forked from tsurumeso/waifu2x-chainer
-
Notifications
You must be signed in to change notification settings - Fork 6
/
waifu2x.py
234 lines (210 loc) · 9.2 KB
/
waifu2x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import division
import argparse
import os
import time
import chainer
import numpy as np
from PIL import Image
import six
from lib import iproc
from lib import reconstruct
from lib import srcnn
from lib import utils
def denoise_image(cfg, src, model):
dst, alpha = split_alpha(src, model)
six.print_('Level {} denoising...'.format(cfg.noise_level),
end=' ', flush=True)
if cfg.tta:
dst = reconstruct.image_tta(
dst, model, cfg.tta_level, cfg.block_size, cfg.batch_size)
else:
dst = reconstruct.image(dst, model, cfg.block_size, cfg.batch_size)
if model.inner_scale != 1:
dst = dst.resize((src.size[0], src.size[1]), Image.LANCZOS)
six.print_('OK')
if alpha is not None:
dst.putalpha(alpha)
return dst
def upscale_image(cfg, src, scale_model, alpha_model=None):
dst, alpha = split_alpha(src, scale_model)
for i in range(int(np.ceil(np.log2(cfg.scale_ratio)))):
six.print_('2.0x upscaling...', end=' ', flush=True)
model = scale_model if i == 0 or alpha_model is None else alpha_model
if model.inner_scale == 1:
dst = iproc.nn_scaling(dst, 2) # Nearest neighbor 2x scaling
alpha = iproc.nn_scaling(alpha, 2) # Nearest neighbor 2x scaling
if cfg.tta:
dst = reconstruct.image_tta(
dst, model, cfg.tta_level, cfg.block_size, cfg.batch_size)
else:
dst = reconstruct.image(dst, model, cfg.block_size, cfg.batch_size)
if alpha_model is None:
alpha = reconstruct.image(
alpha, scale_model, cfg.block_size, cfg.batch_size)
else:
alpha = reconstruct.image(
alpha, alpha_model, cfg.block_size, cfg.batch_size)
six.print_('OK')
dst_w = int(np.round(src.size[0] * cfg.scale_ratio))
dst_h = int(np.round(src.size[1] * cfg.scale_ratio))
if dst_w != dst.size[0] or dst_h != dst.size[1]:
six.print_('Resizing...', end=' ', flush=True)
dst = dst.resize((dst_w, dst_h), Image.LANCZOS)
six.print_('OK')
if alpha is not None:
if alpha.size[0] != dst_w or alpha.size[1] != dst_h:
alpha = alpha.resize((dst_w, dst_h), Image.LANCZOS)
dst.putalpha(alpha)
return dst
def split_alpha(src, model):
alpha = None
if src.mode in ('L', 'RGB', 'P'):
if isinstance(src.info.get('transparency'), bytes):
src = src.convert('RGBA')
rgb = src.convert('RGB')
if src.mode in ('LA', 'RGBA'):
six.print_('Splitting alpha channel...', end=' ', flush=True)
alpha = src.split()[-1]
rgb = iproc.alpha_make_border(rgb, alpha, model)
six.print_('OK')
return rgb, alpha
def load_models(cfg):
ch = 3 if cfg.color == 'rgb' else 1
if cfg.model_dir is None:
model_dir = 'models/{}'.format(cfg.arch.lower())
else:
model_dir = cfg.model_dir
models = {}
flag = False
if cfg.method == 'noise_scale':
model_name = 'anime_style_noise{}_scale_{}.npz'.format(
cfg.noise_level, cfg.color)
model_path = os.path.join(model_dir, model_name)
if os.path.exists(model_path):
models['noise_scale'] = srcnn.archs[cfg.arch](ch)
chainer.serializers.load_npz(model_path, models['noise_scale'])
alpha_model_name = 'anime_style_scale_{}.npz'.format(cfg.color)
alpha_model_path = os.path.join(model_dir, alpha_model_name)
models['alpha'] = srcnn.archs[cfg.arch](ch)
chainer.serializers.load_npz(alpha_model_path, models['alpha'])
else:
flag = True
if cfg.method == 'scale' or flag:
model_name = 'anime_style_scale_{}.npz'.format(cfg.color)
model_path = os.path.join(model_dir, model_name)
models['scale'] = srcnn.archs[cfg.arch](ch)
chainer.serializers.load_npz(model_path, models['scale'])
if cfg.method == 'noise' or flag:
model_name = 'anime_style_noise{}_{}.npz'.format(
cfg.noise_level, cfg.color)
model_path = os.path.join(model_dir, model_name)
if not os.path.exists(model_path):
model_name = 'anime_style_noise{}_scale_{}.npz'.format(
cfg.noise_level, cfg.color)
model_path = os.path.join(model_dir, model_name)
models['noise'] = srcnn.archs[cfg.arch](ch)
chainer.serializers.load_npz(model_path, models['noise'])
