forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
selectgen.ml
1210 lines (1102 loc) · 42.7 KB
/
selectgen.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Selection of pseudo-instructions, assignment of pseudo-registers,
sequentialization. *)
open Cmm
open Reg
open Mach
module Int = Numbers.Int
module V = Backend_var
module VP = Backend_var.With_provenance
type environment =
{ vars : (Reg.t array
* Backend_var.Provenance.t option
* Asttypes.mutable_flag) V.Map.t;
static_exceptions : Reg.t array list Int.Map.t;
(** Which registers must be populated when jumping to the given
handler. *)
}
let env_add ?(mut=Asttypes.Immutable) var regs env =
let provenance = VP.provenance var in
let var = VP.var var in
{ env with vars = V.Map.add var (regs, provenance, mut) env.vars }
let env_add_static_exception id v env =
{ env with static_exceptions = Int.Map.add id v env.static_exceptions }
let env_find id env =
let regs, _provenance, _mut = V.Map.find id env.vars in
regs
let env_find_mut id env =
let regs, _provenance, mut = V.Map.find id env.vars in
begin match mut with
| Asttypes.Mutable -> ()
| Asttypes.Immutable ->
Misc.fatal_error "Selectgen.env_find_mut: not mutable"
end;
regs
let env_find_static_exception id env =
Int.Map.find id env.static_exceptions
let env_empty = {
vars = V.Map.empty;
static_exceptions = Int.Map.empty;
}
(* Infer the type of the result of an operation *)
let oper_result_type = function
Capply ty -> ty
| Cextcall(_s, ty_res, _ty_args, _alloc) -> ty_res
| Cload {memory_chunk} ->
begin match memory_chunk with
| Word_val -> typ_val
| Single | Double -> typ_float
| _ -> typ_int
end
| Calloc -> typ_val
| Cstore (_c, _) -> typ_void
| Cdls_get -> typ_val
| Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi |
Cand | Cor | Cxor | Clsl | Clsr | Casr |
Ccmpi _ | Ccmpa _ | Ccmpf _ -> typ_int
| Caddv -> typ_val
| Cadda -> typ_addr
| Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf -> typ_float
| Cfloatofint -> typ_float
| Cintoffloat -> typ_int
| Craise _ -> typ_void
| Ccheckbound -> typ_void
| Copaque -> typ_val
(* Infer the size in bytes of the result of an expression whose evaluation
may be deferred (cf. [emit_parts]). *)
let size_component = function
| Val | Addr -> Arch.size_addr
| Int -> Arch.size_int
| Float -> Arch.size_float
let size_machtype mty =
let size = ref 0 in
for i = 0 to Array.length mty - 1 do
size := !size + size_component mty.(i)
done;
!size
let size_expr (env:environment) exp =
let rec size localenv = function
Cconst_int _ | Cconst_natint _ -> Arch.size_int
| Cconst_symbol _ ->
Arch.size_addr
| Cconst_float _ -> Arch.size_float
| Cvar id ->
begin try
V.Map.find id localenv
with Not_found ->
try
let regs = env_find id env in
size_machtype (Array.map (fun r -> r.typ) regs)
with Not_found ->
Misc.fatal_error("Selection.size_expr: unbound var " ^
V.unique_name id)
end
| Ctuple el ->
List.fold_right (fun e sz -> size localenv e + sz) el 0
| Cop(op, _, _) ->
size_machtype(oper_result_type op)
| Clet(id, arg, body) ->
size (V.Map.add (VP.var id) (size localenv arg) localenv) body
| Csequence(_e1, e2) ->
size localenv e2
| _ ->
Misc.fatal_error "Selection.size_expr"
in size V.Map.empty exp
(* Swap the two arguments of an integer comparison *)
let swap_intcomp = function
Isigned cmp -> Isigned(swap_integer_comparison cmp)
| Iunsigned cmp -> Iunsigned(swap_integer_comparison cmp)
(* Naming of registers *)
let all_regs_anonymous rv =
try
for i = 0 to Array.length rv - 1 do
if not (Reg.anonymous rv.(i)) then raise Exit
done;
true
with Exit ->
false
let name_regs id rv =
