forked from UCL-CCS/SCEMa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dealammps.cc
584 lines (475 loc) · 20.8 KB
/
dealammps.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/* ---------------------------------------------------------------------
*
* Copyright (C) 2000 - 2015 by the deal.II authors
*
* This file is part of the deal.II library.
*
* The deal.II library is free software; you can use it, redistribute
* it, and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* The full text of the license can be found in the file LICENSE at
* the top level of the deal.II distribution.
*
* ---------------------------------------------------------------------
*
* Author: Wolfgang Bangerth, University of Heidelberg, 2000
*/
#include <fstream>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <iomanip>
#include <string>
#include <sys/stat.h>
#include <math.h>
#include "boost/archive/text_oarchive.hpp"
#include "boost/archive/text_iarchive.hpp"
#include "boost/property_tree/ptree.hpp"
#include "boost/property_tree/json_parser.hpp"
#include "boost/foreach.hpp"
//#include "boost/filesystem.hpp"
// Specifically built header files
#include "headers/read_write.h"
#include "headers/tensor_calc.h"
#include "headers/scale_bridging_data.h"
//#include "headers/stmd_problem.h"
#include "headers/md_sim.h"
#include "headers/stmd_sync.h"
// To avoid conflicts...
// pointers.h in input.h defines MIN and MAX
// which are later redefined in petsc headers
#undef MIN
#undef MAX
#include <deal.II/grid/tria_boundary_lib.h>
#include <deal.II/fe/fe_tools.h>
#include <deal.II/fe/fe_dgq.h>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/function.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/multithread_info.h>
#include <deal.II/base/conditional_ostream.h>
#include <deal.II/base/utilities.h>
#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/petsc_parallel_vector.h>
#include <deal.II/lac/petsc_parallel_sparse_matrix.h>
#include <deal.II/lac/petsc_solver.h>
#include <deal.II/lac/petsc_precondition.h>
#include <deal.II/lac/constraint_matrix.h>
#include <deal.II/lac/sparsity_tools.h>
#include <deal.II/distributed/shared_tria.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/grid/manifold_lib.h>
#include <deal.II/grid/grid_tools.h>
#include <deal.II/grid/grid_in.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/dofs/dof_renumbering.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/error_estimator.h>
#include <deal.II/base/symmetric_tensor.h>
#include <deal.II/grid/filtered_iterator.h>
#include <deal.II/base/mpi.h>
// Include of the FE model to solve in the simulation
//#include "headers/fe-spline_problem_hopk.h"
#include "headers/FE_problem.h"
namespace HMM
{
using namespace dealii;
template <int dim>
class HMMProblem
{
public:
HMMProblem ();
~HMMProblem ();
void run (std::string inputfile);
private:
void read_inputs(std::string inputfile);
void set_global_communicators ();
void set_repositories ();
void share_scale_bridging_data (ScaleBridgingData &scale_bridging_data);
void do_timestep ();
STMDSync<dim> *mmd_problem = NULL;
FEProblem<dim> *fe_problem = NULL;
MPI_Comm world_communicator;
const int n_world_processes;
const int this_world_process;
int world_pcolor;
MPI_Comm fe_communicator;
int root_fe_process;
int n_fe_processes;
int this_fe_process;
int fe_pcolor;
MPI_Comm mmd_communicator;
int n_mmd_processes;
int root_mmd_process;
int this_mmd_process;
int mmd_pcolor;
unsigned int machine_ppn;
int fenodes;
unsigned int batch_nnodes_min;
ConditionalOStream hcout;
int start_timestep;
int end_timestep;
double present_time;
double fe_timestep_length;
double end_time;
int timestep;
int newtonstep;
int fe_degree;
int quadrature_formula;
std::string twod_mesh_file;
double extrude_length;
int extrude_points;
std::vector<std::string> mdtype;
unsigned int nrepl;
Tensor<1,dim> cg_dir;
boost::property_tree::ptree input_config;
bool activate_md_update;
bool approx_md_with_hookes_law;
bool use_pjm_scheduler;
double md_timestep_length;
double md_temperature;
int md_nsteps_sample;
double md_strain_rate;
std::string md_force_field;
int freq_checkpoint;
int freq_output_visu;
int freq_output_lhist;
int freq_output_homog;
std::string macrostatelocin;
std::string macrostatelocout;
std::string macrostatelocres;
std::string macrologloc;
std::string nanostatelocin;
std::string nanostatelocout;
std::string nanostatelocres;
std::string nanologloc;
std::string nanologloctmp;
std::string nanologlochom;
std::string md_scripts_directory;
};
template <int dim>
