forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
float.mli
1166 lines (898 loc) · 45.2 KB
/
float.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* Nicolas Ojeda Bar, LexiFi *)
(* *)
(* Copyright 2018 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE:
If this file is float.template.mli, run tools/sync_stdlib_docs after editing
it to generate float.mli.
If this file is float.mli, do not edit it directly -- edit
templates/float.template.mli instead.
*)
(** Floating-point arithmetic.
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as [infinity] for [1.0 /. 0.0],
[neg_infinity] for [-1.0 /. 0.0], and [nan] ('not a number')
for [0.0 /. 0.0]. These special numbers then propagate through
floating-point computations as expected: for instance,
[1.0 /. infinity] is [0.0], basic arithmetic operations
([+.], [-.], [*.], [/.]) with [nan] as an argument return [nan], ...
@since 4.07
*)
val zero : float
(** The floating point 0.
@since 4.08 *)
val one : float
(** The floating-point 1.
@since 4.08 *)
val minus_one : float
(** The floating-point -1.
@since 4.08 *)
external neg : float -> float = "%negfloat"
(** Unary negation. *)
external add : float -> float -> float = "%addfloat"
(** Floating-point addition. *)
external sub : float -> float -> float = "%subfloat"
(** Floating-point subtraction. *)
external mul : float -> float -> float = "%mulfloat"
(** Floating-point multiplication. *)
external div : float -> float -> float = "%divfloat"
(** Floating-point division. *)
external fma : float -> float -> float -> float =
"caml_fma_float" "caml_fma" [@@unboxed] [@@noalloc]
(** [fma x y z] returns [x * y + z], with a best effort for computing
this expression with a single rounding, using either hardware
instructions (providing full IEEE compliance) or a software
emulation.
On 64-bit Cygwin, 64-bit mingw-w64 and MSVC 2017 and earlier, this function
may be emulated owing to known bugs on limitations on these platforms.
Note: since software emulation of the fma is costly, make sure that you are
using hardware fma support if performance matters.
@since 4.08 *)
external rem : float -> float -> float = "caml_fmod_float" "fmod"
[@@unboxed] [@@noalloc]
(** [rem a b] returns the remainder of [a] with respect to [b]. The returned
value is [a -. n *. b], where [n] is the quotient [a /. b] rounded towards
zero to an integer. *)
val succ : float -> float
(** [succ x] returns the floating point number right after [x] i.e.,
the smallest floating-point number greater than [x]. See also
{!next_after}.
@since 4.08 *)
val pred : float -> float
(** [pred x] returns the floating-point number right before [x] i.e.,
the greatest floating-point number smaller than [x]. See also
{!next_after}.
@since 4.08 *)
external abs : float -> float = "%absfloat"
(** [abs f] returns the absolute value of [f]. *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for
'not a number'. Any floating-point operation with [nan] as
argument returns [nan] as result, unless otherwise specified in
IEEE 754 standard. As for floating-point comparisons,
[=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
if one or both of their arguments is [nan].
[nan] is [quiet_nan] since 5.1; it was a signaling NaN before. *)
val signaling_nan : float
(** Signaling NaN. The corresponding signals do not raise OCaml exception,
but the value can be useful for interoperability with C libraries.
@since 5.1 *)
val quiet_nan : float
(** Quiet NaN.
@since 5.1 *)
val pi : float
(** The constant pi. *)
val max_float : float
(** The largest positive finite value of type [float]. *)
val min_float : float
(** The smallest positive, non-zero, non-denormalized value of type [float]. *)
val epsilon : float
(** The difference between [1.0] and the smallest exactly representable
floating-point number greater than [1.0]. *)
val is_finite : float -> bool
(** [is_finite x] is [true] if and only if [x] is finite i.e., not infinite and
not {!nan}.
@since 4.08 *)
val is_infinite : float -> bool
(** [is_infinite x] is [true] if and only if [x] is {!infinity} or
{!neg_infinity}.
@since 4.08 *)
val is_nan : float -> bool
(** [is_nan x] is [true] if and only if [x] is not a number (see {!nan}).