let id = VP.var id in
if Array.length rv = 1 then
rv.(0).raw_name <- Raw_name.create_from_var id
else
for i = 0 to Array.length rv - 1 do
rv.(i).raw_name <- Raw_name.create_from_var id;
rv.(i).part <- Some i
done
(* "Join" two instruction sequences, making sure they return their results
in the same registers. *)
let join env opt_r1 seq1 opt_r2 seq2 =
match (opt_r1, opt_r2) with
(None, _) -> opt_r2
| (_, None) -> opt_r1
| (Some r1, Some r2) ->
let l1 = Array.length r1 in
assert (l1 = Array.length r2);
let r = Array.make l1 Reg.dummy in
for i = 0 to l1-1 do
if Reg.anonymous r1.(i)
&& Cmm.ge_component r1.(i).typ r2.(i).typ
then begin
r.(i) <- r1.(i);
seq2#insert_move env r2.(i) r1.(i)
end else if Reg.anonymous r2.(i)
&& Cmm.ge_component r2.(i).typ r1.(i).typ
then begin
r.(i) <- r2.(i);
seq1#insert_move env r1.(i) r2.(i)
end else begin
let typ = Cmm.lub_component r1.(i).typ r2.(i).typ in
r.(i) <- Reg.create typ;
seq1#insert_move env r1.(i) r.(i);
seq2#insert_move env r2.(i) r.(i)
end
done;
Some r
(* Same, for N branches *)
let join_array env rs =
let some_res = ref None in
for i = 0 to Array.length rs - 1 do
let (r, _) = rs.(i) in
match r with
| None -> ()
| Some r ->
match !some_res with
| None -> some_res := Some (r, Array.map (fun r -> r.typ) r)
| Some (r', types) ->
let types =
Array.map2 (fun r typ -> Cmm.lub_component r.typ typ) r types
in
some_res := Some (r', types)
done;
match !some_res with
None -> None
| Some (template, types) ->
let size_res = Array.length template in
let res = Array.make size_res Reg.dummy in
for i = 0 to size_res - 1 do
res.(i) <- Reg.create types.(i)
done;
for i = 0 to Array.length rs - 1 do
let (r, s) = rs.(i) in
match r with
None -> ()
| Some r -> s#insert_moves env r res
done;
Some res
(* Name of function being compiled *)
let current_function_name = ref ""
module Effect = struct
type t =
| None
| Raise
| Arbitrary
let join t1 t2 =
match t1, t2 with
| None, t2 -> t2
| t1, None -> t1
| Raise, Raise -> Raise
| Arbitrary, _ | _, Arbitrary -> Arbitrary
let pure = function
| None -> true
| Raise | Arbitrary -> false
end
module Coeffect = struct
type t =
| None
| Read_mutable
| Arbitrary
let join t1 t2 =
match t1, t2 with
| None, t2 -> t2
| t1, None -> t1
| Read_mutable, Read_mutable -> Read_mutable
| Arbitrary, _ | _, Arbitrary -> Arbitrary
let copure = function
| None -> true
| Read_mutable | Arbitrary -> false
end
module Effect_and_coeffect : sig
type t
val none : t
val arbitrary : t
val effect : t -> Effect.t
val coeffect : t -> Coeffect.t
val pure_and_copure : t -> bool
val effect_only : Effect.t -> t
val coeffect_only : Coeffect.t -> t
val join : t -> t -> t
val join_list_map : 'a list -> ('a -> t) -> t
end = struct
type t = Effect.t * Coeffect.t
let none = Effect.None, Coeffect.None
let arbitrary = Effect.Arbitrary, Coeffect.Arbitrary
let effect (e, _ce) = e
let coeffect (_e, ce) = ce
let pure_and_copure (e, ce) = Effect.pure e && Coeffect.copure ce
let effect_only e = e, Coeffect.None
let coeffect_only ce = Effect.None, ce
let join (e1, ce1) (e2, ce2) =
Effect.join e1 e2, Coeffect.join ce1 ce2
let join_list_map xs f =
match xs with
| [] -> none
| x::xs -> List.fold_left (fun acc x -> join acc (f x)) (f x) xs
end
(* The default instruction selection class *)
class virtual selector_generic = object (self)
(* A syntactic criterion used in addition to judgements about (co)effects as
to whether the evaluation of a given expression may be deferred by
[emit_parts]. This criterion is a property of the instruction selection
algorithm in this file rather than a property of the Cmm language.
