forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
int32.mli
242 lines (187 loc) · 8.82 KB
/
int32.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** 32-bit integers.
This module provides operations on the type [int32]
of signed 32-bit integers. Unlike the built-in [int] type,
the type [int32] is guaranteed to be exactly 32-bit wide on all
platforms. All arithmetic operations over [int32] are taken
modulo 2{^32}.
Performance notice: values of type [int32] occupy more memory
space than values of type [int], and arithmetic operations on
[int32] are generally slower than those on [int]. Use [int32]
only when the application requires exact 32-bit arithmetic.
Literals for 32-bit integers are suffixed by l:
{[
let zero: int32 = 0l
let one: int32 = 1l
let m_one: int32 = -1l
]}
*)
val zero : int32
(** The 32-bit integer 0. *)
val one : int32
(** The 32-bit integer 1. *)
val minus_one : int32
(** The 32-bit integer -1. *)
external neg : int32 -> int32 = "%int32_neg"
(** Unary negation. *)
external add : int32 -> int32 -> int32 = "%int32_add"
(** Addition. *)
external sub : int32 -> int32 -> int32 = "%int32_sub"
(** Subtraction. *)
external mul : int32 -> int32 -> int32 = "%int32_mul"
(** Multiplication. *)
external div : int32 -> int32 -> int32 = "%int32_div"
(** Integer division. This division rounds the real quotient of
its arguments towards zero, as specified for {!Stdlib.(/)}.
@raise Division_by_zero if the second
argument is zero. *)
val unsigned_div : int32 -> int32 -> int32
(** Same as {!div}, except that arguments and result are interpreted as {e
unsigned} 32-bit integers.
@since 4.08 *)
external rem : int32 -> int32 -> int32 = "%int32_mod"
(** Integer remainder. If [y] is not zero, the result
of [Int32.rem x y] satisfies the following property:
[x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)].
If [y = 0], [Int32.rem x y] raises [Division_by_zero]. *)
val unsigned_rem : int32 -> int32 -> int32
(** Same as {!rem}, except that arguments and result are interpreted as {e
unsigned} 32-bit integers.
@since 4.08 *)
val succ : int32 -> int32
(** Successor. [Int32.succ x] is [Int32.add x Int32.one]. *)
val pred : int32 -> int32
(** Predecessor. [Int32.pred x] is [Int32.sub x Int32.one]. *)
val abs : int32 -> int32
(** [abs x] is the absolute value of [x]. On [min_int] this
is [min_int] itself and thus remains negative. *)
val max_int : int32
(** The greatest representable 32-bit integer, 2{^31} - 1. *)
val min_int : int32
(** The smallest representable 32-bit integer, -2{^31}. *)
external logand : int32 -> int32 -> int32 = "%int32_and"
(** Bitwise logical and. *)
external logor : int32 -> int32 -> int32 = "%int32_or"
(** Bitwise logical or. *)
external logxor : int32 -> int32 -> int32 = "%int32_xor"
(** Bitwise logical exclusive or. *)
val lognot : int32 -> int32
(** Bitwise logical negation. *)
external shift_left : int32 -> int -> int32 = "%int32_lsl"
(** [Int32.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right : int32 -> int -> int32 = "%int32_asr"
(** [Int32.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
(** [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 32]. *)
external of_int : int -> int32 = "%int32_of_int"
(** Convert the given integer (type [int]) to a 32-bit integer
(type [int32]). On 64-bit platforms, the argument is taken
modulo 2{^32}. *)
external to_int : int32 -> int = "%int32_to_int"
(** Convert the given 32-bit integer (type [int32]) to an
integer (type [int]). On 32-bit platforms, the 32-bit integer
is taken modulo 2{^31}, i.e. the high-order bit is lost
during the conversion. On 64-bit platforms, the conversion
is exact. *)
val unsigned_to_int : int32 -> int option
(** Same as {!to_int}, but interprets the argument as an {e unsigned} integer.
Returns [None] if the unsigned value of the argument cannot fit into an
[int].
@since 4.08 *)
external of_float : float -> int32
= "caml_int32_of_float" "caml_int32_of_float_unboxed"
[@@unboxed] [@@noalloc]
(** Convert the given floating-point number to a 32-bit integer,
discarding the fractional part (truncate towards 0).
If the truncated floating-point number is outside the range
\[{!Int32.min_int}, {!Int32.max_int}\], no exception is raised, and
an unspecified, platform-dependent integer is returned. *)
external to_float : int32 -> float
= "caml_int32_to_float" "caml_int32_to_float_unboxed"
[@@unboxed] [@@noalloc]
(** Convert the given 32-bit integer to a floating-point number. *)
external of_string : string -> int32 = "caml_int32_of_string"
(** Convert the given string to a 32-bit integer.
The string is read in decimal (by default, or if the string
begins with [0u]) or in hexadecimal, octal or binary if the
string begins with [0x], [0o] or [0b] respectively.
The [0u] prefix reads the input as an unsigned integer in the range
[[0, 2*Int32.max_int+1]]. If the input exceeds {!Int32.max_int}
it is converted to the signed integer
[Int32.min_int + input - Int32.max_int - 1].
The [_] (underscore) character can appear anywhere in the string
and is ignored.
@raise Failure if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [int32]. *)
val of_string_opt: string -> int32 option
(** Same as [of_string], but return [None] instead of raising.
@since 4.05 *)
val to_string : int32 -> string
(** Return the string representation of its argument, in signed decimal. *)
external bits_of_float : float -> int32
= "caml_int32_bits_of_float" "caml_int32_bits_of_float_unboxed"
[@@unboxed] [@@noalloc]
(** Return the internal representation of the given float according
to the IEEE 754 floating-point 'single format' bit layout.
Bit 31 of the result represents the sign of the float;
bits 30 to 23 represent the (biased) exponent; bits 22 to 0
represent the mantissa. *)
external float_of_bits : int32 -> float
= "caml_int32_float_of_bits" "caml_int32_float_of_bits_unboxed"
[@@unboxed] [@@noalloc]
(** Return the floating-point number whose internal representation,
according to the IEEE 754 floating-point 'single format' bit layout,
is the given [int32]. *)
type t = int32
(** An alias for the type of 32-bit integers. *)
val compare: t -> t -> int
(** The comparison function for 32-bit integers, with the same specification as
{!Stdlib.compare}. Along with the type [t], this function [compare]
allows the module [Int32] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
val unsigned_compare: t -> t -> int
(** Same as {!compare}, except that arguments are interpreted as {e unsigned}
32-bit integers.
@since 4.08 *)
val equal: t -> t -> bool
(** The equal function for int32s.
@since 4.03 *)
val min: t -> t -> t
(** Return the smaller of the two arguments.
@since 4.13
*)
val max: t -> t -> t
(** Return the greater of the two arguments.
@since 4.13
*)
val seeded_hash : int -> t -> int
(** A seeded hash function for 32-bit ints, with the same output value as
{!Hashtbl.seeded_hash}. This function allows this module to be passed as
argument to the functor {!Hashtbl.MakeSeeded}.
@since 5.1 *)
val hash : t -> int
(** An unseeded hash function for 32-bit ints, with the same output value as
{!Hashtbl.hash}. This function allows this module to be passed as argument
to the functor {!Hashtbl.Make}.
@since 5.1 *)