-
Notifications
You must be signed in to change notification settings - Fork 0
/
funcref_cat.html
2468 lines (2464 loc) · 138 KB
/
funcref_cat.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN">
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title> Function Reference (MTEX Toolbox)
</title>
<!-- DOCNAME: MTEX Toolbox -->
<meta name="chunktype" content="refpage">
<!-- CHUNKNAME: -->
<!-- HEADSTUFF: -->
<!-- HEADSTUFF -->
<meta name="refentity" content="method:">
<meta http-equiv="Content-Script-Type" content="text/javascript">
<meta name="toctype" content="fcn">
<link rel="stylesheet" href="style.css"><script language="JavaScript" src="docscripts.js"></script></head>
<body><a name="top_of_page"></a><div>
<table class="nav" summary="Navigation aid" border="0" width="100%" cellpadding="0" cellspacing="0">
<tr>
<td valign="baseline"><b>MTEX</b> - A MATLAB Toolbox for Quantitative Texture Analysis</td>
</tr>
</table>
<p style="font-size:1px;"></p>
</div>
<div class="content">
<h1 class="refname"> Function Reference</h1>
<div class="subheading">
<div class="funcrefpage"><a href="funcref_alph.html">>> Alphabetical List</a></div>
<table class="ref" width="90%">
<tr>
<td valign="top" width="250px"><a href="#1"> Classes representing Geometry
<td valign="top" width="75%"></td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#14"> Classes for Quantitative Texture Analysis
<td valign="top" width="75%"></td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#21"> Auxiliary Functions
<td valign="top" width="75%">Helper functions making life easier
Below you can find a series of powerful all purpose tools provided by
the MTEX toolbox.
</td></a></td>
</tr>
</table>
</div>
<h2> Classes representing Geometry <a name="1"> </a></h2>
<table class="ref" width="90%">
<tr>
<td valign="top" width="250px"><a href="#2"> Specimen Directions (The Class @vector3d)
<td valign="top" width="75%">This section describes the class *vector3d* and gives an overview how to
deal with specimen directions in MTEX.
</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#3"> Crystal Directions (The Class @Miller)
<td valign="top" width="75%">This section describes the class *Miller* and gives an overview how to
deal with crystal directions in MTEX.
</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#4"> Crystal Shapes (The Class @crystalShape)
<td valign="top" width="75%">How to draw threedimensional representations of crystals.</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#5"> Rotations (The Class @rotation)
<td valign="top" width="75%">This section describes the class <rotation.rotation.html *rotation*> and
gives an overview on how to work with rotations in MTEX.
</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#6"> Crystal and Specimen Symmetries (The Class @symmetry)
<td valign="top" width="75%">This section describes the class *symmetry* and gives an overview how to
deal with crystal symmetries in MTEX.
</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#7"> Crystal Orientations (The Class @orientation)
<td valign="top" width="75%">This sections describes the class *orientation* and gives an overview how
to work with crystal orientation in MTEX.
</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#8"> Fibres
<td valign="top" width="75%">This sections describes the class <fibre_index.html fibre> and gives an
overview how to work with fibres in MTEX.
</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#9"> Slip Systems (The Class @slipSystem)
<td valign="top" width="75%">This section describes the class *slipSystem*.</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#10"> Quaternions (The Class @quaternion)
<td valign="top" width="75%">class representing orientations</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#11"> Discretisation of 1-Sphere (The Class @S1Grid)
<td valign="top" width="75%">S1Grid is a class of purely internal use</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#12"> Discretisation of 2 - Sphere (The Class @S2Grid)
<td valign="top" width="75%">represents a grid of nodes on the sphere</td></a></td>
</tr>
<tr>
<td valign="top" width="250px"><a href="#13"> Discretisation of Orientation Space (The Class SO3Grid)
<td valign="top" width="75%">represents a set of orientations</td></a></td>
</tr>
</table>
<table width="95%">
<tr></tr>
<td width="250px"><a href="fundamentalRegion.html"><tt>fundamentalRegion</tt></a></td>
<td>get the fundamental zone in orientation space for a symmetry</td>
<tr></tr>
<td width="250px"><a href="plotAngleDistribution.html"><tt>plotAngleDistribution</tt></a></td>
<td>plot axis distribution</td>
<tr></tr>
<td width="250px"><a href="plotAxisDistribution.html"><tt>plotAxisDistribution</tt></a></td>
<td>plot axis distribution</td>
</table>
<p class="pagenavlink"><script language="Javascript">addTopOfPageButtons();</script><a href="#top_of_page">Back to Top</a></p>
<h2> Specimen Directions (The Class @vector3d)<a name="2"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="vector3d.abs.html"><tt>abs</tt></a></td>
<td>length of vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.accumarray.html"><tt>accumarray</tt></a></td>
<td>accumarray for vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.angle.html"><tt>angle</tt></a></td>
<td>angle between two vectors</td>
<tr></tr>
<td width="250px"><a href="vector3d.angle_outer.html"><tt>angle_outer</tt></a></td>
<td>angle between two vectors Input v1, v2 - @vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.arrow3d.html"><tt>arrow3d</tt></a></td>
