forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_dipolefitting.m
642 lines (590 loc) · 26.4 KB
/
ft_dipolefitting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
function [source] = ft_dipolefitting(cfg, data)
% FT_DIPOLEFITTING perform grid search and non-linear fit with one or multiple
% dipoles and try to find the location where the dipole model is best able
% to explain the measured EEG or MEG topography.
%
% This function will initially scan the whole brain with a single dipole on
% a regular coarse grid, and subsequently start at the most optimal location
% with a non-linear search. Alternatively you can specify the initial
% location of the dipole(s) and the non-linear search will start from there.
%
% Use as
% [source] = ft_dipolefitting(cfg, data)
%
% The configuration has the following general fields
% cfg.numdipoles = number, default is 1
% cfg.symmetry = 'x', 'y' or 'z' symmetry for two dipoles, can be empty (default = [])
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.gridsearch = 'yes' or 'no', perform global search for initial
% guess for the dipole parameters (default = 'yes')
% cfg.nonlinear = 'yes' or 'no', perform nonlinear search for optimal
% dipole parameters (default = 'yes')
%
% If you start with a grid search, the complete grid with dipole
% positions and optionally precomputed leadfields should be specified
% cfg.grid = structure, see FT_PREPARE_SOURCEMODEL or FT_PREPARE_LEADFIELD
% The positions of the dipoles can be specified as a regular 3-D
% grid that is aligned with the axes of the head coordinate system
% cfg.grid.xgrid = vector (e.g. -20:1:20) or 'auto' (default = 'auto')
% cfg.grid.ygrid = vector (e.g. -20:1:20) or 'auto' (default = 'auto')
% cfg.grid.zgrid = vector (e.g. 0:1:20) or 'auto' (default = 'auto')
% cfg.grid.resolution = number (e.g. 1 cm) for automatic grid generation
% cfg.grid.inside = N*1 vector with boolean value whether grid point is inside brain (optional)
% cfg.grid.dim = [Nx Ny Nz] vector with dimensions in case of 3-D grid (optional)
% If the source model destribes a triangulated cortical sheet, it is described as
% cfg.grid.pos = N*3 matrix with the vertex positions of the cortical sheet
% cfg.grid.tri = M*3 matrix that describes the triangles connecting the vertices
% Alternatively the position of a few dipoles at locations of interest can be
% specified, for example obtained from an anatomical or functional MRI
% cfg.grid.pos = N*3 matrix with position of each source
%
% If you do not start with a grid search, you have to give a starting location
% for the nonlinear search
% cfg.dip.pos = initial dipole position, matrix of Ndipoles x 3
%
% The conventional approach is to fit dipoles to event-related averages, which
% within FieldTrip can be obtained from the FT_TIMELOCKANALYSIS or from
% the FT_TIMELOCKGRANDAVERAGE function. This has the additional options
% cfg.latency = [begin end] in seconds or 'all' (default = 'all')
% cfg.model = 'moving' or 'regional'
% A moving dipole model has a different position (and orientation) for each
% timepoint, or for each component. A regional dipole model has the same
% position for each timepoint or component, and a different orientation.
%
% You can also fit dipoles to the spatial topographies of an independent
% component analysis, obtained from the FT_COMPONENTANALYSIS function.
