-
Notifications
You must be signed in to change notification settings - Fork 68
/
MySensor.cpp
732 lines (645 loc) · 21.5 KB
/
MySensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
The MySensors library adds a new layer on top of the RF24 library.
It handles radio network routing, relaying and ids.
Created by Henrik Ekblad <[email protected]>
12/10/14 - Ported to Raspberry Pi by OUJABER Mohamed <[email protected]>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
#include "MySensor.h"
using namespace std;
#ifdef __Raspberry_Pi
#include <PiEEPROM.h>
#include "RF24.h"
#include "RF24_config.h"
#else
#include "utility/LowPower.h"
#include "utility/RF24.h"
#include "utility/RF24_config.h"
#endif
// Inline function and macros
inline MyMessage& build (MyMessage &msg, uint8_t sender, uint8_t destination, uint8_t sensor, uint8_t command, uint8_t type, bool enableAck) {
msg.sender = sender;
msg.destination = destination;
msg.sensor = sensor;
msg.type = type;
mSetCommand(msg,command);
mSetRequestAck(msg,enableAck);
mSetAck(msg,false);
return msg;
}
#ifdef __Raspberry_Pi
MySensor::MySensor(uint8_t _cepin, uint8_t _cspin, uint32_t spispeed ) : RF24(_cepin, _cspin, spispeed){
timeval curTime;
gettimeofday(&curTime, NULL);
millis_at_start = curTime.tv_sec;
}
#else
MySensor::MySensor(uint8_t _cepin, uint8_t _cspin) : RF24(_cepin, _cspin) {
}
#endif
void MySensor::begin(void (*_msgCallback)(const MyMessage &), uint8_t _nodeId, boolean _repeaterMode, uint8_t _parentNodeId, rf24_pa_dbm_e paLevel, uint8_t channel, rf24_datarate_e dataRate) {
#ifndef __Raspberry_Pi
Serial.begin(BAUD_RATE);
#endif
isGateway = false;
repeaterMode = _repeaterMode;
msgCallback = _msgCallback;
if (repeaterMode) {
setupRepeaterMode();
}
setupRadio(paLevel, channel, dataRate);
// Read settings from EEPROM
eeprom_read_block((void*)&nc, (void*)EEPROM_NODE_ID_ADDRESS, sizeof(NodeConfig));
// Read latest received controller configuration from EEPROM
eeprom_read_block((void*)&cc, (void*)EEPROM_CONTROLLER_CONFIG_ADDRESS, sizeof(ControllerConfig));
if (cc.isMetric == 0xff) {
// EEPROM empty, set default to metric
cc.isMetric = 0x01;
}
if (_parentNodeId != AUTO) {
if (_parentNodeId != nc.parentNodeId) {
nc.parentNodeId = _parentNodeId;
// Save static parent id in EEPROM
eeprom_write_byte((uint8_t*)EEPROM_PARENT_NODE_ID_ADDRESS, _parentNodeId);
}
autoFindParent = false;
} else {
autoFindParent = true;
}
if ( (_nodeId != AUTO) && (nc.nodeId != _nodeId) ) {
// Set static id
nc.nodeId = _nodeId;
// Save static id in EEPROM
eeprom_write_byte((uint8_t*)EEPROM_NODE_ID_ADDRESS, _nodeId);
}
// If no parent was found in EEPROM. Try to find one.
if (autoFindParent && nc.parentNodeId == 0xff) {
findParentNode();
}
// Try to fetch node-id from gateway
if (nc.nodeId == AUTO) {
requestNodeId();
}
debug(PSTR("%s started, id %d\n"), repeaterMode?"repeater":"sensor", nc.nodeId);
// If we got an id, set this node to use it
if (nc.nodeId != AUTO) {
setupNode();
// Wait configuration reply.
