec9KDYdQKFXYehthwEImn6b/ASUDGtJ0JSchnA979KIiJ4Ozt6dVxthPN4aj8WABBkBUpRKXRHMdqlfDRGHdjtU+HSOcCH2AIg1kwTeyLv6CIbxhTZUVVkx5huQ1LiUJgRYTD+DjCDwmCcIUSESEdHQhSkCeHm7shIS0vaKeDj8NnZkCoqII0YEXutqIA0ogJSeTksitLncXoogs83NGBP9RGAAM0h4epFVRgxsSBpv3AkbEY6Es1H4rZ0Q3TTYRNtKLYWo0grir1ai1As56LIiKA46EOx9yS0rhbgRD3QvhMInuK8vATkjgTyRgIFVcDwK7s7tvbvoXoRw0DnsSMp/UWCnvRGSsrKAfKGwa0V4DCXg/0hGw7pWiwi0yvwI1g4VBZYk4xIVZEdZbkaeNZHhME4ZzCDwmD0QdTv7zEhCZGQcHMzoh5Pn8dxsgxp+PBeRiS2fjbPpTlyoBPVrx6Auz023XzBpSLUq9yojv4P1n+RbEQ6g+mHvfZGFVQUW4tjkY+4+Yi/V/NRrBuwuVuBjnqgow5orQHa6wH3kVOf2FEG5I3qWfK7Xx1lgKV/Q2RDfh9ONseiIScPNeFEcyM6Dh9CxDBS9uUsFgi5xQjYi9Em5qLOyEKdkYUgr8Z28CfuC1TkxYbvxptnqortqGDTuzMYQxJmUBjfasgwoB892h0F6TYg8SaZtvRPdQXQ0yTTKxIiV1RAuOiis5p11af70OhsxFHv0Zjh6DqJyGd5cDQOBwB4pE5sG/k6jigHgS/7Po/CK2bko8halBQFiS92wQYu0Am018VMyMl6oOOz2PvORiCS2l+jJ4FsIH80kDc6FhHJGxVbz60ERLXfeokInvaTvTquNsYehpcGTlISOq06cFB3oFPMQcTSXY3FA1d87Mm7o4tssYhItxFh84gwGOcXzKAwLniICJH29tTmmKYmhA8fThq22xs+JyclEiKPGAGxvPysJzjrDHai0dmIRlcjmlxNaHA2oNHViDZ/z425rGscZjXeBkc4FnGpLfoEXwz/H3Aiocxalmw6ekVBHLKjp49E2BczHO11QMMXPRGRjnogmDpleo9wudt8jOw2IqN6jEg/hvcSEYxQCH63CwG3C36PCwG3GwG3C56OdrO/SMjnS38CWw58tkIcs+SgIeJAm5gPt2BP7jQrA/k2GWPi/UTMETQ2ZClsZlUG43yHI+rjKVXnCLfbDYfDAZfLhaysrHOdHcZ5RNTnizXF9GqOCTc3p30AXhxOlnuiIAmREKmiAnx29lnlhYjQ5m8zjUiDqwGNzpgh6QqlPv8mdhAwTBiO6YduRP7hUQAAi8NA6fUCRo6PGZJcJTe1g2Y0AjgPAR0NPRGR+OI+eopcckB2YpNMQkTEUZrUJEPRKIJ+X8xsdJuOgMeNgNudtB57HzMi6UbNpGCxIGwvRLuUj2Zy4LiQh3YpDyE+uT9OliKgqjg2fLfKHDljQ55t6MyCy2B828n0/ZtFUBjnFaTrCU0yCZGQ5mYYJ070fSDHQRw2LCUSIlVUQCguPusH4UWiERzxHjGNSKOrMWZE3E0IhIJQDCsU3QbFsELVrSgxJqBStyGfK0QuCmCLZEPWrbCEBBh+IGp0/1/ggInXlmHajZUQJT42cZivHWjZ3mM+2rtfu5pO3SSj5nY3yYwyIyIRRwUCYj4CgZ4oR6DLDf+h4wi4DyYbDo8bAY8bFE3/fJlTwouIyhp0UUPAosLHyegkGcf5HLRL+eiUchDleoyQKvIY2x0RGZPQYbUoiz30jsH4tsEiKIwhidHVhXBjY2yoblNTLCLSnyaZ3Nzk0TEVsWjIQJpkACCkh1B/sgkNx5tx5EQrjnecRIfTBZ87CDGsQDVsphFRdCsUwwY50v/+GInkFfG4+qouFIvfdBuRulh0JJS+SYYIMHgNfttIBLRy+OViBPhcBDg7/FEJgUC4x2h0RzhC/j6aVk4DJ6sgWYMhaggKKnycCjckdEVEuEhGgFcR4FUELQoCvAqdE9LOZSLxFlQWWJPmEqkqsqM0h82uymCcr7AICuOCgcJhhFtakg1I9xJx9d0/glOUhCaZnkiINHx4v5tk9HAEQa+OoFdHwBtGwBN773b7cLKzE06XFz5PELovCgR5iGEFFvAAJADDUYThKOpHOhwHKDYBispBlSNQpDBUwQeF90BFF5ToSahGGxT9CNRgMxS0Q0AYwW0COg0R/oiIgCEiEFERiGTBL+QiYMlGgFT4DQGBUBQBfxCGObTZ3b30L3O8ZgNkKyKSFSFBhd+iwAMZXVEJ7YYIN2TTbAR4JSnakQ5JsKDAJuMim4R8mxxb7D3v82wSirIUlOey580wGIxTwwwKY1CJd1DtbUJCzU3QjxwFIpE+jxVKLoJcMSLWLDNiRKxvyIgRKU0y0UgUQZ8Bl1dH4ERXt+nQEfSGu191c1vAG0bQq8MIn665QoAFNvSOuRhCGFAikDQOVqsF2RqPXDkKlfdChRMKOqAax6Eax6CEWiD7D4EzYv1fKAwEgwJ8ugSvIcFjyOgyJBzWZXgNCV6jEF6jFH5DAuFUUYQoEmYVM7EIIgSrHZxiRUS2IixoCPAKvJDhIhkdhogTugAP5O4oh9z3TK08gO5+pqrIJ5mMfJuMApuEfLucsC22bpcF1hTDYDAyAjMojIwQDYVifUKamhBu7jYh3YbkVHOGWDQtxYBII0ZAGj4chkWCtysEb1cQnV0heDuD8DW64Pe0x0yHL2Y4Qn4DOIuGyghnICh4ERB9CIpeBAUfgoIXnGLArlmQqwDFsoEyPoRRcKMk3ArBfxzwnog1twQQWwDoUQt8Rsx4uHQZR7vfe41SeHUJ3ogCnyHCiPY/aiCqGkSrHZxqA8lW6IKKoKDCyylwkYzOiIiTuoC2sAAvp6Q2pxDis7PH4BALACE2XXtFH1GOfJuMgoR1q8yqCQaD8feH1TyMfkNEME6c6ImCJERF9KPpnwALILmDarcJsZRVIJxTiqBFg7crjPauILzOELwNIXh3uOHt2oFwoO++JungVSAqhxEU/fBanOjkTsJjcSIoxoxH/DXQ/VogEEaAx8iwjosDXlT6nKjUDThCUaB7ZvYoAX5DhM+Q0WxI8BoyfHo2PEYhfBEF3ogGryEiqPc/asBrNvBWB6JqFnTFjqBog5fX0AUVHaSiTRfRGuJhIKE5JdK9pJkxPr6bQxVjkQybHItuWBPex6McNhkFdhmKyOYDYTAYQxtmUBgpRAOBnmfJ9Gqaifr9fR5nsdshjRgBoWIEIsNGI5xXjpAtH0HeDr8nAm9XEJ6uELw7gghtCwCoO21eJFWALUeGli1CzOLAWQ14BCfajRYc05twKNyIRqMFHsED4lKbbXgilOkGKnUdI3UdIwI6Kt06KsIGhIgFXqO7eUWPNbHsMBR4YYfXUODVBfhCffuu1MRERNQshGUb/IINHkvMdLRHFbgsGny8FT5e65lYDIhNLtbHzPgcB+RoUo/p6BXtKEhYz7PKbDZUBoNxQcEMyrcUikZhHD+etm+IcSz9w9YAICqIiA6vQqS0CnphBcJZRQjJsU6bPm8UXmcIAbee0E+zq3tJxSIBvD0K0nREVC9CkhN+oQMe4QS6+Da0863o4txwR8MIxdtwevsjDoAISFHCiLCOSl3HiJCBMh9QGLDAFuQRMGR4UQgv2eAzFHwRtmBrkKAb/Rs2S+AQEq3wCVa4LRo8Fg0+wQovb42Zju73YYt0yqfvyoIFhVYJOZqEXKuEbE1Ebpr1XKuEApuMXKsEgXUkZTAY31KYQbnAifp8Zl+QeP+QUPckZhQIJO/LWRCWshDKGoFwzjAYxZUIZ1+EkJqLAGeFPywg4I/09Pc42b2kCQNEeQNhxYuA7IJH7IRT7ECX1A6v5IRPcsIrOxHmAzhlX1BCUt8SwQDywkCFDyj1A0UhGQ7dCiViBRkKvCELvIEI/EEdBwEc7POkPR1zgxapO7JhhVdINhy+7nU/r4K4ZKMgCRbkahJyrBLKrSJytJjRyLFKyNVE5CQYj9g2iU2zzmAwGGcAMyjnKUQECgQQcbkQcTrNV+PEiaSoSPx5MgQOYSkLQTkHISUHobwrEFRzEXJchIA1D0HeDj2qIMUxhJDQ7yF2Yzc4HT7JCZ/shLfbbHilLnjlbvMhdSEk+HtORQAf5SAZHETdgqwQUOLhkBWWYNM5WHUOisFBNgQIEQl8VAQXEQGDRzRiQVQHIkYUFE1ua/EjMaCSPFGZwfHw8VqK4UiMevh4DYZFhMRbkNNtMnKtEsqtEnI00TQgseiG1L0ei3KoIs9GqzAYDMYgwgzKECAaDsdMhtOJqMsFI+F9ovmIOLtNSPc2hMOIWEQYggZdiE2epYs2BOVshORiBHPHIVSSg4CSg7DkAE41h0V3a0eEM+CTXN1Gwwmv1Am/0IWQ0IWwxQ2d84IoCE3nkKUDNp1DnpdDqW6BrFsgGhwEQ4XFsAIRARThEYlYAOrfzdxA4sCT5GhHfIufV5MjHonNLJINYlY2rPYs5FhjzST5VhGjteSIRo7WY0g0iZkNBoPBGGowg5JByDAQcbtNs2E4nQh3diDY1Y5wZzt0ZxcMZxeiLjfI5QbcXnAeP6BzMAQ1yWjE3se2GYIGXRwGQxgN3abByNZi+4saopa+H4oWmyRYBygEinYhSgEEeSdCfMxsGJwHgA8WCkCIBiFEdYhGBELIghzDgtwIDzJ49IRCeACO7qVvojD9Tq/tHMIWEWGLjDAnImyRELLI3a8SDF4CiQogqbDIsUVQVAiqBlnVIFmtUDUVOVYFwzQJuQlRj3jzipWZDQaDwbggGDSD8txzz+Hpp5/G8ePHMXHiRKxYsQJTp04drOQGDBEhFAnBb/jhDXng72pHsPMkQp3tCDs7YHR1IeJyIepyAS4vOI8PvNsPwRuA6NUhhDjwhtxjMoQeExFf14ViGGIldF6FkStDL5Rg8CKiXNxIGAAZIMReAQNEPe9BHhC6YuuGATLi++sghEEIx2YDoxBAOrg0z04Ruhdryic8gOQIS2KDSsxcSAhbJBi8DEOQERUVkKiAExVAVsDLKgRFg6hqkDQNkmaFao0tVpsdVpsGTRagiTw0SYAm89AkHpooQJV4NgqFwWAwGCaDYlD+8pe/YPHixVi9ejWmTZuGZ599FnPmzMHBgwdRWFg4GEmelmNtDXj97eXgXB5YPD4Ibj9EXwiSNwzZb0D2A4qhQIxo4EmFIajQBQm6IHcvIgxeRMSSDYPPQ4TnEZEtiKgcooUAEOkxFkkmwwuQM2Y04tuiRqzLRD8e9nomnLK/qSCA4qZC0kCyDRZFMyMUkqpB1jQoVis0qw2azQab3QZ7lg32LDscdis0WYDEW1iEgsFgMBiDzqA8LHDatGm4/PLLsXLlSgBANBpFWVkZHn74YTz++OOnPHawHhZY/f+ew9f/8zGiHBDlCMQRCFEQIkjfIPH3g7MAnIUDZ7GA43lwFh6cIIATBFgECZwogRdlWGQFvKRAVDQIihWSZoOsalBUGaqqQlMVaFYVNpsNstUKWbNC1jQIEnsSLIPBYDAGlyH/sMBwOIydO3diyZIl5jaLxYLrrrsO27dvT9k/FAohFOqZHtPt7ueDzs4QXi1EiA+cfkdYAI4HBz72arGA4yyAxRIzDryl2zzwsIgiOEkEL8vgVRWCpkKQrRA1G0TNDkWN9ZlQVQVWTYFVU2HVVGiaAlFWIEgSeIF1A2IwGAwGozcZvzu2t7cjEomgqCj5Wa9FRUU4cOBAyv6/+tWvsGzZskxnI4WxM7+Hg7Ve8KoC0WqDnGWDatdgy9Jgy9aQnWdHTq4NdpvMmjEYDAaDwTjHnPO/70uWLMHixYvNdbfbjbKysoynU1ich3uX/3PGz8tgMBgMBiPzZNyg5Ofng+d5tHVPEBanra0NxcXFKfvLsgxZ7v1QewaDwWAwGN9mMj6uU5IkTJ48GVu3bjW3RaNRbN26FdOnT890cgwGg8FgMC5ABqWJZ/HixbjrrrswZcoUTJ06Fc8++yx8Ph/++Z9ZEwuDwWAwGIzTMygG5bbbbsPJkyfxxBNP4Pjx45g0aRK2bNmS0nGWwWAwGAwGIx2DMg/KQBiseVAYDAaDwWAMHpm+f7O5xRkMBoPBYAw5mEFhMBgMBoMx5GAGhcFgMBgMxpCDGRQGg8FgMBhDDmZQGAwGg8FgDDmYQWEwGAwGgzHkYAaFwWAwGAzGkIMZFAaDwWAwGEOOc/40497E541zu93nOCcMBoPBYDD6S/y+nan5X4ecQfF4PACAsrKyc5wTBoPBYDAYZ4rH44HD4RjweYbcVPfRaBTHjh2D3W4Hx3EZPbfb7UZZWRkOHz58QU6jf6HrAy58jUzf+c+FrpHpO/8ZLI1EBI/Hg5KSElgsA+9BMuQiKBaLBaWlpYOaRlZW1gV74QEXvj7gwtfI9J3/XOgamb7zn8HQmInISRzWSZbBYDAYDMaQgxkUBoPBYDAYQ45vlUGRZRlLly6FLMvnOiuDwoWuD7jwNTJ95z8Xukam7/znfNE45DrJMhgMBoPBYHyrIigMBoPBYDDOD5hBYTAYDAaDMeRgBoXBYDAYDMaQ45wZlI6ODhQWFqK5uflcZWHQ+e1vfwtZli9YjR0dHVAUBb/4xS/OdVYGhQtdHwDcdNNNsNls7Bo9T+no6IDdbse11157rrMyaHwbrtELvQxXr16NG2644YyPO2cG5cknn8SCBQtQUVFhbnvkkUcwefJkyLKMSZMmpT1uz549uOqqq6AoCsrKyvCb3/zmjNN+++23MXv2bOTl5YHjOOzatStln2AwiAcffBB5eXmw2WxYuHAh2trakvZpaWnB/PnzoWkaCgsL8eijj8IwDPPzw4cPQxAEHD58GACwe/du3H777SgrK4Oqqhg3bhz+8Ic/pKT98ccf47LLLoMsyxg1ahReeeWVM9LX2dmJhx9+GFVVVVBVFeXl5XjkkUfgcrnOKP+ny8uTTz6J66+/Hs8//zxcLhc6Ojowd+5clJSUQJZllJWV4aGHHkp5rtJA9QHAj370I4wcORKqqqKgoAALFizAgQMHBlVfIh0dHSgtLQXHcXA6nRnXF4eIMG/ePHAch3fffTej+gDAbrdD13Xk5OSY2ziOS1lef/31jGu8+uqrU9K5//77M6qxrzJ85ZVX8J3vfAeKoqCwsBAPPvhg0jkzUc8AwP79+3HjjTfC4XDAarXi8ssvR0tLi/n5QOuZJ598ErfeeisOHDiATz75BK+88kra8uM4DidOnOjXd9Yfmpub+0znzTff7Ffe+5uXdNfol19+iWuvvRbZ2dnIycnBnDlzsHv37qTjMlGGXq8XDz30EEpLS6GqKsaPH4/Vq1cn7ZPpMgSArVu3YsaMGbDb7SguLsZjjz2W8r1lQl9bWxvuvvtulJSUQNM0zJ07F3V1dRnVBwD33HMPvvrqK1Nfv6FzgM/no6ysLNq+fXvS9ocffphWrlxJP/jBD2jixIkpx7lcLioqKqI77riDamtraf369aSqKr3wwgtnlP66deto2bJl9OKLLxIAqqmpSdnn/vvvp7KyMtq6dSvt2LGDrrjiCpoxY4b5uWEYdPHFF9N1111HNTU1tGnTJsrPz6clS5YkaVy0aBHdcsstRES0Zs0aeuSRR+jjjz+mhoYG+tOf/kSqqtKKFSvM8zY2NpKmabR48WLat28frVixgniepy1btvRb3969e+nmm2+mjRs3Un19PW3dupVGjx5NCxcu7Hf+T5eXxDKcMmUKrVy5kjo7O2nVqlX05ZdfUnNzM3344YdUVVVFt99+e0b1ERG98MILtG3bNmpqaqKdO3fSDTfcQGVlZWQYxqDpS2TBggU0b948AkBdXV0Z1xfnd7/7nZnOO++8Y24fqD6inmt07NixSfoA0Nq1a6m1tdVcAoFAxjXOmjWL7r333qR0XC5XxjT2VYbPPPMMlZSU0J///Geqr6+n3bt304YNG8xzZqqeqa+vp9zcXHr00Ufpq6++ovr6etqwYQO1tbWZ+wyknknU97Of/YxuueUW8vv9Sd9na2srzZkzh2bNmtWv76y/GIaRks6yZcvIZrORx+PJSPkRpb9GPR4P5ebm0t13300HDhyg2tpaWrhwIRUVFVE4HM5oGd577700cuRIqq6upqamJnrhhReI5/mk6yXTZbhr1y6SJImWLVtGdXV19PHHH9PYsWPppz/9qXnOTOiLRqN0xRVX0FVXXUV/+9vf6MCBA3TfffdReXk5eb3ejOhLJK7vTDgnBuXNN9+kgoKCPj9funRpWoOyatUqysnJoVAoZG577LHHqKqq6qzy0dTUlNagOJ1OEkWR3nzzTXPb/v37CYBpqjZt2kQWi4WOHz9u7vP8889TVlYWhUIhU+O2bdtIkiTy+/1p8/DAAw/QNddcY67//Oc/pwkTJiTtc9ttt9GcOXPOSmOcN954gyRJIl3X+5X/0+UlsQyXLVtG3/3ud9Om+4c//IFKS0sHXd/u3bsJANXX1w+6vlWrVtGsWbNo69atKQYlk/pqampo2LBh1NrammJQBqqPqOd32Ftf77R6kymNs2bNon/913/t8/PBKMPOzk5SVZU+/PDDPtPNVD1z22230Z133tnn5wOtZ9avX2/q66ueOXHiBImiSOvWrTO3DdZvcNKkSXTPPfeY64N1jX755ZcEgFpaWsxj9uzZQwCorq6OiDJXhhMmTKDly5cnbbvsssvoF7/4BRENThn+7Gc/oylTpiSluXHjRlIUhdxud8b0HTx4kABQbW2tuS0SiVBBQQG9+OKLGdGXmL/T3QvTcU6aeD755BNMnjz5jI/bvn07Zs6cCUmSzG1z5szBwYMH0dXVlbH87dy5E7qu47rrrjO3jR07FuXl5di+fbuZl0suuQRFRUVJeXG73fj6669NjVOmTIFhGPjiiy/SpuVyuZCbm5ukMTHd+Hnj6Z4tLpcLWVlZEAShX/k/XV4Sy3Dq1Kn429/+hlAolLTvsWPH8Pbbb2PWrFmDqs/n82Ht2rUYMWKE+RTswdK3b98+LF++HOvWrUv7MKxM6fP7/Vi0aBGee+45FBcXp01nIPqAnt9huvJ78MEHkZ+fj6lTp+Lll19Oenx6Jsvwz3/+M/Lz83HxxRdjyZIl8Pv9GdOYrgw3bdqEaDSKo0ePYty4cSgtLcWtt95qNsPGzznQeiYajeL999/HmDFjMGfOHBQWFmLatGlJzXQDrWc2btxo6uurnlm3bh00TcMtt9ySpC/Tv8GdO3di165d+OEPf5iUzmBco1VVVcjLy8OaNWsQDocRCASwZs0ajBs3zuwykKl7xYwZM7Bx40YcPXoURITq6mp88803mD17tqk702V46NAhKIqSlA9VVREMBrFz586M6Yv/3hPTslgskGUZ//d//5cRffFyTtTX170wHefEoBw6dAglJSVnfNzx48eTvgQA5vrx48czkrf4uSRJQnZ2dkpa8XROl5e4Rk3T4HA4cOjQoZR0PvvsM/zlL3/Bfffdl5R2uvO63W4EAoGz0tPe3o7//M//7Fc68c9Ol5fGxkazDEtKShAOh83jbr/9dmiahmHDhiErKwsvvfTSoOhbtWoVbDYbbDYbNm/ejA8++MD8wQ6GvkOHDuH222/H008/jfLy8rR5ypS+n/zkJ5gxYwYWLFhwRun0V18gEDCv0d7lt3z5crzxxhv44IMPsHDhQjzwwANYsWJFxjUuWrQIr776Kqqrq7FkyRL86U9/wp133pkxjenKcM+ePYhGo3jqqafw7LPP4q233kJnZye+//3vIxwO9zvd03HixAl4vV78+te/xty5c/HXv/4VN910E26++WZs27bNPNdA6pmmpiZTX1/1zJo1a7Bo0SKoqmpuG4w6Jm4QZsyYcdp04p/1Jy/prlG73Y6PP/4Yr776KlRVhc1mw5YtW7B582bzD1im7hUrVqzA+PHjUVpaCkmSMHfuXDz33HOYOXOmea5Ml+Hw4cPx2WefYf369YhEIjh69CiWL18OAGhtbc2YvrjRWLJkCbq6uhAOh/Ff//VfOHLkSFI6A70XxjnVvbAvzolBCQQCKQ7xQiNRo6qqSf8MAaC2thYLFizA0qVLTTc+GLjdbsyfPx/jx4/Hf/zHf2TsvMFgMEkfAFPj73//e3z11VfYsGEDGhoasHjx4oylm8gdd9yBmpoabNu2DWPGjMGtt96KYDCYkXOn0/fUU09h3LhxSTfRwWDjxo346KOP8Oyzzw5qOvFrtHf5/fu//zuuvPJKXHrppXjsscfw85//HE8//XTG07/vvvswZ84cXHLJJbjjjjuwbt06vPPOO2hoaMjI+dOVYSgUgq7r+OMf/4g5c+bgiiuuwPr161FXV4fq6uqMpAvEIigAsGDBAvzkJz/BpEmT8Pjjj+P6669P6WR5toTD4aR6tHc9s337duzfvz8pqjEYBAIBvPbaa4OSTrprNBAI4Ic//CGuvPJKfP755/j0009x8cUXY/78+WdtsPpixYoV+Pzzz7Fx40bs3LkTzzzzDB588EF8+OGHGTl/ujKsrKzE008/jfvvvx+yLGPMmDH4h3/4BwBIG7U9W0RRxNtvv41vvvkGubm50DQN1dXVmDdvXkbTSSTdvfBUnBODkp+ff1ZNMsXFxSm9h+Pr6cLgZ0txcTHC4XDK6Iy2tjYzndPlJVFjZ2cnCgoKzP327duHa6+9Fvfddx9++ctfpqSd7rxZWVlJ/4L6g8fjwdy5c2G32/HOO+9AFMXTphP/7HR5KSwsTNIHwNRYXFyMsWPH4sYbb8QLL7yA559/3nTkmdTncDgwevRozJw5E2+99RYOHDiAd955Z9D07dixA2+++SYEQYAgCOawwPz8fCxdujRj+j766CM0NDQgOzvbTAsAFi5ciKuvvjoj+lRVNa/R3uXXm2nTpuHIkSNmSDiTZdg7HQCor6/PiMZ0ZVhZWQkAGD9+vLl/QUEB8vPzzdE1mahn8vPzIQhCUjoAMG7cuKR0BlLPFBUVJdWjveuZl156CZMmTUppTs90+b311lvw+/34p3/6p36lE/+sP3lJd42+9tpraG5uxtq1a3H55ZfjiiuuwGuvvYampiZs2LCh32mfjkAggH/7t3/D7373O9xwww34zne+g4ceegi33XYbfvvb35rnGowyXLx4MZxOJ1paWtDe3m5GUuPXb6buhZMnT8auXbvgdDrR2tqKLVu2oKOjIymdgd4LE+l9jZ6Oc2JQLr30Uuzbt++Mj5s+fTr+93//F7qum9s++OADVFVVJQ1BGyiTJ0+GKIrYunWrue3gwYNoaWnB9OnTzbzs3bs3aejeBx98gKysLIwfP97U2NDQgGAwiEsvvRQA8PXXX+Oaa67BXXfdhSeffDKtxsR04+eNp9tf3G43Zs+eDUmSsHHjxpSI1enyf7q8JJZhbW0tSktLkZ+fn5KP+D/J+M0tU/p6Q7EO30npZFrfhg0bsHv3buzatQu7du0ym64++eQTc5hqJvQ9/vjj2LNnj5lOfBj873//e6xduzYj+oCe3+Gpyg8Adu3ahZycHPPBYoNVhnGdF110UUY0pivDuXPnAoj9nuN0dnaivb0dw4cPN8850HpGkiRcfvnlSekAwDfffGOmM9B6ZubMmaa+3vWM1+vFG2+8kTaqkenyW7NmDW688caUG89gXaN+vx8WiwUcx5nHxNfj9U0mylDXdei6nhJN4HneTGcwy5DjOJSUlEBVVaxfvx5lZWW47LLLMqYvEYfDgYKCAtTV1WHHjh2mIcrEvTBOb339ot/daTPInj17SBAE6uzsTNpeV1dHNTU19KMf/YjGjBlDNTU1VFNTY/YEdjqdVFRURD/4wQ+otraWXn/9ddI07YyHjnV0dFBNTQ29//77BIBef/11qqmpodbWVnOf+++/n8rLy+mjjz6iHTt20PTp02n69Onm5/GhVbNnz6Zdu3bRli1bqKCgwBxaFde4cuVKqqysJKLY8N+CggK68847k4bnnThxwjxvfNjdo48+Svv376fnnnvujIcAulwumjZtGl1yySVUX1+flFbvYbh95f90eUksw7vuuovuueceev/99+nll1+mvXv3UlNTE7333ns0btw4uvLKKzOqr6GhgZ566inasWMHHTp0iD799FO64YYbKDc31xzCORj6elNdXd3nMOOB6EsH+hhmfLb6iHqu0X/8x3809W3cuJFefPFF2rt3L9XV1dGqVatI0zR64oknMqqxvr6eli9fTjt27KCmpibasGEDVVZW0syZMzOmsa8yXLBgAU2YMIE+/fRT2rt3L11//fU0fvx4c4hqpuqZt99+m0RRpP/+7/+muro6cwjtJ598Yu4zkHomUd/atWvNeoaI6KWXXiJFUZKuzf58Z2dKXV0dcRxHmzdvTvlssK7R/fv3kyzL9OMf/5j27dtHtbW1dOedd5LD4aBjx44RUebKcNasWTRhwgSqrq6mxsZGWrt2LSmKQqtWrTL3GYwy/M1vfkN79uyh2tpaWr58OYmimPT7z5S+N954g6qrq6mhoYHeffddGj58ON18881J+wz0Xhin9zXaH86JQSEimjp1Kq1evTpp26xZswhAytLU1GTus3v3bvrud79LsizTsGHD6Ne//nXSOeI3jcRjerN27dq06SxdutTcJxAI0AMPPEA5OTmkaRrddNNNSQaGiKi5uZnmzZtHqqpSfn4+/fSnPzWH8cY1jhs3jn71q18RUWz4dLp0hw8fnqJh0qRJJEkSVVZW0tq1a9Pmvy/i38HpvsvT5f90eZk6dSqtWLGCHA4Hbd++nT766COaPn06ORwOUhSFRo8eTY899lhKJTlQfUePHqV58+ZRYWEhiaJIpaWltGjRIjpw4EDSfpnW19f3nGl96ehtUDKhj4hoypQppCiKqW/z5s00adIkstlsZLVaaeLEibR69WqKRCIZ1djS0kIzZ86k3NxckmWZRo0aRY8++mjSPCiZ0JiuDF0uF91zzz2UnZ1Nubm5dNNNNyUNWSXKTD1DFJv7aNSoUaQoCk2cOJHefffdpM8HWs/E69HZs2eb9QwR0fTp02nRokV95itT1+iSJUuorKws5froT977m5fe1ygR0V//+le68soryeFwUE5ODn3ve99L+Y1mogxbW1vp7rvvppKSElIUhaqqquiZZ56haDRq7jMYZXjNNdeY9ei0adNo06ZNKXnLhL74NBCiKFJ5eTn98pe/TBoanAl9cXpfo/3hnBmU+L/rvi7ss+Xll1+mUaNGmf+GziXxfwO9I0UD5YknnkiaeOlc8d5771FxcTFdd911GT0v0/f348c//jFZrdaM/w6HisbBKsOhUs+89957VFlZSQUFBeR0OjN23qFSfkSDd41e6GU4VPQREdXW1lJhYeEZ6xP63xiUWebPn4+6ujocPXrUnLsiE2zatAlPPfVUUofQc8WYMWPwL//yL/B6vRntI7N582asXLkyY+c7W+bPn49Zs2alTE8+UJi+vx+XXXYZsrOzM/47HCoaB6sMh0o9M3/+fLz//vuYMWMGHA5Hxs47VMoPGLxr9EIvw6GiD4gNj163bt0Z6+OIEmZgYjAYDAaDwRgCnLOHBTIYDAaDwWD0BTMoDAaDwWAwhhzMoDAYDAaDwRhyMIPCYDAYDAZjyMEMCoPBYDAYjCEHMygMBoPBYDCGHMygMBgMBoPBGHIwg8JgMBgMBmPIwQwKg8FgMBiMIQczKAwGg8FgMIYc/x98F6jcSOLCqgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "solvers = [\"gurobi_direct\", \"cbc\", \"appsi_highs\"]\n", - "\n", - "SolveInstances([(n, 10 * n) for n in range(10, 100, 10)], solvers, 2023).plot()" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.2" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "00d9cb41f8964f8aa7f307ed4d16183d": { + "7876f2c265164fa29d9f57b3716f5850": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -927,7 +6745,87 @@ "width": null } }, - "021081d1cc6148558bdd96f90ad9c3ea": { + "789de8c9e2cc49088ad9b308e4f47a00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2bf7fae58c145c39794a6eb277cd2bc", + "IPY_MODEL_0600de01691649d3be4eed2c39d760c2", + "IPY_MODEL_e6b404556e6f4d50833bd404bcaa1f32" + ], + "layout": "IPY_MODEL_59d580cc363b4a999494937df36a1ff0" + } + }, + "78ef2f297ae4460da045363bb6092ed3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa4069965d534138ac847d5260b1d5bc", + "placeholder": "​", + "style": "IPY_MODEL_cb28ea11229048639cc44aede8da2acb", + "value": "100%" + } + }, + "7933f9200c4e4b10b838a900407119a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39460fbe052d43bca951e6b2c2cc7bb9", + "IPY_MODEL_ee3b059fb8684fce9576f7e4d39e3842", + "IPY_MODEL_8498a2d4766649a59e91009418d25a88" + ], + "layout": "IPY_MODEL_68a5a12069c145cfbac9b1c73573fd5c" + } + }, + "7a6ec07624f84daa8c9d46c21208f070": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7a729f255a8b44f3a290fa6842a954de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -979,7 +6877,74 @@ "width": null } }, - "0440d71f4f4f4e2da08f0f782c2f555c": { + "7b1ae36ed08647ccace82fdeee3f3e24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2961a36fd7b493e94f788fd8c59315a", + "placeholder": "​", + "style": "IPY_MODEL_4b246903555445ec94cb5c32d2124b3a", + "value": " 2/2 [00:02<00:00, 1.28s/it]" + } + }, + "7b2d5b467e8f470b909fa4e9362e6937": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b5e382d691e43789122b23044a6a194": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7cf53e1b34ee45db8432a23ac32ede32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7cf700de12ab411da5ac9cdb1d0d4b19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -995,15 +6960,30 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9067a2d4cba0410cb8614e1f3de8640c", - "max": 6, + "layout": "IPY_MODEL_40d4ab0078304ecba831ab77bb9fb84b", + "max": 2, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_3731e95e109342e798ec0ebaa6cac35f", - "value": 6 + "style": "IPY_MODEL_468332aff46e42e49d0e20858d0a2026", + "value": 2 + } + }, + "8025ba94d49640a0ab26b58aa73eb694": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "091a1aa65e5342528d39652e260a6884": { + "80b50f091f824bf581da1f4acc14a7b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1018,14 +6998,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b925e6b7184e4770922ea82c8f2e9c57", - "IPY_MODEL_0440d71f4f4f4e2da08f0f782c2f555c", - "IPY_MODEL_138e95596bc24c70ab4622807cde60ea" + "IPY_MODEL_2b9c9f47ab9a4bec9bb81e30451d6284", + "IPY_MODEL_64d77d0bec484bd09bdbd989f96f1106", + "IPY_MODEL_810da8e965b74ca48e9be524f6172625" ], - "layout": "IPY_MODEL_142c446f870e4fe1b5e3a36c89b7f130" + "layout": "IPY_MODEL_8223d0cb5665477ba0c2273bde5dc066" } }, - "0b0df0238ef34de3b26cc83b6ba4a674": { + "810da8e965b74ca48e9be524f6172625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1040,29 +7020,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ad06c50ca629452881008ba72cf9e2f9", + "layout": "IPY_MODEL_2e582be8221c459e96df73cce70b66eb", "placeholder": "​", - "style": "IPY_MODEL_e0524e24a979466fbde57b816a4d4b03", - "value": " 10/10 [07:50<00:00, 87.26s/it]" - } - }, - "0b5e72aaa0d5469598c568499088aad5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_9143c06ee03641b7bb4919f03d2cc46c", + "value": " 9/9 [00:49<00:00, 8.71s/it]" } }, - "0cb50ac9aa0b43f39f333a081cc0241d": { + "81b2366d9b3a43a6ba5aa9389ca6b178": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1114,7 +7078,7 @@ "width": null } }, - "0d5accf9b2cb4d448599c0b9f550a290": { + "8223d0cb5665477ba0c2273bde5dc066": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1166,50 +7130,23 @@ "width": null } }, - "1294e1e0267f43358ac99effc70128e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5fb634832d144e898d43fe2e2daa3ff8", - "IPY_MODEL_9afae778d42b49a293d000514b231b08", - "IPY_MODEL_c5245f957ad544bd9f6433f03ec80c8c" - ], - "layout": "IPY_MODEL_b1e4298892354b85891bfb7bedae71b5" - } - }, - "138e95596bc24c70ab4622807cde60ea": { + "829f26b3ee6d48629887b83c0e60f983": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b68d54faa7e040809f8bc15ebd57cdbc", - "placeholder": "​", - "style": "IPY_MODEL_42b544df5fe34055a1833157584ab9aa", - "value": " 