% This has the additional options
% cfg.component = array with numbers (can be empty -> all)
%
% You can also fit dipoles to the spatial topographies that are present
% in the data in the frequency domain, which can be obtained using the
% FT_FREQANALYSIS function. This has the additional options
% cfg.frequency = single number (in Hz)
%
% Low level details of the fitting can be specified in the cfg.dipfit structure
% cfg.dipfit.display = level of display, can be 'off', 'iter', 'notify' or 'final' (default = 'iter')
% cfg.dipfit.optimfun = function to use, can be 'fminsearch' or 'fminunc' (default is determined automatic)
% cfg.dipfit.maxiter = maximum number of function evaluations allowed (default depends on the optimfun)
%
% Optionally, you can modify the leadfields by reducing the rank, i.e. remove the weakest orientation
% cfg.reducerank = 'no', or number (default = 3 for EEG, 2 for MEG)
%
%
% The volume conduction model of the head should be specified as
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
%
% The EEG or MEG sensor positions can be present in the data or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_SOURCEANALYSIS, FT_PREPARE_LEADFIELD, FT_PREPARE_HEADMODEL
% TODO change the output format, more suitable would be something like:
% dip.label
% dip.time
% dip.avg (instead of Vdata)
% dip.dip.pos
% dip.dip.mom
% dip.dip.model, or dip.dip.avg
% dip.dimord
% Undocumented local options:
% cfg.dipfit.constr = Source model constraints, depends on cfg.symmetry
% Optionally, you can include a noise covariance structure to sphere the data (is useful when using both
% magnetometers and gradiometers to fit your dipole)
% cfg.dipfit.noisecov = noise covariance matrix, see e.g. FT_TIMELOCK_ANALYSIS
% Copyright (C) 2004-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', {'comp', 'timelock', 'freq'}, 'feedback', 'yes');
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
% get the defaults
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.component = ft_getopt(cfg, 'component'); % for comp input
cfg.frequency = ft_getopt(cfg, 'frequency'); % for freq input
cfg.latency = ft_getopt(cfg, 'latency', 'all'); % for timeclock input
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.gridsearch = ft_getopt(cfg, 'gridsearch', 'yes');
cfg.nonlinear = ft_getopt(cfg, 'nonlinear', 'yes');
cfg.symmetry = ft_getopt(cfg, 'symmetry');
cfg.normalize = ft_getopt(cfg, 'normalize'); % this is better not used in dipole fitting
cfg.normalizeparam = ft_getopt(cfg, 'normalizeparam'); % this is better not used in dipole fitting
cfg.backproject = ft_getopt(cfg, 'backproject'); % this is better not used in dipole fitting
cfg.reducerank = ft_getopt(cfg, 'reducerank', []); % the default for this is handled below
cfg.dipfit = ft_getopt(cfg, 'dipfit', []); % the default for this is handled below
% put the low-level options pertaining to the dipole grid in their own field
cfg = ft_checkconfig(cfg, 'renamed', {'tightgrid', 'tight'}); % this is moved to cfg.grid.tight by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'renamed', {'sourceunits', 'unit'}); % this is moved to cfg.grid.unit by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'});
% the default for this depends on the data type
if ~isfield(cfg, 'model'),
if ~isempty(cfg.component)
% each component is fitted independently
cfg.model = 'moving';
elseif ~isempty(cfg.frequency)
% fit the data with a dipole at one location
cfg.model = 'regional';
elseif ~isempty(cfg.latency)
% fit the data with a dipole at one location
cfg.model = 'regional';
end
end
if ~isfield(cfg, 'numdipoles')
if isfield(cfg, 'dip')
cfg.numdipoles = size(cfg.dip(1).pos,1);
else
cfg.numdipoles = 1;
end
end
% set up the symmetry constraints
if ~isempty(cfg.symmetry)
if cfg.numdipoles~=2
error('symmetry constraints are only supported for two-dipole models');
elseif strcmp(cfg.symmetry, 'x')