wait(2000);
}
}
void MySensor::setupRadio(rf24_pa_dbm_e paLevel, uint8_t channel, rf24_datarate_e dataRate) {
failedTransmissions = 0;
// Start up the radio library
RF24::begin();
if (!RF24::isPVariant()) {
debug(PSTR("check wires\n"));
throw "check wires";
}
RF24::setAutoAck(1);
RF24::setAutoAck(BROADCAST_PIPE,false); // Turn off auto ack for broadcast
RF24::enableAckPayload();
RF24::setChannel(channel);
RF24::setPALevel(paLevel);
RF24::setDataRate(dataRate);
RF24::setRetries(5,15);
RF24::setCRCLength(RF24_CRC_16);
RF24::enableDynamicPayloads();
// All nodes listen to broadcast pipe (for FIND_PARENT_RESPONSE messages)
RF24::openReadingPipe(BROADCAST_PIPE, TO_ADDR(BROADCAST_ADDRESS));
RF24::printDetails();
}
void MySensor::setupRepeaterMode(){
childNodeTable = new uint8_t[256];
eeprom_read_block((void*)childNodeTable, (void*)EEPROM_ROUTES_ADDRESS, 256);
}
uint8_t MySensor::getNodeId() {
return nc.nodeId;
}
ControllerConfig MySensor::getConfig() {
return cc;
}
void MySensor::requestNodeId() {
debug(PSTR("req node id\n"));
RF24::openReadingPipe(CURRENT_NODE_PIPE, TO_ADDR(nc.nodeId));
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_ID_REQUEST, false).set(""));
wait(2000);
}
void MySensor::setupNode() {
// Open reading pipe for messages directed to this node (set write pipe to same)
RF24::openReadingPipe(WRITE_PIPE, TO_ADDR(nc.nodeId));
RF24::openReadingPipe(CURRENT_NODE_PIPE, TO_ADDR(nc.nodeId));
// Send presentation for this radio node (attach
present(NODE_SENSOR_ID, repeaterMode? S_ARDUINO_REPEATER_NODE : S_ARDUINO_NODE);
// Send a configuration exchange request to controller
// Node sends parent node. Controller answers with latest node configuration
// which is picked up in process()
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_CONFIG, false).set(nc.parentNodeId));
}
void MySensor::findParentNode() {
failedTransmissions = 0;
// Set distance to max
nc.distance = 255;
// Send ping message to BROADCAST_ADDRESS (to which all relaying nodes and gateway listens and should reply to)
build(msg, nc.nodeId, BROADCAST_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_FIND_PARENT, false).set("");
sendWrite(BROADCAST_ADDRESS, msg, true);
// Wait for ping response.
wait(2000);
}
boolean MySensor::sendRoute(MyMessage &message) {
// Make sure to process any incoming messages before sending (could this end up in recursive loop?)
// process();
bool isInternal = mGetCommand(message) == C_INTERNAL;
// If we still don't have any node id, re-request and skip this message.
if (nc.nodeId == AUTO && !(isInternal && message.type == I_ID_REQUEST)) {
requestNodeId();
return false;
}
if (repeaterMode) {
uint8_t dest = message.destination;
uint8_t route = getChildRoute(dest);
if (route>GATEWAY_ADDRESS && route<BROADCAST_ADDRESS && dest != GATEWAY_ADDRESS) {
// --- debug(PSTR("route %d.\n"), route);
// Message destination is not gateway and is in routing table for this node.
// Send it downstream
return sendWrite(route, message);
} else if (isInternal && message.type == I_ID_RESPONSE && dest==BROADCAST_ADDRESS) {
// Node has not yet received any id. We need to send it
// by doing a broadcast sending,
return sendWrite(BROADCAST_ADDRESS, message, true);
}
}
if (!isGateway) {
// --- debug(PSTR("route parent\n"));
// Should be routed back to gateway.
bool ok = sendWrite(nc.parentNodeId, message);
if (!ok) {
// Failure when sending to parent node. The parent node might be down and we
// need to find another route to gateway.