<td>plot three dimensional arrows</td>
<tr></tr>
<td width="250px"><a href="vector3d.byPolar.html"><tt>byPolar</tt></a></td>
<td>define vector3d by polar angles</td>
<tr></tr>
<td width="250px"><a href="vector3d.calcDelaunay.html"><tt>calcDelaunay</tt></a></td>
<td>compute the Delaynay triangulation for a spherical grid</td>
<tr></tr>
<td width="250px"><a href="vector3d.calcDensity.html"><tt>calcDensity</tt></a></td>
<td>calculate a density function out of (weighted) unit vectors</td>
<tr></tr>
<td width="250px"><a href="vector3d.calcQuadratureWeights.html"><tt>calcQuadratureWeights</tt></a></td>
<td>compute the area of the Voronoi decomposition</td>
<tr></tr>
<td width="250px"><a href="vector3d.calcVoronoi.html"><tt>calcVoronoi</tt></a></td>
<td>compute the area of the Voronoi decomposition</td>
<tr></tr>
<td width="250px"><a href="vector3d.calcVoronoiArea.html"><tt>calcVoronoiArea</tt></a></td>
<td>compute the spherical area of the Voronoi decomposition</td>
<tr></tr>
<td width="250px"><a href="vector3d.cat.html"><tt>cat</tt></a></td>
<td>implement cat for vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.centroid.html"><tt>centroid</tt></a></td>
<td>compute the centroid of a 2d polygon in 3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.char.html"><tt>char</tt></a></td>
<td>convert to char</td>
<tr></tr>
<td width="250px"><a href="vector3d.circle.html"><tt>circle</tt></a></td>
<td>annotated a circle</td>
<tr></tr>
<td width="250px"><a href="vector3d.contour.html"><tt>contour</tt></a></td>
<td>spherical contour plot</td>
<tr></tr>
<td width="250px"><a href="vector3d.contourf.html"><tt>contourf</tt></a></td>
<td>spherical filled contour plot</td>
<tr></tr>
<td width="250px"><a href="vector3d.cross.html"><tt>cross</tt></a></td>
<td>pointwise cross product of two vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.cross_outer.html"><tt>cross_outer</tt></a></td>
<td>pointwise cross product of two vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.ctranspose.html"><tt>ctranspose</tt></a></td>
<td>transpose vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.det.html"><tt>det</tt></a></td>
<td>pointwise determinant or triple product of three vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.display.html"><tt>display</tt></a></td>
<td>standard output</td>
<tr></tr>
<td width="250px"><a href="vector3d.dot.html"><tt>dot</tt></a></td>
<td>pointwise inner product</td>
<tr></tr>
<td width="250px"><a href="vector3d.dot_outer.html"><tt>dot_outer</tt></a></td>
<td>outer dot product</td>
<tr></tr>
<td width="250px"><a href="vector3d.double.html"><tt>double</tt></a></td>
<td>converts vector3d to double Input v - @vector3d Output x, y, z - double</td>
<tr></tr>
<td width="250px"><a href="vector3d.dyad.html"><tt>dyad</tt></a></td>
<td>dyadic tensor product</td>
<tr></tr>
<td width="250px"><a href="vector3d.eig.html"><tt>eig</tt></a></td>
<td>eigenvalues and eigenvectors for a list of @vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.end.html"><tt>end</tt></a></td>
<td>overloaded end function</td>
<tr></tr>
<td width="250px"><a href="vector3d.eq.html"><tt>eq</tt></a></td>
<td>? v1 == v2</td>
<tr></tr>
<td width="250px"><a href="vector3d.exp.html"><tt>exp</tt></a></td>
<td>rotation vector to rotation</td>
<tr></tr>
<td width="250px"><a href="vector3d.export.html"><tt>export</tt></a></td>
<td>export quaternions to a ascii file</td>
<tr></tr>
<td width="250px"><a href="vector3d.find.html"><tt>find</tt></a></td>
<td>return index of all points in a epsilon neighborhood of a vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.horzcat.html"><tt>horzcat</tt></a></td>
<td>overloads [v1,v2,v3..]</td>
<tr></tr>
<td width="250px"><a href="vector3d.interp.html"><tt>interp</tt></a></td>
<td>spherical interpolation - including some smoothing</td>
<tr></tr>
<td width="250px"><a href="vector3d.isPerp.html"><tt>isPerp</tt></a></td>
<td>check whether v1 and v2 are orthogonal</td>
<tr></tr>
<td width="250px"><a href="vector3d.isempty.html"><tt>isempty</tt></a></td>
<td>overloads isempty</td>
<tr></tr>
<td width="250px"><a href="vector3d.length.html"><tt>length</tt></a></td>
<td>overloads length</td>
<tr></tr>
<td width="250px"><a href="vector3d.line.html"><tt>line</tt></a></td>
<td>Syntax</td>
<tr></tr>
<td width="250px"><a href="vector3d.load.html"><tt>load</tt></a></td>
<td>import directions</td>
<tr></tr>
<td width="250px"><a href="vector3d.mean.html"><tt>mean</tt></a></td>
<td>computes the mean vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.minus.html"><tt>minus</tt></a></td>
<td>overload minus</td>
<tr></tr>
<td width="250px"><a href="vector3d.mpower.html"><tt>mpower</tt></a></td>
<td>n-th dyadic product</td>
<tr></tr>
<td width="250px"><a href="vector3d.mrdivide.html"><tt>mrdivide</tt></a></td>
<td>scalar division v / s</td>
<tr></tr>
<td width="250px"><a href="vector3d.mtimes.html"><tt>mtimes</tt></a></td>
<td>scalar multiplication</td>
<tr></tr>
<td width="250px"><a href="vector3d.ne.html"><tt>ne</tt></a></td>
<td>? v1 == v2</td>
<tr></tr>
<td width="250px"><a href="vector3d.norm.html"><tt>norm</tt></a></td>
<td>vector norm</td>
<tr></tr>
<td width="250px"><a href="vector3d.normalize.html"><tt>normalize</tt></a></td>
<td>normalize a vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.orth.html"><tt>orth</tt></a></td>
<td>an arbitrary orthogonal vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.orthProj.html"><tt>orthProj</tt></a></td>
<td>vector3d/orthProj is a function. v = orthProj(v, N)</td>
<tr></tr>
<td width="250px"><a href="vector3d.pcolor.html"><tt>pcolor</tt></a></td>