if cfg.gpu >= 0:
chainer.backends.cuda.check_cuda_available()
chainer.backends.cuda.get_device(cfg.gpu).use()
for _, model in models.items():
model.to_gpu()
return models
p = argparse.ArgumentParser(description='Chainer implementation of waifu2x')
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--input', '-i', default='images/small.png')
p.add_argument('--output', '-o', default='./')
p.add_argument('--extension', '-e', choices=['png', 'webp'], default='png')
p.add_argument('--quality', '-q', type=int, default=None)
p.add_argument('--arch', '-a',
choices=['VGG7', '0', 'UpConv7', '1',
'ResNet10', '2', 'UpResNet10', '3'],
default='VGG7')
p.add_argument('--model_dir', '-d', default=None)
p.add_argument('--method', '-m', choices=['noise', 'scale', 'noise_scale'],
default='scale')
p.add_argument('--scale_ratio', '-s', type=float, default=2.0)
p.add_argument('--noise_level', '-n', type=int, choices=[0, 1, 2, 3],
default=1)
p.add_argument('--color', '-c', choices=['y', 'rgb'], default='rgb')
p.add_argument('--tta', '-t', action='store_true')
p.add_argument('--tta_level', '-T', type=int, choices=[2, 4, 8], default=8)
p.add_argument('--batch_size', '-b', type=int, default=16)
p.add_argument('--block_size', '-l', type=int, default=128)
g = p.add_mutually_exclusive_group()
g.add_argument('--width', '-W', type=int, default=0)
g.add_argument('--height', '-H', type=int, default=0)
g.add_argument('--shorter_side', '-S', type=int, default=0)
g.add_argument('--longer_side', '-L', type=int, default=0)
args = p.parse_args()
if args.arch in srcnn.table:
args.arch = srcnn.table[args.arch]
if __name__ == '__main__':
models = load_models(args)
input_exts = ['.png', '.jpg', '.jpeg', '.bmp', '.tif', '.tiff', '.webp']
output_exts = ['.png', '.webp']
outext = '.' + args.extension
outname = None
outdir = args.output
if os.path.isdir(args.input):
filelist = utils.load_filelist(args.input)
else:
tmpname, tmpext = os.path.splitext(os.path.basename(args.output))
if tmpext in output_exts:
outext = tmpext
outname = tmpname
outdir = os.path.dirname(args.output)
outdir = './' if outdir == '' else outdir
elif not tmpext == '':
raise ValueError('Format {} is not supported'.format(tmpext))
filelist = [args.input]
if not os.path.exists(outdir):
os.makedirs(outdir)
for path in filelist:
if outname is None or len(filelist) > 1:
outname, outext = os.path.splitext(os.path.basename(path))
outpath = os.path.join(outdir, '{}{}'.format(outname, outext))
if outext.lower() in input_exts:
src = Image.open(path)
w, h = src.size[:2]
if args.width != 0:
args.scale_ratio = args.width / w
elif args.height != 0:
args.scale_ratio = args.height / h
elif args.shorter_side != 0:
if w < h:
args.scale_ratio = args.shorter_side / w
else:
args.scale_ratio = args.shorter_side / h
elif args.longer_side != 0:
if w > h:
args.scale_ratio = args.longer_side / w
else:
args.scale_ratio = args.longer_side / h
dst = src.copy()
start = time.time()
outname += '_(tta{})'.format(args.tta_level) if args.tta else '_'
if 'noise_scale' in models:
outname += '(noise{}_scale{:.1f}x)'.format(
args.noise_level, args.scale_ratio)
dst = upscale_image(
args, dst, models['noise_scale'], models['alpha'])
else:
if 'noise' in models:
outname += '(noise{})'.format(args.noise_level)
dst = denoise_image(args, dst, models['noise'])
if 'scale' in models:
outname += '(scale{:.1f}x)'.format(args.scale_ratio)
dst = upscale_image(args, dst, models['scale'])
print('Elapsed time: {:.6f} sec'.format(time.time() - start))
outname += '({}_{}){}'.format(args.arch, args.color, outext)
if os.path.exists(outpath):
outpath = os.path.join(outdir, outname)
lossless = args.quality is None
quality = 100 if lossless else args.quality
icc_profile = src.info.get('icc_profile')
icc_profile = "" if icc_profile is None else icc_profile
dst.convert(src.mode).save(
outpath, quality=quality, lossless=lossless,
icc_profile=icc_profile)
six.print_('Saved as \'{}\''.format(outpath))