if (autoFindParent && failedTransmissions > SEARCH_FAILURES) {
findParentNode();
} else {
failedTransmissions++;
}
} else {
failedTransmissions = 0;
}
return ok;
}
return false;
}
boolean MySensor::sendWrite(uint8_t next, MyMessage &message, bool broadcast) {
uint8_t length = mGetLength(message);
message.last = nc.nodeId;
mSetVersion(message, PROTOCOL_VERSION);
// Make sure radio has powered up
RF24::powerUp();
RF24::stopListening();
RF24::openWritingPipe(TO_ADDR(next));
bool ok = RF24::write(&message, min(MAX_MESSAGE_LENGTH, HEADER_SIZE + length), broadcast);
RF24::startListening();
debug(PSTR("send: %d-%d-%d-%d s=%d,c=%d,t=%d,pt=%d,l=%d,st=%s:%s\n"),
message.sender,message.last, next, message.destination, message.sensor, mGetCommand(message), message.type, mGetPayloadType(message), mGetLength(message), ok?"ok":"fail", message.getString(convBuf));
return ok;
}
bool MySensor::send(MyMessage &message, bool enableAck) {
message.sender = nc.nodeId;
mSetCommand(message,C_SET);
mSetRequestAck(message,enableAck);
return sendRoute(message);
}
void MySensor::sendBatteryLevel(uint8_t value, bool enableAck) {
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_BATTERY_LEVEL, enableAck).set(value));
}
void MySensor::present(uint8_t childSensorId, uint8_t sensorType, bool enableAck) {
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, childSensorId, C_PRESENTATION, sensorType, enableAck).set(LIBRARY_VERSION));
}
void MySensor::sendSketchInfo(const char *name, const char *version, bool enableAck) {
if (name != NULL) {
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_SKETCH_NAME, enableAck).set(name));
}
if (version != NULL) {
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_SKETCH_VERSION, enableAck).set(version));
}
}
void MySensor::request(uint8_t childSensorId, uint8_t variableType, uint8_t destination) {
sendRoute(build(msg, nc.nodeId, destination, childSensorId, C_REQ, variableType, false).set(""));
}
void MySensor::requestTime(void (* _timeCallback)(unsigned long)) {
timeCallback = _timeCallback;
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_TIME, false).set(""));
}
boolean MySensor::process() {
uint8_t pipe;
boolean available = RF24::available(&pipe);
if (!available || pipe>6)
return false;
memset(&msg,0,sizeof(MyMessage));
uint8_t len = RF24::getDynamicPayloadSize();
RF24::read(&msg, len);
// Add string termination, good if we later would want to print it.
msg.data[mGetLength(msg)] = '\0';
debug(PSTR("read: %d-%d-%d s=%d,c=%d,t=%d,pt=%d,l=%d:%s\n"),
msg.sender, msg.last, msg.destination, msg.sensor, mGetCommand(msg), msg.type, mGetPayloadType(msg), mGetLength(msg), msg.getString(convBuf));
if(!(mGetVersion(msg) == PROTOCOL_VERSION)) {
debug(PSTR("version mismatch\n"));
return false;
}
uint8_t command = mGetCommand(msg);
uint8_t type = msg.type;
uint8_t sender = msg.sender;
uint8_t last = msg.last;
uint8_t destination = msg.destination;
if (destination == nc.nodeId) {
// This message is addressed to this node
if (repeaterMode && last != nc.parentNodeId) {
// Message is from one of the child nodes. Add it to routing table.
addChildRoute(sender, last);
}
// Check if sender requests an ack back.
if (mGetRequestAck(msg)) {
// Copy message
ack = msg;
mSetRequestAck(ack,false); // Reply without ack flag (otherwise we would end up in an eternal loop)
mSetAck(ack,true);
ack.sender = nc.nodeId;
ack.destination = msg.sender;
sendRoute(ack);
}
if (command == C_INTERNAL) {
if (type == I_FIND_PARENT_RESPONSE) {
if (autoFindParent) {
// We've received a reply to a FIND_PARENT message. Check if the distance is
// shorter than we already have.
uint8_t distance = msg.getByte();
if (distance<nc.distance-1) {
// Found a neighbor closer to GW than previously found
nc.distance = distance + 1;
nc.parentNodeId = msg.sender;
eeprom_write_byte((uint8_t*)EEPROM_PARENT_NODE_ID_ADDRESS, nc.parentNodeId);
eeprom_write_byte((uint8_t*)EEPROM_DISTANCE_ADDRESS, nc.distance);
debug(PSTR("new parent=%d, d=%d\n"), nc.parentNodeId, nc.distance);
}
}
return false;
} else if (sender == GATEWAY_ADDRESS) {
bool isMetric;
if (type == I_REBOOT) {
#ifndef __Raspberry_Pi
// Requires MySensors or other bootloader with watchdogs enabled
wdt_enable(WDTO_15MS);
//for (;;);
throw "I_REBOOT";
#endif
} else if (type == I_ID_RESPONSE) {
if (nc.nodeId == AUTO) {
nc.nodeId = msg.getByte();
if (nc.nodeId == AUTO) {
// sensor net gateway will return max id if all sensor id are taken
debug(PSTR("full\n"));
//while (1); // Wait here. Nothing else we can do...