<td>spherical contour plot</td>
<tr></tr>
<td width="250px"><a href="vector3d.perp.html"><tt>perp</tt></a></td>
<td>conmpute an vector best orthogonal to a list of directions</td>
<tr></tr>
<td width="250px"><a href="vector3d.planeIntersect.html"><tt>planeIntersect</tt></a></td>
<td>pointwise determinant or triple product of three vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.plot.html"><tt>plot</tt></a></td>
<td>plot vectors as two dimensional projections on the sphere</td>
<tr></tr>
<td width="250px"><a href="vector3d.plot3d.html"><tt>plot3d</tt></a></td>
<td>plot spherical data</td>
<tr></tr>
<td width="250px"><a href="vector3d.plotCustom.html"><tt>plotCustom</tt></a></td>
<td>Syntax plotcustom(v,@(x,y) drawCommand(x,y)) %</td>
<tr></tr>
<td width="250px"><a href="vector3d.plus.html"><tt>plus</tt></a></td>
<td>poitwise addition</td>
<tr></tr>
<td width="250px"><a href="vector3d.polar.html"><tt>polar</tt></a></td>
<td>cartesian to spherical coordinates Input v - @vector3d Output theta - polar angle rho - azimuthal angle r - radius</td>
<tr></tr>
<td width="250px"><a href="vector3d.polyArea.html"><tt>polyArea</tt></a></td>
<td>area of a flat polygon given by vertices v1, v2, ..., v_n</td>
<tr></tr>
<td width="250px"><a href="vector3d.project2FundamentalRegion.html"><tt>project2FundamentalRegion</tt></a></td>
<td>projects vectors to the fundamental sector of the inverse pole figure</td>
<tr></tr>
<td width="250px"><a href="vector3d.quiver.html"><tt>quiver</tt></a></td>
<td>Syntax quiver(v,d)</td>
<tr></tr>
<td width="250px"><a href="vector3d.quiver3.html"><tt>quiver3</tt></a></td>
<td>Syntax quiver(v,d)</td>
<tr></tr>
<td width="250px"><a href="vector3d.rank.html"><tt>rank</tt></a></td>
<td>rank = 1</td>
<tr></tr>
<td width="250px"><a href="vector3d.rdivide.html"><tt>rdivide</tt></a></td>
<td>scalar division v ./ s</td>
<tr></tr>
<td width="250px"><a href="vector3d.refine.html"><tt>refine</tt></a></td>
<td>refine vectors</td>
<tr></tr>
<td width="250px"><a href="vector3d.region.html"><tt>region</tt></a></td>
<td>vector3d/region is a function. sR = region(v, varargin)</td>
<tr></tr>
<td width="250px"><a href="vector3d.repmat.html"><tt>repmat</tt></a></td>
<td>overloads repmat</td>
<tr></tr>
<td width="250px"><a href="vector3d.reshape.html"><tt>reshape</tt></a></td>
<td>overloads reshape</td>
<tr></tr>
<td width="250px"><a href="vector3d.rotate.html"><tt>rotate</tt></a></td>
<td>rotate vector3d by rotation or orientation</td>
<tr></tr>
<td width="250px"><a href="vector3d.rotate_outer.html"><tt>rotate_outer</tt></a></td>
<td>rotate vector3d by quaternion</td>
<tr></tr>
<td width="250px"><a href="vector3d.scatter.html"><tt>scatter</tt></a></td>
<td>Syntax scatter(v) % plot the directions v scatter(v,data) % colorize directions according to data scatter(v,'label',text)
% plot text below markers scatter(v,'label',text,'textaboveMarker') % plot text above markers scatter(v,'numbered') % plot
directions with numbers
</td>
<tr></tr>
<td width="250px"><a href="vector3d.scatter3d.html"><tt>scatter3d</tt></a></td>
<td>plot spherical data</td>
<tr></tr>
<td width="250px"><a href="vector3d.setdiff.html"><tt>setdiff</tt></a></td>
<td>remove vectors v2 from a set of vectors v1</td>
<tr></tr>
<td width="250px"><a href="vector3d.size.html"><tt>size</tt></a></td>
<td>overloads size</td>
<tr></tr>
<td width="250px"><a href="vector3d.smooth.html"><tt>smooth</tt></a></td>
<td>low level function for plotting functions on the sphere</td>
<tr></tr>
<td width="250px"><a href="vector3d.sparse.html"><tt>sparse</tt></a></td>
<td>SPARSE Create sparse matrix. S = SPARSE(X) converts a sparse or full matrix to sparse form by squeezing out any zero elements.</td>
<tr></tr>
<td width="250px"><a href="vector3d.subSet.html"><tt>subSet</tt></a></td>
<td>subindex vector3d</td>
<tr></tr>
<td width="250px"><a href="vector3d.subsasgn.html"><tt>subsasgn</tt></a></td>
<td>overloads subsasgn</td>
<tr></tr>
<td width="250px"><a href="vector3d.subsref.html"><tt>subsref</tt></a></td>
<td>overloads subsref</td>
<tr></tr>
<td width="250px"><a href="vector3d.sum.html"><tt>sum</tt></a></td>
<td>sum of vectors</td>
<tr></tr>
<td width="250px"><a href="vector3d.surf.html"><tt>surf</tt></a></td>
<td>Syntax</td>
<tr></tr>
<td width="250px"><a href="vector3d.symmetrise.html"><tt>symmetrise</tt></a></td>
<td>symmetrcially equivalent directions and its multiple</td>
<tr></tr>
<td width="250px"><a href="vector3d.text.html"><tt>text</tt></a></td>
<td>display a text in a spherical plot</td>
<tr></tr>
<td width="250px"><a href="vector3d.text3.html"><tt>text3</tt></a></td>
<td>plot three dimensional arrows</td>
<tr></tr>
<td width="250px"><a href="vector3d.times.html"><tt>times</tt></a></td>
<td>.* - componenwtise multiplication</td>
<tr></tr>
<td width="250px"><a href="vector3d.transpose.html"><tt>transpose</tt></a></td>
<td>transpose vector</td>
<tr></tr>
<td width="250px"><a href="vector3d.uminus.html"><tt>uminus</tt></a></td>
<td>overloads unitary minus</td>
<tr></tr>
<td width="250px"><a href="vector3d.unique.html"><tt>unique</tt></a></td>
<td>disjoint list of vectors</td>
<tr></tr>
<td width="250px"><a href="vector3d.vector3d.html"><tt>vector3d</tt></a></td>
<td>Constructor</td>
<tr></tr>
<td width="250px"><a href="vector3d.vertcat.html"><tt>vertcat</tt></a></td>
<td>overloads [v1,v2,v3..]</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Crystal Directions (The Class @Miller)<a name="3"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="Miller.Miller.html"><tt>Miller</tt></a></td>