*)
method is_simple_expr = function
Cconst_int _ -> true
| Cconst_natint _ -> true
| Cconst_float _ -> true
| Cconst_symbol _ -> true
| Cvar _ -> true
| Ctuple el -> List.for_all self#is_simple_expr el
| Clet(_id, arg, body) | Clet_mut(_id, _, arg, body) ->
self#is_simple_expr arg && self#is_simple_expr body
| Cphantom_let(_var, _defining_expr, body) -> self#is_simple_expr body
| Csequence(e1, e2) -> self#is_simple_expr e1 && self#is_simple_expr e2
| Cop(op, args, _) ->
begin match op with
(* The following may have side effects *)
| Capply _ | Cextcall _ | Calloc | Cstore _ | Craise _ | Copaque -> false
(* The remaining operations are simple if their args are *)
| Cload _ | Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor
| Cxor | Clsl | Clsr | Casr | Ccmpi _ | Caddv | Cadda | Ccmpa _ | Cnegf
| Cabsf | Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat
| Ccmpf _ | Ccheckbound | Cdls_get ->
List.for_all self#is_simple_expr args
end
| Cassign _ | Cifthenelse _ | Cswitch _ | Ccatch _ | Cexit _
| Ctrywith _ -> false
(* Analyses the effects and coeffects of an expression. This is used across
a whole list of expressions with a view to determining which expressions
may have their evaluation deferred. The result of this function, modulo
target-specific judgements if the [effects_of] method is overridden, is a
property of the Cmm language rather than anything particular about the
instruction selection algorithm in this file.
In the case of e.g. an OCaml function call, the arguments whose evaluation
cannot be deferred (cf. [emit_parts], below) are computed in right-to-left
order first with their results going into temporaries, then the block is
allocated, then the remaining arguments are evaluated before being
combined with the temporaries. *)
method effects_of exp =
let module EC = Effect_and_coeffect in
match exp with
| Cconst_int _ | Cconst_natint _ | Cconst_float _ | Cconst_symbol _
| Cvar _ -> EC.none
| Ctuple el -> EC.join_list_map el self#effects_of
| Clet (_id, arg, body) | Clet_mut (_id, _, arg, body) ->
EC.join (self#effects_of arg) (self#effects_of body)
| Cphantom_let (_var, _defining_expr, body) -> self#effects_of body
| Csequence (e1, e2) ->
EC.join (self#effects_of e1) (self#effects_of e2)
| Cifthenelse (cond, _ifso_dbg, ifso, _ifnot_dbg, ifnot, _dbg) ->
EC.join (self#effects_of cond)
(EC.join (self#effects_of ifso) (self#effects_of ifnot))
| Cop (op, args, _) ->
let from_op =
match op with
| Capply _ | Cextcall _ | Copaque -> EC.arbitrary
| Calloc -> EC.none
| Cstore _ -> EC.effect_only Effect.Arbitrary
| Craise _ | Ccheckbound -> EC.effect_only Effect.Raise
| Cload {mutability = Asttypes.Immutable} -> EC.none
| Cload {mutability = Asttypes.Mutable} | Cdls_get ->
EC.coeffect_only Coeffect.Read_mutable
| Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor | Cxor
| Clsl | Clsr | Casr | Ccmpi _ | Caddv | Cadda | Ccmpa _ | Cnegf | Cabsf
| Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat | Ccmpf _ ->
EC.none
in
EC.join from_op (EC.join_list_map args self#effects_of)
| Cassign _ | Cswitch _ | Ccatch _ | Cexit _ | Ctrywith _ ->
EC.arbitrary
(* Says whether an integer constant is a suitable immediate argument for
the given integer operation *)
method is_immediate op n =
match op with
| Ilsl | Ilsr | Iasr -> n >= 0 && n < Arch.size_int * 8
| _ -> false
(* Says whether an integer constant is a suitable immediate argument for
the given integer test *)
method virtual is_immediate_test : integer_comparison -> int -> bool
(* Selection of addressing modes *)
method virtual select_addressing :
Cmm.memory_chunk -> Cmm.expression -> Arch.addressing_mode * Cmm.expression
(* Default instruction selection for stores (of words) *)