@since 4.08 *)
val is_integer : float -> bool
(** [is_integer x] is [true] if and only if [x] is an integer.
@since 4.08 *)
external of_int : int -> float = "%floatofint"
(** Convert an integer to floating-point. *)
external to_int : float -> int = "%intoffloat"
(** Truncate the given floating-point number to an integer.
The result is unspecified if the argument is [nan] or falls outside the
range of representable integers. *)
external of_string : string -> float = "caml_float_of_string"
(** Convert the given string to a float. The string is read in decimal
(by default) or in hexadecimal (marked by [0x] or [0X]).
The format of decimal floating-point numbers is
[ [-] dd.ddd (e|E) [+|-] dd ], where [d] stands for a decimal digit.
The format of hexadecimal floating-point numbers is
[ [-] 0(x|X) hh.hhh (p|P) [+|-] dd ], where [h] stands for an
hexadecimal digit and [d] for a decimal digit.
In both cases, at least one of the integer and fractional parts must be
given; the exponent part is optional.
The [_] (underscore) character can appear anywhere in the string
and is ignored.
Depending on the execution platforms, other representations of
floating-point numbers can be accepted, but should not be relied upon.
@raise Failure if the given string is not a valid
representation of a float. *)
val of_string_opt: string -> float option
(** Same as [of_string], but returns [None] instead of raising. *)
val to_string : float -> string
(** Return a string representation of a floating-point number.
This conversion can involve a loss of precision. For greater control over
the manner in which the number is printed, see {!Printf}.
This function is an alias for {!Stdlib.string_of_float}. *)
type fpclass = Stdlib.fpclass =
FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!classify_float} function. *)
external classify_float : (float [@unboxed]) -> fpclass =
"caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
external pow : float -> float -> float = "caml_power_float" "pow"
[@@unboxed] [@@noalloc]
(** Exponentiation. *)
external sqrt : float -> float = "caml_sqrt_float" "sqrt"
[@@unboxed] [@@noalloc]
(** Square root. *)
external cbrt : float -> float = "caml_cbrt_float" "caml_cbrt"
[@@unboxed] [@@noalloc]
(** Cube root.
@since 4.13
*)
external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)
external exp2 : float -> float = "caml_exp2_float" "caml_exp2"
[@@unboxed] [@@noalloc]
(** Base 2 exponential function.
@since 4.13
*)
external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)
external log10 : float -> float = "caml_log10_float" "log10"
[@@unboxed] [@@noalloc]
(** Base 10 logarithm. *)
external log2 : float -> float = "caml_log2_float" "caml_log2"
[@@unboxed] [@@noalloc]
(** Base 2 logarithm.
@since 4.13
*)
external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
[@@unboxed] [@@noalloc]
(** [expm1 x] computes [exp x -. 1.0], giving numerically-accurate results
even if [x] is close to [0.0]. *)
external log1p : float -> float = "caml_log1p_float" "caml_log1p"
[@@unboxed] [@@noalloc]
(** [log1p x] computes [log(1.0 +. x)] (natural logarithm),
giving numerically-accurate results even if [x] is close to [0.0]. *)
external cos : float -> float = "caml_cos_float" "cos" [@@unboxed] [@@noalloc]
(** Cosine. Argument is in radians. *)
external sin : float -> float = "caml_sin_float" "sin" [@@unboxed] [@@noalloc]
(** Sine. Argument is in radians. *)
external tan : float -> float = "caml_tan_float" "tan" [@@unboxed] [@@noalloc]
(** Tangent. Argument is in radians. *)
external acos : float -> float = "caml_acos_float" "acos"
[@@unboxed] [@@noalloc]
(** Arc cosine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [0.0] and [pi]. *)
external asin : float -> float = "caml_asin_float" "asin"
[@@unboxed] [@@noalloc]
(** Arc sine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan : float -> float = "caml_atan_float" "atan"
[@@unboxed] [@@noalloc]
(** Arc tangent.