% this structure is passed onto the low-level ft_dipole_fit function
cfg.dipfit.constr.reduce = [1 2 3]; % select the parameters [x1 y1 z1]
cfg.dipfit.constr.expand = [1 2 3 1 2 3]; % repeat them as [x1 y1 z1 x1 y1 z1]
cfg.dipfit.constr.mirror = [1 1 1 -1 1 1]; % multiply each of them with 1 or -1, resulting in [x1 y1 z1 -x1 y1 z1]
elseif strcmp(cfg.symmetry, 'y')
% this structure is passed onto the low-level ft_dipole_fit function
cfg.dipfit.constr.reduce = [1 2 3]; % select the parameters [x1 y1 z1]
cfg.dipfit.constr.expand = [1 2 3 1 2 3]; % repeat them as [x1 y1 z1 x1 y1 z1]
cfg.dipfit.constr.mirror = [1 1 1 1 -1 1]; % multiply each of them with 1 or -1, resulting in [x1 y1 z1 x1 -y1 z1]
elseif strcmp(cfg.symmetry, 'z')
% this structure is passed onto the low-level ft_dipole_fit function
cfg.dipfit.constr.reduce = [1 2 3]; % select the parameters [x1 y1 z1]
cfg.dipfit.constr.expand = [1 2 3 1 2 3]; % repeat them as [x1 y1 z1 x1 y1 z1]
cfg.dipfit.constr.mirror = [1 1 1 1 1 -1]; % multiply each of them with 1 or -1, resulting in [x1 y1 z1 x1 y1 -z1]
else
error('unrecognized symmetry constraint');
end
elseif ~isfield(cfg, 'dipfit') || ~isfield(cfg.dipfit, 'constr')
% no symmetry constraints have been specified
cfg.dipfit.constr = [];
end
if ft_getopt(cfg.dipfit.constr, 'sequential', false) && strcmp(cfg.model, 'moving')
error('the moving dipole model does not combine with the sequential constraint')
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3119
end
if isfield(data, 'topolabel')
% this looks like a component analysis
iscomp = 1;
% transform the data into a representation on which the timelocked dipole fit can perform its trick
data = comp2timelock(cfg, data);
else
iscomp = 0;
end
if isfield(data, 'freq')
% this looks like a frequency analysis
isfreq = 1;
% transform the data into a representation on which the timelocked dipole fit can perform its trick
data = freq2timelock(cfg, data);
else
isfreq = 0;
end
% prepare the volume conduction model and the sensor array
% this updates the configuration with the appropriate fields
[headmodel, sens, cfg] = prepare_headmodel(cfg, data);
% set the default for reducing the rank of the leadfields
if isempty(cfg.reducerank)
if ft_senstype(sens, 'eeg')
cfg.reducerank = 'no'; % for EEG
elseif ft_senstype(sens, 'meg') && ft_voltype(headmodel, 'infinite')
cfg.reducerank = 'no'; % for MEG with a magnetic dipole, e.g. a HPI coil
elseif ft_senstype(sens, 'meg')
cfg.reducerank = 'yes'; % for MEG with a current dipole in a volume conductor
end
end
% select the desired channels, the order should be the same as in the sensor structure
[selcfg, seldata] = match_str(cfg.channel, data.label);
% take the selected channels
Vdata = data.avg(selcfg, :);
% sphere the date using the noise covariance matrix supplied, if any
% this affects both the gridsearch and the nonlinear optimization
noisecov = ft_getopt(cfg.dipfit, 'noisecov');
if ~isempty(noisecov)
[u, s] = svd(noisecov);
tol = max(size(noisecov)) * eps(norm(s, inf));
s = diag(s);
r1 = sum(s > tol) + 1;
s(1:(r1 - 1)) = 1 ./ sqrt(s(1:(r1 - 1)));
s(r1:end) = 0;
sphere = diag(s) * u';
% apply the sphering to the data
Vdata = sphere * Vdata;
% apply the sphering as a pre-multiplication to the sensor definition
montage = [];
montage.labelold = cfg.channel;
montage.labelnew = cfg.channel;
montage.tra = sphere;
sens = ft_apply_montage(sens, montage, 'balancename', 'sphering');
end
if iscomp
% select the desired component topographies
Vdata = Vdata(:, cfg.component);
elseif isfreq
% the desired frequencies have already been selected
Vdata = Vdata(:, :);
else
% select the desired latencies
if ischar(cfg.latency) && strcmp(cfg.latency, 'all')
cfg.latency = data.time([1 end]);
end
tbeg = nearest(data.time, cfg.latency(1));
tend = nearest(data.time, cfg.latency(end));
cfg.latency = [data.time(tbeg) data.time(tend)];