throw "full";
}
setupNode();
// Write id to EEPROM
eeprom_write_byte((uint8_t*)EEPROM_NODE_ID_ADDRESS, nc.nodeId);
debug(PSTR("id=%d\n"), nc.nodeId);
}
} else if (type == I_CONFIG) {
// Pick up configuration from controller (currently only metric/imperial)
// and store it in EEPROM if changed
isMetric = msg.getString()[0] == 'M' ;
if (cc.isMetric != isMetric) {
cc.isMetric = isMetric;
eeprom_write_byte((uint8_t*)EEPROM_CONTROLLER_CONFIG_ADDRESS, isMetric);
}
} else if (type == I_CHILDREN) {
if (repeaterMode && msg.getString()[0] == 'C') {
// Clears child relay data for this node
debug(PSTR("rd=clear\n"));
uint8_t i = 255;
do {
removeChildRoute(i);
} while (i--);
// Clear parent node id & distance to gw
eeprom_write_byte((uint8_t*)EEPROM_PARENT_NODE_ID_ADDRESS, 0xFF);
eeprom_write_byte((uint8_t*)EEPROM_DISTANCE_ADDRESS, 0xFF);
// Find parent node
findParentNode();
sendRoute(build(msg, nc.nodeId, GATEWAY_ADDRESS, NODE_SENSOR_ID, C_INTERNAL, I_CHILDREN,false).set(""));
}
} else if (type == I_TIME) {
if (timeCallback != NULL) {
// Deliver time to callback
timeCallback(msg.getULong());
}
}
return false;
}
}
// Call incoming message callback if available
if (msgCallback != NULL) {
msgCallback(msg);
}
// Return true if message was addressed for this node...
return true;
} else if (repeaterMode && nc.nodeId != AUTO) {
// Relaying nodes should answer only after set an id
if (command == C_INTERNAL && type == I_FIND_PARENT) {
if (nc.distance == 255) {
findParentNode();
} else if (sender != nc.parentNodeId) {
// Relaying nodes should always answer ping messages
// Wait a random delay of 0-2 seconds to minimize collision
// between ping ack messages from other relaying nodes
delay(millis() & 0x3ff);
sendWrite(sender, build(msg, nc.nodeId, sender, NODE_SENSOR_ID, C_INTERNAL, I_FIND_PARENT_RESPONSE, false).set(nc.distance), true);
}
} else if (pipe == CURRENT_NODE_PIPE) {
// We should try to relay this message to another node
uint8_t route = getChildRoute(msg.destination);
if (route>0 && route<255) {
// This message should be forwarded to a child node. If we send message
// to this nodes pipe then all children will receive it because the are
// all listening to this nodes pipe.
//
// +----B
// -A
// +----C------D
//
// We're node C, Message comes from A and has destination D
//
// lookup route in table and send message there
sendWrite(route, msg);
} else if (sender == GATEWAY_ADDRESS && destination == BROADCAST_ADDRESS) {
// A net gateway reply to a message previously sent by us from a 255 node
// We should broadcast this back to the node
sendWrite(destination, msg, true);
} else {
// A message comes from a child node and we have no
// route for it.