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
[@@unboxed] [@@noalloc]
(** [atan2 y x] returns the arc tangent of [y /. x]. The signs of [x]
and [y] are used to determine the quadrant of the result.
Result is in radians and is between [-pi] and [pi]. *)
external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
[@@unboxed] [@@noalloc]
(** [hypot x y] returns [sqrt(x *. x +. y *. y)], that is, the length
of the hypotenuse of a right-angled triangle with sides of length
[x] and [y], or, equivalently, the distance of the point [(x,y)]
to origin. If one of [x] or [y] is infinite, returns [infinity]
even if the other is [nan]. *)
external cosh : float -> float = "caml_cosh_float" "cosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic cosine. Argument is in radians. *)
external sinh : float -> float = "caml_sinh_float" "sinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic sine. Argument is in radians. *)
external tanh : float -> float = "caml_tanh_float" "tanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic tangent. Argument is in radians. *)
external acosh : float -> float = "caml_acosh_float" "caml_acosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc cosine. The argument must fall within the range
[[1.0, inf]].
Result is in radians and is between [0.0] and [inf].
@since 4.13
*)
external asinh : float -> float = "caml_asinh_float" "caml_asinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc sine. The argument and result range over the entire
real line.
Result is in radians.
@since 4.13
*)
external atanh : float -> float = "caml_atanh_float" "caml_atanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic arc tangent. The argument must fall within the range
[[-1.0, 1.0]].
Result is in radians and ranges over the entire real line.
@since 4.13
*)
external erf : float -> float = "caml_erf_float" "caml_erf"
[@@unboxed] [@@noalloc]
(** Error function. The argument ranges over the entire real line.
The result is always within [[-1.0, 1.0]].
@since 4.13
*)
external erfc : float -> float = "caml_erfc_float" "caml_erfc"
[@@unboxed] [@@noalloc]
(** Complementary error function ([erfc x = 1 - erf x]).
The argument ranges over the entire real line.
The result is always within [[-1.0, 1.0]].
@since 4.13
*)
external trunc : float -> float = "caml_trunc_float" "caml_trunc"
[@@unboxed] [@@noalloc]
(** [trunc x] rounds [x] to the nearest integer whose absolute value is
less than or equal to [x].
@since 4.08 *)
external round : float -> float = "caml_round_float" "caml_round"
[@@unboxed] [@@noalloc]
(** [round x] rounds [x] to the nearest integer with ties (fractional
values of 0.5) rounded away from zero, regardless of the current
rounding direction. If [x] is an integer, [+0.], [-0.], [nan], or
infinite, [x] itself is returned.
On 64-bit mingw-w64, this function may be emulated owing to a bug in the
C runtime library (CRT) on this platform.
@since 4.08 *)
external ceil : float -> float = "caml_ceil_float" "ceil"
[@@unboxed] [@@noalloc]
(** Round above to an integer value.
[ceil f] returns the least integer value greater than or equal to [f].
The result is returned as a float. *)
external floor : float -> float = "caml_floor_float" "floor"
[@@unboxed] [@@noalloc]
(** Round below to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
The result is returned as a float. *)
external next_after : float -> float -> float
= "caml_nextafter_float" "caml_nextafter" [@@unboxed] [@@noalloc]
(** [next_after x y] returns the next representable floating-point
value following [x] in the direction of [y]. More precisely, if
[y] is greater (resp. less) than [x], it returns the smallest
(resp. largest) representable number greater (resp. less) than [x].
If [x] equals [y], the function returns [y]. If [x] or [y] is
[nan], a [nan] is returned.
Note that [next_after max_float infinity = infinity] and that
[next_after 0. infinity] is the smallest denormalized positive number.
If [x] is the smallest denormalized positive number,
[next_after x 0. = 0.]
@since 4.08 *)
external copy_sign : float -> float -> float
= "caml_copysign_float" "caml_copysign"
[@@unboxed] [@@noalloc]
(** [copy_sign x y] returns a float whose absolute value is that of [x]
and whose sign is that of [y]. If [x] is [nan], returns [nan].
