-
Notifications
You must be signed in to change notification settings - Fork 6
/
raw_process4.py
217 lines (177 loc) · 7.51 KB
/
raw_process4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import rawpy
import numpy as np
import sys
from scipy import signal
""" Process RAW file into a image file.
Example usage:
raw = read("sample.ARW")
rgb = process(raw)
write(rgb, "output.ARW")
"""
def read(filename):
"""
Read RAW data from specified file. Currently supported formats are
ARW (Sony RAW format)
:param filename: path to the target RAW file
"""
return rawpy.imread(filename)
def process(raw, color_matrix=(1024, 0, 0, 0, 1024, 0, 0, 0, 1024)):
"""
This processes RAW data that was read by read() method.
Must be called after read() operation. No error is checked.
"""
raw_array = get_raw_array(raw)
bayer_pattern = raw.raw_pattern
# rearrange black level
black_level = [0] * 4
black_level[bayer_pattern[0, 0]] = raw.black_level_per_channel[bayer_pattern[0, 0]]
black_level[bayer_pattern[0, 1]] = raw.black_level_per_channel[bayer_pattern[0, 1]]
black_level[bayer_pattern[1, 0]] = raw.black_level_per_channel[bayer_pattern[1, 0]]
black_level[bayer_pattern[1, 1]] = raw.black_level_per_channel[bayer_pattern[1, 1]]
blc_raw = black_level_correction(raw_array, black_level)
wbg = np.array(raw.camera_whitebalance) / 1024
wb_raw = white_balance_Bayer(blc_raw, wbg, bayer_pattern)
dms_img = advanced_demosaic(wb_raw, bayer_pattern)
img_ccm = color_correction_matrix(dms_img, color_matrix)
img_gamma = gamma_correction(img_ccm, 2.2)
return img_gamma
def write(rgb_image, output_filename):
"""
Write the processed RGB image to a specified file as PNG format.
Thsi must be called after process(). No error is checked.
:param output_filename: path to the output file. Extension must be png.
"""
import imageio
outimg = rgb_image.copy()
outimg[outimg < 0] = 0
outimg = outimg / outimg.max() * 255
imageio.imwrite(output_filename, outimg.astype('uint8'))
def get_raw_array(raw):
h, w = raw.sizes.raw_height, raw.sizes.raw_width
raw_array = np.array(raw.raw_image).reshape((h, w)).astype('float')
return raw_array
def black_level_correction(raw_array, black_level):
blc_raw = raw_array.copy()
blc_raw[0::2, 0::2] -= black_level[0]
blc_raw[0::2, 1::2] -= black_level[1]
blc_raw[1::2, 0::2] -= black_level[2]
blc_raw[1::2, 1::2] -= black_level[3]
return blc_raw
def preview_demosaic(raw_array, bayer_pattern):
h, w = raw_array.shape[0], raw_array.shape[1]
shuffle = np.zeros((h // 2, w // 2, 4))
shuffle[:, :, bayer_pattern[0, 0]] += raw_array[0::2, 0::2]
shuffle[:, :, bayer_pattern[0, 1]] += raw_array[0::2, 1::2]
shuffle[:, :, bayer_pattern[1, 0]] += raw_array[1::2, 0::2]
shuffle[:, :, bayer_pattern[1, 1]] += raw_array[1::2, 1::2]
dms_img = np.zeros((h // 2, w // 2, 3))
dms_img[:, :, 0] = shuffle[:, :, 0]
dms_img[:, :, 1] = (shuffle[:, :, 1] + shuffle[:, :, 3]) / 2
dms_img[:, :, 2] = shuffle[:, :, 2]
return dms_img
def simple_demosaic(raw, raw_array):
h, w = raw_array.shape
dms_img2 = np.zeros((h, w, 3))
green = raw_array.copy()
green[(raw.raw_colors == 0) | (raw.raw_colors == 2)] = 0
g_flt = np.array([[0, 1 / 4, 0], [1 / 4, 1, 1 / 4], [0, 1 / 4, 0]])
dms_img2[:, :, 1] = signal.convolve2d(green, g_flt, boundary='symm', mode='same')
red = raw_array.copy()
red[raw.raw_colors != 0] = 0
rb_flt = np.array([[1 / 4, 1 / 2, 1 / 4], [1 / 2, 1, 1 / 2], [1 / 4, 1 / 2, 1 / 4]])
dms_img2[:, :, 0] = signal.convolve2d(red, rb_flt, boundary='symm', mode='same')
blue = raw_array.copy()
blue[raw.raw_colors != 2] = 0
rb_flt = np.array([[1 / 4, 1 / 2, 1 / 4], [1 / 2, 1, 1 / 2], [1 / 4, 1 / 2, 1 / 4]])