//
// +----B
// -A
// +----C------D <-- Message comes from D
//
// We're node C
//
// Message should be passed to node A (this nodes relay)
// This message should be routed back towards sensor net gateway
sendWrite(nc.parentNodeId, msg);
// Add this child to our "routing table" if it not already exist
addChildRoute(sender, last);
}
}
}
return false;
}
MyMessage& MySensor::getLastMessage() {
return msg;
}
void MySensor::saveState(uint8_t pos, uint8_t value) {
if (loadState(pos) != value) {
eeprom_write_byte((uint8_t*)(EEPROM_LOCAL_CONFIG_ADDRESS+pos), value);
}
}
uint8_t MySensor::loadState(uint8_t pos) {
return eeprom_read_byte((uint8_t*)(EEPROM_LOCAL_CONFIG_ADDRESS+pos));
}
void MySensor::addChildRoute(uint8_t childId, uint8_t route) {
if (childNodeTable[childId] != route) {
childNodeTable[childId] = route;
eeprom_write_byte((uint8_t*)EEPROM_ROUTES_ADDRESS+childId, route);
}
}
void MySensor::removeChildRoute(uint8_t childId) {
if (childNodeTable[childId] != 0xff) {
childNodeTable[childId] = 0xff;
eeprom_write_byte((uint8_t*)EEPROM_ROUTES_ADDRESS+childId, 0xff);
}
}
uint8_t MySensor::getChildRoute(uint8_t childId) {
return childNodeTable[childId];
}
int8_t pinIntTrigger = 0;
void wakeUp() //place to send the interrupts
{
pinIntTrigger = 1;
}
void wakeUp2() //place to send the second interrupts
{
pinIntTrigger = 2;
}
void MySensor::internalSleep(unsigned long ms) {
#ifndef __Raspberry_Pi
while (!pinIntTrigger && ms >= 8000) { LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); ms -= 8000; }
if (!pinIntTrigger && ms >= 4000) { LowPower.powerDown(SLEEP_4S, ADC_OFF, BOD_OFF); ms -= 4000; }
if (!pinIntTrigger && ms >= 2000) { LowPower.powerDown(SLEEP_2S, ADC_OFF, BOD_OFF); ms -= 2000; }
if (!pinIntTrigger && ms >= 1000) { LowPower.powerDown(SLEEP_1S, ADC_OFF, BOD_OFF); ms -= 1000; }
if (!pinIntTrigger && ms >= 500) { LowPower.powerDown(SLEEP_500MS, ADC_OFF, BOD_OFF); ms -= 500; }
if (!pinIntTrigger && ms >= 250) { LowPower.powerDown(SLEEP_250MS, ADC_OFF, BOD_OFF); ms -= 250; }
if (!pinIntTrigger && ms >= 125) { LowPower.powerDown(SLEEP_120MS, ADC_OFF, BOD_OFF); ms -= 120; }
if (!pinIntTrigger && ms >= 64) { LowPower.powerDown(SLEEP_60MS, ADC_OFF, BOD_OFF); ms -= 60; }
if (!pinIntTrigger && ms >= 32) { LowPower.powerDown(SLEEP_30MS, ADC_OFF, BOD_OFF); ms -= 30; }
if (!pinIntTrigger && ms >= 16) { LowPower.powerDown(SLEEP_15Ms, ADC_OFF, BOD_OFF); ms -= 15; }
#endif
}
void MySensor::sleep(unsigned long ms) {
#ifndef __Raspberry_Pi
// Let serial prints finish (debug, log etc)
Serial.flush();
#endif
RF24::powerDown();
pinIntTrigger = 0;
internalSleep(ms);
}
void MySensor::wait(unsigned long ms) {
// Let serial prints finish (debug, log etc)
#ifdef __Raspberry_Pi
fflush(stdout);
#else
Serial.flush();
#endif
unsigned long enter = millis();
while (millis() - enter < ms) {
#ifndef __Raspberry_Pi
// reset watchdog
wdt_reset();
#endif
try {
process();
} catch (const char* msg) {
printf("Unable to process radio messages. (Error: %s)\n", msg);
exit(EXIT_FAILURE);
}
}
}
bool MySensor::sleep(uint8_t interrupt, uint8_t mode, unsigned long ms) {
#ifdef __Raspberry_Pi
return 1;
#else
// Let serial prints finish (debug, log etc)
bool pinTriggeredWakeup = true;
Serial.flush();
RF24::powerDown();
attachInterrupt(interrupt, wakeUp, mode);
if (ms>0) {
pinIntTrigger = 0;
sleep(ms);
if (0 == pinIntTrigger) {
pinTriggeredWakeup = false;
}
} else {
Serial.flush();
LowPower.powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF);
}
detachInterrupt(interrupt);