method select_store is_assign addr arg =
(Istore(Word_val, addr, is_assign), arg)
(* call marking methods, documented in selectgen.mli *)
val contains_calls = ref false
method mark_call =
contains_calls := true
method mark_tailcall = ()
method mark_c_tailcall =
if !Clflags.debug then contains_calls := true
method mark_instr = function
| Iop (Icall_ind | Icall_imm _ | Iextcall _) ->
self#mark_call
| Iop (Itailcall_ind | Itailcall_imm _) ->
self#mark_tailcall
| Iop (Ialloc _) | Iop (Ipoll _) ->
self#mark_call (* caml_alloc*, caml_garbage_collection (incl. polls) *)
| Iop (Iintop (Icheckbound) | Iintop_imm(Icheckbound, _)) ->
self#mark_c_tailcall (* caml_ml_array_bound_error *)
| Iraise raise_kind ->
begin match raise_kind with
| Lambda.Raise_notrace -> ()
| Lambda.Raise_regular
| Lambda.Raise_reraise ->
(* PR#6239 *)
(* caml_stash_backtrace; we #mark_call rather than
#mark_c_tailcall to get a good stack backtrace *)
self#mark_call
end
| Itrywith _ ->
self#mark_call
| _ -> ()
(* Default instruction selection for operators *)
method select_operation op args _dbg =
match (op, args) with
| (Capply _, Cconst_symbol (func, _dbg) :: rem) ->
(Icall_imm { func; }, rem)
| (Capply _, _) ->
(Icall_ind, args)
| (Cextcall(func, ty_res, ty_args, alloc), _) ->
Iextcall { func; alloc; ty_res; ty_args; stack_ofs = -1}, args
| (Cload {memory_chunk; mutability; is_atomic}, [arg]) ->
let (addressing_mode, eloc) = self#select_addressing memory_chunk arg in
(Iload {memory_chunk; addressing_mode; mutability; is_atomic}, [eloc])
| (Cstore (chunk, init), [arg1; arg2]) ->
let (addr, eloc) = self#select_addressing chunk arg1 in
let is_assign =
match init with
| Lambda.Root_initialization -> false
| Lambda.Heap_initialization -> false
| Lambda.Assignment -> true
in
if chunk = Word_int || chunk = Word_val then begin
let (op, newarg2) = self#select_store is_assign addr arg2 in
(op, [newarg2; eloc])
end else begin
(Istore(chunk, addr, is_assign), [arg2; eloc])
(* Inversion addr/datum in Istore *)
end
| (Cdls_get, _) -> Idls_get, args
| (Calloc, _) -> (Ialloc {bytes = 0; dbginfo = []}), args
| (Caddi, _) -> self#select_arith_comm Iadd args
| (Csubi, _) -> self#select_arith Isub args
| (Cmuli, _) -> self#select_arith_comm Imul args
| (Cmulhi, _) -> self#select_arith_comm Imulh args
| (Cdivi, _) -> (Iintop Idiv, args)
| (Cmodi, _) -> (Iintop Imod, args)
| (Cand, _) -> self#select_arith_comm Iand args
| (Cor, _) -> self#select_arith_comm Ior args
| (Cxor, _) -> self#select_arith_comm Ixor args
| (Clsl, _) -> self#select_arith Ilsl args
| (Clsr, _) -> self#select_arith Ilsr args
| (Casr, _) -> self#select_arith Iasr args
| (Ccmpi comp, _) -> self#select_arith_comp (Isigned comp) args
| (Caddv, _) -> self#select_arith_comm Iadd args
| (Cadda, _) -> self#select_arith_comm Iadd args
| (Ccmpa comp, _) -> self#select_arith_comp (Iunsigned comp) args
| (Cnegf, _) -> (Inegf, args)
| (Cabsf, _) -> (Iabsf, args)
| (Caddf, _) -> (Iaddf, args)
| (Csubf, _) -> (Isubf, args)
| (Cmulf, _) -> (Imulf, args)
| (Cdivf, _) -> (Idivf, args)
| (Cfloatofint, _) -> (Ifloatofint, args)
| (Cintoffloat, _) -> (Iintoffloat, args)
| (Ccheckbound, _) ->
self#select_arith Icheckbound args
| _ -> Misc.fatal_error "Selection.select_oper"
method private select_arith_comm op = function
| [arg; Cconst_int (n, _)] when self#is_immediate op n ->
(Iintop_imm(op, n), [arg])
| [Cconst_int (n, _); arg] when self#is_immediate op n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_arith op = function
| [arg; Cconst_int (n, _)] when self#is_immediate op n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_arith_comp cmp = function