6/6 [00:01<00:00, 5.07it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "142c446f870e4fe1b5e3a36c89b7f130": { + "82c94dd7d81d45dcb99e536befb198ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1257,63 +7194,32 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "143743b322904ccc80940c79f2372e04": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8337fc4ac16946698e312ebcf3ac04ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_985eafb953fa46499539d986161ae925", + "placeholder": "​", + "style": "IPY_MODEL_e9f02fa8c02846ec92c0c98354f7b57b", + "value": "100%" } }, - "157d9476ca224b918ed3feb5b42343d4": { + "83e4a6ff48f2495e95e4183afafd9466": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1365,7 +7271,7 @@ "width": null } }, - "158ba9a59e9c4e48915316c760f74ba6": { + "8498a2d4766649a59e91009418d25a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1380,37 +7286,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0cb50ac9aa0b43f39f333a081cc0241d", + "layout": "IPY_MODEL_81b2366d9b3a43a6ba5aa9389ca6b178", "placeholder": "​", - "style": "IPY_MODEL_fefb3634c68c4076a6811f22c947008c", - "value": " 4/4 [01:40<00:00, 23.34s/it]" + "style": "IPY_MODEL_86bfe1cdddb74c0ca0e3082a4dc835ba", + "value": " 2/2 [00:01<00:00, 1.39it/s]" } }, - "16816948aa9847e78f1c6df5abcacd9b": { + "86bfe1cdddb74c0ca0e3082a4dc835ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b019a74d534640f0817ec9147225f0be", - "max": 6, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_51b15f7e45c14600933168c0474fdcb5", - "value": 6 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "168ea24296fd4eb2887651985ffcb9d2": { + "89a68d44723140ba827948a9ba93ef17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1425,7 +7322,7 @@ "description_width": "" } }, - "16fbbc9c22f1495fa65e8229dd41d44e": { + "8a5e9cff650e4e90a4f37a67e6722846": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1477,7 +7374,22 @@ "width": null } }, - "17cb274207ad48a6a47ee2352563b1a8": { + "8a609b1eb4c54c099171188cadf8682d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8bd3b2e672654723a006cbec5120a8f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1525,11 +7437,48 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "18ccad2913864576bcd0b964dc8bc43b": { + "8c7086a7cfd7460aad559245cef7ff77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_625f74db8a634c0b8cc312bc9d105f5e", + "IPY_MODEL_1d0ddd9712e844d2a296bb609ec3fff5", + "IPY_MODEL_dda03857c5944c80a6b0fdff79df4847" + ], + "layout": "IPY_MODEL_3ea18ef2302340c684ea614cb1e0cd18" + } + }, + "8d04329a03f148018cc3cf13225d5c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8e0e4cf35e4b4aa1bbf59a599150b11a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1577,95 +7526,87 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "1a2ab46a85df499096c06ba0c4688a4b": { + "8ee3a4a6374e4af99e6f694eb9266e20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8194079f3cfe4a0dbf691efe8b3c0618", - "placeholder": "​", - "style": "IPY_MODEL_6ebe835cd1b54b99af24a9197c154de3", - "value": " 4/4 [00:02<00:00, 1.59it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1a63e06fa2f543ed8548d94ebc348919": { + "8f2a530dba02479a987a038a5c8c5a93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_00d9cb41f8964f8aa7f307ed4d16183d", - "placeholder": "​", - "style": "IPY_MODEL_b778180aca804c2da00f148edab80425", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e52bfecd1d514aa4886233163d78d8ea", + "IPY_MODEL_679832d3146d4cfa80b12460d797960f", + "IPY_MODEL_640afb7ef22a4a28a41dcbae77e864e3" + ], + "layout": "IPY_MODEL_29b918fdb4a545f48498a665d15aa557" } }, - "205fd1a8b8644363aecef2f8637d84f7": { + "8f50142f64244cdb8ba137f5e29fa70f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f2b6c0c28db4465d9e1f8c44c9aa065a", - "placeholder": "​", - "style": "IPY_MODEL_a965f02d06e24c73bd0ef2108213f2ed", - "value": " 4/4 [00:19<00:00, 4.70s/it]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4251d033b4714dd690e7488f3f468ebb", + "IPY_MODEL_5fe315366e2d4065847ecb5620e5f6c4", + "IPY_MODEL_afdc6fb0d6b4440da5b1fd09dd4d8c19" + ], + "layout": "IPY_MODEL_9a7c634d7e0646c1be57ed33bcb6efd7" } }, - "23a7f7f0a56b4803bdd362e28e850f0f": { + "9003370e7ac644aea13745f95cdbcc40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e2a583e25cf34acdb67045ccfa8b34b9", - "placeholder": "​", - "style": "IPY_MODEL_bb192f5f7268474eb34e779516cbe788", - "value": " 4/4 [00:04<00:00, 1.06s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "25d7fbee7d214cb3a6f3859b1d602f95": { + "90c52e72a18d4f7aa519a4b03a83db60": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1717,43 +7658,7 @@ "width": null } }, - "26d091601ccb4b668d4a7fc2f4213b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fae047c7917346c5af046c878eda54a7", - "placeholder": "​", - "style": "IPY_MODEL_168ea24296fd4eb2887651985ffcb9d2", - "value": "100%" - } - }, - "26e1f80239a9433f8673eb3651a1c93e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "272c8c492db54d20b94745cfa7ebeb86": { + "9127974355fa44b09e35fb3c9a0ef86b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1805,7 +7710,7 @@ "width": null } }, - "2aa58354415e4e13aa2c6cd7c2b08807": { + "9143c06ee03641b7bb4919f03d2cc46c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1820,7 +7725,7 @@ "description_width": "" } }, - "2b6b07a676324e7599771c3cd6816cab": { + "9330af137bf244f889e247d25e6e558c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1872,7 +7777,28 @@ "width": null } }, - "2d7bcede062c4474a611f1f7a67d747c": { + "934fd49155fd45faa1fe0200ff81c8c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4c8af45c03994d5585834ba8e889c50b", + "placeholder": "​", + "style": "IPY_MODEL_aac100fba4be415cbe0973b16a8680ec", + "value": " 2/2 [00:13<00:00, 6.30s/it]" + } + }, + "93ba0848c35b4259bff79e47a62f84b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1920,11 +7846,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "2f9940b155ab464c9f6d66ae9af42c87": { + "93c5f0b7798848b4b33ad22461794d18": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1976,7 +7902,83 @@ "width": null } }, - "3665b1f0c3bf48779268310d1f314cb3": { + "93dcdf6814f741188da28a72a8835cd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a5e9cff650e4e90a4f37a67e6722846", + "placeholder": "​", + "style": "IPY_MODEL_9ab7930ae7bc4b589fd109d4151959e4", + "value": " 2/2 [00:06<00:00, 3.13s/it]" + } + }, + "943bca12541347c5bbea3d35a9c2496a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94f97d042e9640af942dc5eedc46e8b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "957e6b15bb47489f834c7e824ea2bb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b10d500d3b3c4cb9ad5316404fbed8f8", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b5e382d691e43789122b23044a6a194", + "value": 2 + } + }, + "95a7706b521d4dabbb4af9ac99e29619": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2028,45 +8030,7 @@ "width": null } }, - "3731e95e109342e798ec0ebaa6cac35f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "39581823acd7449783c013ecbe7b7abd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8bf7c217eb6241e5abd3be6de562e881", - "IPY_MODEL_49dd78523993446390c2af3e16fcfa23", - "IPY_MODEL_0b0df0238ef34de3b26cc83b6ba4a674" - ], - "layout": "IPY_MODEL_d60ceba05dc64ae8ba3b091a028d7b82" - } - }, - "39a9563ea3a048b680b5deb901f8c9e7": { + "967ef5059a3b4b808d0b1362b876aba8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2118,22 +8082,7 @@ "width": null } }, - "3baf023d6dea40aa83a06c517f249f9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3c19141cab784881a42abbf678b16c64": { + "96968612455b4cfdbac09f761a8b760a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2185,23 +8134,28 @@ "width": null } }, - "3d0ecb321c554b549270855acbb270c4": { + "96ff01f793f84fdeba69b91246307897": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea6f7a4915814433865c6905d4843057", + "placeholder": "​", + "style": "IPY_MODEL_5c08e1a9afc240debbaaf9536338948e", + "value": "100%" } }, - "42b544df5fe34055a1833157584ab9aa": { + "97584ec732df478c87a7a36cfc933fdc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2216,7 +8170,7 @@ "description_width": "" } }, - "438fad6308fd4423b3c72fc5139f3315": { + "978e1da737f543b1a90fbfde3eb14ec8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2231,7 +8185,59 @@ "description_width": "" } }, - "45d3caf5dbe54265b830ec599133eeae": { + "985eafb953fa46499539d986161ae925": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98694874a8e249d78cde7c8d811747a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2246,13 +8252,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_573e1e5b5fe54ba788b56611a9d34cb8", + "layout": "IPY_MODEL_1cf5564591574664878bed9e60176bb3", "placeholder": "​", - "style": "IPY_MODEL_2aa58354415e4e13aa2c6cd7c2b08807", - "value": " 6/6 [00:03<00:00, 2.50it/s]" + "style": "IPY_MODEL_b278858c80b740e1a9dd1f06c8eebd7a", + "value": " 2/2 [00:07<00:00, 3.83s/it]" + } + }, + "98f88a65d0344c1eac141ae1d785f9ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "46a7460ea1e94a939ad19169fa60204a": { + "996c329766a34c2686553501c096958e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2304,73 +8325,7 @@ "width": null } }, - "49951a7208ca4638813985f1ce70de05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3665b1f0c3bf48779268310d1f314cb3", - "placeholder": "​", - "style": "IPY_MODEL_26e1f80239a9433f8673eb3651a1c93e", - "value": "100%" - } - }, - "49dd78523993446390c2af3e16fcfa23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_25d7fbee7d214cb3a6f3859b1d602f95", - "max": 10, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7fc15ca652004d6a94dfe92df134dbea", - "value": 10 - } - }, - "4fae064098d74daaa9882a5db4787780": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_71b897c1af8e4376ade345f24d1d6d97", - "placeholder": "​", - "style": "IPY_MODEL_dd932f4ba3924564bc33ab2cdb01b506", - "value": " 4/4 [00:00<00:00, 6.52it/s]" - } - }, - "50889efa55e24475ba124e9365bb4110": { + "99823a253a014addb9eca48c2afee8f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2386,52 +8341,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_157d9476ca224b918ed3feb5b42343d4", - "max": 4, + "layout": "IPY_MODEL_35343359cab04e7885ff633c8069a6bf", + "max": 2, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c0f3a124370348519817f7ef993295ba", - "value": 4 - } - }, - "50ba37dd20034f9d97d31057aa33400d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bd0e8851901242b89fd95aab372e16eb", - "placeholder": "​", - "style": "IPY_MODEL_8bd40a139d0c42f1af4b108755404a20", - "value": "100%" - } - }, - "51b15f7e45c14600933168c0474fdcb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_18d0f80e84a1469ead9f82d3bb48913b", + "value": 2 } }, - "520d17284864418d86ac64e0b6b73cab": { + "99c38d42e32f415ba894524a52536328": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2483,7 +8401,7 @@ "width": null } }, - "55371f16b2a74a22b8b94757c40a2f03": { + "9a17ae9b0ed74628a73d345592f3067b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2498,7 +8416,7 @@ "description_width": "" } }, - "573e1e5b5fe54ba788b56611a9d34cb8": { + "9a7c634d7e0646c1be57ed33bcb6efd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2546,32 +8464,65 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "57b0222678f54b5ea97dcf943d35658e": { + "9ab7930ae7bc4b589fd109d4151959e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c81568cfc05430bb94d0bcf5d348ee9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9cf96e7620c64cd88a4258f4a75a2530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eda1e2f17b7f41c0b363b08a38c843fa", - "placeholder": "​", - "style": "IPY_MODEL_7c421da84a0a4fbaaf43ed448bd6633b", - "value": " 4/4 [01:00<00:00, 13.79s/it]" + "layout": "IPY_MODEL_25c3d5dfe949490db446a02d9b059d19", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_94f97d042e9640af942dc5eedc46e8b3", + "value": 2 } }, - "57f67ff7b8a14165905b4e16ab10d511": { + "9cfc136c44c045c3b472b019eec4c312": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2586,13 +8537,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e94d32723438448481403c36f3b8004a", + "layout": "IPY_MODEL_d6ccbdb27c464881a1f9e10341916ba0", "placeholder": "​", - "style": "IPY_MODEL_f5a1b131fb5d40358ba9120583e7945c", + "style": "IPY_MODEL_007afb7342c74bc2bd0945b9e8c5f0f1", "value": "100%" } }, - "58b2f291ddfa429f8eafc8af5f01a8f2": { + "9fcf9855749b4f19b9a8780d68cdc8fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27cd3760950a44deb7cfaf9e38dc6a7b", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea86851eeae74975a56623b77c8359e7", + "value": 2 + } + }, + "a0da15cab04c40cabde8fd5b7d301777": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2640,75 +8615,96 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "59217a129cdb41aaadb64d142baa7cd3": { + "a33017fd785f429d9021ef56858b0465": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a6388465ec334509ad4b28a1bf68ed45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6efa93c239154d5a8830cc63291a1412", - "placeholder": "​", - "style": "IPY_MODEL_3baf023d6dea40aa83a06c517f249f9f", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_556c5ed9f4bd4c72bdfc12b35af4749a", + "IPY_MODEL_4fba6ac047ee4347b151cba97f6a297a", + "IPY_MODEL_e271a8ab10944015a3be933b24663c7c" + ], + "layout": "IPY_MODEL_16adf58866ef4b12a18098367ec7e97f" } }, - "59d451e950a74057adc62be6c992fbcd": { + "a6b3488dce324c27b7ac47b00cb7afcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cdfce822a83a4cb690e051f55547a956", - "placeholder": "​", - "style": "IPY_MODEL_438fad6308fd4423b3c72fc5139f3315", - "value": " 4/4 [01:05<00:00, 16.44s/it]" + "layout": "IPY_MODEL_1438ec6ec58946c48a8c180ae0a1946b", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3a2f1d392d7d4f1cb1e1b2be6a28dfec", + "value": 2 } }, - "5afe8885e187477989e25fc18382ed6d": { + "a8e76377609d4397a086f7e75f0f1fff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26d091601ccb4b668d4a7fc2f4213b66", - "IPY_MODEL_74f52ba4788f429bbef73ffd4461f17c", - "IPY_MODEL_45d3caf5dbe54265b830ec599133eeae" - ], - "layout": "IPY_MODEL_46a7460ea1e94a939ad19169fa60204a" + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b426e565409e4ea496f566b5f6c083cb", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_457ef66d94164abd8cb7afed6d61f01b", + "value": 2 } }, - "5bef4169fd5144d2a2d817d7fcebf78d": { + "a95b4ab28ca74e2ab235ba2bdb048723": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2756,32 +8752,33 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "5fb634832d144e898d43fe2e2daa3ff8": { + "a9765b6554c84ad4b962f7cd39282bb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2b6b07a676324e7599771c3cd6816cab", - "placeholder": "​", - "style": "IPY_MODEL_96e13bb592014f958949550e9a50b8e7", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96ff01f793f84fdeba69b91246307897", + "IPY_MODEL_f0c70021d6864b7b863708a7585285d4", + "IPY_MODEL_93dcdf6814f741188da28a72a8835cd2" + ], + "layout": "IPY_MODEL_00c04e53247c4fb797e2fcb348c3bf74" } }, - "67b3c775be474f9c83190216329dbf7f": { + "aa6f16444c6940a18f7f6a9870c9927d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2796,29 +8793,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_16fbbc9c22f1495fa65e8229dd41d44e", + "layout": "IPY_MODEL_48a471a2841e4a0fad4d8e3720bd3e5f", "placeholder": "​", - "style": "IPY_MODEL_feb5925001d74a8ca36a3c8e5a1f9a29", + "style": "IPY_MODEL_978e1da737f543b1a90fbfde3eb14ec8", "value": "100%" } }, - "6af7e1e4d8074081930d9799762e12d5": { + "aac100fba4be415cbe0973b16a8680ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "6d5fc0110685479d82ff3ff6e035d267": { + "ab0d3854aefb4e2a8872929c98a39e63": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2866,26 +8862,48 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "6ebe835cd1b54b99af24a9197c154de3": { + "ada1ac7e7a76477486e593e55442895e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "6efa93c239154d5a8830cc63291a1412": { + "add771f12a394c58af97586453413df9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c8293d798dd4615b512899915435b44", + "placeholder": "​", + "style": "IPY_MODEL_ea3554a8554045ec9223b3e134664989", + "value": "100%" + } + }, + "aebde985ee394558a181784bb24ff3d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2933,11 +8951,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "6fde4c9f560540beb63155b3f8295504": { + "afdc6fb0d6b4440da5b1fd09dd4d8c19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2952,34 +8970,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_73f37e4213c944498341948dc991ae63", + "layout": "IPY_MODEL_1c891fe6ac6f4cd4a99c7cdc1c618ccd", "placeholder": "​", - "style": "IPY_MODEL_ce2e370b196c4d5cae29756604e9f4ad", - "value": "100%" + "style": "IPY_MODEL_97584ec732df478c87a7a36cfc933fdc", + "value": " 2/2 [00:06<00:00, 3.11s/it]" } }, - "716f62c6337a410f81350450bab90b5b": { + "b0e5a3f34fa94ee382af945506190cc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_021081d1cc6148558bdd96f90ad9c3ea", - "placeholder": "​", - "style": "IPY_MODEL_80b41ab45243462d9f15fd39ecefa4bc", - "value": "100%" + "layout": "IPY_MODEL_2d69bed4be844104b908c017c22443eb", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f85aadc89bce49c79b16ab574167a7d1", + "value": 2 } }, - "71b897c1af8e4376ade345f24d1d6d97": { + "b10d500d3b3c4cb9ad5316404fbed8f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3031,7 +9052,22 @@ "width": null } }, - "7354a31387c141788f78c33d58047aab": { + "b278858c80b740e1a9dd1f06c8eebd7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b2961a36fd7b493e94f788fd8c59315a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3083,7 +9119,28 @@ "width": null } }, - "73f37e4213c944498341948dc991ae63": { + "b315b2bdfaff427ea5bd76effcfe1477": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0e5bae586834b1a9fd4b76522088c9b", + "placeholder": "​", + "style": "IPY_MODEL_381db092432a43f7aa320c7ed9dc466a", + "value": " 2/2 [00:01<00:00, 1.80it/s]" + } + }, + "b3678115674744cda88561ea1c573378": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3131,143 +9188,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "74f52ba4788f429bbef73ffd4461f17c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed320a06340f49ec950b71980f60d27c", - "max": 6, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f39f38141dfc46c68e755164b0b3efe1", - "value": 6 - } - }, - "7575b6a5339f493c8476d6dd90b4522d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_39a9563ea3a048b680b5deb901f8c9e7", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_7f0fb34aac3e44479e3265257903abdd", - "value": 4 - } - }, - "76305aafcce64b93bac1a58688b20eaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9722e1833e6e402b8678c572769b9f08", - "IPY_MODEL_84d40c3c2e7d464aa6cd47655caa38b8", - "IPY_MODEL_59d451e950a74057adc62be6c992fbcd" - ], - "layout": "IPY_MODEL_896ee03d55034a51aceaeb944db6595d" - } - }, - "7c421da84a0a4fbaaf43ed448bd6633b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7f0fb34aac3e44479e3265257903abdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7fc15ca652004d6a94dfe92df134dbea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "80b41ab45243462d9f15fd39ecefa4bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8194079f3cfe4a0dbf691efe8b3c0618": { + "b369107bece6428fb7aa4a31fb4bf555": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3319,77 +9244,7 @@ "width": null } }, - "821caba881e74562b514598876bcf3da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ca0cb689678447548c26fd572d1cea26", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a4832ce85f6b452691689923b7964475", - "value": 4 - } - }, - "84aee51c02de46648d12fd24ec4d6eab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_49951a7208ca4638813985f1ce70de05", - "IPY_MODEL_50889efa55e24475ba124e9365bb4110", - "IPY_MODEL_1a2ab46a85df499096c06ba0c4688a4b" - ], - "layout": "IPY_MODEL_58b2f291ddfa429f8eafc8af5f01a8f2" - } - }, - "84d40c3c2e7d464aa6cd47655caa38b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_143743b322904ccc80940c79f2372e04", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b5e72aaa0d5469598c568499088aad5", - "value": 4 - } - }, - "85089e185cb641ec8e60a76cb5cd0738": { + "b426e565409e4ea496f566b5f6c083cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3441,22 +9296,7 @@ "width": null } }, - "85ff52418cc14b1b87c331fd6f2180e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "881f92d83e1846fe8ec45808d29a67e6": { + "b67cd5e62a01452391260c93b66d28d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3508,7 +9348,7 @@ "width": null } }, - "896ee03d55034a51aceaeb944db6595d": { + "b763b174fb764631bd4c81bdbb0ef0ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3556,33 +9396,35 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "8ae6a1de510044fc9a7873dfd5818f3f": { + "b8e4b5c864e648f9b84d821cd7113c51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a63e06fa2f543ed8548d94ebc348919", - "IPY_MODEL_821caba881e74562b514598876bcf3da", - "IPY_MODEL_a76ce7d530c34decb8cd5d8f05a0a1cd" - ], - "layout": "IPY_MODEL_6d5fc0110685479d82ff3ff6e035d267" + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dfe5ad2c602e4a87aa3c294c7285c905", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_360c633b95b14b61ae22126a06891e5b", + "value": 2 } }, - "8af5b52d02bb49d0a81f266e7798bb02": { + "b989b18af609490d9f9e1b58961f711d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3598,15 +9440,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_17cb274207ad48a6a47ee2352563b1a8", - "max": 4, + "layout": "IPY_MODEL_335e32a1bdb14773b77219dce136d84b", + "max": 2, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_3d0ecb321c554b549270855acbb270c4", - "value": 4 + "style": "IPY_MODEL_1073687e38144cbf959a02c7a1edc0ef", + "value": 2 } }, - "8bd40a139d0c42f1af4b108755404a20": { + "b9c73d15781a4548824a671183943c8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3621,7 +9463,7 @@ "description_width": "" } }, - "8bf7c217eb6241e5abd3be6de562e881": { + "ba00c6dd28df48c29cad735edab10e99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3633,16 +9475,38 @@ "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_93d83dbeb81a45fda208b272b5adfed0", - "placeholder": "​", - "style": "IPY_MODEL_85ff52418cc14b1b87c331fd6f2180e0", - "value": "100%" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0210e96365904b709f9711521393067f", + "placeholder": "​", + "style": "IPY_MODEL_7cf53e1b34ee45db8432a23ac32ede32", + "value": "100%" + } + }, + "bd419397f35e41b181e9d27801cf0ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_add771f12a394c58af97586453413df9", + "IPY_MODEL_3906cd318d414f438b8ae30664e8e510", + "IPY_MODEL_433f368380d54ce6b98873956dbc91a1" + ], + "layout": "IPY_MODEL_2ca39efc251640a388627a1570dad519" } }, - "8deb54a173144e97ae90cb2a0d74be6f": { + "be32d666dd0d4b4898cd26a6533f3fda": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3694,44 +9558,7 @@ "width": null } }, - "900bc1ac7b0545eab780ea1494dabc5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67b3c775be474f9c83190216329dbf7f", - "IPY_MODEL_f1f5fc1715574604aebcfc5b98aa8aae", - "IPY_MODEL_57b0222678f54b5ea97dcf943d35658e" - ], - "layout": "IPY_MODEL_18ccad2913864576bcd0b964dc8bc43b" - } - }, - "900ff21557da4020841c2a131dfbc3ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9067a2d4cba0410cb8614e1f3de8640c": { + "bfbcefb4f223464abdbfefdf83dd8edc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3783,29 +9610,52 @@ "width": null } }, - "90e323601f294980b748fe2539f21a13": { + "bfd6ce6e77c045acb94760a1f9324ec6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92267eecb1594eeda2046c62a776fa7f", - "IPY_MODEL_a2aadf73a1db4be7809e2a1735496d66", - "IPY_MODEL_9a350b26ea80471894d7ac32e542fc61" - ], - "layout": "IPY_MODEL_2d7bcede062c4474a611f1f7a67d747c" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9330af137bf244f889e247d25e6e558c", + "placeholder": "​", + "style": "IPY_MODEL_08ddd5f58e354efa88bceab4767f3fb9", + "value": "100%" + } + }, + "c37d4d2cf2eb4452beac434bb6ce6068": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4829e9cb01a24b81948f58fa562803dd", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ef9438e841f4db496122205eef24486", + "value": 2 } }, - "913bd458480f4a5a9542e906191f629d": { + "c39fb6a39fb54c488f67c0841804e6a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3820,28 +9670,46 @@ "description_width": "" } }, - "92267eecb1594eeda2046c62a776fa7f": { + "c3b7a39f314b40c18fb8ccdbfb8ca3b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c445b382d7434495a63bccfcd397bb6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_85089e185cb641ec8e60a76cb5cd0738", - "placeholder": "​", - "style": "IPY_MODEL_c1449f2e9a0c44c39a6f70db6861a626", - "value": "100%" + "layout": "IPY_MODEL_c8dba2a8629d408aa2bb4010753c2fcf", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b4cf0fc34004c8c82398fb43ba2dbca", + "value": 2 } }, - "93d83dbeb81a45fda208b272b5adfed0": { + "c5da6771ede5465ca850795a762d6cbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3893,28 +9761,7 @@ "width": null } }, - "943b99de911c4f1aa632ac61cc4710b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9d671d72b81d4e6885d616765f5cd66d", - "placeholder": "​", - "style": "IPY_MODEL_913bd458480f4a5a9542e906191f629d", - "value": " 6/6 [00:01<00:00, 4.47it/s]" - } - }, - "94ecbc6ae9bf40b3bbe306a958e7a093": { + "c65dee8ab2dd48e08e91f71a97c7c240": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3930,7 +9777,7 @@ "description_width": "" } }, - "96e13bb592014f958949550e9a50b8e7": { + "c699442d513a4094a70685f352d5468c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3945,28 +9792,7 @@ "description_width": "" } }, - "9722e1833e6e402b8678c572769b9f08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ffbc1e358e35430e919c8f1187d8fa0e", - "placeholder": "​", - "style": "IPY_MODEL_900ff21557da4020841c2a131dfbc3ae", - "value": "100%" - } - }, - "998a8c60df85437ebeba4cfec5463924": { + "c6cc64e709694bbd9d8b5cfe61e6f5a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3981,13 +9807,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c8554715d5e3476eb8c67189fcf12757", + "layout": "IPY_MODEL_53c7ac1ad2584257838784914b991e56", "placeholder": "​", - "style": "IPY_MODEL_b70c7c80261749878d88d780cc8d34d7", - "value": " 4/4 [01:51<00:00, 27.16s/it]" + "style": "IPY_MODEL_f09cc7e7f9164e35bfbc896753efcaba", + "value": " 2/2 [00:05<00:00, 2.42s/it]" } }, - "9a350b26ea80471894d7ac32e542fc61": { + "c6e68ae189e548cd882b35a0a9517b0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4002,59 +9828,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b9a3264046494ab0aba7f66756dc63d2", + "layout": "IPY_MODEL_31ac4b264ab4415ba96807ee4d0e06ad", "placeholder": "​", - "style": "IPY_MODEL_ca878d4ab7e64869a84472394afde417", - "value": " 4/4 [00:10<00:00, 2.35s/it]" - } - }, - "9afae778d42b49a293d000514b231b08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8deb54a173144e97ae90cb2a0d74be6f", - "max": 3, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9c3d70c190984120a0dcda2fef4d5e99", - "value": 3 + "style": "IPY_MODEL_3e45ba09bc184a2cb7290f88b31bd5d2", + "value": " 2/2 [00:11<00:00, 5.05s/it]" } }, - "9b18eb29baba406a92b6a56531c148a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "c6f7e46119fd43fda31a181407bf2f6e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6fde4c9f560540beb63155b3f8295504", - "IPY_MODEL_7575b6a5339f493c8476d6dd90b4522d", - "IPY_MODEL_4fae064098d74daaa9882a5db4787780" - ], - "layout": "IPY_MODEL_eb00d7e2ced249dc8f4f4e0380c86901" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9c3d70c190984120a0dcda2fef4d5e99": { + "c74eebbfa22442c7ba756708f5110a68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4070,7 +9902,7 @@ "description_width": "" } }, - "9d671d72b81d4e6885d616765f5cd66d": { + "c770e86620384eb698dc9d2b2454fbc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4122,70 +9954,86 @@ "width": null } }, - "9d774ddec64a477a9bff0d11884b733b": { + "c7aae13494d44f33a22b2113dd12812a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4cd3df9aac8041d4b2aeaced5e8c47f7", + "IPY_MODEL_ee3469ee85834698835a54a3ac2b0956", + "IPY_MODEL_264d9ba8d8ed40be89d44dcb6bc33aee" + ], + "layout": "IPY_MODEL_0d4417f042ef49549d069bb829fce678" } }, - "a1a1612368864fde9babf26ff4371b0f": { + "c7b04cbfa91d4c389e2916fbfff36469": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7354a31387c141788f78c33d58047aab", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_94ecbc6ae9bf40b3bbe306a958e7a093", - "value": 4 + "layout": "IPY_MODEL_e5f97f96e30c4da289153abf2663332f", + "placeholder": "​", + "style": "IPY_MODEL_15a853bb96ae476cbfa78754c7164fae", + "value": "100%" } }, - "a2aadf73a1db4be7809e2a1735496d66": { + "c846cbccc2b6453182b37f0bdd8925fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0db76fbd07e4b52a8bf19f6d6087d17", + "placeholder": "​", + "style": "IPY_MODEL_2eb8078c5d6242fba118b461ddf326f8", + "value": "100%" + } + }, + "c8912e8284a34bc89863c43c47d218be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f502cf541f7147b5a07018bc68bab70c", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ca5317e5497749baa2d624ad9d9a7cdd", - "value": 4 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a4126c64c5ba4ca38b37f47fd246e903": { + "c8dba2a8629d408aa2bb4010753c2fcf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4237,45 +10085,58 @@ "width": null } }, - "a4832ce85f6b452691689923b7964475": { + "c91812476862455c95871615bc50705d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "a6a3137f156047c68a4eb530970ed972": { + "caaf55d8eae74a39872c86ceedb5685c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_716f62c6337a410f81350450bab90b5b", - "IPY_MODEL_8af5b52d02bb49d0a81f266e7798bb02", - "IPY_MODEL_998a8c60df85437ebeba4cfec5463924" - ], - "layout": "IPY_MODEL_b50eee592d4e453da120c5fc0a09dd1e" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53246238e747442899aca531a8f27bd5", + "placeholder": "​", + "style": "IPY_MODEL_943bca12541347c5bbea3d35a9c2496a", + "value": "100%" + } + }, + "cb28ea11229048639cc44aede8da2acb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a76ce7d530c34decb8cd5d8f05a0a1cd": { + "cbe8a1af6e90448d9ba465f919dbb8f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4290,28 +10151,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e6b0df7a4d0c45bcb15cd22f3803a24b", + "layout": "IPY_MODEL_28e4a9b3aa714645b133cb0c8d19fbb4", "placeholder": "​", - "style": "IPY_MODEL_9d774ddec64a477a9bff0d11884b733b", - "value": " 4/4 [00:32<00:00, 8.21s/it]" + "style": "IPY_MODEL_4b118cfb1ca948d6a13844eee6771e83", + "value": "100%" } }, - "a965f02d06e24c73bd0ef2108213f2ed": { + "cd189c3366634e63961a523adade1895": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c846cbccc2b6453182b37f0bdd8925fc", + "IPY_MODEL_67ffbfc0c6024cae989b0841ff9124b0", + "IPY_MODEL_e566bc5f53a84edcaca0d9a5b5aa22b5" + ], + "layout": "IPY_MODEL_eaad7a53f5ad41f8b9d2833f04e28f52" } }, - "ad06c50ca629452881008ba72cf9e2f9": { + "cd1f6a2c515641ddac388ec112632c52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4363,7 +10231,28 @@ "width": null } }, - "b019a74d534640f0817ec9147225f0be": { + "cd2e2ee82e564282a80e76bc9abbce69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdd37d14626e4374a0d803cc92d42bdd", + "placeholder": "​", + "style": "IPY_MODEL_731431f8547b46f89b6d2e2830a4fdd7", + "value": "100%" + } + }, + "cdd37d14626e4374a0d803cc92d42bdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4415,7 +10304,65 @@ "width": null } }, - "b1e4298892354b85891bfb7bedae71b5": { + "cf3abef3b7504796a90a236a3cd3fbfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_82c94dd7d81d45dcb99e536befb198ff", + "placeholder": "​", + "style": "IPY_MODEL_98f88a65d0344c1eac141ae1d785f9ab", + "value": " 2/2 [00:12<00:00, 5.74s/it]" + } + }, + "d3f3df0d05ef48b8929943660e4e395f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_caaf55d8eae74a39872c86ceedb5685c", + "IPY_MODEL_54fec21ccc8a4ee7b26a2b6bf7f218f4", + "IPY_MODEL_3cd0272ed30a45deb92258eefc4fe86f" + ], + "layout": "IPY_MODEL_46a76fbe44404ef99e2888cb8886dfca" + } + }, + "d4cbe258db7f4b7e8dbf8f7f579dfb94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6ccbdb27c464881a1f9e10341916ba0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4467,29 +10414,52 @@ "width": null } }, - "b2218124c1b049efbe5993c8ec1444a3": { + "d77c5d6f82ad486e9f2dbe2570f9f570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_50ba37dd20034f9d97d31057aa33400d", - "IPY_MODEL_c4d49ef7b5ea46dca27ef9ac5b57f954", - "IPY_MODEL_23a7f7f0a56b4803bdd362e28e850f0f" - ], - "layout": "IPY_MODEL_272c8c492db54d20b94745cfa7ebeb86" + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0da15cab04c40cabde8fd5b7d301777", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_47d54bd6957c43dfa689a179c5f3a29c", + "value": 2 + } + }, + "dda03857c5944c80a6b0fdff79df4847": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a95b4ab28ca74e2ab235ba2bdb048723", + "placeholder": "​", + "style": "IPY_MODEL_89a68d44723140ba827948a9ba93ef17", + "value": " 9/9 [01:49<00:00, 15.81s/it]" } }, - "b50eee592d4e453da120c5fc0a09dd1e": { + "dee52cc7414843a6a366d67c7c4d704c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4537,11 +10507,11 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "b68d54faa7e040809f8bc15ebd57cdbc": { + "dfe5ad2c602e4a87aa3c294c7285c905": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4593,22 +10563,7 @@ "width": null } }, - "b70c7c80261749878d88d780cc8d34d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b778180aca804c2da00f148edab80425": { + "e069acd4535c4b1c8d58a39fae727403": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4623,28 +10578,7 @@ "description_width": "" } }, - "b925e6b7184e4770922ea82c8f2e9c57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a4126c64c5ba4ca38b37f47fd246e903", - "placeholder": "​", - "style": "IPY_MODEL_55371f16b2a74a22b8b94757c40a2f03", - "value": "100%" - } - }, - "b9a3264046494ab0aba7f66756dc63d2": { + "e0e5bae586834b1a9fd4b76522088c9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4696,74 +10630,28 @@ "width": null } }, - "bae9122f0d084f9697f1c8686b25056a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": "hidden", - "width": null - } - }, - "bb192f5f7268474eb34e779516cbe788": { + "e271a8ab10944015a3be933b24663c7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dee52cc7414843a6a366d67c7c4d704c", + "placeholder": "​", + "style": "IPY_MODEL_a33017fd785f429d9021ef56858b0465", + "value": " 2/2 [00:13<00:00, 5.88s/it]" } }, - "bd0e8851901242b89fd95aab372e16eb": { + "e2a70d7f926d4b05a3dd73dec602c4cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4815,62 +10703,7 @@ "width": null } }, - "c0f3a124370348519817f7ef993295ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c1449f2e9a0c44c39a6f70db6861a626": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c4d49ef7b5ea46dca27ef9ac5b57f954": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e3ed22de569143c1b4a3d805babb8c47", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f3f63fd8a29d41ed9b0d30888823863a", - "value": 4 - } - }, - "c5245f957ad544bd9f6433f03ec80c8c": { + "e2bf7fae58c145c39794a6eb277cd2bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4885,28 +10718,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_520d17284864418d86ac64e0b6b73cab", + "layout": "IPY_MODEL_40a49f03ad6d4e57a132a59103c07782", "placeholder": "​", - "style": "IPY_MODEL_c7049091f1c841c9861f389d31b8df41", - "value": " 3/3 [00:08<00:00, 2.93s/it]" - } - }, - "c7049091f1c841c9861f389d31b8df41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_c39fb6a39fb54c488f67c0841804e6a2", + "value": "100%" } }, - "c769a1ffbf9c406cb6d805429c503471": { + "e2f71b4308724c2bbe827e292c9f45ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4921,37 +10739,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_881f92d83e1846fe8ec45808d29a67e6", + "layout": "IPY_MODEL_e720c7dc426a471486fa7c95fca993d2", "placeholder": "​", - "style": "IPY_MODEL_db0b90bbbb7d4ed9a26e299d3e73e82a", + "style": "IPY_MODEL_8d04329a03f148018cc3cf13225d5c0c", "value": "100%" } }, - "c811059761b84ee19a898787e71ac5d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2f9940b155ab464c9f6d66ae9af42c87", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_6af7e1e4d8074081930d9799762e12d5", - "value": 4 - } - }, - "c8554715d5e3476eb8c67189fcf12757": { + "e3bff2ba80814042af7b394ef751ed31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5003,7 +10797,7 @@ "width": null } }, - "ca0cb689678447548c26fd572d1cea26": { + "e51b92f48e5348bfaf250d7c230117e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5051,42 +10845,53 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "ca5317e5497749baa2d624ad9d9a7cdd": { + "e52bfecd1d514aa4886233163d78d8ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c7fd7cea38a4b6ebabf7f9f35c3d241", + "placeholder": "​", + "style": "IPY_MODEL_b9c73d15781a4548824a671183943c8e", + "value": "100%" } }, - "ca878d4ab7e64869a84472394afde417": { + "e566bc5f53a84edcaca0d9a5b5aa22b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c698883183c49afb09f2a54b5f1c717", + "placeholder": "​", + "style": "IPY_MODEL_8025ba94d49640a0ab26b58aa73eb694", + "value": " 2/2 [00:00<00:00, 2.76it/s]" } }, - "cb103b497ec94476bc34565d51098637": { + "e5dbd7c509cd44b59b432a0b14b890aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -5102,7 +10907,7 @@ "description_width": "" } }, - "cdfce822a83a4cb690e051f55547a956": { + "e5f97f96e30c4da289153abf2663332f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5154,44 +10959,28 @@ "width": null } }, - "ce2e370b196c4d5cae29756604e9f4ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d19c5b8ed3c6495a8c454aa8a7651289": { + "e6b404556e6f4d50833bd404bcaa1f32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57f67ff7b8a14165905b4e16ab10d511", - "IPY_MODEL_16816948aa9847e78f1c6df5abcacd9b", - "IPY_MODEL_943b99de911c4f1aa632ac61cc4710b1" - ], - "layout": "IPY_MODEL_3c19141cab784881a42abbf678b16c64" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b763b174fb764631bd4c81bdbb0ef0ae", + "placeholder": "​", + "style": "IPY_MODEL_c8912e8284a34bc89863c43c47d218be", + "value": " 2/2 [00:06<00:00, 3.45s/it]" } }, - "d60ceba05dc64ae8ba3b091a028d7b82": { + "e720c7dc426a471486fa7c95fca993d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5243,37 +11032,7 @@ "width": null } }, - "db0b90bbbb7d4ed9a26e299d3e73e82a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd932f4ba3924564bc33ab2cdb01b506": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e0524e24a979466fbde57b816a4d4b03": { + "e9f02fa8c02846ec92c0c98354f7b57b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5288,7 +11047,7 @@ "description_width": "" } }, - "e2a583e25cf34acdb67045ccfa8b34b9": { + "ea0d0fe1a8d444fcaf9cfc6383a3dc62": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5336,11 +11095,26 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "e3ed22de569143c1b4a3d805babb8c47": { + "ea3554a8554045ec9223b3e134664989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea6f7a4915814433865c6905d4843057": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5392,29 +11166,23 @@ "width": null } }, - "e507b3b53a8b4897882726fabf68ec24": { + "ea86851eeae74975a56623b77c8359e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c769a1ffbf9c406cb6d805429c503471", - "IPY_MODEL_a1a1612368864fde9babf26ff4371b0f", - "IPY_MODEL_205fd1a8b8644363aecef2f8637d84f7" - ], - "layout": "IPY_MODEL_bae9122f0d084f9697f1c8686b25056a" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e6b0df7a4d0c45bcb15cd22f3803a24b": { + "eaad7a53f5ad41f8b9d2833f04e28f52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5462,11 +11230,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "e94d32723438448481403c36f3b8004a": { + "ebf1f8123c7f4e289a98dab51938446d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5514,11 +11282,26 @@ "padding": null, "right": null, "top": null, - "visibility": null, + "visibility": "hidden", "width": null } }, - "eb00d7e2ced249dc8f4f4e0380c86901": { + "ed287d7cdb8e4f09811dd5b8645a8d06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed9c9243a92545559bb5ef7f3f495368": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5566,11 +11349,56 @@ "padding": null, "right": null, "top": null, - "visibility": "hidden", + "visibility": null, "width": null } }, - "ed320a06340f49ec950b71980f60d27c": { + "edb5cbfd04ac4822ac2a5eccd3cf6666": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7876f2c265164fa29d9f57b3716f5850", + "placeholder": "​", + "style": "IPY_MODEL_9c81568cfc05430bb94d0bcf5d348ee9", + "value": "100%" + } + }, + "edb8bbc204384c77bf5b8e1a429c2bba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49cdd1f1b5944379a5da8c67ef15dc21", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_28e1b9d68e0a49c984fff1dfb76b5777", + "value": 2 + } + }, + "edec5d52b907433fb6810c504abafc26": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5622,7 +11450,71 @@ "width": null } }, - "eda1e2f17b7f41c0b363b08a38c843fa": { + "ee3469ee85834698835a54a3ac2b0956": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bfbcefb4f223464abdbfefdf83dd8edc", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_605413d957af4a7f8dc80c1fcc4bcef0", + "value": 2 + } + }, + "ee3b059fb8684fce9576f7e4d39e3842": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab0d3854aefb4e2a8872929c98a39e63", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_77ec5f624fb8498b8548e8f088d937a0", + "value": 2 + } + }, + "eed1f8dac1974df8aa7a71420f5414bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ef3c798fbc094460ac7efeb6e8759af6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5674,31 +11566,29 @@ "width": null } }, - "f1f5fc1715574604aebcfc5b98aa8aae": { + "ef7b8d5473a64de0901f904a83022884": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0d5accf9b2cb4d448599c0b9f550a290", - "max": 4, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_cb103b497ec94476bc34565d51098637", - "value": 4 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f31395285b5c44049f57f099329641de", + "IPY_MODEL_b8e4b5c864e648f9b84d821cd7113c51", + "IPY_MODEL_b315b2bdfaff427ea5bd76effcfe1477" + ], + "layout": "IPY_MODEL_1533677646974ac4ae31c8039d75f828" } }, - "f2b6c0c28db4465d9e1f8c44c9aa065a": { + "f0913472ebf645a7b2c37e253c384a2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5750,39 +11640,46 @@ "width": null } }, - "f39f38141dfc46c68e755164b0b3efe1": { + "f09cc7e7f9164e35bfbc896753efcaba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f3f63fd8a29d41ed9b0d30888823863a": { + "f0c70021d6864b7b863708a7585285d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a729f255a8b44f3a290fa6842a954de", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_228b0aaf0f454864b5668bde4a6e0751", + "value": 2 } }, - "f502cf541f7147b5a07018bc68bab70c": { + "f0db76fbd07e4b52a8bf19f6d6087d17": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5834,22 +11731,129 @@ "width": null } }, - "f5a1b131fb5d40358ba9120583e7945c": { + "f0f95d15d24b4e7da7fe94979db2e489": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0039195756be48469c78c89c309c92c5", + "placeholder": "​", + "style": "IPY_MODEL_d4cbe258db7f4b7e8dbf8f7f579dfb94", + "value": " 2/2 [00:00<00:00, 2.53it/s]" + } + }, + "f2247d826a1941af99873314c0bacba5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68ef6fb4be4a454e83f66b020bb7391f", + "IPY_MODEL_9fcf9855749b4f19b9a8780d68cdc8fe", + "IPY_MODEL_7b1ae36ed08647ccace82fdeee3f3e24" + ], + "layout": "IPY_MODEL_5dcba6d4508e4b548d98b70d40d88c4d" + } + }, + "f31395285b5c44049f57f099329641de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1134d02f65aa450d9965863d3c404477", + "placeholder": "​", + "style": "IPY_MODEL_44f92ec072ce40e48afe6cd371719276", + "value": "100%" + } + }, + "f340a0b32caa466e967f004d55851c1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b369107bece6428fb7aa4a31fb4bf555", + "placeholder": "​", + "style": "IPY_MODEL_7b2d5b467e8f470b909fa4e9362e6937", + "value": " 2/2 [00:01<00:00, 1.72it/s]" + } + }, + "f576af6969ba4aa693a91b439453eaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6f7e46119fd43fda31a181407bf2f6e", + "placeholder": "​", + "style": "IPY_MODEL_5c299f5d2edd4d7182871aa103ad63ee", + "value": "100%" + } + }, + "f85aadc89bce49c79b16ab574167a7d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "fae047c7917346c5af046c878eda54a7": { + "f8dfd1a002e74b74b9272ba374ac4ca8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5901,59 +11905,7 @@ "width": null } }, - "fe0262f7a7a2414d88b99d78cde1fea1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_59217a129cdb41aaadb64d142baa7cd3", - "IPY_MODEL_c811059761b84ee19a898787e71ac5d6", - "IPY_MODEL_158ba9a59e9c4e48915316c760f74ba6" - ], - "layout": "IPY_MODEL_5bef4169fd5144d2a2d817d7fcebf78d" - } - }, - "feb5925001d74a8ca36a3c8e5a1f9a29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fefb3634c68c4076a6811f22c947008c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ffbc1e358e35430e919c8f1187d8fa0e": { + "fa4069965d534138ac847d5260b1d5bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6004,6 +11956,28 @@ "visibility": null, "width": null } + }, + "fac4728a5f3f4e93947154d87bc24f49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0af04d4a53f143a4bf6b260e21124098", + "IPY_MODEL_c445b382d7434495a63bccfcd397bb6c", + "IPY_MODEL_58a18087c376431c84adc35eeddc1411" + ], + "layout": "IPY_MODEL_9127974355fa44b09e35fb3c9a0ef86b" + } } } } diff --git a/notebooks/03/job-shop-scheduling.ipynb b/notebooks/03/job-shop-scheduling.ipynb index 0f11fb65..7e192e90 100644 --- a/notebooks/03/job-shop-scheduling.ipynb +++ b/notebooks/03/job-shop-scheduling.ipynb @@ -52,8 +52,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -154,14 +154,14 @@ "outputs": [], "source": [ "TASKS = {\n", - " ('Paper_1','Blue') : {'dur': 45, 'prec': None},\n", - " ('Paper_1','Yellow') : {'dur': 10, 'prec': ('Paper_1','Blue')},\n", - " ('Paper_2','Blue') : {'dur': 20, 'prec': ('Paper_2','Green')},\n", - " ('Paper_2','Green') : {'dur': 10, 'prec': None},\n", - " ('Paper_2','Yellow') : {'dur': 34, 'prec': ('Paper_2','Blue')},\n", - " ('Paper_3','Blue') : {'dur': 12, 'prec': ('Paper_3','Yellow')},\n", - " ('Paper_3','Green') : {'dur': 17, 'prec': ('Paper_3','Blue')},\n", - " ('Paper_3','Yellow') : {'dur': 28, 'prec': None}, \n", + " (\"Paper_1\", \"Blue\"): {\"dur\": 45, \"prec\": None},\n", + " (\"Paper_1\", \"Yellow\"): {\"dur\": 10, \"prec\": (\"Paper_1\", \"Blue\")},\n", + " (\"Paper_2\", \"Blue\"): {\"dur\": 20, \"prec\": (\"Paper_2\", \"Green\")},\n", + " (\"Paper_2\", \"Green\"): {\"dur\": 10, \"prec\": None},\n", + " (\"Paper_2\", \"Yellow\"): {\"dur\": 34, \"prec\": (\"Paper_2\", \"Blue\")},\n", + " (\"Paper_3\", \"Blue\"): {\"dur\": 12, \"prec\": (\"Paper_3\", \"Yellow\")},\n", + " (\"Paper_3\", \"Green\"): {\"dur\": 17, \"prec\": (\"Paper_3\", \"Blue\")},\n", + " (\"Paper_3\", \"Yellow\"): {\"dur\": 28, \"prec\": None},\n", "}" ] }, @@ -266,59 +266,70 @@ "source": [ "import pyomo.environ as pyo\n", "\n", + "\n", "def jobshop_model(TASKS):\n", - " \n", " model = pyo.ConcreteModel()\n", "\n", " # tasks is a two dimensional set of (j,m) constructed from the dictionary keys\n", - " model.TASKS = pyo.Set(initialize = TASKS.keys(), dimen=2)\n", - " \n", + " model.TASKS = pyo.Set(initialize=TASKS.keys(), dimen=2)\n", + "\n", " # the set of jobs is constructed from a python set\n", - " model.JOBS = pyo.Set(initialize = list(set([j for (j, m) in model.TASKS])))\n", - " \n", + " model.JOBS = pyo.Set(initialize=list(set([j for (j, m) in model.TASKS])))\n", + "\n", " # set of machines is constructed from a python set\n", - " model.MACHINES = pyo.Set(initialize = list(set([m for (j, m) in model.TASKS])))\n", - " \n", + " model.MACHINES = pyo.Set(initialize=list(set([m for (j, m) in model.TASKS])))\n", + "\n", " # the order of tasks is constructed as a cross-product of tasks and filtering\n", - " model.TASKORDER = pyo.Set(initialize = model.TASKS * model.TASKS, dimen=4, \n", - " filter = lambda model, j, m, k, n: (k, n) == TASKS[(j, m)]['prec'])\n", - " \n", + " model.TASKORDER = pyo.Set(\n", + " initialize=model.TASKS * model.TASKS,\n", + " dimen=4,\n", + " filter=lambda model, j, m, k, n: (k, n) == TASKS[(j, m)][\"prec\"],\n", + " )\n", + "\n", " # the set of disjunctions is cross-product of jobs, jobs, and machines\n", - " model.DISJUNCTIONS = pyo.Set(initialize = model.JOBS * model.JOBS * model.MACHINES, dimen=3,\n", - " filter = lambda model, j, k, m: j < k and (j, m) in model.TASKS and (k, m) in model.TASKS)\n", - " \n", + " model.DISJUNCTIONS = pyo.Set(\n", + " initialize=model.JOBS * model.JOBS * model.MACHINES,\n", + " dimen=3,\n", + " filter=lambda model, j, k, m: j < k\n", + " and (j, m) in model.TASKS\n", + " and (k, m) in model.TASKS,\n", + " )\n", + "\n", " # load duration data into a model parameter for later access\n", " @model.Param(model.TASKS)\n", " def dur(model, j, m):\n", - " return TASKS[(j, m)]['dur']\n", + " return TASKS[(j, m)][\"dur\"]\n", "\n", " # establish an upper bound on makespan\n", - " ub = sum([model.dur[j, m] for (j,m) in model.TASKS])\n", - " \n", + " ub = sum([model.dur[j, m] for (j, m) in model.TASKS])\n", + "\n", " # create decision variables\n", " model.makespan = pyo.Var(bounds=(0, ub))\n", " model.start = pyo.Var(model.TASKS, bounds=(0, ub))\n", - " \n", + "\n", " @model.Objective(sense=pyo.minimize)\n", " def minimize_makespan(model):\n", " return model.makespan\n", - " \n", + "\n", " @model.Constraint(model.TASKS)\n", " def finish_tasks(model, j, m):\n", " return model.start[j, m] + model.dur[j, m] <= model.makespan\n", - " \n", + "\n", " @model.Constraint(model.TASKORDER)\n", " def preceding(model, j, m, k, n):\n", " return model.start[k, n] + model.dur[k, n] <= model.start[j, m]\n", - " \n", + "\n", " @model.Disjunction(model.DISJUNCTIONS)\n", " def no_overlap(model, j, k, m):\n", - " return [model.start[j, m] + model.dur[j, m] <= model.start[k, m],\n", - " model.start[k, m] + model.dur[k, m] <= model.start[j, m]]\n", - " \n", - " pyo.TransformationFactory('gdp.bigm').apply_to(model)\n", + " return [\n", + " model.start[j, m] + model.dur[j, m] <= model.start[k, m],\n", + " model.start[k, m] + model.dur[k, m] <= model.start[j, m],\n", + " ]\n", + "\n", + " pyo.TransformationFactory(\"gdp.bigm\").apply_to(model)\n", " return model\n", "\n", + "\n", "jobshop_model(TASKS)" ] }, @@ -399,17 +410,23 @@ "source": [ "def jobshop_solve(model):\n", " SOLVER.solve(model)\n", - " results = [{'Job': j,\n", - " 'Machine': m,\n", - " 'Start': model.start[j, m](), \n", - " 'Duration': model.dur[j, m], \n", - " 'Finish': model.start[(j, m)]() + model.dur[j,m]}\n", - " for j, m in model.TASKS]\n", + " results = [\n", + " {\n", + " \"Job\": j,\n", + " \"Machine\": m,\n", + " \"Start\": model.start[j, m](),\n", + " \"Duration\": model.dur[j, m],\n", + " \"Finish\": model.start[(j, m)]() + model.dur[j, m],\n", + " }\n", + " for j, m in model.TASKS\n", + " ]\n", " return results\n", "\n", + "\n", "def jobshop(TASKS):\n", " return jobshop_solve(jobshop_model(TASKS))\n", "\n", + "\n", "results = jobshop(TASKS)\n", "results" ] @@ -484,11 +501,11 @@ "\n", "schedule = pd.DataFrame(results)\n", "\n", - "print('\\nSchedule by Job')\n", - "print(schedule.sort_values(by=['Job', 'Start']).set_index(['Job', 'Machine']))\n", + "print(\"\\nSchedule by Job\")\n", + "print(schedule.sort_values(by=[\"Job\", \"Start\"]).set_index([\"Job\", \"Machine\"]))\n", "\n", - "print('\\nSchedule by Machine')\n", - "print(schedule.sort_values(by=['Machine', 'Start']).set_index(['Machine', 'Job']))" + "print(\"\\nSchedule by Machine\")\n", + "print(schedule.sort_values(by=[\"Machine\", \"Start\"]).set_index([\"Machine\", \"Job\"]))" ] }, { @@ -540,48 +557,55 @@ "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "\n", + "\n", "def visualize(results):\n", - " \n", " schedule = pd.DataFrame(results)\n", - " JOBS = sorted(list(schedule['Job'].unique()))\n", - " MACHINES = sorted(list(schedule['Machine'].unique()))\n", - " makespan = schedule['Finish'].max()\n", - " \n", - " bar_style = {'alpha':1.0, 'lw':25, 'solid_capstyle':'butt'}\n", - " text_style = {'color':'white', 'weight':'bold', 'ha':'center', 'va':'center'}\n", + " JOBS = sorted(list(schedule[\"Job\"].unique()))\n", + " MACHINES = sorted(list(schedule[\"Machine\"].unique()))\n", + " makespan = schedule[\"Finish\"].max()\n", + "\n", + " bar_style = {\"alpha\": 1.0, \"lw\": 25, \"solid_capstyle\": \"butt\"}\n", + " text_style = {\"color\": \"white\", \"weight\": \"bold\", \"ha\": \"center\", \"va\": \"center\"}\n", " colors = mpl.cm.Dark2.colors\n", "\n", - " schedule.sort_values(by=['Job', 'Start'])\n", - " schedule.set_index(['Job', 'Machine'], inplace=True)\n", + " schedule.sort_values(by=[\"Job\", \"Start\"])\n", + " schedule.set_index([\"Job\", \"Machine\"], inplace=True)\n", "\n", - " fig, ax = plt.subplots(2,1, figsize=(12, 5+(len(JOBS)+len(MACHINES))/4))\n", + " fig, ax = plt.subplots(2, 1, figsize=(12, 5 + (len(JOBS) + len(MACHINES)) / 4))\n", "\n", " for jdx, j in enumerate(JOBS, 1):\n", " for mdx, m in enumerate(MACHINES, 1):\n", - " if (j,m) in schedule.index:\n", - " xs = schedule.loc[(j, m), 'Start']\n", - " xf = schedule.loc[(j, m), 'Finish']\n", - " ax[0].plot([xs, xf], [jdx]*2, c=colors[mdx%7], **bar_style)\n", - " ax[0].text((xs + xf)/2, jdx, m, **text_style)\n", - " ax[1].plot([xs, xf], [mdx]*2, c=colors[jdx%7], **bar_style)\n", - " ax[1].text((xs + xf)/2, mdx, j, **text_style)\n", - " \n", - " ax[0].set_title('Job Schedule')\n", - " ax[0].set_ylabel('Job')\n", - " ax[1].set_title('Machine Schedule')\n", - " ax[1].set_ylabel('Machine')\n", - " \n", + " if (j, m) in schedule.index:\n", + " xs = schedule.loc[(j, m), \"Start\"]\n", + " xf = schedule.loc[(j, m), \"Finish\"]\n", + " ax[0].plot([xs, xf], [jdx] * 2, c=colors[mdx % 7], **bar_style)\n", + " ax[0].text((xs + xf) / 2, jdx, m, **text_style)\n", + " ax[1].plot([xs, xf], [mdx] * 2, c=colors[jdx % 7], **bar_style)\n", + " ax[1].text((xs + xf) / 2, mdx, j, **text_style)\n", + "\n", + " ax[0].set_title(\"Job Schedule\")\n", + " ax[0].set_ylabel(\"Job\")\n", + " ax[1].set_title(\"Machine Schedule\")\n", + " ax[1].set_ylabel(\"Machine\")\n", + "\n", " for idx, s in enumerate([JOBS, MACHINES]):\n", " ax[idx].set_ylim(0.5, len(s) + 0.5)\n", " ax[idx].set_yticks(range(1, 1 + len(s)))\n", " ax[idx].set_yticklabels(s)\n", - " ax[idx].text(makespan, ax[idx].get_ylim()[0] - 0.2, \"{0:0.1f}\".format(makespan), ha='center', va='top')\n", - " ax[idx].plot([makespan]*2, ax[idx].get_ylim(), 