return pinTriggeredWakeup;
#endif
}
int8_t MySensor::sleep(uint8_t interrupt1, uint8_t mode1, uint8_t interrupt2, uint8_t mode2, unsigned long ms) {
int8_t retVal = 1;
#ifdef __Raspberry_Pi
return retVal;
#else
Serial.flush(); // Let serial prints finish (debug, log etc)
RF24::powerDown();
attachInterrupt(interrupt1, wakeUp, mode1);
attachInterrupt(interrupt2, wakeUp2, mode2);
if (ms>0) {
pinIntTrigger = 0;
sleep(ms);
if (0 == pinIntTrigger) {
retVal = -1;
}
} else {
Serial.flush();
LowPower.powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF);
}
detachInterrupt(interrupt1);
detachInterrupt(interrupt2);
if (1 == pinIntTrigger) {
retVal = (int8_t)interrupt1;
} else if (2 == pinIntTrigger) {
retVal = (int8_t)interrupt2;
}
return retVal;
#endif
}
#ifdef DEBUG
void MySensor::debugPrint(const char *fmt, ... ) {
char fmtBuffer[300];
if (isGateway) {
// prepend debug message to be handled correctly by gw (C_INTERNAL, I_LOG_MESSAGE)
snprintf_P(fmtBuffer, 299, PSTR("0;0;%d;0;%d;"), C_INTERNAL, I_LOG_MESSAGE);
#ifdef __Raspberry_Pi
printf(fmtBuffer);
#else
Serial.print(fmtBuffer);
#endif
}
va_list args;
va_start (args, fmt );
va_end (args);
if (isGateway) {
// Truncate message if this is gateway node
vsnprintf_P(fmtBuffer, 60, fmt, args);
fmtBuffer[59] = '\n';
fmtBuffer[60] = '\0';
} else {
vsnprintf_P(fmtBuffer, 299, fmt, args);
}
va_end (args);
#ifdef __Raspberry_Pi
printf(fmtBuffer);
fflush(stdout);
#else
Serial.print(fmtBuffer);
Serial.flush();
#endif
//Serial.write(freeRam());
}
#endif
#ifdef __Raspberry_Pi
unsigned long MySensor::millis()
{
timeval curTime;
gettimeofday(&curTime, NULL);
return ((curTime.tv_sec - millis_at_start) * 1000) + (curTime.tv_usec / 1000);
}
/**
* C++ version 0.4 char* style "itoa":
* Written by Lukás Chmela
* Released under GPLv3.
*/
char* MySensor::itoa(int value, char* result, int base) {
// check that the base if valid
if (base < 2 || base > 36) { *result = '\0'; return result; }
char* ptr = result, *ptr1 = result, tmp_char;
int tmp_value;
do {
tmp_value = value;
value /= base;
*ptr++ = "zyxwvutsrqponmlkjihgfedcba9876543210123456789abcdefghijklmnopqrstuvwxyz" [35 + (tmp_value - value * base)];
} while ( value );
// Apply negative sign
// Apply negative sign
if (tmp_value < 0) *ptr++ = '-';
*ptr-- = '\0';
while(ptr1 < ptr) {
tmp_char = *ptr;
*ptr--= *ptr1;
*ptr1++ = tmp_char;
}
return result;
}
/**
* C++ version 0.4 char* style "itoa":
* Written by Lukás Chmela
* Released under GPLv3.
*/
char* MySensor::ltoa(long value, char* result, int base) {
// check that the base if valid
if (base < 2 || base > 36) { *result = '\0'; return result; }
char* ptr = result, *ptr1 = result, tmp_char;
long tmp_value;
do {
tmp_value = value;
value /= base;
*ptr++ = "zyxwvutsrqponmlkjihgfedcba9876543210123456789abcdefghijklmnopqrstuvwxyz" [35 + (tmp_value - value * base)];
} while ( value );
// Apply negative sign
if (tmp_value < 0) *ptr++ = '-';
*ptr-- = '\0';
while(ptr1 < ptr) {
tmp_char = *ptr;
*ptr--= *ptr1;
*ptr1++ = tmp_char;
}
return result;
}
char * MySensor::dtostrf(float f, int width, int decimals, char *result)
{
char widths[3];
char decimalss[3];
char format[100];
itoa(width,widths,10);
itoa(decimals,decimalss,10);
strcpy(format,"%");
strcat(format,widths);
strcat(format,".");
strcat(format,decimalss);
strcat(format,"f");
sprintf(result,format,f);
return result;
}
#endif
#if defined(DEBUG) && !defined(__Raspberry_Pi)
int MySensor::freeRam (void) {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}
#endif