If [y] is [nan], returns either [x] or [-. x], but it is not
specified which. *)
external sign_bit : (float [@unboxed]) -> bool
= "caml_signbit_float" "caml_signbit" [@@noalloc]
(** [sign_bit x] is [true] if and only if the sign bit of [x] is set.
For example [sign_bit 1.] and [signbit 0.] are [false] while
[sign_bit (-1.)] and [sign_bit (-0.)] are [true].
@since 4.08 *)
external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant
and the exponent of [f]. When [f] is zero, the
significant [x] and the exponent [n] of [f] are equal to
zero. When [f] is non-zero, they are defined by
[f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
external ldexp : (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed]) =
"caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
(** [ldexp x n] returns [x *. 2 ** n]. *)
external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
type t = float
(** An alias for the type of floating-point numbers. *)
val compare: t -> t -> int
(** [compare x y] returns [0] if [x] is equal to [y], a negative integer if [x]
is less than [y], and a positive integer if [x] is greater than
[y]. [compare] treats [nan] as equal to itself and less than any other float
value. This treatment of [nan] ensures that [compare] defines a total
ordering relation. *)
val equal: t -> t -> bool
(** The equal function for floating-point numbers, compared using {!compare}. *)
val min : t -> t -> t
(** [min x y] returns the minimum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [min (-0.) (+0.) = -0.]
@since 4.08 *)
val max : float -> float -> float
(** [max x y] returns the maximum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [max (-0.) (+0.) = +0.]
@since 4.08 *)
val min_max : float -> float -> float * float
(** [min_max x y] is [(min x y, max x y)], just more efficient.
@since 4.08 *)
val min_num : t -> t -> t
(** [min_num x y] returns the minimum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan], [nan] is returned.
Moreover [min_num (-0.) (+0.) = -0.]
@since 4.08 *)
val max_num : t -> t -> t
(** [max_num x y] returns the maximum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan] [nan] is returned.
Moreover [max_num (-0.) (+0.) = +0.]
@since 4.08 *)
val min_max_num : float -> float -> float * float
(** [min_max_num x y] is [(min_num x y, max_num x y)], just more
efficient. Note that in particular [min_max_num x nan = (x, x)]
and [min_max_num nan y = (y, y)].
@since 4.08 *)
val seeded_hash : int -> t -> int
(** A seeded hash function for floats, with the same output value as
{!Hashtbl.seeded_hash}. This function allows this module to be passed as
argument to the functor {!Hashtbl.MakeSeeded}.
@since 5.1 *)
val hash : t -> int
(** An unseeded hash function for floats, with the same output value as
{!Hashtbl.hash}. This function allows this module to be passed as argument
to the functor {!Hashtbl.Make}. *)
module Array : sig
type t = floatarray
(** The type of float arrays with packed representation.
@since 4.08
*)
val length : t -> int
(** Return the length (number of elements) of the given floatarray. *)
val get : t -> int -> float
(** [get a n] returns the element number [n] of floatarray [a].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val set : t -> int -> float -> unit
(** [set a n x] modifies floatarray [a] in place, replacing element
number [n] with [x].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val make : int -> float -> t
(** [make n x] returns a fresh floatarray of length [n], initialized with [x].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val create : int -> t
(** [create n] returns a fresh floatarray of length [n],
with uninitialized data.
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val init : int -> (int -> float) -> t
(** [init n f] returns a fresh floatarray of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val append : t -> t -> t
(** [append v1 v2] returns a fresh floatarray containing the
concatenation of the floatarrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_floatarray_length]. *)
val concat : t list -> t
(** Same as {!append}, but concatenates a list of floatarrays. *)
val sub : t -> int -> int -> t
(** [sub a pos len] returns a fresh floatarray of length [len],
containing the elements number [pos] to [pos + len - 1]
of floatarray [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : t -> t
(** [copy a] returns a copy of [a], that is, a fresh floatarray
containing the same elements as [a]. *)
val fill : t -> int -> int -> float -> unit
(** [fill a pos len x] modifies the floatarray [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit : t -> int -> t -> int -> int -> unit
(** [blit src src_pos dst dst_pos len] copies [len] elements
from floatarray [src], starting at element number [src_pos],
to floatarray [dst], starting at element number [dst_pos].