'r--')\n", - " ax[idx].set_xlabel('Time')\n", + " ax[idx].text(\n", + " makespan,\n", + " ax[idx].get_ylim()[0] - 0.2,\n", + " \"{0:0.1f}\".format(makespan),\n", + " ha=\"center\",\n", + " va=\"top\",\n", + " )\n", + " ax[idx].plot([makespan] * 2, ax[idx].get_ylim(), \"r--\")\n", + " ax[idx].set_xlabel(\"Time\")\n", " ax[idx].grid(True)\n", - " \n", + "\n", " fig.tight_layout()\n", "\n", + "\n", "visualize(results)" ] }, @@ -657,16 +681,19 @@ " TASKS = {}\n", " for j in jobs:\n", " prec = (None, None)\n", - " for m, d in zip(machines,durations):\n", + " for m, d in zip(machines, durations):\n", " task = (j, m)\n", - " if prec == (None,None):\n", - " TASKS.update({(j, m): {'dur': d, 'prec': None}})\n", + " if prec == (None, None):\n", + " TASKS.update({(j, m): {\"dur\": d, \"prec\": None}})\n", " else:\n", - " TASKS.update({(j, m): {'dur': d, 'prec': prec}})\n", + " TASKS.update({(j, m): {\"dur\": d, \"prec\": prec}})\n", " prec = task\n", " return TASKS\n", - " \n", - "recipeA = recipe_to_tasks('A', ['Mixer', 'Reactor', 'Separator', 'Packaging'], [1, 5, 4, 1.5])\n", + "\n", + "\n", + "recipeA = recipe_to_tasks(\n", + " \"A\", [\"Mixer\", \"Reactor\", \"Separator\", \"Packaging\"], [1, 5, 4, 1.5]\n", + ")\n", "visualize(jobshop(recipeA))" ] }, @@ -706,7 +733,7 @@ } ], "source": [ - "recipeB = recipe_to_tasks('B', ['Separator', 'Packaging'], [4.5, 1])\n", + "recipeB = recipe_to_tasks(\"B\", [\"Separator\", \"Packaging\"], [4.5, 1])\n", "visualize(jobshop(recipeB))" ] }, @@ -746,7 +773,7 @@ } ], "source": [ - "recipeC = recipe_to_tasks('C', ['Separator', 'Reactor', 'Packaging'], [5, 3, 1.5])\n", + "recipeC = recipe_to_tasks(\"C\", [\"Separator\", \"Reactor\", \"Packaging\"], [5, 3, 1.5])\n", "visualize(jobshop(recipeC))" ] }, @@ -805,10 +832,14 @@ } ], "source": [ - "TASKS = recipe_to_tasks(['A1','A2','A3', 'A4'],['Mixer','Reactor','Separator','Packaging'],[1,5,4,1.5])\n", + "TASKS = recipe_to_tasks(\n", + " [\"A1\", \"A2\", \"A3\", \"A4\"],\n", + " [\"Mixer\", \"Reactor\", \"Separator\", \"Packaging\"],\n", + " [1, 5, 4, 1.5],\n", + ")\n", "results = jobshop(TASKS)\n", "visualize(results)\n", - "print(\"Makespan =\", max([task['Finish'] for task in results]))" + "print(\"Makespan =\", max([task[\"Finish\"] for task in results]))" ] }, { @@ -885,7 +916,7 @@ "\n", "results = jobshop(TASKS)\n", "visualize(results)\n", - "print(\"Makespan =\", max([task['Finish'] for task in results]))" + "print(\"Makespan =\", max([task[\"Finish\"] for task in results]))" ] }, { @@ -943,13 +974,17 @@ } ], "source": [ - "TASKS = recipe_to_tasks(['A1', 'A2'],['Mixer', 'Reactor', 'Separator','Packaging'], [1, 5, 4, 1.5])\n", - "TASKS.update(recipe_to_tasks(['B1', 'B2'], ['Separator', 'Packaging'], [4.5, 1]))\n", - "TASKS.update(recipe_to_tasks(['C1', 'C2'],['Separator', 'Reactor', 'Packaging'], [5, 3, 1.5]))\n", + "TASKS = recipe_to_tasks(\n", + " [\"A1\", \"A2\"], [\"Mixer\", \"Reactor\", \"Separator\", \"Packaging\"], [1, 5, 4, 1.5]\n", + ")\n", + "TASKS.update(recipe_to_tasks([\"B1\", \"B2\"], [\"Separator\", \"Packaging\"], [4.5, 1]))\n", + "TASKS.update(\n", + " recipe_to_tasks([\"C1\", \"C2\"], [\"Separator\", \"Reactor\", \"Packaging\"], [5, 3, 1.5])\n", + ")\n", "\n", "results = jobshop(TASKS)\n", "visualize(results)\n", - "print(\"Makespan =\", max([task['Finish'] for task in results]))" + "print(\"Makespan =\", max([task[\"Finish\"] for task in results]))" ] }, { @@ -1019,38 +1054,45 @@ ], "source": [ "def jobshop_model_clean(TASKS, tclean=0):\n", - " \n", " model = pyo.ConcreteModel()\n", "\n", " # tasks is a two dimensional set of (j,m) constructed from the dictionary keys\n", - " model.TASKS = pyo.Set(initialize = TASKS.keys(), dimen=2)\n", - " \n", + " model.TASKS = pyo.Set(initialize=TASKS.keys(), dimen=2)\n", + "\n", " # the set of jobs is constructed from a python set\n", - " model.JOBS = pyo.Set(initialize = list(set([j for (j, m) in model.TASKS])))\n", - " \n", + " model.JOBS = pyo.Set(initialize=list(set([j for (j, m) in model.TASKS])))\n", + "\n", " # set of machines is constructed from a python set\n", - " model.MACHINES = pyo.Set(initialize = list(set([m for (j, m) in model.TASKS])))\n", - " \n", + " model.MACHINES = pyo.Set(initialize=list(set([m for (j, m) in model.TASKS])))\n", + "\n", " # the order of tasks is constructed as a cross-product of tasks and filtering\n", - " model.TASKORDER = pyo.Set(initialize = model.TASKS * model.TASKS, dimen=4, \n", - " filter = lambda model, j, m, k, n: (k, n) == TASKS[(j, m)]['prec'])\n", - " \n", + " model.TASKORDER = pyo.Set(\n", + " initialize=model.TASKS * model.TASKS,\n", + " dimen=4,\n", + " filter=lambda model, j, m, k, n: (k, n) == TASKS[(j, m)][\"prec\"],\n", + " )\n", + "\n", " # the set of disjunctions is cross-product of jobs, jobs, and machines\n", - " model.DISJUNCTIONS = pyo.Set(initialize = model.JOBS * model.JOBS * model.MACHINES, dimen=3,\n", - " filter = lambda model, j, k, m: j < k and (j, m) in model.TASKS and (k, m) in model.TASKS)\n", - " \n", + " model.DISJUNCTIONS = pyo.Set(\n", + " initialize=model.JOBS * model.JOBS * model.MACHINES,\n", + " dimen=3,\n", + " filter=lambda model, j, k, m: j < k\n", + " and (j, m) in model.TASKS\n", + " and (k, m) in model.TASKS,\n", + " )\n", + "\n", " # load duration data into a model parameter for later access\n", " @model.Param(model.TASKS)\n", " def dur(model, j, m):\n", - " return TASKS[(j, m)]['dur']\n", + " return TASKS[(j, m)][\"dur\"]\n", "\n", " # establish an upper bound on makespan\n", " ub = sum([model.dur[j, m] for (j, m) in model.TASKS])\n", - " \n", + "\n", " model.makespan = pyo.Var(bounds=(0, ub))\n", "\n", " model.start = pyo.Var(model.TASKS, bounds=(0, ub))\n", - " \n", + "\n", " @model.Objective(sense=pyo.minimize)\n", " def objective(m):\n", " return model.makespan\n", @@ -1058,23 +1100,26 @@ " @model.Constraint(model.TASKS)\n", " def finish(model, j, m):\n", " return model.start[j, m] + model.dur[j, m] <= model.makespan\n", - " \n", + "\n", " @model.Constraint(model.TASKORDER)\n", " def preceding(model, j, m, k, n):\n", " return model.start[k, n] + model.dur[k, n] <= model.start[j, m]\n", - " \n", + "\n", " @model.Disjunction(model.DISJUNCTIONS)\n", " def disjunctions(model, j, k, m):\n", - " return [model.start[j, m] + model.dur[j, m] + tclean <= model.start[k, m], \n", - " model.start[k, m] + model.dur[k, m] + tclean <= model.start[j, m]]\n", + " return [\n", + " model.start[j, m] + model.dur[j, m] + tclean <= model.start[k, m],\n", + " model.start[k, m] + model.dur[k, m] + tclean <= model.start[j, m],\n", + " ]\n", "\n", - " pyo.TransformationFactory('gdp.hull').apply_to(model)\n", + " pyo.TransformationFactory(\"gdp.hull\").apply_to(model)\n", " return model\n", "\n", + "\n", "model = jobshop_model_clean(TASKS, tclean=0.5)\n", "results = jobshop_solve(model)\n", "visualize(results)\n", - "print(\"Makespan =\", max([task['Finish'] for task in results]))" + "print(\"Makespan =\", max([task[\"Finish\"] for task in results]))" ] }, { @@ -1152,65 +1197,75 @@ ], "source": [ "def jobshop_model_clean_zw(TASKS, tclean=0, ZW=False):\n", - " \n", " model = pyo.ConcreteModel()\n", - " \n", + "\n", " # tasks is a two dimensional set of (j,m) constructed from the dictionary keys\n", - " model.TASKS = pyo.Set(initialize = TASKS.keys(), dimen=2)\n", - " \n", + " model.TASKS = pyo.Set(initialize=TASKS.keys(), dimen=2)\n", + "\n", " # the set of jobs is constructed from a python set\n", - " model.JOBS = pyo.Set(initialize = list(set([j for (j, m) in model.TASKS])))\n", - " \n", + " model.JOBS = pyo.Set(initialize=list(set([j for (j, m) in model.TASKS])))\n", + "\n", " # set of machines is constructed from a python set\n", - " model.MACHINES = pyo.Set(initialize = list(set([m for (j, m) in model.TASKS])))\n", - " \n", + " model.MACHINES = pyo.Set(initialize=list(set([m for (j, m) in model.TASKS])))\n", + "\n", " # the order of tasks is constructed as a cross-product of tasks and filtering\n", - " model.TASKORDER = pyo.Set(initialize = model.TASKS * model.TASKS, dimen=4, \n", - " filter = lambda model, j, m, k, n: (k, n) == TASKS[(j, m)]['prec'])\n", - " \n", + " model.TASKORDER = pyo.Set(\n", + " initialize=model.TASKS * model.TASKS,\n", + " dimen=4,\n", + " filter=lambda model, j, m, k, n: (k, n) == TASKS[(j, m)][\"prec\"],\n", + " )\n", + "\n", " # the set of disjunctions is cross-product of jobs, jobs, and machines\n", - " model.DISJUNCTIONS = pyo.Set(initialize = model.JOBS * model.JOBS * model.MACHINES, dimen=3,\n", - " filter = lambda model, j, k, m: j < k and (j, m) in model.TASKS and (k, m) in model.TASKS)\n", - " \n", + " model.DISJUNCTIONS = pyo.Set(\n", + " initialize=model.JOBS * model.JOBS * model.MACHINES,\n", + " dimen=3,\n", + " filter=lambda model, j, k, m: j < k\n", + " and (j, m) in model.TASKS\n", + " and (k, m) in model.TASKS,\n", + " )\n", + "\n", " # load duration data into a model parameter for later access\n", " @model.Param(model.TASKS)\n", " def dur(model, j, m):\n", - " return TASKS[(j, m)]['dur']\n", + " return TASKS[(j, m)][\"dur\"]\n", "\n", " # establish an upper bound on makespan\n", " ub = sum([model.dur[j, m] for (j, m) in model.TASKS])\n", - " \n", + "\n", " model.makespan = pyo.Var(bounds=(0, ub))\n", - " \n", + "\n", " model.start = pyo.Var(model.TASKS, bounds=(0, ub))\n", - " \n", + "\n", " @model.Objective(sense=pyo.minimize)\n", " def objective(model):\n", " return model.makespan\n", - " \n", + "\n", " @model.Constraint(model.TASKS)\n", " def finish(mode, j, m):\n", " return model.start[j, m] + model.dur[j, m] <= model.makespan\n", - " \n", + "\n", " @model.Constraint(model.TASKORDER)\n", " def preceding(model, j, m, k, n):\n", " if ZW:\n", - " return model.start[k, n] + model.dur[k, n] == model.start[j, m]\n", + " return model.start[k, n] + model.dur[k, n] == model.start[j, m]\n", " else:\n", " return model.start[k, n] + model.dur[k, n] <= model.start[j, m]\n", - " \n", + "\n", " @model.Disjunction(model.DISJUNCTIONS)\n", " def disjunctions(model, j, k, m):\n", - " return [model.start[j, m] + model.dur[j, m] + tclean <= model.start[k, m],\n", - " model.start[k, m] + model.dur[k, m] + tclean <= model.start[j, m]]\n", + " return [\n", + " model.start[j, m] + model.dur[j, m] + tclean <= model.start[k, m],\n", + " model.start[k, m] + model.dur[k, m] + tclean <= model.start[j, m],\n", + " ]\n", "\n", - " pyo.TransformationFactory('gdp.hull').apply_to(model)\n", + " pyo.TransformationFactory(\"gdp.hull\").apply_to(model)\n", " return model\n", "\n", + "\n", "model = jobshop_model_clean_zw(TASKS, tclean=0.5, ZW=True)\n", "results = jobshop_solve(model)\n", "visualize(results)\n", - "print(\"Makespan =\", max([task['Finish'] for task in results]))" + "print(\"Makespan =\", max([task[\"Finish\"] for task in results]))" ] }, { diff --git a/notebooks/03/machine-scheduling.ipynb b/notebooks/03/machine-scheduling.ipynb index 7d558f1e..b1c5e556 100644 --- a/notebooks/03/machine-scheduling.ipynb +++ b/notebooks/03/machine-scheduling.ipynb @@ -51,8 +51,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/maintenance-planning.ipynb b/notebooks/03/maintenance-planning.ipynb index 2493723d..5195b6e3 100644 --- a/notebooks/03/maintenance-planning.ipynb +++ b/notebooks/03/maintenance-planning.ipynb @@ -64,8 +64,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -191,12 +191,12 @@ "outputs": [], "source": [ "# problem parameters\n", - "T = 90 # planning period from 1..T\n", - "M = 3 # length of maintenance period\n", - "P = 4 # number of maintenance periods\n", + "T = 90 # planning period from 1..T\n", + "M = 3 # length of maintenance period\n", + "P = 4 # number of maintenance periods\n", "\n", "# daily profits\n", - "c = {k: np.random.uniform() for k in range(1, T+1)}" + "c = {k: np.random.uniform() for k in range(1, T + 1)}" ] }, { @@ -255,46 +255,48 @@ " m.Y = pyo.RangeSet(1, T - M + 1)\n", " m.S = pyo.RangeSet(0, M - 1)\n", "\n", - " m.c = pyo.Param(m.T, initialize = c)\n", + " m.c = pyo.Param(m.T, initialize=c)\n", " m.x = pyo.Var(m.T, domain=pyo.Binary)\n", " m.y = pyo.Var(m.T, domain=pyo.Binary)\n", "\n", " @m.Objective(sense=pyo.maximize)\n", " def profit(m):\n", - " return sum(m.c[t]*m.x[t] for t in m.T)\n", + " return sum(m.c[t] * m.x[t] for t in m.T)\n", "\n", " @m.Constraint()\n", " def required_maintenance(m):\n", " return P == sum(m.y[t] for t in m.Y)\n", - " \n", + "\n", " @m.Constraint(m.Y)\n", " def no_overlap(m, t):\n", - " return sum(m.y[t+s] for s in m.S) <= 1\n", - " \n", + " return sum(m.y[t + s] for s in m.S) <= 1\n", + "\n", " @m.Disjunction(m.Y, xor=True)\n", " def required_shutdown(m, t):\n", - " return [[m.y[t]==0], [sum(m.x[t+s] for s in m.S) == 0]]\n", + " return [[m.y[t] == 0], [sum(m.x[t + s] for s in m.S) == 0]]\n", "\n", " pyo.TransformationFactory(\"gdp.hull\").apply_to(m)\n", - " \n", + "\n", " return m\n", "\n", + "\n", "def plot_schedule(m):\n", - " fig,ax = plt.subplots(3, 1, figsize=(9,4))\n", - " \n", + " fig, ax = plt.subplots(3, 1, figsize=(9, 4))\n", + "\n", " ax[0].bar(m.T, [m.c[t] for t in m.T])\n", - " ax[0].set_title('daily profit $c_t$')\n", - " \n", - " ax[1].bar(m.T, [m.x[t]() for t in m.T], label='normal operation')\n", - " ax[1].set_title('unit operating schedule $x_t$')\n", - " \n", + " ax[0].set_title(\"daily profit $c_t$\")\n", + "\n", + " ax[1].bar(m.T, [m.x[t]() for t in m.T], label=\"normal operation\")\n", + " ax[1].set_title(\"unit operating schedule $x_t$\")\n", + "\n", " ax[2].bar(m.Y, [m.y[t]() for t in m.Y])\n", - " ax[2].set_title(str(P) + ' maintenance starts $y_t$')\n", + " ax[2].set_title(str(P) + \" maintenance starts $y_t$\")\n", " for a in ax:\n", - " a.set_xlim(0.1, len(m.T)+0.9)\n", - " \n", + " a.set_xlim(0.1, len(m.T) + 0.9)\n", + "\n", " plt.tight_layout()\n", "\n", + "\n", "model = maintenance_planning(c, 4, 3)\n", "SOLVER.solve(model)\n", "plot_schedule(model)" @@ -384,39 +386,40 @@ " m.Y = pyo.RangeSet(1, T - M + 1)\n", " m.S = pyo.RangeSet(0, M - 1)\n", "\n", - " m.c = pyo.Param(m.T, initialize = c)\n", + " m.c = pyo.Param(m.T, initialize=c)\n", " m.x = pyo.Var(m.T, bounds=(0, 1))\n", " m.y = pyo.Var(m.T, domain=pyo.Binary)\n", " m.upos = pyo.Var(m.T, bounds=(0, upos_max))\n", " m.uneg = pyo.Var(m.T, bounds=(0, uneg_max))\n", - " \n", + "\n", " @m.Objective(sense=pyo.maximize)\n", " def profit(m):\n", - " return sum(m.c[t]*m.x[t] for t in m.T)\n", + " return sum(m.c[t] * m.x[t] for t in m.T)\n", "\n", " @m.Constraint()\n", " def required_maintenance(m):\n", " return P == sum(m.y[t] for t in m.Y)\n", - " \n", + "\n", " @m.Constraint(m.Y)\n", " def no_overlap(m, t):\n", - " return sum(m.y[t+s] for s in m.S) <= 1\n", - " \n", + " return sum(m.y[t + s] for s in m.S) <= 1\n", + "\n", " @m.Disjunction(m.Y, xor=True)\n", " def required_shutdown(m, t):\n", - " return [[m.y[t]==0], [sum(m.x[t+s] for s in m.S) == 0]]\n", - " \n", + " return [[m.y[t] == 0], [sum(m.x[t + s] for s in m.S) == 0]]\n", + "\n", " @m.Constraint(m.T)\n", " def ramp(m, t):\n", " if t == 1:\n", " return pyo.Constraint.Skip\n", " else:\n", - " return m.x[t] == m.x[t-1] + m.upos[t] - m.uneg[t]\n", + " return m.x[t] == m.x[t - 1] + m.upos[t] - m.uneg[t]\n", "\n", " pyo.TransformationFactory(\"gdp.hull\").apply_to(m)\n", - " \n", + "\n", " return m\n", - " \n", + "\n", + "\n", "m = maintenance_planning_ramp(c, M, P)\n", "SOLVER.solve(m)\n", "plot_schedule(m)" @@ -511,7 +514,7 @@ " m.S = pyo.RangeSet(0, M - 1)\n", " m.W = pyo.RangeSet(0, M + N - 1)\n", "\n", - " m.c = pyo.Param(m.T, initialize = c)\n", + " m.c = pyo.Param(m.T, initialize=c)\n", " m.x = pyo.Var(m.T, bounds=(0, 1))\n", " m.y = pyo.Var(m.T, domain=pyo.Binary)\n", " m.upos = pyo.Var(m.T, bounds=(0, upos_max))\n", @@ -519,15 +522,15 @@ "\n", " @m.Objective(sense=pyo.maximize)\n", " def profit(m):\n", - " return sum(m.c[t]*m.x[t] for t in m.T)\n", - " \n", + " return sum(m.c[t] * m.x[t] for t in m.T)\n", + "\n", " # ramp constraint\n", " @m.Constraint(m.T)\n", " def ramp(m, t):\n", " if t > 1:\n", - " return m.x[t] == m.x[t-1] + m.upos[t] - m.uneg[t]\n", + " return m.x[t] == m.x[t - 1] + m.upos[t] - m.uneg[t]\n", " return pyo.Constraint.Skip\n", - " \n", + "\n", " # required number P of maintenance starts\n", " @m.Constraint()\n", " def sumy(m):\n", @@ -536,23 +539,24 @@ " # no more than one maintenance start in the period of length M\n", " @m.Constraint(m.Y)\n", " def sprd(m, t):\n", - " return sum(m.y[t+s] for s in m.W if t + s <= T) <= 1\n", + " return sum(m.y[t + s] for s in m.W if t + s <= T) <= 1\n", "\n", " # Choose one or the other the following methods. Comment out the method not used.\n", "\n", - " #@m.Disjunction(m.Y)\n", - " #def disj(m, t):\n", - " # return [m.y[t] == 0, \n", + " # @m.Disjunction(m.Y)\n", + " # def disj(m, t):\n", + " # return [m.y[t] == 0,\n", " # sum(m.x[t+s] for s in m.W if t + s <= T) == 0]\n", - " #pyo.TransformationFactory('gdp.bigm').apply_to(m)\n", - " \n", + " # pyo.TransformationFactory('gdp.bigm').apply_to(m)\n", + "\n", " # disjunctive constraints, big-M method.\n", " @m.Constraint(m.Y)\n", " def bigm(m, t):\n", - " return sum(m.x[t+s] for s in m.S) <= (M+N)*(1 - m.y[t])\n", - " \n", + " return sum(m.x[t + s] for s in m.S) <= (M + N) * (1 - m.y[t])\n", + "\n", " return m\n", "\n", + "\n", "m = maintenance_planning_ramp_operational(c, T, M, P, N)\n", "SOLVER.solve(m)\n", "plot_schedule(m)" diff --git a/notebooks/03/recharging-electric-vehicle.ipynb b/notebooks/03/recharging-electric-vehicle.ipynb index 9d0f989d..ea299197 100644 --- a/notebooks/03/recharging-electric-vehicle.ipynb +++ b/notebooks/03/recharging-electric-vehicle.ipynb @@ -54,8 +54,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/shift-scheduling.ipynb b/notebooks/03/shift-scheduling.ipynb index 8803266d..15f637ad 100644 --- a/notebooks/03/shift-scheduling.ipynb +++ b/notebooks/03/shift-scheduling.ipynb @@ -53,8 +53,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/simple-production-model-gdp.ipynb b/notebooks/03/simple-production-model-gdp.ipynb index cfe296a2..f6cc3a07 100644 --- a/notebooks/03/simple-production-model-gdp.ipynb +++ b/notebooks/03/simple-production-model-gdp.ipynb @@ -44,8 +44,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", diff --git a/notebooks/03/strip-packing.ipynb b/notebooks/03/strip-packing.ipynb index 72f36014..4126562c 100644 --- a/notebooks/03/strip-packing.ipynb +++ b/notebooks/03/strip-packing.ipynb @@ -65,8 +65,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -193,19 +193,21 @@ "# random seed\n", "random.seed(1842)\n", "\n", + "\n", "# generate boxes\n", "def generate_boxes(N, max_width=200, max_depth=200):\n", " boxes = pd.DataFrame()\n", - " boxes[\"w\"] = [random.randint(0.2*max_width, max_width) for i in range(N)]\n", - " boxes[\"d\"] = [random.randint(0.2*max_depth, max_depth) for i in range(N)]\n", + " boxes[\"w\"] = [random.randint(0.2 * max_width, max_width) for i in range(N)]\n", + " boxes[\"d\"] = [random.randint(0.2 * max_depth, max_depth) for i in range(N)]\n", " return boxes\n", "\n", + "\n", "N = 8\n", "boxes = generate_boxes(8)\n", "display(boxes)\n", "\n", "# set shelf width as a multiple of the deepest box\n", - "D = 2*boxes[\"d\"].max()\n", + "D = 2 * boxes[\"d\"].max()\n", "print(\"Shelf Depth = \", D)" ] }, @@ -387,22 +389,27 @@ " soln[\"r\"] = 0\n", " return soln\n", "\n", + "\n", "def show_boxes(soln, D):\n", " \"\"\"Show bounding boxes on a diagram of the shelf.