<td>define a crystal direction by Miller indice</td>
<tr></tr>
<td width="250px"><a href="Miller.calcDensity.html"><tt>calcDensity</tt></a></td>
<td>calculate a density function out of (weighted) crystal directions</td>
<tr></tr>
<td width="250px"><a href="Miller.cat.html"><tt>cat</tt></a></td>
<td>concatenate lists of Miller indices to one list</td>
<tr></tr>
<td width="250px"><a href="Miller.char.html"><tt>char</tt></a></td>
<td>Miller indece to string</td>
<tr></tr>
<td width="250px"><a href="Miller.cross.html"><tt>cross</tt></a></td>
<td>pointwise cross product of two vector3d</td>
<tr></tr>
<td width="250px"><a href="Miller.display.html"><tt>display</tt></a></td>
<td>standard output</td>
<tr></tr>
<td width="250px"><a href="Miller.dot.html"><tt>dot</tt></a></td>
<td>inner product between two Miller indece</td>
<tr></tr>
<td width="250px"><a href="Miller.dot_outer.html"><tt>dot_outer</tt></a></td>
<td>inner product between two Miller indece</td>
<tr></tr>
<td width="250px"><a href="Miller.dspacing.html"><tt>dspacing</tt></a></td>
<td>space between crystal planes</td>
<tr></tr>
<td width="250px"><a href="Miller.exp.html"><tt>exp</tt></a></td>
<td>misorientation vector to misorientation</td>
<tr></tr>
<td width="250px"><a href="Miller.perp.html"><tt>perp</tt></a></td>
<td>best normal to a list of directions</td>
<tr></tr>
<td width="250px"><a href="Miller.project2FundamentalRegion.html"><tt>project2FundamentalRegion</tt></a></td>
<td>projects vectors to the fundamental sector of the inverse pole figure</td>
<tr></tr>
<td width="250px"><a href="Miller.region.html"><tt>region</tt></a></td>
<td>return spherical region associated to a set of crystal directions</td>
<tr></tr>
<td width="250px"><a href="Miller.rotate.html"><tt>rotate</tt></a></td>
<td>rotate crystal directions</td>
<tr></tr>
<td width="250px"><a href="Miller.rotate_outer.html"><tt>rotate_outer</tt></a></td>
<td>rotate crystal directions</td>
<tr></tr>
<td width="250px"><a href="Miller.round.html"><tt>round</tt></a></td>
<td>tries to round miller indizes to greatest common divisor</td>
<tr></tr>
<td width="250px"><a href="Miller.scatter.html"><tt>scatter</tt></a></td>
<td>plot Miller indece</td>
<tr></tr>
<td width="250px"><a href="Miller.smooth.html"><tt>smooth</tt></a></td>
<td>plot Miller indece</td>
<tr></tr>
<td width="250px"><a href="Miller.surf.html"><tt>surf</tt></a></td>
<td>Syntax</td>
<tr></tr>
<td width="250px"><a href="Miller.symmetrise.html"><tt>symmetrise</tt></a></td>
<td>directions symmetrically equivalent to m</td>
<tr></tr>
<td width="250px"><a href="Miller.text.html"><tt>text</tt></a></td>
<td>plot Miller indece</td>
<tr></tr>
<td width="250px"><a href="Miller.transformReferenceFrame.html"><tt>transformReferenceFrame</tt></a></td>
<td>change reference frame while keeping hkl or uvw</td>
<tr></tr>
<td width="250px"><a href="Miller.unique.html"><tt>unique</tt></a></td>
<td>disjoint list of Miller indices</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Crystal Shapes (The Class @crystalShape)<a name="4"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="crystalShape.crystalShape.html"><tt>crystalShape</tt></a></td>
<td>a class representing crystal shapes.</td>
<tr></tr>
<td width="250px"><a href="crystalShape.display.html"><tt>display</tt></a></td>
<td>standard output</td>
<tr></tr>
<td width="250px"><a href="crystalShape.fitArea.html"><tt>fitArea</tt></a></td>
<td>change habitus of crystal shape to fit given faceAreas</td>
<tr></tr>
<td width="250px"><a href="crystalShape.length.html"><tt>length</tt></a></td>
<td>overloads length</td>
<tr></tr>
<td width="250px"><a href="crystalShape.mtimes.html"><tt>mtimes</tt></a></td>
<td>* Matrix multiply. X*Y is the matrix product of X and Y. Any scalar (a 1-by-1 matrix) may multiply anything. Otherwise,
the number of columns of X must equal the number of rows of Y.
</td>
<tr></tr>
<td width="250px"><a href="crystalShape.plot.html"><tt>plot</tt></a></td>
<td>colorize grains</td>
<tr></tr>
<td width="250px"><a href="crystalShape.plus.html"><tt>plus</tt></a></td>
<td>crystal shape should be first argument</td>
<tr></tr>
<td width="250px"><a href="crystalShape.repmat.html"><tt>repmat</tt></a></td>
<td>implements repmat for crystalShape</td>
<tr></tr>
<td width="250px"><a href="crystalShape.reshape.html"><tt>reshape</tt></a></td>
<td>RESHAPE Reshape array. RESHAPE(X,M,N) or RESHAPE(X,[M,N]) returns the M-by-N matrix whose elements are taken columnwise from
X. An error results if X does not have M*N elements.
</td>
<tr></tr>
<td width="250px"><a href="crystalShape.rotate.html"><tt>rotate</tt></a></td>
<td>rotate a crystal shape by an rotation or orientation</td>
<tr></tr>
<td width="250px"><a href="crystalShape.rotate_outer.html"><tt>rotate_outer</tt></a></td>
<td>rotate a crystal shape by an rotation or orientation</td>
<tr></tr>
<td width="250px"><a href="crystalShape.size.html"><tt>size</tt></a></td>
<td>overloads size</td>
<tr></tr>
<td width="250px"><a href="crystalShape.subSet.html"><tt>subSet</tt></a></td>
<td>crystalShape/subSet is a function. cS = subSet(cS, NSelect)</td>
<tr></tr>
<td width="250px"><a href="crystalShape.subsref.html"><tt>subsref</tt></a></td>
<td>overloads subsref</td>
<tr></tr>
<td width="250px"><a href="crystalShape.times.html"><tt>times</tt></a></td>
<td>.* Array multiply. X.*Y denotes element-by-element multiplication. X and Y must have compatible sizes. In the simplest cases,
they can be the same size or one can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension
sizes of the inputs are either the same or one of them is 1.