| [arg; Cconst_int (n, _)] when self#is_immediate (Icomp cmp) n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [Cconst_int (n, _); arg]
when self#is_immediate (Icomp(swap_intcomp cmp)) n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| args ->
(Iintop(Icomp cmp), args)
(* Instruction selection for conditionals *)
method select_condition = function
| Cop(Ccmpi cmp, [arg1; Cconst_int (n, _)], _)
when self#is_immediate_test (Isigned cmp) n ->
(Iinttest_imm(Isigned cmp, n), arg1)
| Cop(Ccmpi cmp, [Cconst_int (n, _); arg2], _)
when self#is_immediate_test (Isigned (swap_integer_comparison cmp)) n ->
(Iinttest_imm(Isigned(swap_integer_comparison cmp), n), arg2)
| Cop(Ccmpi cmp, args, _) ->
(Iinttest(Isigned cmp), Ctuple args)
| Cop(Ccmpa cmp, [arg1; Cconst_int (n, _)], _)
when self#is_immediate_test (Iunsigned cmp) n ->
(Iinttest_imm(Iunsigned cmp, n), arg1)
| Cop(Ccmpa cmp, [Cconst_int (n, _); arg2], _)
when self#is_immediate_test (Iunsigned (swap_integer_comparison cmp)) n ->
(Iinttest_imm(Iunsigned(swap_integer_comparison cmp), n), arg2)
| Cop(Ccmpa cmp, args, _) ->
(Iinttest(Iunsigned cmp), Ctuple args)
| Cop(Ccmpf cmp, args, _) ->
(Ifloattest cmp, Ctuple args)
| Cop(Cand, [arg; Cconst_int (1, _)], _) ->
(Ioddtest, arg)
| arg ->
(Itruetest, arg)
(* Return an array of fresh registers of the given type.
Normally implemented as Reg.createv, but some
ports (e.g. Arm) can override this definition to store float values
in pairs of integer registers. *)
method regs_for tys = Reg.createv tys
(* Buffering of instruction sequences *)
val mutable instr_seq = dummy_instr
method insert_debug _env desc dbg arg res =
instr_seq <- instr_cons_debug desc arg res dbg instr_seq
method insert _env desc arg res =
instr_seq <- instr_cons desc arg res instr_seq
method extract_onto o =
let rec extract res i =
if i == dummy_instr
then res
else extract {i with next = res} i.next in
extract o instr_seq
method extract =
self#extract_onto (end_instr ())
(* Insert a sequence of moves from one pseudoreg set to another. *)
method insert_move env src dst =
if src.stamp <> dst.stamp then
self#insert env (Iop Imove) [|src|] [|dst|]
method insert_moves env src dst =
for i = 0 to Stdlib.Int.min (Array.length src) (Array.length dst) - 1 do
self#insert_move env src.(i) dst.(i)
done
(* Insert moves and stack offsets for function arguments and results *)
method insert_move_args env arg loc stacksize =
if stacksize <> 0 then begin
self#insert env (Iop(Istackoffset stacksize)) [||] [||]
end;
self#insert_moves env arg loc
method insert_move_results env loc res stacksize =
if stacksize <> 0 then begin
self#insert env (Iop(Istackoffset(-stacksize))) [||] [||]
end;
self#insert_moves env loc res
(* Add an Iop opcode. Can be overridden by processor description
to insert moves before and after the operation, i.e. for two-address
instructions, or instructions using dedicated registers. *)
method insert_op_debug env op dbg rs rd =
self#insert_debug env (Iop op) dbg rs rd;
rd
method insert_op env op rs rd =
self#insert_op_debug env op Debuginfo.none rs rd
(* Add the instructions for the given expression
at the end of the self sequence *)
method emit_expr (env:environment) exp =
match exp with
Cconst_int (n, _dbg) ->
let r = self#regs_for typ_int in
Some(self#insert_op env (Iconst_int(Nativeint.of_int n)) [||] r)
| Cconst_natint (n, _dbg) ->
let r = self#regs_for typ_int in
Some(self#insert_op env (Iconst_int n) [||] r)
| Cconst_float (n, _dbg) ->
let r = self#regs_for typ_float in
Some(self#insert_op env (Iconst_float (Int64.bits_of_float n)) [||] r)
| Cconst_symbol (n, _dbg) ->
(* Cconst_symbol _ evaluates to a statically-allocated address, so its
value fits in a typ_int register and is never changed by the GC.
