forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coloring.ml
223 lines (211 loc) · 8.53 KB
/
coloring.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Register allocation by coloring of the interference graph *)
module OrderedRegSet =
Set.Make(struct
type t = Reg.t
let compare r1 r2 =
let open Reg in
let c1 = r1.spill_cost and d1 = r1.degree in
let c2 = r2.spill_cost and d2 = r2.degree in
let n = c2 * d1 - c1 * d2 in
if n <> 0 then n else
let n = c2 - c1 in
if n <> 0 then n else
let n = d1 - d2 in
if n <> 0 then n else r1.stamp - r2.stamp
end)
open Reg
let allocate_registers() =
(* Constrained regs with degree >= number of available registers,
sorted by spill cost (highest first).
The spill cost measure is [r.spill_cost / r.degree].
[r.spill_cost] estimates the number of accesses to [r]. *)
let constrained = ref OrderedRegSet.empty in
(* Unconstrained regs with degree < number of available registers *)
let unconstrained = ref [] in
(* Reset the stack slot counts *)
let num_stack_slots = Array.make Proc.num_register_classes 0 in
(* Preallocate the spilled registers in the stack.
Split the remaining registers into constrained and unconstrained. *)
let remove_reg reg =
let cl = Proc.register_class reg in
if reg.spill then begin
(* Preallocate the registers in the stack *)
let nslots = num_stack_slots.(cl) in
let conflict = Array.make nslots false in
List.iter
(fun r ->
match r.loc with
Stack(Local n) ->
if Proc.register_class r = cl then conflict.(n) <- true
| _ -> ())
reg.interf;
let slot = ref 0 in
while !slot < nslots && conflict.(!slot) do incr slot done;
reg.loc <- Stack(Local !slot);
if !slot >= nslots then num_stack_slots.(cl) <- !slot + 1
end else if reg.degree < Proc.num_available_registers.(cl) then
unconstrained := reg :: !unconstrained
else begin
constrained := OrderedRegSet.add reg !constrained
end in
(* Iterate over all registers preferred by the given register (transitive) *)
let iter_preferred f reg =
let rec walk r w =
if not (Reg.is_visited r) then begin
Reg.mark_visited r;
f r w;
List.iter (fun (r1, w1) -> walk r1 (Int.min w w1)) r.prefer
end in
List.iter (fun (r, w) -> walk r w) reg.prefer;
Reg.clear_visited_marks () in
(* Where to start the search for a suitable register.
Used to introduce some "randomness" in the choice between registers
with equal scores. This offers more opportunities for scheduling. *)
let start_register = Array.make Proc.num_register_classes 0 in
(* Assign a location to a register, the best we can. *)
let assign_location reg =
let cl = Proc.register_class reg in
let first_reg = Proc.first_available_register.(cl) in
let num_regs = Proc.num_available_registers.(cl) in
let score = Array.make num_regs 0 in
let best_score = ref (-1000000) and best_reg = ref (-1) in
let start = start_register.(cl) in
if num_regs <> 0 then begin
(* Favor the registers that have been assigned to pseudoregs for which
we have a preference. If these pseudoregs have not been assigned
already, avoid the registers with which they conflict. *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- score.(n) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- score.(n) - w
| _ -> ())
r.interf
| _ -> ())
reg;
List.iter
(fun neighbour ->
(* Prohibit the registers that have been assigned
to our neighbours *)
begin match neighbour.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- (-1000000)
| _ -> ()
end;
(* Avoid the registers that have been assigned to pseudoregs
for which our neighbours have a preference *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- score.(n) - (w-1)
(* w-1 to break the symmetry when two conflicting regs
have the same preference for a third reg. *)
| _ -> ())
neighbour)
reg.interf;
(* Pick the register with the best score *)
for n = start to num_regs - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done;
for n = 0 to start - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done
end;
(* Found a register? *)
if !best_reg >= 0 then begin
reg.loc <- Reg(first_reg + !best_reg);
if Proc.rotate_registers then
start_register.(cl) <- (let start = start + 1 in
if start >= num_regs then 0 else start)
end else begin
(* Sorry, we must put the pseudoreg in a stack location *)
let nslots = num_stack_slots.(cl) in
let score = Array.make nslots 0 in
(* Compute the scores as for registers *)
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> score.(n) <- score.(n) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Stack(Local n) -> score.(n) <- score.(n) - w
| _ -> ())
r.interf
| _ -> ())
reg.prefer;
List.iter
(fun neighbour ->
begin match neighbour.loc with
Stack(Local n) -> score.(n) <- (-1000000)
| _ -> ()
end;
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> score.(n) <- score.(n) - w
| _ -> ())
neighbour.prefer)
reg.interf;
(* Pick the location with the best score *)
let best_score = ref (-1000000) and best_slot = ref (-1) in
for n = 0 to nslots - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_slot := n
end
done;
(* Mark this register as spilled so that we don't waste time trying
to put in in a register if we have to redo regalloc due to Reload *)
reg.spill <- true;
(* Found one? *)
if !best_slot >= 0 then
reg.loc <- Stack(Local !best_slot)
else begin
(* Allocate a new stack slot *)
reg.loc <- Stack(Local nslots);
num_stack_slots.(cl) <- nslots + 1
end
end;
(* Cancel the preferences of this register so that they don't influence
transitively the allocation of registers that prefer this reg. *)
reg.prefer <- [] in
(* First pass: preallocate spill registers and split remaining regs
Second pass: assign locations to constrained regs
Third pass: assign locations to unconstrained regs *)
List.iter remove_reg (Reg.all_registers());
OrderedRegSet.iter assign_location !constrained;
List.iter assign_location !unconstrained;
num_stack_slots