It works correctly even if
[src] and [dst] are the same floatarray, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : t -> float list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : float list -> t
(** [of_list l] returns a fresh floatarray containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_floatarray_length].*)
(** {2 Iterators} *)
val iter : (float -> unit) -> t -> unit
(** [iter f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : (int -> float -> unit) -> t -> unit
(** Same as {!iter}, but the
function is applied with the index of the element as first argument,
and the element itself as second argument. *)
val map : (float -> float) -> t -> t
(** [map f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
val map_inplace : (float -> float) -> t -> unit
(** [map_inplace f a] applies function [f] to all elements of [a],
and updates their values in place.
@since 5.1 *)
val mapi : (int -> float -> float) -> t -> t
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi_inplace : (int -> float -> float) -> t -> unit
(** Same as {!map_inplace}, but the function is applied to the index of the
element as first argument, and the element itself as second argument.
@since 5.1 *)
val fold_left : ('acc -> float -> 'acc) -> 'acc -> t -> 'acc
(** [fold_left f x init] computes
[f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)],
where [n] is the length of the floatarray [init]. *)
val fold_right : (float -> 'acc -> 'acc) -> t -> 'acc -> 'acc
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the floatarray [a]. *)
(** {2 Iterators on two arrays} *)
val iter2 : (float -> float -> unit) -> t -> t -> unit
(** [Array.iter2 f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the floatarrays are not the same size. *)
val map2 : (float -> float -> float) -> t -> t -> t
(** [map2 f a b] applies function [f] to all the elements of [a]
and [b], and builds a floatarray with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the floatarrays are not the same size. *)
(** {2 Array scanning} *)
val for_all : (float -> bool) -> t -> bool
(** [for_all f [|a1; ...; an|]] checks if all elements of the floatarray
satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)]. *)
val exists : (float -> bool) -> t -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the floatarray satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)]. *)
val mem : float -> t -> bool
(** [mem a set] is true if and only if there is an element of [set] that is
structurally equal to [a], i.e. there is an [x] in [set] such
that [compare a x = 0]. *)
val mem_ieee : float -> t -> bool
(** Same as {!mem}, but uses IEEE equality instead of structural equality. *)
(** {2 Array searching} *)
val find_opt : (float -> bool) -> t -> float option
(* [find_opt f a] returns the first element of the array [a] that satisfies
the predicate [f]. Returns [None] if there is no value that satisfies [f]
in the array [a].
@since 5.1 *)
val find_index : (float-> bool) -> t -> int option
(** [find_index f a] returns [Some i], where [i] is the index of the first
element of the array [a] that satisfies [f x], if there is such an
element.
It returns [None] if there is no such element.
@since 5.1 *)
val find_map : (float -> 'a option) -> t -> 'a option
(* [find_map f a] applies [f] to the elements of [a] in order, and returns
the first result of the form [Some v], or [None] if none exist.
@since 5.1 *)
val find_mapi : (int -> float -> 'a option) -> t -> 'a option
(** Same as [find_map], but the predicate is applied to the index of
the element as first argument (counting from 0), and the element
itself as second argument.
@since 5.1 *)
(** {2 Sorting} *)
val sort : (float -> float -> int) -> t -> unit
(** Sort a floatarray in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Stdlib.compare} is
a suitable comparison function. After calling [sort], the
array is sorted in place in increasing order.
[sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the floatarray and [cmp] the comparison function. The following
must be true for all [x], [y], [z] in [a] :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if and only if i >= j
*)
val stable_sort : (float -> float -> int) -> t -> unit
(** Same as {!sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
floatarray of length [n/2], where [n] is the length of the floatarray.