Some Cconst_symbols point to statically-allocated blocks, some of
which may point to heap values. However, any such blocks will be
registered in the compilation unit's global roots structure, so
adding this register to the frame table would be redundant *)
let r = self#regs_for typ_int in
Some(self#insert_op env (Iconst_symbol n) [||] r)
| Cvar v ->
begin try
Some(env_find v env)
with Not_found ->
Misc.fatal_error("Selection.emit_expr: unbound var " ^ V.unique_name v)
end
| Clet(v, e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#emit_expr (self#bind_let env v r1) e2
end
| Clet_mut(v, k, e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#emit_expr (self#bind_let_mut env v k r1) e2
end
| Cphantom_let (_var, _defining_expr, body) ->
self#emit_expr env body
| Cassign(v, e1) ->
let rv =
try
env_find_mut v env
with Not_found ->
Misc.fatal_error ("Selection.emit_expr: unbound var " ^ V.name v) in
begin match self#emit_expr env e1 with
None -> None
| Some r1 ->
self#insert_moves env r1 rv; Some [||]
end
| Ctuple [] ->
Some [||]
| Ctuple exp_list ->
begin match self#emit_parts_list env exp_list with
None -> None
| Some(simple_list, ext_env) ->
Some(self#emit_tuple ext_env simple_list)
end
| Cop(Craise k, [arg], dbg) ->
begin match self#emit_expr env arg with
None -> None
| Some r1 ->
let rd = [|Proc.loc_exn_bucket|] in
self#insert env (Iop Imove) r1 rd;
self#insert_debug env (Iraise k) dbg rd [||];
None
end
| Cop(Ccmpf _, _, dbg) ->
self#emit_expr env
(Cifthenelse (exp,
dbg, Cconst_int (1, dbg),
dbg, Cconst_int (0, dbg),
dbg))
| Cop(Copaque, args, dbg) ->
begin match self#emit_parts_list env args with
None -> None
| Some (simple_args, env) ->
let rs = self#emit_tuple env simple_args in
Some (self#insert_op_debug env Iopaque dbg rs rs)
end
| Cop(op, args, dbg) ->
begin match self#emit_parts_list env args with
None -> None
| Some(simple_args, env) ->
let ty = oper_result_type op in
let (new_op, new_args) = self#select_operation op simple_args dbg in
match new_op with
Icall_ind ->
let r1 = self#emit_tuple env new_args in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let rd = self#regs_for ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments (Reg.typv rarg) in
let loc_res = Proc.loc_results (Reg.typv rd) in
self#insert_move_args env rarg loc_arg stack_ofs;
self#insert_debug env (Iop new_op) dbg
(Array.append [|r1.(0)|] loc_arg) loc_res;
self#insert_move_results env loc_res rd stack_ofs;
Some rd
| Icall_imm _ ->
let r1 = self#emit_tuple env new_args in
let rd = self#regs_for ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments (Reg.typv r1) in
let loc_res = Proc.loc_results (Reg.typv rd) in
self#insert_move_args env r1 loc_arg stack_ofs;
self#insert_debug env (Iop new_op) dbg loc_arg loc_res;
self#insert_move_results env loc_res rd stack_ofs;
Some rd
| Iextcall r ->
let (loc_arg, stack_ofs) =
self#emit_extcall_args env r.ty_args new_args in
let rd = self#regs_for ty in
let loc_res =
self#insert_op_debug env
(Iextcall {r with stack_ofs = stack_ofs}) dbg
loc_arg (Proc.loc_external_results (Reg.typv rd)) in
self#insert_move_results env loc_res rd stack_ofs;
Some rd
| Ialloc { bytes = _; } ->
let rd = self#regs_for typ_val in
let bytes = size_expr env (Ctuple new_args) in
assert (bytes mod Arch.size_addr = 0);
let alloc_words = bytes / Arch.size_addr in
let op =
Ialloc { bytes; dbginfo = [{alloc_words; alloc_dbg = dbg}] }
in
self#insert_debug env (Iop op) dbg [||] rd;
self#emit_stores env new_args rd;
Some rd
| op ->
let r1 = self#emit_tuple env new_args in
let rd = self#regs_for ty in
Some (self#insert_op_debug env op dbg r1 rd)
end
| Csequence(e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some _ -> self#emit_expr env e2
end
| Cifthenelse(econd, _ifso_dbg, eif, _ifnot_dbg, eelse, _dbg) ->
let (cond, earg) = self#select_condition econd in
begin match self#emit_expr env earg with
None -> None
| Some rarg ->
let (rif, sif) = self#emit_sequence env eif in
let (relse, selse) = self#emit_sequence env eelse in