</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Rotations (The Class @rotation)<a name="5"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="rotation.byAxisAngle.html"><tt>byAxisAngle</tt></a></td>
<td>define rotations by rotational axis and rotational angle</td>
<tr></tr>
<td width="250px"><a href="rotation.byEuler.html"><tt>byEuler</tt></a></td>
<td>define rotentations by Euler angles</td>
<tr></tr>
<td width="250px"><a href="rotation.byMatrix.html"><tt>byMatrix</tt></a></td>
<td>define rotations by matrices</td>
<tr></tr>
<td width="250px"><a href="rotation.byRodrigues.html"><tt>byRodrigues</tt></a></td>
<td>define rotations by Rodrigues vectors</td>
<tr></tr>
<td width="250px"><a href="rotation.cat.html"><tt>cat</tt></a></td>
<td>implement cat for rotation</td>
<tr></tr>
<td width="250px"><a href="rotation.char.html"><tt>char</tt></a></td>
<td>quaternion to char</td>
<tr></tr>
<td width="250px"><a href="rotation.display.html"><tt>display</tt></a></td>
<td>standart output</td>
<tr></tr>
<td width="250px"><a href="rotation.dot.html"><tt>dot</tt></a></td>
<td>compute rot1 . rot2</td>
<tr></tr>
<td width="250px"><a href="rotation.dot_outer.html"><tt>dot_outer</tt></a></td>
<td>dot_outer</td>
<tr></tr>
<td width="250px"><a href="rotation.getMinAxes.html"><tt>getMinAxes</tt></a></td>
<td>rotation/getMinAxes is a function. [axes, angle] = getMinAxes(rot)</td>
<tr></tr>
<td width="250px"><a href="rotation.isImproper.html"><tt>isImproper</tt></a></td>
<td>rotation/isImproper is a function. out = isImproper(r)</td>
<tr></tr>
<td width="250px"><a href="rotation.line.html"><tt>line</tt></a></td>
<td>draw rotations connected by lines</td>
<tr></tr>
<td width="250px"><a href="rotation.load.html"><tt>load</tt></a></td>
<td>import orientation data from data files</td>
<tr></tr>
<td width="250px"><a href="rotation.map.html"><tt>map</tt></a></td>
<td>define rotations by pairs of vectors</td>
<tr></tr>
<td width="250px"><a href="rotation.matrix.html"><tt>matrix</tt></a></td>
<td>quaternion to direction cosine matrix conversion converts direction cosine matrix to quaternion</td>
<tr></tr>
<td width="250px"><a href="rotation.mldivide.html"><tt>mldivide</tt></a></td>
<td>o \ v</td>
<tr></tr>
<td width="250px"><a href="rotation.mtimes.html"><tt>mtimes</tt></a></td>
<td>r = a * b</td>
<tr></tr>
<td width="250px"><a href="rotation.permute.html"><tt>permute</tt></a></td>
<td>overloads permute</td>
<tr></tr>
<td width="250px"><a href="rotation.power.html"><tt>power</tt></a></td>
<td>r.^n</td>
<tr></tr>
<td width="250px"><a href="rotation.project2FundamentalRegion.html"><tt>project2FundamentalRegion</tt></a></td>
<td>projects rotation to a fundamental region</td>
<tr></tr>
<td width="250px"><a href="rotation.repmat.html"><tt>repmat</tt></a></td>
<td>overloads repmat</td>
<tr></tr>
<td width="250px"><a href="rotation.reshape.html"><tt>reshape</tt></a></td>
<td>overloads reshape</td>
<tr></tr>
<td width="250px"><a href="rotation.rotation.html"><tt>rotation</tt></a></td>
<td>defines an rotation</td>
<tr></tr>
<td width="250px"><a href="rotation.subSet.html"><tt>subSet</tt></a></td>
<td>indexing of rotation</td>
<tr></tr>
<td width="250px"><a href="rotation.subsasgn.html"><tt>subsasgn</tt></a></td>
<td>overloads subsasgn</td>
<tr></tr>
<td width="250px"><a href="rotation.subsref.html"><tt>subsref</tt></a></td>
<td>overloads subsref</td>
<tr></tr>
<td width="250px"><a href="rotation.times.html"><tt>times</tt></a></td>
<td>r = a .* b</td>
<tr></tr>
<td width="250px"><a href="rotation.transpose.html"><tt>transpose</tt></a></td>
<td>transpose array of rotations</td>
<tr></tr>
<td width="250px"><a href="rotation.uminus.html"><tt>uminus</tt></a></td>
<td>implements -rotation</td>
<tr></tr>
<td width="250px"><a href="rotation.unique.html"><tt>unique</tt></a></td>
<td>disjoint list of rotations</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Crystal and Specimen Symmetries (The Class @symmetry)<a name="6"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="symmetry.Laue.html"><tt>Laue</tt></a></td>
<td>return the corresponding Laue group</td>
<tr></tr>
<td width="250px"><a href="symmetry.LaueName.html"><tt>LaueName</tt></a></td>
<td>get Laue name</td>
<tr></tr>
<td width="250px"><a href="symmetry.alignment.html"><tt>alignment</tt></a></td>
<td>return alignment of the reference frame as string, e.g. x||a, y||b*</td>
<tr></tr>
<td width="250px"><a href="symmetry.calcAngleDistribution.html"><tt>calcAngleDistribution</tt></a></td>
<td>compute the angle distribution of a uniform ODF for a crystal symmetry</td>
<tr></tr>
<td width="250px"><a href="symmetry.calcAxisDistribution.html"><tt>calcAxisDistribution</tt></a></td>
<td>compute the axis distribution of an uniform ODF or MDF</td>
<tr></tr>
<td width="250px"><a href="symmetry.calcQuat.html"><tt>calcQuat</tt></a></td>
<td>calculate quaternions for Laue groups</td>
<tr></tr>
<td width="250px"><a href="symmetry.check.html"><tt>check</tt></a></td>
<td>check symmetry</td>
<tr></tr>
<td width="250px"><a href="symmetry.disjoint.html"><tt>disjoint</tt></a></td>
<td>returns the disjoint of two symmetry groups</td>
<tr></tr>
<td width="250px"><a href="symmetry.elements.html"><tt>elements</tt></a></td>
<td>extract symmetry elements by multiplicity</td>
<tr></tr>
<td width="250px"><a href="symmetry.ensureCS.html"><tt>ensureCS</tt></a></td>
<td>ensures that an obj has the right crystal symmetry</td>
<tr></tr>
<td width="250px"><a href="symmetry.eq.html"><tt>eq</tt></a></td>
<td>check S1 == S2</td>
<tr></tr>
<td width="250px"><a href="symmetry.factor.html"><tt>factor</tt></a></td>
<td>factorizes s1 and s2 into l, d, r such that s1 = l * d and s2 = d * r</td>
<tr></tr>
<td width="250px"><a href="symmetry.fundamentalRegion.html"><tt>fundamentalRegion</tt></a></td>
<td>fundamental region in orientation space for a (pair) of symmetries</td>
<tr></tr>