HMMProblem<dim>::HMMProblem ()
:
world_communicator (MPI_COMM_WORLD),
n_world_processes (Utilities::MPI::n_mpi_processes(world_communicator)),
this_world_process (Utilities::MPI::this_mpi_process(world_communicator)),
world_pcolor (0),
hcout (std::cout,(this_world_process == 0))
{}
template <int dim>
HMMProblem<dim>::~HMMProblem ()
{}
template <int dim>
void HMMProblem<dim>::read_inputs (std::string inputfile)
{
std::ifstream jsonFile(inputfile);
try{
read_json(jsonFile, input_config);
}
catch (const boost::property_tree::json_parser::json_parser_error& e)
{
hcout << "Invalid JSON HMM input file (" << inputfile << ")" << std::endl; // Never gets here
}
boost::property_tree::read_json(inputfile, input_config);
// Continuum timestepping
fe_timestep_length = input_config.get<double>("continuum time.timestep length");
start_timestep = input_config.get<int>("continuum time.start timestep");
end_timestep = input_config.get<int>("continuum time.end timestep");
// Continuum meshing
fe_degree = input_config.get<int>("continuum mesh.fe degree");
quadrature_formula = input_config.get<int>("continuum mesh.quadrature formula");
// Scale-bridging parameters
activate_md_update = input_config.get<bool>("scale-bridging.activate md update");
approx_md_with_hookes_law =input_config.get<bool>("scale-bridging.approximate md with hookes law");
use_pjm_scheduler = input_config.get<bool>("scale-bridging.use pjm scheduler");
// Continuum input, output, restart and log location
macrostatelocin = input_config.get<std::string>("directory structure.macroscale input");
macrostatelocout = input_config.get<std::string>("directory structure.macroscale output");
macrostatelocres = input_config.get<std::string>("directory structure.macroscale restart");
macrologloc = input_config.get<std::string>("directory structure.macroscale log");
// Atomic input, output, restart and log location
nanostatelocin = input_config.get<std::string>("directory structure.nanoscale input");
nanostatelocout = input_config.get<std::string>("directory structure.nanoscale output");
nanostatelocres = input_config.get<std::string>("directory structure.nanoscale restart");
nanologloc = input_config.get<std::string>("directory structure.nanoscale log");
// Molecular dynamics material data
nrepl = input_config.get<unsigned int>("molecular dynamics material.number of replicas");
BOOST_FOREACH(boost::property_tree::ptree::value_type &v,
get_subbptree(input_config, "molecular dynamics material").get_child("list of materials.")) {
mdtype.push_back(v.second.data());
}
// Direction to which all MD data are rotated to, to later ease rotation in the FE problem. The
// replicas results are rotated to this referential before ensemble averaging, and the continuum
// tensors are rotated to this referential from the microstructure given orientation
std::vector<double> tmp_dir;
BOOST_FOREACH(boost::property_tree::ptree::value_type &v,
get_subbptree(input_config, "molecular dynamics material").get_child("rotation common ground vector.")) {
tmp_dir.push_back(std::stod(v.second.data()));
}
if(tmp_dir.size()==dim){
for(unsigned int imd=0; imd<dim; imd++){
cg_dir[imd] = tmp_dir[imd];
}
}
// Molecular dynamics simulation parameters
md_timestep_length = input_config.get<double>("molecular dynamics parameters.timestep length");
md_temperature = input_config.get<double>("molecular dynamics parameters.temperature");
md_nsteps_sample = input_config.get<int>("molecular dynamics parameters.number of sampling steps");
md_strain_rate = input_config.get<double>("molecular dynamics parameters.strain rate");
md_force_field = input_config.get<std::string>("molecular dynamics parameters.force field");
md_scripts_directory = input_config.get<std::string>("molecular dynamics parameters.scripts directory");
// Computational resources
machine_ppn = input_config.get<unsigned int>("computational resources.machine cores per node");
fenodes = input_config.get<int>("computational resources.number of nodes for FEM simulation");
batch_nnodes_min = input_config.get<unsigned int>("computational resources.minimum nodes per MD simulation");
// Output and checkpointing frequencies
freq_checkpoint = input_config.get<int>("output data.checkpoint frequency");
freq_output_lhist = input_config.get<int>("output data.visualisation output frequency");
freq_output_visu = input_config.get<int>("output data.analytics output frequency");
freq_output_homog = input_config.get<int>("output data.homogenization output frequency");
// Print a recap of all the parameters...