let r = join env rif sif relse selse in
self#insert env (Iifthenelse(cond, sif#extract, selse#extract))
rarg [||];
r
end
| Cswitch(esel, index, ecases, _dbg) ->
begin match self#emit_expr env esel with
None -> None
| Some rsel ->
let rscases =
Array.map (fun (case, _dbg) -> self#emit_sequence env case) ecases
in
let r = join_array env rscases in
self#insert env (Iswitch(index,
Array.map (fun (_, s) -> s#extract) rscases))
rsel [||];
r
end
| Ccatch(_, [], e1) ->
self#emit_expr env e1
| Ccatch(rec_flag, handlers, body) ->
let handlers =
List.map (fun (nfail, ids, e2, dbg) ->
let rs =
List.map
(fun (id, typ) ->
let r = self#regs_for typ in name_regs id r; r)
ids in
(nfail, ids, rs, e2, dbg))
handlers
in
let env =
(* Since the handlers may be recursive, and called from the body,
the same environment is used for translating both the handlers and
the body. *)
List.fold_left (fun env (nfail, _ids, rs, _e2, _dbg) ->
env_add_static_exception nfail rs env)
env handlers
in
let (r_body, s_body) = self#emit_sequence env body in
let translate_one_handler (nfail, ids, rs, e2, _dbg) =
assert(List.length ids = List.length rs);
let new_env =
List.fold_left (fun env ((id, _typ), r) -> env_add id r env)
env (List.combine ids rs)
in
let (r, s) = self#emit_sequence new_env e2 in
(nfail, (r, s))
in
let l = List.map translate_one_handler handlers in
let a = Array.of_list ((r_body, s_body) :: List.map snd l) in
let r = join_array env a in
let aux (nfail, (_r, s)) = (nfail, s#extract) in
self#insert env (Icatch (rec_flag, List.map aux l, s_body#extract))
[||] [||];
r
| Cexit (nfail,args) ->
begin match self#emit_parts_list env args with
None -> None
| Some (simple_list, ext_env) ->
let src = self#emit_tuple ext_env simple_list in
let dest_args =
try env_find_static_exception nfail env
with Not_found ->
Misc.fatal_error ("Selection.emit_expr: unbound label "^
Stdlib.Int.to_string nfail)
in
(* Intermediate registers to handle cases where some
registers from src are present in dest *)
let tmp_regs = Reg.createv_like src in
(* Ccatch registers must not contain out of heap pointers *)
Array.iter (fun reg -> assert(reg.typ <> Addr)) src;
self#insert_moves env src tmp_regs ;
self#insert_moves env tmp_regs (Array.concat dest_args) ;
self#insert env (Iexit nfail) [||] [||];
None
end
| Ctrywith(e1, v, e2, _dbg) ->
let (r1, s1) = self#emit_sequence env e1 in
let rv = self#regs_for typ_val in
let (r2, s2) = self#emit_sequence (env_add v rv env) e2 in
let r = join env r1 s1 r2 s2 in
self#insert env
(Itrywith(s1#extract,
instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv
(s2#extract)))
[||] [||];
r
method private emit_sequence (env:environment) exp =
let s = {< instr_seq = dummy_instr >} in
let r = s#emit_expr env exp in
(r, s)
method private bind_let (env:environment) v r1 =
if all_regs_anonymous r1 then begin
name_regs v r1;
env_add v r1 env
end else begin
let rv = Reg.createv_like r1 in
name_regs v rv;
self#insert_moves env r1 rv;
env_add v rv env
end
method private bind_let_mut (env:environment) v k r1 =
let rv = self#regs_for k in
name_regs v rv;
self#insert_moves env r1 rv;
env_add ~mut:Mutable v rv env
(* The following two functions, [emit_parts] and [emit_parts_list], force
right-to-left evaluation order as required by the Flambda [Un_anf] pass
(and to be consistent with the bytecode compiler). *)
method private emit_parts (env:environment) ~effects_after exp =
let module EC = Effect_and_coeffect in
let may_defer_evaluation =
let ec = self#effects_of exp in
match EC.effect ec with
| Effect.Arbitrary | Effect.Raise ->
(* Preserve the ordering of effectful expressions by evaluating them
early (in the correct order) and assigning their results to
temporaries. We can avoid this in just one case: if we know that
every [exp'] in the original expression list (cf. [emit_parts_list])
to be evaluated after [exp] cannot possibly affect the result of
[exp] or depend on the result of [exp], then [exp] may be deferred.