Vdata = Vdata(:, tbeg:tend);
end
nchans = size(Vdata,1);
ntime = size(Vdata,2);
Vmodel = zeros(nchans, ntime);
fprintf('selected %d channels\n', nchans);
fprintf('selected %d topographies\n', ntime);
if nchans<cfg.numdipoles*3
warning('not enough channels to perform a dipole fit');
end
if ntime<1
error('no spatial topography selected');
end
% check whether EEG is average referenced
if ft_senstype(sens, 'eeg')
if any(rv(Vdata, avgref(Vdata))>0.001)
warning('the EEG data is not average referenced, correcting this');
end
Vdata = avgref(Vdata);
end
% set to zeros if no initial dipole was specified
if ~isfield(cfg, 'dip')
cfg.dip.pos = zeros(cfg.numdipoles, 3);
cfg.dip.mom = zeros(3*cfg.numdipoles, 1);
end
% set to zeros if no initial dipole position was specified
if ~isfield(cfg.dip, 'pos')
cfg.dip.pos = zeros(cfg.numdipoles, 3);
end
% set to zeros if no initial dipole moment was specified
if ~isfield(cfg.dip, 'mom')
cfg.dip.mom = zeros(3*cfg.numdipoles, 1);
end
% check the specified dipole model
if numel(cfg.dip.pos)~=cfg.numdipoles*3 || numel(cfg.dip.mom)~=cfg.numdipoles*3
error('inconsistent number of dipoles in configuration')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% perform the dipole scan, this is usefull for generating an initial guess
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(cfg.gridsearch, 'yes')
% test whether we have a valid configuration for dipole scanning
if cfg.numdipoles==1
% this is ok
elseif cfg.numdipoles==2 && ~isempty(cfg.dipfit.constr)
% this is also ok
elseif isfield(cfg.grid, 'pos') && size(cfg.grid.pos,2)==cfg.numdipoles*3
% this is also ok
else
error('dipole scanning is only possible for a single dipole or a symmetric dipole pair');
end
% copy all options that are potentially used in ft_prepare_sourcemodel
tmpcfg = keepfields(cfg, {'grid' 'mri' 'headshape' 'symmetry' 'smooth' 'threshold' 'spheremesh' 'inwardshift'});
tmpcfg.headmodel = headmodel;
if ft_senstype(sens, 'eeg')
tmpcfg.elec = sens;
else
tmpcfg.grad = sens;
end
% construct the dipole grid on which the gridsearch will be done
grid = ft_prepare_sourcemodel(tmpcfg);
ngrid = size(grid.pos,1);
switch cfg.model
case 'regional'
grid.error = nan(ngrid, 1);
case 'moving'
grid.error = nan(ngrid, ntime);
otherwise
error('unsupported cfg.model');
end
insideindx = find(grid.inside);
ft_progress('init', cfg.feedback, 'scanning grid');
for i=1:length(insideindx)
ft_progress(i/length(insideindx), 'scanning grid location %d/%d\n', i, length(insideindx));
thisindx = insideindx(i);
if isfield(grid, 'leadfield')
% reuse the previously computed leadfield
lf = grid.leadfield{thisindx};
else
lf = ft_compute_leadfield(grid.pos(thisindx,:), sens, headmodel, 'reducerank', cfg.reducerank, 'normalize', cfg.normalize, 'normalizeparam', cfg.normalizeparam, 'backproject', cfg.backproject);
end
% the model is V=lf*mom+noise, therefore mom=pinv(lf)*V estimates the
% dipole moment this makes the model potential U=lf*pinv(lf)*V and the
% model error is norm(V-U) = norm(V-lf*pinv(lf)*V) = norm((eye-lf*pinv(lf))*V)
if any(isnan(lf(:)))
% this might happen if one of the dipole locations of the grid is
% outside the brain compartment
lf(:) = 0;
end
switch cfg.model
case 'regional'
% sum the error over all latencies
grid.error(thisindx,1) = sum(sum(((eye(nchans)-lf*pinv(lf))*Vdata).^2));
case 'moving'
% remember the error for each latency independently
grid.error(thisindx,:) = sum(((eye(nchans)-lf*pinv(lf))*Vdata).^2);
otherwise
error('unsupported cfg.model');
end % switch model
end % looping over the grid
ft_progress('close');
switch cfg.model
case 'regional'
% find the grid point(s) with the minimum error
[err, indx] = min(grid.error);
dip.pos = grid.pos(indx,:); % note that for a symmetric dipole pair this results in a vector
dip.pos = reshape(dip.pos,3,cfg.numdipoles)'; % convert to a Nx3 array