\"\"\"\n", " fig, ax = plt.subplots(1, 1, figsize=(14, 4))\n", - " for i, x, y, w, h, r in zip(soln.index, soln[\"x1\"], soln[\"y1\"], soln[\"w\"], soln[\"d\"], soln[\"r\"]):\n", + " for i, x, y, w, h, r in zip(\n", + " soln.index, soln[\"x1\"], soln[\"y1\"], soln[\"w\"], soln[\"d\"], soln[\"r\"]\n", + " ):\n", " c = \"g\"\n", " if r:\n", " h, w = w, h\n", " c = \"r\"\n", " ax.add_patch(Rectangle((x, y), w, h, edgecolor=\"k\", facecolor=c, alpha=0.6))\n", - " xc = x + w/2\n", - " yc = y + h/2\n", - " ax.annotate(i, (xc, yc), color=\"w\", weight=\"bold\", fontsize=12, ha=\"center\", va=\"center\")\n", - " \n", - " W_lb = (soln[\"w\"]*soln[\"d\"]).sum()/D\n", - " ax.set_xlim(0, 1.1*soln[\"w\"].sum())\n", - " ax.set_ylim(0, D*1.1)\n", + " xc = x + w / 2\n", + " yc = y + h / 2\n", + " ax.annotate(\n", + " i, (xc, yc), color=\"w\", weight=\"bold\", fontsize=12, ha=\"center\", va=\"center\"\n", + " )\n", + "\n", + " W_lb = (soln[\"w\"] * soln[\"d\"]).sum() / D\n", + " ax.set_xlim(0, 1.1 * soln[\"w\"].sum())\n", + " ax.set_ylim(0, D * 1.1)\n", " ax.axhline(D, label=\"shelf depth $D$\", lw=0.8)\n", " ax.axvline(W_lb, label=\"lower bound $W_{lb}$\", color=\"g\", lw=0.8)\n", " ax.axvline(soln[\"x2\"].max(), label=\"shelf width $W$\", color=\"r\", lw=0.8)\n", @@ -410,12 +417,13 @@ " ax.set_title(f\"shelf width $W$ = {soln['x2'].max():.0f}\")\n", " ax.set_xlabel(\"width\")\n", " ax.set_ylabel(\"depth\")\n", - " ax.set_aspect('equal')\n", + " ax.set_aspect(\"equal\")\n", " ax.legend(loc=\"upper right\")\n", "\n", + "\n", "soln = pack_boxes_V0(boxes)\n", "display(soln)\n", - "show_boxes(soln, D)\n" + "show_boxes(soln, D)" ] }, { @@ -611,8 +619,8 @@ "import pyomo.environ as pyo\n", "import pyomo.gdp as gdp\n", "\n", + "\n", "def pack_boxes_V1(boxes):\n", - " \n", " # a simple upper bound on shelf width\n", " W_ub = boxes[\"w\"].sum()\n", "\n", @@ -628,19 +636,18 @@ " @m.Objective()\n", " def minimize_width(m):\n", " return m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def bounding_box(m, i):\n", " return m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"]\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def width(m, i):\n", " return m.x2[i] <= m.W\n", "\n", " @m.Disjunction(m.PAIRS, xor=True)\n", " def no_overlap(m, i, j):\n", - " return [m.x2[i] <= m.x1[j],\n", - " m.x2[j] <= m.x1[i]]\n", + " return [m.x2[i] <= m.x1[j], m.x2[j] <= m.x1[i]]\n", "\n", " pyo.TransformationFactory(\"gdp.bigm\").apply_to(m)\n", " SOLVER.solve(m)\n", @@ -653,6 +660,7 @@ " soln[\"r\"] = [0 for i in boxes.index]\n", " return soln\n", "\n", + "\n", "soln = pack_boxes_V1(boxes)\n", "display(soln)\n", "show_boxes(soln, D)" @@ -842,8 +850,8 @@ "import pyomo.environ as pyo\n", "import pyomo.gdp as gdp\n", "\n", + "\n", "def pack_boxes_V2(boxes):\n", - " \n", " W_ub = boxes[\"w\"].sum()\n", "\n", " m = pyo.ConcreteModel()\n", @@ -861,30 +869,33 @@ " @m.Objective()\n", " def minimize_width(m):\n", " return m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def width(m, i):\n", " return m.x2[i] <= m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def yloc(m, i):\n", " return m.y1[i] == 0\n", - " \n", + "\n", " @m.Disjunction(m.BOXES)\n", " def rotate(m, i):\n", - " return [[m.r[i] == False, \n", - " m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"],\n", - " m.y2[i] == m.y1[i] + boxes.loc[i, \"d\"]],\n", - " \n", - " [m.r[i] == True, \n", - " m.x2[i] == m.x1[i] + boxes.loc[i, \"d\"],\n", - " m.y2[i] == m.y1[i] + boxes.loc[i, \"w\"]]\n", - " ]\n", + " return [\n", + " [\n", + " m.r[i] == False,\n", + " m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"],\n", + " m.y2[i] == m.y1[i] + boxes.loc[i, \"d\"],\n", + " ],\n", + " [\n", + " m.r[i] == True,\n", + " m.x2[i] == m.x1[i] + boxes.loc[i, \"d\"],\n", + " m.y2[i] == m.y1[i] + boxes.loc[i, \"w\"],\n", + " ],\n", + " ]\n", "\n", " @m.Disjunction(m.PAIRS)\n", " def no_overlap(m, i, j):\n", - " return [m.x2[i] <= m.x1[j],\n", - " m.x2[j] <= m.x1[i]]\n", + " return [m.x2[i] <= m.x1[j], m.x2[j] <= m.x1[i]]\n", "\n", " pyo.TransformationFactory(\"gdp.bigm\").apply_to(m)\n", " SOLVER.solve(m)\n", @@ -895,9 +906,10 @@ " soln[\"y1\"] = [m.y1[i]() for i in boxes.index]\n", " soln[\"y2\"] = [m.y2[i]() for i in boxes.index]\n", " soln[\"r\"] = [round(m.r[i]()) for i in boxes.index]\n", - " \n", + "\n", " return soln\n", "\n", + "\n", "soln = pack_boxes_V2(boxes)\n", "display(soln)\n", "show_boxes(soln, D)" @@ -1103,12 +1115,12 @@ "import pyomo.environ as pyo\n", "import pyomo.gdp as gdp\n", "\n", + "\n", "def pack_boxes_V3(boxes, D):\n", - " \n", " W_ub = boxes[\"w\"].sum()\n", "\n", " m = pyo.ConcreteModel()\n", - " \n", + "\n", " m.D = pyo.Param(mutable=True, initialize=D)\n", "\n", " m.BOXES = pyo.Set(initialize=boxes.index)\n", @@ -1124,32 +1136,38 @@ " @m.Objective()\n", " def minimize_width(m):\n", " return m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def width(m, i):\n", " return m.x2[i] <= m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def height(m, i):\n", " return m.y2[i] <= m.D\n", - " \n", + "\n", " @m.Disjunction(m.BOXES)\n", " def rotate(m, i):\n", - " return [[m.r[i] == False, \n", - " m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"],\n", - " m.y2[i] == m.y1[i] + boxes.loc[i, \"d\"]],\n", - " \n", - " [m.r[i] == True, \n", - " m.x2[i] == m.x1[i] + boxes.loc[i, \"d\"],\n", - " m.y2[i] == m.y1[i] + boxes.loc[i, \"w\"]]\n", - " ]\n", + " return [\n", + " [\n", + " m.r[i] == False,\n", + " m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"],\n", + " m.y2[i] == m.y1[i] + boxes.loc[i, \"d\"],\n", + " ],\n", + " [\n", + " m.r[i] == True,\n", + " m.x2[i] == m.x1[i] + boxes.loc[i, \"d\"],\n", + " m.y2[i] == m.y1[i] + boxes.loc[i, \"w\"],\n", + " ],\n", + " ]\n", "\n", " @m.Disjunction(m.PAIRS)\n", " def no_overlap(m, i, j):\n", - " return [m.x2[i] <= m.x1[j],\n", - " m.x2[j] <= m.x1[i],\n", - " m.y2[i] <= m.y1[j],\n", - " m.y2[j] <= m.y1[i]]\n", + " return [\n", + " m.x2[i] <= m.x1[j],\n", + " m.x2[j] <= m.x1[i],\n", + " m.y2[i] <= m.y1[j],\n", + " m.y2[j] <= m.y1[i],\n", + " ]\n", "\n", " pyo.TransformationFactory(\"gdp.bigm\").apply_to(m)\n", " SOLVER.solve(m)\n", @@ -1162,6 +1180,7 @@ " soln[\"r\"] = [round(m.r[i]()) for i in boxes.index]\n", " return soln\n", "\n", + "\n", "soln = pack_boxes_V3(boxes, D)\n", "display(soln)\n", "show_boxes(soln, D)" @@ -1330,12 +1349,12 @@ "import pyomo.environ as pyo\n", "import pyomo.gdp as gdp\n", "\n", + "\n", "def pack_boxes_V4(boxes, D):\n", - " \n", " W_ub = boxes[\"w\"].sum()\n", "\n", " m = pyo.ConcreteModel()\n", - " \n", + "\n", " m.D = pyo.Param(mutable=True, initialize=D)\n", "\n", " m.BOXES = pyo.Set(initialize=boxes.index)\n", @@ -1351,40 +1370,38 @@ " @m.Objective()\n", " def minimize_width(m):\n", " return m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def width(m, i):\n", " return m.x2[i] <= m.W\n", - " \n", + "\n", " @m.Constraint(m.BOXES)\n", " def height(m, i):\n", " return m.y2[i] <= m.D\n", - " \n", + "\n", " @m.Disjunction(m.BOXES)\n", " def rotate(m, i):\n", - " return [[m.r[i] == False, \n", - " m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"],\n", - " m.y2[i] == m.y1[i] + boxes.loc[i, \"d\"]],\n", - " \n", - " [m.r[i] == True, \n", - " m.x2[i] == m.x1[i] + boxes.loc[i, \"d\"],\n", - " m.y2[i] == m.y1[i] + boxes.loc[i, \"w\"]]\n", - " ]\n", + " return [\n", + " [\n", + " m.r[i] == False,\n", + " m.x2[i] == m.x1[i] + boxes.loc[i, \"w\"],\n", + " m.y2[i] == m.y1[i] + boxes.loc[i, \"d\"],\n", + " ],\n", + " [\n", + " m.r[i] == True,\n", + " m.x2[i] == m.x1[i] + boxes.loc[i, \"d\"],\n", + " m.y2[i] == m.y1[i] + boxes.loc[i, \"w\"],\n", + " ],\n", + " ]\n", "\n", " @m.Disjunction(m.PAIRS)\n", " def no_overlap(m, i, j):\n", - " return [[m.x2[i] <= m.x1[j]],\n", - " \n", - " [m.x2[j] <= m.x1[i]],\n", - " \n", - " [m.y2[i] <= m.y1[j],\n", - " m.x2[i] >= m.x1[j] + 1,\n", - " m.x2[j] >= m.x1[i] + 1],\n", - " \n", - " [m.y2[j] <= m.y1[i],\n", - " m.x2[i] >= m.x1[j] + 1,\n", - " m.x2[j] >= m.x1[i] + 1]\n", - " ]\n", + " return [\n", + " [m.x2[i] <= m.x1[j]],\n", + " [m.x2[j] <= m.x1[i]],\n", + " [m.y2[i] <= m.y1[j], m.x2[i] >= m.x1[j] + 1, m.x2[j] >= m.x1[i] + 1],\n", + " [m.y2[j] <= m.y1[i], m.x2[i] >= m.x1[j] + 1, m.x2[j] >= m.x1[i] + 1],\n", + " ]\n", "\n", " pyo.TransformationFactory(\"gdp.bigm\").apply_to(m)\n", " SOLVER.solve(m)\n", @@ -1397,6 +1414,7 @@ " soln[\"r\"] = [round(m.r[i]()) for i in boxes.index]\n", " return soln\n", "\n", + "\n", "soln = pack_boxes_V4(boxes, D)\n", "display(soln)\n", "show_boxes(soln, D)" diff --git a/notebooks/04/cryptocurrency-arbitrage.ipynb b/notebooks/04/cryptocurrency-arbitrage.ipynb index 24a029b7..374a1bc1 100644 --- a/notebooks/04/cryptocurrency-arbitrage.ipynb +++ b/notebooks/04/cryptocurrency-arbitrage.ipynb @@ -69,8 +69,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -249,7 +249,7 @@ "source": [ "print(\"Available exchanges:\\n\")\n", "for i, exchange in enumerate(ccxt.exchanges):\n", - " print(f\"{i+1:3d}) {exchange.ljust(20)}\", end=\"\" if (i+1) % 4 else \"\\n\")" + " print(f\"{i+1:3d}) {exchange.ljust(20)}\", end=\"\" if (i + 1) % 4 else \"\\n\")" ] }, { @@ -307,6 +307,7 @@ "# create an exchange object\n", "exchange = ccxt.binanceus()\n", "\n", + "\n", "def get_exchange_dg(exchange, minimum_in_degree=1):\n", " \"\"\"\n", " Return a directed graph constructed from the market symbols on a specified exchange.\n", @@ -318,21 +319,26 @@ " dg = nx.DiGraph()\n", " for base, quote in [symbol.split(\"/\") for symbol in symbols]:\n", " dg.add_edge(quote, base, color=\"k\", width=1)\n", - " \n", + "\n", " # remove base currencies with in_degree less than minimum_in_degree\n", - " remove_nodes = [node for node in dg.nodes if dg.out_degree(node) == 0 and dg.in_degree(node) < minimum_in_degree]\n", + " remove_nodes = [\n", + " node\n", + " for node in dg.nodes\n", + " if dg.out_degree(node) == 0 and dg.in_degree(node) < minimum_in_degree\n", + " ]\n", " for node in reversed(list(nx.topological_sort(dg))):\n", " if node in remove_nodes:\n", " dg.remove_node(node)\n", " else:\n", " break\n", - " \n", + "\n", " # color quote currencies in gold\n", " for node in dg.nodes():\n", " dg.nodes[node][\"color\"] = \"gold\" if dg.out_degree(node) > 0 else \"lightblue\"\n", "\n", " return dg\n", "\n", + "\n", "def draw_dg(dg, rad=0.0):\n", " \"\"\"\n", " Draw directed graph of markets symbols.\n", @@ -342,7 +348,7 @@ " fig = plt.figure(figsize=(size, size))\n", " pos = nx.circular_layout(dg)\n", " nx.draw_networkx(\n", - " dg, \n", + " dg,\n", " pos,\n", " with_labels=True,\n", " node_color=[dg.nodes[node][\"color\"] for node in dg.nodes()],\n", @@ -353,14 +359,19 @@ " arrowsize=15,\n", " connectionstyle=f\"arc3, rad={rad}\",\n", " )\n", - " nx.draw_networkx_edge_labels(dg, pos, edge_labels={(src, dst): f\"{src}/{dst}\" for src, dst in dg.edges()})\n", + " nx.draw_networkx_edge_labels(\n", + " dg, pos, edge_labels={(src, dst): f\"{src}/{dst}\" for src, dst in dg.edges()}\n", + " )\n", "\n", " return plt.gca()\n", "\n", + "\n", "minimum_in_degree = 5\n", "exchange_dg = get_exchange_dg(exchange, minimum_in_degree)\n", "ax = draw_dg(exchange_dg, 0.01)\n", - "ax.set_title(exchange.name + \"\\n\" + f\"Minimum in Degree (Base Currencies) = {minimum_in_degree}\")\n", + "ax.set_title(\n", + " exchange.name + \"\\n\" + f\"Minimum in Degree (Base Currencies) = {minimum_in_degree}\"\n", + ")\n", "\n", "print(f\"Number of nodes = {len(exchange_dg.nodes()):3d}\")\n", "print(f\"Number of edges = {len(exchange_dg.edges()):3d}\")" @@ -1040,19 +1051,22 @@ "source": [ "if \"google.colab\" in sys.modules:\n", " csv = \"Binance_US_orderbook_20230313_152616.csv\"\n", - " order_book = pd.read_csv(\"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/04/\" + csv, index_col=0)\n", - " \n", + " order_book = pd.read_csv(\n", + " \"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/04/\" + csv,\n", + " index_col=0,\n", + " )\n", + "\n", "else:\n", " import glob\n", "\n", " # find all previously saved order books\n", - " fnames = sorted(glob.glob(f\"*orderbook*\".replace(\" \",\"_\")))\n", + " fnames = sorted(glob.glob(f\"*orderbook*\".replace(\" \", \"_\")))\n", " fname = fnames[-1]\n", "\n", " # read the last order book from the list of order books\n", " print(f\"\\nReading: {fname}\\n\")\n", " order_book = pd.read_csv(fname, index_col=0)\n", - " \n", + "\n", "display(order_book)" ] }, @@ -1145,10 +1159,10 @@ " dg_order_book : networkx.DiGraph\n", " A directed graph representing the order book.\n", " \"\"\"\n", - " \n", + "\n", " # create a dictionary of edges index by (src, dst)\n", " dg_order_book = nx.DiGraph()\n", - " \n", + "\n", " # loop over each order in the order book dataframe\n", " for order in order_book.index:\n", " # if the order is a 'bid', i.e., an order to purchase the base currency\n", @@ -1156,13 +1170,15 @@ " src = order_book.at[order, \"base\"]\n", " dst = order_book.at[order, \"quote\"]\n", " # add an edge to the graph with the relevant attributes\n", - " dg_order_book.add_edge(src, dst,\n", - " kind = \"bid\",\n", - " a = order_book.at[order, \"bid_price\"],\n", - " capacity = order_book.at[order, \"bid_volume\"],\n", - " weight = - np.log(order_book.at[order, \"bid_price\"]),\n", - " color = \"g\",\n", - " width = 0.5,\n", + " dg_order_book.add_edge(\n", + " src,\n", + " dst,\n", + " kind=\"bid\",\n", + " a=order_book.at[order, \"bid_price\"],\n", + " capacity=order_book.at[order, \"bid_volume\"],\n", + " weight=-np.log(order_book.at[order, \"bid_price\"]),\n", + " color=\"g\",\n", + " width=0.5,\n", " )\n", "\n", " # if the order is an 'ask', i.e., an order to sell the base currency\n", @@ -1170,13 +1186,16 @@ " src = order_book.at[order, \"quote\"]\n", " dst = order_book.at[order, \"base\"]\n", " # add an edge to the graph with the relevant attributes\n", - " dg_order_book.add_edge(src, dst,\n", - " kind = \"ask\",\n", - " a = 1.0 / order_book.at[order, \"ask_price\"],\n", - " capacity = order_book.at[order, \"ask_volume\"] * order_book.at[order, \"ask_price\"],\n", - " weight = - np.log(1.0 / order_book.at[order, \"ask_price\"]),\n", - " color = \"r\",\n", - " width = 0.5,\n", + " dg_order_book.add_edge(\n", + " src,\n", + " dst,\n", + " kind=\"ask\",\n", + " a=1.0 / order_book.at[order, \"ask_price\"],\n", + " capacity=order_book.at[order, \"ask_volume\"]\n", + " * order_book.at[order, \"ask_price\"],\n", + " weight=-np.log(1.0 / order_book.at[order, \"ask_price\"]),\n", + " color=\"r\",\n", + " width=0.5,\n", " )\n", "\n", " # loop over each node in the graph and set the color attribute to \"lightblue\"\n", @@ -1185,6 +1204,7 @@ "\n", " return dg_order_book\n", "\n", + "\n", "order_book_dg = order_book_to_dg(order_book)" ] }, @@ -1316,8 +1336,10 @@ "print(f\"src --> dst kind a c\")\n", "print(f\"------------------------------------------------------\")\n", "for src, dst in order_book_dg.edges():\n", - " print(f\"{src:5s} --> {dst:5s} {order_book_dg.edges[(src, dst)]['kind']}\" +\n", - " f\"{order_book_dg.edges[(src, dst)]['a']: 16f} {order_book_dg.edges[(src, dst)]['capacity']: 16f} \")" + " print(\n", + " f\"{src:5s} --> {dst:5s} {order_book_dg.edges[(src, dst)]['kind']}\"\n", + " + f\"{order_book_dg.edges[(src, dst)]['a']: 16f} {order_book_dg.edges[(src, dst)]['capacity']: 16f} \"\n", + " )" ] }, { @@ -1450,18 +1472,26 @@ "source": [ "# compute the sum of weights given a list of nodes\n", "def sum_weights(cycle):\n", - " return sum([order_book_dg.edges[edge][\"weight\"] for edge in zip(cycle, cycle[1:] + cycle[:1])])\n", + " return sum(\n", + " [\n", + " order_book_dg.edges[edge][\"weight\"]\n", + " for edge in zip(cycle, cycle[1:] + cycle[:1])\n", + " ]\n", + " )\n", + "\n", "\n", "order_book_dg = order_book_to_dg(order_book)\n", "arb = nx.find_negative_cycle(order_book_dg, weight=\"weight\", source=\"USD\")[:-1]\n", "bp = 10000 * (np.exp(-sum_weights(arb)) - 1)\n", - " \n", + "\n", "for src, dst in zip(arb, arb[1:] + arb[:1]):\n", " order_book_dg[src][dst][\"width\"] = 5\n", - " \n", + "\n", "ax = draw_dg(order_book_dg, 0.05)\n", - "ax.set_title(f\"Trading cycle with {len(list(arb))} trades: {' -> '.join(list(arb))}\\n\\n Return = {bp:6.3f} basis points \")\n", - "plt.show()\n" + "ax.set_title(\n", + " f\"Trading cycle with {len(list(arb))} trades: {' -> '.join(list(arb))}\\n\\n Return = {bp:6.3f} basis points \"\n", + ")\n", + "plt.show()" ] }, { @@ -1513,19 +1543,31 @@ ], "source": [ "# This cell iterates over all simple cycles in a directed graph. This\n", - "# can a long time for a large, well connected graph. \n", + "# can a long time for a large, well connected graph.\n", "\n", "# convert order book to a directed graph\n", "order_book_dg = order_book_to_dg(order_book)\n", "\n", + "\n", "# compute the sum of weights given a list of nodes\n", "def sum_weights(cycle):\n", - " return sum([order_book_dg.edges[edge][\"weight\"] for edge in zip(cycle, cycle[1:] + cycle[:1])])\n", + " return sum(\n", + " [\n", + " order_book_dg.edges[edge][\"weight\"]\n", + " for edge in zip(cycle, cycle[1:] + cycle[:1])\n", + " ]\n", + " )\n", + "\n", "\n", "# create a dictionary of all simple cycles and sum of weights\n", - "cycles = {tuple(cycle): 10000 * (np.exp(-sum_weights(cycle)) - 1) for cycle in nx.simple_cycles(order_book_dg)}\n", + "cycles = {\n", + " tuple(cycle): 10000 * (np.exp(-sum_weights(cycle)) - 1)\n", + " for cycle in nx.simple_cycles(order_book_dg)\n", + "}\n", "\n", - "print(f\"There are {len(cycles)} distinct simple cycles in the order book, {len([cycle for cycle in cycles if cycles[cycle] > 0])} of which have positive return.