It is usually faster than the current implementation of {!sort}. *)
val fast_sort : (float -> float -> int) -> t -> unit
(** Same as {!sort} or {!stable_sort}, whichever is faster
on typical input. *)
(** {2 Float arrays and Sequences} *)
val to_seq : t -> float Seq.t
(** Iterate on the floatarray, in increasing order. Modifications of the
floatarray during iteration will be reflected in the sequence. *)
val to_seqi : t -> (int * float) Seq.t
(** Iterate on the floatarray, in increasing order, yielding indices along
elements. Modifications of the floatarray during iteration will be
reflected in the sequence. *)
val of_seq : float Seq.t -> t
(** Create an array from the generator. *)
val map_to_array : (float -> 'a) -> t -> 'a array
(** [map_to_array f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(length a - 1) |]]. *)
val map_from_array : ('a -> float) -> 'a array -> t
(** [map_from_array f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
(** {1:floatarray_concurrency Arrays and concurrency safety}
Care must be taken when concurrently accessing float arrays from multiple
domains: accessing an array will never crash a program, but unsynchronized
accesses might yield surprising (non-sequentially-consistent) results.
{2:floatarray_atomicity Atomicity}
Every float array operation that accesses more than one array element is
not atomic. This includes iteration, scanning, sorting, splitting and
combining arrays.
For example, consider the following program:
{[let size = 100_000_000
let a = Float.Array.make size 1.
let update a f () =
Float.Array.iteri (fun i x -> Float.Array.set a i (f x)) a
let d1 = Domain.spawn (update a (fun x -> x +. 1.))
let d2 = Domain.spawn (update a (fun x -> 2. *. x +. 1.))
let () = Domain.join d1; Domain.join d2
]}
After executing this code, each field of the float array [a] is either
[2.], [3.], [4.] or [5.]. If atomicity is required, then the user must
implement their own synchronization (for example, using {!Mutex.t}).
{2:floatarray_data_race Data races}
If two domains only access disjoint parts of the array, then the
observed behaviour is the equivalent to some sequential interleaving of
the operations from the two domains.
A data race is said to occur when two domains access the same array
element without synchronization and at least one of the accesses is a
write. In the absence of data races, the observed behaviour is equivalent
to some sequential interleaving of the operations from different domains.
Whenever possible, data races should be avoided by using synchronization
to mediate the accesses to the array elements.
Indeed, in the presence of data races, programs will not crash but the
observed behaviour may not be equivalent to any sequential interleaving of
operations from different domains. Nevertheless, even in the presence of
data races, a read operation will return the value of some prior write to
that location with a few exceptions.
{2:floatarray_datarace_tearing Tearing }
Float arrays have two supplementary caveats in the presence of data races.
First, the blit operation might copy an array byte-by-byte. Data races
between such a blit operation and another operation might produce
surprising values due to tearing: partial writes interleaved with other
operations can create float values that would not exist with a sequential
execution.
For instance, at the end of
{[let zeros = Float.Array.make size 0.
let max_floats = Float.Array.make size Float.max_float
let res = Float.Array.copy zeros
let d1 = Domain.spawn (fun () -> Float.Array.blit zeros 0 res 0 size)
let d2 = Domain.spawn (fun () -> Float.Array.blit max_floats 0 res 0 size)
let () = Domain.join d1; Domain.join d2
]}
the [res] float array might contain values that are neither [0.]
nor [max_float].
Second, on 32-bit architectures, getting or setting a field involves two
separate memory accesses. In the presence of data races, the user may
observe tearing on any operation.
*)
(**/**)
(** {2 Undocumented functions} *)
(* These functions are for system use only. Do not call directly. *)
external unsafe_get : t -> int -> float = "%floatarray_unsafe_get"
external unsafe_set : t -> int -> float -> unit = "%floatarray_unsafe_set"
end
(** Float arrays with packed representation. *)
module ArrayLabels : sig
type t = floatarray
(** The type of float arrays with packed representation.
@since 4.08
*)
val length : t -> int
(** Return the length (number of elements) of the given floatarray. *)
val get : t -> int -> float
(** [get a n] returns the element number [n] of floatarray [a].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val set : t -> int -> float -> unit
(** [set a n x] modifies floatarray [a] in place, replacing element
number [n] with [x].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val make : int -> float -> t
(** [make n x] returns a fresh floatarray of length [n], initialized with [x].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val create : int -> t
(** [create n] returns a fresh floatarray of length [n],
with uninitialized data.