dms_img2[:, :, 2] = signal.convolve2d(blue, rb_flt, boundary='symm', mode='same')
return dms_img2
def advanced_demosaic(dms_input, bayer_pattern):
hlpf = np.array([[1, 2, 3, 4, 3, 2, 1]]) / 16
vlpf = np.transpose(hlpf)
hhpf = np.array([[-1, 2, -3, 4, -3, 2, -1]]) / 16
vhpf = np.transpose(hhpf)
identity_filter = np.zeros((7, 7))
identity_filter[3, 3] = 1
# generate FIR filters to extract necessary components
FC1 = np.matmul(vhpf, hhpf)
FC2H = np.matmul(vlpf, hhpf)
FC2V = np.matmul(vhpf, hlpf)
FL = identity_filter - FC1 - FC2V - FC2H
# f_C1 at 4 corners
c1_mod = signal.convolve2d(dms_input, FC1, boundary='symm', mode='same')
# f_C1^1 at wy = 0, wx = +Pi/-Pi
c2h_mod = signal.convolve2d(dms_input, FC2H, boundary='symm', mode='same')
# f_C1^1 at wy = +Pi/-Pi, wx = 0
c2v_mod = signal.convolve2d(dms_input, FC2V, boundary='symm', mode='same')
# f_L at center
f_L = signal.convolve2d(dms_input, FL, boundary='symm', mode='same')
# Move c1 to the center by shifting by Pi in both x and y direction
# f_c1 = c1 * (-1)^x * (-1)^y
f_c1 = c1_mod.copy()
f_c1[:, 1::2] *= -1
f_c1[1::2, :] *= -1
if bayer_pattern[0, 0] == 1 or bayer_pattern[0, 0] == 3:
f_c1 *= -1
# Move c2a to the center by shifting by Pi in x direction, same for c2b in y direction
c2h = c2h_mod.copy()
c2h[:, 1::2] *= -1
if bayer_pattern[0, 0] == 2 or bayer_pattern[1, 0] == 2:
c2h *= -1
c2v = c2v_mod.copy()
c2v[1::2, :] *= -1
if bayer_pattern[0, 0] == 2 or bayer_pattern[0, 1] == 2:
c2v *= -1
# f_c2 = (c2v_mod * x_mod + c2h_mod * y_mod) / 2
f_c2 = (c2v + c2h) / 2
# generate RGB channel using
# [R, G, B] = [[1, 1, 2], [1, -1, 0], [1, 1, - 2]] x [L, C1, C2]
height, width = dms_input.shape
dms_img = np.zeros((height, width, 3))
dms_img[:, :, 0] = f_L + f_c1 + 2 * f_c2
dms_img[:, :, 1] = f_L - f_c1
dms_img[:, :, 2] = f_L + f_c1 - 2 * f_c2
return dms_img
def white_balance_Bayer(raw_array, wbg, bayer_pattern):
img_wb = raw_array.copy()
img_wb[0::2, 0::2] *= wbg[bayer_pattern[0, 0]]
img_wb[0::2, 1::2] *= wbg[bayer_pattern[0, 1]]
img_wb[1::2, 0::2] *= wbg[bayer_pattern[1, 0]]
img_wb[1::2, 1::2] *= wbg[bayer_pattern[1, 1]]
return img_wb
def color_correction_matrix(rgb_array, color_matrix):
img_ccm = np.zeros_like(rgb_array)
ccm = np.array(color_matrix).reshape((3, 3))
norm = ccm.sum(axis=1).mean()
for c in (0, 1, 2):
img_ccm[:, :, c] = ccm[c, 0] * rgb_array[:, :, 0] + \
ccm[c, 1] * rgb_array[:, :, 1] + \
ccm[c, 2] * rgb_array[:, :, 2]
return img_ccm / norm
def gamma_correction(rgb_array, gamma):
img_gamma = rgb_array.copy()
img_gamma[img_gamma < 0] = 0
img_gamma = img_gamma / img_gamma.max()
img_gamma = np.power(img_gamma, 1/gamma)
return img_gamma
def main(argv):
if (len(argv) < 2):
print("Usage: {} input_filename [output_filename] [color_matrix]".format(argv[0]))
print("\tDefault output_filename is output.png")
print("\tDefault matrix is identity matrix ([1024, 0, 0, 0, 1024, 0, 0, 0, 1024]")
print("\tExample: python3 {} sample.ARW sample.png \"1141, -205, 88, -52, 1229, -154, 70, -225, 1179\"".format(argv[0]))
print("\tSupported RAW format is ARW (Sony RAW)")
print("\tSupported output format is PNG only")
return
filename = argv[1]
output_filename = "output.png"
color_matrix = [1024, 0, 0, 0, 1024, 0, 0, 0, 1024]
if len(argv) > 2:
output_filename = argv[2]
if len(argv) > 3:
color_matrix = [int(value) for value in (argv[3]).split(',')]
color_matrix = [1024, 0, 0, 0, 1024, 0, 0, 0, 1024]
raw = read(filename)
rgb_image = process(raw, color_matrix)
write(rgb_image, output_filename)
if __name__ == "__main__":
main(sys.argv)