<td width="250px"><a href="symmetry.fundamentalRegionEuler.html"><tt>fundamentalRegionEuler</tt></a></td>
<td>get the fundamental region in Euler angles</td>
<tr></tr>
<td width="250px"><a href="symmetry.fundamentalSector.html"><tt>fundamentalSector</tt></a></td>
<td>get the fundamental sector for a symmetry in the inverse pole figure</td>
<tr></tr>
<td width="250px"><a href="symmetry.length.html"><tt>length</tt></a></td>
<td>number of symmetry elements</td>
<tr></tr>
<td width="250px"><a href="symmetry.maxAngle.html"><tt>maxAngle</tt></a></td>
<td>get the maximum angle of the fundamental region</td>
<tr></tr>
<td width="250px"><a href="symmetry.multiplicityPerpZ.html"><tt>multiplicityPerpZ</tt></a></td>
<td>maximum angle rho</td>
<tr></tr>
<td width="250px"><a href="symmetry.multiplicityZ.html"><tt>multiplicityZ</tt></a></td>
<td>maximum angle rho</td>
<tr></tr>
<td width="250px"><a href="symmetry.nfold.html"><tt>nfold</tt></a></td>
<td>maximal n-fold of symmetry axes</td>
<tr></tr>
<td width="250px"><a href="symmetry.plot.html"><tt>plot</tt></a></td>
<td>visualize symmetry elements according to international table</td>
<tr></tr>
<td width="250px"><a href="symmetry.properGroup.html"><tt>properGroup</tt></a></td>
<td>return the corresponding Laue group</td>
<tr></tr>
<td width="250px"><a href="symmetry.properSubGroup.html"><tt>properSubGroup</tt></a></td>
<td>return the corresponding Laue group</td>
<tr></tr>
<td width="250px"><a href="symmetry.rotation_special.html"><tt>rotation_special</tt></a></td>
<td>returns symmetry elements different from rotation about c-axis</td>
<tr></tr>
<td width="250px"><a href="symmetry.subsref.html"><tt>subsref</tt></a></td>
<td>overloads subsref</td>
<tr></tr>
<td width="250px"><a href="symmetry.symmetry.html"><tt>symmetry</tt></a></td>
<td>Supported Symmetries</td>
<tr></tr>
<td width="250px"><a href="symmetry.union.html"><tt>union</tt></a></td>
<td>returns the union of two symmetry groups</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Crystal Orientations (The Class @orientation)<a name="7"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="orientation.BCV.html"><tt>BCV</tt></a></td>
<td>biased cross validation</td>
<tr></tr>
<td width="250px"><a href="orientation.KLCV.html"><tt>KLCV</tt></a></td>
<td>Kullback Leibler cross validation for optimal kernel estimation</td>
<tr></tr>
<td width="250px"><a href="orientation.LSCV.html"><tt>LSCV</tt></a></td>
<td>least squares cross valiadation</td>
<tr></tr>
<td width="250px"><a href="orientation.angle.html"><tt>angle</tt></a></td>
<td>calculates rotational angle between orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.axis.html"><tt>axis</tt></a></td>
<td>rotational axis of an misorientation or two orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.bingham_test.html"><tt>bingham_test</tt></a></td>
<td>bingham test for spherical/prolat/oblat case</td>
<tr></tr>
<td width="250px"><a href="orientation.byAxisAngle.html"><tt>byAxisAngle</tt></a></td>
<td>define orientations by rotational axis and rotational angle</td>
<tr></tr>
<td width="250px"><a href="orientation.byEuler.html"><tt>byEuler</tt></a></td>
<td>define orientations by Euler angles</td>
<tr></tr>
<td width="250px"><a href="orientation.byMatrix.html"><tt>byMatrix</tt></a></td>
<td>define orientations by a matrix</td>
<tr></tr>
<td width="250px"><a href="orientation.byMiller.html"><tt>byMiller</tt></a></td>
<td>define orientations by Miller Bravais indeces</td>
<tr></tr>
<td width="250px"><a href="orientation.calcAngleDistribution.html"><tt>calcAngleDistribution</tt></a></td>
<td>calculate angle distribution</td>
<tr></tr>
<td width="250px"><a href="orientation.calcBinghamODF.html"><tt>calcBinghamODF</tt></a></td>
<td>calculate ODF from individuel orientations via kernel density estimation</td>
<tr></tr>
<td width="250px"><a href="orientation.calcCluster.html"><tt>calcCluster</tt></a></td>
<td>sort orientations into clusters</td>
<tr></tr>
<td width="250px"><a href="orientation.calcFourierODF.html"><tt>calcFourierODF</tt></a></td>
<td>calculate ODF from individuel orientations via kernel density estimation</td>
<tr></tr>
<td width="250px"><a href="orientation.calcInvTaylor.html"><tt>calcInvTaylor</tt></a></td>
<td>Taylor factor from orientation gradient</td>
<tr></tr>
<td width="250px"><a href="orientation.calcKernel.html"><tt>calcKernel</tt></a></td>
<td>compute an optimal kernel function for ODF estimation</td>
<tr></tr>
<td width="250px"><a href="orientation.calcKernelODF.html"><tt>calcKernelODF</tt></a></td>
<td>calculate ODF from individuel orientations via kernel density estimation</td>
<tr></tr>
<td width="250px"><a href="orientation.calcMDF.html"><tt>calcMDF</tt></a></td>
<td>computes an MDF from individuel orientations or misorientations</td>
<tr></tr>
<td width="250px"><a href="orientation.calcMIndex.html"><tt>calcMIndex</tt></a></td>
<td>Computes the M-index from a discrete number of orientations (Skemer et al., 2005). The M-index is derived from the difference
between uncorrelated and uniform misorientation angle distributions
</td>
<tr></tr>
<td width="250px"><a href="orientation.calcODF.html"><tt>calcODF</tt></a></td>
<td>computes an ODF from individuel orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.calcTensor.html"><tt>calcTensor</tt></a></td>
<td>compute the average tensor for a vector of orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.crossCorrelation.html"><tt>crossCorrelation</tt></a></td>
<td>computes the cross correlation for the kernel density estimator</td>
<tr></tr>
<td width="250px"><a href="orientation.ctranspose.html"><tt>ctranspose</tt></a></td>
<td>inverse orientation</td>
<tr></tr>
<td width="250px"><a href="orientation.display.html"><tt>display</tt></a></td>
<td>standart output</td>
<tr></tr>
<td width="250px"><a href="orientation.doHClustering.html"><tt>doHClustering</tt></a></td>
<td>sort orientations into clusters</td>
<tr></tr>