dip.mom = zeros(cfg.numdipoles*3,1); % set the dipole moment to zero
if cfg.numdipoles==1
fprintf('found minimum after scanning on grid point [%g %g %g]\n', dip.pos(1), dip.pos(2), dip.pos(3));
elseif cfg.numdipoles==2
fprintf('found minimum after scanning on grid point [%g %g %g; %g %g %g]\n', dip.pos(1), dip.pos(2), dip.pos(3), dip.pos(4), dip.pos(5), dip.pos(6));
end
case 'moving'
for t=1:ntime
% find the grid point(s) with the minimum error
[err, indx] = min(grid.error(:,t));
dip(t).pos = grid.pos(indx,:); % note that for a symmetric dipole pair this results in a vector
dip(t).pos = reshape(dip(t).pos,3,cfg.numdipoles)'; % convert to a Nx3 array
dip(t).mom = zeros(cfg.numdipoles*3,1); % set the dipole moment to zero
if cfg.numdipoles==1
fprintf('found minimum after scanning for topography %d on grid point [%g %g %g]\n', t, dip(t).pos(1), dip(t).pos(2), dip(t).pos(3));
elseif cfg.numdipoles==2
fprintf('found minimum after scanning for topography %d on grid point [%g %g %g; %g %g %g]\n', t, dip(t).pos(1), dip(t).pos(2), dip(t).pos(3), dip(t).pos(4), dip(t).pos(5), dip(t).pos(6));
end
end
otherwise
error('unsupported cfg.model');
end % switch model
elseif strcmp(cfg.gridsearch, 'no')
% use the initial guess supplied in the configuration for the remainder
switch cfg.model
case 'regional'
dip = struct(cfg.dip); % ensure that it is a struct, not a config object
case 'moving'
for t=1:ntime
dip(t) = struct(cfg.dip); % ensure that it is a struct, not a config object
end
otherwise
error('unsupported cfg.model');
end % switch model
end % if gridsearch yes/no
% multiple dipoles can be represented either as a 1x(N*3) vector or as a Nx3 matrix,
% i.e. [x1 y1 z1 x2 y2 z2] or [x1 y1 z1; x2 y2 z2]
switch cfg.model
case 'regional'
dip = fixdipole(dip);
case 'moving'
for t=1:ntime
dip(t) = fixdipole(dip(t));
end
otherwise
error('unsupported cfg.model');
end % switch model
if isfield(cfg, 'dipfit')
% convert the structure with the additional low-level options into key-value pairs
optarg = ft_cfg2keyval(cfg.dipfit);
else
% no additional low-level options were specified
optarg = {};
end
% add the options for the leadfield computation
optarg = ft_setopt(optarg, 'reducerank', cfg.reducerank);
optarg = ft_setopt(optarg, 'normalize', cfg.normalize);
optarg = ft_setopt(optarg, 'normalizeparam', cfg.normalizeparam);
optarg = ft_setopt(optarg, 'backproject', cfg.backproject);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% perform the non-linear fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(cfg.nonlinear, 'yes')
switch cfg.model
case 'regional'
% perform the non-linear dipole fit for all latencies together
% catch errors due to non-convergence
try
dip = dipole_fit(dip, sens, headmodel, Vdata, optarg{:});
success = 1;
if cfg.numdipoles==1
fprintf('found minimum after non-linear optimization on [%g %g %g]\n', dip.pos(1), dip.pos(2), dip.pos(3));
elseif cfg.numdipoles==2
fprintf('found minimum after non-linear optimization on [%g %g %g; %g %g %g]\n', dip.pos(1,1), dip.pos(1,2), dip.pos(1,3), dip.pos(2,1), dip.pos(2,2), dip.pos(2,3));
end
catch
success = 0;
disp(lasterr);
end
case 'moving'
% perform the non-linear dipole fit for each latency independently
% instead of using dip(t) = dipole_fit(dip(t),...), I am using temporary variables dipin and dipout
% to prevent errors like "Subscripted assignment between dissimilar structures"
dipin = dip;
for t=1:ntime
% catch errors due to non-convergence
try
dipout(t) = dipole_fit(dipin(t), sens, headmodel, Vdata(:,t), optarg{:});
success(t) = 1;
if cfg.numdipoles==1
fprintf('found minimum after non-linear optimization for topography %d on [%g %g %g]\n', t, dipout(t).pos(1), dipout(t).pos(2), dipout(t).pos(3));
elseif cfg.numdipoles==2
fprintf('found minimum after non-linear optimization for topography %d on [%g %g %g; %g %g %g]\n', t, dipout(t).pos(1,1), dipout(t).pos(1,2), dipout(t).pos(1,3), dipout(t).pos(2,1), dipout(t).pos(2,2), dipout(t).pos(2,3));