(Checking purity here is not enough: we need to check copurity too
to avoid e.g. moving mutable reads earlier than the raising of
an exception.) *)
EC.pure_and_copure effects_after
| Effect.None ->
match EC.coeffect ec with
| Coeffect.None ->
(* Pure expressions may be moved. *)
true
| Coeffect.Read_mutable -> begin
(* Read-mutable expressions may only be deferred if evaluation of
every [exp'] (for [exp'] as in the comment above) has no effects
"worse" (in the sense of the ordering in [Effect.t]) than raising
an exception. *)
match EC.effect effects_after with
| Effect.None | Effect.Raise -> true
| Effect.Arbitrary -> false
end
| Coeffect.Arbitrary -> begin
(* Arbitrary expressions may only be deferred if evaluation of
every [exp'] (for [exp'] as in the comment above) has no effects. *)
match EC.effect effects_after with
| Effect.None -> true
| Effect.Arbitrary | Effect.Raise -> false
end
in
(* Even though some expressions may look like they can be deferred from
the (co)effect analysis, it may be forbidden to move them. *)
if may_defer_evaluation && self#is_simple_expr exp then
Some (exp, env)
else begin
match self#emit_expr env exp with
None -> None
| Some r ->
if Array.length r = 0 then
Some (Ctuple [], env)
else begin
(* The normal case *)
let id = V.create_local "bind" in
if all_regs_anonymous r then
(* r is an anonymous, unshared register; use it directly *)
Some (Cvar id, env_add (VP.create id) r env)
else begin
(* Introduce a fresh temp to hold the result *)
let tmp = Reg.createv_like r in
self#insert_moves env r tmp;
Some (Cvar id, env_add (VP.create id) tmp env)
end
end
end
method private emit_parts_list (env:environment) exp_list =
let module EC = Effect_and_coeffect in
let exp_list_right_to_left, _effect =
(* Annotate each expression with the (co)effects that happen after it
when the original expression list is evaluated from right to left.
The resulting expression list has the rightmost expression first. *)
List.fold_left (fun (exp_list, effects_after) exp ->
let exp_effect = self#effects_of exp in
(exp, effects_after)::exp_list, EC.join exp_effect effects_after)
([], EC.none)
exp_list
in
List.fold_left (fun results_and_env (exp, effects_after) ->
match results_and_env with
| None -> None
| Some (result, env) ->
match self#emit_parts env exp ~effects_after with
| None -> None
| Some (exp_result, env) -> Some (exp_result :: result, env))
(Some ([], env))
exp_list_right_to_left
method private emit_tuple_not_flattened env exp_list =
let rec emit_list = function
[] -> []
| exp :: rem ->
(* Again, force right-to-left evaluation *)
let loc_rem = emit_list rem in
match self#emit_expr env exp with
None -> assert false (* should have been caught in emit_parts *)
| Some loc_exp -> loc_exp :: loc_rem
in
emit_list exp_list
method private emit_tuple env exp_list =
Array.concat (self#emit_tuple_not_flattened env exp_list)
method emit_extcall_args env ty_args args =
let args = self#emit_tuple_not_flattened env args in
let ty_args =
if ty_args = [] then List.map (fun _ -> XInt) args else ty_args in
let locs, stack_ofs = Proc.loc_external_arguments ty_args in
let ty_args = Array.of_list ty_args in
if stack_ofs <> 0 then
self#insert env (Iop(Istackoffset stack_ofs)) [||] [||];
List.iteri
(fun i arg ->
self#insert_move_extcall_arg env ty_args.(i) arg locs.(i))
args;
Array.concat (Array.to_list locs), stack_ofs
method insert_move_extcall_arg env _ty_arg src dst =
(* The default implementation is one or two ordinary moves.
(Two in the case of an int64 argument on a 32-bit platform.)
It can be overridden to use special move instructions,
for example a "32-bit move" instruction for int32 arguments. *)
self#insert_moves env src dst
method emit_stores env data regs_addr =
let a =
ref (Arch.offset_addressing Arch.identity_addressing (-Arch.size_int)) in
List.iter
(fun e ->
let (op, arg) = self#select_store false !a e in
match self#emit_expr env arg with