<td width="250px"><a href="orientation.dot.html"><tt>dot</tt></a></td>
<td>compute minimum dot(o1,o2) modulo symmetry</td>
<tr></tr>
<td width="250px"><a href="orientation.dot_outer.html"><tt>dot_outer</tt></a></td>
<td>dot_outer</td>
<tr></tr>
<td width="250px"><a href="orientation.exp.html"><tt>exp</tt></a></td>
<td>exponential function</td>
<tr></tr>
<td width="250px"><a href="orientation.export_VPSC.html"><tt>export_VPSC</tt></a></td>
<td>export individual orientations to the VPSC format</td>
<tr></tr>
<td width="250px"><a href="orientation.fibreVolume.html"><tt>fibreVolume</tt></a></td>
<td>ratio of orientations close to a certain fibre</td>
<tr></tr>
<td width="250px"><a href="orientation.getFundamentalRegion.html"><tt>getFundamentalRegion</tt></a></td>
<td>projects orientations to a fundamental region</td>
<tr></tr>
<td width="250px"><a href="orientation.isMisorientation.html"><tt>isMisorientation</tt></a></td>
<td>check whether o is a misorientation</td>
<tr></tr>
<td width="250px"><a href="orientation.ldivide.html"><tt>ldivide</tt></a></td>
<td>o .\ v</td>
<tr></tr>
<td width="250px"><a href="orientation.load.html"><tt>load</tt></a></td>
<td>import orientation data from data files</td>
<tr></tr>
<td width="250px"><a href="orientation.log.html"><tt>log</tt></a></td>
<td>the misorientation vector between two orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.logm.html"><tt>logm</tt></a></td>
<td>the logarithmic map that translates a rotation into a spin tensor</td>
<tr></tr>
<td width="250px"><a href="orientation.map.html"><tt>map</tt></a></td>
<td>define orientations by pairs of vectors</td>
<tr></tr>
<td width="250px"><a href="orientation.mean.html"><tt>mean</tt></a></td>
<td>mean of a list of orientations, principle axes and moments of inertia</td>
<tr></tr>
<td width="250px"><a href="orientation.mldivide.html"><tt>mldivide</tt></a></td>
<td>o \ v</td>
<tr></tr>
<td width="250px"><a href="orientation.mtimes.html"><tt>mtimes</tt></a></td>
<td>orientation times Miller and orientation times orientation</td>
<tr></tr>
<td width="250px"><a href="orientation.niceEuler.html"><tt>niceEuler</tt></a></td>
<td>orientation to euler angle</td>
<tr></tr>
<td width="250px"><a href="orientation.orientation.html"><tt>orientation</tt></a></td>
<td>orientation - class representing orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.parents.html"><tt>parents</tt></a></td>
<td>variants of an orientation relationship</td>
<tr></tr>
<td width="250px"><a href="orientation.plot.html"><tt>plot</tt></a></td>
<td>annotate a orientation to an existing plot</td>
<tr></tr>
<td width="250px"><a href="orientation.plotIPDF.html"><tt>plotIPDF</tt></a></td>
<td>plot orientations into inverse pole figures</td>
<tr></tr>
<td width="250px"><a href="orientation.plotPDF.html"><tt>plotPDF</tt></a></td>
<td>plot orientations into pole figures</td>
<tr></tr>
<td width="250px"><a href="orientation.plotSection.html"><tt>plotSection</tt></a></td>
<td>plot orientations to ODF sections</td>
<tr></tr>
<td width="250px"><a href="orientation.power.html"><tt>power</tt></a></td>
<td>ori.^n</td>
<tr></tr>
<td width="250px"><a href="orientation.project2EulerFR.html"><tt>project2EulerFR</tt></a></td>
<td>projects orientation to a fundamental region</td>
<tr></tr>
<td width="250px"><a href="orientation.project2FundamentalRegion.html"><tt>project2FundamentalRegion</tt></a></td>
<td>projects orientation to a fundamental region</td>
<tr></tr>
<td width="250px"><a href="orientation.qqplot.html"><tt>qqplot</tt></a></td>
<td>quantile-quantile of misorientation angle against random angular misorientation</td>
<tr></tr>
<td width="250px"><a href="orientation.round2Miller.html"><tt>round2Miller</tt></a></td>
<td>find lattice alignements for arbitrary orientations and misorientations</td>
<tr></tr>
<td width="250px"><a href="orientation.scatter.html"><tt>scatter</tt></a></td>
<td>plots orientations in 3d</td>
<tr></tr>
<td width="250px"><a href="orientation.sphereVolume.html"><tt>sphereVolume</tt></a></td>
<td>ratio of orientations with a certain orientation</td>
<tr></tr>
<td width="250px"><a href="orientation.symmetrise.html"><tt>symmetrise</tt></a></td>
<td>all crystallographically equivalent orientations</td>
<tr></tr>
<td width="250px"><a href="orientation.times.html"><tt>times</tt></a></td>
<td>vec = ori .* Miller</td>
<tr></tr>
<td width="250px"><a href="orientation.transformReferenceFrame.html"><tt>transformReferenceFrame</tt></a></td>
<td>change reference frame of an orientation</td>
<tr></tr>
<td width="250px"><a href="orientation.unique.html"><tt>unique</tt></a></td>
<td>disjoint list of quaternions</td>
<tr></tr>
<td width="250px"><a href="orientation.variants.html"><tt>variants</tt></a></td>
<td>variants of an orientation relationship</td>
<tr></tr>
<td width="250px"><a href="orientation.volume.html"><tt>volume</tt></a></td>
<td>ratio of orientations with a certain orientation</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Fibres<a name="8"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="fibre.angle.html"><tt>angle</tt></a></td>
<td>angle fibre to orientation or fibre to fibre</td>
<tr></tr>
<td width="250px"><a href="fibre.cat.html"><tt>cat</tt></a></td>
<td>implement cat for fibre</td>
<tr></tr>
<td width="250px"><a href="fibre.display.html"><tt>display</tt></a></td>
<td>standard output</td>
<tr></tr>
<td width="250px"><a href="fibre.end.html"><tt>end</tt></a></td>
<td>overloaded end function</td>
<tr></tr>
<td width="250px"><a href="fibre.eq.html"><tt>eq</tt></a></td>
<td>? sS1 == sS2</td>
<tr></tr>
<td width="250px"><a href="fibre.fibre.html"><tt>fibre</tt></a></td>
<td>fibre is a class representing a fibre in orientation space. Examples are alpha, beta or gamma fibres. In general a fibre is
defined by a crystal direction h of type <Miller_index.html Miller> and a specimen direction of type <vector3d_index.html
vector3d>.