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val init : int -> f:(int -> float) -> t
(** [init n ~f] returns a fresh floatarray of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n ~f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val append : t -> t -> t
(** [append v1 v2] returns a fresh floatarray containing the
concatenation of the floatarrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_floatarray_length]. *)
val concat : t list -> t
(** Same as {!append}, but concatenates a list of floatarrays. *)
val sub : t -> pos:int -> len:int -> t
(** [sub a ~pos ~len] returns a fresh floatarray of length [len],
containing the elements number [pos] to [pos + len - 1]
of floatarray [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : t -> t
(** [copy a] returns a copy of [a], that is, a fresh floatarray
containing the same elements as [a]. *)
val fill : t -> pos:int -> len:int -> float -> unit
(** [fill a ~pos ~len x] modifies the floatarray [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit : src:t -> src_pos:int -> dst:t -> dst_pos:int -> len:int -> unit
(** [blit ~src ~src_pos ~dst ~dst_pos ~len] copies [len] elements
from floatarray [src], starting at element number [src_pos],
to floatarray [dst], starting at element number [dst_pos].
It works correctly even if
[src] and [dst] are the same floatarray, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : t -> float list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : float list -> t
(** [of_list l] returns a fresh floatarray containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_floatarray_length].*)
(** {2 Iterators} *)
val iter : f:(float -> unit) -> t -> unit
(** [iter ~f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : f:(int -> float -> unit) -> t -> unit
(** Same as {!iter}, but the
function is applied with the index of the element as first argument,
and the element itself as second argument. *)
val map : f:(float -> float) -> t -> t
(** [map ~f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
val map_inplace : f:(float -> float) -> t -> unit
(** [map_inplace f a] applies function [f] to all elements of [a],
and updates their values in place.
@since 5.1 *)
val mapi : f:(int -> float -> float) -> t -> t
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi_inplace : f:(int -> float -> float) -> t -> unit
(** Same as {!map_inplace}, but the function is applied to the index of the
element as first argument, and the element itself as second argument.
@since 5.1 *)
val fold_left : f:('acc -> float -> 'acc) -> init:'acc -> t -> 'acc
(** [fold_left ~f x ~init] computes
[f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)],
where [n] is the length of the floatarray [init]. *)
val fold_right : f:(float -> 'acc -> 'acc) -> t -> init:'acc -> 'acc
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the floatarray [a]. *)
(** {2 Iterators on two arrays} *)
val iter2 : f:(float -> float -> unit) -> t -> t -> unit
(** [Array.iter2 ~f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the floatarrays are not the same size. *)
val map2 : f:(float -> float -> float) -> t -> t -> t
(** [map2 ~f a b] applies function [f] to all the elements of [a]
and [b], and builds a floatarray with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the floatarrays are not the same size. *)
(** {2 Array scanning} *)
val for_all : f:(float -> bool) -> t -> bool
(** [for_all ~f [|a1; ...; an|]] checks if all elements of the floatarray
satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)]. *)
val exists : f:(float -> bool) -> t -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the floatarray satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)]. *)
val mem : float -> set:t -> bool
(** [mem a ~set] is true if and only if there is an element of [set] that is
structurally equal to [a], i.e. there is an [x] in [set] such
that [compare a x = 0]. *)
val mem_ieee : float -> set:t -> bool
(** Same as {!mem}, but uses IEEE equality instead of structural equality. *)
(** {2 Array searching} *)
val find_opt : f:(float -> bool) -> t -> float option
(* [find_opt ~f a] returns the first element of the array [a] that satisfies
the predicate [f]. Returns [None] if there is no value that satisfies [f]
in the array [a].
@since 5.1 *)
val find_index : f:(float-> bool) -> t -> int option
(** [find_index ~f a] returns [Some i], where [i] is the index of the first