hcout << "Parameters listing:" << std::endl;
hcout << " - Activate MD updates (1 is true, 0 is false): "<< activate_md_update << std::endl;
hcout << " - Use Pilot Job Manager to schedule MD jobs: "<< use_pjm_scheduler << std::endl;
hcout << " - FE timestep duration: "<< fe_timestep_length << std::endl;
hcout << " - Start timestep: "<< start_timestep << std::endl;
hcout << " - End timestep: "<< end_timestep << std::endl;
hcout << " - FE shape funciton degree: "<< fe_degree << std::endl;
hcout << " - FE quadrature formula: "<< quadrature_formula << std::endl;
hcout << " - Number of replicas: "<< nrepl << std::endl;
hcout << " - List of material names: "<< std::flush;
for(unsigned int imd=0; imd<mdtype.size(); imd++)
{
hcout << " " << mdtype[imd] << std::flush;
}
hcout << std::endl;
hcout << " - Direction use as a common ground/referential to transfer data between nano- and micro-structures : "<< std::flush;
for(unsigned int imd=0; imd<dim; imd++)
{
hcout << " " << cg_dir[imd] << std::flush;
}
hcout << std::endl;
hcout << " - MD timestep duration: "<< md_timestep_length << std::endl;
hcout << " - MD thermostat temperature: "<< md_temperature << std::endl;
hcout << " - MD deformation rate: "<< md_strain_rate << std::endl;
hcout << " - MD number of sampling steps: "<< md_nsteps_sample << std::endl;
hcout << " - MD force field type: "<< md_force_field << std::endl;
hcout << " - MD scripts directory (contains in.set, in.strain, ELASTIC/, ffield parameters): "<< md_scripts_directory << std::endl;
hcout << " - Number of cores per node on the machine: "<< machine_ppn << std::endl;
hcout << " - Number of nodes for FEM simulation: "<< fenodes << std::endl;
hcout << " - Minimum number of nodes per MD simulation: "<< batch_nnodes_min << std::endl;
hcout << " - Frequency of checkpointing: "<< freq_checkpoint << std::endl;
hcout << " - Frequency of writing FE data files: "<< freq_output_lhist << std::endl;
hcout << " - Frequency of writing FE visualisation files: "<< freq_output_visu << std::endl;
hcout << " - Frequency of writing MD homogenization trajectory files: "<< freq_output_homog << std::endl;
hcout << " - FE input directory: "<< macrostatelocin << std::endl;
hcout << " - FE output directory: "<< macrostatelocout << std::endl;
hcout << " - FE restart directory: "<< macrostatelocres << std::endl;
hcout << " - FE log directory: "<< macrologloc << std::endl;
hcout << " - MD input directory: "<< nanostatelocin << std::endl;
hcout << " - MD output directory: "<< nanostatelocout << std::endl;
hcout << " - MD restart directory: "<< nanostatelocres << std::endl;
hcout << " - MD log directory: "<< nanologloc << std::endl;
}
template <int dim>
void HMMProblem<dim>::set_global_communicators ()
{
//Setting up DEALII communicator and related variables
root_fe_process = 0;
n_fe_processes = fenodes*machine_ppn;
// Color set above 0 for processors that are going to be used
fe_pcolor = MPI_UNDEFINED;
if (this_world_process >= root_fe_process &&
this_world_process < root_fe_process + n_fe_processes) fe_pcolor = 0;
else fe_pcolor = 1;
MPI_Comm_split(world_communicator, fe_pcolor, this_world_process, &fe_communicator);