\")\n", + "print(\n", + " f\"There are {len(cycles)} distinct simple cycles in the order book, {len([cycle for cycle in cycles if cycles[cycle] > 0])} of which have positive return.\"\n", + ")\n", "\n", "# create histogram\n", "plt.hist(cycles.values(), bins=int(np.sqrt(len(cycles))))\n", @@ -1534,7 +1576,7 @@ "ax.set_xlabel(\"Basis Points\")\n", "ax.set_title(\"Histogram of Returns for all Simple Cycles\")\n", "ax.grid(True)\n", - "ax.axvline(0, color='r')\n", + "ax.axvline(0, color=\"r\")\n", "plt.show()" ] }, @@ -1568,13 +1610,15 @@ } ], "source": [ - "arbitrage = [cycle for cycle in sorted(cycles, key=cycles.get, reverse=True) if cycles[cycle] > 0]\n", + "arbitrage = [\n", + " cycle for cycle in sorted(cycles, key=cycles.get, reverse=True) if cycles[cycle] > 0\n", + "]\n", "\n", "n_cycles_to_list = 5\n", "\n", "print(f\"Top {n_cycles_to_list}\\n\")\n", "print(f\"Basis Points Arbitrage Cycle\")\n", - "for cycle in arbitrage[0: min(n_cycles_to_list, len(arbitrage))]:\n", + "for cycle in arbitrage[0 : min(n_cycles_to_list, len(arbitrage))]:\n", " t = list(cycle)\n", " t.append(cycle[0])\n", " print(f\"{cycles[cycle]:6.3f} {len(t)} trades: {' -> '.join(t)}\")" @@ -1606,26 +1650,27 @@ "source": [ "n_cycles_to_show = 1\n", "\n", - "for cycle in arbitrage[0: min(n_cycles_to_show, len(arbitrage))]:\n", - "\n", + "for cycle in arbitrage[0 : min(n_cycles_to_show, len(arbitrage))]:\n", " # get fresh graph to color nodes\n", " order_book_dg = order_book_to_dg(order_book)\n", - " \n", + "\n", " # color nodes red\n", " for node in cycle:\n", - " order_book_dg.nodes[node]['color'] = 'red'\n", - " \n", + " order_book_dg.nodes[node][\"color\"] = \"red\"\n", + "\n", " # makes lines wide\n", " for edge in zip(cycle, cycle[1:] + cycle[:1]):\n", - " order_book_dg.edges[edge]['width'] = 4\n", - " \n", + " order_book_dg.edges[edge][\"width\"] = 4\n", + "\n", " ax = draw_dg(order_book_dg, rad=0.05)\n", "\n", " t = list(cycle)\n", " t.append(cycle[0])\n", - " ax.set_title(f\"Trading cycle with {len(t)} trades: {' -> '.join(t)}\\n\\n Return = {cycles[cycle]:6.3f} basis points \")\n", - " plt.savefig(\"crypto3.pdf\", bbox_inches = 'tight')\n", - " plt.show()\n" + " ax.set_title(\n", + " f\"Trading cycle with {len(t)} trades: {' -> '.join(t)}\\n\\n Return = {cycles[cycle]:6.3f} basis points \"\n", + " )\n", + " plt.savefig(\"crypto3.pdf\", bbox_inches=\"tight\")\n", + " plt.show()" ] }, { @@ -1702,8 +1747,8 @@ "source": [ "import pyomo.environ as pyo\n", "\n", - "def crypto_model(order_book_dg, T = 10, v0 = 100.0):\n", "\n", + "def crypto_model(order_book_dg, T=10, v0=100.0):\n", " m = pyo.ConcreteModel()\n", "\n", " # length of the trading chain\n", @@ -1760,10 +1805,12 @@ " def balances(m, node, t):\n", " in_nodes = [src for src, dst in m.EDGES if dst == node]\n", " out_nodes = [dst for src, dst in m.EDGES if src == node]\n", - " return m.v[node, t] == m.v[node, t - 1] + sum(m.a[src, node] * m.x[src, node, t] for src in in_nodes) - sum(m.x[node, dst, t] for dst in out_nodes) \n", + " return m.v[node, t] == m.v[node, t - 1] + sum(\n", + " m.a[src, node] * m.x[src, node, t] for src in in_nodes\n", + " ) - sum(m.x[node, dst, t] for dst in out_nodes)\n", "\n", " SOLVER.solve(m)\n", - " \n", + "\n", " return m" ] }, @@ -1923,7 +1970,9 @@ " print(f\"t = {t}\")\n", " for src, dst in m.EDGES:\n", " if m.x[src, dst, t]() > 1e-6:\n", - " print(f\" {src:8s} -> {dst:8s}: {m.x[src, dst, t]():14.6f} {m.a[src, dst] * m.x[src, dst, t]():14.6f}\")\n", + " print(\n", + " f\" {src:8s} -> {dst:8s}: {m.x[src, dst, t]():14.6f} {m.a[src, dst] * m.x[src, dst, t]():14.6f}\"\n", + " )\n", " print()" ] }, @@ -1983,11 +2032,11 @@ "\n", "# report what orders to issue\n", "for src, dst in m.EDGES:\n", - " if m.z[src, dst]() > 0.0000002: \n", + " if m.z[src, dst]() > 0.0000002:\n", " order_book_dg.nodes[src][\"color\"] = \"red\"\n", " order_book_dg.nodes[dst][\"color\"] = \"red\"\n", " order_book_dg[src][dst][\"width\"] = 4\n", - " \n", + "\n", "draw_dg(order_book_dg, 0.05)" ] }, @@ -2046,7 +2095,7 @@ "print(f\" Order Book Type Capacity Traded\")\n", "for src, dst in m.EDGES:\n", " if m.z[src, dst]() > 0.0000002:\n", - " kind = order_book_dg.edges[(src,dst)]['kind']\n", + " kind = order_book_dg.edges[(src, dst)][\"kind\"]\n", " s = f\"{src:>5s} -> {dst:<5s} {kind} {m.c[src, dst]:12.5f} {m.z[src, dst]():14.5f}\"\n", " s += \" >>> \"\n", " if kind == \"ask\":\n", @@ -2056,16 +2105,15 @@ " price = 1.0 / order_book_dg.edges[(src, dst)][\"a\"]\n", " volume = m.z[src, dst]() / price\n", " s += f\"sell {volume:15.6f} {symbol:11s} at {price:12.6f}\"\n", - " \n", + "\n", " if kind == \"bid\":\n", " base = src\n", " quote = dst\n", " symbol = base + \"/\" + quote\n", " price = order_book_dg.edges[(src, dst)][\"a\"]\n", - " volume = m.z[src,dst]() \n", - " s += f\"buy {volume:16.6f} {symbol:11s} at {price:12.6f}\" \n", - " print(s)\n", - " " + " volume = m.z[src, dst]()\n", + " s += f\"buy {volume:16.6f} {symbol:11s} at {price:12.6f}\"\n", + " print(s)" ] }, { @@ -2116,7 +2164,13 @@ " for t in m.T0:\n", " balances.loc[t, node] = m.v[node, t]()\n", "\n", - "balances.plot(kind=\"bar\", subplots=True, figsize=(8, 10), xlabel=\"Transaction\", ylabel=\"Currency Units\")\n", + "balances.plot(\n", + " kind=\"bar\",\n", + " subplots=True,\n", + " figsize=(8, 10),\n", + " xlabel=\"Transaction\",\n", + " ylabel=\"Currency Units\",\n", + ")\n", "plt.gcf().tight_layout()\n", "plt.show()" ] @@ -2359,8 +2413,8 @@ "source": [ "import pandas as pd\n", "\n", - "def get_order_book(exchange, exchange_dg):\n", "\n", + "def get_order_book(exchange, exchange_dg):\n", " def get_orders(base, quote, limit=1):\n", " \"\"\"\n", " Return order book data for a specified symbol.\n", @@ -2371,18 +2425,33 @@ " else:\n", " result[\"base\"], result[\"quote\"] = base, quote\n", " result[\"timestamp\"] = exchange.milliseconds()\n", - " result[\"bid_price\"], result[\"bid_volume\"] = result[\"bids\"][0] \n", + " result[\"bid_price\"], result[\"bid_volume\"] = result[\"bids\"][0]\n", " result[\"ask_price\"], result[\"ask_volume\"] = result[\"asks\"][0]\n", " return result\n", "\n", " # fetch order book data and store in a dictionary\n", - " order_book = filter(lambda r: r is not None, [get_orders(base, quote) for quote, base in exchange_dg.edges()])\n", + " order_book = filter(\n", + " lambda r: r is not None,\n", + " [get_orders(base, quote) for quote, base in exchange_dg.edges()],\n", + " )\n", "\n", " # convert to pandas dataframe\n", " order_book = pd.DataFrame(order_book)\n", " order_book[\"timestamp\"] = pd.to_datetime(order_book[\"timestamp\"], unit=\"ms\")\n", "\n", - " return order_book[['symbol', 'timestamp', 'base', 'quote', 'bid_price', 'bid_volume', 'ask_price', 'ask_volume']]\n", + " return order_book[\n", + " [\n", + " \"symbol\",\n", + " \"timestamp\",\n", + " \"base\",\n", + " \"quote\",\n", + " \"bid_price\",\n", + " \"bid_volume\",\n", + " \"ask_price\",\n", + " \"ask_volume\",\n", + " ]\n", + " ]\n", + "\n", "\n", "minimum_in_degree = 5\n", "\n", @@ -2455,12 +2524,13 @@ "\n", " if bp >= arb_threshold:\n", " print(\"arbitrage found!\")\n", - " fname = f\"{exchange} orderbook {datetime.utcnow().strftime('%Y%m%d_%H%M%S')}.csv\".replace(\" \", \"_\")\n", + " fname = f\"{exchange} orderbook {datetime.utcnow().strftime('%Y%m%d_%H%M%S')}.csv\".replace(\n", + " \" \", \"_\"\n", + " )\n", " order_book.to_csv(fname)\n", " print(f\"order book saved to: {fname}\")\n", "\n", - "print(\"Search complete.\")\n", - " " + "print(\"Search complete.\")" ] }, { diff --git a/notebooks/04/dinner-seat-allocation.ipynb b/notebooks/04/dinner-seat-allocation.ipynb index e294fe0c..94959a8d 100644 --- a/notebooks/04/dinner-seat-allocation.ipynb +++ b/notebooks/04/dinner-seat-allocation.ipynb @@ -58,8 +58,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -121,33 +121,34 @@ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", + "\n", "def table_seat(members, capacity, k, domain=pyo.NonNegativeReals):\n", - " \n", " m = pyo.ConcreteModel(\"Dina's seat plan\")\n", - " \n", + "\n", " m.F = pyo.Set(initialize=range(len(members)))\n", " m.T = pyo.Set(initialize=range(len(capacity)))\n", - " \n", + "\n", " m.M = pyo.Param(m.F, initialize=members)\n", " m.C = pyo.Param(m.T, initialize=capacity)\n", - " \n", + "\n", " m.x = pyo.Var(m.F, m.T, bounds=(0, k), domain=domain)\n", " m.dummy = pyo.Var(bounds=(0, 1), initialize=0)\n", - " \n", + "\n", " @m.Objective(sense=pyo.minimize)\n", " def goal(m):\n", " return m.dummy\n", "\n", - " @m.Constraint(m.T) \n", + " @m.Constraint(m.T)\n", " def capacity(m, t):\n", " return pyo.quicksum(m.x[f, t] for f in m.F) <= m.C[t]\n", - " \n", + "\n", " @m.Constraint(m.F)\n", " def seat(m, f):\n", " return pyo.quicksum(m.x[f, t] for t in m.T) == m.M[f]\n", - " \n", + "\n", " return m\n", "\n", + "\n", "def get_solution(model):\n", " df = pd.DataFrame()\n", " for idx, x in model.x.items():\n", @@ -156,16 +157,17 @@ " df.index.name = \"family\"\n", " df.columns = [f\"table {i}\" for i in model.T]\n", " return df.round(5)\n", - " \n", + "\n", + "\n", "def report(model, results, type=int):\n", " print(f\"Solver status: {results.solver.status}\")\n", " print(f\"Termination condition: {results.solver.termination_condition}\")\n", - " if results.solver.termination_condition == 'optimal':\n", + " if results.solver.termination_condition == \"optimal\":\n", " soln = get_solution(model).astype(type)\n", " display(soln)\n", - " print(f'objective: {pyo.value(seatplan.goal)}')\n", - " print(f'places at table: {list(soln.sum(axis=0))}')\n", - " print(f'members seated: {list(soln.sum(axis=1))}')" + " print(f\"objective: {pyo.value(seatplan.goal)}\")\n", + " print(f\"places at table: {list(soln.sum(axis=0))}\")\n", + " print(f\"members seated: {list(soln.sum(axis=1))}\")" ] }, { @@ -357,34 +359,35 @@ }, "outputs": [], "source": [ - "def table_seat_minimize_max_group_at_table(members, capacity, domain=pyo.NonNegativeReals):\n", - " \n", - " m = pyo.ConcreteModel(\"Dina's seat plan\")\n", - " \n", + "def table_seat_minimize_max_group_at_table(\n", + " members, capacity, domain=pyo.NonNegativeReals\n", + "):\n", + " m = pyo.ConcreteModel(\"Dina's seat plan\")\n", + "\n", " m.F = pyo.Set(initialize=range(len(members)))\n", " m.T = pyo.Set(initialize=range(len(capacity)))\n", - " \n", + "\n", " m.M = pyo.Param(m.F, initialize=members)\n", " m.C = pyo.Param(m.T, initialize=capacity)\n", - " \n", + "\n", " m.x = pyo.Var(m.F, m.T, domain=domain)\n", - " m.k = pyo.Var( domain=domain)\n", - " \n", + " m.k = pyo.Var(domain=domain)\n", + "\n", " @m.Objective(sense=pyo.minimize)\n", " def goal(m):\n", " return m.k\n", - " \n", - " @m.Constraint(m.T) \n", + "\n", + " @m.Constraint(m.T)\n", " def capacity(m, t):\n", - " return pyo.quicksum(m.x[f,t] for f in m.F ) <= m.C[t]\n", - " \n", + " return pyo.quicksum(m.x[f, t] for f in m.F) <= m.C[t]\n", + "\n", " @m.Constraint(m.F)\n", " def seat(m, f):\n", - " return pyo.quicksum(m.x[f,t] for t in m.T ) == m.M[f]\n", + " return pyo.quicksum(m.x[f, t] for t in m.T) == m.M[f]\n", "\n", " @m.Constraint(m.F, m.T)\n", " def bound(m, f, t):\n", - " return m.x[f,t] <= m.k\n", + " return m.x[f, t] <= m.k\n", "\n", " return m" ] @@ -732,26 +735,28 @@ }, "outputs": [], "source": [ - "def table_seat_minimize_number_of_tables(members, capacity, k, domain=pyo.NonNegativeReals):\n", - " m = pyo.ConcreteModel(\"Dina's seat plan\")\n", + "def table_seat_minimize_number_of_tables(\n", + " members, capacity, k, domain=pyo.NonNegativeReals\n", + "):\n", + " m = pyo.ConcreteModel(\"Dina's seat plan\")\n", " m.F = pyo.Set(initialize=range(len(members)))\n", " m.T = pyo.Set(initialize=range(len(capacity)))\n", " m.M = pyo.Param(m.F, initialize=members)\n", " m.C = pyo.Param(m.T, initialize=capacity)\n", - " m.x = pyo.Var(m.F, m.T, bounds=(0,k), domain=domain)\n", + " m.x = pyo.Var(m.F, m.T, bounds=(0, k), domain=domain)\n", " m.y = pyo.Var(m.T, domain=pyo.Binary)\n", - " \n", + "\n", " @m.Objective(sense=pyo.minimize)\n", " def goal(m):\n", " return pyo.quicksum(m.y[t] for t in m.T)\n", - " \n", - " @m.Constraint(m.T) \n", + "\n", + " @m.Constraint(m.T)\n", " def capacity(m, t):\n", - " return pyo.quicksum(m.x[f,t] for f in m.F ) <= m.C[t]*m.y[t]\n", - " \n", + " return pyo.quicksum(m.x[f, t] for f in m.F) <= m.C[t] * m.y[t]\n", + "\n", " @m.Constraint(m.F)\n", " def seat(m, f):\n", - " return pyo.quicksum(m.x[f,t] for t in m.T) == m.M[f]\n", + " return pyo.quicksum(m.x[f, t] for t in m.T) == m.M[f]\n", "\n", " return m" ] @@ -1105,18 +1110,17 @@ "outputs": [], "source": [ "def model_as_network(members, capacity, k):\n", - " \n", " # create lists of families and tables\n", - " families = [f'f{i}' for i in range(len(members))]\n", - " tables = [f't{j}' for j in range(len(capacity))]\n", - " \n", + " families = [f\"f{i}\" for i in range(len(members))]\n", + " tables = [f\"t{j}\" for j in range(len(capacity))]\n", + "\n", " # create digraphy object\n", " G = nx.DiGraph()\n", - " \n", + "\n", " # add edges\n", - " G.add_edges_from(['door', f, {'capacity': n}] for f, n in zip(families, members))\n", + " G.add_edges_from([\"door\", f, {\"capacity\": n}] for f, n in zip(families, members))\n", " G.add_edges_from([(f, t) for f in families for t in tables], capacity=k)\n", - " G.add_edges_from([t, 'seat', {'capacity': n}] for t, n in zip(tables, capacity))\n", + " G.add_edges_from([t, \"seat\", {\"capacity\": n}] for t, n in zip(tables, capacity))\n", "\n", " return G" ] @@ -1132,7 +1136,7 @@ "\n", "G = model_as_network(members, capacity=[8, 8, 10, 4, 9], k=3)\n", "\n", - "labels = {(e[0], e[1]) : e[2] for e in G.edges(data='capacity')}" + "labels = {(e[0], e[1]): e[2] for e in G.edges(data=\"capacity\")}" ] }, { @@ -1273,10 +1277,10 @@ } ], "source": [ - "families = [f'f{i:.0f}' for i in range(len(members))]\n", - "tables = [f't{j:.0f}' for j in range(len(capacity))]\n", + "families = [f\"f{i:.0f}\" for i in range(len(members))]\n", + "tables = [f\"t{j:.0f}\" for j in range(len(capacity))]\n", "\n", - "pd.DataFrame(flow_dict).loc[tables, families].astype('int')" + "pd.DataFrame(flow_dict).loc[tables, families].astype(\"int\")" ] }, { diff --git a/notebooks/04/forex-arbitrage.ipynb b/notebooks/04/forex-arbitrage.ipynb index f384a3b5..84086199 100644 --- a/notebooks/04/forex-arbitrage.ipynb +++ b/notebooks/04/forex-arbitrage.ipynb @@ -46,8 +46,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -222,20 +222,22 @@ "source": [ "import pandas as pd\n", "\n", - "df = pd.DataFrame([[1.0, 0.5, 100], [2.0, 1.0, 1/0.0075], [0.01, 0.0075, 1.0]],\n", - " columns = ['USD', 'EUR', 'JPY'],\n", - " index = ['USD', 'EUR', 'JPY']).T\n", + "df = pd.DataFrame(\n", + " [[1.0, 0.5, 100], [2.0, 1.0, 1 / 0.0075], [0.01, 0.0075, 1.0]],\n", + " columns=[\"USD\", \"EUR\", \"JPY\"],\n", + " index=[\"USD\", \"EUR\", \"JPY\"],\n", + ").T\n", "\n", "display(df)\n", "\n", "# USD -> EUR -> USD\n", - "print(df.loc['USD', 'EUR'] * df.loc['EUR', 'USD'])\n", + "print(df.loc[\"USD\", \"EUR\"] * df.loc[\"EUR\", \"USD\"])\n", "\n", "# USD -> JPY -> USD\n", - "print(df.loc['USD', 'JPY'] * df.loc['JPY', 'USD'])\n", + "print(df.loc[\"USD\", \"JPY\"] * df.loc[\"JPY\", \"USD\"])\n", "\n", "# EUR -> JPY -> EUR\n", - "print(df.loc['EUR', 'JPY'] * df.loc['JPY', 'EUR'])\n" + "print(df.loc[\"EUR\", \"JPY\"] * df.loc[\"JPY\", \"EUR\"])" ] }, { @@ -286,9 +288,9 @@ } ], "source": [ - "I = 'USD'\n", - "J = 'JPY'\n", - "K = 'EUR'\n", + "I = \"USD\"\n", + "J = \"JPY\"\n", + "K = \"EUR\"\n", "\n", "print(df.loc[I, K] * df.loc[K, J] * df.loc[J, I])" ] @@ -395,8 +397,8 @@ "import numpy as np\n", "from graphviz import Digraph\n", "\n", - "def arbitrage(T, df, R='EUR'):\n", "\n", + "def arbitrage(T, df, R=\"EUR\"):\n", " m = pyo.ConcreteModel()\n", "\n", " # length of trading chain\n", @@ -409,14 +411,14 @@ " m.NODES = pyo.Set(initialize=df.index)\n", "\n", " # paths between currency nodes i -> j\n", - " m.ARCS = pyo.Set(initialize = m.NODES * m.NODES, filter = lambda arb, i, j: i != j)\n", + " m.ARCS = pyo.Set(initialize=m.NODES * m.NODES, filter=lambda arb, i, j: i != j)\n", "\n", " # w[i, t] amount of currency i on hand after transaction t\n", " m.w = pyo.Var(m.NODES, m.T0, domain=pyo.NonNegativeReals)\n", "\n", " # x[m, n, t] amount of currency m converted to currency n in transaction t t\n", " m.x = pyo.Var(m.ARCS, m.T1, domain=pyo.NonNegativeReals)\n", - " \n", + "\n", " # start with assignment of 100 units of a selected reserve currency\n", " @m.Constraint(m.NODES)\n", " def initial_condition(m, i):\n", @@ -427,13 +429,14 @@ " # no shorting constraint\n", " @m.Constraint(m.NODES, m.T1)\n", " def max_trade(m, j, t):\n", - " return m.w[j, t-1] >= sum(m.x[i, j, t] for i in m.NODES if i != j)\n", + " return m.w[j, t - 1] >= sum(m.x[i, j, t] for i in m.NODES if i != j)\n", "\n", " # one round of transactions\n", " @m.Constraint(m.NODES, m.T1)\n", " def balances(m, j, t):\n", - " return m.w[j, t] == m.w[j, t-1] - sum(m.x[i, j, t] for i in m.NODES if i != j) \\\n", - " + sum(df.loc[j, i]*m.x[j, i, t] for i in m.NODES if i != j)\n", + " return m.w[j, t] == m.w[j, t - 1] - sum(\n", + " m.x[i, j, t] for i in m.NODES if i != j\n", + " ) + sum(df.loc[j, i] * m.x[j, i, t] for i in m.NODES if i != j)\n", "\n", " @m.Objective(sense=pyo.maximize)\n", " def wealth(m):\n", @@ -445,19 +448,21 @@ " print(f\"\\nt = {t}\\n\")\n", " if t >= 1:\n", " for i, j in m.ARCS:\n", - " if m.x[i,j,t]() > 0:\n", - " print(f\"{j} -> {i} Convert {m.x[i, j, t]()} {j} to {df.loc[i,j]*m.x[i,j,t]()} {i}\")\n", + " if m.x[i, j, t]() > 0:\n", + " print(\n", + " f\"{j} -> {i} Convert {m.x[i, j, t]()} {j} to {df.loc[i,j]*m.x[i,j,t]()} {i}\"\n", + " )\n", " print()\n", - " \n", + "\n", " for i in m.NODES:\n", " print(f\"w[{i},{t}] = {m.w[i, t]():9.2f} \")\n", - " \n", + "\n", " return m\n", - " \n", "\n", - "m = arbitrage(3, df, 'EUR')\n", - "print(m.w['EUR', 0]())\n", - "print(m.w['EUR', 3]())\n" + "\n", + "m = arbitrage(3, df, \"EUR\")\n", + "print(m.w[\"EUR\", 0]())\n", + "print(m.w[\"EUR\", 3]())" ] }, { @@ -496,10 +501,10 @@ "source": [ "import networkx as nx\n", "\n", + "\n", "def display_graph(m):\n", - " \n", " path = []\n", - " \n", + "\n", " for t in m.T0:\n", " for i in m.NODES:\n", " if m.w[i, t]() >= 1e-6:\n", @@ -512,23 +517,33 @@ " G.add_node(i)\n", " nodelist = set()\n", " edge_labels = dict()\n", - " \n", + "\n", " for t in m.T1:\n", " for i, j in m.ARCS:\n", " if m.x[i, j, t]() > 0.1:\n", " nodelist.add(i)\n", " nodelist.add(j)\n", - " y = m.w[j, t-1]()\n", + " y = m.w[j, t - 1]()\n", " x = m.w[j, t]()\n", " G.add_edge(j, i)\n", " edge_labels[(j, i)] = df.loc[i, j]\n", - " \n", + "\n", " nodelist = list(nodelist)\n", " pos = nx.spring_layout(G)\n", - " nx.draw_networkx(G, pos, with_labels=True, node_size=2000, nodelist=nodelist,\n", - " node_color=\"lightblue\", node_shape=\"s\", arrowsize=20, label=path)\n", + " nx.draw_networkx(\n", + " G,\n", + " pos,\n", + " with_labels=True,\n", + " node_size=2000,\n", + " nodelist=nodelist,\n", + " node_color=\"lightblue\",\n", + " node_shape=\"s\",\n", + " arrowsize=20,\n", + " label=path,\n", + " )\n", " nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)\n", - " \n", + "\n", + "\n", "display_graph(m)" ] }, @@ -726,7 +741,7 @@ "import pandas as pd\n", "import io\n", "\n", - "df = pd.read_csv(io.StringIO(bloomberg.replace('-', '1.0')), sep='\\t', index_col=0)\n", + "df = pd.read_csv(io.StringIO(bloomberg.replace(\"-\", \"1.0\")), sep=\"\\t\", index_col=0)\n", "display(df)" ] }, @@ -813,7 +828,7 @@ } ], "source": [ - "m = arbitrage(3, df, 'USD')" + "m = arbitrage(3, df, \"USD\")" ] }, { diff --git a/notebooks/04/gasoline-distribution.ipynb b/notebooks/04/gasoline-distribution.ipynb index 633a78e5..2118332d 100644 --- a/notebooks/04/gasoline-distribution.ipynb +++ b/notebooks/04/gasoline-distribution.ipynb @@ -65,8 +65,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -670,6 +670,7 @@ "source": [ "import pyomo.environ as pyo\n", "\n", + "\n", "def transport(supply, demand, rates):\n", " m = pyo.ConcreteModel()\n", "\n", @@ -713,6 +714,7 @@ "\n", " return m\n", "\n", + "\n", "m = transport(supply, demand, rates / 100)\n", "\n", "results = pd.DataFrame(\n", @@ -1215,6 +1217,7 @@ "source": [ "import pyomo.environ as pyo\n", "\n", + "\n", "def transport(supply, demand, rates):\n", " m = pyo.ConcreteModel()\n", "\n", @@ -2176,7 +2179,6 @@ "\n", "\n", "if \"google.colab\" in sys.modules:\n", - " \n", " import graphviz\n", " from graphviz import Digraph\n", "\n", diff --git a/notebooks/04/power-network.ipynb b/notebooks/04/power-network.ipynb index 72e839bb..ae8fa166 100644 --- a/notebooks/04/power-network.ipynb +++ b/notebooks/04/power-network.ipynb @@ -57,8 +57,8 @@ " !pip install pyomo >/dev/null 2>/dev/null\n", " !pip install highspy >/dev/null 2>/dev/null\n", "\n", - " from pyomo.contrib import appsi\n", - " SOLVER = appsi.solvers.Highs(only_child_vars=False)\n", + " from pyomo.environ import SolverFactory\n", + " SOLVER = SolverFactory('appsi_highs')\n", " \n", "else:\n", " from pyomo.environ import SolverFactory\n", @@ -204,7 +204,7 @@ "import matplotlib.pyplot as plt\n", "from ast import literal_eval as make_tuple\n", "import networkx as nx\n", - "import time \n", + "import time\n", "\n", "# Load solver\n", "solver = pyo.SolverFactory(SOLVER)" @@ -233,11 +233,13 @@ "source": [ "# Download the data\n", "base_url = \"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/04/\"\n", - "nodes_df = pd.read_csv(base_url + 'nodes.csv', index_col=0)\n", - "edges_df = pd.read_csv(base_url + 'edges.csv', index_col=0)\n", + "nodes_df = pd.read_csv(base_url + \"nodes.csv\", index_col=0)\n", + "edges_df = pd.read_csv(base_url + \"edges.csv\", index_col=0)\n", "\n", "# Read all instances\n", - "nodes = nodes_df.groupby(\"instance\").apply(lambda data: data.set_index(\"node_id\").T.to_dict())\n", + "nodes = nodes_df.groupby(\"instance\").apply(\n", + " lambda data: data.set_index(\"node_id\").T.to_dict()\n", + ")\n", "edges = edges_df.set_index(edges_df[\"edge_id\"].apply(make_tuple)).T.to_dict()\n", "I = [{\"nodes\": n, \"edges\": edges} for n in nodes]\n", "\n", @@ -273,18 +275,33 @@ " g = nx.DiGraph(network[\"edges\"].keys())\n", " pos = nx.layout.kamada_kawai_layout(g, weight=None)\n", "\n", - " color_mapping = {'solar': '#ffcb36',\n", - " 'wind': 'white',\n", - " 'hydro': '#a5efff',\n", - " 'coal': '#686868',\n", - " 'gas': '#00ab4e',\n", - " np.nan: '#b6b6b6'}\n", - " \n", - " vertex2color = {i: color_mapping[data['energy_type']] for i, data in network['nodes'].items()}\n", - " v2c_list = [vertex2color[i] for i in g.nodes] # Order based on networkx\n", + " color_mapping = {\n", + " \"solar\": \"#ffcb36\",\n", + " \"wind\": \"white\",\n", + " \"hydro\": \"#a5efff\",\n", + " \"coal\": \"#686868\",\n", + " \"gas\": \"#00ab4e\",\n", + " np.nan: \"#b6b6b6\",\n", + " }\n", + "\n", + " vertex2color = {\n", + " i: color_mapping[data[\"energy_type\"]] for i, data in network[\"nodes\"].items()\n", + " }\n", + " v2c_list = [vertex2color[i] for i in g.nodes] # Order based on networkx\n", "\n", - " nodes = nx.draw_networkx_nodes(g, pos, node_size=250, node_color=v2c_list, linewidths=2,)\n", - " edges = nx.draw_networkx_edges(g, pos, width=2, edge_color='#595959',)\n", + " nodes = nx.draw_networkx_nodes(\n", + " g,\n", + " pos,\n", + " node_size=250,\n", + " node_color=v2c_list,\n", + " linewidths=2,\n", + " )\n", + " edges = nx.draw_networkx_edges(\n", + " g,\n", + " pos,\n", + " width=2,\n", + " edge_color=\"#595959\",\n", + " )\n", "\n", " # Gives node colors\n", " ax = plt.gca()\n", @@ -1086,7 +1103,7 @@ } ], "source": [ - "network['nodes'][1]['d']" + "network[\"nodes\"][1][\"d\"]" ] }, { @@ -1125,7 +1142,7 @@ } ], "source": [ - "[i for i, data in network['nodes'].items() if data['is_generator']]" + "[i for i, data in network[\"nodes\"].items() if data[\"is_generator\"]]" ] }, { @@ -1197,7 +1214,7 @@ " - power_generation: a dictionary containing the power generation for each node\n", " - power_flows: a dictionary containing the power flow for each edge\n", " \"\"\"\n", - " \n", + "\n", " # Define a model\n", " model = pyo.ConcreteModel(\"Q1\")\n", "\n", @@ -1211,40 +1228,56 @@ " # Declare objective value\n", " @model.Objective(sense=pyo.maximize)\n", " def objective(model):\n", - " return sum(data[\"c_var\"] * model.p[i] for i, data in network[\"nodes\"].items() if data[\"is_generator\"])\n", - " \n", + " return sum(\n", + " data[\"c_var\"] * model.p[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"is_generator\"]\n", + " )\n", + "\n", " @model.Expression(network[\"nodes\"])\n", " def outgoing_flow(m, i):\n", - " return sum(m.fp[i, j] - m.fm[i, j] for j in network[\"nodes\"] if (i, j) in network[\"edges\"])\n", - " \n", + " return sum(\n", + " m.fp[i, j] - m.fm[i, j]\n", + " for j in network[\"nodes\"]\n", + " if (i, j) in network[\"edges\"]\n", + " )\n", + "\n", " @model.Expression(network[\"nodes\"])\n", " def incoming_flow(m, i):\n", - " return sum(m.fp[j, i] - m.fm[j, i] for j in network[\"nodes\"] if (j, i) in network[\"edges\"])\n", - " \n", + " return sum(\n", + " m.fp[j, i] - m.fm[j, i]\n", + " for j in network[\"nodes\"]\n", + " if (j, i) in network[\"edges\"]\n", + " )\n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def flow_conservation(m, i):\n", - " return m.outgoing_flow[i] - m.incoming_flow[i] == m.p[i] - network[\"nodes\"][i][\"d\"]\n", - " \n", + " return (\n", + " m.outgoing_flow[i] - m.incoming_flow[i] == m.p[i] - network[\"nodes\"][i][\"d\"]\n", + " )\n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def susceptance(m, i, j):\n", - " return m.fp[i, j] - m.fm[i, j] == network[\"edges\"][(i, j)][\"b\"] * (m.theta[i] - m.theta[j])\n", - " \n", + " return m.fp[i, j] - m.fm[i, j] == network[\"edges\"][(i, j)][\"b\"] * (\n", + " m.theta[i] - m.theta[j]\n", + " )\n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def abs_flow(m, *e):\n", " return m.fabs[e] == m.fp[e] + m.fm[e]\n", - " \n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def flows_upper_bound(m, *e):\n", " return m.fabs[e] <= network[\"edges\"][e][\"f_max\"]\n", - " \n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def generation_upper_bound(m, i):\n", " return m.p[i] <= network[\"nodes\"][i][\"p_max\"]\n", - " \n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def generation_lower_bound(m, i):\n", " return network[\"nodes\"][i][\"p_min\"] <= m.p[i]\n", - " \n", + "\n", " # Solve\n", " result = SOLVER.solve(model)\n", "\n", @@ -1265,7 +1298,9 @@ } ], "source": [ - "print(f\"The average objective value over all instances is: {np.mean([OPF1(instance) for instance in I]):.2f}\")" + "print(\n", + " f\"The average objective value over all instances is: {np.mean([OPF1(instance) for instance in I]):.2f}\"\n", + ")" ] }, { @@ -1322,7 +1357,7 @@ " - power_generation: a dictionary containing the power generation for each node\n", " - power_flows: a dictionary containing the power flow for each edge\n", " \"\"\"\n", - " \n", + "\n", " # Define a model\n", " model = pyo.ConcreteModel(\"Q2\")\n", "\n", @@ -1337,29 +1372,45 @@ " # Declare objective value\n", " @model.Objective(sense=pyo.minimize)\n", " def objective(model):\n", - " return sum(data[\"c_var\"] * model.p[i] for i, data in network[\"nodes\"].items() if data[\"is_generator\"])\n", + " return sum(\n", + " data[\"c_var\"] * model.p[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"is_generator\"]\n", + " )\n", "\n", " # Declare constraints\n", " @model.Expression(network[\"nodes\"])\n", " def outgoing_flow(m, i):\n", - " return sum(m.fp[i, j] - m.fm[i, j] for j in network[\"nodes\"] if (i, j) in network[\"edges\"])\n", - " \n", + " return sum(\n", + " m.fp[i, j] - m.fm[i, j]\n", + " for j in network[\"nodes\"]\n", + " if (i, j) in network[\"edges\"]\n", + " )\n", + "\n", " @model.Expression(network[\"nodes\"])\n", " def incoming_flow(m, i):\n", - " return sum(m.fp[j, i] - m.fm[j, i] for j in network[\"nodes\"] if (j, i) in network[\"edges\"])\n", - " \n", + " return sum(\n", + " m.fp[j, i] - m.fm[j, i]\n", + " for j in network[\"nodes\"]\n", + " if (j, i) in network[\"edges\"]\n", + " )\n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def flow_conservation(m, i):\n", - " return m.outgoing_flow[i] - m.incoming_flow[i] == m.p[i] - network[\"nodes\"][i][\"d\"]\n", - " \n", + " return (\n", + " m.outgoing_flow[i] - m.incoming_flow[i] == m.p[i] - network[\"nodes\"][i][\"d\"]\n", + " )\n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def susceptance(m, i, j):\n", - " return m.fp[i, j] - m.fm[i, j] == network[\"edges\"][(i, j)][\"b\"] * (m.theta[i] - m.theta[j])\n", - " \n", + " return m.fp[i, j] - m.fm[i, j] == network[\"edges\"][(i, j)][\"b\"] * (\n", + " m.theta[i] - m.theta[j]\n", + " )\n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def abs_flows(m, *e):\n", " return m.fabs[e] == m.fp[e] + m.fm[e]\n", - " \n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def flows_upper_bound(m, *e):\n", " return m.fabs[e] <= network[\"edges\"][e][\"f_max\"]\n", @@ -1367,18 +1418,32 @@ " @model.Constraint(network[\"nodes\"])\n", " def generation_upperound(m, i):\n", " return m.p[i] <= network[\"nodes\"][i][\"p_max\"] * m.x[i]\n", - " \n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def generation_lower_bound(m, i):\n", " return network[\"nodes\"][i][\"p_min\"] * m.x[i] <= m.p[i]\n", - " \n", + "\n", " @model.Constraint()\n", " def max_gas_plants(model):\n", - " return sum(model.x[i] for i, data in network[\"nodes\"].items() if data['energy_type'] == 'gas') <= 2\n", - " \n", + " return (\n", + " sum(\n", + " model.x[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] == \"gas\"\n", + " )\n", + " <= 2\n", + " )\n", + "\n", " @model.Constraint()\n", " def max_coal_plants(model):\n", - " return sum(model.x[i] for i, data in network[\"nodes\"].items() if data['energy_type'] == 'coal') <= 1\n", + " return (\n", + " sum(\n", + " model.x[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] == \"coal\"\n", + " )\n", + " <= 1\n", + " )\n", "\n", " # Solve\n", " result = SOLVER.solve(model)\n", @@ -1410,7 +1475,9 @@ } ], "source": [ - "print(f\"The average objective value over all instances is: {np.mean([OPF2(instance) for instance in I]):.2f}\")" + "print(\n", + " f\"The average objective value over all instances is: {np.mean([OPF2(instance) for instance in I]):.2f}\"\n", + ")" ] }, { @@ -1469,7 +1536,7 @@ " - power_generation: a dictionary containing the power generation for each node\n", " - power_flows: a dictionary containing the power flow for each edge\n", " \"\"\"\n", - " \n", + "\n", " # Define a model\n", " model = pyo.ConcreteModel(\"Q3\")\n", "\n", @@ -1483,35 +1550,55 @@ " model.y = pyo.Var(domain=pyo.Binary)\n", "\n", " # Big-Ms\n", - " max_total_renewable_production = sum(data['p_max'] for i, data in network[\"nodes\"].items() if data['energy_type'] in ['solar', 'wind', 'hydro'])\n", + " max_total_renewable_production = sum(\n", + " data[\"p_max\"]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] in [\"solar\", \"wind\", \"hydro\"]\n", + " )\n", " M = [4, 3, max_total_renewable_production - 1000]\n", "\n", " # Declare objective value\n", " @model.Objective(sense=pyo.minimize)\n", " def objective(m):\n", - " return sum(data[\"c_var\"] * m.p[i] for i, data in network[\"nodes\"].items() if data[\"is_generator\"])\n", + " return sum(\n", + " data[\"c_var\"] * m.p[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"is_generator\"]\n", + " )\n", "\n", " # Declare constraints\n", " @model.Expression(network[\"nodes\"])\n", " def outgoing_flow(m, i):\n", - " return sum(m.fp[i, j] - m.fm[i, j] for j in network[\"nodes\"] if (i, j) in network[\"edges\"])\n", - " \n", + " return sum(\n", + " m.fp[i, j] - m.fm[i, j]\n", + " for j in network[\"nodes\"]\n", + " if (i, j) in network[\"edges\"]\n", + " )\n", + "\n", " @model.Expression(network[\"nodes\"])\n", " def incoming_flow(m, i):\n", - " return sum(m.fp[j, i] - m.fm[j, i] for j in network[\"nodes\"] if (j, i) in network[\"edges\"])\n", - " \n", + " return sum(\n", + " m.fp[j, i] - m.fm[j, i]\n", + " for j in network[\"nodes\"]\n", + " if (j, i) in network[\"edges\"]\n", + " )\n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def flow_conservation(m, i):\n", - " return m.outgoing_flow[i] - m.incoming_flow[i] == m.p[i] - network[\"nodes\"][i][\"d\"]\n", - " \n", + " return (\n", + " m.outgoing_flow[i] - m.incoming_flow[i] == m.p[i] - network[\"nodes\"][i][\"d\"]\n", + " )\n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def susceptance(m, i, j):\n", - " return m.fp[i, j] - m.fm[i, j] == network[\"edges\"][(i, j)][\"b\"] * (m.theta[i] - m.theta[j])\n", + " return m.fp[i, j] - m.fm[i, j] == network[\"edges\"][(i, j)][\"b\"] * (\n", + " m.theta[i] - m.theta[j]\n", + " )\n", "\n", " @model.Constraint(network[\"edges\"])\n", " def abs_flows(m, *e):\n", " return m.fabs[e] == m.fp[e] + m.fm[e]\n", - " \n", + "\n", " @model.Constraint(network[\"edges\"])\n", " def flows_upper_bound(m, *e):\n", " return m.fabs[e] <= network[\"edges\"][e][\"f_max\"]\n", @@ -1519,27 +1606,48 @@ " @model.Constraint(network[\"nodes\"])\n", " def generation_upper_bound(m, i):\n", " return m.p[i] <= network[\"nodes\"][i][\"p_max\"] * m.x[i]\n", - " \n", + "\n", " @model.Constraint(network[\"nodes\"])\n", " def generation_lower_bound(m, i):\n", " return network[\"nodes\"][i][\"p_min\"] * m.x[i] <= m.p[i]\n", - " \n", + "\n", " @model.Constraint()\n", " def max_gas_plants(m):\n", - " return sum(m.x[i] for i, data in network[\"nodes\"].items() if data['energy_type'] == 'gas') <= 2 + (1 - m.y) * M[0]\n", - " \n", + " return (\n", + " sum(\n", + " m.x[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] == \"gas\"\n", + " )\n", + " <= 2 + (1 - m.y) * M[0]\n", + " )\n", + "\n", " @model.Constraint()\n", " def max_coal_plants(m):\n", - " return sum(m.x[i] for i, data in network[\"nodes\"].items() if data['energy_type'] == 'coal') <= 1 + (1 - m.y) * M[1]\n", + " return (\n", + " sum(\n", + " m.x[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] == \"coal\"\n", + " )\n", + " <= 1 + (1 - m.y) * M[1]\n", + " )\n", "\n", " @model.Constraint()\n", " def renewable_energy_production(m):\n", - " return sum(m.p[i] for i, data in network[\"nodes\"].items() if data['energy_type'] in ['solar', 'wind', 'hydro']) <= 1000 + m.y * M[2]\n", - " \n", + " return (\n", + " sum(\n", + " m.p[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] in [\"solar\", \"wind\", \"hydro\"]\n", + " )\n", + " <= 1000 + m.y * M[2]\n", + " )\n", + "\n", " # Solve\n", " result = SOLVER.solve(model)\n", "\n", - " return model.objective()\n" + " return model.objective()" ] }, { @@ -1566,7 +1674,9 @@ } ], "source": [ - "print(f\"The average objective value over all instances is: {np.mean([OPF3(instance) for instance in I]):.2f}\")" + "print(\n", + " f\"The average objective value over all instances is: {np.mean([OPF3(instance) for instance in I]):.2f}\"\n", + ")" ] }, { @@ -1585,9 +1695,11 @@ "metadata": {}, "outputs": [], "source": [ - "objs = [[OPF1(instance) for instance in I],\n", - " [OPF2(instance) for instance in I],\n", - " [OPF3(instance) for instance in I]]" + "objs = [\n", + " [OPF1(instance) for instance in I],\n", + " [OPF2(instance) for instance in I],\n", + " [OPF3(instance) for instance in I],\n", + "]" ] }, { @@ -1618,12 +1730,12 @@ } ], "source": [ - "plt.plot(objs[0], color='blue', label='OPF1')\n", - "plt.plot(objs[1], color='green', label='OPF2')\n", - "plt.plot(objs[2], color='orange', label='OPF3')\n", - "plt.title('Optimal objective values over all instances and models')\n", - "plt.xlabel('Instance number')\n", - "plt.ylabel('Optimal objective value')\n", + "plt.plot(objs[0], color=\"blue\", label=\"OPF1\")\n", + "plt.plot(objs[1], color=\"green\", label=\"OPF2\")\n", + "plt.plot(objs[2], color=\"orange\", label=\"OPF3\")\n", + "plt.title(\"Optimal objective values over all instances and models\")\n", + "plt.xlabel(\"Instance number\")\n", + "plt.ylabel(\"Optimal objective value\")\n", "plt.legend()\n", "plt.show()" ]