</td>
<tr></tr>
<td width="250px"><a href="fibre.horzcat.html"><tt>horzcat</tt></a></td>
<td>overloads [v1,v2,v3..]</td>
<tr></tr>
<td width="250px"><a href="fibre.isempty.html"><tt>isempty</tt></a></td>
<td>overloads isempty</td>
<tr></tr>
<td width="250px"><a href="fibre.length.html"><tt>length</tt></a></td>
<td>overloads length</td>
<tr></tr>
<td width="250px"><a href="fibre.ne.html"><tt>ne</tt></a></td>
<td>? sS1 ~= sS2</td>
<tr></tr>
<td width="250px"><a href="fibre.orientation.html"><tt>orientation</tt></a></td>
<td>generate a list of orientation out of a fibre</td>
<tr></tr>
<td width="250px"><a href="fibre.plot.html"><tt>plot</tt></a></td>
<td>plot a fibre</td>
<tr></tr>
<td width="250px"><a href="fibre.plotIPDF.html"><tt>plotIPDF</tt></a></td>
<td>plot orientations into inverse pole figures</td>
<tr></tr>
<td width="250px"><a href="fibre.plotPDF.html"><tt>plotPDF</tt></a></td>
<td>plot a fibre into pole figures</td>
<tr></tr>
<td width="250px"><a href="fibre.rotation.html"><tt>rotation</tt></a></td>
<td>generate a list of orientation out of a fibre</td>
<tr></tr>
<td width="250px"><a href="fibre.size.html"><tt>size</tt></a></td>
<td>overloads size</td>
<tr></tr>
<td width="250px"><a href="fibre.subSet.html"><tt>subSet</tt></a></td>
<td>subindex vector3d</td>
<tr></tr>
<td width="250px"><a href="fibre.subsref.html"><tt>subsref</tt></a></td>
<td>overloads subsref</td>
<tr></tr>
<td width="250px"><a href="fibre.symmetrise.html"><tt>symmetrise</tt></a></td>
<td>all crystallographically equivalent fibres</td>
<tr></tr>
<td width="250px"><a href="fibre.transpose.html"><tt>transpose</tt></a></td>
<td>transpose list of slipSystem</td>
<tr></tr>
<td width="250px"><a href="fibre.vertcat.html"><tt>vertcat</tt></a></td>
<td>overloads [v1,v2,v3..]</td>
</table>
<p class="pagenavlink"><script language="Javascript">updateSectionId("1");</script><script language="Javascript">addTopOfSectionButtons();</script><a href="#1">Back to Top of Section</a></p>
<h2> Slip Systems (The Class @slipSystem)<a name="9"> </a></h2>
<table width="95%">
<tr></tr>
<td width="250px"><a href="slipSystem.SchmidFactor.html"><tt>SchmidFactor</tt></a></td>
<td>compute the Schmid factor</td>
<tr></tr>
<td width="250px"><a href="slipSystem.SchmidTensor.html"><tt>SchmidTensor</tt></a></td>
<td>Schmid tensors for a list of slip systems</td>
<tr></tr>
<td width="250px"><a href="slipSystem.cat.html"><tt>cat</tt></a></td>
<td>implement cat for slipSystem</td>
<tr></tr>
<td width="250px"><a href="slipSystem.deformationTensor.html"><tt>deformationTensor</tt></a></td>
<td>deformation tensor</td>
<tr></tr>
<td width="250px"><a href="slipSystem.end.html"><tt>end</tt></a></td>
<td>overloaded end function</td>
<tr></tr>
<td width="250px"><a href="slipSystem.eq.html"><tt>eq</tt></a></td>
<td>check sS1 == sS2</td>
<tr></tr>
<td width="250px"><a href="slipSystem.horzcat.html"><tt>horzcat</tt></a></td>
<td>overloads [v1,v2,v3..]</td>
<tr></tr>
<td width="250px"><a href="slipSystem.isempty.html"><tt>isempty</tt></a></td>
<td>overloads isempty</td>
<tr></tr>
<td width="250px"><a href="slipSystem.length.html"><tt>length</tt></a></td>
<td>overloads length</td>
<tr></tr>
<td width="250px"><a href="slipSystem.mPrime.html"><tt>mPrime</tt></a></td>
<td>m' parameter from Luster and Morris in 1995</td>
<tr></tr>
<td width="250px"><a href="slipSystem.ne.html"><tt>ne</tt></a></td>
<td>? sS1 ~= sS2</td>
<tr></tr>
<td width="250px"><a href="slipSystem.residualBurgersVector.html"><tt>residualBurgersVector</tt></a></td>