MPI_Comm_rank(fe_communicator, &this_fe_process);
//Setting up LAMMPS communicator and related variables
root_mmd_process = 0;
n_mmd_processes = n_world_processes;
// Color set above 0 for processors that are going to be used
mmd_pcolor = MPI_UNDEFINED;
if (this_world_process >= root_mmd_process &&
this_world_process < root_mmd_process + n_mmd_processes) mmd_pcolor = 0;
else mmd_pcolor = 1;
MPI_Comm_split(world_communicator, mmd_pcolor, this_world_process, &mmd_communicator);
MPI_Comm_rank(mmd_communicator, &this_mmd_process);
create_qp_mpi_datatype(); // Creates and commits MPI_QP for communicating quadrature point info
// between FE and MD solvers
}
template <int dim>
void HMMProblem<dim>::set_repositories ()
{
if(!file_exists(macrostatelocin) || !file_exists(nanostatelocin)){
std::cerr << "Missing macroscale or nanoscale input directories." << std::endl;
exit(1);
}
mkdir(macrostatelocout.c_str(), ACCESSPERMS);
mkdir(macrostatelocres.c_str(), ACCESSPERMS);
mkdir(macrologloc.c_str(), ACCESSPERMS);
mkdir(nanostatelocout.c_str(), ACCESSPERMS);
mkdir(nanostatelocres.c_str(), ACCESSPERMS);
mkdir(nanologloc.c_str(), ACCESSPERMS);
nanologloctmp = nanologloc+"/tmp"; mkdir(nanologloctmp.c_str(), ACCESSPERMS);
nanologlochom = nanologloc+"/homog"; mkdir(nanologlochom.c_str(), ACCESSPERMS);
char fnset[1024]; sprintf(fnset, "%s/in.set.lammps", md_scripts_directory.c_str());
char fnstrain[1024]; sprintf(fnstrain, "%s/in.strain.lammps", md_scripts_directory.c_str());
char fnelastic[1024]; sprintf(fnelastic, "%s/ELASTIC", md_scripts_directory.c_str());
if(!file_exists(fnset) || !file_exists(fnstrain) || !file_exists(fnelastic)){
std::cerr << "Missing some MD input scripts for executing LAMMPS simulation (in 'box' directory)." << std::endl;
exit(1);
}
}
template <int dim>
void HMMProblem<dim>::share_scale_bridging_data (ScaleBridgingData &scale_bridging_data)
{
int n_updates = scale_bridging_data.update_list.size();
MPI_Bcast(&n_updates , 1, MPI_INT, 0, world_communicator);
if (this_world_process != 0) {
scale_bridging_data.update_list.resize(n_updates);
}
MPI_Bcast(&(scale_bridging_data.update_list[0]), n_updates, MPI_QP, 0, world_communicator);
}
template <int dim>
void HMMProblem<dim>::do_timestep ()
{
// Updating time variable
present_time += fe_timestep_length;
++timestep;
hcout << "Timestep " << timestep << " at time " << present_time
<< std::endl;
if (present_time > end_time)
{
fe_timestep_length -= (present_time - end_time);
present_time = end_time;
}
newtonstep = 0;
// Initialisation of timestep variables
if(fe_pcolor==0) fe_problem->beginstep(timestep, present_time);
MPI_Barrier(world_communicator);
// Solving iteratively the current timestep
bool continue_newton = false;
do
{
++newtonstep;
ScaleBridgingData scale_bridging_data;
if(fe_pcolor==0) fe_problem->solve(newtonstep, scale_bridging_data);
share_scale_bridging_data(scale_bridging_data);
//hcout << "ENTERING HELL" << std::endl;
if(mmd_pcolor==0) mmd_problem->update(timestep, present_time, newtonstep, scale_bridging_data);
MPI_Barrier(world_communicator);
share_scale_bridging_data(scale_bridging_data);
if(fe_pcolor==0) continue_newton = fe_problem->check(scale_bridging_data);