end
catch
% keep the position and moment according to the initial guess
dipout(t).pos = dipin(t).pos;
dipout(t).mom = dipin(t).mom;
success(t) = 0;
disp(lasterr);
end
end
dip = dipout;
clear dipin dipout
otherwise
error('unsupported cfg.model');
end % switch model
end % if nonlinear
if strcmp(cfg.nonlinear, 'no')
% the optimal dipole positions are either obtained from scanning
% or from the initial configured specified by the user
switch cfg.model
case 'regional'
success = 1;
case 'moving'
success = ones(1,ntime);
otherwise
error('unsupported cfg.model');
end % switch model
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the model potential distribution and the residual variance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.model
case 'regional'
if success
% re-compute the leadfield in order to compute the model potential and dipole moment
lf = ft_compute_leadfield(dip.pos, sens, headmodel, 'reducerank', cfg.reducerank, 'normalize', cfg.normalize, 'normalizeparam', cfg.normalizeparam, 'backproject', cfg.backproject);
if isfield(dip, 'mom') && isfield(dip, 'ampl')
% the orientation and amplitude have already been estimated, this applies to the case of a fixed dipole orientation
dip.pot = (lf * dip.mom) * dip.ampl;
else
% compute all details of the final dipole model using linear estimation
dip.mom = pinv(lf)*Vdata;
dip.pot = lf*dip.mom;
end
dip.rv = rv(Vdata, dip.pot);
Vmodel = dip.pot;
end
case 'moving'
for t=1:ntime
if success(t)
% re-compute the leadfield in order to compute the model potential and dipole moment
lf = ft_compute_leadfield(dip(t).pos, sens, headmodel, 'reducerank', cfg.reducerank, 'normalize', cfg.normalize, 'normalizeparam', cfg.normalizeparam, 'backproject', cfg.backproject);
% compute all details of the final dipole model
dip(t).mom = pinv(lf)*Vdata(:,t);
dip(t).pot = lf*dip(t).mom;
dip(t).rv = rv(Vdata(:,t), dip(t).pot);
Vmodel(:,t) = dip(t).pot;
end
end
otherwise
error('unsupported cfg.model');
end % switch model
switch cfg.model
case 'regional'
if isfreq
% the matrix with the dipole moment is encrypted and cannot be interpreted straight away
% reconstruct the frequency representation of the data at the source level
if isfield(dip, 'mom') && isfield(dip, 'ampl')
% this applies to the case of a fixed dipole orientation
[dip.pow, dip.csd, dip.fourier] = timelock2freq(dip.mom * dip.ampl);
else
[dip.pow, dip.csd, dip.fourier] = timelock2freq(dip.mom);
end
end
case 'moving'
if isfreq
% although this is technically possible so far, it does not make any sense
warning('a moving dipole model in the frequency domain is not supported');
end
otherwise
error('unsupported cfg.model');
end % switch model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect the results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
source.label = cfg.channel; % these channels were used in fitting
source.dip = dip;
source.Vdata = Vdata; % FIXME this should be renamed (if possible w.r.t. EEGLAB)
source.Vmodel = Vmodel; % FIXME this should be renamed (if possible w.r.t. EEGLAB)
% the units of the fitted source are the same as the units of the headmodel and the sensor array
for i=1:length(source.dip)
source.dip(i).unit = headmodel.unit;
end
% assign a latency, frequeny or component axis to the output
if iscomp
source.component = cfg.component;
% FIXME assign Vdata to an output variable, idem for the model potential
elseif isfreq
source.freq = cfg.frequency;
source.dimord = 'chan_freq';
% FIXME assign Vdata to an output variable, idem for the model potential
else
tbeg = nearest(data.time, cfg.latency(1));
tend = nearest(data.time, cfg.latency(end));
source.time = data.time(tbeg:tend);
source.dimord = 'chan_time';
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance source
ft_postamble history source
ft_postamble savevar source