// Share the value of previous_res with processors outside of dealii allocation
MPI_Bcast(&continue_newton, 1, MPI_C_BOOL, root_fe_process, world_communicator);
} while (continue_newton);
if(fe_pcolor==0) fe_problem->endstep();
MPI_Barrier(world_communicator);
}
template <int dim>
void HMMProblem<dim>::run (std::string inputfile)
{
// Reading JSON input file (common ones only)
read_inputs(inputfile);
hcout << "Building the HMM problem: " << std::endl;
// Set the dealii communicator using a limited amount of available processors
// because dealii fails if processors do not have assigned cells. Plus, dealii
// might not scale indefinitely
set_global_communicators();
// Setting repositories for input and creating repositories for outputs
set_repositories();
// Instantiation of the MMD Problem
if(mmd_pcolor==0) mmd_problem = new STMDSync<dim> (mmd_communicator, mmd_pcolor);
// Instantiation of the FE problem
if(fe_pcolor==0) fe_problem = new FEProblem<dim> (fe_communicator, fe_pcolor, fe_degree, quadrature_formula, n_world_processes);
MPI_Barrier(world_communicator);
// Initialization of time variables
timestep = start_timestep - 1;
present_time = timestep*fe_timestep_length;
end_time = end_timestep*fe_timestep_length;
hcout << " Initialization of the Multiple Molecular Dynamics problem... " << std::endl;
if(mmd_pcolor==0) mmd_problem->init(start_timestep, md_timestep_length, md_temperature,
md_nsteps_sample, md_strain_rate, md_force_field, nanostatelocin,
nanostatelocout, nanostatelocres, nanologloc,
nanologloctmp, nanologlochom, macrostatelocout,
md_scripts_directory, freq_checkpoint, freq_output_homog,
batch_nnodes_min, machine_ppn, mdtype, cg_dir, nrepl,
use_pjm_scheduler, input_config, approx_md_with_hookes_law);
// Initialization of MMD must be done before initialization of FE, because FE needs initial
// materials properties obtained from MMD initialization
MPI_Barrier(world_communicator);
hcout << " Initiation of the Finite Element problem... " << std::endl;
if(fe_pcolor==0) fe_problem->init(start_timestep, fe_timestep_length,
macrostatelocin, macrostatelocout,
macrostatelocres, macrologloc,
freq_checkpoint, freq_output_visu, freq_output_lhist,
activate_md_update, mdtype, cg_dir,
twod_mesh_file, extrude_length, extrude_points,
input_config, approx_md_with_hookes_law);
MPI_Barrier(world_communicator);
// Running the solution algorithm of the FE problem
hcout << "Beginning of incremental solution algorithm: " << std::endl;
while (present_time < end_time){
do_timestep();
}
if(mmd_pcolor==0) delete mmd_problem;
if(fe_pcolor==0) delete fe_problem;
}
}
int main (int argc, char **argv)
{
try
{
using namespace HMM;
dealii::Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
if(argc!=2){
std::cerr << "Wrong number of arguments, expected: './dealammps inputs_dealammps.json', but argc is " << argc << std::endl;
exit(1);
}
std::string inputfile = argv[1];
if(!file_exists(inputfile)){
std::cerr << "Missing HMM input file." << std::endl;
exit(1);
}
HMMProblem<3> hmm_problem;
hmm_problem.run(inputfile);
}
catch (std::exception &exc)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}